python_code
stringlengths 0
1.02M
| repo_name
stringlengths 9
48
| file_path
stringlengths 5
114
|
---|---|---|
import logging
from pathlib2 import Path
from memcnn.utils.log import setup, SummaryWriter
def test_setup(tmp_path):
logfile = str(tmp_path / 'testlog.log')
setup(use_stdout=True, filename=logfile, log_level=logging.DEBUG)
def test_summary_writer(tmp_path):
logfile = Path(tmp_path / 'scalars.json')
assert not logfile.exists()
writer = SummaryWriter(log_dir=str(tmp_path))
writer.add_scalar("test_value", 0.5, 1)
writer.add_scalar("test_value", 2.5, 2)
writer.add_scalar("test_value2", 123, 1)
writer.flush()
assert logfile.exists()
writer = SummaryWriter(log_dir=str(tmp_path))
assert "test_value" in writer._summary
assert "test_value2" in writer._summary
assert len(writer._summary["test_value"]) == 2
writer.add_scalar("test_value", 123.4, 3)
writer.close()
writer = SummaryWriter(log_dir=str(tmp_path))
assert "test_value" in writer._summary
assert "test_value2" in writer._summary
assert len(writer._summary["test_value"]) == 3
|
memcnn-master
|
memcnn/utils/tests/test_log.py
|
import torch
from memcnn.utils.loss import _assert_no_grad, CrossEntropyLossTF
def test_assert_no_grad():
data = torch.ones(3, 3, 3)
data.requires_grad = False
_assert_no_grad(data)
def test_crossentropy_tf():
batch_size = 5
shape = (batch_size, 2)
loss = CrossEntropyLossTF()
ypred = torch.ones(*shape)
ypred.requires_grad = True
y = torch.ones(batch_size, dtype=torch.int64)
y.requires_grad = False
w = torch.ones(*shape)
w.requires_grad = False
w2 = torch.zeros(*shape)
w2.requires_grad = False
out1 = loss(ypred, y)
assert len(out1.shape) == 0
out2 = loss(ypred, y, w)
assert len(out2.shape) == 0
out3 = loss(ypred, y, w2)
assert out3 == 0
assert len(out3.shape) == 0
|
memcnn-master
|
memcnn/utils/tests/test_loss.py
|
# -*- coding: utf-8 -*-
from functools import partial
import numpy as np
import torch
import torch.nn as nn
import warnings
from memcnn.models.additive import AdditiveCoupling
from memcnn.models.affine import AffineCoupling
from memcnn.models.utils import pytorch_version_one_and_above
warnings.filterwarnings(action='ignore', category=UserWarning)
def signal_hook(grad_output, valid_states, state_index): # pragma: no cover
state = valid_states[state_index]
valid_states[state_index] = not state
def backward_hook(grad_output, keep_input, compute_input_fn, compute_output_fn,
input_tensor, output_tensor, valid_states, state_index): # pragma: no cover
perform_action = valid_states[state_index]
valid_states[state_index] = not perform_action
if perform_action:
# restore input
if not keep_input:
with torch.no_grad():
input_inverted = compute_input_fn(output_tensor)
if pytorch_version_one_and_above:
input_tensor.storage().resize_(int(np.prod(input_tensor.size())))
input_tensor.set_(input_inverted)
else:
input_tensor.set_(input_inverted)
# compute gradients
with torch.set_grad_enabled(True):
temp_output = compute_output_fn(input_tensor)
temp_output.backward(gradient=grad_output)
class InvertibleModuleWrapper(nn.Module):
def __init__(self, fn, keep_input=False, keep_input_inverse=False, disable=False):
"""
The InvertibleModuleWrapper which enables memory savings during training by exploiting
the invertible properties of the wrapped module.
Parameters
----------
fn : :obj:`torch.nn.Module`
A torch.nn.Module which has a forward and an inverse function implemented with
:math:`x == m.inverse(m.forward(x))`
keep_input : :obj:`bool`, optional
Set to retain the input information on forward, by default it can be discarded since it will be
reconstructed upon the backward pass.
keep_input_inverse : :obj:`bool`, optional
Set to retain the input information on inverse, by default it can be discarded since it will be
reconstructed upon the backward pass.
disable : :obj:`bool`, optional
This will disable the detached graph approach with the backward hook.
Essentially this renders the function as `y = fn(x)` without any of the memory savings.
Setting this to true will also ignore the keep_input and keep_input_inverse properties.
Attributes
----------
keep_input : :obj:`bool`, optional
Set to retain the input information on forward, by default it can be discarded since it will be
reconstructed upon the backward pass.
keep_input_inverse : :obj:`bool`, optional
Set to retain the input information on inverse, by default it can be discarded since it will be
reconstructed upon the backward pass.
Raises
------
NotImplementedError
If an unknown coupling or implementation is given.
"""
super(InvertibleModuleWrapper, self).__init__()
self.disable = disable
self.keep_input = keep_input
self.keep_input_inverse = keep_input_inverse
self._fn = fn
self._valid_states = []
self._state_counter = 0
def forward(self, xin):
"""Forward operation :math:`R(x) = y`
Parameters
----------
xin : :obj:`torch.Tensor`
Input torch tensor.
Returns
-------
:obj:`torch.Tensor`
Output torch tensor y.
"""
if not self.disable:
x = xin.detach() # Makes a detached copy which shares the storage
y = self._fn(x)
input_tensor = xin
output_tensor = y
# clears the referenced storage data linked to the input tensor as it can be reversed on the backward pass
if not self.keep_input:
if not pytorch_version_one_and_above:
# PyTorch 0.4 way to clear storage
input_tensor.data.set_()
else:
# PyTorch 1.0+ way to clear storage
input_tensor.storage().resize_(0)
if self.training:
self._valid_states.append(True)
xin.register_hook(hook=partial(signal_hook, valid_states=self._valid_states, state_index=self._state_counter))
y.register_hook(hook=partial(backward_hook, keep_input=self.keep_input,
compute_input_fn=self._fn.inverse, compute_output_fn=self._fn.forward,
valid_states=self._valid_states, state_index=self._state_counter,
input_tensor=input_tensor, output_tensor=output_tensor))
self._state_counter += 1
y.detach_() # Detaches y in-place (inbetween computations can now be discarded)
y.requires_grad = self.training
else:
y = self._fn(xin)
return y
def inverse(self, yin):
"""Inverse operation :math:`R^{-1}(y) = x`
Parameters
----------
yin : :obj:`torch.Tensor`
Input torch tensor.
Returns
-------
:obj:`torch.Tensor`
Output torch tensor x.
"""
if not self.disable:
y = yin.detach() # Makes a detached copy which shares the storage
x = self._fn.inverse(y)
input_tensor = yin
output_tensor = x
# clears the referenced storage data linked to the input tensor as it can be reversed on the backward pass
if not self.keep_input_inverse:
if not pytorch_version_one_and_above:
# PyTorch 0.4 way to clear storage
input_tensor.data.set_()
else:
# PyTorch 1.0+ way to clear storage
input_tensor.storage().resize_(0)
if self.training:
self._valid_states.append(True)
yin.register_hook(hook=partial(signal_hook, valid_states=self._valid_states, state_index=self._state_counter))
x.register_hook(hook=partial(backward_hook, keep_input=self.keep_input_inverse,
compute_input_fn=self._fn.forward, compute_output_fn=self._fn.inverse,
valid_states=self._valid_states, state_index=self._state_counter,
input_tensor=input_tensor, output_tensor=output_tensor))
self._state_counter += 1
x.detach_() # Detaches x in-place (inbetween computations can now be discarded)
x.requires_grad = self.training
else:
x = self._fn.inverse(yin)
return x
class ReversibleBlock(InvertibleModuleWrapper):
def __init__(self, Fm, Gm=None, coupling='additive', keep_input=False, keep_input_inverse=False,
implementation_fwd=-1, implementation_bwd=-1, adapter=None):
"""The ReversibleBlock
Warning
-------
This class has been deprecated. Use the more flexible InvertibleModuleWrapper class.
Note
----
The `implementation_fwd` and `implementation_bwd` parameters can be set to one of the following implementations:
* -1 Naive implementation without reconstruction on the backward pass.
* 0 Memory efficient implementation, compute gradients directly.
* 1 Memory efficient implementation, similar to approach in Gomez et al. 2017.
Parameters
----------
Fm : :obj:`torch.nn.Module`
A torch.nn.Module encapsulating an arbitrary function
Gm : :obj:`torch.nn.Module`, optional
A torch.nn.Module encapsulating an arbitrary function
(If not specified a deepcopy of Fm is used as a Module)
coupling : :obj:`str`, optional
Type of coupling ['additive', 'affine']. Default = 'additive'
keep_input : :obj:`bool`, optional
Set to retain the input information on forward, by default it can be discarded since it will be
reconstructed upon the backward pass.
keep_input_inverse : :obj:`bool`, optional
Set to retain the input information on inverse, by default it can be discarded since it will be
reconstructed upon the backward pass.
implementation_fwd : :obj:`int`, optional
Switch between different Operation implementations for forward training (Default = 1).
If using the naive implementation (-1) then `keep_input` should be True.
implementation_bwd : :obj:`int`, optional
Switch between different Operation implementations for backward training (Default = 1).
If using the naive implementation (-1) then `keep_input_inverse` should be True.
adapter : :obj:`class`, optional
Only relevant when using the 'affine' coupling.
Should be a class of type :obj:`torch.nn.Module` that serves as an
optional wrapper class A for Fm and Gm which must output
s, t = A(x) with shape(s) = shape(t) = shape(x).
s, t are respectively the scale and shift tensors for the affine coupling.
Attributes
----------
keep_input : :obj:`bool`, optional
Set to retain the input information on forward, by default it can be discarded since it will be
reconstructed upon the backward pass.
keep_input_inverse : :obj:`bool`, optional
Set to retain the input information on inverse, by default it can be discarded since it will be
reconstructed upon the backward pass.
Raises
------
NotImplementedError
If an unknown coupling or implementation is given.
"""
warnings.warn("This class has been deprecated. Use the more flexible InvertibleModuleWrapper class", DeprecationWarning)
fn = create_coupling(Fm=Fm, Gm=Gm, coupling=coupling,
implementation_fwd=implementation_fwd, implementation_bwd=implementation_bwd,
adapter=adapter)
super(ReversibleBlock, self).__init__(fn, keep_input=keep_input, keep_input_inverse=keep_input_inverse)
def create_coupling(Fm, Gm=None, coupling='additive', implementation_fwd=-1, implementation_bwd=-1, adapter=None):
if coupling == 'additive':
fn = AdditiveCoupling(Fm, Gm,
implementation_fwd=implementation_fwd, implementation_bwd=implementation_bwd)
elif coupling == 'affine':
fn = AffineCoupling(Fm, Gm, adapter=adapter,
implementation_fwd=implementation_fwd, implementation_bwd=implementation_bwd)
else:
raise NotImplementedError('Unknown coupling method: %s' % coupling)
return fn
def is_invertible_module(module_in, test_input_shape, test_input_dtype=torch.float32, atol=1e-6):
"""Test if a :obj:`torch.nn.Module` is invertible
Parameters
----------
module_in : :obj:`torch.nn.Module`
A torch.nn.Module to test.
test_input_shape : :obj:`tuple`
Dimensions of test tensor object to perform the test with.
test_input_dtype : :obj:`torch.dtype`, optional
Data type of test tensor object to perform the test with.
atol : :obj:`float`, optional
Tolerance value used for comparing the outputs
Returns
-------
:obj:`bool`
True if the input module is invertible, False otherwise.
"""
test_input = torch.rand(test_input_shape, dtype=test_input_dtype)
if not hasattr(module_in, "inverse"):
return False
with torch.no_grad():
if not torch.allclose(module_in.inverse(module_in(test_input)), test_input, atol=atol):
return False
if not torch.allclose(module_in(module_in.inverse(test_input)), test_input, atol=atol):
return False
if test_input is module_in(test_input):
return False
if test_input is module_in.inverse(test_input):
return False
return True
|
memcnn-master
|
memcnn/models/revop.py
|
import torch
import torch.nn as nn
import copy
import warnings
from torch import set_grad_enabled
warnings.filterwarnings(action='ignore', category=UserWarning)
class AffineAdapterNaive(nn.Module):
""" Naive Affine adapter
Outputs exp(f(x)), f(x) given f(.) and x
"""
def __init__(self, module):
super(AffineAdapterNaive, self).__init__()
self.f = module
def forward(self, x):
t = self.f(x)
s = torch.exp(t)
return s, t
class AffineAdapterSigmoid(nn.Module):
""" Sigmoid based affine adapter
Partitions the output h of f(x) = h into s and t by extracting every odd and even channel
Outputs sigmoid(s), t
"""
def __init__(self, module):
super(AffineAdapterSigmoid, self).__init__()
self.f = module
def forward(self, x):
h = self.f(x)
assert h.shape[1] % 2 == 0 # nosec
scale = torch.sigmoid(h[:, 1::2, :] + 2.0)
shift = h[:, 0::2, :]
return scale, shift
class AffineCoupling(nn.Module):
def __init__(self, Fm, Gm=None, adapter=None, implementation_fwd=-1, implementation_bwd=-1):
"""
This computes the output :math:`y` on forward given input :math:`x` and arbitrary modules :math:`Fm` and :math:`Gm` according to:
:math:`(x1, x2) = x`
:math:`(log({s1}), t1) = Fm(x2)`
:math:`s1 = exp(log({s1}))`
:math:`y1 = s1 * x1 + t1`
:math:`(log({s2}), t2) = Gm(y1)`
:math:`s2 = exp(log({s2}))`
:math:`y2 = s2 * x2 + t2`
:math:`y = (y1, y2)`
Parameters
----------
Fm : :obj:`torch.nn.Module`
A torch.nn.Module encapsulating an arbitrary function
Gm : :obj:`torch.nn.Module`
A torch.nn.Module encapsulating an arbitrary function
(If not specified a deepcopy of Gm is used as a Module)
adapter : :obj:`torch.nn.Module` class
An optional wrapper class A for Fm and Gm which must output
s, t = A(x) with shape(s) = shape(t) = shape(x)
s, t are respectively the scale and shift tensors for the affine coupling.
implementation_fwd : :obj:`int`
Switch between different Affine Operation implementations for forward pass. Default = -1
implementation_bwd : :obj:`int`
Switch between different Affine Operation implementations for inverse pass. Default = -1
"""
super(AffineCoupling, self).__init__()
# mirror the passed module, without parameter sharing...
if Gm is None:
Gm = copy.deepcopy(Fm)
# apply the adapter class if it is given
self.Gm = adapter(Gm) if adapter is not None else Gm
self.Fm = adapter(Fm) if adapter is not None else Fm
self.implementation_fwd = implementation_fwd
self.implementation_bwd = implementation_bwd
if implementation_bwd != -1 or implementation_fwd != -1:
warnings.warn("Other implementations than the default (-1) are now deprecated.",
DeprecationWarning)
def forward(self, x):
args = [x, self.Fm, self.Gm] + [w for w in self.Fm.parameters()] + [w for w in self.Gm.parameters()]
if self.implementation_fwd == 0:
out = AffineBlockFunction.apply(*args)
elif self.implementation_fwd == 1:
out = AffineBlockFunction2.apply(*args)
elif self.implementation_fwd == -1:
x1, x2 = torch.chunk(x, 2, dim=1)
x1, x2 = x1.contiguous(), x2.contiguous()
fmr1, fmr2 = self.Fm.forward(x2)
y1 = (x1 * fmr1) + fmr2
gmr1, gmr2 = self.Gm.forward(y1)
y2 = (x2 * gmr1) + gmr2
out = torch.cat([y1, y2], dim=1)
else:
raise NotImplementedError("Selected implementation ({}) not implemented..."
.format(self.implementation_fwd))
return out
def inverse(self, y):
args = [y, self.Fm, self.Gm] + [w for w in self.Fm.parameters()] + [w for w in self.Gm.parameters()]
if self.implementation_bwd == 0:
x = AffineBlockInverseFunction.apply(*args)
elif self.implementation_bwd == 1:
x = AffineBlockInverseFunction2.apply(*args)
elif self.implementation_bwd == -1:
y1, y2 = torch.chunk(y, 2, dim=1)
y1, y2 = y1.contiguous(), y2.contiguous()
gmr1, gmr2 = self.Gm.forward(y1)
x2 = (y2 - gmr2) / gmr1
fmr1, fmr2 = self.Fm.forward(x2)
x1 = (y1 - fmr2) / fmr1
x = torch.cat([x1, x2], dim=1)
else:
raise NotImplementedError("Inverse for selected implementation ({}) not implemented..."
.format(self.implementation_bwd))
return x
class AffineBlock(AffineCoupling):
def __init__(self, Fm, Gm=None, implementation_fwd=1, implementation_bwd=1):
warnings.warn("This class has been deprecated. Use the AffineCoupling class instead.",
DeprecationWarning)
super(AffineBlock, self).__init__(Fm=Fm, Gm=Gm,
implementation_fwd=implementation_fwd,
implementation_bwd=implementation_bwd)
class AffineBlockFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, xin, Fm, Gm, *weights):
"""Forward pass for the affine block computes:
{x1, x2} = x
{log_s1, t1} = Fm(x2)
s1 = exp(log_s1)
y1 = s1 * x1 + t1
{log_s2, t2} = Gm(y1)
s2 = exp(log_s2)
y2 = s2 * x2 + t2
output = {y1, y2}
Parameters
----------
ctx : torch.autograd.function.RevNetFunctionBackward
The backward pass context object
x : TorchTensor
Input tensor. Must have channels (2nd dimension) that can be partitioned in two equal partitions
Fm : nn.Module
Module to use for computation, must retain dimensions such that Fm(X)=Y, X.shape == Y.shape
Gm : nn.Module
Module to use for computation, must retain dimensions such that Gm(X)=Y, X.shape == Y.shape
*weights : TorchTensor
weights for Fm and Gm in that order {Fm_w1, ... Fm_wn, Gm_w1, ... Gm_wn}
Note
----
All tensor/autograd variable input arguments and the output are
TorchTensors for the scope of this function
"""
# check if possible to partition into two equally sized partitions
assert xin.shape[1] % 2 == 0 # nosec
# store partition size, Fm and Gm functions in context
ctx.Fm = Fm
ctx.Gm = Gm
with torch.no_grad():
# partition in two equally sized set of channels
x = xin.detach()
x1, x2 = torch.chunk(x, 2, dim=1)
x1, x2 = x1.contiguous(), x2.contiguous()
# compute outputs
x2var = x2
fmr1, fmr2 = Fm.forward(x2var)
y1 = (x1 * fmr1) + fmr2
x1.set_()
del x1
y1var = y1
gmr1, gmr2 = Gm.forward(y1var)
y2 = (x2 * gmr1) + gmr2
x2.set_()
del x2
output = torch.cat([y1, y2], dim=1).detach_()
# save the (empty) input and (non-empty) output variables
ctx.save_for_backward(xin, output)
return output
@staticmethod
def backward(ctx, grad_output): # pragma: no cover
# retrieve weight references
Fm, Gm = ctx.Fm, ctx.Gm
# retrieve input and output references
xin, output = ctx.saved_tensors
x = xin.detach()
x1, x2 = torch.chunk(x.detach(), 2, dim=1)
GWeights = [p for p in Gm.parameters()]
# partition output gradient also on channels
assert (grad_output.shape[1] % 2 == 0) # nosec
with set_grad_enabled(True):
# compute outputs building a sub-graph
x1.requires_grad = True
x2.requires_grad = True
fmr1, fmr2 = Fm.forward(x2)
y1 = x1 * fmr1 + fmr2
gmr1, gmr2 = Gm.forward(y1)
y2 = x2 * gmr1 + gmr2
y = torch.cat([y1, y2], dim=1)
# perform full backward pass on graph...
dd = torch.autograd.grad(y, (x1, x2) + tuple(Gm.parameters()) + tuple(Fm.parameters()), grad_output)
GWgrads = dd[2:2 + len(GWeights)]
FWgrads = dd[2 + len(GWeights):]
grad_input = torch.cat([dd[0], dd[1]], dim=1)
return (grad_input, None, None) + FWgrads + GWgrads
class AffineBlockInverseFunction(torch.autograd.Function):
@staticmethod
def forward(cty, yin, Fm, Gm, *weights):
"""Forward inverse pass for the affine block computes:
{y1, y2} = y
{log_s2, t2} = Gm(y1)
s2 = exp(log_s2)
x2 = (y2 - t2) / s2
{log_s1, t1} = Fm(x2)
s1 = exp(log_s1)
x1 = (y1 - t1) / s1
output = {x1, x2}
Parameters
----------
cty : torch.autograd.function.RevNetInverseFunctionBackward
The backward pass context object
y : TorchTensor
Input tensor. Must have channels (2nd dimension) that can be partitioned in two equal partitions
Fm : nn.Module
Module to use for computation, must retain dimensions such that Fm(X)=Y, X.shape == Y.shape
Gm : nn.Module
Module to use for computation, must retain dimensions such that Gm(X)=Y, X.shape == Y.shape
*weights : TorchTensor
weights for Fm and Gm in that order {Fm_w1, ... Fm_wn, Gm_w1, ... Gm_wn}
Note
----
All tensor/autograd variable input arguments and the output are
TorchTensors for the scope of this fuction
"""
# check if possible to partition into two equally sized partitions
assert yin.shape[1] % 2 == 0 # nosec
# store partition size, Fm and Gm functions in context
cty.Fm = Fm
cty.Gm = Gm
with torch.no_grad():
# partition in two equally sized set of channels
y = yin.detach()
y1, y2 = torch.chunk(y, 2, dim=1)
y1, y2 = y1.contiguous(), y2.contiguous()
# compute outputs
y1var = y1
gmr1, gmr2 = Gm.forward(y1var)
x2 = (y2 - gmr2) / gmr1
y2.set_()
del y2
x2var = x2
fmr1, fmr2 = Fm.forward(x2var)
x1 = (y1 - fmr2) / fmr1
y1.set_()
del y1
output = torch.cat([x1, x2], dim=1).detach_()
# save input and output variables
cty.save_for_backward(yin, output)
return output
@staticmethod
def backward(cty, grad_output): # pragma: no cover
# retrieve weight references
Fm, Gm = cty.Fm, cty.Gm
# retrieve input and output references
yin, output = cty.saved_tensors
y = yin.detach()
y1, y2 = torch.chunk(y.detach(), 2, dim=1)
FWeights = [p for p in Gm.parameters()]
# partition output gradient also on channels
assert grad_output.shape[1] % 2 == 0 # nosec
with set_grad_enabled(True):
# compute outputs building a sub-graph
y2.requires_grad = True
y1.requires_grad = True
gmr1, gmr2 = Gm.forward(y1) #
x2 = (y2 - gmr2) / gmr1
fmr1, fmr2 = Fm.forward(x2)
x1 = (y1 - fmr2) / fmr1
x = torch.cat([x1, x2], dim=1)
# perform full backward pass on graph...
dd = torch.autograd.grad(x, (y2, y1) + tuple(Fm.parameters()) + tuple(Gm.parameters()), grad_output)
FWgrads = dd[2:2 + len(FWeights)]
GWgrads = dd[2 + len(FWeights):]
grad_input = torch.cat([dd[0], dd[1]], dim=1)
return (grad_input, None, None) + FWgrads + GWgrads
class AffineBlockFunction2(torch.autograd.Function):
@staticmethod
def forward(ctx, xin, Fm, Gm, *weights):
"""Forward pass for the affine block computes:
{x1, x2} = x
{log_s1, t1} = Fm(x2)
s1 = exp(log_s1)
y1 = s1 * x1 + t1
{log_s2, t2} = Gm(y1)
s2 = exp(log_s2)
y2 = s2 * x2 + t2
output = {y1, y2}
Parameters
----------
ctx : torch.autograd.function.RevNetFunctionBackward
The backward pass context object
x : TorchTensor
Input tensor. Must have channels (2nd dimension) that can be partitioned in two equal partitions
Fm : nn.Module
Module to use for computation, must retain dimensions such that Fm(X)=Y, X.shape == Y.shape
Gm : nn.Module
Module to use for computation, must retain dimensions such that Gm(X)=Y, X.shape == Y.shape
*weights : TorchTensor
weights for Fm and Gm in that order {Fm_w1, ... Fm_wn, Gm_w1, ... Gm_wn}
Note
----
All tensor/autograd variable input arguments and the output are
TorchTensors for the scope of this fuction
"""
# check if possible to partition into two equally sized partitions
assert xin.shape[1] % 2 == 0 # nosec
# store partition size, Fm and Gm functions in context
ctx.Fm = Fm
ctx.Gm = Gm
with torch.no_grad():
# partition in two equally sized set of channels
x = xin.detach()
x1, x2 = torch.chunk(x, 2, dim=1)
x1, x2 = x1.contiguous(), x2.contiguous()
# compute outputs
x2var = x2
fmr1, fmr2 = Fm.forward(x2var)
y1 = x1 * fmr1 + fmr2
x1.set_()
del x1
y1var = y1
gmr1, gmr2 = Gm.forward(y1var)
y2 = x2 * gmr1 + gmr2
x2.set_()
del x2
output = torch.cat([y1, y2], dim=1).detach_()
# save the input and output variables
ctx.save_for_backward(xin, output)
return output
@staticmethod
def backward(ctx, grad_output): # pragma: no cover
Fm, Gm = ctx.Fm, ctx.Gm
# are all variable objects now
x, output = ctx.saved_tensors
with set_grad_enabled(False):
y1, y2 = torch.chunk(output, 2, dim=1)
y1, y2 = y1.contiguous(), y2.contiguous()
# partition output gradient also on channels
assert (grad_output.shape[1] % 2 == 0) # nosec
y1_grad, y2_grad = torch.chunk(grad_output, 2, dim=1)
y1_grad, y2_grad = y1_grad.contiguous(), y2_grad.contiguous()
# Recreate computation graphs for functions Gm and Fm with gradient collecting leaf nodes:
# z1_stop, x2_stop, GW, FW
# Also recompute inputs (x1, x2) from outputs (y1, y2)
with set_grad_enabled(True):
z1_stop = y1
z1_stop.requires_grad = True
G_z11, G_z12 = Gm.forward(z1_stop)
x2 = (y2 - G_z12) / G_z11
x2_stop = x2.detach()
x2_stop.requires_grad = True
F_x21, F_x22 = Fm.forward(x2_stop)
x1 = (y1 - F_x22) / F_x21
x1_stop = x1.detach()
x1_stop.requires_grad = True
# compute outputs building a sub-graph
z1 = x1_stop * F_x21 + F_x22
y2_ = x2_stop * G_z11 + G_z12
y1_ = z1
# calculate the final gradients for the weights and inputs
dd = torch.autograd.grad(y2_, (z1_stop,) + tuple(Gm.parameters()), y2_grad)
z1_grad = dd[0] + y1_grad
GWgrads = dd[1:]
dd = torch.autograd.grad(y1_, (x1_stop, x2_stop) + tuple(Fm.parameters()), z1_grad, retain_graph=False)
FWgrads = dd[2:]
x2_grad = dd[1] + y2_grad
x1_grad = dd[0]
grad_input = torch.cat([x1_grad, x2_grad], dim=1)
y1_.detach_()
y2_.detach_()
del y1_, y2_
return (grad_input, None, None) + FWgrads + GWgrads
class AffineBlockInverseFunction2(torch.autograd.Function):
@staticmethod
def forward(cty, yin, Fm, Gm, *weights):
"""Forward pass for the affine block computes:
Parameters
----------
cty : torch.autograd.function.RevNetInverseFunctionBackward
The backward pass context object
y : TorchTensor
Input tensor. Must have channels (2nd dimension) that can be partitioned in two equal partitions
Fm : nn.Module
Module to use for computation, must retain dimensions such that Fm(X)=Y, X.shape == Y.shape
Gm : nn.Module
Module to use for computation, must retain dimensions such that Gm(X)=Y, X.shape == Y.shape
*weights : TorchTensor
weights for Fm and Gm in that order {Fm_w1, ... Fm_wn, Gm_w1, ... Gm_wn}
Note
----
All tensor/autograd variable input arguments and the output are
TorchTensors for the scope of this fuction
"""
# check if possible to partition into two equally sized partitions
assert yin.shape[1] % 2 == 0 # nosec
# store partition size, Fm and Gm functions in context
cty.Fm = Fm
cty.Gm = Gm
with torch.no_grad():
# partition in two equally sized set of channels
y = yin.detach()
y1, y2 = torch.chunk(y, 2, dim=1)
y1, y2 = y1.contiguous(), y2.contiguous()
# compute outputs
y1var = y1
gmr1, gmr2 = Gm.forward(y1var)
x2 = (y2 - gmr2) / gmr1
y2.set_()
del y2
x2var = x2
fmr1, fmr2 = Fm.forward(x2var)
x1 = (y1 - fmr2) / fmr1
y1.set_()
del y1
output = torch.cat([x1, x2], dim=1).detach_()
# save the input and output variables
cty.save_for_backward(yin, output)
return output
@staticmethod
def backward(cty, grad_output): # pragma: no cover
Fm, Gm = cty.Fm, cty.Gm
# are all variable objects now
y, output = cty.saved_tensors
with set_grad_enabled(False):
x1, x2 = torch.chunk(output, 2, dim=1)
x1, x2 = x1.contiguous(), x2.contiguous()
# partition output gradient also on channels
assert (grad_output.shape[1] % 2 == 0) # nosec
x1_grad, x2_grad = torch.chunk(grad_output, 2, dim=1)
x1_grad, x2_grad = x1_grad.contiguous(), x2_grad.contiguous()
# Recreate computation graphs for functions Gm and Fm with gradient collecting leaf nodes:
# z1_stop, y1_stop, GW, FW
# Also recompute inputs (y1, y2) from outputs (x1, x2)
with set_grad_enabled(True):
z1_stop = x2
z1_stop.requires_grad = True
F_z11, F_z12 = Fm.forward(z1_stop)
y1 = x1 * F_z11 + F_z12
y1_stop = y1.detach()
y1_stop.requires_grad = True
G_y11, G_y12 = Gm.forward(y1_stop)
y2 = x2 * G_y11 + G_y12
y2_stop = y2.detach()
y2_stop.requires_grad = True
# compute outputs building a sub-graph
z1 = (y2_stop - G_y12) / G_y11
x1_ = (y1_stop - F_z12) / F_z11
x2_ = z1
# calculate the final gradients for the weights and inputs
dd = torch.autograd.grad(x1_, (z1_stop,) + tuple(Fm.parameters()), x1_grad)
z1_grad = dd[0] + x2_grad
FWgrads = dd[1:]
dd = torch.autograd.grad(x2_, (y2_stop, y1_stop) + tuple(Gm.parameters()), z1_grad, retain_graph=False)
GWgrads = dd[2:]
y1_grad = dd[1] + x1_grad
y2_grad = dd[0]
grad_input = torch.cat([y1_grad, y2_grad], dim=1)
return (grad_input, None, None) + FWgrads + GWgrads
|
memcnn-master
|
memcnn/models/affine.py
|
memcnn-master
|
memcnn/models/__init__.py
|
|
"""ResNet/RevNet implementation used for The Reversible Residual Network
Implemented in PyTorch instead of TensorFlow.
@inproceedings{gomez17revnet,
author = {Aidan N. Gomez and Mengye Ren and Raquel Urtasun and Roger B. Grosse},
title = {The Reversible Residual Network: Backpropagation without Storing Activations}
booktitle = {NIPS},
year = {2017},
}
Github: https://github.com/renmengye/revnet-public
Author: Sil van de Leemput
"""
import torch.nn as nn
import math
from memcnn.models.revop import InvertibleModuleWrapper, create_coupling
__all__ = ['ResNet', 'BasicBlock', 'Bottleneck', 'RevBasicBlock', 'RevBottleneck', 'BasicBlockSub', 'BottleneckSub',
'conv3x3', 'batch_norm']
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
def batch_norm(x):
"""match Tensorflow batch norm settings"""
return nn.BatchNorm2d(x, momentum=0.99, eps=0.001)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, noactivation=False):
super(BasicBlock, self).__init__()
self.basicblock_sub = BasicBlockSub(inplanes, planes, stride, noactivation)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.basicblock_sub(x)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, noactivation=False):
super(Bottleneck, self).__init__()
self.bottleneck_sub = BottleneckSub(inplanes, planes, stride, noactivation)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.bottleneck_sub(x)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
return out
class RevBasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, noactivation=False):
super(RevBasicBlock, self).__init__()
if downsample is None and stride == 1:
gm = BasicBlockSub(inplanes // 2, planes // 2, stride, noactivation)
fm = BasicBlockSub(inplanes // 2, planes // 2, stride, noactivation)
coupling = create_coupling(Fm=fm, Gm=gm, coupling='additive')
self.revblock = InvertibleModuleWrapper(fn=coupling, keep_input=False)
else:
self.basicblock_sub = BasicBlockSub(inplanes, planes, stride, noactivation)
self.downsample = downsample
self.stride = stride
def forward(self, x):
if self.downsample is not None:
out = self.basicblock_sub(x)
residual = self.downsample(x)
out += residual
else:
out = self.revblock(x)
return out
class RevBottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, noactivation=False):
super(RevBottleneck, self).__init__()
if downsample is None and stride == 1:
gm = BottleneckSub(inplanes // 2, planes // 2, stride, noactivation)
fm = BottleneckSub(inplanes // 2, planes // 2, stride, noactivation)
coupling = create_coupling(Fm=fm, Gm=gm, coupling='additive')
self.revblock = InvertibleModuleWrapper(fn=coupling, keep_input=False)
else:
self.bottleneck_sub = BottleneckSub(inplanes, planes, stride, noactivation)
self.downsample = downsample
self.stride = stride
def forward(self, x):
if self.downsample is not None:
out = self.bottleneck_sub(x)
residual = self.downsample(x)
out += residual
else:
out = self.revblock(x)
return out
class BottleneckSub(nn.Module):
def __init__(self, inplanes, planes, stride=1, noactivation=False):
super(BottleneckSub, self).__init__()
self.noactivation = noactivation
if not self.noactivation:
self.bn1 = batch_norm(inplanes)
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn2 = batch_norm(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn3 = batch_norm(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
if not self.noactivation:
x = self.bn1(x)
x = self.relu(x)
x = self.conv1(x)
x = self.bn2(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn3(x)
x = self.relu(x)
x = self.conv3(x)
return x
class BasicBlockSub(nn.Module):
def __init__(self, inplanes, planes, stride=1, noactivation=False):
super(BasicBlockSub, self).__init__()
self.noactivation = noactivation
if not self.noactivation:
self.bn1 = batch_norm(inplanes)
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn2 = batch_norm(planes)
self.conv2 = conv3x3(planes, planes)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
if not self.noactivation:
x = self.bn1(x)
x = self.relu(x)
x = self.conv1(x)
x = self.bn2(x)
x = self.relu(x)
x = self.conv2(x)
return x
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000, channels_per_layer=None, strides=None,
init_max_pool=False, init_kernel_size=7, batch_norm_fix=True, implementation=0):
if channels_per_layer is None:
channels_per_layer = [2 ** (i + 6) for i in range(len(layers))]
channels_per_layer = [channels_per_layer[0]] + channels_per_layer
if strides is None:
strides = [2] * len(channels_per_layer)
self.batch_norm_fix = batch_norm_fix
self.channels_per_layer = channels_per_layer
self.strides = strides
self.init_max_pool = init_max_pool
self.implementation = implementation
assert(len(self.channels_per_layer) == len(layers) + 1) # nosec
self.inplanes = channels_per_layer[0] # 64 by default
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=init_kernel_size,
stride=strides[0], padding=(init_kernel_size - 1) // 2,
bias=False)
self.bn1 = batch_norm(self.inplanes)
self.relu = nn.ReLU(inplace=False)
if self.init_max_pool:
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, channels_per_layer[1], layers[0], stride=strides[1], noactivation=True)
self.layer2 = self._make_layer(block, channels_per_layer[2], layers[1], stride=strides[2])
self.layer3 = self._make_layer(block, channels_per_layer[3], layers[2], stride=strides[3])
self.has_4_layers = len(layers) >= 4
if self.has_4_layers:
self.layer4 = self._make_layer(block, channels_per_layer[4], layers[3], stride=strides[4])
self.bn_final = batch_norm(self.inplanes) # channels_per_layer[-1])
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(channels_per_layer[-1] * block.expansion, num_classes)
self.configure()
self.init_weights()
def init_weights(self):
"""Initialization using He initialization"""
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.reset_parameters()
def configure(self):
"""Initialization specific configuration settings"""
for m in self.modules():
if isinstance(m, InvertibleModuleWrapper):
m.implementation = self.implementation
elif isinstance(m, nn.BatchNorm2d):
if self.batch_norm_fix:
m.momentum = 0.99
m.eps = 0.001
else:
m.momentum = 0.1
m.eps = 1e-05
def _make_layer(self, block, planes, blocks, stride=1, noactivation=False):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
batch_norm(planes * block.expansion),
)
layers = [block(self.inplanes, planes, stride, downsample, noactivation)]
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
if self.init_max_pool:
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
if self.has_4_layers:
x = self.layer4(x)
x = self.bn_final(x)
x = self.relu(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
|
memcnn-master
|
memcnn/models/resnet.py
|
import torch
# for backwards compatibility
use_context_mans = True
try:
pytorch_version_one_and_above = int(torch.__version__[0]) > 0
except TypeError:
pytorch_version_one_and_above = True
|
memcnn-master
|
memcnn/models/utils.py
|
import warnings
import torch
import torch.nn as nn
import copy
from torch import set_grad_enabled
class AdditiveCoupling(nn.Module):
def __init__(self, Fm, Gm=None, implementation_fwd=-1, implementation_bwd=-1):
"""
This computes the output :math:`y` on forward given input :math:`x` and arbitrary modules :math:`Fm` and :math:`Gm` according to:
:math:`(x1, x2) = x`
:math:`y1 = x1 + Fm(x2)`
:math:`y2 = x2 + Gm(y1)`
:math:`y = (y1, y2)`
Parameters
----------
Fm : :obj:`torch.nn.Module`
A torch.nn.Module encapsulating an arbitrary function
Gm : :obj:`torch.nn.Module`
A torch.nn.Module encapsulating an arbitrary function
(If not specified a deepcopy of Fm is used as a Module)
implementation_fwd : :obj:`int`
Switch between different Additive Operation implementations for forward pass. Default = -1
implementation_bwd : :obj:`int`
Switch between different Additive Operation implementations for inverse pass. Default = -1
"""
super(AdditiveCoupling, self).__init__()
# mirror the passed module, without parameter sharing...
if Gm is None:
Gm = copy.deepcopy(Fm)
self.Gm = Gm
self.Fm = Fm
self.implementation_fwd = implementation_fwd
self.implementation_bwd = implementation_bwd
if implementation_bwd != -1 or implementation_fwd != -1:
warnings.warn("Other implementations than the default (-1) are now deprecated.",
DeprecationWarning)
def forward(self, x):
args = [x, self.Fm, self.Gm] + [w for w in self.Fm.parameters()] + [w for w in self.Gm.parameters()]
if self.implementation_fwd == 0:
out = AdditiveBlockFunction.apply(*args)
elif self.implementation_fwd == 1:
out = AdditiveBlockFunction2.apply(*args)
elif self.implementation_fwd == -1:
x1, x2 = torch.chunk(x, 2, dim=1)
x1, x2 = x1.contiguous(), x2.contiguous()
fmd = self.Fm.forward(x2)
y1 = x1 + fmd
gmd = self.Gm.forward(y1)
y2 = x2 + gmd
out = torch.cat([y1, y2], dim=1)
else:
raise NotImplementedError("Selected implementation ({}) not implemented..."
.format(self.implementation_fwd))
return out
def inverse(self, y):
args = [y, self.Fm, self.Gm] + [w for w in self.Fm.parameters()] + [w for w in self.Gm.parameters()]
if self.implementation_bwd == 0:
x = AdditiveBlockInverseFunction.apply(*args)
elif self.implementation_bwd == 1:
x = AdditiveBlockInverseFunction2.apply(*args)
elif self.implementation_bwd == -1:
y1, y2 = torch.chunk(y, 2, dim=1)
y1, y2 = y1.contiguous(), y2.contiguous()
gmd = self.Gm.forward(y1)
x2 = y2 - gmd
fmd = self.Fm.forward(x2)
x1 = y1 - fmd
x = torch.cat([x1, x2], dim=1)
else:
raise NotImplementedError("Inverse for selected implementation ({}) not implemented..."
.format(self.implementation_bwd))
return x
class AdditiveBlock(AdditiveCoupling):
def __init__(self, Fm, Gm=None, implementation_fwd=1, implementation_bwd=1):
warnings.warn("This class has been deprecated. Use the AdditiveCoupling class instead.",
DeprecationWarning)
super(AdditiveBlock, self).__init__(Fm=Fm, Gm=Gm,
implementation_fwd=implementation_fwd,
implementation_bwd=implementation_bwd)
class AdditiveBlockFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, xin, Fm, Gm, *weights):
"""Forward pass computes:
{x1, x2} = x
y1 = x1 + Fm(x2)
y2 = x2 + Gm(y1)
output = {y1, y2}
Parameters
----------
ctx : torch.autograd.Function
The backward pass context object
x : TorchTensor
Input tensor. Must have channels (2nd dimension) that can be partitioned in two equal partitions
Fm : nn.Module
Module to use for computation, must retain dimensions such that Fm(X)=Y, X.shape == Y.shape
Gm : nn.Module
Module to use for computation, must retain dimensions such that Gm(X)=Y, X.shape == Y.shape
*weights : TorchTensor
weights for Fm and Gm in that order {Fm_w1, ... Fm_wn, Gm_w1, ... Gm_wn}
Note
----
All tensor/autograd variable input arguments and the output are
TorchTensors for the scope of this function
"""
# check if possible to partition into two equally sized partitions
assert(xin.shape[1] % 2 == 0) # nosec
# store partition size, Fm and Gm functions in context
ctx.Fm = Fm
ctx.Gm = Gm
with torch.no_grad():
x = xin.detach()
# partition in two equally sized set of channels
x1, x2 = torch.chunk(x, 2, dim=1)
x1, x2 = x1.contiguous(), x2.contiguous()
# compute outputs
fmr = Fm.forward(x2)
y1 = x1 + fmr
x1.set_()
del x1
gmr = Gm.forward(y1)
y2 = x2 + gmr
x2.set_()
del x2
output = torch.cat([y1, y2], dim=1)
ctx.save_for_backward(xin, output)
return output
@staticmethod
def backward(ctx, grad_output): # pragma: no cover
# retrieve weight references
Fm, Gm = ctx.Fm, ctx.Gm
# retrieve input and output references
xin, output = ctx.saved_tensors
x = xin.detach()
x1, x2 = torch.chunk(x, 2, dim=1)
GWeights = [p for p in Gm.parameters()]
# partition output gradient also on channels
assert grad_output.shape[1] % 2 == 0 # nosec
with set_grad_enabled(True):
# compute outputs building a sub-graph
x1.requires_grad_()
x2.requires_grad_()
y1 = x1 + Fm.forward(x2)
y2 = x2 + Gm.forward(y1)
y = torch.cat([y1, y2], dim=1)
# perform full backward pass on graph...
dd = torch.autograd.grad(y, (x1, x2 ) + tuple(Gm.parameters()) + tuple(Fm.parameters()), grad_output)
GWgrads = dd[2:2+len(GWeights)]
FWgrads = dd[2+len(GWeights):]
grad_input = torch.cat([dd[0], dd[1]], dim=1)
return (grad_input, None, None) + FWgrads + GWgrads
class AdditiveBlockInverseFunction(torch.autograd.Function):
@staticmethod
def forward(cty, y, Fm, Gm, *weights):
"""Forward pass computes:
{y1, y2} = y
x2 = y2 - Gm(y1)
x1 = y1 - Fm(x2)
output = {x1, x2}
Parameters
----------
cty : torch.autograd.Function
The backward pass context object
y : TorchTensor
Input tensor. Must have channels (2nd dimension) that can be partitioned in two equal partitions
Fm : nn.Module
Module to use for computation, must retain dimensions such that Fm(X)=Y, X.shape == Y.shape
Gm : nn.Module
Module to use for computation, must retain dimensions such that Gm(X)=Y, X.shape == Y.shape
*weights : TorchTensor
weights for Fm and Gm in that order {Fm_w1, ... Fm_wn, Gm_w1, ... Gm_wn}
Note
----
All tensor/autograd variable input arguments and the output are
TorchTensors for the scope of this fuction
"""
# check if possible to partition into two equally sized partitions
assert(y.shape[1] % 2 == 0) # nosec
# store partition size, Fm and Gm functions in context
cty.Fm = Fm
cty.Gm = Gm
with torch.no_grad():
# partition in two equally sized set of channels
y1, y2 = torch.chunk(y, 2, dim=1)
y1, y2 = y1.contiguous(), y2.contiguous()
# compute outputs
gmr = Gm.forward(y1)
x2 = y2 - gmr
y2.set_()
del y2
fmr = Fm.forward(x2)
x1 = y1 - fmr
y1.set_()
del y1
output = torch.cat([x1, x2], dim=1)
x1.set_()
x2.set_()
del x1, x2
# save the (empty) input and (non-empty) output variables
cty.save_for_backward(y.data, output)
return output
@staticmethod
def backward(cty, grad_output): # pragma: no cover
# retrieve weight references
Fm, Gm = cty.Fm, cty.Gm
# retrieve input and output references
yin, output = cty.saved_tensors
y = yin.detach()
y1, y2 = torch.chunk(y, 2, dim=1)
FWeights = [p for p in Fm.parameters()]
# partition output gradient also on channels
assert grad_output.shape[1] % 2 == 0 # nosec
with set_grad_enabled(True):
# compute outputs building a sub-graph
y2.requires_grad = True
y1.requires_grad = True
x2 = y2 - Gm.forward(y1)
x1 = y1 - Fm.forward(x2)
x = torch.cat([x1, x2], dim=1)
# perform full backward pass on graph...
dd = torch.autograd.grad(x, (y2, y1 ) + tuple(Fm.parameters()) + tuple(Gm.parameters()), grad_output)
FWgrads = dd[2:2+len(FWeights)]
GWgrads = dd[2+len(FWeights):]
grad_input = torch.cat([dd[0], dd[1]], dim=1)
return (grad_input, None, None) + FWgrads + GWgrads
class AdditiveBlockFunction2(torch.autograd.Function):
@staticmethod
def forward(ctx, xin, Fm, Gm, *weights):
"""Forward pass computes:
{x1, x2} = x
y1 = x1 + Fm(x2)
y2 = x2 + Gm(y1)
output = {y1, y2}
Parameters
----------
ctx : torch.autograd.Function
The backward pass context object
x : TorchTensor
Input tensor. Must have channels (2nd dimension) that can be partitioned in two equal partitions
Fm : nn.Module
Module to use for computation, must retain dimensions such that Fm(X)=Y, X.shape == Y.shape
Gm : nn.Module
Module to use for computation, must retain dimensions such that Gm(X)=Y, X.shape == Y.shape
*weights : TorchTensor
weights for Fm and Gm in that order {Fm_w1, ... Fm_wn, Gm_w1, ... Gm_wn}
Note
----
All tensor/autograd variable input arguments and the output are
TorchTensors for the scope of this fuction
"""
# check if possible to partition into two equally sized partitions
assert xin.shape[1] % 2 == 0 # nosec
# store partition size, Fm and Gm functions in context
ctx.Fm = Fm
ctx.Gm = Gm
with torch.no_grad():
# partition in two equally sized set of channels
x = xin.detach()
x1, x2 = torch.chunk(x, 2, dim=1)
x1, x2 = x1.contiguous(), x2.contiguous()
# compute outputs
fmr = Fm.forward(x2)
y1 = x1 + fmr
x1.set_()
del x1
gmr = Gm.forward(y1)
y2 = x2 + gmr
x2.set_()
del x2
output = torch.cat([y1, y2], dim=1).detach_()
# save the input and output variables
ctx.save_for_backward(x, output)
return output
@staticmethod
def backward(ctx, grad_output): # pragma: no cover
Fm, Gm = ctx.Fm, ctx.Gm
# are all variable objects now
x, output = ctx.saved_tensors
with torch.no_grad():
y1, y2 = torch.chunk(output, 2, dim=1)
y1, y2 = y1.contiguous(), y2.contiguous()
# partition output gradient also on channels
assert(grad_output.shape[1] % 2 == 0) # nosec
y1_grad, y2_grad = torch.chunk(grad_output, 2, dim=1)
y1_grad, y2_grad = y1_grad.contiguous(), y2_grad.contiguous()
# Recreate computation graphs for functions Gm and Fm with gradient collecting leaf nodes:
# z1_stop, x2_stop, GW, FW
# Also recompute inputs (x1, x2) from outputs (y1, y2)
with set_grad_enabled(True):
z1_stop = y1.detach()
z1_stop.requires_grad = True
G_z1 = Gm.forward(z1_stop)
x2 = y2 - G_z1
x2_stop = x2.detach()
x2_stop.requires_grad = True
F_x2 = Fm.forward(x2_stop)
x1 = y1 - F_x2
x1_stop = x1.detach()
x1_stop.requires_grad = True
# compute outputs building a sub-graph
y1 = x1_stop + F_x2
y2 = x2_stop + G_z1
# calculate the final gradients for the weights and inputs
dd = torch.autograd.grad(y2, (z1_stop,) + tuple(Gm.parameters()), y2_grad, retain_graph=False)
z1_grad = dd[0] + y1_grad
GWgrads = dd[1:]
dd = torch.autograd.grad(y1, (x1_stop, x2_stop) + tuple(Fm.parameters()), z1_grad, retain_graph=False)
FWgrads = dd[2:]
x2_grad = dd[1] + y2_grad
x1_grad = dd[0]
grad_input = torch.cat([x1_grad, x2_grad], dim=1)
return (grad_input, None, None) + FWgrads + GWgrads
class AdditiveBlockInverseFunction2(torch.autograd.Function):
@staticmethod
def forward(cty, y, Fm, Gm, *weights):
"""Forward pass computes:
{y1, y2} = y
x2 = y2 - Gm(y1)
x1 = y1 - Fm(x2)
output = {x1, x2}
Parameters
----------
cty : torch.autograd.Function
The backward pass context object
y : TorchTensor
Input tensor. Must have channels (2nd dimension) that can be partitioned in two equal partitions
Fm : nn.Module
Module to use for computation, must retain dimensions such that Fm(X)=Y, X.shape == Y.shape
Gm : nn.Module
Module to use for computation, must retain dimensions such that Gm(X)=Y, X.shape == Y.shape
*weights : TorchTensor
weights for Fm and Gm in that order {Fm_w1, ... Fm_wn, Gm_w1, ... Gm_wn}
Note
----
All tensor/autograd variable input arguments and the output are
TorchTensors for the scope of this fuction
"""
# check if possible to partition into two equally sized partitions
assert(y.shape[1] % 2 == 0) # nosec
# store partition size, Fm and Gm functions in context
cty.Fm = Fm
cty.Gm = Gm
with torch.no_grad():
# partition in two equally sized set of channels
y1, y2 = torch.chunk(y, 2, dim=1)
y1, y2 = y1.contiguous(), y2.contiguous()
# compute outputs
gmr = Gm.forward(y1)
x2 = y2 - gmr
y2.set_()
del y2
fmr = Fm.forward(x2)
x1 = y1 - fmr
y1.set_()
del y1
output = torch.cat([x1, x2], dim=1).detach_()
# save the input and output variables
cty.save_for_backward(y, output)
return output
@staticmethod
def backward(cty, grad_output): # pragma: no cover
Fm, Gm = cty.Fm, cty.Gm
# are all variable objects now
y, output = cty.saved_tensors
with torch.no_grad():
x1, x2 = torch.chunk(output, 2, dim=1)
x1, x2 = x1.contiguous(), x2.contiguous()
# partition output gradient also on channels
assert(grad_output.shape[1] % 2 == 0) # nosec
x1_grad, x2_grad = torch.chunk(grad_output, 2, dim=1)
x1_grad, x2_grad = x1_grad.contiguous(), x2_grad.contiguous()
# Recreate computation graphs for functions Gm and Fm with gradient collecting leaf nodes:
# z1_stop, y1_stop, GW, FW
# Also recompute inputs (y1, y2) from outputs (x1, x2)
with set_grad_enabled(True):
z1_stop = x2.detach()
z1_stop.requires_grad = True
F_z1 = Fm.forward(z1_stop)
y1 = x1 + F_z1
y1_stop = y1.detach()
y1_stop.requires_grad = True
G_y1 = Gm.forward(y1_stop)
y2 = x2 + G_y1
y2_stop = y2.detach()
y2_stop.requires_grad = True
# compute outputs building a sub-graph
z1 = y2_stop - G_y1
x1 = y1_stop - F_z1
x2 = z1
# calculate the final gradients for the weights and inputs
dd = torch.autograd.grad(x1, (z1_stop,) + tuple(Fm.parameters()), x1_grad)
z1_grad = dd[0] + x2_grad
FWgrads = dd[1:]
dd = torch.autograd.grad(x2, (y2_stop, y1_stop) + tuple(Gm.parameters()), z1_grad, retain_graph=False)
GWgrads = dd[2:]
y1_grad = dd[1] + x1_grad
y2_grad = dd[0]
grad_input = torch.cat([y1_grad, y2_grad], dim=1)
return (grad_input, None, None) + FWgrads + GWgrads
|
memcnn-master
|
memcnn/models/additive.py
|
import pytest
import torch
from memcnn.models.resnet import ResNet, BasicBlock, Bottleneck, RevBasicBlock, RevBottleneck
@pytest.mark.parametrize('block,batch_norm_fix', [(BasicBlock, True), (Bottleneck, False), (RevBasicBlock, False), (RevBottleneck, True)])
def test_resnet(block, batch_norm_fix):
model = ResNet(block, [2, 2, 2, 2], num_classes=2, channels_per_layer=None,
init_max_pool=True, batch_norm_fix=batch_norm_fix, strides=None)
model.eval()
with torch.no_grad():
x = torch.ones(2, 3, 32, 32)
model.forward(x)
|
memcnn-master
|
memcnn/models/tests/test_resnet.py
|
memcnn-master
|
memcnn/models/tests/__init__.py
|
|
import pytest
import gc
import numpy as np
import math
from collections import defaultdict
import torch
import torch.nn
from memcnn.models.tests.test_revop import SubModuleStack, SubModule
def readable_size(num_bytes):
return '{:.2f}'.format(float(num_bytes) / float(1024 ** 2))
LEN = 79
# some pytorch low-level memory management constant
# the minimal allocate memory size (Byte)
PYTORCH_MIN_ALLOCATE = 2 ** 9
# the minimal cache memory size (Byte)
PYTORCH_MIN_CACHE = 2 ** 20
class MemReporter(object):
"""A memory reporter that collects tensors and memory usages
Parameters:
- model: an extra nn.Module can be passed to infer the name
of Tensors
"""
def __init__(self, model=None):
self.tensor_name = defaultdict(list)
self.device_mapping = defaultdict(list)
self.device_tensor_stat = {}
# to numbering the unknown tensors
self.name_idx = 0
if model is not None:
assert isinstance(model, torch.nn.Module)
# for model with tying weight, multiple parameters may share
# the same underlying tensor
for name, param in model.named_parameters():
self.tensor_name[param].append(name)
for param, name in self.tensor_name.items():
self.tensor_name[param] = '+'.join(name)
def _get_tensor_name(self, tensor):
if tensor in self.tensor_name:
name = self.tensor_name[tensor]
# use numbering if no name can be inferred
else:
name = type(tensor).__name__ + str(self.name_idx)
self.tensor_name[tensor] = name
self.name_idx += 1
return name
def collect_tensor(self):
"""Collect all tensor objects tracked by python
NOTICE:
- the buffers for backward which is implemented in C++ are
not tracked by python's reference counting.
- the gradients(.grad) of Parameters is not collected, and
I don't know why.
"""
# FIXME: make the grad tensor collected by gc
objects = gc.get_objects()
tensors = [obj for obj in objects if isinstance(obj, torch.Tensor)]
for t in tensors:
self.device_mapping[str(t.device)].append(t)
def get_stats(self):
"""Get the memory stat of tensors and then release them
As a memory profiler, we cannot hold the reference to any tensors, which
causes possibly inaccurate memory usage stats, so we delete the tensors after
getting required stats"""
visited_data = {}
self.device_tensor_stat.clear()
def get_tensor_stat(tensor):
"""Get the stat of a single tensor
Returns:
- stat: a tuple containing (tensor_name, tensor_size,
tensor_numel, tensor_memory)
"""
assert isinstance(tensor, torch.Tensor)
name = self._get_tensor_name(tensor)
numel = tensor.numel()
element_size = tensor.element_size()
fact_numel = tensor.storage().size()
fact_memory_size = fact_numel * element_size
# since pytorch allocate at least 512 Bytes for any tensor, round
# up to a multiple of 512
memory_size = math.ceil(fact_memory_size / PYTORCH_MIN_ALLOCATE) * PYTORCH_MIN_ALLOCATE
# tensor.storage should be the actual object related to memory
# allocation
data_ptr = tensor.storage().data_ptr()
if data_ptr in visited_data:
name = '{}(->{})'.format(
name,
visited_data[data_ptr],
)
# don't count the memory for reusing same underlying storage
memory_size = 0
else:
visited_data[data_ptr] = name
size = tuple(tensor.size())
# torch scalar has empty size
if not size:
size = (1,)
return (name, size, numel, memory_size)
for device, tensors in self.device_mapping.items():
tensor_stats = []
for tensor in tensors:
if tensor.numel() == 0:
continue
stat = get_tensor_stat(tensor) # (name, shape, numel, memory_size)
tensor_stats.append(stat)
if isinstance(tensor, torch.nn.Parameter):
if tensor.grad is not None:
# manually specify the name of gradient tensor
self.tensor_name[tensor.grad] = '{}.grad'.format(
self._get_tensor_name(tensor)
)
stat = get_tensor_stat(tensor.grad)
tensor_stats.append(stat)
self.device_tensor_stat[device] = tensor_stats
self.device_mapping.clear()
def print_stats(self, verbose=False):
# header
show_reuse = verbose
template_format = '{:<40s}{:>20s}{:>10s}'
print(template_format.format('Element type', 'Size', 'Used MEM'))
for device, tensor_stats in self.device_tensor_stat.items():
print('-' * LEN)
print('Storage on {}'.format(device))
total_mem = 0
total_numel = 0
for stat in tensor_stats:
name, size, numel, mem = stat
if not show_reuse:
name = name.split('(')[0]
print(template_format.format(
str(name),
str(size),
readable_size(mem),
))
total_mem += mem
total_numel += numel
print('-'*LEN)
print('Total Tensors: {} \tUsed Memory: {}'.format(
total_numel, readable_size(total_mem),
))
if device != torch.device('cpu'):
# with torch.cuda.device(device): NOTE not supported in
memory_allocated = torch.cuda.memory_allocated()
print('The allocated memory on {}: {}'.format(
device, readable_size(memory_allocated),
))
if memory_allocated != total_mem:
print('Memory differs due to the matrix alignment or'
' invisible gradient buffer tensors')
print('-'*LEN)
def collect_stats(self):
self.collect_tensor()
self.get_stats()
for _, tensor_stats in self.device_tensor_stat.items():
total_mem = 0
for stat in tensor_stats:
total_mem += stat[3]
return total_mem
def report(self, verbose=False):
"""Interface for end-users to directly print the memory usage
args:
- verbose: flag to show tensor.storage reuse information
"""
self.collect_tensor()
self.get_stats()
self.print_stats(verbose)
@pytest.mark.parametrize('coupling', ['additive', 'affine'])
@pytest.mark.parametrize('keep_input', [True, False])
@pytest.mark.parametrize('device', ['cpu', 'cuda'])
def test_memory_saving_invertible_model_wrapper(device, coupling, keep_input):
"""Test memory saving of the invertible model wrapper
* tests fitting a large number of images by creating a deep network requiring large
intermediate feature maps for training
* keep_input = False should use less memory than keep_input = True on both GPU and CPU RAM
* input size in bytes: np.prod((2, 10, 10, 10)) * 4 / 1024.0 = 7.8125 kB
for a depth=5 this yields 7.8125 * 5 = 39.0625 kB
Notes
-----
* CPU RAM estimates uses the MemReporter from https://github.com/Stonesjtu/pytorch_memlab which tries to estimate
torch CPU RAM usage by collecting torch.Tensors from the gc. This reliably finds the difference between
keep_input=(True|False), however it greatly underestimates the total memory consumptions w.r.t. the GPU RAM
estimates using PyTorch cuda module. It appears to be missing some tensors.
FIXME CPU Ram estimates - Sil
"""
if device == 'cuda' and not torch.cuda.is_available():
pytest.skip('This test requires a GPU to be available')
mem_reporter = MemReporter()
gc.disable()
gc.collect()
with torch.set_grad_enabled(True):
dims = [2, 10, 10, 10]
depth = 5
xx = torch.rand(*dims, device=device, dtype=torch.float32).requires_grad_()
ytarget = torch.rand(*dims, device=device, dtype=torch.float32)
# same convolution test
network = SubModuleStack(SubModule(in_filters=5, out_filters=5), depth=depth, keep_input=keep_input, coupling=coupling,
implementation_fwd=-1, implementation_bwd=-1)
network.to(device)
network.train()
network.zero_grad()
optim = torch.optim.RMSprop(network.parameters())
optim.zero_grad()
mem_start = 0 if not device == 'cuda' else \
torch.cuda.memory_allocated() / float(1024 ** 2)
y = network(xx)
gc.collect()
mem_after_forward = mem_reporter.collect_stats() / float(1024 ** 2) if not device == 'cuda' else \
torch.cuda.memory_allocated() / float(1024 ** 2)
loss = torch.nn.MSELoss()(y, ytarget)
optim.zero_grad()
loss.backward()
optim.step()
gc.collect()
# mem_after_backward = mem_reporter.collect_stats() / float(1024 ** 2) if not device == 'cuda' else \
# torch.cuda.memory_allocated() / float(1024 ** 2)
gc.enable()
if device == 'cpu':
memuse = 0.05
else:
memuse = float(np.prod(dims + [depth, 4, ])) / float(1024 ** 2)
measured_memuse = mem_after_forward - mem_start
if keep_input:
assert measured_memuse >= memuse
else:
assert measured_memuse < (1 if device == 'cuda' else memuse)
# assert math.floor(mem_after_backward - mem_start) >= 9
|
memcnn-master
|
memcnn/models/tests/test_memory_saving.py
|
import torch
import torch.nn
import pytest
import copy
import warnings
from memcnn import create_coupling, InvertibleModuleWrapper
from memcnn.models.tests.test_revop import set_seeds, SubModule
from memcnn.models.affine import AffineAdapterNaive, AffineBlock
from memcnn.models.additive import AdditiveBlock
@pytest.mark.parametrize('coupling', ['additive', 'affine'])
@pytest.mark.parametrize('bwd', [False, True])
@pytest.mark.parametrize('implementation', [-1, 0, 1])
def test_coupling_implementations_against_reference(coupling, bwd, implementation):
"""Test if similar gradients and weights results are obtained after similar training for the couplings"""
with warnings.catch_warnings():
warnings.simplefilter(action='ignore', category=DeprecationWarning)
for seed in range(10):
set_seeds(seed)
X = torch.rand(2, 4, 5, 5)
# define models and their copies
c1 = torch.nn.Conv2d(2, 2, 3, padding=1)
c2 = torch.nn.Conv2d(2, 2, 3, padding=1)
c1_2 = copy.deepcopy(c1)
c2_2 = copy.deepcopy(c2)
# are weights between models the same, but do they differ between convolutions?
assert torch.equal(c1.weight, c1_2.weight)
assert torch.equal(c2.weight, c2_2.weight)
assert torch.equal(c1.bias, c1_2.bias)
assert torch.equal(c2.bias, c2_2.bias)
assert not torch.equal(c1.weight, c2.weight)
# define optimizers
optim1 = torch.optim.SGD([e for e in c1.parameters()] + [e for e in c2.parameters()], 0.1)
optim2 = torch.optim.SGD([e for e in c1_2.parameters()] + [e for e in c2_2.parameters()], 0.1)
for e in [c1, c2, c1_2, c2_2]:
e.train()
# define an arbitrary reversible function and define graph for model 1
XX = X.detach().clone().requires_grad_()
coupling_fn = create_coupling(Fm=c1, Gm=c2, coupling=coupling, implementation_fwd=-1,
implementation_bwd=-1, adapter=AffineAdapterNaive)
Y = coupling_fn.inverse(XX) if bwd else coupling_fn.forward(XX)
loss = torch.mean(Y)
# define the reversible function without custom backprop and define graph for model 2
XX2 = X.detach().clone().requires_grad_()
coupling_fn2 = create_coupling(Fm=c1_2, Gm=c2_2, coupling=coupling, implementation_fwd=implementation,
implementation_bwd=implementation, adapter=AffineAdapterNaive)
Y2 = coupling_fn2.inverse(XX2) if bwd else coupling_fn2.forward(XX2)
loss2 = torch.mean(Y2)
# compute gradients manually
grads = torch.autograd.grad(loss2, (XX2, c1_2.weight, c2_2.weight, c1_2.bias, c2_2.bias), None, retain_graph=True)
# compute gradients using backward and perform optimization model 2
loss2.backward()
optim2.step()
# gradients computed manually match those of the .backward() pass
assert torch.equal(c1_2.weight.grad, grads[1])
assert torch.equal(c2_2.weight.grad, grads[2])
assert torch.equal(c1_2.bias.grad, grads[3])
assert torch.equal(c2_2.bias.grad, grads[4])
# weights differ after training a single model?
assert not torch.equal(c1.weight, c1_2.weight)
assert not torch.equal(c2.weight, c2_2.weight)
assert not torch.equal(c1.bias, c1_2.bias)
assert not torch.equal(c2.bias, c2_2.bias)
# compute gradients and perform optimization model 1
loss.backward()
optim1.step()
# weights are approximately the same after training both models?
assert torch.allclose(c1.weight.detach(), c1_2.weight.detach())
assert torch.allclose(c2.weight.detach(), c2_2.weight.detach())
assert torch.allclose(c1.bias.detach(), c1_2.bias.detach())
assert torch.allclose(c2.bias.detach(), c2_2.bias.detach())
# gradients are approximately the same after training both models?
assert torch.allclose(c1.weight.grad.detach(), c1_2.weight.grad.detach())
assert torch.allclose(c2.weight.grad.detach(), c2_2.weight.grad.detach())
assert torch.allclose(c1.bias.grad.detach(), c1_2.bias.grad.detach())
assert torch.allclose(c2.bias.grad.detach(), c2_2.bias.grad.detach())
fn = InvertibleModuleWrapper(fn=coupling_fn, keep_input=False, keep_input_inverse=False)
Yout = fn.inverse(XX) if bwd else fn.forward(XX)
loss = torch.mean(Yout)
loss.backward()
assert XX.storage().size() > 0
fn2 = InvertibleModuleWrapper(fn=coupling_fn2, keep_input=False, keep_input_inverse=False)
Yout2 = fn2.inverse(XX2) if bwd else fn2.forward(XX2)
loss = torch.mean(Yout2)
loss.backward()
assert XX2.storage().size() > 0
def test_legacy_additive_coupling():
with warnings.catch_warnings():
warnings.simplefilter(action='ignore', category=DeprecationWarning)
AdditiveBlock(Fm=SubModule())
def test_legacy_affine_coupling():
with warnings.catch_warnings():
warnings.simplefilter(action='ignore', category=DeprecationWarning)
AffineBlock(Fm=SubModule())
|
memcnn-master
|
memcnn/models/tests/test_couplings.py
|
import warnings
import pytest
import random
import torch
import torch.nn
import numpy as np
import copy
from memcnn.models.affine import AffineAdapterNaive, AffineAdapterSigmoid, AffineCoupling
from memcnn import ReversibleBlock
from memcnn.models.revop import InvertibleModuleWrapper, create_coupling, is_invertible_module
from memcnn.models.additive import AdditiveCoupling
def set_seeds(seed):
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
class SubModule(torch.nn.Module):
def __init__(self, in_filters=5, out_filters=5):
super(SubModule, self).__init__()
self.bn = torch.nn.BatchNorm2d(out_filters)
self.conv = torch.nn.Conv2d(in_filters, out_filters, (3, 3), padding=1)
def forward(self, x):
return self.bn(self.conv(x))
class SubModuleStack(torch.nn.Module):
def __init__(self, Gm, coupling='additive', depth=10, implementation_fwd=-1, implementation_bwd=-1,
keep_input=False, adapter=None):
super(SubModuleStack, self).__init__()
fn = create_coupling(Fm=Gm, Gm=Gm, coupling=coupling, implementation_fwd=implementation_fwd, implementation_bwd=implementation_bwd, adapter=adapter)
self.stack = torch.nn.ModuleList(
[InvertibleModuleWrapper(fn=fn, keep_input=keep_input, keep_input_inverse=keep_input) for _ in range(depth)]
)
def forward(self, x):
for rev_module in self.stack:
x = rev_module.forward(x)
return x
def inverse(self, y):
for rev_module in reversed(self.stack):
y = rev_module.inverse(y)
return y
def is_memory_cleared(var, isclear, shape):
if isclear:
return var.storage().size() == 0
else:
return var.storage().size() > 0 and var.shape == shape
def test_is_invertible_module():
X = torch.zeros(1, 10, 10, 10)
assert not is_invertible_module(torch.nn.Conv2d(10, 10, kernel_size=(1, 1)),
test_input_shape=X.shape)
fn = AdditiveCoupling(SubModule(), implementation_bwd=-1, implementation_fwd=-1)
assert is_invertible_module(fn, test_input_shape=X.shape)
class FakeInverse(torch.nn.Module):
def forward(self, x):
return x * 4
def inverse(self, y):
return y * 8
assert not is_invertible_module(FakeInverse(), test_input_shape=X.shape)
@pytest.mark.parametrize('coupling', ['additive', 'affine'])
def test_reversible_block_notimplemented(coupling):
fm = torch.nn.Conv2d(10, 10, (3, 3), padding=1)
X = torch.zeros(1, 20, 10, 10)
with pytest.raises(NotImplementedError):
with warnings.catch_warnings():
warnings.simplefilter(action='ignore', category=DeprecationWarning)
f = ReversibleBlock(fm, coupling=coupling, implementation_bwd=0, implementation_fwd=-2,
adapter=AffineAdapterNaive)
assert isinstance(f, InvertibleModuleWrapper)
f.forward(X)
with pytest.raises(NotImplementedError):
with warnings.catch_warnings():
warnings.simplefilter(action='ignore', category=DeprecationWarning)
f = ReversibleBlock(fm, coupling=coupling, implementation_bwd=-2, implementation_fwd=0,
adapter=AffineAdapterNaive)
assert isinstance(f, InvertibleModuleWrapper)
f.inverse(X)
with pytest.raises(NotImplementedError):
with warnings.catch_warnings():
warnings.simplefilter(action='ignore', category=DeprecationWarning)
ReversibleBlock(fm, coupling='unknown', implementation_bwd=-2, implementation_fwd=0,
adapter=AffineAdapterNaive)
class MultiplicationInverse(torch.nn.Module):
def __init__(self, factor=2):
super(MultiplicationInverse, self).__init__()
self.factor = torch.nn.Parameter(torch.ones(1) * factor)
def forward(self, x):
return x * self.factor
def inverse(self, y):
return y / self.factor
class IdentityInverse(torch.nn.Module):
def __init__(self, multiply_forward=False, multiply_inverse=False):
super(IdentityInverse, self).__init__()
self.factor = torch.nn.Parameter(torch.ones(1))
self.multiply_forward = multiply_forward
self.multiply_inverse = multiply_inverse
def forward(self, x):
if self.multiply_forward:
return x * self.factor
else:
return x
def inverse(self, y):
if self.multiply_inverse:
return y * self.factor
else:
return y
def test_input_output_invertible_function_share_tensor():
fn = IdentityInverse()
rm = InvertibleModuleWrapper(fn=fn, keep_input=True, keep_input_inverse=True)
X = torch.rand(1, 2, 5, 5, dtype=torch.float32).requires_grad_()
assert not is_invertible_module(fn, test_input_shape=X.shape, atol=1e-6)
with pytest.raises(RuntimeError):
rm.forward(X)
fn.multiply_forward = True
rm.forward(X)
assert not is_invertible_module(fn, test_input_shape=X.shape, atol=1e-6)
with pytest.raises(RuntimeError):
rm.inverse(X)
fn.multiply_inverse = True
rm.inverse(X)
assert is_invertible_module(fn, test_input_shape=X.shape, atol=1e-6)
@pytest.mark.parametrize('fn', [
AdditiveCoupling(Fm=SubModule(), implementation_fwd=-1, implementation_bwd=-1),
AffineCoupling(Fm=SubModule(), implementation_fwd=-1, implementation_bwd=-1, adapter=AffineAdapterNaive),
AffineCoupling(Fm=SubModule(out_filters=10), implementation_fwd=-1, implementation_bwd=-1, adapter=AffineAdapterSigmoid),
MultiplicationInverse()
])
@pytest.mark.parametrize('bwd', [False, True])
@pytest.mark.parametrize('keep_input', [False, True])
@pytest.mark.parametrize('keep_input_inverse', [False, True])
def test_invertible_module_wrapper_fwd_bwd(fn, bwd, keep_input, keep_input_inverse):
"""InvertibleModuleWrapper tests for the memory saving forward and backward passes
* test inversion Y = RB(X) and X = RB.inverse(Y)
* test training the block for a single step and compare weights for implementations: 0, 1
* test automatic discard of input X and its retrieval after the backward pass
* test usage of BN to identify non-contiguous memory blocks
"""
for seed in range(10):
set_seeds(seed)
dims = (2, 10, 8, 8)
data = torch.rand(*dims, dtype=torch.float32)
target_data = torch.rand(*dims, dtype=torch.float32)
assert is_invertible_module(fn, test_input_shape=data.shape, atol=1e-4)
# test with zero padded convolution
with torch.set_grad_enabled(True):
X = data.clone().requires_grad_()
Ytarget = target_data.clone()
Xshape = X.shape
rb = InvertibleModuleWrapper(fn=fn, keep_input=keep_input, keep_input_inverse=keep_input_inverse)
s_grad = [p.detach().clone() for p in rb.parameters()]
rb.train()
rb.zero_grad()
optim = torch.optim.RMSprop(rb.parameters())
optim.zero_grad()
if not bwd:
Xin = X.clone().requires_grad_()
Y = rb(Xin)
Yrev = Y.detach().clone().requires_grad_()
Xinv = rb.inverse(Yrev)
else:
Xin = X.clone().requires_grad_()
Y = rb.inverse(Xin)
Yrev = Y.detach().clone().requires_grad_()
Xinv = rb(Yrev)
loss = torch.nn.MSELoss()(Y, Ytarget)
