python_code
stringlengths 0
1.02M
| repo_name
stringlengths 9
48
| file_path
stringlengths 5
114
|
---|---|---|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evaluation library."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl import flags
from absl import logging
from compare_gan import datasets
from compare_gan import eval_utils
from compare_gan import utils
import gin
import numpy as np
from six.moves import range
import tensorflow as tf
import tensorflow_hub as hub
FLAGS = flags.FLAGS
# Special value returned when a fake image generated by a GAN has NaNs.
NAN_DETECTED = 31337.0
@gin.configurable("eval_z", blacklist=["shape", "name"])
def z_generator(shape, distribution_fn=tf.random.uniform,
minval=-1.0, maxval=1.0, stddev=1.0, name=None):
"""Random noise distributions as TF op.
Args:
shape: A 1-D integer Tensor or Python array.
distribution_fn: Function that create a Tensor. If the function has any
of the arguments 'minval', 'maxval' or 'stddev' these are passed to it.
minval: The lower bound on the range of random values to generate.
maxval: The upper bound on the range of random values to generate.
stddev: The standard deviation of a normal distribution.
name: A name for the operation.
Returns:
Tensor with the given shape and dtype tf.float32.
"""
return utils.call_with_accepted_args(
distribution_fn, shape=shape, minval=minval, maxval=maxval,
stddev=stddev, name=name)
def _update_bn_accumulators(sess, generated, num_accu_examples):
"""Returns True if the accumlators for batch norm were updated.
Args:
sess: `tf.Session` object. Checkpoint should already be loaded.
generated: Output tensor of the generator.
num_accu_examples: How many examples should be used to update accumulators.
Returns:
True if there were accumlators.
"""
# Create update ops for batch statistic updates for each batch normalization
# with accumlators.
update_accu_switches = [v for v in tf.global_variables()
if "accu/update_accus" in v.name]
logging.info("update_accu_switches: %s", update_accu_switches)
if not update_accu_switches:
return False
sess.run([tf.assign(v, 1) for v in update_accu_switches])
batch_size = generated.shape[0].value
num_batches = num_accu_examples // batch_size
for i in range(num_batches):
if i % 500 == 0:
logging.info("Updating BN accumulators %d/%d steps.", i, num_batches)
sess.run(generated)
sess.run([tf.assign(v, 0) for v in update_accu_switches])
logging.info("Done updating BN accumulators.")
return True
def evaluate_tfhub_module(module_spec, eval_tasks, use_tpu,
num_averaging_runs):
"""Evaluate model at given checkpoint_path.
Args:
module_spec: string, path to a TF hub module.
eval_tasks: List of objects that inherit from EvalTask.
use_tpu: Whether to use TPUs.
num_averaging_runs: Determines how many times each metric is computed.
Returns:
Dict[Text, float] with all the computed results.
Raises:
NanFoundError: If generator output has any NaNs.
"""
# Make sure that the same latent variables are used for each evaluation.
np.random.seed(42)
dataset = datasets.get_dataset()
num_test_examples = dataset.eval_test_samples
batch_size = 64
num_batches = int(np.ceil(num_test_examples / batch_size))
# Load and update the generator.
result_dict = {}
fake_dsets = []
with tf.Graph().as_default():
tf.set_random_seed(42)
with tf.Session() as sess:
if use_tpu:
sess.run(tf.contrib.tpu.initialize_system())
def sample_from_generator():
"""Create graph for sampling images."""
generator = hub.Module(
module_spec,
name="gen_module",
tags={"gen", "bs{}".format(batch_size)})
logging.info("Generator inputs: %s", generator.get_input_info_dict())
z_dim = generator.get_input_info_dict()["z"].get_shape()[1].value
z = z_generator(shape=[batch_size, z_dim])
if "labels" in generator.get_input_info_dict():
# Conditional GAN.
assert dataset.num_classes
labels = tf.random.uniform(
[batch_size], maxval=dataset.num_classes, dtype=tf.int32)
inputs = dict(z=z, labels=labels)
else:
# Unconditional GAN.
assert "labels" not in generator.get_input_info_dict()
inputs = dict(z=z)
return generator(inputs=inputs, as_dict=True)["generated"]
if use_tpu:
generated = tf.contrib.tpu.rewrite(sample_from_generator)
else:
generated = sample_from_generator()
tf.global_variables_initializer().run()
if _update_bn_accumulators(sess, generated, num_accu_examples=204800):
saver = tf.train.Saver()
save_path = os.path.join(module_spec, "model-with-accu.ckpt")
checkpoint_path = saver.save(
sess,
save_path=save_path)
logging.info("Exported generator with accumulated batch stats to "
"%s.", checkpoint_path)
if not eval_tasks:
logging.error("Task list is empty, returning.")
return
for i in range(num_averaging_runs):
logging.info("Generating fake data set %d/%d.", i+1, num_averaging_runs)
fake_dset = eval_utils.EvalDataSample(
eval_utils.sample_fake_dataset(sess, generated, num_batches))
fake_dsets.append(fake_dset)
logging.info("Computing inception features for generated data %d/%d.",
i+1, num_averaging_runs)
activations, logits = eval_utils.inception_transform_np(
fake_dset.images, batch_size)
fake_dset.set_inception_features(
activations=activations, logits=logits)
fake_dset.set_num_examples(num_test_examples)
if i != 0:
# Free up some memory by releasing additional fake data samples.
# For ImageNet128 50k images are ~9 GiB. This will blow up metrics
# (such as fractal dimension) if num_averaging_runs > 1.
fake_dset.discard_images()
real_dset = eval_utils.EvalDataSample(
eval_utils.get_real_images(
dataset=dataset, num_examples=num_test_examples))
logging.info("Getting Inception features for real images.")
real_dset.activations, _ = eval_utils.inception_transform_np(
real_dset.images, batch_size)
real_dset.set_num_examples(num_test_examples)
# Run all the tasks and update the result dictionary with the task statistics.
result_dict = {}
for task in eval_tasks:
task_results_dicts = [
task.run_after_session(fake_dset, real_dset)
for fake_dset in fake_dsets
]
# Average the score for each key.
result_statistics = {}
for key in task_results_dicts[0].keys():
scores_for_key = np.array([d[key] for d in task_results_dicts])
mean, std = np.mean(scores_for_key), np.std(scores_for_key)
scores_as_string = "_".join([str(x) for x in scores_for_key])
result_statistics[key + "_mean"] = mean
result_statistics[key + "_std"] = std
result_statistics[key + "_list"] = scores_as_string
logging.info("Computed results for task %s: %s", task, result_statistics)
result_dict.update(result_statistics)
return result_dict
|
compare_gan-master
|
compare_gan/eval_gan_lib.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Binary to train and evaluate one GAN configuration."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
# pylint: disable=unused-import
from absl import app
from absl import flags
from absl import logging
from compare_gan import datasets
from compare_gan import runner_lib
# Import GAN types so that they can be used in Gin configs without module names.
from compare_gan.gans.modular_gan import ModularGAN
from compare_gan.gans.s3gan import S3GAN
from compare_gan.gans.ssgan import SSGAN
# Required import to configure core TF classes and functions.
import gin
import gin.tf.external_configurables
import tensorflow as tf
FLAGS = flags.FLAGS
flags.DEFINE_string("model_dir", None, "Where to store files.")
flags.DEFINE_string(
"schedule", "train",
"Schedule to run. Options: train, continuous_eval.")
flags.DEFINE_multi_string(
"gin_config", [],
"List of paths to the config files.")
flags.DEFINE_multi_string(
"gin_bindings", [],
"Newline separated list of Gin parameter bindings.")
flags.DEFINE_string(
"score_filename", "scores.csv",
"Name of the CSV file with evaluation results model_dir.")
flags.DEFINE_integer(
"num_eval_averaging_runs", 3,
"How many times to average FID and IS")
flags.DEFINE_integer(
"eval_every_steps", 5000,
"Evaluate only checkpoints whose step is divisible by this integer")
flags.DEFINE_bool("use_tpu", None, "Whether running on TPU or not.")
def _get_cluster():
if not FLAGS.use_tpu: # pylint: disable=unreachable
return None
if "TPU_NAME" not in os.environ:
raise ValueError("Could not find a TPU. Set TPU_NAME.")
return tf.contrib.cluster_resolver.TPUClusterResolver(
tpu=os.environ["TPU_NAME"],
zone=os.environ.get("TPU_ZONE", None))
@gin.configurable("run_config")
def _get_run_config(tf_random_seed=None,
single_core=False,
iterations_per_loop=1000,
save_checkpoints_steps=5000,
keep_checkpoint_max=1000):
"""Return `RunConfig` for TPUs."""
tpu_config = tf.contrib.tpu.TPUConfig(
num_shards=1 if single_core else None, # None = all cores.
iterations_per_loop=iterations_per_loop)
return tf.contrib.tpu.RunConfig(
model_dir=FLAGS.model_dir,
tf_random_seed=tf_random_seed,
save_checkpoints_steps=save_checkpoints_steps,
keep_checkpoint_max=keep_checkpoint_max,
cluster=_get_cluster(),
tpu_config=tpu_config)
def _get_task_manager():
"""Returns a TaskManager for this experiment."""
score_file = os.path.join(FLAGS.model_dir, FLAGS.score_filename)
return runner_lib.TaskManagerWithCsvResults(
model_dir=FLAGS.model_dir, score_file=score_file)
def main(unused_argv):
logging.info("Gin config: %s\nGin bindings: %s",
FLAGS.gin_config, FLAGS.gin_bindings)
gin.parse_config_files_and_bindings(FLAGS.gin_config, FLAGS.gin_bindings)
if FLAGS.use_tpu is None:
FLAGS.use_tpu = bool(os.environ.get("TPU_NAME", ""))
if FLAGS.use_tpu:
logging.info("Found TPU %s.", os.environ["TPU_NAME"])
run_config = _get_run_config()
task_manager = _get_task_manager()
options = runner_lib.get_options_dict()
runner_lib.run_with_schedule(
schedule=FLAGS.schedule,
run_config=run_config,
task_manager=task_manager,
options=options,
use_tpu=FLAGS.use_tpu,
num_eval_averaging_runs=FLAGS.num_eval_averaging_runs,
eval_every_steps=FLAGS.eval_every_steps)
logging.info("I\"m done with my work, ciao!")
if __name__ == "__main__":
flags.mark_flag_as_required("model_dir")
app.run(main)
|
compare_gan-master
|
compare_gan/main.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Data-related utility functions.
Includes:
- A helper class to hold images and Inception features for evaluation.
- A method to load a dataset as NumPy array.
- Sample from the generator and return the data as a NumPy array.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl import logging
import numpy as np
from six.moves import range
import tensorflow as tf
import tensorflow_gan as tfgan
# Special value returned when fake image generated by GAN has nans.
NAN_DETECTED = 31337.0
INCEPTION_URL = "http://download.tensorflow.org/models/frozen_inception_v1_2015_12_05.tar.gz"
INCEPTION_FROZEN_GRAPH = "inceptionv1_for_inception_score.pb"
def get_inception_graph_def():
return tfgan.eval.get_graph_def_from_url_tarball( # pylint: disable=unreachable
url=INCEPTION_URL,
filename=INCEPTION_FROZEN_GRAPH,
tar_filename=os.path.basename(INCEPTION_URL))
class NanFoundError(Exception):
"""Exception thrown, when the Nans are present in the output."""
class EvalDataSample(object):
"""Helper class to hold images and Inception features for evaluation.
All properties are tensors. Images are in [0, 255].
"""
def __init__(self, images):
self.images = images
self.activations = None
self.logits = None
def discard_images(self):
logging.info("Deleting references to images: %s", self.images.shape)
del self.images
def set_inception_features(self, activations, logits):
self.activations = activations
self.logits = logits
def set_num_examples(self, num_examples):
if self.images is not None:
assert self.images.shape[0] >= num_examples
self.images = self.images[:num_examples]
if self.activations is not None:
assert self.activations.shape[0] >= num_examples
self.activations = self.activations[:num_examples]
if self.logits is not None:
assert self.logits.shape[0] >= num_examples
self.logits = self.logits[:num_examples]
def get_real_images(dataset,
num_examples,
split=None,
failure_on_insufficient_examples=True):
"""Get num_examples images from the given dataset/split.
Args:
dataset: `ImageDataset` object.
num_examples: Number of images to read.
split: Split of the dataset to use. If None will use the default split for
eval defined by the dataset.
failure_on_insufficient_examples: If True raise an exception if the
dataset/split does not images. Otherwise will log to error and return
fewer images.
Returns:
4-D NumPy array with images with values in [0, 256].
Raises:
ValueError: If the dataset/split does not of the number of requested number
requested images and `failure_on_insufficient_examples` is True.
"""
logging.info("Start loading real data.")
with tf.Graph().as_default():
ds = dataset.eval_input_fn(split=split)
# Get real images from the dataset. In the case of a 1-channel
# dataset (like MNIST) convert it to 3 channels.
next_batch = ds.make_one_shot_iterator().get_next()[0]
shape = [num_examples] + next_batch.shape.as_list()
is_single_channel = shape[-1] == 1
if is_single_channel:
shape[-1] = 3
real_images = np.empty(shape, dtype=np.float32)
with tf.Session() as sess:
for i in range(num_examples):
try:
b = sess.run(next_batch)
b *= 255.0
if is_single_channel:
b = np.tile(b, [1, 1, 3])
real_images[i] = b
except tf.errors.OutOfRangeError:
logging.error("Reached the end of dataset. Read: %d samples.", i)
break
if real_images.shape[0] != num_examples:
if failure_on_insufficient_examples:
raise ValueError("Not enough examples in the dataset %s: %d / %d" %
(dataset, real_images.shape[0], num_examples))
else:
logging.error("Not enough examples in the dataset %s: %d / %d", dataset,
real_images.shape[0], num_examples)
logging.info("Done loading real data.")
return real_images
def sample_fake_dataset(sess, generator, num_batches):
"""Returns a generated data set as a NumPy array."""
logging.info("Generating a fake data set.")
samples = []
for _ in range(num_batches):
x = sess.run(generator)
# If NaNs were generated, ignore this checkpoint and assign a very high
# FID score which we handle specially later.
if np.isnan(x).any():
logging.error("Detected NaN in fake_images! Returning NaN.")
raise NanFoundError("Detected NaN in fake images.")
samples.append(x)
fake_images = np.concatenate(samples, axis=0)
fake_images *= 255.0
# Convert 1-channel datasets (like MNIST) to 3 channels.
if fake_images.shape[3] == 1:
fake_images = np.tile(fake_images, [1, 1, 1, 3])
logging.info("Done sampling a generated data set.")
return fake_images
def inception_transform(inputs):
with tf.control_dependencies([
tf.assert_greater_equal(inputs, 0.0),
tf.assert_less_equal(inputs, 255.0)]):
inputs = tf.identity(inputs)
preprocessed_inputs = tf.map_fn(
fn=tfgan.eval.preprocess_image, elems=inputs, back_prop=False)
return tfgan.eval.run_inception(
preprocessed_inputs,
graph_def=get_inception_graph_def(),
output_tensor=["pool_3:0", "logits:0"])
def inception_transform_np(inputs, batch_size):
"""Computes the inception features and logits for a given NumPy array.
The inputs are first preprocessed to match the input shape required for
Inception.
Args:
inputs: NumPy array of shape [-1, H, W, 3].
batch_size: Batch size.
Returns:
A tuple of NumPy arrays with Inception features and logits for each input.
"""
with tf.Session(graph=tf.Graph()) as sess:
inputs_placeholder = tf.placeholder(
dtype=tf.float32, shape=[None] + list(inputs[0].shape))
features_and_logits = inception_transform(inputs_placeholder)
features = []
logits = []
num_batches = int(np.ceil(inputs.shape[0] / batch_size))
for i in range(num_batches):
input_batch = inputs[i * batch_size:(i + 1) * batch_size]
x = sess.run(
features_and_logits, feed_dict={inputs_placeholder: input_batch})
features.append(x[0])
logits.append(x[1])
features = np.vstack(features)
logits = np.vstack(logits)
return features, logits
|
compare_gan-master
|
compare_gan/eval_utils.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image Similarity Metrics in TensorFlow.
This file contains various image similarity metrics that can be
used for monitoring how various models learn to reconstruct images
or may be used directly as the final objective to be optimized.
How to use these metrics:
* MS-SSIM: For GANS, MS-SSIM can be used to detect mode collapse by looking at
the similarity between samples and comparing it with the similarity inside
the dataset. Often, this is done for class conditional models, where per
class samples are being compared. In the unconditional setting, it can be
done for datasets where the data has the same modality (
for example, CelebA). For more information, see the following papers:
* https://arxiv.org/abs/1610.09585
* https://arxiv.org/abs/1706.04987
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six.moves import range
from six.moves import zip
import tensorflow as tf
def verify_compatible_shapes(img1, img2):
"""Checks if two image tensors are compatible for metric computation.
This function checks if two sets of images have ranks at least 3, and if the
last three dimensions match.
Args:
img1: The first images tensor.
img2: The second images tensor.
Returns:
A tuple of the first tensor shape, the second tensor shape, and a list of
tf.Assert() implementing the checks.
Raises:
ValueError: when static shape check fails.
"""
shape1 = img1.get_shape().with_rank_at_least(3)
shape2 = img2.get_shape().with_rank_at_least(3)
shape1[-3:].assert_is_compatible_with(shape2[-3:])
if shape1.ndims is not None and shape2.ndims is not None:
for dim1, dim2 in zip(reversed(shape1[:-3]), reversed(shape2[:-3])):
if not (dim1 == 1 or dim2 == 1 or dim1.is_compatible_with(dim2)):
raise ValueError(
'Two images are not compatible: %s and %s' % (shape1, shape2))
# Now assign shape tensors.
shape1, shape2 = tf.shape_n([img1, img2])
checks = []
checks.append(tf.Assert(tf.greater_equal(tf.size(shape1), 3),
[shape1, shape2], summarize=10))
checks.append(tf.Assert(tf.reduce_all(tf.equal(shape1[-3:], shape2[-3:])),
[shape1, shape2], summarize=10))
return shape1, shape2, checks
_SSIM_K1 = 0.01
_SSIM_K2 = 0.03
def _ssim_helper(x, y, reducer, max_val, compensation=1.0):
r"""Helper function to SSIM.
SSIM estimates covariances with weighted sums, e.g., normalized Gaussian blur.
Like the unbiased covariance estimator has normalization factor of n-1 instead
of n, naive covariance estimations with weighted sums are biased estimators.
Suppose `reducer` is a weighted sum, then the mean estimators are
mu_x = \sum_i w_i x_i,
mu_y = \sum_i w_i y_i,
where w_i's are the weighted-sum weights, and covariance estimator is
cov_xy = \sum_i w_i (x_i - mu_x) (y_i - mu_y)
with assumption \sum_i w_i = 1. This covariance estimator is biased, since
E cov_xy = (1 - \sum_i w_i ** 2) Cov(X, Y).
For SSIM measure with unbiased covariance estimators, pass as `compensation`
argument (1 - \sum_i w_i ** 2).
Arguments:
x: first set of images.
y: first set of images.
reducer: Function that computes 'local' averages from set of images.
For non-covolutional version, this is usually tf.reduce_mean(x, [1, 2]),
and for convolutional version, this is usually tf.nn.avg_pool or
tf.nn.conv2d with weighted-sum kernel.
max_val: The dynamic range (i.e., the difference between the maximum
possible allowed value and the minimum allowed value).
compensation: Compensation factor. See above.
Returns:
A pair containing the luminance measure and the contrast-structure measure.
"""
c1 = (_SSIM_K1 * max_val) ** 2
c2 = (_SSIM_K2 * max_val) ** 2
# SSIM luminance measure is
# (2 * mu_x * mu_y + c1) / (mu_x ** 2 + mu_y ** 2 + c1).
mean0 = reducer(x)
mean1 = reducer(y)
num0 = mean0 * mean1 * 2.0
den0 = tf.square(mean0) + tf.square(mean1)
luminance = (num0 + c1) / (den0 + c1)
# SSIM contrast-structure measure is
# (2 * cov_xy + c2) / (cov_xx + cov_yy + c2).
# Note that `reducer` is a weighted sum with weight w_k, \sum_i w_i = 1, then
# cov_xy = \sum_i w_i (x_i - mu_x) (y_i - mu_y)
# = \sum_i w_i x_i y_i - (\sum_i w_i x_i) (\sum_j w_j y_j).
num1 = reducer(x * y) * 2.0
den1 = reducer(tf.square(x) + tf.square(y))
c2 *= compensation
cs = (num1 - num0 + c2) / (den1 - den0 + c2)
# SSIM score is the product of the luminance and contrast-structure measures.
return luminance, cs
def f_special_gauss(size, sigma):
"""Function to mimic the 'fspecial' gaussian MATLAB function."""
size = tf.convert_to_tensor(size, tf.int32)
sigma = tf.convert_to_tensor(sigma)
coords = tf.cast(tf.range(size), sigma.dtype)
coords -= tf.cast(size - 1, sigma.dtype) / 2.0
g = tf.square(coords)
g *= -0.5 / tf.square(sigma)
g = tf.reshape(g, shape=[1, -1]) + tf.reshape(g, shape=[-1, 1])
g = tf.reshape(g, shape=[1, -1]) # For tf.nn.softmax().
g = tf.nn.softmax(g)
return tf.reshape(g, shape=[size, size, 1, 1])
def _ssim_index_per_channel(
img1, img2, filter_size, filter_width, max_val=255.0):
"""Computes SSIM index between img1 and img2 per color channel.
This function matches the standard SSIM implementation found at:
https://ece.uwaterloo.ca/~z70wang/research/ssim/ssim_index.m
Details:
- To reproduce a 11x11 Gaussian filter of width 1.5 is used.
- k1 = 0.01, k2 = 0.03 as in the original paper.
Args:
img1: First RGB image batch.
img2: Second RGB image batch.
filter_size: An integer, the filter size of the Gaussian kernel used.
filter_width: A float, the filter width of the Gaussian kernel used.
max_val: the dynamic range of the images (i.e., the difference between the
maximum the and minimum allowed values).
Returns:
A pair of tensors containing batch-wise and channel-wise SSIM and
contrast-structure measure. The shape is [..., channels].
"""
filter_size = tf.constant(filter_size, dtype=tf.int32)
filter_sigma = tf.constant(filter_width, dtype=img1.dtype)
shape1, shape2 = tf.shape_n([img1, img2])
filter_size = tf.reduce_min(
tf.concat([tf.expand_dims(filter_size, axis=0),
shape1[-3:-1],
shape2[-3:-1]],
axis=0))
kernel = f_special_gauss(filter_size, filter_sigma)
kernel = tf.tile(kernel, multiples=[1, 1, shape1[-1], 1])
# The correct compensation factor is `1.0 - tf.reduce_sum(tf.square(kernel))`,
# but to match MATLAB implementation of MS-SSIM, we use 1.0 instead.
compensation = 1.0
def reducer(x): # pylint: disable=invalid-name
shape = tf.shape(x)
x = tf.reshape(x, shape=tf.concat([[-1], shape[-3:]], 0))
y = tf.nn.depthwise_conv2d(x, kernel, strides=[1] * 4, padding='VALID')
return tf.reshape(y, tf.concat([shape[:-3], tf.shape(y)[1:]], 0))
luminance, cs = _ssim_helper(img1, img2, reducer, max_val, compensation)
# Average over the second and the third from the last: height, width.
axes = tf.constant([-3, -2], dtype=tf.int32)
ssim = tf.reduce_mean(luminance * cs, axes)
cs = tf.reduce_mean(cs, axes)
return ssim, cs
# This must be a tuple (not a list) because tuples are immutable and we don't
# want these to accidentally change.
_MSSSIM_WEIGHTS = (.0448, 0.2856, 0.3001, 0.2363, 0.1333)
def multiscale_ssim(
img1, img2, filter_size=11, filter_width=1.5, max_val=255.0):
"""Computes MS-SSIM with power factors from Wang paper."""
return _multiscale_ssim_helper(img1, img2,
filter_size=filter_size,
filter_width=filter_width,
max_val=max_val,
power_factors=_MSSSIM_WEIGHTS)
def multiscale_ssim_unweighted(
img1, img2, filter_size=11, filter_width=1.5, max_val=255.0):
"""Computes unweighted MS-SSIM with power factors from Zhao paper."""
return _multiscale_ssim_helper(img1, img2,
filter_size=filter_size,
filter_width=filter_width,
max_val=max_val,
power_factors=[1, 1, 1, 1, 1])
def _multiscale_ssim_helper(
img1, img2, filter_size, filter_width, power_factors, max_val=255.0):
"""Computes the MS-SSIM between img1 and img2.
This function assumes that `img1` and `img2` are image batches, i.e. the last
three dimensions are [row, col, channels].
Arguments:
img1: First RGB image batch.
img2: Second RGB image batch. Must have the same rank as img1.
filter_size: An integer, the filter size of the Gaussian kernel used.
filter_width: A float, the filter width of the Gaussian kernel used.
power_factors: iterable of weightings for each of the scales. The number of
scales used is the length of the list. Index 0 is the unscaled
resolution's weighting and each increasing scale corresponds to the image
being downsampled by 2.
max_val: the dynamic range of the images (i.e., the difference between the
maximum the and minimum allowed values).
Returns:
A tensor containing batch-wise MS-SSIM measure. MS-SSIM has range [0, 1].
The shape is broadcast(img1.shape[:-3], img2.shape[:-3]).
"""
# Shape checking.
shape1 = img1.get_shape().with_rank_at_least(3)
shape2 = img2.get_shape().with_rank_at_least(3)
shape1[-3:].merge_with(shape2[-3:])
with tf.name_scope(None, 'MS-SSIM', [img1, img2]):
shape1, shape2, checks = verify_compatible_shapes(img1, img2)
with tf.control_dependencies(checks):
img1 = tf.identity(img1)
imgs = [img1, img2]
shapes = [shape1, shape2]
# img1 and img2 are assumed to be a (multi-dimensional) batch of
# 3-dimensional images (height, width, channels). `heads` contain the batch
# dimensions, and `tails` contain the image dimensions.
heads = [s[:-3] for s in shapes]
tails = [s[-3:] for s in shapes]
divisor = [1, 2, 2, 1]
divisor_tensor = tf.constant(divisor[1:], dtype=tf.int32)
def do_pad(images, remainder): # pylint: disable=invalid-name
padding = tf.expand_dims(remainder, -1)
padding = tf.pad(padding, [[1, 0], [1, 0]])
return [tf.pad(x, padding, mode='SYMMETRIC') for x in images]
mcs = []
for k in range(len(power_factors)):
with tf.name_scope(None, 'Scale%d' % k, imgs):
if k > 0:
# Avg pool takes rank 4 tensors. Flatten leading dimensions.
flat_imgs = [
tf.reshape(x, tf.concat([[-1], t], 0))
for x, t in zip(imgs, tails)
]
remainder = tails[0] % divisor_tensor
need_padding = tf.reduce_any(tf.not_equal(remainder, 0))
# pylint: disable=cell-var-from-loop
padded = tf.cond(need_padding,
lambda: do_pad(flat_imgs, remainder),
lambda: flat_imgs)
# pylint: enable=cell-var-from-loop
downscaled = [
tf.nn.avg_pool(
x, ksize=divisor, strides=divisor, padding='VALID')
for x in padded
]
tails = [x[1:] for x in tf.shape_n(downscaled)]
imgs = [
tf.reshape(x, tf.concat([h, t], 0))
for x, h, t in zip(downscaled, heads, tails)
]
# Overwrite previous ssim value since we only need the last one.
ssim, cs = _ssim_index_per_channel(
*imgs,
filter_size=filter_size, filter_width=filter_width,
max_val=max_val)
mcs.append(tf.nn.relu(cs))
# Remove the cs score for the last scale. In the MS-SSIM calculation,
# we use the l(p) at the highest scale. l(p) * cs(p) is ssim(p).
mcs.pop() # Remove the cs score for the last scale.
mcs_and_ssim = tf.stack(mcs + [tf.nn.relu(ssim)], axis=-1)
# Take weighted geometric mean across the scale axis.
ms_ssim = tf.reduce_prod(tf.pow(mcs_and_ssim, power_factors), [-1])
ms_ssim = tf.reduce_mean(ms_ssim, [-1]) # Average over color channels.
return ms_ssim
|
compare_gan-master
|
compare_gan/metrics/image_similarity.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for the FID score."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from compare_gan.metrics import fid_score as fid_score_lib
import numpy as np
import tensorflow as tf
class FIDScoreTest(tf.test.TestCase):
def test_fid_computation(self):
real_data = np.ones((100, 2))
real_data[:50, 0] = 2
gen_data = np.ones((100, 2)) * 9
gen_data[50:, 0] = 2
# mean(real_data) = [1.5, 1]
# Cov(real_data) = [[ 0.2525, 0], [0, 0]]
# mean(gen_data) = [5.5, 9]
# Cov(gen_data) = [[12.37, 0], [0, 0]]
result = fid_score_lib.compute_fid_from_activations(real_data, gen_data)
self.assertNear(result, 89.091, 1e-4)
if __name__ == "__main__":
tf.test.main()
|
compare_gan-master
|
compare_gan/metrics/fid_score_test.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Precision and recall computation based on samples from two distributions.
Given a sample from the true and the fake distribution embedded in some feature
space (say, Inception), it computes the precision and recall via the algorithm
presented in "Assessing Generative Models via Precision and Recall",
Sajjadi et al. [https://arxiv.org/abs/1806.00035].
Finally, one can plot the resulting curves for different models.
Typical usage example:
import prd
prd_data_1 = prd.compute_prd_from_embedding(eval_feats_1, ref_feats_1)
prd_data_2 = prd.compute_prd_from_embedding(eval_feats_2, ref_feats_2)
prd.plot([prd_data_1, prd_data_2], ['GAN_1', 'GAN_2'])
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from matplotlib import pyplot as plt
import numpy as np
import sklearn.cluster
def compute_prd(eval_dist, ref_dist, num_angles=1001, epsilon=1e-10):
"""Computes the PRD curve for discrete distributions.
This function computes the PRD curve for the discrete distribution eval_dist
with respect to the reference distribution ref_dist. This implements the
algorithm in [arxiv.org/abs/1806.2281349]. The PRD will be computed for an
equiangular grid of num_angles values between [0, pi/2].
Args:
eval_dist: 1D NumPy array or list of floats with the probabilities of the
different states under the distribution to be evaluated.
ref_dist: 1D NumPy array or list of floats with the probabilities of the
different states under the reference distribution.
num_angles: Number of angles for which to compute PRD. Must be in [3, 1e6].
The default value is 1001.
epsilon: Angle for PRD computation in the edge cases 0 and pi/2. The PRD
will be computes for epsilon and pi/2-epsilon, respectively.
The default value is 1e-10.
Returns:
precision: NumPy array of shape [num_angles] with the precision for the
different ratios.
recall: NumPy array of shape [num_angles] with the recall for the different
ratios.
Raises:
ValueError: If not 0 < epsilon <= 0.1.
ValueError: If num_angles < 3.
"""
if not (epsilon > 0 and epsilon < 0.1):
raise ValueError('epsilon must be in (0, 0.1] but is %s.' % str(epsilon))
if not (num_angles >= 3 and num_angles <= 1e6):
raise ValueError('num_angles must be in [3, 1e6] but is %d.' % num_angles)
# Compute slopes for linearly spaced angles between [0, pi/2]
angles = np.linspace(epsilon, np.pi/2 - epsilon, num=num_angles)
slopes = np.tan(angles)
# Broadcast slopes so that second dimension will be states of the distribution
slopes_2d = np.expand_dims(slopes, 1)
# Broadcast distributions so that first dimension represents the angles
ref_dist_2d = np.expand_dims(ref_dist, 0)
eval_dist_2d = np.expand_dims(eval_dist, 0)
# Compute precision and recall for all angles in one step via broadcasting
precision = np.minimum(ref_dist_2d*slopes_2d, eval_dist_2d).sum(axis=1)
recall = precision / slopes
return precision, recall
def _cluster_into_bins(eval_data, ref_data, num_clusters):
"""Clusters the union of the data points and returns the cluster distribution.
Clusters the union of eval_data and ref_data into num_clusters using minibatch
k-means. Then, for each cluster, it computes the number of points from
eval_data and ref_data.
Args:
eval_data: NumPy array of data points from the distribution to be evaluated.
ref_data: NumPy array of data points from the reference distribution.
num_clusters: Number of cluster centers to fit.
Returns:
Two NumPy arrays, each of size num_clusters, where i-th entry represents the
number of points assigned to the i-th cluster.
"""
cluster_data = np.vstack([eval_data, ref_data])
kmeans = sklearn.cluster.MiniBatchKMeans(n_clusters=num_clusters, n_init=10)
labels = kmeans.fit(cluster_data).labels_
eval_labels = labels[:len(eval_data)]
ref_labels = labels[len(eval_data):]
eval_bins = np.histogram(eval_labels, bins=num_clusters,
range=[0, num_clusters], density=True)[0]
ref_bins = np.histogram(ref_labels, bins=num_clusters,
range=[0, num_clusters], density=True)[0]
return eval_bins, ref_bins
def compute_prd_from_embedding(eval_data, ref_data, num_clusters=20,
num_angles=1001, num_runs=10,
enforce_balance=True):
"""Computes PRD data from sample embeddings.
The points from both distributions are mixed and then clustered. This leads
to a pair of histograms of discrete distributions over the cluster centers
on which the PRD algorithm is executed.
The number of points in eval_data and ref_data must be equal since
unbalanced distributions bias the clustering towards the larger dataset. The
check can be disabled by setting the enforce_balance flag to False (not
recommended).
Args:
eval_data: NumPy array of data points from the distribution to be evaluated.
ref_data: NumPy array of data points from the reference distribution.
num_clusters: Number of cluster centers to fit. The default value is 20.
num_angles: Number of angles for which to compute PRD. Must be in [3, 1e6].
The default value is 1001.
num_runs: Number of independent runs over which to average the PRD data.
enforce_balance: If enabled, throws exception if eval_data and ref_data do
not have the same length. The default value is True.
Returns:
precision: NumPy array of shape [num_angles] with the precision for the
different ratios.
recall: NumPy array of shape [num_angles] with the recall for the different
ratios.
Raises:
ValueError: If len(eval_data) != len(ref_data) and enforce_balance is set to
True.
"""
if enforce_balance and len(eval_data) != len(ref_data):
raise ValueError(
'The number of points in eval_data %d is not equal to the number of '
'points in ref_data %d. To disable this exception, set enforce_balance '
'to False (not recommended).' % (len(eval_data), len(ref_data)))
eval_data = np.array(eval_data, dtype=np.float64)
ref_data = np.array(ref_data, dtype=np.float64)
precisions = []
recalls = []
for _ in range(num_runs):
eval_dist, ref_dist = _cluster_into_bins(eval_data, ref_data, num_clusters)
precision, recall = compute_prd(eval_dist, ref_dist, num_angles)
precisions.append(precision)
recalls.append(recall)
precision = np.mean(precisions, axis=0)
recall = np.mean(recalls, axis=0)
return precision, recall
def _prd_to_f_beta(precision, recall, beta=1, epsilon=1e-10):
"""Computes F_beta scores for the given precision/recall values.
The F_beta scores for all precision/recall pairs will be computed and
returned.
For precision p and recall r, the F_beta score is defined as:
F_beta = (1 + beta^2) * (p * r) / ((beta^2 * p) + r)
Args:
precision: 1D NumPy array of precision values in [0, 1].
recall: 1D NumPy array of precision values in [0, 1].
beta: Beta parameter. Must be positive. The default value is 1.
epsilon: Small constant to avoid numerical instability caused by division
by 0 when precision and recall are close to zero.
Returns:
NumPy array of same shape as precision and recall with the F_beta scores for
each pair of precision/recall.
Raises:
ValueError: If any value in precision or recall is outside of [0, 1].
ValueError: If beta is not positive.
"""
if not ((precision >= 0).all() and (precision <= 1).all()):
raise ValueError('All values in precision must be in [0, 1].')
if not ((recall >= 0).all() and (recall <= 1).all()):
raise ValueError('All values in recall must be in [0, 1].')
if beta <= 0:
raise ValueError('Given parameter beta %s must be positive.' % str(beta))
return (1 + beta**2) * (precision * recall) / (
(beta**2 * precision) + recall + epsilon)
def prd_to_max_f_beta_pair(precision, recall, beta=8):
"""Computes max. F_beta and max. F_{1/beta} for precision/recall pairs.
Computes the maximum F_beta and maximum F_{1/beta} score over all pairs of
precision/recall values. This is useful to compress a PRD plot into a single
pair of values which correlate with precision and recall.
For precision p and recall r, the F_beta score is defined as:
F_beta = (1 + beta^2) * (p * r) / ((beta^2 * p) + r)
Args:
precision: 1D NumPy array or list of precision values in [0, 1].
recall: 1D NumPy array or list of precision values in [0, 1].
beta: Beta parameter. Must be positive. The default value is 8.
Returns:
f_beta: Maximum F_beta score.
f_beta_inv: Maximum F_{1/beta} score.
Raises:
ValueError: If beta is not positive.
"""
if not ((precision >= 0).all() and (precision <= 1).all()):
raise ValueError('All values in precision must be in [0, 1].')
if not ((recall >= 0).all() and (recall <= 1).all()):
raise ValueError('All values in recall must be in [0, 1].')
if beta <= 0:
raise ValueError('Given parameter beta %s must be positive.' % str(beta))
f_beta = np.max(_prd_to_f_beta(precision, recall, beta))
f_beta_inv = np.max(_prd_to_f_beta(precision, recall, 1/beta))
return f_beta, f_beta_inv
def plot(precision_recall_pairs, labels=None, out_path=None,
legend_loc='lower left', dpi=150):
"""Plots precision recall curves for distributions.
Creates the PRD plot for the given data and stores the plot in a given path.
Args:
precision_recall_pairs: List of prd_data to plot. Each item in this list is
a 2D array of precision and recall values for the
same number of ratios.
labels: Optional list of labels of same length as list_of_prd_data. The
default value is None.
out_path: Output path for the resulting plot. If None, the plot will be
opened via plt.show(). The default value is None.
legend_loc: Location of the legend. The default value is 'lower left'.
dpi: Dots per inch (DPI) for the figure. The default value is 150.
Raises:
ValueError: If labels is a list of different length than list_of_prd_data.
"""
if labels is not None and len(labels) != len(precision_recall_pairs):
raise ValueError(
'Length of labels %d must be identical to length of '
'precision_recall_pairs %d.'
% (len(labels), len(precision_recall_pairs)))
fig = plt.figure(figsize=(3.5, 3.5), dpi=dpi)
plot_handle = fig.add_subplot(111)
plot_handle.tick_params(axis='both', which='major', labelsize=12)
for i in range(len(precision_recall_pairs)):
precision, recall = precision_recall_pairs[i]
label = labels[i] if labels is not None else None
plt.plot(recall, precision, label=label, alpha=0.5, linewidth=3)
if labels is not None:
plt.legend(loc=legend_loc)
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.xlabel('Recall', fontsize=12)
plt.ylabel('Precision', fontsize=12)
plt.tight_layout()
if out_path is None:
plt.show()
else:
plt.savefig(out_path, bbox_inches='tight', dpi=dpi)
plt.close()
|
compare_gan-master
|
compare_gan/metrics/prd_score.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing precision and recall computation on synthetic data."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
from compare_gan.metrics import prd_score as prd
import numpy as np
class PRDTest(unittest.TestCase):
def test_compute_prd_no_overlap(self):
eval_dist = [0, 1]
ref_dist = [1, 0]
result = np.ravel(prd.compute_prd(eval_dist, ref_dist))
np.testing.assert_almost_equal(result, 0)
def test_compute_prd_perfect_overlap(self):
eval_dist = [1, 0]
ref_dist = [1, 0]
result = prd.compute_prd(eval_dist, ref_dist, num_angles=11)
np.testing.assert_almost_equal([result[0][5], result[1][5]], [1, 1])
def test_compute_prd_low_precision_high_recall(self):
eval_dist = [0.5, 0.5]
ref_dist = [1, 0]
result = prd.compute_prd(eval_dist, ref_dist, num_angles=11)
np.testing.assert_almost_equal(result[0][5], 0.5)
np.testing.assert_almost_equal(result[1][5], 0.5)
np.testing.assert_almost_equal(result[0][10], 0.5)
np.testing.assert_almost_equal(result[1][1], 1)
def test_compute_prd_high_precision_low_recall(self):
eval_dist = [1, 0]
ref_dist = [0.5, 0.5]
result = prd.compute_prd(eval_dist, ref_dist, num_angles=11)
np.testing.assert_almost_equal([result[0][5], result[1][5]], [0.5, 0.5])
np.testing.assert_almost_equal(result[1][1], 0.5)
np.testing.assert_almost_equal(result[0][10], 1)
def test_compute_prd_bad_epsilon(self):
with self.assertRaises(ValueError):
prd.compute_prd([1], [1], epsilon=0)
with self.assertRaises(ValueError):
prd.compute_prd([1], [1], epsilon=1)
with self.assertRaises(ValueError):
prd.compute_prd([1], [1], epsilon=-1)
def test_compute_prd_bad_num_angles(self):
with self.assertRaises(ValueError):
prd.compute_prd([1], [1], num_angles=0)
with self.assertRaises(ValueError):
prd.compute_prd([1], [1], num_angles=1)
with self.assertRaises(ValueError):
prd.compute_prd([1], [1], num_angles=-1)
with self.assertRaises(ValueError):
prd.compute_prd([1], [1], num_angles=1e6+1)
with self.assertRaises(ValueError):
prd.compute_prd([1], [1], num_angles=2.5)
def test__cluster_into_bins(self):
eval_data = np.zeros([5, 4])
ref_data = np.ones([5, 4])
result = prd._cluster_into_bins(eval_data, ref_data, 3)
self.assertEqual(len(result), 2)
self.assertEqual(len(result[0]), 3)
self.assertEqual(len(result[1]), 3)
np.testing.assert_almost_equal(sum(result[0]), 1)
np.testing.assert_almost_equal(sum(result[1]), 1)
def test_compute_prd_from_embedding_mismatch_num_samples_should_fail(self):
# Mismatch in number of samples with enforce_balance set to True
with self.assertRaises(ValueError):
prd.compute_prd_from_embedding(
np.array([[0], [0], [1]]), np.array([[0], [1]]), num_clusters=2,
enforce_balance=True)
def test_compute_prd_from_embedding_mismatch_num_samples_should_work(self):
# Mismatch in number of samples with enforce_balance set to False
try:
prd.compute_prd_from_embedding(
np.array([[0], [0], [1]]), np.array([[0], [1]]), num_clusters=2,
enforce_balance=False)
except ValueError:
self.fail(
'compute_prd_from_embedding should not raise a ValueError when '
'enforce_balance is set to False.')
def test__prd_to_f_beta_correct_computation(self):
precision = np.array([1, 1, 0, 0, 0.5, 1, 0.5])
recall = np.array([1, 0, 1, 0, 0.5, 0.5, 1])
expected = np.array([1, 0, 0, 0, 0.5, 2/3, 2/3])
with np.errstate(invalid='ignore'):
result = prd._prd_to_f_beta(precision, recall, beta=1)
np.testing.assert_almost_equal(result, expected)
expected = np.array([1, 0, 0, 0, 0.5, 5/9, 5/6])
with np.errstate(invalid='ignore'):
result = prd._prd_to_f_beta(precision, recall, beta=2)
np.testing.assert_almost_equal(result, expected)
expected = np.array([1, 0, 0, 0, 0.5, 5/6, 5/9])
with np.errstate(invalid='ignore'):
result = prd._prd_to_f_beta(precision, recall, beta=1/2)
np.testing.assert_almost_equal(result, expected)
result = prd._prd_to_f_beta(np.array([]), np.array([]), beta=1)
expected = np.array([])
np.testing.assert_almost_equal(result, expected)
def test__prd_to_f_beta_bad_beta(self):
with self.assertRaises(ValueError):
prd._prd_to_f_beta(np.ones(1), np.ones(1), beta=0)
with self.assertRaises(ValueError):
prd._prd_to_f_beta(np.ones(1), np.ones(1), beta=-3)
def test__prd_to_f_beta_bad_precision_or_recall(self):
with self.assertRaises(ValueError):
prd._prd_to_f_beta(-np.ones(1), np.ones(1), beta=1)
with self.assertRaises(ValueError):
prd._prd_to_f_beta(np.ones(1), -np.ones(1), beta=1)
def test_plot_not_enough_labels(self):
with self.assertRaises(ValueError):
prd.plot(np.zeros([3, 2, 5]), labels=['1', '2'])
def test_plot_too_many_labels(self):
with self.assertRaises(ValueError):
prd.plot(np.zeros([1, 2, 5]), labels=['1', '2', '3'])
if __name__ == '__main__':
unittest.main()
|
compare_gan-master
|
compare_gan/metrics/prd_score_test.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of the fractal dimension metric."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from compare_gan.metrics import eval_task
import numpy as np
import scipy.spatial
class FractalDimensionTask(eval_task.EvalTask):
"""Fractal dimension metric."""
_LABEL = "fractal_dimension"
def run_after_session(self, options, eval_data_fake, eval_data_real=None):
print(eval_data_fake)
score = compute_fractal_dimension(eval_data_fake.images)
return {self._LABEL: score}
def compute_fractal_dimension(fake_images,
num_fd_seeds=100,
n_bins=1000,
scale=0.1):
"""Compute Fractal Dimension of fake_images.
Args:
fake_images: an np array of datapoints, the dimensionality and scaling of
images can be arbitrary
num_fd_seeds: number of random centers from which fractal dimension
computation is performed
n_bins: number of bins to split the range of distance values into
scale: the scale of the y interval in the log-log plot for which we apply a
linear regression fit
Returns:
fractal dimension of the dataset.
"""
assert len(fake_images.shape) >= 2
assert fake_images.shape[0] >= num_fd_seeds
num_images = fake_images.shape[0]
# In order to apply scipy function we need to flatten the number of dimensions
# to 2
fake_images = np.reshape(fake_images, (num_images, -1))
fake_images_subset = fake_images[np.random.randint(
num_images, size=num_fd_seeds)]
distances = scipy.spatial.distance.cdist(fake_images,
fake_images_subset).flatten()
min_distance = np.min(distances[np.nonzero(distances)])
max_distance = np.max(distances)
buckets = min_distance * (
(max_distance / min_distance)**np.linspace(0, 1, n_bins))
# Create a table where first column corresponds to distances r
# and second column corresponds to number of points N(r) that lie
# within distance r from the random seeds
fd_result = np.zeros((n_bins - 1, 2))
fd_result[:, 0] = buckets[1:]
fd_result[:, 1] = np.sum(np.less.outer(distances, buckets[1:]), axis=0)
# We compute the slope of the log-log plot at the middle y value
# which is stored in y_val; the linear regression fit is computed on
# the part of the plot that corresponds to an interval around y_val
# whose size is 2*scale*(total width of the y axis)
max_y = np.log(num_images * num_fd_seeds)
min_y = np.log(num_fd_seeds)
x = np.log(fd_result[:, 0])
y = np.log(fd_result[:, 1])
y_width = max_y - min_y
y_val = min_y + 0.5 * y_width
start = np.argmax(y > y_val - scale * y_width)
end = np.argmax(y > y_val + scale * y_width)
slope = np.linalg.lstsq(
a=np.vstack([x[start:end], np.ones(end - start)]).transpose(),
b=y[start:end].reshape(end - start, 1))[0][0][0]
return slope
|
compare_gan-master
|
compare_gan/metrics/fractal_dimension.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# coding=utf-8
|
compare_gan-master
|
compare_gan/metrics/__init__.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of the MS-SSIM metric.
The details on the application of this metric to GANs can be found in
Section 5.3 of "Many Paths to Equilibrium: GANs Do Not Need to Decrease a
Divergence At Every Step", Fedus*, Rosca* et al.
[https://arxiv.org/abs/1710.08446].
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import logging
from compare_gan.metrics import eval_task
from compare_gan.metrics import image_similarity
import numpy as np
from six.moves import range
import tensorflow as tf
class MultiscaleSSIMTask(eval_task.EvalTask):
"""Task that computes MSSIMScore for generated images."""
_LABEL = "ms_ssim"
def run_after_session(self, options, eval_data_fake, eval_data_real=None):
del options, eval_data_real
score = _compute_multiscale_ssim_score(eval_data_fake.images)
return {self._LABEL: score}
def _compute_multiscale_ssim_score(fake_images):
"""Compute ms-ssim score ."""
batch_size = 64
with tf.Graph().as_default():
fake_images_batch = tf.train.shuffle_batch(
[tf.convert_to_tensor(fake_images, dtype=tf.float32)],
capacity=16*batch_size,
min_after_dequeue=8*batch_size,
num_threads=4,
enqueue_many=True,
batch_size=batch_size)
# Following section 5.3 of https://arxiv.org/pdf/1710.08446.pdf, we only
# evaluate 5 batches of the generated images.
eval_fn = compute_msssim(
generated_images=fake_images_batch, num_batches=5)
with tf.train.MonitoredTrainingSession() as sess:
score = eval_fn(sess)
return score
def compute_msssim(generated_images, num_batches):
"""Get a fn returning the ms ssim score for generated images.
Args:
generated_images: TF Tensor of shape [batch_size, dim, dim, 3] which
evaluates to a batch of generated images. Should be in range [0..255].
num_batches: Number of batches to consider.
Returns:
eval_fn: a function which takes a session as an argument and returns the
average ms ssim score among all the possible image pairs from
generated_images.
"""
batch_size = int(generated_images.get_shape()[0])
assert batch_size > 1
# Generate all possible image pairs from input set of imgs.
pair1 = tf.tile(generated_images, [batch_size, 1, 1, 1])
pair2 = tf.reshape(
tf.tile(generated_images, [1, batch_size, 1, 1]), [
batch_size * batch_size, generated_images.shape[1],
generated_images.shape[2], generated_images.shape[3]
])
# Compute the mean of the scores (but ignore the 'identical' images - which
# should get 1.0 from the MultiscaleSSIM)
score = tf.reduce_sum(image_similarity.multiscale_ssim(pair1, pair2))
score -= batch_size
score = tf.div(score, batch_size * batch_size - batch_size)
# Define a function which wraps some session.run calls to generate a large
# number of images and compute multiscale ssim metric on them.
def _eval_fn(session):
"""Function which wraps session.run calls to compute given metric."""
logging.info("Computing MS-SSIM score...")
scores = []
for _ in range(num_batches):
scores.append(session.run(score))
result = np.mean(scores)
return result
return _eval_fn
|
compare_gan-master
|
compare_gan/metrics/ms_ssim_score.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of the Jacobian Conditioning metrics.
The details can be found in "Is Generator Conditioning Causally Related to
GAN Performance?", Odena et al. [https://arxiv.org/abs/1802.08768].
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from compare_gan.metrics import eval_task
import numpy as np
import tensorflow as tf
class GeneratorConditionNumberTask(eval_task.EvalTask):
"""Computes the generator condition number.
Computes the condition number for metric Tensor of the generator Jacobian.
This condition number is computed locally for each z sample in a minibatch.
Returns the mean log condition number and standard deviation across the
minibatch.
Follows the methods in https://arxiv.org/abs/1802.08768.
"""
_CONDITION_NUMBER_COUNT = "log_condition_number_count"
_CONDITION_NUMBER_MEAN = "log_condition_number_mean"
_CONDITION_NUMBER_STD = "log_condition_number_std"
def metric_list(self):
return frozenset([
self._CONDITION_NUMBER_COUNT, self._CONDITION_NUMBER_MEAN,
self._CONDITION_NUMBER_STD
])
def run_in_session(self, options, sess, gan, real_images):
del options, real_images
result_dict = {}
result = compute_generator_condition_number(sess, gan)
result_dict[self._CONDITION_NUMBER_COUNT] = len(result)
result_dict[self._CONDITION_NUMBER_MEAN] = np.mean(result)
result_dict[self._CONDITION_NUMBER_STD] = np.std(result)
return result_dict
def compute_generator_condition_number(sess, gan):
"""Computes the generator condition number.
Computes the Jacobian of the generator in session, then postprocesses to get
the condition number.
Args:
sess: tf.Session object.
gan: AbstractGAN object, that is already present in the current tf.Graph.
Returns:
A list of length gan.batch_size. Each element is the condition number
computed at a single z sample within a minibatch.
"""
shape = gan.fake_images.get_shape().as_list()
flat_generator_output = tf.reshape(
gan.fake_images, [gan.batch_size, np.prod(shape[1:])])
tf_jacobian = compute_jacobian(
xs=gan.z, fx=flat_generator_output)
z_sample = gan.z_generator(gan.batch_size, gan.z_dim)
np_jacobian = sess.run(tf_jacobian, feed_dict={gan.z: z_sample})
result_dict = analyze_jacobian(np_jacobian)
return result_dict["metric_tensor"]["log_condition_number"]
def compute_jacobian(xs, fx):
"""Computes df/dx matrix.
We assume x and fx are both batched, so the shape of the Jacobian is:
[fx.shape[0]] + fx.shape[1:] + xs.shape[1:]
This function computes the grads inside a TF loop so that we don't
end up storing many extra copies of the function we are taking the
Jacobian of.
Args:
xs: input tensor(s) of arbitrary shape.
fx: f(x) tensor of arbitrary shape.
Returns:
df/dx tensor of shape [fx.shape[0], fx.shape[1], xs.shape[1]].
"""
# Declares an iterator and tensor array loop variables for the gradients.
n = fx.get_shape().as_list()[1]
loop_vars = [tf.constant(0, tf.int32), tf.TensorArray(xs.dtype, n)]
def accumulator(j, result):
return (j + 1, result.write(j, tf.gradients(fx[:, j], xs)[0]))
# Iterates over all elements of the gradient and computes all partial
# derivatives.
_, df_dxs = tf.while_loop(lambda j, _: j < n, accumulator, loop_vars)
df_dx = df_dxs.stack()
df_dx = tf.transpose(df_dx, perm=[1, 0, 2])
return df_dx
def _analyze_metric_tensor(metric_tensor):
"""Analyzes a metric tensor.
Args:
metric_tensor: A numpy array of shape [batch, dim, dim]
Returns:
A dict containing spectral statstics.
"""
# eigenvalues will have shape [batch, dim].
eigenvalues, _ = np.linalg.eig(metric_tensor)
# Shape [batch,].
condition_number = np.linalg.cond(metric_tensor)
log_condition_number = np.log(condition_number)
(_, logdet) = np.linalg.slogdet(metric_tensor)
return {
"eigenvalues": eigenvalues,
"logdet": logdet,
"log_condition_number": log_condition_number
}
def analyze_jacobian(jacobian_array):
"""Computes eigenvalue statistics of the Jacobian.
Computes the eigenvalues and condition number of the metric tensor for the
Jacobian evaluated at each element of the batch and the mean metric tensor
across the batch.
Args:
jacobian_array: A numpy array holding the Jacobian.
Returns:
A dict of spectral statistics with two elements, one containing stats
for every metric tensor in the batch, another for the mean metric tensor.
"""
# Shape [batch, x_dim, fx_dim].
jacobian_transpose = np.transpose(jacobian_array, [0, 2, 1])
# Shape [batch, x_dim, x_dim].
metric_tensor = np.matmul(jacobian_transpose, jacobian_array)
mean_metric_tensor = np.mean(metric_tensor, 0)
# Reshapes to have a dummy batch dimension.
mean_metric_tensor = np.reshape(mean_metric_tensor,
(1,) + metric_tensor.shape[1:])
return {
"metric_tensor": _analyze_metric_tensor(metric_tensor),
"mean_metric_tensor": _analyze_metric_tensor(mean_metric_tensor)
}
|
compare_gan-master
|
compare_gan/metrics/jacobian_conditioning.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for the fractal dimension metric."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from compare_gan.metrics import fractal_dimension as fractal_dimension_lib
import numpy as np
import tensorflow as tf
class FractalDimensionTest(tf.test.TestCase):
def test_straight_line(self):
"""The fractal dimension of a 1D line must lie near 1.0."""
self.assertAllClose(
fractal_dimension_lib.compute_fractal_dimension(
np.random.uniform(size=(10000, 1))), 1.0, atol=0.05)
def test_square(self):
"""The fractal dimension of a 2D square must lie near 2.0."""
self.assertAllClose(
fractal_dimension_lib.compute_fractal_dimension(
np.random.uniform(size=(10000, 2))), 2.0, atol=0.1)
|
compare_gan-master
|
compare_gan/metrics/fractal_dimension_test.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implements GILBO score functions.
Details are available in "GILBO: One Metric to Measure Them All", Alemi and
Fisher [https://arxiv.org/abs/1802.04874].
Changelist:
(6 Feb 2019): Removed VAE.
(5 Jan 2019): The code is not supported in latest compare_gan due to the major
interface changes.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from compare_gan import datasets
from compare_gan.metrics import eval_task
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt # pylint: disable=g-import-not-at-top
import numpy as np
from pstar import plist
import scipy.misc
import six.moves.cPickle as pickle
import tensorflow as tf
import tensorflow_probability as tfp
layers = tf.layers
ds = tfp.distributions
class GILBOTask(eval_task.EvalTask):
"""Compute GILBO metric and related consistency metrics."""
def __init__(self, outdir, task_workdir, dataset_name):
self.outdir = outdir
self.task_workdir = task_workdir
self.dataset = dataset_name
def metric_list(self):
return frozenset([
"gilbo",
"gilbo_train_consistency",
"gilbo_eval_consistency",
"gilbo_self_consistency",
])
def run_in_session(self, options, sess, gan, eval_data_real):
del eval_data_real
result_dict = {}
if options.get("compute_gilbo", False):
(gilbo, gilbo_train_consistency,
gilbo_eval_consistency, gilbo_self_consistency) = train_gilbo(
gan, sess, self.outdir, self.task_workdir, self.dataset, options)
result_dict["gilbo"] = gilbo
result_dict["gilbo_train_consistency"] = gilbo_train_consistency
result_dict["gilbo_eval_consistency"] = gilbo_eval_consistency
result_dict["gilbo_self_consistency"] = gilbo_self_consistency
return result_dict
def _build_regressor(x, z_dim=64):
"""Make the GILBO regressor, which is based off of the GAN discriminator."""
net = tf.cast(x, tf.float32)
net = layers.conv2d(net, 64, 4, 2, activation=tf.nn.leaky_relu)
net = layers.conv2d(net, 128, 4, 2, activation=tf.nn.leaky_relu)
net = layers.flatten(net)
net = layers.dense(net, 1024, activation=tf.nn.leaky_relu)
net = layers.dense(net, 2 * z_dim)
# a and b correspond to the alpha beta parameters of the Beta distribution.
a, b = net[..., :z_dim], net[..., z_dim:2 * z_dim]
a = 1 + tf.nn.softplus(a - 5)
b = 1 + tf.nn.softplus(b - 5)
dist = ds.Independent(ds.Beta(a, b), 1)
bijector = ds.bijectors.Affine(-1.0, 2.0)
tdist = ds.TransformedDistribution(distribution=dist, bijector=bijector)
return tdist
def train_gilbo(gan, sess, outdir, checkpoint_path, dataset, options):
"""Build and train GILBO model.
Args:
gan: GAN object.
sess: tf.Session.
outdir: Output directory. A pickle file will be written there.
checkpoint_path: Path where gan"s checkpoints are written. Only used to
ensure that GILBO files are written to a unique
subdirectory of outdir.
dataset: Name of dataset used to train the GAN.
options: Options dictionary.
Returns:
mean_eval_info: Mean GILBO computed over a large number of images generated
by the trained GAN
mean_train_consistency: Mean consistency of the trained GILBO model with
data from the training set.
mean_eval_consistency: Same consistency measure for the trained model with
data from the validation set.
mean_self_consistency: Same consistency measure for the trained model with
data generated by the trained model itself.
See the GILBO paper for an explanation of these metrics.
Raises:
ValueError: If the GAN has uninitialized variables.
"""
uninitialized = sess.run(tf.report_uninitialized_variables())
if uninitialized:
raise ValueError("Model has uninitialized variables!\n%r" % uninitialized)
outdir = os.path.join(outdir, checkpoint_path.replace("/", "_"))
tf.gfile.MakeDirs(outdir)
with tf.variable_scope("gilbo"):
ones = tf.ones((gan.batch_size, gan.z_dim))
# Get a distribution for the prior.
z_dist = ds.Independent(ds.Uniform(-ones, ones), 1)
z_sample = z_dist.sample()
epsneg = np.finfo("float32").epsneg
# Clip samples from the GAN uniform prior because the Beta distribution
# doesn"t include the top endpoint and has issues with the bottom endpoint.
ganz_clip = tf.clip_by_value(gan.z, -(1 - epsneg), 1 - epsneg)
# Get generated images from the model.
fake_images = gan.fake_images
# Build the regressor distribution that encodes images back to predicted
# samples from the prior.
with tf.variable_scope("regressor"):
z_pred_dist = _build_regressor(fake_images, gan.z_dim)
# Capture the parameters of the distributions for later analysis.
dist_p1 = z_pred_dist.distribution.distribution.concentration0
dist_p2 = z_pred_dist.distribution.distribution.concentration1
# info and avg_info compute the GILBO.
info = z_pred_dist.log_prob(ganz_clip) - z_dist.log_prob(ganz_clip)
avg_info = tf.reduce_mean(info)
# Set up training of the GILBO model.
lr = options.get("gilbo_learning_rate", 4e-4)
learning_rate = tf.get_variable(
"learning_rate", initializer=lr, trainable=False)
gilbo_step = tf.get_variable("gilbo_step", dtype=tf.int32, initializer=0,
trainable=False)
opt = tf.train.AdamOptimizer(learning_rate)
regressor_vars = tf.contrib.framework.get_variables("gilbo/regressor")
train_op = opt.minimize(-info, var_list=regressor_vars)
# Initialize the variables we just created.
uninitialized = plist(tf.report_uninitialized_variables().eval())
uninitialized_vars = uninitialized.apply(
tf.contrib.framework.get_variables_by_name)._[0]
tf.variables_initializer(uninitialized_vars).run()
saver = tf.train.Saver(uninitialized_vars, max_to_keep=1)
try:
checkpoint_path = tf.train.latest_checkpoint(outdir)
saver.restore(sess, checkpoint_path)
except ValueError:
# Failing to restore just indicates that we don"t have a valid checkpoint,
# so we will just start training a fresh GILBO model.
pass
_train_gilbo(sess, gan, saver, learning_rate, gilbo_step, z_sample, avg_info,
z_pred_dist, train_op, outdir, options)
mean_eval_info = _eval_gilbo(sess, gan, z_sample, avg_info,
dist_p1, dist_p2, fake_images, outdir, options)
# Collect encoded distributions on the training and eval set in order to do
# kl-nearest-neighbors on generated samples and measure consistency.
dataset = datasets.get_dataset(dataset)
x_train = dataset.load_dataset(split_name="train", num_threads=1)
x_train = x_train.batch(gan.batch_size, drop_remainder=True)
x_train = x_train.make_one_shot_iterator().get_next()[0]
x_train = tf.reshape(x_train, fake_images.shape)
x_eval = dataset.load_dataset(split_name="test", num_threads=1)
x_eval = x_eval.batch(gan.batch_size, drop_remainder=True)
x_eval = x_eval.make_one_shot_iterator().get_next()[0]
x_eval = tf.reshape(x_eval, fake_images.shape)
mean_train_consistency = _run_gilbo_consistency(
x_train, "train", extract_input_images=0,
save_consistency_images=20, num_batches=5, **locals())
mean_eval_consistency = _run_gilbo_consistency(
x_eval, "eval", extract_input_images=0,
save_consistency_images=20, num_batches=5, **locals())
mean_self_consistency = _run_gilbo_consistency(
fake_images, "self", extract_input_images=20,
save_consistency_images=20, num_batches=5, **locals())
return (mean_eval_info, mean_train_consistency, mean_eval_consistency,
mean_self_consistency)
def _train_gilbo(sess, gan, saver, learning_rate, gilbo_step, z_sample,
avg_info, z_pred_dist, train_op, outdir, options):
"""Run the training process."""
lr_scale = options.get("gilbo_lr_scale", 0.5)
min_lr = options.get("gilbo_min_lr", 1e-8)
min_ai_step_scale = options.get("gilbo_min_ai_step_scale", 0.75)
min_ai_step_value = options.get("gilbo_min_ai_step_value", 0.5)
max_train_cycles = options.get("gilbo_max_train_cycles", 50)
train_steps_per_cycle = options.get("gilbo_train_steps_per_cycle", 10000)
ais = [0.0] # average gilbos (i is for info)
min_ai = -2.0
lr, i = sess.run([learning_rate, gilbo_step])
for i in range(i, max_train_cycles):
if lr < min_lr:
break
_save_gilbo(saver, sess, learning_rate, gilbo_step, i, lr, outdir)
ai = 0.0
for j in range(train_steps_per_cycle):
if j % (train_steps_per_cycle // 10) == 0:
tf.logging.info("step:%d, gilbo:%.3f" % (j, ai))
samp = sess.run(z_sample)
_, z_info = sess.run(
[train_op, avg_info],
feed_dict={gan.z: samp, learning_rate: lr})
ai += (z_info - ai) / (j + 1)
tf.logging.info("cycle:%d gilbo:%.3f min next gilbo:%.3f learning rate:%.3f"
% (i, ai, min_ai, lr))
if ai < min_ai:
lr *= lr_scale
if lr < min_lr:
break
if np.isnan(ai):
tf.logging.info("NaN GILBO at cycle %d, stopping training early." % i)
break
ais.append(ai)
# min_ai is the minimum next GILBO for the training algorithm to consider
# that progress is being made. GILBO is a lower bound that we are maximizing
# so we want it to increase during each training cycle.
min_ai = max(min_ai,
ai + max(0.0,
min(min_ai_step_value,
(ai - ais[-2]) * min_ai_step_scale)
)
)
_save_gilbo(saver, sess, learning_rate, gilbo_step, i, lr, outdir)
_save_z_histograms(gan, z_sample, z_pred_dist, outdir, i)
def _eval_gilbo(sess, gan, z_sample, avg_info, dist_p1, dist_p2, fake_images,
outdir, options):
"""Evaluate GILBO on new data from the generative model.
Args:
sess: tf.Session.
gan: GAN object.
z_sample: Tensor sampling from the prior.
avg_info: Tensor that computes the per-batch GILBO.
dist_p1: Tensor for the first parameter of the distribution
(e.g., concentration1 for a Beta distribution).
dist_p2: Tensor for the second parameter of the distribution
(e.g., concentration2 for a Beta distribution).
fake_images: Tensor of images sampled from the GAN.
outdir: Output directory. A pickle file will be written there.
options: Options dictionary.
Returns:
The mean GILBO on the evaluation set. Also writes a pickle file saving
distribution parameters and generated images for later analysis.
"""
eval_steps = options.get("gilbo_eval_steps", 10000)
z_infos = np.zeros(eval_steps, np.float32)
z_dist_p1s, z_dist_p2s, z_fake_images = [], [], []
mean_eval_info = 0
for i in range(eval_steps):
samp = sess.run(z_sample)
if i * gan.batch_size < 1000:
# Save the first 1000 distribution parameters and generated images for
# separate data processing.
z_infos[i], z_dist_p1, z_dist_p2, images = sess.run(
[avg_info, dist_p1, dist_p2, fake_images], feed_dict={gan.z: samp})
z_dist_p1s.append(z_dist_p1)
z_dist_p2s.append(z_dist_p2)
z_fake_images.append(images)
else:
z_infos[i] = sess.run(avg_info, feed_dict={gan.z: samp})
if i % (eval_steps // 10) == 0:
tf.logging.info("eval step:%d gilbo:%3.1f" % (i, z_infos[i]))
if eval_steps:
mean_eval_info = np.mean(np.nan_to_num(z_infos))
eval_dists = dict(
dist_p1=np.array(z_dist_p1s).reshape([-1, 64]),
dist_p2=np.array(z_dist_p2s).reshape([-1, 64]),
images=np.array(z_fake_images).reshape(
[-1] + list(z_fake_images[0].shape[1:])))
with tf.gfile.Open(os.path.join(outdir, "eval_dists.p"), "w") as f:
pickle.dump(eval_dists, f)
tf.logging.info("eval gilbo:%3.1f" % mean_eval_info)
return mean_eval_info
def _run_gilbo_consistency(
input_images, mode, dist_p1, dist_p2, z_pred_dist,
z_sample, gan, sess, outdir, dataset, extract_input_images=0,
save_consistency_images=0, num_batches=3000, **unused_kw):
"""Measure consistency of the gilbo estimator with the GAN or VAE.
Arguments without documentation are variables from the calling function needed
here. Pass them with **locals().
Args:
input_images: Tensor. Dataset images, or images generated by the GAN or VAE.
mode: "train", "eval", or "self". Which consistency measure to compute.
dist_p1:
dist_p2:
z_pred_dist:
z_sample:
gan:
sess:
outdir:
dataset:
extract_input_images: Number of batches to extract, -1 for all. Default: 0.
save_consistency_images: Num batches to save, -1 for all. Default: 0.
num_batches: Number of batches to run. Default: 3000.
**unused_kw: Unused extra keyword args.
Returns:
Symmetric consistency KL. Additionally saves distribution parameters as a
pickle as well as any requested images as pngs to outdir.
