python_code
stringlengths
0
4.04M
repo_name
stringlengths
8
58
file_path
stringlengths
5
147
import argparse import collections import functools import itertools import json import multiprocessing as mp import os import pathlib import re import subprocess import warnings os.environ['NO_AT_BRIDGE'] = '1' # Hide X org false warning. import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.ticker as ticker import numpy as np import pandas as pd np.set_string_function(lambda x: f'<np.array shape={x.shape} dtype={x.dtype}>') Run = collections.namedtuple('Run', 'task method seed xs ys') PALETTES = dict( discrete=( '#377eb8', '#4daf4a', '#984ea3', '#e41a1c', '#ff7f00', '#a65628', '#f781bf', '#888888', '#a6cee3', '#b2df8a', '#cab2d6', '#fb9a99', ), contrast=( '#0022ff', '#33aa00', '#ff0011', '#ddaa00', '#cc44dd', '#0088aa', '#001177', '#117700', '#990022', '#885500', '#553366', '#006666', ), gradient=( '#fde725', '#a0da39', '#4ac16d', '#1fa187', '#277f8e', '#365c8d', '#46327e', '#440154', ), baselines=( '#222222', '#666666', '#aaaaaa', '#cccccc', ), ) LEGEND = dict( fontsize='medium', numpoints=1, labelspacing=0, columnspacing=1.2, handlelength=1.5, handletextpad=0.5, loc='lower center') DEFAULT_BASELINES = ['d4pg', 'rainbow_sticky', 'human_gamer', 'impala'] def find_keys(args): filenames = [] for indir in args.indir: task = next(indir.iterdir()) # First only. for method in task.iterdir(): seed = next(indir.iterdir()) # First only. filenames += list(seed.glob('**/*.jsonl')) keys = set() for filename in filenames: keys |= set(load_jsonl(filename).columns) print(f'Keys ({len(keys)}):', ', '.join(keys), flush=True) def load_runs(args): total, toload = [], [] for indir in args.indir: filenames = list(indir.glob('**/*.jsonl')) total += filenames for filename in filenames: task, method, seed = filename.relative_to(indir).parts[:-1] if not any(p.search(task) for p in args.tasks): continue if not any(p.search(method) for p in args.methods): continue toload.append((filename, indir)) print(f'Loading {len(toload)} of {len(total)} runs...') jobs = [functools.partial(load_run, f, i, args) for f, i in toload] # Disable async data loading: # runs = [j() for j in jobs] with mp.Pool(10) as pool: promises = [pool.apply_async(j) for j in jobs] runs = [p.get() for p in promises] runs = [r for r in runs if r is not None] return runs def load_run(filename, indir, args): task, method, seed = filename.relative_to(indir).parts[:-1] prefix = f'indir{args.indir.index(indir)+1}_' if task == 'atari_jamesbond': task = 'atari_james_bond' seed = prefix + seed if args.prefix: method = prefix + method df = load_jsonl(filename) if df is None: print('Skipping empty run') return try: df = df[[args.xaxis, args.yaxis]].dropna() if args.maxval: df = df.replace([+np.inf], +args.maxval) df = df.replace([-np.inf], -args.maxval) df[args.yaxis] = df[args.yaxis].clip(-args.maxval, +args.maxval) except KeyError: return xs = df[args.xaxis].to_numpy() if args.xmult != 1: xs = xs.astype(np.float32) * args.xmult ys = df[args.yaxis].to_numpy() bins = { 'atari': 1e6, 'dmc': 1e4, 'crafter': 1e4, }.get(task.split('_')[0], 1e5) if args.bins == -1 else args.bins if bins: borders = np.arange(0, xs.max() + 1e-8, bins) xs, ys = bin_scores(xs, ys, borders) if not len(xs): print('Skipping empty run', task, method, seed) return return Run(task, method, seed, xs, ys) def load_baselines(patterns, prefix=False): runs = [] directory = pathlib.Path(__file__).parent.parent / 'scores' for filename in directory.glob('**/*_baselines.json'): for task, methods in json.loads(filename.read_text()).items(): for method, score in methods.items(): if prefix: method = f'baseline_{method}' if not any(p.search(method) for p in patterns): continue runs.append(Run(task, method, None, None, score)) return runs def stats(runs, baselines): tasks = sorted(set(r.task for r in runs)) methods = sorted(set(r.method for r in runs)) seeds = sorted(set(r.seed for r in runs)) baseline = sorted(set(r.method for r in baselines)) print('Loaded', len(runs), 'runs.') print(f'Tasks ({len(tasks)}):', ', '.join(tasks)) print(f'Methods ({len(methods)}):', ', '.join(methods)) print(f'Seeds ({len(seeds)}):', ', '.join(seeds)) print(f'Baselines ({len(baseline)}):', ', '.join(baseline)) def order_methods(runs, baselines, args): methods = [] for pattern in args.methods: for method in sorted(set(r.method for r in runs)): if pattern.search(method): if method not in methods: methods.append(method) if method not in args.colors: index = len(args.colors) % len(args.palette) args.colors[method] = args.palette[index] non_baseline_colors = len(args.colors) for pattern in args.baselines: for method in sorted(set(r.method for r in baselines)): if pattern.search(method): if method not in methods: methods.append(method) if method not in args.colors: index = len(args.colors) - non_baseline_colors index = index % len(PALETTES['baselines']) args.colors[method] = PALETTES['baselines'][index] return methods def figure(runs, methods, args): tasks = sorted(set(r.task for r in runs if r.xs is not None)) rows = int(np.ceil((len(tasks) + len(args.add)) / args.cols)) figsize = args.size[0] * args.cols, args.size[1] * rows fig, axes = plt.subplots(rows, args.cols, figsize=figsize, squeeze=False) for task, ax in zip(tasks, axes.flatten()): relevant = [r for r in runs if r.task == task] plot(task, ax, relevant, methods, args) for name, ax in zip(args.add, axes.flatten()[len(tasks):]): ax.set_facecolor((0.9, 0.9, 0.9)) if name == 'median': plot_combined( 'combined_median', ax, runs, methods, args, agg=lambda x: np.nanmedian(x, -1)) elif name == 'mean': plot_combined( 'combined_mean', ax, runs, methods, args, agg=lambda x: np.nanmean(x, -1)) elif name == 'gamer_median': plot_combined( 'combined_gamer_median', ax, runs, methods, args, lo='random', hi='human_gamer', agg=lambda x: np.nanmedian(x, -1)) elif name == 'gamer_mean': plot_combined( 'combined_gamer_mean', ax, runs, methods, args, lo='random', hi='human_gamer', agg=lambda x: np.nanmean(x, -1)) elif name == 'record_mean': plot_combined( 'combined_record_mean', ax, runs, methods, args, lo='random', hi='record', agg=lambda x: np.nanmean(x, -1)) elif name == 'clip_record_mean': plot_combined( 'combined_clipped_record_mean', ax, runs, methods, args, lo='random', hi='record', clip=True, agg=lambda x: np.nanmean(x, -1)) elif name == 'seeds': plot_combined( 'combined_seeds', ax, runs, methods, args, agg=lambda x: np.isfinite(x).sum(-1)) elif name == 'human_above': plot_combined( 'combined_above_human_gamer', ax, runs, methods, args, agg=lambda y: (y >= 1.0).astype(float).sum(-1)) elif name == 'human_below': plot_combined( 'combined_below_human_gamer', ax, runs, methods, args, agg=lambda y: (y <= 1.0).astype(float).sum(-1)) else: raise NotImplementedError(name) if args.xlim: for ax in axes[:-1].flatten(): ax.xaxis.get_offset_text().set_visible(False) if args.xlabel: for ax in axes[-1]: ax.set_xlabel(args.xlabel) if args.ylabel: for ax in axes[:, 0]: ax.set_ylabel(args.ylabel) for ax in axes.flatten()[len(tasks) + len(args.add):]: ax.axis('off') legend(fig, args.labels, ncol=args.legendcols, **LEGEND) return fig def plot(task, ax, runs, methods, args): assert runs try: title = task.split('_', 1)[1].replace('_', ' ').title() except IndexError: title = task.title() ax.set_title(title) xlim = [+np.inf, -np.inf] for index, method in enumerate(methods): relevant = [r for r in runs if r.method == method] if not relevant: continue if any(r.xs is None for r in relevant): baseline(index, method, ax, relevant, args) else: if args.agg == 'none': xs, ys = curve_lines(index, task, method, ax, relevant, args) else: xs, ys = curve_area(index, task, method, ax, relevant, args) if len(xs) == len(ys) == 0: print(f'Skipping empty: {task} {method}') continue xlim = [min(xlim[0], np.nanmin(xs)), max(xlim[1], np.nanmax(xs))] ax.ticklabel_format(axis='x', style='sci', scilimits=(0, 0)) steps = [1, 2, 2.5, 5, 10] ax.xaxis.set_major_locator(ticker.MaxNLocator(args.xticks, steps=steps)) ax.yaxis.set_major_locator(ticker.MaxNLocator(args.yticks, steps=steps)) if np.isfinite(xlim).all(): ax.set_xlim(args.xlim or xlim) if args.xlim: ticks = sorted({*ax.get_xticks(), *args.xlim}) ticks = [x for x in ticks if args.xlim[0] <= x <= args.xlim[1]] ax.set_xticks(ticks) if args.ylim: ax.set_ylim(args.ylim) if args.ylimticks: ticks = sorted({*ax.get_yticks(), *args.ylim}) ticks = [x for x in ticks if args.ylim[0] <= x <= args.ylim[1]] ax.set_yticks(ticks) def plot_combined( name, ax, runs, methods, args, agg, lo=None, hi=None, clip=False): tasks = sorted(set(run.task for run in runs if run.xs is not None)) seeds = list(set(run.seed for run in runs)) runs = [r for r in runs if r.task in tasks] # Discard unused baselines. # Bin all runs onto the same X steps. borders = sorted( [r.xs for r in runs if r.xs is not None], key=lambda x: np.nanmax(x))[-1] for index, run in enumerate(runs): if run.xs is None: continue xs, ys = bin_scores(run.xs, run.ys, borders, fill='last') runs[index] = run._replace(xs=xs, ys=ys) # Per-task normalization by low and high baseline. if lo or hi: mins = collections.defaultdict(list) maxs = collections.defaultdict(list) [mins[r.task].append(r.ys) for r in load_baselines([re.compile(lo)])] [maxs[r.task].append(r.ys) for r in load_baselines([re.compile(hi)])] mins = {task: min(ys) for task, ys in mins.items() if task in tasks} maxs = {task: max(ys) for task, ys in maxs.items() if task in tasks} missing_baselines = [] for task in tasks: if task not in mins or task not in maxs: missing_baselines.append(task) if set(missing_baselines) == set(tasks): print(f'No baselines found to normalize any tasks in {name} plot.') else: for task in missing_baselines: print(f'No baselines found to normalize {task} in {name} plot.') for index, run in enumerate(runs): if run.task not in mins or run.task not in maxs: continue ys = (run.ys - mins[run.task]) / (maxs[run.task] - mins[run.task]) if clip: ys = np.minimum(ys, 1.0) runs[index] = run._replace(ys=ys) # Aggregate across tasks but not methods or seeds. combined = [] for method, seed in itertools.product(methods, seeds): relevant = [r for r in runs if r.method == method and r.seed == seed] if not relevant: continue if relevant[0].xs is None: xs, ys = None, np.array([r.ys for r in relevant]) else: xs, ys = stack_scores(*zip(*[(r.xs, r.ys) for r in relevant])) with warnings.catch_warnings(): # Ignore empty slice warnings. warnings.simplefilter('ignore', category=RuntimeWarning) combined.append(Run('combined', method, seed, xs, agg(ys))) plot(name, ax, combined, methods, args) def curve_lines(index, task, method, ax, runs, args): zorder = 10000 - 10 * index - 1 for run in runs: color = args.colors[method] ax.plot(run.xs, run.ys, label=method, color=color, zorder=zorder) xs, ys = stack_scores(*zip(*[(r.xs, r.ys) for r in runs])) return xs, ys def curve_area(index, task, method, ax, runs, args): xs, ys = stack_scores(*zip(*[(r.xs, r.ys) for r in runs])) with warnings.catch_warnings(): # NaN buckets remain NaN. warnings.simplefilter('ignore', category=RuntimeWarning) if args.agg == 'std1': mean, std = np.nanmean(ys, -1), np.nanstd(ys, -1) lo, mi, hi = mean - std, mean, mean + std elif args.agg == 'per0': lo, mi, hi = [np.nanpercentile(ys, k, -1) for k in (0, 50, 100)] elif args.agg == 'per5': lo, mi, hi = [np.nanpercentile(ys, k, -1) for k in (5, 50, 95)] elif args.agg == 'per25': lo, mi, hi = [np.nanpercentile(ys, k, -1) for k in (25, 50, 75)] else: raise NotImplementedError(args.agg) color = args.colors[method] kw = dict(color=color, zorder=1000 - 10 * index, alpha=0.1, linewidths=0) mask = ~np.isnan(mi) xs, lo, mi, hi = xs[mask], lo[mask], mi[mask], hi[mask] ax.fill_between(xs, lo, hi, **kw) ax.plot(xs, mi, label=method, color=color, zorder=10000 - 10 * index - 1) return xs, mi def baseline(index, method, ax, runs, args): assert all(run.xs is None for run in runs) ys = np.array([run.ys for run in runs]) mean, std = ys.mean(), ys.std() color = args.colors[method] kw = dict(color=color, zorder=500 - 20 * index - 1, alpha=0.1, linewidths=0) ax.fill_between([-np.inf, np.inf], [mean - std] * 2, [mean + std] * 2, **kw) kw = dict(ls='--', color=color, zorder=5000 - 10 * index - 1) ax.axhline(mean, label=method, **kw) def legend(fig, mapping=None, **kwargs): entries = {} for ax in fig.axes: for handle, label in zip(*ax.get_legend_handles_labels()): if mapping and label in mapping: label = mapping[label] entries[label] = handle leg = fig.legend(entries.values(), entries.keys(), **kwargs) leg.get_frame().set_edgecolor('white') extent = leg.get_window_extent(fig.canvas.get_renderer()) extent = extent.transformed(fig.transFigure.inverted()) yloc, xloc = kwargs['loc'].split() y0 = dict(lower=extent.y1, center=0, upper=0)[yloc] y1 = dict(lower=1, center=1, upper=extent.y0)[yloc] x0 = dict(left=extent.x1, center=0, right=0)[xloc] x1 = dict(left=1, center=1, right=extent.x0)[xloc] fig.tight_layout(rect=[x0, y0, x1, y1], h_pad=0.5, w_pad=0.5) def save(fig, args): args.outdir.mkdir(parents=True, exist_ok=True) filename = args.outdir / 'curves.png' fig.savefig(filename, dpi=args.dpi) print('Saved to', filename) filename = args.outdir / 'curves.pdf' fig.savefig(filename) try: subprocess.call(['pdfcrop', str(filename), str(filename)]) except FileNotFoundError: print('Install texlive-extra-utils to crop PDF outputs.') def bin_scores(xs, ys, borders, reducer=np.nanmean, fill='nan'): order = np.argsort(xs) xs, ys = xs[order], ys[order] binned = [] with warnings.catch_warnings(): # Empty buckets become NaN. warnings.simplefilter('ignore', category=RuntimeWarning) for start, stop in zip(borders[:-1], borders[1:]): left = (xs <= start).sum() right = (xs <= stop).sum() if left < right: value = reducer(ys[left:right]) elif binned: value = {'nan': np.nan, 'last': binned[-1]}[fill] else: value = np.nan binned.append(value) return borders[1:], np.array(binned) def stack_scores(multiple_xs, multiple_ys, fill='last'): longest_xs = sorted(multiple_xs, key=lambda x: len(x))[-1] multiple_padded_ys = [] for xs, ys in zip(multiple_xs, multiple_ys): assert (longest_xs[:len(xs)] == xs).all(), (list(xs), list(longest_xs)) value = {'nan': np.nan, 'last': ys[-1]}[fill] padding = [value] * (len(longest_xs) - len(xs)) padded_ys = np.concatenate([ys, padding]) multiple_padded_ys.append(padded_ys) stacked_ys = np.stack(multiple_padded_ys, -1) return longest_xs, stacked_ys def load_jsonl(filename): try: with filename.open() as f: lines = list(f.readlines()) records = [] for index, line in enumerate(lines): try: records.append(json.loads(line)) except Exception: if index == len(lines) - 1: continue # Silently skip last line if it is incomplete. raise ValueError( f'Skipping invalid JSON line ({index+1}/{len(lines)+1}) in' f'{filename}: {line}') return pd.DataFrame(records) except ValueError as e: print('Invalid', filename, e) return None def save_runs(runs, filename): filename.parent.mkdir(parents=True, exist_ok=True) records = [] for run in runs: if run.xs is None: continue records.append(dict( task=run.task, method=run.method, seed=run.seed, xs=run.xs.tolist(), ys=run.ys.tolist())) runs = json.dumps(records) filename.write_text(runs) print('Saved', filename) def main(args): find_keys(args) runs = load_runs(args) save_runs(runs, args.outdir / 'runs.json') baselines = load_baselines(args.baselines, args.prefix) stats(runs, baselines) methods = order_methods(runs, baselines, args) if not runs: print('Noting to plot.') return # Adjust options based on loaded runs. tasks = set(r.task for r in runs) if 'auto' in args.add: index = args.add.index('auto') del args.add[index] atari = any(run.task.startswith('atari_') for run in runs) if len(tasks) < 2: pass elif atari: args.add[index:index] = [ 'gamer_median', 'gamer_mean', 'record_mean', 'clip_record_mean', ] else: args.add[index:index] = ['mean', 'median'] args.cols = min(args.cols, len(tasks) + len(args.add)) args.legendcols = min(args.legendcols, args.cols) print('Plotting...') fig = figure(runs + baselines, methods, args) save(fig, args) def parse_args(): boolean = lambda x: bool(['False', 'True'].index(x)) parser = argparse.ArgumentParser() parser.add_argument('--indir', nargs='+', type=pathlib.Path, required=True) parser.add_argument('--indir-prefix', type=pathlib.Path) parser.add_argument('--outdir', type=pathlib.Path, required=True) parser.add_argument('--subdir', type=boolean, default=True) parser.add_argument('--xaxis', type=str, default='step') parser.add_argument('--yaxis', type=str, default='eval_return') parser.add_argument('--tasks', nargs='+', default=[r'.*']) parser.add_argument('--methods', nargs='+', default=[r'.*']) parser.add_argument('--baselines', nargs='+', default=DEFAULT_BASELINES) parser.add_argument('--prefix', type=boolean, default=False) parser.add_argument('--bins', type=float, default=-1) parser.add_argument('--agg', type=str, default='std1') parser.add_argument('--size', nargs=2, type=float, default=[2.5, 2.3]) parser.add_argument('--dpi', type=int, default=80) parser.add_argument('--cols', type=int, default=6) parser.add_argument('--xlim', nargs=2, type=float, default=None) parser.add_argument('--ylim', nargs=2, type=float, default=None) parser.add_argument('--ylimticks', type=boolean, default=True) parser.add_argument('--xlabel', type=str, default=None) parser.add_argument('--ylabel', type=str, default=None) parser.add_argument('--xticks', type=int, default=6) parser.add_argument('--yticks', type=int, default=5) parser.add_argument('--xmult', type=float, default=1) parser.add_argument('--labels', nargs='+', default=None) parser.add_argument('--palette', nargs='+', default=['contrast']) parser.add_argument('--legendcols', type=int, default=4) parser.add_argument('--colors', nargs='+', default={}) parser.add_argument('--maxval', type=float, default=0) parser.add_argument('--add', nargs='+', type=str, default=['auto', 'seeds']) args = parser.parse_args() if args.subdir: args.outdir /= args.indir[0].stem if args.indir_prefix: args.indir = [args.indir_prefix / indir for indir in args.indir] args.indir = [d.expanduser() for d in args.indir] args.outdir = args.outdir.expanduser() if args.labels: assert len(args.labels) % 2 == 0 args.labels = {k: v for k, v in zip(args.labels[:-1], args.labels[1:])} if args.colors: assert len(args.colors) % 2 == 0 args.colors = {k: v for k, v in zip(args.colors[:-1], args.colors[1:])} args.tasks = [re.compile(p) for p in args.tasks] args.methods = [re.compile(p) for p in args.methods] args.baselines = [re.compile(p) for p in args.baselines] if 'return' not in args.yaxis: args.baselines = [] if args.prefix is None: args.prefix = len(args.indir) > 1 if len(args.palette) == 1 and args.palette[0] in PALETTES: args.palette = 10 * PALETTES[args.palette[0]] if len(args.add) == 1 and args.add[0] == 'none': args.add = [] return args if __name__ == '__main__': main(parse_args())
cascade-main
dreamerv2/common/plot.py
import json import pathlib import re class Config(dict): SEP = '.' IS_PATTERN = re.compile(r'.*[^A-Za-z0-9_.-].*') def __init__(self, *args, **kwargs): mapping = dict(*args, **kwargs) mapping = self._flatten(mapping) mapping = self._ensure_keys(mapping) mapping = self._ensure_values(mapping) self._flat = mapping self._nested = self._nest(mapping) # Need to assign the values to the base class dictionary so that # conversion to dict does not lose the content. super().__init__(self._nested) @property def flat(self): return self._flat.copy() def save(self, filename): filename = pathlib.Path(filename) if filename.suffix == '.json': filename.write_text(json.dumps(dict(self))) elif filename.suffix in ('.yml', '.yaml'): import ruamel.yaml as yaml with filename.open('w') as f: yaml.safe_dump(dict(self), f) else: raise NotImplementedError(filename.suffix) @classmethod def load(cls, filename): filename = pathlib.Path(filename) if filename.suffix == '.json': return cls(json.loads(filename.read_text())) elif filename.suffix in ('.yml', '.yaml'): import ruamel.yaml as yaml return cls(yaml.safe_load(filename.read_text())) else: raise NotImplementedError(filename.suffix) def parse_flags(self, argv=None, known_only=False, help_exists=None): from . import flags return flags.Flags(self).parse(argv, known_only, help_exists) def __contains__(self, name): try: self[name] return True except KeyError: return False def __getattr__(self, name): if name.startswith('_'): return super().__getattr__(name) try: return self[name] except KeyError: raise AttributeError(name) def __getitem__(self, name): result = self._nested for part in name.split(self.SEP): result = result[part] if isinstance(result, dict): result = type(self)(result) return result def __setattr__(self, key, value): if key.startswith('_'): return super().__setattr__(key, value) message = f"Tried to set key '{key}' on immutable config. Use update()." raise AttributeError(message) def __setitem__(self, key, value): if key.startswith('_'): return super().__setitem__(key, value) message = f"Tried to set key '{key}' on immutable config. Use update()." raise AttributeError(message) def __reduce__(self): return (type(self), (dict(self),)) def __str__(self): lines = ['\nConfig:'] keys, vals, typs = [], [], [] for key, val in self.flat.items(): keys.append(key + ':') vals.append(self._format_value(val)) typs.append(self._format_type(val)) max_key = max(len(k) for k in keys) if keys else 0 max_val = max(len(v) for v in vals) if vals else 0 for key, val, typ in zip(keys, vals, typs): key = key.ljust(max_key) val = val.ljust(max_val) lines.append(f'{key} {val} ({typ})') return '\n'.join(lines) def update(self, *args, **kwargs): result = self._flat.copy() inputs = self._flatten(dict(*args, **kwargs)) for key, new in inputs.items(): if self.IS_PATTERN.match(key): pattern = re.compile(key) keys = {k for k in result if pattern.match(k)} else: keys = [key] if not keys: raise KeyError(f'Unknown key or pattern {key}.') for key in keys: old = result[key] try: if isinstance(old, int) and isinstance(new, float): if float(int(new)) != new: message = f"Cannot convert fractional float {new} to int." raise ValueError(message) result[key] = type(old)(new) except (ValueError, TypeError): raise TypeError( f"Cannot convert '{new}' to type '{type(old).__name__}' " + f"of value '{old}' for key '{key}'.") return type(self)(result) def _flatten(self, mapping): result = {} for key, value in mapping.items(): if isinstance(value, dict): for k, v in self._flatten(value).items(): if self.IS_PATTERN.match(key) or self.IS_PATTERN.match(k): combined = f'{key}\\{self.SEP}{k}' else: combined = f'{key}{self.SEP}{k}' result[combined] = v else: result[key] = value return result def _nest(self, mapping): result = {} for key, value in mapping.items(): parts = key.split(self.SEP) node = result for part in parts[:-1]: if part not in node: node[part] = {} node = node[part] node[parts[-1]] = value return result def _ensure_keys(self, mapping): for key in mapping: assert not self.IS_PATTERN.match(key), key return mapping def _ensure_values(self, mapping): result = json.loads(json.dumps(mapping)) for key, value in result.items(): if isinstance(value, list): value = tuple(value) if isinstance(value, tuple): if len(value) == 0: message = 'Empty lists are disallowed because their type is unclear.' raise TypeError(message) if not isinstance(value[0], (str, float, int, bool)): message = 'Lists can only contain strings, floats, ints, bools' message += f' but not {type(value[0])}' raise TypeError(message) if not all(isinstance(x, type(value[0])) for x in value[1:]): message = 'Elements of a list must all be of the same type.' raise TypeError(message) result[key] = value return result def _format_value(self, value): if isinstance(value, (list, tuple)): return '[' + ', '.join(self._format_value(x) for x in value) + ']' return str(value) def _format_type(self, value): if isinstance(value, (list, tuple)): assert len(value) > 0, value return self._format_type(value[0]) + 's' return str(type(value).__name__)
cascade-main
dreamerv2/common/config.py
import pathlib import pickle import re import numpy as np import tensorflow as tf from tensorflow.keras import mixed_precision as prec try: from tensorflow.python.distribute import values except Exception: from google3.third_party.tensorflow.python.distribute import values tf.tensor = tf.convert_to_tensor for base in (tf.Tensor, tf.Variable, values.PerReplica): base.mean = tf.math.reduce_mean base.std = tf.math.reduce_std base.var = tf.math.reduce_variance base.sum = tf.math.reduce_sum base.any = tf.math.reduce_any base.all = tf.math.reduce_all base.min = tf.math.reduce_min base.max = tf.math.reduce_max base.abs = tf.math.abs base.logsumexp = tf.math.reduce_logsumexp base.transpose = tf.transpose base.reshape = tf.reshape base.astype = tf.cast # values.PerReplica.dtype = property(lambda self: self.values[0].dtype) # tf.TensorHandle.__repr__ = lambda x: '<tensor>' # tf.TensorHandle.__str__ = lambda x: '<tensor>' # np.set_printoptions(threshold=5, edgeitems=0) class Module(tf.Module): def save(self, filename): values = tf.nest.map_structure(lambda x: x.numpy(), self.variables) amount = len(tf.nest.flatten(values)) count = int(sum(np.prod(x.shape) for x in tf.nest.flatten(values))) print(f'Save checkpoint with {amount} tensors and {count} parameters.') with pathlib.Path(filename).open('wb') as f: pickle.dump(values, f) def load(self, filename): with pathlib.Path(filename).open('rb') as f: values = pickle.load(f) amount = len(tf.nest.flatten(values)) count = int(sum(np.prod(x.shape) for x in tf.nest.flatten(values))) print(f'Load checkpoint with {amount} tensors and {count} parameters.') amount_agent = len(tf.nest.flatten(self.variables)) count_agent = int(sum(np.prod(x.shape) for x in tf.nest.flatten(self.variables))) print(f'Agent checkpoint has {amount_agent} tensors and {count_agent} parameters.') tf.nest.map_structure(lambda x, y: x.assign(y), self.variables, values) def get(self, name, ctor, *args, **kwargs): # Create or get layer by name to avoid mentioning it in the constructor. if not hasattr(self, '_modules'): self._modules = {} if name not in self._modules: self._modules[name] = ctor(*args, **kwargs) return self._modules[name] class Optimizer(tf.Module): def __init__( self, name, lr, eps=1e-4, clip=None, wd=None, opt='adam', wd_pattern=r'.*'): assert 0 <= wd < 1 assert not clip or 1 <= clip self._name = name self._clip = clip self._wd = wd self._wd_pattern = wd_pattern self._opt = { 'adam': lambda: tf.optimizers.Adam(lr, epsilon=eps), 'nadam': lambda: tf.optimizers.Nadam(lr, epsilon=eps), 'adamax': lambda: tf.optimizers.Adamax(lr, epsilon=eps), 'sgd': lambda: tf.optimizers.SGD(lr), 'momentum': lambda: tf.optimizers.SGD(lr, 0.9), }[opt]() self._mixed = (prec.global_policy().compute_dtype == tf.float16) if self._mixed: self._opt = prec.LossScaleOptimizer(self._opt, dynamic=True) self._once = True @property def variables(self): return self._opt.variables() def __call__(self, tape, loss, modules): assert loss.dtype is tf.float32, (self._name, loss.dtype) assert len(loss.shape) == 0, (self._name, loss.shape) metrics = {} # Find variables. modules = modules if hasattr(modules, '__len__') else (modules,) varibs = tf.nest.flatten([module.variables for module in modules]) count = sum(np.prod(x.shape) for x in varibs) if self._once: print(f'Found {count} {self._name} parameters.') self._once = False # Check loss. tf.debugging.check_numerics(loss, self._name + '_loss') metrics[f'{self._name}_loss'] = loss # Compute scaled gradient. if self._mixed: with tape: loss = self._opt.get_scaled_loss(loss) grads = tape.gradient(loss, varibs) if self._mixed: grads = self._opt.get_unscaled_gradients(grads) if self._mixed: metrics[f'{self._name}_loss_scale'] = self._opt.loss_scale # Distributed sync. context = tf.distribute.get_replica_context() if context: grads = context.all_reduce('mean', grads) # Gradient clipping. norm = tf.linalg.global_norm(grads) if not self._mixed: tf.debugging.check_numerics(norm, self._name + '_norm') if self._clip: grads, _ = tf.clip_by_global_norm(grads, self._clip, norm) metrics[f'{self._name}_grad_norm'] = norm # Weight decay. if self._wd: self._apply_weight_decay(varibs) # Apply gradients. self._opt.apply_gradients( zip(grads, varibs), experimental_aggregate_gradients=False) return metrics def _apply_weight_decay(self, varibs): nontrivial = (self._wd_pattern != r'.*') if nontrivial: print('Applied weight decay to variables:') for var in varibs: if re.search(self._wd_pattern, self._name + '/' + var.name): if nontrivial: print('- ' + self._name + '/' + var.name) var.assign((1 - self._wd) * var)
cascade-main
dreamerv2/common/tfutils.py
import tensorflow as tf import tensorflow_probability as tfp from tensorflow_probability import distributions as tfd # Patch to ignore seed to avoid synchronization across GPUs. _orig_random_categorical = tf.random.categorical def random_categorical(*args, **kwargs): kwargs['seed'] = None return _orig_random_categorical(*args, **kwargs) tf.random.categorical = random_categorical # Patch to ignore seed to avoid synchronization across GPUs. _orig_random_normal = tf.random.normal def random_normal(*args, **kwargs): kwargs['seed'] = None return _orig_random_normal(*args, **kwargs) tf.random.normal = random_normal class SampleDist: def __init__(self, dist, samples=100): self._dist = dist self._samples = samples @property def name(self): return 'SampleDist' def __getattr__(self, name): return getattr(self._dist, name) def mean(self): samples = self._dist.sample(self._samples) return samples.mean(0) def mode(self): sample = self._dist.sample(self._samples) logprob = self._dist.log_prob(sample) return tf.gather(sample, tf.argmax(logprob))[0] def entropy(self): sample = self._dist.sample(self._samples) logprob = self.log_prob(sample) return -logprob.mean(0) class OneHotDist(tfd.OneHotCategorical): def __init__(self, logits=None, probs=None, dtype=None): self._sample_dtype = dtype or tf.float32 super().__init__(logits=logits, probs=probs) def mode(self): return tf.cast(super().mode(), self._sample_dtype) def sample(self, sample_shape=(), seed=None): # Straight through biased gradient estimator. sample = tf.cast(super().sample(sample_shape, seed), self._sample_dtype) probs = self._pad(super().probs_parameter(), sample.shape) sample += tf.cast(probs - tf.stop_gradient(probs), self._sample_dtype) return sample def _pad(self, tensor, shape): tensor = super().probs_parameter() while len(tensor.shape) < len(shape): tensor = tensor[None] return tensor class TruncNormalDist(tfd.TruncatedNormal): def __init__(self, loc, scale, low, high, clip=1e-6, mult=1): super().__init__(loc, scale, low, high) self._clip = clip self._mult = mult def sample(self, *args, **kwargs): event = super().sample(*args, **kwargs) if self._clip: clipped = tf.clip_by_value( event, self.low + self._clip, self.high - self._clip) event = event - tf.stop_gradient(event) + tf.stop_gradient(clipped) if self._mult: event *= self._mult return event class TanhBijector(tfp.bijectors.Bijector): def __init__(self, validate_args=False, name='tanh'): super().__init__( forward_min_event_ndims=0, validate_args=validate_args, name=name) def _forward(self, x): return tf.nn.tanh(x) def _inverse(self, y): dtype = y.dtype y = tf.cast(y, tf.float32) y = tf.where( tf.less_equal(tf.abs(y), 1.), tf.clip_by_value(y, -0.99999997, 0.99999997), y) y = tf.atanh(y) y = tf.cast(y, dtype) return y def _forward_log_det_jacobian(self, x): log2 = tf.math.log(tf.constant(2.0, dtype=x.dtype)) return 2.0 * (log2 - x - tf.nn.softplus(-2.0 * x))
cascade-main
dreamerv2/common/dists.py
import re import sys class Flags: def __init__(self, *args, **kwargs): from .config import Config self._config = Config(*args, **kwargs) def parse(self, argv=None, known_only=False, help_exists=None): if help_exists is None: help_exists = not known_only if argv is None: argv = sys.argv[1:] if '--help' in argv: print('\nHelp:') lines = str(self._config).split('\n')[2:] print('\n'.join('--' + re.sub(r'[:,\[\]]', '', x) for x in lines)) help_exists and sys.exit() parsed = {} remaining = [] key = None vals = None for arg in argv: if arg.startswith('--'): if key: self._submit_entry(key, vals, parsed, remaining) if '=' in arg: key, val = arg.split('=', 1) vals = [val] else: key, vals = arg, [] else: if key: vals.append(arg) else: remaining.append(arg) self._submit_entry(key, vals, parsed, remaining) parsed = self._config.update(parsed) if known_only: return parsed, remaining else: for flag in remaining: if flag.startswith('--'): raise ValueError(f"Flag '{flag}' did not match any config keys.") assert not remaining, remaining return parsed def _submit_entry(self, key, vals, parsed, remaining): if not key and not vals: return if not key: vals = ', '.join(f"'{x}'" for x in vals) raise ValueError(f"Values {vals} were not preceeded by any flag.") name = key[len('--'):] if '=' in name: remaining.extend([key] + vals) return if self._config.IS_PATTERN.match(name): pattern = re.compile(name) keys = {k for k in self._config.flat if pattern.match(k)} elif name in self._config: keys = [name] else: keys = [] if not keys: remaining.extend([key] + vals) return if not vals: raise ValueError(f"Flag '{key}' was not followed by any values.") for key in keys: parsed[key] = self._parse_flag_value(self._config[key], vals, key) def _parse_flag_value(self, default, value, key): value = value if isinstance(value, (tuple, list)) else (value,) if isinstance(default, (tuple, list)): if len(value) == 1 and ',' in value[0]: value = value[0].split(',') return tuple(self._parse_flag_value(default[0], [x], key) for x in value) assert len(value) == 1, value value = str(value[0]) if default is None: return value if isinstance(default, bool): try: return bool(['False', 'True'].index(value)) except ValueError: message = f"Expected bool but got '{value}' for key '{key}'." raise TypeError(message) if isinstance(default, int): value = float(value) # Allow scientific notation for integers. if float(int(value)) != value: message = f"Expected int but got float '{value}' for key '{key}'." raise TypeError(message) return int(value) return type(default)(value)
cascade-main
dreamerv2/common/flags.py
import datetime import json import pathlib import imageio import numpy as np class Recorder: def __init__( self, env, directory, save_stats=True, save_video=True, save_episode=True, video_size=(512, 512)): if directory and save_stats: env = StatsRecorder(env, directory) if directory and save_video: env = VideoRecorder(env, directory, video_size) if directory and save_episode: env = EpisodeRecorder(env, directory) if not directory: env = NoopRecorder(env) self._env = env def __getattr__(self, name): if name.startswith('__'): raise AttributeError(name) return getattr(self._env, name) class NoopRecorder: def __init__(self, env): self._env = env def reset(self): obs = self._env.reset() return obs def step(self, action, policy_idx=0): return self._env.step(action) def __getattr__(self, name): if name.startswith('__'): raise AttributeError(name) return getattr(self._env, name) class StatsRecorder: def __init__(self, env, directory): self._env = env self._directory = pathlib.Path(directory).expanduser() self._directory.mkdir(exist_ok=True, parents=True) self._file = (self._directory / 'stats.jsonl').open('a') self._length = None self._reward = None self._unlocked = None self._stats = None def __getattr__(self, name): if name.startswith('__'): raise AttributeError(name) return getattr(self._env, name) def reset(self): obs = self._env.reset() self._length = 0 self._reward = 0 self._unlocked = None self._stats = None return obs def step(self, action, policy_idx=0): obs, reward, done, info = self._env.step(action) self._length += 1 self._reward += info['reward'] if done: self._stats = {'length': self._length, 'reward': round(self._reward, 1), 'policy_idx': policy_idx} for key, value in info['achievements'].items(): self._stats[f'achievement_{key}'] = value self._save() return obs, reward, done, info def _save(self): self._file.write(json.dumps(self._stats) + '\n') self._file.flush() class VideoRecorder: def __init__(self, env, directory, size=(512, 512)): if not hasattr(env, 'episode_name'): env = EpisodeName(env) self._env = env self._directory = pathlib.Path(directory).expanduser() self._directory.mkdir(exist_ok=True, parents=True) self._size = size self._frames = None def __getattr__(self, name): if name.startswith('__'): raise AttributeError(name) return getattr(self._env, name) def reset(self): obs = self._env.reset() self._frames = [self._env.render(self._size)] return obs def step(self, action): obs, reward, done, info = self._env.step(action) self._frames.append(self._env.render(self._size)) if done: self._save() return obs, reward, done, info def _save(self): filename = str(self._directory / (self._env.episode_name + '.mp4')) imageio.mimsave(filename, self._frames) class EpisodeRecorder: def __init__(self, env, directory): if not hasattr(env, 'episode_name'): env = EpisodeName(env) self._env = env self._directory = pathlib.Path(directory).expanduser() self._directory.mkdir(exist_ok=True, parents=True) self._episode = None def __getattr__(self, name): if name.startswith('__'): raise AttributeError(name) return getattr(self._env, name) def reset(self): obs = self._env.reset() self._episode = [{'image': obs}] return obs def step(self, action): # Transitions are defined from the environment perspective, meaning that a # transition contains the action and the resulting reward and next # observation produced by the environment in response to said action. obs, reward, done, info = self._env.step(action) transition = { 'action': action, 'image': obs, 'reward': reward, 'done': done, } for key, value in info.items(): if key in ('inventory', 'achievements'): continue transition[key] = value for key, value in info['achievements'].items(): transition[f'achievement_{key}'] = value for key, value in info['inventory'].items(): transition[f'ainventory_{key}'] = value self._episode.append(transition) if done: self._save() return obs, reward, done, info def _save(self): filename = str(self._directory / (self._env.episode_name + '.npz')) # Fill in zeros for keys missing at the first time step. for key, value in self._episode[1].items(): if key not in self._episode[0]: self._episode[0][key] = np.zeros_like(value) episode = { k: np.array([step[k] for step in self._episode]) for k in self._episode[0]} np.savez_compressed(filename, **episode) class EpisodeName: def __init__(self, env): self._env = env self._timestamp = None self._unlocked = None self._length = None def __getattr__(self, name): if name.startswith('__'): raise AttributeError(name) return getattr(self._env, name) def reset(self): obs = self._env.reset() self._timestamp = None self._unlocked = None self._length = 0 return obs def step(self, action): obs, reward, done, info = self._env.step(action) self._length += 1 if done: self._timestamp = datetime.datetime.now().strftime('%Y%m%dT%H%M%S') self._unlocked = sum(int(v >= 1) for v in info['achievements'].values()) return obs, reward, done, info @property def episode_name(self): return f'{self._timestamp}-ach{self._unlocked}-len{self._length}'
cascade-main
dreamerv2/common/recorder.py
# General tools. from .config import * from .counter import * from .flags import * from .logger import * from .when import * from .eval import * from .cdmc import * # RL tools. from .other import * from .driver import * from .envs import * from .replay import * # TensorFlow tools. from .tfutils import * from .dists import * from .nets import *
cascade-main
dreamerv2/common/__init__.py
import collections import contextlib import re import time import numpy as np import tensorflow as tf from tensorflow_probability import distributions as tfd from . import dists from . import tfutils class RandomAgent: def __init__(self, act_space, logprob=False): self.act_space = act_space['action'] self.logprob = logprob if hasattr(self.act_space, 'n'): self._dist = dists.OneHotDist(tf.zeros(self.act_space.n)) else: dist = tfd.Uniform(self.act_space.low, self.act_space.high) self._dist = tfd.Independent(dist, 1) def __call__(self, obs, state=None, mode=None): action = self._dist.sample(len(obs['is_first'])) output = {'action': action} if self.logprob: output['logprob'] = self._dist.log_prob(action) return output, None def static_scan(fn, inputs, start, reverse=False): last = start outputs = [[] for _ in tf.nest.flatten(start)] indices = range(tf.nest.flatten(inputs)[0].shape[0]) if reverse: indices = reversed(indices) for index in indices: inp = tf.nest.map_structure(lambda x: x[index], inputs) last = fn(last, inp) [o.append(l) for o, l in zip(outputs, tf.nest.flatten(last))] if reverse: outputs = [list(reversed(x)) for x in outputs] outputs = [tf.stack(x, 0) for x in outputs] return tf.nest.pack_sequence_as(start, outputs) def schedule(string, step): try: return float(string) except ValueError: step = tf.cast(step, tf.float32) match = re.match(r'linear\((.+),(.+),(.+)\)', string) if match: initial, final, duration = [float(group) for group in match.groups()] mix = tf.clip_by_value(step / duration, 0, 1) return (1 - mix) * initial + mix * final match = re.match(r'warmup\((.+),(.+)\)', string) if match: warmup, value = [float(group) for group in match.groups()] scale = tf.clip_by_value(step / warmup, 0, 1) return scale * value match = re.match(r'exp\((.+),(.+),(.+)\)', string) if match: initial, final, halflife = [float(group) for group in match.groups()] return (initial - final) * 0.5 ** (step / halflife) + final match = re.match(r'horizon\((.+),(.+),(.+)\)', string) if match: initial, final, duration = [float(group) for group in match.groups()] mix = tf.clip_by_value(step / duration, 0, 1) horizon = (1 - mix) * initial + mix * final return 1 - 1 / horizon raise NotImplementedError(string) def lambda_return( reward, value, pcont, bootstrap, lambda_, axis): # Setting lambda=1 gives a discounted Monte Carlo return. # Setting lambda=0 gives a fixed 1-step return. assert reward.shape.ndims == value.shape.ndims, (reward.shape, value.shape) if isinstance(pcont, (int, float)): pcont = pcont * tf.ones_like(reward) dims = list(range(reward.shape.ndims)) dims = [axis] + dims[1:axis] + [0] + dims[axis + 1:] if axis != 0: reward = tf.transpose(reward, dims) value = tf.transpose(value, dims) pcont = tf.transpose(pcont, dims) if bootstrap is None: bootstrap = tf.zeros_like(value[-1]) next_values = tf.concat([value[1:], bootstrap[None]], 0) inputs = reward + pcont * next_values * (1 - lambda_) returns = static_scan( lambda agg, cur: cur[0] + cur[1] * lambda_ * agg, (inputs, pcont), bootstrap, reverse=True) if axis != 0: returns = tf.transpose(returns, dims) return returns def action_noise(action, amount, act_space): if amount == 0: return action amount = tf.cast(amount, action.dtype) if hasattr(act_space, 'n'): probs = amount / action.shape[-1] + (1 - amount) * action return dists.OneHotDist(probs=probs).sample() else: return tf.clip_by_value(tfd.Normal(action, amount).sample(), -1, 1) class StreamNorm(tfutils.Module): def __init__(self, shape=(), momentum=0.99, scale=1.0, eps=1e-8): # Momentum of 0 normalizes only based on the current batch. # Momentum of 1 disables normalization. self._shape = tuple(shape) self._momentum = momentum self._scale = scale self._eps = eps self.mag = tf.Variable(tf.ones(shape, tf.float64), False) def __call__(self, inputs): metrics = {} self.update(inputs) metrics['mean'] = inputs.mean() metrics['std'] = inputs.std() outputs = self.transform(inputs) metrics['normed_mean'] = outputs.mean() metrics['normed_std'] = outputs.std() return outputs, metrics def reset(self): self.mag.assign(tf.ones_like(self.mag)) def update(self, inputs): batch = inputs.reshape((-1,) + self._shape) mag = tf.abs(batch).mean(0).astype(tf.float64) self.mag.assign(self._momentum * self.mag + (1 - self._momentum) * mag) def transform(self, inputs): values = inputs.reshape((-1,) + self._shape) values /= self.mag.astype(inputs.dtype)[None] + self._eps values *= self._scale return values.reshape(inputs.shape) class Timer: def __init__(self): self._indurs = collections.defaultdict(list) self._outdurs = collections.defaultdict(list) self._start_times = {} self._end_times = {} @contextlib.contextmanager def section(self, name): self.start(name) yield self.end(name) def wrap(self, function, name): def wrapped(*args, **kwargs): with self.section(name): return function(*args, **kwargs) return wrapped def start(self, name): now = time.time() self._start_times[name] = now if name in self._end_times: last = self._end_times[name] self._outdurs[name].append(now - last) def end(self, name): now = time.time() self._end_times[name] = now self._indurs[name].append(now - self._start_times[name]) def result(self): metrics = {} for key in self._indurs: indurs = self._indurs[key] outdurs = self._outdurs[key] metrics[f'timer_count_{key}'] = len(indurs) metrics[f'timer_inside_{key}'] = np.sum(indurs) metrics[f'timer_outside_{key}'] = np.sum(outdurs) indurs.clear() outdurs.clear() return metrics class CarryOverState: def __init__(self, fn): self._fn = fn self._state = None def __call__(self, *args): self._state, out = self._fn(*args, self._state) return out
cascade-main
dreamerv2/common/other.py
import json import os import pathlib import time import numpy as np class Logger: def __init__(self, step, outputs, multiplier=1): self._step = step self._outputs = outputs self._multiplier = multiplier self._last_step = None self._last_time = None self._metrics = [] def add(self, mapping, prefix=None): step = int(self._step) * self._multiplier for name, value in dict(mapping).items(): name = f'{prefix}_{name}' if prefix else name value = np.array(value) if len(value.shape) not in (0, 2, 3, 4): raise ValueError( f"Shape {value.shape} for name '{name}' cannot be " "interpreted as scalar, image, or video.") self._metrics.append((step, name, value)) def scalar(self, name, value): self.add({name: value}) def image(self, name, value): self.add({name: value}) def video(self, name, value): self.add({name: value}) def write(self, fps=False): fps and self.scalar('fps', self._compute_fps()) if not self._metrics: return for output in self._outputs: output(self._metrics) self._metrics.clear() def _compute_fps(self): step = int(self._step) * self._multiplier if self._last_step is None: self._last_time = time.time() self._last_step = step return 0 steps = step - self._last_step duration = time.time() - self._last_time self._last_time += duration self._last_step = step return steps / duration class TerminalOutput: def __call__(self, summaries): step = max(s for s, _, _, in summaries) scalars = {k: float(v) for _, k, v in summaries if len(v.shape) == 0} formatted = {k: self._format_value(v) for k, v in scalars.items()} print(f'[{step}]', ' / '.join(f'{k} {v}' for k, v in formatted.items())) def _format_value(self, value): if value == 0: return '0' elif 0.01 < abs(value) < 10000: value = f'{value:.2f}' value = value.rstrip('0') value = value.rstrip('0') value = value.rstrip('.') return value else: value = f'{value:.1e}' value = value.replace('.0e', 'e') value = value.replace('+0', '') value = value.replace('+', '') value = value.replace('-0', '-') return value class JSONLOutput: def __init__(self, logdir): self._logdir = pathlib.Path(logdir).expanduser() def __call__(self, summaries): scalars = {k: float(v) for _, k, v in summaries if len(v.shape) == 0} step = max(s for s, _, _, in summaries) with (self._logdir / 'metrics.jsonl').open('a') as f: f.write(json.dumps({'step': step, **scalars}) + '\n') class TensorBoardOutput: def __init__(self, logdir, fps=20): # The TensorFlow summary writer supports file protocols like gs://. We use # os.path over pathlib here to preserve those prefixes. self._logdir = os.path.expanduser(logdir) self._writer = None self._fps = fps def __call__(self, summaries): import tensorflow as tf self._ensure_writer() self._writer.set_as_default() for step, name, value in summaries: if len(value.shape) == 0: tf.summary.scalar('scalars/' + name, value, step) elif len(value.shape) == 2: tf.summary.image(name, value, step) elif len(value.shape) == 3: tf.summary.image(name, value, step) elif len(value.shape) == 4: self._video_summary(name, value, step) self._writer.flush() def _ensure_writer(self): if not self._writer: import tensorflow as tf self._writer = tf.summary.create_file_writer( self._logdir, max_queue=1000) def _video_summary(self, name, video, step): import tensorflow as tf import tensorflow.compat.v1 as tf1 name = name if isinstance(name, str) else name.decode('utf-8') if np.issubdtype(video.dtype, np.floating): video = np.clip(255 * video, 0, 255).astype(np.uint8) try: T, H, W, C = video.shape summary = tf1.Summary() image = tf1.Summary.Image(height=H, width=W, colorspace=C) image.encoded_image_string = encode_gif(video, self._fps) summary.value.add(tag=name, image=image) tf.summary.experimental.write_raw_pb(summary.SerializeToString(), step) except (IOError, OSError) as e: print('GIF summaries require ffmpeg in $PATH.', e) tf.summary.image(name, video, step) def encode_gif(frames, fps): from subprocess import Popen, PIPE h, w, c = frames[0].shape pxfmt = {1: 'gray', 3: 'rgb24'}[c] cmd = ' '.join([ 'ffmpeg -y -f rawvideo -vcodec rawvideo', f'-r {fps:.02f} -s {w}x{h} -pix_fmt {pxfmt} -i - -filter_complex', '[0:v]split[x][z];[z]palettegen[y];[x]fifo[x];[x][y]paletteuse', f'-r {fps:.02f} -f gif -']) proc = Popen(cmd.split(' '), stdin=PIPE, stdout=PIPE, stderr=PIPE) for image in frames: proc.stdin.write(image.tobytes()) out, err = proc.communicate() if proc.returncode: raise IOError('\n'.join([' '.join(cmd), err.decode('utf8')])) del proc return out
cascade-main
dreamerv2/common/logger.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import collections import datetime import io import pathlib import uuid import numpy as np import tensorflow as tf class Replay: def __init__( self, directory, capacity=0, offline_init=False, ongoing=False, minlen=1, maxlen=0, prioritize_ends=False, multi_reward=False, offline_directory=None): self._capacity = capacity self._ongoing = ongoing self._minlen = minlen self._maxlen = maxlen self._prioritize_ends = prioritize_ends self._random = np.random.RandomState() self._eval_score = 0 self.achievements = collections.defaultdict(list) self._solved_levels = 0 self._multi_reward = multi_reward self._max_scores = 0 self.rewards = [] self._mean_scores = 0 self._directory = pathlib.Path(directory).expanduser() self._directory.mkdir(parents=True, exist_ok=True) if offline_init: self._total_episodes = 0 self._total_steps = 0 self._loaded_episodes = 0 self._loaded_steps = 0 self._complete_eps = {} if type(offline_directory) is not list: offline_directory = [offline_directory] for d in offline_directory: print(f"\nloading...{d}") path = pathlib.Path(d).expanduser() complete_eps, t_steps, t_eps = self.load_episodes(path, capacity, minlen) saved_eps = save_episodes(self._directory, complete_eps) self._complete_eps.update(saved_eps) self._enforce_limit() self._loaded_episodes += len(complete_eps) self._loaded_steps += sum(eplen(x) for x in complete_eps.values()) # filename -> key -> value_sequence self._complete_eps, _, _ = self.load_episodes(self._directory, capacity, minlen) # worker -> key -> value_sequence self._total_episodes, self._total_steps = count_episodes(directory) self._loaded_episodes = len(self._complete_eps) self._loaded_steps = sum(eplen(x) for x in self._complete_eps.values()) self._ongoing_eps = collections.defaultdict(lambda: collections.defaultdict(list)) @property def stats(self): return { 'total_steps': self._total_steps, 'total_episodes': self._total_episodes, 'loaded_steps': self._loaded_steps, 'loaded_episodes': self._loaded_episodes, 'running_score': self._eval_score, 'solved_levels': self._solved_levels, 'max_scores': self._max_scores, 'mean_scores': self._mean_scores } def add_step(self, transition, worker=0): episode = self._ongoing_eps[worker] for key, value in transition.items(): episode[key].append(value) if transition['is_last']: self.add_episode(episode) episode.clear() def add_episode(self, episode): length = eplen(episode) if 'log_achievement_collect_diamond' in episode.keys(): self.update_crafter_score(episode) if self._multi_reward: pass # in case we need to do something here elif 'reward' in episode.keys() and sum(episode['reward']) > 0: rew = sum(episode['reward']) self._solved_levels += 1 self._max_scores = max(self._max_scores, rew) self.rewards.append(rew) self._mean_scores = np.mean(self.rewards) if length < self._minlen: print(f'Skipping short episode of length {length}.') return self._total_steps += length self._loaded_steps += length self._total_episodes += 1 self._loaded_episodes += 1 episode = {key: convert(value) for key, value in episode.items()} if self._multi_reward: episode['reward'] = reshape_rewards_dmc(episode) filename = save_episode(self._directory, episode) self._complete_eps[str(filename)] = episode self._enforce_limit() def dataset(self, batch, length): example = next(iter(self._generate_chunks(length))) dataset = tf.data.Dataset.from_generator( lambda: self._generate_chunks(length), {k: v.dtype for k, v in example.items()}, {k: v.shape for k, v in example.items()}) dataset = dataset.batch(batch, drop_remainder=True) dataset = dataset.prefetch(5) return dataset def _generate_chunks(self, length): sequence = self._sample_sequence() while True: chunk = collections.defaultdict(list) added = 0 while added < length: needed = length - added adding = {k: v[:needed] for k, v in sequence.items()} sequence = {k: v[needed:] for k, v in sequence.items()} for key, value in adding.items(): chunk[key].append(value) added += len(adding['action']) if len(sequence['action']) < 1: sequence = self._sample_sequence() chunk = {k: np.concatenate(v) for k, v in chunk.items()} yield chunk def _sample_sequence(self): episodes = list(self._complete_eps.values()) if self._ongoing: episodes += [ x for x in self._ongoing_eps.values() if eplen(x) >= self._minlen] episode = self._random.choice(episodes) total = len(episode['action']) length = total if self._maxlen: length = min(length, self._maxlen) # Randomize length to avoid all chunks ending at the same time in case the # episodes are all of the same length. length -= np.random.randint(self._minlen) length = max(self._minlen, length) upper = total - length + 1 if self._prioritize_ends: upper += self._minlen index = min(self._random.randint(upper), total - length) sequence = { k: convert(v[index: index + length]) for k, v in episode.items() if not k.startswith('log_')} sequence['is_first'] = np.zeros(len(sequence['action']), np.bool) sequence['is_first'][0] = True if self._maxlen: assert self._minlen <= len(sequence['action']) <= self._maxlen return sequence def _enforce_limit(self): if not self._capacity: return while self._loaded_episodes > 1 and self._loaded_steps > self._capacity: # Relying on Python preserving the insertion order of dicts. oldest, episode = next(iter(self._complete_eps.items())) self._loaded_steps -= eplen(episode) self._loaded_episodes -= 1 del self._complete_eps[oldest] def update_crafter_score(self, episode): for key, val in episode.items(): if 'log_achievement' in key: self.achievements[key] += [int(any([x.item() for x in episode[key]]))] means = [np.mean(vals)*100 for vals in self.achievements.values()] self._eval_score = (np.exp(np.nanmean(np.log(1 + np.array(means)), -1)) - 1) def load_episodes(self, directory, capacity=None, minlen=1): # The returned directory from filenames to episodes is guaranteed to be in # temporally sorted order. filenames = sorted(directory.glob('*.npz')) if capacity: num_steps = 0 num_episodes = 0 for filename in reversed(filenames): length = int(str(filename).split('-')[-1][:-4]) num_steps += length num_episodes += 1 if num_steps >= capacity: break filenames = filenames[-num_episodes:] episodes = {} num_steps = 0 num_episodes = 0 for filename in filenames: try: with filename.open('rb') as f: episode = np.load(f) episode = {k: episode[k] for k in episode.keys()} for key, val in episode.items(): if 'log_achievement' in key: self.achievements[key] += [int(any([x.item() for x in episode[key]]))] if not self._multi_reward: if 'reward' in episode.keys() and sum(episode['reward']) > 0: rew = sum(episode['reward']) self._solved_levels += 1 self._max_scores = max(self._max_scores, rew) self.rewards.append(rew) self._mean_scores = np.mean(self.rewards) num_steps += 1 num_episodes += 1 except Exception as e: print(f'Could not load episode {str(filename)}: {e}') continue if 'is_terminal' not in episode: episode['is_terminal'] = episode['discount'] == 0 episodes[str(filename)] = episode return episodes, num_steps, num_episodes def count_episodes(directory): filenames = list(directory.glob('*.npz')) num_episodes = len(filenames) num_steps = sum(int(str(n).split('-')[-1][:-4]) - 1 for n in filenames) return num_episodes, num_steps def save_episode(directory, episode): timestamp = datetime.datetime.now().strftime('%Y%m%dT%H%M%S') identifier = str(uuid.uuid4().hex) length = eplen(episode) filename = directory / f'{timestamp}-{identifier}-{length}.npz' with io.BytesIO() as f1: np.savez_compressed(f1, **episode) f1.seek(0) with filename.open('wb') as f2: f2.write(f1.read()) return filename def save_episodes(directory, episodes): saved_eps = {} for _, ep in episodes.items(): filename = save_episode(directory, ep) saved_eps[str(filename)] = ep return saved_eps def convert(value): value = np.array(value) if np.issubdtype(value.dtype, np.floating): return value.astype(np.float32) elif np.issubdtype(value.dtype, np.signedinteger): return value.astype(np.int32) elif np.issubdtype(value.dtype, np.uint8): return value.astype(np.uint8) return value def reshape_rewards_dmc(episode): rew = np.concatenate([r.reshape(1, -1) for r in episode['reward'][1:]], 0) rew = np.concatenate((np.zeros(rew.shape[1]).reshape(1, rew.shape[1]), rew)) return rew def eplen(episode): return len(episode['action']) - 1
cascade-main
dreamerv2/common/replay.py
"""In gym, the RAM is represented as an 128-element array, where each element in the array can range from 0 to 255 The atari_dict below is organized as so: key: the name of the game value: the game dictionary Game dictionary is organized as: key: state variable name value: the element in the RAM array where the value of that state variable is stored e.g. the value of the x coordinate of the player in asteroids is stored in the 73rd (counting up from 0) element of the RAM array (when the player in asteroids moves horizontally, ram_array[73] should change in value correspondingly) """ """ MZR player_direction values: 72: facing left, 40: facing left, climbing down ladder/rope 24: facing left, climbing up ladder/rope 128: facing right 32: facing right, climbing down ladder/rope 16: facing right climbing up ladder/rope """ atari_dict = { "asteroids": dict(enemy_asteroids_y=[3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19], enemy_asteroids_x=[21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37], player_x=73, player_y=74, num_lives_direction=60, player_score_high=61, player_score_low=62, player_missile_x1=83, player_missile_x2=84, player_missile_y1=86, player_missile_y2=87, player_missile1_direction=89, player_missile2_direction=90), "battlezone": dict( # red_enemy_x=75, blue_tank_facing_direction=46, # 17 left 21 forward 29 right blue_tank_size_y=47, # tank gets larger as it gets closer blue_tank_x=48, blue_tank2_facing_direction=52, blue_tank2_size_y=53, blue_tank2_x=54, num_lives=58, missile_y=105, compass_needles_angle=84, angle_of_tank=4, # as shown by what the mountains look like left_tread_position=59, # got to mod this number by 8 to get unique values right_tread_position=60, # got to mod this number by 8 to get unique values crosshairs_color=108, # 0 if black 46 if yellow score=29), "berzerk": dict(player_x=19, player_y=11, player_direction=14, player_missile_x=22, player_missile_y=23, player_missile_direction=21, robot_missile_direction=26, robot_missile_x=29, robot_missile_y=30, num_lives=90, robots_killed_count=91, game_level=92, enemy_evilOtto_x=46, enemy_evilOtto_y=89, enemy_robots_x=range(65, 73), enemy_robots_y=range(56, 65), player_score=range(93, 96)), "bowling": dict(ball_x=30, ball_y=41, player_x=29, player_y=40, frame_number_display=36, pin_existence=range(57, 67), score=33), "boxing": dict(player_x=32, player_y=34, enemy_x=33, enemy_y=35, enemy_score=19, clock=17, player_score=18), "breakout": dict(ball_x=99, ball_y=101, player_x=72, blocks_hit_count=77, block_bit_map=range(30), # see breakout bitmaps tab score=84), # 5 for each hit "demonattack": dict(level=62, player_x=22, enemy_x1=17, enemy_x2=18, enemy_x3=19, missile_y=21, enemy_y1=69, enemy_y2=70, enemy_y3=71, num_lives=114), "freeway": dict(player_y=14, score=103, enemy_car_x=range(108, 118)), # which lane the car collided with player "frostbite": dict( top_row_iceflow_x=34, second_row_iceflow_x=33, third_row_iceflow_x=32, fourth_row_iceflow_x=31, enemy_bear_x=104, num_lives=76, igloo_blocks_count=77, # 255 is none and 15 is all " enemy_x=range(84, 88), # 84 bottom row - 87 top row player_x=102, player_y=100, player_direction=4, score=[72, 73, 74]), "hero": dict(player_x=27, player_y=31, power_meter=43, room_number=28, level_number=117, dynamite_count=50, score=[56, 57]), "montezumarevenge": dict(room_number=3, player_x=42, player_y=43, player_direction=52, # 72: facing left, 40: facing left, climbing down ladder/rope 24: facing left, climbing up ladder/rope 128: facing right 32: facing right, climbing down ladder/rope, 16: facing right climbing up ladder/rope enemy_skull_x=47, enemy_skull_y=46, key_monster_x=44, key_monster_y=45, level=57, num_lives=58, items_in_inventory_count=61, room_state=62, score_0=19, score_1=20, score_2=21), "mspacman": dict(enemy_sue_x=6, enemy_inky_x=7, enemy_pinky_x=8, enemy_blinky_x=9, enemy_sue_y=12, enemy_inky_y=13, enemy_pinky_y=14, enemy_blinky_y=15, player_x=10, player_y=16, fruit_x=11, fruit_y=17, ghosts_count=19, player_direction=56, dots_eaten_count=119, player_score=120, num_lives=123), "pitfall": dict(player_x=97, # 8-148 player_y=105, # 21-86 except for when respawning then 0-255 with confusing wraparound enemy_logs_x=98, # 0-160 enemy_scorpion_x=99, # player_y_on_ladder= 108, # 0-20 # player_collided_with_rope= 5, #yes if bit 6 is 1 bottom_of_rope_y=18, # 0-20 varies even when you can't see rope clock_sec=89, clock_min=88 ), "pong": dict(player_y=51, player_x=46, enemy_y=50, enemy_x=45, ball_x=49, ball_y=54, enemy_score=13, player_score=14), "privateeye": dict(player_x=63, player_y=86, room_number=92, clock=[67, 69], player_direction=58, score=[73, 74], dove_x=48, dove_y=39), "qbert": dict(player_x=43, player_y=67, player_column=35, red_enemy_column=69, green_enemy_column=105, score=[89, 90, 91], # binary coded decimal score tile_color=[ 21, # row of 1 52, 54, # row of 2 83, 85, 87, # row of 3 98, 100, 102, 104, # row of 4 1, 3, 5, 7, 9, # row of 5 32, 34, 36, 38, 40, 42]), # row of 6 "riverraid": dict(player_x=51, missile_x=117, missile_y=50, fuel_meter_high=55, # high value displayed fuel_meter_low=56 # low value ), "seaquest": dict(enemy_obstacle_x=range(30, 34), player_x=70, player_y=97, diver_or_enemy_missile_x=range(71, 75), player_direction=86, player_missile_direction=87, oxygen_meter_value=102, player_missile_x=103, score=[57, 58], num_lives=59, divers_collected_count=62), "skiing": dict(player_x=25, clock_m=104, clock_s=105, clock_ms=106, score=107, object_y=range(87, 94)), # object_y_1 is y position of whatever topmost object on the screen is "spaceinvaders": dict(invaders_left_count=17, player_score=104, num_lives=73, player_x=28, enemies_x=26, missiles_y=9, enemies_y=24), "tennis": dict(enemy_x=27, enemy_y=25, enemy_score=70, ball_x=16, ball_y=17, player_x=26, player_y=24, player_score=69), "venture": dict(sprite0_y=20, sprite1_y=21, sprite2_y=22, sprite3_y=23, sprite4_y=24, sprite5_y=25, sprite0_x=79, sprite1_x=80, sprite2_x=81, sprite3_x=82, sprite4_x=83, sprite5_x=84, player_x=85, player_y=26, current_room=90, # The number of the room the player is currently in 0 to 9_ num_lives=70, score_1_2=71, score_3_4=72), "videopinball": dict(ball_x=67, ball_y=68, player_left_paddle_y=98, player_right_paddle_y=102, score_1=48, score_2=50), "yarsrevenge": dict(player_x=32, player_y=31, player_missile_x=38, player_missile_y=37, enemy_x=43, enemy_y=42, enemy_missile_x=47, enemy_missile_y=46) } # break up any lists (e.g. dict(clock=[67, 69]) -> dict(clock_0=67, clock_1=69) ) update_dict = {k: {} for k in atari_dict.keys()} remove_dict = {k: [] for k in atari_dict.keys()} for game, d in atari_dict.items(): for k, v in d.items(): if isinstance(v, range) or isinstance(v, list): for i, vi in enumerate(v): update_dict[game]["%s_%i" % (k, i)] = vi remove_dict[game].append(k) for k in atari_dict.keys(): atari_dict[k].update(update_dict[k]) for rk in remove_dict[k]: atari_dict[k].pop(rk)