# has input been retained/discarded after forward (and backward) passes?
if not bwd:
assert is_memory_cleared(Yrev, not keep_input_inverse, Xshape)
assert is_memory_cleared(Xin, not keep_input, Xshape)
else:
assert is_memory_cleared(Xin, not keep_input_inverse, Xshape)
assert is_memory_cleared(Yrev, not keep_input, Xshape)
optim.zero_grad()
loss.backward()
optim.step()
assert Y.shape == Xshape
assert X.detach().shape == data.shape
assert torch.allclose(X.detach(), data, atol=1e-06)
assert torch.allclose(X.detach(), Xinv.detach(), atol=1e-04) # Model is now trained and will differ
grads = [p.detach().clone() for p in rb.parameters()]
assert not torch.allclose(grads[0], s_grad[0])
@pytest.mark.parametrize('coupling,adapter', [('additive', None),
('affine', AffineAdapterNaive),
('affine', AffineAdapterSigmoid)])
def test_chained_invertible_module_wrapper(coupling, adapter):
set_seeds(42)
dims = (2, 10, 8, 8)
data = torch.rand(*dims, dtype=torch.float32)
target_data = torch.rand(*dims, dtype=torch.float32)
with torch.set_grad_enabled(True):
X = data.clone().requires_grad_()
Ytarget = target_data.clone()
Gm = SubModule(in_filters=5, out_filters=5 if coupling == 'additive' or adapter is AffineAdapterNaive else 10)
rb = SubModuleStack(Gm, coupling=coupling, depth=2, keep_input=False, adapter=adapter, implementation_bwd=-1, implementation_fwd=-1)
rb.train()
optim = torch.optim.RMSprop(rb.parameters())
rb.zero_grad()
optim.zero_grad()
Xin = X.clone()
Y = rb(Xin)
loss = torch.nn.MSELoss()(Y, Ytarget)
loss.backward()
optim.step()
assert not torch.isnan(loss)
def test_chained_invertible_module_wrapper_shared_fwd_and_bwd_train_passes():
set_seeds(42)
Gm = SubModule(in_filters=5, out_filters=5)
rb_temp = SubModuleStack(Gm=Gm, coupling='additive', depth=5, keep_input=True, adapter=None, implementation_bwd=-1,
implementation_fwd=-1)
optim = torch.optim.SGD(rb_temp.parameters(), lr=0.01)
initial_params = [p.detach().clone() for p in rb_temp.parameters()]
initial_state = copy.deepcopy(rb_temp.state_dict())
initial_optim_state = copy.deepcopy(optim.state_dict())
dims = (2, 10, 8, 8)
data = torch.rand(*dims, dtype=torch.float32)
target_data = torch.rand(*dims, dtype=torch.float32)
forward_outputs = []
inverse_outputs = []
for i in range(10):
is_forward_pass = i % 2 == 0
set_seeds(42)
rb = SubModuleStack(Gm=Gm, coupling='additive', depth=5, keep_input=True,
adapter=None, implementation_bwd=-1,
implementation_fwd=-1)
rb.train()
with torch.no_grad():
for (name, p), p_initial in zip(rb.named_parameters(), initial_params):
p.set_(p_initial)
rb.load_state_dict(initial_state)
optim = torch.optim.SGD(rb_temp.parameters(), lr=0.01)
optim.load_state_dict(initial_optim_state)
with torch.set_grad_enabled(True):
X = data.detach().clone().requires_grad_()
Ytarget = target_data.detach().clone()
optim.zero_grad()
if is_forward_pass:
Y = rb(X)
Xinv = rb.inverse(Y)
Xinv2 = rb.inverse(Y)
Xinv3 = rb.inverse(Y)
else:
Y = rb.inverse(X)
Xinv = rb(Y)
Xinv2 = rb(Y)
Xinv3 = rb(Y)
for item in [Xinv, Xinv2, Xinv3]:
assert torch.allclose(X, item, atol=1e-04)
loss = torch.nn.MSELoss()(Xinv, Ytarget)
assert not torch.isnan(loss)
assert Xinv2.grad is None
assert Xinv3.grad is None
loss.backward()
assert Y.grad is not None
assert Xinv.grad is not None
assert Xinv2.grad is None
assert Xinv3.grad is None
loss2 = torch.nn.MSELoss()(Xinv2, Ytarget)
assert not torch.isnan(loss2)
loss2.backward()
assert Xinv2.grad is not None
optim.step()
if is_forward_pass:
forward_outputs.append(Y.detach().clone())
else:
inverse_outputs.append(Y.detach().clone())
for i in range(4):
assert torch.allclose(forward_outputs[-1], forward_outputs[i], atol=1e-06)
assert torch.allclose(inverse_outputs[-1], inverse_outputs[i], atol=1e-06)
@pytest.mark.parametrize("inverted", [False, True])
def test_invertible_module_wrapper_disabled_versus_enabled(inverted):
set_seeds(42)
Gm = SubModule(in_filters=5, out_filters=5)
coupling_fn = create_coupling(Fm=Gm, Gm=Gm, coupling='additive', implementation_fwd=-1,
implementation_bwd=-1)
rb = InvertibleModuleWrapper(fn=coupling_fn, keep_input=False, keep_input_inverse=False)
rb2 = InvertibleModuleWrapper(fn=copy.deepcopy(coupling_fn), keep_input=False, keep_input_inverse=False)
rb.eval()
rb2.eval()
rb2.disable = True
with torch.no_grad():
dims = (2, 10, 8, 8)
data = torch.rand(*dims, dtype=torch.float32)
X, X2 = data.clone().detach().requires_grad_(), data.clone().detach().requires_grad_()
if not inverted:
Y = rb(X)
Y2 = rb2(X2)
else:
Y = rb.inverse(X)
Y2 = rb2.inverse(X2)
assert torch.allclose(Y, Y2)
assert is_memory_cleared(X, True, dims)
assert is_memory_cleared(X2, False, dims)
@pytest.mark.parametrize('coupling', ['additive', 'affine'])
def test_invertible_module_wrapper_simple_inverse(coupling):
"""InvertibleModuleWrapper inverse test"""
for seed in range(10):
set_seeds(seed)
# define some data
X = torch.rand(2, 4, 5, 5).requires_grad_()
# define an arbitrary reversible function
coupling_fn = create_coupling(Fm=torch.nn.Conv2d(2, 2, 3, padding=1), coupling=coupling, implementation_fwd=-1,
implementation_bwd=-1, adapter=AffineAdapterNaive)
fn = InvertibleModuleWrapper(fn=coupling_fn, keep_input=False, keep_input_inverse=False)
# compute output
Y = fn.forward(X.clone())
# compute input from output
X2 = fn.inverse(Y)
# check that the inverted output and the original input are approximately similar
assert torch.allclose(X2.detach(), X.detach(), atol=1e-06)
@pytest.mark.parametrize('coupling', ['additive', 'affine'])
def test_normal_vs_invertible_module_wrapper(coupling):
"""InvertibleModuleWrapper test if similar gradients and weights results are obtained after similar training"""
for seed in range(10):
set_seeds(seed)
X = torch.rand(2, 4, 5, 5)
# define models and their copies
c1 = torch.nn.Conv2d(2, 2, 3, padding=1)
c2 = torch.nn.Conv2d(2, 2, 3, padding=1)
c1_2 = copy.deepcopy(c1)
c2_2 = copy.deepcopy(c2)
# are weights between models the same, but do they differ between convolutions?
assert torch.equal(c1.weight, c1_2.weight)
assert torch.equal(c2.weight, c2_2.weight)
assert torch.equal(c1.bias, c1_2.bias)
assert torch.equal(c2.bias, c2_2.bias)
assert not torch.equal(c1.weight, c2.weight)
# define optimizers
optim1 = torch.optim.SGD([e for e in c1.parameters()] + [e for e in c2.parameters()], 0.1)
optim2 = torch.optim.SGD([e for e in c1_2.parameters()] + [e for e in c2_2.parameters()], 0.1)
for e in [c1, c2, c1_2, c2_2]:
e.train()
# define an arbitrary reversible function and define graph for model 1
Xin = X.clone().requires_grad_()
coupling_fn = create_coupling(Fm=c1_2, Gm=c2_2, coupling=coupling, implementation_fwd=-1,
implementation_bwd=-1, adapter=AffineAdapterNaive)
fn = InvertibleModuleWrapper(fn=coupling_fn, keep_input=False, keep_input_inverse=False)
Y = fn.forward(Xin)
loss2 = torch.mean(Y)
# define the reversible function without custom backprop and define graph for model 2
XX = X.clone().detach().requires_grad_()
x1, x2 = torch.chunk(XX, 2, dim=1)
if coupling == 'additive':
y1 = x1 + c1.forward(x2)
y2 = x2 + c2.forward(y1)
elif coupling == 'affine':
fmr2 = c1.forward(x2)
fmr1 = torch.exp(fmr2)
y1 = (x1 * fmr1) + fmr2
gmr2 = c2.forward(y1)
gmr1 = torch.exp(gmr2)
y2 = (x2 * gmr1) + gmr2
else:
raise NotImplementedError()
YY = torch.cat([y1, y2], dim=1)
loss = torch.mean(YY)
# compute gradients manually
grads = torch.autograd.grad(loss, (XX, c1.weight, c2.weight, c1.bias, c2.bias), None, retain_graph=True)
# compute gradients and perform optimization model 2
loss.backward()
optim1.step()
# gradients computed manually match those of the .backward() pass
assert torch.equal(c1.weight.grad, grads[1])
assert torch.equal(c2.weight.grad, grads[2])
assert torch.equal(c1.bias.grad, grads[3])
assert torch.equal(c2.bias.grad, grads[4])
# weights differ after training a single model?
assert not torch.equal(c1.weight, c1_2.weight)
assert not torch.equal(c2.weight, c2_2.weight)
assert not torch.equal(c1.bias, c1_2.bias)
assert not torch.equal(c2.bias, c2_2.bias)
# compute gradients and perform optimization model 1
loss2.backward()
optim2.step()
# input is contiguous tests
assert Xin.is_contiguous()
assert Y.is_contiguous()
# weights are approximately the same after training both models?
assert torch.allclose(c1.weight.detach(), c1_2.weight.detach())
assert torch.allclose(c2.weight.detach(), c2_2.weight.detach())
assert torch.allclose(c1.bias.detach(), c1_2.bias.detach())
assert torch.allclose(c2.bias.detach(), c2_2.bias.detach())
# gradients are approximately the same after training both models?
assert torch.allclose(c1.weight.grad.detach(), c1_2.weight.grad.detach())
assert torch.allclose(c2.weight.grad.detach(), c2_2.weight.grad.detach())
assert torch.allclose(c1.bias.grad.detach(), c1_2.bias.grad.detach())
assert torch.allclose(c2.bias.grad.detach(), c2_2.bias.grad.detach())
|
memcnn-master
|
memcnn/models/tests/test_revop.py
|
import time
import logging
import torch
import numpy as np
from memcnn.utils.stats import AverageMeter, accuracy
from memcnn.utils.log import SummaryWriter
logger = logging.getLogger('trainer')
def validate(model, ceriterion, val_loader, device):
"""validation sub-loop"""
model.eval()
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
end = time.time()
with torch.no_grad():
for x, label in val_loader:
x, label = x.to(device), label.to(device)
vx, vl = x, label
score = model(vx)
loss = ceriterion(score, vl)
prec1 = accuracy(score.data, label)
losses.update(loss.item(), x.size(0))
top1.update(prec1[0][0], x.size(0))
batch_time.update(time.time() - end)
end = time.time()
logger.info('Test: [{0}/{0}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'.format(len(val_loader),
batch_time=batch_time, loss=losses, top1=top1))
return top1.avg, losses.avg
def get_model_parameters_count(model):
return np.sum([np.prod([int(e) for e in p.shape]) for p in model.parameters()])
def train(manager,
train_loader,
test_loader,
start_iter,
disp_iter=100,
save_iter=10000,
valid_iter=1000,
use_cuda=False,
loss=None):
"""train loop"""
device = torch.device('cpu' if not use_cuda else 'cuda')
model, optimizer = manager.model, manager.optimizer
logger.info('Model parameters: {}'.format(get_model_parameters_count(model)))
if use_cuda:
model_mem_allocation = torch.cuda.memory_allocated(device)
logger.info('Model memory allocation: {}'.format(model_mem_allocation))
else:
model_mem_allocation = None
writer = SummaryWriter(manager.log_dir)
data_time = AverageMeter()
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
act_mem_activations = AverageMeter()
ceriterion = loss
# ensure train_loader enumerates to max_epoch
max_iterations = train_loader.sampler.nsamples // train_loader.batch_size
train_loader.sampler.nsamples = train_loader.sampler.nsamples - start_iter
end = time.time()
for ind, (x, label) in enumerate(train_loader):
iteration = ind + 1 + start_iter
if iteration > max_iterations:
logger.info('maximum number of iterations reached: {}/{}'.format(iteration, max_iterations))
break
if iteration == 40000 or iteration == 60000:
for param_group in optimizer.param_groups:
param_group['lr'] *= 0.1
model.train()
data_time.update(time.time() - end)
end = time.time()
x, label = x.to(device), label.to(device)
vx, vl = x, label
score = model(vx)
loss = ceriterion(score, vl)
if use_cuda:
activation_mem_allocation = torch.cuda.memory_allocated(device) - model_mem_allocation
act_mem_activations.update(activation_mem_allocation, iteration)
if torch.isnan(loss):
raise ValueError("Loss became NaN during iteration {}".format(iteration))
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time()-end)
prec1 = accuracy(score.data, label)
losses.update(loss.item(), x.size(0))
top1.update(prec1[0][0], x.size(0))
if iteration % disp_iter == 0:
act = ''
if model_mem_allocation is not None:
act = 'ActMem {act.val:.3f} ({act.avg:.3f})'.format(act=act_mem_activations)
logger.info('iteration: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'{act}'
.format(iteration, max_iterations,
batch_time=batch_time, data_time=data_time,
loss=losses, top1=top1, act=act))
if iteration % disp_iter == 0:
writer.add_scalar('train_loss', loss.item(), iteration)
writer.add_scalar('train_acc', prec1[0][0], iteration)
losses.reset()
top1.reset()
data_time.reset()
batch_time.reset()
if use_cuda:
writer.add_scalar('act_mem_allocation', act_mem_activations.avg, iteration)
act_mem_activations.reset()
if iteration % valid_iter == 0:
test_top1, test_loss = validate(model, ceriterion, test_loader, device=device)
writer.add_scalar('test_loss', test_loss, iteration)
writer.add_scalar('test_acc', test_top1, iteration)
if iteration % save_iter == 0:
manager.save_train_state(iteration)
writer.flush()
end = time.time()
writer.close()
|
memcnn-master
|
memcnn/trainers/classification.py
|
memcnn-master
|
memcnn/trainers/__init__.py
|
|
import json
import pytest
import os
import sys
import torch
from memcnn.experiment.manager import ExperimentManager
from memcnn.train import run_experiment, main
try:
from pathlib2 import Path
except ImportError:
from pathlib import Path
def test_main(tmp_path):
sys.argv = ['train.py', 'cifar10', 'resnet34', '--fresh', '--no-cuda', '--workers=0']
data_dir = str(tmp_path / "tmpdata")
results_dir = str(tmp_path / "resdir")
os.makedirs(data_dir)
os.makedirs(results_dir)
with pytest.raises(KeyError):
main(data_dir=data_dir, results_dir=results_dir)
def dummy_dataloaders(*args, **kwargs):
return None, None
def dummy_trainer(manager, *args, **kwargs):
manager.save_train_state(2)
class DummyDataset(object):
def __init__(self, *args, **kwargs):
pass
class DummyModel(torch.nn.Module):
def __init__(self, block):
super(DummyModel, self).__init__()
self.block = block
self.conv = torch.nn.Conv2d(1, 1, 1)
def forward(self, x):
return self.conv(x)
def test_run_experiment(tmp_path):
exptags = ['testsetup']
exp_file = str(Path(__file__).parent / "resources" / "experiments.json")
data_dir = str(tmp_path / "tmpdata")
results_dir = str(tmp_path / "resdir")
run_params = dict(
experiment_tags=exptags, data_dir=data_dir, results_dir=results_dir,
start_fresh=True, use_cuda=False, workers=None, experiments_file=exp_file
)
with pytest.raises(RuntimeError):
run_experiment(**run_params)
os.makedirs(data_dir)
with pytest.raises(RuntimeError):
run_experiment(**run_params)
os.makedirs(results_dir)
run_experiment(**run_params)
run_params["start_fresh"] = False
run_experiment(**run_params)
@pytest.mark.parametrize("network", [
pytest.param(network,
marks=pytest.mark.skipif(
condition=("FULL_NETWORK_TESTS" not in os.environ) and ("revnet38" != network),
reason="Too memory intensive for CI so these tests are disabled by default. "
"Set FULL_NETWORK_TESTS environment variable to enable the tests.")
)
for network in ["resnet32", "resnet110", "resnet164", "revnet38", "revnet110", "revnet164"]
])
@pytest.mark.parametrize("use_cuda", [
False,
pytest.param(True, marks=pytest.mark.skipif(condition=not torch.cuda.is_available(), reason="No GPU available"))
])
def test_train_networks(tmp_path, network, use_cuda):
exptags = ["cifar10", network, "epoch5"]
exp_file = str(Path(__file__).parent / "resources" / "experiments.json")
data_dir = str(tmp_path / "tmpdata")
results_dir = str(tmp_path / "resdir")
os.makedirs(data_dir)
os.makedirs(results_dir)
run_experiment(experiment_tags=exptags, data_dir=data_dir, results_dir=results_dir,
start_fresh=True, use_cuda=use_cuda, workers=None, experiments_file=exp_file,
disp_iter=1,
save_iter=5,
valid_iter=5,)
experiment_dir = os.path.join(results_dir, '_'.join(exptags))
assert os.path.exists(experiment_dir)
manager = ExperimentManager(experiment_dir)
scalars_file = os.path.join(manager.log_dir, "scalars.json")
assert os.path.exists(scalars_file)
with open(scalars_file, "r") as f:
results = json.load(f)
# no results should hold any NaN values
assert not any([val != val for t, i, val in results["train_loss"]])
|
memcnn-master
|
memcnn/trainers/tests/test_train.py
|
memcnn-master
|
memcnn/trainers/tests/__init__.py
|
|
import pytest
from memcnn.trainers.classification import train
from memcnn.experiment.manager import ExperimentManager
from memcnn.data.cifar import get_cifar_data_loaders
from memcnn.utils.loss import CrossEntropyLossTF
import torch
from torchvision.datasets.cifar import CIFAR10
class SimpleTestingModel(torch.nn.Module):
def __init__(self, klasses):
super(SimpleTestingModel, self).__init__()
self.conv = torch.nn.Conv2d(3, klasses, 1)
self.avgpool = torch.nn.AvgPool2d(32)
self.klasses = klasses
def forward(self, x):
return self.avgpool(self.conv(x)).reshape(x.shape[0], self.klasses)
def test_train(tmp_path):
expdir = str(tmp_path / "testexp")
tmp_data_dir = str(tmp_path / "tmpdata")
num_klasses = 10
model = SimpleTestingModel(num_klasses)
optimizer = torch.optim.SGD(params=model.parameters(), lr=0.01)
manager = ExperimentManager(expdir, model, optimizer)
manager.make_dirs()
train_loader, test_loader = get_cifar_data_loaders(CIFAR10, tmp_data_dir, 40000, 2, 0)
loss = CrossEntropyLossTF()
train(manager,
train_loader,
test_loader,
start_iter=39999,
disp_iter=1,
save_iter=1,
valid_iter=1,
use_cuda=False,
loss=loss)
def test_train_with_nan_loss(tmp_path):
class NanLoss(torch.nn.Module):
def __init__(self):
super(NanLoss, self).__init__()
def forward(self, Ypred, Y, W=None):
return Ypred.mean() * float('nan')
expdir = str(tmp_path / "testexp")
tmp_data_dir = str(tmp_path / "tmpdata")
num_klasses = 10
model = SimpleTestingModel(num_klasses)
optimizer = torch.optim.SGD(params=model.parameters(), lr=0.01)
manager = ExperimentManager(expdir, model, optimizer)
manager.make_dirs()
train_loader, test_loader = get_cifar_data_loaders(CIFAR10, tmp_data_dir, 40000, 2, 0)
loss = NanLoss()
with pytest.raises(ValueError) as e:
train(manager,
train_loader,
test_loader,
start_iter=1,
disp_iter=1,
save_iter=1,
valid_iter=1,
use_cuda=False,
loss=loss)
assert "Loss became NaN during iteration" in str(e.value)
|
memcnn-master
|
memcnn/trainers/tests/test_classification.py
|
import torch
import torch.nn as nn
import memcnn
# define a new torch Module with a sequence of operations: Relu o BatchNorm2d o Conv2d
class ExampleOperation(nn.Module):
def __init__(self, channels):
super(ExampleOperation, self).__init__()
self.seq = nn.Sequential(
nn.Conv2d(in_channels=channels, out_channels=channels,
kernel_size=(3, 3), padding=1),
nn.BatchNorm2d(num_features=channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.seq(x)
# generate some random input data (batch_size, num_channels, y_elements, x_elements)
X = torch.rand(2, 10, 8, 8)
# application of the operation(s) the normal way
model_normal = ExampleOperation(channels=10)
model_normal.eval()
Y = model_normal(X)
# turn the ExampleOperation invertible using an additive coupling
invertible_module = memcnn.AdditiveCoupling(
Fm=ExampleOperation(channels=10 // 2),
Gm=ExampleOperation(channels=10 // 2)
)
# test that it is actually a valid invertible module (has a valid inverse method)
assert memcnn.is_invertible_module(invertible_module, test_input_shape=X.shape)
# wrap our invertible_module using the InvertibleModuleWrapper and benefit from memory savings during training
invertible_module_wrapper = memcnn.InvertibleModuleWrapper(fn=invertible_module, keep_input=True, keep_input_inverse=True)
# by default the module is set to training, the following sets this to evaluation
# note that this is required to pass input tensors to the model with requires_grad=False (inference only)
invertible_module_wrapper.eval()
# test that the wrapped module is also a valid invertible module
assert memcnn.is_invertible_module(invertible_module_wrapper, test_input_shape=X.shape)
# compute the forward pass using the wrapper
Y2 = invertible_module_wrapper.forward(X)
# the input (X) can be approximated (X2) by applying the inverse method of the wrapper on Y2
X2 = invertible_module_wrapper.inverse(Y2)
# test that the input and approximation are similar
assert torch.allclose(X, X2, atol=1e-06)
|
memcnn-master
|
memcnn/examples/minimal.py
|
import torch
import sys
def test_minimal():
import minimal
# Input and inversed output should be approximately the same
assert torch.allclose(minimal.X, minimal.X2, atol=1e-06)
# Output of the wrapped invertible module is unlikely to match the normal output of F
assert not torch.allclose(minimal.Y2, minimal.Y)
# Cleanup minimal module and variables
del minimal.X
del minimal.Y
del minimal.Y2
del minimal.X2
del minimal
del sys.modules['minimal']
|
memcnn-master
|
memcnn/examples/test_examples.py
|
memcnn-master
|
memcnn/experiment/__init__.py
|
|
import json
import copy
def get_attr_from_module(pclass):
pclass = pclass.rsplit(".", 1)
mod = __import__(pclass[0], fromlist=[str(pclass[1])])
return getattr(mod, pclass[1])
def load_experiment_config(experiments_file, experiment_tags):
with open(experiments_file, 'r') as f:
data = json.load(f)
d = {}
for tag in experiment_tags:
_inject_items(build_dict(data, tag), d)
return d
def _inject_items(tempdict, d):
"""inject tempdict into d"""
for k, v in tempdict.items():
if isinstance(v, dict):
if k not in d:
d[k] = {}
d[k] = _inject_items(v, d[k])
else:
d[k] = v
return d
def build_dict(experiments_dict, experiment_name, classhist=None):
tempdict = experiments_dict[experiment_name]
if classhist is None:
classhist = []
classhist.append(experiment_name)
if not ('base' in tempdict) or (tempdict['base'] is None):
return copy.deepcopy(tempdict)
elif tempdict['base'] in classhist:
raise RuntimeError('Circular dependency found...')
else:
d = build_dict(experiments_dict, tempdict['base'], classhist)
return _inject_items(tempdict, d)
def experiment_config_parser(d, data_dir, workers=None):
trainer = get_attr_from_module(d['trainer'])
model = get_attr_from_module(d['model'])
model_params = copy.deepcopy(d['model_params'])
if 'block' in model_params:
model_params['block'] = get_attr_from_module(model_params['block'])
model = model(**model_params)
optimizer = get_attr_from_module(d['optimizer'])
optimizer = optimizer(model.parameters(), **d['optimizer_params'])
dl_params = copy.deepcopy(d['data_loader_params'])
dl_params['dataset'] = get_attr_from_module(dl_params['dataset'])
dl_params['data_dir'] = data_dir
dl_params['workers'] = dl_params['workers'] if workers is None else workers
train_loader, val_loader = get_attr_from_module(d['data_loader'])(**dl_params)
trainer_params = {}
if 'trainer_params' in d:
trainer_params = copy.deepcopy(d['trainer_params'])
if 'loss' in trainer_params:
trainer_params['loss'] = get_attr_from_module(trainer_params['loss'])()
trainer_params = dict(
train_loader=train_loader,
test_loader=val_loader,
**trainer_params
)
return model, optimizer, trainer, trainer_params
|
memcnn-master
|
memcnn/experiment/factory.py
|
import os
import glob
import torch
import logging
import shutil
import numpy as np
class ExperimentManager(object):
def __init__(self, experiment_dir, model=None, optimizer=None):
self.logger = logging.getLogger(type(self).__name__)
self.experiment_dir = experiment_dir
self.model = model
self.optimizer = optimizer
self.model_dir = os.path.join(self.experiment_dir, "state", "model")
self.optim_dir = os.path.join(self.experiment_dir, "state", "optimizer")
self.log_dir = os.path.join(self.experiment_dir, "log")
self.dirs = (self.experiment_dir, self.model_dir, self.log_dir, self.optim_dir)
def make_dirs(self):
for d in self.dirs:
if not os.path.exists(d):
os.makedirs(d)
assert(self.all_dirs_exists()) # nosec
def delete_dirs(self):
for d in self.dirs:
if os.path.exists(d):
shutil.rmtree(d)
assert(not self.any_dir_exists()) # nosec
def any_dir_exists(self):
return any([os.path.exists(d) for d in self.dirs])
def all_dirs_exists(self):
return all([os.path.exists(d) for d in self.dirs])
def save_model_state(self, epoch):
model_fname = os.path.join(self.model_dir, "{}.pt".format(epoch))
self.logger.info("Saving model state to: {}".format(model_fname))
torch.save(self.model.state_dict(), model_fname)
def load_model_state(self, epoch):
model_fname = os.path.join(self.model_dir, "{}.pt".format(epoch))
self.logger.info("Loading model state from: {}".format(model_fname))
self.model.load_state_dict(torch.load(model_fname))
def save_optimizer_state(self, epoch):
optim_fname = os.path.join(self.optim_dir, "{}.pt".format(epoch))
self.logger.info("Saving optimizer state to: {}".format(optim_fname))
torch.save(self.optimizer.state_dict(), optim_fname)
def load_optimizer_state(self, epoch):
optim_fname = os.path.join(self.optim_dir, "{}.pt".format(epoch))
self.logger.info("Loading optimizer state from {}".format(optim_fname))
self.optimizer.load_state_dict(torch.load(optim_fname))
def save_train_state(self, epoch):
self.save_model_state(epoch)
self.save_optimizer_state(epoch)
def load_train_state(self, epoch):
self.load_model_state(epoch)
self.load_optimizer_state(epoch)
def get_last_model_iteration(self):
return np.array([0] + [int(os.path.basename(e).split(".")[0])
for e in glob.glob(os.path.join(self.model_dir, "*.pt"))]).max()
def load_last_train_state(self):
self.load_train_state(self.get_last_model_iteration())
|
memcnn-master
|
memcnn/experiment/manager.py
|
import pytest
import os
import memcnn.experiment.factory
from memcnn.config import Config
def test_get_attr_from_module():
a = memcnn.experiment.factory.get_attr_from_module('memcnn.experiment.factory.get_attr_from_module')
assert a is memcnn.experiment.factory.get_attr_from_module
def test_load_experiment_config():
cfg_fname = os.path.join(Config.get_dir(), 'experiments.json')
memcnn.experiment.factory.load_experiment_config(cfg_fname, ['cifar10', 'resnet110'])
@pytest.mark.skip(reason="Covered more efficiently by test_train.test_run_experiment")
def test_experiment_config_parser(tmp_path):
tmp_data_dir = tmp_path / "tmpdata"
cfg_fname = os.path.join(Config.get_dir(), 'experiments.json')
cfg = memcnn.experiment.factory.load_experiment_config(cfg_fname, ['cifar10', 'resnet110'])
memcnn.experiment.factory.experiment_config_parser(cfg, str(tmp_data_dir), workers=None)
def test_circular_dependency(tmp_path):
p = str(tmp_path / "circular.json")
content = u'{ "circ": { "base": "circ" } }'
with open(p, 'w') as fh:
fh.write(content)
with open(p, 'r') as fh:
assert fh.read() == content
with pytest.raises(RuntimeError):
memcnn.experiment.factory.load_experiment_config(p, ['circ'])
|
memcnn-master
|
memcnn/experiment/tests/test_factory.py
|
memcnn-master
|
memcnn/experiment/tests/__init__.py
|
|
from memcnn.experiment.manager import ExperimentManager
import torch.nn
def test_experiment_manager(tmp_path):
exp_dir = tmp_path / "test_exp_dir"
man = ExperimentManager(str(exp_dir))
assert man.model is None
assert man.optimizer is None
man.make_dirs()
assert exp_dir.exists()
assert (exp_dir / "log").exists()
assert (exp_dir / "state" / "model").exists()
assert (exp_dir / "state" / "optimizer").exists()
assert man.all_dirs_exists()
assert man.any_dir_exists()
man.delete_dirs()
assert not exp_dir.exists()
assert not (exp_dir / "log").exists()
assert not (exp_dir / "state" / "model").exists()
assert not (exp_dir / "state" / "optimizer").exists()
assert not man.all_dirs_exists()
assert not man.any_dir_exists()
man.make_dirs()
man.model = torch.nn.Conv2d(2, 1, 3)
w = man.model.weight.clone()
man.save_model_state(0)
with torch.no_grad():
man.model.weight.zero_()
man.save_model_state(100)
assert not man.model.weight.equal(w)
assert man.get_last_model_iteration() == 100
man.load_model_state(0)
assert man.model.weight.equal(w)
optimizer = torch.optim.SGD(man.model.parameters(), lr=0.01, momentum=0.1)
man.optimizer = optimizer
man.save_train_state(100)
w = man.model.weight.clone()
sd = man.optimizer.state_dict().copy()
man.model.train()
x = torch.ones(5, 2, 5, 5)
x.requires_grad = True
y = torch.ones(5, 1, 3, 3)
y.requires_grad = False
ypred = man.model(x)
loss = torch.nn.MSELoss()(ypred, y)
man.optimizer.zero_grad()
loss.backward()
man.optimizer.step()
man.save_train_state(101)
assert not man.model.weight.equal(w)
assert sd != man.optimizer.state_dict()
w2 = man.model.weight.clone()
sd2 = man.optimizer.state_dict().copy()
man.load_train_state(100)
assert man.model.weight.equal(w)
assert sd == man.optimizer.state_dict()
man.load_last_train_state() # should be 101
assert not man.model.weight.equal(w)
assert sd != man.optimizer.state_dict()
assert man.model.weight.equal(w2)
print(sd2)
print(man.optimizer.state_dict())
def retrieve_mom_buffer(sd):
keys = [e for e in sd['state'].keys()]
if len(keys) == 0:
return torch.zero(0)
else:
return sd['state'][keys[0]]['momentum_buffer']
assert torch.equal(retrieve_mom_buffer(sd2), retrieve_mom_buffer(man.optimizer.state_dict()))
|
memcnn-master
|
memcnn/experiment/tests/test_manager.py
|
memcnn-master
|
memcnn/data/__init__.py
|
|
import torch
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import numpy as np
from memcnn.data.sampling import NSamplesRandomSampler
def random_crop_transform(x, crop_size=3, img_size=(32, 32)):
cz = (crop_size + 1) // 2
x_pad = np.pad(x, ((cz, cz), (cz, cz), (0, 0)), mode='constant')
sx, sy = np.random.randint(crop_size + 1), np.random.randint(crop_size + 1)
return x_pad[sx:sx + img_size[0], sy:sy + img_size[1], :]
def get_cifar_data_loaders(dataset, data_dir, max_epoch, batch_size, workers):
train_set = dataset(root=data_dir, train=True, download=True)
valid_set = dataset(root=data_dir, train=False, download=True)
# calculate mean subtraction img with backwards compatibility for torchvision < 0.2.2
tdata = train_set.train_data if hasattr(train_set, 'train_data') else train_set.data
vdata = valid_set.test_data if hasattr(valid_set, 'test_data') else valid_set.data
mean_img = np.concatenate((tdata, vdata), axis=0).mean(axis=0)
# define transforms
randomcroplambda = transforms.Lambda(random_crop_transform)
tonumpy = transforms.Lambda(lambda x: np.array(x.getdata()).reshape(x.size[1], x.size[0], 3))
randomlrflip = transforms.Lambda(lambda x: np.copy(x[:, ::-1, :]) if np.random.random() >= 0.5 else x)
meansubtraction = transforms.Lambda(lambda x: x.astype(np.float) - mean_img)
totensor = transforms.Lambda(lambda x: torch.from_numpy(x.transpose(2, 0, 1).astype(np.float32)))
tfs = transforms.Compose([
tonumpy,
meansubtraction,
randomcroplambda,
randomlrflip,
totensor
])
train_set.transform = tfs
valid_set.transform = tfs
sampler = NSamplesRandomSampler(train_set, max_epoch * batch_size)
train_loader = DataLoader(train_set,
batch_size=batch_size, shuffle=False,
sampler=sampler, num_workers=workers,
pin_memory=True)
val_loader = DataLoader(valid_set,
batch_size=batch_size, shuffle=False,
num_workers=workers, pin_memory=True)
return train_loader, val_loader
|
memcnn-master
|
memcnn/data/cifar.py
|
import torch
from torch.utils.data.sampler import Sampler
class NSamplesRandomSampler(Sampler):
"""Samples elements randomly, with replacement,
always in blocks all elements of the dataset.
Only the remainder will be sampled with less elements.
Arguments:
data_source (Dataset): dataset to sample from
nsamples (int): number of total samples. Note: will always be cast to int
"""
@property
def nsamples(self):
return self._nsamples
@nsamples.setter
def nsamples(self, value):
self._nsamples = int(value)
def __init__(self, data_source, nsamples):
self.data_source = data_source
self.nsamples = nsamples
def __iter__(self):
samples = torch.LongTensor()
len_data_source = len(self.data_source)
for _ in range(self.nsamples // len_data_source):
samples = torch.cat((samples, torch.randperm(len_data_source).long()))
if self.nsamples % len_data_source > 0:
samples = torch.cat((samples, torch.randperm(self.nsamples % len_data_source).long()))
return iter(samples)
def __len__(self):
return self.nsamples
|
memcnn-master
|
memcnn/data/sampling.py
|
import pytest
from memcnn.data.cifar import get_cifar_data_loaders, random_crop_transform
import torch.utils.data as data
import numpy as np
from PIL import Image
@pytest.mark.parametrize('crop_size,img_size', [(4, (32, 32)), (0, (32, 32))])
def test_random_crop_transform(crop_size, img_size):
np.random.seed(42)
img = np.random.random((img_size[0], img_size[1], 3))
imgres = random_crop_transform(img, crop_size, img_size)
assert imgres.shape == img.shape
assert imgres.dtype == img.dtype
if crop_size == 0:
assert np.array_equal(img, imgres)
@pytest.mark.parametrize('max_epoch,batch_size', [(10, 2), (20, 4), (1, 1)])
def test_cifar_data_loaders(max_epoch, batch_size):
np.random.seed(42)
class TestDataset(data.Dataset):
def __init__(self, train=True, *args, **kwargs):
self.train = train
self.args = args
self.kwargs = kwargs
if self.train:
self.train_data = (np.random.random_sample((20, 32, 32, 3)) * 255).astype(np.uint8)
else:
self.test_data = (np.random.random_sample((10, 32, 32, 3)) * 255).astype(np.uint8)
self.transform = lambda val: val
def __getitem__(self, idx):
img = self.train_data[idx] if self.train else self.test_data[idx]
img = Image.fromarray(img)
img = self.transform(img)
return img, np.array(idx)
def __len__(self):
return len(self.train_data) if self.train else len(self.test_data)
max_epoch = 10
batch_size = 2
workers = 0
train_loader, val_loader = get_cifar_data_loaders(TestDataset, '', max_epoch, batch_size, workers=workers)
xsize = (batch_size, 3, 32, 32)
ysize = (batch_size, )
count = 0
for x, y in train_loader:
count += 1
assert x.shape == xsize
assert y.shape == ysize
assert count == max_epoch
assert count == len(train_loader)
count = 0
for x, y in val_loader:
count += 1
assert x.shape == xsize
assert y.shape == ysize
assert count == len(val_loader.dataset) // batch_size
assert count == len(val_loader)
|
memcnn-master
|
memcnn/data/tests/test_cifar.py
|
memcnn-master
|
memcnn/data/tests/__init__.py
|
|
import pytest
from memcnn.data.sampling import NSamplesRandomSampler
import torch.utils.data as data
import numpy as np
@pytest.mark.parametrize('nsamples,data_samples', [(1, 1), (14, 10), (10, 14), (5, 1), (1, 5), (0, 10),
(np.array(4, dtype=np.int64), 12),
(np.int64(4), 12),
(np.array(12, dtype=np.int64), 3),
(np.int64(12), 3)])
@pytest.mark.parametrize('assign_after_creation', [False, True])
def test_random_sampler(nsamples, data_samples, assign_after_creation):
class TestDataset(data.Dataset):
def __init__(self, elements):
self.elements = elements
def __getitem__(self, idx):
return idx, idx
def __len__(self):
return self.elements
datasrc = TestDataset(data_samples)
sampler = NSamplesRandomSampler(datasrc, nsamples=nsamples if not assign_after_creation else -1)
if assign_after_creation:
sampler.nsamples = nsamples
count = 0
elements = []
for e in sampler:
elements.append(e)
count += 1
if count % data_samples == 0:
assert len(np.unique(elements)) == len(elements)
elements = []
assert count == nsamples
assert len(sampler) == nsamples
assert sampler.__len__() == nsamples
|
memcnn-master
|
memcnn/data/tests/test_sampling.py
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# memcnn documentation build configuration file, created by
# sphinx-quickstart on Fri Jun 9 13:47:02 2017.
#
# This file is execfile()d with the current directory set to its
# containing dir.
#
# Note that not all possible configuration values are present in this
# autogenerated file.
#
# All configuration values have a default; values that are commented out
# serve to show the default.
# If extensions (or modules to document with autodoc) are in another
# directory, add these directories to sys.path here. If the directory is
# relative to the documentation root, use os.path.abspath to make it
# absolute, like shown here.
#
import os
import sys
sys.path.insert(0, os.path.abspath('..'))
# this gets the memcnn_version without importing memcnn and causing troubles with mock later on
with open(os.path.join(os.path.dirname(__file__), '..', 'memcnn', '__init__.py'), 'r') as f:
memcnn_version = [line.split("'")[1] for line in f.readlines() if '__version__' in line][0]
# -- General configuration ---------------------------------------------
# If your documentation needs a minimal Sphinx version, state it here.
#
# needs_sphinx = '1.0'
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones.
extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode', 'sphinx.ext.mathjax',
'sphinx.ext.napoleon', 'sphinx.ext.intersphinx']
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
# The suffix(es) of source filenames.
# You can specify multiple suffix as a list of string:
#
# source_suffix = ['.rst', '.md']
source_suffix = '.rst'
# The master toctree document.
master_doc = 'index'
# Napoleon settings
napoleon_google_docstring = False
napoleon_numpy_docstring = True
# autodoc settings
autoclass_content = 'both'
autodoc_mock_imports = ['torch', 'torch.nn', 'numpy', 'torchvision']
intersphinx_mapping = {
'python': ('https://docs.python.org/', None),
'numpy': ('http://docs.scipy.org/doc/numpy/', None),
'torch': ('https://pytorch.org/docs/stable/', None)
}
mathjax_path = "https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"
mathjax_config = {
'extensions': ['tex2jax.js'],
'jax': ['input/TeX', 'output/HTML-CSS'],
}
# General information about the project.
project = u'MemCNN'
copyright = u"2019, Sil van de Leemput"
author = u"Sil van de Leemput"
# The version info for the project you're documenting, acts as replacement
# for |version| and |release|, also used in various other places throughout
# the built documents.
#
# The short X.Y version.
version = memcnn_version
# The full version, including alpha/beta/rc tags.
release = memcnn_version
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
#
# This is also used if you do content translation via gettext catalogs.
# Usually you set "language" from the command line for these cases.
language = None
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
# This patterns also effect to html_static_path and html_extra_path
exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store']
# The name of the Pygments (syntax highlighting) style to use.
pygments_style = 'sphinx'
# If true, `todo` and `todoList` produce output, else they produce nothing.
todo_include_todos = False
# -- Options for HTML output -------------------------------------------
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
#
html_theme = 'sphinx_rtd_theme'
# Theme options are theme-specific and customize the look and feel of a
# theme further. For a list of options available for each theme, see the
# documentation.
#
# html_theme_options = {}
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = []
# -- Options for HTMLHelp output ---------------------------------------
# Output file base name for HTML help builder.
htmlhelp_basename = 'memcnndoc'
# -- Options for LaTeX output ------------------------------------------
latex_elements = {
# The paper size ('letterpaper' or 'a4paper').
#
# 'papersize': 'letterpaper',
# The font size ('10pt', '11pt' or '12pt').
#
# 'pointsize': '10pt',
# Additional stuff for the LaTeX preamble.
#
# 'preamble': '',
# Latex figure (float) alignment
#
# 'figure_align': 'htbp',
}
# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title, author, documentclass
# [howto, manual, or own class]).
latex_documents = [
(master_doc, 'memcnn.tex',
u'MemCNN Documentation',
u'Sil van de Leemput', 'manual'),
]
# -- Options for manual page output ------------------------------------
# One entry per manual page. List of tuples
# (source start file, name, description, authors, manual section).
man_pages = [
(master_doc, 'memcnn',
u'MemCNN Documentation',
[author], 1)
]
# -- Options for Texinfo output ----------------------------------------
# Grouping the document tree into Texinfo files. List of tuples
# (source start file, target name, title, author,
# dir menu entry, description, category)
texinfo_documents = [
(master_doc, 'memcnn',
u'MemCNN Documentation',
author,
'memcnn',
'A PyTorch framework for developing memory efficient deep invertible networks.',
'Miscellaneous'),
]
|
memcnn-master
|
docs/conf.py
|
from setuptools import setup, find_packages
setup(
name = 'logavgexp-pytorch',
packages = find_packages(exclude=[]),
version = '0.0.6',
license='MIT',
description = 'LogAvgExp - Pytorch',
author = 'Phil Wang',
author_email = 'lucidrains@gmail.com',
url = 'https://github.com/lucidrains/logavgexp-pytorch',
keywords = [
'artificial intelligence',
'deep learning',
'pytorch',
'logsumexp'
],
install_requires=[
'einops>=0.4.1',
'torch>=1.6',
'unfoldNd'
],
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.6',
],
)
|
logavgexp-torch-main
|
setup.py
|
from logavgexp_pytorch.logavgexp_pytorch import logavgexp, LogAvgExp, LogAvgExp2D, LogAvgExp3D
|
logavgexp-torch-main
|
logavgexp_pytorch/__init__.py
|
import math
from functools import partial
import torch
from torch import nn
import torch.nn.functional as F
from einops import rearrange
from unfoldNd import unfoldNd
# helper functions
def exists(t):
return t is not None
def log(t, eps = 1e-20):
return torch.log(t + eps)
def cast_tuple(t, length = 1):
return t if isinstance(t, tuple) else ((t,) * length)
def calc_conv_output(shape, kernel_size, padding, stride):
return tuple(map(lambda x: int((x[0] - x[1] + 2 * x[2]) / x[3] + 1), zip(shape, kernel_size, padding, stride)))
# main function
def logavgexp(
t,
mask = None,
dim = -1,
eps = 1e-20,
temp = 0.01,
keepdim = False
):
if exists(mask):
mask_value = -torch.finfo(t.dtype).max
t = t.masked_fill(~mask, mask_value)
n = mask.sum(dim = dim)
norm = torch.log(n)
else:
n = t.shape[dim]
norm = math.log(n)
t = t / temp
max_t = t.amax(dim = dim).detach()
t_exp = (t - max_t.unsqueeze(dim)).exp()
avg_exp = t_exp.sum(dim = dim).clamp(min = eps) / n
out = log(avg_exp, eps = eps) + max_t - norm
out = out * temp
out = out.unsqueeze(dim) if keepdim else out
return out
# learned temperature - logavgexp class
class LogAvgExp(nn.Module):
def __init__(
self,
dim = -1,
eps = 1e-20,
temp = 0.01,
keepdim = False,
learned_temp = False
):
super().__init__()
assert temp >= 0 and temp <= 1., 'temperature must be between 0 and 1'
self.learned_temp = learned_temp
if learned_temp:
self.temp = nn.Parameter(torch.ones((1,)) * math.log(temp))
else:
self.temp = temp
self.dim = dim
self.keepdim = keepdim
def forward(self, x, mask = None, eps = 1e-8):
if not self.learned_temp:
temp = self.temp
else:
temp = self.temp.exp().clamp(min = eps)
return logavgexp(
x,
mask = mask,
dim = self.dim,
temp = temp,
keepdim = self.keepdim
)
# logavgexp 2d
class LogAvgExp2D(nn.Module):
def __init__(
self,
kernel_size,
*,
padding = 0,
stride = 1,
temp = 0.01,
learned_temp = True,
eps = 1e-20,
**kwargs
):
super().__init__()
self.padding = cast_tuple(padding, 2)
self.stride = cast_tuple(stride, 2)
self.kernel_size = cast_tuple(kernel_size, 2)
self.unfold = nn.Unfold(self.kernel_size, padding = self.padding, stride = self.stride)
self.logavgexp = LogAvgExp(dim = -1, eps = eps, learned_temp = learned_temp, temp = temp)
def forward(self, x):
"""
b - batch
c - channels
h - height
w - width
j - reducing dimension
"""
b, c, h, w = x.shape
out_h, out_w = calc_conv_output((h, w), self.kernel_size, self.padding, self.stride)
# calculate mask for padding, if needed
mask = None
if any([i > 0 for i in self.padding]):
mask = torch.ones((b, 1, h, w), device = x.device)
mask = self.unfold(mask)
mask = rearrange(mask, 'b j (h w) -> b 1 h w j', h = out_h, w = out_w)
mask = mask == 1.
x = self.unfold(x)
x = rearrange(x, 'b (c j) (h w) -> b c h w j', h = out_h, w = out_w, c = c)
return self.logavgexp(x, mask = mask)
# logavgexp 3d
class LogAvgExp3D(nn.Module):
def __init__(
self,
kernel_size,
*,
padding = 0,
stride = 1,
temp = 0.01,
learned_temp = True,
eps = 1e-20,
**kwargs
):
super().__init__()
self.padding = cast_tuple(padding, 3)
self.stride = cast_tuple(stride, 3)
self.kernel_size = cast_tuple(kernel_size, 3)
self.unfold = partial(unfoldNd, kernel_size = self.kernel_size, padding = self.padding, stride = self.stride)
self.logavgexp = LogAvgExp(dim = -1, eps = eps, learned_temp = learned_temp, temp = temp)
def forward(self, x):
"""
b - batch
c - channels
f - depth
h - height
w - width
j - reducing dimension
"""
b, c, f, h, w = x.shape
out_f, out_h, out_w = calc_conv_output((f, h, w), self.kernel_size, self.padding, self.stride)
# calculate mask for padding, if needed
mask = None
if any([i > 0 for i in self.padding]):
mask = torch.ones((b, 1, f, h, w), device = x.device)
mask = self.unfold(mask)
mask = rearrange(mask, 'b j (f h w) -> b 1 f h w j', f = out_f, h = out_h, w = out_w)
mask = mask == 1.
x = self.unfold(x)
x = rearrange(x, 'b (c j) (f h w) -> b c f h w j', f = out_f, h = out_h, w = out_w, c = c)
return self.logavgexp(x, mask = mask)
|
logavgexp-torch-main
|
logavgexp_pytorch/logavgexp_pytorch.py
|
from setuptools import setup, find_packages
setup(
name = 'lie-transformer-pytorch',
packages = find_packages(),
version = '0.0.17',
license='MIT',
description = 'Lie Transformer - Pytorch',
author = 'Phil Wang',
author_email = 'lucidrains@gmail.com',
url = 'https://github.com/lucidrains/lie-transformer-pytorch',
keywords = [
'artificial intelligence',
'attention mechanism',
'transformers',
'equivariance',
'lifting',
'lie groups'
],
install_requires=[
'torch>=1.6',
'einops>=0.3'
],
setup_requires=[
'pytest-runner',
],
tests_require=[
'pytest'
],
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.6',
],
)
|
lie-transformer-pytorch-main
|
setup.py
|
import torch
from lie_transformer_pytorch import LieTransformer
def test_transformer():
model = LieTransformer(
dim = 512,
depth = 1
)
feats = torch.randn(1, 64, 512)
coors = torch.randn(1, 64, 3)
mask = torch.ones(1, 64).bool()
out = model(feats, coors, mask = mask)
assert out.shape == (1, 256, 512), 'transformer runs'
|
lie-transformer-pytorch-main
|
tests.py
|
import torch
import torch.nn as nn
from torch.autograd.function import Function
from torch.utils.checkpoint import get_device_states, set_device_states
# helpers
def sum_tuple(x, y, dim = 1):
x = list(x)
x[dim] += y[dim]
return tuple(x)
def subtract_tuple(x, y, dim = 1):
x = list(x)
x[dim] -= y[dim]
return tuple(x)
def set_tuple(x, dim, value):
x = list(x).copy()
x[dim] = value
return tuple(x)
def map_tuple(fn, x, dim = 1):
x = list(x)
x[dim] = fn(x[dim])
return tuple(x)
def chunk_tuple(fn, x, dim = 1):
x = list(x)
value = x[dim]
chunks = fn(value)
return tuple(map(lambda t: set_tuple(x, 1, t), chunks))
def cat_tuple(x, y, dim = 1, cat_dim = -1):
x = list(x)
y = list(y)
x[dim] = torch.cat((x[dim], y[dim]), dim = cat_dim)
return tuple(x)
def del_tuple(x):
for el in x:
if el is not None:
del el
# following example for saving and setting rng here https://pytorch.org/docs/stable/_modules/torch/utils/checkpoint.html
class Deterministic(nn.Module):
def __init__(self, net):
super().__init__()
self.net = net
self.cpu_state = None
self.cuda_in_fwd = None
self.gpu_devices = None
self.gpu_states = None
def record_rng(self, *args):
self.cpu_state = torch.get_rng_state()
if torch.cuda._initialized:
self.cuda_in_fwd = True
self.gpu_devices, self.gpu_states = get_device_states(*args)
def forward(self, *args, record_rng = False, set_rng = False, **kwargs):
if record_rng:
self.record_rng(*args)
if not set_rng:
return self.net(*args, **kwargs)
rng_devices = []
if self.cuda_in_fwd:
rng_devices = self.gpu_devices
with torch.random.fork_rng(devices=rng_devices, enabled=True):
torch.set_rng_state(self.cpu_state)
if self.cuda_in_fwd:
set_device_states(self.gpu_devices, self.gpu_states)
return self.net(*args, **kwargs)
# heavily inspired by https://github.com/RobinBruegger/RevTorch/blob/master/revtorch/revtorch.py
# once multi-GPU is confirmed working, refactor and send PR back to source
class ReversibleBlock(nn.Module):
def __init__(self, f, g):
super().__init__()
self.f = Deterministic(f)
self.g = Deterministic(g)
def forward(self, x, f_args = {}, g_args = {}):
training = self.training
x1, x2 = chunk_tuple(lambda t: torch.chunk(t, 2, dim=2), x)
y1, y2 = None, None
with torch.no_grad():
y1 = sum_tuple(self.f(x2, record_rng = training, **f_args), x1)
y2 = sum_tuple(self.g(y1, record_rng = training, **g_args), x2)
return cat_tuple(y1, y2, cat_dim = 2)
def backward_pass(self, y, dy, f_args = {}, g_args = {}):
y1, y2 = chunk_tuple(lambda t: torch.chunk(t, 2, dim=2), y)
del_tuple(y)
dy1, dy2 = torch.chunk(dy, 2, dim=2)
del dy
with torch.enable_grad():
y1[1].requires_grad = True
gy1 = self.g(y1, set_rng=True, **g_args)
torch.autograd.backward(gy1[1], dy2)
with torch.no_grad():
x2 = subtract_tuple(y2, gy1)
del_tuple(y2)
del gy1
dx1 = dy1 + y1[1].grad
del dy1
y1[1].grad = None
with torch.enable_grad():
x2[1].requires_grad = True
fx2 = self.f(x2, set_rng = True, **f_args)
torch.autograd.backward(fx2[1], dx1)
with torch.no_grad():
x1 = subtract_tuple(y1, fx2)
del fx2
del_tuple(y1)
dx2 = dy2 + x2[1].grad
del dy2
x2[1].grad = None
x2 = map_tuple(lambda t: t.detach(), x2)
x = cat_tuple(x1, x2, cat_dim = -1)
dx = torch.cat((dx1, dx2), dim=2)
return x, dx
class _ReversibleFunction(Function):
@staticmethod
def forward(ctx, x, blocks, kwargs):
ctx.kwargs = kwargs
x = (kwargs.pop('coords'), x, kwargs.pop('mask'), kwargs.pop('edges'))
for block in blocks:
x = block(x, **kwargs)
ctx.y = map_tuple(lambda t: t.detach(), x, dim = 1)
ctx.blocks = blocks
return x[1]
@staticmethod
def backward(ctx, dy):
y = ctx.y
kwargs = ctx.kwargs
for block in ctx.blocks[::-1]:
y, dy = block.backward_pass(y, dy, **kwargs)
return dy, None, None
class SequentialSequence(nn.Module):
def __init__(self, blocks):
super().__init__()
self.blocks = blocks
def forward(self, x):
for (f, g) in self.blocks:
x = sum_tuple(f(x), x, dim = 1)
x = sum_tuple(g(x), x, dim = 1)
return x
class ReversibleSequence(nn.Module):
def __init__(self, blocks):
super().__init__()
self.blocks = nn.ModuleList([ReversibleBlock(f, g) for (f, g) in blocks])
def forward(self, x, **kwargs):
x = map_tuple(lambda t: torch.cat((t, t), dim = -1), x)
blocks = self.blocks
coords, values, mask, edges = x
kwargs = {'coords': coords, 'mask': mask, 'edges': edges, **kwargs}
x = _ReversibleFunction.apply(values, blocks, kwargs)
x = (coords, x, mask, edges)
return map_tuple(lambda t: sum(t.chunk(2, dim = -1)) * 0.5, x)
|
lie-transformer-pytorch-main
|
lie_transformer_pytorch/reversible.py
|
from math import pi
import torch
from functools import wraps
from torch import acos, atan2, cos, sin
from einops import rearrange, repeat
# constants
THRES = 7e-2
# helper functions
def exists(val):
return val is not None
def to(t):
return {'device': t.device, 'dtype': t.dtype}
def taylor(thres):
def outer(fn):
@wraps(fn)
def inner(x):
usetaylor = x.abs() < THRES
taylor_expanded, full = fn(x, x * x)
return torch.where(usetaylor, taylor_expanded, full)
return inner
return outer
# Helper functions for analytic exponential maps. Uses taylor expansions near x=0
# See http://ethaneade.com/lie_groups.pdf for derivations.
@taylor(THRES)
def sinc(x, x2):
""" sin(x)/x """
texpand = 1-x2/6*(1-x2/20*(1-x2/42))
full = sin(x) / x
return texpand, full
@taylor(THRES)
def sincc(x, x2):
""" (1-sinc(x))/x^2"""
texpand = 1/6*(1-x2/20*(1-x2/42*(1-x2/72)))
full = (x-sin(x)) / x**3
return texpand, full
@taylor(THRES)
def cosc(x, x2):
""" (1-cos(x))/x^2"""
texpand = 1/2*(1-x2/12*(1-x2/30*(1-x2/56)))
full = (1-cos(x)) / x2
return texpand, full
@taylor(THRES)
def coscc(x, x2):
#assert not torch.any(torch.isinf(x2)), f"infs in x2 log"
texpand = 1/12*(1+x2/60*(1+x2/42*(1+x2/40)))
costerm = (2*(1-cos(x))).clamp(min=1e-6)
full = (1-x*sin(x)/costerm) / x2 #Nans can come up here when cos = 1
return texpand, full
@taylor(THRES)
def sinc_inv(x, _):
texpand = 1+(1/6)*x**2 +(7/360)*x**4
full = x / sin(x)
assert not torch.any(torch.isinf(texpand)|torch.isnan(texpand)),'sincinv texpand inf'+torch.any(torch.isinf(texpand))
return texpand, full
## Lie Groups acting on R3
# Hodge star on R3
def cross_matrix(k):
"""Application of hodge star on R3, mapping Λ^1 R3 -> Λ^2 R3"""
K = torch.zeros(*k.shape[:-1], 3, 3, **to(k))
K[...,0,1] = -k[...,2]
K[...,0,2] = k[...,1]
K[...,1,0] = k[...,2]
K[...,1,2] = -k[...,0]
K[...,2,0] = -k[...,1]
K[...,2,1] = k[...,0]
return K
def uncross_matrix(K):
"""Application of hodge star on R3, mapping Λ^2 R3 -> Λ^1 R3"""
k = torch.zeros(*K.shape[:-1], **to(K))
k[...,0] = (K[...,2,1] - K[...,1,2])/2
k[...,1] = (K[...,0,2] - K[...,2,0])/2
k[...,2] = (K[...,1,0] - K[...,0,1])/2
return k
class SO3:
lie_dim = 3
rep_dim = 3
q_dim = 1
def __init__(self, alpha = .2):
super().__init__()
self.alpha = alpha
def exp(self,w):
""" Computes (matrix) exponential Lie algebra elements (in a given basis).
ie out = exp(\sum_i a_i A_i) where A_i are the exponential generators of G.
Input: [a (*,lie_dim)] where * is arbitrarily shaped
Output: [exp(a) (*,rep_dim,rep_dim)] returns the matrix for each."""
""" Rodriguez's formula, assuming shape (*,3)
where components 1,2,3 are the generators for xrot,yrot,zrot"""
theta = w.norm(dim=-1)[..., None, None]
K = cross_matrix(w)
I = torch.eye(3, **to(K))
Rs = I + K * sinc(theta) + (K @ K) * cosc(theta)
return Rs
def log(self,R):
""" Computes components in terms of generators rx,ry,rz. Shape (*,3,3)"""
""" Computes (matrix) logarithm for collection of matrices and converts to Lie algebra basis.
Input [u (*,rep_dim,rep_dim)]
Output [coeffs of log(u) in basis (*,d)] """
trR = R[..., 0, 0] + R[..., 1, 1] + R[..., 2, 2]
costheta = ((trR-1) / 2).clamp(max=1, min=-1).unsqueeze(-1)
theta = acos(costheta)
logR = uncross_matrix(R) * sinc_inv(theta)
return logR
def inv(self,g):
""" We can compute the inverse of elements g (*,rep_dim,rep_dim) as exp(-log(g))"""
return self.exp(-self.log(g))
def elems2pairs(self,a):
""" computes log(e^-b e^a) for all a b pairs along n dimension of input.
inputs: [a (bs,n,d)] outputs: [pairs_ab (bs,n,n,d)] """
vinv = self.exp(-a.unsqueeze(-3))
u = self.exp(a.unsqueeze(-2))
return self.log(vinv@u) # ((bs,1,n,d) -> (bs,1,n,r,r))@((bs,n,1,d) -> (bs,n,1,r,r))
def lift(self, x, nsamples, **kwargs):
"""assumes p has shape (*,n,2), vals has shape (*,n,c), mask has shape (*,n)
returns (a,v) with shapes [(*,n*nsamples,lie_dim),(*,n*nsamples,c)"""
p, v, m, e = x
expanded_a = self.lifted_elems(p,nsamples,**kwargs) # (bs,n*ns,d), (bs,n*ns,qd)
nsamples = expanded_a.shape[-2]//m.shape[-1]
# expand v and mask like q
expanded_v = repeat(v, 'b n c -> b (n m) c', m = nsamples) # (bs,n,c) -> (bs,n,1,c) -> (bs,n,ns,c) -> (bs,n*ns,c)
expanded_mask = repeat(m, 'b n -> b (n m)', m = nsamples) # (bs,n) -> (bs,n,ns) -> (bs,n*ns)
expanded_e = repeat(e, 'b n1 n2 c -> b (n1 m1) (n2 m2) c', m1 = nsamples, m2 = nsamples) if exists(e) else None
# convert from elems to pairs
paired_a = self.elems2pairs(expanded_a) #(bs,n*ns,d) -> (bs,n*ns,n*ns,d)
embedded_locations = paired_a
return (embedded_locations,expanded_v,expanded_mask, expanded_e)
class SE3(SO3):
lie_dim = 6
rep_dim = 4
q_dim = 0
def __init__(self, alpha=.2, per_point=True):
super().__init__()
self.alpha = alpha
self.per_point = per_point
def exp(self,w):
dd_kwargs = to(w)
theta = w[...,:3].norm(dim=-1)[...,None,None]
K = cross_matrix(w[...,:3])
R = super().exp(w[...,:3])
I = torch.eye(3, **dd_kwargs)
V = I + cosc(theta)*K + sincc(theta)*(K@K)
U = torch.zeros(*w.shape[:-1],4,4, **dd_kwargs)
U[...,:3,:3] = R
U[...,:3,3] = (V@w[...,3:].unsqueeze(-1)).squeeze(-1)
U[...,3,3] = 1
return U
def log(self,U):
w = super().log(U[..., :3, :3])
I = torch.eye(3, **to(w))
K = cross_matrix(w[..., :3])
theta = w.norm(dim=-1)[..., None, None]#%(2*pi)
#theta[theta>pi] -= 2*pi
cosccc = coscc(theta)
Vinv = I - K/2 + cosccc*(K@K)
u = (Vinv @ U[..., :3, 3].unsqueeze(-1)).squeeze(-1)
#assert not torch.any(torch.isnan(u)), f"nans in u log {torch.isnan(u).sum()}, {torch.where(torch.isnan(u))}"
return torch.cat([w, u], dim=-1)
def lifted_elems(self,pt,nsamples):
""" pt (bs,n,D) mask (bs,n), per_point specifies whether to
use a different group element per atom in the molecule"""
#return farthest_lift(self,pt,mask,nsamples,alpha)
# same lifts for each point right now
bs,n = pt.shape[:2]
dd_kwargs = to(pt)
q = torch.randn(bs, (n if self.per_point else 1), nsamples, 4, **dd_kwargs)
q /= q.norm(dim=-1).unsqueeze(-1)
theta_2 = atan2(q[..., 1:].norm(dim=-1),q[..., 0])[..., None]
so3_elem = 2 * sinc_inv(theta_2) * q[...,1:] # (sin(x/2)u -> xu) for x angle and u direction
se3_elem = torch.cat([so3_elem, torch.zeros_like(so3_elem)], dim=-1)
R = self.exp(se3_elem)
T = torch.zeros(bs, n, nsamples, 4, 4, **dd_kwargs) # (bs,n,nsamples,4,4)
T[..., :, :] = torch.eye(4, **dd_kwargs)
T[..., :3, 3] = pt[..., None, :] # (bs,n,1,3)
a = self.log(T @ R) # bs, n, nsamples, 6
return a.reshape(bs, n * nsamples, 6)
def distance(self,abq_pairs):
dist_rot = abq_pairs[...,:3].norm(dim=-1)
dist_trans = abq_pairs[...,3:].norm(dim=-1)
return dist_rot * self.alpha + (1-self.alpha) * dist_trans
|
lie-transformer-pytorch-main
|
lie_transformer_pytorch/se3.py
|
from lie_transformer_pytorch.lie_transformer_pytorch import LieTransformer
|
lie-transformer-pytorch-main
|
lie_transformer_pytorch/__init__.py
|
import math
from functools import partial
import torch
import torch.nn.functional as F
from torch import nn, einsum
from lie_transformer_pytorch.se3 import SE3
from einops import rearrange, repeat
from lie_transformer_pytorch.reversible import SequentialSequence, ReversibleSequence
# helpers
def exists(val):
return val is not None
def cast_tuple(val, depth):
return val if isinstance(val, tuple) else ((val,) * depth)
def default(val, d):
return val if exists(val) else d
def batched_index_select(values, indices, dim = 1):
value_dims = values.shape[(dim + 1):]
values_shape, indices_shape = map(lambda t: list(t.shape), (values, indices))
indices = indices[(..., *((None,) * len(value_dims)))]
indices = indices.expand(*((-1,) * len(indices_shape)), *value_dims)
value_expand_len = len(indices_shape) - (dim + 1)
values = values[(*((slice(None),) * dim), *((None,) * value_expand_len), ...)]
value_expand_shape = [-1] * len(values.shape)
expand_slice = slice(dim, (dim + value_expand_len))
value_expand_shape[expand_slice] = indices.shape[expand_slice]
values = values.expand(*value_expand_shape)
dim += value_expand_len
return values.gather(dim, indices)
# helper classes
class Pass(nn.Module):
def __init__(self, fn, dim = 1):
super().__init__()
self.fn = fn
self.dim = dim
def forward(self,x):
dim = self.dim
xs = list(x)
xs[dim] = self.fn(xs[dim])
return xs
class Lambda(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x):
return self.fn(x)
class GlobalPool(nn.Module):
"""computes values reduced over all spatial locations (& group elements) in the mask"""
def __init__(self, mean = False):
super().__init__()
self.mean = mean
def forward(self, x):
coords, vals, mask = x
if not exists(mask):
return val.mean(dim = 1)
masked_vals = vals.masked_fill_(~mask[..., None], 0.)
summed = masked_vals.sum(dim = 1)
if not self.mean:
return summed
count = mask.sum(-1).unsqueeze(-1)
return summed / count
# subsampling code
def FPSindices(dists, frac, mask):
""" inputs: pairwise distances DISTS (bs,n,n), downsample_frac (float), valid atom mask (bs,n)
outputs: chosen_indices (bs,m) """
m = int(round(frac * dists.shape[1]))
bs, n, device = *dists.shape[:2], dists.device
dd_kwargs = {'device': device, 'dtype': torch.long}
B = torch.arange(bs, **dd_kwargs)
chosen_indices = torch.zeros(bs, m, **dd_kwargs)
distances = torch.ones(bs, n, device=device) * 1e8
a = torch.randint(0, n, (bs,), **dd_kwargs) # choose random start
idx = a % mask.sum(-1) + torch.cat([torch.zeros(1, **dd_kwargs), torch.cumsum(mask.sum(-1), dim=0)[:-1]], dim=0)
farthest = torch.where(mask)[1][idx]
for i in range(m):
chosen_indices[:, i] = farthest # add point that is farthest to chosen
dist = dists[B, farthest].masked_fill(~mask, -100) # (bs,n) compute distance from new point to all others
closer = dist < distances # if dist from new point is smaller than chosen points so far
distances[closer] = dist[closer] # update the chosen set's distance to all other points
farthest = torch.max(distances, -1)[1] # select the point that is farthest from the set
return chosen_indices
class FPSsubsample(nn.Module):
def __init__(self, ds_frac, cache = False, group = None):
super().__init__()
self.ds_frac = ds_frac
self.cache = cache
self.cached_indices = None
self.group = default(group, SE3())
def get_query_indices(self, abq_pairs, mask):
if self.cache and exists(self.cached_indices):
return self.cached_indices
dist = self.group.distance if self.group else lambda ab: ab.norm(dim=-1)
value = FPSindices(dist(abq_pairs), self.ds_frac, mask).detach()
if self.cache:
self.cached_indices = value
return value
def forward(self, inp, withquery=False):
abq_pairs, vals, mask, edges = inp
device = vals.device
if self.ds_frac != 1:
query_idx = self.get_query_indices(abq_pairs, mask)
B = torch.arange(query_idx.shape[0], device = device).long()[:,None]
subsampled_abq_pairs = abq_pairs[B, query_idx][B, :, query_idx]
subsampled_values = batched_index_select(vals, query_idx, dim = 1)
subsampled_mask = batched_index_select(mask, query_idx, dim = 1)
subsampled_edges = edges[B, query_idx][B, :, query_idx] if exists(edges) else None
else:
subsampled_abq_pairs = abq_pairs
subsampled_values = vals
subsampled_mask = mask
subsampled_edges = edges
query_idx = None
ret = (
subsampled_abq_pairs,
subsampled_values,
subsampled_mask,
subsampled_edges
)
if withquery:
ret = (*ret, query_idx)
return ret
# lie attention
class LieSelfAttention(nn.Module):
def __init__(
self,
dim,
edge_dim = None,
group = None,
mc_samples = 32,
ds_frac = 1,
fill = 1 / 3,
dim_head = 64,
heads = 8,
cache = False
):
super().__init__()
self.dim = dim
self.mc_samples = mc_samples # number of samples to use to estimate convolution
self.group = default(group, SE3()) # Equivariance group for LieConv
self.register_buffer('r',torch.tensor(2.)) # Internal variable for local_neighborhood radius, set by fill
self.fill_frac = min(fill, 1.) # Average Fraction of the input which enters into local_neighborhood, determines r
self.subsample = FPSsubsample(ds_frac, cache = cache, group = self.group)
self.coeff = .5 # Internal coefficient used for updating r
self.fill_frac_ema = fill # Keeps track of average fill frac, used for logging only
# attention related parameters
inner_dim = dim_head * heads
self.heads = heads
self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.to_k = nn.Linear(dim, inner_dim, bias = False)
self.to_v = nn.Linear(dim, inner_dim, bias = False)
self.to_out = nn.Linear(inner_dim, dim)
edge_dim = default(edge_dim, 0)
edge_dim_in = self.group.lie_dim + edge_dim
self.loc_attn_mlp = nn.Sequential(
nn.Linear(edge_dim_in, edge_dim_in * 4),
nn.ReLU(),
nn.Linear(edge_dim_in * 4, 1),
)
def extract_neighborhood(self, inp, query_indices):
""" inputs: [pairs_abq (bs,n,n,d), inp_vals (bs,n,c), mask (bs,n), query_indices (bs,m)]
outputs: [neighbor_abq (bs,m,mc_samples,d), neighbor_vals (bs,m,mc_samples,c)]"""
# Subsample pairs_ab, inp_vals, mask to the query_indices
pairs_abq, inp_vals, mask, edges = inp
device = inp_vals.device
if exists(query_indices):
abq_at_query = batched_index_select(pairs_abq, query_indices, dim = 1)
mask_at_query = batched_index_select(mask, query_indices, dim = 1)
edges_at_query = batched_index_select(edges, query_indices, dim = 1) if exists(edges) else None
else:
abq_at_query = pairs_abq
mask_at_query = mask
edges_at_query = edges
mask_at_query = mask_at_query[..., None]
vals_at_query = inp_vals
dists = self.group.distance(abq_at_query) #(bs,m,n,d) -> (bs,m,n)
mask_value = torch.finfo(dists.dtype).max
dists = dists.masked_fill(mask[:,None,:], mask_value)
k = min(self.mc_samples, inp_vals.shape[1])
# NBHD: Sampled Distance Ball
bs, m, n = dists.shape
within_ball = (dists < self.r) & mask[:,None,:] & mask_at_query # (bs,m,n)
noise = torch.zeros((bs, m, n), device = device).uniform_(0, 1)
valid_within_ball, nbhd_idx = torch.topk(within_ball + noise, k, dim=-1, sorted=False)
valid_within_ball = (valid_within_ball > 1)
# Retrieve abq_pairs, values, and mask at the nbhd locations
nbhd_abq = batched_index_select(abq_at_query, nbhd_idx, dim = 2)
nbhd_vals = batched_index_select(vals_at_query, nbhd_idx, dim = 1)
nbhd_mask = batched_index_select(mask, nbhd_idx, dim = 1)
nbhd_edges = batched_index_select(edges_at_query, nbhd_idx, dim = 2) if exists(edges) else None
if self.training: # update ball radius to match fraction fill_frac inside
navg = (within_ball.float()).sum(-1).sum() / mask_at_query.sum()
avg_fill = (navg / mask.sum(-1).float().mean()).cpu().item()
self.r += self.coeff * (self.fill_frac - avg_fill)
self.fill_frac_ema += .1 * (avg_fill-self.fill_frac_ema)
nbhd_mask &= valid_within_ball.bool()
return nbhd_abq, nbhd_vals, nbhd_mask, nbhd_edges, nbhd_idx
def forward(self, inp):
"""inputs: [pairs_abq (bs,n,n,d)], [inp_vals (bs,n,ci)]), [query_indices (bs,m)]
outputs [subsampled_abq (bs,m,m,d)], [convolved_vals (bs,m,co)]"""
sub_abq, sub_vals, sub_mask, sub_edges, query_indices = self.subsample(inp, withquery = True)
nbhd_abq, nbhd_vals, nbhd_mask, nbhd_edges, nbhd_indices = self.extract_neighborhood(inp, query_indices)
h, b, n, d, device = self.heads, *sub_vals.shape, sub_vals.device
q, k, v = self.to_q(sub_vals), self.to_k(nbhd_vals), self.to_v(nbhd_vals)
q = rearrange(q, 'b n (h d) -> b h n d', h = h)
k, v = map(lambda t: rearrange(t, 'b n m (h d) -> b h n m d', h = h), (k, v))
sim = einsum('b h i d, b h i j d -> b h i j', q, k) * (q.shape[-1] ** -0.5)
edges = nbhd_abq
if exists(nbhd_edges):
edges = torch.cat((nbhd_abq, nbhd_edges), dim = -1)
loc_attn = self.loc_attn_mlp(edges)
loc_attn = rearrange(loc_attn, 'b i j () -> b () i j')
sim = sim + loc_attn
mask_value = -torch.finfo(sim.dtype).max
sim.masked_fill_(~rearrange(nbhd_mask, 'b n m -> b () n m'), mask_value)
attn = sim.softmax(dim = -1)
out = einsum('b h i j, b h i j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)', h = h)
combined = self.to_out(out)
return sub_abq, combined, sub_mask, sub_edges
class LieSelfAttentionWrapper(nn.Module):
def __init__(self, dim, attn):
super().__init__()
self.dim = dim
self.attn = attn
self.net = nn.Sequential(
Pass(nn.LayerNorm(dim)),
self.attn
)
def forward(self, inp):
sub_coords, sub_values, mask, edges = self.attn.subsample(inp)
new_coords, new_values, mask, edges = self.net(inp)
new_values[..., :self.dim] += sub_values
return new_coords, new_values, mask, edges
class FeedForward(nn.Module):
def __init__(self, dim, mult = 4):
super().__init__()
self.dim = dim
self.net = nn.Sequential(
Pass(nn.LayerNorm(dim)),
Pass(nn.Linear(dim, mult * dim)),
Pass(nn.GELU()),
Pass(nn.Linear(mult * dim, dim)),
)
def forward(self,inp):
sub_coords, sub_values, mask, edges = inp
new_coords, new_values, mask, edges = self.net(inp)
new_values = new_values + sub_values
return new_coords, new_values, mask, edges
# transformer class
class LieTransformer(nn.Module):
"""
[Fill] specifies the fraction of the input which is included in local neighborhood.