"""
with tf.variable_scope("gilbo"):
with tf.variable_scope("regressor", reuse=True):
z_pred_dist_train = _build_regressor(input_images, gan.z_dim)
z_sample_train = z_pred_dist_train.sample()
dist_p1_ph = tf.placeholder(tf.float32, dist_p1.shape)
dist_p2_ph = tf.placeholder(tf.float32, dist_p2.shape)
consist_dist_p1_ph = tf.placeholder(tf.float32, dist_p1.shape)
consist_dist_p2_ph = tf.placeholder(tf.float32, dist_p2.shape)
dist_p1 = z_pred_dist_train.distribution.distribution.concentration0
dist_p2 = z_pred_dist_train.distribution.distribution.concentration1
consist_z_dist_p1 = z_pred_dist.distribution.distribution.concentration0
consist_z_dist_p2 = z_pred_dist.distribution.distribution.concentration1
base_dist = ds.Beta
kl_dist_p = ds.Independent(base_dist(dist_p1_ph, dist_p2_ph), 1)
kl_dist_q = ds.Independent(
base_dist(consist_dist_p1_ph, consist_dist_p2_ph), 1)
consistency_kl = kl_dist_p.kl_divergence(kl_dist_q)
consistency_rkl = kl_dist_q.kl_divergence(kl_dist_p)
z_dist_p1s, z_dist_p2s = [], []
consist_z_dist_p1s, consist_z_dist_p2s = [], []
consistency_kls, consistency_rkls, consistency_skls = [], [], []
i = 0
while i < num_batches:
try:
samp = sess.run(z_sample)
z_dist_p1, z_dist_p2, images, train_samp = sess.run(
[dist_p1, dist_p2, input_images, z_sample_train],
feed_dict={gan.z: samp})
z_dist_p1s.append(z_dist_p1)
z_dist_p2s.append(z_dist_p2)
(consist_z_dist_p1_out, consist_z_dist_p2_out,
consistency_images) = sess.run(
[consist_z_dist_p1, consist_z_dist_p2, gan.fake_images],
feed_dict={gan.z: train_samp})
consist_z_dist_p1s.append(consist_z_dist_p1_out)
consist_z_dist_p2s.append(consist_z_dist_p2_out)
consist_kls, consist_rkls = sess.run(
[consistency_kl, consistency_rkl],
feed_dict={
dist_p1_ph: z_dist_p1,
dist_p2_ph: z_dist_p2,
consist_dist_p1_ph: consist_z_dist_p1_out,
consist_dist_p2_ph: consist_z_dist_p2_out,
})
consistency_kls.append(consist_kls)
consistency_rkls.append(consist_rkls)
consistency_skls.append((consist_kls + consist_rkls) / 2.0)
if save_consistency_images:
save_consistency_images -= 1
filename = os.path.join(
outdir,
"consistency_image_%s_%06d_%06d.png"
% (mode, i * gan.batch_size, (i + 1) * gan.batch_size - 1))
img = consistency_images.reshape(
[gan.batch_size * consistency_images.shape[1],
consistency_images.shape[2],
-1])
_save_image(img, filename)
if extract_input_images:
extract_input_images -= 1
if mode == "self":
filename = os.path.join(
outdir,
"%s_image_%06d_%06d.png"
% (mode, i * gan.batch_size, (i + 1) * gan.batch_size - 1))
img = images.reshape(
[gan.batch_size * consistency_images.shape[1],
consistency_images.shape[2],
-1])
_save_image(img, filename)
else:
for j in range(gan.batch_size):
filename = os.path.join(
outdir, "..", dataset,
"%s_image_%06d.png" % (mode, i * gan.batch_size + j))
_save_image(images[j], filename)
if i % 100 == 0:
tf.logging.info(
"%s: step:%d consistency KL:%3.1f" %
(mode, i, np.mean(consistency_skls)))
i += 1
except tf.errors.OutOfRangeError:
break
out_dists = dict(
dist_p1=np.reshape(z_dist_p1s, [-1, gan.batch_size]),
dist_p2=np.reshape(z_dist_p2s, [-1, gan.batch_size]),
consist_dist_p1=np.reshape(consist_z_dist_p1s, [-1, gan.batch_size]),
consist_dist_p2=np.reshape(consist_z_dist_p2s, [-1, gan.batch_size]),
consistency_kl=np.reshape(consistency_kls, [-1, gan.batch_size]),
consistency_rkl=np.reshape(consistency_rkls, [-1, gan.batch_size]),
consistency_skl=np.reshape(consistency_skls, [-1, gan.batch_size]),
)
with tf.gfile.Open(
os.path.join(outdir, "%s_consistency_dists.p" % mode), "w") as f:
pickle.dump(out_dists, f)
return np.mean(consistency_skls)
def _save_image(img, filename):
# If img is [H W] or [H W 1], stack into [H W 3] for scipy"s api.
if len(img.shape) == 2 or img.shape[-1] == 1:
img = np.stack((img.squeeze(),) * 3, -1)
with tf.gfile.Open(filename, "w") as f:
scipy.misc.toimage(img, cmin=0.0, cmax=1.0).save(f)
def _save_z_histograms(gan, z_sample, z_pred_dist, outdir, step):
"""Save a histogram for each z dimension as an png in outdir."""
fig, axs = plt.subplots(8, 8, figsize=(15, 10))
pk = 0
bins = np.linspace(-1, 1, 70)
samp = z_sample.eval()
z_pred_samp = z_pred_dist.sample(10000).eval({gan.z: samp})
try:
for j in range(64):
axs.flat[j].hist(z_pred_samp[:, pk, j], bins, histtype="stepfilled",
normed=True)
axs.flat[j].vlines(samp[pk, j], 0, 1.0, linestyle="dashed")
plt.tight_layout()
filename = os.path.join(outdir, "z_hist_%03d.png" % step)
tf.logging.info("Saving z histogram: %s" % filename)
with tf.gfile.Open(filename, "w") as f:
fig.savefig(f, dpi="figure")
except Exception as e: # pylint: disable=broad-except
tf.logging.info("Caught %r while rendering chart. Ignoring.\n%s\n"
% (type(e), str(e)))
def _save_gilbo(saver, sess, learning_rate, gilbo_step, step, lr, outdir):
"""Save GILBO model checkpoints, including the current step and lr.
Args:
saver: tf.train.Saver.
sess: tf.Session.
learning_rate: tf.Variable for the learning rate.
gilbo_step: tf.Variable for the current training step.
step: integer for the current step, to be saved in the checkpoint.
lr: float for the current learning rate, to be saved in the checkpoint.
outdir: output directory.
"""
# Save the current learning rate and gilbo training step with the checkpoint.
learning_rate.assign(lr).eval()
gilbo_step.assign(step).eval()
filename = os.path.join(outdir, "gilbo_model")
saver.save(sess, filename, global_step=step)
|
compare_gan-master
|
compare_gan/metrics/gilbo.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for Jacobian Conditioning metrics."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from compare_gan.metrics import jacobian_conditioning
import mock
import numpy as np
from six.moves import range
import tensorflow as tf
_BATCH_SIZE = 32
def SlowJacobian(xs, fx):
"""Computes df/dx matrix.
As jacobian_conditioning.compute_jacobian, but explicitly loops over
dimensions of f.
Args:
xs: input tensor(s) of arbitrary shape.
fx: f(x) tensor of arbitrary shape.
Returns:
df/dx tensor.
"""
fxs = tf.unstack(fx, axis=-1)
grads = [tf.gradients(fx_i, xs) for fx_i in fxs]
grads = [grad[0] for grad in grads]
df_dx = tf.stack(grads, axis=1)
return df_dx
class JacobianConditioningTest(tf.test.TestCase):
def test_jacobian_simple_case(self):
x = tf.random_normal([_BATCH_SIZE, 2])
W = tf.constant([[2., -1.], [1.5, 1.]]) # pylint: disable=invalid-name
f = tf.matmul(x, W)
j_tensor = jacobian_conditioning.compute_jacobian(xs=x, fx=f)
with tf.Session() as sess:
jacobian = sess.run(j_tensor)
# Transpose of W in 'expected' is expected because in vector notation
# f = W^T * x.
expected = tf.tile([[[2, 1.5], [-1, 1]]], [_BATCH_SIZE, 1, 1])
self.assertAllClose(jacobian, expected)
def test_jacobian_against_slow_version(self):
x = tf.random_normal([_BATCH_SIZE, 2])
h1 = tf.contrib.layers.fully_connected(x, 20)
h2 = tf.contrib.layers.fully_connected(h1, 20)
f = tf.contrib.layers.fully_connected(h2, 10)
j_slow_tensor = SlowJacobian(xs=x, fx=f)
j_fast_tensor = jacobian_conditioning.compute_jacobian(xs=x, fx=f)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
j_fast, j_slow = sess.run([j_fast_tensor, j_slow_tensor])
self.assertAllClose(j_fast, j_slow)
def test_jacobian_numerically(self):
x = tf.random_normal([_BATCH_SIZE, 2])
h1 = tf.contrib.layers.fully_connected(x, 20)
h2 = tf.contrib.layers.fully_connected(h1, 20)
f = tf.contrib.layers.fully_connected(h2, 10)
j_tensor = jacobian_conditioning.compute_jacobian(xs=x, fx=f)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
x_np = sess.run(x)
jacobian = sess.run(j_tensor, feed_dict={x: x_np})
# Test 10 random elements.
for _ in range(10):
# Pick a random element of Jacobian to test.
batch_idx = np.random.randint(_BATCH_SIZE)
x_idx = np.random.randint(2)
f_idx = np.random.randint(10)
# Test with finite differences.
epsilon = 1e-4
x_plus = x_np.copy()
x_plus[batch_idx, x_idx] += epsilon
f_plus = sess.run(f, feed_dict={x: x_plus})[batch_idx, f_idx]
x_minus = x_np.copy()
x_minus[batch_idx, x_idx] -= epsilon
f_minus = sess.run(f, feed_dict={x: x_minus})[batch_idx, f_idx]
self.assertAllClose(
jacobian[batch_idx, f_idx, x_idx],
(f_plus - f_minus) / (2. * epsilon),
rtol=1e-3,
atol=1e-3)
def test_analyze_metric_tensor(self):
# Assumes NumPy works, just tests that output shapes are as expected.
jacobian = np.random.normal(0, 1, (_BATCH_SIZE, 2, 10))
metric_tensor = np.matmul(np.transpose(jacobian, [0, 2, 1]), jacobian)
result_dict = jacobian_conditioning._analyze_metric_tensor(metric_tensor)
self.assertAllEqual(result_dict['eigenvalues'].shape, [_BATCH_SIZE, 10])
self.assertAllEqual(result_dict['logdet'].shape, [_BATCH_SIZE])
self.assertAllEqual(result_dict['log_condition_number'].shape,
[_BATCH_SIZE])
def test_analyze_jacobian(self):
m = mock.patch.object(
jacobian_conditioning, '_analyze_metric_tensor', new=lambda x: x)
m.start()
jacobian = np.array([[[1, 2], [3, 4]], [[2, 4], [6, 8]]])
result_dict = jacobian_conditioning.analyze_jacobian(jacobian)
self.assertAllEqual(result_dict['metric_tensor'],
[[[10, 14], [14, 20]], [[40, 56], [56, 80]]])
self.assertAllEqual(result_dict['mean_metric_tensor'],
[[[25, 35], [35, 50]]])
m.stop()
if __name__ == '__main__':
tf.test.main()
|
compare_gan-master
|
compare_gan/metrics/jacobian_conditioning_test.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Abstract class that describes a single evaluation task.
The tasks can be run in or after session. Each task can result
in a set of metrics.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
from absl import flags
import six
import tensorflow as tf
FLAGS = flags.FLAGS
@six.add_metaclass(abc.ABCMeta)
class EvalTask(object):
"""Class that describes a single evaluation task.
For example: compute inception score or compute accuracy.
The classes that inherit from it, should implement the methods below.
"""
_LABEL = None
def metric_list(self):
"""List of metrics that this class generates.
These are the only keys that RunXX methods can return in
their output maps.
Returns:
frozenset of strings, which are the names of the metrics that task
computes.
"""
return frozenset(self._LABEL)
def _create_session(self):
try:
target = FLAGS.master
except AttributeError:
return tf.Session()
return tf.Session(target)
@abc.abstractmethod
def run_after_session(self, fake_dset, real_dset):
"""Runs the task after all the generator calls, after session was closed.
WARNING: the images here, are in 0..255 range, with 3 color channels.
Args:
fake_dset: `EvalDataSample` with fake images and inception features.
real_dset: `EvalDataSample` with real images and inception features.
Returns:
Dict with metric values. The keys must be contained in the set that
"MetricList" method above returns.
"""
|
compare_gan-master
|
compare_gan/metrics/eval_task.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of the Inception Score.
Implemented as a wrapper around the tensorflow_gan library. The details can be
found in "Improved Techniques for Training GANs", Salimans et al.
[https://arxiv.org/abs/1606.03498].
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import logging
from compare_gan.metrics import eval_task
import tensorflow as tf
import tensorflow_gan as tfgan
class InceptionScoreTask(eval_task.EvalTask):
"""Task that computes inception score for the generated images."""
_LABEL = "inception_score"
def run_after_session(self, fake_dset, real_dest):
del real_dest
logging.info("Computing inception score.")
with tf.Graph().as_default():
fake_logits = tf.convert_to_tensor(fake_dset.logits)
inception_score = tfgan.eval.classifier_score_from_logits(fake_logits)
with self._create_session() as sess:
inception_score = sess.run(inception_score)
logging.info("Inception score: %.3f", inception_score)
return {self._LABEL: inception_score}
|
compare_gan-master
|
compare_gan/metrics/inception_score.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of the KID score.
The details can be found in "Demystifying MMD GANs", Binkowski et al.
[https://arxiv.org/abs/1801.01401].
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
from compare_gan.metrics import eval_task
import numpy as np
import tensorflow as tf
class KIDScoreTask(eval_task.EvalTask):
"""Evaluation task for the KID score."""
_LABEL = "kid_score"
def run_after_session(self, fake_dset, real_dset):
score = kid(fake_dset.activations, real_dset.activations)
return {self._LABEL: score}
def kid(fake_activations,
real_activations,
max_batch_size=1024,
dtype=None,
return_stderr=False):
"""Unbiased estimator of the Kernel Inception Distance.
As defined by https://arxiv.org/abs/1801.01401.
If return_stderr, also returns an estimate of the standard error, i.e. the
standard deviation of the KID estimator. Returns nan if the number
of batches is too small (< 5); for more reliable estimates, one could use
the asymptotic variance estimate given in https://arxiv.org/abs/1611.04488.
Uses a block estimator, as in https://arxiv.org/abs/1307.1954, with blocks
no larger than max_batch_size. This is slightly different than the authors'
provided code, but is also unbiased (and provides more-valid a variance
estimate).
NOTE: the blocking code assumes that real_activations and
fake_activations are in random order. If real_activations is sorted
in a meaningful order, the estimator will be biased.
Args:
fake_activations: [batch, num_features] tensor with inception features.
real_activations: [batch, num_features] tensor with inception features.
max_batch_size: Batches to compute the KID.
dtype: Type used by the computations.
return_stderr: If true, also returns the std_error from the KID computation.
Returns:
KID score (and optionally std error).
"""
real_activations.get_shape().assert_has_rank(2)
fake_activations.get_shape().assert_has_rank(2)
# need to know dimension for the kernel, and batch size to split things
real_activations.get_shape().assert_is_fully_defined()
fake_activations.get_shape().assert_is_fully_defined()
n_real, dim = real_activations.get_shape().as_list()
n_gen, dim2 = fake_activations.get_shape().as_list()
assert dim2 == dim
# tensorflow_gan forces doubles for FID, but I don't think we need that here
if dtype is None:
dtype = real_activations.dtype
assert fake_activations.dtype == dtype
else:
real_activations = tf.cast(real_activations, dtype)
fake_activations = tf.cast(fake_activations, dtype)
# split into largest approximately-equally-sized blocks
n_bins = int(math.ceil(max(n_real, n_gen) / max_batch_size))
bins_r = np.full(n_bins, int(math.ceil(n_real / n_bins)))
bins_g = np.full(n_bins, int(math.ceil(n_gen / n_bins)))
bins_r[:(n_bins * bins_r[0]) - n_real] -= 1
bins_g[:(n_bins * bins_r[0]) - n_gen] -= 1
assert bins_r.min() >= 2
assert bins_g.min() >= 2
inds_r = tf.constant(np.r_[0, np.cumsum(bins_r)])
inds_g = tf.constant(np.r_[0, np.cumsum(bins_g)])
dim_ = tf.cast(dim, dtype)
def get_kid_batch(i):
"""Computes KID on a given batch of features.
Takes real_activations[ind_r[i] : ind_r[i+1]] and
fake_activations[ind_g[i] : ind_g[i+1]].
Args:
i: is the index of the batch.
Returns:
KID for the given batch.
"""
r_s = inds_r[i]
r_e = inds_r[i + 1]
r = real_activations[r_s:r_e]
m = tf.cast(r_e - r_s, dtype)
g_s = inds_g[i]
g_e = inds_g[i + 1]
g = fake_activations[g_s:g_e]
n = tf.cast(r_e - r_s, dtype)
# Could probably do this a bit faster...
k_rr = (tf.matmul(r, r, transpose_b=True) / dim_ + 1)**3
k_rg = (tf.matmul(r, g, transpose_b=True) / dim_ + 1)**3
k_gg = (tf.matmul(g, g, transpose_b=True) / dim_ + 1)**3
return (
-2 * tf.reduce_mean(k_rg) + (tf.reduce_sum(k_rr) - tf.trace(k_rr)) /
(m * (m - 1)) + (tf.reduce_sum(k_gg) - tf.trace(k_gg)) / (n * (n - 1)))
ests = tf.map_fn(
get_kid_batch, np.arange(n_bins), dtype=dtype, back_prop=False)
if return_stderr:
if n_bins < 5:
return tf.reduce_mean(ests), np.nan
mn, var = tf.nn.moments(ests, [0])
return mn, tf.sqrt(var / n_bins)
else:
return tf.reduce_mean(ests)
|
compare_gan-master
|
compare_gan/metrics/kid_score.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Discriminator accuracy.
Computes the discrimionator's accuracy on (a subset) of the training dataset,
test dataset, and a generated data set. The score is averaged over several
multiple generated data sets and subsets of the training data.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import logging
from compare_gan import datasets
from compare_gan import eval_utils
from compare_gan.metrics import eval_task
import numpy as np
class AccuracyTask(eval_task.EvalTask):
"""Evaluation Task for computing and reporting accuracy."""
def metric_list(self):
return frozenset([
"train_accuracy", "test_accuracy", "fake_accuracy", "train_d_loss",
"test_d_loss"
])
def run_in_session(self, options, sess, gan, real_images):
del options
return compute_accuracy_loss(sess, gan, real_images)
def compute_accuracy_loss(sess,
gan,
test_images,
max_train_examples=50000,
num_repeat=5):
"""Compute discriminator's accuracy and loss on a given dataset.
Args:
sess: Tf.Session object.
gan: Any AbstractGAN instance.
test_images: numpy array with test images.
max_train_examples: How many "train" examples to get from the dataset.
In each round, some of them will be randomly selected
to evaluate train set accuracy.
num_repeat: How many times to repreat the computation.
The mean of all the results is reported.
Returns:
Dict[Text, float] with all the computed scores.
Raises:
ValueError: If the number of test_images is greater than the number of
training images returned by the dataset.
"""
logging.info("Evaluating training and test accuracy...")
train_images = eval_utils.get_real_images(
dataset=datasets.get_dataset(),
num_examples=max_train_examples,
split="train",
failure_on_insufficient_examples=False)
if train_images.shape[0] < test_images.shape[0]:
raise ValueError("num_train %d must be larger than num_test %d." %
(train_images.shape[0], test_images.shape[0]))
num_batches = int(np.floor(test_images.shape[0] / gan.batch_size))
if num_batches * gan.batch_size < test_images.shape[0]:
logging.error("Ignoring the last batch with %d samples / %d epoch size.",
test_images.shape[0] - num_batches * gan.batch_size,
gan.batch_size)
ret = {
"train_accuracy": [],
"test_accuracy": [],
"fake_accuracy": [],
"train_d_loss": [],
"test_d_loss": []
}
for _ in range(num_repeat):
idx = np.random.choice(train_images.shape[0], test_images.shape[0])
bs = gan.batch_size
train_subset = [train_images[i] for i in idx]
train_predictions, test_predictions, fake_predictions = [], [], []
train_d_losses, test_d_losses = [], []
for i in range(num_batches):
z_sample = gan.z_generator(gan.batch_size, gan.z_dim)
start_idx = i * bs
end_idx = start_idx + bs
test_batch = test_images[start_idx : end_idx]
train_batch = train_subset[start_idx : end_idx]
test_prediction, test_d_loss, fake_images = sess.run(
[gan.discriminator_output, gan.d_loss, gan.fake_images],
feed_dict={
gan.inputs: test_batch, gan.z: z_sample
})
train_prediction, train_d_loss = sess.run(
[gan.discriminator_output, gan.d_loss],
feed_dict={
gan.inputs: train_batch,
gan.z: z_sample
})
fake_prediction = sess.run(
gan.discriminator_output,
feed_dict={gan.inputs: fake_images})[0]
train_predictions.append(train_prediction[0])
test_predictions.append(test_prediction[0])
fake_predictions.append(fake_prediction)
train_d_losses.append(train_d_loss)
test_d_losses.append(test_d_loss)
train_predictions = [x >= 0.5 for x in train_predictions]
test_predictions = [x >= 0.5 for x in test_predictions]
fake_predictions = [x < 0.5 for x in fake_predictions]
ret["train_accuracy"].append(np.array(train_predictions).mean())
ret["test_accuracy"].append(np.array(test_predictions).mean())
ret["fake_accuracy"].append(np.array(fake_predictions).mean())
ret["train_d_loss"].append(np.mean(train_d_losses))
ret["test_d_loss"].append(np.mean(test_d_losses))
for key in ret:
ret[key] = np.mean(ret[key])
return ret
|
compare_gan-master
|
compare_gan/metrics/accuracy.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of the Frechet Inception Distance.
Implemented as a wrapper around the tf.contrib.gan library. The details can be
found in "GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash
Equilibrium", Heusel et al. [https://arxiv.org/abs/1706.08500].
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import logging
from compare_gan.metrics import eval_task
import tensorflow as tf
import tensorflow_gan as tfgan
# Special value returned when FID code returned exception.
FID_CODE_FAILED = 4242.0
class FIDScoreTask(eval_task.EvalTask):
"""Evaluation task for the FID score."""
_LABEL = "fid_score"
def run_after_session(self, fake_dset, real_dset):
logging.info("Calculating FID.")
with tf.Graph().as_default():
fake_activations = tf.convert_to_tensor(fake_dset.activations)
real_activations = tf.convert_to_tensor(real_dset.activations)
fid = tfgan.eval.frechet_classifier_distance_from_activations(
real_activations=real_activations,
generated_activations=fake_activations)
with self._create_session() as sess:
fid = sess.run(fid)
logging.info("Frechet Inception Distance: %.3f.", fid)
return {self._LABEL: fid}
def compute_fid_from_activations(fake_activations, real_activations):
"""Returns the FID based on activations.
Args:
fake_activations: NumPy array with fake activations.
real_activations: NumPy array with real activations.
Returns:
A float, the Frechet Inception Distance.
"""
logging.info("Computing FID score.")
assert fake_activations.shape == real_activations.shape
with tf.Session(graph=tf.Graph()) as sess:
fake_activations = tf.convert_to_tensor(fake_activations)
real_activations = tf.convert_to_tensor(real_activations)
fid = tfgan.eval.frechet_classifier_distance_from_activations(
real_activations=real_activations,
generated_activations=fake_activations)
return sess.run(fid)
|
compare_gan-master
|
compare_gan/metrics/fid_score.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for the MS-SSIM score."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from compare_gan.metrics import ms_ssim_score
import tensorflow as tf
class MsSsimScoreTest(tf.test.TestCase):
def test_on_one_vs_07_vs_zero_images(self):
"""Computes the SSIM value for 3 simple images."""
with tf.Graph().as_default():
generated_images = tf.stack([
tf.ones([64, 64, 3]),
tf.ones([64, 64, 3]) * 0.7,
tf.zeros([64, 64, 3]),
])
metric = ms_ssim_score.compute_msssim(generated_images, 1)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
result = metric(sess)
self.assertNear(result, 0.989989, 0.001)
if __name__ == '__main__':
tf.test.main()
|
compare_gan-master
|
compare_gan/metrics/ms_ssim_score_test.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for neural architectures."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl.testing import parameterized
from compare_gan.architectures import dcgan
from compare_gan.architectures import infogan
from compare_gan.architectures import resnet30
from compare_gan.architectures import resnet5
from compare_gan.architectures import resnet_biggan
from compare_gan.architectures import resnet_cifar
from compare_gan.architectures import resnet_stl
from compare_gan.architectures import sndcgan
import tensorflow as tf
class ArchitectureTest(parameterized.TestCase, tf.test.TestCase):
def assertArchitectureBuilds(self, gen, disc, image_shape, z_dim=120):
with tf.Graph().as_default():
batch_size = 2
num_classes = 10
# Prepare inputs
z = tf.random.normal((batch_size, z_dim), name="z")
y = tf.one_hot(tf.range(batch_size), num_classes)
# Run check output shapes for G and D.
x = gen(z=z, y=y, is_training=True, reuse=False)
self.assertAllEqual(x.shape.as_list()[1:], image_shape)
out, _, _ = disc(
x, y=y, is_training=True, reuse=False)
self.assertAllEqual(out.shape.as_list(), (batch_size, 1))
# Check that G outputs valid pixel values (we use [0, 1] everywhere) and
# D outputs a probablilty.
with self.session() as sess:
sess.run(tf.global_variables_initializer())
image, pred = sess.run([x, out])
self.assertAllGreaterEqual(image, 0)
self.assertAllLessEqual(image, 1)
self.assertAllGreaterEqual(pred, 0)
self.assertAllLessEqual(pred, 1)
@parameterized.parameters(
{"image_shape": (28, 28, 1)},
{"image_shape": (32, 32, 1)},
{"image_shape": (32, 32, 3)},
{"image_shape": (64, 64, 3)},
{"image_shape": (128, 128, 3)},
)
def testDcGan(self, image_shape):
self.assertArchitectureBuilds(
gen=dcgan.Generator(image_shape=image_shape),
disc=dcgan.Discriminator(),
image_shape=image_shape)
@parameterized.parameters(
{"image_shape": (28, 28, 1)},
{"image_shape": (32, 32, 1)},
{"image_shape": (32, 32, 3)},
{"image_shape": (64, 64, 3)},
{"image_shape": (128, 128, 3)},
)
def testInfoGan(self, image_shape):
self.assertArchitectureBuilds(
gen=infogan.Generator(image_shape=image_shape),
disc=infogan.Discriminator(),
image_shape=image_shape)
def testResNet30(self, image_shape=(128, 128, 3)):
self.assertArchitectureBuilds(
gen=resnet30.Generator(image_shape=image_shape),
disc=resnet30.Discriminator(),
image_shape=image_shape)
@parameterized.parameters(
{"image_shape": (32, 32, 1)},
{"image_shape": (32, 32, 3)},
{"image_shape": (64, 64, 3)},
{"image_shape": (128, 128, 3)},
)
def testResNet5(self, image_shape):
self.assertArchitectureBuilds(
gen=resnet5.Generator(image_shape=image_shape),
disc=resnet5.Discriminator(),
image_shape=image_shape)
@parameterized.parameters(
{"image_shape": (32, 32, 3)},
{"image_shape": (64, 64, 3)},
{"image_shape": (128, 128, 3)},
{"image_shape": (256, 256, 3)},
{"image_shape": (512, 512, 3)},
)
def testResNet5BigGan(self, image_shape):
if image_shape[0] == 512:
z_dim = 160
elif image_shape[0] == 256:
z_dim = 140
else:
z_dim = 120
# Use channel multiplier 4 to avoid OOM errors.
self.assertArchitectureBuilds(
gen=resnet_biggan.Generator(image_shape=image_shape, ch=16),
disc=resnet_biggan.Discriminator(ch=16),
image_shape=image_shape,
z_dim=z_dim)
@parameterized.parameters(
{"image_shape": (32, 32, 1)},
{"image_shape": (32, 32, 3)},
)
def testResNetCifar(self, image_shape):
self.assertArchitectureBuilds(
gen=resnet_cifar.Generator(image_shape=image_shape),
disc=resnet_cifar.Discriminator(),
image_shape=image_shape)
@parameterized.parameters(
{"image_shape": (48, 48, 1)},
{"image_shape": (48, 48, 3)},
)
def testResNetStl(self, image_shape):
self.assertArchitectureBuilds(
gen=resnet_stl.Generator(image_shape=image_shape),
disc=resnet_stl.Discriminator(),
image_shape=image_shape)
@parameterized.parameters(
{"image_shape": (28, 28, 1)},
{"image_shape": (32, 32, 1)},
{"image_shape": (32, 32, 3)},
{"image_shape": (64, 64, 3)},
{"image_shape": (128, 128, 3)},
)
def testSnDcGan(self, image_shape):
self.assertArchitectureBuilds(
gen=sndcgan.Generator(image_shape=image_shape),
disc=sndcgan.Discriminator(),
image_shape=image_shape)
if __name__ == "__main__":
tf.test.main()
|
compare_gan-master
|
compare_gan/architectures/architectures_test.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for custom architecture operations."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from compare_gan.architectures import arch_ops
import numpy as np
import tensorflow as tf
class ArchOpsTest(tf.test.TestCase):
def testBatchNorm(self):
with tf.Graph().as_default():
# 4 images with resolution 2x1 and 3 channels.
x1 = tf.constant([[[5, 7, 2]], [[5, 8, 8]]], dtype=tf.float32)
x2 = tf.constant([[[1, 2, 0]], [[4, 0, 4]]], dtype=tf.float32)
x3 = tf.constant([[[6, 2, 6]], [[5, 0, 5]]], dtype=tf.float32)
x4 = tf.constant([[[2, 4, 2]], [[6, 4, 1]]], dtype=tf.float32)
x = tf.stack([x1, x2, x3, x4])
self.assertAllEqual(x.shape.as_list(), [4, 2, 1, 3])
core_bn = tf.layers.batch_normalization(x, training=True)
contrib_bn = tf.contrib.layers.batch_norm(x, is_training=True)
custom_bn = arch_ops.batch_norm(x, is_training=True)
with self.session() as sess:
sess.run(tf.global_variables_initializer())
core_bn, contrib_bn, custom_bn = sess.run(
[core_bn, contrib_bn, custom_bn])
tf.logging.info("core_bn: %s", core_bn[0])
tf.logging.info("contrib_bn: %s", contrib_bn[0])
tf.logging.info("custom_bn: %s", custom_bn[0])
self.assertAllClose(core_bn, contrib_bn)
self.assertAllClose(custom_bn, contrib_bn)
expected_values = np.asarray(
[[[[0.4375205, 1.30336881, -0.58830315]],
[[0.4375205, 1.66291881, 1.76490951]]],
[[[-1.89592218, -0.49438119, -1.37270737]],
[[-0.14584017, -1.21348119, 0.19610107]]],
[[[1.02088118, -0.49438119, 0.98050523]],
[[0.4375205, -1.21348119, 0.58830321]]],
[[[-1.31256151, 0.22471881, -0.58830315]],
[[1.02088118, 0.22471881, -0.98050523]]]],
dtype=np.float32)
self.assertAllClose(custom_bn, expected_values)
def testAccumulatedMomentsDuringTraing(self):
with tf.Graph().as_default():
mean_in = tf.placeholder(tf.float32, shape=[2])
variance_in = tf.placeholder(tf.float32, shape=[2])
mean, variance = arch_ops._accumulated_moments_for_inference(
mean=mean_in, variance=variance_in, is_training=True)
variables_by_name = {v.op.name: v for v in tf.global_variables()}
tf.logging.error(variables_by_name)
accu_mean = variables_by_name["accu/accu_mean"]
accu_variance = variables_by_name["accu/accu_variance"]
accu_counter = variables_by_name["accu/accu_counter"]
with self.session() as sess:
sess.run(tf.global_variables_initializer())
m1, v1 = sess.run(
[mean, variance],
feed_dict={mean_in: [1.0, 2.0], variance_in: [3.0, 4.0]})
self.assertAllClose(m1, [1.0, 2.0])
self.assertAllClose(v1, [3.0, 4.0])
m2, v2 = sess.run(
[mean, variance],
feed_dict={mean_in: [5.0, 6.0], variance_in: [7.0, 8.0]})
self.assertAllClose(m2, [5.0, 6.0])
self.assertAllClose(v2, [7.0, 8.0])
am, av, ac = sess.run([accu_mean, accu_variance, accu_counter])
self.assertAllClose(am, [0.0, 0.0])
self.assertAllClose(av, [0.0, 0.0])
self.assertAllClose([ac], [0.0])
def testAccumulatedMomentsDuringEal(self):
with tf.Graph().as_default():
mean_in = tf.placeholder(tf.float32, shape=[2])
variance_in = tf.placeholder(tf.float32, shape=[2])
mean, variance = arch_ops._accumulated_moments_for_inference(
mean=mean_in, variance=variance_in, is_training=False)
variables_by_name = {v.op.name: v for v in tf.global_variables()}
tf.logging.error(variables_by_name)
accu_mean = variables_by_name["accu/accu_mean"]
accu_variance = variables_by_name["accu/accu_variance"]
accu_counter = variables_by_name["accu/accu_counter"]
update_accus = variables_by_name["accu/update_accus"]
with self.session() as sess:
sess.run(tf.global_variables_initializer())
# Fill accumulators.
sess.run(tf.assign(update_accus, 1))
m1, v1 = sess.run(
[mean, variance],
feed_dict={mean_in: [1.0, 2.0], variance_in: [3.0, 4.0]})
self.assertAllClose(m1, [1.0, 2.0])
self.assertAllClose(v1, [3.0, 4.0])
m2, v2 = sess.run(
[mean, variance],
feed_dict={mean_in: [5.0, 6.0], variance_in: [7.0, 8.0]})
self.assertAllClose(m2, [3.0, 4.0])
self.assertAllClose(v2, [5.0, 6.0])
# Check accumulators.
am, av, ac = sess.run([accu_mean, accu_variance, accu_counter])
self.assertAllClose(am, [6.0, 8.0])
self.assertAllClose(av, [10.0, 12.0])
self.assertAllClose([ac], [2.0])
# Use accumulators.
sess.run(tf.assign(update_accus, 0))
m3, v3 = sess.run(
[mean, variance],
feed_dict={mean_in: [2.0, 2.0], variance_in: [3.0, 3.0]})
self.assertAllClose(m3, [3.0, 4.0])
self.assertAllClose(v3, [5.0, 6.0])
am, av, ac = sess.run([accu_mean, accu_variance, accu_counter])
self.assertAllClose(am, [6.0, 8.0])
self.assertAllClose(av, [10.0, 12.0])
self.assertAllClose([ac], [2.0])
if __name__ == "__main__":
tf.test.main()
|
compare_gan-master
|
compare_gan/architectures/arch_ops_test.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of SNDCGAN generator and discriminator architectures."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from compare_gan.architectures import abstract_arch
from compare_gan.architectures.arch_ops import conv2d
from compare_gan.architectures.arch_ops import deconv2d
from compare_gan.architectures.arch_ops import linear
from compare_gan.architectures.arch_ops import lrelu
import numpy as np
import tensorflow as tf
def conv_out_size_same(size, stride):
return int(np.ceil(float(size) / float(stride)))
class Generator(abstract_arch.AbstractGenerator):
"""SNDCGAN generator.
Details are available at https://openreview.net/pdf?id=B1QRgziT-.
"""
def apply(self, z, y, is_training):
"""Build the generator network for the given inputs.
Args:
z: `Tensor` of shape [batch_size, z_dim] with latent code.
y: `Tensor` of shape [batch_size, num_classes] of one hot encoded labels.
is_training: boolean, are we in train or eval model.
Returns:
A tensor of size [batch_size] + self._image_shape with values in [0, 1].
"""
batch_size = z.shape[0].value
s_h, s_w, colors = self._image_shape
s_h2, s_w2 = conv_out_size_same(s_h, 2), conv_out_size_same(s_w, 2)
s_h4, s_w4 = conv_out_size_same(s_h2, 2), conv_out_size_same(s_w2, 2)
s_h8, s_w8 = conv_out_size_same(s_h4, 2), conv_out_size_same(s_w4, 2)
net = linear(z, s_h8 * s_w8 * 512, scope="g_fc1")
net = self.batch_norm(net, z=z, y=y, is_training=is_training, name="g_bn1")
net = tf.nn.relu(net)
net = tf.reshape(net, [batch_size, s_h8, s_w8, 512])
net = deconv2d(net, [batch_size, s_h4, s_w4, 256], 4, 4, 2, 2, name="g_dc2")
net = self.batch_norm(net, z=z, y=y, is_training=is_training, name="g_bn2")
net = tf.nn.relu(net)
net = deconv2d(net, [batch_size, s_h2, s_w2, 128], 4, 4, 2, 2, name="g_dc3")
net = self.batch_norm(net, z=z, y=y, is_training=is_training, name="g_bn3")
net = tf.nn.relu(net)
net = deconv2d(net, [batch_size, s_h, s_w, 64], 4, 4, 2, 2, name="g_dc4")
net = self.batch_norm(net, z=z, y=y, is_training=is_training, name="g_bn4")
net = tf.nn.relu(net)
net = deconv2d(
net, [batch_size, s_h, s_w, colors], 3, 3, 1, 1, name="g_dc5")
out = tf.tanh(net)
# This normalization from [-1, 1] to [0, 1] is introduced for consistency
# with other models.
out = tf.div(out + 1.0, 2.0)
return out
class Discriminator(abstract_arch.AbstractDiscriminator):
"""SNDCGAN discriminator.
Details are available at https://openreview.net/pdf?id=B1QRgziT-.
"""
def apply(self, x, y, is_training):
"""Apply the discriminator on a input.
Args:
x: `Tensor` of shape [batch_size, ?, ?, ?] with real or fake images.
y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
labels.
is_training: Boolean, whether the architecture should be constructed for
training or inference.
Returns:
Tuple of 3 Tensors, the final prediction of the discriminator, the logits
before the final output activation function and logits form the second
last layer.
"""
del is_training, y
use_sn = self._spectral_norm
# In compare gan framework, the image preprocess normalize image pixel to
# range [0, 1], while author used [-1, 1]. Apply this trick to input image
# instead of changing our preprocessing function.
x = x * 2.0 - 1.0
net = conv2d(x, 64, 3, 3, 1, 1, name="d_conv1", use_sn=use_sn)
net = lrelu(net, leak=0.1)
net = conv2d(net, 128, 4, 4, 2, 2, name="d_conv2", use_sn=use_sn)
net = lrelu(net, leak=0.1)
net = conv2d(net, 128, 3, 3, 1, 1, name="d_conv3", use_sn=use_sn)
net = lrelu(net, leak=0.1)
net = conv2d(net, 256, 4, 4, 2, 2, name="d_conv4", use_sn=use_sn)
net = lrelu(net, leak=0.1)
net = conv2d(net, 256, 3, 3, 1, 1, name="d_conv5", use_sn=use_sn)
net = lrelu(net, leak=0.1)
net = conv2d(net, 512, 4, 4, 2, 2, name="d_conv6", use_sn=use_sn)
net = lrelu(net, leak=0.1)
net = conv2d(net, 512, 3, 3, 1, 1, name="d_conv7", use_sn=use_sn)
net = lrelu(net, leak=0.1)
batch_size = x.shape.as_list()[0]
net = tf.reshape(net, [batch_size, -1])
out_logit = linear(net, 1, scope="d_fc1", use_sn=use_sn)
out = tf.nn.sigmoid(out_logit)
return out, out_logit, net
|
compare_gan-master
|
compare_gan/architectures/sndcgan.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A deep neural architecture with residual blocks and skip connections.
Based on Table 5 from "Spectral Normalization for Generative Adversarial
Networks", Miyato T. et al., 2018. [https://arxiv.org/pdf/1802.05957.pdf].
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from compare_gan.architectures import arch_ops as ops
from compare_gan.architectures import resnet_ops
from six.moves import range
import tensorflow as tf
class Generator(resnet_ops.ResNetGenerator):
"""ResNet generator, 3 blocks, supporting 48x48 resolution."""
def apply(self, z, y, is_training):
"""Build the generator network for the given inputs.
Args:
z: `Tensor` of shape [batch_size, z_dim] with latent code.
y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
labels.
is_training: boolean, are we in train or eval model.
Returns:
A tensor of size [batch_size, 32, 32, colors] with values in [0, 1].
"""
ch = 64
colors = self._image_shape[2]
batch_size = z.get_shape().as_list()[0]
magic = [(8, 4), (4, 2), (2, 1)]
output = ops.linear(z, 6 * 6 * 512, scope="fc_noise")
output = tf.reshape(output, [batch_size, 6, 6, 512], name="fc_reshaped")
for block_idx in range(3):
block = self._resnet_block(
name="B{}".format(block_idx + 1),
in_channels=ch * magic[block_idx][0],
out_channels=ch * magic[block_idx][1],
scale="up")
output = block(output, z=z, y=y, is_training=is_training)
output = self.batch_norm(
output, z=z, y=y, is_training=is_training, scope="final_norm")
output = tf.nn.relu(output)
output = ops.conv2d(output, output_dim=colors, k_h=3, k_w=3, d_h=1, d_w=1,
name="final_conv")
return tf.nn.sigmoid(output)
class Discriminator(resnet_ops.ResNetDiscriminator):
"""ResNet discriminator, 4 blocks, suports 48x48 resolution."""
def apply(self, x, y, is_training):
"""Apply the discriminator on a input.
Args:
x: `Tensor` of shape [batch_size, 32, 32, ?] with real or fake images.
y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
labels.
is_training: Boolean, whether the architecture should be constructed for
training or inference.
Returns:
Tuple of 3 Tensors, the final prediction of the discriminator, the logits
before the final output activation function and logits form the second
last layer.
"""
resnet_ops.validate_image_inputs(x, validate_power2=False)
colors = x.shape[-1].value
if colors not in [1, 3]:
raise ValueError("Number of color channels unknown: %s" % colors)
ch = 64
block = self._resnet_block(
name="B0", in_channels=colors, out_channels=ch, scale="down")
output = block(x, z=None, y=y, is_training=is_training)
magic = [(1, 2), (2, 4), (4, 8), (8, 16)]
for block_idx in range(4):
block = self._resnet_block(
name="B{}".format(block_idx + 1),
in_channels=ch * magic[block_idx][0],
out_channels=ch * magic[block_idx][1],
scale="down" if block_idx < 3 else "none")
output = block(output, z=None, y=y, is_training=is_training)
output = tf.nn.relu(output)
pre_logits = tf.reduce_mean(output, axis=[1, 2])
out_logit = ops.linear(pre_logits, 1, scope="disc_final_fc",
use_sn=self._spectral_norm)
out = tf.nn.sigmoid(out_logit)
return out, out_logit, pre_logits
|
compare_gan-master
|
compare_gan/architectures/resnet_stl.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Re-implementation of BigGAN architecture.
Disclaimer: We note that this is our best-effort re-implementation and stress
that even minor implementation differences may lead to large differences in
trained models due to sensitivity of GANs to optimization hyperparameters and
details of neural architectures. That being said, this code suffices to
reproduce the reported FID on ImageNet 128x128.
Based on "Large Scale GAN Training for High Fidelity Natural Image Synthesys",
Brock A. et al., 2018 [https://arxiv.org/abs/1809.11096].
Supported resolutions: 32, 64, 128, 256, 512. The location of the self-attention
block must be set in the Gin config. See below.
Notable differences to resnet5.py:
- Much wider layers by default.
- 1x1 convs for shortcuts in D and G blocks.
- Last BN in G is unconditional.
- tanh activation in G.
- No shortcut in D block if in_channels == out_channels.
- sum pooling instead of mean pooling in D.
- Last block in D does not downsample.
Information related to parameter counts and Gin configuration:
128x128
-------
Number of parameters: (D) 87,982,370 (G) 70,433,988
Required Gin settings:
options.z_dim = 120
resnet_biggan.Generator.blocks_with_attention = "B4"
resnet_biggan.Discriminator.blocks_with_attention = "B1"
256x256
-------
Number of parameters: (D) 98,635,298 (G) 82,097,604
Required Gin settings:
options.z_dim = 140
resnet_biggan.Generator.blocks_with_attention = "B5"
resnet_biggan.Discriminator.blocks_with_attention = "B2"
512x512
-------
Number of parameters: (D) 98,801,378 (G) 82,468,068
Required Gin settings:
options.z_dim = 160
resnet_biggan.Generator.blocks_with_attention = "B4"
resnet_biggan.Discriminator.blocks_with_attention = "B3"
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import logging
from compare_gan.architectures import abstract_arch
from compare_gan.architectures import arch_ops as ops
from compare_gan.architectures import resnet_ops
import gin
from six.moves import range
import tensorflow as tf
@gin.configurable
class BigGanResNetBlock(resnet_ops.ResNetBlock):
"""ResNet block with options for various normalizations.
This block uses a 1x1 convolution for the (optional) shortcut connection.
"""
def __init__(self,
add_shortcut=True,
**kwargs):
"""Constructs a new ResNet block for BigGAN.
Args:
add_shortcut: Whether to add a shortcut connection.
**kwargs: Additional arguments for ResNetBlock.
"""
super(BigGanResNetBlock, self).__init__(**kwargs)
self._add_shortcut = add_shortcut
def apply(self, inputs, z, y, is_training):
""""ResNet block containing possible down/up sampling, shared for G / D.
Args:
inputs: a 3d input tensor of feature map.
z: the latent vector for potential self-modulation. Can be None if use_sbn
is set to False.
y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
labels.
is_training: boolean, whether or notthis is called during the training.
Returns:
output: a 3d output tensor of feature map.
"""
if inputs.shape[-1].value != self._in_channels:
raise ValueError(
"Unexpected number of input channels (expected {}, got {}).".format(
self._in_channels, inputs.shape[-1].value))
with tf.variable_scope(self._name, values=[inputs]):
outputs = inputs
outputs = self.batch_norm(
outputs, z=z, y=y, is_training=is_training, name="bn1")
if self._layer_norm:
outputs = ops.layer_norm(outputs, is_training=is_training, scope="ln1")
outputs = tf.nn.relu(outputs)
outputs = self._get_conv(
outputs, self._in_channels, self._out_channels, self._scale1,
suffix="conv1")
outputs = self.batch_norm(
outputs, z=z, y=y, is_training=is_training, name="bn2")
if self._layer_norm:
outputs = ops.layer_norm(outputs, is_training=is_training, scope="ln2")
outputs = tf.nn.relu(outputs)
outputs = self._get_conv(
outputs, self._out_channels, self._out_channels, self._scale2,
suffix="conv2")
# Combine skip-connection with the convolved part.
if self._add_shortcut:
shortcut = self._get_conv(
inputs, self._in_channels, self._out_channels, self._scale,
kernel_size=(1, 1),
suffix="conv_shortcut")
outputs += shortcut
logging.info("[Block] %s (z=%s, y=%s) -> %s", inputs.shape,
None if z is None else z.shape,
None if y is None else y.shape, outputs.shape)
return outputs
@gin.configurable
class Generator(abstract_arch.AbstractGenerator):
"""ResNet-based generator supporting resolutions 32, 64, 128, 256, 512."""
def __init__(self,
ch=96,
blocks_with_attention="B4",
hierarchical_z=True,
embed_z=False,
embed_y=True,
embed_y_dim=128,
embed_bias=False,
**kwargs):
"""Constructor for BigGAN generator.
Args:
ch: Channel multiplier.
blocks_with_attention: Comma-separated list of blocks that are followed by
a non-local block.
hierarchical_z: Split z into chunks and only give one chunk to each.
Each chunk will also be concatenated to y, the one hot encoded labels.
embed_z: If True use a learnable embedding of z that is used instead.
The embedding will have the length of z.
embed_y: If True use a learnable embedding of y that is used instead.
embed_y_dim: Size of the embedding of y.
embed_bias: Use bias with for the embedding of z and y.
**kwargs: additional arguments past on to ResNetGenerator.
"""
super(Generator, self).__init__(**kwargs)
self._ch = ch
self._blocks_with_attention = set(blocks_with_attention.split(","))
self._hierarchical_z = hierarchical_z
self._embed_z = embed_z
self._embed_y = embed_y
self._embed_y_dim = embed_y_dim
self._embed_bias = embed_bias
def _resnet_block(self, name, in_channels, out_channels, scale):
"""ResNet block for the generator."""
if scale not in ["up", "none"]:
raise ValueError(
"Unknown generator ResNet block scaling: {}.".format(scale))
return BigGanResNetBlock(
name=name,
in_channels=in_channels,
out_channels=out_channels,
scale=scale,
is_gen_block=True,
spectral_norm=self._spectral_norm,
batch_norm=self.batch_norm)
def _get_in_out_channels(self):
resolution = self._image_shape[0]
if resolution == 512:
channel_multipliers = [16, 16, 8, 8, 4, 2, 1, 1]
elif resolution == 256:
channel_multipliers = [16, 16, 8, 8, 4, 2, 1]
elif resolution == 128:
channel_multipliers = [16, 16, 8, 4, 2, 1]
elif resolution == 64:
channel_multipliers = [16, 16, 8, 4, 2]
elif resolution == 32:
channel_multipliers = [4, 4, 4, 4]
else:
raise ValueError("Unsupported resolution: {}".format(resolution))
in_channels = [self._ch * c for c in channel_multipliers[:-1]]
out_channels = [self._ch * c for c in channel_multipliers[1:]]
return in_channels, out_channels
def apply(self, z, y, is_training):
"""Build the generator network for the given inputs.
Args:
z: `Tensor` of shape [batch_size, z_dim] with latent code.
y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
labels.
is_training: boolean, are we in train or eval model.
Returns:
A tensor of size [batch_size] + self._image_shape with values in [0, 1].
"""
shape_or_none = lambda t: None if t is None else t.shape
logging.info("[Generator] inputs are z=%s, y=%s", z.shape, shape_or_none(y))
# Each block upscales by a factor of 2.
seed_size = 4
z_dim = z.shape[1].value
in_channels, out_channels = self._get_in_out_channels()
num_blocks = len(in_channels)
if self._embed_z:
z = ops.linear(z, z_dim, scope="embed_z", use_sn=False,
use_bias=self._embed_bias)
if self._embed_y:
y = ops.linear(y, self._embed_y_dim, scope="embed_y", use_sn=False,
use_bias=self._embed_bias)
y_per_block = num_blocks * [y]
if self._hierarchical_z:
z_per_block = tf.split(z, num_blocks + 1, axis=1)
z0, z_per_block = z_per_block[0], z_per_block[1:]
if y is not None:
y_per_block = [tf.concat([zi, y], 1) for zi in z_per_block]
else:
z0 = z
z_per_block = num_blocks * [z]
logging.info("[Generator] z0=%s, z_per_block=%s, y_per_block=%s",
z0.shape, [str(shape_or_none(t)) for t in z_per_block],
[str(shape_or_none(t)) for t in y_per_block])
# Map noise to the actual seed.
net = ops.linear(
z0,
in_channels[0] * seed_size * seed_size,
scope="fc_noise",
use_sn=self._spectral_norm)
# Reshape the seed to be a rank-4 Tensor.
net = tf.reshape(
net,
[-1, seed_size, seed_size, in_channels[0]],
name="fc_reshaped")
for block_idx in range(num_blocks):
name = "B{}".format(block_idx + 1)
block = self._resnet_block(
name=name,
in_channels=in_channels[block_idx],
out_channels=out_channels[block_idx],
scale="up")
net = block(
net,
z=z_per_block[block_idx],
y=y_per_block[block_idx],
is_training=is_training)
if name in self._blocks_with_attention:
logging.info("[Generator] Applying non-local block to %s", net.shape)
net = ops.non_local_block(net, "non_local_block",
use_sn=self._spectral_norm)
# Final processing of the net.
# Use unconditional batch norm.
logging.info("[Generator] before final processing: %s", net.shape)
net = ops.batch_norm(net, is_training=is_training, name="final_norm")
net = tf.nn.relu(net)
net = ops.conv2d(net, output_dim=self._image_shape[2], k_h=3, k_w=3,
d_h=1, d_w=1, name="final_conv",
use_sn=self._spectral_norm)
logging.info("[Generator] after final processing: %s", net.shape)
net = (tf.nn.tanh(net) + 1.0) / 2.0
return net
@gin.configurable
class Discriminator(abstract_arch.AbstractDiscriminator):
"""ResNet-based discriminator supporting resolutions 32, 64, 128, 256, 512."""
def __init__(self,
ch=96,
blocks_with_attention="B1",
blocks_with_quantization=None,
project_y=True,
**kwargs):
"""Constructor for BigGAN discriminator.
Args:
ch: Channel multiplier.
blocks_with_attention: Comma-separated list of blocks that are followed by
a non-local block.
project_y: Add an embedding of y in the output layer.
**kwargs: additional arguments past on to ResNetDiscriminator.
"""
super(Discriminator, self).__init__(**kwargs)
self._ch = ch
self._blocks_with_attention = set(blocks_with_attention.split(","))
self._project_y = project_y
self._blocks_with_quantization = [] if blocks_with_quantization is None else set(blocks_with_quantization.split(","))
self._quantize_loss = None
def _resnet_block(self, name, in_channels, out_channels, scale):
"""ResNet block for the generator."""
if scale not in ["down", "none"]:
raise ValueError(
"Unknown discriminator ResNet block scaling: {}.".format(scale))
return BigGanResNetBlock(
name=name,
in_channels=in_channels,
out_channels=out_channels,
scale=scale,
is_gen_block=False,
add_shortcut=in_channels != out_channels,
layer_norm=self._layer_norm,
spectral_norm=self._spectral_norm,
batch_norm=self.batch_norm)
def _get_in_out_channels(self, colors, resolution):
if colors not in [1, 3]:
raise ValueError("Unsupported color channels: {}".format(colors))
if resolution == 512:
channel_multipliers = [1, 1, 2, 4, 8, 8, 16, 16]
elif resolution == 256:
channel_multipliers = [1, 2, 4, 8, 8, 16, 16]
elif resolution == 128:
channel_multipliers = [1, 2, 4, 8, 16, 16]
elif resolution == 64:
channel_multipliers = [2, 4, 8, 16, 16]
elif resolution == 32:
channel_multipliers = [2, 2, 2, 2]
else:
raise ValueError("Unsupported resolution: {}".format(resolution))
out_channels = [self._ch * c for c in channel_multipliers]
in_channels = [colors] + out_channels[:-1]
return in_channels, out_channels
def apply(self, x, y, is_training):
"""Apply the discriminator on a input.
Args:
x: `Tensor` of shape [batch_size, ?, ?, ?] with real or fake images.
y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
labels.
is_training: Boolean, whether the architecture should be constructed for
training or inference.
Returns:
Tuple of 3 Tensors, the final prediction of the discriminator, the logits
before the final output activation function and logits form the second
last layer.
"""
logging.info("[Discriminator] inputs are x=%s, y=%s", x.shape,
None if y is None else y.shape)
resnet_ops.validate_image_inputs(x)
in_channels, out_channels = self._get_in_out_channels(
colors=x.shape[-1].value, resolution=x.shape[1].value)
num_blocks = len(in_channels)
net = x
if len(self._blocks_with_quantization) > 0:
self._quantize_loss = 0
for block_idx in range(num_blocks):
name = "B{}".format(block_idx + 1)
is_last_block = block_idx == num_blocks - 1
block = self._resnet_block(
name=name,
in_channels=in_channels[block_idx],
out_channels=out_channels[block_idx],
scale="none" if is_last_block else "down")
net = block(net, z=None, y=y, is_training=is_training)
if name in self._blocks_with_attention:
logging.info("[Discriminator] Applying non-local block to %s",
net.shape)
net = ops.non_local_block(net, "non_local_block",
use_sn=self._spectral_norm)
if name in self._blocks_with_quantization:
net, q_loss = ops.vector_quantize(
net,
"V{}".format(block_idx + 1),
is_training = is_training,
embedding_dim = out_channels[block_idx]
)
self._quantize_loss += tf.reduce_mean(q_loss)
# Final part
logging.info("[Discriminator] before final processing: %s", net.shape)
net = tf.nn.relu(net)
h = tf.math.reduce_sum(net, axis=[1, 2])
out_logit = ops.linear(h, 1, scope="final_fc", use_sn=self._spectral_norm)
logging.info("[Discriminator] after final processing: %s", net.shape)
if self._project_y:
if y is None:
raise ValueError("You must provide class information y to project.")
with tf.variable_scope("embedding_fc"):
y_embedding_dim = out_channels[-1]
# We do not use ops.linear() below since it does not have an option to
# override the initializer.
kernel = tf.get_variable(
"kernel", [y.shape[1], y_embedding_dim], tf.float32,
initializer=tf.initializers.glorot_normal())
if self._spectral_norm:
kernel = ops.spectral_norm(kernel)
embedded_y = tf.matmul(y, kernel)
logging.info("[Discriminator] embedded_y for projection: %s",
embedded_y.shape)
out_logit += tf.reduce_sum(embedded_y * h, axis=1, keepdims=True)
out = tf.nn.sigmoid(out_logit)
return out, out_logit, h
|
compare_gan-master
|
compare_gan/architectures/resnet_biggan.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests batch normalizations using ResNet5 CIFAR."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import logging
from compare_gan.architectures import arch_ops
from compare_gan.architectures import resnet_cifar
from six.moves import zip
import tensorflow as tf
class ResNetNormTest(tf.test.TestCase):
def testDefaultGenerator(self):
with tf.Graph().as_default():
# batch size 8, 32x32x3 images, 10 classes.
z = tf.zeros((8, 128))
y = tf.one_hot(tf.ones((8,), dtype=tf.int32), 10)
generator = resnet_cifar.Generator(image_shape=(32, 32, 3))
fake_images = generator(z, y=y, is_training=True, reuse=False)
self.assertEqual(fake_images.shape.as_list(), [8, 32, 32, 3])
expected_variables = [
# Name and shape.
("generator/fc_noise/kernel:0", [128, 4096]),
("generator/fc_noise/bias:0", [4096]),
("generator/B1/up_conv_shortcut/kernel:0", [3, 3, 256, 256]),
("generator/B1/up_conv_shortcut/bias:0", [256]),
("generator/B1/up_conv1/kernel:0", [3, 3, 256, 256]),
("generator/B1/up_conv1/bias:0", [256]),
("generator/B1/same_conv2/kernel:0", [3, 3, 256, 256]),
("generator/B1/same_conv2/bias:0", [256]),
("generator/B2/up_conv_shortcut/kernel:0", [3, 3, 256, 256]),
("generator/B2/up_conv_shortcut/bias:0", [256]),
("generator/B2/up_conv1/kernel:0", [3, 3, 256, 256]),
("generator/B2/up_conv1/bias:0", [256]),
("generator/B2/same_conv2/kernel:0", [3, 3, 256, 256]),
("generator/B2/same_conv2/bias:0", [256]),
("generator/B3/up_conv_shortcut/kernel:0", [3, 3, 256, 256]),
("generator/B3/up_conv_shortcut/bias:0", [256]),
("generator/B3/up_conv1/kernel:0", [3, 3, 256, 256]),
("generator/B3/up_conv1/bias:0", [256]),
("generator/B3/same_conv2/kernel:0", [3, 3, 256, 256]),
("generator/B3/same_conv2/bias:0", [256]),
("generator/final_conv/kernel:0", [3, 3, 256, 3]),
("generator/final_conv/bias:0", [3]),
]
actual_variables = [(v.name, v.shape.as_list())
for v in tf.trainable_variables()]
for a, e in zip(actual_variables, expected_variables):
logging.info("actual: %s, expected: %s", a, e)
self.assertEqual(a, e)
self.assertEqual(len(actual_variables), len(expected_variables))
def testDefaultDiscriminator(self):
with tf.Graph().as_default():
# batch size 8, 32x32x3 images, 10 classes.
x = tf.zeros((8, 32, 32, 3))
y = tf.one_hot(tf.ones((8,), dtype=tf.int32), 10)
discriminator = resnet_cifar.Discriminator()
_ = discriminator(x, y=y, is_training=True, reuse=False)
expected_variables = [
# Name and shape.
("discriminator/B1/down_conv_shortcut/kernel:0", [3, 3, 3, 128]),
("discriminator/B1/down_conv_shortcut/bias:0", [128]),
("discriminator/B1/same_conv1/kernel:0", [3, 3, 3, 128]),
("discriminator/B1/same_conv1/bias:0", [128]),
("discriminator/B1/down_conv2/kernel:0", [3, 3, 128, 128]),
("discriminator/B1/down_conv2/bias:0", [128]),
("discriminator/B2/down_conv_shortcut/kernel:0", [3, 3, 128, 128]),
("discriminator/B2/down_conv_shortcut/bias:0", [128]),
("discriminator/B2/same_conv1/kernel:0", [3, 3, 128, 128]),
("discriminator/B2/same_conv1/bias:0", [128]),
("discriminator/B2/down_conv2/kernel:0", [3, 3, 128, 128]),
("discriminator/B2/down_conv2/bias:0", [128]),
("discriminator/B3/same_conv_shortcut/kernel:0", [3, 3, 128, 128]),
("discriminator/B3/same_conv_shortcut/bias:0", [128]),
("discriminator/B3/same_conv1/kernel:0", [3, 3, 128, 128]),
("discriminator/B3/same_conv1/bias:0", [128]),
("discriminator/B3/same_conv2/kernel:0", [3, 3, 128, 128]),
("discriminator/B3/same_conv2/bias:0", [128]),
("discriminator/B4/same_conv_shortcut/kernel:0", [3, 3, 128, 128]),
("discriminator/B4/same_conv_shortcut/bias:0", [128]),
("discriminator/B4/same_conv1/kernel:0", [3, 3, 128, 128]),
("discriminator/B4/same_conv1/bias:0", [128]),
("discriminator/B4/same_conv2/kernel:0", [3, 3, 128, 128]),
("discriminator/B4/same_conv2/bias:0", [128]),
("discriminator/disc_final_fc/kernel:0", [128, 1]),
("discriminator/disc_final_fc/bias:0", [1]),
]
actual_variables = [(v.name, v.shape.as_list())
for v in tf.trainable_variables()]
for a, e in zip(actual_variables, expected_variables):
logging.info("actual: %s, expected: %s", a, e)
self.assertEqual(a, e)
self.assertEqual(len(actual_variables), len(expected_variables))
def testDefaultGeneratorWithBatchNorm(self):
with tf.Graph().as_default():
# batch size 8, 32x32x3 images, 10 classes.
z = tf.zeros((8, 128))
y = tf.one_hot(tf.ones((8,), dtype=tf.int32), 10)
generator = resnet_cifar.Generator(
image_shape=(32, 32, 3),
batch_norm_fn=arch_ops.batch_norm)
fake_images = generator(z, y=y, is_training=True, reuse=False)
self.assertEqual(fake_images.shape.as_list(), [8, 32, 32, 3])
expected_variables = [
# Name and shape.
("generator/fc_noise/kernel:0", [128, 4096]),
("generator/fc_noise/bias:0", [4096]),
("generator/B1/up_conv_shortcut/kernel:0", [3, 3, 256, 256]),
("generator/B1/up_conv_shortcut/bias:0", [256]),
("generator/B1/bn1/gamma:0", [256]),
("generator/B1/bn1/beta:0", [256]),
("generator/B1/up_conv1/kernel:0", [3, 3, 256, 256]),
("generator/B1/up_conv1/bias:0", [256]),
("generator/B1/bn2/gamma:0", [256]),
("generator/B1/bn2/beta:0", [256]),
("generator/B1/same_conv2/kernel:0", [3, 3, 256, 256]),
("generator/B1/same_conv2/bias:0", [256]),
("generator/B2/up_conv_shortcut/kernel:0", [3, 3, 256, 256]),
("generator/B2/up_conv_shortcut/bias:0", [256]),
("generator/B2/bn1/gamma:0", [256]),
("generator/B2/bn1/beta:0", [256]),
("generator/B2/up_conv1/kernel:0", [3, 3, 256, 256]),
("generator/B2/up_conv1/bias:0", [256]),
("generator/B2/bn2/gamma:0", [256]),
("generator/B2/bn2/beta:0", [256]),
("generator/B2/same_conv2/kernel:0", [3, 3, 256, 256]),
("generator/B2/same_conv2/bias:0", [256]),
("generator/B3/up_conv_shortcut/kernel:0", [3, 3, 256, 256]),
("generator/B3/up_conv_shortcut/bias:0", [256]),
("generator/B3/bn1/gamma:0", [256]),
("generator/B3/bn1/beta:0", [256]),
("generator/B3/up_conv1/kernel:0", [3, 3, 256, 256]),
("generator/B3/up_conv1/bias:0", [256]),
("generator/B3/bn2/gamma:0", [256]),
("generator/B3/bn2/beta:0", [256]),
("generator/B3/same_conv2/kernel:0", [3, 3, 256, 256]),
("generator/B3/same_conv2/bias:0", [256]),
("generator/final_norm/gamma:0", [256]),
("generator/final_norm/beta:0", [256]),
("generator/final_conv/kernel:0", [3, 3, 256, 3]),
("generator/final_conv/bias:0", [3]),
]
actual_variables = [(v.name, v.shape.as_list())
for v in tf.trainable_variables()]
for a in actual_variables:
logging.info(a)
for a, e in zip(actual_variables, expected_variables):
logging.info("actual: %s, expected: %s", a, e)
self.assertEqual(a, e)
self.assertEqual(len(actual_variables), len(expected_variables))
def testDefaultGeneratorWithConditionalBatchNorm(self):
with tf.Graph().as_default():
# Batch size 8, 32x32x3 images, 10 classes.
z = tf.zeros((8, 128))
y = tf.one_hot(tf.ones((8,), dtype=tf.int32), 10)
generator = resnet_cifar.Generator(
image_shape=(32, 32, 3),
batch_norm_fn=arch_ops.conditional_batch_norm)
fake_images = generator(z, y=y, is_training=True, reuse=False)
self.assertEqual(fake_images.shape.as_list(), [8, 32, 32, 3])
expected_variables = [
# Name and shape.
("generator/fc_noise/kernel:0", [128, 4096]),
("generator/fc_noise/bias:0", [4096]),
("generator/B1/up_conv_shortcut/kernel:0", [3, 3, 256, 256]),
("generator/B1/up_conv_shortcut/bias:0", [256]),
("generator/B1/bn1/condition/gamma/kernel:0", [10, 256]),
("generator/B1/bn1/condition/beta/kernel:0", [10, 256]),
("generator/B1/up_conv1/kernel:0", [3, 3, 256, 256]),
("generator/B1/up_conv1/bias:0", [256]),
("generator/B1/bn2/condition/gamma/kernel:0", [10, 256]),
("generator/B1/bn2/condition/beta/kernel:0", [10, 256]),
("generator/B1/same_conv2/kernel:0", [3, 3, 256, 256]),
("generator/B1/same_conv2/bias:0", [256]),
("generator/B2/up_conv_shortcut/kernel:0", [3, 3, 256, 256]),
("generator/B2/up_conv_shortcut/bias:0", [256]),
("generator/B2/bn1/condition/gamma/kernel:0", [10, 256]),
("generator/B2/bn1/condition/beta/kernel:0", [10, 256]),
("generator/B2/up_conv1/kernel:0", [3, 3, 256, 256]),
("generator/B2/up_conv1/bias:0", [256]),
("generator/B2/bn2/condition/gamma/kernel:0", [10, 256]),
("generator/B2/bn2/condition/beta/kernel:0", [10, 256]),
("generator/B2/same_conv2/kernel:0", [3, 3, 256, 256]),
("generator/B2/same_conv2/bias:0", [256]),
("generator/B3/up_conv_shortcut/kernel:0", [3, 3, 256, 256]),
("generator/B3/up_conv_shortcut/bias:0", [256]),
("generator/B3/bn1/condition/gamma/kernel:0", [10, 256]),
("generator/B3/bn1/condition/beta/kernel:0", [10, 256]),
("generator/B3/up_conv1/kernel:0", [3, 3, 256, 256]),
("generator/B3/up_conv1/bias:0", [256]),
("generator/B3/bn2/condition/gamma/kernel:0", [10, 256]),
("generator/B3/bn2/condition/beta/kernel:0", [10, 256]),
("generator/B3/same_conv2/kernel:0", [3, 3, 256, 256]),
("generator/B3/same_conv2/bias:0", [256]),
("generator/final_norm/condition/gamma/kernel:0", [10, 256]),
("generator/final_norm/condition/beta/kernel:0", [10, 256]),
("generator/final_conv/kernel:0", [3, 3, 256, 3]),
("generator/final_conv/bias:0", [3]),
]
actual_variables = [(v.name, v.shape.as_list())
for v in tf.trainable_variables()]
for a in actual_variables:
logging.info(a)
for a, e in zip(actual_variables, expected_variables):
logging.info("actual: %s, expected: %s", a, e)
self.assertEqual(a, e)
self.assertEqual(len(actual_variables), len(expected_variables))
def testDefaultGeneratorWithSelfModulatedBatchNorm(self):
with tf.Graph().as_default():
# Batch size 8, 32x32x3 images, 10 classes.
z = tf.zeros((8, 128))
y = tf.one_hot(tf.ones((8,), dtype=tf.int32), 10)
generator = resnet_cifar.Generator(
image_shape=(32, 32, 3),
batch_norm_fn=arch_ops.self_modulated_batch_norm)
fake_images = generator(z, y=y, is_training=True, reuse=False)
self.assertEqual(fake_images.shape.as_list(), [8, 32, 32, 3])
expected_variables = [
# Name and shape.
("generator/fc_noise/kernel:0", [128, 4096]),
("generator/fc_noise/bias:0", [4096]),
("generator/B1/up_conv_shortcut/kernel:0", [3, 3, 256, 256]),
("generator/B1/up_conv_shortcut/bias:0", [256]),
("generator/B1/bn1/sbn/hidden/kernel:0", [128, 32]),
("generator/B1/bn1/sbn/hidden/bias:0", [32]),
("generator/B1/bn1/sbn/gamma/kernel:0", [32, 256]),
("generator/B1/bn1/sbn/gamma/bias:0", [256]),
("generator/B1/bn1/sbn/beta/kernel:0", [32, 256]),
("generator/B1/bn1/sbn/beta/bias:0", [256]),
("generator/B1/up_conv1/kernel:0", [3, 3, 256, 256]),
("generator/B1/up_conv1/bias:0", [256]),
("generator/B1/bn2/sbn/hidden/kernel:0", [128, 32]),
("generator/B1/bn2/sbn/hidden/bias:0", [32]),
("generator/B1/bn2/sbn/gamma/kernel:0", [32, 256]),
("generator/B1/bn2/sbn/gamma/bias:0", [256]),
("generator/B1/bn2/sbn/beta/kernel:0", [32, 256]),
("generator/B1/bn2/sbn/beta/bias:0", [256]),
("generator/B1/same_conv2/kernel:0", [3, 3, 256, 256]),
("generator/B1/same_conv2/bias:0", [256]),
("generator/B2/up_conv_shortcut/kernel:0", [3, 3, 256, 256]),
("generator/B2/up_conv_shortcut/bias:0", [256]),
("generator/B2/bn1/sbn/hidden/kernel:0", [128, 32]),
("generator/B2/bn1/sbn/hidden/bias:0", [32]),
("generator/B2/bn1/sbn/gamma/kernel:0", [32, 256]),
("generator/B2/bn1/sbn/gamma/bias:0", [256]),
("generator/B2/bn1/sbn/beta/kernel:0", [32, 256]),
("generator/B2/bn1/sbn/beta/bias:0", [256]),
("generator/B2/up_conv1/kernel:0", [3, 3, 256, 256]),
("generator/B2/up_conv1/bias:0", [256]),
("generator/B2/bn2/sbn/hidden/kernel:0", [128, 32]),
("generator/B2/bn2/sbn/hidden/bias:0", [32]),
("generator/B2/bn2/sbn/gamma/kernel:0", [32, 256]),
("generator/B2/bn2/sbn/gamma/bias:0", [256]),
("generator/B2/bn2/sbn/beta/kernel:0", [32, 256]),
("generator/B2/bn2/sbn/beta/bias:0", [256]),
("generator/B2/same_conv2/kernel:0", [3, 3, 256, 256]),
("generator/B2/same_conv2/bias:0", [256]),
("generator/B3/up_conv_shortcut/kernel:0", [3, 3, 256, 256]),
("generator/B3/up_conv_shortcut/bias:0", [256]),
("generator/B3/bn1/sbn/hidden/kernel:0", [128, 32]),
("generator/B3/bn1/sbn/hidden/bias:0", [32]),
("generator/B3/bn1/sbn/gamma/kernel:0", [32, 256]),
("generator/B3/bn1/sbn/gamma/bias:0", [256]),
("generator/B3/bn1/sbn/beta/kernel:0", [32, 256]),
("generator/B3/bn1/sbn/beta/bias:0", [256]),
("generator/B3/up_conv1/kernel:0", [3, 3, 256, 256]),
("generator/B3/up_conv1/bias:0", [256]),
("generator/B3/bn2/sbn/hidden/kernel:0", [128, 32]),
("generator/B3/bn2/sbn/hidden/bias:0", [32]),
("generator/B3/bn2/sbn/gamma/kernel:0", [32, 256]),
("generator/B3/bn2/sbn/gamma/bias:0", [256]),
("generator/B3/bn2/sbn/beta/kernel:0", [32, 256]),
("generator/B3/bn2/sbn/beta/bias:0", [256]),
("generator/B3/same_conv2/kernel:0", [3, 3, 256, 256]),
("generator/B3/same_conv2/bias:0", [256]),
("generator/final_norm/sbn/hidden/kernel:0", [128, 32]),
("generator/final_norm/sbn/hidden/bias:0", [32]),
("generator/final_norm/sbn/gamma/kernel:0", [32, 256]),
("generator/final_norm/sbn/gamma/bias:0", [256]),
("generator/final_norm/sbn/beta/kernel:0", [32, 256]),
("generator/final_norm/sbn/beta/bias:0", [256]),
("generator/final_conv/kernel:0", [3, 3, 256, 3]),
("generator/final_conv/bias:0", [3]),
]
actual_variables = [(v.name, v.shape.as_list())
for v in tf.trainable_variables()]
for a in actual_variables:
logging.info(a)
for a, e in zip(actual_variables, expected_variables):
logging.info("actual: %s, expected: %s", a, e)
self.assertEqual(a, e)
self.assertEqual(len(actual_variables), len(expected_variables))
def testDefaultGeneratorWithSpectralNorm(self):
with tf.Graph().as_default():
# Batch size 8, 32x32x3 images, 10 classes.
z = tf.zeros((8, 128))
y = tf.one_hot(tf.ones((8,), dtype=tf.int32), 10)
generator = resnet_cifar.Generator(
image_shape=(32, 32, 3),
spectral_norm=True)
fake_images = generator(z, y=y, is_training=True, reuse=False)
self.assertEqual(fake_images.shape.as_list(), [8, 32, 32, 3])
expected_variables = [
# Name and shape.
("generator/fc_noise/kernel:0", [128, 4096]),
("generator/fc_noise/kernel/u_var:0", [128, 1]),
("generator/fc_noise/bias:0", [4096]),
("generator/B1/up_conv_shortcut/kernel:0", [3, 3, 256, 256]),
("generator/B1/up_conv_shortcut/kernel/u_var:0", [3 * 3 * 256, 1]),
("generator/B1/up_conv_shortcut/bias:0", [256]),
("generator/B1/up_conv1/kernel:0", [3, 3, 256, 256]),
("generator/B1/up_conv1/kernel/u_var:0", [3 * 3 * 256, 1]),
("generator/B1/up_conv1/bias:0", [256]),
("generator/B1/same_conv2/kernel:0", [3, 3, 256, 256]),
("generator/B1/same_conv2/kernel/u_var:0", [3 * 3 * 256, 1]),
("generator/B1/same_conv2/bias:0", [256]),
("generator/B2/up_conv_shortcut/kernel:0", [3, 3, 256, 256]),
("generator/B2/up_conv_shortcut/kernel/u_var:0", [3 * 3 * 256, 1]),
("generator/B2/up_conv_shortcut/bias:0", [256]),
("generator/B2/up_conv1/kernel:0", [3, 3, 256, 256]),
("generator/B2/up_conv1/kernel/u_var:0", [3 * 3 * 256, 1]),
("generator/B2/up_conv1/bias:0", [256]),
("generator/B2/same_conv2/kernel:0", [3, 3, 256, 256]),
("generator/B2/same_conv2/kernel/u_var:0", [3 * 3 * 256, 1]),
("generator/B2/same_conv2/bias:0", [256]),
("generator/B3/up_conv_shortcut/kernel:0", [3, 3, 256, 256]),
("generator/B3/up_conv_shortcut/kernel/u_var:0", [3 * 3 * 256, 1]),
("generator/B3/up_conv_shortcut/bias:0", [256]),
("generator/B3/up_conv1/kernel:0", [3, 3, 256, 256]),
("generator/B3/up_conv1/kernel/u_var:0", [3 * 3 * 256, 1]),
("generator/B3/up_conv1/bias:0", [256]),
("generator/B3/same_conv2/kernel:0", [3, 3, 256, 256]),
("generator/B3/same_conv2/kernel/u_var:0", [3 * 3 * 256, 1]),
("generator/B3/same_conv2/bias:0", [256]),
("generator/final_conv/kernel:0", [3, 3, 256, 3]),
("generator/final_conv/kernel/u_var:0", [3 * 3 * 256, 1]),
("generator/final_conv/bias:0", [3]),
]
actual_variables = [(v.name, v.shape.as_list())
for v in tf.global_variables()]
for a in actual_variables:
logging.info(a)
for a, e in zip(actual_variables, expected_variables):
logging.info("actual: %s, expected: %s", a, e)
self.assertEqual(a, e)
self.assertEqual(len(actual_variables), len(expected_variables))
if __name__ == "__main__":
tf.test.main()
|
compare_gan-master
|
compare_gan/architectures/resnet_norm_test.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of InfoGAN generator and discriminator architectures.