cascade-main
dreamerv2/common/ram_annotations.py
class Every: def __init__(self, every): self._every = every self._last = None def __call__(self, step): step = int(step) if not self._every: return False if self._last is None: self._last = step return True if step >= self._last + self._every: self._last += self._every return True return False class Once: def __init__(self): self._once = True def __call__(self): if self._once: self._once = False return True return False class Until: def __init__(self, until): self._until = until def __call__(self, step): step = int(step) if not self._until: return True return step < self._until
cascade-main
dreamerv2/common/when.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from collections import defaultdict from .cdmc import DMC_TASK_IDS import numpy as np from scipy.stats import gmean def get_stats_at_idx(driver, task, idx): """ Get the train / eval stats from driver from the idx env. """ prefix = "eval_" eps = driver._eps[idx] eval_data = defaultdict(list) if task == 'crafter_noreward': for ep in eps: for key, val in ep.items(): if 'log_achievement_' in key: eval_data[prefix + 'rew_'+key.split('log_achievement_')[1]].append(val.item()) eval_data[prefix + 'sr_'+key.split('log_achievement_')[1]].append(1 if val.item() > 0 else 0) eval_data['reward'].append(ep['log_reward'].item()) eval_data = {key: np.mean(val) for key, val in eval_data.items()} eval_data[prefix + 'crafter_score'] = gmean([val for key, val in eval_data.items() if 'eval_sr' in key]) elif task in DMC_TASK_IDS: rewards = [ep['reward'] for ep in eps[1:]] for idx, goal in enumerate(DMC_TASK_IDS[task]): eval_data[prefix + 'reward_' + goal] = np.sum([r[idx] for r in rewards]) else: eval_data[prefix + 'reward'] = np.sum([ep['reward'] for ep in eps]) return eval_data def get_stats(driver, task): per_env_data = defaultdict(list) num_envs = len(driver._envs) for i in range(num_envs): stat = get_stats_at_idx(driver, task, i) for k, v in stat.items(): per_env_data[k].append(v) data = {} for k, v in per_env_data.items(): data[k] = np.mean(v) return data def eval(driver, config, expl_policies, logdir): ## reward for the exploration agents mets = {} mean_pop = {} for idx in range(config.num_agents): policy = expl_policies[idx] driver(policy, episodes=config.eval_eps, policy_idx=idx) data = get_stats(driver, task=config.task) if idx == 0: for key, val in data.items(): mean_pop[key] = np.mean(val) else: for key,val in data.items(): mean_pop[key] += np.mean(val) mets.update({key: np.mean(val) for key, val in mean_pop.items()}) return mets
cascade-main
dreamerv2/common/eval.py
import numpy as np class Driver: def __init__(self, envs, **kwargs): self._envs = envs self._kwargs = kwargs self._on_steps = [] self._on_resets = [] self._on_episodes = [] self._act_spaces = [env.act_space for env in envs] self.reset() def on_step(self, callback): self._on_steps.append(callback) def on_reset(self, callback): self._on_resets.append(callback) def on_episode(self, callback): self._on_episodes.append(callback) def reset(self): self._obs = [None] * len(self._envs) self._eps = [None] * len(self._envs) self._state = None def __call__(self, policy, steps=0, episodes=0, policy_idx=0, save_img=False): step, episode = 0, 0 while step < steps or episode < episodes: obs = { i: self._envs[i].reset() for i, ob in enumerate(self._obs) if ob is None or ob['is_last']} for i, ob in obs.items(): self._obs[i] = ob() if callable(ob) else ob act = {k: np.zeros(v.shape) for k, v in self._act_spaces[i].items()} tran = {k: self._convert(v) for k, v in {**ob, **act}.items()} [fn(tran, worker=i, **self._kwargs) for fn in self._on_resets] self._eps[i] = [tran] obs = {k: np.stack([o[k] for o in self._obs]) for k in self._obs[0]} actions, self._state = policy(obs, self._state, **self._kwargs) actions = [ {k: np.array(actions[k][i]) for k in actions} for i in range(len(self._envs))] assert len(actions) == len(self._envs) # if episode == 0: should_save_img = save_img # else: # should_save_img = False obs = [e.step(a) for e, a in zip(self._envs, actions)] obs = [ob() if callable(ob) else ob for ob in obs] for i, (act, ob) in enumerate(zip(actions, obs)): tran = {k: self._convert(v) for k, v in {**ob, **act}.items()} [fn(tran, worker=i, **self._kwargs) for fn in self._on_steps] self._eps[i].append(tran) step += 1 if ob['is_last']: ep = self._eps[i] ep = {k: self._convert([t[k] for t in ep]) for k in ep[0]} [fn(ep, **self._kwargs) for fn in self._on_episodes] episode += 1 self._obs = obs def _convert(self, value): value = np.array(value) if np.issubdtype(value.dtype, np.floating): return value.astype(np.float32) elif np.issubdtype(value.dtype, np.signedinteger): return value.astype(np.int32) elif np.issubdtype(value.dtype, np.uint8): return value.astype(np.uint8) return value
cascade-main
dreamerv2/common/driver.py
import functools @functools.total_ordering class Counter: def __init__(self, initial=0): self.value = initial def __int__(self): return int(self.value) def __eq__(self, other): return int(self) == other def __ne__(self, other): return int(self) != other def __lt__(self, other): return int(self) < other def __add__(self, other): return int(self) + other def increment(self, amount=1): self.value += amount
cascade-main
dreamerv2/common/counter.py
import re import numpy as np import tensorflow as tf from tensorflow.keras import layers as tfkl from tensorflow_probability import distributions as tfd from tensorflow.keras.mixed_precision import experimental as prec import common class EnsembleRSSM(common.Module): def __init__( self, ensemble=5, stoch=30, deter=200, hidden=200, discrete=False, act='elu', norm='none', std_act='softplus', min_std=0.1): super().__init__() self._ensemble = ensemble self._stoch = stoch self._deter = deter self._hidden = hidden self._discrete = discrete self._act = get_act(act) self._norm = norm self._std_act = std_act self._min_std = min_std self._cell = GRUCell(self._deter, norm=True) self._cast = lambda x: tf.cast(x, prec.global_policy().compute_dtype) def initial(self, batch_size): dtype = prec.global_policy().compute_dtype if self._discrete: state = dict( logit=tf.zeros([batch_size, self._stoch, self._discrete], dtype), stoch=tf.zeros([batch_size, self._stoch, self._discrete], dtype), deter=self._cell.get_initial_state(None, batch_size, dtype)) else: state = dict( mean=tf.zeros([batch_size, self._stoch], dtype), std=tf.zeros([batch_size, self._stoch], dtype), stoch=tf.zeros([batch_size, self._stoch], dtype), deter=self._cell.get_initial_state(None, batch_size, dtype)) return state @tf.function def observe(self, embed, action, is_first, state=None): swap = lambda x: tf.transpose(x, [1, 0] + list(range(2, len(x.shape)))) if state is None: state = self.initial(tf.shape(action)[0]) post, prior = common.static_scan( lambda prev, inputs: self.obs_step(prev[0], *inputs), (swap(action), swap(embed), swap(is_first)), (state, state)) post = {k: swap(v) for k, v in post.items()} prior = {k: swap(v) for k, v in prior.items()} return post, prior @tf.function def imagine(self, action, state=None): swap = lambda x: tf.transpose(x, [1, 0] + list(range(2, len(x.shape)))) if state is None: state = self.initial(tf.shape(action)[0]) assert isinstance(state, dict), state action = swap(action) prior = common.static_scan(self.img_step, action, state) prior = {k: swap(v) for k, v in prior.items()} return prior def get_feat(self, state): stoch = self._cast(state['stoch']) if self._discrete: shape = stoch.shape[:-2] + [self._stoch * self._discrete] stoch = tf.reshape(stoch, shape) return tf.concat([stoch, state['deter']], -1) def get_dist(self, state, ensemble=False): if ensemble: state = self._suff_stats_ensemble(state['deter']) if self._discrete: logit = state['logit'] logit = tf.cast(logit, tf.float32) dist = tfd.Independent(common.OneHotDist(logit), 1) else: mean, std = state['mean'], state['std'] mean = tf.cast(mean, tf.float32) std = tf.cast(std, tf.float32) dist = tfd.MultivariateNormalDiag(mean, std) return dist @tf.function def obs_step(self, prev_state, prev_action, embed, is_first, sample=True): # if is_first.any(): prev_state, prev_action = tf.nest.map_structure( lambda x: tf.einsum( 'b,b...->b...', 1.0 - is_first.astype(x.dtype), x), (prev_state, prev_action)) prior = self.img_step(prev_state, prev_action, sample) x = tf.concat([prior['deter'], embed], -1) x = self.get('obs_out', tfkl.Dense, self._hidden)(x) x = self.get('obs_out_norm', NormLayer, self._norm)(x) x = self._act(x) stats = self._suff_stats_layer('obs_dist', x) dist = self.get_dist(stats) stoch = dist.sample() if sample else dist.mode() post = {'stoch': stoch, 'deter': prior['deter'], **stats} return post, prior @tf.function def img_step(self, prev_state, prev_action, sample=True): prev_stoch = self._cast(prev_state['stoch']) prev_action = self._cast(prev_action) if self._discrete: shape = prev_stoch.shape[:-2] + [self._stoch * self._discrete] prev_stoch = tf.reshape(prev_stoch, shape) x = tf.concat([prev_stoch, prev_action], -1) x = self.get('img_in', tfkl.Dense, self._hidden)(x) x = self.get('img_in_norm', NormLayer, self._norm)(x) x = self._act(x) deter = prev_state['deter'] x, deter = self._cell(x, [deter]) deter = deter[0] # Keras wraps the state in a list. stats = self._suff_stats_ensemble(x) index = tf.random.uniform((), 0, self._ensemble, tf.int32) stats = {k: v[index] for k, v in stats.items()} dist = self.get_dist(stats) stoch = dist.sample() if sample else dist.mode() prior = {'stoch': stoch, 'deter': deter, **stats} return prior def _suff_stats_ensemble(self, inp): bs = list(inp.shape[:-1]) inp = inp.reshape([-1, inp.shape[-1]]) stats = [] for k in range(self._ensemble): x = self.get(f'img_out_{k}', tfkl.Dense, self._hidden)(inp) x = self.get(f'img_out_norm_{k}', NormLayer, self._norm)(x) x = self._act(x) stats.append(self._suff_stats_layer(f'img_dist_{k}', x)) stats = { k: tf.stack([x[k] for x in stats], 0) for k, v in stats[0].items()} stats = { k: v.reshape([v.shape[0]] + bs + list(v.shape[2:])) for k, v in stats.items()} return stats def _suff_stats_layer(self, name, x): if self._discrete: x = self.get(name, tfkl.Dense, self._stoch * self._discrete, None)(x) logit = tf.reshape(x, x.shape[:-1] + [self._stoch, self._discrete]) return {'logit': logit} else: x = self.get(name, tfkl.Dense, 2 * self._stoch, None)(x) mean, std = tf.split(x, 2, -1) std = { 'softplus': lambda: tf.nn.softplus(std), 'sigmoid': lambda: tf.nn.sigmoid(std), 'sigmoid2': lambda: 2 * tf.nn.sigmoid(std / 2), }[self._std_act]() std = std + self._min_std return {'mean': mean, 'std': std} def kl_loss(self, post, prior, forward, balance, free, free_avg): kld = tfd.kl_divergence sg = lambda x: tf.nest.map_structure(tf.stop_gradient, x) lhs, rhs = (prior, post) if forward else (post, prior) mix = balance if forward else (1 - balance) if balance == 0.5: value = kld(self.get_dist(lhs), self.get_dist(rhs)) loss = tf.maximum(value, free).mean() else: value_lhs = value = kld(self.get_dist(lhs), self.get_dist(sg(rhs))) value_rhs = kld(self.get_dist(sg(lhs)), self.get_dist(rhs)) if free_avg: loss_lhs = tf.maximum(value_lhs.mean(), free) loss_rhs = tf.maximum(value_rhs.mean(), free) else: loss_lhs = tf.maximum(value_lhs, free).mean() loss_rhs = tf.maximum(value_rhs, free).mean() loss = mix * loss_lhs + (1 - mix) * loss_rhs return loss, value class Encoder(common.Module): def __init__( self, shapes, cnn_keys=r'.*', mlp_keys=r'.*', act='elu', norm='none', cnn_depth=48, cnn_kernels=(4, 4, 4, 4), mlp_layers=[400, 400, 400, 400]): self.shapes = shapes self.cnn_keys = [ k for k, v in shapes.items() if re.match(cnn_keys, k) and len(v) == 3] self.mlp_keys = [ k for k, v in shapes.items() if re.match(mlp_keys, k) and len(v) == 1] print('Encoder CNN inputs:', list(self.cnn_keys)) print('Encoder MLP inputs:', list(self.mlp_keys)) self._act = get_act(act) self._norm = norm self._cnn_depth = cnn_depth self._cnn_kernels = cnn_kernels self._mlp_layers = mlp_layers @tf.function def __call__(self, data): key, shape = list(self.shapes.items())[0] batch_dims = data[key].shape[:-len(shape)] data = { k: tf.reshape(v, (-1,) + tuple(v.shape)[len(batch_dims):]) for k, v in data.items()} outputs = [] if self.cnn_keys: outputs.append(self._cnn({k: data[k] for k in self.cnn_keys})) if self.mlp_keys: outputs.append(self._mlp({k: data[k] for k in self.mlp_keys})) output = tf.concat(outputs, -1) return output.reshape(batch_dims + output.shape[1:]) def _cnn(self, data): x = tf.concat(list(data.values()), -1) x = x.astype(prec.global_policy().compute_dtype) for i, kernel in enumerate(self._cnn_kernels): depth = 2 ** i * self._cnn_depth x = self.get(f'conv{i}', tfkl.Conv2D, depth, kernel, 2)(x) x = self.get(f'convnorm{i}', NormLayer, self._norm)(x) x = self._act(x) return x.reshape(tuple(x.shape[:-3]) + (-1,)) def _mlp(self, data): x = tf.concat(list(data.values()), -1) x = x.astype(prec.global_policy().compute_dtype) for i, width in enumerate(self._mlp_layers): x = self.get(f'dense{i}', tfkl.Dense, width)(x) x = self.get(f'densenorm{i}', NormLayer, self._norm)(x) x = self._act(x) return x class Decoder(common.Module): def __init__( self, shapes, cnn_keys=r'.*', mlp_keys=r'.*', act='elu', norm='none', cnn_depth=48, cnn_kernels=(4, 4, 4, 4), mlp_layers=[400, 400, 400, 400]): self._shapes = shapes self.cnn_keys = [ k for k, v in shapes.items() if re.match(cnn_keys, k) and len(v) == 3] self.mlp_keys = [ k for k, v in shapes.items() if re.match(mlp_keys, k) and len(v) == 1] print('Decoder CNN outputs:', list(self.cnn_keys)) print('Decoder MLP outputs:', list(self.mlp_keys)) self._act = get_act(act) self._norm = norm self._cnn_depth = cnn_depth self._cnn_kernels = cnn_kernels self._mlp_layers = mlp_layers def __call__(self, features): features = tf.cast(features, prec.global_policy().compute_dtype) outputs = {} if self.cnn_keys: outputs.update(self._cnn(features)) if self.mlp_keys: outputs.update(self._mlp(features)) return outputs def _cnn(self, features): channels = {k: self._shapes[k][-1] for k in self.cnn_keys} ConvT = tfkl.Conv2DTranspose x = self.get('convin', tfkl.Dense, 32 * self._cnn_depth)(features) x = tf.reshape(x, [-1, 1, 1, 32 * self._cnn_depth]) for i, kernel in enumerate(self._cnn_kernels): depth = 2 ** (len(self._cnn_kernels) - i - 2) * self._cnn_depth act, norm = self._act, self._norm if i == len(self._cnn_kernels) - 1: depth, act, norm = sum(channels.values()), tf.identity, 'none' x = self.get(f'conv{i}', ConvT, depth, kernel, 2)(x) x = self.get(f'convnorm{i}', NormLayer, norm)(x) x = act(x) x = x.reshape(features.shape[:-1] + x.shape[1:]) means = tf.split(x, list(channels.values()), -1) dists = { key: tfd.Independent(tfd.Normal(mean, 1), 3) for (key, shape), mean in zip(channels.items(), means)} return dists def _mlp(self, features): shapes = {k: self._shapes[k] for k in self.mlp_keys} x = features for i, width in enumerate(self._mlp_layers): x = self.get(f'dense{i}', tfkl.Dense, width)(x) x = self.get(f'densenorm{i}', NormLayer, self._norm)(x) x = self._act(x) dists = {} for key, shape in shapes.items(): dists[key] = self.get(f'dense_{key}', DistLayer, shape)(x) return dists class MLP(common.Module): def __init__(self, shape, layers, units, act='elu', norm='none', **out): self._shape = (shape,) if isinstance(shape, int) else shape self._layers = layers self._units = units self._norm = norm self._act = get_act(act) self._out = out def __call__(self, features): x = tf.cast(features, prec.global_policy().compute_dtype) x = x.reshape([-1, x.shape[-1]]) for index in range(self._layers): x = self.get(f'dense{index}', tfkl.Dense, self._units)(x) x = self.get(f'norm{index}', NormLayer, self._norm)(x) x = self._act(x) x = x.reshape(features.shape[:-1] + [x.shape[-1]]) return self.get('out', DistLayer, self._shape, **self._out)(x) class MultiMLP(common.Module): # initial feature extraction layers def __init__(self, shape, layers, units, act='elu', norm='none', **out): self._shape = (shape,) if isinstance(shape, int) else shape self._layers = layers self._units = units self._norm = norm self._act = get_act(act) self._out = out def __call__(self, features, idx=0): x = tf.cast(features, prec.global_policy().compute_dtype) x = x.reshape([-1, x.shape[-1]]) for index in range(self._layers): x = self.get(f'dense{index}', tfkl.Dense, self._units)(x) x = self.get(f'norm{index}', NormLayer, self._norm)(x) x = self._act(x) x = x.reshape(features.shape[:-1] + [x.shape[-1]]) ## pass in idx for the MultiDistLayer! return self.get('out', MultiDistLayer, self._shape, **self._out)(x, idx) class GRUCell(tf.keras.layers.AbstractRNNCell): def __init__(self, size, norm=False, act='tanh', update_bias=-1, **kwargs): super().__init__() self._size = size self._act = get_act(act) self._norm = norm self._update_bias = update_bias self._layer = tfkl.Dense(3 * size, use_bias=norm is not None, **kwargs) if norm: self._norm = tfkl.LayerNormalization(dtype=tf.float32) @property def state_size(self): return self._size @tf.function def call(self, inputs, state): state = state[0] # Keras wraps the state in a list. parts = self._layer(tf.concat([inputs, state], -1)) if self._norm: dtype = parts.dtype parts = tf.cast(parts, tf.float32) parts = self._norm(parts) parts = tf.cast(parts, dtype) reset, cand, update = tf.split(parts, 3, -1) reset = tf.nn.sigmoid(reset) cand = self._act(reset * cand) update = tf.nn.sigmoid(update + self._update_bias) output = update * cand + (1 - update) * state return output, [output] class DistLayer(common.Module): def __init__( self, shape, dist='mse', min_std=0.1, init_std=0.0): self._shape = shape self._dist = dist self._min_std = min_std self._init_std = init_std def __call__(self, inputs): out = self.get('out', tfkl.Dense, np.prod(self._shape))(inputs) out = tf.reshape(out, tf.concat([tf.shape(inputs)[:-1], self._shape], 0)) out = tf.cast(out, tf.float32) if self._dist in ('normal', 'tanh_normal', 'trunc_normal'): std = self.get('std', tfkl.Dense, np.prod(self._shape))(inputs) std = tf.reshape(std, tf.concat([tf.shape(inputs)[:-1], self._shape], 0)) std = tf.cast(std, tf.float32) if self._dist == 'mse': dist = tfd.Normal(out, 1.0) return tfd.Independent(dist, len(self._shape)) if self._dist == 'normal': dist = tfd.Normal(out, std) return tfd.Independent(dist, len(self._shape)) if self._dist == 'binary': dist = tfd.Bernoulli(out) return tfd.Independent(dist, len(self._shape)) if self._dist == 'tanh_normal': mean = 5 * tf.tanh(out / 5) std = tf.nn.softplus(std + self._init_std) + self._min_std dist = tfd.Normal(mean, std) dist = tfd.TransformedDistribution(dist, common.TanhBijector()) dist = tfd.Independent(dist, len(self._shape)) return common.SampleDist(dist) if self._dist == 'trunc_normal': std = 2 * tf.nn.sigmoid((std + self._init_std) / 2) + self._min_std dist = common.TruncNormalDist(tf.tanh(out), std, -1, 1) return tfd.Independent(dist, 1) if self._dist == 'onehot': return common.OneHotDist(out) raise NotImplementedError(self._dist) class MultiDistLayer(common.Module): def __init__( self, shape, dist='mse', min_std=0.1, init_std=0.0): self._shape = shape self._dist = dist self._min_std = min_std self._init_std = init_std def __call__(self, inputs, idx=0): out = self.get(f'out{idx}', tfkl.Dense, np.prod(self._shape))(inputs) out = tf.reshape(out, tf.concat([tf.shape(inputs)[:-1], self._shape], 0)) out = tf.cast(out, tf.float32) if self._dist in ('normal', 'tanh_normal', 'trunc_normal'): std = self.get(f'std{idx}', tfkl.Dense, np.prod(self._shape))(inputs) std = tf.reshape(std, tf.concat([tf.shape(inputs)[:-1], self._shape], 0)) std = tf.cast(std, tf.float32) if self._dist == 'mse': dist = tfd.Normal(out, 1.0) return tfd.Independent(dist, len(self._shape)) if self._dist == 'normal': dist = tfd.Normal(out, std) return tfd.Independent(dist, len(self._shape)) if self._dist == 'binary': dist = tfd.Bernoulli(out) return tfd.Independent(dist, len(self._shape)) if self._dist == 'tanh_normal': mean = 5 * tf.tanh(out / 5) std = tf.nn.softplus(std + self._init_std) + self._min_std dist = tfd.Normal(mean, std) dist = tfd.TransformedDistribution(dist, common.TanhBijector()) dist = tfd.Independent(dist, len(self._shape)) return common.SampleDist(dist) if self._dist == 'trunc_normal': std = 2 * tf.nn.sigmoid((std + self._init_std) / 2) + self._min_std dist = common.TruncNormalDist(tf.tanh(out), std, -1, 1) return tfd.Independent(dist, 1) if self._dist == 'onehot': return common.OneHotDist(out) raise NotImplementedError(self._dist) class NormLayer(common.Module): def __init__(self, name): if name == 'none': self._layer = None elif name == 'layer': self._layer = tfkl.LayerNormalization() else: raise NotImplementedError(name) def __call__(self, features): if not self._layer: return features return self._layer(features) def get_act(name): if name == 'none': return tf.identity if name == 'mish': return lambda x: x * tf.math.tanh(tf.nn.softplus(x)) elif hasattr(tf.nn, name): return getattr(tf.nn, name) elif hasattr(tf, name): return getattr(tf, name) else: raise NotImplementedError(name)
cascade-main
dreamerv2/common/nets.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import collections import os from dm_control import mujoco from dm_control.rl import control from dm_control.suite import base from dm_control.suite import common from dm_control.suite.utils import randomizers from dm_control.utils import containers from dm_control.utils import rewards from dm_control.utils import io as resources from dm_control import suite _DEFAULT_TIME_LIMIT = 25 _CONTROL_TIMESTEP = .025 # Minimal height of torso over foot above which stand reward is 1. _STAND_HEIGHT = 1.2 # Horizontal speeds (meters/second) above which move reward is 1. _WALK_SPEED = 1 _RUN_SPEED = 8 _SPIN_SPEED = 5 SUITE = containers.TaggedTasks() def make_walker(task, task_kwargs=None, environment_kwargs=None, visualize_reward=False): task_kwargs = task_kwargs or {} if environment_kwargs is not None: task_kwargs = task_kwargs.copy() task_kwargs['environment_kwargs'] = environment_kwargs env = SUITE[task](**task_kwargs) env.task.visualize_reward = visualize_reward return env def get_model_and_assets(): """Returns a tuple containing the model XML string and a dict of assets.""" root_dir = os.path.dirname(os.path.dirname(__file__)) xml = resources.GetResource(os.path.join(root_dir, 'cdmc', 'walker.xml')) return xml, common.ASSETS @SUITE.add('benchmarking') def flip(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns the Run task.""" physics = Physics.from_xml_string(*get_model_and_assets()) task = PlanarWalker(move_speed=_RUN_SPEED, forward=True, flip=True, random=random) environment_kwargs = environment_kwargs or {} return control.Environment(physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP, **environment_kwargs) @SUITE.add('benchmarking') def all(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns the Run task.""" physics = Physics.from_xml_string(*get_model_and_assets()) task = PlanarWalker(move_speed=_RUN_SPEED, forward=True, flip=True, all=True, random=random) environment_kwargs = environment_kwargs or {} return control.Environment(physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP, **environment_kwargs) class Physics(mujoco.Physics): """Physics simulation with additional features for the Walker domain.""" def torso_upright(self): """Returns projection from z-axes of torso to the z-axes of world.""" return self.named.data.xmat['torso', 'zz'] def torso_height(self): """Returns the height of the torso.""" return self.named.data.xpos['torso', 'z'] def horizontal_velocity(self): """Returns the horizontal velocity of the center-of-mass.""" return self.named.data.sensordata['torso_subtreelinvel'][0] def orientations(self): """Returns planar orientations of all bodies.""" return self.named.data.xmat[1:, ['xx', 'xz']].ravel() def angmomentum(self): """Returns the angular momentum of torso of the Cheetah about Y axis.""" return self.named.data.subtree_angmom['torso'][1] class PlanarWalker(base.Task): """A planar walker task.""" def __init__(self, move_speed, forward=True, flip=False, random=None, all=False): """Initializes an instance of `PlanarWalker`. Args: move_speed: A float. If this value is zero, reward is given simply for standing up. Otherwise this specifies a target horizontal velocity for the walking task. random: Optional, either a `numpy.random.RandomState` instance, an integer seed for creating a new `RandomState`, or None to select a seed automatically (default). """ self._move_speed = move_speed self._forward = 1 if forward else -1 self._flip = flip self._all = all super(PlanarWalker, self).__init__(random=random) def initialize_episode(self, physics): """Sets the state of the environment at the start of each episode. In 'standing' mode, use initial orientation and small velocities. In 'random' mode, randomize joint angles and let fall to the floor. Args: physics: An instance of `Physics`. """ randomizers.randomize_limited_and_rotational_joints( physics, self.random) super(PlanarWalker, self).initialize_episode(physics) def get_observation(self, physics): """Returns an observation of body orientations, height and velocites.""" obs = collections.OrderedDict() obs['orientations'] = physics.orientations() obs['height'] = physics.torso_height() obs['velocity'] = physics.velocity() return obs def get_reward(self, physics): """Returns a reward to the agent.""" standing = rewards.tolerance(physics.torso_height(), bounds=(_STAND_HEIGHT, float('inf')), margin=_STAND_HEIGHT / 2) upright = (1 + physics.torso_upright()) / 2 stand_reward = (3 * standing + upright) / 4 if self._flip: move_reward = rewards.tolerance(self._forward * physics.angmomentum(), bounds=(_SPIN_SPEED, float('inf')), margin=_SPIN_SPEED, value_at_margin=0, sigmoid='linear') else: move_reward = rewards.tolerance( self._forward * physics.horizontal_velocity(), bounds=(self._move_speed, float('inf')), margin=self._move_speed / 2, value_at_margin=0.5, sigmoid='linear') if self._all: walk_reward = rewards.tolerance( self._forward * physics.horizontal_velocity(), bounds=(_WALK_SPEED, float('inf')), margin=_WALK_SPEED / 2, value_at_margin=0.5, sigmoid='linear') run_reward = rewards.tolerance( self._forward * physics.horizontal_velocity(), bounds=(_RUN_SPEED, float('inf')), margin=_RUN_SPEED / 2, value_at_margin=0.5, sigmoid='linear') flip_reward = rewards.tolerance(self._forward * physics.angmomentum(), bounds=(_SPIN_SPEED, float('inf')), margin=_SPIN_SPEED, value_at_margin=0, sigmoid='linear') reward_dict = { 'stand': stand_reward, 'walk': stand_reward * (5*walk_reward + 1) / 6, 'run': stand_reward * (5*run_reward + 1) / 6, 'flip': flip_reward } return reward_dict else: return stand_reward * (5 * move_reward + 1) / 6
cascade-main
dreamerv2/common/cdmc/walker.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from .walker import make_walker from .cheetah import make_cheetah def make_dmc_all(domain, task, task_kwargs=None, environment_kwargs=None, visualize_reward=False): if domain == 'walker': return make_walker(task, task_kwargs=task_kwargs, environment_kwargs=environment_kwargs, visualize_reward=visualize_reward) elif domain == 'cheetah': return make_cheetah(task, task_kwargs=task_kwargs, environment_kwargs=environment_kwargs, visualize_reward=visualize_reward) DMC_TASK_IDS = { 'dmc_walker_all': ['stand', 'walk', 'run', 'flip'], 'dmc_cheetah_all': ['run-fwd', 'run-bwd', 'flip-fwd', 'flip-bwd'], }
cascade-main
dreamerv2/common/cdmc/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import collections from dm_control import mujoco from dm_control.rl import control from dm_control.suite import base from dm_control.suite import common from dm_control.utils import containers from dm_control.utils import rewards # How long the simulation will run, in seconds. _DEFAULT_TIME_LIMIT = 10 # Running speed above which reward is 1. _RUN_SPEED = 10 _SPIN_SPEED = 5 SUITE = containers.TaggedTasks() def make_cheetah(task, task_kwargs=None, environment_kwargs=None, visualize_reward=False): task_kwargs = task_kwargs or {} if environment_kwargs is not None: task_kwargs = task_kwargs.copy() task_kwargs['environment_kwargs'] = environment_kwargs env = SUITE[task](**task_kwargs) env.task.visualize_reward = visualize_reward return env def get_model_and_assets(): """Returns a tuple containing the model XML string and a dict of assets.""" return common.read_model('cheetah.xml'), common.ASSETS @SUITE.add('benchmarking') def run(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns the run task.""" physics = Physics.from_xml_string(*get_model_and_assets()) task = Cheetah(forward=True,random=random) environment_kwargs = environment_kwargs or {} return control.Environment(physics, task, time_limit=time_limit, **environment_kwargs) @SUITE.add('benchmarking') def run_back(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns the run task.""" physics = Physics.from_xml_string(*get_model_and_assets()) task = Cheetah(forward=False,random=random) environment_kwargs = environment_kwargs or {} return control.Environment(physics, task, time_limit=time_limit, **environment_kwargs) @SUITE.add('benchmarking') def flip_forward(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns the run task.""" physics = Physics.from_xml_string(*get_model_and_assets()) task = Cheetah(forward=False,flip=True,random=random) environment_kwargs = environment_kwargs or {} return control.Environment(physics, task, time_limit=time_limit, **environment_kwargs) @SUITE.add('benchmarking') def flip_backward(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns the run task.""" physics = Physics.from_xml_string(*get_model_and_assets()) task = Cheetah(forward=True,flip=True,random=random) environment_kwargs = environment_kwargs or {} return control.Environment(physics, task, time_limit=time_limit, **environment_kwargs) @SUITE.add('benchmarking') def all(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns the Run task.""" physics = Physics.from_xml_string(*get_model_and_assets()) task = Cheetah(forward=True,flip=True,random=random,all=True) environment_kwargs = environment_kwargs or {} return control.Environment(physics, task, time_limit=time_limit, **environment_kwargs) class Physics(mujoco.Physics): """Physics simulation with additional features for the Cheetah domain.""" def speed(self): """Returns the horizontal speed of the Cheetah.""" return self.named.data.sensordata['torso_subtreelinvel'][0] def angmomentum(self): """Returns the angular momentum of torso of the Cheetah about Y axis.""" return self.named.data.subtree_angmom['torso'][1] class Cheetah(base.Task): """A `Task` to train a running Cheetah.""" def __init__(self, forward=True, flip=False, random=None, all=False): self._forward = 1 if forward else -1 self._flip = flip self._all = all super(Cheetah, self).__init__(random=random) def initialize_episode(self, physics): """Sets the state of the environment at the start of each episode.""" # The indexing below assumes that all joints have a single DOF. assert physics.model.nq == physics.model.njnt is_limited = physics.model.jnt_limited == 1 lower, upper = physics.model.jnt_range[is_limited].T physics.data.qpos[is_limited] = self.random.uniform(lower, upper) # Stabilize the model before the actual simulation. for _ in range(200): physics.step() physics.data.time = 0 self._timeout_progress = 0 super(Cheetah, self).initialize_episode(physics) def get_observation(self, physics): """Returns an observation of the state, ignoring horizontal position.""" obs = collections.OrderedDict() # Ignores horizontal position to maintain translational invariance. obs['position'] = physics.data.qpos[1:].copy() obs['velocity'] = physics.velocity() return obs def get_reward(self, physics): """Returns a reward to the agent.""" if self._flip: reward = rewards.tolerance(self._forward*physics.angmomentum(), bounds=(_SPIN_SPEED, float('inf')), margin=_SPIN_SPEED, value_at_margin=0, sigmoid='linear') else: reward = rewards.tolerance(self._forward*physics.speed(), bounds=(_RUN_SPEED, float('inf')), margin=_RUN_SPEED, value_at_margin=0, sigmoid='linear') if self._all: flip_fwd = rewards.tolerance(1*physics.angmomentum(), bounds=(_SPIN_SPEED, float('inf')), margin=_SPIN_SPEED, value_at_margin=0, sigmoid='linear') flip_bwd = rewards.tolerance(-1*physics.angmomentum(), bounds=(_SPIN_SPEED, float('inf')), margin=_SPIN_SPEED, value_at_margin=0, sigmoid='linear') run_fwd = rewards.tolerance(1*physics.speed(), bounds=(_RUN_SPEED, float('inf')), margin=_RUN_SPEED, value_at_margin=0, sigmoid='linear') run_bwd = rewards.tolerance(-1*physics.speed(), bounds=(_RUN_SPEED, float('inf')), margin=_RUN_SPEED, value_at_margin=0, sigmoid='linear') reward = { 'run-fwd': run_fwd, 'run-bwd': run_bwd, 'flip-fwd': flip_fwd, 'flip-bwd': flip_bwd } return reward
cascade-main
dreamerv2/common/cdmc/cheetah.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch import torchvision from transformers import BertForSequenceClassification, AdamW, get_scheduler class ToyNet(torch.nn.Module): def __init__(self, dim, gammas): super(ToyNet, self).__init__() # gammas is a list of three the first dimension determines how fast the # spurious feature is learned the second dimension determines how fast # the core feature is learned and the third dimension determines how # fast the noise features are learned self.register_buffer( "gammas", torch.tensor([gammas[:2] + gammas[2:] * (dim - 2)]) ) self.fc = torch.nn.Linear(dim, 1, bias=False) self.fc.weight.data = 0.01 / self.gammas * self.fc.weight.data def forward(self, x): return self.fc((x * self.gammas).float()).squeeze() class BertWrapper(torch.nn.Module): def __init__(self, model): super().__init__() self.model = model def forward(self, x): return self.model( input_ids=x[:, :, 0], attention_mask=x[:, :, 1], token_type_ids=x[:, :, 2]).logits def get_bert_optim(network, lr, weight_decay): no_decay = ["bias", "LayerNorm.weight"] decay_params = [] nodecay_params = [] for n, p in network.named_parameters(): if any(nd in n for nd in no_decay): decay_params.append(p) else: nodecay_params.append(p) optimizer_grouped_parameters = [ { "params": decay_params, "weight_decay": weight_decay, }, { "params": nodecay_params, "weight_decay": 0.0, }, ] optimizer = AdamW( optimizer_grouped_parameters, lr=lr, eps=1e-8) return optimizer def get_sgd_optim(network, lr, weight_decay): return torch.optim.SGD( network.parameters(), lr=lr, weight_decay=weight_decay, momentum=0.9) class ERM(torch.nn.Module): def __init__(self, hparams, dataloader): super().__init__() self.hparams = dict(hparams) dataset = dataloader.dataset self.n_batches = len(dataloader) self.data_type = dataset.data_type self.n_classes = len(set(dataset.y)) self.n_groups = len(set(dataset.g)) self.n_examples = len(dataset) self.last_epoch = 0 self.best_selec_val = 0 self.init_model_(self.data_type) def init_model_(self, data_type, text_optim="sgd"): self.clip_grad = text_optim == "adamw" optimizers = { "adamw": get_bert_optim, "sgd": get_sgd_optim } if data_type == "images": self.network = torchvision.models.resnet.resnet50(pretrained=True) self.network.fc = torch.nn.Linear( self.network.fc.in_features, self.n_classes) self.optimizer = optimizers['sgd']( self.network, self.hparams['lr'], self.hparams['weight_decay']) self.lr_scheduler = None self.loss = torch.nn.CrossEntropyLoss(reduction="none") elif data_type == "text": self.network = BertWrapper( BertForSequenceClassification.from_pretrained( 'bert-base-uncased', num_labels=self.n_classes)) self.network.zero_grad() self.optimizer = optimizers[text_optim]( self.network, self.hparams['lr'], self.hparams['weight_decay']) num_training_steps = self.hparams["num_epochs"] * self.n_batches self.lr_scheduler = get_scheduler( "linear", optimizer=self.optimizer, num_warmup_steps=0, num_training_steps=num_training_steps) self.loss = torch.nn.CrossEntropyLoss(reduction="none") elif data_type == "toy": gammas = ( self.hparams['gamma_spu'], self.hparams['gamma_core'], self.hparams['gamma_noise']) self.network = ToyNet(self.hparams['dim_noise'] + 2, gammas) self.optimizer = optimizers['sgd']( self.network, self.hparams['lr'], self.hparams['weight_decay']) self.lr_scheduler = None self.loss = lambda x, y:\ torch.nn.BCEWithLogitsLoss(reduction="none")(x.squeeze(), y.float()) self.cuda() def compute_loss_value_(self, i, x, y, g, epoch): return self.loss(self.network(x), y).mean() def update(self, i, x, y, g, epoch): x, y, g = x.cuda(), y.cuda(), g.cuda() loss_value = self.compute_loss_value_(i, x, y, g, epoch) if loss_value is not None: self.optimizer.zero_grad() loss_value.backward() if self.clip_grad: torch.nn.utils.clip_grad_norm_(self.network.parameters(), 1.0) self.optimizer.step() if self.lr_scheduler is not None: self.lr_scheduler.step() if self.data_type == "text": self.network.zero_grad() loss_value = loss_value.item() self.last_epoch = epoch return loss_value def predict(self, x): return self.network(x) def accuracy(self, loader): nb_groups = loader.dataset.nb_groups nb_labels = loader.dataset.nb_labels corrects = torch.zeros(nb_groups * nb_labels) totals = torch.zeros(nb_groups * nb_labels) self.eval() with torch.no_grad(): for i, x, y, g in loader: predictions = self.predict(x.cuda()) if predictions.squeeze().ndim == 1: predictions = (predictions > 0).cpu().eq(y).float() else: predictions = predictions.argmax(1).cpu().eq(y).float() groups = (nb_groups * y + g) for gi in groups.unique(): corrects[gi] += predictions[groups == gi].sum() totals[gi] += (groups == gi).sum() corrects, totals = corrects.tolist(), totals.tolist() self.train() return sum(corrects) / sum(totals),\ [c/t for c, t in zip(corrects, totals)] def load(self, fname): dicts = torch.load(fname) self.last_epoch = dicts["epoch"] self.load_state_dict(dicts["model"]) self.optimizer.load_state_dict(dicts["optimizer"]) if self.lr_scheduler is not None: self.lr_scheduler.load_state_dict(dicts["scheduler"]) def save(self, fname): lr_dict = None if self.lr_scheduler is not None: lr_dict = self.lr_scheduler.state_dict() torch.save( { "model": self.state_dict(), "optimizer": self.optimizer.state_dict(), "scheduler": lr_dict, "epoch": self.last_epoch, "best_selec_val": self.best_selec_val, }, fname, ) class GroupDRO(ERM): def __init__(self, hparams, dataset): super(GroupDRO, self).__init__(hparams, dataset) self.register_buffer( "q", torch.ones(self.n_classes * self.n_groups).cuda()) def groups_(self, y, g): idx_g, idx_b = [], [] all_g = y * self.n_groups + g for g in all_g.unique(): idx_g.append(g) idx_b.append(all_g == g) return zip(idx_g, idx_b) def compute_loss_value_(self, i, x, y, g, epoch): losses = self.loss(self.network(x), y) for idx_g, idx_b in self.groups_(y, g): self.q[idx_g] *= ( self.hparams["eta"] * losses[idx_b].mean()).exp().item() self.q /= self.q.sum() loss_value = 0 for idx_g, idx_b in self.groups_(y, g): loss_value += self.q[idx_g] * losses[idx_b].mean() return loss_value class JTT(ERM): def __init__(self, hparams, dataset): super(JTT, self).__init__(hparams, dataset) self.register_buffer( "weights", torch.ones(self.n_examples, dtype=torch.long).cuda()) def compute_loss_value_(self, i, x, y, g, epoch): if epoch == self.hparams["T"] + 1 and\ self.last_epoch == self.hparams["T"]: self.init_model_(self.data_type, text_optim="adamw") predictions = self.network(x) if epoch != self.hparams["T"]: loss_value = self.loss(predictions, y).mean() else: self.eval() if predictions.squeeze().ndim == 1: wrong_predictions = (predictions > 0).cpu().ne(y).float() else: wrong_predictions = predictions.argmax(1).cpu().ne(y).float() self.weights[i] += wrong_predictions.detach() * (self.hparams["up"] - 1) self.train() loss_value = None return loss_value def load(self, fname): dicts = torch.load(fname) self.last_epoch = dicts["epoch"] if self.last_epoch > self.hparams["T"]: self.init_model_(self.data_type, text_optim="adamw") self.load_state_dict(dicts["model"]) self.optimizer.load_state_dict(dicts["optimizer"]) if self.lr_scheduler is not None: self.lr_scheduler.load_state_dict(dicts["scheduler"])
BalancingGroups-main
models.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import argparse import os import re import tarfile from zipfile import ZipFile import logging logging.basicConfig(level=logging.INFO) import gdown import pandas as pd from six import remove_move def download_and_extract(url, dst, remove=True): gdown.download(url, dst, quiet=False) if dst.endswith(".tar.gz"): tar = tarfile.open(dst, "r:gz") tar.extractall(os.path.dirname(dst)) tar.close() if dst.endswith(".tar"): tar = tarfile.open(dst, "r:") tar.extractall(os.path.dirname(dst)) tar.close() if dst.endswith(".zip"): zf = ZipFile(dst, "r") zf.extractall(os.path.dirname(dst)) zf.close() if remove: os.remove(dst) def download_datasets(data_path, datasets=['celeba', 'waterbirds', 'civilcomments', 'multinli']): os.makedirs(data_path, exist_ok=True) dataset_downloaders = { 'celeba': download_celeba, 'waterbirds': download_waterbirds, 'civilcomments': download_civilcomments, 'multinli': download_multinli, } for dataset in datasets: dataset_downloaders[dataset](data_path) def download_civilcomments(data_path): logging.info("Downloading CivilComments") civilcomments_dir = os.path.join(data_path, "civilcomments") os.makedirs(civilcomments_dir, exist_ok=True) download_and_extract( "https://worksheets.codalab.org/rest/bundles/0x8cd3de0634154aeaad2ee6eb96723c6e/contents/blob/", os.path.join(civilcomments_dir, "civilcomments.tar.gz"), ) def download_multinli(data_path): logging.info("Downloading MultiNLI") multinli_dir = os.path.join(data_path, "multinli") glue_dir = os.path.join(multinli_dir, "glue_data/MNLI/") os.makedirs(glue_dir, exist_ok=True) multinli_tar = os.path.join(glue_dir, "multinli_bert_features.tar.gz") download_and_extract( "https://nlp.stanford.edu/data/dro/multinli_bert_features.tar.gz", multinli_tar, ) os.makedirs(os.path.join(multinli_dir, "data"), exist_ok=True) download_and_extract( "https://raw.githubusercontent.com/kohpangwei/group_DRO/master/dataset_metadata/multinli/metadata_random.csv", os.path.join(multinli_dir, "data", "metadata_random.csv"), remove=False ) def download_waterbirds(data_path): logging.info("Downloading Waterbirds") water_birds_dir = os.path.join(data_path, "waterbirds") os.makedirs(water_birds_dir, exist_ok=True) water_birds_dir_tar = os.path.join(water_birds_dir, "waterbirds.tar.gz") download_and_extract( "https://nlp.stanford.edu/data/dro/waterbird_complete95_forest2water2.tar.gz", water_birds_dir_tar, ) def download_celeba(data_path): logging.info("Downloading CelebA") celeba_dir = os.path.join(data_path, "celeba") os.makedirs(celeba_dir, exist_ok=True) download_and_extract( "https://drive.google.com/uc?id=1mb1R6dXfWbvk3DnlWOBO8pDeoBKOcLE6", os.path.join(celeba_dir, "img_align_celeba.zip"), ) download_and_extract( "https://drive.google.com/uc?id=1acn0-nE4W7Wa17sIkKB0GtfW4Z41CMFB", os.path.join(celeba_dir, "list_eval_partition.txt"), remove=False ) download_and_extract( "https://drive.google.com/uc?id=11um21kRUuaUNoMl59TCe2fb01FNjqNms", os.path.join(celeba_dir, "list_attr_celeba.txt"), remove=False ) def generate_metadata(data_path, datasets=['celeba', 'waterbirds', 'civilcomments', 'multinli']): dataset_metadata_generators = { 'celeba': generate_metadata_celeba, 'waterbirds': generate_metadata_waterbirds, 'civilcomments': generate_metadata_civilcomments, 'multinli': generate_metadata_multinli, } for dataset in datasets: dataset_metadata_generators[dataset](data_path) def generate_metadata_celeba(data_path): logging.info("Generating metadata for CelebA") with open(os.path.join(data_path, "celeba/list_eval_partition.txt"), "r") as f: splits = f.readlines() with open(os.path.join(data_path, "celeba/list_attr_celeba.txt"), "r") as f: attrs = f.readlines()[2:] f = open(os.path.join(data_path, "metadata_celeba.csv"), "w") f.write("id,filename,split,y,a\n") for i, (split, attr) in enumerate(zip(splits, attrs)): fi, si = split.strip().split() ai = attr.strip().split()[1:] yi = 1 if ai[9] == "1" else 0 gi = 1 if ai[20] == "1" else 0 f.write("{},{},{},{},{}\n".format(i + 1, fi, si, yi, gi)) f.close() def generate_metadata_waterbirds(data_path): logging.info("Generating metadata for waterbirds") df = pd.read_csv(os.path.join(data_path, "waterbirds/waterbird_complete95_forest2water2/metadata.csv")) df = df.rename(columns={"img_id": "id", "img_filename": "filename", "place": "a"}) df[["id", "filename", "split", "y", "a"]].to_csv( os.path.join(data_path, "metadata_waterbirds.csv"), index=False ) def generate_metadata_civilcomments(data_path): logging.info("Generating metadata for civilcomments") df = pd.read_csv( os.path.join(data_path, "civilcomments", "all_data_with_identities.csv"), index_col=0, ) group_attrs = [ "male", "female", "LGBTQ", "christian", "muslim", "other_religions", "black", "white", ] cols_to_keep = ["comment_text", "split", "toxicity"] df = df[cols_to_keep + group_attrs] df = df.rename(columns={"toxicity": "y"}) df["y"] = (df["y"] >= 0.5).astype(int) df[group_attrs] = (df[group_attrs] >= 0.5).astype(int) df["no active attributes"] = 0 df.loc[(df[group_attrs].sum(axis=1)) == 0, "no active attributes"] = 1 few_groups, all_groups = [], [] train_df = df.groupby("split").get_group("train") split_df = train_df.rename(columns={"no active attributes": "a"}) few_groups.append(split_df[["y", "split", "comment_text", "a"]]) for split, split_df in df.groupby("split"): for i, attr in enumerate(group_attrs): test_df = split_df.loc[ split_df[attr] == 1, ["y", "split", "comment_text"] ].copy() test_df["a"] = i all_groups.append(test_df) if split != "train": few_groups.append(test_df) few_groups = pd.concat(few_groups).reset_index(drop=True) all_groups = pd.concat(all_groups).reset_index(drop=True) for name, df in {"coarse": few_groups, "fine": all_groups}.items(): df.index.name = "filename" df = df.reset_index() df["id"] = df["filename"] df["split"] = df["split"].replace({"train": 0, "val": 1, "test": 2}) text = df.pop("comment_text") df[["id", "filename", "split", "y", "a"]].to_csv( os.path.join(data_path, f"metadata_civilcomments_{name}.csv"), index=False ) text.to_csv( os.path.join(data_path, "civilcomments", f"civilcomments_{name}.csv"), index=False, ) def generate_metadata_multinli(data_path): logging.info("Generating metadata for multinli") df = pd.read_csv( os.path.join(data_path, "multinli", "data", "metadata_random.csv"), index_col=0 ) df = df.rename(columns={"gold_label": "y", "sentence2_has_negation": "a"}) df = df.reset_index(drop=True) df.index.name = "id" df = df.reset_index() df["filename"] = df["id"] df = df.reset_index()[["id", "filename", "split", "y", "a"]] df.to_csv(os.path.join(data_path, "metadata_multinli.csv"), index=False) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Initialize repo with datasets") parser.add_argument( "datasets", nargs="+", default=['celeba', 'waterbirds', 'civilcomments', 'multinli'], type=str, help="Which datasets to download and/or generate metadata for", ) parser.add_argument( "--data_path", default="data", type=str, help="Root directory to store datasets", ) parser.add_argument( "--download", action="store_true", default=False, ) args = parser.parse_args() if args.download: download_datasets(args.data_path, args.datasets) generate_metadata(args.data_path, args.datasets)
BalancingGroups-main
setup_datasets.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os import torch import submitit from itertools import product from train import run_experiment, parse_args def product_dict(**kwargs): keys = kwargs.keys() vals = kwargs.values() for instance in product(*vals): yield dict(zip(keys, instance)) if __name__ == "__main__": args = parse_args() executor = submitit.SlurmExecutor(folder=args['slurm_output_dir']) executor.update_parameters( time=args["max_time"], gpus_per_node=1, array_parallelism=16, cpus_per_task=1, partition=args["partition"]) commands = [] sweep = { 'dataset': ['toy'], 'dim_noise': [1200], 'selector': ['min_acc_va'], 'num_epochs': [500], 'gamma_spu': [4.0], 'gamma_core': [1.0], 'gamma_noise': [2.0, 4.0], 'method': ["erm", "subg", "rwg"], 'lr': [1e-6, 1e-5], 'weight_decay': [0, 0.1, 1, 10], 'batch_size': [250], 'init_seed': list(range(int(args["num_init_seeds"]))), 'T': [1], 'up': [1], 'eta': [0.1], } sweep.update({k: [v] for k, v in args.items()}) commands = list(product_dict(**sweep)) print('Launching {} runs'.format(len(commands))) for i, command in enumerate(commands): command['hparams_seed'] = i os.makedirs(args["output_dir"], exist_ok=True) torch.manual_seed(0) commands = [commands[int(p)] for p in torch.randperm(len(commands))] executor.map_array(run_experiment, commands)
BalancingGroups-main
train_toy.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os import torch import pandas as pd import numpy as np from PIL import Image from torchvision import transforms from transformers import BertTokenizer from torch.utils.data import DataLoader from sklearn.datasets import make_blobs import pandas as pd class GroupDataset: def __init__( self, split, root, metadata, transform, subsample_what=None, duplicates=None ): self.transform_ = transform df = pd.read_csv(metadata) df = df[df["split"] == ({"tr": 0, "va": 1, "te": 2}[split])] self.i = list(range(len(df))) self.x = df["filename"].astype(str).map(lambda x: os.path.join(root, x)).tolist() self.y = df["y"].tolist() self.g = df["a"].tolist() self.count_groups() if subsample_what is not None: self.subsample_(subsample_what) if duplicates is not None: self.duplicate_(duplicates) def count_groups(self): self.wg, self.wy = [], [] self.nb_groups = len(set(self.g)) self.nb_labels = len(set(self.y)) self.group_sizes = [0] * self.nb_groups * self.nb_labels self.class_sizes = [0] * self.nb_labels for i in self.i: self.group_sizes[self.nb_groups * self.y[i] + self.g[i]] += 1 self.class_sizes[self.y[i]] += 1 for i in self.i: self.wg.append( len(self) / self.group_sizes[self.nb_groups * self.y[i] + self.g[i]] ) self.wy.append(len(self) / self.class_sizes[self.y[i]]) def subsample_(self, subsample_what): perm = torch.randperm(len(self)).tolist() if subsample_what == "groups": min_size = min(list(self.group_sizes)) else: min_size = min(list(self.class_sizes)) counts_g = [0] * self.nb_groups * self.nb_labels counts_y = [0] * self.nb_labels new_i = [] for p in perm: y, g = self.y[self.i[p]], self.g[self.i[p]] if ( subsample_what == "groups" and counts_g[self.nb_groups * int(y) + int(g)] < min_size ) or (subsample_what == "classes" and counts_y[int(y)] < min_size): counts_g[self.nb_groups * int(y) + int(g)] += 1 counts_y[int(y)] += 1 new_i.append(self.i[p]) self.i = new_i self.count_groups() def duplicate_(self, duplicates): new_i = [] for i, duplicate in zip(self.i, duplicates): new_i += [i] * duplicate self.i = new_i self.count_groups() def __getitem__(self, i): j = self.i[i] x = self.transform(self.x[j]) y = torch.tensor(self.y[j], dtype=torch.long) g = torch.tensor(self.g[j], dtype=torch.long) return torch.tensor(i, dtype=torch.long), x, y, g def __len__(self): return len(self.i) class Waterbirds(GroupDataset): def __init__(self, data_path, split, subsample_what=None, duplicates=None): root = os.path.join(data_path, "waterbirds/waterbird_complete95_forest2water2/") metadata = os.path.join(data_path,"metadata_waterbirds.csv") transform = transforms.Compose( [ transforms.Resize( ( int(224 * (256 / 224)), int(224 * (256 / 224)), ) ), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) super().__init__(split, root, metadata, transform, subsample_what, duplicates) self.data_type = "images" def transform(self, x): return self.transform_(Image.open(x).convert("RGB")) class CelebA(GroupDataset): def __init__(self, data_path, split, subsample_what=None, duplicates=None): root = os.path.join(data_path, "celeba/img_align_celeba/") metadata = os.path.join(data_path,"metadata_celeba.csv") transform = transforms.Compose( [ transforms.CenterCrop(178), transforms.Resize(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) super().__init__(split, root, metadata, transform, subsample_what, duplicates) self.data_type = "images" def transform(self, x): return self.transform_(Image.open(x).convert("RGB")) class MultiNLI(GroupDataset): def __init__(self, data_path, split, subsample_what=None, duplicates=None): root = os.path.join(data_path, "multinli", "glue_data", "MNLI") metadata = os.path.join(data_path, "metadata_multinli.csv") self.features_array = [] for feature_file in [ "cached_train_bert-base-uncased_128_mnli", "cached_dev_bert-base-uncased_128_mnli", "cached_dev_bert-base-uncased_128_mnli-mm", ]: features = torch.load(os.path.join(root, feature_file)) self.features_array += features self.all_input_ids = torch.tensor( [f.input_ids for f in self.features_array], dtype=torch.long ) self.all_input_masks = torch.tensor( [f.input_mask for f in self.features_array], dtype=torch.long ) self.all_segment_ids = torch.tensor( [f.segment_ids for f in self.features_array], dtype=torch.long ) self.all_label_ids = torch.tensor( [f.label_id for f in self.features_array], dtype=torch.long ) self.x_array = torch.stack( (self.all_input_ids, self.all_input_masks, self.all_segment_ids), dim=2 ) self.data_type = "text" super().__init__( split, "", metadata, self.transform, subsample_what, duplicates ) def transform(self, i): return self.x_array[int(i)] class CivilComments(GroupDataset): def __init__( self, data_path, split, subsample_what=None, duplicates=None, granularity="coarse", ): metadata = os.path.join(data_path,"metadata_civilcomments_{}.csv".format(granularity)) text = pd.read_csv( os.path.join( data_path, "civilcomments/civilcomments_{}.csv".format(granularity) ) ) self.text_array = list(text["comment_text"]) self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") self.data_type = "text" super().__init__( split, "", metadata, self.transform, subsample_what, duplicates ) def transform(self, idx): text = self.text_array[int(idx)] tokens = self.tokenizer( text, padding="max_length", truncation=True, max_length=220, return_tensors="pt", ) return torch.squeeze( torch.stack( ( tokens["input_ids"], tokens["attention_mask"], tokens["token_type_ids"], ), dim=2, ), dim=0, ) class CivilCommentsFine(CivilComments): def __init__(self, data_path, split, subsample_what=None, duplicates=None): super().__init__(data_path, split, subsample_what, duplicates, "fine") class Toy(GroupDataset): def __init__(self, data_path, split, subsample_what=None, duplicates=None): self.data_type = "toy" n_samples = 1000 dim_noise = 1200 self.i, self.x, self.y, self.g = self.make_dataset( n_samples=n_samples, dim_noise=dim_noise, core_cor=1.0, spu_cor=0.8, train=(split == "tr"), ) self.count_groups() if subsample_what is not None: self.subsample_(subsample_what) if duplicates is not None: self.duplicate_(duplicates) def transform(self, x): return torch.tensor(x) def make_dataset( self, n_samples=1000, dim_noise=1200, blob_std=0.15, core_cor=1.0, spu_cor=0.8, train=True, ): X = make_blobs(n_samples=n_samples, centers=1, cluster_std=[blob_std])[0] X -= X.mean(0, keepdims=True) + np.array([[1.0, 1.0]]) y = np.array([-1] * (n_samples // 2) + [1] * (n_samples // 2)) g = np.ones((n_samples)) # making of the core feature core_features = X[:, 0] * y # random without replacement random_indices_for_core = np.random.permutation(np.arange(n_samples))[ : int((1 - core_cor) * n_samples) ] core_features[random_indices_for_core] *= -1 g[random_indices_for_core] *= -1 # making of the spurious feature spu_features = X[:, 1] * y random_indices_for_spu = np.random.permutation(np.arange(n_samples))[ : int((1 - spu_cor) * n_samples) ] spu_features[random_indices_for_spu] *= -1 g[random_indices_for_spu] *= -1 X = np.vstack([spu_features, core_features]).T # noise = np.random.randn(n_samples, dim_noise) / np.sqrt(dim_noise) noise = np.random.randn(n_samples, dim_noise) if not train: # The average of noise is zero for both training and the test sets. # However, for the test set, we compute the "Expected loss" instead # of the "Empirical loss". For that reason, we can simply set the # noise to be zero for the test set. noise *= 0.0 X = np.concatenate([X, noise], 1) i = np.arange(len(y)) # y denotes the label # g denotes the group (minority or majority) # i denotes the index y = ((y + 1) / 2).astype(int) # 0 or 1 g = ((g + 1) / 2).astype(int) # 0 or 1 return i, X, y, g def get_loaders(data_path, dataset_name, batch_size, method="erm", duplicates=None): Dataset = { "waterbirds": Waterbirds, "celeba": CelebA, "multinli": MultiNLI, "civilcomments": CivilCommentsFine if method in ("subg", "rwg") else CivilComments, "toy": Toy, }[dataset_name] def dl(dataset, bs, shuffle, weights): if weights is not None: sampler = torch.utils.data.WeightedRandomSampler(weights, len(weights)) else: sampler = None return DataLoader( dataset, batch_size=bs, shuffle=shuffle, sampler=sampler, num_workers=4, pin_memory=True, ) if method == "subg": subsample_what = "groups" elif method == "suby": subsample_what = "classes" else: subsample_what = None dataset_tr = Dataset(data_path, "tr", subsample_what, duplicates) if method == "rwg" or method == "dro": weights_tr = dataset_tr.wg elif method == "rwy": weights_tr = dataset_tr.wy else: weights_tr = None return { "tr": dl(dataset_tr, batch_size, weights_tr is None, weights_tr), "va": dl(Dataset(data_path, "va", None), 128, False, None), "te": dl(Dataset(data_path, "te", None), 128, False, None), }
BalancingGroups-main
datasets.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import matplotlib from matplotlib.colors import ListedColormap import numpy as np import torch import torch.utils.data from models import ToyNet from parse import parse_json_to_df from datasets import Toy import matplotlib.pyplot as plt from torch import FloatTensor as FT import seaborn as sns from tqdm import tqdm import itertools def generate_heatmap_plane(X): xlim = np.array([-2, 2]) ylim = np.array([-2, 2]) n = 200 d1, d2 = torch.meshgrid( [torch.linspace(xlim[0], xlim[1], n), torch.linspace(ylim[0], ylim[1], n)] ) heatmap_plane = torch.stack((d1.flatten(), d2.flatten()), dim=1) # below, we compute the distance of each point to the training datapoints. # if the distance is less than 1e-3, that point used the noise dimensions # of the closest training point. # 10000 x 300 dists = (heatmap_plane[:, 0:1] - FT(X[:, 0:1].T)) ** 2 + ( heatmap_plane[:, 1:2] - FT(X[:, 1:2].T) ) ** 2 noise_dims = FT(X)[torch.argmin(dists, 1)][:, 2:] * ( dists.min(1)[0] < 0.001 ).unsqueeze(1) return torch.cat([heatmap_plane, noise_dims], 1) def load_model(path): state_dict = torch.load(path) gammas = [ state_dict["model"]["network.gammas"].squeeze()[i].item() for i in range(3) ] model = torch.nn.ModuleDict({"network": ToyNet(1202, gammas)}) model.load_state_dict(state_dict["model"]) model = model.network model.to(DEVICE) return model def plot( exps, all_train_envs, all_hm, gammas, heatmap_plane, error_df, filename="toy_exp", ): heatmap = all_hm.mean(1) matplotlib.rcParams["contour.negative_linestyle"] = "solid" cm = ListedColormap(["#C82506", "#0365C0"]) plt.rc("font", size=18, family="Times New Roman") # plt.figure(figsize=(16, 4.5)) fig, axs = plt.subplots(2, len(exps), figsize=(4 * len(exps), 8)) n = int(np.sqrt(heatmap_plane.shape[0])) hmp_x = heatmap_plane[:, 0].detach().cpu().numpy().reshape(n, n) hmp_y = heatmap_plane[:, 1].detach().cpu().numpy().reshape(n, n) hma = heatmap.reshape(-1, n, n).sigmoid() for i in range(len(exps)): ax = axs[0, i] if len(exps) > 1 else axs[0] vmin, vmax = hma[i, -1, -1], hma[i, 1,1] delta = vmax-vmin vmin, vmax = vmin-0.25*delta, vmax+0.25*delta cm = plt.cm.RdBu.copy() cm.set_under("#C82506") cm.set_over("#0365C0") p = ax.contourf( hmp_x, hmp_y, hma[i], np.linspace(vmin, vmax, 20), cmap=cm, alpha=0.8, vmin=vmin, vmax=vmax, extend="both" ) ax.contour( hmp_x, hmp_y, hma[i], [0.5], antialiased=True, linewidths=1.0, colors="k" ) ax.set_title(exps[i].upper()) ax.set_xlabel("x spu * gamma spu") ax.set_ylabel("x core * gamma core") ax.text(-1.7, 1.7, "I", horizontalalignment='center', verticalalignment='center', fontsize=18, color="k") ax.text(1.7, 1.7, "II", horizontalalignment='center', verticalalignment='center', fontsize=18, color="k") ax.text(-1.7, -1.7, "III", horizontalalignment='center', verticalalignment='center', fontsize=18, color="k") ax.text(1.7, -1.7, "IV", horizontalalignment='center', verticalalignment='center', fontsize=18, color="k") ax.axhline(y=0, ls="--", lw=0.7, color="k", alpha=0.5) ax.axvline(x=0, ls="--", lw=0.7, color="k", alpha=0.5) # ax.xaxis.set_major_locator(plt.NullLocator()) # ax.yaxis.set_major_locator(plt.NullLocator()) ax.set_xlim(np.array([-2, 2])) ax.set_ylim(np.array([-2, 2])) ticks = [-2, -1, 0, 1, 2] ax.set_xticks(ticks) ax.set_yticks(ticks) ax.set_xticklabels([int(t * gammas[0]) for t in ticks]) ax.set_yticklabels([int(t * gammas[1]) for t in ticks]) for X, y in all_train_envs: ax.scatter(X[:, 0], X[:, 1], c=y, cmap=cm, edgecolors='none', s=5, alpha=0.3) ax_ = axs[1, i] if len(exps) > 1 else axs[1] l = sns.lineplot( data=error_df.groupby("method").get_group(exps[i]), x="epoch", y="error", hue="phase", ax=ax_, ci=90 ) handles, labels = l.get_legend_handles_labels() l.get_legend().remove() ax_.grid(color="k", linestyle="--", linewidth=0.5, alpha=0.3) ax_.set_title(exps[i].upper()) # ax_.set_xscale("log") ax_.set_xlabel("Iterations") ax_.set_ylabel("worst-group-accuracy") ax_.set_ylim([-0.005, 1.005]) lg = fig.legend(handles, labels, loc='lower center', ncol=3, bbox_to_anchor=(0.5, -0.05)) fig.tight_layout() plt.savefig(f"figures/{filename}.pdf",bbox_extra_artists=(lg,), bbox_inches='tight') plt.savefig(f"figures/{filename}.png",bbox_extra_artists=(lg,), bbox_inches='tight') if __name__ == "__main__": seeds = 1 n_samples = 1000 dim_noise = 1200 DEVICE = 0 gammas = [4, 1.0, 20.0] exps = ["erm", "subg", "rwg"] df = parse_json_to_df(["toy_sweep"]) idx = [ "method", "lr", "weight_decay", "batch_size", "init_seed", "epoch", "file_path", ] # df.set_index(idx) def get_ploting_params(df): models = { (exp, seed): load_model(path.replace(".pt", ".best.pt")) for exp, seed, path in ( df.groupby(["method", "init_seed", "file_path"]).groups.keys() ) } df = ( df.melt( id_vars=idx, value_vars=["min_acc_va", "min_acc_te", "min_acc_tr"], var_name="phase", value_name="error", ) .replace({"min_acc_va": "valid", "min_acc_te": "test", "min_acc_tr": "train"}) .reset_index() ) datasets = [] for i in range(seeds): torch.manual_seed(i) np.random.seed(i) d = Toy("tr") datasets.append((d.x, d.y)) all_hm = torch.zeros(len(exps), seeds, 200 * 200) for exp_i, exp in enumerate(exps): for i in range(seeds): heatmap_plane = generate_heatmap_plane(datasets[i][0]).to(DEVICE) all_hm[exp_i, i] = models[(exp, i)](heatmap_plane).detach().cpu() return exps, datasets, all_hm, gammas, heatmap_plane, df groups = df.groupby( ["lr", "weight_decay", "batch_size", "gamma_spu", "gamma_core", "gamma_noise"] ) for (lr, wd, bs, gms, gmc, gmn), g_df in groups: plot( *get_ploting_params(g_df), filename=f"toy_sweep_lr_{lr}_wd_{wd}_bs_{bs}_gms_{gms}_gmc_{gmc}_gmn_{gmn}", )
BalancingGroups-main