(can be array to specify a different value for each layer)
[nbhd] number of samples to use for Monte Carlo estimation (p)
[dim] number of input channels: 1 for MNIST, 3 for RGB images, other for non images
[ds_frac] total downsampling to perform throughout the layers of the net. In (0,1)
[num_layers] number of BottleNeck Block layers in the network
[k] channel width for the network. Can be int (same for all) or array to specify individually.
[liftsamples] number of samples to use in lifting. 1 for all groups with trivial stabilizer. Otherwise 2+
[Group] Chosen group to be equivariant to.
"""
def __init__(
self,
dim,
num_tokens = None,
num_edge_types = None,
edge_dim = None,
heads = 8,
dim_head = 64,
depth = 2,
ds_frac = 1.,
dim_out = None,
k = 1536,
nbhd = 128,
mean = True,
per_point = True,
liftsamples = 4,
fill = 1 / 4,
cache = False,
reversible = False,
**kwargs
):
super().__init__()
assert not (ds_frac < 1 and reversible), 'must not downsample if network is reversible'
dim_out = default(dim_out, dim)
self.token_emb = nn.Embedding(num_tokens, dim) if exists(num_tokens) else None
self.edge_emb = nn.Embedding(num_edge_types, edge_dim) if exists(num_edge_types) else None
group = SE3()
self.group = group
self.liftsamples = liftsamples
layers_fill = cast_tuple(fill, depth)
layers = nn.ModuleList([])
for _, layer_fill in zip(range(depth), layers_fill):
layers.append(nn.ModuleList([
LieSelfAttentionWrapper(dim, LieSelfAttention(dim, heads = heads, dim_head = dim_head, edge_dim = edge_dim, mc_samples = nbhd, ds_frac = ds_frac, group = group, fill = fill, cache = cache,**kwargs)),
FeedForward(dim)
]))
execute_class = ReversibleSequence if reversible else SequentialSequence
self.net = execute_class(layers)
self.to_logits = nn.Sequential(
Pass(nn.LayerNorm(dim)),
Pass(nn.Linear(dim, dim_out))
)
self.pool = GlobalPool(mean = mean)
def forward(self, feats, coors, edges = None, mask = None, return_pooled = False):
b, n, *_ = feats.shape
if exists(self.token_emb):
feats = self.token_emb(feats)
if exists(self.edge_emb):
assert exists(edges), 'edges must be passed in on forward'
assert edges.shape[1] == edges.shape[2] and edges.shape[1] == n, f'edges must be of the shape ({b}, {n}, {n})'
edges = self.edge_emb(edges)
inps = (coors, feats, mask, edges)
lifted_x = self.group.lift(inps, self.liftsamples)
out = self.net(lifted_x)
out = self.to_logits(out)
if not return_pooled:
features = out[1]
return features
return self.pool(out)
|
lie-transformer-pytorch-main
|
lie_transformer_pytorch/lie_transformer_pytorch.py
|
# This file is part of the OpenProtein project.
#
# @author Jeppe Hallgren
#
# For license information, please see the LICENSE file in the root directory.
import torch.autograd as autograd
import torch.nn as nn
from util import *
import torch.nn.utils.rnn as rnn_utils
import time
import numpy as np
import openprotein
# seed random generator for reproducibility
torch.manual_seed(1)
# sample model borrowed from
# https://github.com/lblaabjerg/Master/blob/master/Models%20and%20processed%20data/ProteinNet_LSTM_500.py
class ExampleModel(openprotein.BaseModel):
def __init__(self, embedding_size, minibatch_size, use_gpu):
super(ExampleModel, self).__init__(use_gpu, embedding_size)
self.hidden_size = 25
self.num_lstm_layers = 2
self.mixture_size = 500
self.bi_lstm = nn.LSTM(self.get_embedding_size(), self.hidden_size,
num_layers=self.num_lstm_layers, bidirectional=True, bias=True)
self.hidden_to_labels = nn.Linear(self.hidden_size * 2, self.mixture_size, bias=True) # * 2 for bidirectional
self.init_hidden(minibatch_size)
self.softmax_to_angle = soft_to_angle(self.mixture_size)
self.soft = nn.LogSoftmax(2)
self.bn = nn.BatchNorm1d(self.mixture_size)
def init_hidden(self, minibatch_size):
# number of layers (* 2 since bidirectional), minibatch_size, hidden size
initial_hidden_state = torch.zeros(self.num_lstm_layers * 2, minibatch_size, self.hidden_size)
initial_cell_state = torch.zeros(self.num_lstm_layers * 2, minibatch_size, self.hidden_size)
if self.use_gpu:
initial_hidden_state = initial_hidden_state.cuda()
initial_cell_state = initial_cell_state.cuda()
self.hidden_layer = (autograd.Variable(initial_hidden_state),
autograd.Variable(initial_cell_state))
def _get_network_emissions(self, original_aa_string):
packed_input_sequences = self.embed(original_aa_string)
minibatch_size = int(packed_input_sequences[1][0])
self.init_hidden(minibatch_size)
(data, bi_lstm_batches, _, _), self.hidden_layer = self.bi_lstm(packed_input_sequences, self.hidden_layer)
emissions_padded, batch_sizes = torch.nn.utils.rnn.pad_packed_sequence(
torch.nn.utils.rnn.PackedSequence(self.hidden_to_labels(data), bi_lstm_batches))
x = emissions_padded.transpose(0,1).transpose(1,2) # minibatch_size, self.mixture_size, -1
x = self.bn(x)
x = x.transpose(1,2) #(minibatch_size, -1, self.mixture_size)
p = torch.exp(self.soft(x))
output_angles = self.softmax_to_angle(p).transpose(0,1) # max size, minibatch size, 3 (angels)
backbone_atoms_padded, batch_sizes_backbone = get_backbone_positions_from_angular_prediction(output_angles, batch_sizes, self.use_gpu)
return output_angles, backbone_atoms_padded, batch_sizes
class soft_to_angle(nn.Module):
def __init__(self, mixture_size):
super(soft_to_angle, self).__init__()
# Omega intializer
omega_components1 = np.random.uniform(0, 1, int(mixture_size * 0.1)) # Initialize omega 90/10 pos/neg
omega_components2 = np.random.uniform(2, math.pi, int(mixture_size * 0.9))
omega_components = np.concatenate((omega_components1, omega_components2))
np.random.shuffle(omega_components)
phi_components = np.genfromtxt("data/mixture_model_pfam_"+str(mixture_size)+".txt")[:, 1]
psi_components = np.genfromtxt("data/mixture_model_pfam_"+str(mixture_size)+".txt")[:, 2]
self.phi_components = nn.Parameter(torch.from_numpy(phi_components).contiguous().view(-1, 1).float())
self.psi_components = nn.Parameter(torch.from_numpy(psi_components).contiguous().view(-1, 1).float())
self.omega_components = nn.Parameter(torch.from_numpy(omega_components).view(-1, 1).float())
def forward(self, x):
phi_input_sin = torch.matmul(x, torch.sin(self.phi_components))
phi_input_cos = torch.matmul(x, torch.cos(self.phi_components))
psi_input_sin = torch.matmul(x, torch.sin(self.psi_components))
psi_input_cos = torch.matmul(x, torch.cos(self.psi_components))
omega_input_sin = torch.matmul(x, torch.sin(self.omega_components))
omega_input_cos = torch.matmul(x, torch.cos(self.omega_components))
eps = 10 ** (-4)
phi = torch.atan2(phi_input_sin, phi_input_cos + eps)
psi = torch.atan2(psi_input_sin, psi_input_cos + eps)
omega = torch.atan2(omega_input_sin, omega_input_cos + eps)
return torch.cat((phi, psi, omega), 2)
class RrnModel(openprotein.BaseModel):
def __init__(self, embedding_size, minibatch_size, use_gpu):
super(RrnModel, self).__init__(use_gpu, embedding_size)
self.recurrent_steps = 2
self.hidden_size = 50
self.msg_output_size = 50
self.output_size = 9 # 3 dimensions * 3 coordinates for each aa
self.f_to_hid = nn.Linear((embedding_size*2 + 9), self.hidden_size, bias=True)
self.hid_to_pos = nn.Linear(self.hidden_size, self.msg_output_size, bias=True)
self.g = nn.Linear(embedding_size + 9 + self.msg_output_size, 9, bias=True) # (last state + orginal state)
self.use_gpu = use_gpu
def f(self, aa_features):
# aa_features: msg_count * 2 * feature_count
min_distance = torch.tensor(0.000001)
if self.use_gpu:
min_distance = min_distance.cuda()
aa_features_transformed = torch.cat(
(
aa_features[:,0,0:21],
aa_features[:,1,0:21],
aa_features[:,0,21:30] - aa_features[:,1,21:30]
), dim=1)
return self.hid_to_pos(self.f_to_hid(aa_features_transformed)) # msg_count * outputsize
def _get_network_emissions(self, original_aa_string):
initial_aa_pos = intial_pos_from_aa_string(original_aa_string)
packed_input_sequences = self.embed(original_aa_string)
backbone_atoms_padded, batch_sizes_backbone = structures_to_backbone_atoms_padded(initial_aa_pos)
if self.use_gpu:
backbone_atoms_padded = backbone_atoms_padded.cuda()
embedding_padded, batch_sizes = torch.nn.utils.rnn.pad_packed_sequence(
torch.nn.utils.rnn.PackedSequence(packed_input_sequences))
for i in range(self.recurrent_steps):
combined_features = torch.cat((embedding_padded,backbone_atoms_padded),dim=2)
for idx, aa_features in enumerate(combined_features.transpose(0,1)):
msg = pass_messages(aa_features, self.f, self.use_gpu) # aa_count * output size
backbone_atoms_padded[:,idx] = self.g(torch.cat((aa_features, msg), dim=1))
output, batch_sizes = calculate_dihedral_angles_over_minibatch(original_aa_string, backbone_atoms_padded, batch_sizes_backbone, self.use_gpu)
return output, backbone_atoms_padded, batch_sizes
|
openprotein-master
|
models.py
|
# This file is part of the OpenProtein project.
#
# @author Jeppe Hallgren
#
# For license information, please see the LICENSE file in the root directory.
import torch
import torch.utils.data
import h5py
from datetime import datetime
import PeptideBuilder
import Bio.PDB
import math
import numpy as np
import os
import pnerf.pnerf as pnerf
AA_ID_DICT = {'A': 1, 'C': 2, 'D': 3, 'E': 4, 'F': 5, 'G': 6, 'H': 7, 'I': 8, 'K': 9,
'L': 10, 'M': 11, 'N': 12, 'P': 13, 'Q': 14, 'R': 15, 'S': 16, 'T': 17,
'V': 18, 'W': 19,'Y': 20}
def contruct_dataloader_from_disk(filename, minibatch_size):
return torch.utils.data.DataLoader(H5PytorchDataset(filename), batch_size=minibatch_size,
shuffle=True, collate_fn=H5PytorchDataset.merge_samples_to_minibatch)
class H5PytorchDataset(torch.utils.data.Dataset):
def __init__(self, filename):
super(H5PytorchDataset, self).__init__()
self.h5pyfile = h5py.File(filename, 'r')
self.num_proteins, self.max_sequence_len = self.h5pyfile['primary'].shape
def __getitem__(self, index):
mask = torch.Tensor(self.h5pyfile['mask'][index,:]).type(dtype=torch.uint8)
prim = torch.masked_select(torch.Tensor(self.h5pyfile['primary'][index,:]).type(dtype=torch.long), mask)
tertiary = torch.Tensor(self.h5pyfile['tertiary'][index][:int(mask.sum())]) # max length x 9
return prim, tertiary, mask
def __len__(self):
return self.num_proteins
def merge_samples_to_minibatch(samples):
samples_list = []
for s in samples:
samples_list.append(s)
# sort according to length of aa sequence
samples_list.sort(key=lambda x: len(x[0]), reverse=True)
return zip(*samples_list)
def set_experiment_id(data_set_identifier, learning_rate, minibatch_size):
output_string = datetime.now().strftime('%Y-%m-%d_%H_%M_%S')
output_string += "-" + str(os.getpid())
output_string += "-" + data_set_identifier
output_string += "-LR" + str(learning_rate).replace(".","_")
output_string += "-MB" + str(minibatch_size)
globals().__setitem__("experiment_id",output_string)
def get_experiment_id():
return globals().get("experiment_id")
def write_out(*args, end='\n'):
output_string = datetime.now().strftime('%Y-%m-%d %H:%M:%S') + ": " + str.join(" ", [str(a) for a in args]) + end
if globals().get("experiment_id") is not None:
with open("output/"+globals().get("experiment_id")+".txt", "a+") as output_file:
output_file.write(output_string)
output_file.flush()
print(output_string, end="")
def write_model_to_disk(model):
path = "output/models/"+globals().get("experiment_id")+".model"
torch.save(model,path)
return path
def write_prediction_data_to_disk(prediction_data):
filepath = "output/predictions/"+globals().get("experiment_id")+".txt"
output_file = open(filepath, 'w')
output_file.write(prediction_data)
output_file.close()
def draw_plot(fig, plt, validation_dataset_size, sample_num, train_loss_values,
validation_loss_values):
def draw_with_vars():
ax = fig.gca()
ax2 = ax.twinx()
plt.grid(True)
plt.title("Training progress (" + str(validation_dataset_size) + " samples in validation set)")
train_loss_plot, = ax.plot(sample_num, train_loss_values)
ax.set_ylabel('Train Negative log likelihood')
ax.yaxis.labelpad = 0
validation_loss_plot, = ax2.plot(sample_num, validation_loss_values, color='black')
ax2.set_ylabel('Validation loss')
ax2.set_ylim(bottom=0)
plt.legend([train_loss_plot, validation_loss_plot],
['Train loss on last batch', 'Validation loss'])
ax.set_xlabel('Minibatches processed (=network updates)', color='black')
return draw_with_vars
def draw_ramachandran_plot(fig, plt, phi, psi):
def draw_with_vars():
ax = fig.gca()
plt.grid(True)
plt.title("Ramachandran plot")
train_loss_plot, = ax.plot(phi, psi)
ax.set_ylabel('Psi')
ax.yaxis.labelpad = 0
plt.legend([train_loss_plot],
['Phi psi'])
ax.set_xlabel('Phi', color='black')
return draw_with_vars
def write_result_summary(accuracy):
output_string = globals().get("experiment_id") + ": " + str(accuracy) + "\n"
with open("output/result_summary.txt", "a+") as output_file:
output_file.write(output_string)
output_file.flush()
print(output_string, end="")
def calculate_dihedral_angles_over_minibatch(atomic_coords_padded, batch_sizes, use_gpu):
angles = []
atomic_coords = atomic_coords_padded.transpose(0,1)
for idx, _ in enumerate(batch_sizes):
angles.append(calculate_dihedral_angles(atomic_coords[idx][:batch_sizes[idx]], use_gpu))
return torch.nn.utils.rnn.pad_packed_sequence(
torch.nn.utils.rnn.pack_sequence(angles))
def protein_id_to_str(protein_id_list):
_aa_dict_inverse = {v: k for k, v in AA_ID_DICT.items()}
aa_list = []
for a in protein_id_list:
aa_symbol = _aa_dict_inverse[int(a)]
aa_list.append(aa_symbol)
return aa_list
def calculate_dihedral_angles(atomic_coords, use_gpu):
assert int(atomic_coords.shape[1]) == 9
atomic_coords = atomic_coords.contiguous().view(-1,3)
zero_tensor = torch.tensor(0.0)
if use_gpu:
zero_tensor = zero_tensor.cuda()
dihedral_list = [zero_tensor,zero_tensor]
dihedral_list.extend(compute_dihedral_list(atomic_coords))
dihedral_list.append(zero_tensor)
angles = torch.tensor(dihedral_list).view(-1,3)
return angles
def compute_dihedral_list(atomic_coords):
# atomic_coords is -1 x 3
ba = atomic_coords[1:] - atomic_coords[:-1]
ba /= ba.norm(dim=1).unsqueeze(1)
ba_neg = -1 * ba
n1_vec = torch.cross(ba[:-2], ba_neg[1:-1], dim=1)
n2_vec = torch.cross(ba_neg[1:-1], ba[2:], dim=1)
n1_vec /= n1_vec.norm(dim=1).unsqueeze(1)
n2_vec /= n2_vec.norm(dim=1).unsqueeze(1)
m1_vec = torch.cross(n1_vec, ba_neg[1:-1], dim=1)
x = torch.sum(n1_vec*n2_vec,dim=1)
y = torch.sum(m1_vec*n2_vec,dim=1)
return torch.atan2(y,x)
def get_structure_from_angles(aa_list_encoded, angles):
aa_list = protein_id_to_str(aa_list_encoded)
omega_list = angles[1:,0]
phi_list = angles[1:,1]
psi_list = angles[:-1,2]
assert len(aa_list) == len(phi_list)+1 == len(psi_list)+1 == len(omega_list)+1
structure = PeptideBuilder.make_structure(aa_list,
list(map(lambda x: math.degrees(x), phi_list)),
list(map(lambda x: math.degrees(x), psi_list)),
list(map(lambda x: math.degrees(x), omega_list)))
return structure
def write_to_pdb(structure, prot_id):
out = Bio.PDB.PDBIO()
out.set_structure(structure)
out.save("output/protein_" + str(prot_id) + ".pdb")
def calc_pairwise_distances(chain_a, chain_b, use_gpu):
distance_matrix = torch.Tensor(chain_a.size()[0], chain_b.size()[0]).type(torch.float)
# add small epsilon to avoid boundary issues
epsilon = 10 ** (-4) * torch.ones(chain_a.size(0), chain_b.size(0))
if use_gpu:
distance_matrix = distance_matrix.cuda()
epsilon = epsilon.cuda()
for i, row in enumerate(chain_a.split(1)):
distance_matrix[i] = torch.sum((row.expand_as(chain_b) - chain_b) ** 2, 1).view(1, -1)
return torch.sqrt(distance_matrix + epsilon)
def calc_drmsd(chain_a, chain_b, use_gpu=False):
assert len(chain_a) == len(chain_b)
distance_matrix_a = calc_pairwise_distances(chain_a, chain_a, use_gpu)
distance_matrix_b = calc_pairwise_distances(chain_b, chain_b, use_gpu)
return torch.norm(distance_matrix_a - distance_matrix_b, 2) \
/ math.sqrt((len(chain_a) * (len(chain_a) - 1)))
# method for translating a point cloud to its center of mass
def transpose_atoms_to_center_of_mass(x):
# calculate com by summing x, y and z respectively
# and dividing by the number of points
centerOfMass = np.matrix([[x[0, :].sum() / x.shape[1]],
[x[1, :].sum() / x.shape[1]],
[x[2, :].sum() / x.shape[1]]])
# translate points to com and return
return x - centerOfMass
def calc_rmsd(chain_a, chain_b):
# move to center of mass
a = chain_a.cpu().numpy().transpose()
b = chain_b.cpu().numpy().transpose()
X = transpose_atoms_to_center_of_mass(a)
Y = transpose_atoms_to_center_of_mass(b)
R = Y * X.transpose()
# extract the singular values
_, S, _ = np.linalg.svd(R)
# compute RMSD using the formular
E0 = sum(list(np.linalg.norm(x) ** 2 for x in X.transpose())
+ list(np.linalg.norm(x) ** 2 for x in Y.transpose()))
TraceS = sum(S)
RMSD = np.sqrt((1 / len(X.transpose())) * (E0 - 2 * TraceS))
return RMSD
def calc_angular_difference(a1, a2):
a1 = a1.transpose(0,1).contiguous()
a2 = a2.transpose(0,1).contiguous()
sum = 0
for idx, _ in enumerate(a1):
assert a1[idx].shape[1] == 3
assert a2[idx].shape[1] == 3
a1_element = a1[idx].view(-1, 1)
a2_element = a2[idx].view(-1, 1)
sum += torch.sqrt(torch.mean(
torch.min(torch.abs(a2_element - a1_element),
2 * math.pi - torch.abs(a2_element - a1_element)
) ** 2))
return sum / a1.shape[0]
def structures_to_backbone_atoms_padded(structures):
backbone_atoms_list = []
for structure in structures:
backbone_atoms_list.append(structure_to_backbone_atoms(structure))
backbone_atoms_padded, batch_sizes_backbone = torch.nn.utils.rnn.pad_packed_sequence(
torch.nn.utils.rnn.pack_sequence(backbone_atoms_list))
return backbone_atoms_padded, batch_sizes_backbone
def structure_to_backbone_atoms(structure):
predicted_coords = []
for res in structure.get_residues():
predicted_coords.append(torch.Tensor(res["N"].get_coord()))
predicted_coords.append(torch.Tensor(res["CA"].get_coord()))
predicted_coords.append(torch.Tensor(res["C"].get_coord()))
return torch.stack(predicted_coords).view(-1,9)
def get_backbone_positions_from_angular_prediction(angular_emissions, batch_sizes, use_gpu):
# angular_emissions -1 x minibatch size x 3 (omega, phi, psi)
points = pnerf.dihedral_to_point(angular_emissions, use_gpu)
coordinates = pnerf.point_to_coordinate(points, use_gpu) / 100 # devide by 100 to angstrom unit
return coordinates.transpose(0,1).contiguous().view(len(batch_sizes),-1,9).transpose(0,1), batch_sizes
def calc_avg_drmsd_over_minibatch(backbone_atoms_padded, actual_coords_padded, batch_sizes):
backbone_atoms_list = list(
[backbone_atoms_padded[:batch_sizes[i], i] for i in range(int(backbone_atoms_padded.size(1)))])
actual_coords_list = list(
[actual_coords_padded[:batch_sizes[i], i] for i in range(int(actual_coords_padded.size(1)))])
drmsd_avg = 0
for idx, backbone_atoms in enumerate(backbone_atoms_list):
actual_coords = actual_coords_list[idx].transpose(0, 1).contiguous().view(-1, 3)
drmsd_avg += calc_drmsd(backbone_atoms.transpose(0, 1).contiguous().view(-1, 3), actual_coords)
return drmsd_avg / len(backbone_atoms_list)
def encode_primary_string(primary):
return list([AA_ID_DICT[aa] for aa in primary])
def intial_pos_from_aa_string(batch_aa_string):
structures = []
for aa_string in batch_aa_string:
structure = get_structure_from_angles(aa_string,
np.repeat([-120], len(aa_string)-1),
np.repeat([140], len(aa_string)-1),
np.repeat([-370], len(aa_string)-1))
structures.append(structure)
return structures
def pass_messages(aa_features, message_transformation, use_gpu):
# aa_features (#aa, #features) - each row represents the amino acid type (embedding) and the positions of the backbone atoms
# message_transformation: (-1 * 2 * feature_size) -> (-1 * output message size)
feature_size = aa_features.size(1)
aa_count = aa_features.size(0)
eye = torch.eye(aa_count,dtype=torch.uint8).view(-1).expand(2,feature_size,-1).transpose(1,2).transpose(0,1)
eye_inverted = torch.ones(eye.size(),dtype=torch.uint8) - eye
if use_gpu:
eye_inverted = eye_inverted.cuda()
features_repeated = aa_features.repeat((aa_count,1)).view((aa_count,aa_count,feature_size))
aa_messages = torch.stack((features_repeated.transpose(0,1), features_repeated)).transpose(0,1).transpose(1,2).view(-1,2,feature_size)
aa_msg_pairs = torch.masked_select(aa_messages,eye_inverted).view(-1,2,feature_size) # (aa_count^2 - aa_count) x 2 x aa_features (all pairs except for reflexive connections)
transformed = message_transformation(aa_msg_pairs).view(aa_count, aa_count - 1, -1)
transformed_sum = transformed.sum(dim=1) # aa_count x output message size
return transformed_sum
def load_model_from_disk(path, force_cpu=True):
if force_cpu:
# load model with map_location set to storage (main mem)
model = torch.load(path, map_location=lambda storage, loc: storage)
# flattern parameters in memory
model.flatten_parameters()
# update internal state accordingly
model.use_gpu = False
else:
# load model using default map_location
model = torch.load(path)
model.flatten_parameters()
return model
|
openprotein-master
|
util.py
|
# This file is part of the OpenProtein project.
#
# @author Jeppe Hallgren
#
# For license information, please see the LICENSE file in the root directory.
import torch
from util import encode_primary_string, get_structure_from_angles, write_to_pdb, \
calculate_dihedral_angles_over_minibatch
input_sequences = ["SRSLVISTINQISEDSKEFYFTLDNGKTMFPSNSQAWGGEKFENGQRAFVIFNELEQPVNGYDYNIQVRDITKVLTKEIVTMDDEENTEEKIGDDKINATYMWISKDKKYLTIEFQYYSTHSEDKKHFLNLVINNKDNTDDEYINLEFRHNSERDSPDHLGEGYVSFKLDKIEEQIEGKKGLNIRVRTLYDGIKNYKVQFP"]
model_path = "output/models/2019-01-30_00_38_46-TRAIN-LR0_01-MB1.model"
model = torch.load(model_path)
input_senquences_encoded = list(torch.LongTensor(encode_primary_string(aa)) for aa in input_sequences)
predicted_dihedral_angles, predicted_backbone_atoms, batch_sizes = model(input_senquences_encoded)
write_to_pdb(
get_structure_from_angles(input_senquences_encoded[0], predicted_dihedral_angles[:,0]),
"myprediction"
)
print("Wrote prediction to output/protein_myprediction.pdb")
|
openprotein-master
|
prediction.py
|
from preprocessing import *
import torch
import argparse
print("------------------------")
print("--- OpenProtein v0.1 ---")
print("------------------------")
parser = argparse.ArgumentParser(description = "OpenProtein version 0.1")
parser.add_argument('--no_force_pre_processing_overwrite', dest='no_force_pre_processing_overwrite', action='store_false',
help='Force overwrite existing preprocessed files', default=True)
args, unknown = parser.parse_known_args()
use_gpu = False
if torch.cuda.is_available():
write_out("CUDA is available, using GPU")
use_gpu = True
process_raw_data(use_gpu, force_pre_processing_overwrite=args.force_pre_processing_overwrite)
|
openprotein-master
|
preprocessing_cli.py
|
# This file is part of the OpenProtein project.
#
# @author Jeppe Hallgren
#
# For license information, please see the LICENSE file in the root directory.
from flask import Flask, request, jsonify
from flask_cors import CORS, cross_origin
import threading
app = Flask(__name__)
cors = CORS(app)
data = None
@app.route('/graph',methods=['POST'])
def update_graph():
global data
data = request.json
return jsonify({"result":"OK"})
@app.route('/graph',methods=['GET'])
@cross_origin()
def get_graph():
return jsonify(data)
@app.route('/',methods=['GET'])
@cross_origin()
def index():
return open("web/index.html","r").read()
class graphWebServer (threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
def run(self):
import logging
logging.basicConfig(filename="output/app.log", level=logging.DEBUG)
app.run(debug=False, host='0.0.0.0')
class frontendWebServer (threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
def run(self):
from subprocess import call
call(["/bin/bash", "start_web_app.sh"])
def start_dashboard_server():
flask_thread = graphWebServer()
flask_thread.start()
front_end_thread = frontendWebServer()
front_end_thread.start()
|
openprotein-master
|
dashboard.py
|
# This file is part of the OpenProtein project.
#
# @author Jeppe Hallgren
#
# For license information, please see the LICENSE file in the root directory.
import glob
import os.path
import os
import platform
import numpy as np
import h5py
from util import AA_ID_DICT, calculate_dihedral_angles, protein_id_to_str, get_structure_from_angles, \
structure_to_backbone_atoms, write_to_pdb, calculate_dihedral_angles_over_minibatch, \
get_backbone_positions_from_angular_prediction, encode_primary_string
import torch
MAX_SEQUENCE_LENGTH = 2000
def process_raw_data(use_gpu, force_pre_processing_overwrite=True):
print("Starting pre-processing of raw data...")
input_files = glob.glob("data/raw/*")
print(input_files)
input_files_filtered = filter_input_files(input_files)
for file_path in input_files_filtered:
if platform.system() is 'Windows':
filename = file_path.split('\\')[-1]
else:
filename = file_path.split('/')[-1]
preprocessed_file_name = "data/preprocessed/"+filename+".hdf5"
# check if we should remove the any previously processed files
if os.path.isfile(preprocessed_file_name):
print("Preprocessed file for " + filename + " already exists.")
if force_pre_processing_overwrite:
print("force_pre_processing_overwrite flag set to True, overwriting old file...")
os.remove(preprocessed_file_name)
else:
print("Skipping pre-processing for this file...")
if not os.path.isfile(preprocessed_file_name):
process_file(filename, preprocessed_file_name, use_gpu)
print("Completed pre-processing.")
def read_protein_from_file(file_pointer):
dict_ = {}
_dssp_dict = {'L': 0, 'H': 1, 'B': 2, 'E': 3, 'G': 4, 'I': 5, 'T': 6, 'S': 7}
_mask_dict = {'-': 0, '+': 1}
while True:
next_line = file_pointer.readline()
if next_line == '[ID]\n':
id_ = file_pointer.readline()[:-1]
dict_.update({'id': id_})
elif next_line == '[PRIMARY]\n':
primary = encode_primary_string(file_pointer.readline()[:-1])
dict_.update({'primary': primary})
elif next_line == '[EVOLUTIONARY]\n':
evolutionary = []
for residue in range(21): evolutionary.append(
[float(step) for step in file_pointer.readline().split()])
dict_.update({'evolutionary': evolutionary})
elif next_line == '[SECONDARY]\n':
secondary = list([_dssp_dict[dssp] for dssp in file_pointer.readline()[:-1]])
dict_.update({'secondary': secondary})
elif next_line == '[TERTIARY]\n':
tertiary = []
# 3 dimension
for axis in range(3): tertiary.append(
[float(coord) for coord in file_pointer.readline().split()])
dict_.update({'tertiary': tertiary})
elif next_line == '[MASK]\n':
mask = list([_mask_dict[aa] for aa in file_pointer.readline()[:-1]])
dict_.update({'mask': mask})
elif next_line == '\n':
return dict_
elif next_line == '':
return None
def process_file(input_file, output_file, use_gpu):
print("Processing raw data file", input_file)
# create output file
f = h5py.File(output_file, 'w')
current_buffer_size = 1
current_buffer_allocation = 0
dset1 = f.create_dataset('primary',(current_buffer_size,MAX_SEQUENCE_LENGTH),maxshape=(None,MAX_SEQUENCE_LENGTH),dtype='int32')
dset2 = f.create_dataset('tertiary',(current_buffer_size,MAX_SEQUENCE_LENGTH,9),maxshape=(None,MAX_SEQUENCE_LENGTH, 9),dtype='float')
dset3 = f.create_dataset('mask',(current_buffer_size,MAX_SEQUENCE_LENGTH),maxshape=(None,MAX_SEQUENCE_LENGTH),dtype='uint8')
input_file_pointer = open("data/raw/" + input_file, "r")
while True:
# while there's more proteins to process
next_protein = read_protein_from_file(input_file_pointer)
if next_protein is None:
break
sequence_length = len(next_protein['primary'])
if sequence_length > MAX_SEQUENCE_LENGTH:
print("Dropping protein as length too long:", sequence_length)
continue
if current_buffer_allocation >= current_buffer_size:
current_buffer_size = current_buffer_size + 1
dset1.resize((current_buffer_size,MAX_SEQUENCE_LENGTH))
dset2.resize((current_buffer_size,MAX_SEQUENCE_LENGTH, 9))
dset3.resize((current_buffer_size,MAX_SEQUENCE_LENGTH))
primary_padded = np.zeros(MAX_SEQUENCE_LENGTH)
tertiary_padded = np.zeros((9, MAX_SEQUENCE_LENGTH))
mask_padded = np.zeros(MAX_SEQUENCE_LENGTH)
# masking and padding here happens so that the stored dataset is of the same size.
# when the data is loaded in this padding is removed again.
primary_padded[:sequence_length] = next_protein['primary']
t_transposed = np.ravel(np.array(next_protein['tertiary']).T)
t_reshaped = np.reshape(t_transposed, (sequence_length,9)).T
tertiary_padded[:,:sequence_length] = t_reshaped
mask_padded[:sequence_length] = next_protein['mask']
mask = torch.Tensor(mask_padded).type(dtype=torch.uint8)
prim = torch.masked_select(torch.Tensor(primary_padded).type(dtype=torch.long), mask)
pos = torch.masked_select(torch.Tensor(tertiary_padded), mask).view(9, -1).transpose(0, 1).unsqueeze(1) / 100
if use_gpu:
pos = pos.cuda()
angles, batch_sizes = calculate_dihedral_angles_over_minibatch(pos, [len(prim)], use_gpu=use_gpu)
tertiary, _ = get_backbone_positions_from_angular_prediction(angles, batch_sizes, use_gpu=use_gpu)
tertiary = tertiary.squeeze(1)
primary_padded = np.zeros(MAX_SEQUENCE_LENGTH)
tertiary_padded = np.zeros((MAX_SEQUENCE_LENGTH, 9))
length_after_mask_removed = len(prim)
primary_padded[:length_after_mask_removed] = prim.data.cpu().numpy()
tertiary_padded[:length_after_mask_removed, :] = tertiary.data.cpu().numpy()
mask_padded = np.zeros(MAX_SEQUENCE_LENGTH)
mask_padded[:length_after_mask_removed] = np.ones(length_after_mask_removed)
dset1[current_buffer_allocation] = primary_padded
dset2[current_buffer_allocation] = tertiary_padded
dset3[current_buffer_allocation] = mask_padded
current_buffer_allocation += 1
print("Wrote output to", current_buffer_allocation, "proteins to", output_file)
def filter_input_files(input_files):
disallowed_file_endings = (".gitignore", ".DS_Store")
return list(filter(lambda x: not x.endswith(disallowed_file_endings), input_files))
|
openprotein-master
|
preprocessing.py
|
# This file is part of the OpenProtein project.
#
# @author Jeppe Hallgren
#
# For license information, please see the LICENSE file in the root directory.
import argparse
import importlib
from dashboard import start_dashboard_server
from util import *
print("------------------------")
print("--- OpenProtein v0.1 ---")
print("------------------------")
parser = argparse.ArgumentParser(description = "OpenProtein version 0.1")
parser.add_argument('--silent', dest='silent', action='store_true',
help='Dont print verbose debug statements.')
parser.add_argument('--hide-ui', dest = 'hide_ui', action = 'store_true',
default=False, help='Hide loss graph and visualization UI while training goes on.')
parser.add_argument('--evaluate-on-test', dest = 'evaluate_on_test', action = 'store_true',
default=False, help='Run model of test data.')
parser.add_argument('--use-gpu', dest = 'use_gpu', action = 'store_true',
default=False, help='Use GPU.')
parser.add_argument('--eval-interval', dest = 'eval_interval', type=int,
default=10, help='Evaluate model on validation set every n minibatches.')
parser.add_argument('--min-updates', dest = 'minimum_updates', type=int,
default=100, help='Minimum number of minibatch iterations.')
parser.add_argument('--minibatch-size', dest = 'minibatch_size', type=int,
default=10, help='Size of each minibatch.')
parser.add_argument('--experiment-id', dest = 'experiment_id', type=str,
default="example", help='Which experiment to run.')
args, unknown = parser.parse_known_args()
if args.hide_ui:
write_out("Live plot deactivated, see output folder for plot.")
use_gpu = args.use_gpu
if use_gpu and not torch.cuda.is_available():
write_out("Error: --use-gpu was set, but no GPU is available.")
exit(1)
if not args.hide_ui:
# start web server
start_dashboard_server()
experiment = importlib.import_module("experiments." + args.experiment_id)
experiment.run_experiment(parser,use_gpu)
|
openprotein-master
|
__main__.py
|
# This file is part of the OpenProtein project.
#
# @author Jeppe Hallgren
#
# For license information, please see the LICENSE file in the root directory.
from util import *
import time
import torch.nn.utils.rnn as rnn_utils
import torch.nn as nn
class BaseModel(nn.Module):
def __init__(self, use_gpu, embedding_size):
super(BaseModel, self).__init__()
# initialize model variables
self.use_gpu = use_gpu
self.embedding_size = embedding_size
self.historical_rmsd_avg_values = list()
self.historical_drmsd_avg_values = list()
def get_embedding_size(self):
return self.embedding_size
def embed(self, original_aa_string):
data, batch_sizes = torch.nn.utils.rnn.pad_packed_sequence(
torch.nn.utils.rnn.pack_sequence(original_aa_string))
# one-hot encoding
start_compute_embed = time.time()
prot_aa_list = data.unsqueeze(1)
embed_tensor = torch.zeros(prot_aa_list.size(0), 21, prot_aa_list.size(2)) # 21 classes
if self.use_gpu:
prot_aa_list = prot_aa_list.cuda()
embed_tensor = embed_tensor.cuda()
input_sequences = embed_tensor.scatter_(1, prot_aa_list.data, 1).transpose(1,2)
end = time.time()
write_out("Embed time:", end - start_compute_embed)
packed_input_sequences = rnn_utils.pack_padded_sequence(input_sequences, batch_sizes)
return packed_input_sequences
def compute_loss(self, minibatch):
(original_aa_string, actual_coords_list, mask) = minibatch
emissions, backbone_atoms_padded, batch_sizes = self._get_network_emissions(original_aa_string)
actual_coords_list_padded, batch_sizes_coords = torch.nn.utils.rnn.pad_packed_sequence(
torch.nn.utils.rnn.pack_sequence(actual_coords_list))
if self.use_gpu:
actual_coords_list_padded = actual_coords_list_padded.cuda()
start = time.time()
emissions_actual, batch_sizes_actual = \
calculate_dihedral_angles_over_minibatch(actual_coords_list_padded, batch_sizes_coords, self.use_gpu)
#drmsd_avg = calc_avg_drmsd_over_minibatch(backbone_atoms_padded, actual_coords_list_padded, batch_sizes)
write_out("Angle calculation time:", time.time() - start)
if self.use_gpu:
emissions_actual = emissions_actual.cuda()
#drmsd_avg = drmsd_avg.cuda()
angular_loss = calc_angular_difference(emissions, emissions_actual)
return angular_loss # + drmsd_avg
def forward(self, original_aa_string):
return self._get_network_emissions(original_aa_string)
def evaluate_model(self, data_loader):
loss = 0
data_total = []
dRMSD_list = []
RMSD_list = []
for i, data in enumerate(data_loader, 0):
primary_sequence, tertiary_positions, mask = data
start = time.time()
predicted_angles, backbone_atoms, batch_sizes = self(primary_sequence)
write_out("Apply model to validation minibatch:", time.time() - start)
cpu_predicted_angles = predicted_angles.transpose(0, 1).cpu().detach()
cpu_predicted_backbone_atoms = backbone_atoms.transpose(0, 1).cpu().detach()
minibatch_data = list(zip(primary_sequence,
tertiary_positions,
cpu_predicted_angles,
cpu_predicted_backbone_atoms))
data_total.extend(minibatch_data)
start = time.time()
for primary_sequence, tertiary_positions, predicted_pos, predicted_backbone_atoms in minibatch_data:
actual_coords = tertiary_positions.transpose(0, 1).contiguous().view(-1, 3)
predicted_coords = predicted_backbone_atoms[:len(primary_sequence)].transpose(0, 1).contiguous().view(
-1, 3).detach()
rmsd = calc_rmsd(predicted_coords, actual_coords)
drmsd = calc_drmsd(predicted_coords, actual_coords)
RMSD_list.append(rmsd)
dRMSD_list.append(drmsd)
error = rmsd
loss += error
end = time.time()
write_out("Calculate validation loss for minibatch took:", end - start)
loss /= data_loader.dataset.__len__()
self.historical_rmsd_avg_values.append(float(torch.Tensor(RMSD_list).mean()))
self.historical_drmsd_avg_values.append(float(torch.Tensor(dRMSD_list).mean()))
prim = data_total[0][0]
pos = data_total[0][1]
pos_pred = data_total[0][3]
if self.use_gpu:
pos = pos.cuda()
pos_pred = pos_pred.cuda()
angles = calculate_dihedral_angles(pos, self.use_gpu)
angles_pred = calculate_dihedral_angles(pos_pred, self.use_gpu)
write_to_pdb(get_structure_from_angles(prim, angles), "test")
write_to_pdb(get_structure_from_angles(prim, angles_pred), "test_pred")
data = {}
data["pdb_data_pred"] = open("output/protein_test_pred.pdb", "r").read()
data["pdb_data_true"] = open("output/protein_test.pdb", "r").read()
data["phi_actual"] = list([math.degrees(float(v)) for v in angles[1:, 1]])
data["psi_actual"] = list([math.degrees(float(v)) for v in angles[:-1, 2]])
data["phi_predicted"] = list([math.degrees(float(v)) for v in angles_pred[1:, 1]])
data["psi_predicted"] = list([math.degrees(float(v)) for v in angles_pred[:-1, 2]])
data["rmsd_avg"] = self.historical_rmsd_avg_values
data["drmsd_avg"] = self.historical_drmsd_avg_values
prediction_data = None
return (loss, data, prediction_data)
|
openprotein-master
|
openprotein.py
|
# This file is part of the OpenProtein project.
#
# @author Jeppe Hallgren
#
# For license information, please see the LICENSE file in the root directory.
from util import *
import torch.optim as optim
import requests
import json
import time
def train_model(data_set_identifier, model, train_loader, validation_loader, learning_rate, minibatch_size=64, eval_interval=50, hide_ui=False, use_gpu=False, minimum_updates=1000):
set_experiment_id(data_set_identifier, learning_rate, minibatch_size)
validation_dataset_size = validation_loader.dataset.__len__()
if use_gpu:
model = model.cuda()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
sample_num = list()
train_loss_values = list()
validation_loss_values = list()
best_model_loss = 1e20
best_model_minibatch_time = None
best_model_path = None
best_json_data = None
stopping_condition_met = False
minibatches_proccesed = 0
while not stopping_condition_met:
optimizer.zero_grad()
model.zero_grad()
loss_tracker = np.zeros(0)
for minibatch_id, training_minibatch in enumerate(train_loader, 0):
minibatches_proccesed += 1
start_compute_loss = time.time()
loss = model.compute_loss(training_minibatch)
write_out("Train loss:", float(loss))
start_compute_grad = time.time()
loss.backward()
loss_tracker = np.append(loss_tracker, float(loss))
end = time.time()
write_out("Loss time:", start_compute_grad-start_compute_loss, "Grad time:", end-start_compute_grad)
optimizer.step()
optimizer.zero_grad()
model.zero_grad()
# for every eval_interval samples, plot performance on the validation set
if minibatches_proccesed % eval_interval == 0:
write_out("Testing model on validation set...")
train_loss = float(loss_tracker.mean())
loss_tracker = np.zeros(0)
validation_loss, json_data, _ = model.evaluate_model(validation_loader)
if validation_loss < best_model_loss:
best_model_loss = validation_loss
best_model_minibatch_time = minibatches_proccesed
best_model_path = write_model_to_disk(model)
best_json_data = json_data
write_out("Validation loss:", validation_loss, "Train loss:", train_loss)
write_out("Best model so far (validation loss): ", best_model_loss, "at time", best_model_minibatch_time)
write_out("Best model stored at " + best_model_path)
write_out("Minibatches processed:",minibatches_proccesed)
sample_num.append(minibatches_proccesed)
train_loss_values.append(train_loss)
validation_loss_values.append(validation_loss)
json_data["validation_dataset_size"] = validation_dataset_size
json_data["sample_num"] = sample_num
json_data["train_loss_values"] = train_loss_values
json_data["validation_loss_values"] = validation_loss_values
write_out(json_data)
if not hide_ui:
res = requests.post('http://localhost:5000/graph', json=json_data)
if res.ok:
print(res.json())
if minibatches_proccesed > minimum_updates and minibatches_proccesed >= best_model_minibatch_time + minimum_updates:
stopping_condition_met = True
break
write_result_summary(best_model_loss)
write_result_summary(json.dumps(best_json_data))
return best_model_path
|
openprotein-master
|
training.py
|
# This file is part of the TMHMM3 project.
#
# @author Jeppe Hallgren
#
# For license information, please see the LICENSE file in the root directory.
import torch
from torch.utils.data.dataset import Dataset
import numpy as np
import math
import random
from util import write_out
class TMDataset(Dataset):
def __init__(self, aa_list, label_list, remapped_labels_list_crf_hmm, remapped_labels_list_crf_marg, type_list, topology_list, prot_name_list, original_aa_string_list, original_label_string):
assert len(aa_list) == len(label_list)
assert len(aa_list) == len(type_list)
assert len(aa_list) == len(topology_list)
self.aa_list = aa_list
self.label_list = label_list
self.remapped_labels_list_crf_hmm = remapped_labels_list_crf_hmm
self.remapped_labels_list_crf_marg = remapped_labels_list_crf_marg
self.type_list = type_list
self.topology_list = topology_list
self.prot_name_list = prot_name_list
self.original_aa_string_list = original_aa_string_list
self.original_label_string = original_label_string
def __getitem__(self, index):
return self.aa_list[index], \
self.label_list[index], \
self.remapped_labels_list_crf_hmm[index], \
self.remapped_labels_list_crf_marg[index], \
self.type_list[index], \
self.topology_list[index], \
self.prot_name_list[index], \
self.original_aa_string_list[index], \
self.original_label_string[index]
def __len__(self):
return len(self.aa_list)
def merge_samples_to_minibatch(samples):
samples_list = []
for s in samples:
samples_list.append(s)
# sort according to length of aa sequence
samples_list.sort(key=lambda x: len(x[7]), reverse=True)
aa_list, labels_list, remapped_labels_list_crf_hmm, remapped_labels_list_crf_marg, prot_type_list, prot_topology_list, prot_name, original_aa_string, original_label_string = zip(*samples_list)
write_out(prot_type_list)
return aa_list, labels_list, remapped_labels_list_crf_hmm, remapped_labels_list_crf_marg, prot_type_list, prot_topology_list, prot_name, original_aa_string, original_label_string
def from_disk(dataset, use_gpu, re_map_labels=True):
print("Constructing data set from disk...")
aa_list = []
labels_list = []
remapped_labels_list_crf_hmm = []
remapped_labels_list_crf_marg = []
prot_type_list = []
prot_topology_list_all = []
prot_aa_list_all = []
prot_labels_list_all = []
prot_name_list = []
# sort according to length of aa sequence
dataset.sort(key=lambda x: len(x[1]), reverse=True)
for prot_name, prot_aa_list, prot_original_label_list, type_id, cluster_id in dataset:
prot_name_list.append(prot_name)
prot_aa_list_all.append(prot_aa_list)
prot_labels_list_all.append(prot_original_label_list)
aa_tmp_list_tensor = []
labels = None
remapped_labels_crf_hmm = None
last_non_membrane_position = None
if prot_original_label_list is not None:
labels = []
for topology_label in prot_original_label_list:
if topology_label is "L":
topology_label = "I"
if topology_label is "I":
last_non_membrane_position = "I"
labels.append(3)
elif topology_label is "O":
last_non_membrane_position = "O"
labels.append(4)
elif topology_label is "S":
last_non_membrane_position = "S"
labels.append(2)
elif topology_label is "M":
if last_non_membrane_position is "I":
labels.append(0)
elif last_non_membrane_position is "O":
labels.append(1)
else:
print("Error: unexpected label found in last_non_membrane_position:", topology_label)
else:
print("Error: unexpected label found:", topology_label, "for protein", prot_name)
labels = torch.LongTensor(labels)
remapped_labels_crf_hmm = []
topology = label_list_to_topology(labels)
# given topology, now calculate remapped labels
for idx, (pos, l) in enumerate(topology):
if l == 0: # I -> O
membrane_length = topology[idx+1][0]-pos
mm_beginning = 4
for i in range(mm_beginning):
remapped_labels_crf_hmm.append(5 + i)
for i in range(40-(membrane_length-mm_beginning), 40):
remapped_labels_crf_hmm.append(5 + i)
elif l == 1: # O -> I
membrane_length = topology[idx + 1][0] - pos
mm_beginning = 4
for i in range(mm_beginning):
remapped_labels_crf_hmm.append(45 + i)
for i in range(40 - (membrane_length - mm_beginning), 40):
remapped_labels_crf_hmm.append(45 + i)
elif l == 2: # S
signal_length = topology[idx + 1][0] - pos
remapped_labels_crf_hmm.append(2)
for i in range(signal_length - 1):
remapped_labels_crf_hmm.append(152 - ((signal_length - 1) - i))
if remapped_labels_crf_hmm[-1] == 85:
print("Too long signal peptide region found", prot_name)
else:
if idx == (len(topology) - 1):
for i in range(len(labels)-pos):
remapped_labels_crf_hmm.append(l)
else:
for i in range(topology[idx+1][0]-pos):
remapped_labels_crf_hmm.append(l)
remapped_labels_crf_hmm = torch.LongTensor(remapped_labels_crf_hmm)
remapped_labels_crf_marg = list([l + (type_id * 5) for l in labels])
remapped_labels_crf_marg = torch.LongTensor(remapped_labels_crf_marg)
# check that protein was properly parsed
assert remapped_labels_crf_hmm.size() == labels.size()
assert remapped_labels_crf_marg.size() == labels.size()
if use_gpu:
if labels is not None:
labels = labels.cuda()
remapped_labels_crf_hmm = remapped_labels_crf_hmm.cuda()
remapped_labels_crf_marg = remapped_labels_crf_marg.cuda()
aa_list.append(aa_tmp_list_tensor)
labels_list.append(labels)
remapped_labels_list_crf_hmm.append(remapped_labels_crf_hmm)
remapped_labels_list_crf_marg.append(remapped_labels_crf_marg)
prot_type_list.append(type_id)
prot_topology_list_all.append(label_list_to_topology(labels))
return TMDataset(aa_list, labels_list, remapped_labels_list_crf_hmm, remapped_labels_list_crf_marg, prot_type_list, prot_topology_list_all, prot_name_list, prot_aa_list_all, prot_labels_list_all)
def tm_contruct_dataloader_from_disk(tm_dataset, minibatch_size, balance_classes=False):
if balance_classes:
batch_sampler = RandomBatchClassBalancedSequentialSampler(tm_dataset, minibatch_size)
else:
batch_sampler = RandomBatchSequentialSampler(tm_dataset, minibatch_size)
return torch.utils.data.DataLoader(tm_dataset,
batch_sampler = batch_sampler,
collate_fn = TMDataset.merge_samples_to_minibatch)
class RandomBatchClassBalancedSequentialSampler(torch.utils.data.sampler.Sampler):
def __init__(self, dataset, batch_size):
self.sampler = torch.utils.data.sampler.SequentialSampler(dataset)
self.batch_size = batch_size
self.dataset = dataset
def sample_at_index(self, rows, offset, sample_num):
assert sample_num < len(rows)
sample_half = int(sample_num / 2)
if offset - sample_half <= 0:
# sample start has to be 0
samples = rows[:sample_num]
elif offset + sample_half + (sample_num % 2) > len(rows):
# sample end has to be a end
samples = rows[-(sample_num+1):-1]
else:
samples = rows[offset-sample_half:offset+sample_half+(sample_num % 2)]
assert len(samples) == sample_num
return samples
def __iter__(self):
data_class_map = {}
data_class_map[0] = []
data_class_map[1] = []
data_class_map[2] = []
data_class_map[3] = []
for idx in self.sampler:
data_class_map[self.dataset[idx][4]].append(idx)
num_each_class = int(self.batch_size / 4)
max_class_size = max([len(data_class_map[0]),len(data_class_map[1]),len(data_class_map[2]),len(data_class_map[3])])
batch_num = int(max_class_size / num_each_class)
if max_class_size % num_each_class != 0:
batch_num += 1
batch_relative_offset = (1.0 / float(batch_num)) / 2.0
batches = []
for i in range(batch_num):
batch = []
for class_id, data_rows in data_class_map.items():
int_offset = int(batch_relative_offset * len(data_rows))
batch.extend(self.sample_at_index(data_rows, int_offset, num_each_class))
batch_relative_offset += 1.0 / float(batch_num)
batches.append(batch)
random.shuffle(batches)
for batch in batches:
write_out("Using minibatch from RandomBatchClassBalancedSequentialSampler")
yield batch
def __len__(self):
length = 0
for idx in self.sampler:
length += 1
return length
class RandomBatchSequentialSampler(torch.utils.data.sampler.Sampler):
def __init__(self, dataset, batch_size):
self.sampler = torch.utils.data.sampler.SequentialSampler(dataset)
self.batch_size = batch_size
def __iter__(self):
data = []
for idx in self.sampler:
data.append(idx)
batch_num = int(len(data) / self.batch_size)
if len(data) % self.batch_size != 0:
batch_num += 1
batch_order = list(range(batch_num))
random.shuffle(batch_order)
batch = []
for batch_id in batch_order:
write_out("Accessing minibatch #" + str(batch_id))
for i in range(self.batch_size):
if i+(batch_id*self.batch_size) < len(data):
batch.append(data[i+(batch_id*self.batch_size)])
yield batch
batch = []
def __len__(self):
length = 0;
for idx in self.sampler:
length += 1
return length
def label_list_to_topology(labels):
if isinstance(labels, list):
labels = torch.LongTensor(labels)
unique, count = torch.unique_consecutive(labels, return_counts=True)
top_list = [torch.LongTensor((0, int(labels[0])))]
prev_count = 0
for i in range(1, unique.size(0)):
prev_count += int(count[i-1])
top_list.append(torch.LongTensor((prev_count, int(unique[i]))))
return top_list
def remapped_labels_hmm_to_orginal_labels(labels):
for idx, pl in enumerate(labels):
if pl >= 5 and pl < 45:
labels[idx] = 0
if pl >= 45 and pl < 85:
labels[idx] = 1
if pl >= 85:
labels[idx] = 2
if isinstance(labels, list):
labels = torch.LongTensor(labels)
return labels
def original_labels_to_fasta(label_list):
sequence = ""
for label in label_list:
if label == 0:
sequence = sequence + "M"
if label == 1:
sequence = sequence + "M"
if label == 2:
sequence = sequence + "S"
if label == 3:
sequence = sequence + "I"
if label == 4:
sequence = sequence + "O"
if label == 5:
sequence = sequence + "-"
return sequence
def get_predicted_type_from_labels(labels):
labels = list([int(i) for i in labels])
if 0 in labels or 1 in labels:
if 2 in labels:
return 1
else:
return 0
else:
if 2 in labels:
return 2
else:
return 3
def is_topologies_equal(topology_a, topology_b, minimum_seqment_overlap=5):
if len(topology_a) != len(topology_b):
return False
for idx, (position_a, label_a) in enumerate(topology_a):
if label_a != topology_b[idx][1]:
return False
if label_a == 0 or label_a == 1:
overlap_segment_start = max(topology_a[idx][0],topology_b[idx][0])
overlap_segment_end = min(topology_a[idx+1][0],topology_b[idx+1][0])
if overlap_segment_end-overlap_segment_start < minimum_seqment_overlap:
return False
return True
def parse_3line_format(lines):
i = 0
prot_list = []
while(i < len(lines)):
if lines[i].strip() is "":
i += 1
continue
prot_name_comment = lines[i]
type_string = None
cluster_id = None
if prot_name_comment.__contains__(">"):
i += 1
prot_name = prot_name_comment.split("|")[0].split(">")[1]
type_string = prot_name_comment.split("|")[1]
cluster_id = int(prot_name_comment.split("|")[2])
else:
# assume this is data
prot_name = "> Unknown Protein Name"
prot_aa_list = lines[i].upper()
i += 1
if len(prot_aa_list) > 6000:
print("Discarding protein",prot_name,"as length larger than 6000:",len(prot_aa_list))
if i < len(lines) and not lines[i].__contains__(">"):
i += 1
else:
if i < len(lines) and not lines[i].__contains__(">"):
prot_topology_list = lines[i].upper()
i += 1
if prot_topology_list.__contains__("S"):
if prot_topology_list.__contains__("M"):
type_id = 1
assert type_string == "SP+TM"
else:
type_id = 2
assert type_string == "SP"
else:
if prot_topology_list.__contains__("M"):
type_id = 0
assert type_string == "TM"
else:
type_id = 3
assert type_string == "GLOBULAR"
else:
type_id = None
prot_topology_list = None
prot_list.append((prot_name, prot_aa_list, prot_topology_list, type_id, cluster_id))
return prot_list
def parse_datafile_from_disk(file):
lines = list([line.strip() for line in open(file)])
return parse_3line_format(lines)
def calculate_partitions(partitions_count, cluster_partitions, types):
partition_distribution = torch.ones((partitions_count, len(torch.unique(types))), dtype=torch.long)
partition_assignments = torch.zeros(cluster_partitions.shape[0],dtype=torch.long)
for i in torch.unique(cluster_partitions):
cluster_positions = (cluster_partitions == i).nonzero()
cluster_types = types[cluster_positions]
unique_types_in_cluster, type_count = torch.unique(cluster_types, return_counts=True)
tmp_distribution = partition_distribution.clone()
tmp_distribution[:,unique_types_in_cluster] += type_count
relative_distribution = partition_distribution.double()/tmp_distribution.double()
min_relative_distribution_group = torch.argmin(torch.sum(relative_distribution,dim=1))
partition_distribution[min_relative_distribution_group,unique_types_in_cluster] += type_count
partition_assignments[cluster_positions] = min_relative_distribution_group
write_out("Loaded data into the following partitions")
write_out("[[ TM SP+TM SP Glob]")
write_out(partition_distribution-torch.ones(partition_distribution.shape,dtype=torch.long))
return partition_assignments
def load_data_from_disk(filename, partition_rotation=0):
print("Loading data from disk...")
data = parse_datafile_from_disk(filename)
data_unzipped = list(zip(*data))
partitions = calculate_partitions(
cluster_partitions=torch.LongTensor(np.array(data_unzipped[4])),
types=torch.LongTensor(np.array(data_unzipped[3])),
partitions_count=5)
train_set = []
val_set = []
test_set = []
for idx, sample in enumerate(data):
partition = int(partitions[idx]) # in range 0-4
rotated = (partition + partition_rotation) % 5
if int(rotated) <= 2:
train_set.append(sample)
elif int(rotated) == 3:
val_set.append(sample)
else:
test_set.append(sample)
print("Data splited as:",
len(train_set), "train set",
len(val_set), "validation set",
len(test_set), "test set")
return train_set, val_set, test_set
def normalize_confusion_matrix(confusion_matrix):
confusion_matrix = confusion_matrix.astype(np.float64)
for i in range(4):
sum = int(confusion_matrix[i].sum())
if sum != 0:
confusion_matrix[4][i] /= sum * 0.01 # 0.01 to convert to percentage
for k in range(5):
if sum != 0:
confusion_matrix[i][k] /= sum * 0.01 # 0.01 to convert to percentage
else:
confusion_matrix[i][k] = math.nan
return confusion_matrix.round(2)
|
openprotein-master
|
experiments/tmhmm3/tm_util.py
|
# This file is part of the OpenProtein project.
#
# @author Jeppe Hallgren
#
# For license information, please see the LICENSE file in the root directory.
import os
import pickle
from .tm_models import *
from .tm_util import *
from models import *
from training import train_model
from util import write_out, set_experiment_id, load_model_from_disk
import numpy as np
import hashlib
def run_experiment(parser, use_gpu):
parser.add_argument('--minibatch-size-validation', dest='minibatch_size_validation', type=int,
default=50, help='Size of each minibatch during evaluation.')
parser.add_argument('--hidden-size', dest='hidden_size', type=int,
default=64, help='Hidden size.')
parser.add_argument('--learning-rate', dest='learning_rate', type=float,
default=0.001, help='Learning rate to use during training.')
parser.add_argument('--cv-partition', dest='cv_partition', type=int,
default=0, help='Run a particular cross validation rotation.')
parser.add_argument('--model-mode', dest='model_mode', type=int,
default=3, help='Which model to use.')
parser.add_argument('--input-data', dest='input_data', type=str,
default='data/raw/TMHMM3.train.3line.latest', help='Path of input data file.')
parser.add_argument('--pre-trained-model-paths', dest='pre_trained_model_paths', type=str,
default=None, help='Paths of pre-trained models.')
args, unknown = parser.parse_known_args()
result_matrices = np.zeros((5, 5), dtype=np.int64)
if args.model_mode == 0:
model_mode = TMHMM3Mode.LSTM
elif args.model_mode == 1:
model_mode = TMHMM3Mode.LSTM_CRF
elif args.model_mode == 2:
model_mode = TMHMM3Mode.LSTM_CRF_HMM
elif args.model_mode == 3:
model_mode = TMHMM3Mode.LSTM_CRF_MARG
elif args.model_mode == 4:
model_mode = TMHMM3Mode.LSTM_CTC
else:
print("ERROR: No model defined")
print("Using model:", model_mode)
embedding = "BLOSUM62"
use_marg_prob = False
all_prediction_data = []
for cv_partition in [0, 1, 2, 3, 4]:
# prepare data sets
train_set, val_set, test_set = load_data_from_disk(filename=args.input_data, partition_rotation=cv_partition)
# topology data set
train_set_TOPOLOGY = list(filter(lambda x: x[3] is 0 or x[3] is 1, train_set))
val_set_TOPOLOGY = list(filter(lambda x: x[3] is 0 or x[3] is 1, val_set))
test_set_TOPOLOGY = list(filter(lambda x: x[3] is 0 or x[3] is 1, test_set))
if not args.silent:
print("Loaded ",
len(train_set), "training,",
len(val_set), "validation and",
len(test_set), "test samples")
print("Processing data...")
pre_processed_path = "data/preprocessed/preprocessed_data_"+str(hashlib.sha256(args.input_data.encode()).hexdigest())[:8]+"_cv" + str(cv_partition) + ".pickle"
if not os.path.isfile(pre_processed_path):
input_data_processed = list([TMDataset.from_disk(set, use_gpu) for set in
[train_set, val_set, test_set, train_set_TOPOLOGY, val_set_TOPOLOGY,
test_set_TOPOLOGY]])
pickle.dump(input_data_processed, open(pre_processed_path, "wb"))
input_data_processed = pickle.load(open(pre_processed_path, "rb"))
train_preprocessed_set = input_data_processed[0]
validation_preprocessed_set = input_data_processed[1]
test_preprocessed_set = input_data_processed[2]
train_preprocessed_set_TOPOLOGY = input_data_processed[3]
validation_preprocessed_set_TOPOLOGY = input_data_processed[4]
test_preprocessed_set_TOPOLOGY = input_data_processed[5]
print("Completed preprocessing of data...")
train_loader = tm_contruct_dataloader_from_disk(train_preprocessed_set, args.minibatch_size,
balance_classes=True)
validation_loader = tm_contruct_dataloader_from_disk(validation_preprocessed_set,
args.minibatch_size_validation, balance_classes=True)
test_loader = tm_contruct_dataloader_from_disk(test_preprocessed_set if args.evaluate_on_test else validation_preprocessed_set,
args.minibatch_size_validation)
train_loader_TOPOLOGY = tm_contruct_dataloader_from_disk(train_preprocessed_set_TOPOLOGY, int(
args.minibatch_size / 2)) # use smaller minibatch size for topology
validation_loader_TOPOLOGY = tm_contruct_dataloader_from_disk(validation_preprocessed_set_TOPOLOGY,
args.minibatch_size_validation)
type_predictor_model_path = None
if args.pre_trained_model_paths is None:
for (experiment_id, train_data, validation_data) in [
("TRAIN_TYPE_CV" + str(cv_partition) + "-" + str(model_mode) + "-HS" + str(args.hidden_size) + "-F" + str(args.input_data.split(".")[-2]), train_loader,
validation_loader),
("TRAIN_TOPOLOGY_CV" + str(cv_partition) + "-" + str(model_mode) + "-HS" + str(args.hidden_size) + "-F" + str(args.input_data.split(".")[-2]),
train_loader_TOPOLOGY, validation_loader_TOPOLOGY)]:
type_predictor = None
if type_predictor_model_path is not None:
type_predictor = load_model_from_disk(type_predictor_model_path, force_cpu=False)
model = TMHMM3(
embedding,
args.hidden_size,
use_gpu,
model_mode,
use_marg_prob,
type_predictor)
model_path = train_model(data_set_identifier=experiment_id,
model=model,
train_loader=train_data,
validation_loader=validation_data,
learning_rate=args.learning_rate,
minibatch_size=args.minibatch_size,
eval_interval=args.eval_interval,
hide_ui=args.hide_ui,
use_gpu=use_gpu,
minimum_updates=args.minimum_updates)
# let the GC collect the model
del model
write_out(model_path)
# if we just trained a type predictor, save it for later
if "TRAIN_TYPE" in experiment_id:
type_predictor_model_path = model_path
else:
# use the pre-trained model
model_path = args.pre_trained_model_paths.split(",")[cv_partition]
# test model
write_out("Testing model...")
model = load_model_from_disk(model_path, force_cpu=False)
loss, json_data, prediction_data = model.evaluate_model(test_loader)
all_prediction_data.append(model.post_process_prediction_data(prediction_data))
result_matrix = np.array(json_data['confusion_matrix'])
result_matrices += result_matrix
write_out(result_matrix)
set_experiment_id("TEST-" + str(model_mode) + "-HS" + str(args.hidden_size) + "-F" + str(args.input_data.split(".")[-2]), args.learning_rate,
args.minibatch_size)
write_out(result_matrices)
write_prediction_data_to_disk("\n".join(all_prediction_data))
|
openprotein-master
|
experiments/tmhmm3/__init__.py
|
# This file is part of the TMHMM3 project.
#
# @author Jeppe Hallgren
#
# For license information, please see the LICENSE file in the root directory.
from enum import Enum
import torch.autograd as autograd
import torch.nn as nn
import openprotein
from experiments.tmhmm3.tm_util import *
from pytorchcrf.torchcrf import CRF
from util import write_out, get_experiment_id
import tensorflow as tf
import os
# seed random generator for reproducibility
torch.manual_seed(1)
class TMHMM3(openprotein.BaseModel):
def __init__(self, embedding, hidden_size, use_gpu, model_mode, use_marg_prob, type_predictor_model):
super(TMHMM3, self).__init__(embedding, use_gpu)
# initialize model variables
num_tags = 5
num_labels = 5
self.max_signal_length = 67
if model_mode == TMHMM3Mode.LSTM_CRF_HMM:
num_tags += 2 * 40 + self.max_signal_length
elif model_mode == TMHMM3Mode.LSTM_CRF_MARG:
num_tags = num_tags * 4 # 4 different types
#num_labels = num_tags # 4 different types
elif model_mode == TMHMM3Mode.LSTM_CTC:
num_tags += 1 # add extra class for blank
num_labels += 1
self.hidden_size = hidden_size
self.use_gpu = use_gpu
self.use_marg_prob = use_marg_prob
self.model_mode = model_mode
self.embedding = embedding
self.embedding_function = nn.Embedding(24, self.get_embedding_size())
self.bi_lstm = nn.LSTM(self.get_embedding_size(), self.hidden_size, num_layers=1, bidirectional=True)
self.hidden_to_labels = nn.Linear(self.hidden_size * 2, num_labels) # * 2 for bidirectional
crf_start_mask = torch.ones(num_tags).byte()
crf_end_mask = torch.ones(num_tags).byte()
if model_mode == TMHMM3Mode.LSTM_CRF_HMM:
allowed_transitions = [
(3, 3), (4, 4),
(3, 5), (4, 45)]
for i in range(5, 45 - 1):
allowed_transitions.append((i, i + 1))
if i > 8 and i < 43:
allowed_transitions.append((8, i))
allowed_transitions.append((44, 4))
for i in range(45, 85 - 1):
allowed_transitions.append((i, i + 1))
if i > 48 and i < 83:
allowed_transitions.append((48, i))
allowed_transitions.append((84, 3))
for i in range(85, 151):
allowed_transitions.append((i, i + 1))
allowed_transitions.append((2, i))
allowed_transitions.append((2, 151))
allowed_transitions.append((2, 4))
allowed_transitions.append((151, 4))
crf_start_mask[2] = 0
crf_start_mask[3] = 0
crf_start_mask[4] = 0
crf_end_mask[3] = 0
crf_end_mask[4] = 0
elif model_mode == TMHMM3Mode.LSTM_CRF_MARG:
allowed_transitions = [
(0, 0), (1, 1), (3, 3), (4, 4), (3, 0), (0, 4), (4, 1), (1, 3),
(5, 5), (6, 6), (7, 7), (8, 8), (9, 9), (8, 5), (5, 9), (9, 6), (6, 8), (7, 9),
(12, 12), (14, 14), (12, 14),
(18, 18),
]
crf_start_mask[3] = 0
crf_start_mask[4] = 0
crf_start_mask[7] = 0
crf_start_mask[8] = 0
crf_start_mask[9] = 0
crf_start_mask[12] = 0
crf_start_mask[18] = 0
crf_end_mask[3] = 0
crf_end_mask[4] = 0
crf_end_mask[8] = 0
crf_end_mask[9] = 0
crf_end_mask[14] = 0
crf_end_mask[18] = 0
else:
allowed_transitions = [
(0, 0), (1, 1), (2, 2), (3, 3), (4, 4),
(3, 0), (0, 4), (4, 1), (1, 3), (2, 4)]
crf_start_mask[2] = 0
crf_start_mask[3] = 0
crf_start_mask[4] = 0
crf_end_mask[3] = 0
crf_end_mask[4] = 0
self.allowed_transitions = allowed_transitions
self.crfModel = CRF(num_tags)
self.type_classifier = type_predictor_model
self.type_tm_classier = None
self.type_sp_classier = None
crf_transitions_mask = torch.ones((num_tags, num_tags)).byte()
self.label_01loss_values = []
self.type_01loss_values = []
self.topology_01loss_values = []
# if on GPU, move state to GPU memory
if self.use_gpu:
self.embedding_function = self.embedding_function.cuda()
self.crfModel = self.crfModel.cuda()
self.bi_lstm = self.bi_lstm.cuda()
self.hidden_to_labels = self.hidden_to_labels.cuda()
crf_transitions_mask = crf_transitions_mask.cuda()
crf_start_mask = crf_start_mask.cuda()
crf_end_mask = crf_end_mask.cuda()
# compute mask matrix from allow transitions list
for i in range(num_tags):
for k in range(num_tags):
if (i, k) in self.allowed_transitions:
crf_transitions_mask[i][k] = 0
# generate masked transition parameters
crf_start_transitions, crf_end_transitions, crf_transitions = \
self.generate_masked_crf_transitions(
self.crfModel, (crf_start_mask, crf_transitions_mask, crf_end_mask)
)
# initialize CRF
self.initialize_crf_parameters(self.crfModel,
start_transitions=crf_start_transitions,
end_transitions=crf_end_transitions,
transitions=crf_transitions)
def initialize_crf_parameters(self,
crfModel,
start_transitions=None,
end_transitions=None,
transitions=None) -> None:
"""Initialize the transition parameters.