Details are available in https://arxiv.org/pdf/1606.03657.pdf.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from compare_gan.architectures import abstract_arch
from compare_gan.architectures.arch_ops import batch_norm
from compare_gan.architectures.arch_ops import conv2d
from compare_gan.architectures.arch_ops import deconv2d
from compare_gan.architectures.arch_ops import linear
from compare_gan.architectures.arch_ops import lrelu
import tensorflow as tf
class Generator(abstract_arch.AbstractGenerator):
"""Generator architecture based on InfoGAN."""
def apply(self, z, y, is_training):
"""Build the generator network for the given inputs.
Args:
z: `Tensor` of shape [batch_size, z_dim] with latent code.
y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
labels.
is_training: boolean, are we in train or eval model.
Returns:
A tensor of size [batch_size] + self._image_shape with values in [0, 1].
"""
del y
h, w, c = self._image_shape
bs = z.shape.as_list()[0]
net = linear(z, 1024, scope="g_fc1")
net = lrelu(batch_norm(net, is_training=is_training, name="g_bn1"))
net = linear(net, 128 * (h // 4) * (w // 4), scope="g_fc2")
net = lrelu(batch_norm(net, is_training=is_training, name="g_bn2"))
net = tf.reshape(net, [bs, h // 4, w // 4, 128])
net = deconv2d(net, [bs, h // 2, w // 2, 64], 4, 4, 2, 2, name="g_dc3")
net = lrelu(batch_norm(net, is_training=is_training, name="g_bn3"))
net = deconv2d(net, [bs, h, w, c], 4, 4, 2, 2, name="g_dc4")
out = tf.nn.sigmoid(net)
return out
class Discriminator(abstract_arch.AbstractDiscriminator):
"""Discriminator architecture based on InfoGAN."""
def apply(self, x, y, is_training):
"""Apply the discriminator on a input.
Args:
x: `Tensor` of shape [batch_size, ?, ?, ?] with real or fake images.
y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
labels.
is_training: Boolean, whether the architecture should be constructed for
training or inference.
Returns:
Tuple of 3 Tensors, the final prediction of the discriminator, the logits
before the final output activation function and logits form the second
last layer.
"""
use_sn = self._spectral_norm
batch_size = x.shape.as_list()[0]
# Resulting shape: [bs, h/2, w/2, 64].
net = lrelu(conv2d(x, 64, 4, 4, 2, 2, name="d_conv1", use_sn=use_sn))
# Resulting shape: [bs, h/4, w/4, 128].
net = conv2d(net, 128, 4, 4, 2, 2, name="d_conv2", use_sn=use_sn)
net = self.batch_norm(net, y=y, is_training=is_training, name="d_bn2")
net = lrelu(net)
# Resulting shape: [bs, h * w * 8].
net = tf.reshape(net, [batch_size, -1])
# Resulting shape: [bs, 1024].
net = linear(net, 1024, scope="d_fc3", use_sn=use_sn)
net = self.batch_norm(net, y=y, is_training=is_training, name="d_bn3")
net = lrelu(net)
# Resulting shape: [bs, 1].
out_logit = linear(net, 1, scope="d_fc4", use_sn=use_sn)
out = tf.nn.sigmoid(out_logit)
return out, out_logit, net
|
compare_gan-master
|
compare_gan/architectures/infogan.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A deep neural architecture with residual blocks and skip connections.
It contains 5 residual blocks in both the generator and discriminator and
supports 128x128 resolution. Details can be found in "Improved Training
of Wasserstein GANs", Gulrajani I. et al. 2017. The related code is available at
https://github.com/igul222/improved_wgan_training/blob/master/gan_64x64.py.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from compare_gan.architectures import arch_ops as ops
from compare_gan.architectures import resnet_ops
import numpy as np
from six.moves import range
import tensorflow as tf
class Generator(resnet_ops.ResNetGenerator):
"""ResNet generator consisting of 5 blocks, outputs 128x128x3 resolution."""
def __init__(self, ch=64, channels=(8, 8, 4, 4, 2, 1), **kwargs):
super(Generator, self).__init__(**kwargs)
self._ch = ch
self._channels = channels
def apply(self, z, y, is_training):
"""Build the generator network for the given inputs.
Args:
z: `Tensor` of shape [batch_size, z_dim] with latent code.
y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
labels.
is_training: boolean, are we in train or eval model.
Returns:
A tensor of size [batch_size] + self._image_shape with values in [0, 1].
"""
# Each block upscales by a factor of 2.
seed_size = 4
image_size = self._image_shape[0]
# Map noise to the actual seed.
net = ops.linear(
z,
self._ch * self._channels[0] * seed_size * seed_size,
scope="fc_noise")
# Reshape the seed to be a rank-4 Tensor.
net = tf.reshape(
net,
[-1, seed_size, seed_size, self._ch * self._channels[0]],
name="fc_reshaped")
up_layers = np.log2(float(image_size) / seed_size)
if not up_layers.is_integer():
raise ValueError("log2({}/{}) must be an integer.".format(
image_size, seed_size))
if up_layers < 0 or up_layers > 5:
raise ValueError("Invalid image_size {}.".format(image_size))
up_layers = int(up_layers)
for block_idx in range(5):
block = self._resnet_block(
name="B{}".format(block_idx + 1),
in_channels=self._ch * self._channels[block_idx],
out_channels=self._ch * self._channels[block_idx + 1],
scale="up" if block_idx < up_layers else "none")
net = block(net, z=z, y=y, is_training=is_training)
net = self.batch_norm(
net, z=z, y=y, is_training=is_training, name="final_norm")
net = tf.nn.relu(net)
net = ops.conv2d(net, output_dim=self._image_shape[2],
k_h=3, k_w=3, d_h=1, d_w=1, name="final_conv")
net = tf.nn.sigmoid(net)
return net
class Discriminator(resnet_ops.ResNetDiscriminator):
"""ResNet5 discriminator, 5 blocks, supporting 128x128x3 and 128x128x1."""
def __init__(self, ch=64, channels=(1, 2, 4, 4, 8, 8), **kwargs):
super(Discriminator, self).__init__(**kwargs)
self._ch = ch
self._channels = channels
def apply(self, x, y, is_training):
"""Apply the discriminator on a input.
Args:
x: `Tensor` of shape [batch_size, ?, ?, ?] with real or fake images.
y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
labels.
is_training: Boolean, whether the architecture should be constructed for
training or inference.
Returns:
Tuple of 3 Tensors, the final prediction of the discriminator, the logits
before the final output activation function and logits form the second
last layer.
"""
resnet_ops.validate_image_inputs(x)
colors = x.shape[3].value
if colors not in [1, 3]:
raise ValueError("Number of color channels not supported: {}".format(
colors))
block = self._resnet_block(
name="B0",
in_channels=colors,
out_channels=self._ch,
scale="down")
output = block(x, z=None, y=y, is_training=is_training)
for block_idx in range(5):
block = self._resnet_block(
name="B{}".format(block_idx + 1),
in_channels=self._ch * self._channels[block_idx],
out_channels=self._ch * self._channels[block_idx + 1],
scale="down")
output = block(output, z=None, y=y, is_training=is_training)
output = tf.nn.relu(output)
pre_logits = tf.reduce_mean(output, axis=[1, 2])
out_logit = ops.linear(pre_logits, 1, scope="disc_final_fc",
use_sn=self._spectral_norm)
out = tf.nn.sigmoid(out_logit)
return out, out_logit, pre_logits
|
compare_gan-master
|
compare_gan/architectures/resnet5.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests weight initialization ops using ResNet5 architecture."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from compare_gan.architectures import resnet5
from compare_gan.gans import consts
import gin
import tensorflow as tf
class ResNetInitTest(tf.test.TestCase):
def setUp(self):
super(ResNetInitTest, self).setUp()
gin.clear_config()
def testInitializersOldDefault(self):
valid_initalizer = [
"kernel/Initializer/random_normal",
"bias/Initializer/Const",
# truncated_normal is the old default for conv2d.
"kernel/Initializer/truncated_normal",
"bias/Initializer/Const",
"beta/Initializer/zeros",
"gamma/Initializer/ones",
]
valid_op_names = "/({}):0$".format("|".join(valid_initalizer))
with tf.Graph().as_default():
z = tf.zeros((2, 128))
fake_image = resnet5.Generator(image_shape=(128, 128, 3))(
z, y=None, is_training=True)
resnet5.Discriminator()(fake_image, y=None, is_training=True)
for var in tf.trainable_variables():
op_name = var.initializer.inputs[1].name
self.assertRegex(op_name, valid_op_names)
def testInitializersRandomNormal(self):
gin.bind_parameter("weights.initializer", consts.NORMAL_INIT)
valid_initalizer = [
"kernel/Initializer/random_normal",
"bias/Initializer/Const",
"kernel/Initializer/random_normal",
"bias/Initializer/Const",
"beta/Initializer/zeros",
"gamma/Initializer/ones",
]
valid_op_names = "/({}):0$".format("|".join(valid_initalizer))
with tf.Graph().as_default():
z = tf.zeros((2, 128))
fake_image = resnet5.Generator(image_shape=(128, 128, 3))(
z, y=None, is_training=True)
resnet5.Discriminator()(fake_image, y=None, is_training=True)
for var in tf.trainable_variables():
op_name = var.initializer.inputs[1].name
self.assertRegex(op_name, valid_op_names)
def testInitializersTruncatedNormal(self):
gin.bind_parameter("weights.initializer", consts.TRUNCATED_INIT)
valid_initalizer = [
"kernel/Initializer/truncated_normal",
"bias/Initializer/Const",
"kernel/Initializer/truncated_normal",
"bias/Initializer/Const",
"beta/Initializer/zeros",
"gamma/Initializer/ones",
]
valid_op_names = "/({}):0$".format("|".join(valid_initalizer))
with tf.Graph().as_default():
z = tf.zeros((2, 128))
fake_image = resnet5.Generator(image_shape=(128, 128, 3))(
z, y=None, is_training=True)
resnet5.Discriminator()(fake_image, y=None, is_training=True)
for var in tf.trainable_variables():
op_name = var.initializer.inputs[1].name
self.assertRegex(op_name, valid_op_names)
def testGeneratorInitializersOrthogonal(self):
gin.bind_parameter("weights.initializer", consts.ORTHOGONAL_INIT)
valid_initalizer = [
"kernel/Initializer/mul_1",
"bias/Initializer/Const",
"kernel/Initializer/mul_1",
"bias/Initializer/Const",
"beta/Initializer/zeros",
"gamma/Initializer/ones",
]
valid_op_names = "/({}):0$".format("|".join(valid_initalizer))
with tf.Graph().as_default():
z = tf.zeros((2, 128))
fake_image = resnet5.Generator(image_shape=(128, 128, 3))(
z, y=None, is_training=True)
resnet5.Discriminator()(fake_image, y=None, is_training=True)
for var in tf.trainable_variables():
op_name = var.initializer.inputs[1].name
self.assertRegex(op_name, valid_op_names)
if __name__ == "__main__":
tf.test.main()
|
compare_gan-master
|
compare_gan/architectures/resnet_init_test.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Resnet generator and discriminator for CIFAR.
Based on Table 4 from "Spectral Normalization for Generative Adversarial
Networks", Miyato T. et al., 2018. [https://arxiv.org/pdf/1802.05957.pdf].
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from compare_gan.architectures import arch_ops as ops
from compare_gan.architectures import resnet_ops
import gin
from six.moves import range
import tensorflow as tf
@gin.configurable
class Generator(resnet_ops.ResNetGenerator):
"""ResNet generator, 4 blocks, supporting 32x32 resolution."""
def __init__(self,
hierarchical_z=False,
embed_z=False,
embed_y=False,
**kwargs):
"""Constructor for the ResNet Cifar generator.
Args:
hierarchical_z: Split z into chunks and only give one chunk to each.
Each chunk will also be concatenated to y, the one hot encoded labels.
embed_z: If True use a learnable embedding of z that is used instead.
The embedding will have the length of z.
embed_y: If True use a learnable embedding of y that is used instead.
The embedding will have the length of z (not y!).
**kwargs: additional arguments past on to ResNetGenerator.
"""
super(Generator, self).__init__(**kwargs)
self._hierarchical_z = hierarchical_z
self._embed_z = embed_z
self._embed_y = embed_y
def apply(self, z, y, is_training):
"""Build the generator network for the given inputs.
Args:
z: `Tensor` of shape [batch_size, z_dim] with latent code.
y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
labels.
is_training: boolean, are we in train or eval model.
Returns:
A tensor of size [batch_size, 32, 32, colors] with values in [0, 1].
"""
assert self._image_shape[0] == 32
assert self._image_shape[1] == 32
num_blocks = 3
z_dim = z.shape[1].value
if self._embed_z:
z = ops.linear(z, z_dim, scope="embed_z", use_sn=self._spectral_norm)
if self._embed_y:
y = ops.linear(y, z_dim, scope="embed_y", use_sn=self._spectral_norm)
y_per_block = num_blocks * [y]
if self._hierarchical_z:
z_per_block = tf.split(z, num_blocks + 1, axis=1)
z0, z_per_block = z_per_block[0], z_per_block[1:]
if y is not None:
y_per_block = [tf.concat([zi, y], 1) for zi in z_per_block]
else:
z0 = z
z_per_block = num_blocks * [z]
output = ops.linear(z0, 4 * 4 * 256, scope="fc_noise",
use_sn=self._spectral_norm)
output = tf.reshape(output, [-1, 4, 4, 256], name="fc_reshaped")
for block_idx in range(3):
block = self._resnet_block(
name="B{}".format(block_idx + 1),
in_channels=256,
out_channels=256,
scale="up")
output = block(
output,
z=z_per_block[block_idx],
y=y_per_block[block_idx],
is_training=is_training)
# Final processing of the output.
output = self.batch_norm(
output, z=z, y=y, is_training=is_training, name="final_norm")
output = tf.nn.relu(output)
output = ops.conv2d(output, output_dim=self._image_shape[2], k_h=3, k_w=3,
d_h=1, d_w=1, name="final_conv",
use_sn=self._spectral_norm,)
return tf.nn.sigmoid(output)
@gin.configurable
class Discriminator(resnet_ops.ResNetDiscriminator):
"""ResNet discriminator, 4 blocks, supporting 32x32 with 1 or 3 colors."""
def __init__(self, project_y=False, **kwargs):
super(Discriminator, self).__init__(**kwargs)
self._project_y = project_y
def apply(self, x, y, is_training):
"""Apply the discriminator on a input.
Args:
x: `Tensor` of shape [batch_size, 32, 32, ?] with real or fake images.
y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
labels.
is_training: Boolean, whether the architecture should be constructed for
training or inference.
Returns:
Tuple of 3 Tensors, the final prediction of the discriminator, the logits
before the final output activation function and logits form the second
last layer.
"""
resnet_ops.validate_image_inputs(x)
colors = x.shape[3].value
if colors not in [1, 3]:
raise ValueError("Number of color channels not supported: {}".format(
colors))
output = x
for block_idx in range(4):
block = self._resnet_block(
name="B{}".format(block_idx + 1),
in_channels=colors if block_idx == 0 else 128,
out_channels=128,
scale="down" if block_idx <= 1 else "none")
output = block(output, z=None, y=y, is_training=is_training)
# Final part - ReLU
output = tf.nn.relu(output)
h = tf.reduce_mean(output, axis=[1, 2])
out_logit = ops.linear(h, 1, scope="disc_final_fc",
use_sn=self._spectral_norm)
if self._project_y:
if y is None:
raise ValueError("You must provide class information y to project.")
embedded_y = ops.linear(y, 128, use_bias=False,
scope="embedding_fc", use_sn=self._spectral_norm)
out_logit += tf.reduce_sum(embedded_y * h, axis=1, keepdims=True)
out = tf.nn.sigmoid(out_logit)
return out, out_logit, h
|
compare_gan-master
|
compare_gan/architectures/resnet_cifar.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Defines interfaces for generator and discriminator networks."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
from compare_gan import utils
import gin
import six
import tensorflow as tf
@six.add_metaclass(abc.ABCMeta)
class _Module(object):
"""Base class for architectures.
Long term this will be replaced by `tf.Module` in TF 2.0.
"""
def __init__(self, name):
self._name = name
@property
def name(self):
return self._name
@property
def trainable_variables(self):
return [var for var in tf.trainable_variables() if self._name in var.name]
@gin.configurable("G", blacklist=["name", "image_shape"])
class AbstractGenerator(_Module):
"""Interface for generator architectures."""
def __init__(self,
name="generator",
image_shape=None,
batch_norm_fn=None,
spectral_norm=False):
"""Constructor for all generator architectures.
Args:
name: Scope name of the generator.
image_shape: Image shape to be generated, [height, width, colors].
batch_norm_fn: Function for batch normalization or None.
spectral_norm: If True use spectral normalization for all weights.
"""
super(AbstractGenerator, self).__init__(name=name)
self._name = name
self._image_shape = image_shape
self._batch_norm_fn = batch_norm_fn
self._spectral_norm = spectral_norm
def __call__(self, z, y, is_training, reuse=tf.AUTO_REUSE):
with tf.variable_scope(self.name, values=[z, y], reuse=reuse):
outputs = self.apply(z=z, y=y, is_training=is_training)
return outputs
def batch_norm(self, inputs, **kwargs):
if self._batch_norm_fn is None:
return inputs
args = kwargs.copy()
args["inputs"] = inputs
if "use_sn" not in args:
args["use_sn"] = self._spectral_norm
return utils.call_with_accepted_args(self._batch_norm_fn, **args)
@abc.abstractmethod
def apply(self, z, y, is_training):
"""Apply the generator on a input.
Args:
z: `Tensor` of shape [batch_size, z_dim] with latent code.
y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
labels.
is_training: Boolean, whether the architecture should be constructed for
training or inference.
Returns:
Generated images of shape [batch_size] + self.image_shape.
"""
@gin.configurable("D", blacklist=["name"])
class AbstractDiscriminator(_Module):
"""Interface for discriminator architectures."""
def __init__(self,
name="discriminator",
batch_norm_fn=None,
layer_norm=False,
spectral_norm=False):
super(AbstractDiscriminator, self).__init__(name=name)
self._name = name
self._batch_norm_fn = batch_norm_fn
self._layer_norm = layer_norm
self._spectral_norm = spectral_norm
def __call__(self, x, y, is_training, reuse=tf.AUTO_REUSE):
with tf.variable_scope(self.name, values=[x, y], reuse=reuse):
outputs = self.apply(x=x, y=y, is_training=is_training)
return outputs
def batch_norm(self, inputs, **kwargs):
if self._batch_norm_fn is None:
return inputs
args = kwargs.copy()
args["inputs"] = inputs
if "use_sn" not in args:
args["use_sn"] = self._spectral_norm
return utils.call_with_accepted_args(self._batch_norm_fn, **args)
@abc.abstractmethod
def apply(self, x, y, is_training):
"""Apply the discriminator on a input.
Args:
x: `Tensor` of shape [batch_size, ?, ?, ?] with real or fake images.
y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
labels.
is_training: Boolean, whether the architecture should be constructed for
training or inference.
Returns:
Tuple of 3 Tensors, the final prediction of the discriminator, the logits
before the final output activation function and logits form the second
last layer.
"""
|
compare_gan-master
|
compare_gan/architectures/abstract_arch.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# coding=utf-8
|
compare_gan-master
|
compare_gan/architectures/__init__.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ResNet specific operations.
Defines the default ResNet generator and discriminator blocks and some helper
operations such as unpooling.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
from compare_gan.architectures import abstract_arch
from compare_gan.architectures import arch_ops as ops
from six.moves import range
import tensorflow as tf
def unpool(value, name="unpool"):
"""Unpooling operation.
N-dimensional version of the unpooling operation from
https://www.robots.ox.ac.uk/~vgg/rg/papers/Dosovitskiy_Learning_to_Generate_2015_CVPR_paper.pdf
Taken from: https://github.com/tensorflow/tensorflow/issues/2169
Args:
value: a Tensor of shape [b, d0, d1, ..., dn, ch]
name: name of the op
Returns:
A Tensor of shape [b, 2*d0, 2*d1, ..., 2*dn, ch]
"""
with tf.name_scope(name) as scope:
sh = value.get_shape().as_list()
dim = len(sh[1:-1])
out = (tf.reshape(value, [-1] + sh[-dim:]))
for i in range(dim, 0, -1):
out = tf.concat([out, tf.zeros_like(out)], i)
out_size = [-1] + [s * 2 for s in sh[1:-1]] + [sh[-1]]
out = tf.reshape(out, out_size, name=scope)
return out
def validate_image_inputs(inputs, validate_power2=True):
inputs.get_shape().assert_has_rank(4)
inputs.get_shape()[1:3].assert_is_fully_defined()
if inputs.get_shape()[1] != inputs.get_shape()[2]:
raise ValueError("Input tensor does not have equal width and height: ",
inputs.get_shape()[1:3])
width = inputs.get_shape().as_list()[1]
if validate_power2 and math.log(width, 2) != int(math.log(width, 2)):
raise ValueError("Input tensor `width` is not a power of 2: ", width)
class ResNetBlock(object):
"""ResNet block with options for various normalizations."""
def __init__(self,
name,
in_channels,
out_channels,
scale,
is_gen_block,
layer_norm=False,
spectral_norm=False,
batch_norm=None):
"""Constructs a new ResNet block.
Args:
name: Scope name for the resent block.
in_channels: Integer, the input channel size.
out_channels: Integer, the output channel size.
scale: Whether or not to scale up or down, choose from "up", "down" or
"none".
is_gen_block: Boolean, deciding whether this is a generator or
discriminator block.
layer_norm: Apply layer norm before both convolutions.
spectral_norm: Use spectral normalization for all weights.
batch_norm: Function for batch normalization.
"""
assert scale in ["up", "down", "none"]
self._name = name
self._in_channels = in_channels
self._out_channels = out_channels
self._scale = scale
# In SN paper, if they upscale in generator they do this in the first conv.
# For discriminator downsampling happens after second conv.
self._scale1 = scale if is_gen_block else "none"
self._scale2 = "none" if is_gen_block else scale
self._layer_norm = layer_norm
self._spectral_norm = spectral_norm
self.batch_norm = batch_norm
def __call__(self, inputs, z, y, is_training):
return self.apply(inputs=inputs, z=z, y=y, is_training=is_training)
def _get_conv(self, inputs, in_channels, out_channels, scale, suffix,
kernel_size=(3, 3), strides=(1, 1)):
"""Performs a convolution in the ResNet block."""
if inputs.get_shape().as_list()[-1] != in_channels:
raise ValueError("Unexpected number of input channels.")
if scale not in ["up", "down", "none"]:
raise ValueError(
"Scale: got {}, expected 'up', 'down', or 'none'.".format(scale))
outputs = inputs
if scale == "up":
outputs = unpool(outputs)
outputs = ops.conv2d(
outputs,
output_dim=out_channels,
k_h=kernel_size[0], k_w=kernel_size[1],
d_h=strides[0], d_w=strides[1],
use_sn=self._spectral_norm,
name="{}_{}".format("same" if scale == "none" else scale, suffix))
if scale == "down":
outputs = tf.nn.pool(outputs, [2, 2], "AVG", "SAME", strides=[2, 2],
name="pool_%s" % suffix)
return outputs
def apply(self, inputs, z, y, is_training):
""""ResNet block containing possible down/up sampling, shared for G / D.
Args:
inputs: a 3d input tensor of feature map.
z: the latent vector for potential self-modulation. Can be None if use_sbn
is set to False.
y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
labels.
is_training: boolean, whether or notthis is called during the training.
Returns:
output: a 3d output tensor of feature map.
"""
if inputs.get_shape().as_list()[-1] != self._in_channels:
raise ValueError("Unexpected number of input channels.")
with tf.variable_scope(self._name, values=[inputs]):
output = inputs
shortcut = self._get_conv(
output, self._in_channels, self._out_channels, self._scale,
suffix="conv_shortcut")
output = self.batch_norm(
output, z=z, y=y, is_training=is_training, name="bn1")
if self._layer_norm:
output = ops.layer_norm(output, is_training=is_training, scope="ln1")
output = tf.nn.relu(output)
output = self._get_conv(
output, self._in_channels, self._out_channels, self._scale1,
suffix="conv1")
output = self.batch_norm(
output, z=z, y=y, is_training=is_training, name="bn2")
if self._layer_norm:
output = ops.layer_norm(output, is_training=is_training, scope="ln2")
output = tf.nn.relu(output)
output = self._get_conv(
output, self._out_channels, self._out_channels, self._scale2,
suffix="conv2")
# Combine skip-connection with the convolved part.
output += shortcut
return output
class ResNetGenerator(abstract_arch.AbstractGenerator):
"""Abstract base class for generators based on the ResNet architecture."""
def _resnet_block(self, name, in_channels, out_channels, scale):
"""ResNet block for the generator."""
if scale not in ["up", "none"]:
raise ValueError(
"Unknown generator ResNet block scaling: {}.".format(scale))
return ResNetBlock(
name=name,
in_channels=in_channels,
out_channels=out_channels,
scale=scale,
is_gen_block=True,
spectral_norm=self._spectral_norm,
batch_norm=self.batch_norm)
class ResNetDiscriminator(abstract_arch.AbstractDiscriminator):
"""Abstract base class for discriminators based on the ResNet architecture."""
def _resnet_block(self, name, in_channels, out_channels, scale):
"""ResNet block for the generator."""
if scale not in ["down", "none"]:
raise ValueError(
"Unknown discriminator ResNet block scaling: {}.".format(scale))
return ResNetBlock(
name=name,
in_channels=in_channels,
out_channels=out_channels,
scale=scale,
is_gen_block=False,
layer_norm=self._layer_norm,
spectral_norm=self._spectral_norm,
batch_norm=self.batch_norm)
|
compare_gan-master
|
compare_gan/architectures/resnet_ops.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test whether resnet_biggan matches the original BigGAN architecture.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import logging
from compare_gan import utils
from compare_gan.architectures import arch_ops
from compare_gan.architectures import resnet_biggan
import gin
import numpy as np
import tensorflow as tf
def guess_initializer(var, graph=None):
"""Helper function to guess the initializer of a variable.
The function looks at the operations in the initializer name space for the
variable (e.g. my_scope/my_var_name/Initializer/*). The TF core initializers
have characteristic sets of operations that can be used to determine the
initializer.
Args:
var: `tf.Variable`. The function will use the name to look for initializer
operations in the same scope.
graph: Optional `tf.Graph` that contains the variable. If None the default
graph is used.
Returns:
Tuple of the name of the guessed initializer.
"""
if graph is None:
graph = tf.get_default_graph()
prefix = var.op.name + "/Initializer"
ops = [op for op in graph.get_operations()
if op.name.startswith(prefix)]
assert ops, "No operations found for prefix {}".format(prefix)
op_names = [op.name[len(prefix) + 1:] for op in ops]
if len(op_names) == 1:
if op_names[0] == "Const":
value = ops[0].get_attr("value").float_val[0]
if value == 0.0:
return "zeros"
if np.isclose(value, 1.0):
return "ones"
return "constant"
return op_names[0] # ones or zeros
if "Qr" in op_names and "DiagPart" in op_names:
return "orthogonal"
if "random_uniform" in op_names:
return "glorot_uniform"
stddev_ops = [op for op in ops if op.name.endswith("stddev")]
if stddev_ops:
assert len(stddev_ops) == 1
stddev = stddev_ops[0].get_attr("value").float_val[0]
else:
stddev = None
if "random_normal" in op_names:
return "random_normal"
if "truncated_normal" in op_names:
if len(str(stddev)) > 5:
return "glorot_normal"
return "truncated_normal"
class ResNet5BigGanTest(tf.test.TestCase):
def setUp(self):
super(ResNet5BigGanTest, self).setUp()
gin.clear_config()
def testNumberOfParameters(self):
with tf.Graph().as_default():
batch_size = 16
z = tf.zeros((batch_size, 120))
y = tf.one_hot(tf.ones((batch_size,), dtype=tf.int32), 1000)
generator = resnet_biggan.Generator(
image_shape=(128, 128, 3),
batch_norm_fn=arch_ops.conditional_batch_norm)
fake_images = generator(z, y=y, is_training=True, reuse=False)
self.assertEqual(fake_images.shape.as_list(), [batch_size, 128, 128, 3])
discriminator = resnet_biggan.Discriminator()
predictions = discriminator(fake_images, y, is_training=True)
self.assertLen(predictions, 3)
t_vars = tf.trainable_variables()
g_vars = [var for var in t_vars if "generator" in var.name]
d_vars = [var for var in t_vars if "discriminator" in var.name]
g_param_overview = utils.get_parameter_overview(g_vars, limit=None)
d_param_overview = utils.get_parameter_overview(d_vars, limit=None)
logging.info("Generator variables:\n%s", g_param_overview)
logging.info("Discriminator variables:\n%s", d_param_overview)
for v in g_vars:
parts = v.op.name.split("/")
layer, var_name = parts[-2], parts[-1]
layers_with_bias = {"fc_noise", "up_conv_shortcut", "up_conv1",
"same_conv2", "final_conv"}
# No biases in conditional BN or self-attention.
if layer not in layers_with_bias:
self.assertNotEqual(var_name, "bias", msg=str(v))
# Batch norm variables.
if parts[-3] == "condition":
if parts[-4] == "final_bn":
self.assertEqual(var_name, "kernel", msg=str(v))
self.assertEqual(v.shape.as_list(), [1, 1, 1, 96], msg=str(v))
else:
self.assertEqual(var_name, "kernel", msg=str(v))
self.assertEqual(v.shape[0].value, 148, msg=str(v))
# Embedding layer.
if layer == "embed_y":
self.assertEqual(var_name, "kernel", msg=str(v))
self.assertAllEqual(v.shape.as_list(), [1000, 128], msg=str(v))
# Shortcut connections use 1x1 convolution.
if layer == "up_conv_shortcut" and var_name == "kernel":
self.assertEqual(v.shape.as_list()[:2], [1, 1], msg=str(v))
g_num_weights = sum([v.get_shape().num_elements() for v in g_vars])
self.assertEqual(g_num_weights, 70433988)
for v in d_vars:
parts = v.op.name.split("/")
layer, var_name = parts[-2], parts[-1]
layers_with_bias = {"down_conv_shortcut", "same_conv1", "down_conv2",
"same_conv_shortcut", "same_conv2", "final_fc"}
# No biases in conditional BN or self-attention.
if layer not in layers_with_bias:
self.assertNotEqual(var_name, "bias", msg=str(v))
# no Shortcut in last block.
if parts[-3] == "B6":
self.assertNotEqual(layer, "same_shortcut", msg=str(v))
d_num_weights = sum([v.get_shape().num_elements() for v in d_vars])
self.assertEqual(d_num_weights, 87982370)
def testInitializers(self):
gin.bind_parameter("weights.initializer", "orthogonal")
with tf.Graph().as_default():
z = tf.zeros((8, 120))
y = tf.one_hot(tf.ones((8,), dtype=tf.int32), 1000)
generator = resnet_biggan.Generator(
image_shape=(128, 128, 3),
batch_norm_fn=arch_ops.conditional_batch_norm)
fake_images = generator(z, y=y, is_training=True, reuse=False)
discriminator = resnet_biggan.Discriminator()
discriminator(fake_images, y, is_training=True)
for v in tf.trainable_variables():
parts = v.op.name.split("/")
layer, var_name = parts[-2], parts[-1]
initializer_name = guess_initializer(v)
logging.info("%s => %s", v.op.name, initializer_name)
if layer == "embedding_fc" and var_name == "kernel":
self.assertEqual(initializer_name, "glorot_normal")
elif layer == "non_local_block" and var_name == "sigma":
self.assertEqual(initializer_name, "zeros")
elif layer == "final_norm" and var_name == "gamma":
self.assertEqual(initializer_name, "ones")
elif layer == "final_norm" and var_name == "beta":
self.assertEqual(initializer_name, "zeros")
elif var_name == "kernel":
self.assertEqual(initializer_name, "orthogonal")
elif var_name == "bias":
self.assertEqual(initializer_name, "zeros")
else:
self.fail("Unknown variables {}".format(v))
if __name__ == "__main__":
tf.test.main()
|
compare_gan-master
|
compare_gan/architectures/resnet_biggan_test.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of DCGAN generator and discriminator architectures.
Details are available in https://arxiv.org/abs/1511.06434.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from compare_gan.architectures import abstract_arch
from compare_gan.architectures.arch_ops import conv2d
from compare_gan.architectures.arch_ops import deconv2d
from compare_gan.architectures.arch_ops import linear
from compare_gan.architectures.arch_ops import lrelu
import numpy as np
import tensorflow as tf
def conv_out_size_same(size, stride):
return int(np.ceil(float(size) / float(stride)))
class Generator(abstract_arch.AbstractGenerator):
"""DCGAN generator.
Details are available at https://arxiv.org/abs/1511.06434. Notable changes
include BatchNorm in the generator, ReLu instead of LeakyReLu and ReLu in the
generator, except for output which uses tanh.
"""
def apply(self, z, y, is_training):
"""Build the generator network for the given inputs.
Args:
z: `Tensor` of shape [batch_size, z_dim] with latent code.
y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
labels.
is_training: boolean, are we in train or eval model.
Returns:
A tensor of size [batch_size] + self._image_shape with values in [0, 1].
"""
gf_dim = 64 # Dimension of filters in first convolutional layer.
bs = z.shape[0].value
s_h, s_w, colors = self._image_shape
s_h2, s_w2 = conv_out_size_same(s_h, 2), conv_out_size_same(s_w, 2)
s_h4, s_w4 = conv_out_size_same(s_h2, 2), conv_out_size_same(s_w2, 2)
s_h8, s_w8 = conv_out_size_same(s_h4, 2), conv_out_size_same(s_w4, 2)
s_h16, s_w16 = conv_out_size_same(s_h8, 2), conv_out_size_same(s_w8, 2)
net = linear(z, gf_dim * 8 *s_h16 * s_w16, scope="g_fc1")
net = tf.reshape(net, [-1, s_h16, s_w16, gf_dim * 8])
net = self.batch_norm(net, z=z, y=y, is_training=is_training, name="g_bn1")
net = tf.nn.relu(net)
net = deconv2d(net, [bs, s_h8, s_w8, gf_dim*4], 5, 5, 2, 2, name="g_dc1")
net = self.batch_norm(net, z=z, y=y, is_training=is_training, name="g_bn2")
net = tf.nn.relu(net)
net = deconv2d(net, [bs, s_h4, s_w4, gf_dim*2], 5, 5, 2, 2, name="g_dc2")
net = self.batch_norm(net, z=z, y=y, is_training=is_training, name="g_bn3")
net = tf.nn.relu(net)
net = deconv2d(net, [bs, s_h2, s_w2, gf_dim*1], 5, 5, 2, 2, name="g_dc3")
net = self.batch_norm(net, z=z, y=y, is_training=is_training, name="g_bn4")
net = tf.nn.relu(net)
net = deconv2d(net, [bs, s_h, s_w, colors], 5, 5, 2, 2, name="g_dc4")
net = 0.5 * tf.nn.tanh(net) + 0.5
return net
class Discriminator(abstract_arch.AbstractDiscriminator):
"""DCGAN discriminator.
Details are available at https://arxiv.org/abs/1511.06434. Notable changes
include BatchNorm in the discriminator and LeakyReLU for all layers.
"""
def apply(self, x, y, is_training):
"""Apply the discriminator on a input.
Args:
x: `Tensor` of shape [batch_size, ?, ?, ?] with real or fake images.
y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
labels.
is_training: Boolean, whether the architecture should be constructed for
training or inference.
Returns:
Tuple of 3 Tensors, the final prediction of the discriminator, the logits
before the final output activation function and logits form the second
last layer.
"""
bs = x.shape[0].value
df_dim = 64 # Dimension of filters in the first convolutional layer.
net = lrelu(conv2d(x, df_dim, 5, 5, 2, 2, name="d_conv1",
use_sn=self._spectral_norm))
net = conv2d(net, df_dim * 2, 5, 5, 2, 2, name="d_conv2",
use_sn=self._spectral_norm)
net = self.batch_norm(net, y=y, is_training=is_training, name="d_bn1")
net = lrelu(net)
net = conv2d(net, df_dim * 4, 5, 5, 2, 2, name="d_conv3",
use_sn=self._spectral_norm)
net = self.batch_norm(net, y=y, is_training=is_training, name="d_bn2")
net = lrelu(net)
net = conv2d(net, df_dim * 8, 5, 5, 2, 2, name="d_conv4",
use_sn=self._spectral_norm)
net = self.batch_norm(net, y=y, is_training=is_training, name="d_bn3")
net = lrelu(net)
out_logit = linear(
tf.reshape(net, [bs, -1]), 1, scope="d_fc4", use_sn=self._spectral_norm)
out = tf.nn.sigmoid(out_logit)
return out, out_logit, net
|
compare_gan-master
|
compare_gan/architectures/dcgan.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Provides a library of custom architecture-related operations.
It currently provides the following operations:
- linear, conv2d, deconv2d, lrelu
- batch norm, conditional batch norm, self-modulation
- spectral norm, weight norm, layer norm
- self-attention block
- various weight initialization schemes
These operations are supported on both GPUs and TPUs.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
from absl import logging
from compare_gan.gans import consts
from compare_gan.tpu import tpu_ops
import gin
from six.moves import range
import tensorflow as tf
from tensorflow.contrib.tpu.python.tpu import tpu_function
from tensorflow.python.training import moving_averages # pylint: disable=g-direct-tensorflow-import
@gin.configurable("weights")
def weight_initializer(initializer=consts.NORMAL_INIT, stddev=0.02):
"""Returns the initializer for the given name.
Args:
initializer: Name of the initalizer. Use one in consts.INITIALIZERS.
stddev: Standard deviation passed to initalizer.
Returns:
Initializer from `tf.initializers`.
"""
if initializer == consts.NORMAL_INIT:
return tf.initializers.random_normal(stddev=stddev)
if initializer == consts.TRUNCATED_INIT:
return tf.initializers.truncated_normal(stddev=stddev)
if initializer == consts.ORTHOGONAL_INIT:
return tf.initializers.orthogonal()
raise ValueError("Unknown weight initializer {}.".format(initializer))
def _moving_moments_for_inference(mean, variance, is_training, decay):
"""Use moving averages of moments during inference.
Args:
mean: Tensor of shape [num_channels] with the mean of the current batch.
variance: Tensor of shape [num_channels] with the variance of the current
batch.
is_training: Boolean, wheather to construct ops for training or inference
graph.
decay: Decay rate to use for moving averages.
Returns:
Tuple of (mean, variance) to use. This can the same as the inputs.
"""
# Create the moving average variables and add them to the appropriate
# collections.
variable_collections = [
tf.GraphKeys.MOVING_AVERAGE_VARIABLES,
tf.GraphKeys.MODEL_VARIABLES, tf.GraphKeys.GLOBAL_VARIABLES,
]
# Disable partition setting for moving_mean and moving_variance
# as assign_moving_average op below doesn"t support partitioned variable.
moving_mean = tf.get_variable(
"moving_mean",
shape=mean.shape,
initializer=tf.zeros_initializer(),
trainable=False,
partitioner=None,
collections=variable_collections)
moving_variance = tf.get_variable(
"moving_variance",
shape=variance.shape,
initializer=tf.ones_initializer(),
trainable=False,
partitioner=None,
collections=variable_collections)
if is_training:
logging.debug("Adding update ops for moving averages of mean and variance.")
# Update variables for mean and variance during training.
update_moving_mean = moving_averages.assign_moving_average(
moving_mean,
tf.cast(mean, moving_mean.dtype),
decay,
zero_debias=False)
update_moving_variance = moving_averages.assign_moving_average(
moving_variance,
tf.cast(variance, moving_variance.dtype),
decay,
zero_debias=False)
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_moving_mean)
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_moving_variance)
return mean, variance
logging.debug("Using moving mean and variance.")
return moving_mean, moving_variance
def _accumulated_moments_for_inference(mean, variance, is_training):
"""Use accumulated statistics for moments during inference.
After training the user is responsible for filling the accumulators with the
actual values. See _UpdateBnAccumulators() in eval_gan_lib.py for an example.
Args:
mean: Tensor of shape [num_channels] with the mean of the current batch.
variance: Tensor of shape [num_channels] with the variance of the current
batch.
is_training: Boolean, wheather to construct ops for training or inference
graph.
Returns:
Tuple of (mean, variance) to use. This can the same as the inputs.
"""
variable_collections = [
tf.GraphKeys.MODEL_VARIABLES, tf.GraphKeys.GLOBAL_VARIABLES,
]
with tf.variable_scope("accu", values=[mean, variance]):
# Create variables for accumulating batch statistic and use them during
# inference. The ops for filling the accumulators must be created and run
# before eval. See docstring above.
accu_mean = tf.get_variable(
"accu_mean",
shape=mean.shape,
initializer=tf.zeros_initializer(),
trainable=False,
collections=variable_collections)
accu_variance = tf.get_variable(
"accu_variance",
shape=variance.shape,
initializer=tf.zeros_initializer(),
trainable=False,
collections=variable_collections)
accu_counter = tf.get_variable(
"accu_counter",
shape=[],
initializer=tf.initializers.constant(1e-12),
trainable=False,
collections=variable_collections)
update_accus = tf.get_variable(
"update_accus",
shape=[],
dtype=tf.int32,
initializer=tf.zeros_initializer(),
trainable=False,
collections=variable_collections)
mean = tf.identity(mean, "mean")
variance = tf.identity(variance, "variance")
if is_training:
return mean, variance
logging.debug("Using accumulated moments.")
# Return the accumulated batch statistics and add current batch statistics
# to accumulators if update_accus variables equals 1.
def update_accus_fn():
return tf.group([
tf.assign_add(accu_mean, mean),
tf.assign_add(accu_variance, variance),
tf.assign_add(accu_counter, 1),
])
dep = tf.cond(
tf.equal(update_accus, 1),
update_accus_fn,
tf.no_op)
with tf.control_dependencies([dep]):
return accu_mean / accu_counter, accu_variance / accu_counter
@gin.configurable(whitelist=["decay", "epsilon", "use_cross_replica_mean",
"use_moving_averages"])
def standardize_batch(inputs,
is_training,
decay=0.999,
epsilon=1e-3,
data_format="NHWC",
use_moving_averages=True,
use_cross_replica_mean=None):
"""Adds TPU-enabled batch normalization layer.
This version does not apply trainable scale or offset!
It normalizes a tensor by mean and variance.
Details on Batch Normalization can be found in "Batch Normalization:
Accelerating Deep Network Training by Reducing Internal Covariate Shift",
Ioffe S. and Szegedy C. 2015 [http://arxiv.org/abs/1502.03167].
Note #1: This method computes the batch statistic across all TPU replicas,
thus simulating the true batch norm in the distributed setting. If one wants
to avoid the cross-replica communication set use_cross_replica_mean=False.
Note #2: When is_training is True the moving_mean and moving_variance need
to be updated in each training step. By default, the update_ops are placed
in `tf.GraphKeys.UPDATE_OPS` and they need to be added as a dependency to
the `train_op`. For example:
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
if update_ops:
updates = tf.group(*update_ops)
total_loss = control_flow_ops.with_dependencies([updates], total_loss)
Note #3: Reasonable values for `decay` are close to 1.0, typically in the
multiple-nines range: 0.999, 0.99, 0.9, etc. Lower the `decay` value (trying
`decay`=0.9) if model experiences reasonably good training performance but
poor validation and/or test performance.
Args:
inputs: A tensor with 2 or 4 dimensions, where the first dimension is
`batch_size`. The normalization is over all but the last dimension if
`data_format` is `NHWC`, and the second dimension if `data_format` is
`NCHW`.
is_training: Whether or not the layer is in training mode. In training
mode it would accumulate the statistics of the moments into the
`moving_mean` and `moving_variance` using an exponential moving average
with the given `decay`. When is_training=False, these variables are not
updated, and the precomputed values are used verbatim.
decay: Decay for the moving averages. See notes above for reasonable
values.
epsilon: Small float added to variance to avoid dividing by zero.
data_format: Input data format. NHWC or NCHW.
use_moving_averages: If True keep moving averages of mean and variance that
are used during inference. Otherwise use accumlators.
use_cross_replica_mean: If True add operations to do computes batch norm
statistics across all TPU cores. These ops are not compatible with other
platforms. The default (None) will only add the operations if running
on TPU.
Returns:
The normalized tensor with the same type and shape as `inputs`.
"""
if data_format not in {"NCHW", "NHWC"}:
raise ValueError(
"Invalid data_format {}. Allowed: NCHW, NHWC.".format(data_format))
if use_cross_replica_mean is None:
# Default to global batch norm only on TPUs.
use_cross_replica_mean = (
tpu_function.get_tpu_context().number_of_shards is not None)
logging.debug("Automatically determined use_cross_replica_mean=%s.",
use_cross_replica_mean)
inputs = tf.convert_to_tensor(inputs)
inputs_dtype = inputs.dtype
inputs_shape = inputs.get_shape()
num_channels = inputs.shape[-1].value
if num_channels is None:
raise ValueError("`C` dimension must be known but is None")
inputs_rank = inputs_shape.ndims
if inputs_rank is None:
raise ValueError("Inputs %s has undefined rank" % inputs.name)
elif inputs_rank not in [2, 4]:
raise ValueError(
"Inputs %s has unsupported rank."
" Expected 2 or 4 but got %d" % (inputs.name, inputs_rank))
# Bring 2-D inputs into 4-D format.
if inputs_rank == 2:
new_shape = [-1, 1, 1, num_channels]
if data_format == "NCHW":
new_shape = [-1, num_channels, 1, 1]
inputs = tf.reshape(inputs, new_shape)
# Execute a distributed batch normalization
axis = 1 if data_format == "NCHW" else 3
inputs = tf.cast(inputs, tf.float32)
reduction_axes = [i for i in range(4) if i != axis]
if use_cross_replica_mean:
mean, variance = tpu_ops.cross_replica_moments(inputs, reduction_axes)
else:
counts, mean_ss, variance_ss, _ = tf.nn.sufficient_statistics(
inputs, reduction_axes, keep_dims=False)
mean, variance = tf.nn.normalize_moments(
counts, mean_ss, variance_ss, shift=None)
if use_moving_averages:
mean, variance = _moving_moments_for_inference(
mean=mean, variance=variance, is_training=is_training, decay=decay)
else:
mean, variance = _accumulated_moments_for_inference(
mean=mean, variance=variance, is_training=is_training)
outputs = tf.nn.batch_normalization(
inputs,
mean=mean,
variance=variance,
offset=None,
scale=None,
variance_epsilon=epsilon)
outputs = tf.cast(outputs, inputs_dtype)
# Bring 2-D inputs back into 2-D format.
if inputs_rank == 2:
outputs = tf.reshape(outputs, [-1] + inputs_shape[1:].as_list())
outputs.set_shape(inputs_shape)
return outputs
@gin.configurable(blacklist=["inputs"])
def no_batch_norm(inputs):
return inputs
@gin.configurable(
blacklist=["inputs", "is_training", "center", "scale", "name"])
def batch_norm(inputs, is_training, center=True, scale=True, name="batch_norm"):
"""Performs the vanilla batch normalization with trainable scaling and offset.
Args:
inputs: A tensor with 2 or 4 dimensions, where the first dimension is
`batch_size`. The normalization is over all but the last dimension if
`data_format` is `NHWC`, and the second dimension if `data_format` is
`NCHW`.
is_training: Whether or not the layer is in training mode.
center: If True, add offset of beta to normalized tensor.
scale: If True, multiply by gamma. When the next layer is linear this can
be disabled since the scaling will be done by the next layer.
name: Name of the variable scope.
Returns:
The normalized tensor with the same type and shape as `inputs`.
"""
with tf.variable_scope(name, values=[inputs]):
outputs = standardize_batch(inputs, is_training=is_training)
num_channels = inputs.shape[-1].value
# Allocate parameters for the trainable variables.
collections = [tf.GraphKeys.MODEL_VARIABLES,
tf.GraphKeys.GLOBAL_VARIABLES]
if scale:
gamma = tf.get_variable(
"gamma",
[num_channels],
collections=collections,
initializer=tf.ones_initializer())
outputs *= gamma
if center:
beta = tf.get_variable(
"beta",
[num_channels],
collections=collections,
initializer=tf.zeros_initializer())
outputs += beta
return outputs
@gin.configurable(whitelist=["num_hidden"])
def self_modulated_batch_norm(inputs, z, is_training, use_sn,
center=True, scale=True,
name="batch_norm", num_hidden=32):
"""Performs a self-modulated batch normalization.
Details can be found in "On Self Modulation for Generative Adversarial
Networks", Chen T. et al., 2018. [https://arxiv.org/abs/1810.01365]
Like a normal batch normalization but the scale and offset are trainable
transformation of `z`.
Args:
inputs: A tensor with 2 or 4 dimensions, where the first dimension is
`batch_size`. The normalization is over all but the last dimension if
`data_format` is `NHWC`, and the second dimension if `data_format` is
`NCHW`.
z: 2-D tensor with shape [batch_size, ?] with the latent code.
is_training: Whether or not the layer is in training mode.
use_sn: Whether to apply spectral normalization to the weights of the
hidden layer and the linear transformations.
center: If True, add offset of beta to normalized tensor.
scale: If True, multiply by gamma. When the next layer is linear this can
be disabled since the scaling will be done by the next layer.
name: Name of the variable scope.
num_hidden: Number of hidden units in the hidden layer. If 0 the scale and
offset are simple linear transformations of `z`.
Returns:
"""
if z is None:
raise ValueError("You must provide z for self modulation.")
with tf.variable_scope(name, values=[inputs]):
outputs = standardize_batch(inputs, is_training=is_training)
num_channels = inputs.shape[-1].value
with tf.variable_scope("sbn", values=[inputs, z]):
h = z
if num_hidden > 0:
h = linear(h, num_hidden, scope="hidden", use_sn=use_sn)
h = tf.nn.relu(h)
if scale:
gamma = linear(h, num_channels, scope="gamma", bias_start=1.0,
use_sn=use_sn)
gamma = tf.reshape(gamma, [-1, 1, 1, num_channels])
outputs *= gamma
if center:
beta = linear(h, num_channels, scope="beta", use_sn=use_sn)
beta = tf.reshape(beta, [-1, 1, 1, num_channels])
outputs += beta
return outputs
# evonorm functions
def evonorm_s0(inputs,
is_training,
data_format="NHWC",
nonlinearity=True,
name="evonorm-s0"):
with tf.variable_scope(name, values=[inputs]):
if data_format not in {"NCHW", "NHWC"}:
raise ValueError(
"Invalid data_format {}. Allowed: NCHW, NHWC.".format(data_format))
inputs = tf.convert_to_tensor(inputs)
inputs_dtype = inputs.dtype
inputs_shape = inputs.get_shape()
num_channels = inputs.shape[-1].value
if num_channels is None:
raise ValueError("`C` dimension must be known but is None")
inputs_rank = inputs_shape.ndims
if inputs_rank is None:
raise ValueError("Inputs %s has undefined rank" % inputs.name)
elif inputs_rank not in [2, 4]:
raise ValueError(
"Inputs %s has unsupported rank."
" Expected 2 or 4 but got %d" % (inputs.name, inputs_rank))
if inputs_rank == 2:
new_shape = [-1, 1, 1, num_channels]
if data_format == "NCHW":
new_shape = [-1, num_channels, 1, 1]
inputs = tf.reshape(inputs, new_shape)
with tf.variable_scope("evonorm-s0", values=[inputs]):
collections = [tf.GraphKeys.MODEL_VARIABLES,
tf.GraphKeys.GLOBAL_VARIABLES]
gamma = tf.get_variable(
"gamma",
[num_channels],
collections=collections,
initializer=tf.ones_initializer())
beta = tf.get_variable(
"beta",
[num_channels],
collections=collections,
initializer=tf.zeros_initializer())
if nonlinearity:
v = trainable_variable_ones(shape=gamma.shape)
num = inputs * tf.nn.sigmoid(v * inputs)
outputs = num / group_std(inputs) * gamma + beta
else:
outputs = inputs * gamma + beta
outputs = tf.cast(outputs, inputs_dtype)
return outputs
def instance_std(x, eps=1e-5):
_, var = tf.nn.moments(x, axes=[1, 2], keepdims=True)
return tf.sqrt(var + eps)
def group_std(x, groups=32, eps=1e-5):
N, H, W, C = x.shape
x = tf.reshape(x, [N, H, W, groups, C // groups])
_, var = tf.nn.moments(x, [1, 2, 4], keepdims=True)
std = tf.sqrt(var + eps)
std = tf.broadcast_to(std, x.shape)
return tf.reshape(std, [N, H, W, C])
def trainable_variable_ones(shape, name="v"):
return tf.get_variable(name, shape=shape, initializer=tf.ones_initializer())
#/ evonorm functions
@gin.configurable(whitelist=["use_bias"])
def conditional_batch_norm(inputs, y, is_training, use_sn, center=True,
scale=True, name="batch_norm", use_bias=False):
"""Conditional batch normalization."""
if y is None:
raise ValueError("You must provide y for conditional batch normalization.")
if y.shape.ndims != 2:
raise ValueError("Conditioning must have rank 2.")
with tf.variable_scope(name, values=[inputs]):
outputs = standardize_batch(inputs, is_training=is_training)
num_channels = inputs.shape[-1].value
with tf.variable_scope("condition", values=[inputs, y]):
if scale:
gamma = linear(y, num_channels, scope="gamma", use_sn=use_sn,
use_bias=use_bias)
gamma = tf.reshape(gamma, [-1, 1, 1, num_channels])
outputs *= gamma
if center:
beta = linear(y, num_channels, scope="beta", use_sn=use_sn,
use_bias=use_bias)
beta = tf.reshape(beta, [-1, 1, 1, num_channels])
outputs += beta
return outputs
def layer_norm(input_, is_training, scope):
return tf.contrib.layers.layer_norm(
input_, trainable=is_training, scope=scope)
@gin.configurable(blacklist=["inputs"])
def spectral_norm(inputs, epsilon=1e-12, singular_value="left"):
"""Performs Spectral Normalization on a weight tensor.
Details of why this is helpful for GAN's can be found in "Spectral
Normalization for Generative Adversarial Networks", Miyato T. et al., 2018.
[https://arxiv.org/abs/1802.05957].
Args:
inputs: The weight tensor to normalize.
epsilon: Epsilon for L2 normalization.
singular_value: Which first singular value to store (left or right). Use
"auto" to automatically choose the one that has fewer dimensions.
Returns:
The normalized weight tensor.
"""
if len(inputs.shape) < 2:
raise ValueError(
"Spectral norm can only be applied to multi-dimensional tensors")
# The paper says to flatten convnet kernel weights from (C_out, C_in, KH, KW)
# to (C_out, C_in * KH * KW). Our Conv2D kernel shape is (KH, KW, C_in, C_out)
# so it should be reshaped to (KH * KW * C_in, C_out), and similarly for other
# layers that put output channels as last dimension. This implies that w
# here is equivalent to w.T in the paper.
w = tf.reshape(inputs, (-1, inputs.shape[-1]))
# Choose whether to persist the first left or first right singular vector.
# As the underlying matrix is PSD, this should be equivalent, but in practice
# the shape of the persisted vector is different. Here one can choose whether
# to maintain the left or right one, or pick the one which has the smaller
# dimension. We use the same variable for the singular vector if we switch
# from normal weights to EMA weights.
var_name = inputs.name.replace("/ExponentialMovingAverage", "").split("/")[-1]
var_name = var_name.split(":")[0] + "/u_var"
if singular_value == "auto":
singular_value = "left" if w.shape[0] <= w.shape[1] else "right"
u_shape = (w.shape[0], 1) if singular_value == "left" else (1, w.shape[-1])
u_var = tf.get_variable(
var_name,
shape=u_shape,
dtype=w.dtype,
initializer=tf.random_normal_initializer(),
trainable=False)
u = u_var
# Use power iteration method to approximate the spectral norm.
# The authors suggest that one round of power iteration was sufficient in the
# actual experiment to achieve satisfactory performance.
power_iteration_rounds = 1
for _ in range(power_iteration_rounds):
if singular_value == "left":
# `v` approximates the first right singular vector of matrix `w`.
v = tf.math.l2_normalize(
tf.matmul(tf.transpose(w), u), axis=None, epsilon=epsilon)
u = tf.math.l2_normalize(tf.matmul(w, v), axis=None, epsilon=epsilon)
else:
v = tf.math.l2_normalize(tf.matmul(u, w, transpose_b=True),
epsilon=epsilon)
u = tf.math.l2_normalize(tf.matmul(v, w), epsilon=epsilon)
# Update the approximation.
with tf.control_dependencies([tf.assign(u_var, u, name="update_u")]):
u = tf.identity(u)
# The authors of SN-GAN chose to stop gradient propagating through u and v
# and we maintain that option.
u = tf.stop_gradient(u)
v = tf.stop_gradient(v)
if singular_value == "left":
norm_value = tf.matmul(tf.matmul(tf.transpose(u), w), v)
else:
norm_value = tf.matmul(tf.matmul(v, w), u, transpose_b=True)
norm_value.shape.assert_is_fully_defined()
norm_value.shape.assert_is_compatible_with([1, 1])
w_normalized = w / norm_value
# Deflate normalized weights to match the unnormalized tensor.
w_tensor_normalized = tf.reshape(w_normalized, inputs.shape)
return w_tensor_normalized
def linear(inputs, output_size, scope=None, stddev=0.02, bias_start=0.0,
use_sn=False, use_bias=True):
"""Linear layer without the non-linear activation applied."""
shape = inputs.get_shape().as_list()
with tf.variable_scope(scope or "linear"):
kernel = tf.get_variable(
"kernel",
[shape[1], output_size],
initializer=weight_initializer(stddev=stddev))
if use_sn:
kernel = spectral_norm(kernel)
outputs = tf.matmul(inputs, kernel)
if use_bias:
bias = tf.get_variable(
"bias",
[output_size],
initializer=tf.constant_initializer(bias_start))
outputs += bias
return outputs
def conv2d(inputs, output_dim, k_h, k_w, d_h, d_w, stddev=0.02, name="conv2d",
use_sn=False, use_bias=True):
"""Performs 2D convolution of the input."""
with tf.variable_scope(name):
w = tf.get_variable(
"kernel", [k_h, k_w, inputs.shape[-1].value, output_dim],
initializer=weight_initializer(stddev=stddev))
if use_sn:
w = spectral_norm(w)
outputs = tf.nn.conv2d(inputs, w, strides=[1, d_h, d_w, 1], padding="SAME")
if use_bias:
bias = tf.get_variable(
"bias", [output_dim], initializer=tf.constant_initializer(0.0))
outputs += bias
return outputs
conv1x1 = functools.partial(conv2d, k_h=1, k_w=1, d_h=1, d_w=1)
def deconv2d(inputs, output_shape, k_h, k_w, d_h, d_w,
stddev=0.02, name="deconv2d", use_sn=False):
"""Performs transposed 2D convolution of the input."""
with tf.variable_scope(name):
w = tf.get_variable(
"kernel", [k_h, k_w, output_shape[-1], inputs.get_shape()[-1]],
initializer=weight_initializer(stddev=stddev))
if use_sn:
w = spectral_norm(w)
deconv = tf.nn.conv2d_transpose(
inputs, w, output_shape=output_shape, strides=[1, d_h, d_w, 1])
bias = tf.get_variable(
"bias", [output_shape[-1]], initializer=tf.constant_initializer(0.0))
return tf.reshape(tf.nn.bias_add(deconv, bias), tf.shape(deconv))
def lrelu(inputs, leak=0.2, name="lrelu"):
"""Performs leaky-ReLU on the input."""
return tf.maximum(inputs, leak * inputs, name=name)
def weight_norm_linear(input_, output_size,
init=False, init_scale=1.0,
name="wn_linear",
initializer=tf.truncated_normal_initializer,
stddev=0.02):
"""Linear layer with Weight Normalization (Salimans, Kingma '16)."""
with tf.variable_scope(name):
if init:
v = tf.get_variable("V", [int(input_.get_shape()[1]), output_size],
tf.float32, initializer(0, stddev), trainable=True)
v_norm = tf.nn.l2_normalize(v.initialized_value(), [0])
x_init = tf.matmul(input_, v_norm)
m_init, v_init = tf.nn.moments(x_init, [0])
scale_init = init_scale / tf.sqrt(v_init + 1e-10)
g = tf.get_variable("g", dtype=tf.float32,
initializer=scale_init, trainable=True)
b = tf.get_variable("b", dtype=tf.float32, initializer=
-m_init*scale_init, trainable=True)
x_init = tf.reshape(scale_init, [1, output_size]) * (
x_init - tf.reshape(m_init, [1, output_size]))
return x_init
else:
# Note that the original implementation uses Polyak averaging.
v = tf.get_variable("V")
g = tf.get_variable("g")
b = tf.get_variable("b")
tf.assert_variables_initialized([v, g, b])
x = tf.matmul(input_, v)
scaler = g / tf.sqrt(tf.reduce_sum(tf.square(v), [0]))
x = tf.reshape(scaler, [1, output_size]) * x + tf.reshape(
b, [1, output_size])
return x
def weight_norm_conv2d(input_, output_dim,
k_h, k_w, d_h, d_w,
init, init_scale,
stddev=0.02,
name="wn_conv2d",
initializer=tf.truncated_normal_initializer):
"""Performs convolution with Weight Normalization."""
with tf.variable_scope(name):
if init:
v = tf.get_variable(
"V", [k_h, k_w] + [int(input_.get_shape()[-1]), output_dim],
tf.float32, initializer(0, stddev), trainable=True)
v_norm = tf.nn.l2_normalize(v.initialized_value(), [0, 1, 2])
x_init = tf.nn.conv2d(input_, v_norm, strides=[1, d_h, d_w, 1],
padding="SAME")
m_init, v_init = tf.nn.moments(x_init, [0, 1, 2])
scale_init = init_scale / tf.sqrt(v_init + 1e-8)
g = tf.get_variable(
"g", dtype=tf.float32, initializer=scale_init, trainable=True)
b = tf.get_variable(
"b", dtype=tf.float32, initializer=-m_init*scale_init, trainable=True)
x_init = tf.reshape(scale_init, [1, 1, 1, output_dim]) * (
x_init - tf.reshape(m_init, [1, 1, 1, output_dim]))
return x_init
else:
v = tf.get_variable("V")
g = tf.get_variable("g")
b = tf.get_variable("b")
tf.assert_variables_initialized([v, g, b])
w = tf.reshape(g, [1, 1, 1, output_dim]) * tf.nn.l2_normalize(
v, [0, 1, 2])
x = tf.nn.bias_add(
tf.nn.conv2d(input_, w, [1, d_h, d_w, 1], padding="SAME"), b)
return x
def weight_norm_deconv2d(x, output_dim,
k_h, k_w, d_h, d_w,
init=False, init_scale=1.0,
stddev=0.02,
name="wn_deconv2d",
initializer=tf.truncated_normal_initializer):
"""Performs Transposed Convolution with Weight Normalization."""
xs = x.get_shape().as_list()
target_shape = [xs[0], xs[1] * d_h, xs[2] * d_w, output_dim]
with tf.variable_scope(name):
if init:
v = tf.get_variable(
"V", [k_h, k_w] + [output_dim, int(x.get_shape()[-1])],
tf.float32, initializer(0, stddev), trainable=True)
v_norm = tf.nn.l2_normalize(v.initialized_value(), [0, 1, 3])
x_init = tf.nn.conv2d_transpose(x, v_norm, target_shape,
[1, d_h, d_w, 1], padding="SAME")
m_init, v_init = tf.nn.moments(x_init, [0, 1, 2])
scale_init = init_scale/tf.sqrt(v_init + 1e-8)
g = tf.get_variable("g", dtype=tf.float32,
initializer=scale_init, trainable=True)
b = tf.get_variable("b", dtype=tf.float32,
initializer=-m_init*scale_init, trainable=True)
x_init = tf.reshape(scale_init, [1, 1, 1, output_dim]) * (
x_init - tf.reshape(m_init, [1, 1, 1, output_dim]))
return x_init
else:
v = tf.get_variable("v")
g = tf.get_variable("g")
b = tf.get_variable("b")
tf.assert_variables_initialized([v, g, b])
w = tf.reshape(g, [1, 1, output_dim, 1]) * tf.nn.l2_normalize(
v, [0, 1, 3])
x = tf.nn.conv2d_transpose(x, w, target_shape, strides=[1, d_h, d_w, 1],
padding="SAME")
x = tf.nn.bias_add(x, b)
return x
def non_local_block(x, name, use_sn):
"""Self-attention (non-local) block.