plot_toy_scatter.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved #!/usr/bin/env python import os import sys import json import time import torch import submitit import argparse import numpy as np import models from datasets import get_loaders class Tee: def __init__(self, fname, stream, mode="a+"): self.stream = stream self.file = open(fname, mode) def write(self, message): self.stream.write(message) self.file.write(message) self.flush() def flush(self): self.stream.flush() self.file.flush() def randl(l_): return l_[torch.randperm(len(l_))[0]] def parse_args(): parser = argparse.ArgumentParser(description='Balancing baselines') parser.add_argument('--output_dir', type=str, default='outputs') parser.add_argument('--slurm_output_dir', type=str, default='slurm_outputs') parser.add_argument('--data_path', type=str, default='data') parser.add_argument('--slurm_partition', type=str, default=None) parser.add_argument('--max_time', type=int, default=3*24*60) parser.add_argument('--num_hparams_seeds', type=int, default=20) parser.add_argument('--num_init_seeds', type=int, default=5) parser.add_argument('--selector', type=str, default='min_acc_va') return vars(parser.parse_args()) def run_experiment(args): start_time = time.time() torch.manual_seed(args["init_seed"]) np.random.seed(args["init_seed"]) loaders = get_loaders(args["data_path"], args["dataset"], args["batch_size"], args["method"]) sys.stdout = Tee(os.path.join( args["output_dir"], 'seed_{}_{}.out'.format( args["hparams_seed"], args["init_seed"])), sys.stdout) sys.stderr = Tee(os.path.join( args["output_dir"], 'seed_{}_{}.err'.format( args["hparams_seed"], args["init_seed"])), sys.stderr) checkpoint_file = os.path.join( args["output_dir"], 'seed_{}_{}.pt'.format( args["hparams_seed"], args["init_seed"])) best_checkpoint_file = os.path.join( args["output_dir"], "seed_{}_{}.best.pt".format(args["hparams_seed"], args["init_seed"]), ) model = { "erm": models.ERM, "suby": models.ERM, "subg": models.ERM, "rwy": models.ERM, "rwg": models.ERM, "dro": models.GroupDRO, "jtt": models.JTT }[args["method"]](args, loaders["tr"]) last_epoch = 0 best_selec_val = float('-inf') if os.path.exists(checkpoint_file): model.load(checkpoint_file) last_epoch = model.last_epoch best_selec_val = model.best_selec_val for epoch in range(last_epoch, args["num_epochs"]): if epoch == args["T"] + 1 and args["method"] == "jtt": loaders = get_loaders( args["data_path"], args["dataset"], args["batch_size"], args["method"], model.weights.tolist()) for i, x, y, g in loaders["tr"]: model.update(i, x, y, g, epoch) result = { "args": args, "epoch": epoch, "time": time.time() - start_time} for loader_name, loader in loaders.items(): avg_acc, group_accs = model.accuracy(loader) result["acc_" + loader_name] = group_accs result["avg_acc_" + loader_name] = avg_acc selec_value = { "min_acc_va": min(result["acc_va"]), "avg_acc_va": result["avg_acc_va"], }[args["selector"]] if selec_value >= best_selec_val: model.best_selec_val = selec_value best_selec_val = selec_value model.save(best_checkpoint_file) model.save(checkpoint_file) print(json.dumps(result)) if __name__ == "__main__": args = parse_args() commands = [] for hparams_seed in range(args["num_hparams_seeds"]): torch.manual_seed(hparams_seed) args["hparams_seed"] = hparams_seed args["dataset"] = randl( ["waterbirds", "celeba", "multinli", "civilcomments"]) args["method"] = randl( ["erm", "suby", "subg", "rwy", "rwg", "dro", "jtt"]) args["num_epochs"] = { "waterbirds": 300 + 60, "celeba": 50 + 10, "multinli": 5 + 2, "civilcomments": 5 + 2 }[args["dataset"]] args["eta"] = 0.1 args["lr"] = randl([1e-5, 1e-4, 1e-3]) args["weight_decay"] = randl([1e-4, 1e-3, 1e-2, 1e-1, 1]) if args["dataset"] in ["waterbirds", "celeba"]: args["batch_size"] = randl([2, 4, 8, 16, 32, 64, 128]) else: args["batch_size"] = randl([2, 4, 8, 16, 32]) args["up"] = randl([4, 5, 6, 20, 50, 100]) args["T"] = { "waterbirds": randl([40, 50, 60]), "celeba": randl([1, 5, 10]), "multinli": randl([1, 2]), "civilcomments": randl([1, 2]) }[args["dataset"]] for init_seed in range(args["num_init_seeds"]): args["init_seed"] = init_seed commands.append(dict(args)) os.makedirs(args["output_dir"], exist_ok=True) torch.manual_seed(0) commands = [commands[int(p)] for p in torch.randperm(len(commands))] if args['slurm_partition'] is not None: executor = submitit.SlurmExecutor(folder=args['slurm_output_dir']) executor.update_parameters( time=args["max_time"], gpus_per_node=1, array_parallelism=512, cpus_per_task=4, partition=args["slurm_partition"]) executor.map_array(run_experiment, commands) else: for command in commands: run_experiment(command)
BalancingGroups-main
train.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved #!/usr/bin/env python import os import glob import json import argparse from typing import ContextManager import pandas as pd from pandas.core.indexes import multi import seaborn as sns import matplotlib.pyplot as plt import numpy as np from pathlib import Path from scipy.stats import alexandergovern from matplotlib import cm from pandas.api.types import is_numeric_dtype def remove(lis, val): return [value for value in lis if value != val] def anova_test(best_df, df, metric): for (dataset, groups), dataset_df in best_df.groupby(level=["dataset", "Groups"]): metric_values = [ df.get_group(idx)[metric].values for idx, _ in dataset_df.iterrows() ] best_df.loc[(dataset, slice(None), slice(None), groups), "Signif Diff"] = ( alexandergovern(*metric_values).pvalue < 0.05 ) return best_df def convert_df_to_readable_format(reduced, bold=None, latex=None): # Formatting table contents with mean (std) summary = pd.DataFrame() pm_sign = "$\\pm$" if latex else "+/-" for c in reduced.columns.get_level_values(0): if "mean" in reduced[c] and "std" in reduced[c]: if "acc" in c.lower(): summary[c] = ( (100 * reduced[c]["mean"]).map("{:.1f}".format) + pm_sign + (100 * reduced[c]["std"]).map("{:.1f}".format) ) else: summary[c] = ( reduced[c]["mean"].map("{:.1f}".format) + pm_sign + reduced[c]["std"].map("{:.1f}".format) ) elif "min" in reduced[c]: summary[c + " range"] = ( "[" + reduced[c]["min"].map("{:.1f}".format) + ", " + reduced[c]["max"].map("{:.1f}".format) + "]" ) else: if is_numeric_dtype(reduced[c]) and reduced[c].dtype == "float": summary[c] = reduced[c].map("{:.1f}".format) else: summary[c] = reduced[c] if bold: if latex: bold_l, bold_r = r"\textbf{", "}" else: bold_l, bold_r = "*", "" best_algos = ( reduced.sort_values((bold["best_metric"], "mean"), ascending=bold["order"]) .groupby(bold["best_metric_group"]) .head(1) .index ) summary.loc[best_algos, bold["best_metric"]] = summary.loc[ best_algos, bold["best_metric"] ].map(lambda x: bold_l + x + bold_r) return summary def final_latex_table(final_df, df, do_anova, col_to_show): template_begining = ( r""" \begin{tabular}{lllccccc} \toprule \textbf{Method} & \textbf{\#HP} & \textbf{Groups} & \multicolumn{4}{c}{\textbf{Worst Acc}} & \textbf{Average} \\ \cmidrule(lr){4-7} & & & CelebA & Waterbirds & MultiNLI & CivilComments & \\ \midrule """ ) middle = r"" last_group = None df = df.set_index(["dataset", "Method"]) for _, row in final_df.iterrows(): for dataset in ["CelebA", "Waterbirds", "MultiNLI", "CivilComments"]: if do_anova: if df.loc[(dataset, row["Method"])]["Signif Diff"].item(): row[dataset] = "\cellcolor{blue!7}" + str( row[dataset] ) if row["Groups"] != last_group and last_group is not None: middle += "\\midrule \n" middle += r" & ".join(row.astype(str).values) middle += "\\\\ \n" last_group = row["Groups"] template_ending = r""" \bottomrule \\ \end{tabular} """ return template_begining + middle + template_ending def parse_json_to_df(dirs): records = [] groups = { "erm": "No", "jtt": "No", "suby": "No", "rwy": "No", "dro": "Yes", "rwg": "Yes", "subg": "Yes", } nb_hps = {"erm": 4, "jtt": 6, "suby": 4, "rwy": 4, "dro": 5, "rwg": 4, "subg": 4} for dname in dirs: for fname in glob.glob(os.path.join(dname, "*.out")): with open(fname, "r") as f: lines = f.readlines() for line in lines: if not line.startswith("{"): continue record = json.loads(line) this_row = dict(record["args"]) this_row["epoch"] = record["epoch"] this_row["time"] = record["time"] / 3600 this_row["min_acc_va"] = min(record["acc_va"]) this_row["min_acc_tr"] = min(record["acc_tr"]) this_row["avg_acc_va"] = record["avg_acc_va"] this_row["min_acc_te"] = min(record["acc_te"]) this_row["avg_acc_te"] = record["avg_acc_te"] this_row["Groups"] = groups[this_row["method"]] this_row["#HP"] = nb_hps[this_row["method"]] this_row["file_path"] = os.path.splitext(fname)[0] + ".pt" records.append(this_row) if not len(records): quit() pd.set_option( "display.max_rows", None, "display.max_columns", None, "display.width", None ) return pd.DataFrame(records) def reorganize_df(df, col_to_show=None): df = ( df.set_index(["dataset", "Method", "#HP", "Groups"])[col_to_show] .unstack(level=0) .sort_index(axis=0, level=2) ) df.columns = df.columns.set_names(None) df = df.sort_index(axis=1) # df = df.reindex(['Worst Acc', 'Time (h)', 'Signif Diff'], level=1, axis=1) df = df.reindex(["CelebA", "Waterbirds", "MultiNLI", "CivilComments"], axis=1) df = df.reset_index() return df def model_paths(df, run_groups): models_to_save = [] for idx, row in df.iterrows(): models_to_save.append(run_groups.get_group(idx)["file_path"]) return pd.concat(models_to_save) def print_hp_table(df, aggregate=True): hps = ["lr", "weight_decay", "epoch", "batch_size"] hparams = df[[(hp, "mean") for hp in hps]].droplevel(1, axis=1) hparams = hparams.apply( { "lr": np.log10, "weight_decay": np.log10, "epoch": lambda x: x, "batch_size": lambda x: x, } ) if aggregate: hparams = hparams.groupby(["dataset", "Groups", "method"]).agg(["mean", "std"]) metric = ("min_acc_te", "mean") hparams[("min_acc_te", "min")] = ( df.groupby(["dataset", "Groups", "method"]).min()[metric] * 100 ) hparams[("min_acc_te", "max")] = ( df.groupby(["dataset", "Groups", "method"]).max()[metric] * 100 ) hparams[("min_acc_te_delta", "")] = ( hparams[("min_acc_te", "max")] - hparams[("min_acc_te", "min")] ) else: hparams = pd.concat([hparams, df[["min_acc_te"]]], axis=1) hparams.columns = pd.MultiIndex.from_tuples( [(hp, "") for hp in hps] + df[["min_acc_te"]].columns.tolist() ) hparams = hparams.droplevel(["hparams_seed", "#HP"], axis=0) hparams = hparams.reorder_levels(["dataset", "Groups", "method"]) # print(hparams) hparams = hparams.sort_index() print(convert_df_to_readable_format(hparams)) df = convert_df_to_readable_format(hparams, latex=True) cmaps = { "lr": "bone", "weight_decay": "pink", "epoch": "bone", "batch_size": "pink", } groups = hparams.groupby(["dataset"]) for idx, row in hparams.iterrows(): for hp in ["lr", "weight_decay", "batch_size", "epoch"]: cmap = cm.get_cmap(cmaps[hp]) hp_tup = (hp, "mean") if aggregate else hp scale = { "min": groups.get_group(idx[0])[hp_tup].min().item(), "max": groups.get_group(idx[0])[hp_tup].max().item(), } max_level = { "lr": 1 / 6, "weight_decay": 1 / 6, "batch_size": 1 / 6, "epoch": 1 / 6, }[hp] if hp in ["weight_decay", "batch_size"]: level = 1 - ( max_level * (row[hp_tup].item() - scale["min"]) / (scale["max"] - scale["min"]) ) else: level = 1 + ( max_level * (row[hp_tup].item() - scale["max"]) / (scale["max"] - scale["min"]) ) color = ["{:.3f}".format(c) for c in cmap(level)[:3]] df.loc[idx, hp] = ( "\cellcolor[rgb]{" + ",".join(color) + "}" + str(df.loc[idx, hp]) ) filename = "hp_table_mean" if aggregate else "hp_table" df.to_latex(f"tables/{filename}.tex", multicolumn=True, multirow=True, escape=False) def plot_min_acc_evol(best_df, all_runs, filename): df = [] all_runs_groups = all_runs.groupby(best_df.index.names) for idx, _ in best_df.iterrows(): df.append(all_runs_groups.get_group(idx)) df = ( pd.concat(df) .sort_index() .reindex(["CelebA", "Waterbirds", "MultiNLI", "CivilComments"], level="dataset") ) groups = df.groupby( ["dataset", "method", "hparams_seed", "init_seed", "Groups", "#HP"] ) windows = { "CelebA": 5, "Waterbirds": 10, } dfs = [] for group, df_group in groups: if group[0] in windows: dfs.append(df_group.rolling(window=windows[group[0]]).mean()) else: dfs.append(df_group) df = pd.concat(dfs) plt.rc("font", size=11) df = ( df.melt( value_vars=["min_acc_te", "min_acc_tr"], var_name="phase", value_name="worst-group-acc", ignore_index=False, ) .replace({"min_acc_te": "test", "min_acc_tr": "train"}) .reset_index() ) sns.set_theme(context="talk", style="white", font="Times New Roman") scale = 1 # plt.figure(figsize=(scale * 8, scale * 11)) g = sns.relplot( data=df, x="epoch", y="worst-group-acc", hue="method", style="phase", kind="line", row="Groups", col="dataset", height=scale * 3.5, aspect=1, facet_kws=dict(sharex=False, sharey=False, margin_titles=True), alpha=0.7, ) g.set_axis_labels("epoch", "worst-group-acc") g.set_titles(row_template="Groups = {row_name}", col_template="{col_name}") # g.add_legend(loc="lower center", ncol=4) g.tight_layout() plt.savefig(f"figures/{filename}.pdf", dpi=300) plt.savefig(f"figures/{filename}.png", dpi=300) def format_result_tables(df, run_groups, do_anova=False): if do_anova: df = anova_test(df, run_groups, "min_acc_te") df = df.reset_index() if not args.full: df = df[["dataset", "method", "Groups", "#HP", "min_acc_te", "time"]] df = df.rename( columns={"min_acc_te": "Worst Acc", "time": "Time (h)", "method": "Method"} ) multip = 100 if args.col_to_show == "Worst Acc" else 1 avg_accs_per_method = ( (multip * df.groupby("Method").mean()[(args.col_to_show, "mean")]) .map("{:.1f}".format) .reset_index(name="Average") ) if args.bold: bold = { "best_metric": args.col_to_show, "order": False if "acc" in args.col_to_show.lower() else True, "best_metric_group": ["dataset", "Groups"], } else: bold = False term_df = convert_df_to_readable_format(df, bold, latex=False) term_df = reorganize_df(term_df, col_to_show=args.col_to_show) term_df = term_df.merge(avg_accs_per_method, on="Method", how="left") print(term_df) latex_df = convert_df_to_readable_format(df, bold, latex=True) latex_df = reorganize_df(latex_df, col_to_show=args.col_to_show) latex_df = latex_df.merge(avg_accs_per_method, on="Method", how="left") os.makedirs("tables", exist_ok=True) open( f'tables/result_{args.col_to_show.replace(" ", "_").replace("(","").replace(")","").lower()}_1.tex', "w", ).write(final_latex_table(latex_df, df, do_anova, args.col_to_show)) def format_time_results(df_all_epochs, unique_run_id): time_delta = df_all_epochs.groupby(unique_run_id)["time"].diff() * 60 time_delta = time_delta[ time_delta > 0 ] # Remove negative values coming from preemption total_time = time_delta.sum().item() print("Total compute time : " + str(total_time)) time_result = time_delta.groupby(["dataset", "method", "#HP", "Groups"]).median() average = ( time_result.groupby(["method", "#HP", "Groups"]).mean().to_frame("Average") ) time_result = time_result.unstack("dataset").sort_index(level="Groups") time_result = time_result.join(average).apply(lambda x: x.map("{:.2f}".format)) print(time_result) time_result.to_latex( "tables/result_time_h.tex", escape=False, multirow=True, multicolumn=True ) sns.set(style="whitegrid", context="talk") g = sns.catplot( data=time_delta.to_frame("time").reset_index(), x="method", y="time", col="dataset", kind="box", sharex=True, sharey=False, height=6, col_wrap=2, ) for ax in g.fig.axes: ax.set_yscale("log") ax.tick_params(axis="x", labelrotation=45) g.set_axis_labels("Method", "Time per epoch in minutes") g.set_titles(col_template="{col_name}") g.tight_layout() plt.savefig(f"figures/time_per_epoch.pdf", dpi=300) plt.savefig(f"figures/time_per_epoch.png", dpi=300) def plot_min_acc_dist(df, run_groups, n): dfs = [] for idx, _ in df.iterrows(): dfs.append(run_groups.get_group(idx)["min_acc_te"]) df = pd.concat(dfs).sort_index(level="Groups") df = df.reindex( ["CelebA", "Waterbirds", "MultiNLI", "CivilComments"], level="dataset" ).reset_index() sns.set(style="whitegrid", context="talk", font="Times New Roman") g = sns.catplot( data=df, x="method", y="min_acc_te", col="dataset", kind="box", sharex=True, sharey=False, height=4.5, ) for ax in g.fig.axes: ax.tick_params(axis="x", labelrotation=45) g.set_axis_labels("Method", "worst-group-acc") g.set_titles(col_template="{col_name}") g.tight_layout() plt.savefig(f"figures/worst_group_acc_dist_dataset_{n}.pdf", dpi=300) plt.savefig(f"figures/worst_group_acc_dist_dataset_{n}.png", dpi=300) plt.figure() g = sns.catplot(data=df, x="method", y="min_acc_te", kind="box", height=5.5) for ax in g.fig.axes: ax.tick_params(axis="x", labelrotation=45) g.set_axis_labels("Method", "worst-group-acc") g.tight_layout() plt.savefig(f"figures/worst_group_acc_dist_{n}.pdf", dpi=300) plt.savefig(f"figures/worst_group_acc_dist_{n}.png", dpi=300) def print_unfinished_runs(dir): errored_runs = [] for d in dir: l = os.popen(f"grep -il error {d}/*.err").read() l = [o for o in l.split("\n") if o] errored_runs.extend(l) # unfinished_runs = [] for run in errored_runs: run_json = os.path.splitext(run)[0] + ".out" with open(run_json) as f: last_epoch = f.readlines()[-1] last_epoch = json.loads(last_epoch) if last_epoch["epoch"] + 1 != last_epoch["args"]["num_epochs"]: print(run_json) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Parse sweep folder") parser.add_argument("dir", type=str, nargs="+") parser.add_argument("--selector", type=str, default="min_acc_va") parser.add_argument("--metric", type=str, default="min_acc_te") parser.add_argument("--col_to_show", type=str, default="Worst Acc") parser.add_argument("--n", type=int, default=1) parser.add_argument("--full", action="store_true") parser.add_argument("--last_epoch", action="store_true") parser.add_argument("--do_anova", action="store_true") parser.add_argument("--bold", action="store_true") parser.add_argument("--small_weight_decay", action="store_true") parser.add_argument("--small_lr", action="store_true") parser.add_argument( "--mode", type=str, choices=[ "format_results", "format_time_results", "best_model_paths", "best_mean_model_paths", "print_hp_table", "unfinished_runs", "plot_min_acc_evol", "plot_min_acc_dist", ], default="format_results", ) args = parser.parse_args() if args.mode == "unfinished_runs": print_unfinished_runs(args.dir) exit() df = parse_json_to_df(args.dir) if args.small_weight_decay: df = df[df["weight_decay"] == 1e-4] if args.small_lr: df = df[df["lr"] == 1e-5] unique_run_id = ["dataset", "method", "hparams_seed", "init_seed", "Groups", "#HP"] # Renaming datasets df = df.replace( { "celeba": "CelebA", "waterbirds": "Waterbirds", "multinli": "MultiNLI", "civilcomments": "CivilComments", } ) df["method"] = df["method"].str.upper() df = df.replace({"DRO": "gDRO"}) df_all_epochs = df.set_index(unique_run_id + ["epoch"]) df = ( df.sort_values(by="epoch") if args.last_epoch else df.sort_values(by=args.selector) ) df = df.groupby(unique_run_id).tail(1).set_index(unique_run_id) df_all = df # Averaging over init seeds run_groups = df.groupby(remove(unique_run_id, "init_seed")) df = run_groups.agg(["mean", "std"]) # Selecting best hyperparmeters in average df = df.sort_values(by=["dataset", "method", (args.selector, "mean")]) df = df.groupby(["dataset", "method"]).tail(args.n) if args.mode == "best_model_paths": best_models = ( df_all.sort_values(by=["dataset", "method", args.selector]) .groupby(["dataset", "method"]) .tail(args.n) ) # print(best_models) for path in best_models["file_path"].values: print(path) elif args.mode == "best_mean_model_paths": best_model_paths = model_paths(df, run_groups) for path in best_model_paths.values: print(path) elif args.mode == "print_hp_table": print_hp_table(df, aggregate=(args.n > 1)) elif args.mode == "format_results": format_result_tables(df, run_groups, args.do_anova) elif args.mode == "format_time_results": format_time_results(df_all_epochs, unique_run_id) elif args.mode == "plot_min_acc_evol": plot_min_acc_evol( df, df_all_epochs, "worst_acc_evol" if args.n == 1 else f"worst_acc_evol_mean{args.n}", ) elif args.mode == "plot_min_acc_dist": plot_min_acc_dist(df, run_groups, args.n)
BalancingGroups-main
parse.py
# Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the CC-by-NC license found in the # LICENSE file in the root directory of this source tree. # from utils.masks import generate_masks, evaluate_masks import torch def train(*args, **kwargs): return {} params = {} n_data = 400 # Specify dataset configuration split_config = { "public": 0.5, # 50% of the data will be in the public bucket "private": { "train": 0.25, "heldout": 0.25 } } # Randomly split the data according to the configuration known_masks, hidden_masks = generate_masks(n_data, split_config) print(known_masks, hidden_masks) # Typical output typical_known_masks = { # Data sample number 0 is in the private set, data sample 1 ... "public": [0, 1, 1, 0], "private": [1, 0, 0, 1] } typical_hidden_masks = { "public": [0, 1, 1, 0], "private": { "train": [1, 0, 0, 0], "heldout": [0, 0, 0, 1] } } # Private model is trained once model_private = train(params, hidden_masks["private"]["train"]) # Attacker can then use the "public masks" that he knows about to make their privacy attacks # Note that the attacker does not have access to hidden_masks model_public = train(params, known_masks["public"]) def privacy_attack(model_private, private_masks): """ Random attack model """ return torch.rand(len(private_masks)) guessed_membership = privacy_attack(model_private, known_masks["private"]) # guessed_membership is typically something like [0.5, 0.7] # At evaluation time, the guessed membership are compared to the true ones # Only then can hidden_masks be checked # import ipdb;ipdb.set_trace() print(evaluate_masks(guessed_membership, hidden_masks["private"], threshold=0.5)) # Computes precision, recall, accuracy, etc.
calibration_membership-main
api.py
# -*- coding: utf-8 -*- # Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the CC-by-NC license found in the # LICENSE file in the root directory of this source tree. # import argparse import json import os import sys import inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.insert(0, parentdir) import torch from models import build_model from datasets import get_dataset from utils.evaluator import Evaluator from utils.logger import create_logger from utils.misc import bool_flag from utils.trainer import Trainer from utils.masks import generate_masks import socket import signal import subprocess import torch.nn as nn def init_distributed_mode(params): """ Handle single and multi-GPU / multi-node / SLURM jobs. Initialize the following variables: - n_nodes - node_id - local_rank - global_rank - world_size """ params.is_slurm_job = 'SLURM_JOB_ID' in os.environ and not params.debug_slurm # logger.info("SLURM job: %s" % str(params.is_slurm_job)) # SLURM job print('slurm job', params.is_slurm_job) if params.is_slurm_job: assert params.local_rank == -1 # on the cluster, this is handled by SLURM SLURM_VARIABLES = [ 'SLURM_JOB_ID', 'SLURM_JOB_NODELIST', 'SLURM_JOB_NUM_NODES', 'SLURM_NTASKS', 'SLURM_TASKS_PER_NODE', 'SLURM_MEM_PER_NODE', 'SLURM_MEM_PER_CPU', 'SLURM_NODEID', 'SLURM_PROCID', 'SLURM_LOCALID', 'SLURM_TASK_PID' ] PREFIX = "%i - " % int(os.environ['SLURM_PROCID']) for name in SLURM_VARIABLES: value = os.environ.get(name, None) # logger.info(PREFIX + "%s: %s" % (name, str(value))) # # job ID params.job_id = os.environ['SLURM_JOB_ID'] # number of nodes / node ID params.n_nodes = int(os.environ['SLURM_JOB_NUM_NODES']) params.node_id = int(os.environ['SLURM_NODEID']) # local rank on the current node / global rank params.local_rank = int(os.environ['SLURM_LOCALID']) params.global_rank = int(os.environ['SLURM_PROCID']) # number of processes / GPUs per node params.world_size = int(os.environ['SLURM_NTASKS']) params.n_gpu_per_node = params.world_size // params.n_nodes # define master address and master port hostnames = subprocess.check_output(['scontrol', 'show', 'hostnames', os.environ['SLURM_JOB_NODELIST']]) params.master_addr = hostnames.split()[0].decode('utf-8') assert 10001 <= params.master_port <= 20000 or params.world_size == 1 # logger.info(PREFIX + "Master address: %s" % params.master_addr) # logger.info(PREFIX + "Master port : %i" % params.master_port) # set environment variables for 'env://' os.environ['MASTER_ADDR'] = params.master_addr os.environ['MASTER_PORT'] = str(params.master_port) os.environ['WORLD_SIZE'] = str(params.world_size) os.environ['RANK'] = str(params.global_rank) # multi-GPU job (local or multi-node) - jobs started with torch.distributed.launch elif params.local_rank != -1: assert params.master_port == -1 # read environment variables params.global_rank = int(os.environ['RANK']) params.world_size = int(os.environ['WORLD_SIZE']) params.n_gpu_per_node = int(os.environ['NGPU']) # number of nodes / node ID params.n_nodes = params.world_size // params.n_gpu_per_node params.node_id = params.global_rank // params.n_gpu_per_node # local job (single GPU) else: assert params.local_rank == -1 assert params.master_port == -1 params.n_nodes = 1 params.node_id = 0 params.local_rank = 0 params.global_rank = 0 params.world_size = 1 params.n_gpu_per_node = 1 # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in distributed mode params.is_master = params.node_id == 0 and params.local_rank == 0 params.multi_node = params.n_nodes > 1 params.multi_gpu = params.world_size > 1 print('n_nodes', params.n_nodes) print('multi gpu', params.multi_gpu) print('world size', params.world_size) # summary PREFIX = "%i - " % params.global_rank # logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes) # logger.info(PREFIX + "Node ID : %i" % params.node_id) # logger.info(PREFIX + "Local rank : %i" % params.local_rank) # logger.info(PREFIX + "Global rank : %i" % params.global_rank) # logger.info(PREFIX + "World size : %i" % params.world_size) # logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node) # logger.info(PREFIX + "Master : %s" % str(params.is_master)) # logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node)) # logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu)) # logger.info(PREFIX + "Hostname : %s" % socket.gethostname()) # set GPU device torch.cuda.set_device(params.local_rank) # initialize multi-GPU if params.multi_gpu: # http://pytorch.apachecn.org/en/0.3.0/distributed.html#environment-variable-initialization # 'env://' will read these environment variables: # MASTER_PORT - required; has to be a free port on machine with rank 0 # MASTER_ADDR - required (except for rank 0); address of rank 0 node # WORLD_SIZE - required; can be set either here, or in a call to init function # RANK - required; can be set either here, or in a call to init function # logger.info("Initializing PyTorch distributed ...") torch.distributed.init_process_group( init_method='env://', backend='nccl', ) def sig_handler(signum, frame): # logger.warning("Signal handler called with signal " + str(signum)) prod_id = int(os.environ['SLURM_PROCID']) # logger.warning("Host: %s - Global rank: %i" % (socket.gethostname(), prod_id)) if prod_id == 0: # logger.warning("Requeuing job " + os.environ['SLURM_JOB_ID']) os.system('scontrol requeue ' + os.environ['SLURM_JOB_ID']) else: 'nothing' # logger.warning("Not the master process, no need to requeue.") sys.exit(-1) def term_handler(signum, frame): 'nothing' # logger.warning("Signal handler called with signal " + str(signum)) # logger.warning("Bypassing SIGTERM.") def init_signal_handler(): """ Handle signals sent by SLURM for time limit / pre-emption. """ signal.signal(signal.SIGUSR1, sig_handler) signal.signal(signal.SIGTERM, term_handler) # logger.warning("Signal handler installed.") def check_parameters(params): assert params.dump_path is not None os.makedirs(params.dump_path, exist_ok=True) def get_parser(): """ Generate a parameters parser. """ parser = argparse.ArgumentParser(description='Train/evaluate image classification models') # config parameters parser.add_argument("--dump_path", type=str, default=None) parser.add_argument('--print_freq', type=int, default=5) parser.add_argument("--save_periodic", type=int, default=0) # Data parameters parser.add_argument("--data_root", type=str, default="data") parser.add_argument("--dataset", type=str, choices=["cifar10", "cifar100","imagenet", "gaussian","credit", "hep", "adult", "mnist", "lfw"], default="cifar10") parser.add_argument("--mask_path", type=str, required=True) parser.add_argument('--n_data', type=int, default=500) parser.add_argument('--num_classes', type=int, default=10) parser.add_argument('--data_num_dimensions', type=int, default=75) parser.add_argument('--random_seed', type=int, default=10) parser.add_argument("--scale", type=float, default=1.0) # Model parameters parser.add_argument("--architecture", choices=["lenet", "smallnet", "alexnet", "kllenet", "linear", "mlp", "resnet18", "leaks"], default="lenet") # training parameters parser.add_argument("--batch_size", type=int, default=32) parser.add_argument("--epochs", type=int, default=2) parser.add_argument("--optimizer", default="sgd,lr=0.001,momentum=0.9") parser.add_argument("--num_workers", type=int, default=2) parser.add_argument("--aug", type=bool_flag, default=False) parser.add_argument("--in_channels", type=int, default=3) parser.add_argument("--private_train_split", type=float, default=0.25) parser.add_argument("--private_heldout_split", type=float, default=0.25) # privacy parameters parser.add_argument("--private", type=bool_flag, default=False) parser.add_argument("--noise_multiplier", type=float, default=None) parser.add_argument("--privacy_epsilon", type=float, default=None) parser.add_argument("--privacy_delta", type=float, default=None) parser.add_argument("--log_gradients", type=bool_flag, default=False) parser.add_argument("--log_batch_models", type=bool_flag, default=False) parser.add_argument("--log_epoch_models", type=bool_flag, default=False) parser.add_argument("--max_grad_norm", type=float, default=1.0) #multi gpu paramaeters parser.add_argument("--local_rank", type=int, default=-1) parser.add_argument("--master_port", type=int, default=-1) parser.add_argument("--debug_slurm", type=bool_flag, default=False) return parser def train(params, mask): # Create logger and print params logger = create_logger(params) # initialize the multi-GPU / multi-node training init_distributed_mode(params) if params.is_slurm_job: init_signal_handler() trainloader, n_data = get_dataset(params=params, is_train=True, mask=mask) validloader, _ = get_dataset(params=params, is_train=False) model = build_model(params) model.cuda() if params.multi_gpu: if params.private: raise NotImplementedError('Distributed training not implemented with privacy') else: print('Using multi gpu') model = nn.parallel.DistributedDataParallel(model, device_ids=[params.local_rank], output_device=params.local_rank, broadcast_buffers=True) trainer = Trainer(model, params, n_data=n_data) trainer.reload_checkpoint() evaluator = Evaluator(model, params) # evaluation # if params.eval_only: # scores = evaluator.run_all_evals(trainer, evals=['classif'], data_loader=validloader) # for k, v in scores.items(): # logger.info('%s -> %.6f' % (k, v)) # logger.info("__log__:%s" % json.dumps(scores)) # exit() # training for epoch in range(trainer.epoch, params.epochs): # update epoch / sampler / learning rate trainer.epoch = epoch logger.info("============ Starting epoch %i ... ============" % trainer.epoch) # train for (idx, images, targets) in trainloader: trainer.classif_step(idx, images, targets) trainer.end_step() logger.info("============ End of epoch %i ============" % trainer.epoch) # evaluate classification accuracy scores = evaluator.run_all_evals(evals=['classif'], data_loader=validloader) for name, val in trainer.get_scores().items(): scores[name] = val # print / JSON log for k, v in scores.items(): logger.info('%s -> %.6f' % (k, v)) logger.info("__log__:%s" % json.dumps(scores)) # end of epoch trainer.end_epoch(scores) return model if __name__ == '__main__': parser = get_parser() params = parser.parse_args() check_parameters(params) if params.dataset=='imagenet': n_data=1281167 elif params.dataset=='credit': n_data=800 elif params.dataset=='hep': n_data=124 elif params.dataset=='adult': n_data=32561 elif params.dataset=='mnist': n_data=60000 elif params.dataset=='lfw': #need to do the split here and fill this in n_data=912 else: n_data=50000 if params.mask_path=="none": split_config = {"public": {"train": 0.25,"heldout": 0.25}, "private": {"train": params.private_train_split,"heldout": params.private_heldout_split}} # Randomly split the data according to the configuration known_masks, hidden_masks = generate_masks(n_data, split_config) path = "data/" torch.save(known_masks['public'], path + "public.pth") torch.save(known_masks['private'], path + "private.pth") torch.save(hidden_masks['private']['train'], path + "hidden/train.pth") torch.save(hidden_masks['private']['heldout'], path + "hidden/heldout.pth") torch.save(hidden_masks['public']['train'], path + "hidden/public_train.pth") torch.save(hidden_masks['public']['heldout'], path + "hidden/public_heldout.pth") mask=hidden_masks['private']['train'] else: mask = torch.load(params.mask_path) train(params, mask)
calibration_membership-main
training/image_classification.py
# -*- coding: utf-8 -*- # Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the CC-by-NC license found in the # LICENSE file in the root directory of this source tree. # import argparse import json import os from models import build_model from datasets import get_dataset from utils.trainer import Trainer from utils.logger import create_logger from utils.misc import bool_flag def check_parameters(params): if params.private: assert params.privacy_epsilon is not None assert params.dump_path is not None os.makedirs(params.dump_path, exist_ok=True) def get_parser(): """ Generate a parameters parser. """ parser = argparse.ArgumentParser(description='Train/evaluate a language model') # Config parameters parser.add_argument("--dump_path", type=str, default=None) parser.add_argument('--print_freq', type=int, default=5) parser.add_argument("--save_periodic", type=int, default=0) # Data parameters parser.add_argument("--data_root", type=str, default="data") parser.add_argument("--dataset", choices=["dummy"], default='dummy') parser.add_argument("--n_vocab", type=int, default=256) # Model parameters parser.add_argument("--architecture", type=str, default='lstm') parser.add_argument("--embedding_dim", type=int, default=64) parser.add_argument("--hidden_dim", type=int, default=64) parser.add_argument("--num_layers", type=int, default=1) # Training parameters parser.add_argument("--batch_size", type=int, default=4) parser.add_argument("--epochs", type=int, default=2) parser.add_argument("--num_workers", type=int, default=2) parser.add_argument("--optimizer", default="sgd,lr=0.001,momentum=0.9") parser.add_argument("--seq_len", type=int, default=256) # Privacy parameters parser.add_argument("--private", type=bool_flag, default=False) parser.add_argument("--noise_multiplier", type=float, default=None) parser.add_argument("--privacy_epsilon", type=float, default=None) parser.add_argument("--privacy_delta", type=float, default=None) parser.add_argument("--privacy_fake_samples", type=int, default=None) parser.add_argument("--log_gradients", type=bool_flag, default=False) return parser def main(params): # Create logger and print params (very useful for debugging) logger = create_logger(params) trainloader, n_data = get_dataset(params, split='train', is_train=True) validloader, _ = get_dataset(params, split='valid', is_train=False) model = build_model(params) model.cuda() trainer = Trainer(model, params, n_data=n_data) trainer.reload_checkpoint() # evaluator = Evaluator(trainer, params) # evaluation # if params.eval_only: # scores = evaluator.run_all_evals(trainer, evals=['classif'], data_loader=validloader) # for k, v in scores.items(): # logger.info('%s -> %.6f' % (k, v)) # logger.info("__log__:%s" % json.dumps(scores)) # exit() # training for epoch in range(trainer.epoch, params.epochs): # update epoch / sampler / learning rate trainer.epoch = epoch logger.info("============ Starting epoch %i ... ============" % trainer.epoch) # train for (idx, sentence) in trainloader: trainer.lm_step(idx, sentence) trainer.end_step() logger.info("============ End of epoch %i ============" % trainer.epoch) # evaluate classification accuracy # scores = evaluator.run_all_evals(trainer, evals=['classif'], data_loader=validloader) scores = {} for name, val in trainer.get_scores().items(): scores[name] = val # print / JSON log for k, v in scores.items(): logger.info('%s -> %.6f' % (k, v)) logger.info("__log__:%s" % json.dumps(scores)) # end of epoch trainer.end_epoch(scores) if __name__ == '__main__': parser = get_parser() params = parser.parse_args() check_parameters(params) main(params)
calibration_membership-main
training/language_modeling.py
calibration_membership-main
training/__init__.py
# Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the CC-by-NC license found in the # LICENSE file in the root directory of this source tree. # import torch import torchvision import torchvision.transforms as transforms from torch.utils.data import Dataset, TensorDataset import numpy as np from numpy.random import multivariate_normal from sklearn.datasets import fetch_openml from sklearn.impute import SimpleImputer from sklearn import preprocessing import pandas as pd from sklearn.datasets import fetch_lfw_people from .text_data import TextIterator class IdxDataset(Dataset): """ Wraps a dataset so that with each element is also returned its index """ def __init__(self, dataset: Dataset): self.dataset = dataset def __getitem__(self, i: int): sample = self.dataset[i] if type(sample) is tuple: sample = list(sample) sample.insert(0, i) return tuple(sample) else: return i, sample def __len__(self): return len(self.dataset) class MaskDataset(Dataset): def __init__(self, dataset: Dataset, mask: torch.Tensor): """ example: mask: [0, 1, 1] cumul: [-1, 0, 1] remap: {0: 1, 1: 2} """ assert mask.dim() == 1 assert mask.size(0) == len(dataset) assert mask.dtype == torch.bool mask = mask.long() cumul = torch.cumsum(mask, dim=0) - 1 self.remap = {} for i in range(mask.size(0)): if mask[i] == 1: self.remap[cumul[i].item()] = i assert mask[i] in [0, 1] self.dataset = dataset self.mask = mask self.length = cumul[-1].item() + 1 def __getitem__(self, i: int): return self.dataset[self.remap[i]] def __len__(self): return self.length def adult_data_transform(df): binary_data = pd.get_dummies(df) feature_cols = binary_data[binary_data.columns[:-2]] scaler = preprocessing.StandardScaler() data = pd.DataFrame(scaler.fit_transform(feature_cols), columns=feature_cols.columns) return data def get_transform(dataset, aug, is_train): if dataset == "cifar10": if aug and is_train: print('Using data augmentation to train model') augmentations = [transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip()] normalize = [transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] transform = transforms.Compose(augmentations + normalize) else: print('Not using data augmentation to train model') transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) elif dataset=='mnist': transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))]) elif dataset=='imagenet': if aug and is_train: print('Using data augmentation to train model') augmentations = [transforms.Resize(256),transforms.RandomResizedCrop(224),transforms.RandomHorizontalFlip()] normalize = [transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])] transform = transforms.Compose(augmentations + normalize) else: print('Not using data augmentation to train model') transform = transforms.Compose( [transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])]) elif dataset=='cifar100': if aug and is_train: print('Using data augmentation to train model') augmentations = [transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip()] normalize = [transforms.ToTensor(),transforms.Normalize(mean=[n/255 for n in [129.3, 124.1, 112.4]], std=[n/255 for n in [68.2, 65.4, 70.4]])] transform = transforms.Compose(augmentations + normalize) else: print('Not using data augmentation to train model') transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize(mean=[n/255 for n in [129.3, 124.1, 112.4]], std=[n/255 for n in [68.2, 65.4, 70.4]])]) return transform def get_dataset(*, params, is_train, mask=None): if is_train: assert mask is not None if params.dataset == "cifar10": if is_train: transform = get_transform(params.dataset, params.aug, True) else: transform = get_transform(params.dataset, params.aug, False) dataset = torchvision.datasets.CIFAR10(root=params.data_root, train=is_train, download=True, transform=transform) dataset = IdxDataset(dataset) if mask is not None: dataset = MaskDataset(dataset, mask) dataloader = torch.utils.data.DataLoader(dataset, batch_size=params.batch_size, shuffle=True, num_workers=params.num_workers) n_data = len(dataset) params.num_classes = 10 return dataloader, n_data elif params.dataset=="imagenet": if is_train: transform = get_transform(params.dataset, params.aug, True) else: transform = get_transform(params.dataset, params.aug, False) if is_train: dataset = torchvision.datasets.ImageFolder(root=params.data_root+'/train',transform=transform) else: dataset = torchvision.datasets.ImageFolder(root=params.data_root+'/val',transform=transform) dataset = IdxDataset(dataset) if mask is not None: dataset = MaskDataset(dataset, mask) dataloader = torch.utils.data.DataLoader(dataset, batch_size=params.batch_size, shuffle=True, num_workers=params.num_workers) n_data = len(dataset) params.num_classes = 1000 return dataloader, n_data elif params.dataset=='cifar100': if is_train: transform = get_transform(params.dataset, params.aug, True) else: transform = get_transform(params.dataset, params.aug, False) dataset = torchvision.datasets.CIFAR100(root=params.data_root, train=is_train, download=True, transform=transform) dataset = IdxDataset(dataset) if mask is not None: dataset = MaskDataset(dataset, mask) dataloader = torch.utils.data.DataLoader(dataset, batch_size=params.batch_size, shuffle=True, num_workers=params.num_workers) n_data = len(dataset) params.num_classes = 100 return dataloader, n_data elif params.dataset=='mnist': transform = get_transform(params.dataset, params.aug, True) dataset = torchvision.datasets.MNIST(root=params.data_root, train=is_train, download=True, transform=transform) dataset = IdxDataset(dataset) if mask is not None: dataset = MaskDataset(dataset, mask) dataloader = torch.utils.data.DataLoader(dataset, batch_size=params.batch_size, shuffle=True, num_workers=params.num_workers) n_data = len(dataset) params.num_classes = 10 return dataloader, n_data elif params.dataset=='gaussian': x,y=get_gaussian_dataset(params.n_data,params.num_classes,params.data_num_dimensions,params.random_seed,scale=params.scale) data = [] for i in range(len(x)): data.append([i,x[i], y[i]]) dataloader = torch.utils.data.DataLoader(data, shuffle=True, batch_size=params.batch_size) return dataloader, params.n_data elif params.dataset=='credit': cred=fetch_openml('credit-g') data = SimpleImputer(missing_values=np.nan, strategy='mean', copy=True).fit(cred.data).transform(cred.data) target = preprocessing.LabelEncoder().fit(cred.target).transform(cred.target) X=data norm = np.max(np.concatenate((-1*X.min(axis=0)[np.newaxis], X.max(axis=0)[np.newaxis]),axis=0).T, axis=1).astype('float32') data=np.divide(data,norm) data=torch.tensor(data).float() target=torch.tensor(target).long() if is_train: ids=np.arange(1000)[:800] else: ids=np.arange(1000)[800:] final_data = [] for i in ids: final_data.append([i,data[i], target[i]]) norm=np.max params.num_classes = 2 if mask is not None: final_data = MaskDataset(final_data, mask) dataloader = torch.utils.data.DataLoader(final_data, shuffle=True, batch_size=params.batch_size) n_data=len(final_data) print('Datasize', n_data) return dataloader, n_data elif params.dataset=='hep': hep=fetch_openml('hepatitis') data = SimpleImputer(missing_values=np.nan, strategy='mean', copy=True).fit(hep.data).transform(hep.data) target = preprocessing.LabelEncoder().fit(hep.target).transform(hep.target) X=data norm = np.max(np.concatenate((-1*X.min(axis=0)[np.newaxis], X.max(axis=0)[np.newaxis]),axis=0).T, axis=1).astype('float32') data=np.divide(data,norm) data=torch.tensor(data).float() target=torch.tensor(target).long() if is_train: ids=np.arange(155)[:124] else: ids=np.arange(155)[124:] final_data = [] for i in ids: final_data.append([i,data[i], target[i]]) params.num_classes = 2 if mask is not None: final_data = MaskDataset(final_data, mask) dataloader = torch.utils.data.DataLoader(final_data, shuffle=True, batch_size=params.batch_size) n_data=len(final_data) print('Datasize', n_data) return dataloader, n_data elif params.dataset == 'adult': columns = ["age", "workClass", "fnlwgt", "education", "education-num","marital-status", "occupation", "relationship","race", "sex", "capital-gain", "capital-loss", "hours-per-week", "native-country", "income"] train_data = pd.read_csv(params.data_root+'/adult.data', names=columns, sep=' *, *', na_values='?') test_data = pd.read_csv(params.data_root+'/adult.test', names=columns, sep=' *, *', skiprows=1, na_values='?') original_train=train_data original_test=test_data num_train = len(original_train) original = pd.concat([original_train, original_test]) labels = original['income'] labels = labels.replace('<=50K', 0).replace('>50K', 1) labels = labels.replace('<=50K.', 0).replace('>50K.', 1) # Remove target del original["income"] data = adult_data_transform(original) train_data = data[:num_train] train_labels = labels[:num_train] test_data = data[num_train:] test_labels = labels[num_train:] test_data=torch.tensor(test_data.to_numpy()).float() train_data=torch.tensor(train_data.to_numpy()).float() test_labels=torch.tensor(test_labels.to_numpy(dtype='int64')).long() train_labels=torch.tensor(train_labels.to_numpy(dtype='int64')).long() if is_train: final_data = [] for i in np.arange(len(train_data)): final_data.append([i,train_data[i], train_labels[i]]) if mask is not None: final_data = MaskDataset(final_data, mask) dataloader = torch.utils.data.DataLoader(final_data, shuffle=True, batch_size=params.batch_size) n_data=len(final_data) else: final_data = [] for i in np.arange(len(test_data)): final_data.append([i,test_data[i], test_labels[i]]) dataloader = torch.utils.data.DataLoader(final_data, batch_size=params.batch_size) n_data=len(final_data) print('Datasize', n_data) return dataloader,n_data elif params.dataset == 'lfw': lfw_people = fetch_lfw_people(data_home=params.data_root,min_faces_per_person=100, resize=0.4) n_samples, h, w = lfw_people.images.shape lfw_images=torch.tensor(lfw_people.images).float() lfw_targets=torch.tensor(lfw_people.target).long() if is_train: ids=np.arange(1140)[:912] else: ids=np.arange(1140)[912:] final_data = [] for i in ids: image=lfw_images[i].reshape((h, w)).unsqueeze(0) target=lfw_targets[i] final_data.append([i,image, target]) params.num_classes = 5 if mask is not None: final_data = MaskDataset(final_data, mask) dataloader = torch.utils.data.DataLoader(final_data, shuffle=True, batch_size=params.batch_size) n_data=len(final_data) return dataloader, n_data elif params.dataset == "dummy": # Creates a dummy dataset for NLP n_data, delta = 10000, 3 data = torch.randint(-delta, delta, size=(n_data, params.seq_len)) data = torch.cumsum(data, dim=1) data = torch.remainder(data, params.n_vocab) iterator = TextIterator(data.view(-1), params.batch_size, params.seq_len) return iterator, n_data def get_gaussian_dataset(n,num_classes,num_dimensions,random_seed,scale=1): np.random.seed(random_seed) mu = [(2*np.random.rand(num_dimensions) - 1) * scale for c in range(num_classes)] S = np.diag(np.random.rand(num_dimensions)) + 0.5 np.random.seed(np.random.randint(1000)) x = np.concatenate([multivariate_normal(mu[c], S, n//num_classes) for c in range(num_classes)]) y = np.concatenate([np.ones(n//num_classes) * c for c in range(num_classes)]) x=torch.tensor(x).float() y=torch.tensor(y).long() return x, y
calibration_membership-main
datasets/__init__.py
# Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the CC-by-NC license found in the # LICENSE file in the root directory of this source tree. # import torch class TextIterator: def __init__(self, sequence, batch_size, seq_len): assert sequence.ndim == 1 self.batch_size = batch_size self.sequence = sequence.view(seq_len, -1) self.i_batch = 0 def __iter__(self): self.i_batch = 0 return self def __next__(self): if (self.i_batch + 1) * self.batch_size < self.sequence.size(1): start = self.i_batch * self.batch_size end = (self.i_batch + 1) * self.batch_size self.i_batch += 1 return torch.arange(start, end), self.sequence[:, start:end] else: raise StopIteration
calibration_membership-main
datasets/text_data.py
# Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the CC-by-NC license found in the # LICENSE file in the root directory of this source tree. # # Taken from https://github.com/facebookresearch/XLM import argparse FALSY_STRINGS = {'off', 'false', '0'} TRUTHY_STRINGS = {'on', 'true', '1'} def bool_flag(s): """ Parse boolean arguments from the command line. """ if s.lower() in FALSY_STRINGS: return False elif s.lower() in TRUTHY_STRINGS: return True else: raise argparse.ArgumentTypeError("invalid value for a boolean flag")
calibration_membership-main
utils/misc.py
# Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the CC-by-NC license found in the # LICENSE file in the root directory of this source tree. # from datetime import timedelta import logging import re import sys import time class LogFormatter(): def __init__(self): self.start_time = time.time() def format(self, record): elapsed_seconds = round(record.created - self.start_time) prefix = "%s - %s - %s" % ( record.levelname, time.strftime('%x %X'), timedelta(seconds=elapsed_seconds) ) message = record.getMessage() message = message.replace('\n', '\n' + ' ' * (len(prefix) + 3)) return "%s - %s" % (prefix, message) if message else '' def create_logger(params): """ Create a logger and print params """ # create log formatter log_formatter = LogFormatter() # create console handler and set level to info console_handler = logging.StreamHandler() console_handler.setLevel(logging.INFO) console_handler.setFormatter(log_formatter) # create logger and set level to debug logger = logging.getLogger() logger.handlers = [] logger.setLevel(logging.DEBUG) logger.propagate = False logger.addHandler(console_handler) # reset logger elapsed time def reset_time(): log_formatter.start_time = time.time() logger.reset_time = reset_time # get running command command = ["python", sys.argv[0]] for x in sys.argv[1:]: if x.startswith('--'): assert '"' not in x and "'" not in x command.append(x) else: assert "'" not in x if re.match('^[a-zA-Z0-9_]+$', x): command.append("%s" % x) else: command.append("'%s'" % x) params.command = ' '.join(command) logger.info("============ Initialized logger ============") logger.info("\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(params)).items()))) logger.info("The experiment will be stored in %s\n" % params.dump_path) logger.info("Running command: %s" % params.command) return logger
calibration_membership-main
utils/logger.py
# Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the CC-by-NC license found in the # LICENSE file in the root directory of this source tree. # import numpy as np import torch import operator def to_mask(n_data, indices): mask = torch.zeros(n_data, dtype=bool) mask[indices] = 1 return mask def multiply_round(n_data, cfg): s_total = sum(cfg.values()) sizes = {name: int(s * n_data / s_total) for name, s in cfg.items()} max_name = max(sizes.items(), key=operator.itemgetter(1))[0] sizes[max_name] += n_data - sum(sizes.values()) return sizes def generate_masks(n_data, split_config): assert type(split_config) is dict assert "public" in split_config and "private" in split_config assert type(split_config["private"]) is dict permutation = np.random.permutation(n_data) if type(split_config["public"]) is dict: n_public=int(sum(split_config["public"].values())*n_data) else: n_public = int(split_config["public"] * n_data) n_private = n_data - n_public known_masks = {} known_masks["public"] = to_mask(n_data, permutation[:n_public]) known_masks["private"] = to_mask(n_data, permutation[n_public:]) hidden_masks = {} hidden_masks["private"] = {} sizes = multiply_round(n_private, split_config["private"]) print(' Private', sizes) offset = n_public for name, size in sizes.items(): hidden_masks["private"][name] = to_mask(n_data, permutation[offset:offset+size]) offset += size assert offset == n_data if type(split_config["public"]) is dict: hidden_masks["public"] = {} public_sizes = multiply_round(n_public, split_config["public"]) print('Public', public_sizes) public_offset = 0 for name, size in public_sizes.items(): hidden_masks["public"][name] = to_mask(n_data, permutation[public_offset:public_offset+size]) public_offset += size assert public_offset == n_public else: hidden_masks["public"] = known_masks["public"] return known_masks, hidden_masks def evaluate_masks(guessed_membership, private_masks, threshold, attack_base=None): if attack_base=='loss' or attack_base=='mean': true_positives = (guessed_membership[private_masks["train"]] <= threshold).float() false_negatives= (guessed_membership[private_masks["train"]] > threshold).float() true_negatives = (guessed_membership[private_masks["heldout"]] > threshold).float() false_positives = (guessed_membership[private_masks["heldout"]] <= threshold).float() else: true_positives = (guessed_membership[private_masks["train"]] >= threshold).float() false_negatives = (guessed_membership[private_masks["train"]] < threshold).float() true_negatives = (guessed_membership[private_masks["heldout"]] < threshold).float() false_positives = (guessed_membership[private_masks["heldout"]] >= threshold).float() fpr=torch.sum(false_positives) / (torch.sum(false_positives) + torch.sum(true_negatives)) recall = torch.sum(true_positives) / torch.sum(private_masks["train"].float()) precision = torch.sum(true_positives) / (torch.sum(true_positives) + torch.sum(false_positives)) accuracy = (torch.sum(true_positives) + torch.sum(true_negatives)) / (torch.sum(private_masks["heldout"].float()) + torch.sum(private_masks["train"].float())) return fpr, precision, recall, accuracy
calibration_membership-main
utils/masks.py
# Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the CC-by-NC license found in the # LICENSE file in the root directory of this source tree. # import re import inspect import json import itertools from torch import optim import numpy as np from logging import getLogger from opacus import PrivacyEngine import opacus.privacy_analysis as privacy_analysis logger = getLogger() def repeat(l, r): """ Repeat r times each value of list l. """ return list(itertools.chain.from_iterable(itertools.repeat(x, r) for x in l)) def repeat_to(l, r): """ Repeat values in list l so that it has r values """ assert r % len(l) == 0 return repeat(l, r // len(l)) def get_optimizer(parameters, opt_config, epochs): """ Parse optimizer parameters. opt_config should be of the form: - "sgd,lr=0.01" - "adagrad,lr=0.1,lr_decay=0.05" """ lr_schedule = None if "," in opt_config: method = opt_config[:opt_config.find(',')] optim_params = {} for x in opt_config[opt_config.find(',') + 1:].split(','): # e.g. split = ('lr', '0.1-0.01) or split = ('weight_decay', 0.001) split = x.split('=') assert len(split) == 2 param_name, param_value = split assert any([ re.match(r"^[+-]?(\d+(\.\d*)?|\.\d+)$", param_value) is not None, param_name == "lr" and re.match(r"^[+-]?(\d+(\.\d*)?|\.\d+)$", param_value) is not None, param_name == "lr" and ("-" in param_value), param_name == "lr" and re.match(r"^cos:[+-]?(\d+(\.\d*)?|\.\d+)$", param_value) is not None ]) if param_name == "lr": if param_value.startswith("cos:"): lr_init = float(param_value[4:]) lr_schedule = [lr_init * (1 + np.cos(np.pi * epoch / epochs)) / 2 for epoch in range(epochs)] else: lr_schedule = [float(lr) for lr in param_value.split("-")] optim_params[param_name] = float(lr_schedule[0]) lr_schedule = repeat_to(lr_schedule, epochs) else: optim_params[param_name] = float(param_value) else: method = opt_config optim_params = {} if method == 'adadelta': optim_fn = optim.Adadelta elif method == 'adagrad': optim_fn = optim.Adagrad elif method == 'adam': optim_fn = optim.Adam optim_params['betas'] = (optim_params.get('beta1', 0.9), optim_params.get('beta2', 0.999)) optim_params.pop('beta1', None) optim_params.pop('beta2', None) elif method == 'adamax': optim_fn = optim.Adamax elif method == 'asgd': optim_fn = optim.ASGD elif method == 'rmsprop': optim_fn = optim.RMSprop elif method == 'rprop': optim_fn = optim.Rprop elif method == 'sgd': optim_fn = optim.SGD assert 'lr' in optim_params else: raise Exception('Unknown optimization method: "%s"' % method) # check that we give good parameters to the optimizer expected_args = inspect.getargspec(optim_fn.__init__)[0] assert expected_args[:2] == ['self', 'params'] if not all(k in expected_args[2:] for k in optim_params.keys()): raise Exception('Unexpected parameters: expected "%s", got "%s"' % ( str(expected_args[2:]), str(optim_params.keys()))) logger.info("Schedule of %s: %s" % (opt_config, str(lr_schedule))) return optim_fn(parameters, **optim_params), lr_schedule PRIVACY_ALPHAS = [1 + x / 10.0 for x in range(1, 100)] + list(range(12, 64)) def getNoiseMultiplier(epsilon, delta, q, steps): sigma_min, sigma_max = 0.01, 10 while sigma_max - sigma_min > 0.01: sigma = (sigma_min + sigma_max) / 2 rdp = privacy_analysis.compute_rdp(q, sigma, steps, PRIVACY_ALPHAS) eps = privacy_analysis.get_privacy_spent(PRIVACY_ALPHAS, rdp, delta)[0] if eps < epsilon: sigma_max = sigma else: sigma_min = sigma logger.info(f"Inferred σ={sigma} for ε={epsilon}, δ={delta}") logger.info("__log__:%s" % json.dumps({"noise_multiplier": sigma})) return sigma def create_privacy_engine(model, params, n_data): if params.private: if params.noise_multiplier is None: _n_data = n_data# if params.privacy_fake_samples is None else params.privacy_fake_samples sample_rate = params.batch_size / _n_data steps = params.epochs * _n_data / params.batch_size params.noise_multiplier = getNoiseMultiplier(params.privacy_epsilon, params.privacy_delta, sample_rate, steps) if params.max_grad_norm == "mean": max_grad_norm = 1.0 else: max_grad_norm = params.max_grad_norm else: max_grad_norm = float("inf") params.noise_multiplier = 0 if params.private or params.log_gradients: if params.log_gradients and not params.private: logger.info("Creating privacy engine to compute per sample gradients and log them.") privacy_engine = PrivacyEngine( model, batch_size=params.batch_size, sample_size=n_data, alphas=PRIVACY_ALPHAS, noise_multiplier=params.noise_multiplier, max_grad_norm=max_grad_norm ) else: privacy_engine = None return privacy_engine
calibration_membership-main
utils/optimizer.py
# Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the CC-by-NC license found in the # LICENSE file in the root directory of this source tree. # from collections import OrderedDict import functools import os import time import numpy as np import torch from torch.nn import functional as F from logging import getLogger from .optimizer import get_optimizer, create_privacy_engine from utils.evaluator import accuracy logger = getLogger() def log_grad(trainer, param_name, *args, **kwargs): if param_name is not None: g = kwargs['per_sample_grad'] trainer.current_grad_sample.append(g.view(g.size(0), -1).clone()) else: trainer.current_grad_sample = torch.cat(trainer.current_grad_sample, dim=1) class Trainer: def __init__(self, model, params, n_data=-1): # model / params self.model = model self.params = params # set optimizers self.n_data = n_data if params.private and params.privacy_delta is None: params.privacy_delta = 1 / n_data print(f"Setting privacy delta to {params.privacy_delta}") self.privacy_engine = create_privacy_engine(model, params, n_data=n_data) self.optimizer, self.schedule = get_optimizer(model.parameters(), params.optimizer, params.epochs) if self.privacy_engine is not None: self.privacy_engine.attach(self.optimizer) if params.log_gradients: self.privacy_engine.clipper.set_on_batch_clip_func(functools.partial(log_grad, self)) self.current_grad_sample = [] self.all_grad_samples = None # training statistics self.epoch = 0 self.batch=0 self.indices = [] self.n_iter = 0 self.step = 0 self.stats = OrderedDict( [('processed_i', 0)] + [('train_loss', [])] + [('time', [])]+[('train_acc', [])] ) self.last_time = time.time() def update_learning_rate(self): """ Sets the learning rate to follow the learning schedule """ if self.schedule is None: return lr = self.schedule[self.epoch] logger.info("New learning rate for %f" % lr) for param_group in self.optimizer.param_groups: param_group['lr'] = lr def end_step(self): self.n_iter += 1 self.step += 1 self.print_stats() def print_stats(self): """ Prints statistics about the training. Statistics are computed on batches since the last print. (i.e. if printing every 5 batches then it shows speed on the last 5 batches) """ if self.n_iter % self.params.print_freq != 0: return s_iter = f"Batch {self.n_iter} - " s_stat = '' s_stat += ' || '.join([ '{}: {:7.4f}'.format(k, np.mean(v[-self.params.print_freq:])) for k, v in self.stats.items() if type(v) is list and len(v) > 0 ]) # learning rates s_lr = "" s_lr = s_lr + (" - LR: ") + " / ".join("{:.4e}".format(group['lr']) for group in self.optimizer.param_groups) # processing speed new_time = time.time() diff = new_time - self.last_time s_speed = "{:7.2f} images/s - ".format(self.stats['processed_i'] * 1.0 / diff) self.stats['processed_i'] = 0 self.last_time = new_time # log speed + stats + learning rate logger.info(s_iter + s_speed + s_stat + s_lr) def save(self, name): """ Save the model. """ path = os.path.join(self.params.dump_path, name) state_dict = self.state_dict() logger.info("Saving model to %s ..." % path) torch.save(state_dict, path) def save_interim_model(self, name, idx): """ Save the model. """ path = os.path.join(self.params.dump_path, name) state_dict = self.state_dict() logger.info("Saving model and batch ids to %s ..." % path) torch.save([state_dict, idx], path) def state_dict(self): r""" Returns state_dict, i.e. model parameters as well as general parameters """ model = self.model data = { 'model': model.state_dict(), 'epoch': self.epoch, 'params': vars(self.params) } data['optimizer'] = self.optimizer.state_dict() if self.params.private: data['privacy_engine'] = self.privacy_engine.state_dict() if self.params.log_gradients: data['gradients'] = self.all_grad_samples return data def reload_checkpoint(self): """ Reload a checkpoint if we find one. """ checkpoint_path = os.path.join(self.params.dump_path, "checkpoint.pth") if not os.path.isfile(checkpoint_path): return logger.warning('Reloading checkpoint from %s ...' % checkpoint_path) device='cuda:'+str(torch.cuda.current_device()) state_dict = torch.load(checkpoint_path, map_location=device) new_state_dict = OrderedDict() for k, v in state_dict["model"].items(): if k[:7]=='module.': # remove `module.` new_state_dict[k[7:]] = v else: new_state_dict[k]=v self.model.load_state_dict(new_state_dict) # else: # new_model.load_state_dict(state_dict_new['model']) # self.model.load_state_dict(state_dict['model'], strict=False) if self.params.private: self.privacy_engine.load_state_dict(state_dict['privacy_engine']) # reload optimizer self.optimizer.load_state_dict(state_dict['optimizer']) # reload stats self.epoch = state_dict['epoch'] + 1 logger.warning('Checkpoint reloaded. Resuming at epoch %i ...' % self.epoch) def end_epoch(self, scores): # Update learning rate self.update_learning_rate() # Reset statistics for k in self.stats.keys(): if type(self.stats[k]) is list: del self.stats[k][:] self.epoch += 1 self.batch = 0 # Save checkpoints self.save("checkpoint.pth") if self.params.save_periodic > 0 and self.epoch % self.params.save_periodic == 0: self.save("periodic-%d.pth" % self.epoch) self.all_grad_samples = None def maybe_log_gradients(self, idx): # Log per sample gradient if self.params.log_gradients: if self.all_grad_samples is None: self.all_grad_samples = torch.zeros(self.n_data, self.current_grad_sample.size(1), dtype=self.current_grad_sample.dtype, device=torch.device('cpu')) self.all_grad_samples[idx] = self.current_grad_sample.cpu() self.current_grad_sample = [] def maybe_log_model(self, idx): #log model before gradient updates and minibatch ids if self.params.log_batch_models: #save model model_file_name='checkpoint_epoch_'+str(self.epoch)+'_batch_'+ str(self.batch)+'.pth' self.save_interim_model(model_file_name, idx) #save ids def maybe_log_epoch_model(self, idx): #log model before gradient updates and minibatch ids if self.params.log_epoch_models: #save model model_file_name='checkpoint_epoch_'+str(self.epoch)+'.pth' self.save_interim_model(model_file_name, idx) def lm_step(self, idx, sentence): """ Language modeling step. """ start = time.time() self.model.train() sentence = sentence.cuda(non_blocking=True) # Forward + loss output = self.model(sentence[:, 1:]) loss = F.cross_entropy(output.view(-1, output.size(-1)), sentence[:, :-1].reshape(-1), reduction='mean') # Gradient step self.optimizer.zero_grad() loss.backward() self.optimizer.step() self.maybe_log_gradients(idx) self.batch+=1 # statistics self.stats['processed_i'] += self.params.batch_size self.stats['train_loss'].append(loss.item()) self.stats['time'].append(time.time() - start) def classif_step(self, idx, images, targets): """ Classification step. """ start = time.time() self.maybe_log_model(idx) if self.batch==0: self.maybe_log_epoch_model(idx) self.model.train() images = images.cuda(non_blocking=True) # Forward + loss output = self.model(images) loss = F.cross_entropy(output, targets.cuda(non_blocking=True), reduction='mean') # Gradient step self.optimizer.zero_grad() loss.backward() self.optimizer.step() self.maybe_log_gradients(idx) self.batch+=1 # statistics self.stats['processed_i'] += self.params.batch_size self.stats['train_loss'].append(loss.item()) self.stats['time'].append(time.time() - start) self.stats['train_acc'].append(accuracy(output.cpu(), targets, topk=tuple([1]))[0]) def get_scores(self): scores = { "speed": self.params.batch_size / np.mean(self.stats['time']), "learning_rate": self.schedule[self.epoch] } if self.params.private: scores["privacy_epsilon"] = self.privacy_engine.get_privacy_spent(1 / self.n_data)[0] for stat_name in self.stats.keys(): if type(self.stats[stat_name]) is list and len(self.stats[stat_name]) >= 1: scores[stat_name] = np.mean(self.stats[stat_name]) return scores