The parameters will be initialized randomly from a uniform distribution
between -0.1 and 0.1, unless given explicitly as an argument.
"""
if start_transitions is None:
nn.init.uniform(crfModel.start_transitions, -0.1, 0.1)
else:
crfModel.start_transitions.data = start_transitions
if end_transitions is None:
nn.init.uniform(crfModel.end_transitions, -0.1, 0.1)
else:
crfModel.end_transitions.data = end_transitions
if transitions is None:
nn.init.uniform(crfModel.transitions, -0.1, 0.1)
else:
crfModel.transitions.data = transitions
def generate_masked_crf_transitions(self, crf_model, transition_mask):
start_transitions_mask, transitions_mask, end_transition_mask = transition_mask
start_transitions = crf_model.start_transitions.data.clone()
end_transitions = crf_model.end_transitions.data.clone()
transitions = crf_model.transitions.data.clone()
if start_transitions_mask is not None:
start_transitions.masked_fill_(start_transitions_mask, -100000000)
if end_transition_mask is not None:
end_transitions.masked_fill_(end_transition_mask, -100000000)
if transitions_mask is not None:
transitions.masked_fill_(transitions_mask, -100000000)
return start_transitions, end_transitions, transitions
def get_embedding_size(self):
return 24 # bloom matrix has size 24
def flatten_parameters(self):
self.bi_lstm.flatten_parameters()
def encode_amino_acid(self, letter):
if self.embedding == "BLOSUM62":
# blosum encoding
if not globals().get('blosum_encoder'):
blosum = \
"""4,-1,-2,-2,0,-1,-1,0,-2,-1,-1,-1,-1,-2,-1,1,0,-3,-2,0,-2,-1,0,-4
-1,5,0,-2,-3,1,0,-2,0,-3,-2,2,-1,-3,-2,-1,-1,-3,-2,-3,-1,0,-1,-4
-2,0,6,1,-3,0,0,0,1,-3,-3,0,-2,-3,-2,1,0,-4,-2,-3,3,0,-1,-4
-2,-2,1,6,-3,0,2,-1,-1,-3,-4,-1,-3,-3,-1,0,-1,-4,-3,-3,4,1,-1,-4
0,-3,-3,-3,9,-3,-4,-3,-3,-1,-1,-3,-1,-2,-3,-1,-1,-2,-2,-1,-3,-3,-2,-4
-1,1,0,0,-3,5,2,-2,0,-3,-2,1,0,-3,-1,0,-1,-2,-1,-2,0,3,-1,-4
-1,0,0,2,-4,2,5,-2,0,-3,-3,1,-2,-3,-1,0,-1,-3,-2,-2,1,4,-1,-4
0,-2,0,-1,-3,-2,-2,6,-2,-4,-4,-2,-3,-3,-2,0,-2,-2,-3,-3,-1,-2,-1,-4
-2,0,1,-1,-3,0,0,-2,8,-3,-3,-1,-2,-1,-2,-1,-2,-2,2,-3,0,0,-1,-4
-1,-3,-3,-3,-1,-3,-3,-4,-3,4,2,-3,1,0,-3,-2,-1,-3,-1,3,-3,-3,-1,-4
-1,-2,-3,-4,-1,-2,-3,-4,-3,2,4,-2,2,0,-3,-2,-1,-2,-1,1,-4,-3,-1,-4
-1,2,0,-1,-3,1,1,-2,-1,-3,-2,5,-1,-3,-1,0,-1,-3,-2,-2,0,1,-1,-4
-1,-1,-2,-3,-1,0,-2,-3,-2,1,2,-1,5,0,-2,-1,-1,-1,-1,1,-3,-1,-1,-4
-2,-3,-3,-3,-2,-3,-3,-3,-1,0,0,-3,0,6,-4,-2,-2,1,3,-1,-3,-3,-1,-4
-1,-2,-2,-1,-3,-1,-1,-2,-2,-3,-3,-1,-2,-4,7,-1,-1,-4,-3,-2,-2,-1,-2,-4
1,-1,1,0,-1,0,0,0,-1,-2,-2,0,-1,-2,-1,4,1,-3,-2,-2,0,0,0,-4
0,-1,0,-1,-1,-1,-1,-2,-2,-1,-1,-1,-1,-2,-1,1,5,-2,-2,0,-1,-1,0,-4
-3,-3,-4,-4,-2,-2,-3,-2,-2,-3,-2,-3,-1,1,-4,-3,-2,11,2,-3,-4,-3,-2,-4
-2,-2,-2,-3,-2,-1,-2,-3,2,-1,-1,-2,-1,3,-3,-2,-2,2,7,-1,-3,-2,-1,-4
0,-3,-3,-3,-1,-2,-2,-3,-3,3,1,-2,1,-1,-2,-2,0,-3,-1,4,-3,-2,-1,-4
-2,-1,3,4,-3,0,1,-1,0,-3,-4,0,-3,-3,-2,0,-1,-4,-3,-3,4,1,-1,-4
-1,0,0,1,-3,3,4,-2,0,-3,-3,1,-1,-3,-1,0,-1,-3,-2,-2,1,4,-1,-4
0,-1,-1,-1,-2,-1,-1,-1,-1,-1,-1,-1,-1,-1,-2,0,0,-2,-1,-1,-1,-1,-1,-4
-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,1""".replace('\n', ',')
blosum_matrix = np.fromstring(blosum, sep=",").reshape(24,24)
blosum_key = "A,R,N,D,C,Q,E,G,H,I,L,K,M,F,P,S,T,W,Y,V,B,Z,X,U".split(",")
key_map = {}
for idx, value in enumerate(blosum_key):
key_map[value] = list([int(v) for v in blosum_matrix[idx].astype('int')])
globals().__setitem__("blosum_encoder", key_map)
return globals().get('blosum_encoder')[letter]
elif self.embedding == "ONEHOT":
# one hot encoding
one_hot_key = "A,R,N,D,C,Q,E,G,H,I,L,K,M,F,P,S,T,W,Y,V,B,Z,X,U".split(",")
arr = []
for idx, k in enumerate(one_hot_key):
if k == letter:
arr.append(1)
else:
arr.append(0)
return arr
elif self.embedding == "PYTORCH":
key_id = "A,R,N,D,C,Q,E,G,H,I,L,K,M,F,P,S,T,W,Y,V,B,Z,X,U".split(",")
for idx, k in enumerate(key_id):
if k == letter:
return idx
def embed(self, prot_aa_list):
embed_list = []
for aa_list in prot_aa_list:
t = list([self.encode_amino_acid(aa) for aa in aa_list])
if self.embedding == "PYTORCH":
t = torch.LongTensor(t)
else:
t= torch.FloatTensor(t)
if self.use_gpu:
t = t.cuda()
embed_list.append(t)
return embed_list
def init_hidden(self, minibatch_size):
# number of layers (* 2 since bidirectional), minibatch_size, hidden size
initial_hidden_state = torch.zeros(1 * 2, minibatch_size, self.hidden_size)
initial_cell_state = torch.zeros(1 * 2, minibatch_size, self.hidden_size)
if self.use_gpu:
initial_hidden_state = initial_hidden_state.cuda()
initial_cell_state = initial_cell_state.cuda()
self.hidden_layer = (autograd.Variable(initial_hidden_state),
autograd.Variable(initial_cell_state))
def _get_network_emissions(self, input_sequences):
batch_sizes = torch.LongTensor(list([i.size(0) for i in input_sequences]))
pad_seq_embed = torch.nn.utils.rnn.pad_sequence(input_sequences)
minibatch_size = len(input_sequences)
self.init_hidden(minibatch_size)
bi_lstm_out, self.hidden_layer = self.bi_lstm(pad_seq_embed, self.hidden_layer)
emissions = self.hidden_to_labels(bi_lstm_out)
if self.model_mode == TMHMM3Mode.LSTM_CRF_HMM:
inout_select = torch.LongTensor([0])
outin_select = torch.LongTensor([1])
signal_select = torch.LongTensor([2])
if self.use_gpu:
inout_select = inout_select.cuda()
outin_select = outin_select.cuda()
signal_select = signal_select.cuda()
inout = torch.index_select(emissions, 2, autograd.Variable(inout_select))
outin = torch.index_select(emissions, 2, autograd.Variable(outin_select))
signal = torch.index_select(emissions, 2, autograd.Variable(signal_select))
emissions = torch.cat((emissions, inout.expand(-1, len(batch_sizes), 40), outin.expand(-1, len(batch_sizes), 40), signal.expand(-1, len(batch_sizes), self.max_signal_length)), 2)
elif self.model_mode == TMHMM3Mode.LSTM_CRF_MARG:
emissions = emissions.repeat(1,1,4)
return emissions, batch_sizes
def batch_sizes_to_mask(self, batch_sizes):
mask = torch.autograd.Variable(torch.t(torch.ByteTensor(
[[1] * int(batch_size) + [0] * (int(batch_sizes[0]) - int(batch_size)) for batch_size in batch_sizes]
)))
if self.use_gpu:
mask = mask.cuda()
return mask
def compute_loss(self, training_minibatch):
_, labels_list, remapped_labels_list_crf_hmm, remapped_labels_list_crf_marg, prot_type_list, prot_topology_list, prot_name_list, original_aa_string, original_label_string = training_minibatch
minibatch_size = len(labels_list)
if self.model_mode == TMHMM3Mode.LSTM_CRF_MARG:
labels_to_use = remapped_labels_list_crf_marg
elif self.model_mode == TMHMM3Mode.LSTM_CRF_HMM:
labels_to_use = remapped_labels_list_crf_hmm
else:
labels_to_use = labels_list
input_sequences = [autograd.Variable(x) for x in self.embed(original_aa_string)]
if self.model_mode == TMHMM3Mode.LSTM_CTC:
# CTC loss
emissions, batch_sizes = self._get_network_emissions(input_sequences)
output = torch.nn.functional.log_softmax(emissions, dim=2)
topologies = list([torch.LongTensor(list([label for (idx, label) in label_list_to_topology(a)])) for a in labels_list])
if self.use_gpu:
topologies = list([a.cuda() for a in topologies])
targets, target_lengths = torch.nn.utils.rnn.pad_sequence(topologies).transpose(0,1), list([a.size()[0] for a in topologies])
ctc_loss = nn.CTCLoss(blank=5)
return ctc_loss(output, targets, tuple(batch_sizes), tuple(target_lengths))
else:
actual_labels = torch.nn.utils.rnn.pad_sequence([autograd.Variable(l) for l in labels_to_use])
emissions, batch_sizes = self._get_network_emissions(input_sequences)
if self.model_mode == TMHMM3Mode.LSTM:
prediction = emissions.transpose(0,1).contiguous().view(-1, emissions.size(-1))
target = actual_labels.transpose(0,1).contiguous().view(-1, 1)
losses = -torch.gather(nn.functional.log_softmax(prediction), dim=1, index=target).view(*actual_labels.transpose(0,1).size())
mask_expand = torch.range(0, batch_sizes.data.max() - 1).long().unsqueeze(0).expand(batch_sizes.size(0), batch_sizes.data.max())
if self.use_gpu:
mask_expand = mask_expand.cuda()
batch_sizes = batch_sizes.cuda()
mask = mask_expand < batch_sizes.unsqueeze(1).expand_as(mask_expand)
loss = (losses * mask.float()).sum() / batch_sizes.float().sum()
else:
loss = -1 * self.crfModel(emissions, actual_labels, mask=self.batch_sizes_to_mask(batch_sizes)) / minibatch_size
if float(loss) > 100000:
for idx, batch_size in enumerate(batch_sizes):
last_label = None
for i in range(batch_size):
label = int(actual_labels[i][idx])
write_out(str(label) + ",", end='')
if last_label is not None and (last_label, label) not in self.allowed_transitions:
write_out("Error: invalid transition found")
write_out((last_label, label))
exit()
last_label = label
write_out(" ")
return loss
def forward(self, input_sequences, forced_types=None):
emissions, batch_sizes = self._get_network_emissions(input_sequences)
if self.model_mode == TMHMM3Mode.LSTM_CTC or self.model_mode == TMHMM3Mode.LSTM:
output = torch.nn.functional.log_softmax(emissions, dim=2)
_, predicted_labels = output[:,:,0:5].max(dim=2)
predicted_labels = list([list(map(int,x[:batch_sizes[idx]])) for idx, x in enumerate(predicted_labels.transpose(0,1))])
predicted_labels = list(torch.cuda.LongTensor(l) if self.use_gpu else torch.LongTensor(l) for l in predicted_labels)
predicted_topologies = list(map(label_list_to_topology, predicted_labels))
if forced_types is None and self.model_mode == TMHMM3Mode.LSTM_CTC:
tf_output = tf.placeholder(tf.float32, shape=emissions.size())
tf_batch_sizes = tf.placeholder(tf.int32, shape=(emissions.size()[1]))
beam_decoded, _ = tf.nn.ctc_beam_search_decoder(tf_output, sequence_length=tf_batch_sizes, beam_width=10)
decoded_topology = tf.sparse_tensor_to_dense(beam_decoded[0])
# beam search is much faster on the CPU, disable GPU for this part
config = tf.ConfigProto(
device_count={'GPU': 0}
)
with tf.Session(config=config) as tf_session:
tf.global_variables_initializer().run()
decoded_topology = tf_session.run(decoded_topology, feed_dict={tf_output: output.detach().cpu().numpy(), tf_batch_sizes: batch_sizes})
predicted_types = torch.LongTensor(list(map(get_predicted_type_from_labels, decoded_topology)))
else:
predicted_types = torch.LongTensor(list(map(get_predicted_type_from_labels, predicted_labels)))
else:
mask = self.batch_sizes_to_mask(batch_sizes)
labels_predicted = list(torch.cuda.LongTensor(l) if self.use_gpu else torch.LongTensor(l) for l in
self.crfModel.decode(emissions, mask=mask))
if self.model_mode == TMHMM3Mode.LSTM_CRF_HMM:
predicted_labels = list(map(remapped_labels_hmm_to_orginal_labels, labels_predicted))
predicted_types = torch.LongTensor(list(map(get_predicted_type_from_labels, predicted_labels)))
elif self.model_mode == TMHMM3Mode.LSTM_CRF_MARG:
alpha = self.crfModel._compute_log_alpha(emissions, mask, run_backwards=False)
z = alpha[alpha.size(0)-1] + self.crfModel.end_transitions
type = z.view((-1, 4, 5))
type = self.logsumexp(type, dim=2)
max, predicted_types = torch.max(type, dim=1)
predicted_labels = list([l % 5 for l in labels_predicted]) # remap
else:
predicted_labels = labels_predicted
predicted_types = torch.LongTensor(list(map(get_predicted_type_from_labels, predicted_labels)))
if self.use_gpu:
predicted_types = predicted_types.cuda()
predicted_topologies = list(map(label_list_to_topology, predicted_labels))
# if all O's, change to all I's (by convention)
for idx, labels in enumerate(predicted_labels):
if torch.eq(labels, 4).all():
predicted_labels[idx] = labels - 1
return predicted_labels, predicted_types if forced_types is None else forced_types, predicted_topologies
def evaluate_model(self, data_loader):
validation_loss_tracker = []
validation_type_loss_tracker = []
validation_topology_loss_tracker = []
confusion_matrix = np.zeros((5,5), dtype=np.int64)
protein_names = []
protein_aa_strings = []
protein_label_actual = []
protein_label_prediction = []
for i, minibatch in enumerate(data_loader, 0):
validation_loss_tracker.append(self.compute_loss(minibatch).detach())
_, labels_list, _, _, prot_type_list, prot_topology_list, prot_name_list, original_aa_string, original_label_string = minibatch
input_sequences = [x for x in self.embed(original_aa_string)]
predicted_labels, predicted_types, predicted_topologies = self(input_sequences)
protein_names.extend(prot_name_list)
protein_aa_strings.extend(original_aa_string)
protein_label_actual.extend(original_label_string)
# if we're using an external type predictor
if self.type_classifier is not None:
predicted_labels_type_classifer, predicted_types_type_classifier, predicted_topologies_type_classifier = self.type_classifier(input_sequences)
for idx, actual_type in enumerate(prot_type_list):
predicted_type = predicted_types[idx]
predicted_topology = predicted_topologies[idx]
predicted_labels_for_protein = predicted_labels[idx]
if self.type_classifier is not None:
if predicted_type != predicted_types_type_classifier[idx]:
# we must always use the type predicted by the type predictor if available
predicted_type = predicted_types_type_classifier[idx]
predicted_topology = predicted_topologies_type_classifier[idx]
predicted_labels_for_protein = predicted_labels_type_classifer[idx]
prediction_topology_match = is_topologies_equal(prot_topology_list[idx], predicted_topology, 5)
if actual_type == predicted_type:
validation_type_loss_tracker.append(0)
# if we guessed the type right for SP+GLOB or GLOB, we count the topology as correct
if actual_type == 2 or actual_type == 3 or prediction_topology_match:
validation_topology_loss_tracker.append(0)
confusion_matrix[actual_type][4] += 1
else:
validation_topology_loss_tracker.append(1)
confusion_matrix[actual_type][predicted_type] += 1
# if the type was correctly guess 2 or 3 by the type classifier, use its topology prediction
if (actual_type == 2 or actual_type == 3) and self.type_classifier is not None:
protein_label_prediction.append(predicted_labels_type_classifer[idx])
else:
protein_label_prediction.append(predicted_labels_for_protein)
else:
confusion_matrix[actual_type][predicted_type] += 1
validation_type_loss_tracker.append(1)
validation_topology_loss_tracker.append(1)
protein_label_prediction.append(predicted_labels_for_protein)
write_out(confusion_matrix)
loss = float(torch.stack(validation_loss_tracker).mean())
type_loss = float(torch.FloatTensor(validation_type_loss_tracker).mean().detach())
topology_loss = float(torch.FloatTensor(validation_topology_loss_tracker).mean().detach())
self.type_01loss_values.append(type_loss)
self.topology_01loss_values.append(topology_loss)
if get_experiment_id() is not None and "TYPE" in get_experiment_id():
# optimize for type
validation_loss = type_loss
else:
# optimize for topology
validation_loss = topology_loss
data = {}
data['type_01loss_values'] = self.type_01loss_values
data['topology_01loss_values'] = self.topology_01loss_values
data['confusion_matrix'] = confusion_matrix.tolist()
return validation_loss, data, (protein_names, protein_aa_strings, protein_label_actual, protein_label_prediction)
def post_process_prediction_data(self, prediction_data):
data = []
for (name, aa_string, actual, prediction) in zip(*prediction_data):
data.append("\n".join([">" + name, aa_string, actual, original_labels_to_fasta(prediction)]))
return "\n".join(data)
def logsumexp(self, data, dim):
return data.max(dim)[0] + torch.log(torch.sum(torch.exp(data - data.max(dim)[0].unsqueeze(dim)), dim))
class TMHMM3Mode(Enum):
LSTM = 1
LSTM_CRF = 2
LSTM_CRF_HMM = 3
LSTM_CRF_MARG = 4
LSTM_CTC = 5
|
openprotein-master
|
experiments/tmhmm3/tm_models.py
|
# This file is part of the OpenProtein project.
#
# @author Jeppe Hallgren
#
# For license information, please see the LICENSE file in the root directory.
from preprocessing import process_raw_data
from models import *
from training import train_model
def run_experiment(parser, use_gpu):
# parse experiment specific command line arguments
parser.add_argument('--learning-rate', dest='learning_rate', type=float,
default=0.01, help='Learning rate to use during training.')
args, unknown = parser.parse_known_args()
# pre-process data
process_raw_data(use_gpu, force_pre_processing_overwrite=False)
# run experiment
training_file = "data/preprocessed/sample.txt.hdf5"
validation_file = "data/preprocessed/sample.txt.hdf5"
model = ExampleModel(21, args.minibatch_size, use_gpu=use_gpu) # embed size = 21
train_loader = contruct_dataloader_from_disk(training_file, args.minibatch_size)
validation_loader = contruct_dataloader_from_disk(validation_file, args.minibatch_size)
train_model_path = train_model(data_set_identifier="TRAIN",
model=model,
train_loader=train_loader,
validation_loader=validation_loader,
learning_rate=args.learning_rate,
minibatch_size=args.minibatch_size,
eval_interval=args.eval_interval,
hide_ui=args.hide_ui,
use_gpu=use_gpu,
minimum_updates=args.minimum_updates)
print(train_model_path)
|
openprotein-master
|
experiments/example/__init__.py
|
"""
pNeRF algorithm for parallelized conversion from torsion (dihedral) angles to
Cartesian coordinates implemented with PyTorch.
Reference implementation in tensorflow by Mohammed AlQuraishi:
https://github.com/aqlaboratory/pnerf/blob/master/pnerf.py
Paper (preprint) by Mohammed AlQuraishi:
https://www.biorxiv.org/content/early/2018/08/06/385450
PyTorch implementation by Felix Opolka
"""
import math
import collections
import numpy as np
import torch
import torch.nn.functional as F
# Constants
NUM_DIMENSIONS = 3
NUM_DIHEDRALS = 3
BOND_LENGTHS = np.array([145.801, 152.326, 132.868], dtype=np.float32)
BOND_ANGLES = np.array([2.124, 1.941, 2.028], dtype=np.float32)
def dihedral_to_point(dihedral, use_gpu, bond_lengths=BOND_LENGTHS,
bond_angles=BOND_ANGLES):
"""
Takes triplets of dihedral angles (phi, psi, omega) and returns 3D points
ready for use in reconstruction of coordinates. Bond lengths and angles
are based on idealized averages.
:param dihedral: [NUM_STEPS, BATCH_SIZE, NUM_DIHEDRALS]
:return: Tensor containing points of the protein's backbone atoms.
Shape [NUM_STEPS x NUM_DIHEDRALS, BATCH_SIZE, NUM_DIMENSIONS]
"""
num_steps = dihedral.shape[0]
batch_size = dihedral.shape[1]
r_cos_theta = torch.tensor(bond_lengths * np.cos(np.pi - bond_angles))
r_sin_theta = torch.tensor(bond_lengths * np.sin(np.pi - bond_angles))
if use_gpu:
r_cos_theta = r_cos_theta.cuda()
r_sin_theta = r_sin_theta.cuda()
point_x = r_cos_theta.view(1, 1, -1).repeat(num_steps, batch_size, 1)
point_y = torch.cos(dihedral) * r_sin_theta
point_z = torch.sin(dihedral) * r_sin_theta
point = torch.stack([point_x, point_y, point_z])
point_perm = point.permute(1, 3, 2, 0)
point_final = point_perm.contiguous().view(num_steps*NUM_DIHEDRALS,
batch_size,
NUM_DIMENSIONS)
return point_final
def point_to_coordinate(points, use_gpu, num_fragments=6):
"""
Takes points from dihedral_to_point and sequentially converts them into
coordinates of a 3D structure.
Reconstruction is done in parallel by independently reconstructing
num_fragments and the reconstituting the chain at the end in reverse order.
The core reconstruction algorithm is NeRF, based on
DOI: 10.1002/jcc.20237 by Parsons et al. 2005.
The parallelized version is described in
https://www.biorxiv.org/content/early/2018/08/06/385450.
:param points: Tensor containing points as returned by `dihedral_to_point`.
Shape [NUM_STEPS x NUM_DIHEDRALS, BATCH_SIZE, NUM_DIMENSIONS]
:param num_fragments: Number of fragments in which the sequence is split
to perform parallel computation.
:return: Tensor containing correctly transformed atom coordinates.
Shape [NUM_STEPS x NUM_DIHEDRALS, BATCH_SIZE, NUM_DIMENSIONS]
"""
# Compute optimal number of fragments if needed
total_num_angles = points.shape[0] # NUM_STEPS x NUM_DIHEDRALS
if num_fragments is None:
num_fragments = int(math.sqrt(total_num_angles))
# Initial three coordinates (specifically chosen to eliminate need for
# extraneous matmul)
Triplet = collections.namedtuple('Triplet', 'a, b, c')
batch_size = points.shape[1]
init_matrix = np.array([[-np.sqrt(1.0 / 2.0), np.sqrt(3.0 / 2.0), 0],
[-np.sqrt(2.0), 0, 0], [0, 0, 0]],
dtype=np.float32)
init_matrix = torch.from_numpy(init_matrix)
if use_gpu:
init_matrix = init_matrix.cuda()
init_coords = [row.repeat([num_fragments * batch_size, 1])
.view(num_fragments, batch_size, NUM_DIMENSIONS)
for row in init_matrix]
init_coords = Triplet(*init_coords) # NUM_DIHEDRALS x [NUM_FRAGS, BATCH_SIZE, NUM_DIMENSIONS]
# Pad points to yield equal-sized fragments
padding = ((num_fragments - (total_num_angles % num_fragments))
% num_fragments) # (NUM_FRAGS x FRAG_SIZE) - (NUM_STEPS x NUM_DIHEDRALS)
points = F.pad(points, (0, 0, 0, 0, 0, padding)) # [NUM_FRAGS x FRAG_SIZE, BATCH_SIZE, NUM_DIMENSIONS]
points = points.view(num_fragments, -1, batch_size, NUM_DIMENSIONS) # [NUM_FRAGS, FRAG_SIZE, BATCH_SIZE, NUM_DIMENSIONS]
points = points.permute(1, 0, 2, 3) # [FRAG_SIZE, NUM_FRAGS, BATCH_SIZE, NUM_DIMENSIONS]
# Extension function used for single atom reconstruction and whole fragment
# alignment
def extend(prev_three_coords, point, multi_m):
"""
Aligns an atom or an entire fragment depending on value of `multi_m`
with the preceding three atoms.
:param prev_three_coords: Named tuple storing the last three atom
coordinates ("a", "b", "c") where "c" is the current end of the
structure (i.e. closest to the atom/ fragment that will be added now).
Shape NUM_DIHEDRALS x [NUM_FRAGS/0, BATCH_SIZE, NUM_DIMENSIONS].
First rank depends on value of `multi_m`.
:param point: Point describing the atom that is added to the structure.
Shape [NUM_FRAGS/FRAG_SIZE, BATCH_SIZE, NUM_DIMENSIONS]
First rank depends on value of `multi_m`.
:param multi_m: If True, a single atom is added to the chain for
multiple fragments in parallel. If False, an single fragment is added.
Note the different parameter dimensions.
:return: Coordinates of the atom/ fragment.
"""
bc = F.normalize(prev_three_coords.c - prev_three_coords.b, dim=-1)
n = F.normalize(torch.cross(prev_three_coords.b - prev_three_coords.a,
bc), dim=-1)
if multi_m: # multiple fragments, one atom at a time
m = torch.stack([bc, torch.cross(n, bc), n]).permute(1, 2, 3, 0)
else: # single fragment, reconstructed entirely at once.
s = point.shape + (3,)
m = torch.stack([bc, torch.cross(n, bc), n]).permute(1, 2, 0)
m = m.repeat(s[0], 1, 1).view(s)
coord = torch.squeeze(torch.matmul(m, point.unsqueeze(3)),
dim=3) + prev_three_coords.c
return coord
# Loop over FRAG_SIZE in NUM_FRAGS parallel fragments, sequentially
# generating the coordinates for each fragment across all batches
coords_list = [None] * points.shape[0] # FRAG_SIZE x [NUM_FRAGS, BATCH_SIZE, NUM_DIMENSIONS]
prev_three_coords = init_coords
for i in range(points.shape[0]): # Iterate over FRAG_SIZE
coord = extend(prev_three_coords, points[i], True)
coords_list[i] = coord
prev_three_coords = Triplet(prev_three_coords.b,
prev_three_coords.c,
coord)
coords_pretrans = torch.stack(coords_list).permute(1, 0, 2, 3)
# Loop backwards over NUM_FRAGS to align the individual fragments. For each
# next fragment, we transform the fragments we have already iterated over
# (coords_trans) to be aligned with the next fragment
coords_trans = coords_pretrans[-1]
for i in reversed(range(coords_pretrans.shape[0]-1)):
# Transform the fragments that we have already iterated over to be
# aligned with the next fragment `coords_trans`
transformed_coords = extend(Triplet(*[di[i]
for di in prev_three_coords]),
coords_trans, False)
coords_trans = torch.cat([coords_pretrans[i], transformed_coords], 0)
coords = F.pad(coords_trans[:total_num_angles-1], (0, 0, 0, 0, 1, 0))
return coords
|
openprotein-master
|
pnerf/pnerf.py
|
from setuptools import setup, find_packages
setup(
name = 'point-transformer-pytorch',
packages = find_packages(),
version = '0.1.5',
license='MIT',
description = 'Point Transformer - Pytorch',
author = 'Phil Wang',
author_email = 'lucidrains@gmail.com',
url = 'https://github.com/lucidrains/point-transformer-pytorch',
keywords = [
'artificial intelligence',
'transformers',
'attention mechanism',
'point clouds'
],
install_requires=[
'einops>=0.3',
'torch>=1.6'
],
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.6',
],
)
|
point-transformer-pytorch-main
|
setup.py
|
import torch
from torch import nn, einsum
from einops import repeat
# helpers
def exists(val):
return val is not None
def max_value(t):
return torch.finfo(t.dtype).max
def batched_index_select(values, indices, dim = 1):
value_dims = values.shape[(dim + 1):]
values_shape, indices_shape = map(lambda t: list(t.shape), (values, indices))
indices = indices[(..., *((None,) * len(value_dims)))]
indices = indices.expand(*((-1,) * len(indices_shape)), *value_dims)
value_expand_len = len(indices_shape) - (dim + 1)
values = values[(*((slice(None),) * dim), *((None,) * value_expand_len), ...)]
value_expand_shape = [-1] * len(values.shape)
expand_slice = slice(dim, (dim + value_expand_len))
value_expand_shape[expand_slice] = indices.shape[expand_slice]
values = values.expand(*value_expand_shape)
dim += value_expand_len
return values.gather(dim, indices)
# classes
class PointTransformerLayer(nn.Module):
def __init__(
self,
*,
dim,
pos_mlp_hidden_dim = 64,
attn_mlp_hidden_mult = 4,
num_neighbors = None
):
super().__init__()
self.num_neighbors = num_neighbors
self.to_qkv = nn.Linear(dim, dim * 3, bias = False)
self.pos_mlp = nn.Sequential(
nn.Linear(3, pos_mlp_hidden_dim),
nn.ReLU(),
nn.Linear(pos_mlp_hidden_dim, dim)
)
self.attn_mlp = nn.Sequential(
nn.Linear(dim, dim * attn_mlp_hidden_mult),
nn.ReLU(),
nn.Linear(dim * attn_mlp_hidden_mult, dim),
)
def forward(self, x, pos, mask = None):
n, num_neighbors = x.shape[1], self.num_neighbors
# get queries, keys, values
q, k, v = self.to_qkv(x).chunk(3, dim = -1)
# calculate relative positional embeddings
rel_pos = pos[:, :, None, :] - pos[:, None, :, :]
rel_pos_emb = self.pos_mlp(rel_pos)
# use subtraction of queries to keys. i suppose this is a better inductive bias for point clouds than dot product
qk_rel = q[:, :, None, :] - k[:, None, :, :]
# prepare mask
if exists(mask):
mask = mask[:, :, None] * mask[:, None, :]
# expand values
v = repeat(v, 'b j d -> b i j d', i = n)
# determine k nearest neighbors for each point, if specified
if exists(num_neighbors) and num_neighbors < n:
rel_dist = rel_pos.norm(dim = -1)
if exists(mask):
mask_value = max_value(rel_dist)
rel_dist.masked_fill_(~mask, mask_value)
dist, indices = rel_dist.topk(num_neighbors, largest = False)
v = batched_index_select(v, indices, dim = 2)
qk_rel = batched_index_select(qk_rel, indices, dim = 2)
rel_pos_emb = batched_index_select(rel_pos_emb, indices, dim = 2)
mask = batched_index_select(mask, indices, dim = 2) if exists(mask) else None
# add relative positional embeddings to value
v = v + rel_pos_emb
# use attention mlp, making sure to add relative positional embedding first
sim = self.attn_mlp(qk_rel + rel_pos_emb)
# masking
if exists(mask):
mask_value = -max_value(sim)
sim.masked_fill_(~mask[..., None], mask_value)
# attention
attn = sim.softmax(dim = -2)
# aggregate
agg = einsum('b i j d, b i j d -> b i d', attn, v)
return agg
|
point-transformer-pytorch-main
|
point_transformer_pytorch/point_transformer_pytorch.py
|
import torch
from torch import nn, einsum
from einops import repeat, rearrange
# helpers
def exists(val):
return val is not None
def max_value(t):
return torch.finfo(t.dtype).max
def batched_index_select(values, indices, dim = 1):
value_dims = values.shape[(dim + 1):]
values_shape, indices_shape = map(lambda t: list(t.shape), (values, indices))
indices = indices[(..., *((None,) * len(value_dims)))]
indices = indices.expand(*((-1,) * len(indices_shape)), *value_dims)
value_expand_len = len(indices_shape) - (dim + 1)
values = values[(*((slice(None),) * dim), *((None,) * value_expand_len), ...)]
value_expand_shape = [-1] * len(values.shape)
expand_slice = slice(dim, (dim + value_expand_len))
value_expand_shape[expand_slice] = indices.shape[expand_slice]
values = values.expand(*value_expand_shape)
dim += value_expand_len
return values.gather(dim, indices)
# classes
class MultiheadPointTransformerLayer(nn.Module):
def __init__(
self,
*,
dim,
heads = 4,
dim_head = 64,
pos_mlp_hidden_dim = 64,
attn_mlp_hidden_mult = 4,
num_neighbors = None
):
super().__init__()
self.heads = heads
inner_dim = dim_head * heads
self.num_neighbors = num_neighbors
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim)
self.pos_mlp = nn.Sequential(
nn.Linear(3, pos_mlp_hidden_dim),
nn.ReLU(),
nn.Linear(pos_mlp_hidden_dim, inner_dim)
)
attn_inner_dim = inner_dim * attn_mlp_hidden_mult
self.attn_mlp = nn.Sequential(
nn.Conv2d(inner_dim, attn_inner_dim, 1, groups = heads),
nn.ReLU(),
nn.Conv2d(attn_inner_dim, inner_dim, 1, groups = heads),
)
def forward(self, x, pos, mask = None):
n, h, num_neighbors = x.shape[1], self.heads, self.num_neighbors
# get queries, keys, values
q, k, v = self.to_qkv(x).chunk(3, dim = -1)
# split out heads
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
# calculate relative positional embeddings
rel_pos = rearrange(pos, 'b i c -> b i 1 c') - rearrange(pos, 'b j c -> b 1 j c')
rel_pos_emb = self.pos_mlp(rel_pos)
# split out heads for rel pos emb
rel_pos_emb = rearrange(rel_pos_emb, 'b i j (h d) -> b h i j d', h = h)
# use subtraction of queries to keys. i suppose this is a better inductive bias for point clouds than dot product
qk_rel = rearrange(q, 'b h i d -> b h i 1 d') - rearrange(k, 'b h j d -> b h 1 j d')
# prepare mask
if exists(mask):
mask = rearrange(mask, 'b i -> b i 1') * rearrange(mask, 'b j -> b 1 j')
# expand values
v = repeat(v, 'b h j d -> b h i j d', i = n)
# determine k nearest neighbors for each point, if specified
if exists(num_neighbors) and num_neighbors < n:
rel_dist = rel_pos.norm(dim = -1)
if exists(mask):
mask_value = max_value(rel_dist)
rel_dist.masked_fill_(~mask, mask_value)
dist, indices = rel_dist.topk(num_neighbors, largest = False)
indices_with_heads = repeat(indices, 'b i j -> b h i j', h = h)
v = batched_index_select(v, indices_with_heads, dim = 3)
qk_rel = batched_index_select(qk_rel, indices_with_heads, dim = 3)
rel_pos_emb = batched_index_select(rel_pos_emb, indices_with_heads, dim = 3)
if exists(mask):
mask = batched_index_select(mask, indices, dim = 2)
# add relative positional embeddings to value
v = v + rel_pos_emb
# use attention mlp, making sure to add relative positional embedding first
attn_mlp_input = qk_rel + rel_pos_emb
attn_mlp_input = rearrange(attn_mlp_input, 'b h i j d -> b (h d) i j')
sim = self.attn_mlp(attn_mlp_input)
# masking
if exists(mask):
mask_value = -max_value(sim)
mask = rearrange(mask, 'b i j -> b 1 i j')
sim.masked_fill_(~mask, mask_value)
# attention
attn = sim.softmax(dim = -2)
# aggregate
v = rearrange(v, 'b h i j d -> b i j (h d)')
agg = einsum('b d i j, b i j d -> b i d', attn, v)
# combine heads
return self.to_out(agg)
|
point-transformer-pytorch-main
|
point_transformer_pytorch/multihead_point_transformer_pytorch.py
|
from point_transformer_pytorch.point_transformer_pytorch import PointTransformerLayer
from point_transformer_pytorch.multihead_point_transformer_pytorch import MultiheadPointTransformerLayer
|
point-transformer-pytorch-main
|
point_transformer_pytorch/__init__.py
|
from setuptools import setup, find_packages
setup(
name = 'esbn-pytorch',
packages = find_packages(),
version = '0.0.4',
license='MIT',
description = 'Emergent Symbol Binding Network - Pytorch',
author = 'Phil Wang',
author_email = 'lucidrains@gmail.com',
url = 'https://github.com/lucidrains/ESBN-pytorch',
keywords = [
'artificial intelligence',
'deep learning',
'neuro-symbolic',
'abstract reasoning',
'memory'
],
install_requires=[
'torch>=1.6',
'einops>=0.3'
],
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.6',
],
)
|
ESBN-pytorch-main
|
setup.py
|
from esbn_pytorch.esbn_pytorch import ESBN
|
ESBN-pytorch-main
|
esbn_pytorch/__init__.py
|
import torch
from functools import partial
from torch import nn, einsum
from einops import repeat, rearrange
# helpers
def exists(val):
return val is not None
def safe_cat(t, el, dim = 0):
if not exists(t):
return el
return torch.cat((t, el), dim = dim)
def map_fn(fn, *args, **kwargs):
def inner(*arr):
return map(lambda t: fn(t, *args, **kwargs), arr)
return inner
# classes
class ESBN(nn.Module):
def __init__(
self,
*,
value_dim = 64,
key_dim = 64,
hidden_dim = 512,
output_dim = 4,
encoder = None
):
super().__init__()
self.h0 = torch.zeros(hidden_dim)
self.c0 = torch.zeros(hidden_dim)
self.k0 = torch.zeros(key_dim + 1)
self.rnn = nn.LSTMCell(key_dim + 1, hidden_dim)
self.to_gate = nn.Linear(hidden_dim, 1)
self.to_key = nn.Linear(hidden_dim, key_dim)
self.to_output = nn.Linear(hidden_dim, output_dim)
self.encoder = nn.Sequential(
nn.Conv2d(3, 32, kernel_size = 4, stride = 2),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size = 4, stride = 2),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size = 4, stride = 2),
nn.Flatten(1),
nn.Linear(4 * 64, value_dim)
) if not exists(encoder) else encoder
self.to_confidence = nn.Linear(1, 1)
def forward(self, images):
b = images.shape[1]
Mk = None
Mv = None
hx, cx, kx, k0 = map_fn(repeat, 'd -> b d', b = b)(self.h0, self.c0, self.k0, self.k0)
out = []
for ind, image in enumerate(images):
is_first = ind == 0
z = self.encoder(image)
hx, cx = self.rnn(kx, (hx, cx))
y, g, kw = self.to_output(hx), self.to_gate(hx), self.to_key(hx)
if is_first:
kx = k0
else:
# attention
sim = einsum('b n d, b d -> b n', Mv, z)
wk = sim.softmax(dim = -1)
# calculate confidence
sim, wk = map_fn(rearrange, 'b n -> b n ()')(sim, wk)
ck = self.to_confidence(sim).sigmoid()
# concat confidence to memory keys
# then weighted sum of all memory keys by attention of memory values
kx = g.sigmoid() * (wk * torch.cat((Mk, ck), dim = -1)).sum(dim = 1)
kw, z = map_fn(rearrange, 'b d -> b () d')(kw, z)
Mk = safe_cat(Mk, kw, dim = 1)
Mv = safe_cat(Mv, z, dim = 1)
out.append(y)
return torch.stack(out)
|
ESBN-pytorch-main
|
esbn_pytorch/esbn_pytorch.py
|
from setuptools import setup, find_packages
setup(
name = 'pixel-level-contrastive-learning',
packages = find_packages(),
version = '0.1.1',
license='MIT',
description = 'Pixel-Level Contrastive Learning',
author = 'Phil Wang',
author_email = 'lucidrains@gmail.com',
url = 'https://github.com/lucidrains/pixel-level-contrastive-learning',
keywords = ['self-supervised learning', 'artificial intelligence'],
install_requires=[
'einops',
'torch>=1.6',
'kornia>=0.4.0'
],
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.6',
],
)
|
pixel-level-contrastive-learning-main
|
setup.py
|
import math
import copy
import random
from functools import wraps, partial
from math import floor
import torch
from torch import nn, einsum
import torch.nn.functional as F
from kornia import augmentation as augs
from kornia import filters, color
from einops import rearrange
# helper functions
def identity(t):
return t
def default(val, def_val):
return def_val if val is None else val
def rand_true(prob):
return random.random() < prob
def singleton(cache_key):
def inner_fn(fn):
@wraps(fn)
def wrapper(self, *args, **kwargs):
instance = getattr(self, cache_key)
if instance is not None:
return instance
instance = fn(self, *args, **kwargs)
setattr(self, cache_key, instance)
return instance
return wrapper
return inner_fn
def get_module_device(module):
return next(module.parameters()).device
def set_requires_grad(model, val):
for p in model.parameters():
p.requires_grad = val
def cutout_coordinates(image, ratio_range = (0.6, 0.8)):
_, _, orig_h, orig_w = image.shape
ratio_lo, ratio_hi = ratio_range
random_ratio = ratio_lo + random.random() * (ratio_hi - ratio_lo)
w, h = floor(random_ratio * orig_w), floor(random_ratio * orig_h)
coor_x = floor((orig_w - w) * random.random())
coor_y = floor((orig_h - h) * random.random())
return ((coor_y, coor_y + h), (coor_x, coor_x + w)), random_ratio
def cutout_and_resize(image, coordinates, output_size = None, mode = 'nearest'):
shape = image.shape
output_size = default(output_size, shape[2:])
(y0, y1), (x0, x1) = coordinates
cutout_image = image[:, :, y0:y1, x0:x1]
return F.interpolate(cutout_image, size = output_size, mode = mode)
# augmentation utils
class RandomApply(nn.Module):
def __init__(self, fn, p):
super().__init__()
self.fn = fn
self.p = p
def forward(self, x):
if random.random() > self.p:
return x
return self.fn(x)
# exponential moving average
class EMA():
def __init__(self, beta):
super().__init__()
self.beta = beta
def update_average(self, old, new):
if old is None:
return new
return old * self.beta + (1 - self.beta) * new
def update_moving_average(ema_updater, ma_model, current_model):
for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
old_weight, up_weight = ma_params.data, current_params.data
ma_params.data = ema_updater.update_average(old_weight, up_weight)
# loss fn
def loss_fn(x, y):
x = F.normalize(x, dim=-1, p=2)
y = F.normalize(y, dim=-1, p=2)
return 2 - 2 * (x * y).sum(dim=-1)
# classes
class MLP(nn.Module):
def __init__(self, chan, chan_out = 256, inner_dim = 2048):
super().__init__()
self.net = nn.Sequential(
nn.Linear(chan, inner_dim),
nn.BatchNorm1d(inner_dim),
nn.ReLU(),
nn.Linear(inner_dim, chan_out)
)
def forward(self, x):
return self.net(x)
class ConvMLP(nn.Module):
def __init__(self, chan, chan_out = 256, inner_dim = 2048):
super().__init__()
self.net = nn.Sequential(
nn.Conv2d(chan, inner_dim, 1),
nn.BatchNorm2d(inner_dim),
nn.ReLU(),
nn.Conv2d(inner_dim, chan_out, 1)
)
def forward(self, x):
return self.net(x)
class PPM(nn.Module):
def __init__(
self,
*,
chan,
num_layers = 1,
gamma = 2):
super().__init__()
self.gamma = gamma
if num_layers == 0:
self.transform_net = nn.Identity()
elif num_layers == 1:
self.transform_net = nn.Conv2d(chan, chan, 1)
elif num_layers == 2:
self.transform_net = nn.Sequential(
nn.Conv2d(chan, chan, 1),
nn.BatchNorm2d(chan),
nn.ReLU(),
nn.Conv2d(chan, chan, 1)
)
else:
raise ValueError('num_layers must be one of 0, 1, or 2')
def forward(self, x):
xi = x[:, :, :, :, None, None]
xj = x[:, :, None, None, :, :]
similarity = F.relu(F.cosine_similarity(xi, xj, dim = 1)) ** self.gamma
transform_out = self.transform_net(x)
out = einsum('b x y h w, b c h w -> b c x y', similarity, transform_out)
return out
# a wrapper class for the base neural network
# will manage the interception of the hidden layer output
# and pipe it into the projecter and predictor nets
class NetWrapper(nn.Module):
def __init__(
self,
*,
net,
projection_size,
projection_hidden_size,
layer_pixel = -2,
layer_instance = -2
):
super().__init__()
self.net = net
self.layer_pixel = layer_pixel
self.layer_instance = layer_instance
self.pixel_projector = None
self.instance_projector = None
self.projection_size = projection_size
self.projection_hidden_size = projection_hidden_size
self.hidden_pixel = None
self.hidden_instance = None
self.hook_registered = False
def _find_layer(self, layer_id):
if type(layer_id) == str:
modules = dict([*self.net.named_modules()])
return modules.get(layer_id, None)
elif type(layer_id) == int:
children = [*self.net.children()]
return children[layer_id]
return None
def _hook_pixel(self, _, __, output):
setattr(self, 'hidden_pixel', output)
def _hook_instance(self, _, __, output):
setattr(self, 'hidden_instance', output)
def _register_hook(self):
pixel_layer = self._find_layer(self.layer_pixel)
instance_layer = self._find_layer(self.layer_instance)
assert pixel_layer is not None, f'hidden layer ({self.layer_pixel}) not found'
assert instance_layer is not None, f'hidden layer ({self.layer_instance}) not found'
pixel_layer.register_forward_hook(self._hook_pixel)
instance_layer.register_forward_hook(self._hook_instance)
self.hook_registered = True
@singleton('pixel_projector')
def _get_pixel_projector(self, hidden):
_, dim, *_ = hidden.shape
projector = ConvMLP(dim, self.projection_size, self.projection_hidden_size)
return projector.to(hidden)
@singleton('instance_projector')
def _get_instance_projector(self, hidden):
_, dim = hidden.shape
projector = MLP(dim, self.projection_size, self.projection_hidden_size)
return projector.to(hidden)
def get_representation(self, x):
if not self.hook_registered:
self._register_hook()
_ = self.net(x)
hidden_pixel = self.hidden_pixel
hidden_instance = self.hidden_instance
self.hidden_pixel = None
self.hidden_instance = None
assert hidden_pixel is not None, f'hidden pixel layer {self.layer_pixel} never emitted an output'
assert hidden_instance is not None, f'hidden instance layer {self.layer_instance} never emitted an output'
return hidden_pixel, hidden_instance
def forward(self, x):
pixel_representation, instance_representation = self.get_representation(x)
instance_representation = instance_representation.flatten(1)
pixel_projector = self._get_pixel_projector(pixel_representation)
instance_projector = self._get_instance_projector(instance_representation)
pixel_projection = pixel_projector(pixel_representation)
instance_projection = instance_projector(instance_representation)
return pixel_projection, instance_projection
# main class
class PixelCL(nn.Module):
def __init__(
self,
net,
image_size,
hidden_layer_pixel = -2,
hidden_layer_instance = -2,
projection_size = 256,
projection_hidden_size = 2048,
augment_fn = None,
augment_fn2 = None,
prob_rand_hflip = 0.25,
moving_average_decay = 0.99,
ppm_num_layers = 1,
ppm_gamma = 2,
distance_thres = 0.7,
similarity_temperature = 0.3,
alpha = 1.,
use_pixpro = True,
cutout_ratio_range = (0.6, 0.8),
cutout_interpolate_mode = 'nearest',
coord_cutout_interpolate_mode = 'bilinear'
):
super().__init__()
DEFAULT_AUG = nn.Sequential(
RandomApply(augs.ColorJitter(0.8, 0.8, 0.8, 0.2), p=0.8),
augs.RandomGrayscale(p=0.2),
RandomApply(filters.GaussianBlur2d((3, 3), (1.5, 1.5)), p=0.1),
augs.RandomSolarize(p=0.5),
augs.Normalize(mean=torch.tensor([0.485, 0.456, 0.406]), std=torch.tensor([0.229, 0.224, 0.225]))
)
self.augment1 = default(augment_fn, DEFAULT_AUG)
self.augment2 = default(augment_fn2, self.augment1)
self.prob_rand_hflip = prob_rand_hflip
self.online_encoder = NetWrapper(
net = net,
projection_size = projection_size,
projection_hidden_size = projection_hidden_size,
layer_pixel = hidden_layer_pixel,
layer_instance = hidden_layer_instance
)
self.target_encoder = None
self.target_ema_updater = EMA(moving_average_decay)
self.distance_thres = distance_thres
self.similarity_temperature = similarity_temperature
self.alpha = alpha
self.use_pixpro = use_pixpro
if use_pixpro:
self.propagate_pixels = PPM(
chan = projection_size,
num_layers = ppm_num_layers,
gamma = ppm_gamma
)
self.cutout_ratio_range = cutout_ratio_range
self.cutout_interpolate_mode = cutout_interpolate_mode
self.coord_cutout_interpolate_mode = coord_cutout_interpolate_mode
# instance level predictor
self.online_predictor = MLP(projection_size, projection_size, projection_hidden_size)
# get device of network and make wrapper same device
device = get_module_device(net)
self.to(device)
# send a mock image tensor to instantiate singleton parameters
self.forward(torch.randn(2, 3, image_size, image_size, device=device))
@singleton('target_encoder')
def _get_target_encoder(self):
target_encoder = copy.deepcopy(self.online_encoder)
set_requires_grad(target_encoder, False)
return target_encoder
def reset_moving_average(self):
del self.target_encoder
self.target_encoder = None
def update_moving_average(self):
assert self.target_encoder is not None, 'target encoder has not been created yet'
update_moving_average(self.target_ema_updater, self.target_encoder, self.online_encoder)
def forward(self, x, return_positive_pairs = False):
shape, device, prob_flip = x.shape, x.device, self.prob_rand_hflip
rand_flip_fn = lambda t: torch.flip(t, dims = (-1,))
flip_image_one, flip_image_two = rand_true(prob_flip), rand_true(prob_flip)
flip_image_one_fn = rand_flip_fn if flip_image_one else identity
flip_image_two_fn = rand_flip_fn if flip_image_two else identity
cutout_coordinates_one, _ = cutout_coordinates(x, self.cutout_ratio_range)
cutout_coordinates_two, _ = cutout_coordinates(x, self.cutout_ratio_range)
image_one_cutout = cutout_and_resize(x, cutout_coordinates_one, mode = self.cutout_interpolate_mode)
image_two_cutout = cutout_and_resize(x, cutout_coordinates_two, mode = self.cutout_interpolate_mode)
image_one_cutout = flip_image_one_fn(image_one_cutout)
image_two_cutout = flip_image_two_fn(image_two_cutout)
image_one_cutout, image_two_cutout = self.augment1(image_one_cutout), self.augment2(image_two_cutout)
proj_pixel_one, proj_instance_one = self.online_encoder(image_one_cutout)
proj_pixel_two, proj_instance_two = self.online_encoder(image_two_cutout)
image_h, image_w = shape[2:]
proj_image_shape = proj_pixel_one.shape[2:]
proj_image_h, proj_image_w = proj_image_shape
coordinates = torch.meshgrid(
torch.arange(image_h, device = device),
torch.arange(image_w, device = device)
)
coordinates = torch.stack(coordinates).unsqueeze(0).float()
coordinates /= math.sqrt(image_h ** 2 + image_w ** 2)
coordinates[:, 0] *= proj_image_h
coordinates[:, 1] *= proj_image_w
proj_coors_one = cutout_and_resize(coordinates, cutout_coordinates_one, output_size = proj_image_shape, mode = self.coord_cutout_interpolate_mode)
proj_coors_two = cutout_and_resize(coordinates, cutout_coordinates_two, output_size = proj_image_shape, mode = self.coord_cutout_interpolate_mode)
proj_coors_one = flip_image_one_fn(proj_coors_one)
proj_coors_two = flip_image_two_fn(proj_coors_two)
proj_coors_one, proj_coors_two = map(lambda t: rearrange(t, 'b c h w -> (b h w) c'), (proj_coors_one, proj_coors_two))
pdist = nn.PairwiseDistance(p = 2)
num_pixels = proj_coors_one.shape[0]
proj_coors_one_expanded = proj_coors_one[:, None].expand(num_pixels, num_pixels, -1).reshape(num_pixels * num_pixels, 2)
proj_coors_two_expanded = proj_coors_two[None, :].expand(num_pixels, num_pixels, -1).reshape(num_pixels * num_pixels, 2)
distance_matrix = pdist(proj_coors_one_expanded, proj_coors_two_expanded)
distance_matrix = distance_matrix.reshape(num_pixels, num_pixels)
positive_mask_one_two = distance_matrix < self.distance_thres
positive_mask_two_one = positive_mask_one_two.t()
with torch.no_grad():
target_encoder = self._get_target_encoder()
target_proj_pixel_one, target_proj_instance_one = target_encoder(image_one_cutout)
target_proj_pixel_two, target_proj_instance_two = target_encoder(image_two_cutout)
# flatten all the pixel projections
flatten = lambda t: rearrange(t, 'b c h w -> b c (h w)')
target_proj_pixel_one, target_proj_pixel_two = list(map(flatten, (target_proj_pixel_one, target_proj_pixel_two)))
# get total number of positive pixel pairs
positive_pixel_pairs = positive_mask_one_two.sum()
# get instance level loss
pred_instance_one = self.online_predictor(proj_instance_one)
pred_instance_two = self.online_predictor(proj_instance_two)
loss_instance_one = loss_fn(pred_instance_one, target_proj_instance_two.detach())
loss_instance_two = loss_fn(pred_instance_two, target_proj_instance_one.detach())
instance_loss = (loss_instance_one + loss_instance_two).mean()
if positive_pixel_pairs == 0:
ret = (instance_loss, 0) if return_positive_pairs else instance_loss
return ret
if not self.use_pixpro:
# calculate pix contrast loss
proj_pixel_one, proj_pixel_two = list(map(flatten, (proj_pixel_one, proj_pixel_two)))
similarity_one_two = F.cosine_similarity(proj_pixel_one[..., :, None], target_proj_pixel_two[..., None, :], dim = 1) / self.similarity_temperature
similarity_two_one = F.cosine_similarity(proj_pixel_two[..., :, None], target_proj_pixel_one[..., None, :], dim = 1) / self.similarity_temperature
loss_pix_one_two = -torch.log(
similarity_one_two.masked_select(positive_mask_one_two[None, ...]).exp().sum() /
similarity_one_two.exp().sum()
)
loss_pix_two_one = -torch.log(
similarity_two_one.masked_select(positive_mask_two_one[None, ...]).exp().sum() /
similarity_two_one.exp().sum()
)
pix_loss = (loss_pix_one_two + loss_pix_two_one) / 2
else:
# calculate pix pro loss
propagated_pixels_one = self.propagate_pixels(proj_pixel_one)
propagated_pixels_two = self.propagate_pixels(proj_pixel_two)
propagated_pixels_one, propagated_pixels_two = list(map(flatten, (propagated_pixels_one, propagated_pixels_two)))
propagated_similarity_one_two = F.cosine_similarity(propagated_pixels_one[..., :, None], target_proj_pixel_two[..., None, :], dim = 1)
propagated_similarity_two_one = F.cosine_similarity(propagated_pixels_two[..., :, None], target_proj_pixel_one[..., None, :], dim = 1)
loss_pixpro_one_two = - propagated_similarity_one_two.masked_select(positive_mask_one_two[None, ...]).mean()
loss_pixpro_two_one = - propagated_similarity_two_one.masked_select(positive_mask_two_one[None, ...]).mean()
pix_loss = (loss_pixpro_one_two + loss_pixpro_two_one) / 2
# total loss
loss = pix_loss * self.alpha + instance_loss
ret = (loss, positive_pixel_pairs) if return_positive_pairs else loss
return ret
|
pixel-level-contrastive-learning-main
|
pixel_level_contrastive_learning/pixel_level_contrastive_learning.py
|
from pixel_level_contrastive_learning.pixel_level_contrastive_learning import PPM, PixelCL
|
pixel-level-contrastive-learning-main
|
pixel_level_contrastive_learning/__init__.py
|
from setuptools import setup, find_packages
setup(
name = 'byol-pytorch',
packages = find_packages(exclude=['examples']),
version = '0.6.0',
license='MIT',
description = 'Self-supervised contrastive learning made simple',
author = 'Phil Wang',
author_email = 'lucidrains@gmail.com',
url = 'https://github.com/lucidrains/byol-pytorch',
keywords = [
'self-supervised learning',
'artificial intelligence'
],
install_requires=[
'torch>=1.6',
'torchvision>=0.8'
],
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.6',
],
)
|
byol-pytorch-master
|
setup.py
|
from byol_pytorch.byol_pytorch import BYOL
|
byol-pytorch-master
|
byol_pytorch/__init__.py
|
import copy
import random
from functools import wraps
import torch
from torch import nn
import torch.nn.functional as F
from torchvision import transforms as T
# helper functions
def default(val, def_val):
return def_val if val is None else val
def flatten(t):
return t.reshape(t.shape[0], -1)
def singleton(cache_key):
def inner_fn(fn):
@wraps(fn)
def wrapper(self, *args, **kwargs):
instance = getattr(self, cache_key)
if instance is not None:
return instance
instance = fn(self, *args, **kwargs)
setattr(self, cache_key, instance)
return instance
return wrapper
return inner_fn
def get_module_device(module):
return next(module.parameters()).device
def set_requires_grad(model, val):
for p in model.parameters():
p.requires_grad = val
# loss fn
def loss_fn(x, y):
x = F.normalize(x, dim=-1, p=2)
y = F.normalize(y, dim=-1, p=2)
return 2 - 2 * (x * y).sum(dim=-1)
# augmentation utils
class RandomApply(nn.Module):
def __init__(self, fn, p):
super().__init__()
self.fn = fn
self.p = p
def forward(self, x):
if random.random() > self.p:
return x
return self.fn(x)
# exponential moving average
class EMA():
def __init__(self, beta):
super().__init__()
self.beta = beta
def update_average(self, old, new):
if old is None:
return new
return old * self.beta + (1 - self.beta) * new
def update_moving_average(ema_updater, ma_model, current_model):
for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
old_weight, up_weight = ma_params.data, current_params.data
ma_params.data = ema_updater.update_average(old_weight, up_weight)
# MLP class for projector and predictor
def MLP(dim, projection_size, hidden_size=4096):
return nn.Sequential(
nn.Linear(dim, hidden_size),
nn.BatchNorm1d(hidden_size),
nn.ReLU(inplace=True),
nn.Linear(hidden_size, projection_size)
)
def SimSiamMLP(dim, projection_size, hidden_size=4096):
return nn.Sequential(
nn.Linear(dim, hidden_size, bias=False),
nn.BatchNorm1d(hidden_size),
nn.ReLU(inplace=True),
nn.Linear(hidden_size, hidden_size, bias=False),
nn.BatchNorm1d(hidden_size),
nn.ReLU(inplace=True),
nn.Linear(hidden_size, projection_size, bias=False),
nn.BatchNorm1d(projection_size, affine=False)
)
# a wrapper class for the base neural network
# will manage the interception of the hidden layer output
# and pipe it into the projecter and predictor nets
class NetWrapper(nn.Module):
def __init__(self, net, projection_size, projection_hidden_size, layer = -2, use_simsiam_mlp = False):
super().__init__()
self.net = net
self.layer = layer
self.projector = None
self.projection_size = projection_size
self.projection_hidden_size = projection_hidden_size
self.use_simsiam_mlp = use_simsiam_mlp
self.hidden = {}
self.hook_registered = False
def _find_layer(self):
if type(self.layer) == str:
modules = dict([*self.net.named_modules()])
return modules.get(self.layer, None)
elif type(self.layer) == int:
children = [*self.net.children()]
return children[self.layer]
return None
def _hook(self, _, input, output):
device = input[0].device
self.hidden[device] = flatten(output)
def _register_hook(self):
layer = self._find_layer()
assert layer is not None, f'hidden layer ({self.layer}) not found'
handle = layer.register_forward_hook(self._hook)
self.hook_registered = True
@singleton('projector')
def _get_projector(self, hidden):
_, dim = hidden.shape
create_mlp_fn = MLP if not self.use_simsiam_mlp else SimSiamMLP
projector = create_mlp_fn(dim, self.projection_size, self.projection_hidden_size)
return projector.to(hidden)
def get_representation(self, x):
if self.layer == -1:
return self.net(x)
if not self.hook_registered:
self._register_hook()
self.hidden.clear()
_ = self.net(x)
hidden = self.hidden[x.device]
self.hidden.clear()
assert hidden is not None, f'hidden layer {self.layer} never emitted an output'
return hidden
def forward(self, x, return_projection = True):
representation = self.get_representation(x)
if not return_projection:
return representation
projector = self._get_projector(representation)
projection = projector(representation)
return projection, representation
# main class
class BYOL(nn.Module):
def __init__(
self,
net,
image_size,
hidden_layer = -2,
projection_size = 256,
projection_hidden_size = 4096,
augment_fn = None,
augment_fn2 = None,
moving_average_decay = 0.99,
use_momentum = True
):
super().__init__()
self.net = net
# default SimCLR augmentation
DEFAULT_AUG = torch.nn.Sequential(
RandomApply(
T.ColorJitter(0.8, 0.8, 0.8, 0.2),
p = 0.3
),
T.RandomGrayscale(p=0.2),
T.RandomHorizontalFlip(),
RandomApply(
T.GaussianBlur((3, 3), (1.0, 2.0)),
p = 0.2
),
T.RandomResizedCrop((image_size, image_size)),
T.Normalize(
mean=torch.tensor([0.485, 0.456, 0.406]),
std=torch.tensor([0.229, 0.224, 0.225])),
)
self.augment1 = default(augment_fn, DEFAULT_AUG)
self.augment2 = default(augment_fn2, self.augment1)
self.online_encoder = NetWrapper(net, projection_size, projection_hidden_size, layer=hidden_layer, use_simsiam_mlp=not use_momentum)
self.use_momentum = use_momentum
self.target_encoder = None
self.target_ema_updater = EMA(moving_average_decay)
self.online_predictor = MLP(projection_size, projection_size, projection_hidden_size)
# get device of network and make wrapper same device
device = get_module_device(net)
self.to(device)
# send a mock image tensor to instantiate singleton parameters
self.forward(torch.randn(2, 3, image_size, image_size, device=device))
@singleton('target_encoder')
def _get_target_encoder(self):
target_encoder = copy.deepcopy(self.online_encoder)
set_requires_grad(target_encoder, False)
return target_encoder
def reset_moving_average(self):
del self.target_encoder
self.target_encoder = None
def update_moving_average(self):
assert self.use_momentum, 'you do not need to update the moving average, since you have turned off momentum for the target encoder'
assert self.target_encoder is not None, 'target encoder has not been created yet'
update_moving_average(self.target_ema_updater, self.target_encoder, self.online_encoder)
def forward(
self,
x,
return_embedding = False,
return_projection = True
):
assert not (self.training and x.shape[0] == 1), 'you must have greater than 1 sample when training, due to the batchnorm in the projection layer'
if return_embedding:
return self.online_encoder(x, return_projection = return_projection)
image_one, image_two = self.augment1(x), self.augment2(x)
online_proj_one, _ = self.online_encoder(image_one)
online_proj_two, _ = self.online_encoder(image_two)
online_pred_one = self.online_predictor(online_proj_one)
online_pred_two = self.online_predictor(online_proj_two)
with torch.no_grad():
target_encoder = self._get_target_encoder() if self.use_momentum else self.online_encoder
target_proj_one, _ = target_encoder(image_one)
target_proj_two, _ = target_encoder(image_two)
target_proj_one.detach_()
target_proj_two.detach_()
loss_one = loss_fn(online_pred_one, target_proj_two.detach())
loss_two = loss_fn(online_pred_two, target_proj_one.detach())
loss = loss_one + loss_two
return loss.mean()
|
byol-pytorch-master
|
byol_pytorch/byol_pytorch.py
|
import os
import argparse
import multiprocessing
from pathlib import Path
from PIL import Image
import torch
from torchvision import models, transforms
from torch.utils.data import DataLoader, Dataset
from byol_pytorch import BYOL
import pytorch_lightning as pl
# test model, a resnet 50
resnet = models.resnet50(pretrained=True)
# arguments
parser = argparse.ArgumentParser(description='byol-lightning-test')
parser.add_argument('--image_folder', type=str, required = True,
help='path to your folder of images for self-supervised learning')
args = parser.parse_args()
# constants
BATCH_SIZE = 32
EPOCHS = 1000
LR = 3e-4
NUM_GPUS = 2
IMAGE_SIZE = 256
IMAGE_EXTS = ['.jpg', '.png', '.jpeg']
NUM_WORKERS = multiprocessing.cpu_count()
# pytorch lightning module
class SelfSupervisedLearner(pl.LightningModule):
def __init__(self, net, **kwargs):
super().__init__()
self.learner = BYOL(net, **kwargs)
def forward(self, images):
return self.learner(images)
def training_step(self, images, _):
loss = self.forward(images)
return {'loss': loss}
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=LR)
def on_before_zero_grad(self, _):
if self.learner.use_momentum:
self.learner.update_moving_average()
# images dataset
def expand_greyscale(t):
return t.expand(3, -1, -1)
class ImagesDataset(Dataset):
def __init__(self, folder, image_size):
super().__init__()
self.folder = folder
self.paths = []
for path in Path(f'{folder}').glob('**/*'):
_, ext = os.path.splitext(path)
if ext.lower() in IMAGE_EXTS:
self.paths.append(path)
print(f'{len(self.paths)} images found')
self.transform = transforms.Compose([
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Lambda(expand_greyscale)
])
def __len__(self):
return len(self.paths)
def __getitem__(self, index):
path = self.paths[index]
img = Image.open(path)
img = img.convert('RGB')
return self.transform(img)
# main
if __name__ == '__main__':
ds = ImagesDataset(args.image_folder, IMAGE_SIZE)
train_loader = DataLoader(ds, batch_size=BATCH_SIZE, num_workers=NUM_WORKERS, shuffle=True)
model = SelfSupervisedLearner(
resnet,
image_size = IMAGE_SIZE,
hidden_layer = 'avgpool',
projection_size = 256,
projection_hidden_size = 4096,
moving_average_decay = 0.99
)
trainer = pl.Trainer(
gpus = NUM_GPUS,
max_epochs = EPOCHS,
accumulate_grad_batches = 1,
sync_batchnorm = True
)
trainer.fit(model, train_loader)
|
byol-pytorch-master
|
examples/lightning/train.py
|
from setuptools import setup, find_packages
setup(
name = 'perceiver-pytorch',
packages = find_packages(),
version = '0.8.8',
license='MIT',
description = 'Perceiver - Pytorch',
long_description_content_type = 'text/markdown',
author = 'Phil Wang',
author_email = 'lucidrains@gmail.com',
url = 'https://github.com/lucidrains/perceiver-pytorch',
keywords = [
'artificial intelligence',
'deep learning',
'transformer',
'attention mechanism'
],
install_requires=[
'einops>=0.3',
'torch>=1.6'
],
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Developers',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 3.6',
],
)
|
perceiver-pytorch-main
|
setup.py
|
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat
from perceiver_pytorch.perceiver_pytorch import exists, default, cache_fn, fourier_encode, PreNorm, FeedForward, Attention
# helpers
class Residual(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x, **kwargs):
return x + self.fn(x, **kwargs)
class GRUGating(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.dim = dim
self.fn = fn
self.gru = nn.GRUCell(dim, dim)
def forward(self, x, **kwargs):
b, dim = x.shape[0], self.dim
y = self.fn(x, **kwargs)
gated_output = self.gru(
rearrange(y, '... d -> (...) d'),
rearrange(x, '... d -> (...) d')
)
gated_output = rearrange(gated_output, '(b n) d -> b n d', b = b)
return gated_output
# main class
class Perceiver(nn.Module):
def __init__(
self,
*,
num_freq_bands,
depth,
max_freq,
input_channels = 3,
input_axis = 2,
num_latents = 512,
latent_dim = 512,
cross_heads = 1,
latent_heads = 8,
cross_dim_head = 64,
latent_dim_head = 64,
num_classes = 1000,
attn_dropout = 0.,
ff_dropout = 0.,
weight_tie_layers = False
):
super().__init__()
self.input_axis = input_axis
self.max_freq = max_freq
self.num_freq_bands = num_freq_bands
input_dim = input_axis * ((num_freq_bands * 2) + 1) + input_channels
self.latents = nn.Parameter(torch.randn(num_latents, latent_dim))
get_cross_attn = lambda: GRUGating(latent_dim, PreNorm(latent_dim, Attention(latent_dim, input_dim, heads = cross_heads, dim_head = cross_dim_head, dropout = attn_dropout), context_dim = input_dim))
get_latent_attn = lambda: GRUGating(latent_dim, PreNorm(latent_dim, Attention(latent_dim, heads = latent_heads, dim_head = latent_dim_head, dropout = attn_dropout)))
get_cross_ff = lambda: Residual(PreNorm(latent_dim, FeedForward(latent_dim, dropout = ff_dropout)))
get_latent_ff = lambda: Residual(PreNorm(latent_dim, FeedForward(latent_dim, dropout = ff_dropout)))
get_cross_attn, get_cross_ff, get_latent_attn, get_latent_ff = map(cache_fn, (get_cross_attn, get_cross_ff, get_latent_attn, get_latent_ff))
self.layers = nn.ModuleList([])
for i in range(depth):
should_cache = i > 0 and weight_tie_layers
cache_args = {'_cache': should_cache}
self.layers.append(nn.ModuleList([
get_cross_attn(**cache_args),
get_cross_ff(**cache_args),
get_latent_attn(**cache_args),
get_latent_ff(**cache_args)
]))
self.to_logits = nn.Sequential(
nn.LayerNorm(latent_dim),
nn.Linear(latent_dim, num_classes)
)
def forward(self, data, mask = None):
b, *axis, _, device = *data.shape, data.device
assert len(axis) == self.input_axis, 'input data must have the right number of axis'
# calculate fourier encoded positions in the range of [-1, 1], for all axis
axis_pos = list(map(lambda size: torch.linspace(-1., 1., steps = size, device = device), axis))
pos = torch.stack(torch.meshgrid(*axis_pos, indexing = 'ij'), dim = -1)
enc_pos = fourier_encode(pos, self.max_freq, self.num_freq_bands)
enc_pos = rearrange(enc_pos, '... n d -> ... (n d)')
enc_pos = repeat(enc_pos, '... -> b ...', b = b)
# concat to channels of data and flatten axis
data = torch.cat((data, enc_pos), dim = -1)
data = rearrange(data, 'b ... d -> b (...) d')
x = repeat(self.latents, 'n d -> b n d', b = b)
for cross_attn, cross_ff, latent_attn, latent_ff in self.layers:
x = cross_attn(x, context = data, mask = mask)
x = cross_ff(x)
x = latent_attn(x)
x = latent_ff(x)
x = x.mean(dim = -2)
return self.to_logits(x)
|
perceiver-pytorch-main
|
perceiver_pytorch/gated.py
|
from math import pi, log
from functools import wraps
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def cache_fn(f):
cache = None
@wraps(f)
def cached_fn(*args, _cache = True, **kwargs):
if not _cache:
return f(*args, **kwargs)
nonlocal cache
if cache is not None:
return cache
cache = f(*args, **kwargs)
return cache
return cached_fn
# structured dropout, more effective than traditional attention dropouts
def dropout_seq(seq, mask, dropout):
b, n, *_, device = *seq.shape, seq.device
logits = torch.randn(b, n, device = device)
if exists(mask):
logits = logits.masked_fill(~mask, -torch.finfo(logits.dtype).max)
keep_prob = 1. - dropout
num_keep = max(1, int(keep_prob * n))
keep_indices = logits.topk(num_keep, dim = 1).indices
batch_indices = torch.arange(b, device = device)
batch_indices = rearrange(batch_indices, 'b -> b 1')
seq = seq[batch_indices, keep_indices]
if exists(mask):
seq_counts = mask.sum(dim = -1)
seq_keep_counts = torch.ceil(seq_counts * keep_prob).int()
keep_mask = torch.arange(num_keep, device = device) < rearrange(seq_keep_counts, 'b -> b 1')
mask = mask[batch_indices, keep_indices] & keep_mask
return seq, mask
# helper classes
class PreNorm(nn.Module):
def __init__(self, dim, fn, context_dim = None):
super().__init__()
self.fn = fn
self.norm = nn.LayerNorm(dim)
self.norm_context = nn.LayerNorm(context_dim) if exists(context_dim) else None
def forward(self, x, **kwargs):
x = self.norm(x)
if exists(self.norm_context):
context = kwargs['context']
normed_context = self.norm_context(context)
kwargs.update(context = normed_context)
return self.fn(x, **kwargs)
class GEGLU(nn.Module):
def forward(self, x):
x, gates = x.chunk(2, dim = -1)
return x * F.gelu(gates)
class FeedForward(nn.Module):
def __init__(self, dim, mult = 4):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, dim * mult * 2),
GEGLU(),
nn.Linear(dim * mult, dim)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, query_dim, context_dim = None, heads = 8, dim_head = 64):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.scale = dim_head ** -0.5
self.heads = heads
self.to_q = nn.Linear(query_dim, inner_dim, bias = False)
self.to_kv = nn.Linear(context_dim, inner_dim * 2, bias = False)
self.to_out = nn.Linear(inner_dim, query_dim)
def forward(self, x, context = None, mask = None):
h = self.heads
q = self.to_q(x)
context = default(context, x)
k, v = self.to_kv(context).chunk(2, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), (q, k, v))
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
if exists(mask):
mask = rearrange(mask, 'b ... -> b (...)')