This method is used to exactly reproduce SAGAN and ignores Gin settings on
weight initialization and spectral normalization.
Args:
x: Input tensor of shape [batch, h, w, c].
name: Name of the variable scope.
use_sn: Apply spectral norm to the weights.
Returns:
A tensor of the same shape after self-attention was applied.
"""
def _spatial_flatten(inputs):
shape = inputs.shape
return tf.reshape(inputs, (-1, shape[1] * shape[2], shape[3]))
with tf.variable_scope(name):
h, w, num_channels = x.get_shape().as_list()[1:]
num_channels_attn = num_channels // 8
num_channels_g = num_channels // 2
# Theta path
theta = conv1x1(x, num_channels_attn, name="conv2d_theta", use_sn=use_sn,
use_bias=False)
theta = _spatial_flatten(theta)
# Phi path
phi = conv1x1(x, num_channels_attn, name="conv2d_phi", use_sn=use_sn,
use_bias=False)
phi = tf.layers.max_pooling2d(inputs=phi, pool_size=[2, 2], strides=2)
phi = _spatial_flatten(phi)
attn = tf.matmul(theta, phi, transpose_b=True)
attn = tf.nn.softmax(attn)
# G path
g = conv1x1(x, num_channels_g, name="conv2d_g", use_sn=use_sn,
use_bias=False)
g = tf.layers.max_pooling2d(inputs=g, pool_size=[2, 2], strides=2)
g = _spatial_flatten(g)
attn_g = tf.matmul(attn, g)
attn_g = tf.reshape(attn_g, [-1, h, w, num_channels_g])
sigma = tf.get_variable("sigma", [], initializer=tf.zeros_initializer())
attn_g = conv1x1(attn_g, num_channels, name="conv2d_attn_g", use_sn=use_sn,
use_bias=False)
return x + sigma * attn_g
# vector quantize function
@gin.configurable(blacklist=["inputs", "name", "is_training"])
def vector_quantize(inputs, name = 'vector_quantize', is_training=True, embedding_dim=512,
num_embeddings=2**8,
decay=0.8, commitment_cost=1.0,
epsilon=1e-5,
**_kwargs):
_embedding_dim = embedding_dim
_num_embeddings = num_embeddings
_decay = decay
_commitment_cost = commitment_cost
_epsilon = epsilon
# w is a matrix with an embedding in each column. When training, the
# embedding is assigned to be the average of all inputs assigned to that
# embedding.
embedding_shape = [embedding_dim, num_embeddings]
with tf.variable_scope(name):
_w = tf.get_variable(
'embedding', embedding_shape,
initializer=tf.variance_scaling_initializer(), use_resource=True)
_ema_cluster_size = tf.get_variable(
'ema_cluster_size', [num_embeddings],
initializer=tf.constant_initializer(0), use_resource=True)
_ema_w = tf.get_variable(
'ema_dw', initializer=_w.initialized_value(), use_resource=True)
inputs.set_shape([None, None, None, embedding_dim])
def quantize(encoding_indices):
with tf.control_dependencies([encoding_indices]):
w = tf.transpose(_w.read_value(), [1, 0])
return tf.nn.embedding_lookup(w, encoding_indices, validate_indices=False)
with tf.control_dependencies([inputs]):
w = _w.read_value()
input_shape = tf.shape(inputs)
with tf.control_dependencies([
tf.Assert(tf.equal(input_shape[-1], _embedding_dim),
[input_shape])]):
flat_inputs = tf.reshape(inputs, [-1, _embedding_dim])
distances = (tf.reduce_sum(flat_inputs ** 2, 1, keepdims=True)
- 2 * tf.matmul(flat_inputs, w)
+ tf.reduce_sum(w ** 2, 0, keepdims=True))
encoding_indices = tf.argmax(- distances, 1)
encodings = tf.one_hot(encoding_indices, _num_embeddings)
encoding_indices = tf.reshape(encoding_indices, tf.shape(inputs)[:-1])
quantized = quantize(encoding_indices)
e_latent_loss = tf.reduce_mean((tf.stop_gradient(quantized) - inputs) ** 2, axis=[1, 2, 3])
if is_training:
updated_ema_cluster_size = moving_averages.assign_moving_average(
_ema_cluster_size, tf.reduce_sum(encodings, 0), _decay)
dw = tf.matmul(flat_inputs, encodings, transpose_a=True)
updated_ema_w = moving_averages.assign_moving_average(_ema_w, dw,
_decay)
n = tf.reduce_sum(updated_ema_cluster_size)
updated_ema_cluster_size = (
(updated_ema_cluster_size + _epsilon)
/ (n + _num_embeddings * _epsilon) * n)
# print('here')
normalised_updated_ema_w = (
updated_ema_w / tf.reshape(updated_ema_cluster_size, [1, -1]))
with tf.control_dependencies([e_latent_loss]):
update_w = tf.assign(_w, normalised_updated_ema_w)
with tf.control_dependencies([update_w]):
loss = _commitment_cost * e_latent_loss
else:
loss = _commitment_cost * e_latent_loss
quantized = inputs + tf.stop_gradient(quantized - inputs)
avg_probs = tf.reduce_mean(encodings, 0)
perplexity = tf.exp(- tf.reduce_sum(avg_probs * tf.log(avg_probs + 1e-10)))
return quantized, loss
|
compare_gan-master
|
compare_gan/architectures/arch_ops.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A 30-block resnet.
It contains 6 "super-blocks" and each such block contains 5 residual blocks in
both the generator and discriminator. It supports the 128x128 resolution.
Details can be found in "Improved Training of Wasserstein GANs", Gulrajani I.
et al. 2017. The related code is available at
https://github.com/igul222/improved_wgan_training/blob/master/gan_64x64.py.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from compare_gan.architectures import arch_ops as ops
from compare_gan.architectures import resnet_ops
from six.moves import range
import tensorflow as tf
class Generator(resnet_ops.ResNetGenerator):
"""ResNet30 generator, 30 blocks, generates images of resolution 128x128.
Trying to match the architecture defined in [1]. Difference is that there
the final resolution is 64x64, while here we have 128x128.
"""
def apply(self, z, y, is_training):
"""Build the generator network for the given inputs.
Args:
z: `Tensor` of shape [batch_size, z_dim] with latent code.
y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
labels.
is_training: boolean, are we in train or eval model.
Returns:
A tensor of size [batch_size] + self._image_shape with values in [0, 1].
"""
z_shape = z.get_shape().as_list()
if len(z_shape) != 2:
raise ValueError("Expected shape [batch_size, z_dim], got %s." % z_shape)
ch = 64
colors = self._image_shape[2]
# Map noise to the actual seed.
output = ops.linear(z, 4 * 4 * 8 * ch, scope="fc_noise")
# Reshape the seed to be a rank-4 Tensor.
output = tf.reshape(output, [-1, 4, 4, 8 * ch], name="fc_reshaped")
in_channels = 8 * ch
out_channels = 4 * ch
for superblock in range(6):
for i in range(5):
block = self._resnet_block(
name="B_{}_{}".format(superblock, i),
in_channels=in_channels,
out_channels=in_channels,
scale="none")
output = block(output, z=z, y=y, is_training=is_training)
# We want to upscale 5 times.
if superblock < 5:
block = self._resnet_block(
name="B_{}_up".format(superblock),
in_channels=in_channels,
out_channels=out_channels,
scale="up")
output = block(output, z=z, y=y, is_training=is_training)
in_channels /= 2
out_channels /= 2
output = ops.conv2d(
output, output_dim=colors, k_h=3, k_w=3, d_h=1, d_w=1,
name="final_conv")
output = tf.nn.sigmoid(output)
return output
class Discriminator(resnet_ops.ResNetDiscriminator):
"""ResNet discriminator, 30 blocks, 128x128x3 and 128x128x1 resolution."""
def apply(self, x, y, is_training):
"""Apply the discriminator on a input.
Args:
x: `Tensor` of shape [batch_size, ?, ?, ?] with real or fake images.
y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
labels.
is_training: Boolean, whether the architecture should be constructed for
training or inference.
Returns:
Tuple of 3 Tensors, the final prediction of the discriminator, the logits
before the final output activation function and logits form the second
last layer.
"""
resnet_ops.validate_image_inputs(x)
colors = x.get_shape().as_list()[-1]
assert colors in [1, 3]
ch = 64
output = ops.conv2d(
x, output_dim=ch // 4, k_h=3, k_w=3, d_h=1, d_w=1,
name="color_conv")
in_channels = ch // 4
out_channels = ch // 2
for superblock in range(6):
for i in range(5):
block = self._resnet_block(
name="B_{}_{}".format(superblock, i),
in_channels=in_channels,
out_channels=in_channels,
scale="none")
output = block(output, z=None, y=y, is_training=is_training)
# We want to downscale 5 times.
if superblock < 5:
block = self._resnet_block(
name="B_{}_up".format(superblock),
in_channels=in_channels,
out_channels=out_channels,
scale="down")
output = block(output, z=None, y=y, is_training=is_training)
in_channels *= 2
out_channels *= 2
# Final part
output = tf.reshape(output, [-1, 4 * 4 * 8 * ch])
out_logit = ops.linear(output, 1, scope="disc_final_fc",
use_sn=self._spectral_norm)
out = tf.nn.sigmoid(out_logit)
return out, out_logit, output
|
compare_gan-master
|
compare_gan/architectures/resnet30.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for custom architecture operations on TPUs."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import logging
from compare_gan.architectures import arch_ops
import gin
import numpy as np
import tensorflow as tf
class ArchOpsTpuTest(tf.test.TestCase):
def setUp(self):
# Construct input for batch norm tests:
# 4 images with resolution 2x1 and 3 channels.
x1 = np.asarray([[[5, 7, 2]], [[5, 8, 8]]], dtype=np.float32)
x2 = np.asarray([[[1, 2, 0]], [[4, 0, 4]]], dtype=np.float32)
x3 = np.asarray([[[6, 2, 6]], [[5, 0, 5]]], dtype=np.float32)
x4 = np.asarray([[[2, 4, 2]], [[6, 4, 1]]], dtype=np.float32)
self._inputs = np.stack([x1, x2, x3, x4])
self.assertAllEqual(self._inputs.shape, [4, 2, 1, 3])
# And the expected output for applying batch norm (without additional
# scaling/shifting).
self._expected_outputs = np.asarray(
[[[[0.4375205, 1.30336881, -0.58830315]],
[[0.4375205, 1.66291881, 1.76490951]]],
[[[-1.89592218, -0.49438119, -1.37270737]],
[[-0.14584017, -1.21348119, 0.19610107]]],
[[[1.02088118, -0.49438119, 0.98050523]],
[[0.4375205, -1.21348119, 0.58830321]]],
[[[-1.31256151, 0.22471881, -0.58830315]],
[[1.02088118, 0.22471881, -0.98050523]]]],
dtype=np.float32)
self.assertAllEqual(self._expected_outputs.shape, [4, 2, 1, 3])
def testRunsOnTpu(self):
"""Verify that the test cases runs on a TPU chip and has 2 cores."""
expected_device_names = [
"/job:localhost/replica:0/task:0/device:CPU:0",
"/job:localhost/replica:0/task:0/device:TPU:0",
"/job:localhost/replica:0/task:0/device:TPU:1",
"/job:localhost/replica:0/task:0/device:TPU_SYSTEM:0",
]
with self.session() as sess:
devices = sess.list_devices()
tf.logging.info("devices:\n%s", "\n".join([str(d) for d in devices]))
self.assertAllEqual([d.name for d in devices], expected_device_names)
def testBatchNormOneCore(self):
def computation(x):
core_bn = tf.layers.batch_normalization(x, training=True)
contrib_bn = tf.contrib.layers.batch_norm(x, is_training=True)
custom_bn = arch_ops.batch_norm(x, is_training=True)
tf.logging.info("custom_bn tensor: %s", custom_bn)
return core_bn, contrib_bn, custom_bn
with tf.Graph().as_default():
x = tf.constant(self._inputs)
core_bn, contrib_bn, custom_bn = tf.contrib.tpu.batch_parallel(
computation, [x], num_shards=1)
with self.session() as sess:
sess.run(tf.contrib.tpu.initialize_system())
sess.run(tf.global_variables_initializer())
core_bn, contrib_bn, custom_bn = sess.run(
[core_bn, contrib_bn, custom_bn])
logging.info("core_bn: %s", core_bn)
logging.info("contrib_bn: %s", contrib_bn)
logging.info("custom_bn: %s", custom_bn)
self.assertAllClose(core_bn, self._expected_outputs)
self.assertAllClose(contrib_bn, self._expected_outputs)
self.assertAllClose(custom_bn, self._expected_outputs)
def testBatchNormTwoCoresCoreAndContrib(self):
def computation(x):
core_bn = tf.layers.batch_normalization(x, training=True)
contrib_bn = tf.contrib.layers.batch_norm(x, is_training=True)
return core_bn, contrib_bn
with tf.Graph().as_default():
x = tf.constant(self._inputs)
core_bn, contrib_bn = tf.contrib.tpu.batch_parallel(
computation, [x], num_shards=2)
with self.session() as sess:
sess.run(tf.contrib.tpu.initialize_system())
sess.run(tf.global_variables_initializer())
core_bn, contrib_bn = sess.run([core_bn, contrib_bn])
logging.info("core_bn: %s", core_bn)
logging.info("contrib_bn: %s", contrib_bn)
self.assertNotAllClose(core_bn, self._expected_outputs)
self.assertNotAllClose(contrib_bn, self._expected_outputs)
def testBatchNormTwoCoresCustom(self):
def computation(x):
custom_bn = arch_ops.batch_norm(x, is_training=True, name="custom_bn")
gin.bind_parameter("cross_replica_moments.parallel", False)
custom_bn_seq = arch_ops.batch_norm(x, is_training=True,
name="custom_bn_seq")
return custom_bn, custom_bn_seq
with tf.Graph().as_default():
x = tf.constant(self._inputs)
custom_bn, custom_bn_seq = tf.contrib.tpu.batch_parallel(
computation, [x], num_shards=2)
with self.session() as sess:
sess.run(tf.contrib.tpu.initialize_system())
sess.run(tf.global_variables_initializer())
custom_bn, custom_bn_seq = sess.run(
[custom_bn, custom_bn_seq])
logging.info("custom_bn: %s", custom_bn)
logging.info("custom_bn_seq: %s", custom_bn_seq)
self.assertAllClose(custom_bn, self._expected_outputs)
self.assertAllClose(custom_bn_seq, self._expected_outputs)
if __name__ == "__main__":
tf.test.main()
|
compare_gan-master
|
compare_gan/architectures/arch_ops_tpu_test.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Re-implementation of BigGAN-Deep architecture.
Disclaimer: We note that this is our best-effort re-implementation and stress
that even minor implementation differences may lead to large differences in
trained models due to sensitivity of GANs to optimization hyperparameters and
details of neural architectures. That being said, this code suffices to
reproduce the reported FID on ImageNet 128x128.
Based on "Large Scale GAN Training for High Fidelity Natural Image Synthesys",
Brock A. et al., 2018 [https://arxiv.org/abs/1809.11096].
Supported resolutions: 32, 64, 128, 256, 512.
Differences to original BigGAN:
- The self-attention block is always applied at a resolution of 64x64.
- Each batch norm gets the concatenation of the z and the class embedding. z is
not chunked.
- The channel width multiplier defaults to 128 instead of 96.
- Double amount of ResNet blocks:
- Residual blocks have bottlenecks:
- 1x1 convolution reduces number of channels before the 3x3 convolutions.
- After the 3x3 convolutions a 1x1 creates the desired number of out channels.
- Skip connections in residual connections preserve identity (no 1x1 conv).
- In G, to reduce the number of channels, drop additional chhannels.
- In D add more channels by doing a 1x1 convolution.
- Mean instead of sum pooling in D after the final ReLU.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
from absl import logging
from compare_gan.architectures import abstract_arch
from compare_gan.architectures import arch_ops as ops
from compare_gan.architectures import resnet_ops
import gin
from six.moves import range
import tensorflow as tf
@gin.configurable
class BigGanDeepResNetBlock(object):
"""ResNet block with bottleneck and identity preserving skip connections."""
def __init__(self,
name,
in_channels,
out_channels,
scale,
spectral_norm=False,
batch_norm=None):
"""Constructs a new ResNet block with bottleneck.
Args:
name: Scope name for the resent block.
in_channels: Integer, the input channel size.
out_channels: Integer, the output channel size.
scale: Whether or not to scale up or down, choose from "up", "down" or
"none".
spectral_norm: Use spectral normalization for all weights.
batch_norm: Function for batch normalization.
"""
assert scale in ["up", "down", "none"]
self._name = name
self._in_channels = in_channels
self._out_channels = out_channels
self._scale = scale
self._spectral_norm = spectral_norm
self.batch_norm = batch_norm
def __call__(self, inputs, z, y, is_training):
return self.apply(inputs=inputs, z=z, y=y, is_training=is_training)
def _shortcut(self, inputs):
"""Constructs a skip connection from inputs."""
with tf.variable_scope("shortcut", values=[inputs]):
shortcut = inputs
num_channels = inputs.shape[-1].value
if num_channels > self._out_channels:
assert self._scale == "up"
# Drop redundant channels.
logging.info("[Shortcut] Dropping %d channels in shortcut.",
num_channels - self._out_channels)
shortcut = shortcut[:, :, :, :self._out_channels]
if self._scale == "up":
shortcut = resnet_ops.unpool(shortcut)
if self._scale == "down":
shortcut = tf.nn.pool(shortcut, [2, 2], "AVG", "SAME",
strides=[2, 2], name="pool")
if num_channels < self._out_channels:
assert self._scale == "down"
# Increase number of channels if necessary.
num_missing = self._out_channels - num_channels
logging.info("[Shortcut] Adding %d channels in shortcut.", num_missing)
added = ops.conv1x1(shortcut, num_missing, name="add_channels",
use_sn=self._spectral_norm)
shortcut = tf.concat([shortcut, added], axis=-1)
return shortcut
def apply(self, inputs, z, y, is_training):
""""ResNet block containing possible down/up sampling, shared for G / D.
Args:
inputs: a 3d input tensor of feature map.
z: the latent vector for potential self-modulation. Can be None if use_sbn
is set to False.
y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
labels.
is_training: boolean, whether or notthis is called during the training.
Returns:
output: a 3d output tensor of feature map.
"""
if inputs.shape[-1].value != self._in_channels:
raise ValueError(
"Unexpected number of input channels (expected {}, got {}).".format(
self._in_channels, inputs.shape[-1].value))
bottleneck_channels = max(self._in_channels, self._out_channels) // 4
bn = functools.partial(self.batch_norm, z=z, y=y, is_training=is_training)
conv1x1 = functools.partial(ops.conv1x1, use_sn=self._spectral_norm)
conv3x3 = functools.partial(ops.conv2d, k_h=3, k_w=3, d_h=1, d_w=1,
use_sn=self._spectral_norm)
with tf.variable_scope(self._name, values=[inputs]):
outputs = inputs
with tf.variable_scope("conv1", values=[outputs]):
outputs = bn(outputs, name="bn")
outputs = tf.nn.relu(outputs)
outputs = conv1x1(outputs, bottleneck_channels, name="1x1_conv")
with tf.variable_scope("conv2", values=[outputs]):
outputs = bn(outputs, name="bn")
outputs = tf.nn.relu(outputs)
if self._scale == "up":
outputs = resnet_ops.unpool(outputs)
outputs = conv3x3(outputs, bottleneck_channels, name="3x3_conv")
with tf.variable_scope("conv3", values=[outputs]):
outputs = bn(outputs, name="bn")
outputs = tf.nn.relu(outputs)
outputs = conv3x3(outputs, bottleneck_channels, name="3x3_conv")
with tf.variable_scope("conv4", values=[outputs]):
outputs = bn(outputs, name="bn")
outputs = tf.nn.relu(outputs)
if self._scale == "down":
outputs = tf.nn.pool(outputs, [2, 2], "AVG", "SAME", strides=[2, 2],
name="avg_pool")
outputs = conv1x1(outputs, self._out_channels, name="1x1_conv")
# Add skip-connection.
outputs += self._shortcut(inputs)
logging.info("[Block] %s (z=%s, y=%s) -> %s", inputs.shape,
None if z is None else z.shape,
None if y is None else y.shape, outputs.shape)
return outputs
@gin.configurable
class Generator(abstract_arch.AbstractGenerator):
"""ResNet-based generator supporting resolutions 32, 64, 128, 256, 512."""
def __init__(self,
ch=128,
embed_y=True,
embed_y_dim=128,
experimental_fast_conv_to_rgb=False,
**kwargs):
"""Constructor for BigGAN generator.
Args:
ch: Channel multiplier.
embed_y: If True use a learnable embedding of y that is used instead.
embed_y_dim: Size of the embedding of y.
experimental_fast_conv_to_rgb: If True optimize the last convolution to
sacrifize memory for better speed.
**kwargs: additional arguments past on to ResNetGenerator.
"""
super(Generator, self).__init__(**kwargs)
self._ch = ch
self._embed_y = embed_y
self._embed_y_dim = embed_y_dim
self._experimental_fast_conv_to_rgb = experimental_fast_conv_to_rgb
def _resnet_block(self, name, in_channels, out_channels, scale):
"""ResNet block for the generator."""
if scale not in ["up", "none"]:
raise ValueError(
"Unknown generator ResNet block scaling: {}.".format(scale))
return BigGanDeepResNetBlock(
name=name,
in_channels=in_channels,
out_channels=out_channels,
scale=scale,
spectral_norm=self._spectral_norm,
batch_norm=self.batch_norm)
def _get_in_out_channels(self):
# See Table 7-9.
resolution = self._image_shape[0]
if resolution == 512:
channel_multipliers = 4 * [16] + 4 * [8] + [4, 4, 2, 2, 1, 1, 1]
elif resolution == 256:
channel_multipliers = 4 * [16] + 4 * [8] + [4, 4, 2, 2, 1]
elif resolution == 128:
channel_multipliers = 4 * [16] + 2 * [8] + [4, 4, 2, 2, 1]
elif resolution == 64:
channel_multipliers = 4 * [16] + 2 * [8] + [4, 4, 2]
elif resolution == 32:
channel_multipliers = 8 * [4]
else:
raise ValueError("Unsupported resolution: {}".format(resolution))
in_channels = [self._ch * c for c in channel_multipliers[:-1]]
out_channels = [self._ch * c for c in channel_multipliers[1:]]
return in_channels, out_channels
def apply(self, z, y, is_training):
"""Build the generator network for the given inputs.
Args:
z: `Tensor` of shape [batch_size, z_dim] with latent code.
y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
labels.
is_training: boolean, are we in train or eval model.
Returns:
A tensor of size [batch_size] + self._image_shape with values in [0, 1].
"""
shape_or_none = lambda t: None if t is None else t.shape
logging.info("[Generator] inputs are z=%s, y=%s", z.shape, shape_or_none(y))
seed_size = 4
if self._embed_y:
y = ops.linear(y, self._embed_y_dim, scope="embed_y", use_sn=False,
use_bias=False)
if y is not None:
y = tf.concat([z, y], axis=1)
z = y
in_channels, out_channels = self._get_in_out_channels()
num_blocks = len(in_channels)
# Map noise to the actual seed.
net = ops.linear(
z,
in_channels[0] * seed_size * seed_size,
scope="fc_noise",
use_sn=self._spectral_norm)
# Reshape the seed to be a rank-4 Tensor.
net = tf.reshape(
net,
[-1, seed_size, seed_size, in_channels[0]],
name="fc_reshaped")
for block_idx in range(num_blocks):
scale = "none" if block_idx % 2 == 0 else "up"
block = self._resnet_block(
name="B{}".format(block_idx + 1),
in_channels=in_channels[block_idx],
out_channels=out_channels[block_idx],
scale=scale)
net = block(net, z=z, y=y, is_training=is_training)
# At resolution 64x64 there is a self-attention block.
if scale == "up" and net.shape[1].value == 64:
logging.info("[Generator] Applying non-local block to %s", net.shape)
net = ops.non_local_block(net, "non_local_block",
use_sn=self._spectral_norm)
# Final processing of the net.
# Use unconditional batch norm.
logging.info("[Generator] before final processing: %s", net.shape)
net = ops.batch_norm(net, is_training=is_training, name="final_norm")
net = tf.nn.relu(net)
colors = self._image_shape[2]
if self._experimental_fast_conv_to_rgb:
net = ops.conv2d(net, output_dim=128, k_h=3, k_w=3,
d_h=1, d_w=1, name="final_conv",
use_sn=self._spectral_norm)
net = net[:, :, :, :colors]
else:
net = ops.conv2d(net, output_dim=colors, k_h=3, k_w=3,
d_h=1, d_w=1, name="final_conv",
use_sn=self._spectral_norm)
logging.info("[Generator] after final processing: %s", net.shape)
net = (tf.nn.tanh(net) + 1.0) / 2.0
return net
@gin.configurable
class Discriminator(abstract_arch.AbstractDiscriminator):
"""ResNet-based discriminator supporting resolutions 32, 64, 128, 256, 512."""
def __init__(self,
ch=128,
blocks_with_attention="B1",
project_y=True,
**kwargs):
"""Constructor for BigGAN discriminator.
Args:
ch: Channel multiplier.
blocks_with_attention: Comma-separated list of blocks that are followed by
a non-local block.
project_y: Add an embedding of y in the output layer.
**kwargs: additional arguments past on to ResNetDiscriminator.
"""
super(Discriminator, self).__init__(**kwargs)
self._ch = ch
self._blocks_with_attention = set(blocks_with_attention.split(","))
self._project_y = project_y
def _resnet_block(self, name, in_channels, out_channels, scale):
"""ResNet block for the generator."""
if scale not in ["down", "none"]:
raise ValueError(
"Unknown discriminator ResNet block scaling: {}.".format(scale))
return BigGanDeepResNetBlock(
name=name,
in_channels=in_channels,
out_channels=out_channels,
scale=scale,
spectral_norm=self._spectral_norm,
batch_norm=self.batch_norm)
def _get_in_out_channels(self, colors, resolution):
# See Table 7-9.
if colors not in [1, 3]:
raise ValueError("Unsupported color channels: {}".format(colors))
if resolution == 512:
channel_multipliers = [1, 1, 1, 2, 2, 4, 4] + 4 * [8] + 4 * [16]
elif resolution == 256:
channel_multipliers = [1, 2, 2, 4, 4] + 4 * [8] + 4 * [16]
elif resolution == 128:
channel_multipliers = [1, 2, 2, 4, 4] + 2 * [8] + 4 * [16]
elif resolution == 64:
channel_multipliers = [2, 4, 4] + 2 * [8] + 4 * [16]
elif resolution == 32:
channel_multipliers = 8 * [2]
else:
raise ValueError("Unsupported resolution: {}".format(resolution))
in_channels = [self._ch * c for c in channel_multipliers[:-1]]
out_channels = [self._ch * c for c in channel_multipliers[1:]]
return in_channels, out_channels
def apply(self, x, y, is_training):
"""Apply the discriminator on a input.
Args:
x: `Tensor` of shape [batch_size, ?, ?, ?] with real or fake images.
y: `Tensor` of shape [batch_size, num_classes] with one hot encoded
labels.
is_training: Boolean, whether the architecture should be constructed for
training or inference.
Returns:
Tuple of 3 Tensors, the final prediction of the discriminator, the logits
before the final output activation function and logits form the second
last layer.
"""
logging.info("[Discriminator] inputs are x=%s, y=%s", x.shape,
None if y is None else y.shape)
resnet_ops.validate_image_inputs(x)
in_channels, out_channels = self._get_in_out_channels(
colors=x.shape[-1].value, resolution=x.shape[1].value)
num_blocks = len(in_channels)
net = ops.conv2d(x, output_dim=in_channels[0], k_h=3, k_w=3,
d_h=1, d_w=1, name="initial_conv",
use_sn=self._spectral_norm)
for block_idx in range(num_blocks):
scale = "down" if block_idx % 2 == 0 else "none"
block = self._resnet_block(
name="B{}".format(block_idx + 1),
in_channels=in_channels[block_idx],
out_channels=out_channels[block_idx],
scale=scale)
net = block(net, z=None, y=y, is_training=is_training)
# At resolution 64x64 there is a self-attention block.
if scale == "none" and net.shape[1].value == 64:
logging.info("[Discriminator] Applying non-local block to %s",
net.shape)
net = ops.non_local_block(net, "non_local_block",
use_sn=self._spectral_norm)
# Final part
logging.info("[Discriminator] before final processing: %s", net.shape)
net = tf.nn.relu(net)
h = tf.math.reduce_sum(net, axis=[1, 2])
out_logit = ops.linear(h, 1, scope="final_fc", use_sn=self._spectral_norm)
logging.info("[Discriminator] after final processing: %s", net.shape)
if self._project_y:
if y is None:
raise ValueError("You must provide class information y to project.")
with tf.variable_scope("embedding_fc"):
y_embedding_dim = out_channels[-1]
# We do not use ops.linear() below since it does not have an option to
# override the initializer.
kernel = tf.get_variable(
"kernel", [y.shape[1], y_embedding_dim], tf.float32,
initializer=tf.initializers.glorot_normal())
if self._spectral_norm:
kernel = ops.spectral_norm(kernel)
embedded_y = tf.matmul(y, kernel)
logging.info("[Discriminator] embedded_y for projection: %s",
embedded_y.shape)
out_logit += tf.reduce_sum(embedded_y * h, axis=1, keepdims=True)
out = tf.nn.sigmoid(out_logit)
return out, out_logit, h
|
compare_gan-master
|
compare_gan/architectures/resnet_biggan_deep.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test number of parameters for the BigGAN-Deep architecture."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import logging
from compare_gan import utils
from compare_gan.architectures import arch_ops
from compare_gan.architectures import resnet_biggan_deep
import tensorflow as tf
class ResNet5BigGanDeepTest(tf.test.TestCase):
def testNumberOfParameters(self):
with tf.Graph().as_default():
batch_size = 2
z = tf.zeros((batch_size, 128))
y = tf.one_hot(tf.ones((batch_size,), dtype=tf.int32), 1000)
generator = resnet_biggan_deep.Generator(
image_shape=(128, 128, 3),
batch_norm_fn=arch_ops.conditional_batch_norm)
fake_images = generator(z, y=y, is_training=True, reuse=False)
self.assertEqual(fake_images.shape.as_list(), [batch_size, 128, 128, 3])
discriminator = resnet_biggan_deep.Discriminator()
predictions = discriminator(fake_images, y, is_training=True)
self.assertLen(predictions, 3)
t_vars = tf.trainable_variables()
g_vars = [var for var in t_vars if "generator" in var.name]
d_vars = [var for var in t_vars if "discriminator" in var.name]
g_param_overview = utils.get_parameter_overview(g_vars, limit=None)
d_param_overview = utils.get_parameter_overview(d_vars, limit=None)
g_param_overview = g_param_overview.split("\n")
logging.info("Generator variables:")
for i in range(0, len(g_param_overview), 80):
logging.info("\n%s", "\n".join(g_param_overview[i:i + 80]))
logging.info("Discriminator variables:\n%s", d_param_overview)
g_num_weights = sum([v.get_shape().num_elements() for v in g_vars])
self.assertEqual(g_num_weights, 50244484)
d_num_weights = sum([v.get_shape().num_elements() for v in d_vars])
self.assertEqual(d_num_weights, 34590210)
if __name__ == "__main__":
tf.test.main()
|
compare_gan-master
|
compare_gan/architectures/resnet_biggan_deep_test.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tensorflow operations specific to TPUs."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gin
from six.moves import range
import tensorflow as tf
from tensorflow.contrib.tpu.python.tpu import tpu_function
def cross_replica_concat(value, replica_id, num_replicas):
"""Reduce a concatenation of the `value` across TPU replicas.
Args:
value: Tensor to concatenate.
replica_id: Integer tensor that indicates the index of the replica.
num_replicas: Python integer, total number of replicas.
Returns:
Tensor of the same rank as value with first dimension `num_replicas`
times larger.
Raises:
ValueError: If `value` is a scalar.
"""
if value.shape.ndims < 1:
raise ValueError("Value must have at least rank 1 but got {}.".format(
value.shape.ndims))
if num_replicas <= 1:
return value
with tf.name_scope(None, "tpu_cross_replica_concat"):
# Mask is one hot encoded position of the core_index.
mask = tf.to_float(tf.equal(tf.range(num_replicas), replica_id))
# Expand dims with 1's to match rank of value.
mask = tf.reshape(mask, [num_replicas] + [1] * value.shape.ndims)
if value.dtype in {tf.bfloat16, tf.float32}:
result = mask * value
else:
result = mask * tf.to_float(value)
# Thanks to broadcasting now result is set only in the position pointed by
# replica_id, the rest of the vector is set to 0's.
# All these steps are basically implementing tf.scatter_nd which is missing
# in TPU's backend since it doesn't support sparse operations.
# Merge first 2 dimensions.
# This is equivalent to (value.shape[0].value * num_replicas).
# Using [-1] trick to support also scalar input.
result = tf.reshape(result, [-1] + result.shape.as_list()[2:])
# Each core set the "results" in position pointed by replica_id. When we now
# sum across replicas we exchange the information and fill in local 0's with
# values from other cores.
result = tf.contrib.tpu.cross_replica_sum(result)
# Now all the cores see exactly the same data.
return tf.cast(result, dtype=value.dtype)
def cross_replica_mean(inputs, group_size=None):
"""Calculates the average value of inputs tensor across TPU replicas."""
num_replicas = tpu_function.get_tpu_context().number_of_shards
if not group_size:
group_size = num_replicas
if group_size == 1:
return inputs
if group_size != num_replicas:
group_assignment = []
assert num_replicas % group_size == 0
for g in range(num_replicas // group_size):
replica_ids = [g * group_size + i for i in range(group_size)]
group_assignment.append(replica_ids)
else:
group_assignment = None
return tf.contrib.tpu.cross_replica_sum(inputs, group_assignment) / tf.cast(
group_size, inputs.dtype)
@gin.configurable(blacklist=["inputs", "axis"])
def cross_replica_moments(inputs, axis, parallel=True, group_size=None):
"""Compute mean and variance of the inputs tensor across TPU replicas.
Args:
inputs: A tensor with 2 or more dimensions.
axis: Array of ints. Axes along which to compute mean and variance.
parallel: Use E[x^2] - (E[x])^2 to compute variance. Then can be done
in parallel to computing the mean and reducing the communication overhead.
group_size: Integer, the number of replicas to compute moments arcoss.
None or 0 will use all replicas (global).
Returns:
Two tensors with mean and variance.
"""
# Compute local mean and then average across replicas.
mean = tf.math.reduce_mean(inputs, axis=axis)
mean = cross_replica_mean(mean)
if parallel:
# Compute variance using the E[x^2] - (E[x])^2 formula. This is less
# numerically stable than the E[(x-E[x])^2] formula, but allows the two
# cross-replica sums to be computed in parallel, saving communication
# overhead.
mean_of_squares = tf.reduce_mean(tf.square(inputs), axis=axis)
mean_of_squares = cross_replica_mean(mean_of_squares, group_size=group_size)
mean_squared = tf.square(mean)
variance = mean_of_squares - mean_squared
else:
variance = tf.math.reduce_mean(
tf.math.square(inputs - mean), axis=axis)
variance = cross_replica_mean(variance, group_size=group_size)
return mean, variance
|
compare_gan-master
|
compare_gan/tpu/tpu_ops.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Provide methods for generating deterministic pseudorandom values.
Random number generators in `tf.random` ignore the seed values on TPUs.
An alternative are the stateless random number generators in
`tf.contrib.stateless` which are deterministic but do not keep the a state.
To get different but reproducible random values at each training step the user
needs to provide a seed (a tensor of shape (2,)) that should change in every
step.
This small library handles this for the user by decomposing the seed into two
values: a per operation seed and a global offset
The per operation seed is fixed for each random generator in the graph and
computed from the name of the operation (incl. name scope).
The global offset is passed in as in integer from in the input function and
thus changes every step. This guarantees that is different every step and
always different between TPU cores within a step.
Usage:
- In your `input_fn` call `add_random_offset_to_features` and use the
returned dataset.
- At the beginning of your `model_fn` call `set_random_offset_from_features`.
- Use the random number generators defined in this module.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import hashlib
from absl import logging
import tensorflow as tf
_RANDOM_OFFSET_FEATURE_KEY = "_RANDOM_OFFSET"
_RANDOM_OFFSET_TENSOR = None
def add_random_offset_to_features(dataset, start=1):
"""Add a random offset to the dataset.
Args:
dataset: `tf.data.Dataset` object that contains tuples (features, labels),
where `features` is a Python dictionary.
start: A starting value for the global offset. Optional.
Returns:
A new `tf.data.Dataset` object with a extra feature for the random offset.
"""
dataset = dataset.apply(tf.data.experimental.enumerate_dataset(start=start))
def map_fn(offset, data):
offset = tf.cast(offset, tf.int32)
if isinstance(data, tuple) and len(data) == 2 and isinstance(data[0], dict):
# Data is a tuple (features, labels) as expected by the Estimator
# interface.
logging.info("Passing random offset: %s with data %s.", offset, data)
features, labels = data
features[_RANDOM_OFFSET_FEATURE_KEY] = offset
return features, labels
raise ValueError("Data in dataset must be a tuple (features, labels) and "
"features must be a Python dictionary. data was {}".format(
data))
return dataset.map(map_fn)
def set_random_offset_from_features(features):
"""Set the global random offset from the random offset feature."""
# Take the first index in case the TPU core got multiple examples.
global _RANDOM_OFFSET_TENSOR
_RANDOM_OFFSET_TENSOR = features.pop(_RANDOM_OFFSET_FEATURE_KEY)[0]
logging.info("Got global random offset: %s", _RANDOM_OFFSET_TENSOR)
def _get_seed(name=None):
"""Get a deterministic random seed for stateless generators.
Args:
name: Name of the operation that will use the seed. If None a unique name
will be determined.
Returns:
An integer`Tensor` of shape (2,) with the seed for this op and the global
random offset.
"""
if _RANDOM_OFFSET_TENSOR is None:
raise ValueError("_RANDOM_OFFSET_TENSOR is None. Did you call "
"set_random_offset_from_features() in your model_fn?")
# Get a seed from the hash name of a dummy operation. This seed will only
# depend on the name of the operation (incl. the scope name). It will be
# unique within the graph and only change if the name of operation changes.
with tf.name_scope("dummy_for_seed"):
dummy_op = tf.no_op(name)
# Using SHA-512 gives us a non-negative and uniformly distributed seed in the
# interval [0, 2**512). This is consistent with TensorFlow, as TensorFlow
# operations internally use the residue of the given seed modulo `2**31 - 1`
# (see`tensorflow/python/framework/random_seed.py`).
op_seed = int(hashlib.sha512(dummy_op.name.encode("utf-8")).hexdigest(), 16)
op_seed = tf.constant(op_seed % (2**31 - 1))
logging.info("Using op_seed %s for operation %s.", op_seed, dummy_op.name)
return tf.stack([op_seed, _RANDOM_OFFSET_TENSOR])
def uniform(shape, name=None):
"""Outputs pseudorandom random values from a uniform distribution.
If the _RANDOM_OFFSET_TENSOR is set these output is deterministic based on the
seed and the `name` of this operation. If `name` is None this will use the
index in the graph instead.
There is no `dtype` parameter since the underlying
tf.contrib.stateless.stateless_random_uniform only supports tf.half,
tf.float32 and tf.float64 and we do not care about tf.half and tf.float64.
Patches welcome.
Args:
shape: A Tensor. Must be one of the following types: int32, int64.
The shape of the output tensor.
name: A name for the operation (optional).
Returns:
A Tensor.
"""
if _RANDOM_OFFSET_TENSOR is None:
logging.warning("No global random offset set, falling back to "
"un-deterministic pseudorandom numbers for operation %s.",
name)
return tf.random.uniform(shape, name=name)
return tf.contrib.stateless.stateless_random_uniform(
shape=shape, seed=_get_seed(name), name=name)
def normal(shape, name=None):
if _RANDOM_OFFSET_TENSOR is None:
logging.warning("No global random offset set, falling back to "
"un-deterministic pseudorandom numbers for operation %s.",
name)
return tf.random.normal(shape, name=name)
return tf.contrib.stateless.stateless_random_normal(
shape=shape, seed=_get_seed(name), name=name)
|
compare_gan-master
|
compare_gan/tpu/tpu_random.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests custom TensorFlow operations for TPU."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import logging
from absl.testing import parameterized
from compare_gan.tpu import tpu_ops
import numpy as np
import tensorflow as tf
class TpuOpsTpuTest(parameterized.TestCase, tf.test.TestCase):
def testRunsOnTpu(self):
"""Verify that the test cases runs on a TPU chip and has 2 cores."""
expected_device_names = [
"/job:localhost/replica:0/task:0/device:CPU:0",
"/job:localhost/replica:0/task:0/device:TPU:0",
"/job:localhost/replica:0/task:0/device:TPU:1",
"/job:localhost/replica:0/task:0/device:TPU_SYSTEM:0",
]
with self.session() as sess:
devices = sess.list_devices()
logging.info("devices:\n%s", "\n".join([str(d) for d in devices]))
self.assertAllEqual([d.name for d in devices], expected_device_names)
def testCrossReplicaConcat(self):
def computation(x, replica_id):
logging.info("x: %s\nreplica_id: %s", x, replica_id[0])
return tpu_ops.cross_replica_concat(x, replica_id[0], num_replicas=2)
inputs = np.asarray([[3, 4], [1, 5]])
expected_output = np.asarray([[3, 4], [1, 5], [3, 4], [1, 5]])
with tf.Graph().as_default():
x = tf.constant(inputs)
replica_ids = tf.constant([0, 1], dtype=tf.int32)
x_concat, = tf.contrib.tpu.batch_parallel(
computation, [x, replica_ids], num_shards=2)
self.assertAllEqual(x.shape.as_list(), [2, 2])
self.assertAllEqual(x_concat.shape.as_list(), [4, 2])
with self.session() as sess:
sess.run(tf.contrib.tpu.initialize_system())
sess.run(tf.global_variables_initializer())
x_concat = sess.run(x_concat)
logging.info("x_concat: %s", x_concat)
self.assertAllClose(x_concat, expected_output)
# Test with group size 2 (test case has 2 cores, so this global batch norm).
@parameterized.parameters(
{"group_size": None}, # Defaults to number of TPU cores.
{"group_size": 0}, # Defaults to number of TPU cores.
{"group_size": 2},
)
def testCrossReplicaMean(self, group_size):
# Verify that we average across replicas by feeding 2 vectors to the system.
# Each replica should get one vector which is then averaged across
# all replicas and simply returned.
# After that each replica has the same vector and since the outputs gets
# concatenated we see the same vector twice.
inputs = np.asarray(
[[0.55, 0.70, -1.29, 0.502], [0.57, 0.90, 1.290, 0.202]],
dtype=np.float32)
expected_output = np.asarray(
[[0.56, 0.8, 0.0, 0.352], [0.56, 0.8, 0.0, 0.352]], dtype=np.float32)
def computation(x):
self.assertAllEqual(x.shape.as_list(), [1, 4])
return tpu_ops.cross_replica_mean(x, group_size=group_size)
with tf.Graph().as_default():
# Note: Using placeholders for feeding TPUs is discouraged but fine for
# a simple test case.
x = tf.placeholder(name="x", dtype=tf.float32, shape=inputs.shape)
y = tf.contrib.tpu.batch_parallel(computation, inputs=[x], num_shards=2)
with self.session() as sess:
sess.run(tf.contrib.tpu.initialize_system())
# y is actually a list with one tensor. computation would be allowed
# to return multiple tensors (and ops).
actual_output = sess.run(y, {x: inputs})[0]
self.assertAllEqual(actual_output.shape, (2, 4))
self.assertAllClose(actual_output, expected_output)
def testCrossReplicaMeanGroupSizeOne(self, group_size=1):
# Since the group size is 1 we only average over 1 replica.
inputs = np.asarray(
[[0.55, 0.70, -1.29, 0.502], [0.57, 0.90, 1.290, 0.202]],
dtype=np.float32)
expected_output = np.asarray(
[[0.55, 0.7, -1.29, 0.502], [0.57, 0.9, 1.290, 0.202]],
dtype=np.float32)
def computation(x):
self.assertAllEqual(x.shape.as_list(), [1, 4])
return tpu_ops.cross_replica_mean(x, group_size=group_size)
with tf.Graph().as_default():
# Note: Using placeholders for feeding TPUs is discouraged but fine for
# a simple test case.
x = tf.placeholder(name="x", dtype=tf.float32, shape=inputs.shape)
y = tf.contrib.tpu.batch_parallel(computation, inputs=[x], num_shards=2)
with self.session() as sess:
sess.run(tf.contrib.tpu.initialize_system())
# y is actually a list with one tensor. computation would be allowed
# to return multiple tensors (and ops).
actual_output = sess.run(y, {x: inputs})[0]
self.assertAllEqual(actual_output.shape, (2, 4))
self.assertAllClose(actual_output, expected_output)
if __name__ == "__main__":
tf.test.main()
|
compare_gan-master
|
compare_gan/tpu/tpu_ops_test.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# coding=utf-8
|
compare_gan-master
|
compare_gan/tpu/__init__.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Provide a helper class for using summaries on TPU via a host call.
TPUEstimator does not support writing TF summaries out of the box and TPUs can't
perform operations that write files to disk. To monitor tensor values during
training you can copy the tensors back to the CPU of the host machine via
a host call function. This small library provides a convienent API to do this.
Example:
from compare_gan.tpu import tpu_summaries
def model_fn(features, labels, params, mode):
summary = tpu_summries.TpuSummaries(my_model_dir)
summary.scalar("my_scalar_summary", tensor1)
summary.scalar("my_counter", tensor2, reduce_fn=tf.math.reduce_sum)
return TPUEstimatorSpec(
host_call=summary.get_host_call(),
...)
Warning: The host call function will run every step. Writing large tensors to
summaries can slow down your training. High ranking outfeed operations in your
XProf profile can be an indication for this.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
from absl import logging
import tensorflow as tf
summary = tf.contrib.summary # TensorFlow Summary API v2.
TpuSummaryEntry = collections.namedtuple(
"TpuSummaryEntry", "summary_fn name tensor reduce_fn")
class TpuSummaries(object):
"""Class to simplify TF summaries on TPU.
An instance of the class provides simple methods for writing summaries in the
similar way to tf.summary. The difference is that each summary entry must
provide a reduction function that is used to reduce the summary values from
all the TPU cores.
"""
def __init__(self, log_dir, save_summary_steps=250):
self._log_dir = log_dir
self._entries = []
# While False no summary entries will be added. On TPU we unroll the graph
# and don't want to add multiple summaries per step.
self.record = True
self._save_summary_steps = save_summary_steps
def image(self, name, tensor, reduce_fn):
"""Add a summary for images. Tensor must be of 4-D tensor."""
if not self.record:
return
self._entries.append(
TpuSummaryEntry(summary.image, name, tensor, reduce_fn))
def scalar(self, name, tensor, reduce_fn=tf.math.reduce_mean):
"""Add a summary for a scalar tensor."""
if not self.record:
return
tensor = tf.convert_to_tensor(tensor)
if tensor.shape.ndims == 0:
tensor = tf.expand_dims(tensor, 0)
self._entries.append(
TpuSummaryEntry(summary.scalar, name, tensor, reduce_fn))
def get_host_call(self):
"""Returns the tuple (host_call_fn, host_call_args) for TPUEstimatorSpec."""
# All host_call_args must be tensors with batch dimension.
# All tensors are streamed to the host machine (mind the band width).
global_step = tf.train.get_or_create_global_step()
host_call_args = [tf.expand_dims(global_step, 0)]
host_call_args.extend([e.tensor for e in self._entries])
logging.info("host_call_args: %s", host_call_args)
return (self._host_call_fn, host_call_args)
def _host_call_fn(self, step, *args):
"""Function that will run on the host machine."""
# Host call receives values from all tensor cores (concatenate on the
# batch dimension). Step is the same for all cores.
step = step[0]
logging.info("host_call_fn: args=%s", args)
with summary.create_file_writer(self._log_dir).as_default():
with summary.record_summaries_every_n_global_steps(
self._save_summary_steps, step):
for i, e in enumerate(self._entries):
value = e.reduce_fn(args[i])
e.summary_fn(e.name, value, step=step)
return summary.all_summary_ops()
|
compare_gan-master
|
compare_gan/tpu/tpu_summaries.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for deterministic TensorFlow operations."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl import flags
from absl import logging
from absl.testing import parameterized
from compare_gan.tpu import tpu_random
import numpy as np
from six.moves import range
import tensorflow as tf
FLAGS = flags.FLAGS
class TpuRandomTest(parameterized.TestCase, tf.test.TestCase):
def _run_graph_op_in_estimator(self, create_op_fn, model_dir, use_tpu,
training_steps=4):
"""Helper function to test an operation within a Estimator.
Args:
create_op_fn: Function that will be called from within the model_fn.
The returned op will be run as part of the training step.
model_dir: Directory for saving checkpoints.
use_tpu: Whether to use TPU.
training_steps: Number of trainings steps.
"""
def input_fn(params):
features = {"x": np.ones((8, 3), dtype=np.float32)}
labels = np.ones((8, 1), dtype=np.float32)
dataset = tf.data.Dataset.from_tensor_slices((features, labels))
# Add a feature for the random offset of operations in tpu_random.py.
dataset = tpu_random.add_random_offset_to_features(dataset)
return dataset.repeat().batch(params["batch_size"], drop_remainder=True)
def model_fn(features, labels, mode, params):
# Set the random offset tensor for operations in tpu_random.py.
tpu_random.set_random_offset_from_features(features)
test_op = create_op_fn()
predictions = tf.layers.dense(features["x"], 1)
loss = tf.losses.mean_squared_error(labels, predictions)
optimizer = tf.train.GradientDescentOptimizer(0.01)
if params["use_tpu"]:
optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
with tf.control_dependencies([test_op]):
train_op = optimizer.minimize(
loss, global_step=tf.train.get_or_create_global_step())
return tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
loss=loss,
train_op=train_op)
if tf.gfile.Exists(model_dir):
tf.gfile.DeleteRecursively(model_dir)
run_config = tf.contrib.tpu.RunConfig(
model_dir=model_dir,
save_checkpoints_steps=1,
tpu_config=tf.contrib.tpu.TPUConfig(iterations_per_loop=1))
estimator = tf.contrib.tpu.TPUEstimator(
config=run_config,
use_tpu=use_tpu,
model_fn=model_fn,
train_batch_size=2)
estimator.train(input_fn, steps=training_steps)
@parameterized.parameters(
{"use_tpu": False},
{"use_tpu": True},
)
def testIsDeterministic(self, use_tpu):
def create_op_fn():
z = tf.get_variable("z", (3,), tf.float32)
random_z = tpu_random.uniform((3,), name="random_z")
if use_tpu:
random_z = tf.contrib.tpu.cross_replica_sum(random_z)
return tf.assign(z, random_z).op
model_dir_1 = os.path.join(FLAGS.test_tmpdir, "1")
self._run_graph_op_in_estimator(create_op_fn, model_dir_1, use_tpu=use_tpu)
model_dir_2 = os.path.join(FLAGS.test_tmpdir, "2")
self._run_graph_op_in_estimator(create_op_fn, model_dir_2, use_tpu=use_tpu)
for step in range(1, 5):
self.assertTrue(tf.gfile.Exists(
os.path.join(model_dir_1, "model.ckpt-{}.index".format(step))))
ckpt_1 = tf.train.load_checkpoint(
os.path.join(model_dir_1, "model.ckpt-{}".format(step)))
ckpt_2 = tf.train.load_checkpoint(
os.path.join(model_dir_2, "model.ckpt-{}".format(step)))
z_1 = ckpt_1.get_tensor("z")
z_2 = ckpt_2.get_tensor("z")
logging.info("step=%d, z_1=%s, z_2=%s", step, z_1, z_2)
# Both runs are the same.
self.assertAllClose(z_1, z_2)
@parameterized.parameters(
{"use_tpu": False},
{"use_tpu": True},
)
def testIsDifferentAcrossSteps(self, use_tpu):
def create_op_fn():
z = tf.get_variable("z", (3,), tf.float32)
random_z = tpu_random.uniform((3,), name="random_z")
if use_tpu:
random_z = tf.contrib.tpu.cross_replica_sum(random_z)
return tf.assign(z, random_z).op
model_dir = os.path.join(FLAGS.test_tmpdir, "1")
self._run_graph_op_in_estimator(create_op_fn, model_dir, use_tpu=use_tpu)
previous_z = None
for step in range(1, 5):
self.assertTrue(tf.gfile.Exists(
os.path.join(model_dir, "model.ckpt-{}.index".format(step))))
ckpt = tf.train.load_checkpoint(
os.path.join(model_dir, "model.ckpt-{}".format(step)))
z = ckpt.get_tensor("z")
logging.info("step=%d, z=%s", step, z)
# Different to previous run.
if previous_z is not None:
self.assertNotAllClose(previous_z, z)
previous_z = z
def testIsDifferentAcrossCores(self):
def create_op_fn():
z_sum = tf.get_variable("z_sum", (3,), tf.float32)
z_first_core = tf.get_variable("z_first_core", (3,), tf.float32)
random_z = tpu_random.uniform((3,), name="random_z")
random_z_sum = tf.contrib.tpu.cross_replica_sum(random_z)
return tf.group(tf.assign(z_sum, random_z_sum).op,
tf.assign(z_first_core, random_z))
model_dir = os.path.join(FLAGS.test_tmpdir, "1")
self._run_graph_op_in_estimator(create_op_fn, model_dir, use_tpu=True)
for step in range(1, 5):
self.assertTrue(tf.gfile.Exists(
os.path.join(model_dir, "model.ckpt-{}.index".format(step))))
ckpt = tf.train.load_checkpoint(
os.path.join(model_dir, "model.ckpt-{}".format(step)))
z_sum = ckpt.get_tensor("z_sum")
z_first_core = ckpt.get_tensor("z_first_core")
logging.info("step=%d, z_sum=%s, z_first_core=%s",
step, z_sum, z_first_core)
# Sum is not the first core times 2.
self.assertNotAllClose(z_sum, 2 * z_first_core)
if __name__ == "__main__":
tf.test.main()
|
compare_gan-master
|
compare_gan/tpu/tpu_random_test.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Provides ModularGAN for GAN models with penalty loss."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import itertools
from absl import flags
from absl import logging
from compare_gan import test_utils
from compare_gan import utils
from compare_gan.architectures import dcgan
from compare_gan.architectures import infogan
from compare_gan.architectures import resnet30
from compare_gan.architectures import resnet5
from compare_gan.architectures import resnet_biggan
from compare_gan.architectures import resnet_biggan_deep
from compare_gan.architectures import resnet_cifar
from compare_gan.architectures import resnet_stl
from compare_gan.architectures import sndcgan
from compare_gan.gans import consts as c
from compare_gan.gans import loss_lib
from compare_gan.gans import penalty_lib
from compare_gan.gans.abstract_gan import AbstractGAN
from compare_gan.tpu import tpu_random
from compare_gan.tpu import tpu_summaries
import gin
import numpy as np
from six.moves import range
import tensorflow as tf
import tensorflow_gan as tfgan
import tensorflow_hub as hub
FLAGS = flags.FLAGS
# pylint: disable=not-callable
@gin.configurable(blacklist=["dataset", "parameters", "model_dir"])
class ModularGAN(AbstractGAN):
"""Base class for GANs models that support the Estimator API."""
def __init__(self,
dataset,
parameters,
model_dir,
deprecated_split_disc_calls=False,
experimental_joint_gen_for_disc=False,
experimental_force_graph_unroll=False,
g_use_ema=False,
ema_decay=0.9999,
ema_start_step=40000,
g_optimizer_fn=tf.train.AdamOptimizer,
d_optimizer_fn=None,
g_lr=0.0002,
d_lr=None,
conditional=False,
fit_label_distribution=False):
"""ModularGAN is a Gin configurable implementation of AbstractGAN.
Graph Unrolling:
For better performance TPUs perform multiple training steps in a single
session run call. To utilize this we perform both D and G training in a
single training step. The inputs to model_fn are split into multiple
sub-steps:
One sub-step for each discriminator training step (disc_iters) and a
separate sub-step (with new inputs) for the generator training step.
The configured batch size is the batch size used in a sub-step.
Warning: Graph unrolling can increase the memory requirement and load to
memory issues on GPUs. Therefore it is turned off when running on GPUs, but
can be forced to be on with experimental_force_graph_unroll.
Args:
dataset: `ImageDataset` object. If `conditional` the dataset must provide
labels and the number of classes bust known.
parameters: Legacy Python dictionary with additional parameters. This must
have the keys 'architecture', 'z_dim' and 'lambda'.
model_dir: Directory path for storing summary files.
deprecated_split_disc_calls: If True pass fake and real images separately
through the discriminator network.
experimental_joint_gen_for_disc: If True generate fake images for all D
iterations jointly. This increase the batch size in G when generating
fake images for D. The G step is stays the same.
experimental_force_graph_unroll: Force unrolling of the graph as described
above. When running on TPU the graph is always unrolled.
g_use_ema: If True keep moving averages for weights in G and use them in
the TF-Hub module.
ema_decay: Decay rate for moving averages for G's weights.
ema_start_step: Start step for keeping moving averages. Before this the
decay rate is 0.
g_optimizer_fn: Function (or constructor) to return an optimizer for G.
d_optimizer_fn: Function (or constructor) to return an optimizer for D.
If None will call `g_optimizer_fn`.
g_lr: Learning rate for G.
d_lr: Learning rate for D. Defaults to `g_lr`.
conditional: Whether the GAN is conditional. If True both G and Y will
get passed labels.
fit_label_distribution: Whether to fit the label distribution.
"""
super(ModularGAN, self).__init__(
dataset=dataset, parameters=parameters, model_dir=model_dir)
self._deprecated_split_disc_calls = deprecated_split_disc_calls
self._experimental_joint_gen_for_disc = experimental_joint_gen_for_disc
self._experimental_force_graph_unroll = experimental_force_graph_unroll
self._g_use_ema = g_use_ema
self._ema_decay = ema_decay
self._ema_start_step = ema_start_step
self._g_optimizer_fn = g_optimizer_fn
self._d_optimizer_fn = d_optimizer_fn
if self._d_optimizer_fn is None:
self._d_optimizer_fn = g_optimizer_fn
self._g_lr = g_lr
self._d_lr = g_lr if d_lr is None else d_lr
if conditional and not self._dataset.num_classes:
raise ValueError(
"Option 'conditional' selected but dataset {} does not have "
"labels".format(self._dataset.name))
self._conditional = conditional
self._fit_label_distribution = fit_label_distribution
self._tpu_summary = tpu_summaries.TpuSummaries(model_dir)
# Parameters that have not been ported to Gin.
self._architecture = parameters["architecture"]
self._z_dim = parameters["z_dim"]
self._lambda = parameters["lambda"]
# Number of discriminator iterations per one iteration of the generator.
self._disc_iters = parameters.get("disc_iters", 1)
self._force_graph_unroll = parameters.get("force_graph_unroll")
# Will be set by create_loss().
self.d_loss = None
self.g_loss = None
self.penalty_loss = None
# Cache for discriminator and generator objects.
self._discriminator = None
self._generator = None
def _get_num_sub_steps(self, unroll_graph):
if unroll_graph:
return self._disc_iters + 1
return 1
@property
def conditional(self):
return self._conditional
@property
def generator(self):
if self._generator is None:
architecture_fns = {
c.DCGAN_ARCH: dcgan.Generator,
c.DUMMY_ARCH: test_utils.Generator,
c.INFOGAN_ARCH: infogan.Generator,
c.RESNET5_ARCH: resnet5.Generator,
c.RESNET30_ARCH: resnet30.Generator,
c.RESNET_BIGGAN_ARCH: resnet_biggan.Generator,
c.RESNET_BIGGAN_DEEP_ARCH: resnet_biggan_deep.Generator,
c.RESNET_CIFAR_ARCH: resnet_cifar.Generator,
c.RESNET_STL_ARCH: resnet_stl.Generator,
c.SNDCGAN_ARCH: sndcgan.Generator,
}
if self._architecture not in architecture_fns:
raise NotImplementedError(
"Generator architecture {} not implemented.".format(
self._architecture))
self._generator = architecture_fns[self._architecture](
image_shape=self._dataset.image_shape)
return self._generator
@property
def discriminator(self):
"""Returns an instantiation of `AbstractDiscriminator`."""
if self._discriminator is None:
architecture_fns = {
c.DCGAN_ARCH: dcgan.Discriminator,
c.DUMMY_ARCH: test_utils.Discriminator,
c.INFOGAN_ARCH: infogan.Discriminator,
c.RESNET5_ARCH: resnet5.Discriminator,
c.RESNET30_ARCH: resnet30.Discriminator,
c.RESNET_BIGGAN_ARCH: resnet_biggan.Discriminator,
c.RESNET_BIGGAN_DEEP_ARCH: resnet_biggan_deep.Discriminator,
c.RESNET_CIFAR_ARCH: resnet_cifar.Discriminator,
c.RESNET_STL_ARCH: resnet_stl.Discriminator,
c.SNDCGAN_ARCH: sndcgan.Discriminator,
}
if self._architecture not in architecture_fns:
raise NotImplementedError(
"Discriminator architecture {} not implemented.".format(
self._architecture))
self._discriminator = architecture_fns[self._architecture]()
return self._discriminator
def as_estimator(self, run_config, batch_size, use_tpu):
"""Returns a TPUEstimator for this GAN."""
unroll_graph = self._experimental_force_graph_unroll or use_tpu
num_sub_steps = self._get_num_sub_steps(unroll_graph=unroll_graph)
return tf.contrib.tpu.TPUEstimator(
config=run_config,
use_tpu=use_tpu,
model_fn=self.model_fn,
train_batch_size=batch_size * num_sub_steps)
def _module_fn(self, model, batch_size):
"""Module Function to create a TF Hub module spec.
Args:
model: `tf.estimator.ModeKeys` value.
batch_size: batch size.
"""
if model not in {"gen", "disc"}:
raise ValueError("Model {} not support in module_fn()".format(model))
placeholder_fn = tf.placeholder if batch_size is None else tf.zeros
is_training = False
inputs = {}
y = None
if model == "gen":
inputs["z"] = placeholder_fn(
shape=(batch_size, self._z_dim),
dtype=tf.float32,
name="z_for_eval")
elif model == "disc":
inputs["images"] = placeholder_fn(
shape=[batch_size] + list(self._dataset.image_shape),
dtype=tf.float32,
name="images_for_eval")
if self.conditional:
inputs["labels"] = placeholder_fn(
shape=(batch_size,),
dtype=tf.int32,
name="labels_for_eval")
y = self._get_one_hot_labels(inputs["labels"])
else:
y = None
logging.info("Creating module for model %s with inputs %s and y=%s",
model, inputs, y)
outputs = {}
if model == "disc":
outputs["prediction"], _, _ = self.discriminator(
inputs["images"], y=y, is_training=is_training)
else:
z = inputs["z"]
generated = self.generator(z=z, y=y, is_training=is_training)
if self._g_use_ema:
g_vars = [var for var in tf.trainable_variables()
if "generator" in var.name]
ema = tf.train.ExponentialMovingAverage(decay=self._ema_decay)
# Create the variables that will be loaded from the checkpoint.
ema.apply(g_vars)
def ema_getter(getter, name, *args, **kwargs):
var = getter(name, *args, **kwargs)
ema_var = ema.average(var)
if ema_var is None:
var_names_without_ema = {"u_var", "accu_mean", "accu_variance",
"accu_counter", "update_accus"}
if name.split("/")[-1] not in var_names_without_ema:
logging.warning("Could not find EMA variable for %s.", name)
return var
return ema_var
with tf.variable_scope("", values=[z, y], reuse=True,
custom_getter=ema_getter):
ema_generated = self.generator(z, y=y, is_training=is_training)
if not is_training:
generated = ema_generated
else:
outputs["generated_ema_for_tensorboard"] = ema_generated
outputs["generated"] = generated
hub.add_signature(inputs=inputs, outputs=outputs)
def as_module_spec(self):
"""Returns the generator network as TFHub module spec."""
models = ["gen", "disc"]
default_batch_size = 64
batch_sizes = [8, 16, 32, 64]
if "resnet" in self._architecture:
# Only ResNet architectures support dynamic batch size.
batch_sizes.append(None)
default_batch_size = None
tags_and_args = [
(set(), {"model": "gen", "batch_size": default_batch_size})]
for model, bs in itertools.product(models, batch_sizes):
tags = {model, "bs{}".format(bs)}
args = {"model": model, "batch_size": bs}
tags_and_args.append((tags, args))
return hub.create_module_spec(
self._module_fn, tags_and_args=tags_and_args,
drop_collections=[tf.GraphKeys.MOVING_AVERAGE_VARIABLES])
def _grid_shape(self, num_summary_images):
"""Returns the shape for a rectangle grid with `num_summarry_images`."""
if num_summary_images & (num_summary_images - 1) != 0:
raise ValueError(
"Number of summary images must be a power of 2 to create a grid of "
"images but was {}.".format(num_summary_images))
# Since b = 2^c we can use x = 2^(floor(c/2)) and y = 2^(ceil(c/2)).
x = 2 ** int(np.log2(num_summary_images) / 2)
y = num_summary_images // x
return x, y
def _add_images_to_summary(self, images, summary_name, params):
"""Called from model_fn() to add a grid of images as summary."""