calibration_membership-main
utils/trainer.py
# Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the CC-by-NC license found in the # LICENSE file in the root directory of this source tree. # from logging import getLogger from collections import OrderedDict import numpy as np import torch from torch.nn import functional as F logger = getLogger() class Evaluator(object): # TODO: get ridd of params and only give model in eval() def __init__(self, model, params): """ Initialize evaluator. """ self.model = model self.params = params @torch.no_grad() def run_all_evals(self, evals, data_loader, *args, **kwargs): """ Run all evaluations. """ assert type(evals) is list scores = OrderedDict() if evals is None or 'classif' in evals: self.eval_classif(scores, data_loader) return scores def eval_classif(self, scores, data_loader): """ Evaluate classification. """ params = self.params self.model.eval() # stats losses=[] accuracies = [] topk = [1, 5, 10, 20, 50, 100, 200, 500] topk = [k for k in topk if k <= params.num_classes] for _, images, targets in data_loader: images = images.cuda() output = self.model(images) loss = F.cross_entropy(output, targets.cuda(non_blocking=True), reduction='mean') accuracies.append(accuracy(output.cpu(), targets, topk=tuple(topk))) losses.append(loss.item()) # loss scores['valid_loss']=np.mean(losses) # accuracy for i_k, k in enumerate(topk): scores['valid_top%d_acc' % k] = np.mean([x[i_k] for x in accuracies]) def accuracy(output, target, topk=(1,)): """ Computes the accuracy over the k top predictions for the specified values of k. """ with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].float().sum() res.append(correct_k.mul_(100.0 / batch_size).item()) return res
calibration_membership-main
utils/evaluator.py
# Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the CC-by-NC license found in the # LICENSE file in the root directory of this source tree. # import torch.nn as nn import torch.nn.functional as F class KLLeNet(nn.Module): def __init__(self, params): super().__init__() self.conv1 = nn.Conv2d(params.in_channels, 20, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(20, 50, 5) #for cifar it's 5x5 #for mnist it's 4x4 #for lfw it's 9x6 self.fc1 = nn.Linear(50 * 4 * 4, 500) self.fc2 = nn.Linear(500, params.num_classes) self.dropout1 = nn.Dropout(0.25) self.dropout2 = nn.Dropout(0.5) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x=self.dropout1(x) x = self.pool(F.relu(self.conv2(x))) x=self.dropout1(x) x = x.view(-1, 50 * 4 * 4) x = F.relu(self.fc1(x)) x=self.dropout2(x) x = self.fc2(x) return x
calibration_membership-main
models/KLlenet.py
# Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the CC-by-NC license found in the # LICENSE file in the root directory of this source tree. # import torch.nn as nn import torch.nn.functional as F class LinearNet(nn.Module): def __init__(self, params): super().__init__() self.fc = nn.Linear(params.data_num_dimensions, params.num_classes) def forward(self, x): x = self.fc(x) x=F.softmax(x) return x
calibration_membership-main
models/linear.py
# Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the CC-by-NC license found in the # LICENSE file in the root directory of this source tree. # import torch.nn as nn import torch.nn.functional as F from .lenet import LeNet from .KLlenet import KLLeNet from .lstmlm import LSTMLM from .alexnet import AlexNet from .linear import LinearNet from .mlp import MLP import torchvision.models as models def build_model(params): if params.architecture == "lenet": return LeNet(params) elif params.architecture == "kllenet": return KLLeNet(params) elif params.architecture == "linear": return LinearNet(params) elif params.architecture == "mlp": return MLP(params) elif params.architecture=="alexnet": return AlexNet(params) elif params.architecture == "lstm": return LSTMLM(params) elif params.architecture == "resnet18": return models.resnet18(pretrained=False) elif params.architecture == "smallnet": return nn.Sequential( nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.AvgPool2d(kernel_size=2, stride=2), nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.AvgPool2d(kernel_size=2, stride=2), nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.AvgPool2d(kernel_size=2, stride=2), nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.AdaptiveAvgPool2d((1, 1)), nn.Flatten(start_dim=1, end_dim=-1), nn.Linear(128, params.num_classes, bias=True), ) elif params.architecture == "leaks": return nn.Sequential( nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.AvgPool2d(kernel_size=2, stride=2), nn.Conv2d(32, 128, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.AdaptiveAvgPool2d((1, 1)), nn.Flatten(start_dim=1, end_dim=-1), nn.Linear(128, params.num_classes, bias=True), )
calibration_membership-main
models/__init__.py
# Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the CC-by-NC license found in the # LICENSE file in the root directory of this source tree. # import torch.nn as nn import torch.nn.functional as F class MLP(nn.Module): def __init__(self, params): super().__init__() self.fc = nn.Linear(params.data_num_dimensions, 2*params.data_num_dimensions) self.fc2 = nn.Linear(2*params.data_num_dimensions, params.num_classes) def forward(self, x): x = F.relu(self.fc(x)) x = self.fc2(x) x = F.softmax(x) return x
calibration_membership-main
models/mlp.py
# Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the CC-by-NC license found in the # LICENSE file in the root directory of this source tree. # import torch.nn as nn import torch.nn.functional as F class LeNet(nn.Module): def __init__(self, params): super().__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, params.num_classes) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x
calibration_membership-main
models/lenet.py
# Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the CC-by-NC license found in the # LICENSE file in the root directory of this source tree. # from opacus.layers import DPLSTM import torch import torch.nn as nn class LSTMLM(nn.Module): def __init__(self, params): super().__init__() self.embedding = nn.Embedding(params.n_vocab, params.embedding_dim) assert not params.private if params.private or params.log_gradients: self.lstm = DPLSTM(input_size=params.embedding_dim, hidden_size=params.hidden_dim, num_layers=params.num_layers) else: self.lstm = nn.LSTM(input_size=params.embedding_dim, hidden_size=params.hidden_dim, num_layers=params.num_layers) self.prediction = nn.Linear(params.embedding_dim, params.n_vocab) def forward(self, x): x = self.embedding(x) output, (hn, cn) = self.lstm(x) return self.prediction(output)
calibration_membership-main
models/lstmlm.py
# Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the CC-by-NC license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn class AlexNet(nn.Module): def __init__(self, params): super(AlexNet, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(64, 192, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), ) self.avgpool = nn.AdaptiveAvgPool2d((6, 6)) self.classifier = nn.Sequential( nn.Dropout(), nn.Linear(256 * 6 * 6, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Linear(4096, params.num_classes), ) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.classifier(x) return x
calibration_membership-main
models/alexnet.py
calibration_membership-main
attacks/__init__.py
# Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the CC-by-NC license found in the # LICENSE file in the root directory of this source tree. # import os from posixpath import join import sys import inspect import math from random import randrange import pickle import copy import numpy as np import pandas as pd import argparse from collections import OrderedDict from sklearn.metrics import roc_auc_score import sklearn.metrics as metrics from sklearn.datasets import fetch_openml from sklearn.impute import SimpleImputer from sklearn import preprocessing import torch import torchvision import torchvision.transforms as transforms import torchvision.models as models from torch.utils.data import Subset from training.image_classification import train from utils.masks import to_mask, evaluate_masks from torch.nn import functional as F from models import build_model from utils.misc import bool_flag from utils.masks import to_mask from attacks.privacy_attacks import get_parser from opacus.grad_sample import GradSampleModule from cleverhans.torch.attacks.hop_skip_jump_attack import hop_skip_jump_attack from cleverhans.torch.attacks.carlini_wagner_l2 import carlini_wagner_l2 currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.insert(0, parentdir) def get_parser(): """ Generate a parameters parser. """ parser = argparse.ArgumentParser(description='Privacy attack parameters') # config parameters parser.add_argument("--dump_path", type=str, default=None) # model saving location parser.add_argument('--print_freq', type=int, default=50) # training printing frequency parser.add_argument("--save_periodic", type=int, default=0) # training saving frequency # attack parameters parser.add_argument("--model_path", type=str, default="model") # path to the private model parser.add_argument("--attack_type", type=str, default="loss") # type of auxiliary attack parser.add_argument("--aux_epochs", type=int, default=20) # number of auxiliary training epochs parser.add_argument("--num_aux", type=int, default=1) # number of auxiliary models parser.add_argument("--aug_style", type=str, default="mean") # combination method for augmented data values parser.add_argument("--aux_style", type=str, default="sum") # combination method for multiple aux. model values parser.add_argument("--public_data", type=str, default="train") # specify which part of the public data to use for aux model training (e.g. train is the training mask, rand50 is a random selection of the public data) parser.add_argument("--norm_type", type=str, default=None) # norm for gradient norm parser.add_argument("--num_points", type=int, default=10) # number of points to use for the label-only attack parser.add_argument("--clip_min", type=float, default=0) # minimum value for adversarial feature in label-only attack parser.add_argument("--clip_max", type=float, default=1) # maximum value for adversarial feature in label-only attack # Data parameters parser.add_argument("--data_root", type=str, default="data") # path to the data parser.add_argument("--dataset", type=str, choices=["cifar10", "imagenet", "cifar100", "gaussian","credit", "hep", "adult", "mnist", "lfw"], default="cifar10") parser.add_argument("--mask_path", type=str, required=True) # path to the data mask parser.add_argument('--n_data', type=int, default=500) # specify number of data points for gaussian data parser.add_argument('--data_num_dimensions', type=int, default=75) # number of features for non-image data parser.add_argument('--random_seed', type=int, default=10) # seed for gaussian data parser.add_argument("--num_classes", type=int, default=10) # number of classes for classification task parser.add_argument("--in_channels", type=int, default=3) # number of input channels for image data # Model parameters parser.add_argument("--architecture", choices=["lenet", "smallnet", "resnet18", "kllenet","linear", "mlp"], default="lenet") # training parameters parser.add_argument("--aug", type=bool_flag, default=False) # data augmentation flag parser.add_argument("--batch_size", type=int, default=32) parser.add_argument("--epochs", type=int, default=50) parser.add_argument("--optimizer", default="sgd,lr=0.1,momentum=0.9") parser.add_argument("--num_workers", type=int, default=2) parser.add_argument("--log_gradients", type=bool_flag, default=False) parser.add_argument("--log_batch_models", type=bool_flag, default=False) # save model for each batch of data parser.add_argument("--log_epoch_models", type=bool_flag, default=False) # save model for each training epoch # privacy parameters parser.add_argument("--private", type=bool_flag, default=False) # privacy flag parser.add_argument("--noise_multiplier", type=float, default=None) parser.add_argument("--privacy_epsilon", type=float, default=None) parser.add_argument("--privacy_delta", type=float, default=None) parser.add_argument("--max_grad_norm", type=float, default=1.0) #multi gpu paramaeters parser.add_argument("--local_rank", type=int, default=-1) parser.add_argument("--master_port", type=int, default=-1) parser.add_argument("--debug_slurm", type=bool_flag, default=False) return parser def adult_data_transform(df): """ transform adult data. """ binary_data = pd.get_dummies(df) feature_cols = binary_data[binary_data.columns[:-2]] scaler = preprocessing.StandardScaler() data = pd.DataFrame(scaler.fit_transform(feature_cols), columns=feature_cols.columns) return data def get_dataset(params): """ load data for privacy attacks """ if params.dataset=='cifar10': if params.aug==True: print('Using data augmentation') augmentations = [transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip()] normalize = [transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] model_transform = transforms.Compose(augmentations + normalize) else: print('Not using data augmentation') normalize = [transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] model_transform = transforms.Compose(normalize) return torchvision.datasets.CIFAR10(root=params.data_root, train=True, download=True, transform=model_transform) if params.dataset=='mnist': transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))]) return torchvision.datasets.MNIST(root=params.data_root, train=True, download=True, transform=transform) elif params.dataset=='imagenet': if params.aug==True: print('Using data augmentation to train model') augmentations = [transforms.Resize(256),transforms.RandomResizedCrop(224),transforms.RandomHorizontalFlip()] normalize = [transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])] transform = transforms.Compose(augmentations + normalize) else: print('Not using data augmentation to train model') transform = transforms.Compose( [transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])]) dataset = torchvision.datasets.ImageFolder(root=params.data_root+'/train',transform=transform) return dataset elif params.dataset=='cifar100': if params.aug: augmentations = [transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip()] normalize = [transforms.ToTensor(),transforms.Normalize(mean=[n/255 for n in [129.3, 124.1, 112.4]], std=[n/255 for n in [68.2, 65.4, 70.4]])] transform = transforms.Compose(augmentations + normalize) else: transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize(mean=[n/255 for n in [129.3, 124.1, 112.4]], std=[n/255 for n in [68.2, 65.4, 70.4]])]) dataset = torchvision.datasets.CIFAR100(root=params.data_root, train=True, download=True, transform=transform) return dataset elif params.dataset=='credit': cred=fetch_openml('credit-g') data = SimpleImputer(missing_values=np.nan, strategy='mean', copy=True).fit(cred.data).transform(cred.data) target = preprocessing.LabelEncoder().fit(cred.target).transform(cred.target) X=data norm = np.max(np.concatenate((-1*X.min(axis=0)[np.newaxis], X.max(axis=0)[np.newaxis]),axis=0).T, axis=1).astype('float32') data=np.divide(data,norm) data=torch.tensor(data).float() target=torch.tensor(target).long() ids=np.arange(1000)[:800] final_data = [] for i in ids: final_data.append([data[i], target[i]]) # norm=np.max params.num_classes = 2 # dataloader = torch.utils.data.DataLoader(final_data, shuffle=True, batch_size=params.batch_size) # n_data=len(final_data) return final_data elif params.dataset=='hep': hep=fetch_openml('hepatitis') data = SimpleImputer(missing_values=np.nan, strategy='mean', copy=True).fit(hep.data).transform(hep.data) target = preprocessing.LabelEncoder().fit(hep.target).transform(hep.target) X=data norm = np.max(np.concatenate((-1*X.min(axis=0)[np.newaxis], X.max(axis=0)[np.newaxis]),axis=0).T, axis=1).astype('float32') data=np.divide(data,norm) data=torch.tensor(data).float() target=torch.tensor(target).long() ids=np.arange(155)[:124] final_data = [] for i in ids: final_data.append([data[i], target[i]]) params.num_classes = 2 return final_data elif params.dataset == 'adult': columns = ["age", "workClass", "fnlwgt", "education", "education-num","marital-status", "occupation", "relationship","race", "sex", "capital-gain", "capital-loss", "hours-per-week", "native-country", "income"] train_data = pd.read_csv(params.data_root+'/adult.data', names=columns, sep=' *, *', na_values='?') test_data = pd.read_csv(params.data_root+'/adult.test', names=columns, sep=' *, *', skiprows=1, na_values='?') original_train=train_data original_test=test_data num_train = len(original_train) original = pd.concat([original_train, original_test]) labels = original['income'] labels = labels.replace('<=50K', 0).replace('>50K', 1) labels = labels.replace('<=50K.', 0).replace('>50K.', 1) # Remove target del original["income"] data = adult_data_transform(original) train_data = data[:num_train] train_labels = labels[:num_train] test_data = data[num_train:] test_labels = labels[num_train:] test_data=torch.tensor(test_data.to_numpy()).float() train_data=torch.tensor(train_data.to_numpy()).float() test_labels=torch.tensor(test_labels.to_numpy(dtype='int64')).long() train_labels=torch.tensor(train_labels.to_numpy(dtype='int64')).long() final_data = [] for i in np.arange(len(train_data)): final_data.append([train_data[i], train_labels[i]]) return final_data def get_uncalibrated_gradnorm(params, mask): """ return uncalibrated gradient norm values for data indicated by the mask. """ #load the dataset dataset = get_dataset(params) #initialize to 0 grad_norms=np.zeros(len(mask)) #get the final model final_model=build_model(params) final_model_path = os.path.join(params.model_path, "checkpoint.pth") state_dict_final = torch.load(final_model_path, map_location='cuda:0') if params.dataset=='imagenet': new_state_dict = OrderedDict() for k, v in state_dict_final["model"].items(): if k[:7]=='module.': # remove `module.` new_state_dict[k[7:]] = v else: new_state_dict[k]=v final_model.load_state_dict(new_state_dict) else: final_model.load_state_dict(state_dict_final['model']) final_model=final_model.cuda() original_model=[] for p in final_model.parameters(): original_model.append(p.view(-1)) original_model=torch.cat(original_model) #get the appropriate ids to dot product ids=(mask==True).nonzero().flatten().numpy() #load 1-by-1. See get_calibrated_gradnorm for batched method using Opacus gradsamplemodule. for id in ids: #load each image and target image = dataset[id][0].unsqueeze(0) image = image.cuda(non_blocking=True) target = torch.tensor(dataset[id][1]).unsqueeze(0) target = target.cuda(non_blocking=True) #reload the original batch model, if imagenet may need to rename keys. if params.dataset=='imagenet': new_state_dict = OrderedDict() for k, v in state_dict_final["model"].items(): if k[:7]=='module.': # remove "module."" new_state_dict[k[7:]] = v else: new_state_dict[k]=v final_model.load_state_dict(new_state_dict) else: final_model.load_state_dict(state_dict_final['model']) # check the model gradient is zeros final_model.zero_grad() #get the gradient output=final_model(image) loss=F.cross_entropy(output, target) loss.backward() grads=[] for param in final_model.parameters(): grads.append(param.grad.view(-1)) grads = torch.cat(grads) g=grads.cpu().numpy() grad_norms[id]=np.linalg.norm(g) return grad_norms def get_calibrated_gradnorm(params, private_model, private_params, attack_model,attack_params, ids, mask, aug_style='mean',norm_type=None): """ return calibrated gradient norm values. """ #load the dataset dataset = get_dataset(params) #initialize to 0 grad_norms=np.zeros(len(mask)) if params.aug: batch_vals=[[0] for i in np.arange(len(mask))] for t in np.arange(10): batched_ids=np.array_split(ids, 1000) for b_ids in batched_ids: image_data=torch.stack([dataset[i][0] for i in b_ids]) image_data=image_data.cuda() target_data=torch.stack([torch.tensor(dataset[i][1]) for i in b_ids]) target_data=target_data.cuda() private_model.zero_grad() out_private=private_model(image_data) loss_private=F.cross_entropy(out_private, target_data) loss_private.backward() attack_model.zero_grad() out_attack=attack_model(image_data) loss_attack=F.cross_entropy(out_attack, target_data) loss_attack.backward() for i,id in enumerate(b_ids): private_grads=[] for param in private_model.parameters(): private_grads.append(param.grad_sample[i].view(-1)) private_grads = torch.cat(private_grads) attack_grads=[] for param in attack_model.parameters(): attack_grads.append(param.grad_sample[i].view(-1)) attack_grads = torch.cat(attack_grads) g_private=private_grads.cpu().numpy() g_attack=attack_grads.cpu().numpy() if norm_type=='inf': batch_vals[id].append(max(g_private-g_attack)) else: if norm_type=='1': norm_type=1 elif norm_type=='2': norm_type=2 elif norm_type=='3': norm_type=3 batch_vals[id].append(np.linalg.norm(g_private, ord=norm_type)-np.linalg.norm(g_attack,ord=norm_type)) for id in ids: if aug_style=='mean': grad_norms[id]=np.mean(batch_vals[id][1:]) elif aug_style=='max': grad_norms[id]=np.max(batch_vals[id][1:]) elif aug_style=='median': grad_norms[id]=np.median(batch_vals[id][1:]) elif aug_style=='std': grad_norms[id]=np.std(batch_vals[id][1:]) else: batched_ids=np.array_split(ids, 1000) for b_ids in batched_ids: image_data=torch.stack([dataset[i][0] for i in b_ids]) image_data=image_data.cuda() target_data=torch.stack([torch.tensor(dataset[i][1]) for i in b_ids]) target_data=target_data.cuda() private_model.zero_grad() out_private=private_model(image_data) loss_private=F.cross_entropy(out_private, target_data) loss_private.backward() attack_model.zero_grad() out_attack=attack_model(image_data) loss_attack=F.cross_entropy(out_attack, target_data) loss_attack.backward() for i,id in enumerate(b_ids): private_grads=[] for param in private_model.parameters(): private_grads.append(param.grad_sample[i].view(-1)) private_grads = torch.cat(private_grads) attack_grads=[] for param in attack_model.parameters(): attack_grads.append(param.grad_sample[i].view(-1)) attack_grads = torch.cat(attack_grads) g_private=private_grads.cpu().numpy() g_attack=attack_grads.cpu().numpy() if norm_type=='inf': grad_norms[id]=max(g_private-g_attack) else: if norm_type=='1': norm_type=1 elif norm_type=='2': norm_type=2 elif norm_type=='3': norm_type=3 grad_norms[id]=np.linalg.norm(g_private, ord=norm_type)-np.linalg.norm(g_attack,ord=norm_type) return grad_norms def calibrated_gradient_attack(params): """ run a calibrated gradient attack. """ #load the masks known_masks, hidden_masks = {}, {} hidden_masks['public'], hidden_masks['private']={},{} known_masks['public'] = torch.load(params.mask_path + "public.pth") known_masks['private'] = torch.load( params.mask_path + "private.pth") hidden_masks['private']['train']=torch.load( params.mask_path + "hidden/train.pth") hidden_masks['private']['heldout'] = torch.load( params.mask_path + "hidden/heldout.pth") hidden_masks['public']['train']=torch.load( params.mask_path + "hidden/public_train.pth") hidden_masks['public']['heldout'] = torch.load( params.mask_path + "hidden/public_heldout.pth") if params.public_data=='train': print('Using public training data for auxiliary model') attack_model=train(params, hidden_masks['public']['train']) elif params.public_data[:4]=='rand': print('Using random subset for auxiliary model') public_ids=(known_masks['public']==True).nonzero().flatten().numpy() prop_selected=float(params.public_data[4:])/100 num_selected=math.ceil(prop_selected*len(public_ids)) permuted_ids=np.random.permutation(public_ids) aux_data_mask=to_mask(len(known_masks['public']),permuted_ids[:num_selected]) print('Number of public model training points', len((aux_data_mask==True).nonzero().flatten().numpy())) attack_model=train(params, aux_data_mask) else: print('Using all public data for auxiliary model') attack_model=train(params, known_masks['public']) attack_model=attack_model.cuda() #get the attack model parameters original_attack_model=[] for p in attack_model.parameters(): original_attack_model.append(p.view(-1)) original_attack_model=torch.cat(original_attack_model) #get the final model parameters private_model=build_model(params) private_model_path = os.path.join(params.model_path, "checkpoint.pth") state_dict_private = torch.load(private_model_path) private_model.load_state_dict(state_dict_private['model']) private_model=private_model.cuda() original_private_model=[] for p in private_model.parameters(): original_private_model.append(p.view(-1)) original_private_model=torch.cat(original_private_model) #get the appropriate ids to dot product private_train_ids=(hidden_masks['private']['train']==True).nonzero().flatten().numpy() private_heldout_ids=(hidden_masks['private']['heldout']==True).nonzero().flatten().numpy() # reload model to allow use of gradsamplemodule new_model=build_model(params) new_model_path = os.path.join(params.dump_path, "checkpoint.pth") state_dict_new = torch.load(new_model_path) new_model.load_state_dict(state_dict_new['model']) new_model=new_model.cuda() private_model=GradSampleModule(private_model) attack_model=GradSampleModule(new_model) train_dots=get_calibrated_gradnorm(params, private_model, original_private_model, attack_model,original_attack_model,private_train_ids,hidden_masks['private']['train']) heldout_dots=get_calibrated_gradnorm(params, private_model, original_private_model, attack_model,original_attack_model,private_heldout_ids,hidden_masks['private']['heldout']) return train_dots, heldout_dots def get_calibrated_losses(params, private_model, attack_model, ids, mask, aug_style='mean'): """ return calibrated losses """ #load the dataset dataset = get_dataset(params) #initialize dot products to 0 losses=np.zeros(len(mask)) if params.aug: summed_loss=[[0] for i in np.arange(len(mask))] for j in np.arange(10): print('aug',j) batched_ids=np.array_split(ids, 1000) for b_ids in batched_ids: image_data=torch.stack([dataset[i][0] for i in b_ids]) image_data=image_data.cuda() target_data=torch.stack([torch.tensor(dataset[i][1]) for i in b_ids]) target_data=target_data.cuda() out_private=private_model(image_data) out_attack=attack_model(image_data) for i,id in enumerate(b_ids): output=out_private[i].unsqueeze(0) loss=F.cross_entropy(output, target_data[i].unsqueeze(0)) attack_output=out_attack[i].unsqueeze(0) attack_loss=F.cross_entropy(attack_output, target_data[i].unsqueeze(0)) loss_diff=loss-attack_loss summed_loss[id].append(loss_diff.cpu().detach().numpy()) for id in ids: if aug_style=='mean': losses[id]=np.mean(summed_loss[id][1:]) elif aug_style=='max': losses[id]=np.max(summed_loss[id][1:]) elif aug_style=='median': losses[id]=np.median(summed_loss[id][1:]) elif aug_style=='std': losses[id]=np.std(summed_loss[id][1:]) else: for id in ids: #load each image and target image = dataset[id][0].unsqueeze(0) image = image.cuda(non_blocking=True) target = torch.tensor(dataset[id][1]).unsqueeze(0) target = target.cuda(non_blocking=True) #get the loss output=private_model(image) loss=F.cross_entropy(output, target) attack_output=attack_model(image) attack_loss=F.cross_entropy(attack_output, target) losses[id]=loss-attack_loss return losses def get_calibrated_confidences(params, private_model, attack_model, ids, mask, aug_style='mean'): """ return calibrated confidences. """ #load the dataset dataset = get_dataset(params) #initialize dot products to 0 confidences=np.zeros(len(mask)) if params.aug: summed_confs=[[0] for i in np.arange(len(mask))] for j in np.arange(10): print('Aug', j) images=torch.stack([dataset[i][0] for i in ids]) images=images.cuda() log_softmax = torch.nn.LogSoftmax(dim=1) output=private_model(images) attack_output=attack_model(images) log_output=log_softmax(output) log_attack_output=log_softmax(attack_output) private_confidences,_=torch.max(log_output,dim=1) attack_confidences,_=torch.max(log_attack_output,dim=1) confs=private_confidences-attack_confidences confs=confs.cpu().detach().numpy() for i,id in enumerate(ids): summed_confs[id].append(confs[i]) for id in ids: if aug_style=='mean': confidences[id]=np.mean(summed_confs[id][1:]) elif aug_style=='max': confidences[id]=np.max(summed_confs[id][1:]) elif aug_style=='median': confidences[id]=np.median(summed_confs[id][1:]) elif aug_style=='std': confidences[id]=np.std(summed_confs[id][1:]) else: images=torch.stack([dataset[i][0] for i in ids]) images=images.cuda() log_softmax = torch.nn.LogSoftmax(dim=1) output=private_model(images) attack_output=attack_model(images) log_output=log_softmax(output) log_attack_output=log_softmax(attack_output) private_confidences,_=torch.max(log_output,dim=1) attack_confidences,_=torch.max(log_attack_output,dim=1) confidences=private_confidences-attack_confidences return confidences def calibrated_loss_attack(params): """ run a calibrated loss attack. """ #load the masks known_masks, hidden_masks = {}, {} hidden_masks['public'], hidden_masks['private']={},{} known_masks['public'] = torch.load(params.mask_path + "public.pth") known_masks['private'] = torch.load( params.mask_path + "private.pth") hidden_masks['private']['train']=torch.load( params.mask_path + "hidden/train.pth") hidden_masks['private']['heldout'] = torch.load( params.mask_path + "hidden/heldout.pth") hidden_masks['public']['train']=torch.load( params.mask_path + "hidden/public_train.pth") hidden_masks['public']['heldout'] = torch.load( params.mask_path + "hidden/public_heldout.pth") if params.public_data=='train': print('Using public training data for auxiliary model') attack_model=train(params, hidden_masks['public']['train']) elif params.public_data[:4]=='rand': print('Using random subset for auxiliary model') public_ids=(known_masks['public']==True).nonzero().flatten().numpy() prop_selected=float(params.public_data[4:])/100 num_selected=math.ceil(prop_selected*len(public_ids)) permuted_ids=np.random.permutation(public_ids) aux_data_mask=to_mask(len(known_masks['public']),permuted_ids[:num_selected]) print('Number of public model training points', len((aux_data_mask==True).nonzero().flatten().numpy())) attack_model=train(params, aux_data_mask) else: print('Using all public data for auxiliary model') attack_model=train(params, known_masks['public']) attack_model=attack_model.cuda() #get the final model parameters private_model=build_model(params) private_model_path = os.path.join(params.model_path, "checkpoint.pth") state_dict_private = torch.load(private_model_path) private_model.load_state_dict(state_dict_private['model']) private_model=private_model.cuda() #get the appropriate ids to dot product private_train_ids=(hidden_masks['private']['train']==True).nonzero().flatten().numpy() private_heldout_ids=(hidden_masks['private']['heldout']==True).nonzero().flatten().numpy() train_losses=get_calibrated_losses(params, private_model, attack_model,private_train_ids,hidden_masks['private']['train']) heldout_losses=get_calibrated_losses(params, private_model, attack_model,private_heldout_ids,hidden_masks['private']['heldout']) return train_losses, heldout_losses def calibrated_confidence_attack(params): """ run a calibrated confidence attack. """ #load the masks known_masks, hidden_masks = {}, {} hidden_masks['public'], hidden_masks['private']={},{} known_masks['public'] = torch.load(params.mask_path + "public.pth") known_masks['private'] = torch.load( params.mask_path + "private.pth") hidden_masks['private']['train']=torch.load( params.mask_path + "hidden/train.pth") hidden_masks['private']['heldout'] = torch.load( params.mask_path + "hidden/heldout.pth") hidden_masks['public']['train']=torch.load( params.mask_path + "hidden/public_train.pth") hidden_masks['public']['heldout'] = torch.load( params.mask_path + "hidden/public_heldout.pth") if params.public_data=='train': print('Using public training data for auxiliary model') attack_model=train(params, hidden_masks['public']['train']) elif params.public_data[:4]=='rand': print('Using random subset for auxiliary model') public_ids=(known_masks['public']==True).nonzero().flatten().numpy() prop_selected=float(params.public_data[4:])/100 num_selected=math.ceil(prop_selected*len(public_ids)) permuted_ids=np.random.permutation(public_ids) aux_data_mask=to_mask(len(known_masks['public']),permuted_ids[:num_selected]) print('Number of public model training points', len((aux_data_mask==True).nonzero().flatten().numpy())) attack_model=train(params, aux_data_mask) else: print('Using all public data for auxiliary model') attack_model=train(params, known_masks['public']) attack_model=attack_model.cuda() #get the final model parameters private_model=build_model(params) private_model_path = os.path.join(params.model_path, "checkpoint.pth") state_dict_private = torch.load(private_model_path) private_model.load_state_dict(state_dict_private['model']) private_model=private_model.cuda() #get the appropriate ids to dot product private_train_ids=(hidden_masks['private']['train']==True).nonzero().flatten().numpy() private_heldout_ids=(hidden_masks['private']['heldout']==True).nonzero().flatten().numpy() train_losses=get_calibrated_confidences(params, private_model, attack_model,private_train_ids,hidden_masks['private']['train']) heldout_losses=get_calibrated_confidences(params, private_model, attack_model,private_heldout_ids,hidden_masks['private']['heldout']) return train_losses, heldout_losses def auxiliary_attack(params, aux_epochs, attack_type='loss', aug_style='mean', norm_type=None, public_data='train', num_aux=1,aux_style='sum'): """ run an auxiliary attack, type (loss, grad_norm, conf, dist) specified by attack_type. """ #load the masks known_masks, hidden_masks = {}, {} hidden_masks['public'], hidden_masks['private']={},{} known_masks['public'] = torch.load(params.mask_path + "public.pth") known_masks['private'] = torch.load( params.mask_path + "private.pth") hidden_masks['private']['train']=torch.load( params.mask_path + "hidden/train.pth") hidden_masks['private']['heldout'] = torch.load( params.mask_path + "hidden/heldout.pth") hidden_masks['public']['train']=torch.load( params.mask_path + "hidden/public_train.pth") hidden_masks['public']['heldout'] = torch.load( params.mask_path + "hidden/public_heldout.pth") #get the final model parameters private_model=build_model(params) private_model_path = os.path.join(params.model_path, "checkpoint.pth") state_dict_private = torch.load(private_model_path,map_location='cuda:0') if params.dataset=='imagenet': new_state_dict = OrderedDict() for k, v in state_dict_private["model"].items(): if k[:7]=='module.': # remove `module.` new_state_dict[k[7:]] = v else: new_state_dict[k]=v private_model.load_state_dict(new_state_dict) else: private_model.load_state_dict(state_dict_private['model']) private_model=private_model.cuda() # updated_params=copy.deepcopy(params) updated_params=params updated_params.epochs=updated_params.epochs+aux_epochs private_train_ids=(hidden_masks['private']['train']==True).nonzero().flatten().numpy() private_heldout_ids=(hidden_masks['private']['heldout']==True).nonzero().flatten().numpy() train_losses=np.zeros(len(known_masks['public'])) heldout_losses=np.zeros(len(known_masks['public'])) for i in np.arange(num_aux): if params.dataset=='cifar10' or params.dataset=='credit' or params.dataset=='hep' or params.dataset=='adult' or params.dataset=='mnist': model_num=params.model_path[-6:-5] elif params.dataset=='cifar100': model_num=params.model_path[-15:-14] else: model_num='0' new_model_path='updated_model_'+str(aux_epochs) +'_'+str(params.batch_size)+'_'+params.optimizer+'_aux_model_'+str(i)+'_num_aux_'+str(num_aux)+'_public_data_'+params.public_data+'_model_'+model_num if not os.path.isdir(new_model_path): os.mkdir(new_model_path) updated_params.dump_path=new_model_path if updated_params.local_rank!=-1: updated_params.local_rank=-1 path = os.path.join(updated_params.dump_path, 'checkpoint.pth') torch.save(state_dict_private, path) if public_data=='train': print('Using public training data for auxiliary model') updated_model=train(updated_params, hidden_masks['public']['train']) elif public_data[:4]=='rand': print('Using random subset for auxiliary model') public_ids=(known_masks['public']==True).nonzero().flatten().numpy() prop_selected=float(public_data[4:])/100 num_selected=math.ceil(prop_selected*len(public_ids)) permuted_ids=np.random.permutation(public_ids) aux_data_mask=to_mask(len(known_masks['public']),permuted_ids[:num_selected]) print('Number of public model training points', len((aux_data_mask==True).nonzero().flatten().numpy())) updated_model=train(updated_params, aux_data_mask) else: print('Using all public data for auxiliary model') updated_model=train(updated_params, known_masks['public']) updated_model=updated_model.cuda() new_model=build_model(params) new_model_path=os.path.join(updated_params.dump_path, "checkpoint.pth") state_dict_new=torch.load(new_model_path,map_location='cuda:0') if params.dataset=='imagenet': new_state_dict = OrderedDict() for k, v in state_dict_new["model"].items(): if k[:7]=='module.': # remove `module.` new_state_dict[k[7:]] = v else: new_state_dict[k]=v new_model.load_state_dict(new_state_dict) else: new_model.load_state_dict(state_dict_new['model']) new_model=new_model.cuda() #get losses if attack_type=='loss': train_vals=get_calibrated_losses(params, private_model, updated_model,private_train_ids,hidden_masks['private']['train'], aug_style) heldout_vals=get_calibrated_losses(params, private_model, updated_model,private_heldout_ids,hidden_masks['private']['heldout'], aug_style) elif attack_type=='conf': train_vals=get_calibrated_confidences(params, private_model, updated_model,private_train_ids,hidden_masks['private']['train'], aug_style) heldout_vals=get_calibrated_confidences(params, private_model, updated_model,private_heldout_ids,hidden_masks['private']['heldout'], aug_style) elif attack_type=='dist': private_train_ids=private_train_ids[np.random.choice(len(private_train_ids), size=params.num_points, replace=False)] private_heldout_ids=private_heldout_ids[np.random.choice(len(private_heldout_ids), size=params.num_points, replace=False)] train_vals=get_calibrated_distances(params, private_model, updated_model,private_train_ids) heldout_vals=get_calibrated_distances(params, private_model, updated_model,private_heldout_ids) else: original_private_model=[] for p in private_model.parameters(): original_private_model.append(p.view(-1)) original_private_model=torch.cat(original_private_model) original_updated_model=[] for p in new_model.parameters(): original_updated_model.append(p.view(-1)) original_updated_model=torch.cat(original_updated_model) if i==0: private_model=GradSampleModule(private_model) attack_model=GradSampleModule(new_model) train_vals=get_calibrated_gradnorm(params, private_model,original_private_model, attack_model,original_updated_model,private_train_ids,hidden_masks['private']['train'], aug_style=aug_style, norm_type=norm_type) heldout_vals=get_calibrated_gradnorm(params, private_model, original_private_model,attack_model,original_updated_model,private_heldout_ids,hidden_masks['private']['heldout'], aug_style=aug_style,norm_type=norm_type) if aux_style=='max': train_losses=np.maximum(train_losses, train_vals) heldout_losses=np.maximum(heldout_losses, heldout_vals) else: if params.attack_type=='conf' or params.attack_type=='dist': train_losses=train_vals heldout_losses=heldout_vals else: train_losses+=train_vals heldout_losses+=heldout_vals if aux_style=='mean': train_losses=train_losses/num_aux heldout_losses=heldout_losses/num_aux return train_losses, heldout_losses def get_losses(params): """ return uncalibrated losses. """ known_masks, hidden_masks = {}, {} hidden_masks['public'], hidden_masks['private']={},{} known_masks['public'] = torch.load(params.mask_path + "public.pth") known_masks['private'] = torch.load( params.mask_path + "private.pth") hidden_masks['private']['train']=torch.load( params.mask_path + "hidden/train.pth") hidden_masks['private']['heldout'] = torch.load( params.mask_path + "hidden/heldout.pth") hidden_masks['public']['train']=torch.load( params.mask_path + "hidden/public_train.pth") hidden_masks['public']['heldout'] = torch.load( params.mask_path + "hidden/public_heldout.pth") #get the final model parameters private_model=build_model(params) private_model_path = os.path.join(params.model_path, "checkpoint.pth") state_dict_private = torch.load(private_model_path,map_location='cuda:0') if params.dataset=='imagenet': new_state_dict = OrderedDict() for k, v in state_dict_private["model"].items(): if k[:7]=='module.': # remove `module.` new_state_dict[k[7:]] = v else: new_state_dict[k]=v private_model.load_state_dict(new_state_dict) else: private_model.load_state_dict(state_dict_private['model']) private_model=private_model.cuda() #get the appropriate ids to dot product private_train_ids=(hidden_masks['private']['train']==True).nonzero().flatten().numpy() private_heldout_ids=(hidden_masks['private']['heldout']==True).nonzero().flatten().numpy() #load the dataset dataset = get_dataset(params) #initialize dot products to 0 train_losses=[] heldout_losses=[] for id in private_train_ids: #load each image and target image = dataset[id][0].unsqueeze(0) image = image.cuda(non_blocking=True) target = torch.tensor(dataset[id][1]).unsqueeze(0) target = target.cuda(non_blocking=True) #get the loss output=private_model(image) loss=F.cross_entropy(output, target).item() train_losses.append(loss) for id in private_heldout_ids: #load each image and target image = dataset[id][0].unsqueeze(0) image = image.cuda(non_blocking=True) target = torch.tensor(dataset[id][1]).unsqueeze(0) target = target.cuda(non_blocking=True) #get the loss output=private_model(image) loss=F.cross_entropy(output, target).item() heldout_losses.append(loss) return train_losses,heldout_losses def get_confidences(params): """ return uncalibrated confidences. """ known_masks, hidden_masks = {}, {} hidden_masks['public'], hidden_masks['private']={},{} known_masks['public'] = torch.load(params.mask_path + "public.pth") known_masks['private'] = torch.load( params.mask_path + "private.pth") hidden_masks['private']['train']=torch.load( params.mask_path + "hidden/train.pth") hidden_masks['private']['heldout'] = torch.load( params.mask_path + "hidden/heldout.pth") hidden_masks['public']['train']=torch.load( params.mask_path + "hidden/public_train.pth") hidden_masks['public']['heldout'] = torch.load( params.mask_path + "hidden/public_heldout.pth") device = torch.device('cpu') #get the final model parameters private_model=build_model(params) private_model_path = os.path.join(params.model_path, "checkpoint.pth") state_dict_private = torch.load(private_model_path,map_location=device) private_model.load_state_dict(state_dict_private['model']) private_model=private_model.cpu() #get the appropriate ids to dot product private_train_ids=(hidden_masks['private']['train']==True).nonzero().flatten().numpy() private_heldout_ids=(hidden_masks['private']['heldout']==True).nonzero().flatten().numpy() #load the dataset dataset = get_dataset(params) if params.aug: train_confidences=np.zeros(len(hidden_masks['private']['train'])) heldout_confidences=np.zeros(len(hidden_masks['private']['train'])) train_summed_confs=[[0] for i in np.arange(len(hidden_masks['private']['train']))] heldout_summed_confs=[[0] for i in np.arange(len(hidden_masks['private']['train']))] for j in np.arange(10): print('Aug', j) train_images=torch.stack([dataset[i][0] for i in private_train_ids]) train_images=train_images.cpu() heldout_images=torch.stack([dataset[i][0] for i in private_heldout_ids]) heldout_images=heldout_images.cpu() log_softmax = torch.nn.LogSoftmax(dim=1) train_output=private_model(train_images) heldout_output=private_model(heldout_images) log_train_output=log_softmax(train_output) log_heldout_output=log_softmax(heldout_output) train_confs,_=torch.max(log_train_output,dim=1) heldout_confs,_=torch.max(log_heldout_output,dim=1) train_confs=train_confs.cpu().detach().numpy() heldout_confs=heldout_confs.cpu().detach().numpy() for i,id in enumerate(private_train_ids): train_summed_confs[id].append(train_confs[i]) for i,id in enumerate(private_heldout_ids): heldout_summed_confs[id].append(heldout_confs[i]) for id in private_train_ids: if params.aug_style=='mean': train_confidences[id]=np.mean(train_summed_confs[id][1:]) elif params.aug_style=='max': train_confidences[id]=np.max(train_summed_confs[id][1:]) elif params.aug_style=='median': train_confidences[id]=np.median(train_summed_confs[id][1:]) elif params.aug_style=='std': train_confidences[id]=np.std(train_summed_confs[id][1:]) for id in private_heldout_ids: if params.aug_style=='mean': heldout_confidences[id]=np.mean(heldout_summed_confs[id][1:]) elif params.aug_style=='max': heldout_confidences[id]=np.max(heldout_summed_confs[id][1:]) elif params.aug_style=='median': heldout_confidences[id]=np.median(heldout_summed_confs[id][1:]) elif params.aug_style=='std': heldout_confidences[id]=np.std(heldout_summed_confs[id][1:]) train_confidences=train_confidences[private_train_ids] heldout_confidences=heldout_confidences[private_heldout_ids] else: train_confidences=[] heldout_confidences=[] train_images=torch.stack([dataset[i][0] for i in private_train_ids]) train_images=train_images.cpu() heldout_images=torch.stack([dataset[i][0] for i in private_heldout_ids]) heldout_images=heldout_images.cpu() log_softmax = torch.nn.LogSoftmax(dim=1) train_output=private_model(train_images) heldout_output=private_model(heldout_images) log_train_output=log_softmax(train_output) log_heldout_output=log_softmax(heldout_output) train_confidences,_=torch.max(log_train_output,dim=1) heldout_confidences,_=torch.max(log_heldout_output,dim=1) train_confidences=train_confidences.cpu().detach().numpy() heldout_confidences=heldout_confidences.cpu().detach().numpy() return train_confidences,heldout_confidences def get_calibrated_distances(params, model1, model2, ids): """ return calibrated boundary distances. """ dataset = get_dataset(params) images=torch.stack([dataset[i][0] for i in ids]) images=images.cuda() targets=torch.stack([torch.tensor(dataset[i][1]) for i in ids]) targets=targets.cuda() outputs1=model1(images) outputs2=model2(images) images_pert1= hop_skip_jump_attack(model1,images,2, verbose=False,clip_min=params.clip_min, clip_max=params.clip_max) images_pert2= hop_skip_jump_attack(model2,images,2, verbose=False,clip_min=params.clip_min, clip_max=params.clip_max) # images_pert1=carlini_wagner_l2(model1,images,params.num_classes ,targets) # images_pert2=carlini_wagner_l2(model2,images,params.num_classes ,targets) dists1=[] for i, id in enumerate(ids): _, pred = torch.topk(outputs1[i], 1) if pred==targets[i].item(): dists1.append(torch.norm(images_pert1[i]- images[i], p=2).item()) else: dists1.append(-torch.norm(images_pert1[i]- images[i], p=2).item()) dists2=[] for i, id in enumerate(ids): _, pred = torch.topk(outputs2[i], 1) if pred==targets[i].item(): dists2.append(torch.norm(images_pert2[i]- images[i], p=2).item()) else: dists2.append(-torch.norm(images_pert1[i]- images[i], p=2).item()) calibrated_dists=np.subtract(np.array(dists1),np.array(dists2)) return calibrated_dists def calibrated_distance_attack(params, num=10): """ run calibrated boundary distance attack. """ #load the masks known_masks, hidden_masks = {}, {} hidden_masks['public'], hidden_masks['private']={},{} known_masks['public'] = torch.load(params.mask_path + "public.pth") known_masks['private'] = torch.load( params.mask_path + "private.pth") hidden_masks['private']['train']=torch.load( params.mask_path + "hidden/train.pth") hidden_masks['private']['heldout'] = torch.load( params.mask_path + "hidden/heldout.pth") hidden_masks['public']['train']=torch.load( params.mask_path + "hidden/public_train.pth") hidden_masks['public']['heldout'] = torch.load( params.mask_path + "hidden/public_heldout.pth") if params.public_data=='train': print('Using public training data for auxiliary model') attack_model=train(params, hidden_masks['public']['train']) elif params.public_data[:4]=='rand': print('Using random subset for auxiliary model') public_ids=(known_masks['public']==True).nonzero().flatten().numpy() prop_selected=float(params.public_data[4:])/100 num_selected=math.ceil(prop_selected*len(public_ids)) permuted_ids=np.random.permutation(public_ids) aux_data_mask=to_mask(len(known_masks['public']),permuted_ids[:num_selected]) print('Number of public model training points', len((aux_data_mask==True).nonzero().flatten().numpy())) attack_model=train(params, aux_data_mask) else: print('Using all public data for auxiliary model') attack_model=train(params, known_masks['public']) attack_model=attack_model.cuda() #get the final model parameters private_model=build_model(params) private_model_path = os.path.join(params.model_path, "checkpoint.pth") state_dict_private = torch.load(private_model_path) private_model.load_state_dict(state_dict_private['model']) private_model=private_model.cuda() #get the appropriate ids private_train_ids=(hidden_masks['private']['train']==True).nonzero().flatten().numpy() private_train_ids=private_train_ids[np.random.choice(len(private_train_ids), size=num, replace=False)] private_heldout_ids=(hidden_masks['private']['heldout']==True).nonzero().flatten().numpy() private_heldout_ids=private_heldout_ids[np.random.choice(len(private_heldout_ids), size=num, replace=False)] train_losses=get_calibrated_distances(params, private_model, attack_model,private_train_ids) heldout_losses=get_calibrated_distances(params, private_model, attack_model,private_heldout_ids) return train_losses, heldout_losses def get_boundary_distances(params, model, ids): """ return uncalibrated boundary distances. """ dataset = get_dataset(params) images=torch.stack([dataset[i][0] for i in ids]) images=images.cuda() targets=[] for i in ids: temp=np.zeros(params.num_classes) temp[dataset[i][1]]=1 temp=torch.tensor(temp) targets.append(temp) original_targets=torch.stack([torch.tensor(dataset[i][1]) for i in ids]) original_targets=original_targets.cuda() targets=torch.stack(targets) targets=targets.cuda() outputs=model(images) images_pert= hop_skip_jump_attack(model,images,2 ,verbose=False, clip_min=params.clip_min, clip_max=params.clip_max) # images_pert=carlini_wagner_l2(model,images,params.num_classes ,original_targets) dists=[] for i, id in enumerate(ids): _, pred = torch.topk(outputs[i], 1) if pred==original_targets[i].item(): dists.append(torch.norm(images_pert[i]- images[i], p=2).item()) else: dists.append(0) return dists def boundary_distance_attack(params, num=10): """ run uncalibrated boundary distance attack. """ train_mask=torch.load(params.mask_path+'/hidden/train.pth') heldout_mask=torch.load(params.mask_path+'/hidden/heldout.pth') train_ids=(train_mask==True).nonzero().flatten().numpy() heldout_ids=(heldout_mask==True).nonzero().flatten().numpy() train_ids=train_ids[np.random.choice(len(train_ids), size=num, replace=False)] heldout_ids=heldout_ids[np.random.choice(len(heldout_ids), size=num, replace=False)] private_model=build_model(params) private_model_path = os.path.join(params.model_path, "checkpoint.pth") state_dict_private = torch.load(private_model_path) private_model.load_state_dict(state_dict_private['model']) private_model=private_model.cuda() train_dists=get_boundary_distances(params, private_model, train_ids ) heldout_dists=get_boundary_distances(params, private_model, heldout_ids ) return train_dists, heldout_dists if __name__ == '__main__': parser = get_parser() params = parser.parse_args() train_vals, heldout_vals=calibrated_loss_attack(params)
calibration_membership-main
attacks/privacy_attacks.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import hydra from hydra.utils import instantiate import logging from overlap.train_net import train_net from overlap.test_net import test_net from overlap.test_corrupt_net import test_corrupt_net import numpy as np import torch import pickle import os import omegaconf from overlap.extract_features import extract_features from overlap.utils import logging as lu log = logging.getLogger(__name__) def individual_sort(aug_dists): out = [] included = set() arg_sort = np.argsort(aug_dists, axis=0) sort = np.sort(aug_dists, axis=0) for row in range(len(arg_sort)): curr_arg = arg_sort[row] curr_dists = sort[row] sorted_args = curr_arg[np.argsort(curr_dists)] for i in sorted_args: if i not in included: out.append(i) included.add(i) return np.array(out) @hydra.main(config_path="conf/closest_augs.yaml") def train(cfg): np.random.seed(cfg.rng_seed) torch.manual_seed(cfg.rng_seed) log.info(cfg.pretty()) model = instantiate(cfg.model).cuda() optimizer = instantiate(cfg.optim, model.parameters()) lr_policy = instantiate(cfg.optim.lr_policy) if cfg.transform_file and os.path.exists(cfg.transform_file): log.info("Transforms found, loading feature extractor is unnecessary. Skipping.") else: feature_extractor = instantiate(cfg.ft) feature_extractor.train() if cfg.transform_file and os.path.exists(cfg.transform_file): log.info("Transforms found, feature extraction is unnecessary. Skipping.") elif cfg.aug_feature_file and os.path.exists(cfg.aug_feature_file): log.info("Found feature file. Loading from {}".format(cfg.aug_feature_file)) data = np.load(cfg.aug_feature_file) augmentation_features = data['features'] indices = data['indices'] transforms = data['transforms'] else: ft_augmentation_dataset = instantiate(cfg.ft_augmentation) transforms = ft_augmentation_dataset.transform_list indices = np.random.choice(np.arange(len(ft_augmentation_dataset)), size=cfg.num_images, replace=False) ft_augmentation_dataset = ft_augmentation_dataset.serialize(indices) augmentation_features = extract_features(feature_extractor, ft_augmentation_dataset, cfg.ft_augmentation.batch_size, cfg.data_loader, average=True, average_num=len(indices)) if cfg.aug_feature_file: np.savez(cfg.aug_feature_file, features=augmentation_features, indices=indices, transforms=transforms) if cfg.transform_file and os.path.exists(cfg.transform_file): log.info("Found transform file. Loading from {}.".format(cfg.transform_file)) sorted_transforms = np.load(cfg.transform_file) else: aug_strings = cfg.ft_corrupt.aug_string.split("--") distances = np.zeros((len(augmentation_features), len(aug_strings))) for i, aug in enumerate(aug_strings): with omegaconf.open_dict(cfg): ft_corrupt_dataset = instantiate(cfg.ft_corrupt, aug_string=aug) if cfg.num_corrupt_images and i==0: indices = np.random.choice(np.arange(len(ft_corrupt_dataset)), size=cfg.num_corrupt_images, replace=False) ft_corrupt_dataset = ft_corrupt_dataset.serialize(indices) corruption_features = extract_features(feature_extractor, ft_corrupt_dataset, cfg.ft_corrupt.batch_size, cfg.data_loader, average=True) corruption_features = corruption_features.reshape(1, -1) dists = np.linalg.norm(augmentation_features - corruption_features, axis=-1) distances[:,i] = dists sorted_dist_args = individual_sort(distances) sorted_transforms = transforms[sorted_dist_args] if cfg.transform_file: np.save(cfg.transform_file, sorted_transforms) train_dataset = instantiate(cfg.train) if cfg.selection_type == 'closest': train_dataset.transform_list = sorted_transforms[cfg.offset:cfg.offset+cfg.num_transforms] elif cfg.selection_type == 'farthest': train_dataset.transform_list = sorted_transforms[-cfg.offset-cfg.num_transforms:-cfg.offset]\ if cfg.offset != 0 else sorted_transforms[-cfg.num_transforms:] else: train_dataset.transform_list = sorted_transforms[np.random.choice(np.arange(len(sorted_transforms)), size=cfg.num_transforms, replace=False)] test_dataset = instantiate(cfg.test) train_net(model=model, optimizer=optimizer, train_dataset=train_dataset, batch_size=cfg.train.batch_size, max_epoch=cfg.optim.max_epoch, loader_params=cfg.data_loader, lr_policy=lr_policy, save_period=cfg.train.checkpoint_period, weights=cfg.train.weights ) err = test_net(model=model, test_dataset=test_dataset, batch_size=cfg.test.batch_size, loader_params=cfg.data_loader, output_name='test_epoch') test_corrupt_net(model=model, corrupt_cfg=cfg.corrupt, batch_size=cfg.corrupt.batch_size, loader_params=cfg.data_loader, aug_string=cfg.corrupt.aug_string, clean_err=err, mCE_denom=cfg.corrupt.mCE_baseline_file) if __name__=="__main__": train()
augmentation-corruption-fbr_main
experiments/closest_augs.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import hydra from hydra.utils import instantiate import logging from overlap.train_net import train_net from overlap.test_net import test_net from overlap.test_corrupt_net import test_corrupt_net import numpy as np import torch import pickle import submitit log = logging.getLogger(__name__) @hydra.main(config_path="conf/test_imagenet.yaml") def run(cfg): if cfg.num_gpus > 1: job_env = submitit.JobEnvironment() rank = job_env.global_rank world_size = job_env.num_tasks if rank != 0: logging.root.handlers = [] try: torch.cuda.set_device(rank) torch.distributed.init_process_group( backend='nccl', init_method="tcp://{}:{}".format('localhost', 10001), world_size=world_size, rank=rank ) train(cfg, is_leader=(rank==0)) except KeyboardInterrupt: pass finally: torch.distributed.destroy_process_group() else: train(cfg, is_leader=True) def train(cfg, is_leader): np.random.seed(cfg.rng_seed) torch.manual_seed(cfg.rng_seed) log.info(cfg.pretty()) cur_device = torch.cuda.current_device() model = instantiate(cfg.model).cuda(device=cur_device) if cfg.num_gpus > 1: model = torch.nn.parallel.DistributedDataParallel( module=model, device_ids=[cur_device], output_device=cur_device ) print("Loading test set...") test_dataset = instantiate(cfg.test) checkpoint = torch.load(cfg.weights, map_location='cpu') if cfg.num_gpus > 1: model.module.load_state_dict(checkpoint['model_state']) else: model.load_state_dict(checkpoint['model_state']) print("Testing...") err = test_net(model=model, test_dataset=test_dataset, batch_size=cfg.test.batch_size, loader_params=cfg.data_loader, num_gpus=cfg.num_gpus) test_corrupt_net(model=model, corrupt_cfg=cfg.corrupt, batch_size=cfg.corrupt.batch_size, loader_params=cfg.data_loader, aug_string=cfg.corrupt.aug_string, clean_err=err, mCE_denom=cfg.corrupt.mCE_baseline_file, num_gpus=cfg.num_gpus, log_name='train_imagenet.log') if __name__=="__main__": run()
augmentation-corruption-fbr_main
experiments/test_imagenet.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import argparse import overlap.utils.logging as lu import decimal import simplejson import numpy as np import omegaconf from itertools import combinations from itertools import product from scipy.special import comb parser = argparse.ArgumentParser(description="Collect run summaries.") parser.add_argument('--new_corr_dir', dest='data_dir', required=True) parser.add_argument('--baseline_corr_dir', dest='baseline_dir', required=True) parser.add_argument('--precision', type=float, dest='precision', default=0.01) parser.add_argument('--target_error', type=float, dest='target', required=True) parser.add_argument('--num', type=int, dest='num', default=5) parser.add_argument('--out', dest='out', required=True) parser.add_argument('--log_name', default='severity_scan.log', dest='log_name') def get_data(base_dirs, exclusions=[], log_file='severity_scan.log'): features = {} errors = {} feature_file = 'features.npz' path_stack = base_dirs while path_stack: curr_dir = path_stack.pop() subdirs = [os.path.join(curr_dir, x) for x in os.listdir(curr_dir) if x[0] != '.'] subdirs = [x for x in subdirs if os.path.isdir(x)] path_stack.extend(subdirs) summary_file = os.path.join(curr_dir, log_file) if os.path.exists(summary_file): curr_features = np.load(os.path.join(curr_dir, feature_file)) features.update({k : v for k,v in curr_features.items() if k.split("-")[0] not in exclusions}) stats = lu.load_json_stats(summary_file) curr_errs = {stats[i]["_type"] : stats[i]["top1_err"] for i in range(len(stats))\ if stats[i]["_type"] != "test_epoch" and stats[i]["_type"].split("-")[0] not in exclusions} errors.update(curr_errs) return errors, features def get_average_spread(baseline_errs): ''' Calculate the average spread in severity in the baseline data, so the new corruption datasets can attempt to match it. ''' bcorrs = sorted(list(set([c.split("-")[0] for c in baseline_errs.keys()]))) avg = 0.0 for bcorr in bcorrs: lower = abs((baseline_errs["{}-1".format(bcorr)] / baseline_errs["{}-3".format(bcorr)] - 1)) upper = abs((baseline_errs["{}-5".format(bcorr)] / baseline_errs["{}-3".format(bcorr)] - 1)) avg += (lower + upper) / 2 return avg / len(bcorrs) def build_sets(corr_errs, avg_spread): ''' For each severity 3-8, associate a set of 5 severities with it that best match the average spread, where that severity is the middle of the five. Inputs: corr_errs: dictionary where each key is a string "{corr}-{severity}" and each value is the test error. avg_spread: float specifying the average spread to try to match Output: dictionary where each key is a string giving the corruption name, and each value is a list of 5-tuples giving all sets of 5 severities associated to that corruption. ''' corrs = sorted(list(set([c.split("-")[0] for c in corr_errs.keys()]))) corr_sets = {c : [] for c in corrs} for c in corrs: sevs = sorted([float(i.split("-")[1]) for i in corr_errs.keys() if c == i.split("-")[0]]) for i in np.arange(2, len(sevs)-2): # Sev 1 best = float('inf') best_match_s1 = None for j in np.arange(0, i-1): sep = corr_errs["{}-{}".format(c, sevs[j])] / corr_errs["{}-{}".format(c, sevs[i])] - 1 sep_sep = abs(-avg_spread - sep) if sep_sep <= best: best = sep_sep best_match_s1 = j # Sev 2 best = float('inf') best_match_s2 = None for j in np.arange(best_match_s1+1, i): sep = corr_errs["{}-{}".format(c, sevs[j])] / corr_errs["{}-{}".format(c, sevs[i])] - 1 sep_sep = abs(-avg_spread/2 - sep) if sep_sep <= best: best = sep_sep best_match_s2 = j # Sev 5 best = float('inf') best_match_s5 = None for j in np.arange(i+2, len(sevs)): sep = corr_errs["{}-{}".format(c, sevs[j])] / corr_errs["{}-{}".format(c, sevs[i])] - 1 sep_sep = abs(avg_spread - sep) if sep_sep <= best: best = sep_sep best_match_s5 = j # Sev 4 best = float('inf') best_match_s4 = None for j in np.arange(i+1, best_match_s5): sep = corr_errs["{}-{}".format(c, sevs[j])] / corr_errs["{}-{}".format(c, sevs[i])] - 1 sep_sep = abs(avg_spread/2 - sep) if sep_sep <= best: best = sep_sep best_match_s4 = j corr_sets[c].append((sevs[best_match_s1], sevs[best_match_s2], sevs[i], sevs[best_match_s4], sevs[best_match_s5])) return corr_sets def build_distance_table(baseline_features, corr_features): ''' Calculates distances between corruption features. Across baseline features and severities, takes the minimum distance, across severities in the new corruption set, takes the average. Inputs: baseline_features: 3d numpy array ordered as [corruption, severity, features] corr_features: 4d numpy array ordered as [corruption, severity_set, severity, features] Output 2d numpy array ordered as [corruption, severity_set] ''' nc, nss, ns, nf = corr_features.shape corr_features = corr_features.reshape(nc, nss, ns, 1, 1, nf) nb, _, _ = baseline_features.shape baseline_features = baseline_features.reshape(1, 1, 1, nb, ns, nf) dists = np.linalg.norm(corr_features - baseline_features, axis=-1) min_dists = np.mean(np.min(np.min(dists, axis=-1), axis=-1), axis=-1) return min_dists def build_corr_tables(corr_sets, corr_errs, corr_features): ''' Given a list of corruption severity sets, builds the tables that will be used to calculate distance. For each corruption, the tables are ordered in increasing order, since this is required to make the dataset selection algorithm more efficient. This ordering is also returned so it can be reversed at the end. Inputs: corr_sets: dictionary of corruption keys with lists of severity set values corr_errs: dictionary of keys with the form '{corr}-{severity}' and values that are the errors on that corruption/severity pair corr_features: dictionary of keys with the form '{corr}-{severity}' and values that are the features on that corruption/severity pair Outputs: 1. A list of all corruption strings, in the order they appear the table. 2. dictionary where the keys are corruption strings, and the values are the severity sets ordered by increasing corruption error. 3. 2d numpy array with the shape [corruption, severity_set] that gives the average error on that severity set and corruption 4. 4d numpy array with the shape [corruption, severity_set, severity, features] ''' corrs = list(corr_sets.keys()) ordered = {} len_feats = len(list(corr_features.values())[0]) err_table = np.zeros((len(corrs), len(corr_sets[corrs[0]]))) feat_table = np.zeros((len(corrs), len(corr_sets[corrs[0]]), len(corr_sets[corrs[0]][0]), len_feats)) for i, corr in enumerate(corrs): curr_errs = np.zeros(len(corr_sets[corr])) curr_feats = np.zeros((len(corr_sets[corr]), len(corr_sets[corrs[0]][0]), len_feats)) for j, sev_list in enumerate(corr_sets[corr]): curr_errs[j] = np.mean([corr_errs["{}-{}".format(corr, s)] for s in sev_list]) curr_feats[j,:,:] = np.array([corr_features["{}-{}".format(corr, s)] for s in sev_list]) sev_order = np.argsort(curr_errs) err_table[i,:] = np.sort(curr_errs) feat_table[i, :, :, :] = curr_feats[sev_order, :, :] ordered[corr] = np.array(corr_sets[corr])[sev_order] return corrs, ordered, err_table, feat_table def build_baseline_features(baseline_features): ''' Builds a table of baseline corruption features, given a dictionary. Inputs: baseline_features: dictionary of features with keys that are strings as "{corr}-{severity}" Outputs: 3d numpy array ordered as [corruption, severity, features]. ''' corrs = sorted(list(set([v.split("-")[0] for v in baseline_features.keys()]))) sevs = sorted(list(set([int(v.split("-")[1]) for v in baseline_features.keys()]))) len_feats = len(list(baseline_features.values())[0]) baseline_table = np.zeros((len(corrs), len(sevs), len_feats)) for i, c in enumerate(corrs): for j, s in enumerate(sevs): baseline_table[i,j,:] = baseline_features["{}-{}".format(c,s)] return baseline_table def sample_matched_corruptions(err_table, baseline_err, precision, num): ''' Iterates over all 'num'-sized combinations of corruptions and selects a set of severities that has error within 'precision' of the baseline error. If multiple sets of severities fall within the precision window, it picks one at random. If none do, it skips that combination of corruptions. The runtime is O((num_corruptions * num_severity_sets)^num), though in practice the algorithm below is usually O(num_corruptions^num * num_severity_sets^(num-1)). Inputs: err_table: 2d numpy array of shape [corruptions, severity_sets] listing the average error for each set. baseline_err: float giving the target error to match precision: float giving the percentage variation from the baseline error allowed for an accepted severity set num: int listing the number of corruptions to combine Output: A list of sampled datasets, where each sampled dataset is a list of 'num' 2-tuples (corruption_index, severity_set_index). ''' count = 0 total = comb(err_table.shape[0], num, exact=True) chosen_augs = [] for idxs in combinations(range(err_table.shape[0]), num): all_augs = [] count += 1 if count % 1000 == 0: print("On iteration {}/{}".format(count, total)) # Loop over severities for all chosen corruptions except for the # last two. Since the severity sets are ordered by average error, # we can work from the outside in to typically save one factor of # 'num' in calculation time. for sev_idxs in product(*[range(err_table.shape[1]) for i in range(num-2)]): target = baseline_err * num err_sum = 0.0 for i in range(num-2): err_sum += err_table[idxs[i], sev_idxs[i]] stack = [(0, err_table.shape[1]-1)] # Start on the two ends seen = set() while stack: i, j = stack.pop() if (i,j) in seen or i >= err_table.shape[1] or j < 0: continue seen.add((i,j)) final_err_sum = err_sum + err_table[idxs[-2],i] + err_table[idxs[-1],j] if abs((target-final_err_sum)/target) < precision: curr = [(idxs[k], sev_idxs[k]) for k in range(num-2)] + [(idxs[-2],i), (idxs[-1],j)] all_augs.append(curr) stack.append([i+1, j]) stack.append([i, j-1]) elif (target-final_err_sum)/target >= precision: stack.append([i+1, j]) else: stack.append([i, j-1]) if all_augs: idx_choice = np.random.randint(low=0, high=len(all_augs)) chosen_augs.append(all_augs[idx_choice]) return chosen_augs def main(): args = parser.parse_args() data_dir = args.data_dir baseline_dir = args.baseline_dir precision = args.precision num_corr = args.num out_file = args.out log_name = args.log_name target_error = args.target baseline_exclusions = ['saturate', 'spatter', 'gaussian_blur', 'speckle_noise'] corr_exclusions = [] print("Loading data...") data_dirs = data_dir.split(",") baseline_dirs = baseline_dir.split(",") corr_errs, corr_features = get_data(data_dirs, corr_exclusions, log_file=log_name) baseline_errs, baseline_features = get_data(baseline_dirs, exclusions=baseline_exclusions, log_file=log_name) baseline_table = build_baseline_features(baseline_features) avg_spread = get_average_spread(baseline_errs) corr_sets = build_sets(corr_errs, avg_spread) corrs, ordered_sev_list, err_table, feat_table = build_corr_tables(corr_sets, corr_errs, corr_features) dists = build_distance_table(baseline_table, feat_table) chosen = sample_matched_corruptions(err_table, target_error, precision, num_corr) out = [] for aug_list in chosen: sub_aug_strings = [] err = 0.0 curr_dists = None for a in aug_list: corr = corrs[a[0]] sevs = ordered_sev_list[corr][a[1]] sub_aug_strings.append("--".join(["{}-{}".format(corr,s) for s in sevs])) err += err_table[a[0], a[1]] curr_curr_dists = dists[a[0], a[1]] curr_dists = np.concatenate((curr_dists, curr_curr_dists.reshape(1,-1)), axis=0) if curr_dists is not None else curr_curr_dists.reshape(1,-1) err /= len(aug_list) avg_dists = np.mean(curr_dists, axis=0) aug_string = "--".join(sub_aug_strings) data_out = ",".join([aug_string, str(err)] + [str(x) for x in avg_dists]) out.append(data_out) with open(out_file, 'w') as f: f.write(",,".join([data_dir, baseline_dir, str(precision), str(num_corr)])) f.write("\n") f.write("\n".join(out)) if __name__=="__main__": main()