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b j -> (b h) () j', h = h)
sim.masked_fill_(~mask, max_neg_value)
# attention, what we cannot get enough of
attn = sim.softmax(dim = -1)
out = einsum('b i j, b j d -> b i d', attn, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h = h)
return self.to_out(out)
# main class
class PerceiverIO(nn.Module):
def __init__(
self,
*,
depth,
dim,
queries_dim,
logits_dim = None,
num_latents = 512,
latent_dim = 512,
cross_heads = 1,
latent_heads = 8,
cross_dim_head = 64,
latent_dim_head = 64,
weight_tie_layers = False,
decoder_ff = False,
seq_dropout_prob = 0.
):
super().__init__()
self.seq_dropout_prob = seq_dropout_prob
self.latents = nn.Parameter(torch.randn(num_latents, latent_dim))
self.cross_attend_blocks = nn.ModuleList([
PreNorm(latent_dim, Attention(latent_dim, dim, heads = cross_heads, dim_head = cross_dim_head), context_dim = dim),
PreNorm(latent_dim, FeedForward(latent_dim))
])
get_latent_attn = lambda: PreNorm(latent_dim, Attention(latent_dim, heads = latent_heads, dim_head = latent_dim_head))
get_latent_ff = lambda: PreNorm(latent_dim, FeedForward(latent_dim))
get_latent_attn, get_latent_ff = map(cache_fn, (get_latent_attn, get_latent_ff))
self.layers = nn.ModuleList([])
cache_args = {'_cache': weight_tie_layers}
for i in range(depth):
self.layers.append(nn.ModuleList([
get_latent_attn(**cache_args),
get_latent_ff(**cache_args)
]))
self.decoder_cross_attn = PreNorm(queries_dim, Attention(queries_dim, latent_dim, heads = cross_heads, dim_head = cross_dim_head), context_dim = latent_dim)
self.decoder_ff = PreNorm(queries_dim, FeedForward(queries_dim)) if decoder_ff else None
self.to_logits = nn.Linear(queries_dim, logits_dim) if exists(logits_dim) else nn.Identity()
def forward(
self,
data,
mask = None,
queries = None
):
b, *_, device = *data.shape, data.device
x = repeat(self.latents, 'n d -> b n d', b = b)
cross_attn, cross_ff = self.cross_attend_blocks
# structured dropout (as done in perceiver AR https://arxiv.org/abs/2202.07765)
if self.training and self.seq_dropout_prob > 0.:
data, mask = dropout_seq(data, mask, self.seq_dropout_prob)
# cross attention only happens once for Perceiver IO
x = cross_attn(x, context = data, mask = mask) + x
x = cross_ff(x) + x
# layers
for self_attn, self_ff in self.layers:
x = self_attn(x) + x
x = self_ff(x) + x
if not exists(queries):
return x
# make sure queries contains batch dimension
if queries.ndim == 2:
queries = repeat(queries, 'n d -> b n d', b = b)
# cross attend from decoder queries to latents
latents = self.decoder_cross_attn(queries, context = x)
# optional decoder feedforward
if exists(self.decoder_ff):
latents = latents + self.decoder_ff(latents)
# final linear out
return self.to_logits(latents)
# Perceiver LM example
class PerceiverLM(nn.Module):
def __init__(
self,
*,
dim,
num_tokens,
max_seq_len,
**kwargs
):
super().__init__()
self.token_emb = nn.Embedding(num_tokens, dim)
self.pos_emb = nn.Embedding(max_seq_len, dim)
self.perceiver_io = PerceiverIO(
dim = dim,
queries_dim = dim,
logits_dim = num_tokens,
**kwargs
)
def forward(
self,
x,
mask = None
):
n, device = x.shape[1], x.device
x = self.token_emb(x)
pos_emb = self.pos_emb(torch.arange(n, device = device))
pos_emb = rearrange(pos_emb, 'n d -> () n d')
x = x + pos_emb
logits = self.perceiver_io(x, mask = mask, queries = x)
return logits
|
perceiver-pytorch-main
|
perceiver_pytorch/perceiver_io.py
|
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat
from perceiver_pytorch.perceiver_pytorch import exists, default, cache_fn, fourier_encode, PreNorm, FeedForward, Attention
# linear attention
class LinearAttention(nn.Module):
def __init__(
self,
dim,
*,
heads = 4,
dim_head = 64,
dropout = 0.
):
super().__init__()
inner_dim = heads * dim_head
self.heads = heads
self.scale = dim_head ** -0.5
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x, mask = None):
h = self.heads
q, k, v = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), (q, k, v))
q = q * self.scale
q, k = q.softmax(dim = -1), k.softmax(dim = -2)
if exists(mask):
k.masked_fill_(mask, 0.)
context = einsum('b n d, b n e -> b d e', q, k)
out = einsum('b d e, b n d -> b n e', context, v)
out = rearrange(out, ' (b h) n d -> b n (h d)', h = h)
return self.to_out(out)
# main class
class Perceiver(nn.Module):
def __init__(
self,
*,
num_freq_bands,
depth,
max_freq,
input_channels = 3,
input_axis = 2,
num_latents = 512,
latent_dim = 512,
cross_heads = 1,
latent_heads = 8,
cross_dim_head = 64,
latent_dim_head = 64,
num_classes = 1000,
attn_dropout = 0.,
ff_dropout = 0.,
weight_tie_layers = False,
fourier_encode_data = True
):
super().__init__()
self.input_axis = input_axis
self.max_freq = max_freq
self.num_freq_bands = num_freq_bands
self.fourier_encode_data = fourier_encode_data
input_dim = input_channels
if fourier_encode_data:
input_dim += input_axis * ((num_freq_bands * 2) + 1) + input_channels
self.latents = nn.Parameter(torch.randn(num_latents, latent_dim))
self.data_proj = nn.Linear(input_dim, input_dim)
get_cross_attn = lambda: PreNorm(latent_dim, Attention(latent_dim, input_dim, heads = cross_heads, dim_head = cross_dim_head, dropout = attn_dropout), context_dim = input_dim)
get_cross_ff = lambda: PreNorm(latent_dim, FeedForward(latent_dim, dropout = ff_dropout))
get_input_attn = lambda: PreNorm(input_dim, LinearAttention(input_dim, dropout = attn_dropout))
get_rev_cross_attn = lambda: PreNorm(input_dim, Attention(input_dim, latent_dim, heads = cross_heads, dim_head = cross_dim_head, dropout = attn_dropout), context_dim = latent_dim)
get_rev_cross_ff = lambda: PreNorm(input_dim, FeedForward(input_dim, dropout = ff_dropout))
get_latent_attn = lambda: PreNorm(latent_dim, Attention(latent_dim, heads = latent_heads, dim_head = latent_dim_head, dropout = attn_dropout))
get_latent_ff = lambda: PreNorm(latent_dim, FeedForward(latent_dim, dropout = ff_dropout))
get_cross_attn, get_cross_ff, get_rev_cross_attn, get_rev_cross_ff, get_input_attn, get_latent_attn, get_latent_ff = map(cache_fn, (get_cross_attn, get_cross_ff, get_rev_cross_attn, get_rev_cross_ff, get_input_attn, get_latent_attn, get_latent_ff))
self.layers = nn.ModuleList([])
for i in range(depth):
should_cache = i > 0 and weight_tie_layers
cache_args = {'_cache': should_cache}
self.layers.append(nn.ModuleList([
get_cross_attn(**cache_args),
get_cross_ff(**cache_args),
get_rev_cross_attn(**cache_args),
get_rev_cross_ff(**cache_args),
get_input_attn(**cache_args),
get_latent_attn(**cache_args),
get_latent_ff(**cache_args)
]))
self.to_logits = nn.Sequential(
nn.LayerNorm(latent_dim),
nn.Linear(latent_dim, num_classes)
)
def forward(self, data, mask = None):
b, *axis, _, device = *data.shape, data.device
assert len(axis) == self.input_axis, 'input data must have the right number of axis'
if self.fourier_encode_data:
# calculate fourier encoded positions in the range of [-1, 1], for all axis
axis_pos = list(map(lambda size: torch.linspace(-1., 1., steps = size, device = device), axis))
pos = torch.stack(torch.meshgrid(*axis_pos, indexing = 'ij'), dim = -1)
enc_pos = fourier_encode(pos, self.max_freq, self.num_freq_bands)
enc_pos = rearrange(enc_pos, '... n d -> ... (n d)')
enc_pos = repeat(enc_pos, '... -> b ...', b = b)
# concat to channels of data and flatten axis
data = torch.cat((data, enc_pos), dim = -1)
data = rearrange(data, 'b ... d -> b (...) d')
data = self.data_proj(data)
x = repeat(self.latents, 'n d -> b n d', b = b)
for i, (cross_attn, cross_ff, rev_cross_attn, rev_cross_ff, input_attn, latent_attn, latent_ff) in enumerate(self.layers):
is_last = i == (len(self.layers) - 1)
x = cross_attn(x, context = data, mask = mask) + x
x = cross_ff(x) + x
if not is_last:
data = input_attn(data, mask = mask) + data
data = rev_cross_attn(data, context = x) + data
data = rev_cross_ff(data) + data
x = latent_attn(x) + x
x = latent_ff(x) + x
x = x.mean(dim = -2)
return self.to_logits(x)
|
perceiver-pytorch-main
|
perceiver_pytorch/experimental.py
|
from perceiver_pytorch.perceiver_pytorch import Perceiver
from perceiver_pytorch.perceiver_io import PerceiverIO, PerceiverLM
|
perceiver-pytorch-main
|
perceiver_pytorch/__init__.py
|
from math import pi, log
from functools import wraps
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat
from einops.layers.torch import Reduce
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def cache_fn(f):
cache = dict()
@wraps(f)
def cached_fn(*args, _cache = True, key = None, **kwargs):
if not _cache:
return f(*args, **kwargs)
nonlocal cache
if key in cache:
return cache[key]
result = f(*args, **kwargs)
cache[key] = result
return result
return cached_fn
def fourier_encode(x, max_freq, num_bands = 4):
x = x.unsqueeze(-1)
device, dtype, orig_x = x.device, x.dtype, x
scales = torch.linspace(1., max_freq / 2, num_bands, device = device, dtype = dtype)
scales = scales[(*((None,) * (len(x.shape) - 1)), Ellipsis)]
x = x * scales * pi
x = torch.cat([x.sin(), x.cos()], dim = -1)
x = torch.cat((x, orig_x), dim = -1)
return x
# helper classes
class PreNorm(nn.Module):
def __init__(self, dim, fn, context_dim = None):
super().__init__()
self.fn = fn
self.norm = nn.LayerNorm(dim)
self.norm_context = nn.LayerNorm(context_dim) if exists(context_dim) else None
def forward(self, x, **kwargs):
x = self.norm(x)
if exists(self.norm_context):
context = kwargs['context']
normed_context = self.norm_context(context)
kwargs.update(context = normed_context)
return self.fn(x, **kwargs)
class GEGLU(nn.Module):
def forward(self, x):
x, gates = x.chunk(2, dim = -1)
return x * F.gelu(gates)
class FeedForward(nn.Module):
def __init__(self, dim, mult = 4, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, dim * mult * 2),
GEGLU(),
nn.Linear(dim * mult, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, query_dim, context_dim = None, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.scale = dim_head ** -0.5
self.heads = heads
self.to_q = nn.Linear(query_dim, inner_dim, bias = False)
self.to_kv = nn.Linear(context_dim, inner_dim * 2, bias = False)
self.dropout = nn.Dropout(dropout)
self.to_out = nn.Linear(inner_dim, query_dim)
def forward(self, x, context = None, mask = None):
h = self.heads
q = self.to_q(x)
context = default(context, x)
k, v = self.to_kv(context).chunk(2, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), (q, k, v))
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
if exists(mask):
mask = rearrange(mask, 'b ... -> b (...)')
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b j -> (b h) () j', h = h)
sim.masked_fill_(~mask, max_neg_value)
# attention, what we cannot get enough of
attn = sim.softmax(dim = -1)
attn = self.dropout(attn)
out = einsum('b i j, b j d -> b i d', attn, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h = h)
return self.to_out(out)
# main class
class Perceiver(nn.Module):
def __init__(
self,
*,
num_freq_bands,
depth,
max_freq,
input_channels = 3,
input_axis = 2,
num_latents = 512,
latent_dim = 512,
cross_heads = 1,
latent_heads = 8,
cross_dim_head = 64,
latent_dim_head = 64,
num_classes = 1000,
attn_dropout = 0.,
ff_dropout = 0.,
weight_tie_layers = False,
fourier_encode_data = True,
self_per_cross_attn = 1,
final_classifier_head = True
):
"""The shape of the final attention mechanism will be:
depth * (cross attention -> self_per_cross_attn * self attention)
Args:
num_freq_bands: Number of freq bands, with original value (2 * K + 1)
depth: Depth of net.
max_freq: Maximum frequency, hyperparameter depending on how
fine the data is.
freq_base: Base for the frequency
input_channels: Number of channels for each token of the input.
input_axis: Number of axes for input data (2 for images, 3 for video)
num_latents: Number of latents, or induced set points, or centroids.
Different papers giving it different names.
latent_dim: Latent dimension.
cross_heads: Number of heads for cross attention. Paper said 1.
latent_heads: Number of heads for latent self attention, 8.
cross_dim_head: Number of dimensions per cross attention head.
latent_dim_head: Number of dimensions per latent self attention head.
num_classes: Output number of classes.
attn_dropout: Attention dropout
ff_dropout: Feedforward dropout
weight_tie_layers: Whether to weight tie layers (optional).
fourier_encode_data: Whether to auto-fourier encode the data, using
the input_axis given. defaults to True, but can be turned off
if you are fourier encoding the data yourself.
self_per_cross_attn: Number of self attention blocks per cross attn.
final_classifier_head: mean pool and project embeddings to number of classes (num_classes) at the end
"""
super().__init__()
self.input_axis = input_axis
self.max_freq = max_freq
self.num_freq_bands = num_freq_bands
self.fourier_encode_data = fourier_encode_data
fourier_channels = (input_axis * ((num_freq_bands * 2) + 1)) if fourier_encode_data else 0
input_dim = fourier_channels + input_channels
self.latents = nn.Parameter(torch.randn(num_latents, latent_dim))
get_cross_attn = lambda: PreNorm(latent_dim, Attention(latent_dim, input_dim, heads = cross_heads, dim_head = cross_dim_head, dropout = attn_dropout), context_dim = input_dim)
get_cross_ff = lambda: PreNorm(latent_dim, FeedForward(latent_dim, dropout = ff_dropout))
get_latent_attn = lambda: PreNorm(latent_dim, Attention(latent_dim, heads = latent_heads, dim_head = latent_dim_head, dropout = attn_dropout))
get_latent_ff = lambda: PreNorm(latent_dim, FeedForward(latent_dim, dropout = ff_dropout))
get_cross_attn, get_cross_ff, get_latent_attn, get_latent_ff = map(cache_fn, (get_cross_attn, get_cross_ff, get_latent_attn, get_latent_ff))
self.layers = nn.ModuleList([])
for i in range(depth):
should_cache = i > 0 and weight_tie_layers
cache_args = {'_cache': should_cache}
self_attns = nn.ModuleList([])
for block_ind in range(self_per_cross_attn):
self_attns.append(nn.ModuleList([
get_latent_attn(**cache_args, key = block_ind),
get_latent_ff(**cache_args, key = block_ind)
]))
self.layers.append(nn.ModuleList([
get_cross_attn(**cache_args),
get_cross_ff(**cache_args),
self_attns
]))
self.to_logits = nn.Sequential(
Reduce('b n d -> b d', 'mean'),
nn.LayerNorm(latent_dim),
nn.Linear(latent_dim, num_classes)
) if final_classifier_head else nn.Identity()
def forward(
self,
data,
mask = None,
return_embeddings = False
):
b, *axis, _, device, dtype = *data.shape, data.device, data.dtype
assert len(axis) == self.input_axis, 'input data must have the right number of axis'
if self.fourier_encode_data:
# calculate fourier encoded positions in the range of [-1, 1], for all axis
axis_pos = list(map(lambda size: torch.linspace(-1., 1., steps=size, device=device, dtype=dtype), axis))
pos = torch.stack(torch.meshgrid(*axis_pos, indexing = 'ij'), dim = -1)
enc_pos = fourier_encode(pos, self.max_freq, self.num_freq_bands)
enc_pos = rearrange(enc_pos, '... n d -> ... (n d)')
enc_pos = repeat(enc_pos, '... -> b ...', b = b)
data = torch.cat((data, enc_pos), dim = -1)
# concat to channels of data and flatten axis
data = rearrange(data, 'b ... d -> b (...) d')
x = repeat(self.latents, 'n d -> b n d', b = b)
# layers
for cross_attn, cross_ff, self_attns in self.layers:
x = cross_attn(x, context = data, mask = mask) + x
x = cross_ff(x) + x
for self_attn, self_ff in self_attns:
x = self_attn(x) + x
x = self_ff(x) + x
# allow for fetching embeddings
if return_embeddings:
return x
# to logits
return self.to_logits(x)
|
perceiver-pytorch-main
|
perceiver_pytorch/perceiver_pytorch.py
|
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat
from perceiver_pytorch.perceiver_pytorch import exists, default, cache_fn, fourier_encode, PreNorm, FeedForward, Attention
# latent mixer
def Mixer(seq_len, mult = 4, dropout = 0.):
return nn.Sequential(
nn.Conv1d(seq_len, seq_len * mult, 1),
nn.GELU(),
nn.Dropout(dropout),
nn.Conv1d(seq_len * mult, seq_len, 1)
)
# main class
class Perceiver(nn.Module):
def __init__(
self,
*,
num_freq_bands,
depth,
max_freq,
input_channels = 3,
input_axis = 2,
num_latents = 512,
latent_dim = 512,
cross_heads = 1,
latent_heads = 8,
cross_dim_head = 64,
latent_dim_head = 64,
num_classes = 1000,
attn_dropout = 0.,
ff_dropout = 0.,
weight_tie_layers = False,
**kwargs
):
super().__init__()
self.input_axis = input_axis
self.max_freq = max_freq
self.num_freq_bands = num_freq_bands
input_dim = input_axis * ((num_freq_bands * 2) + 1) + input_channels
self.latents = nn.Parameter(torch.randn(num_latents, latent_dim))
get_cross_attn = lambda: PreNorm(latent_dim, Attention(latent_dim, input_dim, heads = cross_heads, dim_head = cross_dim_head, dropout = attn_dropout), context_dim = input_dim)
get_latent_attn = lambda: PreNorm(latent_dim, Mixer(num_latents, dropout = ff_dropout))
get_cross_ff = lambda: PreNorm(latent_dim, FeedForward(latent_dim, dropout = ff_dropout))
get_latent_ff = lambda: PreNorm(latent_dim, FeedForward(latent_dim, dropout = ff_dropout))
get_cross_attn, get_cross_ff, get_latent_attn, get_latent_ff = map(cache_fn, (get_cross_attn, get_cross_ff, get_latent_attn, get_latent_ff))
self.layers = nn.ModuleList([])
for i in range(depth):
should_cache = i > 0 and weight_tie_layers
cache_args = {'_cache': should_cache}
self.layers.append(nn.ModuleList([
get_cross_attn(**cache_args),
get_cross_ff(**cache_args),
get_latent_attn(**cache_args),
get_latent_ff(**cache_args)
]))
self.to_logits = nn.Sequential(
nn.LayerNorm(latent_dim),
nn.Linear(latent_dim, num_classes)
)
def forward(self, data, mask = None):
b, *axis, _, device = *data.shape, data.device
assert len(axis) == self.input_axis, 'input data must have the right number of axis'
# calculate fourier encoded positions in the range of [-1, 1], for all axis
axis_pos = list(map(lambda size: torch.linspace(-1., 1., steps = size, device = device), axis))
pos = torch.stack(torch.meshgrid(*axis_pos, indexing = 'ij'), dim = -1)
enc_pos = fourier_encode(pos, self.max_freq, self.num_freq_bands)
enc_pos = rearrange(enc_pos, '... n d -> ... (n d)')
enc_pos = repeat(enc_pos, '... -> b ...', b = b)
# concat to channels of data and flatten axis
data = torch.cat((data, enc_pos), dim = -1)
data = rearrange(data, 'b ... d -> b (...) d')
x = repeat(self.latents, 'n d -> b n d', b = b)
for cross_attn, cross_ff, latent_attn, latent_ff in self.layers:
x = cross_attn(x, context = data, mask = mask) + x
x = cross_ff(x) + x
x = latent_attn(x) + x
x = latent_ff(x) + x
x = x.mean(dim = -2)
return self.to_logits(x)
|
perceiver-pytorch-main
|
perceiver_pytorch/mixed_latents.py
|
# Copyright (c) 2015, Andrew Delong and Babak Alipanahi All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation and/or
# other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Author's note:
# This file was distributed as part of the Nature Biotechnology
# supplementary software release for DeepBind. Users of DeepBind
# are encouraged to instead use the latest source code and binaries
# for scoring sequences at
# http://tools.genes.toronto.edu/deepbind/
#
import sys
import re
import os
import os.path
import argparse
import numpy as np
import numpy.random as npr
import deepbind_util as util
import cPickle
import scipy
import shutil
# Warning: The multiprocessing module may be used indirectly, so do not put any
# unintentional statements outside of main().
datadir = "../data/encode"
seq_suffix = ".seq.gz"
def main():
util.enable_reversecomplement()
args = loadargs()
models = loadmodels(args)
trdata = None
tedata = None
tfids = load_tfids(args)
for tfid in tfids:
if "calib" in args.steps:
print "-------------- calib:", tfid, "--------------"
trdata = load_traindata(tfid, args)
util.calibrate(models, trdata, args.calibdir, nfold=args.nfold, ncalib=args.ncalib)
if "train" in args.steps:
print "-------------- train:", tfid, "--------------"
trdata = load_traindata(tfid, args)
util.train(models, trdata, args.calibdir, args.finaldir, nfold=1, ntrial=args.ntrial)
if "test" in args.steps:
tedata = load_testdata(tedata, tfids, args)
util.save_metrics(tedata, "test", args.finaldir)
if "report" in args.steps:
tedata = load_testdata(tedata, tfids, args)
util.save_featuremaps(tedata, args.finaldir, args.reportdir, maxrows=100000)
util.save_report(args.finaldir, args.reportdir, tfids)
#########################################################################
def load_tfids(args):
targetnames = sorted([filename.replace("_AC"+seq_suffix,"") for filename in os.listdir(datadir) if filename.endswith("_AC"+seq_suffix)])
chunktargets = util.getchunktargets(args, targetnames)
return chunktargets
#################################
def loadargs():
args = argparse.ArgumentParser(description="Generate the ENCODE experiments.")
args.add_argument("mode", type=str, help="Either \"top\" (train top 500 odd, test top 500 even) or \"all\" (train top 500 even + all after 1000, test top 500 even).")
args = util.parseargs("encode", args)
args.calibdir = args.calibdir.replace(args.outdir, args.outdir+"/"+args.mode)
args.finaldir = args.finaldir.replace(args.outdir, args.outdir+"/"+args.mode)
args.reportdir = args.reportdir.replace(args.outdir,args.outdir+"/"+args.mode)
args.outdir = args.outdir+"/"+args.mode
return args
#################################
def loadmodels(args):
models = util.loadmodels(args, "cfg/classification")
if args.mode == "top":
for name in models.keys():
models[name]['trainer'].max_steps = 10000 # training on top 500 never seems to need more than 10000 steps, since it's a small training set
for cfg in models.itervalues():
cfg["model"].conv_seq[0].fsize = 24 # Override default max motif length
return models
#################################
def load_traindata(tfid, args):
print "load_traindata: %s"%tfid
maxrows = 10000 if args.quick else None
minrows = 100000
trdata = util.load_seq("%s/%s_AC%s" % (datadir,tfid,seq_suffix), minrows=minrows, maxrows=maxrows)
trdata.targetnames = [tfid]
if args.mode == "top":
trdata = trdata[:500] # Only top 500 even peaks (A); top 500 odd (B) are stored in the corresponding _B.seq.gz file
elif args.mode == "all":
pass # Top 500 even (A) plus everything else (C)
else:
quit("Unrecognized mode \"%s\". Expected \"top\" or \"all\".")
return trdata
#################################
def load_testdata(tedata, tfids, args):
if tedata is not None:
return tedata
if "encode" in datadir:
maxrows = 10000
elif "chip" in datadir:
maxrows = 10000
else:
maxrows = None
all_tedata = {}
for tfid in tfids:
print "load_testdata: %s ..."%tfid,
tedata = util.load_seq("%s/%s_B%s" % (datadir,tfid,seq_suffix), minrows=10000, maxrows=maxrows)
tedata.targetnames = [tfid]
all_tedata[tfid] = tedata
print "done"
return all_tedata
if __name__=="__main__":
#util.disable_multiprocessing()
main()
|
DeepBind-master
|
code/deepbind_train_encode.py
|
# Copyright (c) 2015, Andrew Delong and Babak Alipanahi All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation and/or
# other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Author's note:
# This file was distributed as part of the Nature Biotechnology
# supplementary software release for DeepBind. Users of DeepBind
# are encouraged to instead use the latest source code and binaries
# for scoring sequences at
# http://tools.genes.toronto.edu/deepbind/
#
import sys
import os
import re
import os.path
sys.path.append("libs/kangaroo")
sys.path.append("libs/deepity")
sys.path.append("libs/smat/py")
import math
import time
import glob
import shutil
import numpy as np
import numpy.random as npr
import random
import kangaroo
import deepity
import itertools
import argparse
import cPickle
import smat
import scipy
import scipy.stats
datasource = kangaroo.datasource
train = kangaroo.train
loadcfg = kangaroo.loadcfg
calibrate = kangaroo.calibrate
acgt2ord = kangaroo.util.acgt2ord
ord2acgt = kangaroo.util.ord2acgt
revcomp = kangaroo.util.revcomp
makepath = kangaroo.util.makepath
predict = kangaroo.predict
calc_metrics = deepity.calc_metrics
globals = kangaroo.globals
load_metrics = deepity.load_metrics
save_gradientmaps = kangaroo.save_gradientmaps
def set_devices(devices):
kangaroo.globals.set_devices(devices)
##################### generate PFMs ######################
def ord2mask_b(x):
"""
Convert a vector of length N with integral values in range {0,1,2,3}
into an Nx4 numpy array, where for example "2" is represented by
row [0,0,1,0].
"""
mask = np.zeros((x.size,4))
for i in range(x.size):
if x[0,i] <= 3:
mask[i,x[0,i]] = 1
elif x[0,i] == 255:
mask[i,:] = 0.25*np.ones((4,))
return mask
def compute_pfms(data, filter_len=20, num_permut=1000, rev_comp=True):
nf, num = data.shape
pfms = [0.0001*np.ones((filter_len,4)) for i in range(nf)]
counts = [0 for _ in range(nf)]
for i in xrange(num):
seq = ord2mask_b(acgt2ord('N'*(filter_len-1) + data[0,i][0] + 'N'*(filter_len-1)))
for j in range(nf):
if data[j,i][1] <= 0:
continue
max_ind = data[j,i][2]
idx_st = max_ind
idx_sp = max_ind + filter_len
pfms[j] += seq[idx_st:idx_sp,:]
counts[j] += 1
info = np.zeros((filter_len, nf))
ic = np.zeros((nf,))
for j in range(nf):
for k in range(pfms[j].shape[0]):
pfms[j][k,:] /= np.sum(pfms[j][k,:])
info[k,j] = 2 + np.sum(pfms[j][k,:] * np.log2(pfms[j][k,:]))
ic[j] = np.sum(info[:,j].ravel())
pfm_st, pfm_sp = trim_pfm(info[:,j].ravel())
pfms[j] = pfms[j][pfm_st:pfm_sp,:]
ic[j] = 0
for k in range(pfms[j].shape[0]):
ic[j] += 2 + np.sum(pfms[j][k,:] * np.log2(pfms[j][k,:]))
kl_dist, pval = pfm_kl_dist(pfms, ic, num_permut, rev_comp)
return pfms, ic, kl_dist, pval, counts + [num]
def trim_pfm(info):
max_ic = np.max(info)
ic_threshold = np.max([0.1*max_ic, 0.1]);
w = info.shape[0]
pfm_st = 0
pfm_sp = w
for i in range(w):
if info[i] < ic_threshold:
pfm_st += 1
else:
break
for inf in reversed(info):
if inf < ic_threshold:
pfm_sp -= 1
else:
break
return pfm_st, pfm_sp
def rev_com_mask(p):
q = p.copy()
q = q[::-1,:]
q = q[:,::-1]
return q
def kldist(p, q):
return np.sum(p*np.log(p/q))
#r, c = p.shape
#kl = 0
#for i in range(r):
# for j in range(c):
# kl += p[i,j]*np.log(p[i,j]/q[i,j])
#return kl
def compute_kl(p, q):
lp = p.shape[0]
lq = q.shape[0]
padding = 0.25*np.ones((lp-1,4))
q = np.vstack((padding, q, padding))
dist = np.inf
for k in range(lq+lp-1):
tq = q[k:k+lp,:]
tkl = kldist(p, tq)
if tkl < dist:
dist = tkl
return dist/lp
def pfm_kl_dist(pfms, ic, num_permut, rev_comp):
nf = len(pfms)
dist = np.zeros((nf, nf))
pval = np.ones((nf, nf))
for i,vp in enumerate(pfms):
for j,vq in enumerate(pfms):
p = vp.copy()
q = vq.copy()
if j <= i:
continue
if ic[i] * ic[j] == 0:
dist[i,j] = -1
dist[j,i] = -1
continue
if q.shape[0] < p.shape[0]:
q, p = p, q
dist[i,j] = compute_kl(p, q)
if rev_comp:
q_rev_com = rev_com_mask(q)
rev_dist = compute_kl(p, q_rev_com)
if rev_dist < dist[i,j]:
dist[i,j] = rev_dist
if num_permut > 0:
for _ in range(num_permut):
tp = p.copy()
p_row = np.random.permutation(tp.shape[0])
p_col = np.random.permutation(tp.shape[1])
tp = tp[p_row,:]
tp = tp[:,p_col]
if rev_comp:
p_dist = np.min([compute_kl(tp, q), compute_kl(tp, q_rev_com)])
else:
p_dist = compute_kl(tp, q)
if p_dist <= dist[i,j]:
pval[i,j] += 1
pval[i,j] /= num_permut
pval[j,i] = pval[i,j]
dist[j,i] = dist[i,j]
return dist, pval
####################### doublet_shuffle ###############################
# This implementation is based on Altschul and Erickson's Algorithm
# for shuffling a sequence while preserving the doublet frequency
# Babak Alipanahi
# Jan 24, 2014
# University of Toronto
# form the graph from sequence
def form_seq_graph(seq):
graph = {}
for i, s in enumerate(seq[:-1]):
if s not in graph:
graph[s] = []
graph[s].append(seq[i+1])
return graph
# sample a random last edge graph
def sample_le_graph(graph, last_nt):
le_graph = {}
for vx in graph:
le_graph[vx] = []
if vx not in last_nt:
le_graph[vx].append(random.choice(graph[vx]))
return le_graph
# check whether there exists an Eulerian walk
# from seq[0] to seq[-1] in the shuffled
# sequence
def check_le_graph(le_graph, last_nt):
for vx in le_graph:
if vx not in last_nt:
if not find_path(le_graph, vx, last_nt):
return False
return True
# function from: http://www.python.org/doc/essays/graphs/
# check whether there is a path between two nodes in a
# graph
def find_path(graph, start, end, path=[]):
path = path + [start]
if start == end:
return path
if not graph.has_key(start):
return None
for node in graph[start]:
if node not in path:
newpath = find_path(graph, node, end, path)
if newpath: return newpath
return None
# generate a new seq graph based on the last edge graph
# while randomly permuting all other edges
def form_new_graph(graph, le_graph, last_nt):
new_graph = {}
for vx in graph:
new_graph[vx] = []
temp_edges = graph[vx]
if vx not in last_nt:
temp_edges.remove(le_graph[vx][0])
random.shuffle(temp_edges)
for ux in temp_edges:
new_graph[vx].append(ux)
if vx not in last_nt:
new_graph[vx].append(le_graph[vx][0])
return new_graph
# walk through the shuffled graph and make the
# new sequence
def form_shuffled_seq(new_graph, init_nt, len_seq):
is_done = False
new_seq = init_nt
while not is_done:
last_nt = new_seq[-1]
new_seq += new_graph[last_nt][0]
new_graph[last_nt].pop(0)
if len(new_seq) >= len_seq:
is_done = True
return new_seq
# verify the nucl
def verify_counts(seq, shuf_seq):
kmers = {}
# Forming the k-mer library
kmer_range = range(1,3)
for k in kmer_range:
for tk in itert.product('ACGTN', repeat=k):
tkey = ''.join(i for i in tk)
kmers[tkey] = [0,0]
kmers[seq[0]][0] = 1
kmers[shuf_seq[0]][1] = 1
for k in kmer_range:
for l in range(len(seq)-k+1):
tkey = seq[l:l+k]
kmers[tkey][0] += 1
tkey = shuf_seq[l:l+k]
kmers[tkey][1] += 1
for tk in kmers:
if kmers[tk][0] != kmers[tk][1]:
return False
return True
_preprocess_seq = ['N']*256;
_preprocess_seq[ord('a')] = _preprocess_seq[ord('A')] = 'A'; # Map A => A
_preprocess_seq[ord('c')] = _preprocess_seq[ord('C')] = 'C'; # Map C => C
_preprocess_seq[ord('g')] = _preprocess_seq[ord('G')] = 'G'; # Map G => G
_preprocess_seq[ord('t')] = _preprocess_seq[ord('T')] = 'T'; # Map T => T
_preprocess_seq[ord('u')] = _preprocess_seq[ord('U')] = 'T'; # Map U => T
_preprocess_seq = "".join(_preprocess_seq)
def preprocess_seq(seq):
return seq.translate(_preprocess_seq)
def doublet_shuffle(seq, verify=False):
seq = preprocess_seq(seq)
last_nt = seq[-1]
graph = form_seq_graph(seq)
# sample a random last edge graph
is_ok = False
while not is_ok:
le_graph = sample_le_graph(graph, last_nt)
# check the last edge graph
is_ok = check_le_graph(le_graph, last_nt)
new_graph = form_new_graph(graph, le_graph, last_nt)
shuf_seq = form_shuffled_seq(new_graph, seq[0], len(seq))
if verify:
assert(verify_counts(seq, shuf_seq))
return shuf_seq
def kmer_former(seq, kmerlen):
kmers = {}
for j in range(len(seq) - kmerlen + 1):
tkey = seq[j:j+kmerlen]
if tkey not in kmers:
kmers[tkey] = True
return kmers
def verify_kmer(shuf_seq, kmers, kmerlen):
for j in range(len(shuf_seq) - kmerlen + 1):
tkey = shuf_seq[j:j+kmerlen]
if tkey in kmers:
return False
return True
######################## AUC ######################
def calc_tpc_fpc_curve(z, y):
assert len(z) == len(y)
# Sort by decreasing score
order = np.argsort(z, axis=0, kind="mergesort")[::-1].ravel()
z = z[order]
y = y[order]
# Accumulate the true positives with decreasing threshold
tpc = y.cumsum()
fpc = 1 + np.arange(len(y)).astype(y.dtype) - tpc
return tpc, fpc
def calc_auc(z, y, want_curve=False):
tpc, fpc = calc_tpc_fpc_curve(z, y)
# If curve doesn't have point at x=0, explicitly insert one
if fpc[0] != 0:
tpc = np.r_[0,tpc]
fpc = np.r_[0,fpc]
# If one of the classes was empty, return NaN
if fpc[-1] == 0 or tpc[-1] == 0:
return np.nan
# Convert sums to rates
tpr = tpc / tpc[-1]
fpr = fpc / fpc[-1]
# Calculate area under the curve using trapezoidal rule
auc = np.trapz(tpr, fpr, axis=0)
if want_curve:
curve = np.hstack([fpr.reshape((-1,1)),tpr.reshape((-1,1))])
return auc,curve
return auc
def calc_pr_curve(z, y):
tpc, fpc = calc_tpc_fpc_curve(z, y)
assert not (fpc[-1] == 0 or tpc[-1] == 0)
precision = tpc / (tpc + fpc)
recall = tpc / tpc[-1]
curve = np.hstack([recall.reshape((-1,1)),precision.reshape((-1,1))])
return curve
def bootstrap_auc(z, y, ntrial=100):
n = len(y)
aucs = []
for t in range(ntrial):
sample = npr.randint(0,n,n)
zt = z[sample].copy().reshape((-1,1))
yt = y[sample].copy().reshape((-1,1))
auc = calc_auc(zt,yt)
if np.isnan(auc):
return np.nan, np.nan # If any of the samples returned NaN, the whole bootstrap result is NaN
aucs.append(auc)
return np.mean(aucs),np.std(aucs)
##################### IUPAC translation ####################
iupac = { "R" : "AG",
"Y" : "CT",
"S" : "GC",
"W" : "AT",
"K" : "GT",
"M" : "AC",
"B" : "CGT",
"D" : "AGT",
"H" : "ACT",
"V" : "ACG",
"N" : "ACGT" }
def iupac2re(seq):
for code in iupac:
seq = seq.replace(code, "[%s]"%iupac[code])
return seq
#########################################################################
def parseargs(appname, args, shorthandids=None):
args.add_argument("steps", type=str, help="Either 'all', or a Comma-separated list of calib,train,test,report. Default is all.")
args.add_argument("id", type=str, nargs="*", metavar="LIST", help="Explicit list of ids to train")
args.add_argument("-d","--device", type=str, default="0", help="GPUs permitted to use, e.g. \"0,1,2\". Default is \"0\".")
args.add_argument("-c","--chunk", type=str, default=None, help="For spreading job across multiple workstations. Saying \"2/3\" divides the work into 3 chunks and makes this process responsible for the second chunk.")
args.add_argument("-q","--quick", action="store_true", default=False, help="Quick mode. Only trains/tests a few models, and only on a subset of the data rows.")
args = args.parse_args()
if args.steps == "all":
args.steps = "calib,train,test,report"
args.steps = args.steps.split(",")
args.outdir = "../out/"+appname
args.device = [int(id) for id in args.device.split(",")]
kangaroo.globals.set_devices(args.device)
args.calibdir = args.outdir+"/calib"
args.finaldir = args.outdir+"/final"
args.reportdir = args.outdir+"/report"
args.testdir = args.outdir+"/test"
if shorthandids:
for id in args.id:
if id in shorthandids:
args.id.remove(id)
args.id.extend(shorthandids[id])
args.nfold = 2 if args.quick else 3
args.ncalib = 3 if args.quick else 30
args.ntrial = 2 if args.quick else 6
args.id = list(set(args.id))
return args
#################################
def loadmodels(args, modeldir):
# Load one trainer for everything
if args.quick:
trainer = kangaroo.loadcfg("cfg/trainers/quick.cfg")
else:
trainer = kangaroo.loadcfg("cfg/trainers/default.cfg")
models = {}
if args.quick:
modelnames = ("M1",)
else:
modelnames = ("M1","M2")
# Load several types of models and pair them up with the trainer.
for name in modelnames:
model = kangaroo.loadcfg("%s/%s.cfg" % (modeldir,name))
models[name] = { "model" : model, "trainer" : trainer }
return models
#################################
def getchunktargets(args, targetnames):
chunknames = [name for name in targetnames]
if args.id:
chunknames = [name for name in targetnames if any(re.search(id,name) for id in args.id)]
if args.chunk:
chunkidx = int(args.chunk.split("/")[0])
numchunk = int(args.chunk.split("/")[1])
assert chunkidx >= 1 and chunkidx <= numchunk
splits = [int(x) for x in np.linspace(0, len(chunknames), numchunk+1)]
#print splits
lo = splits[chunkidx-1]
hi = splits[chunkidx]
if lo == hi:
quit("Chunk is empty (no columns). Quitting.")
print "Chunk %s working on columns %d..%d out of %d" % (args.chunk, lo+1, hi, len(chunknames))
chunknames = chunknames[lo:hi]
#idxs = [i for i in idxs if not os.path.exists("out/rnac/A/final/%s"%targetnames[i])]
#print [targetnames[i] for i in idxs]
return chunknames
#################################
def save_metrics(data, groupname, outdir, modeldir=None):
if modeldir is None:
modeldir = outdir
if not isinstance(data,dict):
data = { id : data.astargets([id]) for id in data.targetnames }
pred = kangaroo.predict(data, modeldir, outdir)
for targetname in data.keys():
z = pred[targetname].ravel()
y = data[targetname].Y.ravel()
rowidx = data[targetname].rowidx
_update_metrics(outdir, targetname, groupname, rowidx, z, y)
check_repeat_correlation = False
if check_repeat_correlation:
for targetname in data.keys():
z = pred[targetname].ravel()
y = data[targetname].Y.ravel()
s = [data[targetname].X_seq[i] for i in range(len(data[targetname]))]
# Only get the bound examples.
z = [s[i] for i in range(len(data[targetname])) if y[i] != 0]
s = [s[i] for i in range(len(data[targetname])) if y[i] != 0]
class revcomp_str(object):
def __init__(self, s): self.s = s;
def __eq__(self, other): return self.s == other.s or self.s == revcomp(other.s)
# For each percentile, count the number of repeats
print targetname
order = np.argsort(z)
for denom in reversed([2,8,32,128,512,2048]):
top_s = [s[i] for i in order[len(order)//denom:]]
top_unique = set([revcomp(top_s[i]) for i in range(len(top_s))])
nall = float(len(top_s))
nunique = float(len(top_unique))
percent_repeat = 100*(nall - nunique) / nall
print " top %.4f%% (n=%d)\t=> %.2f%% repeats" % (100./denom, nall, percent_repeat)
def _update_metrics(outdir, targetname, groupname, rowidx, z, y, aucthresh=(.5,.5)):
modeldir = outdir+"/"+targetname
# Load current predictions
with np.load(modeldir+"/predict.npz") as f:
predict_npz = { name : f[name] for name in f.keys() }
# Add prediction group
group = predict_npz["groups"][()].setdefault(groupname,{})
group["I"] = rowidx
group["Z"] = z.reshape((-1,1))
if y is not None:
group["Y"] = y.reshape((-1,1))
# Save predictions
np.savez_compressed(modeldir+"/predict.npz", **predict_npz)
deepity.call_dumpviz(modeldir+"/predict.npz")
# Load current metrics
metrics = deepity.load_metrics(modeldir+"/metrics.txt")
metrics[groupname] = deepity.calc_metrics(z, y, aucthresh=aucthresh)
deepity.save_metrics(modeldir+"/metrics.txt", metrics)
"""
with open("%s/%s/predict.tsv" % (outdir,targetname),"w") as f:
f.write("RowIndex\tPredict")
if y is not None:
assert len(z) == len(y)
f.write("\tTarget")
yfmt = "\t%d" if np.all(y.astype(np.int32) == y) else "\t%.4f"
f.write("\n")
for i in range(len(z)):
f.write("%d\t%.4f" % (rowidx[i],z[i]))
if y is not None:
f.write(yfmt % y[i])
f.write("\n")"""
def disable_softmax():
kangaroo.globals.flags.push("disable_softmax",True)
def enable_softmax():
kangaroo.globals.flags.pop("disable_softmax")
#################################
def save_featuremaps(data, modeldir, outdir, maxrows=1000000):
if not isinstance(data,dict):
data = { id : data.astargets([id]) for id in data.targetnames }
disable_softmax()
pred = kangaroo.predict(data, modeldir, outdir)
# Find a list of rows, in order of decreasing confidence, and with all
# duplicate sequences deleted
for name, Z in pred.iteritems():
Y = data[name].Y.ravel()
allidx = []
allseq = set()
roworder = np.argsort(-Z.ravel())
for i in range(len(roworder)):
s = data[name].X_seq[roworder[i]]
#if s in allseq:
# continue
allidx.append(roworder[i])
allseq.add(s)
if maxrows and len(allidx) >= maxrows:
break
# Now actually dump the featuremaps for all the rows specified
print "Generating feature maps...",
datasub = data[name][allidx]
kangaroo.globals.set_multiprocessing(False) # Needed to get back collected values in globals; uugh
if "reverse_complement" in kangaroo.globals.flags:
kangaroo.globals.flags.push("collect_Zmask",True)
kangaroo.globals.flags.push("collect_featuremaps",True)
kangaroo.globals.flags.push("disable_relu",True)
kangaroo.predict(datasub, modeldir, outdir)
kangaroo.globals.flags.pop("disable_relu")
fmaps = kangaroo.globals.flags.pop("collect_featuremaps")
Zmask = kangaroo.globals.flags.pop("collect_Zmask").ravel() if "reverse_complement" in kangaroo.globals.flags else None
kangaroo.globals.set_multiprocessing(True)
seqs = []
for i in range(len(datasub)):
s = datasub.sequences[i][0]
seqs.append(s)
if "reverse_complement" in kangaroo.globals.flags:
seqs.append(revcomp(s))
if "reverse_complement" in kangaroo.globals.flags:
# Remove the strand that was not used for prediction
fmaps = [fmaps[i] for i in range(len(fmaps)) if Zmask[i]]
seqs = [seqs[i] for i in range(len(seqs)) if Zmask[i]]
filter_len = fmaps[0].shape[1] - len(seqs[0]) + 1
# Make tuples of (sequence, max_value, max_index) for each featuremap
pfmargs = []
for k in range(fmaps[0].shape[0]):
pfmarg = [(seqs[i], float(np.max(fmaps[i][k])), int(np.argmax(fmaps[i][k]))) for i in range(len(seqs))]
pfmargs.append(pfmarg)
pfmargs = np.array(pfmargs, dtype='a%d,f4,i4' % max(len(seqs[i]) for i in range(len(seqs))))
print "done"
#np.savez_compressed(outdir + "/%s.pfm_info.npz"%(name), pfmargs=pfmargs)
# Compute PFMs from the pfmargs array
print "Computing PFMs for %s..." % name,
pfms, ic, kl_dist, pval, counts = compute_pfms(pfmargs, filter_len=filter_len, num_permut=500, rev_comp=False)
print "done"
makepath(outdir)
with open(outdir + "/%s.pfms.pkl"%(name),"wb") as f:
cPickle.dump({"pfms" : pfms, "ic" : ic, "kl_dist" : kl_dist, "pval" : pval, "counts" : counts}, f)
enable_softmax()
#################################
def retrain(models, data, calibdir, finaldir, nfold=1, ntrial=1):
kangaroo.globals.flags.push("disable_softmax",True)
for trial in range(10):
Z = kangaroo.predict(data, finaldir, finaldir)["bound"]
I0 = [i for i in range(len(data)) if data.Y[i] < .5]
I1 = [i for i in range(len(data)) if data.Y[i] > .5]
#threshold = np.mean(Z[I1].ravel()) - 4*np.std(Z[I1].ravel())
#threshold = np.percentile(Z[I0].ravel(), 95)
threshold = np.percentile(Z[I1].ravel(), 1)
numshuffle = 0
for i in I0:
if Z[i] > threshold:
data.sequences[i][0] = doublet_shuffle(data.sequences[i][0])
data.X_seq[i] = data.sequences[i][0]
numshuffle += 1
numshuffle_pct = float(numshuffle)/len(I0)*100
print "retrain trial %d: had to shuffle %.1f%% unbound sequences" % (trial, numshuffle_pct)
if numshuffle <= .0001*len(I0):
break
kangaroo.globals.flags.pop("disable_softmax")
kangaroo.train(models, data, calibdir, finaldir, nfold=nfold, ntrial=ntrial)
return
#################################
def train_without_outliers(cfgs, data, calibdir, outdir, ntrial=1, auxfilter=None):
# Same as kangaroo.train, except this version trains twice: once with all
# the data, and again with worst outliers 'removed'.
# Step 1. Train with all training data
#kangaroo.train(cfgs, data, calibdir, outdir, nfold=1, ntrial=ntrial, auxfilter=auxfilter)
# Step 2. Load predictions on the training data, and remove%
# the examples that were misclassified the worst.
if not isinstance(data,dict):
data = { id : data.astargets([id]) for id in data.targetnames }
kangaroo.globals.flags.push("disable_softmax",True)
pred = kangaroo.predict(data, outdir, outdir)
for targetname in sorted(data.targetnames):
for name, Z in pred.iteritems():
Y = data[name].Y.ravel()
allidx = []
allseq = set()
roworder = np.argsort(-Z.ravel())
#################################
def disable_multiprocessing():
kangaroo.globals.set_multiprocessing(False)
#smat.set_default_dtype(smat.float64)
#################################
def enable_reversecomplement(force=False):
kangaroo.globals.flags.push("reverse_complement", "force" if force else True )
def reversecomplement_enabled():
return "reverse_complement" in kangaroo.globals.flags
#################################
def shufseq(s):
return "".join([s[i] for i in npr.permutation(len(s))])
def randpad(seq, padsize):
if not padsize:
return seq
n = len(seq)
j = npr.randint(0, padsize)
return randseq(j, j) + seq + randseq(padsize-j, padsize-j)
class _augment_seqdata(object):
def __init__(self, minrows, padsize):
self.minrows = minrows
self.padsize = padsize
def __call__(self, data):
nrows = max(self.minrows, len(data)) if self.minrows else len(data)
data = data[[i//2 % len(data) for i in range(nrows*2)]]
for i in range(0,nrows*2,2):
seq = data.sequences[i][0]
seq = randpad(seq, self.padsize)
shuf = doublet_shuffle(seq)
data.sequences[i] = [seq]
data.sequences[i+1] = [shuf]
data.X_seq[i] = seq
data.X_seq[i+1] = shuf
data.Y[i+1] = 0
return data
def load_seq(filename, minrows=None, maxrows=None, padsize=None):
if maxrows:
minrows = min(maxrows, minrows)
data = datasource.fromtxt(filename, None, None, maxrows=maxrows)
# Duplicate all the data as many times as needed to provide a match
# for each background sequence
if minrows:
data.augmented = _augment_seqdata(minrows, padsize)
return data
#################################
def randseq(minlen, maxlen, p=None):
size = npr.randint(minlen, maxlen+1)
if p is None:
return ord2acgt(npr.randint(0, 4, size))
return ord2acgt(npr.choice([0,1,2,3], size=size, p=p))
######################################################
def save_report(modeldir, reportdir, tfids, index_metric="auc", rna=False):
makepath(reportdir)
index_html = open(reportdir+"/index.html",'w')
index_html.write("<html><head><title>Training report</title></head><body>\n")
index_html.write("<table cellspacing=0 cellpadding=5 border=1>\n")
index_html.write("<tr><th>Name</th><th>train %s</th><th>test %s</th></tr>\n" % (index_metric, index_metric))
performance_txt = open(reportdir+"/performance.txt",'w')
performance_txt.write("\ttrain.%s\ttest.%s\n" % (index_metric, index_metric))
for tfid in tfids:
print tfid
makepath(reportdir+"/"+tfid)
# Load PFMs, convert them to logo images, and dump them to the report directory
logos = []
if os.path.exists(reportdir+"/%s.pfms.pkl"%tfid):
with open(reportdir+"/%s.pfms.pkl"%tfid) as f:
_ = cPickle.load(f)
pfms = _["pfms"]
ics = _["ic"]
counts = _["counts"]
pfm_order = np.argsort(-ics)
for j in pfm_order:
pfm = pfms[j]
ic = ics[j]
if ic <= 0:
continue
pfm_rev = np.fliplr(np.flipud(pfm))
logo_filename = "%s/%s/pfm%02d" % (reportdir, tfid, len(logos))
logos.append((j, os.path.basename(logo_filename)+"_fwd.png", ic, counts[j]))
logo_fwd = deepity.tape2logo.tape2logo(pfm.T, height=50, letterwidth=10, bufferzoom=4, vmax=1.0, style="seqlogo", rna=rna)
logo_rev = deepity.tape2logo.tape2logo(pfm_rev.T, height=50, letterwidth=10, bufferzoom=4, vmax=1.0, style="seqlogo", rna=rna)
scipy.misc.imsave(logo_filename+"_fwd.png", logo_fwd)
scipy.misc.imsave(logo_filename+"_rev.png", logo_rev)
# Load train/test metrics so we can print them in the HTML report
metrics_file = "%s/%s/metrics.txt" % (modeldir, tfid)
metrics = deepity.load_metrics(metrics_file)
# Add row for this TF in main index.html
index_html.write("<tr>\n")
index_html.write("<td><a href=\"%s/index.html\">%s</a></td>\n" % (tfid, tfid))
train_performance = ""
test_performance = ""
if index_metric=="auc":
if "train" in metrics:
index_html.write("<td>%s ± %s</td>\n" % (metrics["train"]["auc.mean"], metrics["train"]["auc.std"]))
train_performance = metrics["train"]["auc.mean"]
if "test" in metrics:
index_html.write("<td><b>%s</b> ± %s</td>\n" % (metrics["test"]["auc.mean"], metrics["test"]["auc.std"]))
test_performance = metrics["test"]["auc.mean"]
elif index_metric=="pearson":
if "train" in metrics:
index_html.write("<td>%s (p=%s)</td>\n" % (metrics["train"]["pearson.r"], metrics["train"]["pearson.p"]))
train_performance = metrics["train"]["pearson.r"]
if "test" in metrics:
index_html.write("<td><b>%s</b> (p=%s)</td>\n" % (metrics["test"]["pearson.r"], metrics["test"]["pearson.p"]))
train_performance = metrics["test"]["pearson.r"]
index_html.write("</tr>\n")
performance_txt.write("%s\t%s\t%s\n" % (tfid, train_performance, test_performance))
# Build page showing filters and sequence logos for this specific TF
tf_html = open(reportdir+"/"+tfid+"/index.html", 'w')
tf_html.write("<html><head><title>Training report - %s</title></head><body>\n" % tfid)
tf_html.write("<h2>%s</h2>\n" % tfid)
# tf_html.write("<a href=\"../gmaps/%s/index.html\">gradient maps</a>)<hr/>\n"%(tfid,tfid))
tf_html.write("""
<script language="javascript">
function toggle_strand()
{
var pfms = document.getElementsByClassName('pfm')
for (var i = 0; i < pfms.length; i++)
if (pfms[i].src.search("_fwd") != -1)
pfms[i].src = pfms[i].src.replace("_fwd","_rev");
else if (pfms[i].src.search("_rev") != -1)
pfms[i].src = pfms[i].src.replace("_rev","_fwd");
}
</script></head><body>
""")
with open(metrics_file) as f:
metrics_text = f.read()
tf_html.write("<pre>%s</pre>\n"% metrics_text)
if os.path.exists(modeldir+"/%s/predict.scatter-train.png" % tfid):
tf_html.write("<br/>Distribution of training predictions:<br/><img src=\"../../final/%s/predict.scatter-train.png\"/>\n" % tfid)
# Then generate a table for the complete model
tfdir = modeldir+"/"+tfid
if logos:
tf_html.write("<hr/><h3>Feature Logos</h3>\n")
tf_html.write("<input type=\"button\" value=\"toggle strand\" onclick=\"toggle_strand();\"/><br/>")
tf_html.write("<table cellspacing=0 cellpadding=4 border=0>\n")
for filter_index, logo, ic, count in logos:
tf_html.write("<tr><td>%d</td><td><img src=\"%s\" class=\"pfm\"/></td><td>%.1f bits,</td><td> %d activations</td></tr>" % (filter_index, logo, ic, count))
tf_html.write("</table><br/><br/>\n")
# Now show the actual model.
'''
shutil.copy(tfdir_final[0]+"/fold0.report/filters_.conv_seq(0).color.png", basedir+"report/%s/final_filters.png" % (tfid))
shutil.copy(tfdir_final[0]+"/fold0.report/filters_.conv_seq(0).logo.png", basedir+"report/%s/final_logos.png" % (tfid))
shutil.copy(tfdir_final[0]+"/fold0.report/filters_.conv_seq(1).png", basedir+"report/%s/final_biases.png" % (tfid))
shutil.copy(tfdir_final[0]+"/fold0.report/filters_.combiner.png", basedir+"report/%s/final_weights.png" % (tfid))
os.system("convert %sreport/%s/final_filters.png -rotate -90 %sreport/%s/final_filters_rot.png" % (basedir,tfid,basedir,tfid))
'''
tf_html.write("<hr/><h3>Actual DeepBind model</h3>\n")
if os.path.exists(tfdir + "/model.conv_seq(1).color.png"):
tf_html.write("Filters:<br/>\n")
tf_html.write("<img src=\"../../final/%s/model.conv_seq(1).color.png\"/><br/>\n" % tfid)
if os.path.exists(tfdir + "/model.combiner.png"):
tf_html.write("<br/>Combiner layer:<br/>\n")
tf_html.write("<img src=\"../../final/%s/model.combiner.png\"/><br/>\n" % tfid)
tf_html.write("</body></html>\n")
index_html.write("</table>\n")
index_html.write("</body></html>\n")
index_html.close()
|
DeepBind-master
|
code/deepbind_util.py
|
# Copyright (c) 2015, Andrew Delong and Babak Alipanahi All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation and/or
# other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Author's note:
# This file was distributed as part of the Nature Biotechnology
# supplementary software release for DeepBind. Users of DeepBind
# are encouraged to instead use the latest source code and binaries
# for scoring sequences at
# http://tools.genes.toronto.edu/deepbind/
#
import os
import os.path
import argparse
import gzip
import numpy as np
import deepbind_util as util
# Warning: The multiprocessing module may be used indirectly, so do not put any
# unintentional statements outside of main().
def main():
args = loadargs()
models = loadmodels(args)
trdata = None
util.globals.flags.push("clamp_targets", True) # Clamp the top .995 percentile of target values, to avoid extremely large targets (e.g. 00038/MBNL suffers from this)
util.globals.flags.push("normalize_targets", True) # Make the targets have unit variance
if "calib" in args.steps:
trdata = load_traindata(trdata, args)
util.calibrate(models, trdata, args.calibdir, nfold=args.nfold, ncalib=args.ncalib, allfolds=True)
if "train" in args.steps:
trdata = load_traindata(trdata, args)
util.train(models, trdata, args.calibdir, args.finaldir, nfold=1, ntrial=args.ntrial)
if "test" in args.steps:
save_test_predictions(args)
if "report" in args.steps:
save_pfms(args)
ids, _ = get_chunktargets(args)
ids = sorted(ids)
util.save_report(args.finaldir, args.reportdir, ids, index_metric="pearson", rna=True)
#########################################################################
# Baseline AUCs computed beforehand, by applying RNAcompete PFMs to the in vivo test data sets and summing/maxing/averaging the per-position scores
rnac_all_aucs ="""Protein File RNAcompete ID direct max avg sum len direct.std max.std avg.std sum.std len.std
RBM4 RBM4.txt RNCMPT00052 nan 0.57954 0.53739 0.59715 0.68759 nan 0.01316 0.01179 0.01116 0.01185
RBM4 RBM4.txt RNCMPT00113 nan 0.57840 0.53501 0.60088 0.68759 nan 0.01395 0.01253 0.01129 0.01185
FUS FUS.txt RNCMPT00018 nan 0.26564 0.25616 0.39401 0.50894 nan 0.01001 0.00706 0.01116 0.00798
CPEB4 CPEB4.txt RNCMPT00158 nan 0.46494 0.51228 0.45046 0.30682 nan 0.01787 0.01636 0.01699 0.01312
PUM2 PUM2.txt RNCMPT00046 nan 0.92388 0.93771 0.93146 0.48923 nan 0.00570 0.00514 0.00533 0.01019
PUM2 PUM2.txt RNCMPT00101 nan 0.91999 0.93490 0.92761 0.48923 nan 0.00599 0.00518 0.00549 0.01019
PUM2 PUM2.txt RNCMPT00102 nan 0.92309 0.93684 0.92996 0.48923 nan 0.00556 0.00455 0.00517 0.01019
PUM2 PUM2.txt RNCMPT00103 nan 0.92704 0.93744 0.93271 0.48923 nan 0.00556 0.00548 0.00568 0.01019
PUM2 PUM2.txt RNCMPT00104 nan 0.93297 0.93929 0.93711 0.48923 nan 0.00505 0.00525 0.00503 0.01019
PUM2 PUM2.txt RNCMPT00105 nan 0.91665 0.92218 0.91714 0.48923 nan 0.00616 0.00607 0.00628 0.01019
HuR ELAVL1_Hafner.txt RNCMPT00274 nan 0.80117 0.81005 0.80901 0.50492 nan 0.00766 0.00784 0.00760 0.00867
HuR ELAVL1_Lebedeva.txt RNCMPT00274 nan 0.80521 0.82457 0.80981 0.50640 nan 0.00509 0.00434 0.00491 0.01020
HuR ELAVL1_MNASE.txt RNCMPT00274 nan 0.81389 0.82680 0.82515 0.50907 nan 0.00927 0.00912 0.00902 0.00873
HuR ELAVL1_Mukharjee.txt RNCMPT00274 nan 0.88430 0.89534 0.89195 0.50741 nan 0.00291 0.00251 0.00245 0.00562
FMR1 FMR1_RIP_top1K.txt RNCMPT00016 nan 0.76716 0.75601 0.89024 0.81773 nan 0.01173 0.01059 0.00754 0.01080
FMR1 FMR1_table2a_top1K.txt RNCMPT00016 nan 0.56646 0.59232 0.59202 0.49905 nan 0.01074 0.01077 0.01125 0.01624
FMR1 FMR1_table2a_top5K.txt RNCMPT00016 nan 0.57225 0.59665 0.59672 0.49990 nan 0.00679 0.00625 0.00634 0.00498
FMR1 FMR1_table2b_top1K.txt RNCMPT00016 nan 0.56580 0.59210 0.59223 0.50034 nan 0.01480 0.01520 0.01524 0.01267
FMR1 FMR1_table2b_top5K.txt RNCMPT00016 nan 0.55623 0.57975 0.57952 0.49705 nan 0.00476 0.00475 0.00478 0.00714
QKI QKI.txt RNCMPT00047 nan 0.92322 0.93431 0.93004 0.50657 nan 0.00611 0.00593 0.00576 0.01082
SRSF1 SFRS1.txt RNCMPT00106 nan 0.85875 0.87453 0.87285 0.54262 nan 0.01365 0.01363 0.01384 0.02879
SRSF1 SFRS1.txt RNCMPT00107 nan 0.85443 0.86763 0.86887 0.54262 nan 0.01640 0.01597 0.01555 0.02879
SRSF1 SFRS1.txt RNCMPT00108 nan 0.84777 0.85921 0.85865 0.54262 nan 0.01782 0.01638 0.01690 0.02879
SRSF1 SFRS1.txt RNCMPT00109 nan 0.84414 0.85777 0.85645 0.54262 nan 0.01754 0.01659 0.01711 0.02879
SRSF1 SFRS1.txt RNCMPT00110 nan 0.79507 0.81253 0.81173 0.54262 nan 0.01474 0.01493 0.01425 0.02879
SRSF1 SFRS1.txt RNCMPT00163 nan 0.86275 0.87639 0.87327 0.54262 nan 0.01372 0.01296 0.01290 0.02879
Vts1p Vts1p.txt RNCMPT00082 nan 0.67892 0.68584 0.68750 0.56794 nan 0.01679 0.01765 0.01601 0.02029
Vts1p Vts1p.txt RNCMPT00111 nan 0.68317 0.69048 0.69310 0.56794 nan 0.01815 0.02086 0.01746 0.02029
HNRNPA2B1 hnRNPA2B1.txt RNCMPT00024 nan 0.54903 0.56342 0.56330 0.49990 nan 0.00959 0.01012 0.01000 0.00921
MBNL1 Mbnl1_B6Brain.txt RNCMPT00038 nan 0.61514 0.62822 0.62443 0.50256 nan 0.00614 0.00593 0.00599 0.00849
MBNL1 Mbnl1_B6Heart.txt RNCMPT00038 nan 0.60240 0.61387 0.61421 0.52043 nan 0.01131 0.01098 0.01126 0.01359
MBNL1 Mbnl1_B6Muscle.txt RNCMPT00038 nan 0.60721 0.61079 0.61372 0.51123 nan 0.02156 0.02032 0.02063 0.01794
MBNL1 Mbnl1_B129Brain.txt RNCMPT00038 nan 0.58529 0.59620 0.59205 0.49597 nan 0.00416 0.00431 0.00413 0.00369
MBNL1 Mbnl1_C2C12.txt RNCMPT00038 nan 0.67202 0.68331 0.67960 0.50211 nan 0.00207 0.00213 0.00205 0.00269
PTBP1 PTBP1.txt RNCMPT00268 nan 0.73912 0.77290 0.74726 0.51303 nan 0.00812 0.00741 0.00797 0.00916
PTBP1 PTBP1.txt RNCMPT00269 nan 0.73258 0.76753 0.74049 0.51303 nan 0.00769 0.00737 0.00754 0.00916
LIN28 LIN28_hES_3UTR.txt RNCMPT00036 nan 0.64158 0.66601 0.64597 0.49502 nan 0.00391 0.00440 0.00385 0.00364
LIN28 LIN28_hES_3UTR.txt RNCMPT00162 nan 0.61623 0.63471 0.61896 0.49502 nan 0.00508 0.00574 0.00511 0.00364
LIN28 LIN28_hES_coding_exons.txt RNCMPT00036 nan 0.61977 0.63383 0.62368 0.51739 nan 0.00737 0.00775 0.00789 0.00587
LIN28 LIN28_hES_coding_exons.txt RNCMPT00162 nan 0.59463 0.60173 0.59540 0.51739 nan 0.00739 0.00747 0.00753 0.00587
LIN28 LIN28_v5_3UTR.txt RNCMPT00036 nan 0.62030 0.63684 0.62011 0.48639 nan 0.00871 0.00824 0.00843 0.01021
LIN28 LIN28_v5_3UTR.txt RNCMPT00162 nan 0.64040 0.65904 0.64265 0.48639 nan 0.00873 0.00834 0.00889 0.01021
LIN28 LIN28_v5_coding_exons.txt RNCMPT00036 nan 0.59787 0.60869 0.59829 0.49904 nan 0.00947 0.00996 0.00914 0.00765
LIN28 LIN28_v5_coding_exons.txt RNCMPT00162 nan 0.61716 0.62985 0.61869 0.49904 nan 0.01133 0.01165 0.01068 0.00765
MSI1 MSI.txt RNCMPT00176 nan 0.63872 0.85384 0.61312 0.35007 nan 0.05670 0.03968 0.05180 0.05094
HNRNPA1 hnRNPA1.txt RNCMPT00023 nan 0.63787 0.66090 0.66060 0.49896 nan 0.01842 0.01709 0.01739 0.01959
SHEP SHEP_bg3_normal.txt RNCMPT00068 nan 0.68478 0.59950 0.78179 0.80603 nan 0.02868 0.03654 0.01885 0.01860
SHEP SHEP_bg3_normal.txt RNCMPT00174 nan 0.67722 0.56947 0.77837 0.80603 nan 0.02655 0.03655 0.01767 0.01860
SHEP SHEP_bg3_normal.txt RNCMPT00175 nan 0.68777 0.60964 0.78866 0.80603 nan 0.02748 0.03319 0.01870 0.01860
SHEP SHEP_bg3_stringent.txt RNCMPT00068 nan 0.65654 0.61508 0.75189 0.76043 nan 0.02804 0.02777 0.02695 0.03001
SHEP SHEP_bg3_stringent.txt RNCMPT00174 nan 0.67423 0.59333 0.75680 0.76043 nan 0.02515 0.02641 0.02562 0.03001
SHEP SHEP_bg3_stringent.txt RNCMPT00175 nan 0.66576 0.62182 0.75435 0.76043 nan 0.02719 0.02632 0.02765 0.03001
SHEP SHEP_kc_normal.txt RNCMPT00068 nan 0.58452 0.66421 0.60800 0.48666 nan 0.02354 0.02042 0.02061 0.01753
SHEP SHEP_kc_normal.txt RNCMPT00174 nan 0.60444 0.68226 0.61162 0.48666 nan 0.01583 0.01687 0.01707 0.01753
SHEP SHEP_kc_normal.txt RNCMPT00175 nan 0.60845 0.68181 0.62068 0.48666 nan 0.01919 0.01680 0.01763 0.01753
SHEP SHEP_kc_stringent.txt RNCMPT00068 nan 0.57643 0.66430 0.58256 0.44887 nan 0.02101 0.02489 0.02209 0.01979
SHEP SHEP_kc_stringent.txt RNCMPT00174 nan 0.56663 0.65829 0.56107 0.44887 nan 0.02144 0.02681 0.02334 0.01979
SHEP SHEP_kc_stringent.txt RNCMPT00175 nan 0.57928 0.66535 0.58411 0.44887 nan 0.02430 0.02639 0.02401 0.01979
IGF2BP2 IGF2BP1-3.txt RNCMPT00033 nan 0.58948 0.60332 0.57859 0.49313 nan 0.00662 0.00529 0.00624 0.00703
TARDBP TARDBP_iCLIP.txt RNCMPT00076 nan 0.69432 0.76630 0.74933 0.50791 nan 0.00441 0.00413 0.00402 0.00548
TARDBP TARDBP_RIP.txt RNCMPT00076 nan 0.51319 0.51618 0.50674 0.48739 nan 0.01787 0.01786 0.01817 0.02001
TAF15 TAF15.txt RNCMPT00018 nan 0.27793 0.26921 0.39900 0.50233 nan 0.01085 0.01096 0.01464 0.01268
TIA1 TIA1.txt RNCMPT00077 nan 0.77897 0.80216 0.78685 0.46814 nan 0.00993 0.00899 0.01005 0.01164
TIA1 TIA1.txt RNCMPT00165 nan 0.79207 0.80957 0.79501 0.46814 nan 0.01001 0.00883 0.00975 0.01164
TIAL1 TIAL1.txt RNCMPT00077 nan 0.79665 0.82024 0.80884 0.49757 nan 0.00544 0.00530 0.00569 0.01029
TIAL1 TIAL1.txt RNCMPT00165 nan 0.81188 0.82708 0.81648 0.49757 nan 0.00540 0.00484 0.00516 0.01029
LARK Lark_shared.txt RNCMPT00035 nan 0.60496 0.55183 0.63621 0.69572 nan 0.05016 0.05038 0.05092 0.04579
LARK Lark_shared.txt RNCMPT00097 nan 0.62910 0.58226 0.65882 0.69572 nan 0.05477 0.05532 0.05376 0.04579
LARK Lark_shared.txt RNCMPT00124 nan 0.63998 0.59298 0.68235 0.69572 nan 0.05991 0.05948 0.05403 0.04579
LARK Lark_union.txt RNCMPT00035 nan 0.64096 0.59872 0.66861 0.69956 nan 0.02697 0.02756 0.02547 0.02800
LARK Lark_union.txt RNCMPT00097 nan 0.65407 0.60527 0.66818 0.69956 nan 0.02743 0.02961 0.02634 0.02800
LARK Lark_union.txt RNCMPT00124 nan 0.63400 0.58167 0.66941 0.69956 nan 0.02865 0.03266 0.02820 0.02800""".split("\n")
# Generate test AUCs on in vivo data
invivo_ids = { "PUM2" : ([ 46,101,102,103,104,105],["PUM2"]),
"SRSF1" : ([106,107,108,109,110,163],["SFRS1"]),
#"FUS" : ([19,88,89,90], ["FUS"]),
#"TAF15" : ([19,88,89,90], ["TAF15"]),
"FUS" : ([18], ["FUS"]),
"TAF15" : ([18], ["TAF15"]),
"SHEP" : ([68,174,175], ["SHEP_bg3_normal","SHEP_bg3_stringent","SHEP_kc_normal","SHEP_kc_stringent"]),
"Vts1p" : ([82,111], ["Vts1p"]),
"HuR" : ([274], ["ELAVL1_Hafner","ELAVL1_Lebedeva","ELAVL1_MNASE","ELAVL1_Mukharjee"]),
"LARK" : ([35,97,124], ["Lark_shared","Lark_union"]),
"QKI" : ([47], ["QKI"]),
"FMR1" : ([16], ["FMR1_RIP_top1K","FMR1_table2a_top1K","FMR1_table2a_top5K","FMR1_table2b_top1K","FMR1_table2b_top5K"]),
"TIA1" : ([77,165], ["TIA1"]),
"TIAL1" : ([77,165], ["TIAL1"]),
"TARDBP" : ([76], ["TARDBP_iCLIP","TARDBP_RIP"]),
"PTBP1" : ([268,269], ["PTBP1"]),
"HNRNPA1" : ([23], ["hnRNPA1"]),
"LIN28" : ([36,162], ["LIN28_hES_3UTR","LIN28_hES_coding_exons","LIN28_v5_3UTR","LIN28_v5_coding_exons"]),
"MSI1" : ([176], ["MSI"]),
"RBM4" : ([52,113], ["RBM4"]),
"IGF2BP2" : ([33], ["IGF2BP1-3"]),
"HNRNPA2B1" : ([24], ["hnRNPA2B1"]),
"MBNL1" : ([38], ["Mbnl1_B6Brain","Mbnl1_B6Heart","Mbnl1_B6Muscle","Mbnl1_B129Brain","Mbnl1_C2C12"]),
"CPEB4" : ([158], ["CPEB4"]),
}
all_invivo_ids = sorted(sum([value[0] for value in invivo_ids.itervalues()],[]))
shorthandids = { #"invivo_sub" : ["RNCMPT00016", "RNCMPT00111", "RNCMPT00038", "RNCMPT00105", "RNCMPT00274", "RNCMPT00076", "RNCMPT00107", "RNCMPT00176", "RNCMPT00269", "RNCMPT00023"],
"invivo_sub" : ["RNCMPT00268", "RNCMPT00076", "RNCMPT00038", "RNCMPT00023"],
"invivo" : ["RNCMPT%05d"%id for id in all_invivo_ids ],
}
def loadargs():
# Give names to specific groups of RNAcompete ids
args = argparse.ArgumentParser(description="Generate the RNAcompete experiments.")
args.add_argument("mode", type=str, help="Either \"A\" (train A, test B), \"B\" (train B, test A), or \"AB\" (train AB, test invivo).")
args = util.parseargs("rnac", args, shorthandids=shorthandids)
args.calibdir = args.calibdir.replace(args.outdir, args.outdir+"/"+args.mode)
args.finaldir = args.finaldir.replace(args.outdir, args.outdir+"/"+args.mode)
args.reportdir = args.reportdir.replace(args.outdir,args.outdir+"/"+args.mode)
args.outdir = args.outdir+"/"+args.mode
return args
#################################
def loadmodels(args):
models = util.loadmodels(args, modeldir="cfg/regression/allpool")
return models
#################################
def get_chunktargets(args):
# Determine which targetnames we're responsible for
targetnames = gzip.open("../data/rnac/targets.tsv.gz").readline().rstrip().split("\t")
chunktargets = util.getchunktargets(args, targetnames)
chunkcols = [i for i in range(len(targetnames)) if targetnames[i] in chunktargets]
return chunktargets, chunkcols
def load_traindata(trdata, args):
if trdata is not None:
return trdata # Training data was already loaded in earlier step.