# All summary tensors are synced to host 0 on every step. To avoid sending
# more images then needed we transfer at most `sampler_per_replica` to
# create a 8x8 image grid.
batch_size_per_replica = images.shape[0].value
num_replicas = params["context"].num_replicas if "context" in params else 1
total_num_images = batch_size_per_replica * num_replicas
if total_num_images >= 64:
grid_shape = (8, 8)
# This can be more than 64. We slice all_images below.
samples_per_replica = int(np.ceil(64 / num_replicas))
else:
grid_shape = self._grid_shape(total_num_images)
samples_per_replica = batch_size_per_replica
def _merge_images_to_grid(all_images):
logging.info("Creating images summary for fake images: %s", all_images)
return tfgan.eval.image_grid(
all_images[:np.prod(grid_shape)],
grid_shape=grid_shape,
image_shape=self._dataset.image_shape[:2],
num_channels=self._dataset.image_shape[2])
self._tpu_summary.image(summary_name,
images[:samples_per_replica],
reduce_fn=_merge_images_to_grid)
def _check_variables(self):
"""Check that every variable belongs to either G or D."""
t_vars = tf.trainable_variables()
g_vars = self.generator.trainable_variables
d_vars = self.discriminator.trainable_variables
shared_vars = set(d_vars) & set(g_vars)
if shared_vars:
logging.info("g_vars: %s", g_vars)
logging.info("d_vars: %s", d_vars)
raise ValueError("Shared trainable variables: %s" % shared_vars)
unused_vars = set(t_vars) - set(d_vars) - set(g_vars)
if unused_vars:
raise ValueError("Unused trainable variables: %s" % unused_vars)
def _get_one_hot_labels(self, labels):
if not self.conditional:
raise ValueError(
"_get_one_hot_labels() called but GAN is not conditional.")
return tf.one_hot(labels, self._dataset.num_classes)
@gin.configurable("z", blacklist=["shape", "name"])
def z_generator(self, shape, distribution_fn=tf.random.uniform,
minval=-1.0, maxval=1.0, stddev=1.0, name=None):
"""Random noise distributions as TF op.
Args:
shape: A 1-D integer Tensor or Python array.
distribution_fn: Function that create a Tensor. If the function has any
of the arguments 'minval', 'maxval' or 'stddev' these are passed to it.
minval: The lower bound on the range of random values to generate.
maxval: The upper bound on the range of random values to generate.
stddev: The standard deviation of a normal distribution.
name: A name for the operation.
Returns:
Tensor with the given shape and dtype tf.float32.
"""
return utils.call_with_accepted_args(
distribution_fn, shape=shape, minval=minval, maxval=maxval,
stddev=stddev, name=name)
def label_generator(self, shape, name=None):
if not self.conditional:
raise ValueError("label_generator() called but GAN is not conditional.")
# Assume uniform label distribution.
return tf.random.uniform(shape, minval=0, maxval=self._dataset.num_classes,
dtype=tf.int32, name=name)
def _preprocess_fn(self, images, labels, seed=None):
"""Creates the feature dictionary with images and z."""
logging.info("_preprocess_fn(): images=%s, labels=%s, seed=%s",
images, labels, seed)
tf.set_random_seed(seed)
features = {
"images": images,
"z": self.z_generator([self._z_dim], name="z"),
}
if self.conditional:
if self._fit_label_distribution:
features["sampled_labels"] = labels
else:
features["sampled_labels"] = self.label_generator(
shape=[], name="sampled_labels")
return features, labels
def input_fn(self, params, mode):
"""Input function that retuns a `tf.data.Dataset` object.
This function will be called once for each host machine.
Args:
params: Python dictionary with parameters given to TPUEstimator.
Additional TPUEstimator will set the key `batch_size` with the batch
size for this host machine and `tpu_contextu` with a TPUContext
object.
mode: `tf.estimator.MoedeKeys` value.
Returns:
A `tf.data.Dataset` object with batched features and labels.
"""
return self._dataset.input_fn(mode=mode, params=params,
preprocess_fn=self._preprocess_fn)
def _split_inputs_and_generate_samples(self, features, labels, num_sub_steps):
# Encode labels.
if self.conditional:
assert "sampled_labels" in features
features["sampled_y"] = self._get_one_hot_labels(
features["sampled_labels"])
# Split inputs for sub-steps.
fs = [(k, tf.split(features[k], num_sub_steps)) for k in features]
fs = [{k: v[i] for k, v in fs} for i in range(num_sub_steps)]
ls = tf.split(labels, num_sub_steps)
total_batch_size = features["z"].shape[0].value
assert total_batch_size % num_sub_steps == 0
batch_size = total_batch_size // num_sub_steps
if self._experimental_joint_gen_for_disc:
# Generate samples from G for D steps.
with tf.name_scope("gen_for_disc"):
# Only the last sub-step changes the generator weights. Thus we can
# combine all forward passes through G to achieve better efficiency.
# The forward pass for G's step needs to be separated since compute
# gradients for it.
z = features["z"][:batch_size * self._disc_iters]
sampled_y = None
if self.conditional:
sampled_y = features["sampled_y"][:batch_size * self._disc_iters]
generated = self.generator(z, y=sampled_y, is_training=True)
generated = tf.split(generated, self._disc_iters)
for i in range(self._disc_iters):
fs[i]["generated"] = generated[i]
# Generate samples from G for G step.
with tf.name_scope("gen_for_gen"):
sampled_y = fs[-1].get("sampled_y", None)
fs[-1]["generated"] = self.generator(
fs[-1]["z"], y=sampled_y, is_training=True)
else:
for f in fs:
sampled_y = f.get("sampled_y", None)
f["generated"] = self.generator(f["z"], y=sampled_y, is_training=True)
return fs, ls
def _train_discriminator(self, features, labels, step, optimizer, params):
features = features.copy()
features["generated"] = tf.stop_gradient(features["generated"])
# Set the random offset tensor for operations in tpu_random.py.
tpu_random.set_random_offset_from_features(features)
# create_loss will set self.d_loss.
self.create_loss(features, labels, params=params)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(
self.d_loss,
var_list=self.discriminator.trainable_variables,
global_step=step)
with tf.control_dependencies([train_op]):
return tf.identity(self.d_loss)
def _train_generator(self, features, labels, step, optimizer, params):
# Set the random offset tensor for operations in tpu_random.py.
tpu_random.set_random_offset_from_features(features)
# create_loss will set self.g_loss.
self.create_loss(features, labels, params=params)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(
self.g_loss,
var_list=self.generator.trainable_variables,
global_step=step)
if self._g_use_ema:
g_vars = self.generator.trainable_variables
with tf.name_scope("generator_ema"):
logging.info("Creating moving averages of weights: %s", g_vars)
# The decay value is set to 0 if we're before the moving-average start
# point, so that the EMA vars will be the normal vars.
decay = self._ema_decay * tf.cast(
tf.greater_equal(step, self._ema_start_step), tf.float32)
ema = tf.train.ExponentialMovingAverage(decay=decay)
with tf.control_dependencies([train_op]):
train_op = ema.apply(g_vars)
with tf.control_dependencies([train_op]):
return tf.identity(self.g_loss)
def model_fn(self, features, labels, params, mode):
"""Constructs the model for the given features and mode.
Args:
features: A dictionary with the feature tensors.
labels: Tensor will labels. Will be None if mode is PREDICT.
params: Dictionary with hyperparameters passed to TPUEstimator.
Additional TPUEstimator will set 3 keys: `batch_size`, `use_tpu`,
`tpu_context`. `batch_size` is the batch size for this core.
mode: `tf.estimator.ModeKeys` value (TRAIN, EVAL, PREDICT). The mode
should be passed to the TPUEstimatorSpec and your model should be
build this mode.
Returns:
A `tf.contrib.tpu.TPUEstimatorSpec`.
"""
logging.info("model_fn(): features=%s, labels=%s,mode=%s, params=%s",
features, labels, mode, params)
if mode != tf.estimator.ModeKeys.TRAIN:
raise ValueError("Only training mode is supported.")
use_tpu = params["use_tpu"]
unroll_graph = self._experimental_force_graph_unroll or use_tpu
num_sub_steps = self._get_num_sub_steps(unroll_graph=unroll_graph)
if unroll_graph:
logging.warning("Graph will be unrolled.")
if self._experimental_joint_gen_for_disc and not unroll_graph:
raise ValueError("Joining G forward passes is only supported for ",
"unrolled graphs.")
# Clean old summaries from previous calls to model_fn().
self._tpu_summary = tpu_summaries.TpuSummaries(self._model_dir)
# Get features for each sub-step.
fs, ls = self._split_inputs_and_generate_samples(
features, labels, num_sub_steps=num_sub_steps)
disc_optimizer = self.get_disc_optimizer(params["use_tpu"])
disc_step = tf.get_variable(
"global_step_disc", [], dtype=tf.int32, trainable=False)
train_disc_fn = functools.partial(
self._train_discriminator,
step=disc_step,
optimizer=disc_optimizer,
params=params)
gen_optimizer = self.get_gen_optimizer(params["use_tpu"])
gen_step = tf.train.get_or_create_global_step()
train_gen_fn = functools.partial(
self._train_generator,
features=fs[-1],
labels=ls[-1],
step=gen_step,
optimizer=gen_optimizer,
params=params)
if not unroll_graph and self._disc_iters != 1:
train_fn = train_gen_fn
train_gen_fn = lambda: tf.cond(
tf.equal(disc_step % self._disc_iters, 0), train_fn, lambda: 0.0)
# Train D.
d_losses = []
d_steps = self._disc_iters if unroll_graph else 1
for i in range(d_steps):
with tf.name_scope("disc_step_{}".format(i + 1)):
with tf.control_dependencies(d_losses):
d_losses.append(train_disc_fn(features=fs[i], labels=ls[i]))
# Train G.
with tf.control_dependencies(d_losses):
with tf.name_scope("gen_step"):
g_loss = train_gen_fn()
for i, d_loss in enumerate(d_losses):
self._tpu_summary.scalar("loss/d_{}".format(i), d_loss)
self._tpu_summary.scalar("loss/g", g_loss)
self._add_images_to_summary(fs[0]["generated"], "fake_images", params)
self._add_images_to_summary(fs[0]["images"], "real_images", params)
self._check_variables()
utils.log_parameter_overview(self.generator.trainable_variables,
msg="Generator variables:")
utils.log_parameter_overview(self.discriminator.trainable_variables,
msg="Discriminator variables:")
return tf.contrib.tpu.TPUEstimatorSpec(
mode=mode,
host_call=self._tpu_summary.get_host_call(),
# Estimator requires a loss which gets displayed on TensorBoard.
# The given Tensor is evaluated but not used to create gradients.
loss=d_losses[0],
train_op=g_loss.op)
def get_disc_optimizer(self, use_tpu=True):
opt = self._d_optimizer_fn(self._d_lr, name="d_opt")
if use_tpu:
opt = tf.contrib.tpu.CrossShardOptimizer(opt)
return opt
def get_gen_optimizer(self, use_tpu=True):
opt = self._g_optimizer_fn(self._g_lr, name="g_opt")
if use_tpu:
opt = tf.contrib.tpu.CrossShardOptimizer(opt)
return opt
def create_loss(self, features, labels, params, is_training=True):
"""Build the loss tensors for discriminator and generator.
This method will set self.d_loss and self.g_loss.
Args:
features: Optional dictionary with inputs to the model ("images" should
contain the real images and "z" the noise for the generator).
labels: Tensor will labels. Use
self._get_one_hot_labels(labels) to get a one hot encoded tensor.
params: Dictionary with hyperparameters passed to TPUEstimator.
Additional TPUEstimator will set 3 keys: `batch_size`, `use_tpu`,
`tpu_context`. `batch_size` is the batch size for this core.
is_training: If True build the model in training mode. If False build the
model for inference mode (e.g. use trained averages for batch norm).
Raises:
ValueError: If set of meta/hyper parameters is not supported.
"""
images = features["images"] # Real images.
generated = features["generated"] # Fake images.
if self.conditional:
y = self._get_one_hot_labels(labels)
sampled_y = self._get_one_hot_labels(features["sampled_labels"])
all_y = tf.concat([y, sampled_y], axis=0)
else:
y = None
sampled_y = None
all_y = None
if self._deprecated_split_disc_calls:
with tf.name_scope("disc_for_real"):
d_real, d_real_logits, _ = self.discriminator(
images, y=y, is_training=is_training)
with tf.name_scope("disc_for_fake"):
d_fake, d_fake_logits, _ = self.discriminator(
generated, y=sampled_y, is_training=is_training)
else:
# Compute discriminator output for real and fake images in one batch.
all_images = tf.concat([images, generated], axis=0)
d_all, d_all_logits, _ = self.discriminator(
all_images, y=all_y, is_training=is_training)
d_real, d_fake = tf.split(d_all, 2)
d_real_logits, d_fake_logits = tf.split(d_all_logits, 2)
self.d_loss, _, _, self.g_loss = loss_lib.get_losses(
d_real=d_real, d_fake=d_fake, d_real_logits=d_real_logits,
d_fake_logits=d_fake_logits)
penalty_loss = penalty_lib.get_penalty_loss(
x=images, x_fake=generated, y=y, is_training=is_training,
discriminator=self.discriminator)
self.d_loss += self._lambda * penalty_loss
if hasattr(self.discriminator, '_quantize_loss') and self.discriminator._quantize_loss is not None:
self.d_loss += self.discriminator._quantize_loss
|
compare_gan-master
|
compare_gan/gans/modular_gan.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for GANs with different regularizers."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import flags
from absl.testing import parameterized
from compare_gan import datasets
from compare_gan import test_utils
from compare_gan.gans import consts as c
from compare_gan.gans import loss_lib
from compare_gan.gans import penalty_lib
from compare_gan.gans.modular_gan import ModularGAN
import gin
import tensorflow as tf
FLAGS = flags.FLAGS
TEST_ARCHITECTURES = [c.RESNET5_ARCH, c.RESNET_BIGGAN_ARCH, c.RESNET_CIFAR_ARCH]
TEST_LOSSES = [loss_lib.non_saturating, loss_lib.wasserstein,
loss_lib.least_squares, loss_lib.hinge]
TEST_PENALTIES = [penalty_lib.no_penalty, penalty_lib.dragan_penalty,
penalty_lib.wgangp_penalty, penalty_lib.l2_penalty]
class ModularGANConditionalTest(parameterized.TestCase,
test_utils.CompareGanTestCase):
def _runSingleTrainingStep(self, architecture, loss_fn, penalty_fn,
labeled_dataset):
parameters = {
"architecture": architecture,
"lambda": 1,
"z_dim": 120,
}
with gin.unlock_config():
gin.bind_parameter("penalty.fn", penalty_fn)
gin.bind_parameter("loss.fn", loss_fn)
model_dir = self._get_empty_model_dir()
run_config = tf.contrib.tpu.RunConfig(
model_dir=model_dir,
tpu_config=tf.contrib.tpu.TPUConfig(iterations_per_loop=1))
dataset = datasets.get_dataset("cifar10")
gan = ModularGAN(
dataset=dataset,
parameters=parameters,
conditional=True,
model_dir=model_dir)
estimator = gan.as_estimator(run_config, batch_size=2, use_tpu=False)
estimator.train(gan.input_fn, steps=1)
@parameterized.parameters(TEST_ARCHITECTURES)
def testSingleTrainingStepArchitectures(self, architecture):
self._runSingleTrainingStep(architecture, loss_lib.hinge,
penalty_lib.no_penalty, True)
@parameterized.parameters(TEST_LOSSES)
def testSingleTrainingStepLosses(self, loss_fn):
self._runSingleTrainingStep(c.RESNET_CIFAR_ARCH, loss_fn,
penalty_lib.no_penalty, labeled_dataset=True)
@parameterized.parameters(TEST_PENALTIES)
def testSingleTrainingStepPenalties(self, penalty_fn):
self._runSingleTrainingStep(c.RESNET_CIFAR_ARCH, loss_lib.hinge, penalty_fn,
labeled_dataset=True)
def testUnlabledDatasetRaisesError(self):
parameters = {
"architecture": c.RESNET_CIFAR_ARCH,
"lambda": 1,
"z_dim": 120,
}
with gin.unlock_config():
gin.bind_parameter("loss.fn", loss_lib.hinge)
# Use dataset without labels.
dataset = datasets.get_dataset("celeb_a")
model_dir = self._get_empty_model_dir()
with self.assertRaises(ValueError):
gan = ModularGAN(
dataset=dataset,
parameters=parameters,
conditional=True,
model_dir=model_dir)
del gan
if __name__ == "__main__":
tf.test.main()
|
compare_gan-master
|
compare_gan/gans/modular_gan_conditional_test.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Interface for GAN models that can be trained using the Estimator API."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
import six
import tensorflow as tf
@six.add_metaclass(abc.ABCMeta)
class AbstractGAN(object):
"""Interface for GAN models that can be training using the Estimator API."""
def __init__(self,
dataset,
parameters,
model_dir):
super(AbstractGAN, self).__init__()
self._dataset = dataset
self._parameters = parameters
self._model_dir = model_dir
def as_estimator(self, run_config, batch_size, use_tpu):
"""Returns a TPUEstimator for this GAN."""
return tf.contrib.tpu.TPUEstimator(
config=run_config,
use_tpu=use_tpu,
model_fn=self.model_fn,
train_batch_size=batch_size)
@abc.abstractmethod
def as_module_spec(self, params, mode):
"""Returns the generator network as TFHub module spec."""
@abc.abstractmethod
def input_fn(self, params, mode):
"""Input function that retuns a `tf.data.Dataset` object.
This function will be called once for each host machine.
Args:
params: Python dictionary with parameters given to TPUEstimator.
Additional TPUEstimator will set the key `batch_size` with the batch
size for this host machine and `tpu_contextu` with a TPUContext
object.
mode: `tf.estimator.MoedeKeys` value.
Returns:
A `tf.data.Dataset` object with batched features and labels.
"""
@abc.abstractmethod
def model_fn(self, features, labels, params, mode):
"""Constructs the model for the given features and mode.
This interface only requires implementing the TRAIN mode.
On TPUs the model_fn should construct a graph for a single TPU core.
Wrap the optimizer with a `tf.contrib.tpu.CrossShardOptimizer` to do
synchronous training with all TPU cores.c
Args:
features: A dictionary with the feature tensors.
labels: Tensor will labels. Will be None if mode is PREDICT.
params: Dictionary with hyperparameters passed to TPUEstimator.
Additional TPUEstimator will set 3 keys: `batch_size`, `use_tpu`,
`tpu_context`. `batch_size` is the batch size for this core.
mode: `tf.estimator.ModeKeys` value (TRAIN, EVAL, PREDICT). The mode
should be passed to the TPUEstimatorSpec and your model should be
build this mode.
Returns:
A `tf.contrib.tpu.TPUEstimatorSpec`.
"""
|
compare_gan-master
|
compare_gan/gans/abstract_gan.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# coding=utf-8
|
compare_gan-master
|
compare_gan/gans/__init__.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for SSGANs."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import flags
from absl.testing import parameterized
from compare_gan import datasets
from compare_gan import test_utils
from compare_gan.architectures.arch_ops import evonorm_s0
from compare_gan.gans import consts as c
from compare_gan.gans import loss_lib
from compare_gan.gans import penalty_lib
from compare_gan.gans.clgan import CLGAN
import gin
import tensorflow as tf
FLAGS = flags.FLAGS
TEST_ARCHITECTURES = [c.RESNET_CIFAR_ARCH, c.SNDCGAN_ARCH, c.RESNET5_ARCH]
TEST_LOSSES = [loss_lib.non_saturating, loss_lib.hinge]
TEST_PENALTIES = [penalty_lib.no_penalty, penalty_lib.wgangp_penalty]
class CLGANTest(parameterized.TestCase, test_utils.CompareGanTestCase):
def _runSingleTrainingStep(self, architecture, loss_fn, penalty_fn):
parameters = {
"architecture": architecture,
"lambda": 1,
"z_dim": 128,
}
with gin.unlock_config():
gin.bind_parameter("penalty.fn", penalty_fn)
gin.bind_parameter("loss.fn", loss_fn)
gin.bind_parameter("G.batch_norm_fn", evonorm_s0)
model_dir = self._get_empty_model_dir()
run_config = tf.contrib.tpu.RunConfig(
model_dir=model_dir,
tpu_config=tf.contrib.tpu.TPUConfig(iterations_per_loop=1))
dataset = datasets.get_dataset("cifar10")
gan = CLGAN(
dataset=dataset,
parameters=parameters,
model_dir=model_dir,
g_optimizer_fn=tf.train.AdamOptimizer,
g_lr=0.0002,
)
estimator = gan.as_estimator(run_config, batch_size=2, use_tpu=False)
estimator.train(gan.input_fn, steps=1)
@parameterized.parameters(TEST_ARCHITECTURES)
def testSingleTrainingStepArchitectures(self, architecture):
self._runSingleTrainingStep(architecture, loss_lib.hinge,
penalty_lib.no_penalty)
@parameterized.parameters(TEST_LOSSES)
def testSingleTrainingStepLosses(self, loss_fn):
self._runSingleTrainingStep(c.RESNET_CIFAR_ARCH, loss_fn,
penalty_lib.no_penalty)
@parameterized.parameters(TEST_PENALTIES)
def testSingleTrainingStepPenalties(self, penalty_fn):
self._runSingleTrainingStep(c.RESNET_CIFAR_ARCH, loss_lib.hinge, penalty_fn)
if __name__ == "__main__":
tf.test.main()
|
compare_gan-master
|
compare_gan/gans/clgan_test.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of popular GAN penalties."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from compare_gan import utils
from compare_gan.gans import ops
import gin
import tensorflow as tf
@gin.configurable
def no_penalty():
return tf.constant(0.0)
@gin.configurable(whitelist=[])
def dragan_penalty(discriminator, x, y, is_training):
"""Returns the DRAGAN gradient penalty.
Args:
discriminator: Instance of `AbstractDiscriminator`.
x: Samples from the true distribution, shape [bs, h, w, channels].
y: Encoded class embedding for the samples. None for unsupervised models.
is_training: boolean, are we in train or eval model.
Returns:
A tensor with the computed penalty.
"""
with tf.name_scope("dragan_penalty"):
_, var = tf.nn.moments(x, axes=list(range(len(x.get_shape()))))
std = tf.sqrt(var)
x_noisy = x + std * (ops.random_uniform(x.shape) - 0.5)
x_noisy = tf.clip_by_value(x_noisy, 0.0, 1.0)
logits = discriminator(x_noisy, y=y, is_training=is_training, reuse=True)[1]
gradients = tf.gradients(logits, [x_noisy])[0]
slopes = tf.sqrt(0.0001 + tf.reduce_sum(
tf.square(gradients), reduction_indices=[1, 2, 3]))
gradient_penalty = tf.reduce_mean(tf.square(slopes - 1.0))
return gradient_penalty
@gin.configurable(whitelist=[])
def wgangp_penalty(discriminator, x, x_fake, y, is_training):
"""Returns the WGAN gradient penalty.
Args:
discriminator: Instance of `AbstractDiscriminator`.
x: samples from the true distribution, shape [bs, h, w, channels].
x_fake: samples from the fake distribution, shape [bs, h, w, channels].
y: Encoded class embedding for the samples. None for unsupervised models.
is_training: boolean, are we in train or eval model.
Returns:
A tensor with the computed penalty.
"""
with tf.name_scope("wgangp_penalty"):
alpha = ops.random_uniform(shape=[x.shape[0].value, 1, 1, 1], name="alpha")
interpolates = x + alpha * (x_fake - x)
logits = discriminator(
interpolates, y=y, is_training=is_training, reuse=True)[1]
gradients = tf.gradients(logits, [interpolates])[0]
slopes = tf.sqrt(0.0001 + tf.reduce_sum(
tf.square(gradients), reduction_indices=[1, 2, 3]))
gradient_penalty = tf.reduce_mean(tf.square(slopes - 1.0))
return gradient_penalty
@gin.configurable(whitelist=[])
def l2_penalty(discriminator):
"""Returns the L2 penalty for each matrix/vector excluding biases.
Assumes a specific tensor naming followed throughout the compare_gan library.
We penalize all fully connected, conv2d, and deconv2d layers.
Args:
discriminator: Instance of `AbstractDiscriminator`.
Returns:
A tensor with the computed penalty.
"""
with tf.name_scope("l2_penalty"):
d_weights = [v for v in discriminator.trainable_variables
if v.name.endswith("/kernel:0")]
return tf.reduce_mean(
[tf.nn.l2_loss(i) for i in d_weights], name="l2_penalty")
@gin.configurable("penalty", whitelist=["fn"])
def get_penalty_loss(fn=no_penalty, **kwargs):
"""Returns the penalty loss."""
return utils.call_with_accepted_args(fn, **kwargs)
|
compare_gan-master
|
compare_gan/gans/penalty_lib.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Defines constants used across the code base."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
NORMAL_INIT = "normal"
TRUNCATED_INIT = "truncated"
ORTHOGONAL_INIT = "orthogonal"
INITIALIZERS = [NORMAL_INIT, TRUNCATED_INIT, ORTHOGONAL_INIT]
DCGAN_ARCH = "dcgan_arch"
DUMMY_ARCH = "dummy_arch"
INFOGAN_ARCH = "infogan_arch"
RESNET5_ARCH = "resnet5_arch"
RESNET30_ARCH = "resnet30_arch"
RESNET_BIGGAN_ARCH = "resnet_biggan_arch"
RESNET_BIGGAN_DEEP_ARCH = "resnet_biggan_deep_arch"
RESNET_CIFAR_ARCH = "resnet_cifar_arch"
RESNET_STL_ARCH = "resnet_stl_arch"
SNDCGAN_ARCH = "sndcgan_arch"
ARCHITECTURES = [INFOGAN_ARCH, DCGAN_ARCH, RESNET5_ARCH, RESNET30_ARCH,
RESNET_BIGGAN_ARCH, RESNET_BIGGAN_DEEP_ARCH, RESNET_CIFAR_ARCH,
RESNET_STL_ARCH, SNDCGAN_ARCH]
|
compare_gan-master
|
compare_gan/gans/consts.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of Self-Supervised GAN with auxiliary rotation loss."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import flags
from absl import logging
from compare_gan.architectures import arch_ops as ops
from compare_gan.gans import loss_lib
from compare_gan.gans import modular_gan
from compare_gan.gans import utils
import gin
import numpy as np
import tensorflow as tf
FLAGS = flags.FLAGS
NUM_ROTATIONS = 4
# pylint: disable=not-callable
@gin.configurable(blacklist=["kwargs"])
class S3GAN(modular_gan.ModularGAN):
"""S3GAN which enables auxiliary heads for the modular GAN."""
def __init__(self, self_supervision="rotation",
rotated_batch_fraction=gin.REQUIRED,
weight_rotation_loss_d=1.0,
weight_rotation_loss_g=0.2,
project_y=False,
use_predictor=False,
use_soft_pred=False,
weight_class_loss=1.0,
use_soft_labels=False,
**kwargs):
"""Instantiates the S3GAN.
Args:
self_supervision: One of [rotation_gan, None].
rotated_batch_fraction: This must be a divisor of the total batch size.
rotations of each images on each TPU core. For GPU training #CORES is 1.
weight_rotation_loss_d: Weight for the rotation loss for the discriminator
on real images.
weight_rotation_loss_g: Weight for the rotation loss for the generator
on fake images.
project_y: Boolean, whether an embedding layer as in variant 1) should be
used.
use_predictor: Boolean, whether a predictor (classifier) should be used.
use_soft_pred: Boolean, whether soft labels should be used for the
predicted label vectors in 1).
weight_class_loss: weight of the (predictor) classification loss added to
the discriminator loss.
use_soft_labels: Boolean, if true assumes the labels passed for real
examples are soft labels and accordingly does not transform
**kwargs: Additional arguments passed to `ModularGAN` constructor.
"""
super(S3GAN, self).__init__(**kwargs)
if use_predictor and not project_y:
raise ValueError("Using predictor requires projection.")
assert self_supervision in {"none", "rotation"}
self._self_supervision = self_supervision
self._rotated_batch_fraction = rotated_batch_fraction
self._weight_rotation_loss_d = weight_rotation_loss_d
self._weight_rotation_loss_g = weight_rotation_loss_g
self._project_y = project_y
self._use_predictor = use_predictor
self._use_soft_pred = use_soft_pred
self._weight_class_loss = weight_class_loss
self._use_soft_labels = use_soft_labels
# To safe memory ModularGAN supports feeding real and fake samples
# separately through the discriminator. S3GAN does not support this to
# avoid additional additional complexity in create_loss().
assert not self._deprecated_split_disc_calls, \
"Splitting discriminator calls is not supported in S3GAN."
def discriminator_with_additonal_heads(self, x, y, is_training):
"""Discriminator architecture with additional heads.
Possible heads built on top of feature representation of the discriminator:
(1) Classify the image to the correct class.
(2) Classify the rotation of the image.
Args:
x: An input image tensor.
y: One-hot encoded label. Passing all zeros implies no label was passed.
is_training: boolean, whether or not it is a training call.
Returns:
Tuple of 5 Tensors: (1) discriminator predictions (in [0, 1]), (2) the
corresponding logits, (3) predictions (logits) of the rotation of x from
the auxiliary head, (4) logits of the class prediction from the auxiliary
head, (5) Indicator vector identifying whether y contained a label or -1.
"""
d_probs, d_logits, x_rep = self.discriminator(
x, y=y, is_training=is_training)
use_sn = self.discriminator._spectral_norm # pylint: disable=protected-access
is_label_available = tf.cast(tf.cast(
tf.reduce_sum(y, axis=1, keepdims=True), tf.float32) > 0.5, tf.float32)
assert x_rep.shape.ndims == 2, x_rep.shape
# Predict the rotation of the image.
rotation_logits = None
if "rotation" in self._self_supervision:
with tf.variable_scope("discriminator_rotation", reuse=tf.AUTO_REUSE):
rotation_logits = ops.linear(
x_rep,
NUM_ROTATIONS,
scope="score_classify",
use_sn=use_sn)
logging.info("[Discriminator] rotation head %s -> %s",
x_rep.shape, rotation_logits)
if not self._project_y:
return d_probs, d_logits, rotation_logits, None, is_label_available
# Predict the class of the image.
aux_logits = None
if self._use_predictor:
with tf.variable_scope("discriminator_predictor", reuse=tf.AUTO_REUSE):
aux_logits = ops.linear(x_rep, y.shape[1], use_bias=True,
scope="predictor_linear", use_sn=use_sn)
# Apply the projection discriminator if needed.
if self._use_soft_pred:
y_predicted = tf.nn.softmax(aux_logits)
else:
y_predicted = tf.one_hot(
tf.arg_max(aux_logits, 1), aux_logits.shape[1])
y = (1.0 - is_label_available) * y_predicted + is_label_available * y
y = tf.stop_gradient(y)
logging.info("[Discriminator] %s -> aux_logits=%s, y_predicted=%s",
aux_logits.shape, aux_logits.shape, y_predicted.shape)
class_embedding = self.get_class_embedding(
y=y, embedding_dim=x_rep.shape[-1].value, use_sn=use_sn)
d_logits += tf.reduce_sum(class_embedding * x_rep, axis=1, keepdims=True)
d_probs = tf.nn.sigmoid(d_logits)
return d_probs, d_logits, rotation_logits, aux_logits, is_label_available
def get_class_embedding(self, y, embedding_dim, use_sn):
with tf.variable_scope("discriminator_projection", reuse=tf.AUTO_REUSE):
# We do not use ops.linear() below since it does not have an option to
# override the initializer.
kernel = tf.get_variable(
"kernel", [y.shape[1], embedding_dim], tf.float32,
initializer=tf.initializers.glorot_normal())
if use_sn:
kernel = ops.spectral_norm(kernel)
embedded_y = tf.matmul(y, kernel)
logging.info("[Discriminator] embedded_y for projection: %s",
embedded_y.shape)
return embedded_y
def merge_with_rotation_data(self, real, fake, real_labels, fake_labels,
num_rot_examples):
"""Returns the original data concatenated with the rotated version."""
# Put all rotation angles in a single batch, the first batch_size are
# the original up-right images, followed by rotated_batch_size * 3
# rotated images with 3 different angles. For NUM_ROTATIONS=4 and
# num_rot_examples=2 we have labels_rotated [0, 0, 1, 1, 2, 2, 3, 3].
real_to_rot, fake_to_rot = (
real[-num_rot_examples:], fake[-num_rot_examples:])
real_rotated = utils.rotate_images(real_to_rot, rot90_scalars=(1, 2, 3))
fake_rotated = utils.rotate_images(fake_to_rot, rot90_scalars=(1, 2, 3))
all_features = tf.concat([real, real_rotated, fake, fake_rotated], 0)
all_labels = None
if self.conditional:
real_rotated_labels = tf.tile(real_labels[-num_rot_examples:], [3, 1])
fake_rotated_labels = tf.tile(fake_labels[-num_rot_examples:], [3, 1])
all_labels = tf.concat([real_labels, real_rotated_labels,
fake_labels, fake_rotated_labels], 0)
return all_features, all_labels
def create_loss(self, features, labels, params, is_training=True):
"""Build the loss tensors for discriminator and generator.
This method will set self.d_loss and self.g_loss.
Args:
features: Optional dictionary with inputs to the model ("images" should
contain the real images and "z" the noise for the generator).
labels: Tensor will labels. These are class indices. Use
self._get_one_hot_labels(labels) to get a one hot encoded tensor.
params: Dictionary with hyperparameters passed to TPUEstimator.
Additional TPUEstimator will set 3 keys: `batch_size`, `use_tpu`,
`tpu_context`. `batch_size` is the batch size for this core.
is_training: If True build the model in training mode. If False build the
model for inference mode (e.g. use trained averages for batch norm).
Raises:
ValueError: If set of meta/hyper parameters is not supported.
"""
real_images = features["images"]
if self.conditional:
if self._use_soft_labels:
assert labels.shape[1] == self._dataset.num_classes, \
("Need soft labels of dimension {} but got dimension {}".format(
self._dataset.num_classes, labels.shape[1]))
real_labels = labels
else:
real_labels = self._get_one_hot_labels(labels)
fake_labels = self._get_one_hot_labels(features["sampled_labels"])
if self._experimental_joint_gen_for_disc:
assert "generated" in features
fake_images = features["generated"]
else:
logging.warning("Computing fake images for every sub step separately.")
fake_images = self.generator(
features["z"], y=fake_labels, is_training=is_training)
bs = real_images.shape[0].value
if self._self_supervision:
assert bs % self._rotated_batch_fraction == 0, (
"Rotated batch fraction is invalid: %d doesn't divide %d" %
self._rotated_batch_fraction, bs)
rotated_bs = bs // self._rotated_batch_fraction
num_rot_examples = rotated_bs // NUM_ROTATIONS
logging.info("bs=%s, rotated_bs=%s, num_rot_examples=%s", bs, rotated_bs,
num_rot_examples)
assert num_rot_examples > 0
# Append the data obtained by rotating the last 'num_rotated_samples'
# from the true and the fake data.
if self._self_supervision == "rotation":
assert num_rot_examples <= bs, (num_rot_examples, bs)
all_features, all_labels = self.merge_with_rotation_data(
real_images, fake_images, real_labels, fake_labels, num_rot_examples)
else:
all_features = tf.concat([real_images, fake_images], 0)
all_labels = None
if self.conditional:
all_labels = tf.concat([real_labels, fake_labels], axis=0)
d_predictions, d_logits, rot_logits, aux_logits, is_label_available = (
self.discriminator_with_additonal_heads(
x=all_features, y=all_labels, is_training=is_training))
expected_batch_size = 2 * bs
if self._self_supervision == "rotation":
expected_batch_size += 2 * (NUM_ROTATIONS - 1) * num_rot_examples
if d_logits.shape[0].value != expected_batch_size:
raise ValueError("Batch size unexpected: got %r expected %r" % (
d_logits.shape[0].value, expected_batch_size))
prob_real, prob_fake = tf.split(d_predictions, 2)
prob_real, prob_fake = prob_real[:bs], prob_fake[:bs]
logits_real, logits_fake = tf.split(d_logits, 2)
logits_real, logits_fake = logits_real[:bs], logits_fake[:bs]
# Get the true/fake GAN loss.
self.d_loss, _, _, self.g_loss = loss_lib.get_losses(
d_real=prob_real, d_fake=prob_fake,
d_real_logits=logits_real, d_fake_logits=logits_fake)
# At this point we have the classic GAN loss with possible regularization.
# We now add the rotation loss and summaries if required.
if self._self_supervision == "rotation":
# Extract logits for the rotation task.
rot_real_logits, rot_fake_logits = tf.split(rot_logits, 2)
rot_real_logits = rot_real_logits[-rotated_bs:]
rot_fake_logits = rot_fake_logits[-rotated_bs:]
labels_rotated = tf.constant(np.repeat(
np.arange(NUM_ROTATIONS, dtype=np.int32), num_rot_examples))
rot_onehot = tf.one_hot(labels_rotated, NUM_ROTATIONS)
rot_real_logp = tf.log(tf.nn.softmax(rot_real_logits) + 1e-10)
rot_fake_logp = tf.log(tf.nn.softmax(rot_fake_logits) + 1e-10)
real_loss = -tf.reduce_mean(tf.reduce_sum(rot_onehot * rot_real_logp, 1))
fake_loss = -tf.reduce_mean(tf.reduce_sum(rot_onehot * rot_fake_logp, 1))
self.d_loss += real_loss * self._weight_rotation_loss_d
self.g_loss += fake_loss * self._weight_rotation_loss_g
rot_real_labels = tf.one_hot(
tf.arg_max(rot_real_logits, 1), NUM_ROTATIONS)
rot_fake_labels = tf.one_hot(
tf.arg_max(rot_fake_logits, 1), NUM_ROTATIONS)
accuracy_real = tf.metrics.accuracy(rot_onehot, rot_real_labels)
accuracy_fake = tf.metrics.accuracy(rot_onehot, rot_fake_labels)
self._tpu_summary.scalar("loss/real_loss", real_loss)
self._tpu_summary.scalar("loss/fake_loss", fake_loss)
self._tpu_summary.scalar("accuracy/real", accuracy_real)
self._tpu_summary.scalar("accuracy/fake", accuracy_fake)
# Training the predictor on the features of real data and real labels.
if self._use_predictor:
real_aux_logits, _ = tf.split(aux_logits, 2)
real_aux_logits = real_aux_logits[:bs]
is_label_available, _ = tf.split(is_label_available, 2)
is_label_available = tf.squeeze(is_label_available[:bs])
class_loss_real = tf.losses.softmax_cross_entropy(
real_labels, real_aux_logits, weights=is_label_available)
# Add the loss to the discriminator
self.d_loss += self._weight_class_loss * class_loss_real
self._tpu_summary.scalar("loss/class_loss_real", class_loss_real)
self._tpu_summary.scalar("label_frac", tf.reduce_mean(is_label_available))
|
compare_gan-master
|
compare_gan/gans/s3gan.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Customized TensorFlow operations."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from compare_gan.tpu import tpu_random
random_uniform = tpu_random.uniform
random_normal = tpu_random.normal
|
compare_gan-master
|
compare_gan/gans/ops.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for SSGANs."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import flags
from absl.testing import parameterized
from compare_gan import datasets
from compare_gan import test_utils
from compare_gan.gans import consts as c
from compare_gan.gans import loss_lib
from compare_gan.gans import penalty_lib
from compare_gan.gans.ssgan import SSGAN
import gin
import tensorflow as tf
FLAGS = flags.FLAGS
TEST_ARCHITECTURES = [c.RESNET_CIFAR_ARCH, c.SNDCGAN_ARCH, c.RESNET5_ARCH]
TEST_LOSSES = [loss_lib.non_saturating, loss_lib.hinge]
TEST_PENALTIES = [penalty_lib.no_penalty, penalty_lib.wgangp_penalty]
class SSGANTest(parameterized.TestCase, test_utils.CompareGanTestCase):
def _runSingleTrainingStep(self, architecture, loss_fn, penalty_fn):
parameters = {
"architecture": architecture,
"lambda": 1,
"z_dim": 128,
}
with gin.unlock_config():
gin.bind_parameter("penalty.fn", penalty_fn)
gin.bind_parameter("loss.fn", loss_fn)
model_dir = self._get_empty_model_dir()
run_config = tf.contrib.tpu.RunConfig(
model_dir=model_dir,
tpu_config=tf.contrib.tpu.TPUConfig(iterations_per_loop=1))
dataset = datasets.get_dataset("cifar10")
gan = SSGAN(
dataset=dataset,
parameters=parameters,
model_dir=model_dir,
g_optimizer_fn=tf.train.AdamOptimizer,
g_lr=0.0002,
rotated_batch_size=4)
estimator = gan.as_estimator(run_config, batch_size=2, use_tpu=False)
estimator.train(gan.input_fn, steps=1)
@parameterized.parameters(TEST_ARCHITECTURES)
def testSingleTrainingStepArchitectures(self, architecture):
self._runSingleTrainingStep(architecture, loss_lib.hinge,
penalty_lib.no_penalty)
@parameterized.parameters(TEST_LOSSES)
def testSingleTrainingStepLosses(self, loss_fn):
self._runSingleTrainingStep(c.RESNET_CIFAR_ARCH, loss_fn,
penalty_lib.no_penalty)
@parameterized.parameters(TEST_PENALTIES)
def testSingleTrainingStepPenalties(self, penalty_fn):
self._runSingleTrainingStep(c.RESNET_CIFAR_ARCH, loss_lib.hinge, penalty_fn)
if __name__ == "__main__":
tf.test.main()
|
compare_gan-master
|
compare_gan/gans/ssgan_test.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for S3GANs."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import flags
from absl.testing import parameterized
from compare_gan import datasets
from compare_gan import test_utils
from compare_gan.gans import consts as c
from compare_gan.gans import loss_lib
from compare_gan.gans.s3gan import S3GAN
import gin
import tensorflow as tf
FLAGS = flags.FLAGS
class S3GANTest(parameterized.TestCase, test_utils.CompareGanTestCase):
@parameterized.parameters(
{"use_predictor": False, "project_y": False}, # unsupervised.
{"use_predictor": False}, # fully supervised.
{"use_predictor": True}, # only oracle.
{"use_predictor": True, "self_supervision": "rotation"}, # oracle + SS.
{"use_predictor": False, "self_supervision": "rotation"}, # only SS.
)
def testSingleTrainingStepArchitectures(
self, use_predictor, project_y=True, self_supervision="none"):
parameters = {
"architecture": c.RESNET_BIGGAN_ARCH,
"lambda": 1,
"z_dim": 120,
}
with gin.unlock_config():
gin.bind_parameter("ModularGAN.conditional", True)
gin.bind_parameter("loss.fn", loss_lib.hinge)
gin.bind_parameter("S3GAN.use_predictor", use_predictor)
gin.bind_parameter("S3GAN.project_y", project_y)
gin.bind_parameter("S3GAN.self_supervision", self_supervision)
# Fake ImageNet dataset by overriding the properties.
dataset = datasets.get_dataset("imagenet_128")
model_dir = self._get_empty_model_dir()
run_config = tf.contrib.tpu.RunConfig(
model_dir=model_dir,
tpu_config=tf.contrib.tpu.TPUConfig(iterations_per_loop=1))
gan = S3GAN(
dataset=dataset,
parameters=parameters,
model_dir=model_dir,
g_optimizer_fn=tf.train.AdamOptimizer,
g_lr=0.0002,
rotated_batch_fraction=2)
estimator = gan.as_estimator(run_config, batch_size=8, use_tpu=False)
estimator.train(gan.input_fn, steps=1)
if __name__ == "__main__":
tf.test.main()
|
compare_gan-master
|
compare_gan/gans/s3gan_test.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities library."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import scipy.misc
import tensorflow as tf
def check_folder(log_dir):
if not tf.gfile.IsDirectory(log_dir):
tf.gfile.MakeDirs(log_dir)
return log_dir
def save_images(images, image_path):
with tf.gfile.Open(image_path, "wb") as f:
scipy.misc.imsave(f, images * 255.0)
def rotate_images(images, rot90_scalars=(0, 1, 2, 3)):
"""Return the input image and its 90, 180, and 270 degree rotations."""
images_rotated = [
images, # 0 degree
tf.image.flip_up_down(tf.image.transpose_image(images)), # 90 degrees
tf.image.flip_left_right(tf.image.flip_up_down(images)), # 180 degrees
tf.image.transpose_image(tf.image.flip_up_down(images)) # 270 degrees
]
results = tf.stack([images_rotated[i] for i in rot90_scalars])
results = tf.reshape(results,
[-1] + images.get_shape().as_list()[1:])
return results
def gaussian(batch_size, n_dim, mean=0., var=1.):
return np.random.normal(mean, var, (batch_size, n_dim)).astype(np.float32)
|
compare_gan-master
|
compare_gan/gans/utils.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test various (unconditional) configurations of ModularGAN."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import itertools
import os
from absl import flags
from absl.testing import parameterized
from compare_gan import datasets
from compare_gan import test_utils
from compare_gan.gans import consts as c
from compare_gan.gans import loss_lib
from compare_gan.gans import penalty_lib
from compare_gan.gans.modular_gan import ModularGAN
import gin
import numpy as np
from six.moves import range
import tensorflow as tf
FLAGS = flags.FLAGS
TEST_ARCHITECTURES = [c.INFOGAN_ARCH, c.DCGAN_ARCH, c.RESNET_CIFAR_ARCH,
c.SNDCGAN_ARCH, c.RESNET5_ARCH]
TEST_LOSSES = [loss_lib.non_saturating, loss_lib.wasserstein,
loss_lib.least_squares, loss_lib.hinge]
TEST_PENALTIES = [penalty_lib.no_penalty, penalty_lib.dragan_penalty,
penalty_lib.wgangp_penalty, penalty_lib.l2_penalty]
GENERATOR_TRAINED_IN_STEPS = [
# disc_iters=1.
[True, True, True],
# disc_iters=2.
[True, False, True],
# disc_iters=3.
[True, False, False],
]
class ModularGanTest(parameterized.TestCase, test_utils.CompareGanTestCase):
def setUp(self):
super(ModularGanTest, self).setUp()
self.model_dir = self._get_empty_model_dir()
self.run_config = tf.contrib.tpu.RunConfig(
model_dir=self.model_dir,
tpu_config=tf.contrib.tpu.TPUConfig(iterations_per_loop=1))
def _runSingleTrainingStep(self, architecture, loss_fn, penalty_fn):
parameters = {
"architecture": architecture,
"lambda": 1,
"z_dim": 128,
}
with gin.unlock_config():
gin.bind_parameter("penalty.fn", penalty_fn)
gin.bind_parameter("loss.fn", loss_fn)
dataset = datasets.get_dataset("cifar10")
gan = ModularGAN(
dataset=dataset,
parameters=parameters,
model_dir=self.model_dir,
conditional="biggan" in architecture)
estimator = gan.as_estimator(self.run_config, batch_size=2, use_tpu=False)
estimator.train(gan.input_fn, steps=1)
@parameterized.parameters(TEST_ARCHITECTURES)
def testSingleTrainingStepArchitectures(self, architecture):
self._runSingleTrainingStep(architecture, loss_lib.hinge,
penalty_lib.no_penalty)
@parameterized.parameters(TEST_LOSSES)
def testSingleTrainingStepLosses(self, loss_fn):
self._runSingleTrainingStep(c.RESNET_CIFAR_ARCH, loss_fn,
penalty_lib.no_penalty)
@parameterized.parameters(TEST_PENALTIES)
def testSingleTrainingStepPenalties(self, penalty_fn):
self._runSingleTrainingStep(c.RESNET_CIFAR_ARCH, loss_lib.hinge, penalty_fn)
def testSingleTrainingStepWithJointGenForDisc(self):
parameters = {
"architecture": c.DUMMY_ARCH,
"lambda": 1,
"z_dim": 120,
"disc_iters": 2,
}
dataset = datasets.get_dataset("cifar10")
gan = ModularGAN(
dataset=dataset,
parameters=parameters,
model_dir=self.model_dir,
experimental_joint_gen_for_disc=True,
experimental_force_graph_unroll=True,
conditional=True)
estimator = gan.as_estimator(self.run_config, batch_size=2, use_tpu=False)
estimator.train(gan.input_fn, steps=1)
@parameterized.parameters([1, 2, 3])
def testSingleTrainingStepDiscItersWithEma(self, disc_iters):
parameters = {
"architecture": c.DUMMY_ARCH,
"lambda": 1,
"z_dim": 128,
"dics_iters": disc_iters,
}
gin.bind_parameter("ModularGAN.g_use_ema", True)
dataset = datasets.get_dataset("cifar10")
gan = ModularGAN(
dataset=dataset,
parameters=parameters,
model_dir=self.model_dir)
estimator = gan.as_estimator(self.run_config, batch_size=2, use_tpu=False)
estimator.train(gan.input_fn, steps=1)
# Check for moving average variables in checkpoint.
checkpoint_path = tf.train.latest_checkpoint(self.model_dir)
ema_vars = sorted([v[0] for v in tf.train.list_variables(checkpoint_path)
if v[0].endswith("ExponentialMovingAverage")])
tf.logging.info("ema_vars=%s", ema_vars)
expected_ema_vars = sorted([
"generator/fc_noise/kernel/ExponentialMovingAverage",
"generator/fc_noise/bias/ExponentialMovingAverage",
])
self.assertAllEqual(ema_vars, expected_ema_vars)
@parameterized.parameters(
itertools.product([1, 2, 3], [False, True])
)
def testDiscItersIsUsedCorrectly(self, disc_iters, use_tpu):
parameters = {
"architecture": c.DUMMY_ARCH,
"disc_iters": disc_iters,
"lambda": 1,
"z_dim": 128,
}
run_config = tf.contrib.tpu.RunConfig(
model_dir=self.model_dir,
save_checkpoints_steps=1,
tpu_config=tf.contrib.tpu.TPUConfig(iterations_per_loop=1))
dataset = datasets.get_dataset("cifar10")
gan = ModularGAN(
dataset=dataset,
parameters=parameters,
model_dir=self.model_dir)
estimator = gan.as_estimator(run_config, batch_size=2, use_tpu=use_tpu)
estimator.train(gan.input_fn, steps=3)
disc_step_values = []
gen_step_values = []
for step in range(4):
basename = os.path.join(self.model_dir, "model.ckpt-{}".format(step))
self.assertTrue(tf.gfile.Exists(basename + ".index"))
ckpt = tf.train.load_checkpoint(basename)
disc_step_values.append(ckpt.get_tensor("global_step_disc"))
gen_step_values.append(ckpt.get_tensor("global_step"))
expected_disc_steps = np.arange(4) * disc_iters
self.assertAllEqual(disc_step_values, expected_disc_steps)
self.assertAllEqual(gen_step_values, [0, 1, 2, 3])
if __name__ == "__main__":
tf.test.main()
|
compare_gan-master
|
compare_gan/gans/modular_gan_test.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests TPU specfic parts of ModularGAN."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import flags
from absl.testing import parameterized
from compare_gan import datasets
from compare_gan import test_utils
from compare_gan.gans import consts as c
from compare_gan.gans.modular_gan import ModularGAN
import tensorflow as tf
FLAGS = flags.FLAGS
class ModularGanTpuTest(parameterized.TestCase, test_utils.CompareGanTestCase):
def setUp(self):
super(ModularGanTpuTest, self).setUp()
self.model_dir = self._get_empty_model_dir()
self.run_config = tf.contrib.tpu.RunConfig(
model_dir=self.model_dir,
tpu_config=tf.contrib.tpu.TPUConfig(iterations_per_loop=1))
@parameterized.parameters([1, 2, 5])
def testBatchSize(self, disc_iters, use_tpu=True):
parameters = {
"architecture": c.DUMMY_ARCH,
"lambda": 1,
"z_dim": 128,
"disc_iters": disc_iters,
}
batch_size = 16
dataset = datasets.get_dataset("cifar10")
gan = ModularGAN(
dataset=dataset,
parameters=parameters,
model_dir=self.model_dir)
estimator = gan.as_estimator(self.run_config, batch_size=batch_size,
use_tpu=True)
estimator.train(gan.input_fn, steps=1)
gen_args = gan.generator.call_arg_list
disc_args = gan.discriminator.call_arg_list
self.assertLen(gen_args, disc_iters + 1) # D steps, G step.
self.assertLen(disc_args, disc_iters + 1) # D steps, G step.
for args in gen_args:
self.assertAllEqual(args["z"].shape.as_list(), [8, 128])
for args in disc_args:
self.assertAllEqual(args["x"].shape.as_list(), [16, 32, 32, 3])
@parameterized.parameters([1, 2, 5])
def testBatchSizeSplitDiscCalls(self, disc_iters):
parameters = {
"architecture": c.DUMMY_ARCH,
"lambda": 1,
"z_dim": 128,
"disc_iters": disc_iters,
}
batch_size = 16
dataset = datasets.get_dataset("cifar10")
gan = ModularGAN(
dataset=dataset,
parameters=parameters,
deprecated_split_disc_calls=True,
model_dir=self.model_dir)
estimator = gan.as_estimator(self.run_config, batch_size=batch_size,
use_tpu=True)
estimator.train(gan.input_fn, steps=1)
gen_args = gan.generator.call_arg_list
disc_args = gan.discriminator.call_arg_list
self.assertLen(gen_args, disc_iters + 1) # D steps, G step.
# Each D and G step calls discriminator twice: for real and fake images.
self.assertLen(disc_args, 2 * (disc_iters + 1))
for args in gen_args:
self.assertAllEqual(args["z"].shape.as_list(), [8, 128])
for args in disc_args:
self.assertAllEqual(args["x"].shape.as_list(), [8, 32, 32, 3])
@parameterized.parameters([1, 2, 5])
def testBatchSizeExperimentalJointGenForDisc(self, disc_iters):
parameters = {
"architecture": c.DUMMY_ARCH,
"lambda": 1,
"z_dim": 128,
"disc_iters": disc_iters,
}
batch_size = 16
dataset = datasets.get_dataset("cifar10")
gan = ModularGAN(
dataset=dataset,
parameters=parameters,
experimental_joint_gen_for_disc=True,
model_dir=self.model_dir)
estimator = gan.as_estimator(self.run_config, batch_size=batch_size,
use_tpu=True)
estimator.train(gan.input_fn, steps=1)
gen_args = gan.generator.call_arg_list
disc_args = gan.discriminator.call_arg_list
self.assertLen(gen_args, 2)
self.assertLen(disc_args, disc_iters + 1)
self.assertAllEqual(gen_args[0]["z"].shape.as_list(), [8 * disc_iters, 128])
self.assertAllEqual(gen_args[1]["z"].shape.as_list(), [8, 128])
for args in disc_args:
self.assertAllEqual(args["x"].shape.as_list(), [16, 32, 32, 3])
if __name__ == "__main__":
tf.test.main()
|
compare_gan-master
|
compare_gan/gans/modular_gan_tpu_test.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of popular GAN losses."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from compare_gan import utils
import gin
import tensorflow as tf
def check_dimensions(d_real, d_fake, d_real_logits, d_fake_logits):
"""Checks the shapes and ranks of logits and prediction tensors.
Args:
d_real: prediction for real points, values in [0, 1], shape [batch_size, 1].
d_fake: prediction for fake points, values in [0, 1], shape [batch_size, 1].
d_real_logits: logits for real points, shape [batch_size, 1].
d_fake_logits: logits for fake points, shape [batch_size, 1].
Raises:
ValueError: if the ranks or shapes are mismatched.
"""
def _check_pair(a, b):
if a != b:
raise ValueError("Shape mismatch: %s vs %s." % (a, b))
if len(a) != 2 or len(b) != 2:
raise ValueError("Rank: expected 2, got %s and %s" % (len(a), len(b)))
if (d_real is not None) and (d_fake is not None):
_check_pair(d_real.shape.as_list(), d_fake.shape.as_list())
if (d_real_logits is not None) and (d_fake_logits is not None):
_check_pair(d_real_logits.shape.as_list(), d_fake_logits.shape.as_list())
if (d_real is not None) and (d_real_logits is not None):
_check_pair(d_real.shape.as_list(), d_real_logits.shape.as_list())
@gin.configurable(whitelist=[])
def non_saturating(d_real_logits, d_fake_logits, d_real=None, d_fake=None):
"""Returns the discriminator and generator loss for Non-saturating loss.
Args:
d_real_logits: logits for real points, shape [batch_size, 1].
d_fake_logits: logits for fake points, shape [batch_size, 1].
d_real: ignored.
d_fake: ignored.
Returns:
A tuple consisting of the discriminator loss, discriminator's loss on the
real samples and fake samples, and the generator's loss.
"""
with tf.name_scope("non_saturating_loss"):
check_dimensions(d_real, d_fake, d_real_logits, d_fake_logits)
d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=d_real_logits, labels=tf.ones_like(d_real_logits),
name="cross_entropy_d_real"))
d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=d_fake_logits, labels=tf.zeros_like(d_fake_logits),
name="cross_entropy_d_fake"))
d_loss = d_loss_real + d_loss_fake
g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=d_fake_logits, labels=tf.ones_like(d_fake_logits),
name="cross_entropy_g"))
return d_loss, d_loss_real, d_loss_fake, g_loss
@gin.configurable(whitelist=[])
def wasserstein(d_real_logits, d_fake_logits, d_real=None, d_fake=None):
"""Returns the discriminator and generator loss for Wasserstein loss.
Args:
d_real_logits: logits for real points, shape [batch_size, 1].
d_fake_logits: logits for fake points, shape [batch_size, 1].
d_real: ignored.
d_fake: ignored.
Returns:
A tuple consisting of the discriminator loss, discriminator's loss on the
real samples and fake samples, and the generator's loss.
"""
with tf.name_scope("wasserstein_loss"):
check_dimensions(d_real, d_fake, d_real_logits, d_fake_logits)
d_loss_real = -tf.reduce_mean(d_real_logits)
d_loss_fake = tf.reduce_mean(d_fake_logits)
d_loss = d_loss_real + d_loss_fake
g_loss = -d_loss_fake
return d_loss, d_loss_real, d_loss_fake, g_loss
@gin.configurable(whitelist=[])
def least_squares(d_real, d_fake, d_real_logits=None, d_fake_logits=None):
"""Returns the discriminator and generator loss for the least-squares loss.
Args:
d_real: prediction for real points, values in [0, 1], shape [batch_size, 1].
d_fake: prediction for fake points, values in [0, 1], shape [batch_size, 1].
d_real_logits: ignored.
d_fake_logits: ignored.
Returns:
A tuple consisting of the discriminator loss, discriminator's loss on the
real samples and fake samples, and the generator's loss.
"""
with tf.name_scope("least_square_loss"):
check_dimensions(d_real, d_fake, d_real_logits, d_fake_logits)
d_loss_real = tf.reduce_mean(tf.square(d_real - 1.0))
d_loss_fake = tf.reduce_mean(tf.square(d_fake))
d_loss = 0.5 * (d_loss_real + d_loss_fake)
g_loss = 0.5 * tf.reduce_mean(tf.square(d_fake - 1.0))
return d_loss, d_loss_real, d_loss_fake, g_loss
@gin.configurable(whitelist=[])
def hinge(d_real_logits, d_fake_logits, d_real=None, d_fake=None):
"""Returns the discriminator and generator loss for the hinge loss.
Args:
d_real_logits: logits for real points, shape [batch_size, 1].
d_fake_logits: logits for fake points, shape [batch_size, 1].
d_real: ignored.
d_fake: ignored.
Returns:
A tuple consisting of the discriminator loss, discriminator's loss on the
real samples and fake samples, and the generator's loss.
"""
with tf.name_scope("hinge_loss"):
check_dimensions(d_real, d_fake, d_real_logits, d_fake_logits)
d_loss_real = tf.reduce_mean(tf.nn.relu(1.0 - d_real_logits))
d_loss_fake = tf.reduce_mean(tf.nn.relu(1.0 + d_fake_logits))
d_loss = d_loss_real + d_loss_fake
g_loss = - tf.reduce_mean(d_fake_logits)
return d_loss, d_loss_real, d_loss_fake, g_loss
@gin.configurable("loss", whitelist=["fn"])
def get_losses(fn=non_saturating, **kwargs):
"""Returns the losses for the discriminator and generator."""
return utils.call_with_accepted_args(fn, **kwargs)
|
compare_gan-master
|
compare_gan/gans/loss_lib.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of Self-Supervised GAN with auxiliary rotation loss."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import flags
from absl import logging
from compare_gan.architectures.arch_ops import linear
from compare_gan.gans import loss_lib
from compare_gan.gans import modular_gan
from compare_gan.gans import penalty_lib
from compare_gan.gans import utils
import gin
import numpy as np
import tensorflow as tf
FLAGS = flags.FLAGS
NUM_ROTATIONS = 4
# pylint: disable=not-callable
@gin.configurable(blacklist=["kwargs"])
class SSGAN(modular_gan.ModularGAN):
"""Self-Supervised GAN.
http://arxiv.org/abs/1811.11212
"""
def __init__(self,
self_supervision="rotation_gan",
rotated_batch_size=gin.REQUIRED,
weight_rotation_loss_d=1.0,
weight_rotation_loss_g=0.2,
**kwargs):
"""Creates a new Self-Supervised GAN.
Args:
self_supervision: One of [rotation_gan, rotation_only, None]. When it is
rotation_only, no GAN loss is used, degenerates to a pure rotation
model.
rotated_batch_size: The total number images per batch for the rotation
loss. This must be a multiple of (4 * #CORES) since we consider 4
rotations of each images on each TPU core. For GPU training #CORES is 1.
weight_rotation_loss_d: Weight for the rotation loss for the discriminator
on real images.
weight_rotation_loss_g: Weight for the rotation loss for the generator
on fake images.
**kwargs: Additional arguments passed to `ModularGAN` constructor.
"""
super(SSGAN, self).__init__(**kwargs)
self._self_supervision = self_supervision
self._rotated_batch_size = rotated_batch_size
self._weight_rotation_loss_d = weight_rotation_loss_d
self._weight_rotation_loss_g = weight_rotation_loss_g
# To safe memory ModularGAN supports feeding real and fake samples
# separately through the discriminator. SSGAN does not support this to
# avoid additional additional complexity in create_loss().
assert not self._deprecated_split_disc_calls, \
"Splitting discriminator calls is not supported in SSGAN."
def discriminator_with_rotation_head(self, x, y, is_training):
"""Discriminator network with augmented auxiliary predictions.
Args:
x: an input image tensor.
y: Tensor with label indices.
is_training: boolean, whether or not it is a training call.
Returns:
real_probs: the [0, 1] probability tensor of x being real images.
real_scores: the unbounded score tensor of x being real images.
rotation_scores: the categorical probablity of x being rotated in one of
the four directions.
"""
real_probs, real_scores, final = self.discriminator(
x=x, y=y, is_training=is_training)
use_sn = self._discriminator._spectral_norm # pylint: disable=protected-access
with tf.variable_scope("discriminator_rotation", reuse=tf.AUTO_REUSE):
rotation_scores = linear(tf.reshape(final, (tf.shape(x)[0], -1)),
NUM_ROTATIONS,
scope="score_classify",
use_sn=use_sn)
return real_probs, real_scores, rotation_scores
def create_loss(self, features, labels, params, is_training=True):
"""Build the loss tensors for discriminator and generator.
This method will set self.d_loss and self.g_loss.
Args:
features: Optional dictionary with inputs to the model ("images" should
contain the real images and "z" the noise for the generator).
labels: Tensor will labels. These are class indices. Use
self._get_one_hot_labels(labels) to get a one hot encoded tensor.
params: Dictionary with hyperparameters passed to TPUEstimator.
Additional TPUEstimator will set 3 keys: `batch_size`, `use_tpu`,
`tpu_context`. `batch_size` is the batch size for this core.
is_training: If True build the model in training mode. If False build the
model for inference mode (e.g. use trained averages for batch norm).
Raises:
ValueError: If set of meta/hyper parameters is not supported.
"""
images = features["images"] # Input images.
generated = features["generated"] # Fake images.
if self.conditional:
y = self._get_one_hot_labels(labels)
sampled_y = self._get_one_hot_labels(features["sampled_labels"])
else:
y = None
sampled_y = None
all_y = None
# Batch size per core.
bs = images.shape[0].value
num_replicas = params["context"].num_replicas if "context" in params else 1
assert self._rotated_batch_size % num_replicas == 0
# Rotated batch size per core.
rotated_bs = self._rotated_batch_size // num_replicas
assert rotated_bs % 4 == 0
# Number of images to rotate. Each images gets rotated 3 times.
num_rotated_examples = rotated_bs // 4
logging.info("num_replicas=%s, bs=%s, rotated_bs=%s, "
"num_rotated_examples=%s, params=%s",
num_replicas, bs, rotated_bs, num_rotated_examples, params)
# Augment the images with rotation.
if "rotation" in self._self_supervision:
# Put all rotation angles in a single batch, the first batch_size are
# the original up-right images, followed by rotated_batch_size * 3
# rotated images with 3 different angles.
assert num_rotated_examples <= bs, (num_rotated_examples, bs)
images_rotated = utils.rotate_images(
images[-num_rotated_examples:], rot90_scalars=(1, 2, 3))
generated_rotated = utils.rotate_images(
generated[-num_rotated_examples:], rot90_scalars=(1, 2, 3))
# Labels for rotation loss (unrotated and 3 rotated versions). For
# NUM_ROTATIONS=4 and num_rotated_examples=2 this is:
# [0, 0, 1, 1, 2, 2, 3, 3]
rotate_labels = tf.constant(
np.repeat(np.arange(NUM_ROTATIONS, dtype=np.int32),
num_rotated_examples))
rotate_labels_onehot = tf.one_hot(rotate_labels, NUM_ROTATIONS)
all_images = tf.concat([images, images_rotated,
generated, generated_rotated], 0)
if self.conditional:
y_rotated = tf.tile(y[-num_rotated_examples:], [3, 1])
sampled_y_rotated = tf.tile(y[-num_rotated_examples:], [3, 1])
all_y = tf.concat([y, y_rotated, sampled_y, sampled_y_rotated], 0)
else:
all_images = tf.concat([images, generated], 0)
if self.conditional:
all_y = tf.concat([y, sampled_y], axis=0)
# Compute discriminator output for real and fake images in one batch.
d_all, d_all_logits, c_all_logits = self.discriminator_with_rotation_head(
all_images, y=all_y, is_training=is_training)
d_real, d_fake = tf.split(d_all, 2)
d_real_logits, d_fake_logits = tf.split(d_all_logits, 2)
c_real_logits, c_fake_logits = tf.split(c_all_logits, 2)
# Separate the true/fake scores from whole rotation batch.
d_real_logits = d_real_logits[:bs]
d_fake_logits = d_fake_logits[:bs]
d_real = d_real[:bs]
d_fake = d_fake[:bs]
self.d_loss, _, _, self.g_loss = loss_lib.get_losses(
d_real=d_real, d_fake=d_fake, d_real_logits=d_real_logits,
d_fake_logits=d_fake_logits)
penalty_loss = penalty_lib.get_penalty_loss(
x=images, x_fake=generated, y=y, is_training=is_training,
discriminator=self.discriminator, architecture=self._architecture)
self.d_loss += self._lambda * penalty_loss
# Add rotation augmented loss.
if "rotation" in self._self_supervision:
# We take an even pieces for all rotation angles
assert len(c_real_logits.shape.as_list()) == 2, c_real_logits.shape
assert len(c_fake_logits.shape.as_list()) == 2, c_fake_logits.shape
c_real_logits = c_real_logits[- rotated_bs:]
c_fake_logits = c_fake_logits[- rotated_bs:]
preds_onreal = tf.cast(tf.argmax(c_real_logits, -1), rotate_labels.dtype)
accuracy = tf.reduce_mean(
tf.cast(tf.equal(rotate_labels, preds_onreal), tf.float32))
c_real_probs = tf.nn.softmax(c_real_logits)
c_fake_probs = tf.nn.softmax(c_fake_logits)
c_real_loss = - tf.reduce_mean(
tf.reduce_sum(rotate_labels_onehot * tf.log(c_real_probs + 1e-10), 1))
c_fake_loss = - tf.reduce_mean(
tf.reduce_sum(rotate_labels_onehot * tf.log(c_fake_probs + 1e-10), 1))
if self._self_supervision == "rotation_only":
self.d_loss *= 0.0
self.g_loss *= 0.0
self.d_loss += c_real_loss * self._weight_rotation_loss_d
self.g_loss += c_fake_loss * self._weight_rotation_loss_g
else:
c_real_loss = 0.0
c_fake_loss = 0.0
accuracy = tf.zeros([])
self._tpu_summary.scalar("loss/c_real_loss", c_real_loss)
self._tpu_summary.scalar("loss/c_fake_loss", c_fake_loss)
self._tpu_summary.scalar("accuracy/d_rotation", accuracy)
self._tpu_summary.scalar("loss/penalty", penalty_loss)
|
compare_gan-master
|
compare_gan/gans/ssgan.py
|
# coding=utf-8
# Copyright 2018 Google LLC & Hwalsuk Lee.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of Self-Supervised GAN with contrastive loss."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import flags
from absl import logging
from compare_gan.architectures.arch_ops import linear
from compare_gan.gans import loss_lib
from compare_gan.gans import modular_gan
from compare_gan.gans import penalty_lib
from compare_gan.gans import utils
import gin
import numpy as np
import random
import tensorflow as tf
FLAGS = flags.FLAGS
# augmentation functions
# augment
def random_crop_and_resize(images, ratio=0.8):
b, h, w, c = images.get_shape().as_list()
ch, cw = map(lambda x: int(x * ratio), (h, w))
crop = tf.random_crop(images, size=[b, ch, cw, 3])
crop = tf.image.resize(crop, [h, w])
return crop
def random_apply(fn, image, prob=1.):
b, *_ = image.get_shape().as_list()
chance = tf.less(tf.random_uniform([b], 0, 1.0), prob)
return tf.where(chance, fn(image), tf.identity(image))
def color_distortion(image, s=1.0):
lower, upper, x = (1 - 0.8 * s), (1 + 0.8 * s), image
x = tf.image.random_brightness(x, max_delta=0.8*s)
x = tf.image.random_contrast(x, lower=lower, upper=upper)
x = tf.image.random_saturation(x, lower=lower, upper=upper)
x = tf.image.random_hue(x, max_delta=0.2*s)
x = tf.clip_by_value(x, 0, 1)
return x
def color_drop(image):
image = tf.image.rgb_to_grayscale(image)
image = tf.tile(image, [1, 1, 1, 3])
return image
# pylint: disable=not-callable
@gin.configurable(blacklist=["kwargs"])
class CLGAN(modular_gan.ModularGAN):
"""Self-Supervised GAN with Contrastive Loss"""
def __init__(self,
aug_color_jitter_prob=0.8,
aug_color_drop_prob=0.0,
weight_contrastive_loss_d=2.0,
**kwargs):
"""Creates a new Self-Supervised GAN using Contrastive Loss.