augmentation-corruption-fbr_main
experiments/sample_datasets.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import hydra from hydra.utils import instantiate import logging from overlap.train_net_jsd import train_net from overlap.test_net import test_net from overlap.test_corrupt_net import test_corrupt_net import numpy as np import torch import pickle import submitit log = logging.getLogger(__name__) @hydra.main(config_path="conf/train_imagenet_jsd.yaml") def run(cfg): if cfg.num_gpus > 1: job_env = submitit.JobEnvironment() rank = job_env.global_rank world_size = job_env.num_tasks if rank != 0: logging.root.handlers = [] try: torch.cuda.set_device(rank) torch.distributed.init_process_group( backend='nccl', init_method="tcp://{}:{}".format('localhost', 10001), world_size=world_size, rank=rank ) train(cfg, is_leader=(rank==0)) except KeyboardInterrupt: pass finally: torch.distributed.destroy_process_group() else: train(cfg, is_leader=True) def train(cfg, is_leader): np.random.seed(cfg.rng_seed) torch.manual_seed(cfg.rng_seed) log.info(cfg.pretty()) cur_device = torch.cuda.current_device() model = instantiate(cfg.model).cuda(device=cur_device) if cfg.num_gpus > 1: model = torch.nn.parallel.DistributedDataParallel( module=model, device_ids=[cur_device], output_device=cur_device ) optimizer = instantiate(cfg.optim, model.parameters()) if cfg.optim.max_epoch > 0 and cfg.train.weights is None: print("Loading training set...") train_dataset = instantiate(cfg.train) else: print("Skipping loading the training dataset, 0 epochs of training to perform " " or pre-trained weights provided.") train_dataset = None print("Loading test set...") test_dataset = instantiate(cfg.test) lr_policy = instantiate(cfg.optim.lr_policy) print("Training...") train_net(model=model, optimizer=optimizer, train_dataset=train_dataset, batch_size=cfg.train.batch_size, max_epoch=cfg.optim.max_epoch, loader_params=cfg.data_loader, lr_policy=lr_policy, save_period=cfg.train.checkpoint_period, weights=cfg.train.weights, num_gpus=cfg.num_gpus, is_leader=is_leader, jsd_num=cfg.train.params.jsd_num, jsd_alpha=cfg.train.jsd_alpha ) print("Testing...") err = test_net(model=model, test_dataset=test_dataset, batch_size=cfg.test.batch_size, loader_params=cfg.data_loader, num_gpus=cfg.num_gpus) test_corrupt_net(model=model, corrupt_cfg=cfg.corrupt, batch_size=cfg.corrupt.batch_size, loader_params=cfg.data_loader, aug_string=cfg.corrupt.aug_string, clean_err=err, mCE_denom=cfg.corrupt.mCE_baseline_file, num_gpus=cfg.num_gpus, log_name='train_imagenet.log') if __name__=="__main__": run()
augmentation-corruption-fbr_main
experiments/train_imagenet_jsd.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import numpy as np import argparse parser = argparse.ArgumentParser(description="Calculate corruptions distance "\ "to the baseline corruptions and find a representative dataset of "\ "corruptions that are farthest away.") parser.add_argument('--input_files', type=str, required=True, help='Comma separated list of files for error matched corruptions.') parser.add_argument('--target_error', type=float, required=True, help='Target ImageNet-C error for choosing a representative dataset.' ) def calc_shifts(corrs_files): corr_shifts_all = [] for corrs_file in corrs_files: with open(corrs_file, 'r') as f: lines = [line.rstrip() for line in f.readlines()] # Data is [corruption-string, error, distance] data = [line.split(",") for line in lines[1:]] corrs = set() # Add the corruptions as a set to the data for easy determination of the intersection for i in range(len(data)): curr_corrs = set([a.split("-")[0] for a in data[i][0].split("--")]) data[i].append(curr_corrs) corrs.update(curr_corrs) # Collect all types of corruptions seen for access later corrs = list(corrs) # Sample random sets of 10 corruptions sampled = [] while len(sampled) < 100000: chosen = np.random.randint(low=0, high=len(data), size=2) # Take only disjoint combinations to get a full 10 sampled. if not (data[chosen[0]][-1] & data[chosen[1]][-1]): sampled.append(( "--".join([data[chosen[0]][0], data[chosen[1]][0]]), # Combined aug string (float(data[chosen[0]][1]) + float(data[chosen[1]][1])) / 2, # Average error (float(data[chosen[0]][2]) + float(data[chosen[1]][2])) / 2 # Average distance )) # Calculate shifts associated with each corruption corr_shifts = [] sampled_mean = np.mean([float(s[2]) for s in sampled]) # Mean error sampled_std = np.std([float(s[2]) for s in sampled]) # Mean std # Get per corruption shifts in distance for corr in corrs: pos = [] # Find all distances from datasets that include this corruption for s in sampled: included_corrs = [a.split("-")[0] for a in s[0].split("--")] if corr in included_corrs: pos.append(float(s[2])) # Calculate average shift for this corruption pos_avg = np.mean(pos) # Shift by average distance and reweight by distance std shift = (pos_avg - sampled_mean) / sampled_std corr_shifts.append(shift) corr_shifts_all.append(corr_shifts) # Calculate mean and std across multiple runs corr_shifts_all = np.array(corr_shifts_all) corr_shifts_mean = np.mean(corr_shifts_all, axis=0) corr_shifts_std = np.std(corr_shifts_all, axis=0) shifts = {corr : (corr_shifts_mean[i], corr_shifts_std[i]) for i, corr in enumerate(corrs)} return shifts def topk_shifts(shifts, k): shifts_list = np.array([v[0] for k, v in shifts.items()]) corrs_list = np.array([k for k, v in shifts.items()]) ordered_idx = np.argsort(shifts_list) topk = ordered_idx[-k:] return corrs_list[topk] def get_farthest_dataset(farthest_corrs, corrs_files, target_error): farthest_corrs = set(farthest_corrs) valid_all = [] for corrs_file in corrs_files: valid = [] with open(corrs_file, 'r') as f: lines = [line.rstrip() for line in f.readlines()] data = [line.split(",") for line in lines[1:]] for i in range(len(data)): data[i].append(set([a.split("-")[0] for a in data[i][0].split("--")])) for datum in data: augs = datum[-1] if len(augs & farthest_corrs) == 5: valid.append(datum) valid_all.append(valid) matched_all = [] for valid in valid_all: matched = [] for i in np.arange(len(valid)): for j in np.arange(start=i+1, stop=len(valid)): if not (valid[i][-1] & valid[j][-1]): matched.append(( "--".join([valid[i][0], valid[j][0]]), # Combined corruption string (float(valid[i][1]) + float(valid[j][1])) / 2, # Average error (float(valid[i][2]) + float(valid[j][2])) / 2 # Average distance )) matched_all.append(matched) best = None for i, matched in enumerate(matched_all): for m in matched: if best is None or np.abs(m[1]-target_error) < np.abs(best[1] - target_error): best = m best_corr_dir = i return best def main(): args = parser.parse_args() file_list = args.input_files.split(",") shifts = calc_shifts(file_list) farthest_corrs = topk_shifts(shifts, k=10) corr_string = get_farthest_dataset(farthest_corrs, file_list, args.target_error) print(shifts) print(corr_string) if __name__=="__main__": main()
augmentation-corruption-fbr_main
experiments/calc_distance_shifts.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import hydra from hydra.utils import instantiate import logging from overlap.train_net import train_net from overlap.test_net import test_net import numpy as np import torch import pickle import os import omegaconf from overlap.extract_features import extract_features import submitit log = logging.getLogger(__name__) @hydra.main(config_path="conf/severity_scan_imagenet.yaml") def run(cfg): if cfg.num_gpus > 1: job_env = submitit.JobEnvironment() rank = job_env.global_rank world_size = job_env.num_tasks if rank != 0: logging.root.handlers = [] try: torch.cuda.set_device(rank) torch.distributed.init_process_group( backend='nccl', init_method="tcp://{}:{}".format('localhost', 10001), world_size=world_size, rank=rank ) train(cfg, is_leader=(rank==0)) except KeyboardInterrupt: pass finally: torch.distributed.destroy_process_group() else: train(cfg, is_leader=True) def train(cfg, is_leader=True): np.random.seed(cfg.rng_seed) torch.manual_seed(cfg.rng_seed) log.info(cfg.pretty()) cur_device = torch.cuda.current_device() model = instantiate(cfg.model).cuda(device=cur_device) if cfg.num_gpus > 1: model = torch.nn.parallel.DistributedDataParallel( module=model, device_ids=[cur_device], output_device=cur_device ) optimizer = instantiate(cfg.optim, model.parameters()) if cfg.optim.max_epoch > 0: train_dataset = instantiate(cfg.train) else: train_dataset = None test_dataset = instantiate(cfg.test) lr_policy = instantiate(cfg.optim.lr_policy) with omegaconf.open_dict(cfg): feature_extractor = instantiate(cfg.ft, num_gpus=cfg.num_gpus, is_leader=is_leader) feature_extractor.train() train_net(model=model, optimizer=optimizer, train_dataset=train_dataset, batch_size=cfg.train.batch_size, max_epoch=cfg.optim.max_epoch, loader_params=cfg.data_loader, lr_policy=lr_policy, save_period=cfg.train.checkpoint_period, weights=cfg.train.weights, num_gpus=cfg.num_gpus, is_leader=is_leader ) err = test_net(model=model, test_dataset=test_dataset, batch_size=cfg.test.batch_size, loader_params=cfg.data_loader, output_name='test_epoch', num_gpus=cfg.num_gpus) if os.path.exists(cfg.feature_file): feature_dict = {k : v for k, v in np.load(cfg.feature_file).items()} else: feature_dict = {} indices = np.load(cfg.ft_corrupt.indices_file) for aug in cfg.aug_string.split("--"): if len(aug.split("-")) > 1: #log.info("Severity provided in corrupt.aug_string will be weighted by given severity.") sev = aug.split("-")[1] if len(sev.split("_")) > 1: low = float(sev.split("_")[0]) high = float(sev.split("_")[1]) else: low = 0.0 high = float(sev) sev_factor = (high - low) * cfg.severity / 10 + low else: sev_factor = cfg.severity aug = aug.split("-")[0] aug_string = "{}-{}".format(aug, sev_factor) if aug_string in feature_dict: continue with omegaconf.open_dict(cfg.corrupt): corrupt_dataset = instantiate(cfg.corrupt, aug_string=aug_string) err = test_net(model=model, test_dataset=corrupt_dataset, batch_size=cfg.corrupt.batch_size, loader_params=cfg.data_loader, output_name=aug_string, num_gpus=cfg.num_gpus) with omegaconf.open_dict(cfg.ft_corrupt): ft_corrupt_dataset = instantiate(cfg.ft_corrupt, aug_string=aug_string) if cfg.ft_corrupt.params.num_transforms is not None: ft_corrupt_dataset = ft_corrupt_dataset.serialize(indices) else: ft_corrupt_dataset = torch.utils.data.Subset(ft_corrupt_dataset, indices) feature = extract_features(feature_extractor=feature_extractor, dataset=ft_corrupt_dataset, batch_size=cfg.ft_corrupt.batch_size, loader_params=cfg.data_loader, average=True, num_gpus=cfg.num_gpus) feature_dict[aug_string] = feature if is_leader: np.savez(cfg.feature_file, **feature_dict) if __name__=="__main__": run()
augmentation-corruption-fbr_main
experiments/severity_scan_imagenet.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import hydra from hydra.utils import instantiate import logging from overlap.train_net_jsd import train_net from overlap.test_net import test_net from overlap.test_corrupt_net import test_corrupt_net import numpy as np import torch import pickle from pathlib import Path log = logging.getLogger(__name__) @hydra.main(config_path="conf/train_cifar10_jsd.yaml") def train(cfg): np.random.seed(cfg.rng_seed) torch.manual_seed(cfg.rng_seed) log.info(cfg.pretty()) model = instantiate(cfg.model).cuda() optimizer = instantiate(cfg.optim, model.parameters()) train_dataset = instantiate(cfg.train) test_dataset = instantiate(cfg.test) lr_policy = instantiate(cfg.optim.lr_policy) train_net(model=model, optimizer=optimizer, train_dataset=train_dataset, batch_size=cfg.train.batch_size, max_epoch=cfg.optim.max_epoch, loader_params=cfg.data_loader, lr_policy=lr_policy, save_period=cfg.train.checkpoint_period, weights=cfg.train.weights, jsd_num=cfg.train.params.jsd_num, jsd_alpha=cfg.train.jsd_alpha ) err = test_net(model=model, test_dataset=test_dataset, batch_size=cfg.test.batch_size, loader_params=cfg.data_loader) test_corrupt_net(model=model, corrupt_cfg=cfg.corrupt, batch_size=cfg.corrupt.batch_size, loader_params=cfg.data_loader, aug_string=cfg.corrupt.aug_string, clean_err=err, mCE_denom=cfg.corrupt.mCE_baseline_file) if __name__=="__main__": train()
augmentation-corruption-fbr_main
experiments/train_cifar10_jsd.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import hydra from hydra.utils import instantiate import logging from overlap.train_net import train_net from overlap.test_net import test_net from overlap.test_corrupt_net import test_corrupt_net import numpy as np import torch import pickle import os import omegaconf from overlap.extract_features import extract_features from overlap.utils import logging as lu log = logging.getLogger(__name__) @hydra.main(config_path="conf/feature_corrupt_error.yaml") def train(cfg): np.random.seed(cfg.rng_seed) torch.manual_seed(cfg.rng_seed) log.info(cfg.pretty()) model = instantiate(cfg.model).cuda() optimizer = instantiate(cfg.optim, model.parameters()) train_dataset = instantiate(cfg.train) test_dataset = instantiate(cfg.test) lr_policy = instantiate(cfg.optim.lr_policy) feature_extractor = instantiate(cfg.ft) feature_extractor.train() if cfg.aug_feature_file and os.path.exists(cfg.aug_feature_file): log.info("Found feature file. Loading from {}".format(cfg.aug_feature_file)) data = np.load(cfg.aug_feature_file) augmentation_features = data['features'] indices = data['indices'] else: ft_augmentation_dataset = instantiate(cfg.ft_augmentation) indices = np.random.choice(np.arange(len(ft_augmentation_dataset)), size=cfg.num_images, replace=False) ft_augmentation_dataset = ft_augmentation_dataset.serialize(indices) augmentation_features = extract_features(feature_extractor, ft_augmentation_dataset, cfg.ft_augmentation.batch_size, cfg.data_loader, average=True, average_num=len(indices)) #nf, lf = augmentation_features.shape #augmentation_features = np.mean(augmentation_features.reshape(len(indices), nf//len(indices), lf), axis=0) if cfg.aug_feature_file: np.savez(cfg.aug_feature_file, features=augmentation_features, indices=indices) aug_strings = cfg.ft_corrupt.aug_string.split("--") for aug in aug_strings: with omegaconf.open_dict(cfg): ft_corrupt_dataset = instantiate(cfg.ft_corrupt, aug_string=aug) ft_corrupt_dataset = ft_corrupt_dataset.serialize(indices) corruption_features = extract_features(feature_extractor, ft_corrupt_dataset, cfg.ft_corrupt.batch_size, cfg.data_loader, average=True, average_num=len(indices)) nf, lf = corruption_features.shape #corruption_features = np.mean(corruption_features.reshape(len(indices), nf//len(indices), lf), axis=0) augmentation_features = augmentation_features.reshape(-1, 1, lf) corruption_features = corruption_features.reshape(1, -1, lf) mean_aug = np.mean(augmentation_features.reshape(-1,lf), axis=0) mean_corr = np.mean(corruption_features.reshape(-1,lf), axis=0) mmd = np.linalg.norm(mean_aug-mean_corr, axis=0) msd = np.min(np.linalg.norm(augmentation_features.reshape(-1,lf)-mean_corr.reshape(1,lf),axis=1),axis=0) stats = {"_type" : aug, "mmd" : str(mmd), "msd" : str(msd), } lu.log_json_stats(stats) train_net(model=model, optimizer=optimizer, train_dataset=train_dataset, batch_size=cfg.train.batch_size, max_epoch=cfg.optim.max_epoch, loader_params=cfg.data_loader, lr_policy=lr_policy, save_period=cfg.train.checkpoint_period, weights=cfg.train.weights ) err = test_net(model=model, test_dataset=test_dataset, batch_size=cfg.test.batch_size, loader_params=cfg.data_loader, output_name='test_epoch') test_corrupt_net(model=model, corrupt_cfg=cfg.corrupt, batch_size=cfg.corrupt.batch_size, loader_params=cfg.data_loader, aug_string=cfg.corrupt.aug_string, clean_err=err, mCE_denom=cfg.corrupt.mCE_baseline_file) if __name__=="__main__": train()
augmentation-corruption-fbr_main
experiments/feature_corrupt_error.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import hydra from hydra.utils import instantiate import logging from overlap.train_net import train_net from overlap.test_net import test_net import numpy as np import torch import pickle import os import omegaconf from overlap.extract_features import extract_features import submitit log = logging.getLogger(__name__) @hydra.main(config_path="conf/severity_scan.yaml") def run(cfg): if cfg.num_gpus > 1: job_env = submitit.JobEnvironment() rank = job_env.global_rank world_size = job_env.num_tasks if rank != 0: logging.root.handlers = [] try: torch.cuda.set_device(rank) torch.distributed.init_process_group( backend='nccl', init_method="tcp://{}:{}".format('localhost', 10001), world_size=world_size, rank=rank ) train(cfg, is_leader=(rank==0)) except KeyboardInterrupt: pass finally: torch.distributed.destroy_process_group() else: train(cfg, is_leader=True) def train(cfg, is_leader=True): np.random.seed(cfg.rng_seed) torch.manual_seed(cfg.rng_seed) log.info(cfg.pretty()) cur_device = torch.cuda.current_device() model = instantiate(cfg.model).cuda(device=cur_device) if cfg.num_gpus > 1: model = torch.nn.parallel.DistributedDataParallel( module=model, device_ids=[cur_device], output_device=cur_device ) optimizer = instantiate(cfg.optim, model.parameters()) if cfg.optim.max_epoch > 0: train_dataset = instantiate(cfg.train) else: train_dataset = None test_dataset = instantiate(cfg.test) lr_policy = instantiate(cfg.optim.lr_policy) with omegaconf.open_dict(cfg): feature_extractor = instantiate(cfg.ft, num_gpus=cfg.num_gpus, is_leader=is_leader) feature_extractor.train() train_net(model=model, optimizer=optimizer, train_dataset=train_dataset, batch_size=cfg.train.batch_size, max_epoch=cfg.optim.max_epoch, loader_params=cfg.data_loader, lr_policy=lr_policy, save_period=cfg.train.checkpoint_period, weights=cfg.train.weights, num_gpus=cfg.num_gpus, is_leader=is_leader ) err = test_net(model=model, test_dataset=test_dataset, batch_size=cfg.test.batch_size, loader_params=cfg.data_loader, output_name='test_epoch', num_gpus=cfg.num_gpus) if os.path.exists(cfg.feature_file): feature_dict = {k : v for k, v in np.load(cfg.feature_file).items()} else: feature_dict = {} indices = np.load(cfg.ft_corrupt.indices_file) for aug in cfg.aug_string.split("--"): if len(aug.split("-")) > 1: #log.info("Severity provided in corrupt.aug_string will be weighted by given severity.") sev = aug.split("-")[1] if len(sev.split("_")) > 1: low = float(sev.split("_")[0]) high = float(sev.split("_")[1]) else: low = 0.0 high = float(sev) sev_factor = (high - low) * cfg.severity / 10 + low else: sev_factor = cfg.severity aug = aug.split("-")[0] aug_string = "{}-{}".format(aug, sev_factor) if aug_string in feature_dict: continue with omegaconf.open_dict(cfg.corrupt): corrupt_dataset = instantiate(cfg.corrupt, aug_string=aug_string) err = test_net(model=model, test_dataset=corrupt_dataset, batch_size=cfg.corrupt.batch_size, loader_params=cfg.data_loader, output_name=aug_string, num_gpus=cfg.num_gpus) with omegaconf.open_dict(cfg.ft_corrupt): ft_corrupt_dataset = instantiate(cfg.ft_corrupt, aug_string=aug_string) ft_corrupt_dataset = ft_corrupt_dataset.serialize(indices) feature = extract_features(feature_extractor=feature_extractor, dataset=ft_corrupt_dataset, batch_size=cfg.ft_corrupt.batch_size, loader_params=cfg.data_loader, average=True, num_gpus=cfg.num_gpus) feature_dict[aug_string] = feature if is_leader: np.savez(cfg.feature_file, **feature_dict) if __name__=="__main__": run()
augmentation-corruption-fbr_main
experiments/severity_scan.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import hydra from hydra.utils import instantiate import logging from overlap.train_net import train_net from overlap.test_net import test_net from overlap.test_corrupt_net import test_corrupt_net import numpy as np import torch import pickle log = logging.getLogger(__name__) @hydra.main(config_path="conf/test_cifar10.yaml") def train(cfg): np.random.seed(cfg.rng_seed) torch.manual_seed(cfg.rng_seed) log.info(cfg.pretty()) model = instantiate(cfg.model).cuda() test_dataset = instantiate(cfg.test) checkpoint = torch.load(cfg.weights, map_location='cpu') model.load_state_dict(checkpoint['model_state']) err = test_net(model=model, test_dataset=test_dataset, batch_size=cfg.test.batch_size, loader_params=cfg.data_loader) test_corrupt_net(model=model, corrupt_cfg=cfg.corrupt, batch_size=cfg.corrupt.batch_size, loader_params=cfg.data_loader, aug_string=cfg.corrupt.aug_string, clean_err=err, mCE_denom=cfg.corrupt.mCE_baseline_file) if __name__=="__main__": train()
augmentation-corruption-fbr_main
experiments/test_cifar10.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import hydra from hydra.utils import instantiate import logging from overlap.train_net import train_net from overlap.test_net import test_net from overlap.test_corrupt_net import test_corrupt_net import numpy as np import torch import pickle import submitit log = logging.getLogger(__name__) @hydra.main(config_path="conf/train_imagenet.yaml") def run(cfg): if cfg.num_gpus > 1: job_env = submitit.JobEnvironment() rank = job_env.global_rank world_size = job_env.num_tasks if rank != 0: logging.root.handlers = [] try: torch.cuda.set_device(rank) torch.distributed.init_process_group( backend='nccl', init_method="tcp://{}:{}".format('localhost', 10001), world_size=world_size, rank=rank ) train(cfg, is_leader=(rank==0)) except KeyboardInterrupt: pass finally: torch.distributed.destroy_process_group() else: train(cfg, is_leader=True) def train(cfg, is_leader): np.random.seed(cfg.rng_seed) torch.manual_seed(cfg.rng_seed) log.info(cfg.pretty()) cur_device = torch.cuda.current_device() model = instantiate(cfg.model).cuda(device=cur_device) if cfg.num_gpus > 1: model = torch.nn.parallel.DistributedDataParallel( module=model, device_ids=[cur_device], output_device=cur_device ) optimizer = instantiate(cfg.optim, model.parameters()) if cfg.optim.max_epoch > 0 and cfg.train.weights is None: print("Loading training set...") train_dataset = instantiate(cfg.train) else: print("Skipping loading the training dataset, 0 epochs of training to perform " " or pre-trained weights provided.") train_dataset = None print("Loading test set...") test_dataset = instantiate(cfg.test) lr_policy = instantiate(cfg.optim.lr_policy) print("Training...") train_net(model=model, optimizer=optimizer, train_dataset=train_dataset, batch_size=cfg.train.batch_size, max_epoch=cfg.optim.max_epoch, loader_params=cfg.data_loader, lr_policy=lr_policy, save_period=cfg.train.checkpoint_period, weights=cfg.train.weights, num_gpus=cfg.num_gpus, is_leader=is_leader ) print("Testing...") err = test_net(model=model, test_dataset=test_dataset, batch_size=cfg.test.batch_size, loader_params=cfg.data_loader, num_gpus=cfg.num_gpus) test_corrupt_net(model=model, corrupt_cfg=cfg.corrupt, batch_size=cfg.corrupt.batch_size, loader_params=cfg.data_loader, aug_string=cfg.corrupt.aug_string, clean_err=err, mCE_denom=cfg.corrupt.mCE_baseline_file, num_gpus=cfg.num_gpus, log_name='train_imagenet.log') if __name__=="__main__": run()
augmentation-corruption-fbr_main
experiments/train_imagenet.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import hydra from hydra.utils import instantiate import logging from overlap.train_net import train_net from overlap.test_net import test_net from overlap.test_corrupt_net import test_corrupt_net import numpy as np import torch import pickle from pathlib import Path log = logging.getLogger(__name__) @hydra.main(config_path="conf/train_cifar10.yaml") def train(cfg): np.random.seed(cfg.rng_seed) torch.manual_seed(cfg.rng_seed) log.info(cfg.pretty()) model = instantiate(cfg.model).cuda() optimizer = instantiate(cfg.optim, model.parameters()) train_dataset = instantiate(cfg.train) test_dataset = instantiate(cfg.test) lr_policy = instantiate(cfg.optim.lr_policy) train_net(model=model, optimizer=optimizer, train_dataset=train_dataset, batch_size=cfg.train.batch_size, max_epoch=cfg.optim.max_epoch, loader_params=cfg.data_loader, lr_policy=lr_policy, save_period=cfg.train.checkpoint_period, weights=cfg.train.weights ) err = test_net(model=model, test_dataset=test_dataset, batch_size=cfg.test.batch_size, loader_params=cfg.data_loader) test_corrupt_net(model=model, corrupt_cfg=cfg.corrupt, batch_size=cfg.corrupt.batch_size, loader_params=cfg.data_loader, aug_string=cfg.corrupt.aug_string, clean_err=err, mCE_denom=cfg.corrupt.mCE_baseline_file) if __name__=="__main__": train()
augmentation-corruption-fbr_main
experiments/train_cifar10.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import argparse import overlap.utils.logging as lu import decimal import simplejson import numpy as np import omegaconf from itertools import combinations from itertools import product from scipy.special import comb import math parser = argparse.ArgumentParser(description="Collect run summaries.") parser.add_argument('--cifar10c_dir', dest='baseline_dir', required=True) parser.add_argument('--log_name', dest='log_name', default='severity_scan.log') def get_data(base_dirs, exclusions=[], log_file='severity_scan.log'): features = {} errors = {} feature_file = 'features.npz' path_stack = base_dirs while path_stack: curr_dir = path_stack.pop() subdirs = [os.path.join(curr_dir, x) for x in os.listdir(curr_dir) if x[0] != '.'] subdirs = [x for x in subdirs if os.path.isdir(x)] path_stack.extend(subdirs) summary_file = os.path.join(curr_dir, log_file) if os.path.exists(summary_file): curr_features = np.load(os.path.join(curr_dir, feature_file)) features.update({k : v for k,v in curr_features.items() if k.split("-")[0] not in exclusions}) stats = lu.load_json_stats(summary_file) curr_errs = {stats[i]["_type"] : stats[i]["top1_err"] for i in range(len(stats))\ if stats[i]["_type"] != "test_epoch" and stats[i]["_type"].split("-")[0] not in exclusions} errors.update(curr_errs) return errors, features def get_target_error(baseline_errs): errs = [err for b, err in baseline_errs.items()] return sum(errs)/len(errs) def dict_avg(list_of_dicts): out = None for d in list_of_dicts: if out is None: out = d else: for k in out: out[k] += d[k] for k in out: out[k] /= len(list_of_dicts) std = None for d in list_of_dicts: if std is None: std = {} for k in out: std[k] = (d[k]-out[k])**2 else: for k in out: std[k] += (d[k]-out[k])**2 for k in std: std[k] = math.sqrt(std[k]) / len(list_of_dicts) return out, std def main(): args = parser.parse_args() baseline_dir = args.baseline_dir log_name = args.log_name baseline_exclusions = ['saturate', 'spatter', 'gaussian_blur', 'speckle_noise'] print("Loading data...") baseline_dirs = baseline_dir.split(",") baseline_errs_list = [] baseline_features_list = [] for baseline_dir in baseline_dirs: baseline_errs, baseline_features = get_data([baseline_dir], log_file=log_name, exclusions=baseline_exclusions) baseline_errs_list.append(baseline_errs) baseline_features_list.append(baseline_features) baseline_errs, baseline_std = dict_avg(baseline_errs_list) target_error = get_target_error(baseline_errs) print(target_error) if __name__=="__main__": main()
augmentation-corruption-fbr_main
experiments/tools/get_target_error.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import argparse import overlap.utils.logging as lu import decimal import simplejson import numpy as np import omegaconf parser = argparse.ArgumentParser(description="Collect run summaries.") parser.add_argument('--dir', dest='run_dir') parser.add_argument('--filename', dest='summary_name', default='train_cifar10.log') def main(): args = parser.parse_args() run_dir = args.run_dir summary_name = args.summary_name hydra_config = '.hydra/config.yaml' files = [] path_stack = [run_dir] while path_stack: curr_dir = path_stack.pop() subdirs = [os.path.join(curr_dir, x) for x in os.listdir(curr_dir) if x[0] != '.'] subdirs = [x for x in subdirs if os.path.isdir(x)] path_stack.extend(subdirs) summary_file = os.path.join(curr_dir, summary_name) if os.path.exists(summary_file): config_file = os.path.join(curr_dir, hydra_config) files.append((summary_file, config_file)) for (summary, config) in files: data = [] cfg = omegaconf.OmegaConf.load(config) stats = lu.load_json_stats(summary) #Run meta-deta data.append(cfg.rng_seed) # ID data.append(cfg.name) # Name data.append(summary) # Filename for data #Model info data.append(cfg.model['class'].split('.')[-1]) # Model name data.append(cfg.model.params.depth) # Model depth data.append(cfg.model.params.widen_factor) # Width factor # Optimizer info data.append(cfg.optim.lr_policy['class'].split('.')[-1]) # LR policy data.append(cfg.optim.base_lr) # Base LR data.append(cfg.optim.max_epoch) # Num epochs # Augmentation info aug_data = [] train_class = cfg.train['class'].split('.')[-1] if train_class == 'Cifar10Base': # No augmentation aug_data.append('none') elif train_class == 'Cifar10Augmix': # Augmix aug_data.append('augmix') aug_string = cfg.train.params.aug_string if aug_string is None: aug_string = 'standard' aug_data.append(aug_string) # Aug string aug_data.append(cfg.train.params.width) # Augmix width reported_depth = cfg.train.params.depth * (-1 if cfg.train.params.random_depth else -1) aug_data.append(reported_depth) # Augmix depth aug_data.append(cfg.train.params.prob_coeff) # Augmix prob coefficient severity = cfg.train.params.severity if cfg.train.params.aug_string is None else '' aug_data.append(severity) # Augmix severity elif train_class == 'Cifar10Corruption': # Corruption Trained aug_data.append('corruption_trained') aug_string = cfg.train.params.aug_string if aug_string is None: aug_string = 'extra' if cfg.train.params.include_extra else 'standard' aug_data.append(aug_string) # aug_data.extend(['' for i in range(6-len(aug_data))]) data.extend(aug_data) # Feature extraction info data.extend(['' for i in range(17)]) # JSD info data.append('no') data.extend(['','']) # Batch size info data.append(cfg.train.batch_size) data.append(cfg.test.batch_size) # Errors clean_error = lu.parse_json_stats(stats, 'test_epoch', 'top1_err')[0] data.append(clean_error) # Clean error data.extend(['', '']) # Space for clean error std and C95 mCE = lu.parse_json_stats(stats, 'overall-avg', 'mCE') mCE = mCE[0] if mCE else '' data.append(mCE) # mCE data.extend(['', '']) # Space for mCE std and C95 rmCE = lu.parse_json_stats(stats, 'overall-avg', 'rmCE') rmCE = rmCE[0] if rmCE else '' data.append(rmCE) # rmCE data.extend(['', '']) # Space for rmCE std and C95 avg_error = lu.parse_json_stats(stats, 'overall-avg', 'top1_err')[0] data.append(avg_error) # Average corruption error data.extend(['', '']) # Space for corruption error std and C95 data.extend(['', '']) # Space for number in average and type of average data.append('') # Divider # Individual errors # Noise data.append(lu.parse_json_stats(stats, 'noise-avg', 'top1_err')[0]) data.append(lu.parse_json_stats(stats, 'gaussian_noise-avg', 'top1_err')[0]) data.append(lu.parse_json_stats(stats, 'impulse_noise-avg', 'top1_err')[0]) data.append(lu.parse_json_stats(stats, 'shot_noise-avg', 'top1_err')[0]) # Blur data.append(lu.parse_json_stats(stats, 'blur-avg', 'top1_err')[0]) data.append(lu.parse_json_stats(stats, 'defocus_blur-avg', 'top1_err')[0]) data.append(lu.parse_json_stats(stats, 'glass_blur-avg', 'top1_err')[0]) data.append(lu.parse_json_stats(stats, 'motion_blur-avg', 'top1_err')[0]) data.append(lu.parse_json_stats(stats, 'zoom_blur-avg', 'top1_err')[0]) # Weather data.append(lu.parse_json_stats(stats, 'weather-avg', 'top1_err')[0]) data.append(lu.parse_json_stats(stats, 'brightness-avg', 'top1_err')[0]) data.append(lu.parse_json_stats(stats, 'fog-avg', 'top1_err')[0]) data.append(lu.parse_json_stats(stats, 'frost-avg', 'top1_err')[0]) data.append(lu.parse_json_stats(stats, 'snow-avg', 'top1_err')[0]) # Digital data.append(lu.parse_json_stats(stats, 'digital-avg', 'top1_err')[0]) data.append(lu.parse_json_stats(stats, 'contrast-avg', 'top1_err')[0]) data.append(lu.parse_json_stats(stats, 'elastic_transform-avg', 'top1_err')[0]) data.append(lu.parse_json_stats(stats, 'jpeg_compression-avg', 'top1_err')[0]) data.append(lu.parse_json_stats(stats, 'pixelate-avg', 'top1_err')[0]) # Extra data.append(lu.parse_json_stats(stats, 'extra-avg', 'top1_err')[0]) data.append(lu.parse_json_stats(stats, 'gaussian_blur-avg', 'top1_err')[0]) data.append(lu.parse_json_stats(stats, 'saturate-avg', 'top1_err')[0]) data.append(lu.parse_json_stats(stats, 'spatter-avg', 'top1_err')[0]) data.append(lu.parse_json_stats(stats, 'speckle_noise-avg', 'top1_err')[0]) data = [str(i) for i in data] print(",".join(data)) if __name__ == "__main__": main()
augmentation-corruption-fbr_main
experiments/tools/summarize.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import argparse parser = argparse.ArgumentParser(description="Generate random indicies '\ 'for sampling from the CIFAR-10 or ImageNet training sets.") parser.add_argument('--dataset', type=str, required=True, help='Should be in [\'cifar-10\', \'imagenet\'].') parser.add_argument('--num', type=int, required=True, help='Number of indices to generate.') parser.add_argument('--out', type=str, required=True, help='Output file. Should be .npy format.') def main(): args = parser.parse_args() assert args.dataset in ['cifar-10', 'imagenet'], "Unknown dataset." max_index = 50000 if args.dataset=='cifar-10' else 1281167 indices = np.random.choice(np.arange(max_index), size=args.num, replace=False) np.save(args.out, indices) if __name__=="__main__": main()
augmentation-corruption-fbr_main
experiments/tools/sample_image_indices.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import logging from .utils import logging as lu from omegaconf import open_dict from .augmentations.utils import aug_finder from hydra.utils import instantiate import numpy as np import os import pickle log = logging.getLogger(__name__) def test_corrupt_net(model, corrupt_cfg, batch_size, loader_params, aug_string=None, mCE_denom=None, clean_err=None, imagenetc_grouping=True, num_gpus=1, log_name=None): model.eval() if aug_string is None: augs = aug_finder.get_augs_by_tag(['imagenet_c']) severities = [1,2,3,4,5] augs = ["{}-{}".format(a.name, s) for a in augs for s in severities] else: augs = aug_string.split("--") if log_name is not None and os.path.exists(log_name): prestats = lu.load_json_stats(log_name) else: prestats = None errs = [] for aug in augs: if prestats is not None and len(lu.parse_json_stats(prestats, row_type=aug, key='top1_err')) > 0: continue with open_dict(corrupt_cfg): corrupt_dataset = instantiate(corrupt_cfg, aug_string=aug) sampler = torch.utils.data.distributed.DistributedSampler(corrupt_dataset)\ if num_gpus > 1 else None loader = torch.utils.data.DataLoader( corrupt_dataset, batch_size=batch_size, shuffle=False, sampler=sampler, num_workers=loader_params.num_workers, pin_memory=loader_params.pin_memory, drop_last=False ) num_correct = 0 for curr_iter, (inputs, labels) in enumerate(loader): inputs, labels = inputs.cuda(), labels.cuda(non_blocking=True) preds = model(inputs) correct = torch.sum(torch.argmax(preds, dim=1)==labels) if num_gpus > 1: torch.distributed.all_reduce(correct) num_correct += correct.item() err = 100 * (1 - num_correct / len(corrupt_dataset)) stats = {'_type' : aug, 'top1_err' : err} lu.log_json_stats(stats) errs.append(err) # Calculating records if mCE_denom is not None: mCE_denom = pickle.load(open(os.path.join(os.path.dirname(__file__), '../baseline_data/', mCE_denom), 'rb')) errs = np.array(errs) aug_names = [a.split("-")[0] for a in augs] unique_aug_names = list(set(aug_names)) avg_errs = [np.mean(errs[[i for i, a in enumerate(aug_names) if a==u]]) for u in unique_aug_names] avg_errs = np.array(avg_errs) mCE = None rmCE = None if mCE_denom: mCE = [100 * avg_errs[i] / mCE_denom[a] for i, a in enumerate(unique_aug_names)] mCE = np.array(mCE) if clean_err: rmCE = [100 * (avg_errs[i] - clean_err) / (mCE_denom[a] - mCE_denom['clean'])\ for i, a in enumerate(unique_aug_names)] rmCE = np.array(rmCE) for i, a in enumerate(unique_aug_names): stats = {'_type' : a + '-avg', 'top1_err' : avg_errs[i]} if mCE is not None: stats['mCE'] = mCE[i] if rmCE is not None: stats['rmCE'] = rmCE[i] lu.log_json_stats(stats) if imagenetc_grouping: for aug_type in ['blur', 'digital', 'noise', 'weather', 'extra']: aug_indices = [i for i, a in enumerate(unique_aug_names)\ if aug_type in aug_finder.get_aug_by_name(a).tags] err_for_type = np.mean(avg_errs[aug_indices]) stats = {'_type' : aug_type + '-avg', 'top1_err' : err_for_type} if mCE is not None: mCE_for_type = np.mean(mCE[aug_indices]) stats['mCE'] = mCE_for_type if rmCE is not None: rmCE_for_type = np.mean(rmCE[aug_indices]) stats['rmCE'] = rmCE_for_type lu.log_json_stats(stats) if imagenetc_grouping: indices = [i for i, a in enumerate(unique_aug_names)\ if 'extra' not in aug_finder.get_aug_by_name(a).tags] else: indices = [i for i, a in enumerate(unique_aug_names)] overall_avg = np.mean(avg_errs[indices]) stats = {'_type' : 'overall-avg', 'top1_err' : overall_avg} if mCE is not None: overall_mCE = np.mean(mCE[indices]) stats['mCE'] = overall_mCE if rmCE is not None: overall_rmCE = np.mean(rmCE[indices]) stats['rmCE'] = overall_rmCE lu.log_json_stats(stats)
augmentation-corruption-fbr_main
experiments/overlap/test_corrupt_net.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import logging from .utils import logging as lu log = logging.getLogger(__name__) def test_net(model, test_dataset, batch_size, loader_params, output_name='test_epoch', num_gpus=1): model.eval() sampler = torch.utils.data.distributed.DistributedSampler(test_dataset)\ if num_gpus > 1 else None loader = torch.utils.data.DataLoader( test_dataset, batch_size=batch_size, shuffle=False, sampler=sampler, num_workers=loader_params.num_workers, pin_memory=loader_params.pin_memory, drop_last=False ) num_correct = 0 num_total = 0 for curr_iter, (inputs, labels) in enumerate(loader): inputs, labels = inputs.cuda(), labels.cuda(non_blocking=True) preds = model(inputs) correct = torch.sum(torch.argmax(preds, dim=1)==labels) if num_gpus > 1: torch.distributed.all_reduce(correct) num_correct += correct.item() err = 100 * (1 - num_correct / len(test_dataset)) stats = {'_type' : output_name, 'top1_err' : err} lu.log_json_stats(stats) return err
augmentation-corruption-fbr_main
experiments/overlap/test_net.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn as nn import torch.nn.functional as F class ResHead(nn.Module): """ResNet head.""" def __init__(self, w_in, nc): super(ResHead, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(w_in, nc, bias=True) def forward(self, x): x = self.avg_pool(x) x = x.view(x.size(0), -1) self.features = x x = self.fc(x) return x class BottleneckTransform(nn.Module): """Bottleneck transformation: 1x1, 3x3, 1x1""" def __init__(self, w_in, w_out, stride, w_b, num_gs, bn_params, stride_1x1, relu_inplace): super(BottleneckTransform, self).__init__() self._construct(w_in, w_out, stride, w_b, num_gs, bn_params, stride_1x1, relu_inplace) def _construct(self, w_in, w_out, stride, w_b, num_gs, bn_params, stride_1x1, relu_inplace): # MSRA -> stride=2 is on 1x1; TH/C2 -> stride=2 is on 3x3 (str1x1, str3x3) = (stride, 1) if stride_1x1 else (1, stride) # 1x1, BN, ReLU self.a = nn.Conv2d( w_in, w_b, kernel_size=1, stride=str1x1, padding=0, bias=False ) self.a_bn = torch.nn.BatchNorm2d(w_b, **bn_params) self.a_relu = nn.ReLU(inplace=relu_inplace) # 3x3, BN, ReLU self.b = nn.Conv2d( w_b, w_b, kernel_size=3, stride=str3x3, padding=1, groups=num_gs, bias=False ) self.b_bn = torch.nn.BatchNorm2d(w_b, **bn_params) self.b_relu = nn.ReLU(inplace=relu_inplace) # 1x1, BN self.c = nn.Conv2d( w_b, w_out, kernel_size=1, stride=1, padding=0, bias=False ) self.c_bn = torch.nn.BatchNorm2d(w_out, **bn_params) self.c_bn.final_bn = True def forward(self, x): for layer in self.children(): x = layer(x) return x class ResBlock(nn.Module): """Residual block: x + F(x)""" def __init__( self, w_in, w_out, stride, w_b, num_gs, bn_params, stride_1x1, relu_inplace ): super(ResBlock, self).__init__() self._construct(w_in, w_out, stride, w_b, num_gs, bn_params, stride_1x1, relu_inplace) def _add_skip_proj(self, w_in, w_out, stride, bn_params): self.proj = nn.Conv2d( w_in, w_out, kernel_size=1, stride=stride, padding=0, bias=False ) self.bn = torch.nn.BatchNorm2d(w_out, **bn_params) def _construct(self, w_in, w_out, stride, w_b, num_gs, bn_params, stride_1x1, relu_inplace): # Use skip connection with projection if shape changes self.proj_block = (w_in != w_out) or (stride != 1) if self.proj_block: self._add_skip_proj(w_in, w_out, stride, bn_params) self.f = BottleneckTransform(w_in, w_out, stride, w_b, num_gs, bn_params, stride_1x1, relu_inplace) self.relu = nn.ReLU(relu_inplace) def forward(self, x): fx = self.f(x) if self.proj_block: x = self.bn(self.proj(x)) x = x + fx x = self.relu(x) return x class ResStage(nn.Module): """Stage of ResNet.""" def __init__(self, w_in, w_out, stride, d, w_b, num_gs, bn_params, stride_1x1, relu_inplace): super(ResStage, self).__init__() self._construct(w_in, w_out, stride, d, w_b, num_gs, bn_params, stride_1x1, relu_inplace) def _construct(self, w_in, w_out, stride, d, w_b, num_gs, bn_params, stride_1x1, relu_inplace): # Construct the blocks for i in range(d): # Stride and w_in apply to the first block of the stage b_stride = stride if i == 0 else 1 b_w_in = w_in if i == 0 else w_out # Construct the block res_block = ResBlock( b_w_in, w_out, b_stride, w_b, num_gs, bn_params, stride_1x1, relu_inplace ) self.add_module('b{}'.format(i + 1), res_block) def forward(self, x): for block in self.children(): x = block(x) return x class ResStem(nn.Module): """Stem of ResNet.""" def __init__(self, w_in, w_out, bn_params, relu_inplace): super(ResStem, self).__init__() self._construct_imagenet(w_in, w_out, bn_params, relu_inplace) def _construct_imagenet(self, w_in, w_out, bn_params, relu_inplace): # 7x7, BN, ReLU, maxpool self.conv = nn.Conv2d( w_in, w_out, kernel_size=7, stride=2, padding=3, bias=False ) self.bn = torch.nn.BatchNorm2d(w_out, **bn_params) self.relu = nn.ReLU(relu_inplace) self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) def forward(self, x): for layer in self.children(): x = layer(x) return x class ResNetPycls(nn.Module): """ResNeXt model.""" def __init__(self, depth=50, width_factor=1, num_groups=1, width_per_group=64, num_classes=1000, bn_params={'eps':1e-5, 'momentum':0.1, 'affine':True}, stride_1x1=False, relu_inplace=True, final_gamma=True ): super(ResNetPycls, self).__init__() self.depth = depth self.width = width_factor self.ng = num_groups self.width_per_group = width_per_group self.num_classes = num_classes self.bn_params = bn_params self.stride_1x1 = stride_1x1 self.relu_inplace = relu_inplace self._construct_imagenet() def init_weights(m, cfg): """Performs ResNet-style weight initialization.""" if isinstance(m, nn.Conv2d): # Note that there is no bias due to BN fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(mean=0.0, std=math.sqrt(2.0 / fan_out)) if hasattr(m, 'bias') and m.bias is not None: m.bias.data.fill_(0.0) elif isinstance(m, nn.BatchNorm2d): zero_init_gamma = ( hasattr(m, 'final_bn') and m.final_bn and final_gamma ) m.weight.data.fill_(0.0 if zero_init_gamma else 1.0) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.weight.data.normal_(mean=0.0, std=0.01) m.bias.data.zero_() self.apply(lambda m : init_weights(m, final_gamma)) def _construct_imagenet(self): # Retrieve the number of blocks per stage (d1, d2, d3, d4) = _IN_STAGE_DS[self.depth] # Compute the initial bottleneck width num_gs = self.ng w_b = self.width_per_group * num_gs w1, w2, w3, w4 = [self.width * w for w in [256, 512, 1024, 2048]] # Stem: (N, 3, 224, 224) -> (N, 64, 56, 56) self.stem = ResStem(w_in=3, w_out=64, bn_params=self.bn_params, relu_inplace=self.relu_inplace) # Stage 1: (N, 64, 56, 56) -> (N, 256, 56, 56) self.s1 = ResStage( w_in=64, w_out=w1, stride=1, d=d1, w_b=w_b, num_gs=num_gs, bn_params=self.bn_params, stride_1x1=self.stride_1x1, relu_inplace=self.relu_inplace ) # Stage 2: (N, 256, 56, 56) -> (N, 512, 28, 28) self.s2 = ResStage( w_in=w1, w_out=w2, stride=2, d=d2, w_b=w_b * 2, num_gs=num_gs, bn_params=self.bn_params, stride_1x1=self.stride_1x1, relu_inplace=self.relu_inplace ) # Stage 3: (N, 512, 56, 56) -> (N, 1024, 14, 14) self.s3 = ResStage( w_in=w2, w_out=w3, stride=2, d=d3, w_b=w_b * 4, num_gs=num_gs, bn_params=self.bn_params, stride_1x1=self.stride_1x1, relu_inplace=self.relu_inplace ) # Stage 4: (N, 1024, 14, 14) -> (N, 2048, 7, 7) self.s4 = ResStage( w_in=w3, w_out=w4, stride=2, d=d4, w_b=w_b * 8, num_gs=num_gs, bn_params=self.bn_params, stride_1x1=self.stride_1x1, relu_inplace=self.relu_inplace ) # Head: (N, 2048, 7, 7) -> (N, num_classes) self.head = ResHead(w_in=w4, nc=self.num_classes) def forward(self, x): for module in self.children(): x = module(x) if isinstance(module, ResHead): self.features = module.features return x
augmentation-corruption-fbr_main
experiments/overlap/models.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import logging from .utils import logging as lu import numpy as np import os log = logging.getLogger(__name__) def distributed_gather_features(curr_features, batch_size, num_gpus): gather_list = [torch.zeros((batch_size, curr_features.size(-1)), device=curr_features.device)\ for i in range(num_gpus)] count = curr_features.size(0) if count < batch_size: curr_features = torch.cat((curr_features, torch.zeros((batch_size - count, curr_features.size(-1)), device=curr_features.device)), dim=0) torch.distributed.all_gather(gather_list, curr_features) count = torch.Tensor([count]).cuda() torch.distributed.all_reduce(count) count = int(count.item()) # Here we use that the distributed data sampler interleaves sampling across replicas curr_features = torch.stack(gather_list, dim=1).reshape(-1, curr_features.size(-1)) curr_features = curr_features[:count,:] return curr_features def extract_features(feature_extractor, dataset, batch_size, loader_params, average=True, num_gpus=1, average_num=None, preemption_protection=False, is_leader=True): sampler = torch.utils.data.distributed.DistributedSampler(dataset, shuffle=False)\ if num_gpus > 1 else None loader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, shuffle=False, sampler=sampler, num_workers=loader_params.num_workers, pin_memory=loader_params.pin_memory, drop_last=False ) features = None count = 0 starting_iter = -1 if preemption_protection and os.path.exists('feature_extraction.tmp.npz'): data = np.loadz('feature_extraction.tmp.npz') features = torch.Tensor(data['features']).cuda() count = data['count'] starting_iter = data['curr_iter'] for curr_iter, (inputs, labels) in enumerate(loader): if preemption_protection and curr_iter <= starting_iter: continue inputs, labels = inputs.cuda(), labels.cuda(non_blocking=True) curr_features = feature_extractor.extract(inputs) if average and average_num is None: curr_features = torch.sum(curr_features, dim=0) if num_gpus > 1: torch.distributed.all_reduce(curr_features) features = (features + curr_features.detach().cpu()) if features is not None else curr_features.detach().cpu() elif average: num_features = len(dataset) // average_num if num_gpus > 1: curr_features = distributed_gather_features(curr_features, batch_size, num_gpus) if features is None: features = torch.zeros(num_features, curr_features.size(-1)) if count + curr_features.size(0) > num_features: remainder = count + curr_features.size(0) - num_features features[count:, :] += curr_features[:num_features-count,:].detach().cpu() offset = 0 while remainder > num_features: features += curr_features[offset+num_features-count:2*num_features-count+offset].detach().cpu() offset += num_features remainder -= num_features features[:remainder,:] += curr_features[offset+num_features-count:,:].detach().cpu() count = remainder else: features[count:count+curr_features.size(0),:] += curr_features.detach().cpu() count += curr_features.size(0) count = count % num_features else: if num_gpus > 1: curr_features = distributed_gather_features(curr_features, batch_size, num_gpus) if features is None: features = torch.zeros(len(dataset), curr_features.size(-1)) features[count:count+curr_features.size(0),:] = curr_features.detach().cpu() count += curr_features.size(0) if preemption_protection and curr_iter % 5000 == 0 and is_leader: np.savez('feature_extraction.tmp.npz', features=features.detach().cpu().numpy(), count=count, curr_iter=curr_iter) if average and average_num is None: features /= len(dataset) elif average: features /= average_num return features.detach().cpu().numpy()
augmentation-corruption-fbr_main
experiments/overlap/extract_features.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import augmentations as aug from .augmentations.utils.converters import NumpyToTensor, PilToNumpy from .augmentations.utils.aug_finder import get_augs_by_tag, parse_aug_string, get_aug_by_name from .augmentations.utils.severity import sample_level, int_parameter, float_parameter from .augmentations import pil, compositions, obscure, patch_gaussian, standard_augmentations import torchvision as tv import torch import numpy as np import os from PIL import Image, ImageOps CIFAR_MEAN = [125.3/255, 123.0/255, 113.9/255] CIFAR_STD = [63.0/255, 62.1/255, 66.7/255] #This is in RGB order since that is the standard for PIL IM_MEAN = [0.485, 0.456, 0.406] IM_STD = [0.229, 0.224, 0.225] class Cifar10Base(torch.utils.data.Dataset): def __init__(self, data_path, split, im_size, train_aug=None, num_transforms=None, augmentation=None, transform_file=None): assert split in ['train', 'test'], "Unknown split {}".format(split) self.train = True if split=='train' else False self.train_aug = self.train if train_aug is None else train_aug self.transform_weights = None if self.train_aug: train_transform = [ tv.transforms.RandomHorizontalFlip(), tv.transforms.RandomCrop(im_size, padding=4) ] else: train_transform = [] self.pretransform = tv.transforms.Compose(train_transform + [PilToNumpy()]) if augmentation is None: self.aug = aug.identity.Identity() else: self.aug = augmentation self.posttransform = tv.transforms.Compose([ NumpyToTensor(), tv.transforms.Normalize(CIFAR_MEAN, CIFAR_STD) ]) if transform_file: transforms = np.load(transform_file) self.transform_list = transforms[:num_transforms]\ if num_transforms is not None else transforms elif num_transforms: self.transform_list = self.build_transform_list(num_transforms) else: self.transform_list = None self.dataset = tv.datasets.CIFAR10(data_path, self.train, download=False) def build_transform_list(self, num_transforms): transforms = [self.aug.convert_to_numpy(self.aug.sample_parameters()) for i in range(num_transforms)] return np.stack(transforms, axis=0) def get_random_transform(self): if self.transform_list is None: return self.aug.sample_parameters() elif self.transform_weights is None: params = self.transform_list[np.random.randint(low=0, high=len(self.transform_list))] return self.aug.convert_from_numpy(params) else: index = np.random.choice(np.arange(len(self.transform_list)), p=self.transform_weights) params = self.transform_list[index] return self.aug.convert_from_numpy(params) def __getitem__(self, index): pre_im, label = self.dataset[index] pre_im = self.pretransform(pre_im) params = self.get_random_transform() return self.posttransform(self.aug.transform(pre_im, **params)), label def __len__(self): return len(self.dataset) def fixed_transform(self, index, transform_index): assert self.transform_list is not None, "Must have a fixed transform list to generate fixed transforms." im, label = self.dataset[index] im = self.pretransform(im) params = self.aug.convert_from_numpy(self.transform_list[transform_index]) im = self.aug.transform(im, **params) return self.posttransform(im), label def serialize(self, indices=None): ''' Returns a new dataset that is all fixed transforms in order, applied to each index in order. ''' class SerialDataset(torch.utils.data.Dataset): def __init__(self, dataset, indices=None): self.dataset = dataset self.indices = indices def __getitem__(self, index): im_idx = index // len(self.dataset.transform_list) im_idx = self.indices[im_idx] if self.indices is not None else im_idx param_idx = index % len(self.dataset.transform_list) return self.dataset.fixed_transform(im_idx, param_idx) def __len__(self): if self.indices is not None: return len(self.indices) * len(self.dataset.transform_list) else: return len(self.dataset) * len(self.dataset.transform_list) return SerialDataset(self, indices) class Cifar10Augmix(Cifar10Base): def __init__(self, data_path, split, im_size, train_aug=None, num_transforms=None, aug_string=None, width=3, depth=3, random_depth=True, prob_coeff=1.0, severity=3, transform_file=None): self.aug_string = aug_string self.width = width self.depth = depth self.prob_coeff = prob_coeff self.random_depth = random_depth self.severity = severity if aug_string is not None: augs = parse_aug_string(aug_string, im_size) else: augs = get_augs_by_tag(['augmix']) augs = [a(severity=severity, im_size=im_size) for a in augs] augmentation = compositions.Augmix( augmentation_list=augs, width=width, max_depth=depth, random_depth=random_depth, prob_coeff=prob_coeff ) super(Cifar10Augmix, self).__init__(data_path, split, im_size, train_aug, num_transforms, augmentation, transform_file=transform_file) class Cifar10RandomSample(Cifar10Base): def __init__(self, data_path, split, im_size, train_aug=None, num_transforms=None, aug_string=None, severity=3, weights=None): self.aug_string = aug_string if aug_string is not None: augs = parse_aug_string(aug_string, im_size) else: augs = get_augs_by_tag(['augmix']) augs = [a(severity=severity, im_size=im_size) for a in augs] augmentation = compositions.RandomSample( augmentation_list=augs, weights=weights ) super(Cifar10RandomSample, self).__init__(data_path, split, im_size, train_aug, num_transforms, augmentation) class Cifar10Corruption(Cifar10Base): ''' Corruptions are different in three ways: they sample at fixed max intensity of randomly between a low value and some maximum, they generate fixed transforms in order and balanced (and can give the corruption/severity of a given transform index), and have the metadata for the frost corruption. ''' def __init__(self, data_path, split, im_size, train_aug=None, num_transforms=None, aug_string=None, frost_path=None, include_extra=True, random_transforms=False): self.include_extra = include_extra self.random_transforms = random_transforms if aug_string is not None: self.aug_list = parse_aug_string(aug_string, im_size, max_intensity=True, frost_path=frost_path) else: augs = get_augs_by_tag(['imagenet_c'], [] if include_extra else ['extra']) severities = [1,2,3,4,5] self.aug_list = [a(severity=s, im_size=im_size, max_intensity=True, frost_path=frost_path)\ for a in augs for s in severities] augmentation = compositions.RandomSample( augmentation_list=self.aug_list ) super(Cifar10Corruption, self).__init__(data_path, split, im_size, train_aug, num_transforms, augmentation) def build_transform_list(self, num_transforms): if self.random_transforms: return super(Cifar10Corruption, self).build_transform_list(num_transforms) assert num_transforms % len(self.aug_list) == 0,\ "The total number of augs needs to divide into the total number of transforms." transform_list = None for i in range(num_transforms): transform_idx = i // (num_transforms // len(self.aug_list)) transform_params = self.aug_list[transform_idx].sample_parameters() curr_record = self.aug.convert_to_numpy({ 'idx' : transform_idx, 'transform_params' : transform_params }).reshape(1,-1) transform_list = np.concatenate((transform_list, curr_record), axis=0)\ if transform_list is not None else curr_record return transform_list def get_corruption(self, transform_index): aug_type_index = transform_index // (len(self.transform_list) // len(self.aug_list)) return self.aug_list[aug_type_index].name, self.aug_list[aug_type_index].severity class Cifar10AutoAugment(Cifar10Base): def __init__(self, data_path, split, im_size, train_aug=None, num_transforms=None, subpolicy_list=None, add_cutout=False, transform_file=None): def stom(low, high, sev): return sev / 10 * (high - low) + low size = im_size init = lambda transform : transform(0, size) tn = 150/331 * im_size if subpolicy_list is None: subpolicy_list = [ [(init(pil.Invert), 0.1, None, None), (init(pil.Contrast), 0.2, stom(0,0.9,6), 1)], [(init(pil.Rotate), 0.7, stom(0,30,2), 0), (init(pil.TranslateX), 0.3, stom(0,tn,9), 0)], [(init(pil.Sharpness), 0.8, stom(0,0.9,1), 1), (init(pil.Sharpness), 0.9, stom(0,0.9,3), 1)], [(init(pil.ShearY), 0.5, stom(0,0.3,8), 0), (init(pil.TranslateY), 0.7, stom(0,tn,9), 0)], [(init(pil.AutoContrast), 0.5, None, None), (init(pil.Equalize), 0.9, None, None)], [(init(pil.ShearY), 0.2, stom(0,0.3,7), 0), (init(pil.Posterize), 0.3, int(stom(4,8,7)), None)], [(init(pil.ColorBalance), 0.4, stom(0,0.9,3),1), (init(pil.Brightness), 0.6, stom(0,0.9,7),1)], [(init(pil.Sharpness), 0.3, stom(0,0.9,9),1), (init(pil.Brightness), 0.7, stom(0,0.9,9),1)], [(init(pil.Equalize), 0.6, None, None), (init(pil.Equalize), 0.5, None, None)], [(init(pil.Contrast), 0.6, stom(0,0.9,7),1), (init(pil.Sharpness), 0.6, stom(0,0.9,5),1)], [(init(pil.ColorBalance), 0.7, stom(0,0.9,7),1), (init(pil.TranslateX), 0.5, stom(0,tn,8),0)], [(init(pil.Equalize), 0.3, None, None), (init(pil.AutoContrast), 0.4, None, None)], [(init(pil.TranslateY), 0.4, stom(0,tn,3),0), (init(pil.Sharpness), 0.2, stom(0,0.9,6),1)], [(init(pil.Brightness), 0.9, stom(0,0.9,6),1), (init(pil.ColorBalance), 0.2, stom(0,0.9,8),1)], [(init(pil.Solarize), 0.5, stom(256,0,2),None), (init(pil.Invert), 0.0, None,None)], [(init(pil.Equalize), 0.2, None, None), (init(pil.AutoContrast), 0.6, None, None)], [(init(pil.Equalize), 0.2, None, None), (init(pil.Equalize), 0.6, None, None)], [(init(pil.ColorBalance), 0.9, stom(0,0.9,9),1), (init(pil.Equalize), 0.6, None, None)], [(init(pil.AutoContrast), 0.8, None, None), (init(pil.Solarize), 0.2, stom(256,0,8), None)], [(init(pil.Brightness), 0.1, stom(0,0.9,3),1), (init(pil.ColorBalance), 0.7, stom(0,0.9,0),1)], [(init(pil.Solarize), 0.4, stom(256,0,5), None), (init(pil.AutoContrast), 0.9, None, None)], [(init(pil.TranslateY), 0.9, stom(0,tn,9), None), (init(pil.TranslateY), 0.7, stom(0,tn,9),0)], [(init(pil.AutoContrast), 0.9, None, None), (init(pil.Solarize), 0.8, stom(256,0,3), None)], [(init(pil.Equalize), 0.8, None, None), (init(pil.Invert), 0.1, None, None)], [(init(pil.TranslateY), 0.7, stom(0,tn,9), 0), (init(pil.AutoContrast), 0.9, None, None)] ] aug = compositions.AutoAugment(subpolicy_list) if add_cutout: cutout = obscure.CutOut(severity=10, im_size=im_size, max_intensity=True) aug = compositions.ComposeSerially([aug, cutout]) super(Cifar10AutoAugment, self).__init__(data_path, split, im_size, train_aug, num_transforms, aug, transform_file=transform_file) class Cifar10PatchGaussian(Cifar10Base): def __init__(self, data_path, split, im_size, train_aug=None, num_transforms=None, transform_file=None, patch_width=25, patch_sigma=1.0, max_width=True): if patch_width is not None: aug = patch_gaussian.PatchGaussian( severity=None, im_size=im_size, max_intensity=max_width, sigma=patch_sigma, width=patch_width ) else: aug = patch_gaussian.Gaussian( severity = patch_sigma * 10, im_size=im_size, max_intensity=max_width ) if train_aug or (split=='train' and train_aug is None): train = standard_augmentations.Cifar10CropAndFlip(severity=None, im_size=im_size) aug = compositions.ComposeSerially([aug, train]) super(Cifar10PatchGaussian, self).