# In quick mode, only load a subset of the data
maxrows = 10000 if args.quick else None
chunktargets, chunkcols = get_chunktargets(args)
# Load only a specific fold
if args.mode == "A":
trdata = util.datasource.fromtxt("../data/rnac/sequences.tsv.gz", None, "../data/rnac/targets.tsv.gz", targetcols=chunkcols, foldfilter="A", maxrows=maxrows)
elif args.mode == "B":
trdata = util.datasource.fromtxt("../data/rnac/sequences.tsv.gz", None, "../data/rnac/targets.tsv.gz", targetcols=chunkcols, foldfilter="B", maxrows=maxrows)
elif args.mode == "AB":
trdata = util.datasource.fromtxt("../data/rnac/sequences.tsv.gz", None, "../data/rnac/targets.tsv.gz", targetcols=chunkcols, foldfilter="AB", maxrows=maxrows)
else:
quit("Unrecognized mode")
return trdata
#################################
def save_test_predictions(args):
# In quick mode, only load a subset of the data
maxrows = 10000 if args.quick else None
chunktargets, chunkcols = get_chunktargets(args)
tedata = {}
abs_auc = lambda x: max(x, 1-x)
if args.mode == "AB":
invivo_data_dir = "../data/rnac/invivo"
util.makepath(args.testdir+"/invivo")
aucdump = open(args.testdir+"/invivo/deepbind_all.txt","w")
aucdump.write("Protein\tFile\tModel\tauc\tauc.mean\tauc.std\n")
for invivo_id in invivo_ids.keys():
rnac_ids, invivo_files = invivo_ids[invivo_id]
rnac_names = ["RNCMPT%05d" % id for id in rnac_ids]
rnac_names = [name for name in rnac_names if name in chunktargets]
if not rnac_names:
continue
for invivo_file in invivo_files:
if not os.path.exists(invivo_data_dir + "/" + invivo_file + ".txt"):
continue
print "File %s using models %s..." % (invivo_file, ",".join(rnac_names))
# Convert the invivo sequence file into a format that predict.py expects,
# i.e. with a Fold ID, Event ID, and Sequence column.
data = util.datasource.fromtxt(invivo_data_dir+"/" + invivo_file + ".txt[1]", None, invivo_data_dir+"/" + invivo_file + ".txt[0]",
sequencenames=["bound","seq"], targetnames=["bound"] )
# First generate predictions based on "trivial" features for this particular invivo file
sequences = [row[0] for row in data.sequences]
labels = data.targets
predictions = {}
predictions["len"] = np.asarray([len(s) for s in sequences],np.float32).reshape((-1,1))
predictions["A"] = np.asarray([s.upper().count("A") / float(len(s)) for s in sequences], np.float32).reshape((-1,1))
predictions["C"] = np.asarray([s.upper().count("C") / float(len(s)) for s in sequences], np.float32).reshape((-1,1))
predictions["G"] = np.asarray([s.upper().count("G") / float(len(s)) for s in sequences], np.float32).reshape((-1,1))
predictions["T"] = np.asarray([(s.upper().count("U")+s.upper().count("T")) / float(len(s)) for s in sequences], np.float32).reshape((-1,1))
predictions["GC"] = predictions["G"] + predictions["C"]
# Next, generate predictions for each model on this same data file
data.targetnames = rnac_names
data.Y = np.repeat(data.Y, len(rnac_names), 1)
data.Ymask = np.repeat(data.Ymask, len(rnac_names), 1)
data.targets = data.Y.copy()
#pred = util.predict(data, "../data/rnac/pfms", args.reportdir, scan=20)
pred = util.predict(data, args.finaldir, args.reportdir, scan=20)
predictions.update(pred)
# Dump all performance stats to the file
for pname in sorted(predictions.keys(), key=lambda x: x if "RNCMPT" not in x else " "+x): # Make sure RNCMPT items go first in each group, for readability of all_aucs.txt
# Calculate the AUC of this particular prediction, of this particular model,
# on this particular invivo file.
z = predictions[pname].ravel()
y = np.array(labels).ravel()
metrics = util.calc_metrics(z, y)
# Write out a row indicating performance of each model on this file
aucdump.write("%s\t%s\t%s\t%.4f\t%.4f\t%.6f\n" % (invivo_id, invivo_file, pname, metrics["auc"], metrics["auc.mean"], metrics["auc.std"]))
aucdump.close()
# Re-open the AUC dump file, pull out all experiments associated with a single protein,
# and collect only the best of each type
all_aucs = {}
with open(args.testdir+"/invivo/deepbind_all.txt") as f:
f.readline() # discard header line
for line in f:
protein_name, invivo_file, model_name, auc, auc_mean, auc_std = line.rstrip().split("\t")
model_suffix = ".deepbind" if "RNCMPT" in model_name else ""
if model_name == "GC":
continue
all_aucs.setdefault(protein_name,[]).append({"file" : invivo_file, "model" : model_name+model_suffix, "auc" : float(auc), "auc.mean" : float(auc_mean), "auc.std" : float(auc_std)})
# Open the rnac_all.txt and pull out the AUCs for the PFMs from the RNAcompete paper
# The rnac_all.txt file is in a different format, for legacy reasons
head = rnac_all_aucs[0].rstrip().split("\t")
lines = [line.rstrip().split("\t") for line in rnac_all_aucs[1:]]
cols = { item : head.index(item) for item in head }
for line in lines:
protein_name = line[0]
for scantype in ("max","sum","avg","direct"):
invivo_file = line[1].rsplit(".",1)[0]
model_name = line[2]+"."+scantype
auc = "nan"
auc_mean = line[cols[scantype]]
auc_std = line[cols[scantype+".std"]]
if protein_name in all_aucs:
all_aucs[protein_name].append({"file" : invivo_file, "model" : model_name+".rnac", "auc" : float(auc), "auc.mean" : float(auc_mean), "auc.std" : float(auc_std)})
for scantype in ("direct","max","sum","avg"):
for modeltype in ("deepbind","rnac"):
with open(args.testdir+"/invivo/%s_best_%s.txt" % (modeltype, scantype),"w") as f:
f.write("Protein\tFile")
f.write("\t"+"\t".join(["deeputil.model","deeputil.auc","deeputil.auc.mean","deeputil.auc.std"]))
f.write("\t"+"\t".join(["rnac.model", "rnac.auc", "rnac.auc.mean", "rnac.auc.std"]))
f.write("\t"+"\t".join(["trivial.model", "trivial.auc", "trivial.auc.mean", "trivial.auc.std"]))
f.write("\n")
for protein in sorted(all_aucs.keys()):
trials = all_aucs[protein]
# For this particular protein, first find the best row based on non-trivial models,
# e.g. among RNCMPTXXXXX.direct and RNCMPTXXXXX.max, while ignoring "A" and "len"
best = None
for trial in trials:
if trial["model"].endswith(scantype+"."+modeltype):
if best is None or trial["auc.mean"] > best["auc.mean"]:
best = trial
# Also find the best trivial feature associated with this file
best_trivial = None
for trial in trials:
if trial["file"] == best["file"] and "RNCMPT" not in trial["model"]:
if best_trivial is None or abs_auc(trial["auc.mean"]) > abs_auc(best_trivial["auc.mean"]):
best_trivial = trial
# Also find the best competing feature associated with this file
best_other = None
if modeltype == "rnac":
other_scantype = "max"
elif modeltype == "deepbind":
other_scantype = "avg"
else:
other_scantype = scantype
for trial in trials:
if trial["file"] == best["file"] and ("."+other_scantype+".") in trial["model"] and not trial["model"].endswith(other_scantype+"."+modeltype):
if best_other is None or trial["auc.mean"] > best_other["auc.mean"]:
best_other = trial
best_deepbind = best if modeltype == "deepbind" else best_other
best_rnac = best if modeltype == "rnac" else best_other
f.write("%s\t%s\t" % (protein, best["file"]))
f.write("%s\t%.4f\t%.4f\t%.6f\t" % (best_deepbind["model"], best_deepbind["auc"], best_deepbind["auc.mean"], best_deepbind["auc.std"]))
f.write("%s\t%.4f\t%.4f\t%.6f\t" % (best_rnac["model"], best_rnac["auc"], best_rnac["auc.mean"], best_rnac["auc.std"]))
f.write("%s\t%.4f\t%.4f\t%.6f\n" % (best_trivial["model"], abs_auc(best_trivial["auc"]), abs_auc(best_trivial["auc.mean"]), best_trivial["auc.std"]))
elif args.mode in ("A","B"):
# Generate predictions on PBM probes from test set (i.e. if mode="A", the training set was "A" so the test set is "B")
print "Loading PBM data...",
testfold = "A" if args.mode == "B" else "B"
pbmdata = util.datasource.fromtxt("../data/rnac/sequences.tsv.gz", None, "../data/rnac/targets.tsv.gz", targetcols=[0], foldfilter=testfold, maxrows=maxrows)
print "done"
util.makepath(args.testdir+"/pbm")
for targetname in chunktargets:
print targetname
pbmdata.targetnames = [targetname]
predictions = util.predict(pbmdata, args.finaldir, args.reportdir, include=[targetname])
Z = predictions[targetname].ravel()
with gzip.open(args.testdir+"/pbm/%s-DB-%s.txt.gz"%(targetname, testfold), "w") as f:
for z in Z:
f.write("%.4f\n"%z)
else:
quit("Unrecognized mode")
#################################
def save_pfms(args):
maxrows = 10000 if args.quick else None
chunktargets, chunkcols = get_chunktargets(args)
print "Loading PBM data...",
if args.mode == "A":
testfold = "B"
elif args.mode == "B":
testfold = "A"
else:
testfold = "AB"
pbmdata = util.datasource.fromtxt("../data/rnac/sequences.tsv.gz", None, "../data/rnac/targets.tsv.gz", targetcols=chunkcols, foldfilter=testfold, maxrows=maxrows)
print "done"
util.save_featuremaps(pbmdata, args.finaldir, args.reportdir)
if __name__=="__main__":
#util.disable_multiprocessing()
main()
|
DeepBind-master
|
code/deepbind_train_rnac.py
|
# Copyright (c) 2015, Andrew Delong and Babak Alipanahi All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation and/or
# other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Author's note:
# This file was distributed as part of the Nature Biotechnology
# supplementary software release for DeepBind. Users of DeepBind
# are encouraged to instead use the latest source code and binaries
# for scoring sequences at
# http://tools.genes.toronto.edu/deepbind/
#
import sys
import argparse
import numpy as np
from os import listdir
from os.path import join
sys.path.append("libs/smat/py")
from smat import *
# change the activation function, cane be [logistic|tanh|relu]
activation_func = "relu"
# change to the desired GPU (if not default)
picked_device = None
if picked_device is not None:
set_backend_options(device=picked_device)
# change to dt64 for double precision
dt = float32
set_default_dtype(dt)
data_root = '../data/deepfind/'
print "Started DeepFind: scoring SNVs in promoters using DeepBind predictions"
print "Training DeepFind using", get_backend_info().device
##############################################################################
# Neural Network
##############################################################################
# Evaluate our 1-layer neural network using weights W1,W2 above.
# Returns final outputs and, if targets Y are given, returns gradients as well.
def nnet_eval(X, Y=None, mode="sigmoid"):
global W1,W2,b1,b2
#****************************************************************
# Forward propagate minibatch inputs X to generate predictions Z2
A1 = dot(X, W1) + b1
Z1 = f(A1) # Z1 = outputs for layer 1
if Y is not None:
if dropoutrate > 0:
mask = bernoulli(Z1.shape, 1 - dropoutrate, dtype=dt)
Z1 *= mask
else:
Z1 *= 1 - dropoutrate
A2 = dot(Z1, W2) + b2
Z2 = logistic(A2) # Z2 = output
if Y is None:
if mode == "sigmoid":
return Z2 # If no gradient requested, just return the predictions
else:
return A2 # If no gradient requested, just return the predictions before passing the sigmoid
#****************************************************************
# Backward propagate error between Z2 and targets Y
D2 = (Z2-Y)/X.shape[0] # Backprop prediction error as delta to layer 2
D1 = df(Z1)*dot_nt(D2, W2) # Backprop layer 2 deltas to layer 1
if dropoutrate > 0:
D1 *= mask # Apply the dropout mask
# Compute gradient of training error w.r.t. network weights
dW2 = dot_tn(Z1, D2) + l2norm*W2
db2 = sum(D2, axis=0) # Gradient w.r.t. W2
dW1 = dot_tn(X , D1) + l2norm*W1
db1 = sum(D1, axis=0) # Gradient w.r.t. W1
return Z2,dW1,dW2,db1,db2 # Return predictions and gradients
# Activation functions
if activation_func == "logistic":
def f(A): return 1./(1+exp(-A)) # logistic sigmoid activation function, returns Z=logistic(A)
def df(Z): return Z-Z**2 # derivative d/dx(logistic)(x) = logistic(x)-logistic(x)^2
elif activation_func == "tanh":
def f(A): return tanh(A) # tanh sigmoid activation function, returns Z=tanh(A)
def df(Z): return 1-Z**2 # derivative d/dx(tanh)(x) = 1-tanh(x)^2
elif activation_func == "relu":
def f(A): return maximum(0, A) # 'rectified linear' (relu) activation function, returns Z=max(0,A)
def df(Z): return sign(Z) # derivative d/dx(relu)(x) = sign(max(0,x))
else:
quit("Unrecognized activation function \"%s\"." % activation_func)
# Set neural network's weights to small random values
def randweights(n, m):
return rand(n, m)*0.002-0.001 # initialize to small values [-0.001,0.001]
##############################################################################
# Functions for PRINTING
##############################################################################
def calc_auc(z, y, want_curve = False):
"""Given predictions z and 0/1 targets y, computes AUC with optional ROC curve"""
z = z.ravel()
y = y.ravel()
assert len(z) == len(y)
# Remove any pair with NaN in y
m = ~np.isnan(y)
y = y[m]
z = z[m]
assert np.all(np.logical_or(y==0, y==1)), "Cannot calculate AUC for non-binary targets"
order = np.argsort(z,axis=0)[::-1].ravel() # Sort by decreasing order of prediction strength
z = z[order]
y = y[order]
npos = np.count_nonzero(y) # Total number of positives.
nneg = len(y)-npos # Total number of negatives.
if nneg == 0 or npos == 0:
return (np.nan,None) if want_curve else 1
n = len(y)
fprate = np.zeros((n+1,1))
tprate = np.zeros((n+1,1))
ntpos,nfpos = 0.,0.
for i,yi in enumerate(y):
if yi: ntpos += 1
else: nfpos += 1
tprate[i+1] = ntpos/npos
fprate[i+1] = nfpos/nneg
auc = float(np.trapz(tprate,fprate,axis=0))
if want_curve:
curve = np.hstack([fprate,tprate])
return auc, curve
return auc
def error_rate(X, Y):
Z = np.vstack([nnet_eval(tX).asnumpy() for tX in X])
L = np.vstack([tY.asnumpy() for tY in Y])
return calc_auc(Z,L)
def print_status(epoch=None):
update_interval = 25
if epoch is None or epoch > 0: # Only print status every 5 epochs.
time_per_epoch = toc() / update_interval
test_error = error_rate(Xvd, Yvd)
status_msg = "start: " if epoch is None else ("epoch[%03d]:"% (epoch+1))
time_msg = "(%.2fs/epoch)" % time_per_epoch if epoch is not None else ""
if epoch is None or (epoch+1) % update_interval == 0:
train_error = error_rate(Xtr, Ytr)
print "\t%s %.2f%% train auc, %.2f%% validation auc %s" % (status_msg, 100*train_error,
100*test_error, time_msg)
sys.stdout.flush()
tic()
return test_error
##############################################################################
# Functions for loading DATA
##############################################################################
add_cons = True # add conservation information
add_feats = True # add dist to TSS and is_transversion features
add_tfs = True # add predictions from TFs for wildtype and mutant
do_masking = True # match genes of positive and negative sets
# input files and directories
pos_dir = join(data_root, 'tfs_simulated')
neg_dir = join(data_root, 'tfs_derived')
cons_pos_file = join(data_root, 'simulated_cons.npz')
cons_neg_file = join(data_root, 'derived_cons.npz')
mask_file = join(data_root, 'matching_mask.npz')
pos_feat_file = join(data_root, 'simulated_feats.npz')
neg_feat_file = join(data_root, 'derived_feats.npz')
tfs_to_consider = join(data_root, 'TFs_to_consider.txt')
with open(tfs_to_consider) as fh:
considered_files = [line.strip('\r\n') for line in fh]
# function for loading the TF predictions in NPZ files
def load_data(save_dir, considered_files=None):
files = listdir(save_dir)
factor_names = []
if considered_files is None:
dim = 2*(len(files))
else:
dim = 2*(len(considered_files))
cnt = 0
for file_name in sorted(files):
# ignore the TFs that are not picked
if considered_files is not None and file_name[:-4] not in considered_files:
continue
factor_names.append(file_name[:-4]) # remove the .npz suffix
with np.load(join(save_dir, file_name)) as data:
p = data['pred']
if cnt == 0:
# initiliaze the feature matrix
X = np.empty((p.shape[0]/2,dim))
X[:,2*cnt] = p[::2] # wild type predictions
X[:,2*cnt+1] = p[1::2] - p[::2] # mutant - wildtype predictions
cnt += 1
return X, factor_names
print "*******************************************************************"
print 'Loading the data...'
# Loading Training data
pX, pfactors = load_data(pos_dir, considered_files)
nX, nfactors = load_data(neg_dir, considered_files)
print 'Adding prediction for %d TFs' % len(pfactors)
for pf, nf in zip(pfactors, nfactors):
if not pf == nf:
print 'Mismatched TFs!'
# Combine psoitive and negative sets
X = np.vstack([pX, nX])
Y = np.vstack([np.ones((pX.shape[0],1)), np.zeros((nX.shape[0],1))])
# Add conservation
if add_cons:
print 'Adding conservation'
with np.load(cons_pos_file) as data:
pC = data['cons']
with np.load(cons_neg_file) as data:
nC = data['cons']
C = np.vstack((pC, nC))
# add conservation information to TF features
X = np.hstack((X, C))
# Add two features: transversion_flag for mutations
# and the normalized distance to the closest TSS in (0, 1]
if add_feats:
print 'Adding two extra features'
with np.load(pos_feat_file) as data:
pF = data['feats']
with np.load(neg_feat_file) as data:
nF = data['feats']
X = np.hstack([X, np.vstack([pF, nF])])
# Applying the mask and matching the genes in the
# simulated and derived alleles
if do_masking:
print 'Matching genes'
with np.load(mask_file) as data:
c_mask = np.hstack([data['pos_mask'], data['neg_mask']])
X = X[c_mask]
Y = Y[c_mask]
num, dim = X.shape
print 'Data is loaded\nsample size: %d, dimensions:%d' % (num, dim)
# randomly permuting the data
np.random.seed(1234)
shuffled_idx = np.random.permutation(num)
X[:] = X[shuffled_idx]
Y[:] = Y[shuffled_idx]
# Setting up cross-validation indices
num_fold = 5
sp = np.linspace(0, num, num_fold+1).astype(np.int)
splits = np.empty((num_fold, 2), dtype=np.int)
for i in range(num_fold):
splits[i,:] = [sp[i], sp[i+1]]
def split_data(splits, fold_id, num_fold):
all_splits = set(np.arange(num_fold))
ts = np.mod(num_fold-1+fold_id, num_fold)
vd = np.mod(num_fold-2+fold_id, num_fold)
tr = list(all_splits - set([ts, vd]))
idx_ts = np.arange(splits[ts,0],splits[ts,1])
idx_vd = np.arange(splits[vd,0],splits[vd,1])
idx_tr = np.arange(splits[tr[0],0],splits[tr[0],1])
for i in range(1, len(tr)):
idx_tr = np.hstack([idx_tr, np.arange(splits[tr[i],0],splits[tr[i],1])])
return idx_tr, idx_vd, idx_ts
# Perform cross validation on the data
# Parameters of SGD training
batchsize = 128
num_epoch = 250
learn_rate = 5e-4
momentum = 0.90
dropoutrate = 0.5
layersize1 = 200 # Number of neurons in first layer
outputsize = 1 # 2 classes, 1 sigmoid
l2norm = 1e-6
inputsize = dim
# Holding folds' information
perfs = list()
test_auc = list()
tic("total time")
Y_hat = np.empty(num)
for fold_id in range(num_fold):
best_va_auc = 0.
test_fold = np.mod(num_fold-1+fold_id, num_fold)+1
print "*******************************************************************"
print "Training a neural network and testing on fold %d" % (test_fold)
tic("fold time")
temp_perfs = list()
# weights and biases and their momentums
W1 = randweights(inputsize, layersize1); b1 = randweights(1, layersize1)
W2 = randweights(layersize1, outputsize); b2 = randweights(1, outputsize)
mW1 = zeros_like(W1); mb1 = zeros_like(b1)
mW2 = zeros_like(W2); mb2 = zeros_like(b2)
# form the GPU based testing and trainng sets
# Uploading the Training data to GPU
idx_tr, idx_vd, idx_ts = split_data(splits, fold_id, num_fold)
num_tr = idx_tr.shape[0]
num_ts = idx_ts.shape[0]
num_vd = idx_vd.shape[0]
Xtr = None; Xts = None; Xvd = None
Ytr = None; Yts = None; Yvd = None
Xtr = [asarray(X[idx_tr[i:np.min([i+batchsize, num_tr])]], dtype=dt) for i in range(0, num_tr, batchsize)]
Ytr = [asarray(Y[idx_tr[i:np.min([i+batchsize, num_tr])]], dtype=dt) for i in range(0, num_tr, batchsize)]
Xts = [asarray(X[idx_ts[i:np.min([i+batchsize, num_ts])]], dtype=dt) for i in range(0, num_ts, batchsize)]
Yts = [asarray(Y[idx_ts[i:np.min([i+batchsize, num_ts])]], dtype=dt) for i in range(0, num_ts, batchsize)]
Xvd = [asarray(X[idx_vd[i:np.min([i+batchsize, num_vd])]], dtype=dt) for i in range(0, num_vd, batchsize)]
Yvd = [asarray(Y[idx_vd[i:np.min([i+batchsize, num_vd])]], dtype=dt) for i in range(0, num_vd, batchsize)]
print_status()
tic("training time")
##############################################################################
# TRAINING LOOP
##############################################################################
# Start training!
for epoch in range(num_epoch):
nb = len(Xtr) # number of minibatches
rand_b = np.random.permutation(nb)
for j in range(nb):
i = rand_b[j]
tX = Xtr[i]
tY = Ytr[i]
# Generate predictions Z, along with
# per-layer gradient based on targets Y
Z,dW1,dW2,db1,db2 = nnet_eval(tX, tY)
# Gradient step with very basic momentum
for P,dP,mP in zip(( W1, W2, b1, b2),
(dW1, dW2, db1, db2),
(mW1, mW2, mb1, mb2)):
dP *= -learn_rate
mP *= momentum
mP += dP
P += mP
# store the parameters at each epoch
va_auc = print_status(epoch)
if va_auc > best_va_auc:
best_params = [W1.copy(), W2.copy(), b1.copy(), b2.copy()]
best_va_auc = va_auc
temp_perfs.append(va_auc)
W1, W2, b1, b2 = best_params
t_Yts_hat = np.vstack([nnet_eval(tX, mode='presigmoid').asnumpy() for tX in Xts])
t_Yts = Y[idx_ts]
test_auc.append(100*calc_auc(t_Yts_hat, t_Yts))
print "\nFold %d test AUC: %.2f, fold running time = %.1fs" % (test_fold, test_auc[-1], toc("fold time"))
print "*******************************************************************"
perfs.append(temp_perfs)
print "Average Test AUC: %.2f, Total running time = %.1fs" % (np.mean(test_auc), toc("total time"))
|
DeepBind-master
|
code/deepfind.py
|
# Copyright (c) 2015, Andrew Delong and Babak Alipanahi All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation and/or
# other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Author's note:
# This file was distributed as part of the Nature Biotechnology
# supplementary software release for DeepBind. Users of DeepBind
# are encouraged to instead use the latest source code and binaries
# for scoring sequences at
# http://tools.genes.toronto.edu/deepbind/
#
import sys
import re
import os
import os.path
import argparse
import numpy as np
import numpy.random as npr
import deepbind_util as util
import cPickle
import scipy
import shutil
# Warning: The multiprocessing module may be used indirectly, so do not put any
# unintentional statements outside of main().
datadir = "../data/selex"
def main():
util.enable_reversecomplement()
args = loadargs()
models = loadmodels(args)
trdata = None
tedata = None
tfids = load_tfids(args)
for tfid in tfids:
if "calib" in args.steps:
print "-------------- calib:", tfid, "--------------"
set_motif_lengths(args, models, tfid)
trdata = load_traindata(tfid, args)
util.calibrate(models, trdata, args.calibdir, nfold=args.nfold, ncalib=args.ncalib, allfolds=False)
if "train" in args.steps:
print "-------------- train:", tfid, "--------------"
set_motif_lengths(args, models, tfid)
trdata = load_traindata(tfid, args)
util.train(models, trdata, args.calibdir, args.finaldir, nfold=1, ntrial=args.ntrial)
if "test" in args.steps:
tedata = load_testdata(tedata, tfids, args)
util.save_metrics(tedata, "test", args.finaldir)
if "report" in args.steps:
tedata = load_testdata(tedata, tfids, args)
util.save_featuremaps(tedata, args.finaldir, args.reportdir)
util.save_report(args.finaldir, args.reportdir, tfids)
#########################################################################
def load_tfids(args):
targetnames = sorted(list(set([filename.split(".")[0].rsplit("_",1)[0] for filename in os.listdir(datadir) if not os.path.isdir(datadir+"/"+filename)])))
chunktargets = util.getchunktargets(args, targetnames)
return chunktargets
#################################
def loadargs():
global datadir
args = argparse.ArgumentParser(description="Generate the HT-SELEX experiments.")
args.add_argument("--jolma", action="store_true", default=False, help="Use this flag to train on the HT-SELEX cycles selected by Jolma et al., rather than the cycles selected by Alipanahi et al.")
args = util.parseargs("selex", args)
if args.jolma:
args.calibdir = args.outdir+"/jolma/calib"
args.finaldir = args.outdir+"/jolma/final"
args.reportdir = args.outdir+"/jolma/report"
args.testdir = args.outdir+"/jolma/test"
datadir = datadir + "/jolma"
else:
args.calibdir = args.outdir+"/best/calib"
args.finaldir = args.outdir+"/best/final"
args.reportdir = args.outdir+"/best/report"
args.testdir = args.outdir+"/best/test"
datadir = datadir + "/best"
return args
#################################
def loadmodels(args):
models = util.loadmodels(args, "cfg/classification")
return models
#################################
def set_motif_lengths(args, models, tfid):
seqpatt = tfid.split("_")[-3]
ligandlen = re.findall("(\d+)N", seqpatt)
if not ligandlen:
quit("Could not parse ligand length from tfid %s" % tfid)
ligandlen = int(ligandlen[0])
filterlens = { 14 : 14,
20 : 20,
30 : 24,
40 : 32, }
filterlen = filterlens[ligandlen]
print "Using filter size %d" % filterlen
for cfg in models.itervalues():
cfg["model"].conv_seq[0].fsize = filterlen
#################################
def load_traindata(tfid, args):
print "load_traindata: %s"%tfid
maxrows = 10000 if args.quick else None
trdata = util.load_seq("%s/%s_A.seq.gz" % (datadir,tfid), minrows=100000, maxrows=maxrows)
trdata.targetnames = [tfid]
return trdata
#################################
def load_testdata(tedata, tfids, args, maxrows = None):
if tedata is not None:
return tedata
if maxrows is None:
maxrows = 10000 if args.quick else None
tedata = {}
for tfid in tfids:
print "load_testdata: %s ..."%tfid,
tedata[tfid] = util.datasource.fromtxt("%s/%s_B.seq.gz" % (datadir,tfid), None, None, maxrows=maxrows)
tedata[tfid].targetnames = [tfid]
print "done"
return tedata
#################################
if __name__=="__main__":
#util.disable_multiprocessing()
main()
|
DeepBind-master
|
code/deepbind_train_selex.py
|
# Copyright (c) 2015, Andrew Delong and Babak Alipanahi All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation and/or
# other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Author's note:
# This file was distributed as part of the Nature Biotechnology
# supplementary software release for DeepBind. Users of DeepBind
# are encouraged to instead use the latest source code and binaries
# for scoring sequences at
# http://tools.genes.toronto.edu/deepbind/
#
import sys
import re
import os
import os.path
import argparse
import numpy as np
import numpy.random as npr
import gzip
import csv
import cPickle
import deepbind_util as util
import deepity
import scipy
import shutil
# Warning: The multiprocessing module may be used indirectly, so do not put any
# unintentional statements outside of main().
def main():
util.enable_reversecomplement()
args = loadargs()
models = loadmodels(args)
tfgroups = load_tfgroups(args)
util.globals.flags.push("normalize_targets", True)
for tfgroup in tfgroups:
trdata = None
if len(tfgroup["ids"]) == 0:
print "No TFs to train on microarray %s"%tfgroup["train_fold"]
continue
if "calib" in args.steps:
trdata = load_pbmdata(trdata, tfgroup["ids"], tfgroup["train_fold"], args, remove_probe_bias=True)
util.calibrate(models, trdata, args.calibdir, nfold=args.nfold, ncalib=args.ncalib, allfolds=True)
if "train" in args.steps:
trdata = load_pbmdata(trdata, tfgroup["ids"], tfgroup["train_fold"], args, remove_probe_bias=True)
util.train(models, trdata, args.calibdir, args.finaldir, nfold=1, ntrial=args.ntrial, metric_key="pearson.r")
for tfgroup in tfgroups:
tedata = None
newids = []
for id in tfgroup["ids"]:
if os.path.exists(args.outdir+"/final/"+id+"/model.pkl"):
newids.append(id)
else:
print "WARNING: did not find model for %s, skipping" % id
tfgroup["ids"] = newids
if len(tfgroup["ids"]) == 0:
print "No TFs to test on microarray %s"%tfgroup["train_fold"]
continue
if "test" in args.steps:
tedata = load_pbmdata(tedata, tfgroup["ids"], tfgroup["test_fold"], args, remove_probe_bias=False)
save_test_performance(tedata, tfgroup["ids"], tfgroup["test_fold"], args)
if "report" in args.steps:
tedata = load_pbmdata(tedata, tfgroup["ids"], tfgroup["test_fold"], args, remove_probe_bias=False)
util.save_featuremaps(tedata, args.finaldir, args.reportdir)
if "report" in args.steps:
all_tfids = sum([tfgroup["ids"] for tfgroup in tfgroups],[])
save_report(args.finaldir, args.reportdir, all_tfids, index_metric="pearson")
save_pbm_performance_table(args, all_tfids)
if "chip" in args.steps:
all_tfids = sum([tfgroup["ids"] for tfgroup in tfgroups],[])
save_chip_performance_table(args, all_tfids)
#########################################################################
def load_tfgroups(args):
with open("../data/dream5/pbm/tfids.txt") as f:
tfids = sorted([line.rstrip("\r\n") for line in f.readlines()])
# Narrow down the list of ids based on which chunk we've been asked to compute
tfids = util.getchunktargets(args, tfids)
# Group the TF ids into those that are trained on A versus those that are trained on B
tfgroups = [ {"ids" : list(set(tfids).intersection(["C_%d"%(i+1) for i in range(20)]
+ ["TF_%d"%(i+1) for i in range( 0,33)])), "train_fold" : "A", "test_fold" : "B" },
{"ids" : list(set(tfids).intersection( ["TF_%d"%(i+1) for i in range(33,66)])), "train_fold" : "B", "test_fold" : "A" }]
return tfgroups
#################################
def loadargs():
args = argparse.ArgumentParser(description="Generate the DREAM5 PBM and/or CHIP experiments.")
args = util.parseargs("dream5", args)
return args
#################################
def loadmodels(args):
models = util.loadmodels(args, "cfg/regression/maxpool")
for cfg in models.itervalues():
cfg["model"].conv_seq[0].fsize = 24 # Override default max motif length
return models
#################################
def load_probe_biases():
if not os.path.exists("../data/dream5/pbm/probe_biases.npz"):
# First find which rows belong to which microarray (A or B)
with gzip.open("../data/dream5/pbm/sequences.tsv.gz") as f:
f.readline()
foldids = [line[0] for line in f]
rowidx = { "A" : [i for i in range(len(foldids)) if foldids[i] == "A"],
"B" : [i for i in range(len(foldids)) if foldids[i] == "B"] }
# Then load the targets and split the rows into rows for A and rows for B
with gzip.open("../data/dream5/pbm/targets.tsv.gz") as f:
reader = csv.reader(f, delimiter='\t')
colnames = reader.next()
targets = np.array([[float(x) for x in row] for row in reader])
biases = {}
for foldid in ("A","B"):
# For this microarray (A or B), calculate a multiplicative bias
# for each one of its individual probes (rows).
microarray_measurements = targets[rowidx[foldid]]
bias = []
for i in range(len(microarray_measurements)):
probe_measurements = microarray_measurements[i,:].ravel()
if np.all(np.isnan(probe_measurements)):
bias.append(np.nan)
else:
bias.append(np.median(probe_measurements[~np.isnan(probe_measurements)]))
biases[foldid] = np.array(bias)
np.savez("../data/dream5/pbm/probe_biases.npz", **biases)
with np.load("../data/dream5/pbm/probe_biases.npz") as f:
biases = { key : f[key] for key in f.keys() }
return biases
#################################
def load_pbmdata(trdata, tfids, fold, args, remove_probe_bias=False):
if trdata is not None:
return trdata # Training data was already loaded in earlier step.
maxrows = 10000 if args.quick else None
# Determine which targetnames we're responsible for
targetnames = gzip.open("../data/dream5/pbm/targets.tsv.gz").readline().rstrip().split("\t")
targetcols = [i for i in range(len(targetnames)) if targetnames[i] in tfids]
data = util.datasource.fromtxt("../data/dream5/pbm/sequences.tsv.gz", None, "../data/dream5/pbm/targets.tsv.gz", targetcols=targetcols, foldfilter=fold, maxrows=maxrows)
if remove_probe_bias:
# Remove per-probe multiplicative bias
biases = load_probe_biases()[fold].reshape((-1,1))
data.targets /= biases
data.Y /= biases
return data
#################################
def save_test_performance(data, tfids, fold, args):
print "Predicting...", tfids
# Generate predictions for each model
predictions = util.predict(data, args.finaldir, args.reportdir)
print "done"
for tfname in predictions:
print tfname
Z = predictions[tfname]
# Restore the original (unpreprocessed) scale and normalization of the predictions
# Then add the opposite microarray's estimated probe value to each probe
with open(args.finaldir + "/" + tfname +"/preprocessors.pkl") as f:
normalizer = cPickle.load(f)['targets'][0]
Z *= normalizer.scales[0]
Z += normalizer.biases[0]
# Add per-probe multiplicative bias to predictions
probe_biases = load_probe_biases()[fold].reshape((-1,1))
if args.quick:
probe_biases = probe_biases[:len(Z),:]
M = ~np.isnan(probe_biases)
Z[M] *= probe_biases[M]
#with open("predictions/%s_%s.tsv" % (tfname, {"A":"B","B":"A"}[foldid]), 'w') as f:
# f.writelines([str(x)+"\n" for x in Z.ravel()])
z = Z.ravel()
y = data.Y[:,data.targetnames.index(tfname)].ravel()
rowidx = data.rowidx.ravel()
mask = ~np.isnan(y)
zscore4 = np.std(y[mask])*4+np.mean(y[mask])
util._update_metrics(args.finaldir, tfname, "test", rowidx, z, y, aucthresh=(zscore4,zscore4))
#################################
def save_pbm_performance_table(args, tfids):
metric_keys = ["pearson.r","spearman.r","pearson.p","spearman.p","auc","auc.mean"]
with open(args.reportdir+"/performance_pbm.txt", "w") as f:
f.write("protein\t%s\n" % "\t".join(metric_keys))
for tfid in ["TF_%d" % i for i in range(1,67)]:
f.write(tfid)
if tfid in tfids:
metrics = util.load_metrics(args.finaldir+"/"+tfid+"/metrics.txt")
for key in metric_keys:
f.write("\t%s" % metrics["test"].get(key,np.nan))
f.write("\n")
return
#################################
def save_chip_performance_table(args, tfids):
with open(args.reportdir+"/performance_chipseq.txt", "w") as f:
f.write("Background\tFile\tauc.mean\tauc.std\n")
chipseqids = ["TF_%d"%i for i in [23,25,31,40,44]]
for tfid in chipseqids:
if tfid not in tfids:
continue
for windowsize in [51,100]:
for background in ["dinuc", "full_genomic", "genomic"]:
seqfile = "../data/dream5/chipseq/%s_CHIP_%d_%s.seq" % (tfid, windowsize, background)
invivodata = util.datasource.fromtxt(seqfile+"[0]", None, seqfile+"[1]", sequencenames=["seq"], targetnames=[tfid])
invivodata.targetnames = [tfid]
predictions = util.predict(invivodata, args.finaldir, args.reportdir, include=[tfid])
z = predictions[tfid].ravel()
y = invivodata.Y.ravel()
metrics = util.calc_metrics(z, y)
s = "%s\t%s\t%.3f\t%.3f\n" % (background, seqfile, metrics['auc.mean'], metrics['auc.std'])
print s,
f.write(s)
#################################
def save_report(modeldir, reportdir, tfids, index_metric="auc"):
util.makepath(reportdir)
index_html = open(reportdir+"/index.html",'w')
index_html.write("<html><head><title>Training report</title></head><body>\n")
index_html.write("<table cellspacing=0 cellpadding=5 border=1>\n")
index_html.write("<tr><th>Name</th><th>train %s</th><th>test %s</th></tr>\n" % (index_metric, index_metric))
for tfid in ["TF_%d" % i for i in range(1,67)]:
if tfid not in tfids:
continue
print tfid
util.makepath(reportdir+"/"+tfid)
# Load PFMs, convert them to logo images, and dump them to the report directory
with open(reportdir+"/%s.pfms.pkl"%tfid) as f:
_ = cPickle.load(f)
pfms = _["pfms"]
ics = _["ic"]
counts = _["counts"]
pfm_order = np.argsort(-ics)
logos = []
for j in pfm_order:
pfm = pfms[j]
ic = ics[j]
if ic <= 0:
continue
pfm_rev = np.fliplr(np.flipud(pfm))
logo_fwd = deepity.tape2logo.tape2logo(pfm.T, height=50, letterwidth=10, bufferzoom=4, vmax=1.0, style="seqlogo", rna=False)
logo_rev = deepity.tape2logo.tape2logo(pfm_rev.T, height=50, letterwidth=10, bufferzoom=4, vmax=1.0, style="seqlogo", rna=False)
logo_filename = "%s/%s/pfm%02d" % (reportdir, tfid, len(logos))
scipy.misc.imsave(logo_filename+"_fwd.png", logo_fwd)
scipy.misc.imsave(logo_filename+"_rev.png", logo_rev)
logos.append((j, os.path.basename(logo_filename)+"_fwd.png", ic, counts[j]))
# Load train/test metrics so we can print them in the HTML report
metrics_file = "%s/%s/metrics.txt" % (modeldir, tfid)
metrics = deepity.load_metrics(metrics_file)
# Add row for this TF in main index.html
index_html.write("<tr>\n")
index_html.write("<td><a href=\"%s/index.html\">%s</a></td>\n" % (tfid, tfid))
if index_metric=="auc":
index_html.write("<td>%s ± %s</td>\n" % (metrics["train"]["auc.mean"], metrics["train"]["auc.std"]))
index_html.write("<td><b>%s</b> ± %s</td>\n" % (metrics["test"]["auc.mean"], metrics["test"]["auc.std"]))
elif index_metric=="pearson":
index_html.write("<td>%s (p=%s)</td>\n" % (metrics["train"]["pearson.r"], metrics["train"]["pearson.p"]))
index_html.write("<td><b>%s</b> (p=%s)</td>\n" % (metrics["test"]["pearson.r"], metrics["test"]["pearson.p"]))
index_html.write("</tr>\n")
# Build page showing filters and sequence logos for this specific TF
tf_html = open(reportdir+"/"+tfid+"/index.html", 'w')
tf_html.write("<html><head><title>Training report - %s</title></head><body>\n" % tfid)
tf_html.write("<h2>%s</h2>\n" % tfid)
# tf_html.write("<a href=\"../gmaps/%s/index.html\">gradient maps</a>)<hr/>\n"%(tfid,tfid))
tf_html.write("""
<script language="javascript">
function toggle_strand()
{
var pfms = document.getElementsByClassName('pfm')
for (var i = 0; i < pfms.length; i++)
if (pfms[i].src.search("_fwd") != -1)
pfms[i].src = pfms[i].src.replace("_fwd","_rev");
else if (pfms[i].src.search("_rev") != -1)
pfms[i].src = pfms[i].src.replace("_rev","_fwd");
}
</script></head><body>
""")
with open(metrics_file) as f:
metrics_text = f.read()
tf_html.write("<pre>%s</pre>\n"% metrics_text)
if os.path.exists(modeldir+"/%s/predict.scatter-test.png" % tfid):
tf_html.write("<table cellspacing=0 cellpadding=0 style=\"display:inline;margin-right:20px;\"><tr><td align=center>TEST predictions</td></tr><tr><td><img src=\"../../final/%s/predict.scatter-test.png\"/></td></tr></table>\n" % tfid)
if os.path.exists(modeldir+"/%s/predict.scatter-train.png" % tfid):
tf_html.write("<table cellspacing=0 cellpadding=0 style=\"display:inline\"><tr><td align=center>TRAINING predictions</td></tr><tr><td><img src=\"../../final/%s/predict.scatter-train.png\"/></td></tr></table>\n" % tfid)
# Then generate a table for the complete model
tfdir = modeldir+"/"+tfid
tf_html.write("<hr/><h3>Feature Logos</h3>\n")
tf_html.write("<input type=\"button\" value=\"toggle strand\" onclick=\"toggle_strand();\"/><br/>")
tf_html.write("<table cellspacing=0 cellpadding=4 border=0>\n")
for filter_index, logo, ic, count in logos:
tf_html.write("<tr><td>%d</td><td><img src=\"%s\" class=\"pfm\"/></td><td>%.1f bits,</td><td> %d activations</td></tr>" % (filter_index, logo, ic, count))
tf_html.write("</table><br/><br/>\n")
# Now show the actual model.
'''
shutil.copy(tfdir_final[0]+"/fold0.report/filters_.conv_seq(0).color.png", basedir+"report/%s/final_filters.png" % (tfid))
shutil.copy(tfdir_final[0]+"/fold0.report/filters_.conv_seq(0).logo.png", basedir+"report/%s/final_logos.png" % (tfid))
shutil.copy(tfdir_final[0]+"/fold0.report/filters_.conv_seq(1).png", basedir+"report/%s/final_biases.png" % (tfid))
shutil.copy(tfdir_final[0]+"/fold0.report/filters_.combiner.png", basedir+"report/%s/final_weights.png" % (tfid))
os.system("convert %sreport/%s/final_filters.png -rotate -90 %sreport/%s/final_filters_rot.png" % (basedir,tfid,basedir,tfid))
'''
tf_html.write("<hr/><h3>Actual DeepBind model</h3>\n")
if os.path.exists(tfdir + "/model.conv_seq(1).color.png"):
tf_html.write("Filters:<br/>\n")
tf_html.write("<img src=\"../../final/%s/model.conv_seq(1).color.png\"/><br/>\n" % tfid)
if os.path.exists(tfdir + "/model.combiner.png"):
tf_html.write("<br/>Combiner layer:<br/>\n")
tf_html.write("<img src=\"../../final/%s/model.combiner.png\"/><br/>\n" % tfid)
tf_html.write("</body></html>\n")
index_html.write("</table>\n")
index_html.write("</body></html>\n")
index_html.close()
if __name__=="__main__":
#util.disable_multiprocessing()
main()
|
DeepBind-master
|
code/deepbind_train_dream5.py
|
# Copyright (c) 2015, Andrew Delong and Babak Alipanahi All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation and/or
# other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Author's note:
# This file was distributed as part of the Nature Biotechnology
# supplementary software release for DeepBind. Users of DeepBind
# are encouraged to instead use the latest source code and binaries
# for scoring sequences at
# http://tools.genes.toronto.edu/deepbind/
#
# DO NOT IMPORT THIS MODULE
# It is meant to be spawned by report.py as a separate process,
# in order to avoid problems using matplotlib from within child
# processes of the multiprocessing module
# (crashing on exit; instability in subsequent child processes)
import os
import os.path
import sys
import copy
import glob
import re
import numpy as np
import argparse
import tape2logo
from PIL import Image
from PIL import ImageDraw
from PIL import ImageFont
import time
import matplotlib
matplotlib.rcParams.update({'font.size': 9,
'font.family': 'sans serif',
'text.usetex' : False,
'figure.max_num_figures' : 100})
if (not os.environ.has_key("DISPLAY")) and (not os.environ.has_key("HOMEDRIVE")):
matplotlib.use("Agg")
import matplotlib.pyplot as plt
from matplotlib.ticker import NullFormatter
from matplotlib import colors as colors
from matplotlib import cm
from matplotlib.figure import Figure
gridimg_pal_RedBlue = matplotlib.colors.LinearSegmentedColormap('RedBlue', {
'red': ((0.00, 0.0, 0.0),
(0.50, 1.0, 1.0),
(1.00, 1.0, 1.0)),
'green': ((0.00, 0.0, 0.0),
(0.50, 1.0, 1.0),
(1.00, 0.0, 0.0)),
'blue': ((0.00, 1.0, 1.0),
(0.50, 1.0, 1.0),
(1.00, 0.0, 0.0)),
},gamma =1.0)(np.arange(256))
gridimg_pal = np.asarray(gridimg_pal_RedBlue[:,:3]*255, dtype=np.uint8)
gridimg_pal_Red = matplotlib.colors.LinearSegmentedColormap('Red', {
'red': ((0.00, 1.0, 1.0),
(1.00, 1.0, 1.0)),
'green': ((0.00, 1.0, 1.0),
(1.00, 0.0, 0.0)),
'blue': ((0.00, 1.0, 1.0),
(1.00, 0.0, 0.0)),
},gamma =1.0)(np.arange(256))
gridimg_pal_positive = np.asarray(gridimg_pal_Red[:,:3]*255, dtype=np.uint8)
_image_grid_font = ImageFont.truetype(os.path.abspath(os.path.dirname(__file__))+"/arial.ttf", 9)
#_image_grid_font = ImageFont.load_default()
import scipy
import scipy.misc
import scipy.stats
import warnings
#warnings.simplefilter('error', UserWarning)
def calc_auc(z,y, want_curve = False):
assert len(z) == len(y)
m = ~np.isnan(y)
y = y[m]
z = z[m]
ymin = y.min()
ymax = y.max()
lo = (0.02-0) / (1.0 - 0.0) * (ymax-ymin) + ymin
hi = (0.10-0) / (1.0 - 0.0) * (ymax-ymin) + ymin
mlo = y<=lo
mhi = y>=hi
y[mlo] = 0
y[mhi] = 1
y[np.logical_and(mlo,mhi)] = np.nan
m = ~np.isnan(y)
y = y[m]
z = z[m]
order = np.argsort(z,axis=0)[::-1].ravel() # Sort by decreasing order of prediction strength
z = z[order]
y = y[order]
npos = np.count_nonzero(y) # Total number of positives.
nneg = len(y)-npos # Total number of negatives.
if nneg == 0 or npos == 0:
return (1,None) if want_curve else 1
n = len(y)
fprate = np.zeros((n+1,1))
tprate = np.zeros((n+1,1))
ntpos,nfpos = 0.,0.
for i,yi in enumerate(y):
if yi: ntpos += 1
else: nfpos += 1
tprate[i+1] = ntpos/npos
fprate[i+1] = nfpos/nneg
auc = np.trapz(tprate,fprate,axis=0)
if want_curve:
curve = np.hstack([fprate,tprate])
return auc,curve
return auc
def makepath(dir):
"""
Makes a complete path if it does not exist already.
Does not remove any existing files.
Fixes periodic failure of os.makedirs on Windows.
"""
if os.path.exists(dir):
return dir
retries = 8
while retries >= 0:
try:
time.sleep(0.001)
os.makedirs(dir)
retries = -1
except Exception, e:
if retries == 0:
raise
else:
retries -= 1
return dir
#####################################################################
class filter_images(object):
def __init__(self,F,per_image_scale=False,symmetric_range=True):
assert len(F.shape) == 3 # (size_y,size_x,num_filters)
# Get information about shape and range of filter elements
self.vmean = F.reshape((F.shape[0],-1)).mean(axis=1).reshape((-1,1,1))
self.vmin = F.reshape((F.shape[0],-1)).min(axis=1).reshape((-1,1,1))
self.vmax = F.reshape((F.shape[0],-1)).max(axis=1).reshape((-1,1,1))
if symmetric_range:
self.vmax = np.maximum(abs(self.vmin),abs(self.vmax))
self.vmin = -self.vmax
self.vranges = [(F[i,:,:].min(), F[i,:,:].max()) for i in range(F.shape[0])]
# Convert filters to images
self.raw = F
I = F.copy()
if per_image_scale:
I -= self.vmin
I *= 1./(self.vmax-self.vmin)
else:
I -= self.vmin.min()
I *= 1./(self.vmax.max()-self.vmin.min())
I = np.maximum(0,I)
I = np.minimum(1,I)
I *= 255
I = np.uint8(I)
self.images = I
def __len__(self): return self.images.shape[0]
def __getitem__(self,i): return self.images[i,:,:]
def __iter__(self): return [self.images[i,:,:] for i in range(len(self))].__iter__()
def zoom(self, factor):
self.images = np.repeat(self.images,factor,1)
self.images = np.repeat(self.images,factor,2)
def zoom_smooth(self, factor):
I = self.images
Z = np.zeros((I.shape[0],I.shape[1]*factor,I.shape[2]*factor), dtype=I.dtype)
for i in range(len(I)):
img = Image.fromarray(I[i])
img = img.resize((int(img.size[0]*factor),int(img.size[1]*factor)), Image.ANTIALIAS)
Z[i,:,:] = np.array(img)
self.images = Z
def L2RGB(I,cmap):
I = scipy.misc.toimage(I, pal=cmap).convert("RGB")
return np.array(I)
def addborder(I, color=0):
I = np.vstack([color*np.ones_like(I[:1,:,:]),
I,
color*np.ones_like(I[:1,:,:])])
I = np.hstack([color*np.ones_like(I[:,:1,:]),
I,
color*np.ones_like(I[:,:1,:])])
return I
def image_grid(fimgs, maxwd = 6000, maxht = 5000, cmap=None, fade=False, positive=False):
I = fimgs.images
max_vmax = fimgs.vmax.max()
min_vmin = fimgs.vmin.min()
if cmap is None:
cmap = np.repeat(np.arange(256).reshape((-1,1)),3)
n,fht,fwd = I.shape[:3] # n = number of features
if fwd > maxwd or fht > maxht:
print "image larger than maximum size allowed"
return None
is_logo = (len(I.shape) == 4)
#if not is_logo:
fwd += 2 # border
fht += 2 # border
idwd = 20
decwd = 12
txtwd = 48
wd = idwd+decwd+fwd+txtwd
ht = fht
maxrows = min(int(maxht-1)//(ht+1), n) # How many images can stack on top of each other? (-1 / +3 because of 1 pixel border and 1 pixel cell padding)
maxcols = min(int(maxwd-1)//(wd+1), (n+maxrows-1)//maxrows)
# Start from a blank white image
G = np.ones(((ht+1)*maxrows-1,(wd+1)*maxcols-1,3),dtype=I.dtype)
if G.dtype == np.uint8:
G *= 255
# Copy each image into a spot in the grid
for i in range(n):
col = i // maxrows
row = i % maxrows
if col >= maxcols:
break
x0 = col*(wd+1)
y0 = row*(ht+1)
if is_logo:
F = I[i,:,:,:].copy()
else:
F = L2RGB(I[i,:,:], cmap)
F = addborder(F)
rmin,rmax = fimgs.vranges[i]
mid = ht//2
hi = int((mid-1) * float(max(0, rmax)) / abs(max_vmax) + 0.5)
lo = int((mid-1) * float(max(0,-rmin)) / abs(min_vmin) + 0.5) if not positive else 0
#if positive:
# F[1:-1,1:-1] = 255-F[1:-1,1:-1]
if fade and hi <= 1 and lo <= 1:
F = 192 + F//4 # Fade out anything that's extremely weak, so that user's attention is drawn to the other filters.
img = np.hstack([255*np.ones((ht,idwd,3),np.uint8),
F,
255*np.ones((ht,decwd+txtwd,3),np.uint8)])
# Draw a little vertical bar thingy to visually indicate magnitude of range
# relative to other filters
img[mid-hi:mid, idwd+fwd+3:idwd+fwd+decwd-3,:] = np.asarray([255,0,0]).reshape((1,1,3))
img[mid+1:mid+1+lo, idwd+fwd+3:idwd+fwd+decwd-3,:] = np.asarray([0,0,255]).reshape((1,1,3))
#img[mid,idwd+fwd+2:idwd+fwd+decwd-2,:] *= (1-max(float(rmax) / abs(max_vmax),float(-rmin) / abs(min_vmin)))**0.8
img = Image.fromarray(img) # convert to Image so that we can use ImageDraw
draw = ImageDraw.Draw(img)
draw.text((0,2),"%3d"%i,(200,200,200),font=_image_grid_font)
if rmax != rmin and not positive:
draw.text((idwd+decwd+F.shape[1]+0, 2),"%+.3f"%rmax,0,font=_image_grid_font)
draw.text((idwd+decwd+F.shape[1]+2,13),"%+.3f"%rmin,0,font=_image_grid_font)
else:
draw.text((idwd+decwd+F.shape[1]+2, 2),"%+.3f"%rmax,0,font=_image_grid_font)
img = np.array(img) # convert back to numpy
G[y0:y0+ht,x0:x0+wd,:] = img
return G
def fimgs2logos(fimgs, finalheight, finalletterwidth):
filters = fimgs.raw
nfilter,_,fsize = filters.shape # n = number of filters
logos = 255*np.ones((nfilter,finalheight,fsize*finalletterwidth,3), np.uint8)
limgs = copy.deepcopy(fimgs)
limgs.images = logos
for k in range(nfilter):
logos[k,:,:,:] = tape2logo.tape2logo(filters[k,:,:], finalheight, finalletterwidth, 5)
return limgs
def reverse_complement_weights(W):
W = W[:,:,::-1]
W = W[:,[3,2,1,0],:]
return W
########################################################
def unpack(npzfile, zoom):
entries = np.load(npzfile)['entries']
outdir = os.path.splitext(npzfile)[0]
makepath(outdir)
dpi = 80.0
# First dump filter images
if "images" in entries[-1]:
for name,weights in entries[-1]["images"].iteritems():
name = "filters_"+name.replace("[","(").replace("]",")")
is_conv = (".conv_" in name and weights.shape[-1] > 1) # convnet filters treated differently.
# First, generate
if is_conv:
# Save colourized filters
fimgs = filter_images(weights, per_image_scale=True)
fimgs.zoom(max(1,12//fimgs.images.shape[1]))
fimgs.zoom_smooth(4)
fimgs.zoom_smooth(0.5)
#fimgs.zoom(max(1,24//fimgs.images.shape[1]))
scipy.misc.imsave(outdir+"/"+name+".color.png",image_grid(fimgs, cmap=gridimg_pal, fade=True))
# Save black and white filters
#fimgs = filter_images(weights, per_image_scale=True)
#fimgs.zoom(max(1,24//fimgs.images.shape[1]))
#scipy.misc.imsave(outdir+"/"+name+".png",image_grid(fimgs, fade=True))
logoheight, letterwd = 41, 6
weights -= (np.sort(weights, axis=1)[:,1:2,:] + np.sort(weights, axis=1)[:,2:3,:])/2
#weights -= np.sort(weights, axis=1)[:,1:2,:] # Subtract off the second-smallest value in each column
#weights -= weights.min(axis=1).reshape((weights.shape[0],1,weights.shape[2])); logoheight = 24
logoheight = int(round(zoom*logoheight))
letterwd = int(round(zoom*letterwd))
fwdlogo = fimgs2logos(filter_images(weights, per_image_scale=True), logoheight, letterwd)
revlogo = fimgs2logos(filter_images(reverse_complement_weights(weights), per_image_scale=True), logoheight, letterwd)
fwdlogo = image_grid(fwdlogo, fade=True)
revlogo = image_grid(revlogo, fade=True)
fwdtitle = Image.fromarray(255*np.ones((20,fwdlogo.shape[1],3),np.uint8)); ImageDraw.Draw(fwdtitle).text((20,2),"actual",(0,0,0),font=_image_grid_font)
revtitle = Image.fromarray(255*np.ones((20,revlogo.shape[1],3),np.uint8)); ImageDraw.Draw(revtitle).text((20,2),"reverse complement",(0,0,0),font=_image_grid_font)
scipy.misc.imsave(outdir+"/"+name+".logo.png", np.hstack([np.vstack([np.array(fwdtitle), fwdlogo]), np.vstack([np.array(revtitle), revlogo])]))
else:
# Save colourized weight maps
fimgs = filter_images(weights, per_image_scale=False)
fimgs.zoom(max(1,12//fimgs.images.shape[1]))
scipy.misc.imsave(outdir+"/"+name+".png",image_grid(fimgs, cmap=gridimg_pal))
# Then dump loss plots
if "tloss" in entries[-1]:
fig = plt.figure(figsize=(300/dpi,200/dpi),dpi=dpi,facecolor='w',edgecolor='b',frameon=False)
ax = fig.add_axes([0.1,0.08,.88,.88])
colours = [[0.0,0.0,0.0], # train
[0.0,0.7,0.4], # validate
[1.0,0.0,0.0]] # test (if any)
styles = ['-','-','-']
ax.set_autoscale_on(False)
ax.set_xlabel("step")
ax.set_ylabel("loss")
ax.grid(True,which='major',axis='y',linestyle=':',color=[0.2,0.2,0.2])
ax.grid(True,which='minor',axis='y',linestyle=':',color=[0.8,0.8,0.8])
xval = np.asarray([entry["step"] for entry in entries])
yval_t = np.asarray([entry["tloss"] for entry in entries])
yval_v = np.asarray([entry["vloss"] for entry in entries]) if "vloss" in entries[-1] else None
xmax = xval.max()
ymin = yval_t.min()
ymax = yval_t.max()
ax.semilogy(xval,yval_t,color=colours[0],linestyle=styles[0],label="tloss")
if yval_v is not None:
ymin = min(ymin,yval_v.min())
ymax = min(ymax,yval_v.max())
ax.semilogy(xval,yval_v,color=colours[1],linestyle=styles[1],label="vloss")
ymin = max(ymin,1e-8) # Just update the axis limits, since this isn't done
ymax = max(ymax,1e-8+ymin) # automatically when you modify the line data directly.
ymax = min(ymax,ymin*10.1)
ax.set_xlim(0,xmax)
ax.set_ylim(ymin,ymax)
ax.legend()
ax.set_xlim(0,xmax*1.1)
ax.set_ylim([10**np.floor(np.log10(ymin)),10**np.ceil(np.log10(ymax))])
fig.savefig(outdir+"/loss.png",dpi=dpi)
#fig.savefig(outdir+"/loss.pdf",dpi=dpi)
del fig
plt.close()
# Then dump the prediction/target scatterplots
for foldname in ("t","v"):
if not foldname+"Z" in entries[-1]:
continue
xval = entries[-1][foldname+"Y"]
yval = entries[-1][foldname+"Z"]
for i in range(entries[-1]["tY"].shape[1]):
xval_i = xval[:,i:i+1]
yval_i = yval[:,i:i+1]
fig = plt.figure(figsize=(300/dpi,300/dpi),dpi=dpi,facecolor='w',edgecolor='b',frameon=False)
ax = fig.add_axes([0.14,0.14,.74,.74])
ybar = fig.add_axes([0.89, 0.14, 0.11, 0.74])
keep = ~np.isnan(xval_i)
xval_i = xval_i[keep]
yval_i = yval_i[keep]
lo = min(xval_i.min(),yval_i.min())
hi = max(xval_i.max(),yval_i.max())
aximg = ax.hist2d(xval_i,yval_i,bins=50,range=[[lo-.05,hi+.05],[lo-.05,hi+.05]],cmap=cm.hot,cmin=1)[3]
ybar.hist(yval_i, bins=30, orientation='horizontal', histtype='bar', cumulative=False, color=[0.0,0.0,1.0], range=[lo-0.05, hi+0.05], edgecolor="none")
ybar.set_ylim([lo-0.05, hi+0.05])
ybar.axis("off")
ax.set_xlabel("target")
ax.set_ylabel("prediction")
fig.savefig(outdir+"/predict_%02d_%s.png"%(i,foldname),dpi=dpi)
#fig.savefig(outdir+"/predict_%02d%s.pdf"%(i,foldname),dpi=dpi)
del fig
plt.close()
# Finally, write AUCs
for foldname in ("t","v"):
if not foldname+"Z" in entries[-1]:
continue
x = entries[-1][foldname+"Y"]
z = entries[-1][foldname+"Z"]
for i in range(entries[-1]["tY"].shape[1]):
y_i = x[:,i:i+1]
z_i = z[:,i:i+1]
auc,curve = calc_auc(z_i,y_i,want_curve=True)
if curve is not None:
xval = curve[:,0]
yval = curve[:,1]
fig = plt.figure(figsize=(300/dpi,300/dpi),dpi=dpi,facecolor='w',edgecolor='b',frameon=False)
ax = fig.add_axes([0.18,0.1,.8,.8])
ax.plot(xval,yval,'-r')
ax.set_xlabel("FP rate")
ax.set_ylabel("TP rate")
fig.savefig(outdir+"/predict_%02d_%s_auc.png"%(i,foldname),dpi=dpi)
#fig.savefig(outdir+"/predict_%02d_%s_auc.pdf"%(i,foldname),dpi=dpi)
del fig
plt.close()
args = argparse.ArgumentParser(description="Unpack a \"foldX.report.npz\" file and generate visualizations of its contents (filters, predictions, etc)")
args.add_argument("path", type=str, help="A report.npz file, or a directory to search.")
args.add_argument("-z","--zoom", type=float, default=1, help="Zoom factor relative to default size; for generating print-quality bitmaps.")
args = args.parse_args()
if not os.path.exists(args.path):
quit("Cannot find file \"%s\"."%args.path)
if os.path.isdir(args.path):
for dirpath, dirnames, filenames in os.walk(args.path):
for filename in filenames:
if len(re.findall("fold.\.report\.npz", filename)) > 0:
unpack(os.path.join(dirpath, filename), args.zoom)
else:
unpack(args.path,args.zoom)
|
DeepBind-master
|
code/libs/deepity/deepity/report_plotter.py
|
# Copyright (c) 2015, Andrew Delong and Babak Alipanahi All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation and/or
# other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Author's note:
# This file was distributed as part of the Nature Biotechnology
# supplementary software release for DeepBind. Users of DeepBind
# are encouraged to instead use the latest source code and binaries
# for scoring sequences at
# http://tools.genes.toronto.edu/deepbind/
#
import os
import gc
import re
import sys
import copy
import time
import random
import tempfile
import logging
import cPickle as cp
import multiprocessing
import subprocess
import deepity
import numpy as np
import numpy.random as npr
import smat as sm
import scipy
import scipy.stats
from . import std
from . import hpsearch as hp
from . import _io_
from . import util
from .data import datasource
from . import globals
from .report import training_report, calc_auc, bootstrap_auc
import node as _node
import trainer as _trainer
class _object_factory_from_file(object):
def __init__(self,filename,fieldname=None):
self.filename = filename
self.fieldname = fieldname
def __call__(self):
obj = _io_.load(self.filename)
if self.fieldname and isinstance(obj,dict):
return obj[self.fieldname]
return obj
def _create_model(model_proto, hparams):
model = copy.deepcopy(model_proto)
for key,val in hparams.iteritems():
prefix,path = key.split(":") # look for hparams named "model:..."
if prefix == "model":
nodepath,attrname = path.rsplit(".",1)
node = model.find(nodepath)
if hasattr(node,"set_"+attrname):
getattr(node,"set_"+attrname)(model,val) # call model.set_xxx(val)
else:
setattr(node,attrname,val)
return model
def _create_trainer(trainer_proto, hparams):
trainer = copy.deepcopy(trainer_proto)
for key,val in hparams.iteritems():
prefix,attrname = key.split(":") # look for hparams named "trainer:..."
if prefix == "trainer":
if hasattr(trainer,"set_"+attrname):
getattr(trainer,"set_"+attrname)(model,val) # call trainer.set_xxx(val)
else:
setattr(trainer,attrname,val)
return trainer
def _slice_hparams(hparams, inst):
h = copy.deepcopy(hparams)
for key in h.keys():
h[key] = h[key][inst]
return h
def load_hparams_result(filename):
with open(filename,'r') as f:
lines = f.readlines()
params = {}
result = 0.0
for line in lines:
# Look for validation performance
matches = re.findall("# metric = (\S+)", line)
if len(matches) > 0:
result = float(matches[0])
continue
# Add hparam
name, value = re.findall(" *(\S+) += (\S+)", line)[0]
if name in [":cfgname"]:
params[name] = value
else:
params[name] = float(value)
return hp.sample(params, result)
def save_hparams_result(filename, hparams_result, metric_key):
util.makepath(os.path.dirname(filename))
with open(filename,'w') as f:
if metric_key:
f.write("# metric = %f (%s)\n" % (hparams_result.metrics[metric_key], metric_key))
f.write(hparams2str(hparams_result.params))
def _save_model_inst(filename, inst, model, hparams):
m = copy.deepcopy(model)
sm.sync()
# Slice the trainable weights
m.slice_inst(inst)
# Also slice the hyperparams, and replace corresponding 'arrayed'
# attributes in the model with their scalar (sliced element) counterpart.
h = _slice_hparams(hparams,inst)
for key,val in h.iteritems():
prefix,path = key.split(":") # look for hparams named "model:..."
if prefix != "model":
continue
nodepath,attrname = path.rsplit(".",1)
node = m.find(nodepath)
if hasattr(node,"set_"+attrname):
getattr(node,"set_"+attrname)(model,val) # call model.set_xxx(val)
else:
setattr(node,attrname,val)
# Dump the model
util.makepath(os.path.dirname(filename))
with open(filename,'wb') as f:
cp.dump(m,f)
sm.sync() # Make sure we wait until the sarrays are all dumped
def gen_predictions(model, data):
# We must feed each sequence through the model several times
# by applying the model repeatedly on sliding a window along the sequence.
# That generates a prediction map, from which we can take max, sum, etc.
predictions = []
gmaps = {}
batches = data.asbatches(batchsize=128, reshuffle=False)
for batch in batches:
args = batch.input_data()
args["want_bprop_inputs"] = False
if isinstance(model.Z.origin().node,std.softmaxnode):
args["bprop_inputs_loss"] = std.nll()
else:
args["bprop_inputs_loss"] = std.mse()
outputs = model.eval(**args)
Z = outputs['Z'].asnumpy()
Zmask = outputs.get('Zmask',None)
if Zmask is not None:
Zmask = Zmask.asnumpy()
Z = Z[Zmask.ravel()]
predictions.append(Z)
# Concatenate all numpy arrays if they're the same size
predictions = np.vstack(predictions)
return predictions
def getinstdir(outdir, targetname, trialnum, foldid):
if isinstance(outdir,str):
return outdir
outdir = [_ for _ in outdir] # Make a copy that we can substitute elements in
args = {"target" : targetname,
"trial" : trialnum,
"fold" : foldid}
for i,item in enumerate(outdir):
if isinstance(item, tuple):
name, patt = item
if args[name] is None:
outdir[i] = None
else:
outdir[i] = patt % args[name]
instdir = "/".join([part for part in outdir if part is not None])
return instdir
def load_metrics(filename):
metrics = {}
with open(filename) as f:
groupnames = f.readline().rstrip().split()
for line in f:
line = line.rstrip().split()
for i,val in enumerate(line[1:]):
metrics.setdefault(groupnames[i],{})[line[0]] = val
return metrics
def save_metrics(outfile, metrics):
with open(outfile,"w") as f:
groupnames = sorted(metrics.keys())
fieldnames = set()
for groupname in groupnames:
for fieldname in metrics[groupname].keys():
fieldnames.add(fieldname)
fieldnames = sorted(list(fieldnames))
f.write(" "*14+"\t".join(groupnames) + "\n")
rows = {}
for groupname in groupnames:
for fieldname in fieldnames:
fieldval = metrics[groupname].setdefault(fieldname, np.nan)
if not isinstance(fieldval,np.ndarray):
if isinstance(fieldval, float):
fmt = "%.2e" if fieldname.endswith(".p") else "%.6f"
fieldval = fmt%fieldval
rows.setdefault(fieldname,[]).append(str(fieldval))
f.writelines([fieldname + " "*max(0,14-len(fieldname)) + "\t".join(rows[fieldname]) +"\n" for fieldname in fieldnames])
def call_dumpviz(dumpdir):
subprocess.Popen(["python", os.path.dirname(__file__)+"/dumpviz.py", dumpdir])
##########################################
class hypertrain_worker(object):
"""
Given a dataset and specific hyperparameters, this object will
simply train a model (an array of models) and return the
validation error (array of validation errors).