Args:
self_supervised_batch_size: The total number images per batch for the self supervised loss.
weight_contrastive_loss_d: Weight for the contrastive loss for the self supervised learning on real images
**kwargs: Additional arguments passed to `ModularGAN` constructor.
"""
super(CLGAN, self).__init__(**kwargs)
self._weight_contrastive_loss_d = weight_contrastive_loss_d
self._aug_color_jitter_prob = aug_color_jitter_prob
self._aug_color_drop_prob = aug_color_drop_prob
# To safe memory ModularGAN supports feeding real and fake samples
# separately through the discriminator. CLGAN does not support this to
# avoid additional additional complexity in create_loss().
assert not self._deprecated_split_disc_calls, \
"Splitting discriminator calls is not supported in CLGAN."
def _latent_projections(self, latents):
bs, dim = latents.get_shape().as_list()
with tf.variable_scope("discriminator_z_projection", reuse=tf.AUTO_REUSE) as scope:
k1 = tf.get_variable("kernel1", [dim, dim * 4])
k2 = tf.get_variable("kernel2", [dim * 4, dim])
z_proj = tf.matmul(tf.nn.leaky_relu(tf.matmul(latents, k1), name=scope.name), k2)
z_proj = z_proj / tf.reshape(tf.norm(z_proj, ord=2, axis=-1), [bs, 1])
return z_proj
def create_loss(self, features, labels, params, is_training=True):
"""Build the loss tensors for discriminator and generator.
This method will set self.d_loss and self.g_loss.
Args:
features: Optional dictionary with inputs to the model ("images" should
contain the real images and "z" the noise for the generator).
labels: Tensor will labels. These are class indices. Use
self._get_one_hot_labels(labels) to get a one hot encoded tensor.
params: Dictionary with hyperparameters passed to TPUEstimator.
Additional TPUEstimator will set 3 keys: `batch_size`, `use_tpu`,
`tpu_context`. `batch_size` is the batch size for this core.
is_training: If True build the model in training mode. If False build the
model for inference mode (e.g. use trained averages for batch norm).
Raises:
ValueError: If set of meta/hyper parameters is not supported.
"""
images = features["images"] # Input images.
generated = features["generated"] # Fake images.
if self.conditional:
y = self._get_one_hot_labels(labels)
sampled_y = self._get_one_hot_labels(features["sampled_labels"])
else:
y = None
sampled_y = None
all_y = None
# Batch size per core.
bs = images.shape[0].value
def augment(imgs):
imgs = random_crop_and_resize(imgs)
imgs = random_apply(color_distortion, imgs, self._aug_color_jitter_prob)
imgs = random_apply(color_drop, imgs, self._aug_color_drop_prob)
return tf.stop_gradient(imgs)
aug_images, aug_generated = augment(images), augment(generated)
# concat all images
all_images = tf.concat([images, generated, aug_images, aug_generated], 0)
if self.conditional:
all_y = tf.concat([y, sampled_y, y, sampled_y], axis=0)
# Compute discriminator output for real and fake images in one batch.
d_all, d_all_logits, d_latents = self.discriminator(
x=all_images, y=all_y, is_training=is_training)
z_projs = self._latent_projections(d_latents)
d_real, d_fake, _, _ = tf.split(d_all, 4)
d_real_logits, d_fake_logits, _, _ = tf.split(d_all_logits, 4)
z_projs_real, z_projs_fake, z_aug_projs_real, z_aug_projs_fake = tf.split(z_projs, 4)
self.d_loss, _, _, self.g_loss = loss_lib.get_losses(
d_real=d_real, d_fake=d_fake, d_real_logits=d_real_logits,
d_fake_logits=d_fake_logits)
penalty_loss = penalty_lib.get_penalty_loss(
x=images, x_fake=generated, y=y, is_training=is_training,
discriminator=self.discriminator, architecture=self._architecture)
self.d_loss += self._lambda * penalty_loss
z_projs = tf.concat([z_projs_real, z_projs_fake], 0)
z_aug_projs = tf.concat([z_aug_projs_real, z_aug_projs_fake], 0)
sims_logits = tf.matmul(z_projs, z_aug_projs, transpose_b=True)
logits_max = tf.reduce_max(sims_logits,1)
sims_logits = sims_logits - tf.reshape(logits_max, [-1, 1])
sims_probs = tf.nn.softmax(sims_logits)
sim_labels = tf.constant(np.arange(bs * 2, dtype=np.int32))
sims_onehot = tf.one_hot(sim_labels, bs * 2)
c_real_loss = - tf.reduce_mean(
tf.reduce_sum(sims_onehot * tf.log(sims_probs + 1e-10), 1))
self.d_loss += c_real_loss * self._weight_contrastive_loss_d
self._tpu_summary.scalar("loss/c_real_loss", c_real_loss)
self._tpu_summary.scalar("loss/penalty", penalty_loss)
|
compare_gan-master
|
compare_gan/gans/clgan.py
|
# Welcome to the PyTorch setup.py.
#
# Environment variables you are probably interested in:
#
# DEBUG
# build with -O0 and -g (debug symbols)
#
# REL_WITH_DEB_INFO
# build with optimizations and -g (debug symbols)
#
# MAX_JOBS
# maximum number of compile jobs we should use to compile your code
#
# USE_CUDA=0
# disables CUDA build
#
# CFLAGS
# flags to apply to both C and C++ files to be compiled (a quirk of setup.py
# which we have faithfully adhered to in our build system is that CFLAGS
# also applies to C++ files (unless CXXFLAGS is set), in contrast to the
# default behavior of autogoo and cmake build systems.)
#
# CC
# the C/C++ compiler to use
#
# Environment variables for feature toggles:
#
# USE_CUDNN=0
# disables the cuDNN build
#
# USE_FBGEMM=0
# disables the FBGEMM build
#
# USE_KINETO=0
# disables usage of libkineto library for profiling
#
# USE_NUMPY=0
# disables the NumPy build
#
# BUILD_TEST=0
# disables the test build
#
# USE_MKLDNN=0
# disables use of MKLDNN
#
# USE_MKLDNN_ACL
# enables use of Compute Library backend for MKLDNN on Arm;
# USE_MKLDNN must be explicitly enabled.
#
# MKLDNN_CPU_RUNTIME
# MKL-DNN threading mode: TBB or OMP (default)
#
# USE_STATIC_MKL
# Prefer to link with MKL statically - Unix only
# USE_ITT=0
# disable use of Intel(R) VTune Profiler's ITT functionality
#
# USE_NNPACK=0
# disables NNPACK build
#
# USE_QNNPACK=0
# disables QNNPACK build (quantized 8-bit operators)
#
# USE_DISTRIBUTED=0
# disables distributed (c10d, gloo, mpi, etc.) build
#
# USE_TENSORPIPE=0
# disables distributed Tensorpipe backend build
#
# USE_GLOO=0
# disables distributed gloo backend build
#
# USE_MPI=0
# disables distributed MPI backend build
#
# USE_SYSTEM_NCCL=0
# disables use of system-wide nccl (we will use our submoduled
# copy in third_party/nccl)
#
# BUILD_CAFFE2_OPS=0
# disable Caffe2 operators build
#
# BUILD_CAFFE2=0
# disable Caffe2 build
#
# USE_IBVERBS
# toggle features related to distributed support
#
# USE_OPENCV
# enables use of OpenCV for additional operators
#
# USE_OPENMP=0
# disables use of OpenMP for parallelization
#
# USE_FFMPEG
# enables use of ffmpeg for additional operators
#
# USE_LEVELDB
# enables use of LevelDB for storage
#
# USE_LMDB
# enables use of LMDB for storage
#
# BUILD_BINARY
# enables the additional binaries/ build
#
# ATEN_AVX512_256=TRUE
# ATen AVX2 kernels can use 32 ymm registers, instead of the default 16.
# This option can be used if AVX512 doesn't perform well on a machine.
# The FBGEMM library also uses AVX512_256 kernels on Xeon D processors,
# but it also has some (optimized) assembly code.
#
# PYTORCH_BUILD_VERSION
# PYTORCH_BUILD_NUMBER
# specify the version of PyTorch, rather than the hard-coded version
# in this file; used when we're building binaries for distribution
#
# TORCH_CUDA_ARCH_LIST
# specify which CUDA architectures to build for.
# ie `TORCH_CUDA_ARCH_LIST="6.0;7.0"`
# These are not CUDA versions, instead, they specify what
# classes of NVIDIA hardware we should generate PTX for.
#
# PYTORCH_ROCM_ARCH
# specify which AMD GPU targets to build for.
# ie `PYTORCH_ROCM_ARCH="gfx900;gfx906"`
#
# ONNX_NAMESPACE
# specify a namespace for ONNX built here rather than the hard-coded
# one in this file; needed to build with other frameworks that share ONNX.
#
# BLAS
# BLAS to be used by Caffe2. Can be MKL, Eigen, ATLAS, FlexiBLAS, or OpenBLAS. If set
# then the build will fail if the requested BLAS is not found, otherwise
# the BLAS will be chosen based on what is found on your system.
#
# MKL_THREADING
# MKL threading mode: SEQ, TBB or OMP (default)
#
# USE_REDIS
# Whether to use Redis for distributed workflows (Linux only)
#
# USE_ZSTD
# Enables use of ZSTD, if the libraries are found
#
# Environment variables we respect (these environment variables are
# conventional and are often understood/set by other software.)
#
# CUDA_HOME (Linux/OS X)
# CUDA_PATH (Windows)
# specify where CUDA is installed; usually /usr/local/cuda or
# /usr/local/cuda-x.y
# CUDAHOSTCXX
# specify a different compiler than the system one to use as the CUDA
# host compiler for nvcc.
#
# CUDA_NVCC_EXECUTABLE
# Specify a NVCC to use. This is used in our CI to point to a cached nvcc
#
# CUDNN_LIB_DIR
# CUDNN_INCLUDE_DIR
# CUDNN_LIBRARY
# specify where cuDNN is installed
#
# MIOPEN_LIB_DIR
# MIOPEN_INCLUDE_DIR
# MIOPEN_LIBRARY
# specify where MIOpen is installed
#
# NCCL_ROOT
# NCCL_LIB_DIR
# NCCL_INCLUDE_DIR
# specify where nccl is installed
#
# NVTOOLSEXT_PATH (Windows only)
# specify where nvtoolsext is installed
#
# ACL_ROOT_DIR
# specify where Compute Library is installed
#
# LIBRARY_PATH
# LD_LIBRARY_PATH
# we will search for libraries in these paths
#
# ATEN_THREADING
# ATen parallel backend to use for intra- and inter-op parallelism
# possible values:
# OMP - use OpenMP for intra-op and native backend for inter-op tasks
# NATIVE - use native thread pool for both intra- and inter-op tasks
# TBB - using TBB for intra- and native thread pool for inter-op parallelism
#
# USE_TBB
# enable TBB support
#
# USE_SYSTEM_TBB
# Use system-provided Intel TBB.
#
# USE_SYSTEM_LIBS (work in progress)
# Use system-provided libraries to satisfy the build dependencies.
# When turned on, the following cmake variables will be toggled as well:
# USE_SYSTEM_CPUINFO=ON USE_SYSTEM_SLEEF=ON BUILD_CUSTOM_PROTOBUF=OFF
# This future is needed to print Python2 EOL message
from __future__ import print_function
import sys
if sys.version_info < (3,):
print("Python 2 has reached end-of-life and is no longer supported by PyTorch.")
sys.exit(-1)
if sys.platform == 'win32' and sys.maxsize.bit_length() == 31:
print("32-bit Windows Python runtime is not supported. Please switch to 64-bit Python.")
sys.exit(-1)
import platform
python_min_version = (3, 7, 0)
python_min_version_str = '.'.join(map(str, python_min_version))
if sys.version_info < python_min_version:
print("You are using Python {}. Python >={} is required.".format(platform.python_version(),
python_min_version_str))
sys.exit(-1)
from setuptools import setup, Extension, find_packages
from collections import defaultdict
from setuptools.dist import Distribution
import setuptools.command.build_ext
import setuptools.command.install
import setuptools.command.sdist
import filecmp
import shutil
import subprocess
import os
import json
import glob
import importlib
import time
import sysconfig
from tools.build_pytorch_libs import build_caffe2
from tools.setup_helpers.env import (IS_WINDOWS, IS_DARWIN, IS_LINUX,
build_type)
from tools.setup_helpers.cmake import CMake
from tools.generate_torch_version import get_torch_version
################################################################################
# Parameters parsed from environment
################################################################################
VERBOSE_SCRIPT = True
RUN_BUILD_DEPS = True
# see if the user passed a quiet flag to setup.py arguments and respect
# that in our parts of the build
EMIT_BUILD_WARNING = False
RERUN_CMAKE = False
CMAKE_ONLY = False
filtered_args = []
for i, arg in enumerate(sys.argv):
if arg == '--cmake':
RERUN_CMAKE = True
continue
if arg == '--cmake-only':
# Stop once cmake terminates. Leave users a chance to adjust build
# options.
CMAKE_ONLY = True
continue
if arg == 'rebuild' or arg == 'build':
arg = 'build' # rebuild is gone, make it build
EMIT_BUILD_WARNING = True
if arg == "--":
filtered_args += sys.argv[i:]
break
if arg == '-q' or arg == '--quiet':
VERBOSE_SCRIPT = False
if arg in ['clean', 'egg_info', 'sdist']:
RUN_BUILD_DEPS = False
filtered_args.append(arg)
sys.argv = filtered_args
if VERBOSE_SCRIPT:
def report(*args):
print(*args)
else:
def report(*args):
pass
# Make distutils respect --quiet too
setuptools.distutils.log.warn = report
# Constant known variables used throughout this file
cwd = os.path.dirname(os.path.abspath(__file__))
lib_path = os.path.join(cwd, "torch", "lib")
third_party_path = os.path.join(cwd, "third_party")
caffe2_build_dir = os.path.join(cwd, "build")
# CMAKE: full path to python library
if IS_WINDOWS:
cmake_python_library = "{}/libs/python{}.lib".format(
sysconfig.get_config_var("prefix"),
sysconfig.get_config_var("VERSION"))
# Fix virtualenv builds
if not os.path.exists(cmake_python_library):
cmake_python_library = "{}/libs/python{}.lib".format(
sys.base_prefix,
sysconfig.get_config_var("VERSION"))
else:
cmake_python_library = "{}/{}".format(
sysconfig.get_config_var("LIBDIR"),
sysconfig.get_config_var("INSTSONAME"))
cmake_python_include_dir = sysconfig.get_path("include")
################################################################################
# Version, create_version_file, and package_name
################################################################################
package_name = os.getenv('TORCH_PACKAGE_NAME', 'torch')
package_type = os.getenv('PACKAGE_TYPE', 'wheel')
version = get_torch_version()
report("Building wheel {}-{}".format(package_name, version))
cmake = CMake()
def get_submodule_folders():
git_modules_path = os.path.join(cwd, ".gitmodules")
default_modules_path = [os.path.join(third_party_path, name) for name in [
"gloo", "cpuinfo", "tbb", "onnx",
"foxi", "QNNPACK", "fbgemm"
]]
if not os.path.exists(git_modules_path):
return default_modules_path
with open(git_modules_path) as f:
return [os.path.join(cwd, line.split("=", 1)[1].strip()) for line in
f.readlines() if line.strip().startswith("path")]
def check_submodules():
def check_for_files(folder, files):
if not any(os.path.exists(os.path.join(folder, f)) for f in files):
report("Could not find any of {} in {}".format(", ".join(files), folder))
report("Did you run 'git submodule update --init --recursive --jobs 0'?")
sys.exit(1)
def not_exists_or_empty(folder):
return not os.path.exists(folder) or (os.path.isdir(folder) and len(os.listdir(folder)) == 0)
if bool(os.getenv("USE_SYSTEM_LIBS", False)):
return
folders = get_submodule_folders()
# If none of the submodule folders exists, try to initialize them
if all(not_exists_or_empty(folder) for folder in folders):
try:
print(' --- Trying to initialize submodules')
start = time.time()
subprocess.check_call(["git", "submodule", "update", "--init", "--recursive"], cwd=cwd)
end = time.time()
print(' --- Submodule initialization took {:.2f} sec'.format(end - start))
except Exception:
print(' --- Submodule initalization failed')
print('Please run:\n\tgit submodule update --init --recursive --jobs 0')
sys.exit(1)
for folder in folders:
check_for_files(folder, ["CMakeLists.txt", "Makefile", "setup.py", "LICENSE", "LICENSE.md", "LICENSE.txt"])
check_for_files(os.path.join(third_party_path, 'fbgemm', 'third_party',
'asmjit'), ['CMakeLists.txt'])
check_for_files(os.path.join(third_party_path, 'onnx', 'third_party',
'benchmark'), ['CMakeLists.txt'])
# Windows has very bad support for symbolic links.
# Instead of using symlinks, we're going to copy files over
def mirror_files_into_torchgen():
# (new_path, orig_path)
# Directories are OK and are recursively mirrored.
paths = [
('torchgen/packaged/ATen/native/native_functions.yaml', 'aten/src/ATen/native/native_functions.yaml'),
('torchgen/packaged/ATen/native/tags.yaml', 'aten/src/ATen/native/tags.yaml'),
('torchgen/packaged/ATen/templates', 'aten/src/ATen/templates'),
]
for new_path, orig_path in paths:
# Create the dirs involved in new_path if they don't exist
if not os.path.exists(new_path):
os.makedirs(os.path.dirname(new_path), exist_ok=True)
# Copy the files from the orig location to the new location
if os.path.isfile(orig_path):
shutil.copyfile(orig_path, new_path)
continue
if os.path.isdir(orig_path):
if os.path.exists(new_path):
# copytree fails if the tree exists already, so remove it.
shutil.rmtree(new_path)
shutil.copytree(orig_path, new_path)
continue
raise RuntimeError("Check the file paths in `mirror_files_into_torchgen()`")
# all the work we need to do _before_ setup runs
def build_deps():
report('-- Building version ' + version)
check_submodules()
check_pydep('yaml', 'pyyaml')
build_caffe2(version=version,
cmake_python_library=cmake_python_library,
build_python=True,
rerun_cmake=RERUN_CMAKE,
cmake_only=CMAKE_ONLY,
cmake=cmake)
if CMAKE_ONLY:
report('Finished running cmake. Run "ccmake build" or '
'"cmake-gui build" to adjust build options and '
'"python setup.py install" to build.')
sys.exit()
# Use copies instead of symbolic files.
# Windows has very poor support for them.
sym_files = [
'tools/shared/_utils_internal.py',
'torch/utils/benchmark/utils/valgrind_wrapper/callgrind.h',
'torch/utils/benchmark/utils/valgrind_wrapper/valgrind.h',
]
orig_files = [
'torch/_utils_internal.py',
'third_party/valgrind-headers/callgrind.h',
'third_party/valgrind-headers/valgrind.h',
]
for sym_file, orig_file in zip(sym_files, orig_files):
same = False
if os.path.exists(sym_file):
if filecmp.cmp(sym_file, orig_file):
same = True
else:
os.remove(sym_file)
if not same:
shutil.copyfile(orig_file, sym_file)
################################################################################
# Building dependent libraries
################################################################################
# the list of runtime dependencies required by this built package
install_requires = [
'typing_extensions',
]
missing_pydep = '''
Missing build dependency: Unable to `import {importname}`.
Please install it via `conda install {module}` or `pip install {module}`
'''.strip()
def check_pydep(importname, module):
try:
importlib.import_module(importname)
except ImportError:
raise RuntimeError(missing_pydep.format(importname=importname, module=module))
class build_ext(setuptools.command.build_ext.build_ext):
# Copy libiomp5.dylib inside the wheel package on OS X
def _embed_libiomp(self):
lib_dir = os.path.join(self.build_lib, 'torch', 'lib')
libtorch_cpu_path = os.path.join(lib_dir, 'libtorch_cpu.dylib')
if not os.path.exists(libtorch_cpu_path):
return
# Parse libtorch_cpu load commands
otool_cmds = subprocess.check_output(['otool', '-l', libtorch_cpu_path]).decode('utf-8').split('\n')
rpaths, libs = [], []
for idx, line in enumerate(otool_cmds):
if line.strip() == 'cmd LC_LOAD_DYLIB':
lib_name = otool_cmds[idx + 2].strip()
assert lib_name.startswith('name ')
libs.append(lib_name.split(' ', 1)[1].rsplit('(', 1)[0][:-1])
if line.strip() == 'cmd LC_RPATH':
rpath = otool_cmds[idx + 2].strip()
assert rpath.startswith('path ')
rpaths.append(rpath.split(' ', 1)[1].rsplit('(', 1)[0][:-1])
omp_lib_name = 'libiomp5.dylib'
if os.path.join('@rpath', omp_lib_name) not in libs:
return
# Copy libiomp5 from rpath locations
for rpath in rpaths:
source_lib = os.path.join(rpath, omp_lib_name)
if not os.path.exists(source_lib):
continue
target_lib = os.path.join(self.build_lib, 'torch', 'lib', omp_lib_name)
self.copy_file(source_lib, target_lib)
break
def run(self):
# Report build options. This is run after the build completes so # `CMakeCache.txt` exists and we can get an
# accurate report on what is used and what is not.
cmake_cache_vars = defaultdict(lambda: False, cmake.get_cmake_cache_variables())
if cmake_cache_vars['USE_NUMPY']:
report('-- Building with NumPy bindings')
else:
report('-- NumPy not found')
if cmake_cache_vars['USE_CUDNN']:
report('-- Detected cuDNN at ' +
cmake_cache_vars['CUDNN_LIBRARY'] + ', ' + cmake_cache_vars['CUDNN_INCLUDE_DIR'])
else:
report('-- Not using cuDNN')
if cmake_cache_vars['USE_CUDA']:
report('-- Detected CUDA at ' + cmake_cache_vars['CUDA_TOOLKIT_ROOT_DIR'])
else:
report('-- Not using CUDA')
if cmake_cache_vars['USE_MKLDNN']:
report('-- Using MKLDNN')
if cmake_cache_vars['USE_MKLDNN_ACL']:
report('-- Using Compute Library for the Arm architecture with MKLDNN')
else:
report('-- Not using Compute Library for the Arm architecture with MKLDNN')
if cmake_cache_vars['USE_MKLDNN_CBLAS']:
report('-- Using CBLAS in MKLDNN')
else:
report('-- Not using CBLAS in MKLDNN')
else:
report('-- Not using MKLDNN')
if cmake_cache_vars['USE_NCCL'] and cmake_cache_vars['USE_SYSTEM_NCCL']:
report('-- Using system provided NCCL library at {}, {}'.format(cmake_cache_vars['NCCL_LIBRARIES'],
cmake_cache_vars['NCCL_INCLUDE_DIRS']))
elif cmake_cache_vars['USE_NCCL']:
report('-- Building NCCL library')
else:
report('-- Not using NCCL')
if cmake_cache_vars['USE_DISTRIBUTED']:
if IS_WINDOWS:
report('-- Building without distributed package')
else:
report('-- Building with distributed package: ')
report(' -- USE_TENSORPIPE={}'.format(cmake_cache_vars['USE_TENSORPIPE']))
report(' -- USE_GLOO={}'.format(cmake_cache_vars['USE_GLOO']))
report(' -- USE_MPI={}'.format(cmake_cache_vars['USE_OPENMPI']))
else:
report('-- Building without distributed package')
if cmake_cache_vars['STATIC_DISPATCH_BACKEND']:
report('-- Using static dispatch with backend {}'.format(cmake_cache_vars['STATIC_DISPATCH_BACKEND']))
if cmake_cache_vars['USE_LIGHTWEIGHT_DISPATCH']:
report('-- Using lightweight dispatch')
if cmake_cache_vars['USE_ITT']:
report('-- Using ITT')
else:
report('-- Not using ITT')
# Do not use clang to compile extensions if `-fstack-clash-protection` is defined
# in system CFLAGS
c_flags = str(os.getenv('CFLAGS', ''))
if IS_LINUX and '-fstack-clash-protection' in c_flags and 'clang' in os.environ.get('CC', ''):
os.environ['CC'] = str(os.environ['CC'])
# It's an old-style class in Python 2.7...
setuptools.command.build_ext.build_ext.run(self)
if IS_DARWIN and package_type != 'conda':
self._embed_libiomp()
# Copy the essential export library to compile C++ extensions.
if IS_WINDOWS:
build_temp = self.build_temp
ext_filename = self.get_ext_filename('_C')
lib_filename = '.'.join(ext_filename.split('.')[:-1]) + '.lib'
export_lib = os.path.join(
build_temp, 'torch', 'csrc', lib_filename).replace('\\', '/')
build_lib = self.build_lib
target_lib = os.path.join(
build_lib, 'torch', 'lib', '_C.lib').replace('\\', '/')
# Create "torch/lib" directory if not exists.
# (It is not created yet in "develop" mode.)
target_dir = os.path.dirname(target_lib)
if not os.path.exists(target_dir):
os.makedirs(target_dir)
self.copy_file(export_lib, target_lib)
def build_extensions(self):
self.create_compile_commands()
# The caffe2 extensions are created in
# tmp_install/lib/pythonM.m/site-packages/caffe2/python/
# and need to be copied to build/lib.linux.... , which will be a
# platform dependent build folder created by the "build" command of
# setuptools. Only the contents of this folder are installed in the
# "install" command by default.
# We only make this copy for Caffe2's pybind extensions
caffe2_pybind_exts = [
'caffe2.python.caffe2_pybind11_state',
'caffe2.python.caffe2_pybind11_state_gpu',
'caffe2.python.caffe2_pybind11_state_hip',
]
i = 0
while i < len(self.extensions):
ext = self.extensions[i]
if ext.name not in caffe2_pybind_exts:
i += 1
continue
fullname = self.get_ext_fullname(ext.name)
filename = self.get_ext_filename(fullname)
report("\nCopying extension {}".format(ext.name))
relative_site_packages = sysconfig.get_path('purelib').replace(sysconfig.get_path('data'), '').lstrip(os.path.sep)
src = os.path.join("torch", relative_site_packages, filename)
if not os.path.exists(src):
report("{} does not exist".format(src))
del self.extensions[i]
else:
dst = os.path.join(os.path.realpath(self.build_lib), filename)
report("Copying {} from {} to {}".format(ext.name, src, dst))
dst_dir = os.path.dirname(dst)
if not os.path.exists(dst_dir):
os.makedirs(dst_dir)
self.copy_file(src, dst)
i += 1
setuptools.command.build_ext.build_ext.build_extensions(self)
def get_outputs(self):
outputs = setuptools.command.build_ext.build_ext.get_outputs(self)
outputs.append(os.path.join(self.build_lib, "caffe2"))
report("setup.py::get_outputs returning {}".format(outputs))
return outputs
def create_compile_commands(self):
def load(filename):
with open(filename) as f:
return json.load(f)
ninja_files = glob.glob('build/*compile_commands.json')
cmake_files = glob.glob('torch/lib/build/*/compile_commands.json')
all_commands = [entry
for f in ninja_files + cmake_files
for entry in load(f)]
# cquery does not like c++ compiles that start with gcc.
# It forgets to include the c++ header directories.
# We can work around this by replacing the gcc calls that python
# setup.py generates with g++ calls instead
for command in all_commands:
if command['command'].startswith("gcc "):
command['command'] = "g++ " + command['command'][4:]
new_contents = json.dumps(all_commands, indent=2)
contents = ''
if os.path.exists('compile_commands.json'):
with open('compile_commands.json', 'r') as f:
contents = f.read()
if contents != new_contents:
with open('compile_commands.json', 'w') as f:
f.write(new_contents)
class concat_license_files():
"""Merge LICENSE and LICENSES_BUNDLED.txt as a context manager
LICENSE is the main PyTorch license, LICENSES_BUNDLED.txt is auto-generated
from all the licenses found in ./third_party/. We concatenate them so there
is a single license file in the sdist and wheels with all of the necessary
licensing info.
"""
def __init__(self, include_files=False):
self.f1 = 'LICENSE'
self.f2 = 'third_party/LICENSES_BUNDLED.txt'
self.include_files = include_files
def __enter__(self):
"""Concatenate files"""
old_path = sys.path
sys.path.append(third_party_path)
try:
from build_bundled import create_bundled
finally:
sys.path = old_path
with open(self.f1, 'r') as f1:
self.bsd_text = f1.read()
with open(self.f1, 'a') as f1:
f1.write('\n\n')
create_bundled(os.path.relpath(third_party_path), f1,
include_files=self.include_files)
def __exit__(self, exception_type, exception_value, traceback):
"""Restore content of f1"""
with open(self.f1, 'w') as f:
f.write(self.bsd_text)
try:
from wheel.bdist_wheel import bdist_wheel
except ImportError:
# This is useful when wheel is not installed and bdist_wheel is not
# specified on the command line. If it _is_ specified, parsing the command
# line will fail before wheel_concatenate is needed
wheel_concatenate = None
else:
# Need to create the proper LICENSE.txt for the wheel
class wheel_concatenate(bdist_wheel):
""" check submodules on sdist to prevent incomplete tarballs """
def run(self):
with concat_license_files(include_files=True):
super().run()
class install(setuptools.command.install.install):
def run(self):
super().run()
class clean(setuptools.Command):
user_options = []
def initialize_options(self):
pass
def finalize_options(self):
pass
def run(self):
import glob
import re
with open('.gitignore', 'r') as f:
ignores = f.read()
pat = re.compile(r'^#( BEGIN NOT-CLEAN-FILES )?')
for wildcard in filter(None, ignores.split('\n')):
match = pat.match(wildcard)
if match:
if match.group(1):
# Marker is found and stop reading .gitignore.
break
# Ignore lines which begin with '#'.
else:
for filename in glob.glob(wildcard):
try:
os.remove(filename)
except OSError:
shutil.rmtree(filename, ignore_errors=True)
class sdist(setuptools.command.sdist.sdist):
def run(self):
with concat_license_files():
super().run()
def configure_extension_build():
r"""Configures extension build options according to system environment and user's choice.
Returns:
The input to parameters ext_modules, cmdclass, packages, and entry_points as required in setuptools.setup.
"""
try:
cmake_cache_vars = defaultdict(lambda: False, cmake.get_cmake_cache_variables())
except FileNotFoundError:
# CMakeCache.txt does not exist. Probably running "python setup.py clean" over a clean directory.
cmake_cache_vars = defaultdict(lambda: False)
################################################################################
# Configure compile flags
################################################################################
library_dirs = []
extra_install_requires = []
if IS_WINDOWS:
# /NODEFAULTLIB makes sure we only link to DLL runtime
# and matches the flags set for protobuf and ONNX
extra_link_args = ['/NODEFAULTLIB:LIBCMT.LIB']
# /MD links against DLL runtime
# and matches the flags set for protobuf and ONNX
# /EHsc is about standard C++ exception handling
# /DNOMINMAX removes builtin min/max functions
# /wdXXXX disables warning no. XXXX
extra_compile_args = ['/MD', '/EHsc', '/DNOMINMAX',
'/wd4267', '/wd4251', '/wd4522', '/wd4522', '/wd4838',
'/wd4305', '/wd4244', '/wd4190', '/wd4101', '/wd4996',
'/wd4275']
else:
extra_link_args = []
extra_compile_args = [
'-Wall',
'-Wextra',
'-Wno-strict-overflow',
'-Wno-unused-parameter',
'-Wno-missing-field-initializers',
'-Wno-write-strings',
'-Wno-unknown-pragmas',
# This is required for Python 2 declarations that are deprecated in 3.
'-Wno-deprecated-declarations',
# Python 2.6 requires -fno-strict-aliasing, see
# http://legacy.python.org/dev/peps/pep-3123/
# We also depend on it in our code (even Python 3).
'-fno-strict-aliasing',
# Clang has an unfixed bug leading to spurious missing
# braces warnings, see
# https://bugs.llvm.org/show_bug.cgi?id=21629
'-Wno-missing-braces',
]
library_dirs.append(lib_path)
main_compile_args = []
main_libraries = ['torch_python']
main_link_args = []
main_sources = ["torch/csrc/stub.c"]
if cmake_cache_vars['USE_CUDA']:
library_dirs.append(
os.path.dirname(cmake_cache_vars['CUDA_CUDA_LIB']))
if build_type.is_debug():
if IS_WINDOWS:
extra_compile_args.append('/Z7')
extra_link_args.append('/DEBUG:FULL')
else:
extra_compile_args += ['-O0', '-g']
extra_link_args += ['-O0', '-g']
if build_type.is_rel_with_deb_info():
if IS_WINDOWS:
extra_compile_args.append('/Z7')
extra_link_args.append('/DEBUG:FULL')
else:
extra_compile_args += ['-g']
extra_link_args += ['-g']
# Cross-compile for M1
if IS_DARWIN:
macos_target_arch = os.getenv('CMAKE_OSX_ARCHITECTURES', '')
if macos_target_arch in ['arm64', 'x86_64']:
macos_sysroot_path = os.getenv('CMAKE_OSX_SYSROOT')
if macos_sysroot_path is None:
macos_sysroot_path = subprocess.check_output([
'xcrun', '--show-sdk-path', '--sdk', 'macosx'
]).decode('utf-8').strip()
extra_compile_args += ['-arch', macos_target_arch, '-isysroot', macos_sysroot_path]
extra_link_args += ['-arch', macos_target_arch]
def make_relative_rpath_args(path):
if IS_DARWIN:
return ['-Wl,-rpath,@loader_path/' + path]
elif IS_WINDOWS:
return []
else:
return ['-Wl,-rpath,$ORIGIN/' + path]
################################################################################
# Declare extensions and package
################################################################################
extensions = []
packages = find_packages(exclude=('tools', 'tools.*'))
C = Extension("torch._C",
libraries=main_libraries,
sources=main_sources,
language='c',
extra_compile_args=main_compile_args + extra_compile_args,
include_dirs=[],
library_dirs=library_dirs,
extra_link_args=extra_link_args + main_link_args + make_relative_rpath_args('lib'))
C_flatbuffer = Extension("torch._C_flatbuffer",
libraries=main_libraries,
sources=["torch/csrc/stub_with_flatbuffer.c"],
language='c',
extra_compile_args=main_compile_args + extra_compile_args,
include_dirs=[],
library_dirs=library_dirs,
extra_link_args=extra_link_args + main_link_args + make_relative_rpath_args('lib'))
extensions.append(C)
extensions.append(C_flatbuffer)
if not IS_WINDOWS:
DL = Extension("torch._dl",
sources=["torch/csrc/dl.c"],
language='c')
extensions.append(DL)
# These extensions are built by cmake and copied manually in build_extensions()
# inside the build_ext implementation
if cmake_cache_vars['BUILD_CAFFE2']:
extensions.append(
Extension(
name=str('caffe2.python.caffe2_pybind11_state'),
sources=[]),
)
if cmake_cache_vars['USE_CUDA']:
extensions.append(
Extension(
name=str('caffe2.python.caffe2_pybind11_state_gpu'),
sources=[]),
)
if cmake_cache_vars['USE_ROCM']:
extensions.append(
Extension(
name=str('caffe2.python.caffe2_pybind11_state_hip'),
sources=[]),
)
cmdclass = {
'bdist_wheel': wheel_concatenate,
'build_ext': build_ext,
'clean': clean,
'install': install,
'sdist': sdist,
}
entry_points = {
'console_scripts': [
'convert-caffe2-to-onnx = caffe2.python.onnx.bin.conversion:caffe2_to_onnx',
'convert-onnx-to-caffe2 = caffe2.python.onnx.bin.conversion:onnx_to_caffe2',
'torchrun = torch.distributed.run:main',
]
}
return extensions, cmdclass, packages, entry_points, extra_install_requires
# post run, warnings, printed at the end to make them more visible
build_update_message = """
It is no longer necessary to use the 'build' or 'rebuild' targets
To install:
$ python setup.py install
To develop locally:
$ python setup.py develop
To force cmake to re-generate native build files (off by default):
$ python setup.py develop --cmake
"""
def print_box(msg):
lines = msg.split('\n')
size = max(len(l) + 1 for l in lines)
print('-' * (size + 2))
for l in lines:
print('|{}{}|'.format(l, ' ' * (size - len(l))))
print('-' * (size + 2))
if __name__ == '__main__':
# Parse the command line and check the arguments before we proceed with
# building deps and setup. We need to set values so `--help` works.
dist = Distribution()
dist.script_name = os.path.basename(sys.argv[0])
dist.script_args = sys.argv[1:]
try:
dist.parse_command_line()
except setuptools.distutils.errors.DistutilsArgError as e:
print(e)
sys.exit(1)
mirror_files_into_torchgen()
if RUN_BUILD_DEPS:
build_deps()
extensions, cmdclass, packages, entry_points, extra_install_requires = configure_extension_build()
install_requires += extra_install_requires
# Read in README.md for our long_description
with open(os.path.join(cwd, "README.md"), encoding="utf-8") as f:
long_description = f.read()
version_range_max = max(sys.version_info[1], 9) + 1
setup(
name=package_name,
version=version,
description=("Tensors and Dynamic neural networks in "
"Python with strong GPU acceleration"),
long_description=long_description,
long_description_content_type="text/markdown",
ext_modules=extensions,
cmdclass=cmdclass,
packages=packages,
entry_points=entry_points,
install_requires=install_requires,
package_data={
'torch': [
'py.typed',
'bin/*',
'test/*',
'_C/*.pyi',
'_C_flatbuffer/*.pyi',
'cuda/*.pyi',
'optim/*.pyi',
'autograd/*.pyi',
'utils/data/*.pyi',
'nn/*.pyi',
'nn/modules/*.pyi',
'nn/parallel/*.pyi',
'utils/data/*.pyi',
'lib/*.so*',
'lib/*.dylib*',
'lib/*.dll',
'lib/*.lib',
'lib/*.pdb',
'lib/torch_shm_manager',
'lib/*.h',
'include/ATen/*.h',
'include/ATen/cpu/*.h',
'include/ATen/cpu/vec/vec256/*.h',
'include/ATen/cpu/vec/vec512/*.h',
'include/ATen/cpu/vec/*.h',
'include/ATen/core/*.h',
'include/ATen/cuda/*.cuh',
'include/ATen/cuda/*.h',
'include/ATen/cuda/detail/*.cuh',
'include/ATen/cuda/detail/*.h',
'include/ATen/cudnn/*.h',
'include/ATen/ops/*.h',
'include/ATen/hip/*.cuh',
'include/ATen/hip/*.h',
'include/ATen/hip/detail/*.cuh',
'include/ATen/hip/detail/*.h',
'include/ATen/hip/impl/*.h',
'include/ATen/detail/*.h',
'include/ATen/native/*.h',
'include/ATen/native/cpu/*.h',
'include/ATen/native/cuda/*.h',
'include/ATen/native/cuda/*.cuh',
'include/ATen/native/hip/*.h',
'include/ATen/native/hip/*.cuh',
'include/ATen/native/quantized/*.h',
'include/ATen/native/quantized/cpu/*.h',
'include/ATen/quantized/*.h',
'include/caffe2/utils/*.h',
'include/caffe2/utils/**/*.h',
'include/c10/*.h',
'include/c10/macros/*.h',
'include/c10/core/*.h',
'include/ATen/core/boxing/*.h',
'include/ATen/core/boxing/impl/*.h',
'include/ATen/core/dispatch/*.h',
'include/ATen/core/op_registration/*.h',
'include/c10/core/impl/*.h',
'include/c10/util/*.h',
'include/c10/cuda/*.h',
'include/c10/cuda/impl/*.h',
'include/c10/hip/*.h',
'include/c10/hip/impl/*.h',
'include/c10d/*.h',
'include/c10d/*.hpp',
'include/caffe2/**/*.h',
'include/torch/*.h',
'include/torch/csrc/*.h',
'include/torch/csrc/api/include/torch/*.h',
'include/torch/csrc/api/include/torch/data/*.h',
'include/torch/csrc/api/include/torch/data/dataloader/*.h',
'include/torch/csrc/api/include/torch/data/datasets/*.h',
'include/torch/csrc/api/include/torch/data/detail/*.h',
'include/torch/csrc/api/include/torch/data/samplers/*.h',
'include/torch/csrc/api/include/torch/data/transforms/*.h',
'include/torch/csrc/api/include/torch/detail/*.h',
'include/torch/csrc/api/include/torch/detail/ordered_dict.h',
'include/torch/csrc/api/include/torch/nn/*.h',
'include/torch/csrc/api/include/torch/nn/functional/*.h',
'include/torch/csrc/api/include/torch/nn/options/*.h',
'include/torch/csrc/api/include/torch/nn/modules/*.h',
'include/torch/csrc/api/include/torch/nn/modules/container/*.h',
'include/torch/csrc/api/include/torch/nn/parallel/*.h',
'include/torch/csrc/api/include/torch/nn/utils/*.h',
'include/torch/csrc/api/include/torch/optim/*.h',
'include/torch/csrc/api/include/torch/optim/schedulers/*.h',
'include/torch/csrc/api/include/torch/serialize/*.h',
'include/torch/csrc/autograd/*.h',
'include/torch/csrc/autograd/functions/*.h',
'include/torch/csrc/autograd/generated/*.h',
'include/torch/csrc/autograd/utils/*.h',
'include/torch/csrc/cuda/*.h',
'include/torch/csrc/deploy/*.h',
'include/torch/csrc/deploy/interpreter/*.h',
'include/torch/csrc/deploy/interpreter/*.hpp',
'include/torch/csrc/distributed/c10d/exception.h',
'include/torch/csrc/distributed/rpc/*.h',
'include/torch/csrc/jit/*.h',
'include/torch/csrc/jit/backends/*.h',
'include/torch/csrc/jit/generated/*.h',
'include/torch/csrc/jit/passes/*.h',
'include/torch/csrc/jit/passes/quantization/*.h',
'include/torch/csrc/jit/passes/utils/*.h',
'include/torch/csrc/jit/runtime/*.h',
'include/torch/csrc/jit/ir/*.h',
'include/torch/csrc/jit/frontend/*.h',
'include/torch/csrc/jit/api/*.h',
'include/torch/csrc/jit/serialization/*.h',
'include/torch/csrc/jit/python/*.h',
'include/torch/csrc/jit/mobile/*.h',
'include/torch/csrc/jit/testing/*.h',
'include/torch/csrc/jit/tensorexpr/*.h',
'include/torch/csrc/jit/tensorexpr/operators/*.h',
'include/torch/csrc/jit/codegen/cuda/*.h',
'include/torch/csrc/jit/codegen/cuda/ops/*.h',
'include/torch/csrc/jit/codegen/cuda/scheduler/*.h',
'include/torch/csrc/onnx/*.h',
'include/torch/csrc/profiler/*.h',
'include/torch/csrc/utils/*.h',
'include/torch/csrc/tensor/*.h',
'include/torch/csrc/lazy/backend/*.h',
'include/torch/csrc/lazy/core/*.h',
'include/torch/csrc/lazy/core/internal_ops/*.h',
'include/torch/csrc/lazy/core/ops/*.h',
'include/torch/csrc/lazy/ts_backend/*.h',
'include/pybind11/*.h',
'include/pybind11/detail/*.h',
'include/TH/*.h*',
'include/TH/generic/*.h*',
'include/THC/*.cuh',
'include/THC/*.h*',
'include/THC/generic/*.h',
'include/THH/*.cuh',
'include/THH/*.h*',
'include/THH/generic/*.h',
'share/cmake/ATen/*.cmake',
'share/cmake/Caffe2/*.cmake',
'share/cmake/Caffe2/public/*.cmake',
'share/cmake/Caffe2/Modules_CUDA_fix/*.cmake',
'share/cmake/Caffe2/Modules_CUDA_fix/upstream/*.cmake',
'share/cmake/Caffe2/Modules_CUDA_fix/upstream/FindCUDA/*.cmake',
'share/cmake/Gloo/*.cmake',
'share/cmake/Tensorpipe/*.cmake',
'share/cmake/Torch/*.cmake',
'utils/benchmark/utils/*.cpp',
'utils/benchmark/utils/valgrind_wrapper/*.cpp',
'utils/benchmark/utils/valgrind_wrapper/*.h',
'utils/model_dump/skeleton.html',
'utils/model_dump/code.js',
'utils/model_dump/*.mjs',
],
'torchgen': [
# Recursive glob doesn't work in setup.py,
# https://github.com/pypa/setuptools/issues/1806
# To make this robust we should replace it with some code that
# returns a list of everything under packaged/
'packaged/ATen/*',
'packaged/ATen/native/*',
'packaged/ATen/templates/*',
],
'caffe2': [
'python/serialized_test/data/operator_test/*.zip',
],
},
url='https://pytorch.org/',
download_url='https://github.com/pytorch/pytorch/tags',
author='PyTorch Team',
author_email='packages@pytorch.org',
python_requires='>={}'.format(python_min_version_str),
# PyPI package information.
classifiers=[
'Development Status :: 5 - Production/Stable',
'Intended Audience :: Developers',
'Intended Audience :: Education',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: BSD License',
'Topic :: Scientific/Engineering',
'Topic :: Scientific/Engineering :: Mathematics',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Topic :: Software Development',
'Topic :: Software Development :: Libraries',
'Topic :: Software Development :: Libraries :: Python Modules',
'Programming Language :: C++',
'Programming Language :: Python :: 3',
] + ['Programming Language :: Python :: 3.{}'.format(i) for i in range(python_min_version[1], version_range_max)],
license='BSD-3',
keywords='pytorch, machine learning',
)
if EMIT_BUILD_WARNING:
print_box(build_update_message)
|
pytorch-master
|
setup.py
|
#!/usr/bin/env python3
import json
from pathlib import Path
def main() -> None:
folder = Path(".vscode")
recommended = json.loads((folder / "settings_recommended.json").read_text())
path = folder / "settings.json"
try:
current = json.loads(path.read_text())
except Exception:
current = {}
with open(path, "w") as f:
json.dump({**current, **recommended}, f, indent=2)
f.write("\n")
if __name__ == "__main__":
main()
|
pytorch-master
|
tools/vscode_settings.py
|
#!/usr/bin/env python3
import argparse
import re
import sys
from pathlib import Path
from typing import Any, Dict, Optional
import yaml
from typing_extensions import TypedDict
Step = Dict[str, Any]
class Script(TypedDict):
extension: str
script: str
def extract(step: Step) -> Optional[Script]:
run = step.get("run")
# https://docs.github.com/en/actions/reference/workflow-syntax-for-github-actions#using-a-specific-shell
shell = step.get("shell", "bash")
extension = {
"bash": ".sh",
"pwsh": ".ps1",
"python": ".py",
"sh": ".sh",
"cmd": ".cmd",
"powershell": ".ps1",
}.get(shell)
is_gh_script = step.get("uses", "").startswith("actions/github-script@")
gh_script = step.get("with", {}).get("script")
if run is not None and extension is not None:
script = {
"bash": f"#!/usr/bin/env bash\nset -eo pipefail\n{run}",
"sh": f"#!/usr/bin/env sh\nset -e\n{run}",
}.get(shell, run)
return {"extension": extension, "script": script}
elif is_gh_script and gh_script is not None:
return {"extension": ".js", "script": gh_script}
else:
return None
def main() -> None:
parser = argparse.ArgumentParser()
parser.add_argument("--out", required=True)
args = parser.parse_args()
out = Path(args.out)
if out.exists():
sys.exit(f"{out} already exists; aborting to avoid overwriting")
gha_expressions_found = False
for p in Path(".github/workflows").iterdir():
with open(p, "rb") as f:
workflow = yaml.safe_load(f)
for job_name, job in workflow["jobs"].items():
job_dir = out / p / job_name
if "steps" not in job:
continue
steps = job["steps"]
index_chars = len(str(len(steps) - 1))
for i, step in enumerate(steps, start=1):
extracted = extract(step)
if extracted:
script = extracted["script"]
step_name = step.get("name", "")
if "${{" in script:
gha_expressions_found = True
print(
f"{p} job `{job_name}` step {i}: {step_name}",
file=sys.stderr,
)
job_dir.mkdir(parents=True, exist_ok=True)
sanitized = re.sub(
"[^a-zA-Z_]+",
"_",
f"_{step_name}",
).rstrip("_")
extension = extracted["extension"]
filename = f"{i:0{index_chars}}{sanitized}{extension}"
(job_dir / filename).write_text(script)
if gha_expressions_found:
sys.exit(
"Each of the above scripts contains a GitHub Actions "
"${{ <expression> }} which must be replaced with an `env` variable"
" for security reasons."
)
if __name__ == "__main__":
main()
|
pytorch-master
|
tools/extract_scripts.py
|
"""Tool to fix the nvcc's dependecy file output
Usage: python nvcc_fix_deps.py nvcc [nvcc args]...
This wraps nvcc to ensure that the dependency file created by nvcc with the
-MD flag always uses absolute paths. nvcc sometimes outputs relative paths,
which ninja interprets as an unresolved dependency, so it triggers a rebuild
of that file every time.
The easiest way to use this is to define:
CMAKE_CUDA_COMPILER_LAUNCHER="python;tools/nvcc_fix_deps.py;ccache"
"""
import subprocess
import sys
from pathlib import Path
from typing import List, Optional, TextIO
def resolve_include(path: Path, include_dirs: List[Path]) -> Path:
for include_path in include_dirs:
abs_path = include_path / path
if abs_path.exists():
return abs_path
paths = "\n ".join(str(d / path) for d in include_dirs)
raise RuntimeError(
f"""
ERROR: Failed to resolve dependency:
{path}
Tried the following paths, but none existed:
{paths}
"""
)
def repair_depfile(depfile: TextIO, include_dirs: List[Path]) -> None:
changes_made = False
out = ""
for line in depfile.readlines():
if ":" in line:
colon_pos = line.rfind(":")
out += line[: colon_pos + 1]
line = line[colon_pos + 1 :]
line = line.strip()
if line.endswith("\\"):
end = " \\"
line = line[:-1].strip()
else:
end = ""
path = Path(line)
if not path.is_absolute():
changes_made = True
path = resolve_include(path, include_dirs)
out += f" {path}{end}\n"
# If any paths were changed, rewrite the entire file
if changes_made:
depfile.seek(0)
depfile.write(out)
depfile.truncate()
PRE_INCLUDE_ARGS = ["-include", "--pre-include"]
POST_INCLUDE_ARGS = ["-I", "--include-path", "-isystem", "--system-include"]
def extract_include_arg(include_dirs: List[Path], i: int, args: List[str]) -> None:
def extract_one(name: str, i: int, args: List[str]) -> Optional[str]:
arg = args[i]
if arg == name:
return args[i + 1]
if arg.startswith(name):
arg = arg[len(name) :]
return arg[1:] if arg[0] == "=" else arg
return None
for name in PRE_INCLUDE_ARGS:
path = extract_one(name, i, args)
if path is not None:
include_dirs.insert(0, Path(path).resolve())
return
for name in POST_INCLUDE_ARGS:
path = extract_one(name, i, args)
if path is not None:
include_dirs.append(Path(path).resolve())
return
if __name__ == "__main__":
ret = subprocess.run(
sys.argv[1:], stdin=sys.stdin, stdout=sys.stdout, stderr=sys.stderr
)
depfile_path = None
include_dirs = []
# Parse only the nvcc arguments we care about
args = sys.argv[2:]
for i, arg in enumerate(args):
if arg == "-MF":
depfile_path = Path(args[i + 1])
elif arg == "-c":
# Include the base path of the cuda file
include_dirs.append(Path(args[i + 1]).resolve().parent)
else:
extract_include_arg(include_dirs, i, args)
if depfile_path is not None and depfile_path.exists():
with depfile_path.open("r+") as f:
repair_depfile(f, include_dirs)
sys.exit(ret.returncode)
|
pytorch-master
|
tools/nvcc_fix_deps.py
|
import argparse
import os
import os.path
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--input-file")
parser.add_argument("--output-file")
parser.add_argument("--install_dir")
parser.add_argument("--replace", action="append", nargs=2)
options = parser.parse_args()
with open(options.input_file, "r") as f:
contents = f.read()
output_file = os.path.join(options.install_dir, options.output_file)
os.makedirs(os.path.dirname(output_file), exist_ok=True)
for old, new in options.replace:
contents = contents.replace(old, new)
with open(output_file, "w") as f:
f.write(contents)
|
pytorch-master
|
tools/substitute.py
|
#!/usr/bin/env python3
import argparse
import array
import glob
import os
import re
import sys
import subprocess
from torchgen.code_template import CodeTemplate
H_NAME = "spv.h"
CPP_NAME = "spv.cpp"
DEFAULT_ENV = {"precision": "highp", "format": "rgba32f"}
def getName(filePath):
return os.path.basename(filePath).replace("/", "_").replace(".", "_")
def isDescriptorLine(lineStr):
descriptorLineId = r"^layout\(set"
return re.search(descriptorLineId, lineStr)
typeIdMapping = {
r"image[123]D\b": "VK_DESCRIPTOR_TYPE_STORAGE_IMAGE",
r"sampler[123]D\b": "VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER",
r"\bbuffer\b": "VK_DESCRIPTOR_TYPE_STORAGE_BUFFER",
r"\buniform\b.*\bBlock\b": "VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER",
}
def determineDescriptorType(lineStr):
for identifier, typeNum in typeIdMapping.items():
if re.search(identifier, lineStr):
return typeNum
raise Exception("Could not identify descriptor type of line: {}".format(lineStr))
def getLayout(srcFilePath):
layout = []
with open(srcFilePath, 'r') as srcFile:
for line in srcFile:
if isDescriptorLine(line):
layout.append(determineDescriptorType(line))
return layout
def genCppH(hFilePath, cppFilePath, srcDirPath, glslcPath, tmpDirPath, env):
print("hFilePath:{} cppFilePath:{} srcDirPath:{} glslcPath:{} tmpDirPath:{}".format(
hFilePath, cppFilePath, srcDirPath, glslcPath, tmpDirPath))
vexs = glob.glob(os.path.join(srcDirPath, '**', '*.glsl'), recursive=True)
templateSrcPaths = []
for f in vexs:
if len(f) > 1:
templateSrcPaths.append(f)
templateSrcPaths.sort()
print("templateSrcPaths:{}".format(templateSrcPaths))
spvPaths = {}
for templateSrcPath in templateSrcPaths:
print("templateSrcPath {}".format(templateSrcPath))
name = getName(templateSrcPath).replace("_glsl", "")
print("name {}".format(name))
codeTemplate = CodeTemplate.from_file(templateSrcPath)
srcPath = tmpDirPath + "/" + name + ".glsl"
content = codeTemplate.substitute(env)
with open(srcPath, 'w') as f:
f.write(content)
spvPath = tmpDirPath + "/" + name + ".spv"
print("spvPath {}".format(spvPath))
cmd = [
glslcPath, "-fshader-stage=compute",
srcPath, "-o", spvPath,
"--target-env=vulkan1.0",
"-Werror"
]
print("\nglslc cmd:", cmd)
subprocess.check_call(cmd)
spvPaths[spvPath] = templateSrcPath
h = "#pragma once\n"
h += "#include <stdint.h>\n"
h += "#include <vector>\n"
h += "#include <ATen/native/vulkan/api/vk_api.h>"
nsbegin = "\nnamespace at {\nnamespace native {\nnamespace vulkan {\n"
nsend = "\n}\n}\n} //namespace at::native::vulkan\n"
h += nsbegin
cpp = "#include <ATen/native/vulkan/{}>".format(H_NAME)
cpp += nsbegin
for spvPath, srcPath in spvPaths.items():
name = getName(spvPath)
name_len = name + "_len"
h += "extern const uint32_t {}[];\n".format(name)
h += "extern const uint32_t {};\n".format(name_len)
layout = getLayout(srcPath)
name_layout = name + "_layout"
h += "extern const std::vector<VkDescriptorType> {};\n".format(name_layout)
cpp += "const uint32_t " + name + "[] = {\n"
sizeBytes = 0
print("spvPath:{}".format(spvPath))
with open(spvPath, 'rb') as f:
for word in array.array('I', f.read()):
cpp += "{},\n".format(word)
sizeBytes += 4
cpp += "};\n"
cpp += "const uint32_t {} = {};\n".format(name_len, sizeBytes)
# Add layout
cpp += "const std::vector<VkDescriptorType> {} = {{\n".format(name_layout)
for descriptor in layout:
cpp += " {},\n".format(descriptor)
cpp += "};\n"
cpp += nsend
h += nsend
with open(hFilePath, "w") as f:
f.write(h)
with open(cppFilePath, "w") as f:
f.write(cpp)
def parse_arg_env(items):
d = {}
if items:
for item in items:
tokens = item.split("=")
key = tokens[0].strip()
value = tokens[1].strip()
d[key] = value
return d
def main(argv):
parser = argparse.ArgumentParser(description='')
parser.add_argument(
'-i',
'--glsl-path',
help='',
default='.')
parser.add_argument(
'-c',
'--glslc-path',
required=True,
help='')
parser.add_argument(
'-t',
'--tmp-dir-path',
required=True,
help='/tmp')
parser.add_argument(
'-o',
'--output-path',
required=True,
help='')
parser.add_argument(
"--env",
metavar="KEY=VALUE",
nargs='*',
help="Set a number of key-value pairs")
options = parser.parse_args()
env = DEFAULT_ENV
for key, value in parse_arg_env(options.env).items():
env[key] = value
if not os.path.exists(options.output_path):
os.makedirs(options.output_path)
if not os.path.exists(options.tmp_dir_path):
os.makedirs(options.tmp_dir_path)
genCppH(
hFilePath=options.output_path + "/spv.h",
cppFilePath=options.output_path + "/spv.cpp",
srcDirPath=options.glsl_path,
glslcPath=options.glslc_path,
tmpDirPath=options.tmp_dir_path,
env=env)
if __name__ == '__main__':
sys.exit(main(sys.argv))
|
pytorch-master
|
tools/gen_vulkan_spv.py
|
pytorch-master
|
tools/__init__.py
|
|
#!/usr/bin/env python3
import argparse
import os
from typing import Any, List, Union
try:
from junitparser import ( # type: ignore[import]
Error,
Failure,
JUnitXml,
TestCase,
TestSuite,
)
except ImportError:
raise ImportError(
"junitparser not found, please install with 'pip install junitparser'"
)
try:
import rich
except ImportError:
print("rich not found, for color output use 'pip install rich'")
def parse_junit_reports(path_to_reports: str) -> List[TestCase]: # type: ignore[no-any-unimported]
def parse_file(path: str) -> List[TestCase]: # type: ignore[no-any-unimported]
try:
return convert_junit_to_testcases(JUnitXml.fromfile(path))
except Exception as err:
rich.print(
f":Warning: [yellow]Warning[/yellow]: Failed to read {path}: {err}"
)
return []
if not os.path.exists(path_to_reports):
raise FileNotFoundError(f"Path '{path_to_reports}', not found")
# Return early if the path provided is just a file
if os.path.isfile(path_to_reports):
return parse_file(path_to_reports)
ret_xml = []
if os.path.isdir(path_to_reports):
for root, _, files in os.walk(path_to_reports):
for fname in [f for f in files if f.endswith("xml")]:
ret_xml += parse_file(os.path.join(root, fname))
return ret_xml
def convert_junit_to_testcases(xml: Union[JUnitXml, TestSuite]) -> List[TestCase]: # type: ignore[no-any-unimported]
testcases = []
for item in xml:
if isinstance(item, TestSuite):
testcases.extend(convert_junit_to_testcases(item))
else:
testcases.append(item)
return testcases
def render_tests(testcases: List[TestCase]) -> None: # type: ignore[no-any-unimported]
num_passed = 0
num_skipped = 0
num_failed = 0
for testcase in testcases:
if not testcase.result:
num_passed += 1
continue
for result in testcase.result:
if isinstance(result, Error):
icon = ":rotating_light: [white on red]ERROR[/white on red]:"
num_failed += 1
elif isinstance(result, Failure):
icon = ":x: [white on red]Failure[/white on red]:"
num_failed += 1
else:
num_skipped += 1
continue
rich.print(
f"{icon} [bold red]{testcase.classname}.{testcase.name}[/bold red]"
)
print(f"{result.text}")
rich.print(f":white_check_mark: {num_passed} [green]Passed[green]")
rich.print(f":dash: {num_skipped} [grey]Skipped[grey]")
rich.print(f":rotating_light: {num_failed} [grey]Failed[grey]")
def parse_args() -> Any:
parser = argparse.ArgumentParser(
description="Render xunit output for failed tests",
)
parser.add_argument(
"report_path",
help="Base xunit reports (single file or directory) to compare to",
)
return parser.parse_args()
def main() -> None:
options = parse_args()
testcases = parse_junit_reports(options.report_path)
render_tests(testcases)
if __name__ == "__main__":
main()
|
pytorch-master
|
tools/render_junit.py
|
import argparse
import sys
from os.path import abspath, dirname
# By appending pytorch_root to sys.path, this module can import other torch
# modules even when run as a standalone script. i.e., it's okay either you
# do `python build_libtorch.py` or `python -m tools.build_libtorch`.
pytorch_root = dirname(dirname(abspath(__file__)))
sys.path.append(pytorch_root)
from tools.build_pytorch_libs import build_caffe2
from tools.setup_helpers.cmake import CMake
if __name__ == "__main__":
# Placeholder for future interface. For now just gives a nice -h.
parser = argparse.ArgumentParser(description="Build libtorch")
parser.add_argument("--rerun-cmake", action="store_true", help="rerun cmake")
parser.add_argument(
"--cmake-only",
action="store_true",
help="Stop once cmake terminates. Leave users a chance to adjust build options",
)
options = parser.parse_args()
build_caffe2(
version=None,
cmake_python_library=None,
build_python=False,
rerun_cmake=options.rerun_cmake,
cmake_only=options.cmake_only,
cmake=CMake(),
)
|
pytorch-master
|
tools/build_libtorch.py
|
"""This script updates the file torch/_masked/_docs.py that contains
the generated doc-strings for various masked operations. The update
should be triggered whenever a new masked operation is introduced to
torch._masked package. Running the script requires that torch package
is functional.
"""
import os
def main() -> None:
target = os.path.join("torch", "_masked", "_docs.py")
try:
import torch
except ImportError as msg:
print(f"Failed to import torch required to build {target}: {msg}")
return
if os.path.isfile(target):
with open(target) as _f:
current_content = _f.read()
else:
current_content = ""
_new_content = []
_new_content.append(
"""\
# -*- coding: utf-8 -*-
# This file is generated, do not modify it!
#
# To update this file, run the update masked docs script as follows:
#
# python tools/update_masked_docs.py
#
# The script must be called from an environment where the development
# version of torch package can be imported and is functional.
#
"""
)
for func_name in sorted(torch._masked.__all__):
func = getattr(torch._masked, func_name)
func_doc = torch._masked._generate_docstring(func)
_new_content.append(f'{func_name}_docstring = """{func_doc}"""\n')
new_content = "\n".join(_new_content)
if new_content == current_content:
print(f"Nothing to update in {target}")
return
with open(target, "w") as _f:
_f.write(new_content)
print(f"Successfully updated {target}")
if __name__ == "__main__":
main()
|
pytorch-master
|
tools/update_masked_docs.py
|
import argparse
import os
import re
import subprocess
from pathlib import Path
from typing import Optional, Union
from setuptools import distutils # type: ignore[import]
UNKNOWN = "Unknown"
RELEASE_PATTERN = re.compile(r"/v[0-9]+(\.[0-9]+)*(-rc[0-9]+)?/")
def get_sha(pytorch_root: Union[str, Path]) -> str:
try:
return (
subprocess.check_output(["git", "rev-parse", "HEAD"], cwd=pytorch_root)
.decode("ascii")
.strip()
)
except Exception:
return UNKNOWN
def get_tag(pytorch_root: Union[str, Path]) -> str:
try:
tag = (
subprocess.check_output(
["git", "describe", "--tags", "--exact"], cwd=pytorch_root
)
.decode("ascii")
.strip()
)
if RELEASE_PATTERN.match(tag):
return tag
else:
return UNKNOWN
except Exception:
return UNKNOWN
def get_torch_version(sha: Optional[str] = None) -> str:
pytorch_root = Path(__file__).parent.parent
version = open(pytorch_root / "version.txt", "r").read().strip()
if os.getenv("PYTORCH_BUILD_VERSION"):
assert os.getenv("PYTORCH_BUILD_NUMBER") is not None
build_number = int(os.getenv("PYTORCH_BUILD_NUMBER", ""))
version = os.getenv("PYTORCH_BUILD_VERSION", "")
if build_number > 1:
version += ".post" + str(build_number)
elif sha != UNKNOWN:
if sha is None:
sha = get_sha(pytorch_root)
version += "+git" + sha[:7]
return version
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Generate torch/version.py from build and environment metadata."
)
parser.add_argument(
"--is_debug",
type=distutils.util.strtobool,
help="Whether this build is debug mode or not.",
)
parser.add_argument("--cuda_version", type=str)
parser.add_argument("--hip_version", type=str)
args = parser.parse_args()
assert args.is_debug is not None
args.cuda_version = None if args.cuda_version == "" else args.cuda_version
args.hip_version = None if args.hip_version == "" else args.hip_version
pytorch_root = Path(__file__).parent.parent
version_path = pytorch_root / "torch" / "version.py"
# Attempt to get tag first, fall back to sha if a tag was not found
tagged_version = get_tag(pytorch_root)
sha = get_sha(pytorch_root)
if tagged_version == UNKNOWN:
version = get_torch_version(sha)
else:
version = tagged_version
with open(version_path, "w") as f:
f.write("__version__ = '{}'\n".format(version))
# NB: This is not 100% accurate, because you could have built the
# library code with DEBUG, but csrc without DEBUG (in which case
# this would claim to be a release build when it's not.)
f.write("debug = {}\n".format(repr(bool(args.is_debug))))
f.write("cuda = {}\n".format(repr(args.cuda_version)))
f.write("git_version = {}\n".format(repr(sha)))
f.write("hip = {}\n".format(repr(args.hip_version)))
|
pytorch-master
|
tools/generate_torch_version.py
|
import argparse
import gzip
import os
import sys
from urllib.error import URLError
from urllib.request import urlretrieve
MIRRORS = [
"http://yann.lecun.com/exdb/mnist/",
"https://ossci-datasets.s3.amazonaws.com/mnist/",
]
RESOURCES = [
"train-images-idx3-ubyte.gz",
"train-labels-idx1-ubyte.gz",
"t10k-images-idx3-ubyte.gz",
"t10k-labels-idx1-ubyte.gz",
]
def report_download_progress(
chunk_number: int,
chunk_size: int,
file_size: int,
) -> None:
if file_size != -1:
percent = min(1, (chunk_number * chunk_size) / file_size)
bar = "#" * int(64 * percent)
sys.stdout.write("\r0% |{:<64}| {}%".format(bar, int(percent * 100)))
def download(destination_path: str, resource: str, quiet: bool) -> None:
if os.path.exists(destination_path):
if not quiet:
print("{} already exists, skipping ...".format(destination_path))
else:
for mirror in MIRRORS:
url = mirror + resource
print("Downloading {} ...".format(url))
try:
hook = None if quiet else report_download_progress
urlretrieve(url, destination_path, reporthook=hook)
except (URLError, ConnectionError) as e:
print("Failed to download (trying next):\n{}".format(e))
continue
finally:
if not quiet:
# Just a newline.
print()
break
else:
raise RuntimeError("Error downloading resource!")
def unzip(zipped_path: str, quiet: bool) -> None:
unzipped_path = os.path.splitext(zipped_path)[0]
if os.path.exists(unzipped_path):
if not quiet:
print("{} already exists, skipping ... ".format(unzipped_path))
return
with gzip.open(zipped_path, "rb") as zipped_file:
with open(unzipped_path, "wb") as unzipped_file:
unzipped_file.write(zipped_file.read())
if not quiet:
print("Unzipped {} ...".format(zipped_path))
def main() -> None:
parser = argparse.ArgumentParser(
description="Download the MNIST dataset from the internet"
)
parser.add_argument(
"-d", "--destination", default=".", help="Destination directory"
)
parser.add_argument(
"-q", "--quiet", action="store_true", help="Don't report about progress"
)
options = parser.parse_args()
if not os.path.exists(options.destination):
os.makedirs(options.destination)
try:
for resource in RESOURCES:
path = os.path.join(options.destination, resource)
download(path, resource, options.quiet)
unzip(path, options.quiet)
except KeyboardInterrupt:
print("Interrupted")
if __name__ == "__main__":
main()
|
pytorch-master
|
tools/download_mnist.py
|
import os
import platform
import shutil
from glob import glob
from typing import Dict, Optional
from setuptools import distutils # type: ignore[import]
from .setup_helpers.cmake import CMake, USE_NINJA
from .setup_helpers.env import check_negative_env_flag, IS_64BIT, IS_WINDOWS
def _overlay_windows_vcvars(env: Dict[str, str]) -> Dict[str, str]:
vc_arch = "x64" if IS_64BIT else "x86"
if platform.machine() == "ARM64":
vc_arch = "x64_arm64"
# First Win11 Windows on Arm build version that supports x64 emulation
# is 10.0.22000.
win11_1st_version = (10, 0, 22000)
current_win_version = tuple(
int(version_part) for version_part in platform.version().split(".")