__init__(data_path, split, im_size, False, num_transforms, aug, transform_file=transform_file) class ImageNetBase(torch.utils.data.Dataset): def __init__(self, data_path, split, im_size, train_aug=None, num_transforms=None, augmentation=None, rgb_to_bgr=True): assert split in ['train', 'val'], "Unknown split {}".format(split) self.train = True if split=='train' else False self.train_aug = self.train if train_aug is None else train_aug data_path = os.path.join(data_path, split) if self.train_aug: train_transform = [ tv.transforms.RandomResizedCrop(im_size, scale=(0.08,1.0)), tv.transforms.RandomHorizontalFlip(), ] else: train_transform = [ tv.transforms.Resize(256), tv.transforms.CenterCrop(im_size) ] def RGB_to_BGR(image): return image[[2,1,0],:,:] self.pretransform = tv.transforms.Compose(train_transform + [PilToNumpy()]) if augmentation is None: self.aug = aug.identity.Identity() else: self.aug = augmentation self.posttransform = tv.transforms.Compose([ NumpyToTensor(), tv.transforms.Normalize(IM_MEAN, IM_STD)] + ([RGB_to_BGR] if rgb_to_bgr else []) #PyCls imagenet models are trained in BGR input order ) self.transform_list = self.build_transform_list(num_transforms)\ if num_transforms is not None else None self.dataset = tv.datasets.ImageFolder(data_path, None) def build_transform_list(self, num_transforms): transforms = [self.aug.convert_to_numpy(self.aug.sample_parameters()) for i in range(num_transforms)] return np.stack(transforms, axis=0) def get_random_transform(self): if self.transform_list is None: return self.aug.sample_parameters() else: params = self.transform_list[np.random.randint(low=0, high=len(self.transform_list))] return self.aug.convert_from_numpy(params) def __getitem__(self, index): pre_im, label = self.dataset[index] pre_im = self.pretransform(pre_im) params = self.get_random_transform() return self.posttransform(self.aug.transform(pre_im, **params)), label def __len__(self): return len(self.dataset) def fixed_transform(self, index, transform_index): assert self.transform_list is not None, "Must have a fixed transform list to generate fixed transforms." im, label = self.dataset[index] im = self.pretransform(im) params = self.aug.convert_from_numpy(self.transform_list[transform_index]) im = self.aug.transform(im, **params) return self.posttransform(im), label def serialize(self, indices=None): ''' Returns a new dataset that is all fixed transforms in order, applied to each index in order. ''' class SerialDataset(torch.utils.data.Dataset): def __init__(self, dataset, indices=None): self.dataset = dataset self.indices = indices def __getitem__(self, index): im_idx = index // len(self.dataset.transform_list) im_idx = self.indices[im_idx] if self.indices is not None else im_idx param_idx = index % len(self.dataset.transform_list) return self.dataset.fixed_transform(im_idx, param_idx) def __len__(self): if self.indices is not None: return len(self.indices) * len(self.dataset.transform_list) else: return len(self.dataset) * len(self.dataset.transform_list) return SerialDataset(self, indices) class ImageNetCorruption(ImageNetBase): ''' Corruptions are different in three ways: they sample at fixed max intensity of randomly between a low value and some maximum, they generate fixed transforms in order and balanced (and can give the corruption/severity of a given transform index), and have the metadata for the frost corruption. ''' def __init__(self, data_path, split, im_size, train_aug=None, num_transforms=None, aug_string=None, frost_path=None, include_extra=True, rgb_to_bgr=True): self.include_extra = include_extra if aug_string is not None: self.aug_list = parse_aug_string(aug_string, im_size, max_intensity=True, frost_path=frost_path) else: augs = get_augs_by_tag(['imagenet_c'], [] if include_extra else ['extra']) severities = [1,2,3,4,5] self.aug_list = [a(severity=s, im_size=im_size, max_intensity=True, frost_path=frost_path)\ for a in augs for s in severities] augmentation = compositions.RandomSample( augmentation_list=self.aug_list ) super(ImageNetCorruption, self).__init__(data_path, split, im_size, train_aug, num_transforms, augmentation, rgb_to_bgr) def build_transform_list(self, num_transforms): assert num_transforms % len(self.aug_list) == 0,\ "The total number of augs needs to divide into the total number of transforms." transform_list = None for i in range(num_transforms): transform_idx = i // (num_transforms // len(self.aug_list)) transform_params = self.aug_list[transform_idx].sample_parameters() curr_record = self.aug.convert_to_numpy({ 'idx' : transform_idx, 'transform_params' : transform_params }).reshape(1,-1) transform_list = np.concatenate((transform_list, curr_record), axis=0)\ if transform_list is not None else curr_record return transform_list def get_corruption(self, transform_index): aug_type_index = transform_index // (len(self.transform_list) // len(self.aug_list)) return self.aug_list[aug_type_index].name, self.aug_list[aug_type_index].severity class ImageNetPatchGaussian(ImageNetBase): def __init__(self, data_path, split, im_size, train_aug=None, num_transforms=None, patch_width=250, patch_sigma=1.0, max_width=False, rgb_to_bgr=True): if patch_width is not None: aug = patch_gaussian.PatchGaussian( severity=None, im_size=im_size, max_intensity=max_width, sigma=patch_sigma, width=patch_width ) else: aug = patch_gaussian.Gaussian( severity = patch_sigma * 10, im_size=im_size, max_intensity=max_width ) super(ImageNetPatchGaussian, self).__init__(data_path, split, im_size, train_aug, num_transforms, aug, rgb_to_bgr=rgb_to_bgr) class ImageNetAutoAugment(ImageNetBase): def __init__(self, data_path, split, im_size, train_aug=None, num_transforms=None, subpolicy_list=None, rgb_to_bgr=True): def stom(low, high, sev): return sev / 10 * (high - low) + low size = im_size init = lambda transform : transform(0, size) tn = 150/331 * im_size if subpolicy_list is None: subpolicy_list = [ [(init(pil.Posterize), 0.4, int(stom(4,8,8)), None), (init(pil.Rotate), 0.6, stom(0,30,9),0)], [(init(pil.Solarize), 0.6, stom(256,0,5), None), (init(pil.AutoContrast), 0.6, None,None)], [(init(pil.Equalize), 0.8, None, None), (init(pil.Equalize), 0.6, None, None)], [(init(pil.Posterize), 0.6, int(stom(4,8,7)), None), (init(pil.Posterize), 0.6, int(stom(4,8,6)),None)], [(init(pil.Equalize), 0.4, None, None), (init(pil.Solarize), 0.2, stom(256,0,4),None)], [(init(pil.Equalize), 0.4, None, None), (init(pil.Rotate), 0.8, stom(0,30,8),0)], [(init(pil.Solarize), 0.6, stom(256,0,3), None), (init(pil.Equalize), 0.6, None, None)], [(init(pil.Posterize), 0.8, int(stom(4,8,5)), None), (init(pil.Equalize), 1.0, None, None)], [(init(pil.Rotate), 0.2, stom(0,30,3), 0), (init(pil.Solarize), 0.6, stom(256,0,8),None)], [(init(pil.Equalize), 0.6, None, None), (init(pil.Posterize), 0.4, int(stom(4,8,6)),None)], [(init(pil.Rotate), 0.8, stom(0,30,8), 0), (init(pil.ColorBalance), 0.4, stom(0,0.9,0),1)], [(init(pil.Rotate), 0.4, stom(0,30,9), 0), (init(pil.Equalize), 0.6, None, None)], [(init(pil.Equalize), 0.0, None, None), (init(pil.Equalize), 0.8, None, None)], [(init(pil.Invert), 0.6, None, None), (init(pil.Equalize), 1.0, None, None)], [(init(pil.ColorBalance), 0.6, stom(0,0.9,4), 1), (init(pil.Contrast), 1.0, stom(0,0.9,8),1)], [(init(pil.Rotate), 0.8, stom(0,30,8), 0), (init(pil.ColorBalance), 1.0, stom(0,0.9,2),1)], [(init(pil.ColorBalance), 0.8, stom(0,0.9,8), 1), (init(pil.Solarize), 0.8, stom(256,0,7),None)], [(init(pil.Sharpness), 0.4, stom(0,0.9,7), 1), (init(pil.Invert), 0.6, None, None)], [(init(pil.ShearX), 0.6, stom(0,0.9,5), 1), (init(pil.Equalize), 1.0, None, None)], [(init(pil.ColorBalance), 0.4, stom(0,0.9,0), 1), (init(pil.Equalize), 0.6, None, None)], [(init(pil.Equalize), 0.4, None, None), (init(pil.Solarize), 0.2, stom(256,0,4),None)], [(init(pil.Solarize), 0.6, stom(256,0,5), None), (init(pil.AutoContrast), 0.6, None, None)], [(init(pil.Invert), 0.6, None, None), (init(pil.Equalize), 1.0, None, None)], [(init(pil.ColorBalance), 0.6, stom(0,0.9,4), 1), (init(pil.Contrast), 1.0, stom(0,0.9,8),1)], [(init(pil.Equalize), 0.8, None, None), (init(pil.Equalize), 0.6, None, None)], ] aug = compositions.AutoAugment(subpolicy_list) super(ImageNetAutoAugment, self).__init__(data_path, split, im_size, train_aug, num_transforms, aug, rgb_to_bgr=rgb_to_bgr) class ImageNetAugmix(ImageNetBase): def __init__(self, data_path, split, im_size, train_aug=None, num_transforms=None, aug_string=None, width=3, depth=3, random_depth=True, prob_coeff=1.0, severity=3, rgb_to_bgr=True): self.aug_string = aug_string self.width = width self.depth = depth self.prob_coeff = prob_coeff self.random_depth = random_depth self.severity = severity if aug_string is not None: augs = parse_aug_string(aug_string, im_size) else: augs = get_augs_by_tag(['augmix']) augs = [a(severity=severity, im_size=im_size) for a in augs] augmentation = compositions.Augmix( augmentation_list=augs, width=width, max_depth=depth, random_depth=random_depth, prob_coeff=prob_coeff ) super(ImageNetAugmix, self).__init__(data_path, split, im_size, train_aug, num_transforms, augmentation, rgb_to_bgr=rgb_to_bgr) class Cifar10AugmixJSD(torch.utils.data.Dataset): def __init__(self, data_path, split, im_size, train_aug=True, augmix_width=3, augmix_depth=3, augmix_random_depth=True, augmix_prob_coeff=1.0, augmix_severity=3, jsd_num=3): self.jsd_num = jsd_num self.split = split self.train = True if split=='train' else False train_transform = [tv.transforms.RandomHorizontalFlip(), tv.transforms.RandomCrop(im_size, padding=4)]\ if (self.train and train_aug) else [] self.pretransform = tv.transforms.Compose(train_transform + [PilToNumpy()]) self.posttransform = tv.transforms.Compose([NumpyToTensor(), tv.transforms.Normalize(CIFAR_MEAN, CIFAR_STD)]) aug_list = [ pil.ShearX(augmix_severity, im_size=im_size), pil.ShearY(augmix_severity, im_size=im_size), pil.TranslateX(augmix_severity, im_size=im_size), pil.TranslateY(augmix_severity, im_size=im_size), pil.Rotate(augmix_severity, im_size=im_size), pil.Equalize(augmix_severity, im_size=im_size), pil.AutoContrast(augmix_severity, im_size=im_size), pil.Solarize(augmix_severity, im_size=im_size), pil.Posterize(augmix_severity, im_size=im_size) ] self.aug = compositions.Augmix( augmentation_list=aug_list, width=augmix_width, max_depth=augmix_depth, random_depth=augmix_random_depth, prob_coeff=augmix_prob_coeff ) self.dataset = tv.datasets.CIFAR10(data_path, self.train, transform=None, download=False) def __getitem__(self, index): im, label = self.dataset[index] im = self.pretransform(im) im_one = self.posttransform(im) ims = [self.posttransform(self.aug(im)) for i in range(self.jsd_num-1)] c, h, w = im_one.size() out = torch.stack([im_one] + ims, dim=0).view(c * self.jsd_num, h, w) return out, label def __len__(self): return len(self.dataset) class ImageNetAugmixJSD(torch.utils.data.Dataset): def __init__(self, data_path, split, im_size, RGB_to_BGR=True, mixture_width=3, mixture_depth=-1, aug_severity=1, aug_prob_coeff=1, jsd_num=3): self.split = split self.train = True if split=='train' else False self.im_size = im_size self.RGB_to_BGR = RGB_to_BGR self.train_transform = tv.transforms.Compose( [tv.transforms.RandomResizedCrop(im_size, scale=(0.08,1.0)), tv.transforms.RandomHorizontalFlip()]) self.test_transform = tv.transforms.Compose( [tv.transforms.Resize(256), tv.transforms.CenterCrop(im_size)]) self.preprocess = tv.transforms.Compose( [tv.transforms.ToTensor(), tv.transforms.Normalize(IM_MEAN, IM_STD)]) data_path = os.path.join(data_path, split) self.transform = self.train_transform if self.train else self.test_transform self.dataset = tv.datasets.ImageFolder(data_path, None) self.width = mixture_width self.depth = mixture_depth self.severity = aug_severity self.prob_coeff = aug_prob_coeff self.im_size = im_size self.num = jsd_num self.augmentations = [ self.rotate, self.shear_x, self.shear_y, self.translate_x, self.translate_y, self.autocontrast, self.posterize, self.equalize, self.solarize, ] def _prepare_im(self, im): im = self.preprocess(im) if self.RGB_to_BGR: im = im[[2,1,0],:,:] return im def __len__(self): return len(self.dataset) def __getitem__(self, index): im, label = self.dataset[index] im = self.transform(im) ims = [self._prepare_im(im)] + [self.augment(im) for i in range(1,self.num)] im = np.concatenate(ims, axis=0) return im, label def augment(self, im): ws = np.float32( np.random.dirichlet([self.prob_coeff] * self.width)) m = np.float32(np.random.beta(self.prob_coeff, self.prob_coeff)) mix = torch.zeros_like(self._prepare_im(im)) for i in range(self.width): image_aug = im.copy() depth = self.depth if self.depth > 0 else np.random.randint(1, 4) for _ in range(depth): op = np.random.choice(self.augmentations) image_aug = op(image_aug, self.severity) # Preprocessing commutes since all coefficients are convex mix += ws[i] * self._prepare_im(image_aug) mixed = (1 - m) * self._prepare_im(im) + m * mix return mixed def autocontrast(self, pil_img, _): return ImageOps.autocontrast(pil_img) def equalize(self, pil_img, _): return ImageOps.equalize(pil_img) def posterize(self, pil_img, level): level = int_parameter(sample_level(level), 4) return ImageOps.posterize(pil_img, 4 - level) def rotate(self, pil_img, level): degrees = int_parameter(sample_level(level), 30) if np.random.uniform() > 0.5: degrees = -degrees return pil_img.rotate(degrees, resample=Image.BILINEAR) def solarize(self, pil_img, level): level = int_parameter(sample_level(level), 256) return ImageOps.solarize(pil_img, 256 - level) def shear_x(self, pil_img, level): level = float_parameter(sample_level(level), 0.3) if np.random.uniform() > 0.5: level = -level return pil_img.transform((self.im_size, self.im_size), Image.AFFINE, (1, level, 0, 0, 1, 0), resample=Image.BILINEAR) def shear_y(self, pil_img, level): level = float_parameter(sample_level(level), 0.3) if np.random.uniform() > 0.5: level = -level return pil_img.transform((self.im_size, self.im_size), Image.AFFINE, (1, 0, 0, level, 1, 0), resample=Image.BILINEAR) def translate_x(self, pil_img, level): level = int_parameter(sample_level(level), self.im_size / 3) if np.random.random() > 0.5: level = -level return pil_img.transform((self.im_size, self.im_size), Image.AFFINE, (1, 0, level, 0, 1, 0), resample=Image.BILINEAR) def translate_y(self, pil_img, level): level = int_parameter(sample_level(level), self.im_size / 3) if np.random.random() > 0.5: level = -level return pil_img.transform((self.im_size, self.im_size), Image.AFFINE, (1, 0, 0, 0, 1, level), resample=Image.BILINEAR) class ImageNetSIN(torch.utils.data.Dataset): def __init__(self, in_data_path, sin_data_path, split, im_size, train_aug=None, rgb_to_bgr=True): assert split in ['train', 'val'], "Unknown split {}".format(split) self.train = True if split=='train' else False self.train_aug = self.train if train_aug is None else train_aug in_data_path = os.path.join(in_data_path, split) sin_data_path = os.path.join(sin_data_path, split) if self.train_aug: train_transform = [ tv.transforms.RandomResizedCrop(im_size, scale=(0.08,1.0)), tv.transforms.RandomHorizontalFlip(), ] else: train_transform = [ tv.transforms.Resize(256), tv.transforms.CenterCrop(im_size) ] def RGB_to_BGR(image): return image[[2,1,0],:,:] self.pretransform = tv.transforms.Compose(train_transform + [PilToNumpy()]) self.posttransform = tv.transforms.Compose([ NumpyToTensor(), tv.transforms.Normalize(IM_MEAN, IM_STD)] + ([RGB_to_BGR] if rgb_to_bgr else []) #PyCls imagenet models are trained in BGR input order ) self.transform = tv.transforms.Compose([ self.pretransform, self.posttransform ]) self.dataset = torch.utils.data.ConcatDataset([ tv.datasets.ImageFolder(in_data_path, self.transform), tv.datasets.ImageFolder(sin_data_path, self.transform) ]) def __getitem__(self, idx): return self.dataset[idx] def __len__(self): return len(self.dataset)
augmentation-corruption-fbr_main
experiments/overlap/datasets.py
augmentation-corruption-fbr_main
experiments/overlap/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import logging import os import time import datetime import torch.nn as nn import torch.nn.functional as F log = logging.getLogger(__name__) def eta_str(eta_td): """Converts an eta timedelta to a fixed-width string format.""" days = eta_td.days hrs, rem = divmod(eta_td.seconds, 3600) mins, secs = divmod(rem, 60) return '{0:02},{1:02}:{2:02}:{3:02}'.format(days, hrs, mins, secs) def train_net(model, optimizer, train_dataset, batch_size, max_epoch, loader_params, lr_policy, checkpoint_folder='checkpoints', name=None, save_period=1, weights=None, num_gpus=1, is_leader=True, jsd_num=3, jsd_alpha=12.0): chpk_pre = 'model_epoch_' if name is not None: chpk_pre = name + "_" + chpk_pre chpk_post = '.pyth' if os.path.exists(checkpoint_folder): checkpoints = [c for c in os.listdir(checkpoint_folder) if chpk_post in c and chpk_pre == "_".join(c.split("_")[:-1]) +"_"] else: checkpoints = [] if weights: checkpoint = torch.load(weights, map_location='cpu') log.info("Pretrained weights provided. Loading model from {} and skipping training.".format(weights)) if num_gpus > 1: model.module.load_state_dict(checkpoint['model_state']) else: model.load_state_dict(checkpoint['model_state']) return model elif checkpoints: last_checkpoint_name = os.path.join(checkpoint_folder, sorted(checkpoints)[-1]) checkpoint = torch.load(last_checkpoint_name, map_location='cpu') log.info("Loading model from {}".format(last_checkpoint_name)) if num_gpus > 1: model.module.load_state_dict(checkpoint['model_state']) else: model.load_state_dict(checkpoint['model_state']) optimizer.load_state_dict(checkpoint['optimizer_state']) start_epoch = checkpoint['epoch'] + 1 else: start_epoch = 1 if train_dataset is None: return model sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)\ if num_gpus > 1 else None loader = torch.utils.data.DataLoader( train_dataset, batch_size=batch_size, shuffle=True if sampler is None else False, sampler=sampler, num_workers=loader_params.num_workers, pin_memory=loader_params.pin_memory, drop_last=True ) for i in range(start_epoch, max_epoch+1): log.info("Starting epoch {}/{}".format(i, max_epoch)) time_start = time.time() if sampler: sampler.set_epoch(i) train_epoch(model, optimizer, loader, lr_policy, i, num_gpus, jsd_num=jsd_num, jsd_alpha=jsd_alpha) time_stop = time.time() seconds_taken = (time_stop - time_start) eta_td = datetime.timedelta(seconds=int(seconds_taken*(max_epoch-i))) log.info("Seconds taken: {:.2f}, Time remaining: {}".format(seconds_taken, eta_str(eta_td))) if (i % save_period == 0 or i == max_epoch) and is_leader: if num_gpus > 1: m = model.module else: m = model checkpoint = { 'epoch' : i, 'model_state' : m.state_dict(), 'optimizer_state' : optimizer.state_dict() } checkpoint_file = "{:s}{:04d}{:s}".format(chpk_pre, i, chpk_post) if not os.path.exists(checkpoint_folder): os.mkdir(checkpoint_folder) checkpoint_file = os.path.join(checkpoint_folder, checkpoint_file) log.info("Saving model to {}".format(checkpoint_file)) torch.save(checkpoint, checkpoint_file) class JSDLoss(nn.Module): def __init__(self, alpha=12.0, num=3): super(JSDLoss, self).__init__() self.cross_entropy = nn.CrossEntropyLoss() self.alpha = alpha self.num = num def forward(self, preds, labels): if not self.training: return self.cross_entropy(preds, labels) bs, nc = preds.size() preds = preds.view(bs//self.num, self.num, nc) clean_loss = self.cross_entropy(preds[:,0,:],labels) p_preds = F.softmax(preds, dim=2) p_mixture = torch.clamp(torch.mean(p_preds, dim=1, keepdim=True), 1e-7, 1).log() p_mixture = p_mixture.repeat(1,self.num,1) jsd_loss = F.kl_div(p_mixture, p_preds, reduction='batchmean') / self.num return clean_loss + self.alpha * jsd_loss def train_epoch(model, optimizer, loader, lr_policy, epoch, num_gpus=1, jsd_num=3, jsd_alpha=12.0): lr = lr_policy(epoch-1) for param_group in optimizer.param_groups: param_group['lr'] = lr model.train() loss_fun = JSDLoss(alpha=jsd_alpha,num=jsd_num).cuda() loss_fun.train() avg_loss = 0.0 num_correct = 0 num_total = 0 num_batches = 0 for cur_iter, (inputs, labels) in enumerate(loader): inputs, labels = inputs.cuda(), labels.cuda(non_blocking=True) bs, c, h, w = inputs.size() inputs = inputs.view(bs*jsd_num, c//jsd_num, h, w) # Unpack jsd images preds = model(inputs) loss = loss_fun(preds, labels) optimizer.zero_grad() loss.backward() optimizer.step() preds = preds.view(bs, jsd_num, -1) preds = preds[:,0,:] correct = torch.sum(torch.argmax(preds, dim=1)==labels) if num_gpus > 1: torch.distributed.all_reduce(correct) torch.distributed.all_reduce(loss) avg_loss += loss.item() num_correct += correct.item() num_total += labels.size(0) * num_gpus num_batches += num_gpus avg_loss /= num_batches err = 100 * (1 - num_correct / num_total) log.info("Avg loss: {:.3f}, Avg err: {:.3f}".format(avg_loss, err))
augmentation-corruption-fbr_main
experiments/overlap/train_net_jsd.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import numpy as np from hydra.utils import instantiate from .train_net import train_net class Network(object): def __init__(self, model_cfg, optim_cfg, dataset_cfg, data_loader, num_gpus=1, is_leader=True): cur_device = torch.cuda.current_device() self.model = instantiate(model_cfg).cuda(device=cur_device) if num_gpus > 1: self.model = torch.nn.parallel.DistributedDataParallel( module=self.model, device_ids=[cur_device], output_device=cur_device ) self.optimizer = instantiate(optim_cfg, self.model.parameters()) if optim_cfg.max_epoch > 0: self.dataset = instantiate(dataset_cfg) else: self.dataset = None self.batch_size = dataset_cfg.batch_size self.max_epoch = optim_cfg.max_epoch self.loader_params = data_loader self.lr_policy = instantiate(optim_cfg.lr_policy) self.save_period = dataset_cfg.checkpoint_period self.weights = dataset_cfg.weights self.num_gpus = num_gpus self.is_leader = is_leader def train(self): train_net(self.model, self.optimizer, self.dataset, self.batch_size, self.max_epoch, self.loader_params, self.lr_policy, save_period=self.save_period, name='ft', weights=self.weights, num_gpus=self.num_gpus, is_leader=self.is_leader ) self.model.eval() def extract(self, x): preds = self.model(x) if self.num_gpus > 1: return self.model.module.features else: return self.model.features
augmentation-corruption-fbr_main
experiments/overlap/feature_extractor.py
# This source code is adapted from code licensed under the MIT license # found in third_party/wideresnet_license from the root directory of # this source tree. """WideResNet implementation (https://arxiv.org/abs/1605.07146).""" import math import torch import torch.nn as nn import torch.nn.functional as F class BasicBlock(nn.Module): """Basic ResNet block.""" def __init__(self, in_planes, out_planes, stride, drop_rate=0.0): super(BasicBlock, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.relu1 = nn.ReLU(inplace=True) self.conv1 = nn.Conv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_planes) self.relu2 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d( out_planes, out_planes, kernel_size=3, stride=1, padding=1, bias=False) self.drop_rate = drop_rate self.is_in_equal_out = (in_planes == out_planes) self.conv_shortcut = (not self.is_in_equal_out) and nn.Conv2d( in_planes, out_planes, kernel_size=1, stride=stride, padding=0, bias=False) or None def forward(self, x): if not self.is_in_equal_out: x = self.relu1(self.bn1(x)) else: out = self.relu1(self.bn1(x)) if self.is_in_equal_out: out = self.relu2(self.bn2(self.conv1(out))) else: out = self.relu2(self.bn2(self.conv1(x))) if self.drop_rate > 0: out = F.dropout(out, p=self.drop_rate, training=self.training) out = self.conv2(out) if not self.is_in_equal_out: return torch.add(self.conv_shortcut(x), out) else: return torch.add(x, out) class NetworkBlock(nn.Module): """Layer container for blocks.""" def __init__(self, nb_layers, in_planes, out_planes, block, stride, drop_rate=0.0): super(NetworkBlock, self).__init__() self.layer = self._make_layer(block, in_planes, out_planes, nb_layers, stride, drop_rate) def _make_layer(self, block, in_planes, out_planes, nb_layers, stride, drop_rate): layers = [] for i in range(nb_layers): layers.append( block(i == 0 and in_planes or out_planes, out_planes, i == 0 and stride or 1, drop_rate)) return nn.Sequential(*layers) def forward(self, x): return self.layer(x) class WideResNet(nn.Module): """WideResNet class.""" def __init__(self, depth, num_classes, widen_factor=1, drop_rate=0.0): super(WideResNet, self).__init__() self.depth = depth self.widen_factor = widen_factor n_channels = [16, 16 * widen_factor, 32 * widen_factor, 64 * widen_factor] assert (depth - 4) % 6 == 0 n = (depth - 4) // 6 block = BasicBlock # 1st conv before any network block self.conv1 = nn.Conv2d( 3, n_channels[0], kernel_size=3, stride=1, padding=1, bias=False) # 1st block self.block1 = NetworkBlock(n, n_channels[0], n_channels[1], block, 1, drop_rate) # 2nd block self.block2 = NetworkBlock(n, n_channels[1], n_channels[2], block, 2, drop_rate) # 3rd block self.block3 = NetworkBlock(n, n_channels[2], n_channels[3], block, 2, drop_rate) # global average pooling and classifier self.bn1 = nn.BatchNorm2d(n_channels[3]) self.relu = nn.ReLU(inplace=True) self.fc = nn.Linear(n_channels[3], num_classes) self.n_channels = n_channels[3] for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.bias.data.zero_() def forward(self, x): out = self.conv1(x) out = self.block1(out) out = self.block2(out) out = self.block3(out) out = self.relu(self.bn1(out)) out = F.avg_pool2d(out, 8) out = out.view(-1, self.n_channels) self.features = out #Expose penultimate layer for access as features return self.fc(out) # Stage depths for ImageNet models _IN_STAGE_DS = { 18: (2, 2, 2, 2), 50: (3, 4, 6, 3), 101: (3, 4, 23, 3), 152: (3, 8, 36, 3), }
augmentation-corruption-fbr_main
experiments/overlap/wideresnet.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import logging import os import time import datetime log = logging.getLogger(__name__) def eta_str(eta_td): """Converts an eta timedelta to a fixed-width string format.""" days = eta_td.days hrs, rem = divmod(eta_td.seconds, 3600) mins, secs = divmod(rem, 60) return '{0:02},{1:02}:{2:02}:{3:02}'.format(days, hrs, mins, secs) def train_net(model, optimizer, train_dataset, batch_size, max_epoch, loader_params, lr_policy, checkpoint_folder='checkpoints', name=None, save_period=1, weights=None, num_gpus=1, is_leader=True): chpk_pre = 'model_epoch_' if name is not None: chpk_pre = name + "_" + chpk_pre chpk_post = '.pyth' if os.path.exists(checkpoint_folder): checkpoints = [c for c in os.listdir(checkpoint_folder) if chpk_post in c and chpk_pre == "_".join(c.split("_")[:-1]) +"_"] else: checkpoints = [] if weights: checkpoint = torch.load(weights, map_location='cpu') log.info("Pretrained weights provided. Loading model from {} and skipping training.".format(weights)) if num_gpus > 1: model.module.load_state_dict(checkpoint['model_state']) else: model.load_state_dict(checkpoint['model_state']) return model elif checkpoints: last_checkpoint_name = os.path.join(checkpoint_folder, sorted(checkpoints)[-1]) checkpoint = torch.load(last_checkpoint_name, map_location='cpu') log.info("Loading model from {}".format(last_checkpoint_name)) if num_gpus > 1: model.module.load_state_dict(checkpoint['model_state']) else: model.load_state_dict(checkpoint['model_state']) optimizer.load_state_dict(checkpoint['optimizer_state']) start_epoch = checkpoint['epoch'] + 1 else: start_epoch = 1 if train_dataset is None: return model sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)\ if num_gpus > 1 else None loader = torch.utils.data.DataLoader( train_dataset, batch_size=batch_size, shuffle=True if sampler is None else False, sampler=sampler, num_workers=loader_params.num_workers, pin_memory=loader_params.pin_memory, drop_last=True ) for i in range(start_epoch, max_epoch+1): log.info("Starting epoch {}/{}".format(i, max_epoch)) time_start = time.time() if sampler: sampler.set_epoch(i) train_epoch(model, optimizer, loader, lr_policy, i, num_gpus) time_stop = time.time() seconds_taken = (time_stop - time_start) eta_td = datetime.timedelta(seconds=int(seconds_taken*(max_epoch-i))) log.info("Seconds taken: {:.2f}, Time remaining: {}".format(seconds_taken, eta_str(eta_td))) if (i % save_period == 0 or i == max_epoch) and is_leader: if num_gpus > 1: m = model.module else: m = model checkpoint = { 'epoch' : i, 'model_state' : m.state_dict(), 'optimizer_state' : optimizer.state_dict() } checkpoint_file = "{:s}{:04d}{:s}".format(chpk_pre, i, chpk_post) if not os.path.exists(checkpoint_folder): os.mkdir(checkpoint_folder) checkpoint_file = os.path.join(checkpoint_folder, checkpoint_file) log.info("Saving model to {}".format(checkpoint_file)) torch.save(checkpoint, checkpoint_file) def train_epoch(model, optimizer, loader, lr_policy, epoch, num_gpus=1): lr = lr_policy(epoch-1) for param_group in optimizer.param_groups: param_group['lr'] = lr model.train() loss_fun = torch.nn.CrossEntropyLoss().cuda() avg_loss = 0.0 num_correct = 0 num_total = 0 num_batches = 0 for cur_iter, (inputs, labels) in enumerate(loader): inputs, labels = inputs.cuda(), labels.cuda(non_blocking=True) preds = model(inputs) loss = loss_fun(preds, labels) optimizer.zero_grad() loss.backward() optimizer.step() correct = torch.sum(torch.argmax(preds, dim=1)==labels) if num_gpus > 1: torch.distributed.all_reduce(correct) torch.distributed.all_reduce(loss) avg_loss += loss.item() num_correct += correct.item() num_total += labels.size(0) * num_gpus num_batches += num_gpus avg_loss /= num_batches err = 100 * (1 - num_correct / num_total) log.info("Avg loss: {:.3f}, Avg err: {:.3f}".format(avg_loss, err))
augmentation-corruption-fbr_main
experiments/overlap/train_net.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import simplejson import decimal import logging log = logging.getLogger(__name__) _TAG = 'json_stats: ' def log_json_stats(stats): """Logs json stats.""" # Decimal + string workaround for having fixed len float vals in logs stats = { k: decimal.Decimal('{:.6f}'.format(v)) if isinstance(v, float) else v for k, v in stats.items() } json_stats = simplejson.dumps(stats, sort_keys=True, use_decimal=True) log.info('{:s}{:s}'.format(_TAG, json_stats)) def load_json_stats(log_file): """Loads json_stats from a single log file.""" with open(log_file, 'r') as f: lines = f.readlines() json_lines = [l[l.find(_TAG) + len(_TAG):] for l in lines if _TAG in l] json_stats = [simplejson.loads(l) for l in json_lines] return json_stats def parse_json_stats(log, row_type, key): """Extract values corresponding to row_type/key out of log.""" vals = [row[key] for row in log if row['_type'] == row_type and key in row] if key == 'iter' or key == 'epoch': vals = [int(val.split('/')[0]) for val in vals] return vals
augmentation-corruption-fbr_main
experiments/overlap/utils/logging.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np class Cosine(object): def __init__(self, base_lr, max_epoch): self.base_lr = base_lr self.max_epoch = max_epoch def __call__(self, cur_epoch): return 0.5 * self.base_lr * (1.0 + np.cos(np.pi * cur_epoch / self.max_epoch)) class Steps(object): def __init__(self, base_lr, lr_mult, steps): self.base_lr = base_lr self.lr_mult = lr_mult self.steps = steps def __call__(self, cur_epoch): ind = [i for i, s in enumerate(self.steps) if cur_epoch >= s][-1] return self.base_lr * self.lr_mult ** ind
augmentation-corruption-fbr_main
experiments/overlap/utils/lr_policy.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .base import Augmentation from scipy.ndimage import gaussian_filter from .utils.severity import float_parameter, int_parameter, sample_level from .utils.image import bilinear_interpolation, smoothstep import numpy as np class CausticRefraction(Augmentation): tags = ['distortion'] name = 'caustic_refraction' def sample_parameters(self): time = np.random.uniform(low=0.5, high=2.0) size = np.random.uniform(low=0.75, high=1.25) * self.im_size #size = self.im_size eta = 4.0 lens_scale = float_parameter(sample_level(self.severity, self.max_intensity), 0.5*self.im_size) lighting_amount = float_parameter(sample_level(self.severity, self.max_intensity), 2.0) softening = 1 return { 'time' : time, 'size' : size, 'eta' : eta, 'lens_scale' : lens_scale, 'lighting_amount': lighting_amount, 'softening' : softening} def transform(self, image, time, size, eta, lens_scale, lighting_amount, softening): def caustic_noise_kernel(point, time, size): point = point / size p = (point % 1) * 6.28318530718 - 250 i = p.copy() c = 1.0 inten = 0.005 for n in range(5): t = time * (1.0 - (3.5 / (n+1))) i = p + np.array([np.cos(t-i[0])+np.sin(t+i[1]),np.sin(t-i[1])+np.cos(t+i[0])]) length = np.sqrt((p[0] / (np.sin(i[0]+t)/inten))**2 + (p[1] / (np.cos(i[1]+t)/inten))**2) c += 1.0/length c /= 5.0 c = 1.17 - c ** 1.4 color = np.clip(np.abs(c) ** 8.0, 0, 1) return np.array([color, color, color]) def refract(incident, normal, eta): if np.abs(np.dot(incident, normal)) >= 1.0 - 1e-3: return incident angle = np.arccos(np.dot(incident, normal)) out_angle = np.arcsin(np.sin(angle) / eta) out_unrotated = np.array([np.cos(out_angle), np.sin(out_angle), 0.0]) spectator_dim = np.cross(incident, normal) spectator_dim /= np.linalg.norm(spectator_dim) orthogonal_dim = np.cross(normal, spectator_dim) rotation_matrix = np.stack((normal, orthogonal_dim, spectator_dim), axis=0) return np.matmul(np.linalg.inv(rotation_matrix), out_unrotated) def luma_at_offset(image, origin, offset): pixel_value = image[origin[0]+offset[0], origin[1]+offset[1], :]\ if origin[0]+offset[0] >= 0 and origin[0]+offset[0] < image.shape[0]\ and origin[1]+offset[1] >= 0 and origin[1]+offset[1] < image.shape[1]\ else np.array([0.0,0.0,0]) return np.dot(pixel_value, np.array([0.2126, 0.7152, 0.0722])) def luma_based_refract(point, image, caustics, eta, lens_scale, lighting_amount): north_luma = luma_at_offset(caustics, point, np.array([0,-1])) south_luma = luma_at_offset(caustics, point, np.array([0, 1])) west_luma = luma_at_offset(caustics, point, np.array([-1, 0])) east_luma = luma_at_offset(caustics, point, np.array([1,0])) lens_normal = np.array([east_luma - west_luma, south_luma - north_luma, 1.0]) lens_normal = lens_normal / np.linalg.norm(lens_normal) refract_vector = refract(np.array([0.0, 0.0, 1.0]), lens_normal, eta) * lens_scale refract_vector = np.round(refract_vector, 3) #print(refract_vector) out_pixel = bilinear_interpolation(image, point+refract_vector[0:2]) out_pixel += (north_luma - south_luma) * lighting_amount out_pixel += (east_luma - west_luma) * lighting_amount return np.clip(out_pixel, 0, 1) noise = np.array([[caustic_noise_kernel(np.array([y,x]), time, size)\ for x in range(self.im_size)] for y in range(self.im_size)]) noise = gaussian_filter(noise, sigma=softening) image = image.astype(np.float32) / 255 out = np.array([[luma_based_refract(np.array([y,x]), image, noise, eta, lens_scale, lighting_amount)\ for x in range(self.im_size)] for y in range(self.im_size)]) return np.clip((out * 255).astype(np.uint8), 0, 255) class PinchAndTwirl(Augmentation): tags = ['distortion'] name = 'pinch_and_twirl' def sample_parameters(self): centers = [np.random.randint(low=0, high=self.im_size, size=2) for i in range(5)] radius = self.im_size // 4 #amounts = np.random.uniform(low=0.2, high=1.0, size=5) #angles = np.random.uniform(low=-np.pi, high=np.pi, size=5) angles = [float_parameter(sample_level(self.severity, self.max_intensity), np.pi/4)-float_parameter(sample_level(self.severity, True), np.pi/8)\ for i in range(5)] amounts = [float_parameter(sample_level(self.severity, self.max_intensity), 0.4) + 0.1\ for i in range(5)] return {'centers' : centers, 'radius' : radius, 'amounts' : amounts, 'angles' : angles} def transform(self, image, centers, radius, amounts, angles): def warp_kernel(point, center, radius, amount, angle): dx = point[0] - center[0] dy = point[1] - center[1] dist = np.linalg.norm(point - center) if dist > radius or np.round(dist, 3) == 0.0: return point d = dist / radius t = np.sin(np.pi * 0.5 * d) ** (- amount) dx *= t dy *= t e = 1 - d a = angle * (e ** 2) out = center + np.array([dx*np.cos(a) - dy*np.sin(a), dx*np.sin(a) + dy*np.cos(a)]) return out image = image.astype(np.float32) for center, angle, amount in zip(centers, angles, amounts): image = np.array([[bilinear_interpolation(image, warp_kernel(np.array([y,x]), center, radius, amount, angle))\ for x in range(self.im_size)] for y in range(self.im_size)]) return np.clip(image, 0, 255).astype(np.uint8) class PinchAndTwirlV2(Augmentation): tags = ['distortion'] name = 'pinch_and_twirl_v2' def sample_parameters(self): num_per_axis = 5 if self.im_size==224 else 3 #angles = np.array([float_parameter(sample_level(self.severity, self.max_intensity), np.pi)-float_parameter(sample_level(self.severity, True), np.pi/2)\ # for i in range(num_per_axis ** 2)]).reshape(num_per_axis, num_per_axis) #if self.im_size == 224: angles = np.array([np.random.choice([1,-1]) * float_parameter(sample_level(self.severity, self.max_intensity), np.pi/2) for i in range(num_per_axis ** 2)]).reshape(num_per_axis, num_per_axis) #else: # angles = np.array([np.random.choice([1,-1]) * (float_parameter(sample_level(self.severity, self.max_intensity), np.pi/4)+np.pi/4) for i in range(num_per_axis ** 2)]).reshape(num_per_axis, num_per_axis) amount = float_parameter(sample_level(self.severity, self.max_intensity), 0.4) + 0.1 return {'num_per_axis' : num_per_axis, 'angles' : angles, 'amount' : amount} def transform(self, image, num_per_axis, angles, amount): def warp_kernel(point, center, radius, amount, angle): dx = point[0] - center[0] dy = point[1] - center[1] dist = np.linalg.norm(point - center) if dist > radius or np.round(dist, 3) == 0.0: return point d = dist / radius t = np.sin(np.pi * 0.5 * d) ** (- amount) dx *= t dy *= t e = 1 - d a = angle * (e ** 2) out = center + np.array([dx*np.cos(a) - dy*np.sin(a), dx*np.sin(a) + dy*np.cos(a)]) return out out = image.copy().astype(np.float32) grid_size = self.im_size // num_per_axis radius = grid_size / 2 for i in range(num_per_axis): for j in range(num_per_axis): l, r = i * grid_size, (i+1) * grid_size u, d = j * grid_size, (j+1) * grid_size center = np.array([u+radius, l+radius]) out[u:d,l:r,:] = np.array([[bilinear_interpolation(out, warp_kernel(np.array([y,x]), center, radius, amount, angles[i,j]))\ for x in np.arange(l,r)] for y in np.arange(u,d)]) return np.clip(out, 0, 255).astype(np.uint8) class FishEye(Augmentation): tags = ['distortion'] name = 'fish_eye' def sample_parameters(self): centers = [np.random.randint(low=0, high=self.im_size, size=2) for i in range(5)] etas = [float_parameter(sample_level(self.severity, self.max_intensity), 1.0)+1.0\ for i in range(5)] radii = [np.random.uniform(low=0.1, high=0.3) * self.im_size for i in range(5)] return {'centers' : centers, 'radii' : radii, 'etas': etas} def transform(self, image, centers, radii, etas): def warp_kernel(point, center, a, b, eta): dx = point[0] - center[0] dy = point[1] - center[1] x2 = dx**2 y2 = dy**2 a2 = a**2 b2 = b**2 if (y2 >= (b2 - b2*x2/a2)): return point r = 1.0 / eta z = np.sqrt((1.0 - x2/a2 - y2/b2) * (a*b)) z2 = z**2 x_angle = np.arccos(dx / np.sqrt(x2+z2)) angle_1 = np.pi/2 - x_angle angle_2 = np.arcsin(np.sin(angle_1)*r) angle_2 = np.pi/2 - x_angle - angle_2 out_x = point[0] - np.tan(angle_2)*z #print(np.tan(angle_2)*z) y_angle = np.arccos(dy / np.sqrt(y2+z2)) angle_1 = np.pi/2 - y_angle angle_2 = np.arcsin(np.sin(angle_1)*r) angle_2 = np.pi/2 - y_angle - angle_2 out_y = point[1] - np.tan(angle_2)*z return np.array([out_x, out_y]) for center, radius, eta in zip(centers, radii, etas): image = np.array([[bilinear_interpolation(image, warp_kernel(np.array([y,x]), center, radius, radius, eta))\ for x in range(self.im_size)] for y in range(self.im_size)]) return np.clip(image, 0, 255).astype(np.uint8) class FishEyeV2(Augmentation): tags = ['distortion'] name = 'fish_eye_v2' def sample_parameters(self): seed = np.random.randint(low=0, high=2**32) #density = float_parameter(sample_level(self.severity, self.max_intensity), 0.01) density = 0.01 * 224**2 / (self.im_size**2) #eta = 2 eta = float_parameter(sample_level(self.severity, self.max_intensity), 2.0) + 1.0 radius = max(0.05 * self.im_size, 3) return {'seed' : seed, 'density' : density, 'eta': eta, 'radius' : radius} def transform(self, image, density, eta, radius, seed): def warp_kernel(point, center, a, b, eta): dx = point[0] - center[0] dy = point[1] - center[1] x2 = dx**2 y2 = dy**2 a2 = a**2 b2 = b**2 if (y2 >= (b2 - b2*x2/a2)): return point r = 1.0 / eta z = np.sqrt((1.0 - x2/a2 - y2/b2) * (a*b)) z2 = z**2 x_angle = np.arccos(dx / np.sqrt(x2+z2)) angle_1 = np.pi/2 - x_angle angle_2 = np.arcsin(np.sin(angle_1)*r) angle_2 = np.pi/2 - x_angle - angle_2 out_x = point[0] - np.tan(angle_2)*z #print(np.tan(angle_2)*z) y_angle = np.arccos(dy / np.sqrt(y2+z2)) angle_1 = np.pi/2 - y_angle angle_2 = np.arcsin(np.sin(angle_1)*r) angle_2 = np.pi/2 - y_angle - angle_2 out_y = point[1] - np.tan(angle_2)*z return np.array([out_x, out_y]) random_state = np.random.RandomState(seed=seed) num = int(density * self.im_size**2) out = image.copy().astype(np.float32) for i in range(num): center = random_state.uniform(low=0, high=self.im_size, size=2) l = max(np.floor(center[1]-radius).astype(np.int), 0) r = min(np.ceil(center[1]+radius).astype(np.int), self.im_size) u = max(np.floor(center[0]-radius).astype(np.int), 0) d = min(np.ceil(center[0]+radius).astype(np.int), self.im_size) out[u:d,l:r,:] = np.array([[bilinear_interpolation(out, warp_kernel(np.array([y,x]), center, radius, radius, eta)) for x in np.arange(l,r)] for y in np.arange(u,d)]) return np.clip(out, 0, 255).astype(np.uint8) class WaterDrop(Augmentation): tags = ['distortion'] name = 'water_drop' def sample_parameters(self): center = np.array([self.im_size //2, self.im_size//2]) center = np.random.uniform(low=0.25, high=0.75, size=2) * self.im_size radius = self.im_size//2 amplitude = float_parameter(sample_level(self.severity, self.max_intensity), 0.25) wavelength = np.random.uniform(low=0.05, high=0.2) * self.im_size phase = np.random.uniform(low=0.0, high=2*np.pi) return {'center': center, 'radius' : radius, 'amplitude' : amplitude, 'wavelength' : wavelength, 'phase': phase} def transform(self, image, center, radius, amplitude, wavelength, phase): def warp_kernel(point, center, radius, amplitude, wavelength, phase): dx, dy = point - center dist = np.linalg.norm(point-center) if dist > radius: return point amount = amplitude * np.sin(dist / wavelength * np.pi * 2 - phase) if dist != 0.0: amount *= wavelength / dist return point + amount * (point - center) image = np.array([[bilinear_interpolation(image, warp_kernel(np.array([y,x]), center, radius, amplitude, wavelength, phase))\ for x in range(self.im_size)] for y in range(self.im_size)]) return np.clip(image, 0, 255).astype(np.uint8) class Ripple(Augmentation): tags = ['distortion'] name = 'ripple' def sample_parameters(self): amplitudes = np.array([float_parameter(sample_level(self.severity, self.max_intensity), 0.025)\ for i in range(2)]) * self.im_size wavelengths = np.random.uniform(low=0.1, high=0.3, size=2) * self.im_size phases = np.random.uniform(low=0, high=2*np.pi, size=2) return {'amplitudes' : amplitudes, 'wavelengths' : wavelengths, 'phases' : phases} def transform(self, image, wavelengths, phases, amplitudes): def warp_kernel(point, wavelengths, phases, amplitudes): return point + amplitudes * np.sin(2 * np.pi * point / wavelengths + phases) image = np.array([[bilinear_interpolation(image, warp_kernel(np.array([y,x]), wavelengths, phases, amplitudes))\ for x in range(self.im_size)] for y in range(self.im_size)]) return np.clip(image, 0, 255).astype(np.uint8) class ColorHalfTone(Augmentation): tags = ['distortion'] name = 'color_half_tone' def sample_parameters(self): #angles = np.array([108, 162, 90]) * np.pi/180 angles = np.random.uniform(low=0, high=2*np.pi, size=3) dot_area = float_parameter(sample_level(self.severity, self.max_intensity), 9*np.pi) dot_radius = np.sqrt(dot_area/np.pi) return {'angles' : angles, 'dot_radius' : dot_radius} def transform(self, image, angles, dot_radius): grid_size = 2 * dot_radius * 1.414 mx = [0, -1, 1, 0, 0] my = [0, 0, 0, -1, 1] out = np.zeros_like(image) for y in range(self.im_size): for c in range(3): angle = angles[c] cos = np.cos(angle) sin = np.sin(angle) for x in range(self.im_size): tx = cos * x + sin * y ty = - sin * x + cos * y tx = tx - (tx - grid_size/2) % grid_size + grid_size/2 ty = ty - (ty - grid_size/2) % grid_size + grid_size/2 f = 1 for i in range(5): ttx = tx + mx[i]*grid_size tty = ty + my[i]*grid_size ntx = cos * ttx - sin * tty nty = sin * ttx + cos * tty nx = np.clip(int(ntx), 0, self.im_size-1) ny = np.clip(int(nty), 0, self.im_size-1) l = image[nx, ny, c] / 255 l = 1 - l**2 l *= grid_size/2 * 1.414 dx = x-ntx dy = y-nty r = np.linalg.norm(np.array([dx,dy])) f2 = 1-smoothstep(r, r+1, l) f = min(f, f2) out[x, y, c] = f return np.clip(255 * out, 0, 255).astype(np.uint8)
augmentation-corruption-fbr_main
experiments/overlap/augmentations/distortion.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .base import Augmentation from .utils.image import bilinear_interpolation from .utils.severity import float_parameter, int_parameter, sample_level from scipy.ndimage import shift, zoom, grey_erosion, grey_dilation import numpy as np from PIL import Image from scipy.ndimage import rotate class Scatter(Augmentation): tags = ['blur', 'filterpedia', 'scatter'] name = 'scatter' def sample_parameters(self): seed = np.random.uniform(low=0.0, high=10.0) radius = float_parameter(sample_level(self.severity,self.max_intensity), self.im_size/10) return {'seed' : seed, 'radius' : radius} def transform(self, image, seed, radius): def noise(x, y, seed): i, j = np.sin(x * seed), np.cos(y * seed) return (np.sin(12.9898*i + 78.233*j) * 43758.5453) % 1 def warp_kernel(x, y, seed, radius): x_offset = radius * (-1.0 + noise(x, y, seed) * 2) y_offset = radius * (-1.0 + noise(y, x, seed) * 2) x_new = min(max(0, x+x_offset), self.im_size-1) y_new = min(max(0, y+y_offset), self.im_size-1) return y_new, x_new out = np.array([[bilinear_interpolation(image, warp_kernel(x, y, seed, radius))\ for x in range(self.im_size)] for y in range(self.im_size)]) return out.astype(np.uint8) class ChromaticAbberation(Augmentation): tags = ['blur', 'color', 'chromatic_abberation'] name = 'chromatic_abberation' def sample_parameters(self): # shifts = np.array([int_parameter(sample_level(self.severity,self.max_intensity), self.im_size / 6)\ # for i in range(6)]).reshape(3,2) angles = np.random.uniform(low=0, high=2*np.pi, size=3) dists = np.array([float_parameter(sample_level(self.severity, self.max_intensity), self.im_size / 10)\ for i in range(3)]) shifts = np.array([[np.cos(a)*d, np.sin(a)*d] for a, d in zip(angles, dists)]) # flip = np.random.choice([-1,1], size=(3,2)) # shifts = shifts * flip return { 'rgb_shifts' : shifts} def transform(self, image, rgb_shifts): # max_pad = np.max(np.abs(rgb_shifts)) # image_padded = np.pad(image, [(max_pad, max_pad), (max_pad, max_pad), (0,0)]) out = image.copy() for i in range(3): out[:,:,i] = shift(image[:,:,i], rgb_shifts[i], prefilter=False) #h, w, _ = image.shape #for i in range(3): # out[:,:,i] = image_padded[max_pad+rgb_shifts[i,0]:max_pad+h+rgb_shifts[i,0],max_pad+rgb_shifts[i,1]:max_pad+w+rgb_shifts[i,1],i] return out def convert_to_numpy(self, params): return params['rgb_shifts'].flatten() def convert_from_numpy(self, numpy_record): return {'rgb_shifts' : numpy_record.reshape(3,2).astype(np.int)} class TransverseChromaticAbberation(Augmentation): tags = ['blur', 'color', 'pil', 'transverse_chromatic_abberation'] name = 'transverse_chromatic_abberation' def sample_parameters(self): scales = np.array([float_parameter(sample_level(self.severity,self.max_intensity), 0.5)\ for i in range(3)]) scale = float_parameter(sample_level(self.severity, self.max_intensity), 0.5) scales = np.array([1.0, 1.0+scale/2, 1.0+scale]) scales = scales[np.random.permutation(3)] #zerod = np.random.randint(low=0, high=3) #scales[zerod] = 0.0 #flip = np.random.choice([-1, 1], size=3) #scales = flip * scales #scales = 2 ** scales return { 'scales' : scales } def transform(self, image, scales): out = image.copy() for c in range(3): zoomed = zoom(image[:,:,c], scales[c], prefilter=False) edge = (zoomed.shape[0]-self.im_size)//2 out[:,:,c] = zoomed[edge:edge+self.im_size, edge:edge+self.im_size] return out.astype(np.uint8) ''' image = Image.fromarray(image) channel_list = [] for i, channel in enumerate(image.getbands()): im = image.getchannel(channel) affine = np.array([[scales[i], 0, (1-scales[i])*self.im_size/2], [0, scales[i], (1-scales[i])*self.im_size/2]]) im = im.transform((self.im_size, self.im_size), Image.AFFINE, affine.flatten()) channel_list.append(im) out = Image.merge("RGB", channel_list) return np.array(out).astype(np.uint8) ''' def convert_to_numpy(self, params): return params['scales'].flatten() def convert_from_numpy(self, numpy_record): return {'scales' : numpy_record} class HomogeneousColorBlur(Augmentation): tags = ['blur', 'filterpedia', 'homogenous_color_blur', 'slow', 'impractically_slow'] name = 'homogeneous_color_blur' def sample_parameters(self): radius = int_parameter(sample_level(self.severity,self.max_intensity), self.im_size/10) threshold = np.random.uniform(low=0.2, high=0.21) return { 'radius' : radius, 'threshold' : threshold } def transform(self, image, radius, threshold): def kernel(point, image, radius, threshold): this_val = image[point[0],point[1],:] acc = np.zeros(3) n = 0 for x in np.arange(-radius, radius+1): for y in np.arange(-radius, radius+1): x_pos = point[0]+x y_pos = point[1]+y if x_pos < 0 or x_pos >= self.im_size or y_pos < 0 or y_pos >= self.im_size: continue offset_val = image[x_pos,y_pos,:] dist_mul = 1 if radius >= np.sqrt(x**2+y**2) else 0 color_mul = 1 if 255*threshold >= np.sqrt(np.sum((this_val-offset_val)**2)) else 0 acc += offset_val * dist_mul * color_mul n += dist_mul * color_mul return acc / n out = np.array([[kernel(np.array([y,x]), image, radius, threshold)\ for x in range(self.im_size)] for y in range(self.im_size)]) return out.astype(np.uint8) class Erosion(Augmentation): tags = ['blur'] name = 'erosion' def sample_parameters(self): r2 = float_parameter(sample_level(self.severity, self.max_intensity), (5**2-1.5**2)) + 1.5**2 radius = np.sqrt(r2) return {'radius' : radius} def transform(self, image, radius): mask = np.zeros((np.ceil(2*radius).astype(np.uint8), np.ceil(2*radius).astype(np.uint8))) center = np.array([radius, radius]) for x in range(mask.shape[0]): for y in range(mask.shape[1]): mask[x,y] = 1 if np.linalg.norm(np.array([x,y])-center) <= radius else 0 if np.max(mask) == 0: return image out = image.copy() for c in range(3): out[:,:,c] = grey_erosion(out[:,:,c], footprint=mask) return out class Dilation(Augmentation): tags = ['blur'] name = 'dilation' def sample_parameters(self): r2 = float_parameter(sample_level(self.severity, self.max_intensity), (5**2-1.5**2)) + 1.5**2 radius = np.sqrt(r2) return {'radius' : radius} def transform(self, image, radius): mask = np.zeros((np.ceil(2*radius).astype(np.uint8), np.ceil(2*radius).astype(np.uint8))) center = np.array([radius, radius]) for x in range(mask.shape[0]): for y in range(mask.shape[1]): mask[x,y] = 1 if np.linalg.norm(np.array([x,y])-center) <= radius else 0 if np.max(mask) == 0: return image out = image.copy() for c in range(3): out[:,:,c] = grey_dilation(out[:,:,c], footprint=mask) return out class CircularMotionBlur(Augmentation): tags = ['blur'] name = 'circular_motion_blur' def sample_parameters(self): amount = float_parameter(sample_level(self.severity, self.max_intensity),15) return {'amount' : amount} def transform(self, image, amount): num = 21 factors = [] rotated = [] image = image.astype(np.float32) / 255 for i in range(num): angle = (2*i/(num-1) - 1) * amount rotated.append(rotate(image, angle, reshape=False)) factors.append(np.exp(- 2*(2*i/(num-1)-1)**2)) out = np.zeros_like(image) for i, f in zip(rotated, factors): out += f * i out /= sum(factors) return np.clip(out*255, 0, 255).astype(np.uint8)
augmentation-corruption-fbr_main
experiments/overlap/augmentations/blurs.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .base import Augmentation from math import floor, ceil import numpy as np class Gaussian(Augmentation): name = 'pg_gaussian' tags = ['float_return'] def sample_parameters(self): seed = np.random.randint(low=0, high=2**32) sigma = np.random.uniform(low=0, high=self.severity/10)\ if not self.max_intensity else self.severity/10 return {'seed': seed, 'sigma': sigma} def transform(self, image, seed, sigma): random_state = np.random.RandomState(seed=seed) noise = random_state.randn(self.im_size, self.im_size, 3) image = image.astype(np.float32) / 255 image = np.clip(image+sigma*noise, 0, 1) return image * 255 class PatchGaussian(Augmentation): name = 'patch_gaussian' tags = ['float_return', 'additional_parameters'] def __init__(self, severity, im_size, record=False, max_intensity=False, sigma=1.0, width=None): super(PatchGaussian, self).__init__(severity, im_size, record, max_intensity) self.sigma = sigma self.width = width if width is not None else self.im_size def sample_parameters(self): seed = np.random.randint(low=0, high=2**32) crop_pos = np.random.randint(low=0, high=self.im_size, size=2) width = np.random.uniform(low=0, high=self.width)\ if not self.max_intensity else self.width sigma = np.random.uniform(low=0, high=self.sigma) return {'seed': seed, 'crop_pos': crop_pos, 'sigma': sigma, 'width': width} def transform(self, image, seed, crop_pos, sigma, width): random_state = np.random.RandomState(seed=seed) noise = random_state.randn(self.im_size, self.im_size, 3) noise *= sigma mask = np.zeros((self.im_size, self.im_size)) l = int(max(0, crop_pos[0]-floor(width/2))) r = int(min(self.im_size, crop_pos[0]+ceil(width/2))) u = int(max(0, crop_pos[1]-floor(width/2))) d = int(min(self.im_size, crop_pos[1]+ceil(width/2))) mask[l:r,u:d] = 1.0 mask = mask.reshape(self.im_size, self.im_size, 1) image = image.astype(np.float32) / 255 image = image + mask * noise image = np.clip(image, 0, 1) return image * 255
augmentation-corruption-fbr_main
experiments/overlap/augmentations/patch_gaussian.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .base import Augmentation import numpy as np from .utils.severity import int_parameter, float_parameter, sample_level from .utils.image import smoothstep from skimage.color import rgb2hsv, hsv2rgb class BleachBypass(Augmentation): tags = ['color', 'filterpedia', 'bleach_bypass'] name = 'bleach_bypass' def sample_parameters(self): amount = float_parameter(sample_level(self.severity,self.max_intensity), 1.0) return { 'amount' : amount } def transform(self, image, amount): vals = np.array([0.2126, 0.7152, 0.0722]).reshape(1,1,3) luma = np.sum(image*vals, axis=2, keepdims=True)/255 l = np.clip(10.0 * (luma - 0.45), 0, 1.0) result1 = 2 * image * luma / 255 result2 = 1.0 - 2.0 * (1.0 - luma) * (1.0 - image /255) out = ((1-l) * result1 + l * result2) * 255 return ((1-amount) * image + amount * out).astype(np.uint8) class Technicolor(Augmentation): tags = ['color', 'filterpedia', 'technicolor'] name = 'technicolor' def sample_parameters(self): amount = float_parameter(sample_level(self.severity,self.max_intensity), 1.0) return { 'amount' : amount } def transform(self, image, amount): redmatte = 1.0 - (image[:,:,0]/255 - ((image[:,:,1]/2+image[:,:,2]/2))/255) greenmatte = 1.0 - (image[:,:,1]/255 - ((image[:,:,0]/2+image[:,:,2]/2))/255) bluematte = 1.0 - (image[:,:,2]/255 - ((image[:,:,0]/2+image[:,:,1]/2))/255) red = greenmatte * bluematte * image[:,:,0].astype(np.float32) green = redmatte * bluematte * image[:,:,1].astype(np.float32) blue = redmatte * greenmatte * image[:,:,2].astype(np.float32) new_color = np.stack((red, green, blue), axis=2) return ((1-amount) * image + amount * new_color).astype(np.uint8) class Pseudocolor(Augmentation): tags = ['color', 'filterpedia', 'pseudocolor'] name = 'pseudocolor' def sample_parameters(self): smoothness = np.random.uniform(low=0.25, high=0.75) color0 = np.random.randint(low=0, high=255, size=3).astype(np.uint8) color1 = np.random.randint(low=0, high=255, size=3).astype(np.uint8) color2 = np.random.randint(low=0, high=255, size=3).astype(np.uint8) color3 = np.random.randint(low=0, high=255, size=3).astype(np.uint8) color4 = np.random.randint(low=0, high=255, size=3).astype(np.uint8) amount = float_parameter(sample_level(self.severity,self.max_intensity), 0.5) return { 'smoothness' : smoothness, 'color0' : color0, 'color1': color1, 'color2': color2, 'color3' : color3, 'color4' : color4, 'amount' : amount } def transform(self, image, color0, color1, color2, color3, color4, smoothness, amount): color0 = color0.astype(np.uint8) color1 = color1.astype(np.uint8) color2 = color2.astype(np.uint8) color3 = color3.astype(np.uint8) color4 = color4.astype(np.uint8) def get_color(color0, color1, edge0, edge1, luma, smoothness): smooth_color = color0 + ((color1 - color0) * smoothstep(edge0, edge1, luma)) a = 4.0 * (luma - edge0) linear_color = (1 - a) * color0 + a * color1 return (1 - smoothness) * linear_color + smoothness * smooth_color vals = np.array([0.2126, 0.7152, 0.0722]).reshape(1,1,3) luma = np.sum(image.astype(np.float32)*vals, axis=2, keepdims=True)/255 c1 = get_color(color0, color1, 0.0, 0.25, luma, smoothness) c2 = get_color(color1, color2, 0.25, 0.50, luma, smoothness) c3 = get_color(color2, color3, 0.5, 0.75, luma, smoothness) c4 = get_color(color3, color4, 0.75, 1.0, luma, smoothness) out = (luma < 0.25) * c1 + ((luma >= 0.25)&(luma < 0.5)) * c2\ + ((luma >= 0.5)&(luma < 0.75)) * c3 + (luma >= 0.75) * c4 return np.clip((1 - amount) * image + amount * out, 0, 255).astype(np.uint8) def convert_to_numpy(self, params): colors = [] for i in range(5): colors.extend(params['color'+str(i)].tolist()) return np.array([params['smoothness']] + colors + [params['amount']]) def convert_from_numpy(self, numpy_record): params = {'smoothness' : numpy_record[0], 'amount' : numpy_record[16]} for i in range(5): params['color'+str(i)] = numpy_record[1+3*i:1+3*(i+1)] return params class HueShift(Augmentation): tags = ['color'] name = 'hue_shift' def sample_parameters(self): amount = float_parameter(sample_level(self.severity, self.max_intensity), 0.5) if np.random.uniform() < 0.5: amount *= -1 return {'amount' : amount} def transform(self, image, amount): hsv_image = rgb2hsv(image.astype(np.float32)/255) hsv_image[:,:,0] += (amount % 1.0) return np.clip(hsv2rgb(hsv_image)*255, 0, 255).astype(np.uint8) class ColorDither(Augmentation): tags = ['color'] name = 'color_dither' def sample_parameters(self): #factor = float_parameter(sample_level(self.severity, self.max_intensity),6.0)+1.0 #levels = int(256 / (2**factor)) levels = int_parameter(sample_level(self.severity, self.max_intensity),10) levels = 14-levels return {'levels' : levels} def transform(self, image, levels): index = 0 color_map = [int(255 * i / (levels -1)) for i in range(levels)] div = [int(levels*i / 256) for i in range(256)] out = np.zeros_like(image) image_copy = image.copy() m = np.array([[0,0,0],[0,0,7],[3,5,1]]) for y in range(self.im_size): reverse = ((y % 1) == 1) if reverse: index = y*self.im_size + self.im_size - 1 direction = -1 else: index = y*self.im_size direction = 1 for x in range(self.im_size): curr_val = image_copy[index//self.im_size, index%self.im_size,:] new_val = np.array([color_map[div[c]] for c in curr_val]) out[index//self.im_size, index%self.im_size,:] = new_val e = curr_val - new_val for i in [-1,0,1]: iy = y+i if iy > 0 and iy < self.im_size: for j in [-1,0,1]: jx = x+j if jx > 0 and jx < self.im_size: if reverse: w = m[(i+1),-j+1] else: w = m[(i+1),j+1] if w != 0: k = index - j if reverse else index + j curr_val = image_copy[k//self.im_size, k%self.im_size,:].astype(np.float32) curr_val = np.clip(curr_val + e * w/np.sum(m),0,255).astype(np.uint8) image_copy[k//self.im_size,k%self.im_size,:] = curr_val index += direction return np.clip(out, 0, 255).astype(np.uint8)
augmentation-corruption-fbr_main
experiments/overlap/augmentations/color.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import identity from . import base from . import pil from . import obscure from . import additive_noise from . import color from . import compositions from . import blurs from . import imagenetc from . import utils from . import distortion from . import standard_augmentations from . import patch_gaussian
augmentation-corruption-fbr_main