"""
def __init__(self, worker_id, model_proto, trainer_proto, datasrc,
nfold, allfolds, outdir, report_class, devices, verbose,
default_dtype, global_flags, auxfilter, mode, dumpviz):
self.worker_id = worker_id
# All the data subsets in 'trainset' will be merged into a single fold.
self.model_proto = model_proto
self.trainer_proto = trainer_proto
self.datasrc = datasrc # Load a copy of the dataset into this worker process.
self.nfold = nfold
self.allfolds = allfolds
self.outdir = outdir
self.mode = mode
self.aucrange = (0.5,0.5) # threshold for making AUCs out of non-binary targets, presumed to be in range [0,1]
self.report_class = report_class
self.auxfilter = auxfilter
self.dumpviz = dumpviz
globals.flags.copy_from(global_flags)
# If we've been called from a new process, create a separate log file.
# Otherwise everything is logged into the original log file.
if multiprocessing.current_process().name != "MainProcess":
logdir = getinstdir(outdir,None,None,None)
worker_logfile = os.path.join(logdir,"hypertrain_worker%d.log" % worker_id)
globals.set_logging(worker_logfile,level=verbose,echo=False)
logging.info("\n----------------------------- %s -----------------------------" % time.strftime("%y-%m-%d %H-%M-%S",time.localtime()))
# Configure deepity to use this worker's GPU device.
logging.info("worker %d starting on device %d using %s" % (worker_id,devices[worker_id],sm.get_default_dtype().__name__))
rseed = int((time.time()*100000 + worker_id) % 2000)
globals.reset_backend(device=devices[worker_id], seed=rseed)
random.seed(rseed)
sm.set_default_dtype(default_dtype)
npr.seed(rseed)
# Seed this process's random number generator, for reproducibility
sm.sync()
# Prepare the datasource to serve data.
self.datasrc.open()
def __del__(self):
self.datasrc.close()
self.datasrc = None
gc.collect() # Clear out the cruft and make sure the backend can be destroyed
sm.sync()
sm.destroy_backend()
def __call__(self, hparams, task_ids, sample_ids):
# Determine what kind of targets we want to train on
data = self.datasrc.astargets(task_ids) # Copies of arbitrary targets
data = data[:] # Copy so that when we normalize etc we don't affect the original data
# Normalize the targets. For logisitic-output models this means
# scaling targets to [0,1]. For other models this means scaling
# targets to have mean=0, variance=1.
data.requirements = self.model_proto.data_requirements()
#print np.percentile(data.Y[data.Ymask].ravel(), [99, 99.99, 99.995, 99.999])
#print data.Y.size, int(data.Y.size*(100-99.95)/100)
if "clamp_targets" in globals.flags:
data.clamp_extremes(0.0,99.95)
if "normalize_targets" in globals.flags:
data.normalize_targets()
#data.arcsinhtransform_targets()
if self.mode != 'calib':
# If we're not in calibration mode, then there's no need for multiple checkpoints
# -- just keep the last checkpoint so that it can be dumped to disk
#del hparams["trainer:checkpoints"]
self.trainer_proto.checkpoints = 1
# Shuffle the individual rows of data, always the same random shuffle
# and therefore always the same random split each time the code is run.
data.shuffle()
# Create a callback handler to collect predictions and evaluate final performance
checkpoints = self.report_class()
# Perform k-fold cross validation (k=nfold), training with one fold held out at a time.
for foldid in range(self.nfold):
checkpoints.setfold(foldid) # Tell the checkpoint
# Create a new model and trainer with the given hyperparams
model = _create_model(self.model_proto, hparams)
trainer = _create_trainer(self.trainer_proto, hparams)
# Split the data into training and validation sets
trdata, vadata = data.split(foldid, self.nfold-1)
trdata = trdata.augmented(trdata)
datasets = { "train" : trdata }
if vadata:
vadata = vadata.augmented(vadata)
datasets["validate"] = vadata
if self.auxfilter:
datasets["validate_aux"] = vadata[[i for i in range(len(vadata)) if vadata.foldids[i] in self.auxfilter]]
for dset in datasets.values():
dset.requirements = model.data_requirements()
#if not checkpoint_callback:
# trainer.viz_steps = False # Disable periodic updates if no reports
# Train the model and remember how well it performed.
trainer.train(model, datasets, checkpoints)
if self.mode == 'train' and self.nfold > 1:
entries = checkpoints.curr()
metrics = self.calc_metrics(entries)
self.save_model(model, hparams, task_ids, sample_ids, foldid)
self.save_metrics(metrics, task_ids, sample_ids, foldid)
self.save_predictions(entries, task_ids, sample_ids, foldid)
self.call_dumpviz(task_ids, sample_ids, foldid)
# If we`re only supposed to try one fold, then don`t bother looping over the other splits
if not self.allfolds:
break
# Consolidate the separate folds, and dump them if need be
entries = checkpoints.combined()
# Calculate the performance stats associated with each target
metrics = self.calc_metrics(entries)
# Save the current model and predictions
if self.mode == 'train':
self.save_predictions(entries, task_ids, sample_ids, None)
self.save_metrics(metrics, task_ids, sample_ids, None)
if self.nfold == 1:
self.save_model(model, hparams, task_ids, sample_ids, None)
self.save_preprocessors(data, task_ids, sample_ids, None)
#self.call_dumpviz(task_ids, sample_ids, None)
# Return a new hparams object with the performance incorporated
hpsearch_result = self.add_hparam_metrics(hparams, metrics)
return hpsearch_result
def save_model(self, model, hparams, task_ids, sample_ids, foldid):
for i, taskid in enumerate(task_ids):
dumpdir = getinstdir(self.outdir, taskid, sample_ids[i], foldid)
util.makepath(dumpdir)
# Slice out model i and save it to disk
_save_model_inst(dumpdir+"/model.pkl", i, model, hparams)
def save_predictions(self, entries, task_ids, sample_ids, foldid):
for i, taskid in enumerate(task_ids):
dumpdir = getinstdir(self.outdir, taskid, sample_ids[i], foldid)
util.makepath(dumpdir)
# Save out the predictions for model i
assert len(entries[i]) == 1, "Bug. Expected only a single unique 'step' in the list of entries"
groups = entries[i].values()[0]
np.savez_compressed(dumpdir+"/predict.npz",
targetname=np.asarray(taskid, dtype=object),
groups=np.asarray(groups, dtype=object))
def save_metrics(self, metrics, task_ids, sample_ids, foldid):
for i, taskid in enumerate(task_ids):
dumpdir = getinstdir(self.outdir, taskid, sample_ids[i], foldid)
util.makepath(dumpdir)
# Save out the predictions for model i
assert len(metrics[i]) == 1, "Bug. Expected only a single unique 'step' in the list of entries"
groups = metrics[i].values()[0]
save_metrics(dumpdir+"/metrics.txt", groups)
def call_dumpviz(self, task_ids, sample_ids, foldid):
if not self.dumpviz:
return
for i, taskid in enumerate(task_ids):
dumpdir = getinstdir(self.outdir, taskid, sample_ids[i], foldid)
call_dumpviz(dumpdir)
def save_preprocessors(self, data, task_ids, sample_ids, foldid):
for i, taskid in enumerate(task_ids):
dumpdir = getinstdir(self.outdir, taskid, sample_ids[i], foldid)
data.dump_preprocessors(dumpdir, slice(i,i+1))
def add_hparam_metrics(self, hparams, metrics):
groupkey = "validate" if "validate" in metrics[0].values()[0] else "train"
hpsearch_result = {}
for i in metrics:
for step in metrics[i]:
hparams_i = { key : val[i] for key,val in hparams.iteritems() }
hparams_i["trainer:max_steps"] = step
metrics_i = metrics[i][step][groupkey]
hpsearch_result.setdefault(i,[]).append((hparams_i, metrics_i)) # Thus tuple is returned to hpsearch
return hpsearch_result
"""
if "vloss" in stats and stats["vloss"] is not None:
loss.append(stats["vloss"])
auc.append(stats["vauc"])
else:
loss.append(stats["tloss"])
auc.append(stats["tauc"])
if self.testfilter is not None:
tidx = [i for i in range(len(vdata)) if vdata.foldids[i] in self.testfilter]
tdata = vdata[tidx]
tpred = gen_predictions(model, tdata)
testauc,teststd = bootstrap_auc(tpred.ravel(), tdata.Y.ravel(), ntrial=20)
flogfile = self.outdir + "/%s_%04d/fold%d.log" % (task_ids[0], sample_ids[0], foldid)
with open(flogfile) as fh:
flog = fh.readlines()
flog[-1] = flog[-1].rstrip() + "\ttestAUC=%.3f (%f)\n" % (testauc,teststd)
with open(flogfile,"w") as fh:
fh.writelines(flog)
testaucs.append((testauc, teststd))
if report:
reports.append(report)
report.dump(want_html=True)
#report.dump(want_html=self.want_html)
# Dump each model to a separate file
for inst in range(len(sample_ids)):
filename = self.outdir + ("/%s_%04d/fold%d.model.pkl" % (task_ids[inst], sample_ids[inst], foldid))
_save_model_inst(filename, inst, model, hparams)
"""
#break
""""
if reports != []:
# Dump the separate (individual) hyperparams that were used for each instance trained
for inst in range(len(sample_ids)):
dumpdir = self.outdir + ("/%s_%04d/" % (task_ids[inst], sample_ids[inst]))
vloss = self.validation_performance[task_ids[inst]] if self.validation_performance else None
_dump_hparams(dumpdir, _slice_hparams(hparams,inst), vloss)
tdata.dump_preprocessors(dumpdir, slice(inst,inst+1))
merged = self.report_class.merge_reports(self.outdir + "/%(task_id)s_%(sample_id)04d/final.log", task_ids, sample_ids, reports)
#merged.dump(want_html=self.want_html)
merged.dump()
if testaucs:
flogfile = self.outdir + "/%s_%04d/final.log" % (task_ids[0], sample_ids[0])
with open(flogfile) as fh:
flog = fh.readlines()
testauc = sum([_auc for _auc, _std in testaucs]) / len(testaucs)
teststd = sum([_std for _auc, _std in testaucs]) / len(testaucs)
flog[-1] = flog[-1].rstrip() + "\ttestAUC=%.3f (%f)\n" % (testauc,teststd)
with open(flogfile,"w") as fh:
fh.writelines(flog)
# Average the loss over each fold
loss = np.mean(np.asarray(loss),axis=0)
auc = np.mean(np.asarray(auc),axis=0)
# Dump each average loss and corresponding hyperparameters into a log file
for inst in range(len(sample_ids)):
util.makepath(self.outdir+"/hpsearch")
with open(self.outdir+"/hpsearch/%s.log"%task_ids[inst],"a") as f:
f.write("%.6f\t%.4f\t%s\n"%(loss[inst], auc[inst], hparams2str( _slice_hparams(hparams,inst) ).replace("\n",";")) )
"""
sm.sync()
# Return a list of objective values, one per search_id
values = [float(x) for x in loss]
return values
def calc_metrics(self, entries):
metrics = {}
for taskidx in entries:
for step in entries[taskidx]:
for group in entries[taskidx][step]:
entry = entries[taskidx][step][group]
Z = entry["Z"]
Y = entry["Y"]
# Start computing stats
metric = metrics.setdefault(taskidx,{}).setdefault(step,{}).setdefault(group,{})
metric["loss"] = entry["L"]
if Z.shape[1] == 1:
metric.update(deepity.calc_metrics(Z.ravel(), Y.ravel(), self.aucrange))
return metrics
def hparams2str(params):
txt = ""
for key in sorted(params.keys()):
value = params[key]
if isinstance(value, np.ndarray) and value.size > 10:
value = "ndarray"
txt += " %s = %s\n" % (key + " "*max(0,20-len(key)),value)
return txt
#######################################
def hypertrain(model, trainer, data,
nfold=2, allfolds=True, outdir=None, nsample=20,
devices=None, verbose=None, report_class=None,
auxfilter=None):
if report_class is None: report_class = training_report
# Create the output directory if it doesn't already exist.
if outdir is None:
outdir = join(tempfile.gettempdir(),"hypertrain")
# Define the search space
space = _get_hypertrain_searchspace(model, trainer)
# Perform the search, returning the best parameters in the search space.
logging.info("calibrating...")
samples = hp.search(space,
objective = hypertrain_worker,
objective_initargs = (model,trainer,data,nfold,allfolds,outdir,report_class,devices,False,sm.get_default_dtype(),globals.flags,auxfilter,"calib",False),
task_ids = data.targetnames,
nsample = nsample,
nprocess = len(devices),
nsample_per_process = 15,
print_progress = True)
logging.info("...calibrating done")
return samples
###########################################
def train(model, trainer, data, hparams=None, hparams_metric=None,
nfold=1, outdir=None, nsample=1,
devices=None, verbose=None, report_class=None,
auxfilter=None, dumpviz=True):
if report_class is None: report_class = training_report
if hparams:
for targetname in data.targetnames:
for sample in range(nsample):
for fold in range(nfold):
save_hparams_result(getinstdir(outdir, targetname, sample, fold)+"/calib.txt", hparams[targetname], hparams_metric)
space = _get_fixed_searchspace(model, trainer, data.targetnames, hparams)
#space = _get_hypertrain_searchspace(model, trainer)
#if space and not hparams:
# raise ValueError("The given model has undetermined hyperparamters. Must call hypertrain first.")
# Replace the randomly sampled hparams with fixed values specified by 'hparams'
#for pname in space._pdefs.iterkeys():
# pbest = np.asarray([hparams[task_id].params[pname] for task_id in data.targetnames])
# space._pdefs[pname] = hp.fixed(pbest, pname)
#print "assigning hparam",pname,"<-",pbest
final_outdir = outdir
logging.info("train...")
hp.search(space,
objective = hypertrain_worker,
objective_initargs = (model,trainer,data,nfold,True,final_outdir,report_class,devices,verbose,sm.get_default_dtype(),globals.flags,auxfilter,"train",dumpviz),
task_ids = data.targetnames,
nsample = nsample,
nsample_per_process = 2,#len(data.targetnames), # Hack: only train numtargets models at a time, to ensure that when nsample>1 the next sample gets a different minibatch order
nprocess = len(devices))
logging.info("...train done")
#######################################################
def _get_fixed_searchspace(model, trainer, targetnames, hparams):
pdefs = []
if hparams:
# Convert the hparams list-of-dictionaries (all dictionaries having same key)
# into a single dictionary-of-lists
hpvec = {}
for targetname in targetnames:
sample = hparams[targetname]
for pkey in sample.params:
hpvec.setdefault(pkey,[]).append(sample.params[pkey])
for key in hpvec:
pdefs.append(hp.fixed(np.array(hpvec[key]), key))
space = hp.space(pdefs)
return space
def _get_hypertrain_searchspace(model, trainer):
# First, collect all hparams by visiting the model's dependency graph
model_hparams = []
def collect_hparam(path,attr):
if isinstance(attr,hp.paramdef):
attr.name = "model:" + path # model:...path
model_hparams.append(attr)
model.visit(collect_hparam)
# Next, ask the trainer for its hyperparams, and put a "trainer." prefix on the name of each one
# so that they don't conflict with model_hparams
trainer_hparams = []
for name,attr in trainer.__dict__.iteritems():
if isinstance(attr,hp.paramdef):
attr.name = "trainer:" + name # trainer:...path
trainer_hparams.append(attr)
# Return a search space built from model and trainer hyperparams
return hp.space(trainer_hparams + model_hparams)
|
DeepBind-master
|
code/libs/deepity/deepity/hypertrain.py
|
# Copyright (c) 2015, Andrew Delong and Babak Alipanahi All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation and/or
# other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Author's note:
# This file was distributed as part of the Nature Biotechnology
# supplementary software release for DeepBind. Users of DeepBind
# are encouraged to instead use the latest source code and binaries
# for scoring sequences at
# http://tools.genes.toronto.edu/deepbind/
#
import os
import time
import tempfile
#################################################
def splitlist(x,n):
m = len(x)
return [x[i:min(m,i+m//n)] for i in range(0,m,m//n)]
#################################################
def makepath(dir):
"""
Makes a complete path if it does not exist already.
Does not remove any existing files.
Fixes periodic failure of os.makedirs on Windows.
"""
if os.path.exists(dir):
return dir
retries = 8
while retries >= 0:
try:
time.sleep(0.001)
os.makedirs(dir)
retries = -1
except Exception, e:
if retries == 0:
raise
else:
retries -= 1
return dir
#################################################
def hashed_filename(filename,**kwargs):
# The cache is a temporary file that is hashed based on args+variant,
# i.e. if we only want cols 1,2,3 for example, that will go into a different
# temporary file than if we were asked for cols 2,3,4.
filebase = os.path.basename(os.path.splitext(filename)[0])
args_hash = abs(hash(";".join(["%s=%s" % (key,val) for key,val in kwargs.iteritems()])))
cachepath = os.path.join(tempfile.gettempdir(),"%s.hash%s" % (filebase,args_hash))
return cachepath
#################################################
# MATLAB-like tic/toc
_tics = {None: 0.0}
def tic(id=None):
global _tics
now = time.time()
_tics[id] = now
return now
def toc(id=None):
global _tics
now = time.time()
return now - _tics[id]
|
DeepBind-master
|
code/libs/deepity/deepity/util.py
|
# Copyright (c) 2015, Andrew Delong and Babak Alipanahi All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation and/or
# other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Author's note:
# This file was distributed as part of the Nature Biotechnology
# supplementary software release for DeepBind. Users of DeepBind
# are encouraged to instead use the latest source code and binaries
# for scoring sequences at
# http://tools.genes.toronto.edu/deepbind/
#
import os
import sys
import logging
import util
import copy
####################################
class global_flags(object):
def __init__(self):
self._flags = {}
def copy_from(self, other):
self._flags = copy.deepcopy(other._flags)
def __contains__(self, name):
if name in self._flags:
return len(self._flags[name]) > 0
return False
def __getitem__(self, name):
return self.get(name)
def get(self, name, default_value=None):
if name in self:
return self._flags[name][-1]
return default_value
def push(self, name, value):
if name in self._flags:
self._flags[name].append(value)
else:
self._flags[name] = [value]
def pop(self, name):
assert name in self._flags
val = self._flags[name].pop()
if len(self._flags[name]) == 0:
del self._flags[name]
return val
flags = global_flags()
_allow_multiprocessing = True
def set_multiprocessing(enabled):
global _allow_multiprocessing
_allow_multiprocessing = enabled
def reset_backend(**kwargs):
import smat
smat.reset_backend(**kwargs)
def set_logging(file = None, level = None, echo = True, logger = None):
if logger is None:
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
logger.handlers = [] # Clear any existing handlers
if echo:
# The stdout handler should only print what the user has requested
shandler = logging.StreamHandler()
shandler.setFormatter(logging.Formatter("%(message)s"))
if level == 0: shandler.setLevel(logging.ERROR)
elif level == 1: shandler.setLevel(logging.INFO)
elif level == 2: shandler.setLevel(logging.DEBUG)
logger.addHandler(shandler)
if file is not None:
# The file handler should always write full debug logging
util.makepath(os.path.dirname(file))
fhandler = logging.FileHandler(file,'w')
fhandler.setFormatter(logging.Formatter("%(message)s"))
fhandler.setLevel(logging.DEBUG)
logger.addHandler(fhandler)
|
DeepBind-master
|
code/libs/deepity/deepity/globals.py
|
# Copyright (c) 2015, Andrew Delong and Babak Alipanahi All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation and/or
# other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Author's note:
# This file was distributed as part of the Nature Biotechnology
# supplementary software release for DeepBind. Users of DeepBind
# are encouraged to instead use the latest source code and binaries
# for scoring sequences at
# http://tools.genes.toronto.edu/deepbind/
#
import time
import logging
import smat as sm
import numpy as np
import numpy.random as npr
from . import _ext
from .trainer import trainer
from .std import trainable
from .gradcheck import gradcheck
from . import globals
from .plug import disconnect
import report as _report
class sgd(trainer):
"""
Stochastic (mini-batch) gradient descent with momentum.
"""
def __init__(self, rate = 0.05,
rate_decay = 1.0, #0.99998,
momentum = 0.85,
nesterov = True, batchsize = 64,
max_epochs = 20,
max_steps = 10000,
viz_steps = 10000,
checkpoints = 1,
checkpoint_save = True,
weight_decay_start = 100,
lossfunc = None,
gradcheck = False):
self.rate = rate
self.rate_decay = rate_decay
self.momentum = momentum
self.nesterov = nesterov
self.batchsize = batchsize
self.max_epochs = max_epochs
self.max_steps = max_steps
self.viz_steps = viz_steps
self.checkpoints = checkpoints
self.checkpoint_save = checkpoint_save
self.weight_decay_start = weight_decay_start
self.gradcheck = gradcheck
self.lossfunc = lossfunc
self._report_tbatches = None
self._report_vbatches = None
self._last_drate_step = None
self._last_drate_scale = None
self._last_mrate_step = None
self._last_mrate_scale = None
self._last_report_step = None
self._last_report_time = None
def _train(self, trainable_plugs, cost, datasets, checkpoint_callback):
self.force_single_value("rate_decay","nesterov","batchsize","max_steps","max_epochs")
# Ask tdata for an object that serves mini-batches
batchsets = {name : data.asbatches(self.batchsize, reshuffle=False) for name, data in datasets.iteritems()}
tbatches = batchsets["train"]
vbatches = batchsets.get("validate", None)
# Allocate and bind trainable parameters to the cost object
P,dP,mP,drate,mrate,trnodes = self._train_setup(trainable_plugs, cost)
bprop_trainable = lambda: cost.bprop_trainable(trnodes, tbatches.next())
if self.gradcheck:
gradcheck(trnodes,cost,tbatches.next())
def enforce_constraints():
for trnode in trnodes:
trnode.enforce_constraints()
enforce_constraints()
#sm.sync()
#print "START"
#t0 = time.time()
#self.max_steps = 1000
globals.flags.push("weight_decay_start", self.weight_decay_start)
# Main training loop.
max_steps = int(min(self.max_steps, self.max_epochs*len(tbatches)))
checkpoints = [int(max_steps*float(cp)/self.checkpoints) for cp in range(1, self.checkpoints+1)]
self._report_progress(0, cost, tbatches, vbatches)
for step in xrange(max_steps):
globals.flags.push("step", step)
globals.flags.push("train_mode",True)
# Compute learning rate and momentum for this particular step
self._update_drate(step, drate)
self._update_mrate(step, mrate)
# Report our current performance
#self._report_step(step, cost, tbatches, vbatches, report)
# Step the parameters P, and also momentum vector mP
_ext.gradstep(P, dP, drate,
mP, mrate,
grad=bprop_trainable, nesterov=self.nesterov)
enforce_constraints()
globals.flags.pop("train_mode")
# Report our current performance
if step+1 in checkpoints:
self._report_progress(step+1, cost, tbatches, vbatches)
checkpoint_callback(step=step+1,
cost=cost,
datasets=batchsets)
globals.flags.pop("step")
globals.flags.pop("weight_decay_start")
#sm.sync()
#print "STOP. Time = ", time.time()-t0
#quit()
# Report the final performance on ALL batches
#globals.flags.push("store_featuremaps",True)
#tloss,vloss,tauc,vauc = self._report_performance(step, cost, tbatches, vbatches, None, report)
#globals.flags.pop("store_featuremaps")
# Affix the final trainable node weights to the inputs of each
# corresponding plug on the actual model; then we can throw away
# the outer 'cost' node and just leave the trained/fixed model.
self._train_teardown(trnodes, cost)
#stats = {}
#stats["tloss"] = tloss
#stats["vloss"] = vloss
#stats["tauc"] = tauc
#stats["vauc"] = vauc
#return stats
def _report_progress(self, step, cost, tbatches, vbatches):
max_printwidth = 112
if step == 0:
header = "\n "
for name in tbatches[0].targetnames:
header += " "
header += name[:13] + " "*max(0,13-len(name))
print header[:max_printwidth]
logging.info(header)
# Get a subset of batch indices that we'll estimate our performance on
trstats = _report._calc_performance_stats(cost, tbatches[:100])
vastats = _report._calc_performance_stats(cost, vbatches[:100]) if vbatches is not None else None
txt = "%06d: " % step
if vastats:
txt += " ".join(["%.4f/%.4f" % (trloss, valoss) for trloss, valoss in zip(trstats["L"], vastats["L"])])
else:
txt += " ".join(["%.4f" % (trloss) for trloss in trstats["L"]])
print txt[:max_printwidth]
logging.info(txt)
'''
def _report_step(self, step, cost, tbatches, vbatches, report):
update_frequency = self.viz_steps
if (not update_frequency) or (step % update_frequency != 0):# and step != 0:
return
sm.sync()
now = time.time()
time_per_step = None
if self._last_report_step is not None:
time_per_step = (now-self._last_report_time)/(step-self._last_report_step)/cost.ninst
# Get a subset of batch indices that we'll estimate our performance on
if self._report_tbatches is None:
self._report_tbatches = npr.permutation(len(tbatches))[:max(1,len(tbatches)//10)]
if vbatches is not None:
if self._report_vbatches is None:
self._report_vbatches = npr.permutation(len(vbatches))[:max(1,len(vbatches)//10)]
self._report_performance(step, cost,
[tbatches[i] for i in self._report_tbatches],
[vbatches[i] for i in self._report_vbatches] if vbatches is not None else None,
time_per_step, report)
#print "report time = %f" % (time.time() - now)
self._last_report_step = step
self._last_report_time = time.time()
def _report_performance(self, step, cost, tdata, vdata, time_per_step, report):
if report:
tloss, vloss, tauc, vauc = report.update(step, cost, tdata, vdata)
else:
tloss,tZ,tY,tI = _report._calc_performance_stats(cost,tdata)
vloss,vZ,vY,vI = _report._calc_performance_stats(cost,vdata) if vdata is not None else (None,None,None,None)
tauc = None
vauc = None
if tdata[0].Y.shape[1] == len(tloss):
tauc = np.array([_report.calc_auc(tZ[:,i],tY[:,i]) for i in range(tZ.shape[1])])
vauc = np.array([_report.calc_auc(vZ[:,i],vY[:,i]) for i in range(vZ.shape[1])]) if vdata is not None else None
for i in range(cost.ninst):
txt = "%03d:%06d:\t t=%f" % (i,step,float(tloss[i]))
if vloss is not None:
txt += " v=%f" % float(vloss[i])
txt += " r=%.4f" % ((self.rate if np.isscalar(self.rate) else self.rate[i] )*self._last_drate_scale)
txt += " m=%.2f" % ((self.momentum if np.isscalar(self.momentum) else self.momentum[i])*self._last_mrate_scale)
if i == 0 and time_per_step:
txt += " ms=%.3f" % (1000*time_per_step)
print txt
logging.info(txt)
return tloss,vloss,tauc,vauc
'''
def _update_drate(self, step, drate):
# Periodically re-scale the drate vector, depending on how much it's supposed
# to have changed since the last time we re-scaled it.
if True or "disable_rate_schedule" in globals.flags:
self._last_drate_step = step
self._last_drate_scale=1.
return
i0,i1 = self._last_drate_step, step
s0 = max(self.rate_decay ** i0,0.2) * (1-.75*(3./(i0+4))) if i0 is not None else 1
s1 = max(self.rate_decay ** i1,0.2) * (1-.75*(3./(i1+4)))
reldiff = abs(s1-s0)/min(s1,s0)
if reldiff >= .10 or (i1-i0 > 50):
#drate *= s1/s0
self._last_drate_step = step
self._last_drate_scale = s1
#print "step %d drate_scale = %.3f" % (step,s1)
def _update_mrate(self, step, mrate):
if True or "disable_rate_schedule" in globals.flags:
self._last_mrate_step = step
self._last_mrate_scale=1.
return
i0,i1 = self._last_mrate_step, step
s0 = (1-4./(i0+5)) if i0 is not None else 1
s1 = (1-4./(i1+5))
reldiff = abs(s1-s0)/min(s1,s0)
if reldiff >= .10 or (i1-i0 > 50):
#mrate *= s1/s0
self._last_mrate_step = step
self._last_mrate_scale = s1
#print "step %d mrate_scale = %.3f" % (step,s1)
def _train_setup(self, trainable_plugs, cost):
# For each trainable plug, figure out how many weights it needs.
sizes = [ np.prod(p.shape)*cost.ninst for p in trainable_plugs ]
offsets = np.asarray(np.cumsum([0] + [ size for size in sizes ]),np.uint32)
# Allocate giant contiguous arrays for P, dP, and mP
P = sm.zeros((offsets[-1],1))
dP = sm.zeros_like(P)
mP = sm.zeros_like(P)
# Per-inst learn rates / momentum rates go here.
# Giant contiguous array maps to same indicies as in P, dP, mP
drate = sm.zeros_like(P)
mrate = sm.zeros_like(P)
trnodes = []
# For each plug, create a trainable node that is bound to
# a chunk of our P (parameter) and dP (gradient) vectors, where the node can
for i,tplug in enumerate(trainable_plugs):
# Grow the actual shape of the trainable parameters, using the
# axis specified by the trainable plug.
shape = list(tplug.shape)
shape[tplug.inst_axis] *= tplug.node.ninst
# Allocate a new trainable node, and connect it to the plug
trnode = trainable(P[offsets[i]:offsets[i+1]].reshape(tuple(shape)),
dP[offsets[i]:offsets[i+1]].reshape(tuple(shape)))
trnode >> tplug
trnodes.append(trnode)
# Assign instance-specific learning rates and momentum rates
# to each corresponding element in the giant drate/mrate vectors
if tplug.inst_axis == 0:
k = np.prod(tplug.shape)
else:
k = tplug.shape[1]
dratevec = drate[offsets[i]:offsets[i+1]]
mratevec = mrate[offsets[i]:offsets[i+1]]
_ext.madd_bcast(sm.ones_like(dratevec),self.rate,k,dratevec)
_ext.madd_bcast(sm.ones_like(mratevec),self.momentum,k,mratevec)
# Also initialize elements of P based on the trainable plug's initialization scale,
# which can be different for each individual instance
Pvec = P[offsets[i]:offsets[i+1]]
initval = tplug.origin().node.init
if isinstance(initval, np.ndarray) and initval.ndim == 3:
# Specific initialization of individual filters
Pvec[:] = sm.asarray(np.require(np.rollaxis(initval,1),requirements="C").reshape((-1,1)))
else:
# Random initialization
_ext.madd_bcast(sm.randn(Pvec.shape[0],Pvec.shape[1]),
initval,k,Pvec)
if hasattr(tplug.origin().node,'init_mu'):
initmu_val = tplug.origin().node.init_mu
if isinstance(initmu_val, list):
# Specific initialization of individual bias elements
initmu_val = np.tile(initmu_val,tplug.origin().node.ninst)
Pvec[:] = sm.asarray(initmu_val).reshape(Pvec.shape)
else:
_ext.madd_bcast(sm.ones_like(Pvec),
tplug.origin().node.init_mu,k,Pvec) # Add shift
return (P,dP,mP,drate,mrate,trnodes)
def _train_teardown(self, trnodes, cost):
for trnode in trnodes:
trplug = trnode.Z.dsts[0]
disconnect(trnode.Z,trplug)
trplug.fpval = trnode.P
|
DeepBind-master
|
code/libs/deepity/deepity/sgd.py
|
# Copyright (c) 2015, Andrew Delong and Babak Alipanahi All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation and/or
# other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Author's note:
# This file was distributed as part of the Nature Biotechnology
# supplementary software release for DeepBind. Users of DeepBind
# are encouraged to instead use the latest source code and binaries
# for scoring sequences at
# http://tools.genes.toronto.edu/deepbind/
#
from .node import node,supernode
from .plug import plug,connect,disconnect
from .data import datasource,resident_datasource,make_predictions,count_errors,shuffled_repeat_iter
from .sgd import sgd
from .hypertrain import hypertrain,train,load_hparams_result,save_hparams_result,getinstdir,call_dumpviz, load_metrics, save_metrics
from .trainer import trainer
from .report import calc_auc, bootstrap_auc, calc_metrics
from .globals import reset_backend,set_logging
import _io_ as io
|
DeepBind-master
|
code/libs/deepity/deepity/__init__.py
|
# Copyright (c) 2015, Andrew Delong and Babak Alipanahi All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation and/or
# other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Author's note:
# This file was distributed as part of the Nature Biotechnology
# supplementary software release for DeepBind. Users of DeepBind
# are encouraged to instead use the latest source code and binaries
# for scoring sequences at
# http://tools.genes.toronto.edu/deepbind/
#
import os
import sys
import time
import signal
import logging
import exceptions
import traceback
import warnings
import multiprocessing
import numpy as np
import numpy.random as npr
from os.path import exists,dirname,join
from . import globals
class local_dummy_pool(object):
class job_handle(object):
def __init__(self, objective, args):
self.objective = objective
self.args = args
def get(self, timeout):
args = self.args
return _call_objective(*args)
def __init__(self, objective, initargs):
_init_objective(objective, initargs, 1)
def apply_async(self, objective, args):
return self.job_handle(objective, args)
def close(self): pass
def join(self): pass
def terminate(self): pass
#################################################
def _makepath(dir):
"""
Makes a complete path if it does not exist already.
Does not remove any existing files.
Fixes periodic failure of os.makedirs on Windows.
"""
if os.path.exists(dir):
return dir
retry = True
while retry:
try:
time.sleep(0.001)
os.makedirs(dir)
except WindowsError, e:
if e.errno != 13: # eaccess
raise
else:
retry = False
return dir
#################################################
class paramdef(object):
def __init__(self,name,dtype):
self.name = name
self.dtype = dtype
class choice(paramdef):
"""A discrete choice, taken from a list of choices, e.g. [-1,0,1] or ['a','b','c']"""
def __init__(self,choices,name=None):
assert len(choices) > 0
self.choices = np.asarray(choices)
super(choice,self).__init__(name,self.choices.dtype)
def sample(self,task_idx,sample_ids):
return np.asarray([self.choices[npr.randint(0,len(self.choices))] for id in sample_ids])
class uniform(paramdef):
"""A float interval [lo,hi) sampled uniformly."""
def __init__(self,lo,hi,name=None):
assert lo <= hi
super(uniform,self).__init__(name,np.float32)
self.lo = lo
self.hi = hi
def sample(self,task_idx,sample_ids):
return np.asarray([float(npr.rand()*(self.hi-self.lo) + self.lo) for id in sample_ids])
class loguniform(paramdef):
"""A float interval [lo,hi) sampled as 10**uniform(log10(lo),log10(hi))."""
def __init__(self,lo,hi,name=None):
assert lo <= hi
super(loguniform,self).__init__(name,np.float32)
self.lo = lo
self.hi = hi
def sample(self,task_idx,sample_ids):
lo = np.log10(self.lo)
hi = np.log10(self.hi)
return np.asarray([10**(npr.rand()*(hi-lo) + lo) for id in sample_ids])
class powuniform(paramdef):
"""A float interval [lo,hi) sampled as lo+(hi-lo)*uniform(0,1)**p for 0 < p <= 1"""
def __init__(self,lo,hi,p,name=None):
assert lo <= hi
assert 0 < p and p <= 1
super(powuniform,self).__init__(name,np.float32)
self.lo = lo
self.hi = hi
self.p = p
def sample(self,task_idx,sample_ids):
lo = self.lo
hi = self.hi
p = self.p
return np.asarray([float((npr.rand()**p)*(hi-lo) + lo) for id in sample_ids])
class fixed(paramdef):
"""
Used during training of "final" models; allows a specific
vector of params to be used, presumeably the best parameters
from an earlier hyperparameter search.
"""
def __init__(self,values,name=None):
super(fixed,self).__init__(name,values.dtype)
self.values = values
def sample(self,task_idx,sample_ids):
return self.values[task_idx]
#################################################
class space(object):
"""
A search space is just a collection of paramdefs.
The sample() function is a convenient way to sample from all paramdefs.
"""
def __init__(self,paramdefs=None):
self._pdefs = {}
self.update(paramdefs)
def pnames(self):
return self._pdefs.keys()
def update(self,paramdefs):
for p in paramdefs:
assert isinstance(p,paramdef), "Expected list of paramdef instances."
self._pdefs.update({ p.name : p for p in paramdefs })
self.__dict__.update(self._pdefs)
def __len__(self): return len(self._pdefs)
def __iter__(self): return self._pdefs.itervalues()
def __getitem__(self,i): return self._pdefs[i]
def empty(self): return len(self) == 0
def sample(self,task_ids,sample_ids):
return { name : p.sample(task_ids,sample_ids) for name,p in self._pdefs.iteritems() }
#################################################
class sample(object):
"""
A hyperparameter search sample.
"""
def __init__(self,params,metrics):
self.params = params
self.metrics = metrics
#################################################
class sampleset(object):
"""
A list of (params,result) pairs, where
- params is a dictionary of hyperparameter values used to generate the sample.
- result is the performance using those hyperparameters.
The (params,result) values are echoed to a text file (JSON format)
and can also be loaded from the same file.
"""
def __init__(self,space):
self.space = space
self._samples = []
def add(self,params,metrics):
self._samples.append(sample(params,metrics))
def __len__(self): return len(self._samples)
def __getitem__(self,i): return self._samples[i]
def __iter__(self): return self._samples.__iter__()
def get_all(self):
"""Returns the entire list of samples."""
# SIMPLE VERSION (one parameter per value)
return self._samples
def get_best_sample(samples, metrickey, wantmax=False):
"""Returns the best params from the entire list of samples."""
# SIMPLE VERSION (one parameter per value)
assert len(samples) > 0, "Cannot call get_best on an empty sampleset."
best = None
for i in range(len(samples)):
if not np.isnan(samples[i].metrics[metrickey]):
if best is None:
best = i
else:
a = samples[i].metrics[metrickey]
b = samples[best].metrics[metrickey]
if (wantmax and a > b) or (a < b and not wantmax):
best = i
return samples[best]
#################################################
# _search_objective
# Each process gets its own copy of this variable, and it is
# instantiated when
global _search_objective
global _search_objective_init_err
# Sets up the _search_objective global variable so that,
# in the future, calling _eval_objective(params) will invoke
# _search_objective(params). We need the _eval_objective
# "wrapper" so that _search_objective can be a class instance,
# because multiprocessing cannot pickle a class instance as an
# entry point for a task -- it can only pickle a global function.
def _init_objective(objective,objective_args,nprocess):
global _search_objective
global _search_objective_init_err
_search_objective = None
_search_objective_init_err = None
sys.exc_clear()
try:
if globals._allow_multiprocessing:
signal.signal(signal.SIGINT, signal.SIG_IGN)
if isinstance(objective, type):
process = multiprocessing.current_process()
if "-" in process.name:
process_type,process_id = process.name.split("-") # Get unique 1-base "process_id", which gets larger every time a new pool is created
worker_id = (int(process_id)-1) % nprocess # Get unique 0-based "worker_id" index, always in range {0,...,nprocess-1}
else:
worker_id = 0
_search_objective = objective(worker_id, *objective_args)
else:
_search_objective = objective
except BaseException as err:
_search_objective = None # or else multiprocessing.Pool will get stuck trying to initialize
traceback_str = traceback.format_exc()
_search_objective_init_err = (err,traceback_str)
logging.info(err.message + "\n" + traceback_str) # Do not allow the error to propagate during _call_objective,
if not globals._allow_multiprocessing:
raise
# A global function entry-point for calling _search_objective
# from a multiprocessing task
def _call_objective(params,task_ids,sample_ids):
global _search_objective
global _search_objective_init_err
sys.exc_clear()
if _search_objective_init_err:
return _search_objective_init_err
try:
# Return the params too incase they were modified by _search_objective
# (this can happen when _search_objective has to force certain param vectors
# to have the same uniform value for this particular sample.
result = _search_objective(params, task_ids, sample_ids)
except BaseException as err:
_search_objective = None # or else multiprocessing.Pool will get stuck trying to initialize
traceback_str = traceback.format_exc()
logging.info(err.message + "\n" + traceback_str) # Do not allow the error to propagate during _call_objective,
if not globals._allow_multiprocessing:
raise
return (err,traceback_str)
return (params,result)
#################################################
def _search_random(space, objective, objective_initargs, nsample, task_ids, pool, samples, nsample_per_process, print_progress=False):
# Max number of samples to evaluate in each 'job' for the multiprocessing pool
# TODO: THIS NUMBER IS VERY IMPORTANT, and should be chosen BASED ON MEMORY USAGE
# of the MODEL. Right now set by hand :( :( :(
ntask = len(task_ids)
nsample_per_job = min(nsample_per_process, nsample*ntask)
# Ask the pool of subprocesses to evaluate the objective
jobs = []
for s in range(0,nsample*ntask,nsample_per_job):
job_sample_ids = range(s, min(s+nsample_per_job, nsample*ntask))
job_task_idx = [(i % ntask) for i in job_sample_ids]
job_task_ids = [task_ids[i] for i in job_task_idx]
job_params = space.sample(job_task_idx, job_sample_ids)
job_handle = pool.apply_async(_call_objective, (job_params,job_task_ids,job_sample_ids))
jobs.append((job_task_ids, job_handle))
# Wait for all the results to complete, and store each within its corresponding sampleset
jobs_complete = 0
start_time = time.time()
for job_task_ids,job_handle in jobs:
jobret = job_handle.get(1000000) # huge timeout is workaround for multiprocessing bug where a KeyboardInterrupt causes everything to hang
if isinstance(jobret[0], Exception):
worker_exception, traceback_str = jobret
quit("Error in Worker...\n" + worker_exception.message + "\n" + traceback_str)
params,results = jobret
for i in results:
for params_i, metrics_i in results[i]:
samples[job_task_ids[i]].add(params_i, metrics_i) # Store a (params,result) sample for this objective
#for i in range(len(job_task_ids)):
# params_i = { key : val[i] for key,val in params.iteritems() }
# samples[job_task_ids[i]].add(params_i,results[i]) # Store a (params,result) sample for this objective
jobs_complete += 1
if print_progress:
percent_complete = float(jobs_complete) / len(jobs)
print "------- %.1f%% complete -------" % (100 * percent_complete)
sys.stdout.flush()
#################################################
def search(space, objective, objective_initargs = None, strategy = "random",
nsample = 20, nsample_per_process = 10, task_ids = None, nprocess = None,
print_progress = False):
"""
Minimize 'objective' over the given search space.
If objective is a class type, then an instance of that class will be created
with __init__(worker_id,**initargs) passed to the constructor
"""
# Each objective can be multi-task, where ntask
# Each task gets "nsample" random parameters
global _search_objective
# Create a pool of processes.
# If no processes were requested, just use a thread instead (multiprocessing.dummy)
# to avoid some of the limitations of multiprocessing (pickling, pipes, etc).
if not globals._allow_multiprocessing:
warnings.warn("PerformanceWarning: multiprocessing is disabled; all jobs will be run from main process.")
pool = local_dummy_pool(objective=objective, initargs=objective_initargs)
else:
pool = multiprocessing.Pool(processes=nprocess, initializer=_init_objective, initargs=(objective,objective_initargs,nprocess))
samples = { id : sampleset(space) for id in task_ids }
try:
# Perform the actual search according to the selected strategy.
if "random" in strategy.split():
_search_random(space, objective, objective_initargs, nsample, task_ids, pool, samples, nsample_per_process, print_progress)
# TODO: other strategies like tree parzen window
except:
pool.terminate()
pool.join()
_search_objective = None
raise
else:
pool.close() # Terminate the subprocesses
pool.join()
_search_objective = None
return { task_id : s.get_all() for task_id,s in samples.iteritems() }
|
DeepBind-master
|
code/libs/deepity/deepity/hpsearch.py
|
# Copyright (c) 2015, Andrew Delong and Babak Alipanahi All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation and/or
# other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Author's note:
# This file was distributed as part of the Nature Biotechnology
# supplementary software release for DeepBind. Users of DeepBind
# are encouraged to instead use the latest source code and binaries
# for scoring sequences at
# http://tools.genes.toronto.edu/deepbind/
#
import node # circular import ref ok because we only access node module inside functions
##########################################################################
# Plugs take value 'null' when they are uninitialized, rather than None,
# so that there is no confusion in cases where a node sets an output plug to None
class plug_null(object):
def __nonzero__(self):
return False # Behave like None during tests
class plug(object):
"""
A plug on a dependency graph node. See iplug and oplug.
"""
def __init__(self,node,name=None,shape=None):
self._shape = shape
self.name = name
self.node = node # Node this plug belongs to.
self.srcs = [] # Upstream plugs
self.dsts = [] # Downstream plugs
self._fpval = plug_null # Last value forward-propagated through this plug.
self._bpval = plug_null # Last value backward-propagated through this plug.
self._shape = None # Shape constraints on this plug's potential values
self.inst_axis = 1 # Which axis of _shape grows when there are multiple 'instances' on the plug; by default, it's columns
self.trainable = True
def has_src(self): return len(self.srcs) > 0
def has_dst(self): return len(self.dsts) > 0
def has_upstream(self):
"""Returns whether there's an upstream plug with a computed value."""
if len(self.srcs) == 0:
return self.is_oplug()
for src in self.srcs:
if src.has_upstream():
return True
return False
@property
def path(self):
return self.node.path + "."+self.name
def rename(self,newname):
del self.node.__dict__[self.name]
self.name = newname
self.node.__dict__[newname] = self
def origin(self):
"""A supernode plug's origin is its corresponding 'real' plug (on a non-supernode)"""
# If we're attached to an actual node, then return ourselves
if not isinstance(self.node,node.supernode):
return self
# If we're an iplug on a supernode, ask our dst plug for its origin
if self.is_iplug():
return self.dsts[0].origin()
# Otherwise, we're an oplug on a supernode, so ask our src plug for it's origin
return self.srcs[0].origin()
@property
def shape(self):
"""
The shape of a plug's value, as a tuple (nrow,ncol), even if no plug value
has been assigned yet. If nrow or ncol is None, then that dimension's size
is undefined (e.g. nrow = None when nrow varies with minibatch size).
"""
if self._shape is None:
self._calc_shape([]) # Try to calculate shape
return self._shape
@shape.setter
def shape(self,shape):
self._shape = shape
@property
def fpval(self):
"""Pull _fpval from all src plugs."""
if self._fpval is plug_null:
if self.has_src():
for src in self.srcs:
if self._fpval is plug_null: self._fpval = src.fpval # 1. First time, get a reference (no copy)
elif src is self.srcs[1]: self._fpval = self._fpval + src.fpval # 2. Second time, make a new sum
else: self._fpval += src.fpval # 3. Third+ time, add directly to new value
elif self.is_oplug():
self.node.fprop()
else:
#raise AssertionError("unreachable code")
self._fpval = None
return self._fpval
@property
def bpval(self):
"""Pull _bpval from all dst plugs."""
if self._bpval is plug_null:
if self.has_dst():
for dst in self.dsts:
if self._bpval is plug_null: self._bpval = dst.bpval # 1. First time, get a reference (no copy)
elif dst is self.dsts[1]: self._bpval = self._bpval + dst.bpval # 2. Second time, make a new sum
else: self._bpval += dst.bpval # 3. Third+ time, add directly to new value
elif self.is_iplug():
self.node.bprop()
else:
raise AssertionError("unreachable code")
return self._bpval
@fpval.setter
def fpval(self,value):
"""Directly set the value forward propagated by this input plug (e.g. int, float, numpy array, etc.)"""
self._fpval = value;
self._check_shape()
@bpval.setter
def bpval(self,value):
"""Directly set the value backward propagated by this output plug"""
assert not self.has_dst(), "Cannot directly set bpval on plug with downstream connection."
assert self._bpval is plug_null, "Must call node.clear() before setting new value on a plug."
self._bpval = value;
self._check_shape()
def _check_shape(self):
if self.shape and hasattr(self._fpval,"shape"):
assert len(self._fpval.shape) == len(self.shape), "Value dimension does not match plug dimension."
for ss,vs in zip(self.shape,self._fpval.shape):
if ss: # If shape[i] is None, don't enforce any shape
assert vs >= ss , "Value shape is too small for plug shape."
assert vs % ss == 0 , "Value shape does not broadcast to plug shape."
def _calc_shape(self,visited):
if self._shape is not None:
return True
# Don't backtrack.
if self in visited:
return False
# If any of our immediate srcs/dsts have a well-defined shape, then
# our shape must match theirs.
for p in self.srcs+self.dsts:
if p._calc_shape(visited+[self]):
self._shape = p._shape
assert self.inst_axis == p.inst_axis
#print "%s._calc_shape() succeeded: %s" % (self.path,str(self._shape))
return True
# Otherwise, ask the node to propagate shapes and see if it managed
# to determine a shape for us.
self.node.calc_shapes(visited+[self])
if self._shape:
return True
def _add_src(self,src):
self.srcs.append(src)
self._validate()
def _add_dst(self,dst):
self.dsts.append(dst)
self._validate()
def is_iplug(self): return self in self.node.iplugs
def is_oplug(self): return self in self.node.oplugs
def _validate(self):
for p in self.srcs+self.dsts:
assert isinstance(p,plug), "Src/dst must be of type plug, not \"%s\"" % type(p)
if isinstance(self.node,node.supernode):
if self.is_iplug(): assert len(self.dsts) <= 1, "Supernode iplug can only have one dst"
else: assert len(self.srcs) <= 1, "Supernode oplug can only have one src"
else:
if self.is_iplug(): assert len(self.dsts) == 0, "Node iplug cannot have dst"
else: assert len(self.srcs) == 0, "Node oplug cannot have src"
# Functions to allow easier connect(X,Y) syntax.
# Allows things like X >> Y, Y << X where Y is a plug
# and X is a plug or a literal.
def __lshift__(self,other): connect(other,self); return self
def __rshift__(self,other): connect(self,other); return other
def __rlshift__(self,other): connect(self,other); return other
def __rrshift__(self,other): connect(other,self); return self
##########################################################################
def connect(src,dst):
"""
Connects src to dst.
- src can be an iplug, a node, or a value (float, ndarray, sarray)
- dst can be an oplug, or a node
If src is a node, its first output plug is used.
If dst is a node, its first input plug is used.
Once connected, any change to src's value will be propagated
to dst and thereby to all dst's downstream dependents.
Note that operators "src >> dst" and "dst << src" are equivalent
to calling this function.
"""
# If src/dst is a node, then assume the user wants to connect
# the first src.oplugs[0] to dst.iplugs[0] as convenient shorthand
if isinstance(src,node.node): src = src.oplugs[0]
if isinstance(dst,node.node): dst = dst.iplugs[0]
# Connect the two plugs.
src._add_dst(dst)
dst._add_src(src)
def disconnect(src,dst):
if isinstance(src,node.node): src = src.oplugs[0]
if isinstance(dst,node.node): dst = dst.iplugs[0]
src.dsts.remove(dst)
dst.srcs.remove(src)
|
DeepBind-master
|
code/libs/deepity/deepity/plug.py
|
# Copyright (c) 2015, Andrew Delong and Babak Alipanahi All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation and/or
# other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Author's note:
# This file was distributed as part of the Nature Biotechnology
# supplementary software release for DeepBind. Users of DeepBind
# are encouraged to instead use the latest source code and binaries
# for scoring sequences at
# http://tools.genes.toronto.edu/deepbind/
#
import os
import os.path
import numpy as np
from PIL import Image
from PIL import ImageDraw
from PIL import ImageFont
_logo_fonts = { "Arial" : ImageFont.truetype(os.path.abspath(os.path.dirname(__file__))+"/arial.ttf", 200),
"ArialBold" : ImageFont.truetype(os.path.abspath(os.path.dirname(__file__))+"/arialbd.ttf", 200),
"Courier" : ImageFont.truetype(os.path.abspath(os.path.dirname(__file__))+"/cour.ttf", 200) }
_lettercache_unsized = {}
_lettercache = {}
def _autocrop(I):
I = np.array(I)
# Cut out all the rows/columns that are all white
I = I[np.where(np.any(I[:,:,:3].min(axis=1)!=255,axis=1))[0],:,:] # Crop vertical
I = I[:,np.where(np.any(I[:,:,:3].min(axis=0)!=255,axis=1))[0],:] # Crop horizontal
# Add white border. Helps avoid edge artifacts when resizing down with anti-aliasing
pad1 = 255*np.ones_like(I[:1,:,:]); pad1[:,:,3] = 0
I = np.vstack([pad1, I, pad1])
pad2 = 255*np.ones_like(I[:,:3,:]); pad2[:,:,3] = 0
I = np.hstack([pad2, I, pad2])
return Image.fromarray(I)
uparrow_chr = u'\u25B2'
def _get_letterimg_unsized(letter, font):
global _lettercache_unsized
global _logo_fonts
colors = { "A" : (0,200,0),
"C" : (0,0,200),
"G" : (235,140,0),
"T" : (200,0,0),
"U" : (200,0,0),
"N" : (128,128,128),
uparrow_chr : (128,128,128) }
assert letter in colors, "Unrecognized letter"
assert font in _logo_fonts, "Unrecognized font"
if (letter,font) not in _lettercache_unsized:
# Draw full-sized versions of this letter
letterimg = 255*np.ones((256,256,4), np.uint8)
letterimg[:,:,3] = 0 # Transparent by default
letterimg = Image.fromarray(letterimg)
draw = ImageDraw.Draw(letterimg)
draw.text((1,1), letter, colors[letter], font=_logo_fonts[font])
letterimg = _autocrop(letterimg)
_lettercache_unsized[(letter,font)] = letterimg
return _lettercache_unsized[(letter,font)]
def get_letterimg(letter, width, height, font="ArialBold"):
global _lettercache
assert width and height
# If we've never been asked for a letter of this width/zheight before,
# then we use Image.resize to generate a new one.
if (letter,width,height,font) not in _lettercache:
letterimg = _get_letterimg_unsized(letter, font)
letterimg = letterimg.resize((width, height), Image.ANTIALIAS)
_lettercache[(letter,width,height,font)] = np.array(letterimg).reshape((height,width,4))
return _lettercache[(letter,width,height,font)]
def tape2logo(tape, height=51, letterwidth=6, bufferzoom=4, refseq=None, vmax=None, style=None, rna=False, transparent=False, complement=False):
# Styles "stack" "grow" "growclip" "growfade" "bars" "bar"
tapedim,tapelen = tape.shape # n = number of filters
if tapedim != 4:
raise NotImplementedError("Expected tape with 4 rows")
if vmax is not None:
tape = np.maximum(-vmax, np.minimum(vmax, tape))
zheight = height*bufferzoom
zletterwidth = letterwidth*bufferzoom
mid1 = (zheight-bufferzoom)//2
mid2 = (zheight-bufferzoom)//2 + bufferzoom
if refseq:
assert len(refseq) == tapelen
refseq_height = int(letterwidth*bufferzoom*1.1)
# Create an up-arrow image
arrowheight = int(refseq_height*0.15)
uparrow_img = get_letterimg(uparrow_chr, zletterwidth//2, arrowheight, font="Arial")
pad1 = 255*np.ones((arrowheight, zletterwidth//4, 4))
pad1[:,:,3] = 0
uparrow_img = np.hstack([pad1, uparrow_img])
pad2 = 255*np.ones((arrowheight, zletterwidth-uparrow_img.shape[1], 4))
pad2[:,:,3] = 0
uparrow_img = np.hstack([uparrow_img, pad2])
mid1 -= refseq_height//2+2*bufferzoom
mid2 = mid1+refseq_height+4*bufferzoom
positive_only = bool(np.all(tape.ravel() >= 0)) or (style in ("grow", "growfade","bar"))
if positive_only:
mid1 = zheight
mid2 = zheight
translate = { "A":"A", "C":"C", "G":"G", "T":"T", "U":"U", "N":"N" }
if complement:
translate = { "A":"T", "C":"G", "G":"C", "T":"A", "U":"A", "N":"N" }
lettertable = ["A","C","G","U" if rna else "T"]
barcolors = { "A" : (128,220,128),
"C" : (128,128,220),
"G" : (245,200,90),
"T" : (220,128,128),
"U" : (220,128,128),
"N" : (192,192,192) }
def make_lettercol(t, colheight, reverse):
# Only show letters with positive coefficient in f
idx = [i for i in range(4) if t[i] > 0]
# Put largest positive value first in "above", and put largest negative value last in "below"
idx = sorted(idx, key=lambda i: t[i])
# Calculate the individual zheight of each letter in pixels
zheights = [int(round(t[i]/sum(t[idx])*colheight)) for i in idx]
idx = [i for i,h in zip(idx,zheights) if h > 0]
zheights = [h for h in zheights if h > 0]
# While the stack of letters is too tall, remove pixel rows from the smallest-zheight entries
#print sum(zheights) - mid1
while sum(zheights) > mid1:
zheights[-1] -= 1
if zheights[-1] == 0:
zheights.pop()
idx.pop()
# Make the individual images, reversing their order if so requested
imgs = [get_letterimg(lettertable[i], zletterwidth, h) for i,h in zip(idx, zheights)]
if reverse:
imgs = [img for img in reversed(imgs)]
return np.vstack(imgs) if imgs else np.empty((0, zletterwidth, 4))
if style == "seqlogo":
assert positive_only
L = 255*np.ones((zheight,tapelen*zletterwidth,4), np.uint8)
L[:,:,3] = 0 # Transparent
for j in range(tapelen):
bits = 2 + np.sum(tape[:,j] * np.log2(tape[:,j]))
letterimg = make_lettercol( tape[:,j], mid1 * bits/2., reverse=True)
L[mid1-letterimg.shape[0]:mid1,j*zletterwidth:(j+1)*zletterwidth,:] = letterimg
# Rescale it down to the original requested size
L = np.array(Image.fromarray(L).resize((tapelen*letterwidth, height), Image.ANTIALIAS))
if not transparent:
L[:,:,3] = 255 # full opacity
return L
pos_tape = np.maximum(1e-16, tape)
neg_tape = np.maximum(1e-16,-tape)
pos_colheights = pos_tape.max(axis=0)
neg_colheights = neg_tape.max(axis=0)
#max_colheight = np.maximum(pos_colheights, neg_colheights).max()
#max_colheight = (pos_colheights + neg_colheights).max()
max_colheight = neg_colheights.max()
#neg_colheights = np.minimum(max_colheight,neg_colheights)
pos_colheights /= max_colheight
neg_colheights /= max_colheight
# If we've been told to scale everything relative to a certain maximum, then adjust our scales accordinly
if vmax:
pos_colheights *= pos_tape.max() / vmax
neg_colheights *= neg_tape.max() / vmax
L = 255*np.ones((zheight,tapelen*zletterwidth,4), np.uint8)
L[:,:,3] = 0 # Start transparent
# For each column of the filter, generate a stack of letters for the logo
for j in range(tapelen):
if style in (None,"stack"):
# Generate the stack of letters that goes above, and below, the dividing ling
aboveimg = make_lettercol( tape[:,j], mid1 * pos_colheights[j], reverse=True)
belowimg = make_lettercol(-tape[:,j], mid1 * neg_colheights[j], reverse=False) if not positive_only else None
# Insert the stacked images into column j of the logo image
L[mid1-aboveimg.shape[0]:mid1,j*zletterwidth:(j+1)*zletterwidth,:] = aboveimg
if not positive_only:
L[mid2:mid2+belowimg.shape[0],j*zletterwidth:(j+1)*zletterwidth,:] = belowimg
if refseq:
letterimg = get_letterimg(refseq[j], zletterwidth, refseq_height, font="ArialBold")
L[mid1+2*bufferzoom:mid2-2*bufferzoom,j*zletterwidth:(j+1)*zletterwidth,:] = letterimg
elif style == "growclip":
# Grow the height of each letter based on binding
zletterheight = int(mid1 * neg_colheights[j])
if zletterheight:
letterimg = get_letterimg(refseq[j] if refseq else "N", zletterwidth, zletterheight, font="ArialBold")
L[mid1-letterimg.shape[0]:mid1,j*zletterwidth:(j+1)*zletterwidth,:] = letterimg
elif style == "refseq":
letterimg = get_letterimg(refseq[j], zletterwidth, refseq_height, font="Arial")
L[mid1-letterimg.shape[0]:mid1,j*zletterwidth:(j+1)*zletterwidth,:] = letterimg
elif style == "growfade" or style == "grow":
# Grow the height of each letter based on binding
arrowpad_top = 3*bufferzoom
arrowpad_btm = 4*bufferzoom
arrowheight_padded = 0#arrowheight+arrowpad_top+arrowpad_btm
growheight = int((mid1-arrowheight_padded-refseq_height) * neg_colheights[j])
fademin = refseq_height
fademax = refseq_height+0.333*(mid1-arrowheight_padded-refseq_height)
zletterheight = refseq_height + growheight
fade = max(0, min(0.85, (fademax-zletterheight)/(fademax-fademin)))
letterimg = get_letterimg(translate[refseq[j]] if refseq else "N", zletterwidth, zletterheight, font="ArialBold")
if style == "growfade":
letterimg = letterimg*(1-fade) + 255*fade
mid0 = mid1-letterimg.shape[0]
L[mid0:mid1,j*zletterwidth:(j+1)*zletterwidth,:] = letterimg[::-1,::] if complement else letterimg
"""
#aboveimg = make_lettercol(tape[:,j], (mid1-bufferzoom*2) * pos_colheights[j], reverse=True)
#intensity = max(0, min(1.0, (pos_colheights[j]-0.4*refseq_height/mid1)/(1.5*refseq_height/mid1)))
#aboveimg = aboveimg*intensity + 255*(1-intensity)
tapej = tape[:,j].copy()
tapej[tapej < 0.10*abs(tape).max()] = 0.0
#if pos_colheights[j] >= 0.15*max(pos_colheights.max(),neg_colheights[j].max()):
if np.any(tapej > 0):
aboveimg = make_lettercol(tapej, (mid1-bufferzoom*3) * pos_colheights[j], reverse=True)
aboveimg = np.minimum(255,aboveimg*0.61 + 255*0.4)
assert mid0-arrowheight-arrowpad_btm >= 0
assert mid0-arrowheight_padded-aboveimg.shape[0] >= 0
L[mid0-arrowheight-arrowpad_btm:mid0-arrowpad_btm,j*zletterwidth:(j+1)*zletterwidth,:] = uparrow_img
L[mid0-arrowheight_padded-aboveimg.shape[0]:mid0-arrowheight_padded,j*zletterwidth:(j+1)*zletterwidth,:] = aboveimg
#grey = aboveimg.mean(axis=2).reshape(aboveimg.shape[:2]+(1,))
#aboveimg[:,:,:] = np.minimum(255,grey.astype(np.float32)*160./grey.min())
#L[mid0-arrowpad_btm-aboveimg.shape[0]:mid0-arrowpad_btm,j*zletterwidth:(j+1)*zletterwidth,:] = aboveimg
"""
elif style == "bar":
assert refseq, "style topbar needs refseq"
# Put the refseq letter, with fixed height
letterimg = get_letterimg(refseq[j], zletterwidth, refseq_height, font="Arial")
L[mid1-letterimg.shape[0]:mid1,j*zletterwidth:(j+1)*zletterwidth,:] = letterimg
# Draw a bar plot along the top based on neg_colheights
barheight = int((mid1-refseq_height-2*bufferzoom) * neg_colheights[j])
L[mid1-letterimg.shape[0]-barheight-2*bufferzoom:mid1-letterimg.shape[0]-2*bufferzoom,j*zletterwidth:(j+1)*zletterwidth,:] = np.array(barcolors[refseq[j]]).reshape((1,1,4))
elif style == "bars":
assert refseq, "style topbar needs refseq"
# Put the refseq letter, with fixed height
letterimg = get_letterimg(refseq[j], zletterwidth, refseq_height, font="Arial")
L[mid1+2*bufferzoom:mid2-2*bufferzoom,j*zletterwidth:(j+1)*zletterwidth,:] = letterimg
# Draw a bar plot along the top based on neg_colheights
aboveheight = int(mid1 * neg_colheights[j])
belowheight = int(mid1 * pos_colheights[j])
L[mid1-aboveheight:mid1,j*zletterwidth:(j+1)*zletterwidth,:] = np.array(barcolors[refseq[j]]).reshape((1,1,4))
L[mid2:mid2+belowheight,j*zletterwidth:(j+1)*zletterwidth,:] = np.array(barcolors[refseq[j]]).reshape((1,1,4))
else:
raise NotImplementedError("Unrecognzied style type")
if style in (None, "stack") and not refseq:
# Put a horizontal line across the middle of this logo
L[mid1:mid1+bufferzoom,:,:] = 100
if not positive_only:
L[mid2-bufferzoom:mid2,:,:] = 100
if not transparent:
L[:,:,3] = 255 # full opacity
# Rescale it down to the original requested size
L = np.array(Image.fromarray(L).resize((tapelen*letterwidth, height), Image.ANTIALIAS))
if complement:
L = L[::-1,:,:] # vertical flip
return L
|
DeepBind-master
|
code/libs/deepity/deepity/tape2logo.py
|
# Copyright (c) 2015, Andrew Delong and Babak Alipanahi All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation and/or
# other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Author's note:
# This file was distributed as part of the Nature Biotechnology
# supplementary software release for DeepBind. Users of DeepBind
# are encouraged to instead use the latest source code and binaries
# for scoring sequences at
# http://tools.genes.toronto.edu/deepbind/
#
import logging
import warnings
import numpy as np
from .node import node,supernode
from .plug import plug,disconnect
from .std import mse,nll,hinge,trainable
from .std.elemwise import logistic
from .std.softmax import softmax
from . import globals
class costsum(node):
def __init__(self): super(costsum,self).__init__(["X"],["cost"])
def _fprop(self, X): return X # The incoming values were already accumulated at input plug X, automatically, so nothing to do
def _bprop(self): return 1 # Each incoming value
def _calc_shapes(self, cost): self.cost._shape = (1,1)
class trainer(object):
class cost(supernode):
def __init__(self, model, lossfunc):
self.model = model
self.costsum = costsum()
# First set up subgraph "model -> loss -> costsum"
if isinstance(model.Z.origin().node,softmax):
self.loss = nll() # If user ended model with a softmax, make loss nll implicitly
elif lossfunc == "hinge":
self.loss = hinge()
else:
self.loss = mse() # Otherwise, minimize MSE loss
self.model.Z >> self.loss >> self.costsum
# Find all "cost" oplugs and make sure they get summed at the output
for p in model.oplugs:
if p.name.startswith("cost"):
p >> self.costsum
super(trainer.cost,self).__init__([self.model,self.loss,self.costsum])
def disconnect(self):
for src in self.iplugs:
if src.has_dst():
dst = src.dsts[0]
if dst.node is self.model:
disconnect(src,dst)
dst.fpval = src.fpval
for p in self.model.oplugs:
if p.name.startswith("cost"):
disconnect(p,self.costsum)
disconnect(self.model.Z,self.loss)
def eval_loss(self, batches):
if batches is None:
return None
loss = None
for batch in batches:
# For each data attribute, set its value on the corresponding plug
for attrname in batch.data_attrs():
if hasattr(self, attrname):
getattr(self, attrname).fpval = getattr(batch, attrname)
else:
warnings.warn("Data has attribute \"%s\", but model does not; that particular input will be ignored." % attrname)
# Pull the final loss value for this minibatch
batch_loss = self.loss.loss.fpval.asnumpy().ravel()
if loss is None:
loss = np.zeros_like(batch_loss)
loss += batch_loss
# Clear all stored values in the dependency graph, effectively resetting it
self.clear()
for attrname in batch.data_attrs():
if hasattr(self, attrname):
getattr(self, attrname).fpval = None
loss /= len(batches)
return loss
def eval_model(self, batches):
if batches is None:
return None
Z = []
for batch in batches:
# For each data attribute, set its value on the corresponding plug
for attrname in batch.data_attrs():
if hasattr(self, attrname):
getattr(self, attrname).fpval = getattr(batch, attrname)
else:
warnings.warn("Data has attribute \"%s\", but model does not; that particular input will be ignored." % attrname)
# Pull the final loss value for this minibatch
Z.append(self.model.Z.fpval.asnumpy())
# Clear all stored values in the dependency graph, effectively resetting it
self.clear()
for attrname in batch.data_attrs():
if hasattr(self, attrname):
getattr(self, attrname).fpval = None
return np.vstack(Z)
def bprop_trainable(self, trnodes, datasrc):
# For each data attribute, set its value on the corresponding plug
for attrname in datasrc.data_attrs():
if hasattr(self, attrname):
getattr(self, attrname).fpval = getattr(datasrc, attrname)
#else:
# warnings.warn("Data has attribute \"%s\", but model does not; that particular input will be ignored." % attrname)
# Set the initial bpvalue to be simply 1
self.cost.bpval = 1
# Tell each trainable node to update its dP value
globals.flags.push("bprop_mode",True)
for trnode in trnodes:
trnode.bprop()
globals.flags.pop("bprop_mode")
# Clear all the stored values in the dependency graph, effectively resetting it
self.clear()
for attrname in datasrc.data_attrs():
if hasattr(self, attrname):
getattr(self, attrname).fpval = None
def train(self, model, datasets, checkpoint_callback):
tdata = datasets["train"]
ninst = len(tdata.targetnames)
cost = trainer.cost(model, self.lossfunc)
cost.set_ninstance(ninst)
# Set the shape of all model inputs
for attrname in tdata.input_attrs():
#assert hasattr(cost,attrname), "Data has input named \"%s\", but model does not" % attrname
if hasattr(cost, attrname):
getattr(cost, attrname).shape = (None,tdata.attrdim(attrname))
else:
logging.warn("Data has input named \"%s\", but model does not" % attrname)
# Assert that all model outputs match the size of the corresponding targets, if any
for attrname in tdata.output_attrs():
assert hasattr(cost,attrname), "Data has output named \"%s\", but model does not" % attrname
#assert getattr(cost,attrname).shape[1] == tdata.attrdim(attrname)/ninst, "Model's output attribute \"%s\" (dim=%d) doesn't match corresponding target dimension (dim=%d)" % (attrname,getattr(cost,attrname).shape[1],tdata.attrdim(attrname)/ninst)
# Collect all input plugs on the cost function that are not
# determined by the data inputs/targets
trainable_plugs = [ p for p in cost.iplugs if (p.origin().trainable and p.shape and p.name not in tdata.data_attrs()) ]
# Call subclass to do the actual training
self._train(trainable_plugs, cost, datasets, checkpoint_callback)
cost.disconnect()
model._parent = None
def force_single_value(self,*attrnames):
for attrname in attrnames:
attr = getattr(self,attrname)
if isinstance(attr,np.ndarray):
if any(attr != attr[0]):
logging.info("forcing parameter \"%s\" to single value %s" % (attrname,str(np.asscalar(attr[0]))))
attr[:] = attr[0]
setattr(self,attrname,np.asscalar(attr[0]))
|
DeepBind-master
|
code/libs/deepity/deepity/trainer.py
|
# Copyright (c) 2015, Andrew Delong and Babak Alipanahi All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation and/or
# other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Author's note:
# This file was distributed as part of the Nature Biotechnology
# supplementary software release for DeepBind. Users of DeepBind
# are encouraged to instead use the latest source code and binaries
# for scoring sequences at
# http://tools.genes.toronto.edu/deepbind/
#
from .plug import plug,connect,plug_null
from .data import datasource
from . import globals
import re
import smat as sm
import numpy as np
try:
from hpsearch import paramdef
except:
class dummy_type(object): pass
paramdef = dummy_type
class node(object):
"""
A dependency graph node.
Each node must provide two functions:
_fprop: compute the value of each output plug, using the input plugs
_bprop: compute the delta of each input plug, using the input plugs and delta of each output plug
For example, a "Z = tanh(X)" node would be implemented as:
class tanh_node(node):
def __init__(self): node.__init__(["X"],["Z"]) # Create iplug X and oplug Z
def _fprop(self,X): return tanh(X) # Compute Z from X
def _bprop(self,Z,dZ): return dZ*(1-Z**2) # Compute dX from Z and dZ
# (Note: tanh'(X) = 1-tanh(X)^2 = 1-Z^2)
"""
def __init__(self,iplugs,oplugs,name=None):
self.name = name
self.ninst = 1
self._parent = None # Weakref to parent (the @parent property automatically derefs)
# Add plugs directly specified by subclass
self.iplugs = [plug(self,pname) for pname in iplugs]
self.oplugs = [plug(self,pname) for pname in oplugs]
# For convenience, add each plug as a named attribute, to facilitate "self.X"
self.__dict__.update({ plug.name : plug for plug in self.iplugs })
self.__dict__.update({ plug.name : plug for plug in self.oplugs })
@property
def parent(self):
return self._parent
@property
def path(self):
if not self._parent:
return ""
# Iterate over our other parent's children and identify our path relative to that parent
for i,child in enumerate(self.parent):
if child is self:
# The path to a child is, by default, "path[i]" where i is the child's index
relpath = "["+str(i)+"]"
# However, if the child is also an attribute, like .foo, then path is "path.foo"
for name,attr in self.parent.__dict__.iteritems():
if self is attr:
relpath = "."+name
break
break
return self.parent.path + relpath
def _visit(self,path,callback):
# Visit ourself first.
callback(path,self)
# Visit all our own attributes, *except* any nodes (let supernode deal with them if need be)
for name,attr in self.__dict__.iteritems():
if isinstance(attr,(plug,paramdef)):
newval = callback(path+"."+name,attr)
if newval is not None:
setattr(self,name,newval)
def visit(self,callback):
"""
Visits each plug of the node, and each child of the node,
invoking callback(path,object) for each one. For example,
if 'node' is a "dropout" node, then node.visit would call:
callback(".X",node.X) # visit the input plug X
callback(".Z",node.Z) # visit the output plug Z
callback(".rate",node.rate) # visit the dropout rate (a scalar)
If 'node' were a supernode, such as a chain([bias,dropout]),
then node.visit would call
callback(".X",node.X) # visit supernode's input plug X (which will have dst bias.X)
callback(".Z",node.Z) # visit supernode's output plug X (which will have src dropout.Z)
callback("[0]",node.children[0]) # visit first child node
callback("[0].X",node.children[0].X) # visit first child's input plug X
callback("[0].b",node.children[0].b) # visit first child's bias plug b (i.e. trainable weights)
callback("[0].Z",node.children[0].Z) # visit first child's output plug Z
callback("[1]",node.children[1]) # ...
callback("[1].X",node.children[1].X)
callback("[1].Z",node.children[1].Z)
callback("[1].rate",node.children[1].rate)
"""
self._visit("",callback)
def set_ninstance(self,ninst):
def set_ninst(path,obj):
if isinstance(obj,node):
obj.ninst = ninst
self.visit(set_ninst)
def _set_ninstance(self,ninst):
raise NotImplementedError("Subclass should implement _set_ninstance.")
def slice_inst(self,inst):
# First, ask each internal node to pull its _fpval and slice out
# the parameters for instance number 'inst'.
# The internal nodes may pull their _fpval from supernode plugs.
def do_slice_inst(path,obj):
if isinstance(obj,node):
obj._slice_inst(inst)
obj.ninst = 1
self.visit(do_slice_inst)
# Second, a supernode parameter plug may still have
def replace_with_origin(path,obj):
if isinstance(obj,plug) and isinstance(obj.node,supernode):
if obj.origin() is not obj and obj.origin()._fpval is not None:
obj.fpval = obj.origin()._fpval
self.visit(replace_with_origin)
def _slice_inst(self,inst):
return # by default, do nothing
def find(self,path):
"""Returns the node or attribute specified by the path, relative to this node"""
if path == "":
return self
assert path.startswith(".")
return getattr(self,path[1:])
def find_and_set(self,path,val):
"""Sets the node or attribute specified by the path, relative to this node"""
if "." not in path:
setattr(path, val)
assert path.startswith(".")
return getattr(self, path[1:])
def requirements(self):
# Return a dictionary of "requirements" that the external program should
# make sure that the data accomodates. Each node has the opportunity to list
# some requirement for the input data, such as data being padded.
# Each requirement is in the form { "a.b.requirement_name" : requirement_value }
reqs = {}
def add_reqs(path,obj):
if isinstance(obj,node):
reqs.update({ (path+"."+key) : val for key,val in obj._requirements().iteritems() })
self.visit(add_reqs)
return reqs
def _requirements(self):
return {}
def data_requirements(self):
reqs = self.requirements()
padding = max([0]+[val for key,val in reqs.items() if key.endswith("sequence_padding")])
target = [val for key,val in reqs.items() if key.endswith("target")]
assert len(target) <= 1
if target:
target = target[0]
return { 'target' : target, 'padding' : padding }
def calc_shapes(self,visited):
if self in visited:
return
argnames = self._calc_shapes.__code__.co_varnames[1:self._calc_shapes.__code__.co_argcount]
inputs = { name : getattr(self,name) for name in argnames }
for iplug in inputs.itervalues():
iplug._calc_shape(visited+[self])
self._calc_shapes(**inputs)
#for iplug in inputs.itervalues():
#if iplug._shape is not None:
#print "%s._calc_shape() succeeded: %s" % (iplug.path,str(iplug._shape))
def _calc_shapes(self): raise NotImplementedError("Subclass should implement _calc_shapes.")
def clear(self):
def clear_plug(path,obj):
if isinstance(obj,plug):
if obj.has_src() or obj.is_oplug():
obj._fpval = plug_null # Clear all fprop values except input plugs with a fixed (external) value set on them
obj._bpval = plug_null
self.visit(clear_plug)
def fprop(self):
"""
Calculate the value of all output plugs based on the current iplugs.