)
if current_win_version < win11_1st_version:
vc_arch = "x86_arm64"
print(
"Warning: 32-bit toolchain will be used, but 64-bit linker "
"is recommended to avoid out-of-memory linker error!"
)
print(
"Warning: Please consider upgrading to Win11, where x64 "
"emulation is enabled!"
)
vc_env: Dict[str, str] = distutils._msvccompiler._get_vc_env(vc_arch)
# Keys in `_get_vc_env` are always lowercase.
# We turn them into uppercase before overlaying vcvars
# because OS environ keys are always uppercase on Windows.
# https://stackoverflow.com/a/7797329
vc_env = {k.upper(): v for k, v in vc_env.items()}
for k, v in env.items():
uk = k.upper()
if uk not in vc_env:
vc_env[uk] = v
return vc_env
def _create_build_env() -> Dict[str, str]:
# XXX - our cmake file sometimes looks at the system environment
# and not cmake flags!
# you should NEVER add something to this list. It is bad practice to
# have cmake read the environment
my_env = os.environ.copy()
if (
"CUDA_HOME" in my_env
): # Keep CUDA_HOME. This env variable is still used in other part.
my_env["CUDA_BIN_PATH"] = my_env["CUDA_HOME"]
elif IS_WINDOWS: # we should eventually make this as part of FindCUDA.
cuda_win = glob("C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v*.*")
if len(cuda_win) > 0:
my_env["CUDA_BIN_PATH"] = cuda_win[0]
if IS_WINDOWS and USE_NINJA:
# When using Ninja under Windows, the gcc toolchain will be chosen as
# default. But it should be set to MSVC as the user's first choice.
my_env = _overlay_windows_vcvars(my_env)
my_env.setdefault("CC", "cl")
my_env.setdefault("CXX", "cl")
return my_env
def build_caffe2(
version: Optional[str],
cmake_python_library: Optional[str],
build_python: bool,
rerun_cmake: bool,
cmake_only: bool,
cmake: CMake,
) -> None:
my_env = _create_build_env()
build_test = not check_negative_env_flag("BUILD_TEST")
cmake.generate(
version, cmake_python_library, build_python, build_test, my_env, rerun_cmake
)
if cmake_only:
return
cmake.build(my_env)
if build_python:
caffe2_proto_dir = os.path.join(cmake.build_dir, "caffe2", "proto")
for proto_file in glob(os.path.join(caffe2_proto_dir, "*.py")):
if proto_file != os.path.join(caffe2_proto_dir, "__init__.py"):
shutil.copy(proto_file, os.path.join("caffe2", "proto"))
|
pytorch-master
|
tools/build_pytorch_libs.py
|
#!/usr/bin/env python3
# Much of the logging code here was forked from https://github.com/ezyang/ghstack
# Copyright (c) Edward Z. Yang <ezyang@mit.edu>
"""Checks out the nightly development version of PyTorch and installs pre-built
binaries into the repo.
You can use this script to check out a new nightly branch with the following::
$ ./tools/nightly.py checkout -b my-nightly-branch
$ conda activate pytorch-deps
Or if you would like to re-use an existing conda environment, you can pass in
the regular environment parameters (--name or --prefix)::
$ ./tools/nightly.py checkout -b my-nightly-branch -n my-env
$ conda activate my-env
You can also use this tool to pull the nightly commits into the current branch as
well. This can be done with
$ ./tools/nightly.py pull -n my-env
$ conda activate my-env
Pulling will reinstalle the conda dependencies as well as the nightly binaries into
the repo directory.
"""
import contextlib
import datetime
import functools
import glob
import json
import logging
import os
import re
import shutil
import subprocess
import sys
import tempfile
import time
import uuid
from argparse import ArgumentParser
from ast import literal_eval
from typing import (
Any,
Callable,
cast,
Dict,
Generator,
Iterable,
Iterator,
List,
Optional,
Sequence,
Set,
Tuple,
TypeVar,
)
LOGGER: Optional[logging.Logger] = None
URL_FORMAT = "{base_url}/{platform}/{dist_name}.tar.bz2"
DATETIME_FORMAT = "%Y-%m-%d_%Hh%Mm%Ss"
SHA1_RE = re.compile("([0-9a-fA-F]{40})")
USERNAME_PASSWORD_RE = re.compile(r":\/\/(.*?)\@")
LOG_DIRNAME_RE = re.compile(
r"(\d{4}-\d\d-\d\d_\d\dh\d\dm\d\ds)_" r"[0-9a-f]{8}-(?:[0-9a-f]{4}-){3}[0-9a-f]{12}"
)
SPECS_TO_INSTALL = ("pytorch", "mypy", "pytest", "hypothesis", "ipython", "sphinx")
class Formatter(logging.Formatter):
redactions: Dict[str, str]
def __init__(self, fmt: Optional[str] = None, datefmt: Optional[str] = None):
super().__init__(fmt, datefmt)
self.redactions = {}
# Remove sensitive information from URLs
def _filter(self, s: str) -> str:
s = USERNAME_PASSWORD_RE.sub(r"://<USERNAME>:<PASSWORD>@", s)
for needle, replace in self.redactions.items():
s = s.replace(needle, replace)
return s
def formatMessage(self, record: logging.LogRecord) -> str:
if record.levelno == logging.INFO or record.levelno == logging.DEBUG:
# Log INFO/DEBUG without any adornment
return record.getMessage()
else:
# I'm not sure why, but formatMessage doesn't show up
# even though it's in the typeshed for Python >3
return super().formatMessage(record)
def format(self, record: logging.LogRecord) -> str:
return self._filter(super().format(record))
def redact(self, needle: str, replace: str = "<REDACTED>") -> None:
"""Redact specific strings; e.g., authorization tokens. This won't
retroactively redact stuff you've already leaked, so make sure
you redact things as soon as possible.
"""
# Don't redact empty strings; this will lead to something
# that looks like s<REDACTED>t<REDACTED>r<REDACTED>...
if needle == "":
return
self.redactions[needle] = replace
@functools.lru_cache()
def logging_base_dir() -> str:
meta_dir = os.getcwd()
base_dir = os.path.join(meta_dir, "nightly", "log")
os.makedirs(base_dir, exist_ok=True)
return base_dir
@functools.lru_cache()
def logging_run_dir() -> str:
cur_dir = os.path.join(
logging_base_dir(),
"{}_{}".format(datetime.datetime.now().strftime(DATETIME_FORMAT), uuid.uuid1()),
)
os.makedirs(cur_dir, exist_ok=True)
return cur_dir
@functools.lru_cache()
def logging_record_argv() -> None:
s = subprocess.list2cmdline(sys.argv)
with open(os.path.join(logging_run_dir(), "argv"), "w") as f:
f.write(s)
def logging_record_exception(e: BaseException) -> None:
with open(os.path.join(logging_run_dir(), "exception"), "w") as f:
f.write(type(e).__name__)
def logging_rotate() -> None:
log_base = logging_base_dir()
old_logs = os.listdir(log_base)
old_logs.sort(reverse=True)
for stale_log in old_logs[1000:]:
# Sanity check that it looks like a log
if LOG_DIRNAME_RE.fullmatch(stale_log) is not None:
shutil.rmtree(os.path.join(log_base, stale_log))
@contextlib.contextmanager
def logging_manager(*, debug: bool = False) -> Generator[logging.Logger, None, None]:
"""Setup logging. If a failure starts here we won't
be able to save the user in a reasonable way.
Logging structure: there is one logger (the root logger)
and in processes all events. There are two handlers:
stderr (INFO) and file handler (DEBUG).
"""
formatter = Formatter(fmt="%(levelname)s: %(message)s", datefmt="")
root_logger = logging.getLogger("conda-pytorch")
root_logger.setLevel(logging.DEBUG)
console_handler = logging.StreamHandler()
if debug:
console_handler.setLevel(logging.DEBUG)
else:
console_handler.setLevel(logging.INFO)
console_handler.setFormatter(formatter)
root_logger.addHandler(console_handler)
log_file = os.path.join(logging_run_dir(), "nightly.log")
file_handler = logging.FileHandler(log_file)
file_handler.setFormatter(formatter)
root_logger.addHandler(file_handler)
logging_record_argv()
try:
logging_rotate()
print(f"log file: {log_file}")
yield root_logger
except Exception as e:
logging.exception("Fatal exception")
logging_record_exception(e)
print(f"log file: {log_file}")
sys.exit(1)
except BaseException as e:
# You could logging.debug here to suppress the backtrace
# entirely, but there is no reason to hide it from technically
# savvy users.
logging.info("", exc_info=True)
logging_record_exception(e)
print(f"log file: {log_file}")
sys.exit(1)
def check_in_repo() -> Optional[str]:
"""Ensures that we are in the PyTorch repo."""
if not os.path.isfile("setup.py"):
return "Not in root-level PyTorch repo, no setup.py found"
with open("setup.py") as f:
s = f.read()
if "PyTorch" not in s:
return "Not in PyTorch repo, 'PyTorch' not found in setup.py"
return None
def check_branch(subcommand: str, branch: Optional[str]) -> Optional[str]:
"""Checks that the branch name can be checked out."""
if subcommand != "checkout":
return None
# first make sure actual branch name was given
if branch is None:
return "Branch name to checkout must be supplied with '-b' option"
# next check that the local repo is clean
cmd = ["git", "status", "--untracked-files=no", "--porcelain"]
p = subprocess.run(
cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
check=True,
universal_newlines=True,
)
if p.stdout.strip():
return "Need to have clean working tree to checkout!\n\n" + p.stdout
# next check that the branch name doesn't already exist
cmd = ["git", "show-ref", "--verify", "--quiet", "refs/heads/" + branch]
p = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=False) # type: ignore[assignment]
if not p.returncode:
return f"Branch {branch!r} already exists"
return None
@contextlib.contextmanager
def timer(logger: logging.Logger, prefix: str) -> Iterator[None]:
"""Timed context manager"""
start_time = time.time()
yield
logger.info(f"{prefix} took {time.time() - start_time:.3f} [s]")
F = TypeVar("F", bound=Callable[..., Any])
def timed(prefix: str) -> Callable[[F], F]:
"""Decorator for timing functions"""
def dec(f: F) -> F:
@functools.wraps(f)
def wrapper(*args: Any, **kwargs: Any) -> Any:
global LOGGER
logger = cast(logging.Logger, LOGGER)
logger.info(prefix)
with timer(logger, prefix):
return f(*args, **kwargs)
return cast(F, wrapper)
return dec
def _make_channel_args(
channels: Iterable[str] = ("pytorch-nightly",),
override_channels: bool = False,
) -> List[str]:
args = []
for channel in channels:
args.append("--channel")
args.append(channel)
if override_channels:
args.append("--override-channels")
return args
@timed("Solving conda environment")
def conda_solve(
name: Optional[str] = None,
prefix: Optional[str] = None,
channels: Iterable[str] = ("pytorch-nightly",),
override_channels: bool = False,
) -> Tuple[List[str], str, str, bool, List[str]]:
"""Performs the conda solve and splits the deps from the package."""
# compute what environment to use
if prefix is not None:
existing_env = True
env_opts = ["--prefix", prefix]
elif name is not None:
existing_env = True
env_opts = ["--name", name]
else:
# create new environment
existing_env = False
env_opts = ["--name", "pytorch-deps"]
# run solve
if existing_env:
cmd = [
"conda",
"install",
"--yes",
"--dry-run",
"--json",
]
cmd.extend(env_opts)
else:
cmd = [
"conda",
"create",
"--yes",
"--dry-run",
"--json",
"--name",
"__pytorch__",
]
channel_args = _make_channel_args(
channels=channels, override_channels=override_channels
)
cmd.extend(channel_args)
cmd.extend(SPECS_TO_INSTALL)
p = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True)
# parse solution
solve = json.loads(p.stdout)
link = solve["actions"]["LINK"]
deps = []
for pkg in link:
url = URL_FORMAT.format(**pkg)
if pkg["name"] == "pytorch":
pytorch = url
platform = pkg["platform"]
else:
deps.append(url)
return deps, pytorch, platform, existing_env, env_opts
@timed("Installing dependencies")
def deps_install(deps: List[str], existing_env: bool, env_opts: List[str]) -> None:
"""Install dependencies to deps environment"""
if not existing_env:
# first remove previous pytorch-deps env
cmd = ["conda", "env", "remove", "--yes"] + env_opts
p = subprocess.run(cmd, check=True)
# install new deps
inst_opt = "install" if existing_env else "create"
cmd = ["conda", inst_opt, "--yes", "--no-deps"] + env_opts + deps
p = subprocess.run(cmd, check=True)
@timed("Installing pytorch nightly binaries")
def pytorch_install(url: str) -> "tempfile.TemporaryDirectory[str]":
""" "Install pytorch into a temporary directory"""
pytdir = tempfile.TemporaryDirectory()
cmd = ["conda", "create", "--yes", "--no-deps", "--prefix", pytdir.name, url]
p = subprocess.run(cmd, check=True)
return pytdir
def _site_packages(dirname: str, platform: str) -> str:
if platform.startswith("win"):
template = os.path.join(dirname, "Lib", "site-packages")
else:
template = os.path.join(dirname, "lib", "python*.*", "site-packages")
spdir = glob.glob(template)[0]
return spdir
def _ensure_commit(git_sha1: str) -> None:
"""Make sure that we actually have the commit locally"""
cmd = ["git", "cat-file", "-e", git_sha1 + "^{commit}"]
p = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=False)
if p.returncode == 0:
# we have the commit locally
return
# we don't have the commit, must fetch
cmd = ["git", "fetch", "https://github.com/pytorch/pytorch.git", git_sha1]
p = subprocess.run(cmd, check=True)
def _nightly_version(spdir: str) -> str:
# first get the git version from the installed module
version_fname = os.path.join(spdir, "torch", "version.py")
with open(version_fname) as f:
lines = f.read().splitlines()
for line in lines:
if not line.startswith("git_version"):
continue
git_version = literal_eval(line.partition("=")[2].strip())
break
else:
raise RuntimeError(f"Could not find git_version in {version_fname}")
print(f"Found released git version {git_version}")
# now cross reference with nightly version
_ensure_commit(git_version)
cmd = ["git", "show", "--no-patch", "--format=%s", git_version]
p = subprocess.run(
cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
check=True,
universal_newlines=True,
)
m = SHA1_RE.search(p.stdout)
if m is None:
raise RuntimeError(
f"Could not find nightly release in git history:\n {p.stdout}"
)
nightly_version = m.group(1)
print(f"Found nightly release version {nightly_version}")
# now checkout nightly version
_ensure_commit(nightly_version)
return nightly_version
@timed("Checking out nightly PyTorch")
def checkout_nightly_version(branch: str, spdir: str) -> None:
"""Get's the nightly version and then checks it out."""
nightly_version = _nightly_version(spdir)
cmd = ["git", "checkout", "-b", branch, nightly_version]
p = subprocess.run(cmd, check=True)
@timed("Pulling nightly PyTorch")
def pull_nightly_version(spdir: str) -> None:
"""Fetches the nightly version and then merges it ."""
nightly_version = _nightly_version(spdir)
cmd = ["git", "merge", nightly_version]
p = subprocess.run(cmd, check=True)
def _get_listing_linux(source_dir: str) -> List[str]:
listing = glob.glob(os.path.join(source_dir, "*.so"))
listing.extend(glob.glob(os.path.join(source_dir, "lib", "*.so")))
return listing
def _get_listing_osx(source_dir: str) -> List[str]:
# oddly, these are .so files even on Mac
listing = glob.glob(os.path.join(source_dir, "*.so"))
listing.extend(glob.glob(os.path.join(source_dir, "lib", "*.dylib")))
return listing
def _get_listing_win(source_dir: str) -> List[str]:
listing = glob.glob(os.path.join(source_dir, "*.pyd"))
listing.extend(glob.glob(os.path.join(source_dir, "lib", "*.lib")))
listing.extend(glob.glob(os.path.join(source_dir, "lib", "*.dll")))
return listing
def _glob_pyis(d: str) -> Set[str]:
search = os.path.join(d, "**", "*.pyi")
pyis = {os.path.relpath(p, d) for p in glob.iglob(search)}
return pyis
def _find_missing_pyi(source_dir: str, target_dir: str) -> List[str]:
source_pyis = _glob_pyis(source_dir)
target_pyis = _glob_pyis(target_dir)
missing_pyis = [os.path.join(source_dir, p) for p in (source_pyis - target_pyis)]
missing_pyis.sort()
return missing_pyis
def _get_listing(source_dir: str, target_dir: str, platform: str) -> List[str]:
if platform.startswith("linux"):
listing = _get_listing_linux(source_dir)
elif platform.startswith("osx"):
listing = _get_listing_osx(source_dir)
elif platform.startswith("win"):
listing = _get_listing_win(source_dir)
else:
raise RuntimeError(f"Platform {platform!r} not recognized")
listing.extend(_find_missing_pyi(source_dir, target_dir))
listing.append(os.path.join(source_dir, "version.py"))
listing.append(os.path.join(source_dir, "testing", "_internal", "generated"))
listing.append(os.path.join(source_dir, "bin"))
listing.append(os.path.join(source_dir, "include"))
return listing
def _remove_existing(trg: str, is_dir: bool) -> None:
if os.path.exists(trg):
if is_dir:
shutil.rmtree(trg)
else:
os.remove(trg)
def _move_single(
src: str,
source_dir: str,
target_dir: str,
mover: Callable[[str, str], None],
verb: str,
) -> None:
is_dir = os.path.isdir(src)
relpath = os.path.relpath(src, source_dir)
trg = os.path.join(target_dir, relpath)
_remove_existing(trg, is_dir)
# move over new files
if is_dir:
os.makedirs(trg, exist_ok=True)
for root, dirs, files in os.walk(src):
relroot = os.path.relpath(root, src)
for name in files:
relname = os.path.join(relroot, name)
s = os.path.join(src, relname)
t = os.path.join(trg, relname)
print(f"{verb} {s} -> {t}")
mover(s, t)
for name in dirs:
relname = os.path.join(relroot, name)
os.makedirs(os.path.join(trg, relname), exist_ok=True)
else:
print(f"{verb} {src} -> {trg}")
mover(src, trg)
def _copy_files(listing: List[str], source_dir: str, target_dir: str) -> None:
for src in listing:
_move_single(src, source_dir, target_dir, shutil.copy2, "Copying")
def _link_files(listing: List[str], source_dir: str, target_dir: str) -> None:
for src in listing:
_move_single(src, source_dir, target_dir, os.link, "Linking")
@timed("Moving nightly files into repo")
def move_nightly_files(spdir: str, platform: str) -> None:
"""Moves PyTorch files from temporary installed location to repo."""
# get file listing
source_dir = os.path.join(spdir, "torch")
target_dir = os.path.abspath("torch")
listing = _get_listing(source_dir, target_dir, platform)
# copy / link files
if platform.startswith("win"):
_copy_files(listing, source_dir, target_dir)
else:
try:
_link_files(listing, source_dir, target_dir)
except Exception:
_copy_files(listing, source_dir, target_dir)
def _available_envs() -> Dict[str, str]:
cmd = ["conda", "env", "list"]
p = subprocess.run(
cmd,
check=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
universal_newlines=True,
)
lines = p.stdout.splitlines()
envs = {}
for line in map(str.strip, lines):
if not line or line.startswith("#"):
continue
parts = line.split()
if len(parts) == 1:
# unnamed env
continue
envs[parts[0]] = parts[-1]
return envs
@timed("Writing pytorch-nightly.pth")
def write_pth(env_opts: List[str], platform: str) -> None:
"""Writes Python path file for this dir."""
env_type, env_dir = env_opts
if env_type == "--name":
# have to find directory
envs = _available_envs()
env_dir = envs[env_dir]
spdir = _site_packages(env_dir, platform)
pth = os.path.join(spdir, "pytorch-nightly.pth")
s = (
"# This file was autogenerated by PyTorch's tools/nightly.py\n"
"# Please delete this file if you no longer need the following development\n"
"# version of PyTorch to be importable\n"
f"{os.getcwd()}\n"
)
with open(pth, "w") as f:
f.write(s)
def install(
*,
logger: logging.Logger,
subcommand: str = "checkout",
branch: Optional[str] = None,
name: Optional[str] = None,
prefix: Optional[str] = None,
channels: Iterable[str] = ("pytorch-nightly",),
override_channels: bool = False,
) -> None:
"""Development install of PyTorch"""
deps, pytorch, platform, existing_env, env_opts = conda_solve(
name=name, prefix=prefix, channels=channels, override_channels=override_channels
)
if deps:
deps_install(deps, existing_env, env_opts)
pytdir = pytorch_install(pytorch)
spdir = _site_packages(pytdir.name, platform)
if subcommand == "checkout":
checkout_nightly_version(cast(str, branch), spdir)
elif subcommand == "pull":
pull_nightly_version(spdir)
else:
raise ValueError(f"Subcommand {subcommand} must be one of: checkout, pull.")
move_nightly_files(spdir, platform)
write_pth(env_opts, platform)
pytdir.cleanup()
logger.info(
"-------\nPyTorch Development Environment set up!\nPlease activate to "
f"enable this environment:\n $ conda activate {env_opts[1]}"
)
def make_parser() -> ArgumentParser:
p = ArgumentParser("nightly")
# subcommands
subcmd = p.add_subparsers(dest="subcmd", help="subcommand to execute")
co = subcmd.add_parser("checkout", help="checkout a new branch")
co.add_argument(
"-b",
"--branch",
help="Branch name to checkout",
dest="branch",
default=None,
metavar="NAME",
)
pull = subcmd.add_parser(
"pull", help="pulls the nightly commits into the current branch"
)
# general arguments
subps = [co, pull]
for subp in subps:
subp.add_argument(
"-n",
"--name",
help="Name of environment",
dest="name",
default=None,
metavar="ENVIRONMENT",
)
subp.add_argument(
"-p",
"--prefix",
help="Full path to environment location (i.e. prefix)",
dest="prefix",
default=None,
metavar="PATH",
)
subp.add_argument(
"-v",
"--verbose",
help="Provide debugging info",
dest="verbose",
default=False,
action="store_true",
)
subp.add_argument(
"--override-channels",
help="Do not search default or .condarc channels.",
dest="override_channels",
default=False,
action="store_true",
)
subp.add_argument(
"-c",
"--channel",
help="Additional channel to search for packages. 'pytorch-nightly' will always be prepended to this list.",
dest="channels",
action="append",
metavar="CHANNEL",
)
return p
def main(args: Optional[Sequence[str]] = None) -> None:
"""Main entry point"""
global LOGGER
p = make_parser()
ns = p.parse_args(args)
ns.branch = getattr(ns, "branch", None)
status = check_in_repo()
status = status or check_branch(ns.subcmd, ns.branch)
if status:
sys.exit(status)
channels = ["pytorch-nightly"]
if ns.channels:
channels.extend(ns.channels)
with logging_manager(debug=ns.verbose) as logger:
LOGGER = logger
install(
subcommand=ns.subcmd,
branch=ns.branch,
name=ns.name,
prefix=ns.prefix,
logger=logger,
channels=channels,
override_channels=ns.override_channels,
)
if __name__ == "__main__":
main()
|
pytorch-master
|
tools/nightly.py
|
import textwrap
from typing import Any
import gdb # type: ignore[import]
class DisableBreakpoints:
"""
Context-manager to temporarily disable all gdb breakpoints, useful if
there is a risk to hit one during the evaluation of one of our custom
commands
"""
def __enter__(self) -> None:
self.disabled_breakpoints = []
for b in gdb.breakpoints():
if b.enabled:
b.enabled = False
self.disabled_breakpoints.append(b)
def __exit__(self, etype: Any, evalue: Any, tb: Any) -> None:
for b in self.disabled_breakpoints:
b.enabled = True
class TensorRepr(gdb.Command): # type: ignore[misc, no-any-unimported]
"""
Print a human readable representation of the given at::Tensor.
Usage: torch-tensor-repr EXP
at::Tensor instances do not have a C++ implementation of a repr method: in
pytoch, this is done by pure-Python code. As such, torch-tensor-repr
internally creates a Python wrapper for the given tensor and call repr()
on it.
"""
__doc__ = textwrap.dedent(__doc__).strip()
def __init__(self) -> None:
gdb.Command.__init__(
self, "torch-tensor-repr", gdb.COMMAND_USER, gdb.COMPLETE_EXPRESSION
)
def invoke(self, args: str, from_tty: bool) -> None:
args = gdb.string_to_argv(args)
if len(args) != 1:
print("Usage: torch-tensor-repr EXP")
return
name = args[0]
with DisableBreakpoints():
res = gdb.parse_and_eval("torch::gdb::tensor_repr(%s)" % name)
print("Python-level repr of %s:" % name)
print(res.string())
# torch::gdb::tensor_repr returns a malloc()ed buffer, let's free it
gdb.parse_and_eval("(void)free(%s)" % int(res))
TensorRepr()
|
pytorch-master
|
tools/gdb/pytorch-gdb.py
|
import re
import sys
QUOTE_INCLUDE_RE = re.compile(r'^#include "(.*)"')
ANGLE_INCLUDE_RE = re.compile(r"^#include <(.*)>")
# By default iwyu will pick the C include, but we prefer the C++ headers
STD_C_HEADER_MAP = {
"<assert.h>": "<cassert>",
"<complex.h>": "<ccomplex>",
"<ctype.h>": "<cctype>",
"<errno.h>": "<cerrno>",
"<fenv.h>": "<cfenv>",
"<float.h>": "<cfloat>",
"<inttypes.h>": "<cinttypes>",
"<iso646.h>": "<ciso646>",
"<limits.h>": "<climits>",
"<locale.h>": "<clocale>",
"<math.h>": "<cmath>",
"<setjmp.h>": "<csetjmp>",
"<signal.h>": "<csignal>",
"<stdalign.h>": "<cstdalign>",
"<stdarg.h>": "<cstdarg>",
"<stdbool.h>": "<cstdbool>",
"<stddef.h>": "<cstddef>",
"<stdint.h>": "<cstdint>",
"<stdio.h>": "<cstdio>",
"<stdlib.h>": "<cstdlib>",
"<string.h>": "<cstring>",
"<tgmath.h>": "<ctgmath>",
"<time.h>": "<ctime>",
"<uchar.h>": "<cuchar>",
"<wchar.h>": "<cwchar>",
"<wctype.h>": "<cwctype>",
}
def main() -> None:
for line in sys.stdin:
# Convert all quoted includes to angle brackets
match = QUOTE_INCLUDE_RE.match(line)
if match is not None:
print(f"#include <{match.group(1)}>{line[match.end(0):]}", end="")
continue
match = ANGLE_INCLUDE_RE.match(line)
if match is not None:
path = f"<{match.group(1)}>"
new_path = STD_C_HEADER_MAP.get(path, path)
tail = line[match.end(0) :]
if len(tail) > 1:
tail = " " + tail
print(f"#include {new_path}{tail}", end="")
continue
print(line, end="")
if __name__ == "__main__":
main()
|
pytorch-master
|
tools/iwyu/fixup.py
|
import itertools
import re
import shlex
import unittest
from typing import List, Optional
from tools.stats import test_history
from typing_extensions import TypedDict
class Example(TypedDict):
cmd: str
args: List[str]
lines: List[str]
def parse_block(block: List[str]) -> Optional[Example]:
if block:
match = re.match(r"^\$ ([^ ]+) (.*)$", block[0])
if match:
cmd, first = match.groups()
args = []
for i, line in enumerate([first] + block[1:]):
if line.endswith("\\"):
args.append(line[:-1])
else:
args.append(line)
break
return {
"cmd": cmd,
"args": shlex.split("".join(args)),
"lines": block[i + 1 :],
}
return None
def parse_description(description: str) -> List[Example]:
examples: List[Example] = []
for block in description.split("\n\n"):
matches = [re.match(r"^ (.*)$", line) for line in block.splitlines()]
if all(matches):
lines = []
for match in matches:
assert match
(line,) = match.groups()
lines.append(line)
example = parse_block(lines)
if example:
examples.append(example)
return examples
@unittest.skip("Skipping as this test is fragile, issue #73083")
class TestTestHistory(unittest.TestCase):
maxDiff = None
def test_help_examples(self) -> None:
examples = parse_description(test_history.description())
self.assertEqual(len(examples), 3)
for i, example in enumerate(examples):
with self.subTest(i=i):
self.assertTrue(test_history.__file__.endswith(example["cmd"]))
expected = example["lines"]
actual = list(
itertools.islice(
test_history.run(example["args"]),
len(expected),
)
)
self.assertEqual(actual, expected)
if __name__ == "__main__":
unittest.main()
|
pytorch-master
|
tools/test/test_test_history.py
|
import random
import unittest
from typing import Dict, List, Tuple
from tools.testing.test_selections import calculate_shards
class TestCalculateShards(unittest.TestCase):
tests: List[str] = [
"super_long_test",
"long_test1",
"long_test2",
"normal_test1",
"normal_test2",
"normal_test3",
"short_test1",
"short_test2",
"short_test3",
"short_test4",
"short_test5",
]
test_times: Dict[str, float] = {
"super_long_test": 55,
"long_test1": 22,
"long_test2": 18,
"normal_test1": 9,
"normal_test2": 7,
"normal_test3": 5,
"short_test1": 1,
"short_test2": 0.6,
"short_test3": 0.4,
"short_test4": 0.3,
"short_test5": 0.01,
}
def assert_shards_equal(
self,
expected_shards: List[Tuple[float, List[str]]],
actual_shards: List[Tuple[float, List[str]]],
) -> None:
for expected, actual in zip(expected_shards, actual_shards):
self.assertAlmostEqual(expected[0], actual[0])
self.assertListEqual(expected[1], actual[1])
def test_calculate_2_shards_with_complete_test_times(self) -> None:
expected_shards = [
(60, ["super_long_test", "normal_test3"]),
(
58.31,
[
"long_test1",
"long_test2",
"normal_test1",
"normal_test2",
"short_test1",
"short_test2",
"short_test3",
"short_test4",
"short_test5",
],
),
]
self.assert_shards_equal(
expected_shards, calculate_shards(2, self.tests, self.test_times)
)
def test_calculate_1_shard_with_complete_test_times(self) -> None:
expected_shards = [
(
118.31,
[
"super_long_test",
"long_test1",
"long_test2",
"normal_test1",
"normal_test2",
"normal_test3",
"short_test1",
"short_test2",
"short_test3",
"short_test4",
"short_test5",
],
),
]
self.assert_shards_equal(
expected_shards, calculate_shards(1, self.tests, self.test_times)
)
def test_calculate_5_shards_with_complete_test_times(self) -> None:
expected_shards = [
(55.0, ["super_long_test"]),
(
22.0,
[
"long_test1",
],
),
(
18.0,
[
"long_test2",
],
),
(
11.31,
[
"normal_test1",
"short_test1",
"short_test2",
"short_test3",
"short_test4",
"short_test5",
],
),
(12.0, ["normal_test2", "normal_test3"]),
]
self.assert_shards_equal(
expected_shards, calculate_shards(5, self.tests, self.test_times)
)
def test_calculate_2_shards_with_incomplete_test_times(self) -> None:
incomplete_test_times = {
k: v for k, v in self.test_times.items() if "test1" in k
}
expected_shards = [
(
22.0,
[
"long_test1",
"long_test2",
"normal_test3",
"short_test3",
"short_test5",
],
),
(
10.0,
[
"normal_test1",
"short_test1",
"super_long_test",
"normal_test2",
"short_test2",
"short_test4",
],
),
]
self.assert_shards_equal(
expected_shards, calculate_shards(2, self.tests, incomplete_test_times)
)
def test_calculate_5_shards_with_incomplete_test_times(self) -> None:
incomplete_test_times = {
k: v for k, v in self.test_times.items() if "test1" in k
}
expected_shards = [
(22.0, ["long_test1", "normal_test2", "short_test5"]),
(9.0, ["normal_test1", "normal_test3"]),
(1.0, ["short_test1", "short_test2"]),
(0.0, ["super_long_test", "short_test3"]),
(0.0, ["long_test2", "short_test4"]),
]
self.assert_shards_equal(
expected_shards, calculate_shards(5, self.tests, incomplete_test_times)
)
def test_calculate_2_shards_against_optimal_shards(self) -> None:
for _ in range(100):
random.seed(120)
random_times = {k: random.random() * 10 for k in self.tests}
# all test times except first two
rest_of_tests = [
i
for k, i in random_times.items()
if k != "super_long_test" and k != "long_test1"
]
sum_of_rest = sum(rest_of_tests)
random_times["super_long_test"] = max(sum_of_rest / 2, max(rest_of_tests))
random_times["long_test1"] = sum_of_rest - random_times["super_long_test"]
# An optimal sharding would look like the below, but we don't need to compute this for the test:
# optimal_shards = [
# (sum_of_rest, ['super_long_test', 'long_test1']),
# (sum_of_rest, [i for i in self.tests if i != 'super_long_test' and i != 'long_test1']),
# ]
calculated_shards = calculate_shards(2, self.tests, random_times)
max_shard_time = max(calculated_shards[0][0], calculated_shards[1][0])
if sum_of_rest != 0:
# The calculated shard should not have a ratio worse than 7/6 for num_shards = 2
self.assertGreaterEqual(7.0 / 6.0, max_shard_time / sum_of_rest)
sorted_tests = sorted(self.tests)
sorted_shard_tests = sorted(
calculated_shards[0][1] + calculated_shards[1][1]
)
# All the tests should be represented by some shard
self.assertEqual(sorted_tests, sorted_shard_tests)
if __name__ == "__main__":
unittest.main()
|
pytorch-master
|
tools/test/test_test_selections.py
|
import unittest
from torchgen.utils import NamespaceHelper
class TestNamespaceHelper(unittest.TestCase):
def test_create_from_namespaced_tuple(self) -> None:
helper = NamespaceHelper.from_namespaced_entity("aten::add")
self.assertEqual(helper.entity_name, "add")
self.assertEqual(helper.get_cpp_namespace(), "aten")
def test_default_namespace(self) -> None:
helper = NamespaceHelper.from_namespaced_entity("add")
self.assertEqual(helper.entity_name, "add")
self.assertEqual(helper.get_cpp_namespace(), "")
self.assertEqual(helper.get_cpp_namespace("default"), "default")
def test_namespace_levels_more_than_max(self) -> None:
with self.assertRaises(AssertionError):
NamespaceHelper(
namespace_str="custom_1::custom_2", entity_name="", max_level=1
)
|
pytorch-master
|
tools/test/test_utils.py
|
# -*- coding: utf-8 -*-
import unittest
from typing import Dict, List
from tools.stats import print_test_stats
from tools.stats.s3_stat_parser import (
Commit,
Report,
ReportMetaMeta,
Status,
Version1Case,
Version1Report,
Version2Case,
Version2Report,
)
def fakehash(char: str) -> str:
return char * 40
def dummy_meta_meta() -> ReportMetaMeta:
return {
"build_pr": "",
"build_tag": "",
"build_sha1": "",
"build_base_commit": "",
"build_branch": "",
"build_job": "",
"build_workflow_id": "",
"build_start_time_epoch": "",
}
def makecase(
name: str,
seconds: float,
*,
errored: bool = False,
failed: bool = False,
skipped: bool = False,
) -> Version1Case:
return {
"name": name,
"seconds": seconds,
"errored": errored,
"failed": failed,
"skipped": skipped,
}
def make_report_v1(tests: Dict[str, List[Version1Case]]) -> Version1Report:
suites = {
suite_name: {
"total_seconds": sum(case["seconds"] for case in cases),
"cases": cases,
}
for suite_name, cases in tests.items()
}
return {
**dummy_meta_meta(), # type: ignore[misc]
"total_seconds": sum(s["total_seconds"] for s in suites.values()),
"suites": suites,
}
def make_case_v2(seconds: float, status: Status = None) -> Version2Case:
return {
"seconds": seconds,
"status": status,
}
def make_report_v2(
tests: Dict[str, Dict[str, Dict[str, Version2Case]]]
) -> Version2Report:
files = {}
for file_name, file_suites in tests.items():
suites = {
suite_name: {
"total_seconds": sum(case["seconds"] for case in cases.values()),
"cases": cases,
}
for suite_name, cases in file_suites.items()
}
files[file_name] = {
"suites": suites,
"total_seconds": sum(suite["total_seconds"] for suite in suites.values()), # type: ignore[type-var]
}
return {
**dummy_meta_meta(), # type: ignore[misc]
"format_version": 2,
"total_seconds": sum(s["total_seconds"] for s in files.values()),
"files": files,
}
maxDiff = None
class TestPrintTestStats(unittest.TestCase):
version1_report: Version1Report = make_report_v1(
{
# input ordering of the suites is ignored
"Grault": [
# not printed: status same and time similar
makecase("test_grault0", 4.78, failed=True),
# status same, but time increased a lot
makecase("test_grault2", 1.473, errored=True),
],
# individual tests times changed, not overall suite
"Qux": [
# input ordering of the test cases is ignored
makecase("test_qux1", 0.001, skipped=True),
makecase("test_qux6", 0.002, skipped=True),
# time in bounds, but status changed
makecase("test_qux4", 7.158, failed=True),
# not printed because it's the same as before
makecase("test_qux7", 0.003, skipped=True),
makecase("test_qux5", 11.968),
makecase("test_qux3", 23.496),
],
# new test suite
"Bar": [
makecase("test_bar2", 3.742, failed=True),
makecase("test_bar1", 50.447),
],
# overall suite time changed but no individual tests
"Norf": [
makecase("test_norf1", 3),
makecase("test_norf2", 3),
makecase("test_norf3", 3),
makecase("test_norf4", 3),
],
# suite doesn't show up if it doesn't change enough
"Foo": [
makecase("test_foo1", 42),
makecase("test_foo2", 56),
],
}
)
version2_report: Version2Report = make_report_v2(
{
"test_a": {
"Grault": {
"test_grault0": make_case_v2(4.78, "failed"),
"test_grault2": make_case_v2(1.473, "errored"),
},
"Qux": {
"test_qux1": make_case_v2(0.001, "skipped"),
"test_qux6": make_case_v2(0.002, "skipped"),
"test_qux4": make_case_v2(7.158, "failed"),
"test_qux7": make_case_v2(0.003, "skipped"),
"test_qux8": make_case_v2(11.968),
"test_qux3": make_case_v2(23.496),
},
},
"test_b": {
"Bar": {
"test_bar2": make_case_v2(3.742, "failed"),
"test_bar1": make_case_v2(50.447),
},
# overall suite time changed but no individual tests
"Norf": {
"test_norf1": make_case_v2(3),
"test_norf2": make_case_v2(3),
"test_norf3": make_case_v2(3),
"test_norf4": make_case_v2(3),
},
},
"test_c": {
"Foo": {
"test_foo1": make_case_v2(42),
"test_foo2": make_case_v2(56),
},
},
}
)
def test_simplify(self) -> None:
self.assertEqual(
{
"": {
"Bar": {
"test_bar1": {"seconds": 50.447, "status": None},
"test_bar2": {"seconds": 3.742, "status": "failed"},
},
"Foo": {
"test_foo1": {"seconds": 42, "status": None},
"test_foo2": {"seconds": 56, "status": None},
},
"Grault": {
"test_grault0": {"seconds": 4.78, "status": "failed"},
"test_grault2": {"seconds": 1.473, "status": "errored"},
},
"Norf": {
"test_norf1": {"seconds": 3, "status": None},
"test_norf3": {"seconds": 3, "status": None},
"test_norf2": {"seconds": 3, "status": None},
"test_norf4": {"seconds": 3, "status": None},
},
"Qux": {
"test_qux1": {"seconds": 0.001, "status": "skipped"},
"test_qux3": {"seconds": 23.496, "status": None},
"test_qux4": {"seconds": 7.158, "status": "failed"},
"test_qux5": {"seconds": 11.968, "status": None},
"test_qux6": {"seconds": 0.002, "status": "skipped"},
"test_qux7": {"seconds": 0.003, "status": "skipped"},
},
},
},
print_test_stats.simplify(self.version1_report),
)
self.assertEqual(
{
"test_a": {
"Grault": {
"test_grault0": {"seconds": 4.78, "status": "failed"},
"test_grault2": {"seconds": 1.473, "status": "errored"},
},
"Qux": {
"test_qux1": {"seconds": 0.001, "status": "skipped"},
"test_qux3": {"seconds": 23.496, "status": None},
"test_qux4": {"seconds": 7.158, "status": "failed"},
"test_qux6": {"seconds": 0.002, "status": "skipped"},
"test_qux7": {"seconds": 0.003, "status": "skipped"},
"test_qux8": {"seconds": 11.968, "status": None},
},
},
"test_b": {
"Bar": {
"test_bar1": {"seconds": 50.447, "status": None},
"test_bar2": {"seconds": 3.742, "status": "failed"},
},
"Norf": {
"test_norf1": {"seconds": 3, "status": None},
"test_norf2": {"seconds": 3, "status": None},
"test_norf3": {"seconds": 3, "status": None},
"test_norf4": {"seconds": 3, "status": None},
},
},
"test_c": {
"Foo": {
"test_foo1": {"seconds": 42, "status": None},
"test_foo2": {"seconds": 56, "status": None},
},
},
},
print_test_stats.simplify(self.version2_report),
)
def test_analysis(self) -> None:
head_report = self.version1_report
base_reports: Dict[Commit, List[Report]] = {
# bbbb has no reports, so base is cccc instead
fakehash("b"): [],
fakehash("c"): [
make_report_v1(
{
"Baz": [
makecase("test_baz2", 13.605),
# no recent suites have & skip this test
makecase("test_baz1", 0.004, skipped=True),
],
"Foo": [
makecase("test_foo1", 43),
# test added since dddd
makecase("test_foo2", 57),
],
"Grault": [
makecase("test_grault0", 4.88, failed=True),
makecase("test_grault1", 11.967, failed=True),
makecase("test_grault2", 0.395, errored=True),
makecase("test_grault3", 30.460),
],
"Norf": [
makecase("test_norf1", 2),
makecase("test_norf2", 2),
makecase("test_norf3", 2),
makecase("test_norf4", 2),
],
"Qux": [
makecase("test_qux3", 4.978, errored=True),
makecase("test_qux7", 0.002, skipped=True),
makecase("test_qux2", 5.618),
makecase("test_qux4", 7.766, errored=True),
makecase("test_qux6", 23.589, failed=True),
],
}
),
],
fakehash("d"): [
make_report_v1(
{
"Foo": [
makecase("test_foo1", 40),
# removed in cccc
makecase("test_foo3", 17),
],
"Baz": [
# not skipped, so not included in stdev
makecase("test_baz1", 3.14),
],
"Qux": [
makecase("test_qux7", 0.004, skipped=True),
makecase("test_qux2", 6.02),
makecase("test_qux4", 20.932),
],
"Norf": [
makecase("test_norf1", 3),
makecase("test_norf2", 3),
makecase("test_norf3", 3),
makecase("test_norf4", 3),
],
"Grault": [
makecase("test_grault0", 5, failed=True),
makecase("test_grault1", 14.325, failed=True),
makecase("test_grault2", 0.31, errored=True),
],
}
),
],
fakehash("e"): [],
fakehash("f"): [
make_report_v1(
{
"Foo": [
makecase("test_foo3", 24),
makecase("test_foo1", 43),
],
"Baz": [
makecase("test_baz2", 16.857),
],
"Qux": [
makecase("test_qux2", 6.422),
makecase("test_qux4", 6.382, errored=True),
],
"Norf": [
makecase("test_norf1", 0.9),
makecase("test_norf3", 0.9),
makecase("test_norf2", 0.9),
makecase("test_norf4", 0.9),
],
"Grault": [
makecase("test_grault0", 4.7, failed=True),
makecase("test_grault1", 13.146, failed=True),
makecase("test_grault2", 0.48, errored=True),
],
}
),
],
}
simpler_head = print_test_stats.simplify(head_report)
simpler_base = {}
for commit, reports in base_reports.items():
simpler_base[commit] = [print_test_stats.simplify(r) for r in reports]
analysis = print_test_stats.analyze(
head_report=simpler_head,
base_reports=simpler_base,
)
self.assertEqual(
"""\
- class Baz:
- # was 15.23s ± 2.30s
-
- def test_baz1: ...
- # was 0.004s (skipped)
-
- def test_baz2: ...
- # was 15.231s ± 2.300s
class Grault:
# was 48.86s ± 1.19s
# now 6.25s
- def test_grault1: ...
- # was 13.146s ± 1.179s (failed)
- def test_grault3: ...
- # was 30.460s
class Qux:
# was 41.66s ± 1.06s
# now 42.63s
- def test_qux2: ...
- # was 6.020s ± 0.402s
! def test_qux3: ...
! # was 4.978s (errored)
! # now 23.496s
! def test_qux4: ...
! # was 7.074s ± 0.979s (errored)
! # now 7.158s (failed)
! def test_qux6: ...
! # was 23.589s (failed)
! # now 0.002s (skipped)
+ def test_qux1: ...
+ # now 0.001s (skipped)
+ def test_qux5: ...
+ # now 11.968s
+ class Bar:
+ # now 54.19s
+
+ def test_bar1: ...
+ # now 50.447s
+
+ def test_bar2: ...
+ # now 3.742s (failed)
""",
print_test_stats.anomalies(analysis),
)
def test_graph(self) -> None:
# HEAD is on master
self.assertEqual(
"""\
Commit graph (base is most recent master ancestor with at least one S3 report):
: (master)
|
* aaaaaaaaaa (HEAD) total time 502.99s
* bbbbbbbbbb (base) 1 report, total time 47.84s
* cccccccccc 1 report, total time 332.50s
* dddddddddd 0 reports
|
:
""",
print_test_stats.graph(
head_sha=fakehash("a"),
head_seconds=502.99,
base_seconds={
fakehash("b"): [47.84],
fakehash("c"): [332.50],
fakehash("d"): [],
},
on_master=True,
),
)
self.assertEqual(
"""\
Commit graph (base is most recent master ancestor with at least one S3 report):
: (master)
|
| * aaaaaaaaaa (HEAD) total time 9988.77s
|/
* bbbbbbbbbb (base) 121 reports, total time 7654.32s ± 55.55s
* cccccccccc 20 reports, total time 5555.55s ± 253.19s
* dddddddddd 1 report, total time 1234.56s
|
:
""",
print_test_stats.graph(
head_sha=fakehash("a"),
head_seconds=9988.77,
base_seconds={
fakehash("b"): [7598.77] * 60 + [7654.32] + [7709.87] * 60,
fakehash("c"): [5308.77] * 10 + [5802.33] * 10,
fakehash("d"): [1234.56],
},
on_master=False,
),
)
self.assertEqual(
"""\
Commit graph (base is most recent master ancestor with at least one S3 report):
: (master)
|
| * aaaaaaaaaa (HEAD) total time 25.52s
| |
| : (5 commits)
|/
* bbbbbbbbbb 0 reports
* cccccccccc 0 reports
* dddddddddd (base) 15 reports, total time 58.92s ± 25.82s
|
:
""",
print_test_stats.graph(
head_sha=fakehash("a"),
head_seconds=25.52,
base_seconds={
fakehash("b"): [],
fakehash("c"): [],
fakehash("d"): [52.25] * 14 + [152.26],
},
on_master=False,
ancestry_path=5,
),
)
self.assertEqual(
"""\
Commit graph (base is most recent master ancestor with at least one S3 report):
: (master)
|
| * aaaaaaaaaa (HEAD) total time 0.08s
|/|
| : (1 commit)
|
* bbbbbbbbbb 0 reports
* cccccccccc (base) 1 report, total time 0.09s
* dddddddddd 3 reports, total time 0.10s ± 0.05s
|
:
""",
print_test_stats.graph(
head_sha=fakehash("a"),
head_seconds=0.08,
base_seconds={
fakehash("b"): [],
fakehash("c"): [0.09],
fakehash("d"): [0.05, 0.10, 0.15],
},
on_master=False,
other_ancestors=1,
),
)
self.assertEqual(
"""\
Commit graph (base is most recent master ancestor with at least one S3 report):
: (master)
|
| * aaaaaaaaaa (HEAD) total time 5.98s
| |
| : (1 commit)
|/|
| : (7 commits)
|
* bbbbbbbbbb (base) 2 reports, total time 6.02s ± 1.71s
* cccccccccc 0 reports
* dddddddddd 10 reports, total time 5.84s ± 0.92s
|
:
""",
print_test_stats.graph(
head_sha=fakehash("a"),
head_seconds=5.98,
base_seconds={
fakehash("b"): [4.81, 7.23],
fakehash("c"): [],
fakehash("d"): [4.97] * 5 + [6.71] * 5,
},
on_master=False,
ancestry_path=1,
other_ancestors=7,
),
)
def test_regression_info(self) -> None:
self.assertEqual(
"""\
----- Historic stats comparison result ------
job: foo_job
commit: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Commit graph (base is most recent master ancestor with at least one S3 report):
: (master)
|
| * aaaaaaaaaa (HEAD) total time 3.02s
|/
* bbbbbbbbbb (base) 1 report, total time 41.00s
* cccccccccc 1 report, total time 43.00s
|
:
Removed (across 1 suite) 1 test, totaling - 1.00s
Modified (across 1 suite) 1 test, totaling - 41.48s ± 2.12s
Added (across 1 suite) 1 test, totaling + 3.00s
""",
print_test_stats.regression_info(
head_sha=fakehash("a"),
head_report=make_report_v1(
{
"Foo": [
makecase("test_foo", 0.02, skipped=True),
makecase("test_baz", 3),
]
}
),
base_reports={
fakehash("b"): [
make_report_v1(
{
"Foo": [
makecase("test_foo", 40),
makecase("test_bar", 1),
],
}
),
],
fakehash("c"): [
make_report_v1(
{
"Foo": [
makecase("test_foo", 43),
],
}
),
],
},
job_name="foo_job",
on_master=False,
ancestry_path=0,
other_ancestors=0,
),
)
def test_regression_info_new_job(self) -> None:
self.assertEqual(
"""\
----- Historic stats comparison result ------
job: foo_job
commit: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Commit graph (base is most recent master ancestor with at least one S3 report):
: (master)
|
| * aaaaaaaaaa (HEAD) total time 3.02s
| |
| : (3 commits)
|/|
| : (2 commits)
|
* bbbbbbbbbb 0 reports
* cccccccccc 0 reports
|
:
Removed (across 0 suites) 0 tests, totaling 0.00s
Modified (across 0 suites) 0 tests, totaling 0.00s
Added (across 1 suite) 2 tests, totaling + 3.02s
""",
print_test_stats.regression_info(
head_sha=fakehash("a"),
head_report=make_report_v1(
{
"Foo": [
makecase("test_foo", 0.02, skipped=True),
makecase("test_baz", 3),
]
}
),
base_reports={
fakehash("b"): [],
fakehash("c"): [],
},
job_name="foo_job",
on_master=False,
ancestry_path=3,
other_ancestors=2,
),
)
if __name__ == "__main__":
unittest.main()
|
pytorch-master
|
tools/test/test_stats.py
|
#!/usr/bin/env python3
# Copyright 2004-present Facebook. All Rights Reserved.
import unittest
from gen_operators_yaml import make_filter_from_options, verify_all_specified_present
class GenOperatorsYAMLTest(unittest.TestCase):
def setUp(self):
pass
def test_filter_creation(self):
filter_func = make_filter_from_options(
model_name="abc",
model_versions=["100", "101"],
model_assets=None,
model_backends=None,
)
config = [
{
"model": {
"name": "abc",
"version": 100,
"asset": "asset-1",
"backend": "CPU",
},
"root_operators": [],
"traced_operators": [],
},
{
"model": {
"name": "abc",
"version": 102,
"asset": "asset-1",
"backend": "CPU",
},
"root_operators": [],
},
{
"model": {
"name": "abcd",
"version": 100,
"asset": "asset-1",
"backend": "CPU",
},
"root_operators": [],
"traced_operators": [],
},
{
"model": {
"name": "abc",
"version": 101,
"asset": "asset-2",
"backend": "CPU",
},
"root_operators": [],
},
]
filtered_configs = list(filter(filter_func, config))
assert (
len(filtered_configs) == 2
), "Expected 2 elements in filtered_configs, but got {}".format(
len(filtered_configs)
)
def test_verification_success(self):
filter_func = make_filter_from_options(
model_name="abc",
model_versions=["100", "101"],
model_assets=["asset-1", "asset-2"],
model_backends=None,
)
config = [
{
"model": {
"name": "abc",
"version": 100,
"asset": "asset-1",
"backend": "CPU",
},
"root_operators": [],
"traced_operators": [],
},
{
"model": {
"name": "abc",
"version": 101,
"asset": "asset-2",
"backend": "CPU",
},
"root_operators": [],
},
]
filtered_configs = list(filter(filter_func, config))
try:
verify_all_specified_present(
model_assets=["asset-1", "asset-2"],
model_versions=["100", "101"],
selected_models_yaml=filtered_configs,
rule_name="test",
model_name="abc",
new_style_rule=True,
)
except Exception:
self.fail(
"expected verify_all_specified_present to succeed instead it raised an exception"
)
def test_verification_fail(self):
config = [
{
"model": {
"name": "abc",
"version": 100,
"asset": "asset-1",
"backend": "CPU",
},
"root_operators": [],
"traced_operators": [],
},
{
"model": {
"name": "abc",
"version": 101,
"asset": "asset-2",
"backend": "CPU",
},
"root_operators": [],
},
]
good_assets = ["asset-1", "asset-2"]
good_versions = ["100", "101"]
good_name = "abc"
# Test bad asset
filter_func_bad_asset = make_filter_from_options(
model_name=good_name,
model_versions=good_versions,
model_assets=["asset-1", "asset-2", "asset-3"],
model_backends=None,
)
filtered_configs_asset = list(filter(filter_func_bad_asset, config))
with self.assertRaises(RuntimeError):
verify_all_specified_present(
model_assets=["asset-1", "asset-2", "asset-3"],
model_versions=good_versions,
selected_models_yaml=filtered_configs_asset,
rule_name="test",
model_name=good_name,
new_style_rule=True,
)
# Test bad version
filter_func_bad_version = make_filter_from_options(
model_name=good_name,
model_versions=["100", "101", "102"],
model_assets=good_assets,
model_backends=None,
)
filtered_configs_version = list(filter(filter_func_bad_version, config))
with self.assertRaises(RuntimeError):
verify_all_specified_present(
model_assets=good_assets,
model_versions=["100", "101", "102"],
selected_models_yaml=filtered_configs_version,
rule_name="test",
model_name=good_name,
new_style_rule=True,
)
# Test bad name
filter_func_bad_name = make_filter_from_options(
model_name="abcd",
model_versions=good_versions,
model_assets=good_assets,
model_backends=None,
)
filtered_configs_name = list(filter(filter_func_bad_name, config))
with self.assertRaises(RuntimeError):
verify_all_specified_present(
model_assets=good_assets,
model_versions=good_versions,
selected_models_yaml=filtered_configs_name,
rule_name="test",
model_name="abcd",
new_style_rule=True,
)
|
pytorch-master
|
tools/test/gen_operators_yaml_test.py
|
# Owner(s): ["module: codegen"]
import os
import tempfile
import unittest
import expecttest
from torchgen.gen import _GLOBAL_PARSE_NATIVE_YAML_CACHE # noqa: F401
from torchgen.gen_backend_stubs import run
path = os.path.dirname(os.path.realpath(__file__))
gen_backend_stubs_path = os.path.join(path, "../torchgen/gen_backend_stubs.py")
# gen_backend_stubs.py is an integration point that is called directly by external backends.
# The tests here are to confirm that badly formed inputs result in reasonable error messages.
class TestGenBackendStubs(expecttest.TestCase):
def setUp(self) -> None:
global _GLOBAL_PARSE_NATIVE_YAML_CACHE
_GLOBAL_PARSE_NATIVE_YAML_CACHE.clear()
def assert_success_from_gen_backend_stubs(self, yaml_str: str) -> None:
with tempfile.NamedTemporaryFile(mode="w") as fp:
fp.write(yaml_str)
fp.flush()
run(fp.name, "", True)
def get_errors_from_gen_backend_stubs(self, yaml_str: str) -> str:
with tempfile.NamedTemporaryFile(mode="w") as fp:
fp.write(yaml_str)
fp.flush()
try:
run(fp.name, "", True)
except AssertionError as e:
# Scrub out the temp file name from any error messages to simplify assertions.
return str(e).replace(fp.name, "")
self.fail(
"Expected gen_backend_stubs to raise an AssertionError, but it did not."
)
def test_valid_single_op(self) -> None:
yaml_str = """\
backend: XLA
cpp_namespace: torch_xla
supported:
- abs"""
self.assert_success_from_gen_backend_stubs(yaml_str)
def test_valid_multiple_ops(self) -> None:
yaml_str = """\
backend: XLA
cpp_namespace: torch_xla
supported:
- add.Tensor
- abs"""
self.assert_success_from_gen_backend_stubs(yaml_str)
def test_valid_zero_ops(self) -> None:
yaml_str = """\
backend: XLA
cpp_namespace: torch_xla
supported:"""
self.assert_success_from_gen_backend_stubs(yaml_str)
def test_valid_zero_ops_doesnt_require_backend_dispatch_key(self) -> None:
yaml_str = """\
backend: BAD_XLA
cpp_namespace: torch_xla
supported:"""
# External codegen on a yaml file with no operators is effectively a no-op,
# so there's no reason to parse the backend
self.assert_success_from_gen_backend_stubs(yaml_str)
def test_valid_with_autograd_ops(self) -> None:
yaml_str = """\
backend: XLA
cpp_namespace: torch_xla
supported:
- abs
autograd:
- add.Tensor"""
# External codegen on a yaml file with no operators is effectively a no-op,
# so there's no reason to parse the backend
self.assert_success_from_gen_backend_stubs(yaml_str)
def test_missing_backend(self) -> None:
yaml_str = """\
cpp_namespace: torch_xla
supported:
- abs"""
output_error = self.get_errors_from_gen_backend_stubs(yaml_str)
self.assertExpectedInline(
output_error, '''You must provide a value for "backend"'''
)
def test_empty_backend(self) -> None:
yaml_str = """\
backend:
cpp_namespace: torch_xla
supported:
- abs"""
output_error = self.get_errors_from_gen_backend_stubs(yaml_str)
self.assertExpectedInline(
output_error, '''You must provide a value for "backend"'''
)
def test_backend_invalid_dispatch_key(self) -> None:
yaml_str = """\
backend: NOT_XLA
cpp_namespace: torch_xla
supported:
- abs"""
output_error = self.get_errors_from_gen_backend_stubs(yaml_str)
self.assertExpectedInline(
output_error,
"""\
unknown dispatch key NOT_XLA
The provided value for "backend" must be a valid DispatchKey, but got NOT_XLA.""",
) # noqa: B950
def test_missing_cpp_namespace(self) -> None:
yaml_str = """\
backend: XLA
supported:
- abs"""
output_error = self.get_errors_from_gen_backend_stubs(yaml_str)
self.assertExpectedInline(
output_error, '''You must provide a value for "cpp_namespace"'''
)
def test_whitespace_cpp_namespace(self) -> None:
yaml_str = """\
backend: XLA
cpp_namespace:\t
supported:
- abs"""
output_error = self.get_errors_from_gen_backend_stubs(yaml_str)
self.assertExpectedInline(
output_error, '''You must provide a value for "cpp_namespace"'''
)
# supported is a single item (it should be a list)
def test_nonlist_supported(self) -> None:
yaml_str = """\
backend: XLA
cpp_namespace: torch_xla
supported: abs"""
output_error = self.get_errors_from_gen_backend_stubs(yaml_str)
self.assertExpectedInline(
output_error,
"""expected "supported" to be a list, but got: abs (of type <class 'str'>)""",
)
# supported contains an op that isn't in native_functions.yaml
def test_supported_invalid_op(self) -> None:
yaml_str = """\
backend: XLA
cpp_namespace: torch_xla
supported:
- abs_BAD"""
output_error = self.get_errors_from_gen_backend_stubs(yaml_str)
self.assertExpectedInline(
output_error, """Found an invalid operator name: abs_BAD"""
)
# The backend is valid, but doesn't have a valid autograd key. They can't override autograd kernels in that case.
# Only using Vulkan here because it has a valid backend key but not an autograd key- if this changes we can update the test.
def test_backend_has_no_autograd_key_but_provides_entries(self) -> None:
yaml_str = """\
backend: Vulkan
cpp_namespace: torch_vulkan
supported:
- add
autograd:
- sub"""
output_error = self.get_errors_from_gen_backend_stubs(yaml_str)
self.assertExpectedInline(
output_error, """Found an invalid operator name: add"""
) # noqa: B950
# in an operator group, currently all operators must either be registered to the backend or autograd kernel.
# Here, functional and out mismatch
def test_backend_autograd_kernel_mismatch_out_functional(self) -> None:
yaml_str = """\
backend: XLA
cpp_namespace: torch_xla
supported:
- add.Tensor
autograd:
- add.out"""
output_error = self.get_errors_from_gen_backend_stubs(yaml_str)
self.assertExpectedInline(
output_error,
"""Currently, all variants of an op must either be registered to a backend key, or to a backend's autograd key. They cannot be mix and matched. If this is something you need, feel free to create an issue! add is listed under "supported", but add_out is listed under "autograd".""", # noqa: B950
)
# in an operator group, currently all operators must either be registered to the backend or autograd kernel.
# Here, functional and inplace mismatch
def test_backend_autograd_kernel_mismatch_functional_inplace(self) -> None:
yaml_str = """\
backend: XLA
cpp_namespace: torch_xla
supported:
- add.Tensor
autograd:
- add_.Tensor"""
output_error = self.get_errors_from_gen_backend_stubs(yaml_str)
self.assertExpectedInline(
output_error,
"""Currently, all variants of an op must either be registered to a backend key, or to a backend's autograd key. They cannot be mix and matched. If this is something you need, feel free to create an issue! add is listed under "supported", but add_ is listed under "autograd".""", # noqa: B950
)
# Currently, the same operator can't be listed under both 'supported' and 'autograd', which would
# involve registering the same kernel to both the XLA and AutogradXLA keys.
# If we need that functionality in the future, we'll need to augment the codegen.
def test_op_appears_in_supported_and_autograd_lists(self) -> None:
yaml_str = """\
backend: XLA
cpp_namespace: torch_xla
supported:
- add.Tensor
autograd:
- add.Tensor"""
output_error = self.get_errors_from_gen_backend_stubs(yaml_str)
self.assertExpectedInline(
output_error,
"""Currently, all variants of an op must either be registered to a backend key, or to a backend's autograd key. They cannot be mix and matched. If this is something you need, feel free to create an issue! add is listed under "supported", but add is listed under "autograd".""", # noqa: B950
)
# unrecognized extra yaml key
def test_unrecognized_key(self) -> None:
yaml_str = """\
backend: XLA
cpp_namespace: torch_xla
supported:
- abs
invalid_key: invalid_val"""
output_error = self.get_errors_from_gen_backend_stubs(yaml_str)
self.assertExpectedInline(
output_error,
""" contains unexpected keys: invalid_key. Only the following keys are supported: backend, class_name, cpp_namespace, extra_headers, supported, autograd, full_codegen, non_native, ir_gen""", # noqa: B950
)
# if use_out_as_primary is provided, it must be a bool
def test_use_out_as_primary_non_bool(self) -> None:
yaml_str = """\
backend: XLA
cpp_namespace: torch_xla
use_out_as_primary: frue
supported:
- abs"""
output_error = self.get_errors_from_gen_backend_stubs(yaml_str)
self.assertExpectedInline(
output_error,
"""You must provide either True or False for use_out_as_primary. Provided: frue""",
) # noqa: B950
# if device_guard is provided, it must be a bool
def test_device_guard_non_bool(self) -> None:
yaml_str = """\
backend: XLA
cpp_namespace: torch_xla
device_guard: frue
supported:
- abs"""
output_error = self.get_errors_from_gen_backend_stubs(yaml_str)
self.assertExpectedInline(
output_error,
"""You must provide either True or False for device_guard. Provided: frue""",
) # noqa: B950
if __name__ == "__main__":
unittest.main()
|
pytorch-master
|
tools/test/test_gen_backend_stubs.py
|
from __future__ import absolute_import, division, print_function, unicode_literals
import unittest
from torchgen.selective_build.operator import *
from torchgen.model import Location, NativeFunction
from torchgen.selective_build.selector import (
combine_selective_builders,
SelectiveBuilder,
)
class TestSelectiveBuild(unittest.TestCase):
def test_selective_build_operator(self):
op = SelectiveBuildOperator(
"aten::add.int",
is_root_operator=True,
is_used_for_training=False,
include_all_overloads=False,
_debug_info=None,
)
self.assertTrue(op.is_root_operator)
self.assertFalse(op.is_used_for_training)
self.assertFalse(op.include_all_overloads)
def test_selector_factory(self):
yaml_config_v1 = """
debug_info:
- model1@v100
- model2@v51
operators:
aten::add:
is_used_for_training: No
is_root_operator: Yes
include_all_overloads: Yes
aten::add.int:
is_used_for_training: Yes
is_root_operator: No
include_all_overloads: No
aten::mul.int:
is_used_for_training: Yes
is_root_operator: No
include_all_overloads: No
"""
yaml_config_v2 = """
debug_info:
- model1@v100
- model2@v51
operators:
aten::sub:
is_used_for_training: No
is_root_operator: Yes
include_all_overloads: No
debug_info:
- model1@v100
aten::sub.int:
is_used_for_training: Yes
is_root_operator: No
include_all_overloads: No
"""
yaml_config_all = "include_all_operators: Yes"
yaml_config_invalid = "invalid:"
selector1 = SelectiveBuilder.from_yaml_str(yaml_config_v1)
self.assertTrue(selector1.is_operator_selected("aten::add"))
self.assertTrue(selector1.is_operator_selected("aten::add.int"))
# Overload name is not used for checking in v1.
self.assertTrue(selector1.is_operator_selected("aten::add.float"))
def gen():
return SelectiveBuilder.from_yaml_str(yaml_config_invalid)
self.assertRaises(Exception, gen)
selector_all = SelectiveBuilder.from_yaml_str(yaml_config_all)
self.assertTrue(selector_all.is_operator_selected("aten::add"))
self.assertTrue(selector_all.is_operator_selected("aten::sub"))
self.assertTrue(selector_all.is_operator_selected("aten::sub.int"))
self.assertTrue(selector_all.is_kernel_dtype_selected("add_kernel", "int32"))
selector2 = SelectiveBuilder.from_yaml_str(yaml_config_v2)
self.assertFalse(selector2.is_operator_selected("aten::add"))
self.assertTrue(selector2.is_operator_selected("aten::sub"))
self.assertTrue(selector2.is_operator_selected("aten::sub.int"))
selector_legacy_v1 = SelectiveBuilder.from_legacy_op_registration_allow_list(
["aten::add", "aten::add.int", "aten::mul.int"],
False,
False,
)
self.assertTrue(selector_legacy_v1.is_operator_selected("aten::add.float"))
self.assertTrue(selector_legacy_v1.is_operator_selected("aten::add"))
self.assertTrue(selector_legacy_v1.is_operator_selected("aten::add.int"))
self.assertFalse(selector_legacy_v1.is_operator_selected("aten::sub"))
self.assertFalse(selector_legacy_v1.is_root_operator("aten::add"))
self.assertFalse(
selector_legacy_v1.is_operator_selected_for_training("aten::add")
)
selector_legacy_v1 = SelectiveBuilder.from_legacy_op_registration_allow_list(
["aten::add", "aten::add.int", "aten::mul.int"],
True,
False,
)
self.assertTrue(selector_legacy_v1.is_root_operator("aten::add"))
self.assertFalse(
selector_legacy_v1.is_operator_selected_for_training("aten::add")
)
self.assertTrue(selector_legacy_v1.is_root_operator("aten::add.float"))
self.assertFalse(
selector_legacy_v1.is_operator_selected_for_training("aten::add.float")
)
selector_legacy_v1 = SelectiveBuilder.from_legacy_op_registration_allow_list(
["aten::add", "aten::add.int", "aten::mul.int"],
False,
True,
)
self.assertFalse(selector_legacy_v1.is_root_operator("aten::add"))
self.assertTrue(
selector_legacy_v1.is_operator_selected_for_training("aten::add")
)
self.assertFalse(selector_legacy_v1.is_root_operator("aten::add.float"))
self.assertTrue(
selector_legacy_v1.is_operator_selected_for_training("aten::add.float")
)
def test_operator_combine(self):
op1 = SelectiveBuildOperator(
"aten::add.int",
is_root_operator=True,
is_used_for_training=False,
include_all_overloads=False,
_debug_info=None,
)
op2 = SelectiveBuildOperator(
"aten::add.int",
is_root_operator=False,
is_used_for_training=False,
include_all_overloads=False,
_debug_info=None,
)
op3 = SelectiveBuildOperator(
"aten::add",
is_root_operator=True,
is_used_for_training=False,
include_all_overloads=False,
_debug_info=None,
)
op4 = SelectiveBuildOperator(
"aten::add.int",
is_root_operator=True,
is_used_for_training=True,
include_all_overloads=False,
_debug_info=None,
)
op5 = combine_operators(op1, op2)
self.assertTrue(op5.is_root_operator)
self.assertFalse(op5.is_used_for_training)
op6 = combine_operators(op1, op4)
self.assertTrue(op6.is_root_operator)
self.assertTrue(op6.is_used_for_training)
def gen_new_op():
return combine_operators(op1, op3)
self.assertRaises(Exception, gen_new_op)
def test_training_op_fetch(self):
yaml_config = """
operators:
aten::add.int:
is_used_for_training: No
is_root_operator: Yes
include_all_overloads: No
aten::add:
is_used_for_training: Yes
is_root_operator: No
include_all_overloads: Yes
"""
selector = SelectiveBuilder.from_yaml_str(yaml_config)
self.assertTrue(selector.is_operator_selected_for_training("aten::add.int"))
self.assertTrue(selector.is_operator_selected_for_training("aten::add"))
def test_kernel_dtypes(self):
yaml_config = """
kernel_metadata:
add_kernel:
- int8
- int32
sub_kernel:
- int16
- int32
add/sub_kernel:
- float
- complex
"""
selector = SelectiveBuilder.from_yaml_str(yaml_config)
self.assertTrue(selector.is_kernel_dtype_selected("add_kernel", "int32"))
self.assertTrue(selector.is_kernel_dtype_selected("add_kernel", "int8"))
self.assertFalse(selector.is_kernel_dtype_selected("add_kernel", "int16"))
self.assertFalse(selector.is_kernel_dtype_selected("add1_kernel", "int32"))
self.assertFalse(selector.is_kernel_dtype_selected("add_kernel", "float"))
self.assertTrue(selector.is_kernel_dtype_selected("add/sub_kernel", "float"))
self.assertTrue(selector.is_kernel_dtype_selected("add/sub_kernel", "complex"))
self.assertFalse(selector.is_kernel_dtype_selected("add/sub_kernel", "int16"))
self.assertFalse(selector.is_kernel_dtype_selected("add/sub_kernel", "int32"))
def test_merge_kernel_dtypes(self):
yaml_config1 = """
kernel_metadata:
add_kernel:
- int8
add/sub_kernel:
- float
- complex
- none
mul_kernel:
- int8
"""
yaml_config2 = """
kernel_metadata:
add_kernel:
- int32
sub_kernel:
- int16
- int32
add/sub_kernel:
- float
- complex
"""
selector1 = SelectiveBuilder.from_yaml_str(yaml_config1)
selector2 = SelectiveBuilder.from_yaml_str(yaml_config2)
selector = combine_selective_builders(selector1, selector2)
self.assertTrue(selector.is_kernel_dtype_selected("add_kernel", "int32"))
self.assertTrue(selector.is_kernel_dtype_selected("add_kernel", "int8"))
self.assertFalse(selector.is_kernel_dtype_selected("add_kernel", "int16"))
self.assertFalse(selector.is_kernel_dtype_selected("add1_kernel", "int32"))
self.assertFalse(selector.is_kernel_dtype_selected("add_kernel", "float"))
self.assertTrue(selector.is_kernel_dtype_selected("add/sub_kernel", "float"))
self.assertTrue(selector.is_kernel_dtype_selected("add/sub_kernel", "complex"))
self.assertTrue(selector.is_kernel_dtype_selected("add/sub_kernel", "none"))
self.assertFalse(selector.is_kernel_dtype_selected("add/sub_kernel", "int16"))
self.assertFalse(selector.is_kernel_dtype_selected("add/sub_kernel", "int32"))
self.assertTrue(selector.is_kernel_dtype_selected("mul_kernel", "int8"))
self.assertFalse(selector.is_kernel_dtype_selected("mul_kernel", "int32"))
def test_all_kernel_dtypes_selected(self):
yaml_config = """
include_all_non_op_selectives: True
"""
selector = SelectiveBuilder.from_yaml_str(yaml_config)
self.assertTrue(selector.is_kernel_dtype_selected("add_kernel", "int32"))
self.assertTrue(selector.is_kernel_dtype_selected("add_kernel", "int8"))
self.assertTrue(selector.is_kernel_dtype_selected("add_kernel", "int16"))
self.assertTrue(selector.is_kernel_dtype_selected("add1_kernel", "int32"))
self.assertTrue(selector.is_kernel_dtype_selected("add_kernel", "float"))
def test_custom_namespace_selected_correctly(self):
yaml_config = """
operators:
aten::add.int:
is_used_for_training: No
is_root_operator: Yes
include_all_overloads: No
custom::add:
is_used_for_training: Yes
is_root_operator: No
include_all_overloads: Yes
"""
selector = SelectiveBuilder.from_yaml_str(yaml_config)
native_function, _ = NativeFunction.from_yaml(
{"func": "custom::add() -> Tensor"},
loc=Location(__file__, 1),
valid_tags=set(),
)
self.assertTrue(selector.is_native_function_selected(native_function))
|
pytorch-master
|
tools/test/test_selective_build.py
|
import os
import unittest
from tools.stats.upload_test_stats import get_tests, summarize_test_cases
IN_CI = os.environ.get("CI")
class TestUploadTestStats(unittest.TestCase):
@unittest.skipIf(
IN_CI,
"don't run in CI as this does a lot of network calls and uses up GH API rate limit",
)
def test_existing_job(self) -> None:
"""Run on a known-good job and make sure we don't error and get basically okay reults."""