experiments/overlap/augmentations/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .base import Augmentation from .utils.severity import float_parameter, int_parameter, sample_level from .utils.image import smoothstep from .utils.noise import PerlinNoiseGenerator from scipy.fftpack import ifft2 import numpy as np class SingleFrequencyGreyscale(Augmentation): tags = ['additive_noise', 'single_frequency_greyscale'] name = 'single_frequency_greyscale' def sample_parameters(self): freq_mag = np.random.uniform(low=-np.pi, high=np.pi) freq_2 = np.random.uniform(low=-abs(freq_mag), high=abs(freq_mag)) freq = np.array([freq_mag, freq_2])[np.random.permutation(2)] phase = np.random.uniform(low=0, high=2*np.pi) intensity = float_parameter(sample_level(self.severity,self.max_intensity), 196) return { 'freq' : freq, 'phase' : phase, 'intensity' : intensity} def transform(self, image, freq, phase, intensity): noise = np.array([[np.sin(x * freq[0] + y * freq[1] + phase)\ for x in range(self.im_size)] for y in range(self.im_size)]) noise = np.stack((noise, noise, noise), axis=2) return np.clip(image + intensity * noise, 0, 255).astype(np.uint8) def convert_to_numpy(self, params): return np.array(params['freq'].tolist() + [params['phase'], params['intensity']]) def convert_from_numpy(self, numpy_record): return {'freq' : numpy_record[0:2], 'phase' : numpy_record[2], 'intensity' : numpy_record[3] } class SingleFrequencyColor(Augmentation): tags = ['additive_noise', 'color', 'single_frequency_color'] name = 'single_frequency_color' def sample_parameters(self): freq = np.random.uniform(low=0, high=np.pi, size=2) phase = np.random.uniform(low=0, high=2*np.pi) intensity = [float_parameter(sample_level(self.severity,self.max_intensity), 196) for i in range(3)] return { 'freq' : freq, 'phase' : phase, 'intensity' : intensity} def transform(self, image, freq, phase, intensity): noise = np.array([[np.sin(x * freq[0] + y * freq[1] + phase)\ for x in range(self.im_size)] for y in range(self.im_size)]) noise = np.stack((intensity[0] * noise, intensity[1] * noise, intensity[2] * noise), axis=2) return np.clip(image + noise, 0, 255).astype(np.uint8) def convert_to_numpy(self, params): return np.array(params['freq'].tolist() + [params['phase']] + params['intensity']) def convert_from_numpy(self, numpy_record): return {'freq' : numpy_record[0:2], 'phase' : numpy_record[2], 'intensity' : numpy_record[3:6].tolist() } class CocentricSineWaves(Augmentation): tags = ['additive_noise', 'filterpedia', 'color', 'cocentric_sine_waves'] name = 'cocentric_sine_waves' def sample_parameters(self): offset = np.random.uniform(low=0, high=self.im_size, size=2) freq = np.random.uniform(low=0, high=10) amplitude = np.random.uniform(low=0, high=self.im_size/10) ring_width = np.random.uniform(low=0, high=self.im_size/10) intensity = [float_parameter(sample_level(self.severity,self.max_intensity), 128) for i in range(3)] return { 'offset' : offset, 'freq' : freq, 'amplitude' : amplitude, 'ring_width' : ring_width, 'intensity' : intensity } def transform(self, image, offset, freq, amplitude, ring_width, intensity): def calc_intensity(x, y, x0, y0, freq, amplitude, ring_width): angle = np.arctan2(x-x0, y-y0) * freq distance = ((np.sqrt((x-x0)**2 + (y-y0)**2) + np.sin(angle) * amplitude) % ring_width) / ring_width distance -= 1/2 return distance noise = np.array([[calc_intensity(x, y, offset[0], offset[1], freq, amplitude, ring_width)\ for x in range(self.im_size)] for y in range(self.im_size)]) noise = np.stack((intensity[0] * noise, intensity[1] * noise, intensity[2] * noise), axis=2) return np.clip(image + noise, 0, 255).astype(np.uint8) def convert_to_numpy(self, params): return np.array(params['offset'].tolist() + [params['freq'], params['amplitude'], params['ring_width']] + params['intensity']) def convert_from_numpy(self, numpy_record): return {'offset' : numpy_record[0:2].tolist(), 'freq' : numpy_record[2], 'amplitude' : numpy_record[3], 'ring_width' : numpy_record[4], 'intensity' : numpy_record[4:7].tolist() } class PlasmaNoise(Augmentation): tags = ['additive_noise', 'color', 'filterpedia', 'plasma_noise', 'slow'] name = 'plasma_noise' def sample_parameters(self): time = np.random.uniform(low=0.0, high=6*np.pi) iterations = np.random.randint(low=4, high=7) sharpness = np.random.uniform(low=0.5, high=1.0) scale = np.random.uniform(low=0.075, high=0.2) * self.im_size intensity = float_parameter(sample_level(self.severity,self.max_intensity),64) return {'time' : time, 'iterations' : iterations, 'sharpness' : sharpness, 'scale' : scale, 'intensity' : intensity} def transform(self, image, time, iterations, sharpness, scale, intensity): def kernel(x, y, rand, iters, sharp, scale): x /= scale y /= scale i = np.array([1.0, 1.0, 1.0, 0.0]) for s in range(iters): r = np.array([np.cos(y * i[0] - i[3] + rand / i[1]), np.sin(x * i[0] - i[3] + rand / i[1])]) / i[2] r += np.array([-r[1],r[0]]) * 0.3 x += r[0] y += r[1] i *= np.array([1.93, 1.15, (2.25 - sharp), rand * i[1]]) r = np.sin(x - rand) b = np.sin(y + rand) g = np.sin((x + y + np.sin(rand))*0.5) return [r,g,b] noise = np.array([[kernel(x,y, time, iterations, sharpness, scale)\ for x in range(self.im_size)] for y in range(self.im_size)]) return np.clip((1-intensity/255) * image + intensity * noise, 0, 255).astype(np.uint8) class VoronoiNoise(Augmentation): tags = ['additive_noise', 'filterpedia', 'voronoi_noise', 'slow'] name = 'voronoi_noise' def sample_parameters(self): seed = np.random.uniform(low=0, high=10) density = np.random.uniform(low=0.5, high=0.9) size = np.random.uniform(low=0.05, high=0.2) * self.im_size intensity = float_parameter(sample_level(self.severity,self.max_intensity),255) if np.random.uniform() > 0.5: intensity = -intensity return {'seed' : seed, 'density' : density, 'size' : size, 'intensity' : intensity} def transform(self, image, size, seed, density, intensity): def voronoi_hash(v, time): m = np.array([[13.85, 47.77], [99.41, 88.48]]) w = np.matmul(m,v) return (np.sin(w) * np.sqrt(w) * time * 0.0025) % 1 def kernel(x, y, size, seed, density): v = np.array([[x],[y]]) / size + 1 g = v // 1 f = v % 1 dist = 1.0 for i in [-1,0,1]: for j in [-1,0,1]: p = np.array([[i],[j]]) curr_dist = np.linalg.norm((p + voronoi_hash(g+p, seed) - f).flatten()) dist = min(curr_dist, dist) r = smoothstep(0, 1, dist * density) - 0.5 return r noise = np.array([[kernel(x,y, size, seed, density)\ for x in range(self.im_size)] for y in range(self.im_size)]) noise = np.stack((noise, noise, noise), axis=2) return np.clip(image + intensity * noise, 0, 255).astype(np.uint8) class CausticNoise(Augmentation): tags = ['additive_noise', 'filterpedia'] name = 'caustic_noise' def sample_parameters(self): time = np.random.uniform(low=0.5, high=2.0) size = np.random.uniform(low=0.75, high=1.25) * self.im_size #size = self.im_size intensity = float_parameter(sample_level(self.severity,self.max_intensity), 255) return { 'time' : time, 'size' : size, 'intensity' : intensity} def transform(self, image, time, size, intensity): def kernel(point, time, size): point = point / size p = (point % 1) * 6.28318530718 - 250 i = p.copy() c = 1.0 inten = 0.005 for n in range(5): t = time * (1.0 - (3.5 / (n+1))) i = p + np.array([np.cos(t-i[0])+np.sin(t+i[1]),np.sin(t-i[1])+np.cos(t+i[0])]) length = np.sqrt((p[0] / (np.sin(i[0]+t)/inten))**2 + (p[1] / (np.cos(i[1]+t)/inten))**2) c += 1.0/length c /= 5.0 c = 1.17 - c ** 1.4 color = np.clip(np.abs(c) ** 8.0, 0, 1) return np.array([color, color, color]) noise = np.array([[kernel(np.array([y,x]), time, size)\ for x in range(self.im_size)] for y in range(self.im_size)]) return np.clip(image + intensity * noise, 0, 255).astype(np.uint8) #return np.clip(255 * noise, 0, 255).astype(np.uint8) class Sparkles(Augmentation): tags = ['additive_noise'] name = 'sparkles' def sample_parameters(self): centers = np.random.uniform(low=0, high=self.im_size, size=(5, 2)) radii = np.array([float_parameter(sample_level(self.severity, self.max_intensity), 0.1)\ for i in range(5)]) * self.im_size #radii = np.array([0.1 for i in range(5)]) * self.im_size #amounts = np.array([float_parameter(sample_level(self.severity, self.max_intensity), 50)\ # for i in range(5)]) amounts = np.array([50 for i in range(5)]) color = np.array([255, 255, 255]) randomness = 25 seed = np.random.randint(low=0, high=2**32) nrays = np.random.randint(low=50, high=200, size=5) return {'centers' : centers, 'radii' : radii, 'color' : color, 'randomness' : randomness, 'seed' : seed, 'nrays' : nrays, 'amounts' : amounts } def transform(self, image, centers, radii, nrays, amounts, color, randomness, seed): def kernel(point, value, center, radius, ray_lengths, amount, color): rays = len(ray_lengths) dp = point - center dist = np.linalg.norm(dp) angle = np.arctan2(dp[1], dp[0]) d = (angle + np.pi) / (2 * np.pi) * rays i = int(d) f = d - i if radius != 0: length = ray_lengths[i % rays] + f * (ray_lengths[(i+1) % rays] - ray_lengths[i % rays]) g = length**2 / (dist**2 + 1e-4) g = g ** ((100 - amount) / 50.0) f -= 0.5 f = 1 - f**2 f *= g f = np.clip(f, 0, 1) return value + f * (color - value) random_state = np.random.RandomState(seed=seed) for center, rays, amount, radius in zip(centers, nrays, amounts, radii): ray_lengths = [max(1,radius + randomness / 100.0 * radius * random_state.randn())\ for i in range(rays)] image = np.array([[kernel(np.array([y,x]), image[y,x,:].astype(np.float32), center, radius, ray_lengths, amount, color)\ for x in range(self.im_size)] for y in range(self.im_size)]) return np.clip(image, 0, 255).astype(np.uint8) class InverseSparkles(Augmentation): tags = ['additive_noise'] name = 'inverse_sparkles' def sample_parameters(self): center = np.random.uniform(low=0.25, high=0.75, size=2) * self.im_size #radius = self.im_size // 4 #radius = float_parameter(sample_level(self.severity, self.max_intensity), 0.5) #radius = (0.75 - radius) * self.im_size radius = 0.25 * self.im_size #amount = 25 amount = 100 amount = float_parameter(sample_level(self.severity, self.max_intensity), 65) amount = 100 - amount color = np.array([255, 255, 255]) randomness = 25 seed = np.random.randint(low=0, high=2**32) rays = np.random.randint(low=50, high=200) return {'center' : center, 'radius' : radius, 'color' : color, 'randomness' : randomness, 'seed' : seed, 'rays' : rays, 'amount' : amount } def transform(self, image, center, radius, rays, amount, color, randomness, seed): def kernel(point, value, center, radius, ray_lengths, amount, color): rays = len(ray_lengths) dp = point - center dist = np.linalg.norm(dp) angle = np.arctan2(dp[1], dp[0]) d = (angle + np.pi) / (2 * np.pi) * rays i = int(d) f = d - i if radius != 0: length = ray_lengths[i % rays] + f * (ray_lengths[(i+1) % rays] - ray_lengths[i % rays]) g = length**2 / (dist**2 + 1e-4) g = g ** ((100 - amount) / 50.0) f -= 0.5 f = 1 - f**2 f *= g f = np.clip(f, 0, 1) return color + f * (value - color) random_state = np.random.RandomState(seed=seed) ray_lengths = [radius + randomness / 100.0 * radius * random_state.randn()\ for i in range(rays)] out = np.array([[kernel(np.array([y,x]), image[y,x,:].astype(np.float32), center, radius, ray_lengths, amount, color)\ for x in range(self.im_size)] for y in range(self.im_size)]) return np.clip(out, 0, 255).astype(np.uint8) class PerlinNoise(Augmentation): tags = ['additive_noise'] name = 'perlin_noise' def sample_parameters(self): m = np.array([[1,0],[0,1]]) / (32 * self.im_size / 224) turbulence = 16.0 gain = 0.5 bias = 0.5 alpha = float_parameter(sample_level(self.severity, self.im_size), 0.50) seed = np.random.randint(low=0, high=2**32) return {'m': m, 'turbulence' : turbulence, 'seed': seed, 'gain': gain, 'bias': bias, 'alpha': alpha} def transform(self, image, m, turbulence, seed, gain, bias, alpha): random_state = np.random.RandomState(seed=seed) noise = PerlinNoiseGenerator(random_state) def kernel(point, m, turbulence, gain, bias): npoint = np.matmul(point, m) f = noise.turbulence(npoint[0], npoint[1], turbulence)\ if turbulence != 1.0 else noise.noise(npoint[0], npoint[1]) f = gain * f + bias return np.clip(np.array([f,f,f]),0,1.0) noise = np.array([[kernel(np.array([y,x]),m,turbulence,gain, bias) for x in range(self.im_size)]\ for y in range(self.im_size)]) out = (1 - alpha) * image.astype(np.float32) + 255 * alpha * noise return np.clip(out, 0, 255).astype(np.uint8) class BlueNoise(Augmentation): tags = ['additive_noise'] name = 'blue_noise' def sample_parameters(self): seed = np.random.randint(low=0, high=2**32) intensity = float_parameter(sample_level(self.severity, self.max_intensity), 196) return {'seed' : seed, 'intensity' : intensity} def gen_noise(self, random_state): center = self.im_size / 2 power = np.array([[np.linalg.norm(np.array([x,y])-center)\ for x in range(self.im_size)] for y in range(self.im_size)]) #power = power / self.im_size phases = random_state.uniform(low=0, high=2*np.pi, size=(self.im_size, self.im_size//2)) if self.im_size % 2 == 0: phases = np.concatenate((phases, phases[::-1,::-1]), axis=1) else: center_freq = random_state.uniform(low=0, high=2*np.pi, size=(self.im_size//2, 1)) center_freq = np.concatenate((center_freq, np.array([[0.0]]), center_freq[::-1,:]), axis=0) phases = np.concatenate((phases, center_freq, phases[::-1,::-1]), axis=1) fourier_space_noise = power * (np.cos(phases) + np.sin(phases) * 1j) fourier_space_noise = np.roll(fourier_space_noise, self.im_size//2, axis=0) fourier_space_noise = np.roll(fourier_space_noise, self.im_size//2, axis=1) noise = np.real(ifft2(fourier_space_noise)) noise = noise / np.std(noise) return noise def transform(self, image, seed, intensity): random_state = np.random.RandomState(seed=seed) noise = np.stack([self.gen_noise(random_state) for i in range(3)],axis=2) #luma_noise = noise.reshape(self.im_size, self.im_size, 1) * np.array([[[0.2126, 0.7152, 0.0722]]]) #return np.clip(image + intensity * luma_noise, 0, 255).astype(np.uint8) return np.clip(image + intensity * noise, 0, 255).astype(np.uint8) class BrownishNoise(Augmentation): tags = ['additive_noise'] name = 'brownish_noise' def sample_parameters(self): seed = np.random.randint(low=0, high=2**32) intensity = float_parameter(sample_level(self.severity, self.max_intensity), 64) return {'seed' : seed, 'intensity' : intensity} def gen_noise(self, random_state): center = self.im_size / 2 power = np.array([[1/(np.linalg.norm(np.array([x,y])-center)**2+1)\ for x in range(self.im_size)] for y in range(self.im_size)]) #power = power / self.im_size phases = random_state.uniform(low=0, high=2*np.pi, size=(self.im_size, self.im_size//2)) if self.im_size % 2 == 0: phases = np.concatenate((phases, phases[::-1,::-1]), axis=1) else: center_freq = random_state.uniform(low=0, high=2*np.pi, size=(self.im_size//2, 1)) center_freq = np.concatenate((center_freq, np.array([[0.0]]), center_freq[::-1,:]), axis=0) phases = np.concatenate((phases, center_freq, phases[::-1,::-1]), axis=1) fourier_space_noise = power * (np.cos(phases) + np.sin(phases) * 1j) fourier_space_noise = np.roll(fourier_space_noise, self.im_size//2, axis=0) fourier_space_noise = np.roll(fourier_space_noise, self.im_size//2, axis=1) noise = np.real(ifft2(fourier_space_noise)) noise = noise / np.std(noise) return noise def transform(self, image, seed, intensity): random_state = np.random.RandomState(seed=seed) noise = np.stack([self.gen_noise(random_state) for i in range(3)],axis=2) #luma_noise = noise.reshape(self.im_size, self.im_size, 1) * np.array([[[0.2126, 0.7152, 0.0722]]]) #return np.clip(image + intensity * luma_noise, 0, 255).astype(np.uint8) return np.clip(image + intensity * noise, 0, 255).astype(np.uint8)
augmentation-corruption-fbr_main
experiments/overlap/augmentations/additive_noise.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .base import Augmentation import numpy as np class Cifar10CropAndFlip(Augmentation): def sample_parameters(self): crop_pos = np.random.randint(low=-4, high=5, size=2) flip = (np.random.uniform() < 0.5) return {'crop_pos': crop_pos, 'flip': flip} def transform(self, image, crop_pos, flip): image = np.pad(image, ((4,4),(4,4),(0,0))) pos = crop_pos+4 image = image[pos[0]:pos[0]+self.im_size,pos[1]:pos[1]+self.im_size,:] if flip: image = np.ascontiguousarray(image[:,::-1,:]) return image.astype(np.uint8)
augmentation-corruption-fbr_main
experiments/overlap/augmentations/standard_augmentations.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .base import Augmentation from .utils.severity import float_parameter, int_parameter, sample_level from PIL import Image, ImageOps, ImageEnhance import numpy as np class AutoContrast(Augmentation): tags = ['autoaugment', 'augmix', 'pil', 'color', 'autocontrast'] name = 'autocontrast' def sample_parameters(self): return {} def transform(self, image): im = ImageOps.autocontrast(Image.fromarray(image)) return np.array(im) class Equalize(Augmentation): tags = ['autoaugment', 'augmix', 'pil', 'color', 'equalize'] name = 'equalize' def sample_parameters(self): return {} def transform(self, image): im = ImageOps.equalize(Image.fromarray(image)) return np.array(im) class Posterize(Augmentation): tags = ['autoaugment', 'augmix', 'pil', 'color', 'posterize'] name = 'posterize' def sample_parameters(self): bits = 4 - int_parameter(sample_level(self.severity,self.max_intensity), 4) return {'bits' : bits} def transform(self, image, bits): im = ImageOps.posterize(Image.fromarray(image), int(bits)) return np.array(im) class Solarize(Augmentation): tags = ['autoaugment', 'augmix', 'pil', 'color', 'solarize'] name = 'solarize' def sample_parameters(self): threshold = 256 - int_parameter(sample_level(self.severity,self.max_intensity), 256) return {'threshold' : threshold} def transform(self, image, threshold): im = ImageOps.solarize(Image.fromarray(image), threshold) return np.array(im) class Affine(Augmentation): tags = ['pil', 'spatial', 'affine'] name = 'affine' def sample_parameters(self): offset_x = float_parameter(sample_level(self.severity,self.max_intensity), 0.3) if np.random.uniform() > 0.5: offset_x = -offset_x offset_y = float_parameter(sample_level(self.severity,self.max_intensity), 0.3) if np.random.uniform() > 0.5: offset_y = -offset_y shift_x = float_parameter(sample_level(self.severity,self.max_intensity), self.im_size / 3) if np.random.uniform() > 0.5: shift_x = -shift_x shift_y = float_parameter(sample_level(self.severity,self.max_intensity), self.im_size / 3) if np.random.uniform() > 0.5: shift_y = -shift_y factor_x = float_parameter(sample_level(self.severity,self.max_intensity), 0.5) if np.random.uniform() > 0.5: factor_x = -factor_x factor_x = 2 ** factor_x factor_y = float_parameter(sample_level(self.severity,self.max_intensity), 0.5) if np.random.uniform() > 0.5: factor_y = -factor_y factor_y = 2 ** factor_y affine_matrix = np.array([[factor_x, offset_x, shift_x],[offset_y, factor_y, shift_y]]) return {'affine_matrix' : affine_matrix} def transform(self, image, affine_matrix): im = Image.fromarray(image) im = im.transform( (self.im_size, self.im_size), Image.AFFINE, affine_matrix.flatten(), resample=Image.BILINEAR ) return np.array(im) def convert_to_numpy(self, params): return params['affine_matrix'].flatten() def convert_from_numpy(self, numpy_record): return {'affine_matrix' : numpy_record.reshape(2,3)} class ShearX(Affine): tags = ['autoaugment', 'augmix', 'pil', 'spatial', 'shear_x'] name = 'shear_x' def sample_parameters(self): offset = float_parameter(sample_level(self.severity,self.max_intensity), 0.3) if np.random.uniform() > 0.5: offset = -offset return {'offset' : offset} def transform(self, image, offset): affine_matrix = np.array([[1, offset, 0],[0, 1, 0]]) return super().transform(image, affine_matrix) def convert_to_numpy(self, params): return np.array([params['offset']]) def convert_from_numpy(self, numpy_record): return {'offset' : numpy_record[0]} class ShearY(Affine): tags = ['autoaugment', 'augmix', 'pil', 'spatial', 'shear_y'] name = 'shear_y' def sample_parameters(self): offset = float_parameter(sample_level(self.severity,self.max_intensity), 0.3) if np.random.uniform() > 0.5: offset = -offset return {'offset' : offset} def transform(self, image, offset): affine_matrix = np.array([[1, 0, 0],[offset, 1, 0]]) return super().transform(image, affine_matrix) def convert_to_numpy(self, params): return np.array([params['offset']]) def convert_from_numpy(self, numpy_record): return {'offset' : numpy_record[0]} class TranslateX(Affine): tags = ['autoaugment', 'augmix', 'pil', 'spatial', 'translate_x'] name = 'translate_x' def sample_parameters(self): offset = float_parameter(sample_level(self.severity,self.max_intensity), self.im_size / 3) if np.random.uniform() > 0.5: offset = -offset return {'offset' : offset} def transform(self, image, offset): affine_matrix = np.array([[1, 0, offset],[0, 1, 0]]) return super().transform(image, affine_matrix) def convert_to_numpy(self, params): return np.array([params['offset']]) def convert_from_numpy(self, numpy_record): return {'offset' : numpy_record[0]} class TranslateY(Affine): tags = ['autoaugment', 'augmix', 'pil', 'spatial', 'translate_y'] name = 'translate_y' def sample_parameters(self): offset = float_parameter(sample_level(self.severity,self.max_intensity), self.im_size / 3) if np.random.uniform() > 0.5: offset = -offset return {'offset' : offset} def transform(self, image, offset): affine_matrix = np.array([[1, 0, 0],[0, 1, offset]]) return super().transform(image, affine_matrix) def convert_to_numpy(self, params): return np.array([params['offset']]) def convert_from_numpy(self, numpy_record): return {'offset' : numpy_record[0]} class Rotate(Augmentation): tags = ['autoaugment', 'augmix', 'pil', 'spatial', 'rotate'] name = 'rotate' def sample_parameters(self): degrees = float_parameter(sample_level(self.severity,self.max_intensity), 30) if np.random.uniform() > 0.5: degrees = -degrees return {'degrees' : degrees} def transform(self, image, degrees): im = Image.fromarray(image) im = im.rotate(degrees, resample=Image.BILINEAR) return np.array(im) class Invert(Augmentation): tags = ['autoaugment', 'pil', 'color', 'invert'] name = 'invert' def sample_parameters(self): return {} def transform(self, image): im = ImageOps.invert(Image.fromarray(image)) return np.array(im) class ColorBalance(Augmentation): tags = ['autoaugment', 'pil', 'color', 'color_balance'] name = 'color_balance' def sample_parameters(self): shift = float_parameter(sample_level(self.severity, self.max_intensity), 1.0) factor = 1.0 + np.random.choice([-1,1]) * shift return { 'factor' : factor} def transform(self, image, factor): enhancer = ImageEnhance.Color(Image.fromarray(image)) return np.array(enhancer.enhance(factor)) class Sharpness(Augmentation): tags = ['autoaugment', 'pil', 'blur', 'sharpness'] name = 'sharpness' def sample_parameters(self): shift = float_parameter(sample_level(self.severity, self.max_intensity), 1.0) factor = 1.0 + np.random.choice([-1,1]) * shift return { 'factor' : factor} def transform(self, image, factor): enhancer = ImageEnhance.Sharpness(Image.fromarray(image)) return np.array(enhancer.enhance(factor)) class Contrast(Augmentation): tags = ['autoaugment', 'pil', 'color', 'imagenet_c_overlap', 'contrast'] name = 'contrast_pil' def sample_parameters(self): shift = float_parameter(sample_level(self.severity, self.max_intensity), 1.0) factor = 1.0 + np.random.choice([-1,1]) * shift return { 'factor' : factor} def transform(self, image, factor): enhancer = ImageEnhance.Contrast(Image.fromarray(image)) return np.array(enhancer.enhance(factor)) class Brightness(Augmentation): tags = ['autoaugment', 'pil', 'color', 'imagenet_c_overlap', 'brightness'] name = 'brightness_pil' def sample_parameters(self): shift = float_parameter(sample_level(self.severity, self.max_intensity), 1.0) factor = 1.0 + np.random.choice([-1,1]) * shift return { 'factor' : factor} def transform(self, image, factor): enhancer = ImageEnhance.Brightness(Image.fromarray(image)) return np.array(enhancer.enhance(factor)) class ScaleX(Affine): tags = ['pil', 'spatial', 'scale_x'] name = 'scale_x' def sample_parameters(self): factor = float_parameter(sample_level(self.severity,self.max_intensity), 0.5) if np.random.uniform() > 0.5: factor = -factor factor = 2 ** factor return {'factor' : factor} def transform(self, image, factor): affine_matrix = np.array([[factor, 0, (1-factor)*self.im_size/2],[0, 1, 0]]) return super().transform(image, affine_matrix) def convert_to_numpy(self, params): return np.array([params['factor']]) def convert_from_numpy(self, numpy_record): return {'factor' : numpy_record[0]} class ScaleY(Affine): tags = ['pil', 'spatial', 'scale_y'] name = 'scale_y' def sample_parameters(self): factor = float_parameter(sample_level(self.severity,self.max_intensity), 0.5) if np.random.uniform() > 0.5: factor = -factor factor = 2 ** factor return {'factor' : factor} def transform(self, image, factor): affine_matrix = np.array([[1, 0, 0],[0, factor, (1-factor)*self.im_size/2]]) return super().transform(image, affine_matrix) def convert_to_numpy(self, params): return np.array([params['factor']]) def convert_from_numpy(self, numpy_record): return {'factor' : numpy_record[0]} class ScaleFixedAspectRatio(Affine): tags = ['pil', 'spatial', 'scale_fixed_aspect_ratio'] name = 'scale_fixed_aspect_ratio' def sample_parameters(self): factor = float_parameter(sample_level(self.severity,self.max_intensity), 0.5) if np.random.uniform() > 0.5: factor = -factor factor = 2 ** factor return {'factor' : factor} def transform(self, image, factor): affine_matrix = np.array([[factor, 0, (1-factor)*self.im_size/2],[0, factor, (1-factor)*self.im_size/2]]) return super().transform(image, affine_matrix) def convert_to_numpy(self, params): return np.array([params['factor']]) def convert_from_numpy(self, numpy_record): return {'factor' : numpy_record[0]} class Quadrilateral(Augmentation): tags = ['pil', 'spatial', 'quadrilateral'] name = 'quadrilateral' def sample_parameters(self): points = np.array([ [0,0], [0, self.im_size], [self.im_size, self.im_size], [self.im_size, 0] ]).astype(np.float32) shift = float_parameter(self.severity, self.im_size / 3) * np.random.uniform(low=-1,high=1, size=(4,2)) points += shift return {'points' : points} def transform(self, image, points): im = Image.fromarray(image) im = im.transform( (self.im_size, self.im_size), Image.QUAD, points.flatten(), resample=Image.BILINEAR ) return np.array(im) def convert_to_numpy(self, params): return params['points'].flatten() def convert_from_numpy(self, numpy_record): return {'points' : numpy_record.reshape(4,2)} class QuadrilateralNoBars(Augmentation): tags = ['pil', 'spatial', 'quadrilateral_no_bars'] name = 'quadrilateral_no_bars' def sample_parameters(self): points = np.array([ [0,0], [0, self.im_size], [self.im_size, self.im_size], [self.im_size, 0] ]).astype(np.float32) shift = float_parameter(self.severity, self.im_size / 3) * np.random.uniform(low=-1,high=1, size=(4,2)) points += shift return {'points' : points} def transform(self, image, points): im = Image.fromarray(image) im = im.transform( (self.im_size, self.im_size), Image.QUAD, points.flatten(), resample=Image.BILINEAR ) im = np.array(im).astype(np.float32) mask = Image.fromarray(np.ones_like(image).astype(np.uint8)*255) mask = mask.transform( (self.im_size, self.im_size), Image.QUAD, points.flatten(), resample=Image.BILINEAR ) mask = np.array(mask).astype(np.float32) / 255 im = mask * im + (1-mask) * image return im.astype(np.uint8) def convert_to_numpy(self, params): return params['points'].flatten() def convert_from_numpy(self, numpy_record): return {'points' : numpy_record.reshape(4,2)} class KeystoneH(Quadrilateral): tags = ['pil', 'spatial', 'keystone_h'] name = 'keystone_h' def sample_parameters(self): shift = float_parameter(sample_level(self.severity,self.max_intensity), self.im_size / 3) if np.random.uniform() > 0.5: shift = - shift return {'shift' : shift} def transform(self, image, shift): points = np.array([ [0,shift], [0, self.im_size-shift], [self.im_size, self.im_size+shift], [self.im_size, -shift], ]) return super().transform(image, points) def convert_to_numpy(self, params): return np.array([params['shift']]) def convert_from_numpy(self, numpy_record): return {'shift' : numpy_record[0]} class KeystoneV(Quadrilateral): tags = ['pil', 'spatial', 'keystone_v'] name = 'keystone_v' def sample_parameters(self): shift = float_parameter(sample_level(self.severity,self.max_intensity), self.im_size / 3) if np.random.uniform() > 0.5: shift = - shift return {'shift' : shift} def transform(self, image, shift): points = np.array([ [shift,0], [-shift, self.im_size], [self.im_size+shift, self.im_size], [self.im_size-shift, 0] ]) return super().transform(image, points) def convert_to_numpy(self, params): return np.array([params['shift']]) def convert_from_numpy(self, numpy_record): return {'shift' : numpy_record[0]} class Perspective(Augmentation): tags = ['pil', 'spatial', 'perspective'] name = 'perspective' def sample_parameters(self): offset_x = float_parameter(sample_level(self.severity,self.max_intensity), 0.1) if np.random.uniform() > 0.5: offset_x = -offset_x offset_y = float_parameter(sample_level(self.severity,self.max_intensity), 0.1) if np.random.uniform() > 0.5: offset_y = -offset_y shift_x = float_parameter(sample_level(self.severity,self.max_intensity), self.im_size / 10) #shift_x = 0.0 if np.random.uniform() > 0.5: shift_x = -shift_x shift_y = float_parameter(sample_level(self.severity,self.max_intensity), self.im_size / 10) #shift_y = 0.0 if np.random.uniform() > 0.5: shift_y = -shift_y factor_x = float_parameter(sample_level(self.severity,self.max_intensity), 0.15) if np.random.uniform() > 0.5: factor_x = -factor_x factor_x = 2 ** factor_x factor_y = float_parameter(sample_level(self.severity,self.max_intensity), 0.15) if np.random.uniform() > 0.5: factor_y = -factor_y factor_y = 2 ** factor_y denom_x = float_parameter(sample_level(self.severity,self.max_intensity), 0.2 / self.im_size) if np.random.uniform() > 0.5: denom_x = denom_x denom_y = float_parameter(sample_level(self.severity,self.max_intensity), 0.2 / self.im_size) if np.random.uniform() > 0.5: denom_y = denom_y perspective_params = np.array([factor_x, offset_x, shift_x,offset_y, factor_y, shift_y, denom_x, denom_y]) return {'perspective_params' : perspective_params} def transform(self, image, perspective_params): im = Image.fromarray(image) im = im.transform( (self.im_size, self.im_size), Image.PERSPECTIVE, perspective_params, resample=Image.BILINEAR ) return np.array(im) def convert_to_numpy(self, params): return params['perspective_params'] def convert_from_numpy(self, numpy_record): return {'perspective_params' : numpy_record} class PerspectiveNoBars(Augmentation): tags = ['pil', 'spatial', 'perspective_no_bars'] name = 'perspective_no_bars' def sample_parameters(self): offset_x = float_parameter(sample_level(self.severity,self.max_intensity), 0.1) if np.random.uniform() > 0.5: offset_x = -offset_x offset_y = float_parameter(sample_level(self.severity,self.max_intensity), 0.1) if np.random.uniform() > 0.5: offset_y = -offset_y shift_x = float_parameter(sample_level(self.severity,self.max_intensity), self.im_size / 10) #shift_x = 0.0 if np.random.uniform() > 0.5: shift_x = -shift_x shift_y = float_parameter(sample_level(self.severity,self.max_intensity), self.im_size / 10) #shift_y = 0.0 if np.random.uniform() > 0.5: shift_y = -shift_y factor_x = float_parameter(sample_level(self.severity,self.max_intensity), 0.15) if np.random.uniform() > 0.5: factor_x = -factor_x factor_x = 2 ** factor_x factor_y = float_parameter(sample_level(self.severity,self.max_intensity), 0.15) if np.random.uniform() > 0.5: factor_y = -factor_y factor_y = 2 ** factor_y denom_x = float_parameter(sample_level(self.severity,self.max_intensity), 0.2 / self.im_size) if np.random.uniform() > 0.5: denom_x = denom_x denom_y = float_parameter(sample_level(self.severity,self.max_intensity), 0.2 / self.im_size) if np.random.uniform() > 0.5: denom_y = denom_y perspective_params = np.array([factor_x, offset_x, shift_x,offset_y, factor_y, shift_y, denom_x, denom_y]) return {'perspective_params' : perspective_params} def transform(self, image, perspective_params): im = Image.fromarray(image) im = im.transform( (self.im_size, self.im_size), Image.PERSPECTIVE, perspective_params, resample=Image.BILINEAR ) im = np.array(im).astype(np.float32) mask = Image.fromarray(np.ones_like(image).astype(np.uint8)*255) mask = mask.transform( (self.im_size, self.im_size), Image.PERSPECTIVE, perspective_params, resample=Image.BILINEAR ) mask = np.array(mask).astype(np.float32) / 255 im = mask * im + (1-mask) * image return im.astype(np.uint8) def convert_to_numpy(self, params): return params['perspective_params'] def convert_from_numpy(self, numpy_record): return {'perspective_params' : numpy_record}
augmentation-corruption-fbr_main
experiments/overlap/augmentations/pil.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from math import floor, ceil import numpy as np from .base import Augmentation from .utils.severity import int_parameter, sample_level, float_parameter from skimage.draw import line_aa from scipy.fftpack import ifft2 class CutOut(Augmentation): tags = ['autoaugment', 'cutout'] name = 'cutout' def sample_parameters(self): center = np.random.randint(low=0, high=self.im_size, size=2) size = int_parameter(sample_level(self.severity, self.max_intensity), 15)+1 return {'center' : center, 'size' : size} def transform(self, image, center, size): out = image.copy() lu = np.clip(center-floor(size/2), 0, self.im_size) rd = np.clip(center+ceil(size/2), 0, self.im_size) out[lu[0]:rd[0],lu[1]:rd[1],:] = [128,128,128] return out def convert_to_numpy(self, params): return np.array(params['center'].tolist() + [params['size']]) def convert_from_numpy(self, numpy_record): return {'center' : numpy_record[0:2].astype(np.int), 'size' : numpy_record[2]} ''' class CheckerBoardCutOut(Augmentation): tags = ['checkerboard_cutout'] name = 'checkerboard_cutout' def sample_parameters(self): if self.max_intensity: size = max(1, int(self.severity)) else: size = np.random.randint(low=1, high=max(1,int(self.severity))+1) offset = np.random.randint(low=0, high=size+1, size=2) return { 'offset' : offset, 'size' : size} def transform(self, image, offset, size): out = image.copy() num = self.im_size // size + 2 for i in range(num): for j in range(num): if (i+j) % 2 == 0: continue l = np.clip((i-1)*size+offset[0],0,self.im_size) r = np.clip((i)*size+offset[0],0,self.im_size) u = np.clip((j-1)*size+offset[1],0,self.im_size) d = np.clip((j)*size+offset[1],0,self.im_size) out[l:r,u:d,:] = [128,128,128] return out def convert_to_numpy(self, params): return np.array(params['offset'].tolist() + [params['size']]) def convert_from_numpy(self, numpy_record): return {'offset' : numpy_record[0:2].astype(np.int), 'size' : numpy_record[2].astype(np.int)} ''' ''' class CheckerBoardCutOut(Augmentation): tags = ['obscure'] name = 'checkerboard_cutout' def sample_parameters(self): angle = np.random.uniform(low=0, high=2*np.pi) #scales = np.array([0.5, 0.5]) * self.im_size scales = np.array([float_parameter(sample_level(self.severity, self.max_intensity), 1.0)\ for i in range(2)]) scales = np.maximum((1.1 - scales) * 0.25 * self.im_size, 1) return {'angle' : angle, 'scales' : scales} def transform(self, image, scales, angle): def mask_kernel(point, scales, angle): nx = (np.cos(angle) * point[0] + np.sin(angle) * point[1]) / scales[0] ny = (-np.sin(angle) * point[0] + np.cos(angle) * point[1]) / scales[1] return int(nx % 2) != int(ny % 2) out = np.array([[image[y,x,:] if mask_kernel([y,x], scales, angle) else np.array([128,128,128])\ for x in range(self.im_size)] for y in range(self.im_size)]) return np.clip(out, 0, 255).astype(np.uint8) ''' class CheckerBoardCutOut(Augmentation): tags = ['obscure'] name = 'checkerboard_cutout' def sample_parameters(self): angle = np.random.uniform(low=0, high=2*np.pi) scales = np.maximum(np.random.uniform(low=0.1, high=0.25) * self.im_size, 1) scales = (scales, scales) fraction = float_parameter(sample_level(self.severity, self.max_intensity), 1.0) seed = np.random.randint(low=0, high=2**32) return {'angle' : angle, 'scales' : scales, 'fraction' : fraction, 'seed' : seed} def transform(self, image, scales, angle, fraction, seed): random_state = np.random.RandomState(seed=seed) grid = random_state.uniform(size=(int(4*self.im_size//scales[0]), int(4*self.im_size//scales[1]))) < fraction def mask_kernel(point, scales, angle, grid): nx = (np.cos(angle) * point[0] + np.sin(angle) * point[1]) / scales[0] ny = (-np.sin(angle) * point[0] + np.cos(angle) * point[1]) / scales[1] return (int(nx % 2) != int(ny % 2)) or not grid[int(nx),int(ny)] out = np.array([[image[y,x,:] if mask_kernel([y,x], scales, angle, grid) else np.array([128,128,128])\ for x in range(self.im_size)] for y in range(self.im_size)]) return np.clip(out, 0, 255).astype(np.uint8) class Lines(Augmentation): tags = ['obscure'] name = 'lines' def sample_parameters(self): length = 1.0 density = float_parameter(sample_level(self.severity, self.max_intensity), 1.0) angle = np.random.uniform(low=0.0, high=2*np.pi) angle_variation = np.random.uniform(low=0.1, high=1.0) seed = np.random.randint(low=0, high=2**32) return {'length' : length, 'density' : density, 'angle' : angle, 'angle_variation' : angle_variation, 'seed' : seed} def transform(self, image, length, density, angle, angle_variation, seed): num_lines = int(density * self.im_size) l = length * self.im_size random_state = np.random.RandomState(seed=seed) out = image.copy() for i in range(num_lines): x = self.im_size * random_state.uniform() y = self.im_size * random_state.uniform() a = angle + 2 * np.pi * angle_variation * (random_state.uniform() - 0.5) s = np.sin(a) * l c = np.cos(a) * l #x1 = max(min(int(x-c), self.im_size-1), 0) #x2 = max(min(int(x+c), self.im_size-1), 0) #y1 = max(min(int(y-s), self.im_size-1), 0) #y2 = max(min(int(y+s), self.im_size-1), 0) x1 = int(x-c) x2 = int(x+c) y1 = int(y-s) y2 = int(y+s) rxc, ryc, rval = line_aa(x1, y1, x2, y2) xc, yc, val = [], [], [] for rx, ry, rv in zip(rxc, ryc, rval): if rx >= 0 and ry >= 0 and rx < self.im_size and ry < self.im_size: xc.append(rx) yc.append(ry) val.append(rv) xc, yc, val = np.array(xc, dtype=np.int), np.array(yc, dtype=np.int), np.array(val) out[xc, yc, :] = (1.0 - val.reshape(-1,1)) * out[xc, yc, :].astype(np.float32) + val.reshape(-1,1)*128 return out.astype(np.uint8) class RandomSample(Augmentation): tags = ['obscure'] name = 'random_sample' def sample_parameters(self): seed = np.random.randint(low=0, high=2**32) density = 1.0 - float_parameter(sample_level(self.severity, self.max_intensity), 0.8) return {'density' : density, 'seed' : seed} def transform(self, image, density, seed): random_state = np.random.RandomState(seed=seed) num = int(density * self.im_size ** 2) out = np.zeros_like(image) #for i in range(num): # point = np.random.randint(low=0, high=self.im_size, size=2) # out[point[0], point[1], :] = image[point[0], point[1], :] indices = random_state.choice(np.arange(self.im_size**2), size=num, replace=False) for idx in indices: out[idx//self.im_size, idx % self.im_size, :] = image[idx//self.im_size, idx % self.im_size, :] return out class BlueNoiseSample(Augmentation): tags = ['obscure'] name = 'blue_noise_sample' def sample_parameters(self): seed = np.random.randint(low=0, high=2**32) threshold = float_parameter(sample_level(self.severity, self.max_intensity), 3.0) - 2.5 return {'seed' : seed, 'threshold' : threshold} def transform(self, image, seed, threshold): random_state = np.random.RandomState(seed=seed) center = self.im_size / 2 power = np.array([[np.linalg.norm(np.array([x,y])-center)\ for x in range(self.im_size)] for y in range(self.im_size)]) #power = power / self.im_size phases = random_state.uniform(low=0, high=2*np.pi, size=(self.im_size, self.im_size//2)) if self.im_size % 2 == 0: phases = np.concatenate((phases, phases[::-1,::-1]), axis=1) else: center_freq = random_state.uniform(low=0, high=2*np.pi, size=(self.im_size//2, 1)) center_freq = np.concatenate((center_freq, np.array([[0.0]]), center_freq[::-1,:]), axis=0) phases = np.concatenate((phases, center_freq, phases[::-1,::-1]), axis=1) fourier_space_noise = power * (np.cos(phases) + np.sin(phases) * 1j) fourier_space_noise = np.roll(fourier_space_noise, self.im_size//2, axis=0) fourier_space_noise = np.roll(fourier_space_noise, self.im_size//2, axis=1) noise = np.real(ifft2(fourier_space_noise)) noise = noise / np.std(noise) mask = noise > threshold out = image * mask.reshape(self.im_size, self.im_size, 1) return np.clip(out, 0, 255).astype(np.uint8)
augmentation-corruption-fbr_main
experiments/overlap/augmentations/obscure.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .base import Augmentation class Identity(Augmentation): tags = ["identity"] name = ['identity'] def __init__(self, severity=None, record=False, **kwargs): super(Identity, self).__init__(severity, record, **kwargs) def sample_parameters(self): return {} def transform(self, image): return image
augmentation-corruption-fbr_main
experiments/overlap/augmentations/identity.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .base import Augmentation from collections import namedtuple import numpy as np class Augmix(Augmentation): tags = ['compositor', 'augmix_compose'] def __init__(self, severity=None, im_size=None, augmentation_list=[], width=3, max_depth=3, prob_coeff=1.0, random_depth=True, record=False, float_output=True): super(Augmix, self).__init__(severity, im_size, record) self.width = width self.depth = max_depth self.random_depth = random_depth self.prob_coeff = prob_coeff self.augs = augmentation_list self.float_output = float_output self.record_length = max([len(a.convert_to_numpy(a.sample_parameters())) for a in self.augs])\ if self.augs else 0 def transform(self, image, m, ws, aug_record): if not self.augs: return image mix = np.zeros_like(image).astype(np.float32) for i in range(self.width): image_aug = image.copy() for j in range(self.depth): pos = self.depth * i + j if aug_record[pos].idx < 0: continue op = self.augs[aug_record[pos].idx].transform image_aug = op(image_aug, **(aug_record[pos].params)) mix += ws[i] * image_aug.astype(np.float32) mixed = (1 - m) * image.astype(np.float32) + m * mix if self.float_output: return mixed return mixed.astype(np.uint8) def sample_parameters(self): ws = np.float32(np.random.dirichlet([self.prob_coeff] * self.width)) m = np.float32(np.random.beta(self.prob_coeff, self.prob_coeff)) if not self.augs: return { 'm' : m, 'ws' : ws, 'aug_record': []} aug_idxs = np.random.randint(low=0, high=len(self.augs), size=self.width*self.depth) if self.random_depth: for i in range(self.width): inverse_depth = np.random.randint(1,self.depth+1) aug_idxs[self.depth*i+inverse_depth:self.depth*(i+1)] = -1 aug_params = [self.augs[i].sample_parameters() if i != -1 else {} for i in aug_idxs] AugRecord = namedtuple('AugRecord', ('idx', 'params')) return { 'm' : m, 'ws' : ws, 'aug_record' : [AugRecord(idx, params) for idx, params in zip(aug_idxs, aug_params)]} def convert_from_numpy(self, record): out = {} out['m'] = record[0] out['ws'] = record[1:self.width+1] if not self.augs: out['aug_record'] = {} return out idxs = record[self.width+1:self.width+1+self.width*self.depth] params = [] for i,idx in enumerate(idxs): offset = self.width+1+self.width*self.depth + i * self.record_length if idx < 0: params.append({}) continue sub_params = self.augs[int(idx)].convert_from_numpy(record[offset:offset+self.record_length]) params.append(sub_params) AugRecord = namedtuple('AugRecord', ('idx', 'params')) out['aug_record'] = [AugRecord(int(idx), params) for idx, params in zip(idxs, params)] return out def convert_to_numpy(self, record): out = np.zeros(1+self.width+(self.width*self.depth*(self.record_length+1))) if not self.augs: return out out[0] = record['m'] out[1:self.width+1] = record['ws'] sub_record = record['aug_record'] out[self.width+1:self.width+1+self.width*self.depth] = [i.idx for i in sub_record] param_list = [] for a in record['aug_record']: if a.idx >= 0: curr_params = self.augs[a.idx].convert_to_numpy(a.params) if len(curr_params) < self.record_length: curr_params = np.concatenate((curr_params, np.zeros(self.record_length-len(curr_params)))) else: curr_params = np.zeros(self.record_length) param_list.append(curr_params) params = np.concatenate(param_list) out[self.width+1+self.width*self.depth:] = params return out class AutoAugmentOld(Augmentation): tags = ['compositor', 'autoaugment_compose'] def __init__(self, subpolicies, severity=None, im_size=None, record=False): super(AutoAugmentOld, self).__init__(severity, im_size, record) self.subpolicies = subpolicies self.record_length = 1+2*max([len(policy) for policy in self.subpolicies]) def sample_parameters(self): policy_idx = np.random.randint(low=0, high=len(self.subpolicies)) selected = np.random.uniform(low=0.0, high=1.0, size=len(self.subpolicies[policy_idx])) thresholds = np.array([transform_tuple[1] for transform_tuple in self.subpolicies[policy_idx]]) selected = (selected < thresholds).tolist() flipped = [(np.random.choice([1,-1]) if (selected[i]==True and p[2] is not None and p[2]<0) else 1) for i,p in enumerate(self.subpolicies[policy_idx])] return { 'policy_idx' : policy_idx, 'selections' : selected, 'flipped' : flipped } def transform(self, image, policy_idx, selections, flipped): policy = self.subpolicies[policy_idx] for i, transform_tuple in enumerate(policy): if selections[i]: transform = transform_tuple[0] magnitude = transform_tuple[2] if magnitude is not None: image = transform.transform(image, magnitude * flipped[i]) else: image = transform.transform(image) return image def convert_to_numpy(self, params): out = np.zeros(self.record_length) out[0] = params['policy_idx'] curr_len = len(self.subpolicies[params['policy_idx']]) out[1:curr_len+1] = params['selections'] out[1+curr_len:1+2*curr_len] = params['flipped'] return out def convert_from_numpy(self, numpy_record): params = {} params['policy_idx'] = int(numpy_record[0]) curr_len = len(self.subpolicies[params['policy_idx']]) params['selections'] = [True if int(x)==1 else False for x in numpy_record[1:1+curr_len]] params['flipped'] = [int(x) for x in numpy_record[1+curr_len:1+2*curr_len]] return params class AutoAugment(Augmentation): tags = ['compositor', 'autoaugment_compose'] def __init__(self, subpolicies, severity=None, im_size=None, record=False): super(AutoAugment, self).__init__(severity, im_size, record) self.subpolicies = subpolicies self.record_length = 1+2*max([len(policy) for policy in self.subpolicies]) def sample_parameters(self): policy_idx = np.random.randint(low=0, high=len(self.subpolicies)) selected = np.random.uniform(low=0.0, high=1.0, size=len(self.subpolicies[policy_idx])) thresholds = np.array([transform_tuple[1] for transform_tuple in self.subpolicies[policy_idx]]) selected = (selected < thresholds).tolist() flipped = [(np.random.choice([1,-1]) if (selected[i]==True and p[3] is not None) else 1) for i,p in enumerate(self.subpolicies[policy_idx])] return { 'policy_idx' : policy_idx, 'selections' : selected, 'flipped' : flipped } def transform(self, image, policy_idx, selections, flipped): policy = self.subpolicies[policy_idx] for i, transform_tuple in enumerate(policy): if selections[i]: transform = transform_tuple[0] magnitude = transform_tuple[2] if magnitude is not None: magnitude = (transform_tuple[3] if transform_tuple[3] is not None else 0) + magnitude * flipped[i] image = transform.transform(image, magnitude) else: image = transform.transform(image) return image def convert_to_numpy(self, params): out = np.zeros(self.record_length) out[0] = params['policy_idx'] curr_len = len(self.subpolicies[params['policy_idx']]) out[1:curr_len+1] = params['selections'] out[1+curr_len:1+2*curr_len] = params['flipped'] return out def convert_from_numpy(self, numpy_record): params = {} params['policy_idx'] = int(numpy_record[0]) curr_len = len(self.subpolicies[params['policy_idx']]) params['selections'] = [True if int(x)==1 else False for x in numpy_record[1:1+curr_len]] params['flipped'] = [int(x) for x in numpy_record[1+curr_len:1+2*curr_len]] return params class RandomSample(Augmentation): def __init__(self, augmentation_list, weights=None, severity=None, im_size=None, record=False): super(RandomSample, self).__init__(severity=severity, im_size=im_size, record=record) self.transforms = augmentation_list self.weights = weights assert weights is None or (len(weights)==len(augmentation_list)),\ "Must have equal number of weights as transforms." assert weights is None or (np.sum(weights)==1.0),\ "Weights must sum to one." self.record_length = max([len(a.convert_to_numpy(a.sample_parameters())) for a in self.transforms])\ if self.transforms else 0 def sample_parameters(self): idx = np.random.choice(np.arange(len(self.transforms)), p=self.weights) transform_params = self.transforms[idx].sample_parameters() return {'idx': idx, 'transform_params': transform_params} def transform(self, image, idx, transform_params): return self.transforms[idx].transform(image, **transform_params) def convert_from_numpy(self, record): idx = int(record[0]) transform_params = self.transforms[idx].convert_from_numpy(record[1:]) return {'idx' : idx, 'transform_params': transform_params} def convert_to_numpy(self, record): numpy_record = np.zeros(1+self.record_length) numpy_record[0] = record['idx'] numpy_params = self.transforms[record['idx']].convert_to_numpy(record['transform_params']) numpy_record[1:1+len(numpy_params)] = numpy_params return numpy_record class ComposeSerially(Augmentation): def __init__(self, augmentation_list, severity=None, im_size=None, record=False): self.augmentation_list = augmentation_list self.record_lengths = [len(a.convert_to_numpy(a.sample_parameters())) for a in augmentation_list] def sample_parameters(self): params = {'param_list' : [a.sample_parameters() for a in self.augmentation_list]} return params def transform(self, image, param_list): for a, p in zip(self.augmentation_list, param_list): image = a.transform(image, **p) return image def convert_to_numpy(self, params): record = None for a, p in zip(self.augmentation_list, params['param_list']): record = np.concatenate((record, a.convert_to_numpy(p)), axis=0)\ if record is not None else a.convert_to_numpy(p) return record def convert_from_numpy(self, numpy_record): offset = 0 params = {'params_list' : []} for a, d in zip(self.augmentation_list, self.record_lengths): params['params_list'].append(numpy_record[offset:offset+d]) offset += d return params
augmentation-corruption-fbr_main
experiments/overlap/augmentations/compositions.py
# This source code is adapted from code licensed under the license at # third_party/imagenetc_license from the root directory of the repository # Originally available: github.com/hendrycks/robustness # Modifications Copyright (c) Facebook, Inc. and its affiliates, # licensed under the MIT license found in the LICENSE file in the root # directory of this source tree. from .base import Augmentation import pickle import torch import torch.utils.data # Per-channel mean and SD values in BGR order _MEAN = [125.3, 123.0, 113.9] _SD = [63.0, 62.1, 66.7] import os from PIL import Image import os.path import time import torch import torchvision.datasets as dset import torchvision.transforms as trn import torch.utils.data as data import numpy as np from PIL import Image # /////////////// Distortion Helpers /////////////// import skimage as sk from skimage.filters import gaussian from io import BytesIO from wand.image import Image as WandImage from wand.api import library as wandlibrary import wand.color as WandColor import ctypes from PIL import Image as PILImage import cv2 from scipy.ndimage import zoom as scizoom from scipy.ndimage.interpolation import map_coordinates import warnings warnings.simplefilter("ignore", UserWarning) def disk(radius, alias_blur=0.1, dtype=np.float32): if radius <= 8: L = np.arange(-8, 8 + 1) ksize = (3, 3) else: L = np.arange(-radius, radius + 1) ksize = (5, 5) X, Y = np.meshgrid(L, L) aliased_disk = np.array((X ** 2 + Y ** 2) <= radius ** 2, dtype=dtype) aliased_disk /= np.sum(aliased_disk) # supersample disk to antialias return cv2.GaussianBlur(aliased_disk, ksize=ksize, sigmaX=alias_blur) # Tell Python about the C method wandlibrary.MagickMotionBlurImage.argtypes = (ctypes.c_void_p, # wand ctypes.c_double, # radius ctypes.c_double, # sigma ctypes.c_double) # angle # Extend wand.image.Image class to include method signature class MotionImage(WandImage): def motion_blur(self, radius=0.0, sigma=0.0, angle=0.0): wandlibrary.MagickMotionBlurImage(self.wand, radius, sigma, angle) # modification of https://github.com/FLHerne/mapgen/blob/master/diamondsquare.py def plasma_fractal(seed, mapsize, wibbledecay=3): """ Generate a heightmap using diamond-square algorithm. Return square 2d array, side length 'mapsize', of floats in range 0-255. 'mapsize' must be a power of two. """ assert (mapsize & (mapsize - 1) == 0) maparray = np.empty((mapsize, mapsize), dtype=np.float_) maparray[0, 0] = 0 stepsize = mapsize wibble = 100 random_state = np.random.RandomState(seed=seed) def wibbledmean(array): return array / 4 + wibble * random_state.uniform(-wibble, wibble, array.shape) def fillsquares(): """For each square of points stepsize apart, calculate middle value as mean of points + wibble""" cornerref = maparray[0:mapsize:stepsize, 0:mapsize:stepsize] squareaccum = cornerref + np.roll(cornerref, shift=-1, axis=0) squareaccum += np.roll(squareaccum, shift=-1, axis=1) maparray[stepsize // 2:mapsize:stepsize, stepsize // 2:mapsize:stepsize] = wibbledmean(squareaccum) def filldiamonds(): """For each diamond of points stepsize apart, calculate middle value as mean of points + wibble""" mapsize = maparray.shape[0] drgrid = maparray[stepsize // 2:mapsize:stepsize, stepsize // 2:mapsize:stepsize] ulgrid = maparray[0:mapsize:stepsize, 0:mapsize:stepsize] ldrsum = drgrid + np.roll(drgrid, 1, axis=0) lulsum = ulgrid + np.roll(ulgrid, -1, axis=1) ltsum = ldrsum + lulsum maparray[0:mapsize:stepsize, stepsize // 2:mapsize:stepsize] = wibbledmean(ltsum) tdrsum = drgrid + np.roll(drgrid, 1, axis=1) tulsum = ulgrid + np.roll(ulgrid, -1, axis=0) ttsum = tdrsum + tulsum maparray[stepsize // 2:mapsize:stepsize, 0:mapsize:stepsize] = wibbledmean(ttsum) while stepsize >= 2: fillsquares() filldiamonds() stepsize //= 2 wibble /= wibbledecay maparray -= maparray.min() return maparray / maparray.max() def clipped_zoom(img, zoom_factor): h = img.shape[0] # ceil crop height(= crop width) ch = int(np.ceil(h / zoom_factor)) top = (h - ch) // 2 img = scizoom(img[top:top + ch, top:top + ch], (zoom_factor, zoom_factor, 1), order=1) # trim off any extra pixels trim_top = (img.shape[0] - h) // 2 return img[trim_top:trim_top + h, trim_top:trim_top + h] # /////////////// End Distortion Helpers /////////////// # /////////////// Distortions /////////////// def gaussian_noise(x, im_size, seed, severity=1): if im_size == 32: c = [0.04, 0.06, .08, .09, .10][int(severity) - 1] else: c = [.08, .12, 0.18, 0.26, 0.38][int(severity) - 1] random_state = np.random.RandomState(seed=seed) x = np.array(x) / 255. return np.clip(x + random_state.normal(size=x.shape, scale=c), 0, 1) * 255 def shot_noise(x, im_size, seed, severity=1): if im_size == 32: c = [500, 250, 100, 75, 50][int(severity) - 1] else: c = [60, 25, 12, 5, 3][int(severity) - 1] random_state = np.random.RandomState(seed=seed) x = np.array(x) / 255. return np.clip(random_state.poisson(x * c) / c, 0, 1) * 255 def impulse_noise(x, im_size, seed, severity=1): if im_size == 32: c = [.01, .02, .03, .05, .07][int(severity) - 1] else: c = [.03, .06, .09, 0.17, 0.27][int(severity) - 1] x = sk.util.random_noise(np.array(x) / 255., mode='s&p', amount=c, seed=seed) return np.clip(x, 0, 1) * 255 def speckle_noise(x, im_size, seed, severity=1): if im_size == 32: c = [.06, .1, .12, .16, .2][int(severity) - 1] else: c = [.15, .2, 0.35, 0.45, 0.6][int(severity) - 1] random_state = np.random.RandomState(seed=seed) x = np.array(x) / 255. return np.clip(x + x * random_state.normal(size=x.shape, scale=c), 0, 1) * 255 def gaussian_blur(x, im_size, severity=1): if im_size == 32: c = [.4, .6, 0.7, .8, 1][int(severity) - 1] else: c = [1, 2, 3, 4, 6][int(severity) - 1] x = gaussian(np.array(x) / 255., sigma=c, multichannel=True) return np.clip(x, 0, 1) * 255 def glass_blur(x, im_size, seed, severity=1): # sigma, max_delta, iterations if im_size == 32: c = [(0.05,1,1), (0.25,1,1), (0.4,1,1), (0.25,1,2), (0.4,1,2)][int(severity) - 1] else: c = [(0.7, 1, 2), (0.9, 2, 1), (1, 2, 3), (1.1, 3, 2), (1.5, 4, 2)][int(severity) - 1] random_state = np.random.RandomState(seed=seed) x = np.uint8(gaussian(np.array(x) / 255., sigma=c[0], multichannel=True) * 255) # locally shuffle pixels for i in range(c[2]): for h in range(im_size - c[1], c[1], -1): for w in range(im_size - c[1], c[1], -1): dx, dy = random_state.randint(-c[1], c[1], size=(2,)) h_prime, w_prime = h + dy, w + dx # swap x[h, w], x[h_prime, w_prime] = x[h_prime, w_prime], x[h, w] return np.clip(gaussian(x / 255., sigma=c[0], multichannel=True), 0, 1) * 255 def defocus_blur(x, im_size, severity=1): if im_size == 32: c = [(0.3, 0.4), (0.4, 0.5), (0.5, 0.6), (1, 0.2), (1.5, 0.1)][int(severity) - 1] else: c = [(3, 0.1), (4, 0.5), (6, 0.5), (8, 0.5), (10, 0.5)][int(severity) - 1] x = np.array(x) / 255. kernel = disk(radius=c[0], alias_blur=c[1]) channels = [] for d in range(3): channels.append(cv2.filter2D(x[:, :, d], -1, kernel)) channels = np.array(channels).transpose((1, 2, 0)) # 3x32x32 -> 32x32x3 return np.clip(channels, 0, 1) * 255 def motion_blur(x, im_size, angle, severity=1): if im_size == 32: c = [(6,1), (6,1.5), (6,2), (8,2), (9,2.5)][int(severity) - 1] else: c = [(10, 3), (15, 5), (15, 8), (15, 12), (20, 15)][int(severity) - 1] output = BytesIO() x = Image.fromarray(x) x.save(output, format='PNG') x = MotionImage(blob=output.getvalue()) x.motion_blur(radius=c[0], sigma=c[1], angle=angle) x = cv2.imdecode(np.fromstring(x.make_blob(), np.uint8), cv2.IMREAD_UNCHANGED) if x.shape != (im_size, im_size): return np.clip(x[..., [2, 1, 0]], 0, 255) # BGR to RGB else: # greyscale to RGB return np.clip(np.array([x, x, x]).transpose((1, 2, 0)), 0, 255) def zoom_blur(x, im_size, severity=1): if im_size == 32: c = [np.arange(1, 1.06, 0.01), np.arange(1, 1.11, 0.01), np.arange(1, 1.16, 0.01), np.arange(1, 1.21, 0.01), np.arange(1, 1.26, 0.01)][int(severity) - 1] else: c = [np.arange(1, 1.11, 0.01), np.arange(1, 1.16, 0.01), np.arange(1, 1.21, 0.02), np.arange(1, 1.26, 0.02), np.arange(1, 1.31, 0.03)][int(severity) - 1] x = (np.array(x) / 255.).astype(np.float32) out = np.zeros_like(x) for zoom_factor in c: out += clipped_zoom(x, zoom_factor) x = (x + out) / (len(c) + 1) return np.clip(x, 0, 1) * 255 def fog(x, im_size, seed, severity=1): if im_size == 32: c = [(.2,3), (.5,3), (0.75,2.5), (1,2), (1.5,1.75)][int(severity) - 1] mapsize = 32 else: c = [(1.5, 2), (2, 2), (2.5, 1.7), (2.5, 1.5), (3, 1.4)][int(severity) - 1] mapsize = 256 x = np.array(x) / 255. max_val = x.max() x += c[0] * plasma_fractal(wibbledecay=c[1], seed=seed, mapsize=mapsize)[:im_size, :im_size][..., np.newaxis] return np.clip(x * max_val / (max_val + c[0]), 0, 1) * 255 def frost(x, im_size, frost_path, image_idx, crop_pos, severity=1): if im_size == 32: c = [(1, 0.2), (1, 0.3), (0.9, 0.4), (0.85, 0.4), (0.75, 0.45)][int(severity) - 1] else: c = [(1, 0.4), (0.8, 0.6), (0.7, 0.7), (0.65, 0.7), (0.6, 0.75)][int(severity) - 1] idx = image_idx filename = ['./frost1.png', './frost2.png', './frost3.png', './frost4.jpg', './frost5.jpg', './frost6.jpg'][idx] filename = os.path.join(frost_path, filename) frost = cv2.imread(filename) if im_size == 32: frost = cv2.resize(frost, (0, 0), fx=0.2, fy=0.2) # randomly crop and convert to rgb #x_start, y_start = np.random.randint(0, frost.shape[0] - 32), np.random.randint(0, frost.shape[1] - 32) x_start, y_start = crop_pos[0], crop_pos[1] frost = frost[x_start:x_start + im_size, y_start:y_start + im_size][..., [2, 1, 0]] return np.clip(c[0] * np.array(x) + c[1] * frost, 0, 255) def snow(x, im_size, seed, severity=1): if im_size == 32: c = [(0.1,0.2,1,0.6,8,3,0.95), (0.1,0.2,1,0.5,10,4,0.9), (0.15,0.3,1.75,0.55,10,4,0.9), (0.25,0.3,2.25,0.6,12,6,0.85), (0.3,0.3,1.25,0.65,14,12,0.8)][int(severity) - 1] else: c = [(0.1, 0.3, 3, 0.5, 10, 4, 0.8), (0.2, 0.3, 2, 0.5, 12, 4, 0.7), (0.55, 0.3, 4, 0.9, 12, 8, 0.7), (0.55, 0.3, 4.5, 0.85, 12, 8, 0.65), (0.55, 0.3, 2.5, 0.85, 12, 12, 0.55)][int(severity) - 1] random_state = np.random.RandomState(seed=seed) x = np.array(x, dtype=np.float32) / 255. snow_layer = random_state.normal(size=x.shape[:2], loc=c[0], scale=c[1]) # [:2] for monochrome snow_layer = clipped_zoom(snow_layer[..., np.newaxis], c[2]) snow_layer[snow_layer < c[3]] = 0 snow_layer = PILImage.fromarray((np.clip(snow_layer.squeeze(), 0, 1) * 255).astype(np.uint8), mode='L') output = BytesIO() snow_layer.save(output, format='PNG') snow_layer = MotionImage(blob=output.getvalue()) snow_layer.motion_blur(radius=c[4], sigma=c[5], angle=random_state.uniform(-135, -45)) snow_layer = cv2.imdecode(np.fromstring(snow_layer.make_blob(), np.uint8), cv2.IMREAD_UNCHANGED) / 255. snow_layer = snow_layer[..., np.newaxis] x = c[6] * x + (1 - c[6]) * np.maximum(x, cv2.cvtColor(x, cv2.COLOR_RGB2GRAY).reshape(im_size, im_size, 1) * 1.5 + 0.5) return np.clip(x + snow_layer + np.rot90(snow_layer, k=2), 0, 1) * 255 def spatter(x, im_size, seed, severity=1): if im_size == 32: c = [(0.62,0.1,0.7,0.7,0.5,0), (0.65,0.1,0.8,0.7,0.5,0), (0.65,0.3,1,0.69,0.5,0), (0.65,0.1,0.7,0.69,0.6,1), (0.65,0.1,0.5,0.68,0.6,1)][int(severity) - 1] else: c = [(0.65, 0.3, 4, 0.69, 0.6, 0), (0.65, 0.3, 3, 0.68, 0.6, 0), (0.65, 0.3, 2, 0.68, 0.5, 0), (0.65, 0.3, 1, 0.65, 1.5, 1), (0.67, 0.4, 1, 0.65, 1.5, 1)][int(severity) - 1] x = np.array(x, dtype=np.float32) / 255. random_state = np.random.RandomState(seed=seed) liquid_layer = random_state.normal(size=x.shape[:2], loc=c[0], scale=c[1]) liquid_layer = gaussian(liquid_layer, sigma=c[2]) liquid_layer[liquid_layer < c[3]] = 0 if c[5] == 0: liquid_layer = (liquid_layer * 255).astype(np.uint8) dist = 255 - cv2.Canny(liquid_layer, 50, 150) dist = cv2.distanceTransform(dist, cv2.DIST_L2, 5) _, dist = cv2.threshold(dist, 20, 20, cv2.THRESH_TRUNC) dist = cv2.blur(dist, (3, 3)).astype(np.uint8) dist = cv2.equalizeHist(dist) # ker = np.array([[-1,-2,-3],[-2,0,0],[-3,0,1]], dtype=np.float32) # ker -= np.mean(ker) ker = np.array([[-2, -1, 0], [-1, 1, 1], [0, 1, 2]]) dist = cv2.filter2D(dist, cv2.CV_8U, ker) dist = cv2.blur(dist, (3, 3)).astype(np.float32) m = cv2.cvtColor(liquid_layer * dist, cv2.COLOR_GRAY2BGRA) m /= np.max(m, axis=(0, 1)) m *= c[4] # water is pale turqouise color = np.concatenate((175 / 255. * np.ones_like(m[..., :1]), 238 / 255. * np.ones_like(m[..., :1]), 238 / 255. * np.ones_like(m[..., :1])), axis=2) color = cv2.cvtColor(color, cv2.COLOR_BGR2BGRA) x = cv2.cvtColor(x, cv2.COLOR_BGR2BGRA) return cv2.cvtColor(np.clip(x + m * color, 0, 1), cv2.COLOR_BGRA2BGR) * 255 else: m = np.where(liquid_layer > c[3], 1, 0) m = gaussian(m.astype(np.float32), sigma=c[4]) m[m < 0.8] = 0 # m = np.abs(m) ** (1/c[4]) # mud brown color = np.concatenate((63 / 255. * np.ones_like(x[..., :1]), 42 / 255. * np.ones_like(x[..., :1]), 20 / 255. * np.ones_like(x[..., :1])), axis=2) color *= m[..., np.newaxis] x *= (1 - m[..., np.newaxis]) return np.clip(x + color, 0, 1) * 255 def contrast(x, im_size, severity=1): if im_size == 32: c = [.75, .5, .4, .3, 0.15][int(severity) - 1] else: c = [0.4, .3, .2, .1, .05][int(severity) - 1] x = np.array(x) / 255. means = np.mean(x, axis=(0, 1), keepdims=True) return np.clip((x - means) * c + means, 0, 1) * 255 def brightness(x, im_size, severity=1): if im_size == 32: c = [.05, .1, .15, .2, .3][int(severity) - 1] else: c = [.1, .2, .3, .4, .5][int(severity) - 1] x = np.array(x) / 255. x = sk.color.rgb2hsv(x) x[:, :, 2] = np.clip(x[:, :, 2] + c, 0, 1) x = sk.color.hsv2rgb(x) return np.clip(x, 0, 1) * 255 def saturate(x, im_size, severity=1): if im_size == 32: c = [(0.3, 0), (0.1, 0), (1.5, 0), (2, 0.1), (2.5, 0.2)][int(severity) - 1] else: c = [(0.3, 0), (0.1, 0), (2, 0), (5, 0.1), (20, 0.2)][int(severity) - 1] x = np.array(x) / 255. x = sk.color.rgb2hsv(x) x[:, :, 1] = np.clip(x[:, :, 1] * c[0] + c[1], 0, 1) x = sk.color.hsv2rgb(x) return np.clip(x, 0, 1) * 255 def jpeg_compression(x, im_size, severity=1): if im_size == 32: c = [80, 65, 58, 50, 40][int(severity) - 1] else: c = [25, 18, 15, 10, 7][int(severity) - 1] x = Image.fromarray(x) output = BytesIO() x.save(output, 'JPEG', quality=c) x = PILImage.open(output) return x def pixelate(x, im_size, severity=1): if im_size == 32: c = [0.95, 0.9, 0.85, 0.75, 0.65][int(severity) - 1] else: c = [0.6, 0.5, 0.4, 0.3, 0.25][int(severity) - 1] x = Image.fromarray(x) x = x.resize((int(im_size * c), int(im_size * c)), PILImage.BOX) x = x.resize((im_size, im_size), PILImage.BOX) return x # mod of https://gist.github.com/erniejunior/601cdf56d2b424757de5 def elastic_transform(image, im_size, seed, severity=1): IMSIZE = im_size if im_size == 32: c = [(IMSIZE*0, IMSIZE*0, IMSIZE*0.08), (IMSIZE*0.05, IMSIZE*0.2, IMSIZE*0.07), (IMSIZE*0.08, IMSIZE*0.06, IMSIZE*0.06), (IMSIZE*0.1, IMSIZE*0.04, IMSIZE*0.05), (IMSIZE*0.1, IMSIZE*0.03, IMSIZE*0.03)][int(severity) - 1] else: c = [(244 * 2, 244 * 0.7, 244 * 0.1), # 244 should have been 224, but ultimately nothing is incorrect (244 * 2, 244 * 0.08, 244 * 0.2), (244 * 0.05, 244 * 0.01, 244 * 0.02), (244 * 0.07, 244 * 0.01, 244 * 0.02), (244 * 0.12, 244 * 0.01, 244 * 0.02)][int(severity) - 1] random_state = np.random.RandomState(seed=seed) image = np.array(image, dtype=np.float32) / 255. shape = image.shape shape_size = shape[:2] # random affine center_square = np.float32(shape_size) // 2 square_size = min(shape_size) // 3 pts1 = np.float32([center_square + square_size, [center_square[0] + square_size, center_square[1] - square_size], center_square - square_size]) pts2 = pts1 + random_state.uniform(-c[2], c[2], size=pts1.shape).astype(np.float32) M = cv2.getAffineTransform(pts1, pts2) image = cv2.warpAffine(image, M, shape_size[::-1], borderMode=cv2.BORDER_REFLECT_101) dx = (gaussian(random_state.uniform(-1, 1, size=shape[:2]), c[1], mode='reflect', truncate=3) * c[0]).astype(np.float32) dy = (gaussian(random_state.uniform(-1, 1, size=shape[:2]), c[1], mode='reflect', truncate=3) * c[0]).astype(np.float32) dx, dy = dx[..., np.newaxis], dy[..., np.newaxis] x, y, z = np.meshgrid(np.arange(shape[1]), np.arange(shape[0]), np.arange(shape[2])) indices = np.reshape(y + dy, (-1, 1)), np.reshape(x + dx, (-1, 1)), np.reshape(z, (-1, 1)) return np.clip(map_coordinates(image, indices, order=1, mode='reflect').reshape(shape), 0, 1) * 255 class GaussianNoise(Augmentation): tags = ['imagenet_c', 'noise'] name = 'gaussian_noise' def sample_parameters(self): seed = np.random.randint(0,2**32) return {'seed': seed} def transform(self, image, seed): return np.uint8(gaussian_noise(image, self.im_size, seed, severity=self.severity)) class ShotNoise(Augmentation): tags = ['imagenet_c', 'noise'] name = 'shot_noise' def sample_parameters(self): seed = np.random.randint(0,2**32) return {'seed': seed} def transform(self, image, seed): return np.uint8(shot_noise(image, self.im_size, seed, severity=self.severity)) class ImpulseNoise(Augmentation): tags = ['imagenet_c', 'noise'] name = 'impulse_noise' def sample_parameters(self): seed = np.random.randint(0,2**32) return {'seed': seed} def transform(self, image, seed): return np.uint8(impulse_noise(image, self.im_size, seed, severity=self.severity)) class SpeckleNoise(Augmentation): tags = ['imagenet_c', 'extra'] name = 'speckle_noise' def sample_parameters(self): seed = np.random.randint(0,2**32) return {'seed': seed} def transform(self, image, seed): return np.uint8(speckle_noise(image, self.im_size, seed, severity=self.severity)) class ElasticTransform(Augmentation): tags = ['imagenet_c', 'digital'] name = 'elastic_transform' def sample_parameters(self): seed = np.random.randint(0,2**32) return {'seed': seed} def transform(self, image, seed): return np.uint8(elastic_transform(image, self.im_size, seed, severity=self.severity)) class GlassBlur(Augmentation): tags = ['imagenet_c', 'blur'] name = 'glass_blur' def sample_parameters(self): seed = np.random.randint(0,2**32) return {'seed': seed} def transform(self, image, seed): return np.uint8(glass_blur(image, self.im_size, seed, severity=self.severity)) class Snow(Augmentation): tags = ['imagenet_c', 'weather'] name = 'snow' def sample_parameters(self): seed = np.random.randint(0,2**32) return {'seed': seed} def transform(self, image, seed): return np.uint8(snow(image, self.im_size, seed, severity=self.severity)) class Spatter(Augmentation): tags = ['imagenet_c', 'extra'] name = 'spatter' def sample_parameters(self): seed = np.random.randint(0,2**32) return {'seed': seed} def transform(self, image, seed): return np.uint8(spatter(image, self.im_size, seed, severity=self.severity)) class Fog(Augmentation): tags = ['imagenet_c', 'blur'] name = 'fog' def sample_parameters(self): seed = np.random.randint(0,2**32) return {'seed': seed} def transform(self, image, seed): return np.uint8(fog(image, self.im_size, seed, severity=self.severity)) class ZoomBlur(Augmentation): tags = ['imagenet_c', 'blur'] name = 'zoom_blur' def sample_parameters(self): return {} def transform(self, image): return np.uint8(zoom_blur(image, self.im_size, severity=self.severity)) class Pixelate(Augmentation): tags = ['imagenet_c', 'digital'] name = 'pixelate' def sample_parameters(self): return {} def transform(self, image): return np.uint8(pixelate(image, self.im_size, severity=self.severity)) class JPEGCompression(Augmentation): tags = ['imagenet_c', 'digital'] name = 'jpeg_compression' def sample_parameters(self): return {} def transform(self, image): return np.uint8(jpeg_compression(image, self.im_size, severity=self.severity)) class Contrast(Augmentation): tags = ['imagenet_c', 'digital'] name = 'contrast' def sample_parameters(self): return {} def transform(self, image): return np.uint8(contrast(image, self.im_size, severity=self.severity)) class Brightness(Augmentation): tags = ['imagenet_c', 'weather'] name = 'brightness' def sample_parameters(self): return {} def transform(self, image): return np.uint8(brightness(image, self.im_size, severity=self.severity)) class MotionBlur(Augmentation): tags = ['imagenet_c', 'blur'] name = 'motion_blur' def sample_parameters(self): angle = np.random.uniform(-45,45) return {'angle' : angle} def transform(self, image, angle): return np.uint8(motion_blur(image, self.im_size, angle=angle, severity=self.severity)) class GaussianBlur(Augmentation): tags = ['imagenet_c', 'extra'] name = 'gaussian_blur' def sample_parameters(self): return {} def transform(self, image): return np.uint8(gaussian_blur(image, self.im_size, severity=self.severity)) class Frost(Augmentation): tags = ['imagenet_c', 'path_required', 'weather'] name = 'frost' def __init__(self, severity, im_size, record=False, max_intensity=False, frost_path=None): super().__init__(severity, im_size, record, max_intensity) self.frost_path = frost_path def sample_parameters(self): image_idx = np.random.randint(5) filename = ['./frost1.png', './frost2.png', './frost3.png', './frost4.jpg', './frost5.jpg', './frost6.jpg'][image_idx] filename = os.path.join(self.frost_path, filename) frost = cv2.imread(filename) if self.im_size == 32: frost = cv2.resize(frost, (0, 0), fx=0.2, fy=0.2) x_start, y_start = np.random.randint(0, frost.shape[0] - self.im_size), np.random.randint(0, frost.shape[1] - self.im_size) return {'image_idx' : image_idx, 'crop_pos' : (x_start, y_start)} def transform(self, image, image_idx, crop_pos): return np.uint8(frost(image, self.im_size, frost_path=self.frost_path, image_idx=image_idx, crop_pos=crop_pos, severity=self.severity)) def convert_to_numpy(self, params): return np.array([params['image_idx']] + list( params['crop_pos'])) def convert_from_numpy(self, numpy_record): return {'image_idx' : int(numpy_record[0]), 'crop_pos' : tuple(numpy_record[1:].astype(np.int).tolist())} class DefocusBlur(Augmentation): tags = ['imagenet_c', 'blur'] name = 'defocus_blur' def sample_parameters(self): return {} def transform(self, image): return np.uint8(defocus_blur(image, self.im_size, severity=self.severity)) class Saturate(Augmentation): tags = ['imagenet_c', 'extra'] name = 'saturate' def sample_parameters(self): return {} def transform(self, image): return np.uint8(saturate(image, self.im_size, severity=self.severity))
augmentation-corruption-fbr_main