"""
for oplug in self.oplugs:
assert oplug._fpval is plug_null, "fprop on a node can only be called while it's output fpvals are undefined"
# If the subclass of this object defined
# def _fprop(self,X,Y):
# ...
# then we want to automatically pull the value stored by plugs X and Y
# and pass those values as _fprop's arguments.
argnames = self._fprop.__code__.co_varnames[1:self._fprop.__code__.co_argcount]
inputs = { }
for argname in argnames:
p = getattr(self,argname)
assert p in self.iplugs, "_fprop cannot request parameter %s, as its value has not been determined yet" % argname
inputs[argname] = p.fpval
# Call subclass _fprop implementation and get a list of outputs
outputs = self._fprop(**inputs)
if not isinstance(outputs,tuple):
outputs = (outputs,)
# Move each output to the corresponding oplug
for oplug,fpval in zip(self.oplugs,outputs):
oplug._fpval = fpval
def bprop(self):
"""
Calculate 'delta' for each input plug.
For example, if iplugs=[X] and oplugs=[Z],
then bprop should compute dX from X,Z,dZ.
"""
for iplug in self.iplugs:
assert iplug._bpval is plug_null, "bprop on a node can only be called while it's input bpvals are undefined"
# If the subclass of this object defined
# def _bprop(self,X,Z,dZ):
# ...
# then we want to automatically call
# self._bprop(X._fpval,Z._fpval,Z._bpval)
#
argnames = self._bprop.__code__.co_varnames[1:self._bprop.__code__.co_argcount]
inputs = {}
for argname in argnames:
if argname.startswith("d") and hasattr(self,argname[1:]):
# If the plug is dZ, then substitute with Z.bpval
p = getattr(self,argname[1:])
assert p in self.oplugs, "_bprop cannot request parameter %s, as its value has not been determined yet" % argname
inputs[argname] = p.bpval
else:
# Otherwise, simply use Z.fpval
p = getattr(self,argname)
inputs[argname] = p.fpval
# Call subclass _bprop implementation and get a list of deltas
outputs = self._bprop(**inputs)
if not isinstance(outputs,tuple):
outputs = (outputs,)
# Copy each output to the corresponding iplug's delta value
for iplug,bpval in zip(self.iplugs,outputs):
iplug._bpval = bpval
def _fprop(self): raise NotImplementedError("Cannot propagate through node.")
def _bprop(self): raise NotImplementedError("Cannot back-propagate through node.")
def eval(self,**kwargs):
want_clear = kwargs.pop('clear',True)
want_bprop_inputs = kwargs.pop('want_bprop_inputs',False)
bprop_inputs_loss = kwargs.pop('bprop_inputs_loss',None)
self.clear()
globals.flags.push("want_bprop_inputs",want_bprop_inputs)
globals.flags.push("bprop_mode",want_bprop_inputs)
# For each keyword, set the corresponding plug's value
for key,val in kwargs.iteritems():
getattr(self,key).fpval = val
# Pull the final loss value for this minibatch
result = { p.name : p.fpval for p in self.oplugs }
# If needed, also pull the backprop'd input deltas and include them in the result
if want_bprop_inputs or bprop_inputs_loss:
# First set up special backprop values: "Z" (the prediction) backpropagates a negative value
# All other output plugs (e.g. costs) backpropagate zero.
for p in self.oplugs:
if p.name == "Z":
bprop_inputs_loss.batchmean = False # Disable scaling gradient by minibatch size
bprop_inputs_loss.Z.fpval = result["Z"]
bprop_inputs_loss.Y.fpval = sm.zeros_like(result["Z"])
#bprop_inputs_loss.Y.fpval = -1.*sm.ones_like(result["Z"])
p._bpval = bprop_inputs_loss.Z.bpval
result['Zmask'] = bprop_inputs_loss.Zmask._fpval
# Only backprop gradient of target #0, not the other targets
if p._bpval.shape[1] > 1:
p._bpval[:,1:] = sm.zeros_like(p._bpval[:,1:])
#p._bpval = -result["Z"]
#p._bpval = -sm.ones_like(result["Z"])
else:
p._bpval = sm.zeros((0,0))
# Now backpropagate to each input, and store the result
if want_bprop_inputs:
result.update({ "d"+p.name : p.bpval for p in self.iplugs if p.name in kwargs})
globals.flags.pop("want_bprop_inputs")
globals.flags.pop("bprop_mode")
# Clear all stored values in the dependency graph, effectively resetting it
if want_clear:
self.clear()
for key in kwargs.iterkeys():
getattr(self,key).fpval = plug_null
return result
# Functions to allow easier connect(X,Y) syntax.
# Allows things like X >> Y, Y << X where Y is a node
# and X is a node or a literal.
def __lshift__(self,other): connect(other,self); return self
def __rshift__(self,other): connect(self,other); return other
def __rlshift__(self,other): connect(self,other); return other
def __rrshift__(self,other): connect(other,self); return self
#####################################################################
class supernode(node):
"""
A supernode wraps a subgraph with a simple interface.
All of this node's inputs are forwarded internal inputs,
likewise all its outputs are and forwarded from internal outputs.
"""
def __init__(self,children,name=None):
self._children = children
for child in children:
child._parent = self
# Collect all unconnected plugs so that we can expose
# corresponding external plugs on the supernode
iplugs = [plug for child in children
for plug in child.iplugs
if not plug.has_src()]
oplugs = [plug for child in children
for plug in child.oplugs
if not plug.has_dst()]
# Figure out what the external name for each internal plug should be,
# e.g. two internal plugs named "W" get renamed "W0" and "W1".
iplug_names = self._calc_plug_names(iplugs)
oplug_names = self._calc_plug_names(oplugs)
# Call node constructor to initialize our own plugs.
super(supernode,self).__init__(iplug_names,oplug_names,name)
# Connect each external plug to its internal counterpart
for src,dst in zip(self.iplugs,iplugs): src >> dst; src.inst_axis = dst.inst_axis
for src,dst in zip(oplugs,self.oplugs): src >> dst; dst.inst_axis = src.inst_axis
@staticmethod
def _calc_plug_names(plugs):
# If two internal plugs are named R, for example, then their external
# counterparts get named R0,R1
raw_names = [plug.name for plug in plugs]
new_names = []
for i,name in enumerate(raw_names):
while (raw_names+new_names).count(name) > 1:
name = name + str(raw_names[:i].count(name)) # R,R becomes R0,R1
new_names.append(name)
return new_names
def _visit(self,path,callback):
# First visit all our own attributes
super(supernode,self)._visit(path,callback)
# Next, iterate over our other immediate children and recursively call _visit
for i,child in enumerate(self):
# The path to a child is, by default, "path[i]" where i is the child's index
childpath = "["+str(i)+"]"
# However, if the child is also an attribute, like .foo, then path is "path.foo"
for name,attr in self.__dict__.iteritems():
if attr is child:
childpath = "."+name
break
child._visit(path+childpath,callback)
def _set_ninstance(self,ninst):
return # Do nothing on the supernode itself. Let set_ninstance visit all our children automatically.
def find(self,path):
"""Returns the node or attribute specified by the path, relative to this node"""
if path == "":
return self
# If path is "[i]...", then call children[i].find(...)
match = re.search("^\[(\d+)\](.*)",path)
if match:
return self._children[int(match.group(1))].find(match.group(2))
# If path is ".name", then return getattr(self,name)
match = re.search("^\.(\w+)$",path)
if match:
return getattr(self,match.group(1))
# If path is ".name..." then 'name' must be a child node, and we return getattr(self,name).find(...)
match = re.search("^\.(\w+)(.+)",path)
if match:
return getattr(self,match.group(1)).find(match.group(2))
def __iter__(self): return self._children.__iter__()
def __getitem__(self,i): return self._children[i]
def __len__(self): return len(self._children)
def calc_shapes(self,visited): return # Do nothing
def fprop(self): return # Do nothing
def bprop(self): return # Do nothing
def _fprop(self): return # Do nothing
def _bprop(self): return # Do nothing
def slice_inst(self,inst):
super(supernode,self).slice_inst(inst)
|
DeepBind-master
|
code/libs/deepity/deepity/node.py
|
# Copyright (c) 2015, Andrew Delong and Babak Alipanahi All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation and/or
# other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Author's note:
# This file was distributed as part of the Nature Biotechnology
# supplementary software release for DeepBind. Users of DeepBind
# are encouraged to instead use the latest source code and binaries
# for scoring sequences at
# http://tools.genes.toronto.edu/deepbind/
#
import time
import logging
import numpy as np
import numpy.random as npr
from .std import trainable
from . import globals
def gradcheck(trnodes,cost,datasrc,maxtime=2,rtol=1e-5,atol=1e-4):
"""
Checks the computation of grad() against numerical gradient.
If any component of the numerical gradient does not match, an
AssertionError is raised with information about the problem.
"""
# Collect each trainable node in the dependency graph
if len(trnodes) == 0:
return # No trainable nodes, means zero-dimensional gradient
# trnodes[0].P[:] = 0
print "gradient check (dtype=%s)..." % str(trnodes[0].P.dtype)
globals.flags.push("train_mode",False)
# Update the dP value of each trainable node, so that it contains
# the symbolic gradient for that trainable node's parameters
cost.bprop_trainable(trnodes,datasrc)
# Compute components numeric gradient by starting from the symbolic gradient
# and then checking several weight components by central-difference
failures = {}
data = datasrc.data()
# Loop over each
for trnode in trnodes:
# Get the parameter vector P, and also the symbolic gradient that was computed at the beginning
P = trnode.P.ravel() # Keep as sarray
dP = trnode.dP.asnumpy().ravel() # Download
# Decide on step size and what order to perturb the parameters of this trainable node
step = 1e-8 if P.dtype == np.float64 else 1e-4
#order = npr.permutation(len(P)) # Use same permutation every time for consistency in output
order = np.arange(len(P))
# For the time allotted, perturb each parameter and evaluate the cost
starttime = time.time()
numcheck,mincheck = 0,min(len(order),50)
for i in order:
# Temporarily perturb weight i by 'step' and evaluate the new cost at each position
x = float(P[i])
P[i] = x-step; c0 = np.sum(cost.eval(**data)["cost"].asnumpy());
P[i] = x+step; c1 = np.sum(cost.eval(**data)["cost"].asnumpy());
P[i] = x
# Compute the numeric gradient for paraneter i, and check its closeness to symbolic gradient
dc_num = float(c1-c0)/float(2*step)
dc_sym = dP[i]
if not np.allclose(dc_num,dc_sym,rtol=rtol,atol=atol) or not np.allclose(dc_sym,dc_num,rtol=rtol,atol=atol):
if trnode not in failures:
failures[trnode] = []
failures[trnode].append((i,dc_num,dc_sym))
# Quit early if we ran out of time for this particular node
numcheck += 1
if time.time()-starttime >= maxtime and numcheck >= mincheck:
break
globals.flags.pop("train_mode")
# No errors? Then simply return
if len(failures) == 0:
logging.info("gradient check PASSED")
return
msg = "...gradient check FAILED\n"
for trnode,items in failures.iteritems():
msg += " %s FAILED at weights:\n" % (trnode.Z.dsts[0].origin().path)
# Sort by index
items.sort(cmp=lambda x,y: int(x[0]-y[0]))
count = 0
for index,dc_num,dc_sym in items:
msg += "\t\t[%d] num: %.8f sym: %.8f\n" % (index,dc_num,dc_sym)
count += 1
if count > 8:
msg += "\t\t...\n"
break
for trnode in trnodes:
if trnode not in failures:
msg += " %s SUCCEEDED\n" % (trnode.Z.dsts[0].origin().path)
logging.info("gradient check FAILED")
logging.info(msg)
raise AssertionError(msg)
|
DeepBind-master
|
code/libs/deepity/deepity/gradcheck.py
|
# Copyright (c) 2015, Andrew Delong and Babak Alipanahi All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation and/or
# other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Author's note:
# This file was distributed as part of the Nature Biotechnology
# supplementary software release for DeepBind. Users of DeepBind
# are encouraged to instead use the latest source code and binaries
# for scoring sequences at
# http://tools.genes.toronto.edu/deepbind/
#
import os
import os.path
import copy
import numpy as np
import numpy.random as npr
import smat as sm
import gc
from .util import makepath
from .data import make_predictions
from . import globals
import scipy
import scipy.stats
import subprocess
import warnings
#warnings.simplefilter('error', UserWarning)
####################################################################
def calc_auc(z, y, want_curve = False):
assert len(z) == len(y)
#m = ~np.isnan(y)
#y = y[m]
#z = z[m]
#ymin = y.min()
#ymax = y.max()
#lo = (0.02-0) / (1.0 - 0.0) * (ymax-ymin) + ymin
#hi = (0.10-0) / (1.0 - 0.0) * (ymax-ymin) + ymin
#mlo = y<=lo
#mhi = y>=hi
#y[mlo] = 0
#y[mhi] = 1
#y[np.logical_and(mlo,mhi)] = np.nan
#m = ~np.isnan(y)
#y = y[m]
#z = z[m]
# Sort by decreasing score
order = np.argsort(z, axis=0, kind="mergesort")[::-1].ravel()
z = z[order]
y = y[order]
# Accumulate the true positives with decreasing threshold
tpr = y.cumsum()
fpr = 1 + np.arange(len(y)).astype(y.dtype) - tpr
# If curve doesn't have point at x=0, explicitly insert one
if fpr[0] != 0:
tpr = np.r_[0,tpr]
fpr = np.r_[0,fpr]
# If one of the classes was empty, return NaN
if fpr[-1] == 0 or tpr[-1] == 0:
return (np.nan,None) if want_curve else np.nan
# Convert sums to rates
tpr = tpr / tpr[-1]
fpr = fpr / fpr[-1]
# Calculate area under the curve using trapezoidal rule
auc = np.trapz(tpr,fpr,axis=0)
# Done!
if want_curve:
curve = np.hstack([fpr,tpr])
return auc,curve
return auc
'''
#auc1 = auc
npos = np.count_nonzero(y) # Total number of positives.
nneg = len(y)-npos # Total number of negatives.
if nneg == 0 or npos == 0:
return (np.nan,None) if want_curve else np.nan
n = len(y)
fprate = np.zeros((n+1,1))
tprate = np.zeros((n+1,1))
ntpos,nfpos = 0.,0.
for i,yi in enumerate(y):
if yi: ntpos += 1
else: nfpos += 1
tprate[i+1] = ntpos/npos
fprate[i+1] = nfpos/nneg
auc = np.trapz(tprate,fprate,axis=0)
if want_curve:
curve = np.hstack([fprate,tprate])
return auc,curve
return auc'''
#########################################################################
def bootstrap_auc(z, y, ntrial=10):
n = len(y)
aucs = []
for t in range(ntrial):
sample = npr.randint(0,n,n)
zt = z[sample].copy().reshape((-1,1))
yt = y[sample].copy().reshape((-1,1))
auc = calc_auc(zt,yt)
if np.isnan(auc):
return np.nan, np.nan # If any of the samples returned NaN, the whole bootstrap result is NaN
aucs.append(auc)
return np.mean(aucs),np.std(aucs)
#####################################################################
def calc_metrics(z, y, aucthresh=(0.5,0.5)):
metric = {}
# Compute correlations using all non-NaN values
M = ~np.isnan(y)
z = z[M]
y = y[M]
metric["pearson.r"], metric["pearson.p"] = scipy.stats.pearsonr(z,y)
metric["spearman.r"], metric["spearman.p"] = scipy.stats.spearmanr(z,y)
if np.any(y < aucthresh[0]) and np.any(y >= aucthresh[1]):
# Compute percentiles of positive and negative sets:
#if np.sum(y < aucthresh[0]) > 1 and np.sum(y > .5) > 1:
# negmu,negstd = np.mean(z[y<.5]), np.std(z[y<.5])
# posmu,posstd = np.mean(z[y>.5]), np.std(z[y>.5])
# numer = posmu-negmu
# denom = posstd+negstd
# metric["gapratio"] = (numer / denom) if denom else np.nan
# Convert y to binary using the aucrange threshold
lo, hi = aucthresh
Mlo = y< lo
Mhi = y>=hi
y[Mlo] = 0
y[Mhi] = 1
M = np.logical_or(Mlo,Mhi)
y = y[M]
z = z[M]
# Calculate AUC stats
metric["auc"] = calc_auc(z, y)
metric["auc.mean"], metric["auc.std"] = bootstrap_auc(z, y, 20)
return metric
#####################################################################
def _calc_performance_stats(cost, batches):
Z = []
Y = []
L = []
rowidx = []
for batch in batches:
args = { key : val for key,val in batch.data().items() if hasattr(cost,key) }
cost.eval(clear=False,**args)
Zi = cost.loss.Z.fpval.asnumpy()
Yi = sm.asnumpy(batch.Y)
Li = cost.loss.loss.fpval.asnumpy()
rowidx_i = sm.asnumpy(batch.rowidx) if hasattr(batch,"rowidx") else None
# Deal with possibility that only a subset of predictions contributed to the loss, due to some test performed after prediction (e.g. max of sequence and reverse_complement of sequence)
if cost.Zmask.fpval is not None:
Zmask = cost.Zmask.fpval.asnumpy()
Zi = np.hstack([Zi[Zmask[:,col],col].reshape((-1,1)) for col in range(Zi.shape[1])])
Yi = np.hstack([Yi[Zmask[:,col],col].reshape((-1,1)) for col in range(Yi.shape[1])])
if rowidx_i is not None:
rowidx_i = rowidx_i[Zmask[:,0],0].reshape((-1,1))
Z.append(Zi)
Y.append(Yi)
L.append(Li)
if rowidx_i is not None:
rowidx.append(rowidx_i)
cost.clear()
Z = np.vstack(Z)
Y = np.vstack(Y)
L = np.vstack(L)
L = np.mean(L,axis=0)
rowidx = np.vstack(rowidx) if rowidx else None
return { "L" : L, "Z" : Z, "Y" : Y, "I" : rowidx }
#return (L,Z,Y,rowidx)
#####################################################
class training_report(object):
'''
class subreport(object):
def __init__(self,filename):
self.filename = filename
makepath(os.path.dirname(filename))
self.logfile = open(filename,'w')
self.entries = []
def update(self, step, model,
tloss, tZ, tY, tI,
vloss, vZ, vY, vI,
**kwargs):
if tI is not None:
p = np.argsort(tI.ravel())
tZ = tZ[p,:]
tY = tY[p,:]
tI = tI[p,:]
if vI is not None:
p = np.argsort(vI.ravel())
vZ = vZ[p,:]
vY = vY[p,:]
vI = vI[p,:]
# Build a short string describing the current state
txt = ""
if step is not None: txt += "%06d:" % step
if tloss is not None: txt += "\t tloss=%.8f" % tloss
if vloss is not None: txt += "\t vloss=%.8f" % vloss
for key,val in kwargs.iteritems():
txt += "\t%s=%s\t " % tloss
for i in range(tY.shape[1]):
tZi = tZ[:,i:i+1]
tYi = tY[:,i:i+1]
tMi = ~np.isnan(tYi)
tpearson = scipy.stats.pearsonr(tZi[tMi],tYi[tMi])
tspearman = scipy.stats.spearmanr(tZi[tMi],tYi[tMi])
tauc = bootstrap_auc(tZi[tMi],tYi[tMi])
txt += "\t tp%02d=%.3f (%g)" % (i,tpearson[0],tpearson[1])
txt += "\t ts%02d=%.3f (%g)" % (i,tspearman[0],tspearman[1])
txt += "\t ta%02d=%.3f (%g)" % (i,tauc[0],tauc[1])
if vY is not None:
vZi = vZ[:,i:i+1]
vYi = vY[:,i:i+1]
vMi = ~np.isnan(vYi)
vpearson = scipy.stats.pearsonr(vZi[vMi],vYi[vMi])
vspearman = scipy.stats.spearmanr(vZi[vMi],vYi[vMi])
vauc = bootstrap_auc(vZi[vMi],vYi[vMi])
txt += "\t vp%02d=%.3f (%g)" % (i,vpearson[0],vpearson[1])
txt += "\t vs%02d=%.3f (%g)" % (i,vspearman[0],vspearman[1])
txt += "\t va%02d=%.3f (%g)" % (i,vauc[0],vauc[1])
# If such state was provided, append it to our file.
if txt != "":
mode = "w" if self.entries == [] else "a"
with open(self.filename,mode) as f:
f.write(txt+"\n")
images = self.extract_filters(model) if "store_featuremaps" in globals.flags else None
entry = {}
if step is not None: entry['step'] = step
if tloss is not None: entry['tloss'] = tloss
if tloss is not None: entry['tauc'] = tauc
if tZ is not None: entry['tZ'] = tZ
if tY is not None: entry['tY'] = tY
if tI is not None: entry['tI'] = tI
if vloss is not None: entry['vloss'] = vloss
if vloss is not None: entry['vauc'] = vauc
if vZ is not None: entry['vZ'] = vZ
if vY is not None: entry['vY'] = vY
if vI is not None: entry['vI'] = vI
if images is not None: entry['images'] = images
entry.update(kwargs)
self.entries.append(entry)
@staticmethod
def extract_filters(model):
# Extract any filters from the dependency graph nodes, and
# convert them to images.
if not model:
return None
filters = {}
def collect_filters(path,obj):
if hasattr(obj,"getfilters"):
F = obj.getfilters()
if F is not None:
filters[path] = F
model.visit(collect_filters)
return filters if len(filters) > 0 else None
def dump(self, want_html=False, want_anim=False):
# Don't just dump the status text -- also dump all weights, in an archive
if want_html:
prefix = os.path.splitext(self.filename)[0]
np.savez_compressed(prefix+".report.npz", entries=np.asarray(self.entries[-1:],dtype=object))
# Fire off a separate process that will generate filter/prediction plots
# using matplotlib; this should be done in a separate process so as to avoid
# instability with matplotlib/tk in the multiprocess hyperparameter search
subprocess.Popen(["python", os.path.dirname(__file__)+"/report_plotter.py", prefix+".report.npz"])
'''
###############################
def __init__(self, aucrange=(0.5,0.5)):
"""auclo and auchi can be used to explicitly threshold a non-binary target Y"""
self.aucrange = aucrange
self.foldid = 0
self.entries = {}
# An "entry" is identified by indices entries[task][step][dataset].
# Each entry entry[quantity][foldid]
# is the quantity for the specific foldid, where quantity is something like 'Z' or 'Y' and foldid is some integer like 0,1,2
# self.subreports = [self.subreport(logfile_pattern % {"sample_id" : sample_id, "task_id" : task_id})
# for (task_id,sample_id) in zip(task_ids,sample_ids)]
def setfold(self, foldid):
self.foldid = foldid
###############################
@staticmethod
def _get_submodel(model, index):
submodel = copy.deepcopy(cost.model)
sm.sync()
submodel.slice_inst(index)
sm.sync()
return submodel
###############################
def __call__(self, step, cost, datasets):
"""
Record the performance of each submodel (of 'cost') at this particular step.
"""
# Compute all loss values L, predictions Z, targets Y, and original row indices I both tdata, and for vdata
for name, data in datasets.iteritems():
stats = _calc_performance_stats(cost, data)
# Figure out how many output dimensions (columns of Y) belong to each target.
assert stats["L"].size == len(data.curr().targetnames)
assert stats["Y"].shape[1] % stats["L"].size == 0
Ydim = stats["Y"].shape[1] // stats["L"].size
# Split up the columns
for i, targetname in enumerate(data.curr().targetnames):
# Store the loss, predictions Z, and targets Y for model i
entry = self.entries.setdefault(i,{}).setdefault(step,{})
entry.setdefault(name,{}).setdefault("L",[]).append(float(stats["L"][i]))
entry.setdefault(name,{}).setdefault("Z",[]).append(stats["Z"][:,i*Ydim:(i+1)*Ydim])
entry.setdefault(name,{}).setdefault("Y",[]).append(stats["Y"][:,i*Ydim:(i+1)*Ydim])
entry.setdefault(name,{}).setdefault("I",[]).append(stats["I"])
###############################
def combined(self):
combined = {}
for taskidx in self.entries:
for step in self.entries[taskidx]:
for group in self.entries[taskidx][step]:
entry = self.entries[taskidx][step][group]
combined_entry = combined.setdefault(taskidx,{}).setdefault(step,{}).setdefault(group,{})
combined_entry["L"] = np.mean(entry["L"])
combined_entry["Z"] = np.vstack(entry["Z"])
combined_entry["Y"] = np.vstack(entry["Y"])
combined_entry["I"] = np.vstack(entry["I"])
return combined
###############################
def curr(self):
curr = {}
for taskidx in self.entries:
for step in self.entries[taskidx]:
for group in self.entries[taskidx][step]:
entry = self.entries[taskidx][step][group]
curr_entry = curr.setdefault(taskidx,{}).setdefault(step,{}).setdefault(group,{})
curr_entry["L"] = entry["L"][self.foldid]
curr_entry["Z"] = entry["Z"][self.foldid]
curr_entry["Y"] = entry["Y"][self.foldid]
curr_entry["I"] = entry["I"][self.foldid]
return curr
###############################
'''
pass
curr = self.results.setdefault(targetname,{}).setdefault(self.foldid,{}).setdefault(step,{})
submodel = self._get_submodel(cost, i)
status = self._calc_status(step, submodel,
float(tloss[i]),
tZ[:,i*Ydim:(i+1)*Ydim],
tY[:,i*Ydim:(i+1)*Ydim],
tI,
float(vloss[i]) if vloss is not None else None,
vZ[:,i*Ydim:(i+1)*Ydim] if vloss is not None else None,
vY[:,i*Ydim:(i+1)*Ydim] if vloss is not None else None,
vI)
submodel = None
sm.sync()
gc.collect()
# Compare it to the best we've found so far, if any
#curr = self.results.setdefault(targetname,{}).setdefault(self.foldid,{}).setdefault(step,{})
#if curr:
# perfkey = "va" if vloss is not None else "tr"
# if curr
'''
'''
def _calc_status(self, step, model,
tloss, tZ, tY, tI,
vloss, vZ, vY, vI,
**kwargs):
if tI is not None:
p = np.argsort(tI.ravel())
tZ = tZ[p,:]
tY = tY[p,:]
tI = tI[p,:]
if vI is not None:
p = np.argsort(vI.ravel())
vZ = vZ[p,:]
vY = vY[p,:]
vI = vI[p,:]
# Build a short string describing the current state
txt = ""
if step is not None: txt += "%06d:" % step
if tloss is not None: txt += "\t tloss=%.8f" % tloss
if vloss is not None: txt += "\t vloss=%.8f" % vloss
for key,val in kwargs.iteritems():
txt += "\t%s=%s\t " % tloss
for i in range(tY.shape[1]):
tZi = tZ[:,i:i+1]
tYi = tY[:,i:i+1]
tMi = ~np.isnan(tYi)
tpearson = scipy.stats.pearsonr(tZi[tMi],tYi[tMi])
tspearman = scipy.stats.spearmanr(tZi[tMi],tYi[tMi])
tauc = bootstrap_auc(tZi[tMi],tYi[tMi])
txt += "\t tp%02d=%.3f (%g)" % (i,tpearson[0],tpearson[1])
txt += "\t ts%02d=%.3f (%g)" % (i,tspearman[0],tspearman[1])
txt += "\t ta%02d=%.3f (%g)" % (i,tauc[0],tauc[1])
if vY is not None:
vZi = vZ[:,i:i+1]
vYi = vY[:,i:i+1]
vMi = ~np.isnan(vYi)
vpearson = scipy.stats.pearsonr(vZi[vMi],vYi[vMi])
vspearman = scipy.stats.spearmanr(vZi[vMi],vYi[vMi])
vauc = bootstrap_auc(vZi[vMi],vYi[vMi])
txt += "\t vp%02d=%.3f (%g)" % (i,vpearson[0],vpearson[1])
txt += "\t vs%02d=%.3f (%g)" % (i,vspearman[0],vspearman[1])
txt += "\t va%02d=%.3f (%g)" % (i,vauc[0],vauc[1])
# If such state was provided, append it to our file.
if txt != "":
mode = "w" if self.entries == [] else "a"
with open(self.filename,mode) as f:
f.write(txt+"\n")
images = self.extract_filters(model) if "store_featuremaps" in globals.flags else None
entry = {}
if step is not None: entry['step'] = step
if tloss is not None: entry['tloss'] = tloss
if tloss is not None: entry['tauc'] = tauc
if tZ is not None: entry['tZ'] = tZ
if tY is not None: entry['tY'] = tY
if tI is not None: entry['tI'] = tI
if vloss is not None: entry['vloss'] = vloss
if vloss is not None: entry['vauc'] = vauc
if vZ is not None: entry['vZ'] = vZ
if vY is not None: entry['vY'] = vY
if vI is not None: entry['vI'] = vI
if images is not None: entry['images'] = images
entry.update(kwargs)
self.entries.append(entry)
'''
'''
@staticmethod
def merge_reports(logfile_pattern, task_ids, sample_ids, reports):
merged = reports[0].__class__(logfile_pattern, task_ids, sample_ids)
for i in range(len(sample_ids)):
kwargs = {}
for key in ("tZ","tY","tI","vZ","vY","vI"):
if key in reports[0].subreports[0].entries[-1]:
kwargs[key] = np.vstack([r.subreports[i].entries[-1][key] for r in reports])
else:
kwargs[key] = None
merged.subreports[i].update(step=None,
model=None,
tloss=None,
vloss=None,
**kwargs)
return merged
@staticmethod
def shutdown():
import _tkinter as tk
tk.quit()
def update(self, step, cost, tdata, vdata):
tloss,tZ,tY,tI = _calc_performance_stats(cost,tdata)
vloss,vZ,vY,vI = _calc_performance_stats(cost,vdata) if vdata is not None else (None,None,None,None)
assert tY.shape[1] % tloss.size == 0
Ydim = tY.shape[1] // tloss.size
for i in range(len(self.sample_ids)):
model_i = copy.deepcopy(cost.model)
sm.sync()
model_i.slice_inst(i)
sm.sync()
# Slice the trainable weights
self.subreports[i].update(step,
model_i,
float(tloss[i]),
tZ[:,i*Ydim:(i+1)*Ydim],
tY[:,i*Ydim:(i+1)*Ydim],
tI,
float(vloss[i]) if vloss is not None else None,
vZ[:,i*Ydim:(i+1)*Ydim] if vloss is not None else None,
vY[:,i*Ydim:(i+1)*Ydim] if vloss is not None else None,
vI)
model_i = None
sm.sync()
gc.collect()
tauc = None
vauc = None
if Ydim == 1:
tauc = np.zeros(len(self.sample_ids))
if vloss is not None:
vauc = np.zeros(len(self.sample_ids))
for i in range(len(self.sample_ids)):
tauc[i] = calc_auc(tZ[:,i].ravel(), tY[:,i].ravel())
if vloss is not None:
vauc[i] = calc_auc(vZ[:,i].ravel(), vY[:,i].ravel())
return tloss,vloss,tauc,vauc
def dump(self, **kwargs):
for subrep in self.subreports:
subrep.dump(**kwargs)
'''
|
DeepBind-master
|
code/libs/deepity/deepity/report.py
|
# Copyright (c) 2015, Andrew Delong and Babak Alipanahi All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation and/or
# other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Author's note:
# This file was distributed as part of the Nature Biotechnology
# supplementary software release for DeepBind. Users of DeepBind
# are encouraged to instead use the latest source code and binaries
# for scoring sequences at
# http://tools.genes.toronto.edu/deepbind/
#
import os
import copy
import logging
import tempfile
import cPickle as pickle
import numpy as np
import numpy.random as npr
import smat as sm
from .util import tic,toc
from os.path import join,basename,splitext,exists
def _default_augmented(data):
return data
class datasource(object):
"""
A datasource provides sliced views into a dataset.
For example, it might be used like
>>> chunk = my_datasource[first:last]
>>> chunk.Y
array([[...]]) # array of training targets
A subclass may store the data itself in host memory,
in device memory, synthesized, or even paged from disk.
If the subclass items contain attribute "Y", it is assumed
to be be training targets, stored as an N x (M*numtargets) numpy
array where M is the dimensionality
"""
def __init__(self, input_attrs, output_attrs, extra_attrs=None):
self._input_attrs = input_attrs
self._output_attrs = output_attrs
self._extra_attrs = extra_attrs
self._data_attrs = input_attrs + output_attrs
self._all_attrs = input_attrs + output_attrs
if extra_attrs:
self._all_attrs = self._all_attrs + extra_attrs
self.__dict__.update({ name : None for name in self._data_attrs })
if not hasattr(self,"targetnames"):
self.targetnames = ["Target"]
self.augmented = _default_augmented
def input_attrs(self): return self._input_attrs
def output_attrs(self): return self._output_attrs
def data_attrs(self): return self._data_attrs
def input_data(self): return { key : getattr(self,key) for key in self._input_attrs }
def output_data(self): return { key : getattr(self,key) for key in self._output_attrs }
def data(self): return { key : getattr(self,key) for key in self._data_attrs }
def attrdim(self,attrname):
raise NotImplementedError("Subclass should implement attrdim().")
def open(self):
# Subclass should treat this function as a request to 'open'
# the database and get it ready for use.
raise NotImplementedError("Subclass should implement open().")
def __len__(self):
# Subclass should return the number of individual training examples.
raise NotImplementedError("Subclass should implement __len__.")
def __getitem__(self, indices):
# Subclass should return a datasource instance that contains one attribute for each input.
# If the object has an attribute "Y", then that will be used as targets during
# any training task.
raise NotImplementedError("Subclass should implement __getitem__.")
def dump_preprocessors(self, outdir, cols=None):
return
def shuffle(self):
raise NotImplementedError("Subclass did not implement shuffle.")
def asbatches(self, batchsize=256):
# Subclass should return a new object, where that object's __getitem__[i]
# returns minibatch #i, rather than an individual item.
# Needed for use with batch-based trainers, like SGD.
# If use_smat is True, then the resulting batches should be
# converted to an smat.sarray intance, rather than numpy.ndarrays.
raise NotImplementedError("Subclass did not implement asbatches.")
def astargets(self, targetnames):
# For multi-task learning, this
raise NotImplementedError("Subclass did not implement astargets.")
def split(self, index=0, nsplit=1):
# Returns two datasources, A and B, split in a way
# that is useful for k-fold cross validation (k = nsplit+1).
# Suppose we had 10 samples:
# 0,1,2,3,4,5,6,7,8,9
# then split() produces
# A = 0,1,2,3,4
# B = 5,6,7,8,9
# whereas split(1) produces the reverse
# A = 5,6,7,8,9
# B = 0,1,2,3,4
# and, similarly, split(1,3) produces an approximate
# 3-way split
# A = 0,1,2,6,7,8,9
# B = 3,4,5
# Split A is always the larger of the two splits.
assert index <= nsplit
if nsplit > 0:
size = len(self)
at = [int(x) for x in np.linspace(0, size, nsplit+1+1)]
rindex = nsplit-index
sliceB = slice(at[rindex],at[rindex+1])
sliceA1 = slice(at[0],at[rindex])
sliceA2 = slice(at[rindex+1],at[-1])
#print sliceB, sliceA1, sliceA2
#splitsize = size // (nsplit+1)
#sliceA1 = slice(0,(nsplit-index)*splitsize)
#sliceA2 = slice((nsplit-index+1)*splitsize,size)
#sliceB = slice(sliceA1.stop,sliceA2.start)
return self._split(sliceA1,sliceA2,sliceB)
return self,None
def _split(self, sliceA1, sliceA2, sliceB):
# Subclass should implement the rest of split()
raise NotImplementedError("Subclass did not implement split.")
######################################################################
class resident_datasource(datasource):
"""
A datasource that can be stored completely in host memory.
That means it is straight-forward to support arbitrary
slicing, or loading/saving, of the dataset.
"""
def __init__(self, input_attrs, output_attrs, extra_attrs=None, join=None):
super(resident_datasource,self).__init__(input_attrs, output_attrs, extra_attrs)
self.join = join
def attrdim(self,attrname):
attr = getattr(self,attrname)
if isinstance(attr,np.ndarray):
dim = attr.shape[1] if attr.ndim > 1 else 1
elif isinstance(attr,list):
dim = 1
else:
raise NotImplementedError("Cannot determine dimension of datasource attribute %s" %attrname)
if attrname in self._output_attrs:
assert dim % self.ntask() == 0
dim /= self.ntask()
return dim
def __len__(self):
return len(self.X)
def __getitem__(self, i):
newsrc = copy.copy(self)
for name in newsrc._all_attrs:
oldattr = getattr(newsrc, name)
if isinstance(oldattr, np.ndarray):
newval = oldattr[i,:]
setattr(newsrc, name, newval) # Replace newsrc.X with newsrc.X[i]
elif isinstance(oldattr, list):
if isinstance(i,slice):
newval = oldattr[i]
else:
newval = [oldattr[x] for x in i]
setattr(newsrc, name, newval)
return newsrc
def shuffle(self, perm=None):
if perm is None:
perm = npr.permutation(len(self))
for name in self._all_attrs:
attr = getattr(self, name)
if isinstance(attr,np.ndarray):
attr[:] = attr[perm] # Permute the rows
elif isinstance(attr,list):
setattr(self, name, [attr[i] for i in perm])
else:
raise NotImplementedError("Unrecognized attribute type %s for attribute %s" % (type(attr), name))
def _split(self, sliceA1, sliceA2, sliceB):
# For A, we must vertically stack the A1 and A2 portions of each attribute
A = copy.copy(self)
for name in A._all_attrs:
oldattr = getattr(A,name)
if isinstance(oldattr,np.ndarray):
newval = np.vstack((oldattr[sliceA1,:],oldattr[sliceA2,:]))
setattr(A,name,newval) # Replace A.X with vstack(A.X[A1],A.X[A2])
elif isinstance(oldattr,list):
newval = oldattr[sliceA1] + oldattr[sliceA2]
setattr(A,name,newval) # Replace A.X with A.X[A1]+A.X[A2]
else:
raise NotImplementedError("Unrecognized attribute type %s for attribute %s" % (type(oldattr), name))
# For B, we can just directly return contiguous sliceB
B = self[sliceB]
return A,B
def astargets(self, targetnames):
# Returns a *shallow* copy of the datasource, where the original targets
# are now swapped out for some new, derived targets. This is used
# during hyperparameter search, when there are several models being
# trained in parallel, each on an arbitrary column slice of the original
# matrix of targets Y.
# Create a shallow copy, and replace the OUTPUT attribute with our new arrangement of columns
# First, compute the number of targets we currently have, and the number of columns for each target
newsrc = copy.copy(self)
ntarget = len(self.targetnames)
if ntarget == 0:
return newsrc
assert self.Y.shape[1] % ntarget == 0, "Number of target columns was not divisible by number of targets!"
targetsize = self.Y.shape[1] // ntarget
# Then, compute a list of column indices that will replicate/slice the columns of the current targets
targetidx = [self.targetnames.index(name) for name in targetnames]
cols = np.repeat(targetidx, targetsize)*targetsize # If targetidx=[0,1,3,4] and targetsize=3 this gives [0,0,0,3,3,3,9,9,9,12,12,12]
cols += np.tile(np.arange(targetsize),len(targetnames)) # ... which then gets turned into [0,1,2,3,4,5,9,10,11,12,13,14]
# Create a shallow copy where the
newsrc.targetnames = targetnames
if hasattr(newsrc,"targets"):
newsrc.targets = self.targets[:,cols].copy()
if hasattr(newsrc,"Ymask"):
newsrc.Ymask = self.Ymask[:,cols].copy()
newsrc.Y = self.Y[:,cols].copy()
return newsrc
def convert_to_sarray(self):
# Upload the data to a GPU device
for name in self._data_attrs:
oldattr = getattr(self,name)
setattr(self,name,sm.asarray(oldattr))
def asbatches(self, batchsize=64, reshuffle=False):
# By default, create a bunch of tiny resident_datasource instances,
# and upload each to the GPU as we go.
n = len(self)
assert n > 0
nbatch = (n + batchsize - 1) // batchsize
batches = []
for i in range(nbatch):
idx = np.arange(i*batchsize,min(n,(i+1)*batchsize))
batch = self[idx]
batch.convert_to_sarray()
batches.append(batch)
return shuffled_repeat_iter(batches, reshuffle)
def close(self):
#for attr in self._all_attrs:
# delattr(self,attr)
return
# Return a wrapper around our list of batches.
# The wrapper will keep serving batches forever,
# cycling through the list, and shuffling the order
# each time it starts a new pass.
class shuffled_repeat_iter(object):
"""
Repeated traversal over a list of items, where the order
is re-shuffled for each pass through the items.
"""
def __init__(self, items, reshuffle):
self._items = items
self._reshuffle = reshuffle
self._order = np.arange(len(self._items))
self._index = len(items)
def __len__(self): return len(self._items)
def __getitem__(self,i): return self._items[i]
def __iter__(self): return self._items.__iter__()
def shuffle(self):
np.random.shuffle(self._order)
def curr(self):
if self._index == len(self._items):
if self._reshuffle:
np.random.shuffle(self._order)
self._index = 0
return self._items[self._order[self._index]]
def next(self):
item = self.curr()
self._index += 1
return item
##############################################
def make_predictions(model,datasrc):
if isinstance(datasrc,datasource):
datasrc = datasrc.asbatches(128)
results = {}
for batch in datasrc:
args = batch.input_data()
result = model.eval(**args)
for key,val in result.iteritems():
if not key in results:
results[key] = []
results[key].append(result[key].asnumpy())
for key,val in results.iteritems():
results[key] = np.vstack(results[key])
return results
def count_errors(model,datasrc):
# If model.ninst > datasrc.ntask, then that means multiple models
# were trained on the original data, so we need to replicate the task.
# For each task, we generate model.ninst/data.ntask copies
if isinstance(datasrc,datasource):
datasrc = datasrc.asbatches(128)
Z = make_predictions(model,datasrc)["Z"]
Y = np.vstack([sm.asnumpy(batch.Y) for batch in datasrc])
error_counts = []
for i in range(model.ninst):
s = slice(i*Z.shape[1]//model.ninst,(i+1)*Z.shape[1]//model.ninst)
count = np.sum(np.argmax(Z[:,s],axis=1) != np.argmax(Y[:,s],axis=1))
error_counts.append(count)
error_counts = np.asarray(error_counts)
return error_counts
|
DeepBind-master
|
code/libs/deepity/deepity/data.py
|
# Copyright (c) 2015, Andrew Delong and Babak Alipanahi All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation and/or
# other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Author's note:
# This file was distributed as part of the Nature Biotechnology
# supplementary software release for DeepBind. Users of DeepBind
# are encouraged to instead use the latest source code and binaries
# for scoring sequences at
# http://tools.genes.toronto.edu/deepbind/
#
# DO NOT IMPORT THIS MODULE
# It is meant to be spawned by report.py as a separate process,
# in order to avoid problems using matplotlib from within child
# processes of the multiprocessing module
# (crashing on exit; instability in subsequent child processes)
import os
import os.path
import sys
import copy
import glob
import re
import numpy as np
import argparse
import cPickle
import tape2logo
sys.path.append("libs/smat/py")
sys.path.append("libs/deepity")
sys.path.append("libs/kangaroo")
import deepity
import kangaroo
from PIL import Image
from PIL import ImageDraw
from PIL import ImageFont
import time
import matplotlib
matplotlib.rcParams.update({'font.size': 9,
'font.family': 'sans serif',
'text.usetex' : False,
'figure.max_num_figures' : 100})
if (not os.environ.has_key("DISPLAY")) and (not os.environ.has_key("HOMEDRIVE")):
matplotlib.use("Agg")
import matplotlib.pyplot as plt
from matplotlib.ticker import NullFormatter
from matplotlib import colors as colors
from matplotlib import cm
from matplotlib.figure import Figure
gridimg_pal_RedBlue = matplotlib.colors.LinearSegmentedColormap('RedBlue', {
'red': ((0.00, 0.0, 0.0),
(0.50, 1.0, 1.0),
(1.00, 1.0, 1.0)),
'green': ((0.00, 0.0, 0.0),
(0.50, 1.0, 1.0),
(1.00, 0.0, 0.0)),
'blue': ((0.00, 1.0, 1.0),
(0.50, 1.0, 1.0),
(1.00, 0.0, 0.0)),
},gamma =1.0)(np.arange(256))
gridimg_pal = np.asarray(gridimg_pal_RedBlue[:,:3]*255, dtype=np.uint8)
gridimg_pal_Red = matplotlib.colors.LinearSegmentedColormap('Red', {
'red': ((0.00, 1.0, 1.0),
(1.00, 1.0, 1.0)),
'green': ((0.00, 1.0, 1.0),
(1.00, 0.0, 0.0)),
'blue': ((0.00, 1.0, 1.0),
(1.00, 0.0, 0.0)),
},gamma =1.0)(np.arange(256))
gridimg_pal_positive = np.asarray(gridimg_pal_Red[:,:3]*255, dtype=np.uint8)
_image_grid_font = ImageFont.truetype(os.path.abspath(os.path.dirname(__file__))+"/arial.ttf", 9)
#_image_grid_font = ImageFont.load_default()
import scipy
import scipy.misc
import scipy.stats
import warnings
#warnings.simplefilter('error', UserWarning)
def calc_auc(z,y, want_curve = False):
assert len(z) == len(y)
ymin = y.min()
ymax = y.max()
lo = (0.02-0) / (1.0 - 0.0) * (ymax-ymin) + ymin
hi = (0.10-0) / (1.0 - 0.0) * (ymax-ymin) + ymin
mlo = y<=lo
mhi = y>=hi
y[mlo] = 0
y[mhi] = 1
y[np.logical_and(mlo,mhi)] = np.nan
m = ~np.isnan(y)
y = y[m]
z = z[m]
order = np.argsort(z,axis=0)[::-1].ravel() # Sort by decreasing order of prediction strength
z = z[order]
y = y[order]
npos = np.count_nonzero(y) # Total number of positives.
nneg = len(y)-npos # Total number of negatives.
if nneg == 0 or npos == 0:
return (1,None) if want_curve else 1
n = len(y)
fprate = np.zeros((n+1,1))
tprate = np.zeros((n+1,1))
ntpos,nfpos = 0.,0.
for i,yi in enumerate(y):
if yi: ntpos += 1
else: nfpos += 1
tprate[i+1] = ntpos/npos
fprate[i+1] = nfpos/nneg
auc = np.trapz(tprate,fprate,axis=0)
if want_curve:
curve = np.hstack([fprate,tprate])
return auc,curve
return auc
def makepath(dir):
"""
Makes a complete path if it does not exist already.
Does not remove any existing files.
Fixes periodic failure of os.makedirs on Windows.
"""
if os.path.exists(dir):
return dir
retries = 8
while retries >= 0:
try:
time.sleep(0.001)
os.makedirs(dir)
retries = -1
except Exception, e:
if retries == 0:
raise
else:
retries -= 1
return dir
#####################################################################
class filter_images(object):
def __init__(self,F,per_image_scale=False,symmetric_range=True):
assert len(F.shape) == 3 # (size_y,size_x,num_filters)
# Get information about shape and range of filter elements
self.vmean = F.reshape((F.shape[0],-1)).mean(axis=1).reshape((-1,1,1))
self.vmin = F.reshape((F.shape[0],-1)).min(axis=1).reshape((-1,1,1))
self.vmax = F.reshape((F.shape[0],-1)).max(axis=1).reshape((-1,1,1))
if symmetric_range:
self.vmax = np.maximum(abs(self.vmin),abs(self.vmax))
self.vmin = -self.vmax
self.vranges = [(F[i,:,:].min(), F[i,:,:].max()) for i in range(F.shape[0])]
# Convert filters to images
self.raw = F
I = F.copy()
if per_image_scale:
I -= self.vmin
I *= 1./(self.vmax-self.vmin)
else:
I -= self.vmin.min()
I *= 1./(self.vmax.max()-self.vmin.min())
I = np.maximum(0,I)
I = np.minimum(1,I)
I *= 255
I = np.uint8(I)
self.images = I
def __len__(self): return self.images.shape[0]
def __getitem__(self,i): return self.images[i,:,:]
def __iter__(self): return [self.images[i,:,:] for i in range(len(self))].__iter__()
def zoom(self, factor):
self.images = np.repeat(self.images,factor,1)
self.images = np.repeat(self.images,factor,2)
def zoom_smooth(self, factor):
I = self.images
Z = np.zeros((I.shape[0],I.shape[1]*factor,I.shape[2]*factor), dtype=I.dtype)
for i in range(len(I)):
img = Image.fromarray(I[i])
img = img.resize((int(img.size[0]*factor),int(img.size[1]*factor)), Image.ANTIALIAS)
Z[i,:,:] = np.array(img)
self.images = Z
def L2RGB(I,cmap):
I = scipy.misc.toimage(I, pal=cmap).convert("RGBA")
return np.array(I)
def addborder(I, color=0):
I = np.vstack([color*np.ones_like(I[:1,:,:]),
I,
color*np.ones_like(I[:1,:,:])])
I = np.hstack([color*np.ones_like(I[:,:1,:]),
I,
color*np.ones_like(I[:,:1,:])])
return I
def image_grid(fimgs, maxwd = 6000, maxht = 5000, cmap=None, fade=False, positive=False):
I = fimgs.images
max_vmax = fimgs.vmax.max()
min_vmin = fimgs.vmin.min()
if cmap is None:
cmap = np.repeat(np.arange(256).reshape((-1,1)),3)
n,fht,fwd = I.shape[:3] # n = number of features
if fwd > maxwd or fht > maxht:
print "image larger than maximum size allowed"
return None
is_logo = (len(I.shape) == 4)
#if not is_logo:
fwd += 2 # border
fht += 2 # border
idwd = 20
decwd = 12
txtwd = 48
wd = idwd+decwd+fwd+txtwd
ht = fht
maxrows = min(int(maxht-1)//(ht+1), n) # How many images can stack on top of each other? (-1 / +3 because of 1 pixel border and 1 pixel cell padding)
maxcols = min(int(maxwd-1)//(wd+1), (n+maxrows-1)//maxrows)
# Start from a blank white image
G = np.ones(((ht+1)*maxrows-1,(wd+1)*maxcols-1,4),dtype=I.dtype)
if G.dtype == np.uint8:
G *= 255
# Copy each image into a spot in the grid
for i in range(n):
col = i // maxrows
row = i % maxrows
if col >= maxcols:
break
x0 = col*(wd+1)
y0 = row*(ht+1)
if is_logo:
F = I[i,:,:,:].copy()
else:
F = L2RGB(I[i,:,:], cmap)
F = addborder(F)
rmin,rmax = fimgs.vranges[i]
mid = ht//2
hi = float(max(0, rmax)) / abs(max_vmax)
lo = float(max(0,-rmin)) / abs(min_vmin) if not positive else 0
#if positive:
# F[1:-1,1:-1] = 255-F[1:-1,1:-1]
if fade and hi <= 0.1 and lo <= 0.1:
F = 192 + F//4 # Fade out anything that's extremely weak, so that user's attention is drawn to the other filters.
hi = int((mid-1) * hi + 0.5)
lo = int((mid-1) * lo + 0.5)
img = np.hstack([255*np.ones((ht,idwd,4),np.uint8),
F,
255*np.ones((ht,decwd+txtwd,4),np.uint8)])
# Draw a little vertical bar thingy to visually indicate magnitude of range
# relative to other filters
img[mid-hi:mid, idwd+fwd+3:idwd+fwd+decwd-3,:] = np.asarray([255,0,0,255]).reshape((1,1,4))
img[mid+1:mid+1+lo, idwd+fwd+3:idwd+fwd+decwd-3,:] = np.asarray([0,0,255,255]).reshape((1,1,4))
#img[mid,idwd+fwd+2:idwd+fwd+decwd-2,:] *= (1-max(float(rmax) / abs(max_vmax),float(-rmin) / abs(min_vmin)))**0.8
img = Image.fromarray(img) # convert to Image so that we can use ImageDraw
draw = ImageDraw.Draw(img)
draw.text((0,2),"%3d"%i,(200,200,200),font=_image_grid_font)
if rmax != rmin and not positive:
draw.text((idwd+decwd+F.shape[1]+0, 2),"%+.3f"%rmax,0,font=_image_grid_font)
draw.text((idwd+decwd+F.shape[1]+2,13),"%+.3f"%rmin,0,font=_image_grid_font)
else:
draw.text((idwd+decwd+F.shape[1]+2, 2),"%+.3f"%rmax,0,font=_image_grid_font)
img = np.array(img) # convert back to numpy
G[y0:y0+ht,x0:x0+wd,:] = img
return G
def fimgs2logos(fimgs, finalheight, finalletterwidth):
filters = fimgs.raw
nfilter,_,fsize = filters.shape # n = number of filters
logos = 255*np.ones((nfilter,finalheight,fsize*finalletterwidth,4), np.uint8)
limgs = copy.deepcopy(fimgs)
limgs.images = logos
for k in range(nfilter):
logos[k,:,:,:] = tape2logo.tape2logo(filters[k,:,:], finalheight, finalletterwidth, 5)
return limgs
def reverse_complement_weights(W):
W = W[:,:,::-1]
W = W[:,[3,2,1,0],:]
return W
dpi = 80.0
########################################################
def unpack_model(pklfile, args):
outdir = os.path.dirname(pklfile)
with open(pklfile) as f:
model = cPickle.load(f)
weightnodes = {}
def collect_filters(path,obj):
if hasattr(obj,"getfilters"):
F = obj.getfilters()
if F is not None:
weightnodes[path] = F
model.visit(collect_filters)
if len(weightnodes) == 0:
return
zoom = args.zoom
for name,weights in weightnodes.iteritems():
name = "model"+name.replace("[","(").replace("]",")")
is_conv = (".conv_" in name and weights.shape[-1] > 1) # convnet filters treated differently.
# First, generate
if is_conv:
# Save colourized filters
fimgs = filter_images(weights, per_image_scale=True)
fimgs.zoom(max(1,12//fimgs.images.shape[1]))
if args.pub:
fimgs.zoom_smooth(12*zoom)
#fimgs.zoom_smooth(0.5)
else:
fimgs.zoom_smooth(4*zoom)
fimgs.zoom_smooth(0.5)
#fimgs.zoom(max(1,24//fimgs.images.shape[1]))
scipy.misc.imsave(outdir+"/"+name+".color.png",image_grid(fimgs, cmap=gridimg_pal, fade=True))
# Save black and white filters
if args.greyscale:
fimgs = filter_images(weights, per_image_scale=True)
if args.pub:
fimgs.zoom(max(1,48//fimgs.images.shape[1]))
else:
fimgs.zoom(max(1,24//fimgs.images.shape[1]))
scipy.misc.imsave(outdir+"/"+name+".grey.png",image_grid(fimgs, fade=True))
logoheight, letterwd = 41, 6
weights -= (np.sort(weights, axis=1)[:,1:2,:] + np.sort(weights, axis=1)[:,2:3,:])/2
#weights -= np.sort(weights, axis=1)[:,1:2,:] # Subtract off the second-smallest value in each column
#weights -= weights.min(axis=1).reshape((weights.shape[0],1,weights.shape[2])); logoheight = 24
logoheight = int(round(zoom*logoheight))
letterwd = int(round(zoom*letterwd))
fwdlogo = fimgs2logos(filter_images(weights, per_image_scale=True), logoheight, letterwd)
#revlogo = fimgs2logos(filter_images(reverse_complement_weights(weights), per_image_scale=True), logoheight, letterwd)
fwdlogo = image_grid(fwdlogo, fade=True)
#revlogo = image_grid(revlogo, fade=True)
fwdtitle = Image.fromarray(255*np.ones((20,fwdlogo.shape[1],3),np.uint8)); ImageDraw.Draw(fwdtitle).text((20,2),"actual",(0,0,0),font=_image_grid_font)
#revtitle = Image.fromarray(255*np.ones((20,revlogo.shape[1],3),np.uint8)); ImageDraw.Draw(revtitle).text((20,2),"reverse complement",(0,0,0),font=_image_grid_font)
scipy.misc.imsave(outdir+"/"+name+".logo.png", fwdlogo)
#scipy.misc.imsave(outdir+"/"+name+".logo.png", np.hstack([np.vstack([np.array(fwdtitle), fwdlogo]), np.vstack([np.array(revtitle), revlogo])]))
else:
# Save colourized weight maps
fimgs = filter_images(weights, per_image_scale=False)
fimgs.zoom(max(1,12//fimgs.images.shape[1]))
scipy.misc.imsave(outdir+"/"+name+".png",image_grid(fimgs, cmap=gridimg_pal))
def save_predict_plot(args, filename, targetname, y, z):
fig = plt.figure(figsize=(300/dpi,300/dpi),dpi=dpi,facecolor='w',edgecolor='b',frameon=False)
ax = fig.add_axes([0.14,0.14,.74,.74])
ybar = fig.add_axes([0.89, 0.14, 0.11, 0.74])
keep = ~np.isnan(y)
y = y[keep]
z = z[keep]
lo = min(y.min(),z.min())
hi = max(y.max(),z.max())
aximg = ax.hist2d(y,z,bins=200,range=[[lo-.05,hi+.05],[lo-.05,hi+.05]],cmap=cm.hot,cmin=1)[3]
ybar.hist(z, bins=50, orientation='horizontal', histtype='bar', cumulative=False, color=[0.0,0.0,1.0], range=[lo-0.05, hi+0.05], edgecolor="none")
ybar.set_ylim([lo-0.05, hi+0.05])
ybar.axis("off")
ax.set_title(targetname)
ax.set_xlabel("target")
ax.set_ylabel("prediction")
if args.pub:
filename = filename.rsplit(".")[0]+".pdf"
fig.savefig(filename,dpi=dpi)
del fig
plt.close()
def save_auc_plot(args, filename, targetname, y, z):
m = ~np.isnan(y)
y = y[m]
z = z[m]
if not (np.all(y>=0) and np.all(y<=1)):
return
auc,curve = calc_auc(z, y, want_curve=True)
if curve is None:
return
xval = curve[:,0]
yval = curve[:,1]
fig = plt.figure(figsize=(300/dpi,300/dpi),dpi=dpi,facecolor='w',edgecolor='b',frameon=False)
ax = fig.add_axes([0.18,0.1,.8,.8])
ax.plot(xval,yval,'-r')
ax.set_title(targetname)
ax.set_xlabel("false positive rate")
ax.set_ylabel("true positive rate")
if args.pub:
filename = filename.rsplit(".")[0]+".pdf"
fig.savefig(filename, dpi=dpi)
del fig
plt.close()
def unpack(path, args):
if path.endswith("model.pkl"):
unpack_model(path, args)
if path.endswith("predict.npz"):
unpack_predict(path, args)
def unpack_predict(npzfile, args):
outdir = os.path.dirname(npzfile)
groups = np.load(npzfile)['groups'][()]
targetname = np.load(npzfile)['targetname'][()]
# Dump the prediction/target scatterplots
for groupname, group in groups.iteritems():
y = group["Y"][:,0] # Just take the first column, assume single-dimensional output
z = group["Z"][:,0]
save_predict_plot(args, outdir+"/predict.scatter-%s.png"%(groupname), targetname, y, z)
save_auc_plot(args, outdir+"/predict.auc-%s.png"%(groupname), targetname, y, z)
args = argparse.ArgumentParser(description="Unpack a \"model.pkl\" and \"predict.npz\" and visualize their contents (filters, AUC curves, etc)")
args.add_argument("path", type=str, help="A report.npz file, or a directory to search.")
args.add_argument("-p,","--pub", action="store_true", help="Output publication-quality figures.")
args.add_argument("-g,","--greyscale", action="store_true", help="Output greyscale filters in addition to the red/blue color ones.")
args.add_argument("-z","--zoom", type=float, default=1, help="Zoom factor relative to default size; for generating print-quality bitmaps.")
args = args.parse_args()
if not os.path.exists(args.path):
quit("Cannot find file \"%s\"."%args.path)
if os.path.isdir(args.path):
for dirpath, dirnames, filenames in os.walk(args.path):
for filename in filenames:
unpack(os.path.join(dirpath, filename), args)
else:
unpack(args.path, args)
|
DeepBind-master
|
code/libs/deepity/deepity/dumpviz.py
|
# Copyright (c) 2015, Andrew Delong and Babak Alipanahi All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation and/or
# other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Author's note:
# This file was distributed as part of the Nature Biotechnology
# supplementary software release for DeepBind. Users of DeepBind
# are encouraged to instead use the latest source code and binaries
# for scoring sequences at
# http://tools.genes.toronto.edu/deepbind/
#
from __future__ import absolute_import, division
import time
import os
from . import LockBase, NotLocked, NotMyLock, LockTimeout, AlreadyLocked
class SQLiteLockFile(LockBase):
"Demonstrate SQL-based locking."
testdb = None
def __init__(self, path, threaded=True):
"""
>>> lock = SQLiteLockFile('somefile')
>>> lock = SQLiteLockFile('somefile', threaded=False)
"""
LockBase.__init__(self, path, threaded)
self.lock_file = unicode(self.lock_file)
self.unique_name = unicode(self.unique_name)
if SQLiteLockFile.testdb is None:
import tempfile
_fd, testdb = tempfile.mkstemp()
os.close(_fd)
os.unlink(testdb)
del _fd, tempfile
SQLiteLockFile.testdb = testdb
import sqlite3
self.connection = sqlite3.connect(SQLiteLockFile.testdb)
c = self.connection.cursor()
try:
c.execute("create table locks"
"("
" lock_file varchar(32),"
" unique_name varchar(32)"
")")
except sqlite3.OperationalError:
pass
else:
self.connection.commit()
import atexit
atexit.register(os.unlink, SQLiteLockFile.testdb)
def acquire(self, timeout=None):
end_time = time.time()
if timeout is not None and timeout > 0:
end_time += timeout
if timeout is None:
wait = 0.1
elif timeout <= 0:
wait = 0
else:
wait = timeout / 10
cursor = self.connection.cursor()
while True:
if not self.is_locked():
# Not locked. Try to lock it.
cursor.execute("insert into locks"
" (lock_file, unique_name)"
" values"
" (?, ?)",
(self.lock_file, self.unique_name))
self.connection.commit()
# Check to see if we are the only lock holder.
cursor.execute("select * from locks"
" where unique_name = ?",
(self.unique_name,))
rows = cursor.fetchall()
if len(rows) > 1:
# Nope. Someone else got there. Remove our lock.
cursor.execute("delete from locks"
" where unique_name = ?",
(self.unique_name,))
self.connection.commit()
else:
# Yup. We're done, so go home.
return
else:
# Check to see if we are the only lock holder.
cursor.execute("select * from locks"
" where unique_name = ?",
(self.unique_name,))
rows = cursor.fetchall()
if len(rows) == 1:
# We're the locker, so go home.
return
# Maybe we should wait a bit longer.
if timeout is not None and time.time() > end_time:
if timeout > 0:
# No more waiting.
raise LockTimeout
else:
# Someone else has the lock and we are impatient..
raise AlreadyLocked
# Well, okay. We'll give it a bit longer.
time.sleep(wait)
def release(self):
if not self.is_locked():
raise NotLocked
if not self.i_am_locking():
raise NotMyLock((self._who_is_locking(), self.unique_name))
cursor = self.connection.cursor()
cursor.execute("delete from locks"
" where unique_name = ?",
(self.unique_name,))
self.connection.commit()
def _who_is_locking(self):
cursor = self.connection.cursor()
cursor.execute("select unique_name from locks"
" where lock_file = ?",
(self.lock_file,))
return cursor.fetchone()[0]
def is_locked(self):
cursor = self.connection.cursor()
cursor.execute("select * from locks"
" where lock_file = ?",
(self.lock_file,))
rows = cursor.fetchall()
return not not rows
def i_am_locking(self):
cursor = self.connection.cursor()
cursor.execute("select * from locks"
" where lock_file = ?"
" and unique_name = ?",
(self.lock_file, self.unique_name))
return not not cursor.fetchall()
def break_lock(self):
cursor = self.connection.cursor()
cursor.execute("delete from locks"
" where lock_file = ?",
(self.lock_file,))
self.connection.commit()
|
DeepBind-master
|
code/libs/deepity/deepity/_lockfile/sqlitelockfile.py
|
# Copyright (c) 2015, Andrew Delong and Babak Alipanahi All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation and/or
# other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
# ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Author's note:
# This file was distributed as part of the Nature Biotechnology
# supplementary software release for DeepBind. Users of DeepBind
# are encouraged to instead use the latest source code and binaries
# for scoring sequences at
# http://tools.genes.toronto.edu/deepbind/
#
"""
lockfile.py - Platform-independent advisory file locks.
Requires Python 2.5 unless you apply 2.4.diff
Locking is done on a per-thread basis instead of a per-process basis.
Usage:
>>> lock = LockFile('somefile')
>>> try:
... lock.acquire()
... except AlreadyLocked:
... print 'somefile', 'is locked already.'
... except LockFailed:
... print 'somefile', 'can\\'t be locked.'
... else:
... print 'got lock'
got lock
>>> print lock.is_locked()
True
>>> lock.release()
>>> lock = LockFile('somefile')
>>> print lock.is_locked()
False
>>> with lock:
... print lock.is_locked()
True
>>> print lock.is_locked()
False
>>> lock = LockFile('somefile')
>>> # It is okay to lock twice from the same thread...
>>> with lock:
... lock.acquire()
...
>>> # Though no counter is kept, so you can't unlock multiple times...
>>> print lock.is_locked()
False
Exceptions:
Error - base class for other exceptions
LockError - base class for all locking exceptions
AlreadyLocked - Another thread or process already holds the lock
LockFailed - Lock failed for some other reason
UnlockError - base class for all unlocking exceptions
AlreadyUnlocked - File was not locked.
NotMyLock - File was locked but not by the current thread/process
"""
import sys
import socket
import os
import threading
import time
import urllib
import warnings
# Work with PEP8 and non-PEP8 versions of threading module.
if not hasattr(threading, "current_thread"):
threading.current_thread = threading.currentThread
if not hasattr(threading.Thread, "get_name"):
threading.Thread.get_name = threading.Thread.getName
__all__ = ['Error', 'LockError', 'LockTimeout', 'AlreadyLocked',
'LockFailed', 'UnlockError', 'NotLocked', 'NotMyLock',
'LinkLockFile', 'MkdirLockFile', 'SQLiteLockFile',
'LockBase']
class Error(Exception):
"""
Base class for other exceptions.
>>> try:
... raise Error
... except Exception:
... pass
"""
pass
class LockError(Error):
"""
Base class for error arising from attempts to acquire the lock.
>>> try:
... raise LockError
... except Error:
... pass
"""
pass
class LockTimeout(LockError):
"""Raised when lock creation fails within a user-defined period of time.
>>> try:
... raise LockTimeout
... except LockError:
... pass
"""
pass
class AlreadyLocked(LockError):
"""Some other thread/process is locking the file.
>>> try:
... raise AlreadyLocked
... except LockError:
... pass
"""
pass
class LockFailed(LockError):
"""Lock file creation failed for some other reason.
>>> try:
... raise LockFailed
... except LockError:
... pass
"""
pass
class UnlockError(Error):
"""
Base class for errors arising from attempts to release the lock.
>>> try:
... raise UnlockError
... except Error:
... pass
"""
pass
class NotLocked(UnlockError):
"""Raised when an attempt is made to unlock an unlocked file.
>>> try:
... raise NotLocked
... except UnlockError:
... pass
"""
pass
class NotMyLock(UnlockError):
"""Raised when an attempt is made to unlock a file someone else locked.
>>> try:
... raise NotMyLock
... except UnlockError:
... pass
"""
pass
class LockBase:
"""Base class for platform-specific lock classes."""
def __init__(self, path, threaded=True):
"""
>>> lock = LockBase('somefile')
>>> lock = LockBase('somefile', threaded=False)
"""
self.path = path
self.lock_file = os.path.abspath(path) + ".lock"
self.hostname = socket.gethostname()
self.pid = os.getpid()
if threaded:
t = threading.current_thread()
# Thread objects in Python 2.4 and earlier do not have ident
# attrs. Worm around that.
ident = getattr(t, "ident", hash(t))
self.tname = "-%x" % (ident & 0xffffffff)
else:
self.tname = ""
dirname = os.path.dirname(self.lock_file)
self.unique_name = os.path.join(dirname,
"%s%s.%s" % (self.hostname,
self.tname,
self.pid))
def acquire(self, timeout=None):
"""
Acquire the lock.
* If timeout is omitted (or None), wait forever trying to lock the
file.
* If timeout > 0, try to acquire the lock for that many seconds. If
the lock period expires and the file is still locked, raise
LockTimeout.
* If timeout <= 0, raise AlreadyLocked immediately if the file is
already locked.
"""
raise NotImplemented("implement in subclass")
def release(self):
"""
Release the lock.
If the file is not locked, raise NotLocked.
"""
raise NotImplemented("implement in subclass")
def is_locked(self):
"""
Tell whether or not the file is locked.
"""
raise NotImplemented("implement in subclass")
def i_am_locking(self):
"""
Return True if this object is locking the file.
"""
raise NotImplemented("implement in subclass")
def break_lock(self):
"""
Remove a lock. Useful if a locking thread failed to unlock.
"""
raise NotImplemented("implement in subclass")
def __enter__(self):
"""
Context manager support.
"""
self.acquire()
return self
def __exit__(self, *_exc):
"""
Context manager support.
"""
self.release()
def _fl_helper(cls, mod, *args, **kwds):
warnings.warn("Import from %s module instead of lockfile package" % mod,
DeprecationWarning, stacklevel=2)
# This is a bit funky, but it's only for awhile. The way the unit tests
# are constructed this function winds up as an unbound method, so it
# actually takes three args, not two. We want to toss out self.
if not isinstance(args[0], str):
# We are testing, avoid the first arg
args = args[1:]
if len(args) == 1 and not kwds:
kwds["threaded"] = True
return cls(*args, **kwds)
def LinkFileLock(*args, **kwds):
"""Factory function provided for backwards compatibility.
Do not use in new code. Instead, import LinkLockFile from the
lockfile.linklockfile module.
"""
import linklockfile
return _fl_helper(linklockfile.LinkLockFile, "lockfile.linklockfile",
*args, **kwds)
def MkdirFileLock(*args, **kwds):
"""Factory function provided for backwards compatibility.
Do not use in new code. Instead, import MkdirLockFile from the
lockfile.mkdirlockfile module.
"""
import mkdirlockfile
return _fl_helper(mkdirlockfile.MkdirLockFile, "lockfile.mkdirlockfile",
*args, **kwds)
def SQLiteFileLock(*args, **kwds):
"""Factory function provided for backwards compatibility.
Do not use in new code. Instead, import SQLiteLockFile from the
lockfile.mkdirlockfile module.
"""
import sqlitelockfile
return _fl_helper(sqlitelockfile.SQLiteLockFile, "lockfile.sqlitelockfile",
*args, **kwds)
if hasattr(os, "link"):
import linklockfile as _llf
LockFile = _llf.LinkLockFile
else:
import mkdirlockfile as _mlf
LockFile = _mlf.MkdirLockFile
FileLock = LockFile
|
DeepBind-master
|
code/libs/deepity/deepity/_lockfile/__init__.py
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.