test_cases, _ = get_tests(2561394934, 1)
self.assertEqual(len(test_cases), 609873)
summary = summarize_test_cases(test_cases)
self.assertEqual(len(summary), 5068)
if __name__ == "__main__":
unittest.main()
|
pytorch-master
|
tools/test/test_upload_test_stats.py
|
# Owner(s): ["module: codegen"]
import textwrap
import unittest
from typing import cast
import expecttest
import torchgen.dest as dest
import torchgen.gen as gen
import yaml
from torchgen.gen import LineLoader, parse_native_yaml_struct
from torchgen.model import CustomClassType, DispatchKey, NativeFunctionsGroup, Type
class TestCodegenModel(expecttest.TestCase):
def assertParseErrorInline(self, yaml_str: str, expect: str) -> None:
es = yaml.load(yaml_str, Loader=LineLoader)
try:
parse_native_yaml_struct(es, set())
except AssertionError as e:
# hack to strip out the context
msg, _ = str(e).split(" in ", 2)
self.assertExpectedInline("\n".join(textwrap.wrap(msg)), expect, skip=1)
return
self.fail(msg="Did not raise when expected to")
def assertUfuncErrorInline(self, yaml_str: str, expect: str) -> None:
# parse a single structured group out of the yaml to g
es = yaml.load(yaml_str, Loader=LineLoader)
parsed_yaml = parse_native_yaml_struct(es, set())
native_functions, backend_indices = (
parsed_yaml.native_functions,
parsed_yaml.backend_indices,
)
grouped_native_functions = gen.get_grouped_native_functions(native_functions)
assert len(grouped_native_functions) == 1
g = grouped_native_functions[0]
assert isinstance(g, NativeFunctionsGroup)
assert g.out.ufunc_inner_loop
# this is not ufunc codegen per se, but it does some basic sanity tests for
# ufunc generation
gen.compute_meta_function_declaration(g)
dest.compute_native_function_declaration(g, backend_indices[DispatchKey.CPU])
dest.compute_native_function_declaration(g, backend_indices[DispatchKey.CUDA])
try:
# the real kahuna
dest.compute_ufunc_cpu(g)
dest.compute_ufunc_cpu_kernel(g)
dest.compute_ufunc_cuda(g)
except AssertionError as e:
# hack to strip out the context
msg, _ = str(e).split(" in ", 2)
self.assertExpectedInline("\n".join(textwrap.wrap(msg)), expect, skip=1)
return
self.fail(msg="Did not raise when expected to")
# NB: indent is hardcoded to be two here, so format your yaml accordingly
binop_out = (
"func: binop.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)"
)
ti_binop_out = f"""{binop_out}
structured: True
structured_inherits: TensorIteratorBase"""
ti_binop = """func: binop(Tensor self, Tensor other) -> Tensor
structured_delegate: binop.out
"""
ti_unop_out = """func: unop.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
structured: True
structured_inherits: TensorIteratorBase"""
ti_unop = """func: unop(Tensor self) -> Tensor
structured_delegate: unop.out
"""
def test_nonstructured_ufunc(self) -> None:
yaml_str = f"""\
- {self.binop_out}
ufunc_inner_loop:
Generic: binop (Bool)
"""
self.assertParseErrorInline(
yaml_str,
"""\
ufunc must be structured""",
)
def test_overlapping_ufunc_and_dispatch(self) -> None:
yaml_str = f"""\
- {self.ti_binop_out}
ufunc_inner_loop:
Generic: binop (Bool)
dispatch:
CPU: binop_cpu
"""
self.assertParseErrorInline(
yaml_str,
"""\
ufunc should not have explicit dispatch entry for CPU""",
)
# See https://github.com/pytorch/pytorch/pull/65851#discussion_r810238456
@unittest.expectedFailure
def test_scalaronly_shadowed(self) -> None:
yaml_str = f"""\
- {self.ti_binop_out}
ufunc_inner_loop:
Generic: binop (Bool)
ScalarOnly: binop (Bool)
"""
self.assertParseErrorInline(
yaml_str,
"""\
""",
)
def test_conflicting_ufunc(self) -> None:
yaml_str = f"""\
- {self.ti_binop_out}
ufunc_inner_loop:
Generic: binop (Bool)
ScalarOnly: binop_scalar (Bool)
- {self.ti_binop}
"""
self.assertUfuncErrorInline(
yaml_str,
"""\
ScalarOnly and Generic must have same ufunc name""",
)
def test_invalid_cudafunctoronself_for_binary_op(self) -> None:
yaml_str = f"""\
- {self.ti_unop_out}
ufunc_inner_loop:
Generic: unop (All)
CUDAFunctorOnSelf: unop_self_cuda (All)
- {self.ti_unop}
"""
self.assertUfuncErrorInline(
yaml_str,
"""\
cannot use CUDAFunctorOnSelf on non-binary function""",
)
def test_parse_custom_class_type(self) -> None:
custom_class_name = "namespace_foo.class_bar"
custom_class_name_with_prefix = f"__torch__.torch.classes.{custom_class_name}"
custom_class_type = cast(
CustomClassType, Type.parse(custom_class_name_with_prefix)
)
self.assertTrue(isinstance(custom_class_type, CustomClassType))
self.assertEqual(custom_class_name, custom_class_type.class_name)
self.assertEqual(custom_class_name_with_prefix, str(custom_class_type))
if __name__ == "__main__":
unittest.main()
|
pytorch-master
|
tools/test/test_codegen_model.py
|
import os
import unittest
from typing import List
from unittest.mock import patch
from tools.stats.import_test_stats import get_disabled_issues
class TestGetDisabledIssues(unittest.TestCase):
def run_assert_disabled_issues(
self, pr_body: str, commit_messages: str, expected: List[str]
) -> None:
with patch.dict(
os.environ, {"PR_BODY": pr_body, "COMMIT_MESSAGES": commit_messages}
):
disabled_issues = get_disabled_issues()
self.assertEqual(disabled_issues, expected)
# test variations of close in PR_BODY
def test_closes_pr_body(self) -> None:
pr_body = "closes #123 Close #143 ClOsE #345 closed #10283"
self.run_assert_disabled_issues(pr_body, "", ["123", "143", "345", "10283"])
# test variations of fix in COMMIT_MESSAGES
def test_fixes_commit_messages(self) -> None:
commit_messages = "fix #123 FixEd #143 fixes #345 FiXeD #10283"
self.run_assert_disabled_issues(
"", commit_messages, ["123", "143", "345", "10283"]
)
# test variations of resolve in PR_BODY and COMMIT_MESSAGES
def test_resolves_pr_commits(self) -> None:
pr_body = "resolve #123 resolveS #143"
commit_messages = "REsolved #345 RESOLVES #10283"
self.run_assert_disabled_issues(
pr_body, commit_messages, ["123", "143", "345", "10283"]
)
# test links
def test_issue_links(self) -> None:
pr_body = "closes https://github.com/pytorch/pytorch/issues/75198 fixes https://github.com/pytorch/pytorch/issues/75123"
self.run_assert_disabled_issues(pr_body, "", ["75198", "75123"])
# test strange spacing
def test_spacing(self) -> None:
pr_body = "resolve #123,resolveS #143Resolved #345\nRESOLVES #10283"
commit_messages = "Fixed #2348fixes https://github.com/pytorch/pytorch/issues/75123resolveS #2134"
self.run_assert_disabled_issues(
pr_body,
commit_messages,
["123", "143", "345", "10283", "2348", "75123", "2134"],
)
# test bad things
def test_not_accepted(self) -> None:
pr_body = (
"fixes189 fixeshttps://github.com/pytorch/pytorch/issues/75123 "
"closedhttps://githubcom/pytorch/pytorch/issues/75123"
)
commit_messages = (
"fix 234, fixes # 45, fixing #123, close 234, closes#45, closing #123 resolve 234, "
"resolves #45, resolving #123"
)
self.run_assert_disabled_issues(pr_body, commit_messages, [])
if __name__ == "__main__":
unittest.main()
|
pytorch-master
|
tools/test/test_import_test_stats.py
|
import contextlib
import os
import typing
import unittest
import unittest.mock
from typing import Iterator, Optional, Sequence
import tools.setup_helpers.cmake
import tools.setup_helpers.env # noqa: F401 unused but resolves circular import
T = typing.TypeVar("T")
class TestCMake(unittest.TestCase):
@unittest.mock.patch("multiprocessing.cpu_count")
def test_build_jobs(self, mock_cpu_count: unittest.mock.MagicMock) -> None:
"""Tests that the number of build jobs comes out correctly."""
mock_cpu_count.return_value = 13
cases = [
# MAX_JOBS, USE_NINJA, IS_WINDOWS, want
(("8", True, False), ["-j", "8"]), # noqa: E201,E241
((None, True, False), None), # noqa: E201,E241
(("7", False, False), ["-j", "7"]), # noqa: E201,E241
((None, False, False), ["-j", "13"]), # noqa: E201,E241
(("6", True, True), ["-j", "6"]), # noqa: E201,E241
((None, True, True), None), # noqa: E201,E241
(("11", False, True), ["/p:CL_MPCount=11"]), # noqa: E201,E241
((None, False, True), ["/p:CL_MPCount=13"]), # noqa: E201,E241
]
for (max_jobs, use_ninja, is_windows), want in cases:
with self.subTest(
MAX_JOBS=max_jobs, USE_NINJA=use_ninja, IS_WINDOWS=is_windows
):
with contextlib.ExitStack() as stack:
stack.enter_context(env_var("MAX_JOBS", max_jobs))
stack.enter_context(
unittest.mock.patch.object(
tools.setup_helpers.cmake, "USE_NINJA", use_ninja
)
)
stack.enter_context(
unittest.mock.patch.object(
tools.setup_helpers.cmake, "IS_WINDOWS", is_windows
)
)
cmake = tools.setup_helpers.cmake.CMake()
with unittest.mock.patch.object(cmake, "run") as cmake_run:
cmake.build({})
cmake_run.assert_called_once()
(call,) = cmake_run.mock_calls
build_args, _ = call.args
if want is None:
self.assertNotIn("-j", build_args)
else:
self.assert_contains_sequence(build_args, want)
@staticmethod
def assert_contains_sequence(
sequence: Sequence[T], subsequence: Sequence[T]
) -> None:
"""Raises an assertion if the subsequence is not contained in the sequence."""
if len(subsequence) == 0:
return # all sequences contain the empty subsequence
# Iterate over all windows of len(subsequence). Stop if the
# window matches.
for i in range(len(sequence) - len(subsequence) + 1):
candidate = sequence[i : i + len(subsequence)]
assert len(candidate) == len(subsequence) # sanity check
if candidate == subsequence:
return # found it
raise AssertionError(f"{subsequence} not found in {sequence}")
@contextlib.contextmanager
def env_var(key: str, value: Optional[str]) -> Iterator[None]:
"""Sets/clears an environment variable within a Python context."""
# Get the previous value and then override it.
previous_value = os.environ.get(key)
set_env_var(key, value)
try:
yield
finally:
# Restore to previous value.
set_env_var(key, previous_value)
def set_env_var(key: str, value: Optional[str]) -> None:
"""Sets/clears an environment variable."""
if value is None:
os.environ.pop(key, None)
else:
os.environ[key] = value
if __name__ == "__main__":
unittest.main()
|
pytorch-master
|
tools/test/test_cmake.py
|
#!/usr/bin/env python3
# Copyright 2004-present Facebook. All Rights Reserved.
import unittest
from unittest.mock import MagicMock
from gen_oplist import throw_if_any_op_includes_overloads
class GenOplistTest(unittest.TestCase):
def setUp(self):
pass
def test_throw_if_any_op_includes_overloads(self):
selective_builder = MagicMock()
selective_builder.operators = MagicMock()
selective_builder.operators.items.return_value = [
("op1", MagicMock(include_all_overloads=True)),
("op2", MagicMock(include_all_overloads=False)),
("op3", MagicMock(include_all_overloads=True)),
]
self.assertRaises(
Exception, throw_if_any_op_includes_overloads, selective_builder
)
selective_builder.operators.items.return_value = [
("op1", MagicMock(include_all_overloads=False)),
("op2", MagicMock(include_all_overloads=False)),
("op3", MagicMock(include_all_overloads=False)),
]
# Here we do not expect it to throw an exception since none of the ops
# include all overloads.
throw_if_any_op_includes_overloads(selective_builder)
|
pytorch-master
|
tools/test/gen_oplist_test.py
|
import dataclasses
import typing
import unittest
from collections import defaultdict
from typing import Dict, List
import torchgen.model
import yaml
from tools.autograd import gen_autograd_functions, load_derivatives
from torchgen.gen import (
get_native_function_declarations,
get_native_function_schema_registrations,
LineLoader,
)
from torchgen.model import (
BackendIndex,
BackendMetadata,
DispatchKey,
Location,
NativeFunction,
OperatorName,
)
from torchgen.native_function_generation import add_generated_native_functions
from torchgen.selective_build.selector import SelectiveBuilder
class TestCreateDerivative(unittest.TestCase):
def test_named_grads(self) -> None:
schema = torchgen.model.FunctionSchema.parse(
"func(Tensor a, Tensor b) -> (Tensor x, Tensor y)"
)
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION, func=schema)
derivative = load_derivatives.create_derivative(
native_function,
formula="func_backward(grad_x, grad_y)",
var_names=(),
available_named_gradients=["grad_x", "grad_y"],
)
self.assertSetEqual(derivative.named_gradients, {"grad_x", "grad_y"})
def test_non_differentiable_output(self) -> None:
specification = "func(Tensor a, Tensor b) -> (Tensor x, bool y, Tensor z)"
schema = torchgen.model.FunctionSchema.parse(specification)
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION, func=schema)
_, differentiability_info = load_derivatives.create_differentiability_info(
defn_dict={
"name": specification,
"dispatch": {"Default": {"a": "grads[0]", "b": "grads[2]"}},
},
functions_by_signature={schema.signature(): [native_function]},
functions_by_schema={specification: native_function},
op_counter=typing.Counter[str](),
used_dispatch_keys=set(),
)
self.assertSequenceEqual(
differentiability_info["Default"].available_named_gradients,
# grad_y is not present because y is a
# bool and thus not differentiable.
["grad_x", "grad_z"],
)
def test_indexed_grads(self) -> None:
schema = torchgen.model.FunctionSchema.parse(
"func(Tensor a, Tensor b) -> (Tensor x, Tensor y)"
)
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION, func=schema)
derivative = load_derivatives.create_derivative(
native_function,
formula="func_backward(grads[0], grads[1])",
var_names=(),
available_named_gradients=["grad_x", "grad_y"],
)
self.assertSetEqual(derivative.named_gradients, set())
def test_named_grads_and_indexed_grads(self) -> None:
specification = "func(Tensor a, Tensor b) -> (Tensor x, Tensor y)"
schema = torchgen.model.FunctionSchema.parse(specification)
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION, func=schema)
with self.assertRaisesRegex(
RuntimeError, 'illegally mixes use of "grad_RETURN_NAME"'
):
load_derivatives.create_differentiability_info(
defn_dict={
"name": specification,
# Uh-oh, the derivatives reference gradients by
# name and by index.
"dispatch": {
"Default": {
"a": "grad_x",
"b": "grads[1]",
}
},
},
functions_by_signature={schema.signature(): [native_function]},
functions_by_schema={specification: native_function},
op_counter=typing.Counter[str](),
used_dispatch_keys=set(),
)
class TestGenAutogradFunctions(unittest.TestCase):
def test_non_differentiable_output_invalid_type(self) -> None:
specification = "func(Tensor a, Tensor b) -> (Tensor x, bool y, Tensor z)"
schema = torchgen.model.FunctionSchema.parse(specification)
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION, func=schema)
_, differentiability_info = load_derivatives.create_differentiability_info(
defn_dict={
"name": specification,
"dispatch": {
"Default": {
"a": "grad_x",
"b": "grad_z",
}
},
},
functions_by_signature={schema.signature(): [native_function]},
functions_by_schema={specification: native_function},
op_counter=typing.Counter[str](),
used_dispatch_keys=set(),
)
definition = gen_autograd_functions.process_function(
differentiability_info["Default"],
gen_autograd_functions.FUNCTION_DEFINITION,
)
# grad_z should map to grads[1], not grads[2] because output 1
# (y) is not differentiable.
assert "grad_z = grads[2]" not in definition
assert "grad_z = grads[1]" in definition
def test_non_differentiable_output_output_differentiability(self) -> None:
specification = "func(Tensor a, Tensor b) -> (Tensor x, Tensor y, Tensor z)"
schema = torchgen.model.FunctionSchema.parse(specification)
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION, func=schema)
_, differentiability_info = load_derivatives.create_differentiability_info(
defn_dict={
"name": specification,
"dispatch": {
"Default": {
"a": "grad_x",
"b": "grad_z",
},
"AutogradNestedTensor": {
"a": "grad_z",
"b": "grad_x",
},
},
"output_differentiability": [True, False, True],
},
functions_by_signature={schema.signature(): [native_function]},
functions_by_schema={specification: native_function},
op_counter=typing.Counter[str](),
used_dispatch_keys=set(),
)
default_definition = gen_autograd_functions.process_function(
differentiability_info["Default"],
gen_autograd_functions.FUNCTION_DEFINITION,
)
# grad_z should map to grads[1], not grads[2] because output 1
# (y) is not differentiable.
assert "grad_z = grads[2]" not in default_definition
assert "grad_z = grads[1]" in default_definition
nested_tensor_definition = gen_autograd_functions.process_function(
differentiability_info["AutogradNestedTensor"],
gen_autograd_functions.FUNCTION_DEFINITION,
)
assert "grad_z = grads[2]" not in nested_tensor_definition
assert "grad_z = grads[1]" in nested_tensor_definition
def test_register_bogus_dispatch_key(self) -> None:
specification = "func(Tensor a, Tensor b) -> (Tensor x, bool y, Tensor z)"
schema = torchgen.model.FunctionSchema.parse(specification)
native_function = dataclasses.replace(DEFAULT_NATIVE_FUNCTION, func=schema)
with self.assertRaisesRegex(
RuntimeError,
"Invalid dispatch key AutogradRandomTensor in derivatives.yaml for",
):
load_derivatives.create_differentiability_info(
defn_dict={
"name": specification,
"dispatch": {
"Default": {
"a": "grad_x",
"b": "grad_z",
},
"AutogradRandomTensor": {
"a": "grad_x",
"b": "grad_z",
},
},
},
functions_by_signature={schema.signature(): [native_function]},
functions_by_schema={specification: native_function},
op_counter=typing.Counter[str](),
used_dispatch_keys=set(),
)
class TestGenSchemaRegistration(unittest.TestCase):
def setUp(self) -> None:
self.selector = SelectiveBuilder.get_nop_selector()
self.custom_native_function, _ = torchgen.model.NativeFunction.from_yaml(
{"func": "custom::func() -> bool"},
loc=torchgen.model.Location(__file__, 1),
valid_tags=set(),
)
def test_default_namespace_schema_registration_code_valid(self) -> None:
native_functions = [DEFAULT_NATIVE_FUNCTION]
registrations, _ = get_native_function_schema_registrations(
native_functions=native_functions,
schema_selector=self.selector,
)
self.assertEqual(registrations, ['m.def("func() -> bool", {});\n'])
def test_custom_namespace_schema_registration_code_valid(self) -> None:
_, registrations = get_native_function_schema_registrations(
native_functions=[self.custom_native_function],
schema_selector=self.selector,
)
self.assertEqual(
registrations,
"""
TORCH_LIBRARY(custom, m) {
m.def("func() -> bool", {});
};""",
)
def test_mixed_namespace_schema_registration_code_valid(self) -> None:
(
aten_registrations,
custom_registrations,
) = get_native_function_schema_registrations(
native_functions=[DEFAULT_NATIVE_FUNCTION, self.custom_native_function],
schema_selector=self.selector,
)
self.assertEqual(aten_registrations, ['m.def("func() -> bool", {});\n'])
self.assertEqual(
custom_registrations,
"""
TORCH_LIBRARY(custom, m) {
m.def("func() -> bool", {});
};""",
)
def test_3_namespaces_schema_registration_code_invalid(self) -> None:
custom2_native_function, _ = torchgen.model.NativeFunction.from_yaml(
{"func": "custom2::func() -> bool"},
loc=torchgen.model.Location(__file__, 1),
valid_tags=set(),
)
with self.assertRaises(AssertionError):
get_native_function_schema_registrations(
native_functions=[
DEFAULT_NATIVE_FUNCTION,
self.custom_native_function,
custom2_native_function,
],
schema_selector=self.selector,
)
class TestGenNativeFunctionDeclaration(unittest.TestCase):
def setUp(self) -> None:
self.op_1_native_function, op_1_backend_index = NativeFunction.from_yaml(
{"func": "op_1() -> bool", "dispatch": {"CPU": "kernel_1"}},
loc=torchgen.model.Location(__file__, 1),
valid_tags=set(),
)
self.op_2_native_function, op_2_backend_index = NativeFunction.from_yaml(
{
"func": "op_2() -> bool",
"dispatch": {"CPU": "kernel_2", "QuantizedCPU": "custom::kernel_3"},
},
loc=torchgen.model.Location(__file__, 1),
valid_tags=set(),
)
backend_indices: Dict[DispatchKey, Dict[OperatorName, BackendMetadata]] = {
DispatchKey.CPU: {},
DispatchKey.QuantizedCPU: {},
}
BackendIndex.grow_index(backend_indices, op_1_backend_index)
BackendIndex.grow_index(backend_indices, op_2_backend_index)
self.backend_indices = {
k: BackendIndex(
dispatch_key=k,
use_out_as_primary=True,
external=False,
device_guard=False,
index=backend_indices[k],
)
for k in backend_indices
}
def test_native_function_declaration_1_op_2_ns_error(self) -> None:
with self.assertRaises(AssertionError):
get_native_function_declarations(
grouped_native_functions=[
self.op_1_native_function,
self.op_2_native_function,
],
backend_indices=self.backend_indices,
)
def test_native_function_declaration_1_op_1_ns_valid(self) -> None:
self.assertIsInstance(self.op_1_native_function, NativeFunction)
declaration = get_native_function_declarations(
grouped_native_functions=[
self.op_1_native_function,
],
backend_indices=self.backend_indices,
)
target = """
namespace at {
namespace native {
TORCH_API bool kernel_1();
} // namespace native
} // namespace at
"""
self.assertEqual("\n".join(declaration), target)
# Test for native_function_generation
class TestNativeFunctionGeneratrion(unittest.TestCase):
def setUp(self) -> None:
self.native_functions: List[NativeFunction] = []
self.backend_indices: Dict[
DispatchKey, Dict[OperatorName, BackendMetadata]
] = defaultdict(dict)
yaml_entry = """
- func: op(Tensor self) -> Tensor
dispatch:
CompositeExplicitAutograd: op
autogen: op.out
"""
es = yaml.load(yaml_entry, Loader=LineLoader)
self.one_return_func, m = NativeFunction.from_yaml(
es[0], loc=Location(__file__, 1), valid_tags=set()
)
BackendIndex.grow_index(self.backend_indices, m)
self.two_returns_func, two_returns_backend_index = NativeFunction.from_yaml(
{
"func": "op_2() -> (Tensor, Tensor)",
"dispatch": {"CPU": "kernel_1"},
"autogen": "op_2.out",
},
loc=torchgen.model.Location(__file__, 1),
valid_tags=set(),
)
BackendIndex.grow_index(self.backend_indices, two_returns_backend_index)
def test_functional_variant_autogen_out_variant(self) -> None:
native_functions = [self.one_return_func]
add_generated_native_functions(native_functions, self.backend_indices)
self.assertEqual(len(native_functions), 2)
self.assertEqual(
str(native_functions[1].func),
"op.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)",
)
op_name = native_functions[1].func.name
backend_metadata = self.backend_indices[DispatchKey.CompositeExplicitAutograd][
op_name
]
self.assertEqual(backend_metadata.kernel, "op_out")
def test_functional_variant_autogen_out_variant_two_returns(self) -> None:
native_functions = [self.two_returns_func]
add_generated_native_functions(native_functions, self.backend_indices)
self.assertEqual(len(native_functions), 2)
self.assertEqual(
str(native_functions[1].func),
"op_2.out(*, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))",
)
op_name = native_functions[1].func.name
backend_metadata = self.backend_indices[DispatchKey.CompositeExplicitAutograd][
op_name
]
self.assertEqual(backend_metadata.kernel, "op_2_out")
# Represents the most basic NativeFunction. Use dataclasses.replace()
# to edit for use.
DEFAULT_NATIVE_FUNCTION, _ = torchgen.model.NativeFunction.from_yaml(
{"func": "func() -> bool"},
loc=torchgen.model.Location(__file__, 1),
valid_tags=set(),
)
if __name__ == "__main__":
unittest.main()
|
pytorch-master
|
tools/test/test_codegen.py
|
#!/usr/bin/env python3
"""Updates the default value of opset_version.
The current policy is that the default should be set to the
latest released version as of 18 months ago.
Usage:
Run with no arguments.
"""
import datetime
import os
import pathlib
import re
import subprocess
import sys
from subprocess import DEVNULL
pytorch_dir = pathlib.Path(__file__).parent.parent.parent.resolve()
onnx_dir = pytorch_dir / "third_party" / "onnx"
os.chdir(onnx_dir)
date = datetime.datetime.now() - datetime.timedelta(days=18 * 30)
onnx_commit = subprocess.check_output(
("git", "log", f"--until={date}", "--max-count=1", "--format=%H"), encoding="utf-8"
).strip()
onnx_tags = subprocess.check_output(
("git", "tag", "--list", f"--contains={onnx_commit}"), encoding="utf-8"
)
tag_tups = []
semver_pat = re.compile(r"v(\d+)\.(\d+)\.(\d+)")
for tag in onnx_tags.splitlines():
match = semver_pat.match(tag)
if match:
tag_tups.append(tuple(int(x) for x in match.groups()))
version_str = "{}.{}.{}".format(*min(tag_tups))
print("Using ONNX release", version_str)
head_commit = subprocess.check_output(
("git", "log", "--max-count=1", "--format=%H", "HEAD"), encoding="utf-8"
).strip()
new_default = None
subprocess.check_call(
("git", "checkout", f"v{version_str}"), stdout=DEVNULL, stderr=DEVNULL
)
try:
from onnx import helper # type: ignore[import]
for version in helper.VERSION_TABLE:
if version[0] == version_str:
new_default = version[2]
print("found new default opset_version", new_default)
break
if not new_default:
sys.exit(
f"failed to find version {version_str} in onnx.helper.VERSION_TABLE at commit {onnx_commit}"
)
finally:
subprocess.check_call(
("git", "checkout", head_commit), stdout=DEVNULL, stderr=DEVNULL
)
os.chdir(pytorch_dir)
def read_sub_write(path: str, prefix_pat: str) -> None:
with open(path, encoding="utf-8") as f:
content_str = f.read()
content_str = re.sub(prefix_pat, r"\g<1>{}".format(new_default), content_str)
with open(path, "w", encoding="utf-8") as f:
f.write(content_str)
print("modified", path)
read_sub_write(
os.path.join("torch", "onnx", "_constants.py"),
r"(onnx_default_opset = )\d+",
)
read_sub_write(
os.path.join("torch", "onnx", "__init__.py"), r"(opset_version \(int, default )\d+"
)
print("Updating operator .expect files")
subprocess.check_call(("python", "setup.py", "develop"), stdout=DEVNULL, stderr=DEVNULL)
subprocess.check_call(
("python", os.path.join("test", "onnx", "test_operators.py"), "--accept"),
stdout=DEVNULL,
stderr=DEVNULL,
)
|
pytorch-master
|
tools/onnx/update_default_opset_version.py
|
#!/usr/bin/env python3
import argparse
import asyncio
import collections
import csv
import hashlib
import itertools
import os
import pathlib
import re
import shlex
import shutil
import subprocess
import sys
import time
from typing import Awaitable, cast, DefaultDict, Dict, List, Match, Optional, Set
from typing_extensions import TypedDict
help_msg = """fast_nvcc [OPTION]... -- [NVCC_ARG]...
Run the commands given by nvcc --dryrun, in parallel.
All flags for this script itself (see the "optional arguments" section
of --help) must be passed before the first "--". Everything after that
first "--" is passed directly to nvcc, with the --dryrun argument added.
This script only works with the "normal" execution path of nvcc, so for
instance passing --help (after "--") doesn't work since the --help
execution path doesn't compile anything, so adding --dryrun there gives
nothing in stderr.
"""
parser = argparse.ArgumentParser(help_msg)
parser.add_argument(
"--faithful",
action="store_true",
help="don't modify the commands given by nvcc (slower)",
)
parser.add_argument(
"--graph",
metavar="FILE.gv",
help="write Graphviz DOT file with execution graph",
)
parser.add_argument(
"--nvcc",
metavar="PATH",
default="nvcc",
help='path to nvcc (default is just "nvcc")',
)
parser.add_argument(
"--save",
metavar="DIR",
help="copy intermediate files from each command into DIR",
)
parser.add_argument(
"--sequential",
action="store_true",
help="sequence commands instead of using the graph (slower)",
)
parser.add_argument(
"--table",
metavar="FILE.csv",
help="write CSV with times and intermediate file sizes",
)
parser.add_argument(
"--verbose",
metavar="FILE.txt",
help="like nvcc --verbose, but expanded and into a file",
)
default_config = parser.parse_args([])
# docs about temporary directories used by NVCC
url_base = "https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html"
url_vars = f"{url_base}#keeping-intermediate-phase-files"
# regex for temporary file names
re_tmp = r"(?<![\w\-/])(?:/tmp/)?(tmp[^ \"\'\\]+)"
def fast_nvcc_warn(warning: str) -> None:
"""
Warn the user about something regarding fast_nvcc.
"""
print(f"warning (fast_nvcc): {warning}", file=sys.stderr)
def warn_if_windows() -> None:
"""
Warn the user that using fast_nvcc on Windows might not work.
"""
# use os.name instead of platform.system() because there is a
# platform.py file in this directory, making it very difficult to
# import the platform module from the Python standard library
if os.name == "nt":
fast_nvcc_warn("untested on Windows, might not work; see this URL:")
fast_nvcc_warn(url_vars)
def warn_if_tmpdir_flag(args: List[str]) -> None:
"""
Warn the user that using fast_nvcc with some flags might not work.
"""
file_path_specs = "file-and-path-specifications"
guiding_driver = "options-for-guiding-compiler-driver"
scary_flags = {
"--objdir-as-tempdir": file_path_specs,
"-objtemp": file_path_specs,
"--keep": guiding_driver,
"-keep": guiding_driver,
"--keep-dir": guiding_driver,
"-keep-dir": guiding_driver,
"--save-temps": guiding_driver,
"-save-temps": guiding_driver,
}
for arg in args:
for flag, frag in scary_flags.items():
if re.match(rf"^{re.escape(flag)}(?:=.*)?$", arg):
fast_nvcc_warn(f"{flag} not supported since it interacts with")
fast_nvcc_warn("TMPDIR, so fast_nvcc may break; see this URL:")
fast_nvcc_warn(f"{url_base}#{frag}")
class DryunData(TypedDict):
env: Dict[str, str]
commands: List[str]
exit_code: int
def nvcc_dryrun_data(binary: str, args: List[str]) -> DryunData:
"""
Return parsed environment variables and commands from nvcc --dryrun.
"""
result = subprocess.run( # type: ignore[call-overload]
[binary, "--dryrun"] + args,
capture_output=True,
encoding="ascii", # this is just a guess
)
print(result.stdout, end="")
env = {}
commands = []
for line in result.stderr.splitlines():
match = re.match(r"^#\$ (.*)$", line)
if match:
(stripped,) = match.groups()
mapping = re.match(r"^(\w+)=(.*)$", stripped)
if mapping:
name, val = mapping.groups()
env[name] = val
else:
commands.append(stripped)
else:
print(line, file=sys.stderr)
return {"env": env, "commands": commands, "exit_code": result.returncode}
def warn_if_tmpdir_set(env: Dict[str, str]) -> None:
"""
Warn the user that setting TMPDIR with fast_nvcc might not work.
"""
if os.getenv("TMPDIR") or "TMPDIR" in env:
fast_nvcc_warn("TMPDIR is set, might not work; see this URL:")
fast_nvcc_warn(url_vars)
def contains_non_executable(commands: List[str]) -> bool:
for command in commands:
# This is to deal with special command dry-run result from NVCC such as:
# ```
# #$ "/lib64/ccache"/c++ -std=c++11 -E -x c++ -D__CUDACC__ -D__NVCC__ -fPIC -fvisibility=hidden -O3 \
# -I ... -m64 "reduce_scatter.cu" > "/tmp/tmpxft_0037fae3_00000000-5_reduce_scatter.cpp4.ii
# #$ -- Filter Dependencies -- > ... pytorch/build/nccl/obj/collectives/device/reduce_scatter.dep.tmp
# ```
if command.startswith("--"):
return True
return False
def module_id_contents(command: List[str]) -> str:
"""
Guess the contents of the .module_id file contained within command.
"""
if command[0] == "cicc":
path = command[-3]
elif command[0] == "cudafe++":
path = command[-1]
middle = pathlib.PurePath(path).name.replace("-", "_").replace(".", "_")
# this suffix is very wrong (the real one is far less likely to be
# unique), but it seems difficult to find a rule that reproduces the
# real suffixes, so here's one that, while inaccurate, is at least
# hopefully as straightforward as possible
suffix = hashlib.md5(str.encode(middle)).hexdigest()[:8]
return f"_{len(middle)}_{middle}_{suffix}"
def unique_module_id_files(commands: List[str]) -> List[str]:
"""
Give each command its own .module_id filename instead of sharing.
"""
module_id = None
uniqueified = []
for i, line in enumerate(commands):
arr = []
def uniqueify(s: Match[str]) -> str:
filename = re.sub(r"\-(\d+)", r"-\1-" + str(i), s.group(0))
arr.append(filename)
return filename
line = re.sub(re_tmp + r".module_id", uniqueify, line)
line = re.sub(r"\s*\-\-gen\_module\_id\_file\s*", " ", line)
if arr:
(filename,) = arr
if not module_id:
module_id = module_id_contents(shlex.split(line))
uniqueified.append(f"echo -n '{module_id}' > '{filename}'")
uniqueified.append(line)
return uniqueified
def make_rm_force(commands: List[str]) -> List[str]:
"""
Add --force to all rm commands.
"""
return [f"{c} --force" if c.startswith("rm ") else c for c in commands]
def print_verbose_output(
*,
env: Dict[str, str],
commands: List[List[str]],
filename: str,
) -> None:
"""
Human-readably write nvcc --dryrun data to stderr.
"""
padding = len(str(len(commands) - 1))
with open(filename, "w") as f:
for name, val in env.items():
print(f'#{" "*padding}$ {name}={val}', file=f)
for i, command in enumerate(commands):
prefix = f"{str(i).rjust(padding)}$ "
print(f"#{prefix}{command[0]}", file=f)
for part in command[1:]:
print(f'#{" "*len(prefix)}{part}', file=f)
Graph = List[Set[int]]
def straight_line_dependencies(commands: List[str]) -> Graph:
"""
Return a straight-line dependency graph.
"""
return [({i - 1} if i > 0 else set()) for i in range(len(commands))]
def files_mentioned(command: str) -> List[str]:
"""
Return fully-qualified names of all tmp files referenced by command.
"""
return [f"/tmp/{match.group(1)}" for match in re.finditer(re_tmp, command)]
def nvcc_data_dependencies(commands: List[str]) -> Graph:
"""
Return a list of the set of dependencies for each command.
"""
# fatbin needs to be treated specially because while the cicc steps
# do refer to .fatbin.c files, they do so through the
# --include_file_name option, since they're generating files that
# refer to .fatbin.c file(s) that will later be created by the
# fatbinary step; so for most files, we make a data dependency from
# the later step to the earlier step, but for .fatbin.c files, the
# data dependency is sort of flipped, because the steps that use the
# files generated by cicc need to wait for the fatbinary step to
# finish first
tmp_files: Dict[str, int] = {}
fatbins: DefaultDict[int, Set[str]] = collections.defaultdict(set)
graph = []
for i, line in enumerate(commands):
deps = set()
for tmp in files_mentioned(line):
if tmp in tmp_files:
dep = tmp_files[tmp]
deps.add(dep)
if dep in fatbins:
for filename in fatbins[dep]:
if filename in tmp_files:
deps.add(tmp_files[filename])
if tmp.endswith(".fatbin.c") and not line.startswith("fatbinary"):
fatbins[i].add(tmp)
else:
tmp_files[tmp] = i
if line.startswith("rm ") and not deps:
deps.add(i - 1)
graph.append(deps)
return graph
def is_weakly_connected(graph: Graph) -> bool:
"""
Return true iff graph is weakly connected.
"""
if not graph:
return True
neighbors: List[Set[int]] = [set() for _ in graph]
for node, predecessors in enumerate(graph):
for pred in predecessors:
neighbors[pred].add(node)
neighbors[node].add(pred)
# assume nonempty graph
stack = [0]
found = {0}
while stack:
node = stack.pop()
for neighbor in neighbors[node]:
if neighbor not in found:
found.add(neighbor)
stack.append(neighbor)
return len(found) == len(graph)
def warn_if_not_weakly_connected(graph: Graph) -> None:
"""
Warn the user if the execution graph is not weakly connected.
"""
if not is_weakly_connected(graph):
fast_nvcc_warn("execution graph is not (weakly) connected")
def print_dot_graph(
*,
commands: List[List[str]],
graph: Graph,
filename: str,
) -> None:
"""
Print a DOT file displaying short versions of the commands in graph.
"""
def name(k: int) -> str:
return f'"{k} {os.path.basename(commands[k][0])}"'
with open(filename, "w") as f:
print("digraph {", file=f)
# print all nodes, in case it's disconnected
for i in range(len(graph)):
print(f" {name(i)};", file=f)
for i, deps in enumerate(graph):
for j in deps:
print(f" {name(j)} -> {name(i)};", file=f)
print("}", file=f)
class Result(TypedDict, total=False):
exit_code: int
stdout: bytes
stderr: bytes
time: float
files: Dict[str, int]
async def run_command(
command: str,
*,
env: Dict[str, str],
deps: Set[Awaitable[Result]],
gather_data: bool,
i: int,
save: Optional[str],
) -> Result:
"""
Run the command with the given env after waiting for deps.
"""
for task in deps:
dep_result = await task
# abort if a previous step failed
if "exit_code" not in dep_result or dep_result["exit_code"] != 0:
return {}
if gather_data:
t1 = time.monotonic()
proc = await asyncio.create_subprocess_shell(
command,
env=env,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE,
)
stdout, stderr = await proc.communicate()
code = cast(int, proc.returncode)
results: Result = {"exit_code": code, "stdout": stdout, "stderr": stderr}
if gather_data:
t2 = time.monotonic()
results["time"] = t2 - t1
sizes = {}
for tmp_file in files_mentioned(command):
if os.path.exists(tmp_file):
sizes[tmp_file] = os.path.getsize(tmp_file)
else:
sizes[tmp_file] = 0
results["files"] = sizes
if save:
dest = pathlib.Path(save) / str(i)
dest.mkdir()
for src in map(pathlib.Path, files_mentioned(command)):
if src.exists():
shutil.copy2(src, dest / (src.name))
return results
async def run_graph(
*,
env: Dict[str, str],
commands: List[str],
graph: Graph,
gather_data: bool = False,
save: Optional[str] = None,
) -> List[Result]:
"""
Return outputs/errors (and optionally time/file info) from commands.
"""
tasks: List[Awaitable[Result]] = []
for i, (command, indices) in enumerate(zip(commands, graph)):
deps = {tasks[j] for j in indices}
tasks.append(
asyncio.create_task(
run_command( # type: ignore[attr-defined]
command,
env=env,
deps=deps,
gather_data=gather_data,
i=i,
save=save,
)
)
)
return [await task for task in tasks]
def print_command_outputs(command_results: List[Result]) -> None:
"""
Print captured stdout and stderr from commands.
"""
for result in command_results:
sys.stdout.write(result.get("stdout", b"").decode("ascii"))
sys.stderr.write(result.get("stderr", b"").decode("ascii"))
def write_log_csv(
command_parts: List[List[str]],
command_results: List[Result],
*,
filename: str,
) -> None:
"""
Write a CSV file of the times and /tmp file sizes from each command.
"""
tmp_files: List[str] = []
for result in command_results:
tmp_files.extend(result.get("files", {}).keys())
with open(filename, "w", newline="") as csvfile:
fieldnames = ["command", "seconds"] + list(dict.fromkeys(tmp_files))
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
for i, result in enumerate(command_results):
command = f"{i} {os.path.basename(command_parts[i][0])}"
row = {"command": command, "seconds": result.get("time", 0)}
writer.writerow({**row, **result.get("files", {})})
def exit_code(results: List[Result]) -> int:
"""
Aggregate individual exit codes into a single code.
"""
for result in results:
code = result.get("exit_code", 0)
if code != 0:
return code
return 0
def wrap_nvcc(
args: List[str],
config: argparse.Namespace = default_config,
) -> int:
return subprocess.call([config.nvcc] + args)
def fast_nvcc(
args: List[str],
*,
config: argparse.Namespace = default_config,
) -> int:
"""
Emulate the result of calling the given nvcc binary with args.
Should run faster than plain nvcc.
"""
warn_if_windows()
warn_if_tmpdir_flag(args)
dryrun_data = nvcc_dryrun_data(config.nvcc, args)
env = dryrun_data["env"]
warn_if_tmpdir_set(env)
commands = dryrun_data["commands"]
if not config.faithful:
commands = make_rm_force(unique_module_id_files(commands))
if contains_non_executable(commands):
return wrap_nvcc(args, config)
command_parts = list(map(shlex.split, commands))
if config.verbose:
print_verbose_output(
env=env,
commands=command_parts,
filename=config.verbose,
)
graph = nvcc_data_dependencies(commands)
warn_if_not_weakly_connected(graph)
if config.graph:
print_dot_graph(
commands=command_parts,
graph=graph,
filename=config.graph,
)
if config.sequential:
graph = straight_line_dependencies(commands)
results = asyncio.run(
run_graph( # type: ignore[attr-defined]
env=env,
commands=commands,
graph=graph,
gather_data=bool(config.table),
save=config.save,
)
)
print_command_outputs(results)
if config.table:
write_log_csv(command_parts, results, filename=config.table)
return exit_code([dryrun_data] + results) # type: ignore[arg-type, operator]
def our_arg(arg: str) -> bool:
return arg != "--"
if __name__ == "__main__":
argv = sys.argv[1:]
us = list(itertools.takewhile(our_arg, argv))
them = list(itertools.dropwhile(our_arg, argv))
sys.exit(fast_nvcc(them[1:], config=parser.parse_args(us)))
|
pytorch-master
|
tools/fast_nvcc/fast_nvcc.py
|
pytorch-master
|
tools/linter/__init__.py
|
|
import argparse
import concurrent.futures
import json
import logging
import os
import re
import subprocess
import time
from enum import Enum
from typing import List, NamedTuple, Optional, Pattern
LINTER_CODE = "ACTIONLINT"
class LintSeverity(str, Enum):
ERROR = "error"
WARNING = "warning"
ADVICE = "advice"
DISABLED = "disabled"
class LintMessage(NamedTuple):
path: Optional[str]
line: Optional[int]
char: Optional[int]
code: str
severity: LintSeverity
name: str
original: Optional[str]
replacement: Optional[str]
description: Optional[str]
RESULTS_RE: Pattern[str] = re.compile(
r"""(?mx)
^
(?P<file>.*?):
(?P<line>\d+):
(?P<char>\d+):
\s(?P<message>.*)
\s(?P<code>\[.*\])
$
"""
)
def run_command(
args: List[str],
) -> "subprocess.CompletedProcess[bytes]":
logging.debug("$ %s", " ".join(args))
start_time = time.monotonic()
try:
return subprocess.run(
args,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
finally:
end_time = time.monotonic()
logging.debug("took %dms", (end_time - start_time) * 1000)
def check_file(
binary: str,
file: str,
) -> List[LintMessage]:
try:
proc = run_command([binary, file])
except OSError as err:
return [
LintMessage(
path=None,
line=None,
char=None,
code=LINTER_CODE,
severity=LintSeverity.ERROR,
name="command-failed",
original=None,
replacement=None,
description=(f"Failed due to {err.__class__.__name__}:\n{err}"),
)
]
stdout = str(proc.stdout, "utf-8").strip()
return [
LintMessage(
path=match["file"],
name=match["code"],
description=match["message"],
line=int(match["line"]),
char=int(match["char"]),
code=LINTER_CODE,
severity=LintSeverity.ERROR,
original=None,
replacement=None,
)
for match in RESULTS_RE.finditer(stdout)
]
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="actionlint runner",
fromfile_prefix_chars="@",
)
parser.add_argument(
"--binary",
required=True,
help="actionlint binary path",
)
parser.add_argument(
"filenames",
nargs="+",
help="paths to lint",
)
args = parser.parse_args()
if not os.path.exists(args.binary):
err_msg = LintMessage(
path="<none>",
line=None,
char=None,
code=LINTER_CODE,
severity=LintSeverity.ERROR,
name="command-failed",
original=None,
replacement=None,
description=(
f"Could not find actionlint binary at {args.binary},"
" you may need to run `lintrunner init`."
),
)
print(json.dumps(err_msg._asdict()), flush=True)
exit(0)
with concurrent.futures.ThreadPoolExecutor(
max_workers=os.cpu_count(),
thread_name_prefix="Thread",
) as executor:
futures = {
executor.submit(
check_file,
args.binary,
filename,
): filename
for filename in args.filenames
}
for future in concurrent.futures.as_completed(futures):
try:
for lint_message in future.result():
print(json.dumps(lint_message._asdict()), flush=True)
except Exception:
logging.critical('Failed at "%s".', futures[future])
raise
|
pytorch-master
|
tools/linter/adapters/actionlint_linter.py
|
"""
Generic linter that greps for a pattern and optionally suggests replacements.
"""
import argparse
import json
import logging
import os
import subprocess
import sys
import time
from enum import Enum
from typing import Any, List, NamedTuple, Optional
IS_WINDOWS: bool = os.name == "nt"
def eprint(*args: Any, **kwargs: Any) -> None:
print(*args, file=sys.stderr, flush=True, **kwargs)
class LintSeverity(str, Enum):
ERROR = "error"
WARNING = "warning"
ADVICE = "advice"
DISABLED = "disabled"
class LintMessage(NamedTuple):
path: Optional[str]
line: Optional[int]
char: Optional[int]
code: str
severity: LintSeverity
name: str
original: Optional[str]
replacement: Optional[str]
description: Optional[str]
def as_posix(name: str) -> str:
return name.replace("\\", "/") if IS_WINDOWS else name
def run_command(
args: List[str],
) -> "subprocess.CompletedProcess[bytes]":
logging.debug("$ %s", " ".join(args))
start_time = time.monotonic()
try:
return subprocess.run(
args,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
finally:
end_time = time.monotonic()
logging.debug("took %dms", (end_time - start_time) * 1000)
def lint_file(
matching_line: str,
allowlist_pattern: str,
replace_pattern: str,
linter_name: str,
error_name: str,
error_description: str,
) -> Optional[LintMessage]:
# matching_line looks like:
# tools/linter/clangtidy_linter.py:13:import foo.bar.baz
split = matching_line.split(":")
filename = split[0]
if allowlist_pattern:
try:
proc = run_command(["grep", "-nEHI", allowlist_pattern, filename])
except Exception as err:
return LintMessage(
path=None,
line=None,
char=None,
code=linter_name,
severity=LintSeverity.ERROR,
name="command-failed",
original=None,
replacement=None,
description=(
f"Failed due to {err.__class__.__name__}:\n{err}"
if not isinstance(err, subprocess.CalledProcessError)
else (
"COMMAND (exit code {returncode})\n"
"{command}\n\n"
"STDERR\n{stderr}\n\n"
"STDOUT\n{stdout}"
).format(
returncode=err.returncode,
command=" ".join(as_posix(x) for x in err.cmd),
stderr=err.stderr.decode("utf-8").strip() or "(empty)",
stdout=err.stdout.decode("utf-8").strip() or "(empty)",
)
),
)
# allowlist pattern was found, abort lint
if proc.returncode == 0:
return None
original = None
replacement = None
if replace_pattern:
with open(filename, "r") as f:
original = f.read()
try:
proc = run_command(["sed", "-r", replace_pattern, filename])
replacement = proc.stdout.decode("utf-8")
except Exception as err:
return LintMessage(
path=None,
line=None,
char=None,
code=linter_name,
severity=LintSeverity.ERROR,
name="command-failed",
original=None,
replacement=None,
description=(
f"Failed due to {err.__class__.__name__}:\n{err}"
if not isinstance(err, subprocess.CalledProcessError)
else (
"COMMAND (exit code {returncode})\n"
"{command}\n\n"
"STDERR\n{stderr}\n\n"
"STDOUT\n{stdout}"
).format(
returncode=err.returncode,
command=" ".join(as_posix(x) for x in err.cmd),
stderr=err.stderr.decode("utf-8").strip() or "(empty)",
stdout=err.stdout.decode("utf-8").strip() or "(empty)",
)
),
)
return LintMessage(
path=split[0],
line=int(split[1]) if len(split) > 1 else None,
char=None,
code=linter_name,
severity=LintSeverity.ERROR,
name=error_name,
original=original,
replacement=replacement,
description=error_description,
)
def main() -> None:
parser = argparse.ArgumentParser(
description="grep wrapper linter.",
fromfile_prefix_chars="@",
)
parser.add_argument(
"--pattern",
required=True,
help="pattern to grep for",
)
parser.add_argument(
"--allowlist-pattern",
help="if this pattern is true in the file, we don't grep for pattern",
)
parser.add_argument(
"--linter-name",
required=True,
help="name of the linter",
)
parser.add_argument(
"--match-first-only",
action="store_true",
help="only match the first hit in the file",
)
parser.add_argument(
"--error-name",
required=True,
help="human-readable description of what the error is",
)
parser.add_argument(
"--error-description",
required=True,
help="message to display when the pattern is found",
)
parser.add_argument(
"--replace-pattern",
help=(
"the form of a pattern passed to `sed -r`. "
"If specified, this will become proposed replacement text."
),
)
parser.add_argument(
"--verbose",
action="store_true",
help="verbose logging",
)
parser.add_argument(
"filenames",
nargs="+",
help="paths to lint",
)
args = parser.parse_args()
logging.basicConfig(
format="<%(threadName)s:%(levelname)s> %(message)s",
level=logging.NOTSET
if args.verbose
else logging.DEBUG
if len(args.filenames) < 1000
else logging.INFO,
stream=sys.stderr,
)
files_with_matches = []
if args.match_first_only:
files_with_matches = ["--files-with-matches"]
try:
proc = run_command(
["grep", "-nEHI", *files_with_matches, args.pattern, *args.filenames]
)
except Exception as err:
err_msg = LintMessage(
path=None,
line=None,
char=None,
code=args.linter_name,
severity=LintSeverity.ERROR,
name="command-failed",
original=None,
replacement=None,
description=(
f"Failed due to {err.__class__.__name__}:\n{err}"
if not isinstance(err, subprocess.CalledProcessError)
else (
"COMMAND (exit code {returncode})\n"
"{command}\n\n"
"STDERR\n{stderr}\n\n"
"STDOUT\n{stdout}"
).format(
returncode=err.returncode,
command=" ".join(as_posix(x) for x in err.cmd),
stderr=err.stderr.decode("utf-8").strip() or "(empty)",
stdout=err.stdout.decode("utf-8").strip() or "(empty)",
)
),
)
print(json.dumps(err_msg._asdict()), flush=True)
exit(0)
lines = proc.stdout.decode().splitlines()
for line in lines:
lint_message = lint_file(
line,
args.allowlist_pattern,
args.replace_pattern,
args.linter_name,
args.error_name,
args.error_description,
)
if lint_message is not None:
print(json.dumps(lint_message._asdict()), flush=True)
if __name__ == "__main__":
main()
|
pytorch-master
|
tools/linter/adapters/grep_linter.py
|
import argparse
import concurrent.futures
import json
import logging
import os
import re
import subprocess
import time
from enum import Enum
from typing import List, NamedTuple, Optional, Pattern
LINTER_CODE = "CMAKE"
class LintSeverity(str, Enum):
ERROR = "error"
WARNING = "warning"
ADVICE = "advice"
DISABLED = "disabled"
class LintMessage(NamedTuple):
path: Optional[str]
line: Optional[int]
char: Optional[int]
code: str
severity: LintSeverity
name: str
original: Optional[str]
replacement: Optional[str]
description: Optional[str]
# CMakeLists.txt:901: Lines should be <= 80 characters long [linelength]
RESULTS_RE: Pattern[str] = re.compile(
r"""(?mx)
^
(?P<file>.*?):
(?P<line>\d+):
\s(?P<message>.*)
\s(?P<code>\[.*\])
$
"""
)
def run_command(
args: List[str],
) -> "subprocess.CompletedProcess[bytes]":
logging.debug("$ %s", " ".join(args))
start_time = time.monotonic()
try:
return subprocess.run(
args,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
finally:
end_time = time.monotonic()
logging.debug("took %dms", (end_time - start_time) * 1000)
def check_file(
filename: str,
config: str,
) -> List[LintMessage]:
try:
proc = run_command(
["cmakelint", f"--config={config}", filename],
)
except OSError as err:
return [
LintMessage(
path=None,
line=None,
char=None,
code=LINTER_CODE,
severity=LintSeverity.ERROR,
name="command-failed",
original=None,
replacement=None,
description=(f"Failed due to {err.__class__.__name__}:\n{err}"),
)
]
stdout = str(proc.stdout, "utf-8").strip()
return [
LintMessage(
path=match["file"],
name=match["code"],
description=match["message"],
line=int(match["line"]),
char=None,
code=LINTER_CODE,
severity=LintSeverity.ERROR,
original=None,
replacement=None,
)
for match in RESULTS_RE.finditer(stdout)
]
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="cmakelint runner",
fromfile_prefix_chars="@",
)
parser.add_argument(
"--config",
required=True,
help="location of cmakelint config",
)
parser.add_argument(
"filenames",
nargs="+",
help="paths to lint",
)
args = parser.parse_args()
with concurrent.futures.ThreadPoolExecutor(
max_workers=os.cpu_count(),
thread_name_prefix="Thread",
) as executor:
futures = {
executor.submit(
check_file,
filename,
args.config,
): filename
for filename in args.filenames
}
for future in concurrent.futures.as_completed(futures):
try:
for lint_message in future.result():
print(json.dumps(lint_message._asdict()), flush=True)
except Exception:
logging.critical('Failed at "%s".', futures[future])
raise
|
pytorch-master
|
tools/linter/adapters/cmake_linter.py
|
"""Checks for consistency of jobs between different GitHub workflows.
Any job with a specific `sync-tag` must match all other jobs with the same `sync-tag`.
"""
import argparse
import itertools
import json
from collections import defaultdict
from enum import Enum
from pathlib import Path
from typing import Any, Dict, Iterable, NamedTuple, Optional
from yaml import CSafeLoader, dump, load
class LintSeverity(str, Enum):
ERROR = "error"
WARNING = "warning"
ADVICE = "advice"
DISABLED = "disabled"
class LintMessage(NamedTuple):
path: Optional[str]
line: Optional[int]
char: Optional[int]
code: str
severity: LintSeverity
name: str
original: Optional[str]
replacement: Optional[str]
description: Optional[str]
def glob_yamls(path: Path) -> Iterable[Path]:
return itertools.chain(path.glob("**/*.yml"), path.glob("**/*.yaml"))
def load_yaml(path: Path) -> Any:
with open(path) as f:
return load(f, CSafeLoader)
def is_workflow(yaml: Any) -> bool:
return yaml.get("jobs") is not None
def print_lint_message(path: Path, job: Dict[str, Any], sync_tag: str) -> None:
job_id = list(job.keys())[0]
with open(path) as f:
lines = f.readlines()
for i, line in enumerate(lines):
if f"{job_id}:" in line:
line_number = i + 1
lint_message = LintMessage(
path=str(path),
line=line_number,
char=None,
code="WORKFLOWSYNC",
severity=LintSeverity.ERROR,
name="workflow-inconsistency",
original=None,
replacement=None,
description=f"Job doesn't match other jobs with sync-tag: '{sync_tag}'",
)
print(json.dumps(lint_message._asdict()), flush=True)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="workflow consistency linter.",
fromfile_prefix_chars="@",
)
parser.add_argument(
"filenames",
nargs="+",
help="paths to lint",
)
args = parser.parse_args()
# Go through the provided files, aggregating jobs with the same sync tag
tag_to_jobs = defaultdict(list)
for path in args.filenames:
workflow = load_yaml(Path(path))
jobs = workflow["jobs"]
for job_id, job in jobs.items():
try:
sync_tag = job["with"]["sync-tag"]
except KeyError:
continue
# remove the "if" field, which we allow to be different between jobs
# (since you might have different triggering conditions on pull vs.
# trunk, say.)
if "if" in job:
del job["if"]
tag_to_jobs[sync_tag].append((path, {job_id: job}))
# For each sync tag, check that all the jobs have the same code.
for sync_tag, path_and_jobs in tag_to_jobs.items():
baseline_path, baseline_dict = path_and_jobs.pop()
baseline_str = dump(baseline_dict)
printed_baseline = False
for path, job_dict in path_and_jobs:
job_str = dump(job_dict)
if baseline_str != job_str:
print_lint_message(path, job_dict, sync_tag)
if not printed_baseline:
print_lint_message(baseline_path, baseline_dict, sync_tag)
printed_baseline = True
|
pytorch-master
|
tools/linter/adapters/workflow_consistency_linter.py
|
import argparse
import concurrent.futures
import json
import logging
import os
import subprocess
import sys
import time
from enum import Enum
from typing import Any, BinaryIO, List, NamedTuple, Optional
IS_WINDOWS: bool = os.name == "nt"
def eprint(*args: Any, **kwargs: Any) -> None:
print(*args, file=sys.stderr, flush=True, **kwargs)
class LintSeverity(str, Enum):
ERROR = "error"
WARNING = "warning"
ADVICE = "advice"
DISABLED = "disabled"
class LintMessage(NamedTuple):
path: Optional[str]
line: Optional[int]
char: Optional[int]
code: str
severity: LintSeverity
name: str
original: Optional[str]
replacement: Optional[str]
description: Optional[str]
def as_posix(name: str) -> str:
return name.replace("\\", "/") if IS_WINDOWS else name
def _run_command(
args: List[str],
*,
stdin: BinaryIO,
timeout: int,
) -> "subprocess.CompletedProcess[bytes]":
logging.debug("$ %s", " ".join(args))
start_time = time.monotonic()
try:
return subprocess.run(
args,
stdin=stdin,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
shell=IS_WINDOWS, # So batch scripts are found.
timeout=timeout,
check=True,
)
finally:
end_time = time.monotonic()
logging.debug("took %dms", (end_time - start_time) * 1000)
def run_command(
args: List[str],
*,
stdin: BinaryIO,
retries: int,
timeout: int,
) -> "subprocess.CompletedProcess[bytes]":
remaining_retries = retries
while True:
try:
return _run_command(args, stdin=stdin, timeout=timeout)
except subprocess.TimeoutExpired as err:
if remaining_retries == 0:
raise err
remaining_retries -= 1
logging.warning(
"(%s/%s) Retrying because command failed with: %r",
retries - remaining_retries,
retries,
err,
)
time.sleep(1)
def check_file(
filename: str,
retries: int,
timeout: int,
) -> List[LintMessage]:
try:
with open(filename, "rb") as f:
original = f.read()
with open(filename, "rb") as f:
proc = run_command(
[sys.executable, "-mblack", "--stdin-filename", filename, "-"],
stdin=f,
retries=retries,
timeout=timeout,
)
except subprocess.TimeoutExpired:
return [
LintMessage(
path=filename,
line=None,
char=None,
code="BLACK",
severity=LintSeverity.ERROR,
name="timeout",
original=None,
replacement=None,
description=(
"black timed out while trying to process a file. "
"Please report an issue in pytorch/pytorch with the "
"label 'module: lint'"
),
)
]
except (OSError, subprocess.CalledProcessError) as err:
return [
LintMessage(
path=filename,
line=None,
char=None,
code="BLACK",
severity=LintSeverity.ADVICE,
name="command-failed",
original=None,
replacement=None,
description=(
f"Failed due to {err.__class__.__name__}:\n{err}"
if not isinstance(err, subprocess.CalledProcessError)
else (
"COMMAND (exit code {returncode})\n"
"{command}\n\n"
"STDERR\n{stderr}\n\n"
"STDOUT\n{stdout}"
).format(
returncode=err.returncode,
command=" ".join(as_posix(x) for x in err.cmd),
stderr=err.stderr.decode("utf-8").strip() or "(empty)",
stdout=err.stdout.decode("utf-8").strip() or "(empty)",
)
),
)
]
replacement = proc.stdout
if original == replacement:
return []
return [
LintMessage(
path=filename,
line=None,
char=None,
code="BLACK",
severity=LintSeverity.WARNING,
name="format",
original=original.decode("utf-8"),
replacement=replacement.decode("utf-8"),
description="Run `lintrunner -a` to apply this patch.",
)
]
def main() -> None:
parser = argparse.ArgumentParser(
description="Format files with black.",
fromfile_prefix_chars="@",
)
parser.add_argument(
"--retries",
default=3,
type=int,
help="times to retry timed out black",
)
parser.add_argument(
"--timeout",
default=90,
type=int,
help="seconds to wait for black",
)
parser.add_argument(
"--verbose",
action="store_true",
help="verbose logging",
)
parser.add_argument(
"filenames",
nargs="+",
help="paths to lint",
)
args = parser.parse_args()
logging.basicConfig(
format="<%(threadName)s:%(levelname)s> %(message)s",
level=logging.NOTSET
if args.verbose
else logging.DEBUG
if len(args.filenames) < 1000
else logging.INFO,
stream=sys.stderr,
)
with concurrent.futures.ThreadPoolExecutor(
max_workers=os.cpu_count(),
thread_name_prefix="Thread",
) as executor:
futures = {
executor.submit(check_file, x, args.retries, args.timeout): x
for x in args.filenames
}
for future in concurrent.futures.as_completed(futures):
try:
for lint_message in future.result():
print(json.dumps(lint_message._asdict()), flush=True)
except Exception:
logging.critical('Failed at "%s".', futures[future])
raise
if __name__ == "__main__":
main()
|
pytorch-master
|
tools/linter/adapters/black_linter.py
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.