experiments/overlap/augmentations/imagenetc.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import abc import numpy as np def is_iterable(obj): try: iter(obj) except: return False else: return True class Augmentation(abc.ABC): tags = ["abstract_base_class"] def __init__(self, severity, im_size, record=False, max_intensity=False, **kwargs): self.im_size = im_size self.severity = severity self.record = record self.max_intensity = max_intensity @abc.abstractmethod def transform(self, image, **kwargs): ... @abc.abstractmethod def sample_parameters(self): ... def __call__(self, image): params = self.sample_parameters() out = self.transform(image, **params) if self.record: return out, params return out def convert_to_numpy(self, params): out = [] for k, v in params.items(): if isinstance(v, np.ndarray): out.extend(v.flatten().tolist()) elif is_iterable(v): out.extend([x for x in v]) else: out.append(v) return np.array(out) def convert_from_numpy(self, numpy_record): param_signature = self.sample_parameters() #assert len(param_signature.keys())<=len(numpy_record), "Mismatched numpy_record." offset = 0 for k, v in param_signature.items(): if isinstance(v, np.ndarray): num = len(v.flatten()) data = numpy_record[offset:offset+num] if v.dtype==np.int or v.dtype==np.uint: data = np.round(data, 3) data = data.astype(v.dtype) param_signature[k] = data.reshape(v.shape) offset += num elif is_iterable(v): data = [] for x in v: if type(x) == 'int': data.append(int(np.round(numpy_record[offset],3))) else: data.append(type(x)(numpy_record[offset])) offset += 1 param_signature[k] = data else: if type(v) == 'int': param_signature[k] = int(np.round(numpy_record[offset],3)) else: param_signature[k] = type(v)(numpy_record[offset]) offset += 1 return param_signature
augmentation-corruption-fbr_main
experiments/overlap/augmentations/base.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np def int_parameter(level, maxval): return int(level * maxval / 10) def float_parameter(level, maxval): return float(level) * maxval / 10. def sample_level(n, fixed=False): if fixed: return n return np.random.uniform(low=0.1, high=n)
augmentation-corruption-fbr_main
experiments/overlap/augmentations/utils/severity.py
augmentation-corruption-fbr_main
experiments/overlap/augmentations/utils/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from ... import augmentations as aug master_aug_list = [ aug.pil.AutoContrast, aug.pil.Equalize, aug.pil.Posterize, aug.pil.Solarize, aug.pil.Affine, aug.pil.ShearX, aug.pil.ShearY, aug.pil.TranslateX, aug.pil.TranslateY, aug.pil.Rotate, aug.pil.ScaleX, aug.pil.ScaleY, aug.pil.ScaleFixedAspectRatio, aug.pil.Invert, aug.pil.ColorBalance, aug.pil.Sharpness, aug.pil.Contrast, aug.pil.Brightness, aug.pil.Quadrilateral, aug.pil.KeystoneH, aug.pil.KeystoneV, aug.pil.Perspective, aug.pil.QuadrilateralNoBars, aug.pil.PerspectiveNoBars, aug.additive_noise.SingleFrequencyGreyscale, aug.additive_noise.SingleFrequencyColor, aug.additive_noise.CocentricSineWaves, aug.additive_noise.PlasmaNoise, aug.additive_noise.VoronoiNoise, aug.additive_noise.CausticNoise, aug.additive_noise.PerlinNoise, aug.additive_noise.BlueNoise, aug.additive_noise.BrownishNoise, aug.blurs.Scatter, aug.blurs.ChromaticAbberation, aug.blurs.TransverseChromaticAbberation, aug.blurs.HomogeneousColorBlur, aug.blurs.Erosion, aug.blurs.Dilation, aug.blurs.CircularMotionBlur, aug.color.BleachBypass, aug.color.Technicolor, aug.color.Pseudocolor, aug.color.HueShift, aug.color.ColorDither, aug.obscure.CutOut, aug.obscure.CheckerBoardCutOut, aug.additive_noise.Sparkles, aug.additive_noise.InverseSparkles, aug.obscure.Lines, aug.obscure.RandomSample, aug.obscure.BlueNoiseSample, aug.distortion.PinchAndTwirl, aug.distortion.PinchAndTwirlV2, aug.distortion.CausticRefraction, aug.distortion.FishEyeV2, aug.distortion.WaterDrop, aug.distortion.Ripple, aug.imagenetc.GaussianNoise, aug.imagenetc.ShotNoise, aug.imagenetc.ImpulseNoise, aug.imagenetc.SpeckleNoise, aug.imagenetc.MotionBlur, aug.imagenetc.DefocusBlur, aug.imagenetc.ZoomBlur, aug.imagenetc.GlassBlur, aug.imagenetc.GaussianBlur, aug.imagenetc.Brightness, aug.imagenetc.Fog, aug.imagenetc.Frost, aug.imagenetc.Snow, aug.imagenetc.Spatter, aug.imagenetc.Contrast, aug.imagenetc.Pixelate, aug.imagenetc.JPEGCompression, aug.imagenetc.ElasticTransform, aug.imagenetc.Saturate, ] aug_dict = {a.name : a for a in master_aug_list} def get_aug_by_name(name): return aug_dict[name] def get_augs_by_tag(inclusions, exclusions=[]): augs = [] for a in master_aug_list: skip = False for e in exclusions: if e in a.tags: skip = True if skip: continue include = False for i in inclusions: if i in a.tags: include = True break if include: augs.append(a) return augs def parse_aug_string(aug_string, im_size, max_intensity=False, record=False, **aug_kwargs): augs = [] for s in aug_string.split("--"): if not s: continue name, sev = s.split("-") a = aug_dict[name] augs.append(a(float(sev),im_size, max_intensity=max_intensity, **aug_kwargs)) return augs def build_aug_string(augs): aug_string = '' for aug in augs: if aug_string != '': aug_string += "--" aug_string = aug_string + aug.name + "-" + str(aug.severity) if aug_string == '': aug_string = '--' return aug_string
augmentation-corruption-fbr_main
experiments/overlap/augmentations/utils/aug_finder.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np class PerlinNoiseGenerator(object): def __init__(self, random_state=None): self.rand = np.random if random_state is None else random_state B = 256 N = 16*256 def normalize(arr): return arr / np.linalg.norm(arr) self.p = np.arange(2*B+2) self.g = np.array([normalize((random_state.randint(low=0, high=2**31, size=2) % (2*B) - B )/ B)\ for i in range(2*B+2)]) for i in np.arange(B-1,-1,-1): k = self.p[i] j = self.rand.randint(low=0, high=2**31) % B self.p[i] = self.p[j] self.p[j] = k for i in range(B+2): self.p[B+i] = self.p[i] self.g[B+i,:] = self.g[i,:] self.B = B self.N = N def s_curve(t): return t**2 * (3.0 - 2.0 * t) def noise(self, x, y): t = x + self.N bx0 = int(t) % self.B bx1 = (bx0+1) % self.B rx0 = t % 1 rx1 = rx0 - 1.0 t = y + self.N by0 = int(t) % self.B by1 = (by0+1) % self.B ry0 = t % 1 ry1 = ry0 - 1.0 i = self.p[bx0] j = self.p[bx1] b00 = self.p[i + by0] b10 = self.p[j + by0] b01 = self.p[i + by1] b11 = self.p[j + by1] sx = PerlinNoiseGenerator.s_curve(rx0) sy = PerlinNoiseGenerator.s_curve(ry0) u = rx0 * self.g[b00,0] + ry0 * self.g[b00,1] v = rx1 * self.g[b10,0] + ry0 * self.g[b10,1] a = u + sx * (v - u) u = rx0 * self.g[b01,0] + ry1 * self.g[b01,1] v = rx1 * self.g[b11,0] + ry1 * self.g[b11,1] b = u + sx * (v - u) return 1.5 * (a + sy * (b - a)) def turbulence(self, x, y, octaves): t = 0.0 f = 1.0 while f <= octaves: t += np.abs(self.noise(f*x, f*y)) / f f = f * 2 return t
augmentation-corruption-fbr_main
experiments/overlap/augmentations/utils/noise.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np from PIL import Image import torch class PilToNumpy(object): def __init__(self, as_float=False, scaled_to_one=False): self.as_float = as_float self.scaled_to_one = scaled_to_one assert (not scaled_to_one) or (as_float and scaled_to_one),\ "Must output a float if rescaling to one." def __call__(self, image): if not self.as_float: return np.array(image).astype(np.uint8) elif notself.scaled_to_one: return np.array(image).astype(np.float32) else: return np.array(image).astype(np.float32) / 255 class NumpyToPil(object): def __init__(self): pass def __call__(self, image): return Image.fromarray(image) class NumpyToTensor(object): def __init__(self, HWC_to_CHW=True, bit_to_float=True): self.HWC_to_CHW = HWC_to_CHW self.bit_to_float = bit_to_float pass def __call__(self, image): image = image.astype(np.float32) if self.bit_to_float: image /= 255 if self.HWC_to_CHW: image = image.transpose(2,0,1) return torch.Tensor(image)
augmentation-corruption-fbr_main
experiments/overlap/augmentations/utils/converters.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np def smoothstep(low, high, x): x = np.clip(x, low, high) x = (x - low) / (high - low) return np.clip(3 * (x ** 2) - 2 * (x ** 3), 0, 1) def bilinear_interpolation(image, point): l = int(np.floor(point[0])) u = int(np.floor(point[1])) r, d = l+1, u+1 lu = image[l,u,:] if l >= 0 and l < image.shape[0]\ and u >= 0 and u < image.shape[1] else np.array([0,0,0]) ld = image[l,d,:] if l >= 0 and l < image.shape[0]\ and d >= 0 and d < image.shape[1] else np.array([0,0,0]) ru = image[r,u,:] if r >= 0 and r < image.shape[0]\ and u >= 0 and u < image.shape[1] else np.array([0,0,0]) rd = image[r,d,:] if r >= 0 and r < image.shape[0]\ and d >= 0 and d < image.shape[1] else np.array([0,0,0]) al = lu * (1.0 - point[1] + u) + ld * (1.0 - d + point[1]) ar = ru * (1.0 - point[1] + u) + rd * (1.0 - d + point[1]) out = al * (1.0 - point[0] + l) + ar * (1.0 - r + point[0]) return out
augmentation-corruption-fbr_main
experiments/overlap/augmentations/utils/image.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from transform_finder import build_transform import torch import torchvision as tv from utils.converters import PilToNumpy, NumpyToTensor CIFAR_MEAN = [125.3/255, 123.0/255, 113.9/255] CIFAR_STD = [63.0/255, 62.1/255, 66.7/255] #This is in RGB order since that is the standard for PIL IM_MEAN = [0.485, 0.456, 0.406] IM_STD = [0.229, 0.224, 0.225] def read_corruption_csv(filename): with open(filename) as f: lines = [l.rstrip() for l in f.readlines()] corruptions = [] for line in lines: vals = line.split(",") if not vals: continue corruptions.extend([(vals[0], float(v)) for v in vals[1:]]) return corruptions @torch.no_grad() def test_c_bar( model, dataset_type, dataset_path, batch_size, corruption_string=None, loader_kwargs={}, logger=None, calculate_averages=True, distributed=False, num_gpus=1 ): assert dataset_type in ['imagenet', 'cifar'],\ "Only ImageNet and CIFAR-10 are supported." if corruption_string is None: corruption_filename = 'imagenet_c_bar.csv' if dataset_type=='imagenet'\ else 'cifar10_c_bar.csv' corruptions = read_corruption_csv(corruption_filename) else: corruptions = [(c.split("-")[0], float(c.split("-")[1])) for c in corruption_string.split("--")] results = {} for name, severity in corruptions: if dataset_type=='imagenet': transform = tv.transforms.Compose([ tv.transforms.Resize(256), tv.transforms.CenterCrop(224), PilToNumpy(), build_transform(name=name, severity=severity, dataset_type=dataset_type), NumpyToTensor(), tv.transforms.Normalize(IM_MEAN, IM_STD) ]) path = os.path.join(dataset_path, 'val') dataset = tv.datasets.ImageFolder(path, transform=transform) elif dataset_type=='cifar': transform = tv.transforms.Compose([ PilToNumpy(), build_transform(name=name, severity=severity, dataset_type=dataset_type), NumpyToTensor(), tv.transforms.Normalize(CIFAR_MEAN, CIFAR_STD) ]) dataset = tv.datasets.CIFAR10(dataset_path, train=False, download=False, transform=transform) sampler = torch.utils.data.distributed.DistributedSampler(dataset)\ if distributed and num_gpus > 1 else None loader = torch.utils.data.DataLoader( dataset, batch_size=batch_size, shuffle=False, sampler=sampler, drop_last=False, **loader_kwargs ) num_correct = 0 for curr_iter, (inputs, labels) in enumerate(loader): inputs, labels = inputs.cuda(), labels.cuda(non_blocking=True) preds = model(inputs) correct = torch.sum(torch.argmax(preds, dim=1)==labels) if distributed and num_gpus > 1: torch.distributed.all_reduce(correct) num_correct += correct.item() err = 100 * (1 - num_correct / len(dataset)) corruption_string = "{}-{:.2f}".format(name, severity) if logger: logger.info("Top1 Error for {}: {:.2f}".format(corruption_string, err)) results[corruption_string] = err if calculate_averages: import numpy as np unique_corruption_names = list(set([c.split("-")[0] for c in results])) avg_errs = {"{}-avg".format(u) : np.mean([results[c] for c in results if c.split("-")[0]==u]) for u in unique_corruption_names} overall_err = np.mean(list(results.values())) results.update(avg_errs) results['overall-avg'] = overall_err if logger: for k,v in avg_errs.items(): logger.info("Top1 Error for {}: {:.2f}".format(k,v)) logger.info("Average Top1 Error: {}".format(overall_err)) return results
augmentation-corruption-fbr_main
imagenet_c_bar/test_c_bar.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import corrupt as corr transform_list = [ corr.ColorBalance, corr.QuadrilateralNoBars, corr.PerspectiveNoBars, corr.SingleFrequencyGreyscale, corr.CocentricSineWaves, corr.PlasmaNoise, corr.VoronoiNoise, corr.CausticNoise, corr.PerlinNoise, corr.BlueNoise, corr.BrownishNoise, corr.Scatter, corr.ChromaticAbberation, corr.TransverseChromaticAbberation, corr.CircularMotionBlur, corr.BleachBypass, corr.Technicolor, corr.Pseudocolor, corr.HueShift, corr.ColorDither, corr.CheckerBoardCutOut, corr.Sparkles, corr.InverseSparkles, corr.Lines, corr.BlueNoiseSample, corr.PinchAndTwirl, corr.CausticRefraction, corr.FishEye, corr.WaterDrop, corr.Ripple, ] transform_dict = {t.name : t for t in transform_list} def build_transform(name, severity, dataset_type): assert dataset_type in ['cifar', 'imagenet'],\ "Only cifar and imagenet image resolutions are supported." return transform_dict[name](severity=severity, im_size=(32 if dataset_type=='cifar' else 224) ) def build_transforms_from_string(string, dataset_type): im_size = (32 if dataset_type=='cifar' else 224) transforms = [] for s in string.split("--"): if not s: continue name, sev = s.split("-") t = transform_dict[name] transforms.append(t(float(sev),im_size)) return transforms def transform_string(transforms): string = '' for t in transforms: if string != '': string += "--" string = string + t.name + "-" + str(t.severity) if string == '': string = '--' return string def get_transforms_by_tag(inclusions, exclusions=[]): transforms = [] for t in transform_list: if any([i in t.tags for i in inclusions])\ and not any([e in t.tags for e in exclusions]): transforms.append(t) return transforms
augmentation-corruption-fbr_main
imagenet_c_bar/transform_finder.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import torchvision as tv from transform_finder import build_transform from utils.converters import PilToNumpy, NumpyToPil import os import numpy as np import torch from PIL import Image parser = argparse.ArgumentParser(description="Make CIFAR-10-C-Bar") parser.add_argument('--imagenet_dir', type=str, required=True, help='The path to the ImageNet dataset. This path should contain ' 'the folder val/') parser.add_argument('--out_dir', type=str, default='.', help='The path to where ImageNet-C will be saved.') parser.add_argument('--num_workers', type=int, default=10, help='The number of workers to build images with.') parser.add_argument('--batch_size', type=int, default=100, help='Batch size of torch data loader used to parallelize ' 'data processing.') parser.add_argument('--corruption_file', type=str, default='imagenet_c_bar.csv', help='A file that specifies which corruptions in which severities ' 'to produce. Path is relative to the script.') parser.add_argument('--seed', type=int, default=0, help='The random seed used to generate corruptions.') class SavingDataset(tv.datasets.ImageFolder): def __init__(self, root, out_dir, transform=None): super(SavingDataset, self).__init__(root, transform=transform) self.out_dir = out_dir def __getitem__(self, index): image, label = super(SavingDataset, self).__getitem__(index) class_name = self.classes[label] out_dir = os.path.join(self.out_dir, class_name) try: os.mkdir(out_dir) except FileExistsError: pass file_name = os.path.basename(self.samples[index][0]) save_path = os.path.join(out_dir, file_name) Image.fromarray(np.uint8(image)).save(save_path, quality=85, optimize=True) return image, label def read_corruption_csv(filename): with open(filename) as f: lines = [l.rstrip() for l in f.readlines()] corruptions = {} for line in lines: vals = line.split(",") if not vals: continue corruptions[vals[0]] = [float(v) for v in vals[1:]] return corruptions def main(): args = parser.parse_args() dataset_path = args.imagenet_dir corruption_file = args.corruption_file out_dir = os.path.join(args.out_dir, 'ImageNet-C-Bar') np.random.seed(args.seed) bs = args.batch_size if not os.path.exists(out_dir): os.mkdir(out_dir) file_dir = os.path.dirname(os.path.realpath(__file__)) corruption_csv = os.path.join(file_dir, corruption_file) corruptions = read_corruption_csv(corruption_csv) for name, severities in corruptions.items(): corruption_dir = os.path.join(out_dir, name) if not os.path.exists(corruption_dir): os.mkdir(corruption_dir) for i, severity in enumerate(severities): severity_dir = os.path.join(corruption_dir, "{:.2f}".format(severity)) if not os.path.exists(severity_dir): os.mkdir(severity_dir) print("Starting {}-{:.2f}...".format(name, severity)) transform = tv.transforms.Compose([ tv.transforms.Resize(256), tv.transforms.CenterCrop(224), PilToNumpy(), build_transform(name=name, severity=severity, dataset_type='imagenet'), ]) path = os.path.join(dataset_path, 'val') dataset = SavingDataset(path, severity_dir, transform=transform) loader = torch.utils.data.DataLoader( dataset, shuffle=False, sampler=None, drop_last=False, pin_memory=False, num_workers=args.num_workers, batch_size=bs ) for j, (im, label) in enumerate(loader): if (j+1) % 10 == 0: print("Completed {}/{}".format(j, len(loader))) if __name__=="__main__": main()
augmentation-corruption-fbr_main
imagenet_c_bar/make_imagenet_c_bar.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np from math import floor, ceil from PIL import Image from scipy.fftpack import ifft2 from scipy.ndimage import gaussian_filter, rotate, shift, zoom from skimage.draw import line_aa from skimage.color import rgb2hsv, hsv2rgb from utils.image import bilinear_interpolation, smoothstep from utils.perlin_noise import PerlinNoiseGenerator from base import Transform import abc def int_parameter(level, maxval): return int(level * maxval / 10) def float_parameter(level, maxval): return float(level) * maxval / 10. class SingleFrequencyGreyscale(Transform): name = 'single_frequency_greyscale' tags = ['new_corruption', 'imagenet_c_bar'] def sample_parameters(self): freq_mag = np.random.uniform(low=-np.pi, high=np.pi) freq_2 = np.random.uniform(low=-abs(freq_mag), high=abs(freq_mag)) freq = np.array([freq_mag, freq_2])[np.random.permutation(2)] phase = np.random.uniform(low=0, high=2*np.pi) intensity = float_parameter(self.severity, 196) return { 'freq' : freq, 'phase' : phase, 'intensity' : intensity} def transform(self, image, freq, phase, intensity): noise = np.array([[np.sin(x * freq[0] + y * freq[1] + phase)\ for x in range(self.im_size)] for y in range(self.im_size)]) noise = np.stack((noise, noise, noise), axis=2) return np.clip(image + intensity * noise, 0, 255).astype(np.uint8) def convert_to_numpy(self, params): return np.array(params['freq'].tolist() + [params['phase'], params['intensity']]) def convert_from_numpy(self, numpy_record): return {'freq' : numpy_record[0:2], 'phase' : numpy_record[2], 'intensity' : numpy_record[3] } class CocentricSineWaves(Transform): name = 'cocentric_sine_waves' tags = ['new_corruption', 'imagenet_c_bar'] def sample_parameters(self): offset = np.random.uniform(low=0, high=self.im_size, size=2) freq = np.random.uniform(low=0, high=10) amplitude = np.random.uniform(low=0, high=self.im_size/10) ring_width = np.random.uniform(low=0, high=self.im_size/10) intensity = [float_parameter(self.severity, 128) for i in range(3)] return { 'offset' : offset, 'freq' : freq, 'amplitude' : amplitude, 'ring_width' : ring_width, 'intensity' : intensity } def transform(self, image, offset, freq, amplitude, ring_width, intensity): def calc_intensity(x, y, x0, y0, freq, amplitude, ring_width): angle = np.arctan2(x-x0, y-y0) * freq distance = ((np.sqrt((x-x0)**2 + (y-y0)**2) + np.sin(angle) * amplitude) % ring_width) / ring_width distance -= 1/2 return distance noise = np.array([[calc_intensity(x, y, offset[0], offset[1], freq, amplitude, ring_width)\ for x in range(self.im_size)] for y in range(self.im_size)]) noise = np.stack((intensity[0] * noise, intensity[1] * noise, intensity[2] * noise), axis=2) return np.clip(image + noise, 0, 255).astype(np.uint8) def convert_to_numpy(self, params): return np.array(params['offset'].tolist() + [params['freq'], params['amplitude'], params['ring_width']] + params['intensity']) def convert_from_numpy(self, numpy_record): return {'offset' : numpy_record[0:2].tolist(), 'freq' : numpy_record[2], 'amplitude' : numpy_record[3], 'ring_width' : numpy_record[4], 'intensity' : numpy_record[4:7].tolist() } class PlasmaNoise(Transform): name = 'plasma_noise' tags = ['new_corruption', 'imagenet_c_bar'] def sample_parameters(self): time = np.random.uniform(low=0.0, high=6*np.pi) iterations = np.random.randint(low=4, high=7) sharpness = np.random.uniform(low=0.5, high=1.0) scale = np.random.uniform(low=0.075, high=0.2) * self.im_size intensity = float_parameter(self.severity,64) return {'time' : time, 'iterations' : iterations, 'sharpness' : sharpness, 'scale' : scale, 'intensity' : intensity} def transform(self, image, time, iterations, sharpness, scale, intensity): def kernel(x, y, rand, iters, sharp, scale): x /= scale y /= scale i = np.array([1.0, 1.0, 1.0, 0.0]) for s in range(iters): r = np.array([np.cos(y * i[0] - i[3] + rand / i[1]), np.sin(x * i[0] - i[3] + rand / i[1])]) / i[2] r += np.array([-r[1],r[0]]) * 0.3 x += r[0] y += r[1] i *= np.array([1.93, 1.15, (2.25 - sharp), rand * i[1]]) r = np.sin(x - rand) b = np.sin(y + rand) g = np.sin((x + y + np.sin(rand))*0.5) return [r,g,b] noise = np.array([[kernel(x,y, time, iterations, sharpness, scale)\ for x in range(self.im_size)] for y in range(self.im_size)]) return np.clip((1-intensity/255) * image + intensity * noise, 0, 255).astype(np.uint8) class VoronoiNoise(Transform): name = 'voronoi_noise' tags = ['new_corruption'] def sample_parameters(self): seed = np.random.uniform(low=0, high=10) density = np.random.uniform(low=0.5, high=0.9) size = np.random.uniform(low=0.05, high=0.2) * self.im_size intensity = float_parameter(self.severity,255) if np.random.uniform() > 0.5: intensity = -intensity return {'seed' : seed, 'density' : density, 'size' : size, 'intensity' : intensity} def transform(self, image, size, seed, density, intensity): def voronoi_hash(v, time): m = np.array([[13.85, 47.77], [99.41, 88.48]]) w = np.matmul(m,v) return (np.sin(w) * np.sqrt(w) * time * 0.0025) % 1 def kernel(x, y, size, seed, density): v = np.array([[x],[y]]) / size + 1 g = v // 1 f = v % 1 dist = 1.0 for i in [-1,0,1]: for j in [-1,0,1]: p = np.array([[i],[j]]) curr_dist = np.linalg.norm((p + voronoi_hash(g+p, seed) - f).flatten()) dist = min(curr_dist, dist) r = smoothstep(0, 1, dist * density) - 0.5 return r noise = np.array([[kernel(x,y, size, seed, density)\ for x in range(self.im_size)] for y in range(self.im_size)]) noise = np.stack((noise, noise, noise), axis=2) return np.clip(image + intensity * noise, 0, 255).astype(np.uint8) class CausticNoise(Transform): name = 'caustic_noise' tags = ['new_corruption'] def sample_parameters(self): time = np.random.uniform(low=0.5, high=2.0) size = np.random.uniform(low=0.75, high=1.25) * self.im_size #size = self.im_size intensity = float_parameter(self.severity, 255) return { 'time' : time, 'size' : size, 'intensity' : intensity} def transform(self, image, time, size, intensity): def kernel(point, time, size): point = point / size p = (point % 1) * 6.28318530718 - 250 i = p.copy() c = 1.0 inten = 0.005 for n in range(5): t = time * (1.0 - (3.5 / (n+1))) i = p + np.array([np.cos(t-i[0])+np.sin(t+i[1]),np.sin(t-i[1])+np.cos(t+i[0])]) length = np.sqrt((p[0] / (np.sin(i[0]+t)/inten))**2 + (p[1] / (np.cos(i[1]+t)/inten))**2) c += 1.0/length c /= 5.0 c = 1.17 - c ** 1.4 color = np.clip(np.abs(c) ** 8.0, 0, 1) return np.array([color, color, color]) noise = np.array([[kernel(np.array([y,x]), time, size)\ for x in range(self.im_size)] for y in range(self.im_size)]) return np.clip(image + intensity * noise, 0, 255).astype(np.uint8) class Sparkles(Transform): name = 'sparkles' tags = ['new_corruption', 'imagenet_c_bar', 'cifar_c_bar'] def sample_parameters(self): centers = np.random.uniform(low=0, high=self.im_size, size=(5, 2)) radii = np.array([float_parameter(self.severity, 0.1)\ for i in range(5)]) * self.im_size amounts = np.array([50 for i in range(5)]) color = np.array([255, 255, 255]) randomness = 25 seed = np.random.randint(low=0, high=2**32) nrays = np.random.randint(low=50, high=200, size=5) return {'centers' : centers, 'radii' : radii, 'color' : color, 'randomness' : randomness, 'seed' : seed, 'nrays' : nrays, 'amounts' : amounts } def transform(self, image, centers, radii, nrays, amounts, color, randomness, seed): def kernel(point, value, center, radius, ray_lengths, amount, color): rays = len(ray_lengths) dp = point - center dist = np.linalg.norm(dp) angle = np.arctan2(dp[1], dp[0]) d = (angle + np.pi) / (2 * np.pi) * rays i = int(d) f = d - i if radius != 0: length = ray_lengths[i % rays] + f * (ray_lengths[(i+1) % rays] - ray_lengths[i % rays]) g = length**2 / (dist**2 + 1e-4) g = g ** ((100 - amount) / 50.0) f -= 0.5 f = 1 - f**2 f *= g f = np.clip(f, 0, 1) return value + f * (color - value) random_state = np.random.RandomState(seed=seed) for center, rays, amount, radius in zip(centers, nrays, amounts, radii): ray_lengths = [max(1,radius + randomness / 100.0 * radius * random_state.randn())\ for i in range(rays)] image = np.array([[kernel(np.array([y,x]), image[y,x,:].astype(np.float32), center, radius, ray_lengths, amount, color)\ for x in range(self.im_size)] for y in range(self.im_size)]) return np.clip(image, 0, 255).astype(np.uint8) class InverseSparkles(Transform): name = 'inverse_sparkles' tags = ['new_corruption', 'imagenet_c_bar', 'cifar_c_bar'] def sample_parameters(self): center = np.random.uniform(low=0.25, high=0.75, size=2) * self.im_size radius = 0.25 * self.im_size amount = 100 amount = float_parameter(self.severity, 65) amount = 100 - amount color = np.array([255, 255, 255]) randomness = 25 seed = np.random.randint(low=0, high=2**32) rays = np.random.randint(low=50, high=200) return {'center' : center, 'radius' : radius, 'color' : color, 'randomness' : randomness, 'seed' : seed, 'rays' : rays, 'amount' : amount } def transform(self, image, center, radius, rays, amount, color, randomness, seed): def kernel(point, value, center, radius, ray_lengths, amount, color): rays = len(ray_lengths) dp = point - center dist = np.linalg.norm(dp) angle = np.arctan2(dp[1], dp[0]) d = (angle + np.pi) / (2 * np.pi) * rays i = int(d) f = d - i if radius != 0: length = ray_lengths[i % rays] + f * (ray_lengths[(i+1) % rays] - ray_lengths[i % rays]) g = length**2 / (dist**2 + 1e-4) g = g ** ((100 - amount) / 50.0) f -= 0.5 f = 1 - f**2 f *= g f = np.clip(f, 0, 1) return color + f * (value - color) random_state = np.random.RandomState(seed=seed) ray_lengths = [radius + randomness / 100.0 * radius * random_state.randn()\ for i in range(rays)] out = np.array([[kernel(np.array([y,x]), image[y,x,:].astype(np.float32), center, radius, ray_lengths, amount, color)\ for x in range(self.im_size)] for y in range(self.im_size)]) return np.clip(out, 0, 255).astype(np.uint8) class PerlinNoise(Transform): name = 'perlin_noise' tags = ['new_corruption', 'imagenet_c_bar'] def sample_parameters(self): m = np.array([[1,0],[0,1]]) / (32 * self.im_size / 224) turbulence = 16.0 gain = 0.5 bias = 0.5 alpha = float_parameter(self.severity, 0.50) seed = np.random.randint(low=0, high=2**32) return {'m': m, 'turbulence' : turbulence, 'seed': seed, 'gain': gain, 'bias': bias, 'alpha': alpha} def transform(self, image, m, turbulence, seed, gain, bias, alpha): random_state = np.random.RandomState(seed=seed) noise = PerlinNoiseGenerator(random_state) def kernel(point, m, turbulence, gain, bias): npoint = np.matmul(point, m) f = noise.turbulence(npoint[0], npoint[1], turbulence)\ if turbulence != 1.0 else noise.noise(npoint[0], npoint[1]) f = gain * f + bias return np.clip(np.array([f,f,f]),0,1.0) noise = np.array([[kernel(np.array([y,x]),m,turbulence,gain, bias) for x in range(self.im_size)]\ for y in range(self.im_size)]) out = (1 - alpha) * image.astype(np.float32) + 255 * alpha * noise return np.clip(out, 0, 255).astype(np.uint8) class BlueNoise(Transform): name = 'blue_noise' tags = ['new_corruption'] def sample_parameters(self): seed = np.random.randint(low=0, high=2**32) intensity = float_parameter(self.severity, 196) return {'seed' : seed, 'intensity' : intensity} def gen_noise(self, random_state): center = self.im_size / 2 power = np.array([[np.linalg.norm(np.array([x,y])-center)\ for x in range(self.im_size)] for y in range(self.im_size)]) phases = random_state.uniform(low=0, high=2*np.pi, size=(self.im_size, self.im_size//2)) if self.im_size % 2 == 0: phases = np.concatenate((phases, phases[::-1,::-1]), axis=1) else: center_freq = random_state.uniform(low=0, high=2*np.pi, size=(self.im_size//2, 1)) center_freq = np.concatenate((center_freq, np.array([[0.0]]), center_freq[::-1,:]), axis=0) phases = np.concatenate((phases, center_freq, phases[::-1,::-1]), axis=1) fourier_space_noise = power * (np.cos(phases) + np.sin(phases) * 1j) fourier_space_noise = np.roll(fourier_space_noise, self.im_size//2, axis=0) fourier_space_noise = np.roll(fourier_space_noise, self.im_size//2, axis=1) noise = np.real(ifft2(fourier_space_noise)) noise = noise / np.std(noise) return noise def transform(self, image, seed, intensity): random_state = np.random.RandomState(seed=seed) noise = np.stack([self.gen_noise(random_state) for i in range(3)],axis=2) return np.clip(image + intensity * noise, 0, 255).astype(np.uint8) class BrownishNoise(Transform): name = 'brownish_noise' tags = ['new_corruption', 'imagenet_c_bar', 'cifar_c_bar'] def sample_parameters(self): seed = np.random.randint(low=0, high=2**32) intensity = float_parameter(self.severity, 64) return {'seed' : seed, 'intensity' : intensity} def gen_noise(self, random_state): center = self.im_size / 2 power = np.array([[1/(np.linalg.norm(np.array([x,y])-center)**2+1)\ for x in range(self.im_size)] for y in range(self.im_size)]) phases = random_state.uniform(low=0, high=2*np.pi, size=(self.im_size, self.im_size//2)) if self.im_size % 2 == 0: phases = np.concatenate((phases, phases[::-1,::-1]), axis=1) else: center_freq = random_state.uniform(low=0, high=2*np.pi, size=(self.im_size//2, 1)) center_freq = np.concatenate((center_freq, np.array([[0.0]]), center_freq[::-1,:]), axis=0) phases = np.concatenate((phases, center_freq, phases[::-1,::-1]), axis=1) fourier_space_noise = power * (np.cos(phases) + np.sin(phases) * 1j) fourier_space_noise = np.roll(fourier_space_noise, self.im_size//2, axis=0) fourier_space_noise = np.roll(fourier_space_noise, self.im_size//2, axis=1) noise = np.real(ifft2(fourier_space_noise)) noise = noise / np.std(noise) return noise def transform(self, image, seed, intensity): random_state = np.random.RandomState(seed=seed) noise = np.stack([self.gen_noise(random_state) for i in range(3)],axis=2) return np.clip(image + intensity * noise, 0, 255).astype(np.uint8) class BleachBypass(Transform): name = 'bleach_bypass' tags = ['new_corruption'] def sample_parameters(self): amount = float_parameter(self.severity, 1.0) return { 'amount' : amount } def transform(self, image, amount): vals = np.array([0.2126, 0.7152, 0.0722]).reshape(1,1,3) luma = np.sum(image*vals, axis=2, keepdims=True)/255 l = np.clip(10.0 * (luma - 0.45), 0, 1.0) result1 = 2 * image * luma / 255 result2 = 1.0 - 2.0 * (1.0 - luma) * (1.0 - image /255) out = ((1-l) * result1 + l * result2) * 255 return ((1-amount) * image + amount * out).astype(np.uint8) class Technicolor(Transform): name = 'technicolor' tags = ['new_corruption'] def sample_parameters(self): amount = float_parameter(self.severity, 1.0) return { 'amount' : amount } def transform(self, image, amount): redmatte = 1.0 - (image[:,:,0]/255 - ((image[:,:,1]/2+image[:,:,2]/2))/255) greenmatte = 1.0 - (image[:,:,1]/255 - ((image[:,:,0]/2+image[:,:,2]/2))/255) bluematte = 1.0 - (image[:,:,2]/255 - ((image[:,:,0]/2+image[:,:,1]/2))/255) red = greenmatte * bluematte * image[:,:,0].astype(np.float32) green = redmatte * bluematte * image[:,:,1].astype(np.float32) blue = redmatte * greenmatte * image[:,:,2].astype(np.float32) new_color = np.stack((red, green, blue), axis=2) return ((1-amount) * image + amount * new_color).astype(np.uint8) class Pseudocolor(Transform): name = 'pseudocolor' tags = ['new_corruption'] def sample_parameters(self): smoothness = np.random.uniform(low=0.25, high=0.75) color0 = np.random.randint(low=0, high=255, size=3).astype(np.uint8) color1 = np.random.randint(low=0, high=255, size=3).astype(np.uint8) color2 = np.random.randint(low=0, high=255, size=3).astype(np.uint8) color3 = np.random.randint(low=0, high=255, size=3).astype(np.uint8) color4 = np.random.randint(low=0, high=255, size=3).astype(np.uint8) amount = float_parameter(self.severity, 0.5) return { 'smoothness' : smoothness, 'color0' : color0, 'color1': color1, 'color2': color2, 'color3' : color3, 'color4' : color4, 'amount' : amount } def transform(self, image, color0, color1, color2, color3, color4, smoothness, amount): color0 = color0.astype(np.uint8) color1 = color1.astype(np.uint8) color2 = color2.astype(np.uint8) color3 = color3.astype(np.uint8) color4 = color4.astype(np.uint8) def get_color(color0, color1, edge0, edge1, luma, smoothness): smooth_color = color0 + ((color1 - color0) * smoothstep(edge0, edge1, luma)) a = 4.0 * (luma - edge0) linear_color = (1 - a) * color0 + a * color1 return (1 - smoothness) * linear_color + smoothness * smooth_color vals = np.array([0.2126, 0.7152, 0.0722]).reshape(1,1,3) luma = np.sum(image.astype(np.float32)*vals, axis=2, keepdims=True)/255 c1 = get_color(color0, color1, 0.0, 0.25, luma, smoothness) c2 = get_color(color1, color2, 0.25, 0.50, luma, smoothness) c3 = get_color(color2, color3, 0.5, 0.75, luma, smoothness) c4 = get_color(color3, color4, 0.75, 1.0, luma, smoothness) out = (luma < 0.25) * c1 + ((luma >= 0.25)&(luma < 0.5)) * c2\ + ((luma >= 0.5)&(luma < 0.75)) * c3 + (luma >= 0.75) * c4 return np.clip((1 - amount) * image + amount * out, 0, 255).astype(np.uint8) def convert_to_numpy(self, params): colors = [] for i in range(5): colors.extend(params['color'+str(i)].tolist()) return np.array([params['smoothness']] + colors + [params['amount']]) def convert_from_numpy(self, numpy_record): params = {'smoothness' : numpy_record[0], 'amount' : numpy_record[16]} for i in range(5): params['color'+str(i)] = numpy_record[1+3*i:1+3*(i+1)] return params class HueShift(Transform): name = 'hue_shift' tags = ['new_corruption'] def sample_parameters(self): amount = float_parameter(self.severity, 0.5) if np.random.uniform() < 0.5: amount *= -1 return {'amount' : amount} def transform(self, image, amount): hsv_image = rgb2hsv(image.astype(np.float32)/255) hsv_image[:,:,0] += (amount % 1.0) return np.clip(hsv2rgb(hsv_image)*255, 0, 255).astype(np.uint8) class ColorDither(Transform): name = 'color_dither' tags = ['new_corruption'] def sample_parameters(self): levels = int_parameter(self.severity,10) levels = 14-levels return {'levels' : levels} def transform(self, image, levels): index = 0 color_map = [int(255 * i / (levels -1)) for i in range(levels)] div = [int(levels*i / 256) for i in range(256)] out = np.zeros_like(image) image_copy = image.copy() m = np.array([[0,0,0],[0,0,7],[3,5,1]]) for y in range(self.im_size): reverse = ((y % 1) == 1) if reverse: index = y*self.im_size + self.im_size - 1 direction = -1 else: index = y*self.im_size direction = 1 for x in range(self.im_size): curr_val = image_copy[index//self.im_size, index%self.im_size,:] new_val = np.array([color_map[div[c]] for c in curr_val]) out[index//self.im_size, index%self.im_size,:] = new_val e = curr_val - new_val for i in [-1,0,1]: iy = y+i if iy > 0 and iy < self.im_size: for j in [-1,0,1]: jx = x+j if jx > 0 and jx < self.im_size: if reverse: w = m[(i+1),-j+1] else: w = m[(i+1),j+1] if w != 0: k = index - j if reverse else index + j curr_val = image_copy[k//self.im_size, k%self.im_size,:].astype(np.float32) curr_val = np.clip(curr_val + e * w/np.sum(m),0,255).astype(np.uint8) image_copy[k//self.im_size,k%self.im_size,:] = curr_val index += direction return np.clip(out, 0, 255).astype(np.uint8) class ColorBalance(Transform): name = 'color_balance' tags = ['new_corruption'] def sample_parameters(self): shift = float_parameter(self.severity, 1.0) factor = 1.0 + np.random.choice([-1,1]) * shift return { 'factor' : factor} def transform(self, image, factor): enhancer = ImageEnhance.Color(Image.fromarray(image)) return np.array(enhancer.enhance(factor)) class CheckerBoardCutOut(Transform): name = 'checkerboard_cutout' tags = ['new_corruption', 'imagenet_c_bar', 'cifar_c_bar'] def sample_parameters(self): angle = np.random.uniform(low=0, high=2*np.pi) scales = np.maximum(np.random.uniform(low=0.1, high=0.25) * self.im_size, 1) scales = (scales, scales) fraction = float_parameter(self.severity, 1.0) seed = np.random.randint(low=0, high=2**32) return {'angle' : angle, 'scales' : scales, 'fraction' : fraction, 'seed' : seed} def transform(self, image, scales, angle, fraction, seed): random_state = np.random.RandomState(seed=seed) grid = random_state.uniform(size=(int(4*self.im_size//scales[0]), int(4*self.im_size//scales[1]))) < fraction def mask_kernel(point, scales, angle, grid): nx = (np.cos(angle) * point[0] + np.sin(angle) * point[1]) / scales[0] ny = (-np.sin(angle) * point[0] + np.cos(angle) * point[1]) / scales[1] return (int(nx % 2) != int(ny % 2)) or not grid[int(nx),int(ny)] out = np.array([[image[y,x,:] if mask_kernel([y,x], scales, angle, grid) else np.array([128,128,128])\ for x in range(self.im_size)] for y in range(self.im_size)]) return np.clip(out, 0, 255).astype(np.uint8) class Lines(Transform): name = 'lines' tags = ['new_corruption', 'cifar_c_bar'] def sample_parameters(self): length = 1.0 density = float_parameter(self.severity, 1.0) angle = np.random.uniform(low=0.0, high=2*np.pi) angle_variation = np.random.uniform(low=0.1, high=1.0) seed = np.random.randint(low=0, high=2**32) return {'length' : length, 'density' : density, 'angle' : angle, 'angle_variation' : angle_variation, 'seed' : seed} def transform(self, image, length, density, angle, angle_variation, seed): num_lines = int(density * self.im_size) l = length * self.im_size random_state = np.random.RandomState(seed=seed) out = image.copy() for i in range(num_lines): x = self.im_size * random_state.uniform() y = self.im_size * random_state.uniform() a = angle + 2 * np.pi * angle_variation * (random_state.uniform() - 0.5) s = np.sin(a) * l c = np.cos(a) * l x1 = int(x-c) x2 = int(x+c) y1 = int(y-s) y2 = int(y+s) rxc, ryc, rval = line_aa(x1, y1, x2, y2) xc, yc, val = [], [], [] for rx, ry, rv in zip(rxc, ryc, rval): if rx >= 0 and ry >= 0 and rx < self.im_size and ry < self.im_size: xc.append(rx) yc.append(ry) val.append(rv) xc, yc, val = np.array(xc, dtype=np.int), np.array(yc, dtype=np.int), np.array(val) out[xc, yc, :] = (1.0 - val.reshape(-1,1)) * out[xc, yc, :].astype(np.float32) + val.reshape(-1,1)*128 return out.astype(np.uint8) class BlueNoiseSample(Transform): name = 'blue_noise_sample' tags = ['new_corruption', 'imagenet_c_bar', 'cifar_c_bar'] def sample_parameters(self): seed = np.random.randint(low=0, high=2**32) threshold = float_parameter(self.severity, 3.0) - 2.5 return {'seed' : seed, 'threshold' : threshold} def transform(self, image, seed, threshold): random_state = np.random.RandomState(seed=seed) center = self.im_size / 2 power = np.array([[np.linalg.norm(np.array([x,y])-center)\ for x in range(self.im_size)] for y in range(self.im_size)]) phases = random_state.uniform(low=0, high=2*np.pi, size=(self.im_size, self.im_size//2)) if self.im_size % 2 == 0: phases = np.concatenate((phases, phases[::-1,::-1]), axis=1) else: center_freq = random_state.uniform(low=0, high=2*np.pi, size=(self.im_size//2, 1)) center_freq = np.concatenate((center_freq, np.array([[0.0]]), center_freq[::-1,:]), axis=0) phases = np.concatenate((phases, center_freq, phases[::-1,::-1]), axis=1) fourier_space_noise = power * (np.cos(phases) + np.sin(phases) * 1j) fourier_space_noise = np.roll(fourier_space_noise, self.im_size//2, axis=0) fourier_space_noise = np.roll(fourier_space_noise, self.im_size//2, axis=1) noise = np.real(ifft2(fourier_space_noise)) noise = noise / np.std(noise) mask = noise > threshold out = image * mask.reshape(self.im_size, self.im_size, 1) return np.clip(out, 0, 255).astype(np.uint8) class CausticRefraction(Transform): name = 'caustic_refraction' tags = ['new_corruption', 'imagenet_c_bar'] def sample_parameters(self): time = np.random.uniform(low=0.5, high=2.0) size = np.random.uniform(low=0.75, high=1.25) * self.im_size #size = self.im_size eta = 4.0 lens_scale = float_parameter(self.severity, 0.5*self.im_size) lighting_amount = float_parameter(self.severity, 2.0) softening = 1 return { 'time' : time, 'size' : size, 'eta' : eta, 'lens_scale' : lens_scale, 'lighting_amount': lighting_amount, 'softening' : softening} def transform(self, image, time, size, eta, lens_scale, lighting_amount, softening): def caustic_noise_kernel(point, time, size): point = point / size p = (point % 1) * 6.28318530718 - 250 i = p.copy() c = 1.0 inten = 0.005 for n in range(5): t = time * (1.0 - (3.5 / (n+1))) i = p + np.array([np.cos(t-i[0])+np.sin(t+i[1]),np.sin(t-i[1])+np.cos(t+i[0])]) length = np.sqrt((p[0] / (np.sin(i[0]+t)/inten))**2 + (p[1] / (np.cos(i[1]+t)/inten))**2) c += 1.0/length c /= 5.0 c = 1.17 - c ** 1.4 color = np.clip(np.abs(c) ** 8.0, 0, 1) return np.array([color, color, color]) def refract(incident, normal, eta): if np.abs(np.dot(incident, normal)) >= 1.0 - 1e-3: return incident angle = np.arccos(np.dot(incident, normal)) out_angle = np.arcsin(np.sin(angle) / eta) out_unrotated = np.array([np.cos(out_angle), np.sin(out_angle), 0.0]) spectator_dim = np.cross(incident, normal) spectator_dim /= np.linalg.norm(spectator_dim) orthogonal_dim = np.cross(normal, spectator_dim) rotation_matrix = np.stack((normal, orthogonal_dim, spectator_dim), axis=0) return np.matmul(np.linalg.inv(rotation_matrix), out_unrotated) def luma_at_offset(image, origin, offset): pixel_value = image[origin[0]+offset[0], origin[1]+offset[1], :]\ if origin[0]+offset[0] >= 0 and origin[0]+offset[0] < image.shape[0]\ and origin[1]+offset[1] >= 0 and origin[1]+offset[1] < image.shape[1]\ else np.array([0.0,0.0,0]) return np.dot(pixel_value, np.array([0.2126, 0.7152, 0.0722])) def luma_based_refract(point, image, caustics, eta, lens_scale, lighting_amount): north_luma = luma_at_offset(caustics, point, np.array([0,-1])) south_luma = luma_at_offset(caustics, point, np.array([0, 1])) west_luma = luma_at_offset(caustics, point, np.array([-1, 0])) east_luma = luma_at_offset(caustics, point, np.array([1,0])) lens_normal = np.array([east_luma - west_luma, south_luma - north_luma, 1.0]) lens_normal = lens_normal / np.linalg.norm(lens_normal) refract_vector = refract(np.array([0.0, 0.0, 1.0]), lens_normal, eta) * lens_scale refract_vector = np.round(refract_vector, 3) out_pixel = bilinear_interpolation(image, point+refract_vector[0:2]) out_pixel += (north_luma - south_luma) * lighting_amount out_pixel += (east_luma - west_luma) * lighting_amount return np.clip(out_pixel, 0, 1) noise = np.array([[caustic_noise_kernel(np.array([y,x]), time, size)\ for x in range(self.im_size)] for y in range(self.im_size)]) noise = gaussian_filter(noise, sigma=softening) image = image.astype(np.float32) / 255 out = np.array([[luma_based_refract(np.array([y,x]), image, noise, eta, lens_scale, lighting_amount)\ for x in range(self.im_size)] for y in range(self.im_size)]) return np.clip((out * 255).astype(np.uint8), 0, 255) class PinchAndTwirl(Transform): name = 'pinch_and_twirl' tags = ['new_corruption', 'cifar_c_bar'] def sample_parameters(self): num_per_axis = 5 if self.im_size==224 else 3 angles = np.array([np.random.choice([1,-1]) * float_parameter(self.severity, np.pi/2) for i in range(num_per_axis ** 2)]).reshape(num_per_axis, num_per_axis) amount = float_parameter(self.severity, 0.4) + 0.1 return {'num_per_axis' : num_per_axis, 'angles' : angles, 'amount' : amount} def transform(self, image, num_per_axis, angles, amount): def warp_kernel(point, center, radius, amount, angle): dx = point[0] - center[0] dy = point[1] - center[1] dist = np.linalg.norm(point - center) if dist > radius or np.round(dist, 3) == 0.0: return point d = dist / radius t = np.sin(np.pi * 0.5 * d) ** (- amount) dx *= t dy *= t e = 1 - d a = angle * (e ** 2) out = center + np.array([dx*np.cos(a) - dy*np.sin(a), dx*np.sin(a) + dy*np.cos(a)]) return out out = image.copy().astype(np.float32) grid_size = self.im_size // num_per_axis radius = grid_size / 2 for i in range(num_per_axis): for j in range(num_per_axis): l, r = i * grid_size, (i+1) * grid_size u, d = j * grid_size, (j+1) * grid_size center = np.array([u+radius, l+radius]) out[u:d,l:r,:] = np.array([[bilinear_interpolation(out, warp_kernel(np.array([y,x]), center, radius, amount, angles[i,j]))\ for x in np.arange(l,r)] for y in np.arange(u,d)]) return np.clip(out, 0, 255).astype(np.uint8) class FishEye(Transform): name = 'fish_eye' tags = ['new_corruption'] def sample_parameters(self): seed = np.random.randint(low=0, high=2**32) density = 0.01 * 224**2 / (self.im_size**2) eta = float_parameter(self.severity, 2.0) + 1.0 radius = max(0.05 * self.im_size, 3) return {'seed' : seed, 'density' : density, 'eta': eta, 'radius' : radius} def transform(self, image, density, eta, radius, seed): def warp_kernel(point, center, a, b, eta): dx = point[0] - center[0] dy = point[1] - center[1] x2 = dx**2 y2 = dy**2 a2 = a**2 b2 = b**2 if (y2 >= (b2 - b2*x2/a2)): return point r = 1.0 / eta z = np.sqrt((1.0 - x2/a2 - y2/b2) * (a*b)) z2 = z**2 x_angle = np.arccos(dx / np.sqrt(x2+z2)) angle_1 = np.pi/2 - x_angle angle_2 = np.arcsin(np.sin(angle_1)*r) angle_2 = np.pi/2 - x_angle - angle_2 out_x = point[0] - np.tan(angle_2)*z y_angle = np.arccos(dy / np.sqrt(y2+z2)) angle_1 = np.pi/2 - y_angle angle_2 = np.arcsin(np.sin(angle_1)*r) angle_2 = np.pi/2 - y_angle - angle_2 out_y = point[1] - np.tan(angle_2)*z return np.array([out_x, out_y]) random_state = np.random.RandomState(seed=seed) num = int(density * self.im_size**2) out = image.copy().astype(np.float32) for i in range(num): center = random_state.uniform(low=0, high=self.im_size, size=2) l = max(np.floor(center[1]-radius).astype(np.int), 0) r = min(np.ceil(center[1]+radius).astype(np.int), self.im_size) u = max(np.floor(center[0]-radius).astype(np.int), 0) d = min(np.ceil(center[0]+radius).astype(np.int), self.im_size) out[u:d,l:r,:] = np.array([[bilinear_interpolation(out, warp_kernel(np.array([y,x]), center, radius, radius, eta)) for x in np.arange(l,r)] for y in np.arange(u,d)]) return np.clip(out, 0, 255).astype(np.uint8) class WaterDrop(Transform): name = 'water_drop' tags = ['new_corruption'] def sample_parameters(self): center = np.array([self.im_size //2, self.im_size//2]) center = np.random.uniform(low=0.25, high=0.75, size=2) * self.im_size radius = self.im_size//2 amplitude = float_parameter(self.severity, 0.25) wavelength = np.random.uniform(low=0.05, high=0.2) * self.im_size phase = np.random.uniform(low=0.0, high=2*np.pi) return {'center': center, 'radius' : radius, 'amplitude' : amplitude, 'wavelength' : wavelength, 'phase': phase} def transform(self, image, center, radius, amplitude, wavelength, phase): def warp_kernel(point, center, radius, amplitude, wavelength, phase): dx, dy = point - center dist = np.linalg.norm(point-center) if dist > radius: return point amount = amplitude * np.sin(dist / wavelength * np.pi * 2 - phase) if dist != 0.0: amount *= wavelength / dist return point + amount * (point - center) image = np.array([[bilinear_interpolation(image, warp_kernel(np.array([y,x]), center, radius, amplitude, wavelength, phase))\ for x in range(self.im_size)] for y in range(self.im_size)]) return np.clip(image, 0, 255).astype(np.uint8) class Ripple(Transform): name = 'ripple' tags = ['new_corruption', 'cifar_c_bar'] def sample_parameters(self): amplitudes = np.array([float_parameter(self.severity, 0.025)\ for i in range(2)]) * self.im_size wavelengths = np.random.uniform(low=0.1, high=0.3, size=2) * self.im_size phases = np.random.uniform(low=0, high=2*np.pi, size=2) return {'amplitudes' : amplitudes, 'wavelengths' : wavelengths, 'phases' : phases} def transform(self, image, wavelengths, phases, amplitudes): def warp_kernel(point, wavelengths, phases, amplitudes): return point + amplitudes * np.sin(2 * np.pi * point / wavelengths + phases) image = np.array([[bilinear_interpolation(image, warp_kernel(np.array([y,x]), wavelengths, phases, amplitudes))\ for x in range(self.im_size)] for y in range(self.im_size)]) return np.clip(image, 0, 255).astype(np.uint8) class PerspectiveNoBars(Transform): name = 'perspective_no_bars' tags = ['new_corruption'] def sample_parameters(self): offset_x = float_parameter(self.severity, 0.1) if np.random.uniform() > 0.5: offset_x = -offset_x offset_y = float_parameter(self.severity, 0.1) if np.random.uniform() > 0.5: offset_y = -offset_y shift_x = float_parameter(self.severity, self.im_size / 10) if np.random.uniform() > 0.5: shift_x = -shift_x shift_y = float_parameter(self.severity, self.im_size / 10) if np.random.uniform() > 0.5: shift_y = -shift_y factor_x = float_parameter(self.severity, 0.15) if np.random.uniform() > 0.5: factor_x = -factor_x factor_x = 2 ** factor_x factor_y = float_parameter(self.severity, 0.15) if np.random.uniform() > 0.5: factor_y = -factor_y factor_y = 2 ** factor_y denom_x = float_parameter(self.severity, 0.2 / self.im_size) if np.random.uniform() > 0.5: denom_x = denom_x denom_y = float_parameter(self.severity, 0.2 / self.im_size) if np.random.uniform() > 0.5: denom_y = denom_y perspective_params = np.array([factor_x, offset_x, shift_x,offset_y, factor_y, shift_y, denom_x, denom_y]) return {'perspective_params' : perspective_params} def transform(self, image, perspective_params): im = Image.fromarray(image) im = im.transform( (self.im_size, self.im_size), Image.PERSPECTIVE, perspective_params, resample=Image.BILINEAR ) im = np.array(im).astype(np.float32) mask = Image.fromarray(np.ones_like(image).astype(np.uint8)*255) mask = mask.transform( (self.im_size, self.im_size), Image.PERSPECTIVE, perspective_params, resample=Image.BILINEAR ) mask = np.array(mask).astype(np.float32) / 255 im = mask * im + (1-mask) * image return im.astype(np.uint8) def convert_to_numpy(self, params): return params['perspective_params'] def convert_from_numpy(self, numpy_record): return {'perspective_params' : numpy_record} class QuadrilateralNoBars(Transform): name = 'quadrilateral_no_bars' tags = ['new_corruption'] def sample_parameters(self): points = np.array([ [0,0], [0, self.im_size], [self.im_size, self.im_size], [self.im_size, 0] ]).astype(np.float32) shift = float_parameter(self.severity, self.im_size / 3) * np.random.uniform(low=-1,high=1, size=(4,2)) points += shift return {'points' : points} def transform(self, image, points): im = Image.fromarray(image) im = im.transform( (self.im_size, self.im_size), Image.QUAD, points.flatten(), resample=Image.BILINEAR ) im = np.array(im).astype(np.float32) mask = Image.fromarray(np.ones_like(image).astype(np.uint8)*255) mask = mask.transform( (self.im_size, self.im_size), Image.QUAD, points.flatten(), resample=Image.BILINEAR ) mask = np.array(mask).astype(np.float32) / 255 im = mask * im + (1-mask) * image return im.astype(np.uint8) def convert_to_numpy(self, params): return params['points'].flatten() def convert_from_numpy(self, numpy_record): return {'points' : numpy_record.reshape(4,2)} class Scatter(Transform): name = 'scatter' tags = ['new_corruption'] def sample_parameters(self): seed = np.random.uniform(low=0.0, high=10.0) radius = float_parameter(self.severity, self.im_size/10) return {'seed' : seed, 'radius' : radius} def transform(self, image, seed, radius): def noise(x, y, seed): i, j = np.sin(x * seed), np.cos(y * seed) return (np.sin(12.9898*i + 78.233*j) * 43758.5453) % 1 def warp_kernel(x, y, seed, radius): x_offset = radius * (-1.0 + noise(x, y, seed) * 2) y_offset = radius * (-1.0 + noise(y, x, seed) * 2) x_new = min(max(0, x+x_offset), self.im_size-1) y_new = min(max(0, y+y_offset), self.im_size-1) return y_new, x_new out = np.array([[bilinear_interpolation(image, warp_kernel(x, y, seed, radius))\ for x in range(self.im_size)] for y in range(self.im_size)]) return out.astype(np.uint8) class ChromaticAbberation(Transform): name = 'chromatic_abberation' tags = ['new_corruption'] def sample_parameters(self): angles = np.random.uniform(low=0, high=2*np.pi, size=3) dists = np.array([float_parameter(self.severity, self.im_size / 10)\ for i in range(3)]) shifts = np.array([[np.cos(a)*d, np.sin(a)*d] for a, d in zip(angles, dists)]) return { 'rgb_shifts' : shifts} def transform(self, image, rgb_shifts): out = image.copy() for i in range(3): out[:,:,i] = shift(image[:,:,i], rgb_shifts[i], prefilter=False) return out def convert_to_numpy(self, params): return params['rgb_shifts'].flatten() def convert_from_numpy(self, numpy_record): return {'rgb_shifts' : numpy_record.reshape(3,2).astype(np.int)} class TransverseChromaticAbberation(Transform): name = 'transverse_chromatic_abberation' tags = ['new_corruption', 'cifar_c_bar'] def sample_parameters(self): scales = np.array([float_parameter(self.severity, 0.5)\ for i in range(3)]) scale = float_parameter(self.severity, 0.5) scales = np.array([1.0, 1.0+scale/2, 1.0+scale]) scales = scales[np.random.permutation(3)] return { 'scales' : scales } def transform(self, image, scales): out = image.copy() for c in range(3): zoomed = zoom(image[:,:,c], scales[c], prefilter=False) edge = (zoomed.shape[0]-self.im_size)//2 out[:,:,c] = zoomed[edge:edge+self.im_size, edge:edge+self.im_size] return out.astype(np.uint8) def convert_to_numpy(self, params): return params['scales'].flatten() def convert_from_numpy(self, numpy_record): return {'scales' : numpy_record} class CircularMotionBlur(Transform): name = 'circular_motion_blur' tags = ['new_corruption', 'cifar_c_bar'] def sample_parameters(self): amount = float_parameter(self.severity,15) return {'amount' : amount} def transform(self, image, amount): num = 21 factors = [] rotated = [] image = image.astype(np.float32) / 255 for i in range(num): angle = (2*i/(num-1) - 1) * amount rotated.append(rotate(image, angle, reshape=False)) factors.append(np.exp(- 2*(2*i/(num-1)-1)**2)) out = np.zeros_like(image) for i, f in zip(rotated, factors): out += f * i out /= sum(factors) return np.clip(out*255, 0, 255).astype(np.uint8)
augmentation-corruption-fbr_main
imagenet_c_bar/corrupt.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import argparse import torchvision as tv from transform_finder import build_transform from utils.converters import PilToNumpy, NumpyToPil import os import numpy as np import torch parser = argparse.ArgumentParser(description="Make CIFAR-10-C-Bar") parser.add_argument('--cifar_dir', type=str, required=True, help='The path to the CIFAR-10 dataset. This path should contain ' 'the folder cifar-10-batches-py/') parser.add_argument('--out_dir', type=str, default='.', help='The path to where CIFAR-10-C will be saved.') parser.add_argument('--num_workers', type=int, default=10, help='The number of workers to build images with.') parser.add_argument('--batch_size', type=int, default=200, help='Batch size of torch data loader used to parallelize ' 'data processing.') parser.add_argument('--seed', type=int, default=0, help='The random seed used to generate corruptions.') parser.add_argument('--corruption_file', type=str, default='imagenet_c_bar.csv', help='A file that specifies which corruptions in which severities ' 'to produce. Path is relative to the script.') def read_corruption_csv(filename): with open(filename) as f: lines = [l.rstrip() for l in f.readlines()] corruptions = {} for line in lines: vals = line.split(",") if not vals: continue corruptions[vals[0]] = [float(v) for v in vals[1:]] return corruptions def main(): args = parser.parse_args() dataset_path = args.cifar_dir out_dir = os.path.join(args.out_dir, 'CIFAR-10-C-Bar') bs = args.batch_size if not os.path.exists(out_dir): os.mkdir(out_dir) file_dir = os.path.dirname(os.path.realpath(__file__)) corruption_csv = os.path.join(file_dir, 'cifar10_c_bar.csv') corruptions = read_corruption_csv(corruption_csv) for name, severities in corruptions.items(): data = np.zeros((len(severities)*10000, 32, 32, 3)).astype(np.uint8) labels = np.zeros(len(severities)*10000).astype(np.int) for i, severity in enumerate(severities): print("Starting {}-{:.2f}...".format(name, severity)) transform = tv.transforms.Compose([ PilToNumpy(), build_transform(name=name, severity=severity, dataset_type='cifar'), ]) dataset = tv.datasets.CIFAR10(dataset_path, train=False, download=False, transform=transform) loader = torch.utils.data.DataLoader( dataset, shuffle=False, sampler=None, drop_last=False, pin_memory=False, num_workers=args.num_workers, batch_size=bs ) for j, (im, label) in enumerate(loader): if im.size(0)==bs: data[i*10000+j*bs:i*10000+bs*(j+1),:,:,:] = im.numpy().astype(np.uint8) labels[i*10000+j*bs:i*10000+bs*(j+1)] = label.numpy() else: data[i*10000+j:,:,:,:] = im.numpy().astype(np.uint8) labels[i*10000+j:] = label.numpy() out_file = os.path.join(out_dir, name + ".npy") print("Saving {} to {}.".format(name, out_file)) np.save(out_file, data) labels_file = os.path.join(out_dir, "labels.npy") np.save(labels_file, labels) if __name__=="__main__": main()
augmentation-corruption-fbr_main
imagenet_c_bar/make_cifar10_c_bar.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import abc import numpy as np def is_iterable(obj): try: iter(obj) except: return False else: return True class Transform(abc.ABC): name = "abstract_transform" def __init__(self, severity, im_size, record=False, max_intensity=False, **kwargs): self.im_size = im_size self.severity = severity self.record = record self.max_intensity = max_intensity @abc.abstractmethod def transform(self, image, **kwargs): ... @abc.abstractmethod def sample_parameters(self): ... def __call__(self, image): params = self.sample_parameters() out = self.transform(image, **params) if self.record: return out, params return out def convert_to_numpy(self, params): out = [] for k, v in params.items(): if isinstance(v, np.ndarray): out.extend(v.flatten().tolist()) elif is_iterable(v): out.extend([x for x in v]) else: out.append(v) return np.array(out) def convert_from_numpy(self, numpy_record): param_signature = self.sample_parameters() #assert len(param_signature.keys())<=len(numpy_record), "Mismatched numpy_record." offset = 0 for k, v in param_signature.items(): if isinstance(v, np.ndarray): num = len(v.flatten()) data = numpy_record[offset:offset+num] if v.dtype==np.int or v.dtype==np.uint: data = np.round(data, 3) data = data.astype(v.dtype) param_signature[k] = data.reshape(v.shape) offset += num elif is_iterable(v): data = [] for x in v: if type(x) == 'int': data.append(int(np.round(numpy_record[offset],3))) else: data.append(type(x)(numpy_record[offset])) offset += 1 param_signature[k] = data else: if type(v) == 'int': param_signature[k] = int(np.round(numpy_record[offset],3)) else: param_signature[k] = type(v)(numpy_record[offset]) offset += 1 return param_signature
augmentation-corruption-fbr_main
imagenet_c_bar/base.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np from PIL import Image import torch class PilToNumpy(object): def __init__(self, as_float=False, scaled_to_one=False): self.as_float = as_float self.scaled_to_one = scaled_to_one assert (not scaled_to_one) or (as_float and scaled_to_one),\ "Must output a float if rescaling to one." def __call__(self, image): if not self.as_float: return np.array(image).astype(np.uint8) elif notself.scaled_to_one: return np.array(image).astype(np.float32) else: return np.array(image).astype(np.float32) / 255 class NumpyToPil(object): def __init__(self): pass def __call__(self, image): return Image.fromarray(image) class NumpyToTensor(object): def __init__(self, HWC_to_CHW=True, bit_to_float=True): self.HWC_to_CHW = HWC_to_CHW self.bit_to_float = bit_to_float pass def __call__(self, image): image = image.astype(np.float32) if self.bit_to_float: image /= 255 if self.HWC_to_CHW: image = image.transpose(2,0,1) return torch.Tensor(image)
augmentation-corruption-fbr_main
imagenet_c_bar/utils/converters.py