python_code
stringlengths
0
4.04M
repo_name
stringlengths
8
58
file_path
stringlengths
5
147
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import datetime import numpy as np import time import torch import torch.nn as nn import torch.backends.cudnn as cudnn import json import os from pathlib import Path from timm.data.mixup import Mixup from timm.models import create_model from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy from timm.utils import ModelEma from optim_factory import create_optimizer, LayerDecayValueAssigner from datasets import build_dataset from engine import train_one_epoch, evaluate from utils import NativeScalerWithGradNormCount as NativeScaler import utils import models.convnext import models.convnext_isotropic def str2bool(v): """ Converts string to bool type; enables command line arguments in the format of '--arg1 true --arg2 false' """ if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def get_args_parser(): parser = argparse.ArgumentParser('ConvNeXt training and evaluation script for image classification', add_help=False) parser.add_argument('--batch_size', default=64, type=int, help='Per GPU batch size') parser.add_argument('--epochs', default=300, type=int) parser.add_argument('--update_freq', default=1, type=int, help='gradient accumulation steps') # Model parameters parser.add_argument('--model', default='convnext_tiny', type=str, metavar='MODEL', help='Name of model to train') parser.add_argument('--drop_path', type=float, default=0, metavar='PCT', help='Drop path rate (default: 0.0)') parser.add_argument('--input_size', default=224, type=int, help='image input size') parser.add_argument('--layer_scale_init_value', default=1e-6, type=float, help="Layer scale initial values") # EMA related parameters parser.add_argument('--model_ema', type=str2bool, default=False) parser.add_argument('--model_ema_decay', type=float, default=0.9999, help='') parser.add_argument('--model_ema_force_cpu', type=str2bool, default=False, help='') parser.add_argument('--model_ema_eval', type=str2bool, default=False, help='Using ema to eval during training.') # Optimization parameters parser.add_argument('--opt', default='adamw', type=str, metavar='OPTIMIZER', help='Optimizer (default: "adamw"') parser.add_argument('--opt_eps', default=1e-8, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: 1e-8)') parser.add_argument('--opt_betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: None, use opt default)') parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)') parser.add_argument('--weight_decay', type=float, default=0.05, help='weight decay (default: 0.05)') parser.add_argument('--weight_decay_end', type=float, default=None, help="""Final value of the weight decay. We use a cosine schedule for WD and using a larger decay by the end of training improves performance for ViTs.""") parser.add_argument('--lr', type=float, default=4e-3, metavar='LR', help='learning rate (default: 4e-3), with total batch size 4096') parser.add_argument('--layer_decay', type=float, default=1.0) parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (1e-6)') parser.add_argument('--warmup_epochs', type=int, default=20, metavar='N', help='epochs to warmup LR, if scheduler supports') parser.add_argument('--warmup_steps', type=int, default=-1, metavar='N', help='num of steps to warmup LR, will overload warmup_epochs if set > 0') # Augmentation parameters parser.add_argument('--color_jitter', type=float, default=0.4, metavar='PCT', help='Color jitter factor (default: 0.4)') parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME', help='Use AutoAugment policy. "v0" or "original". " + "(default: rand-m9-mstd0.5-inc1)'), parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)') parser.add_argument('--train_interpolation', type=str, default='bicubic', help='Training interpolation (random, bilinear, bicubic default: "bicubic")') # Evaluation parameters parser.add_argument('--crop_pct', type=float, default=None) # * Random Erase params parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT', help='Random erase prob (default: 0.25)') parser.add_argument('--remode', type=str, default='pixel', help='Random erase mode (default: "pixel")') parser.add_argument('--recount', type=int, default=1, help='Random erase count (default: 1)') parser.add_argument('--resplit', type=str2bool, default=False, help='Do not random erase first (clean) augmentation split') # * Mixup params parser.add_argument('--mixup', type=float, default=0.8, help='mixup alpha, mixup enabled if > 0.') parser.add_argument('--cutmix', type=float, default=1.0, help='cutmix alpha, cutmix enabled if > 0.') parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None, help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)') parser.add_argument('--mixup_prob', type=float, default=1.0, help='Probability of performing mixup or cutmix when either/both is enabled') parser.add_argument('--mixup_switch_prob', type=float, default=0.5, help='Probability of switching to cutmix when both mixup and cutmix enabled') parser.add_argument('--mixup_mode', type=str, default='batch', help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"') # * Finetuning params parser.add_argument('--finetune', default='', help='finetune from checkpoint') parser.add_argument('--head_init_scale', default=1.0, type=float, help='classifier head initial scale, typically adjusted in fine-tuning') parser.add_argument('--model_key', default='model|module', type=str, help='which key to load from saved state dict, usually model or model_ema') parser.add_argument('--model_prefix', default='', type=str) # Dataset parameters parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str, help='dataset path') parser.add_argument('--eval_data_path', default=None, type=str, help='dataset path for evaluation') parser.add_argument('--nb_classes', default=1000, type=int, help='number of the classification types') parser.add_argument('--imagenet_default_mean_and_std', type=str2bool, default=True) parser.add_argument('--data_set', default='IMNET', choices=['CIFAR', 'IMNET', 'image_folder'], type=str, help='ImageNet dataset path') parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving') parser.add_argument('--log_dir', default=None, help='path where to tensorboard log') parser.add_argument('--device', default='cuda', help='device to use for training / testing') parser.add_argument('--seed', default=0, type=int) parser.add_argument('--resume', default='', help='resume from checkpoint') parser.add_argument('--auto_resume', type=str2bool, default=True) parser.add_argument('--save_ckpt', type=str2bool, default=True) parser.add_argument('--save_ckpt_freq', default=1, type=int) parser.add_argument('--save_ckpt_num', default=3, type=int) parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch') parser.add_argument('--eval', type=str2bool, default=False, help='Perform evaluation only') parser.add_argument('--dist_eval', type=str2bool, default=True, help='Enabling distributed evaluation') parser.add_argument('--disable_eval', type=str2bool, default=False, help='Disabling evaluation during training') parser.add_argument('--num_workers', default=10, type=int) parser.add_argument('--pin_mem', type=str2bool, default=True, help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') # distributed training parameters parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') parser.add_argument('--local_rank', default=-1, type=int) parser.add_argument('--dist_on_itp', type=str2bool, default=False) parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') parser.add_argument('--use_amp', type=str2bool, default=False, help="Use PyTorch's AMP (Automatic Mixed Precision) or not") # Weights and Biases arguments parser.add_argument('--enable_wandb', type=str2bool, default=False, help="enable logging to Weights and Biases") parser.add_argument('--project', default='convnext', type=str, help="The name of the W&B project where you're sending the new run.") parser.add_argument('--wandb_ckpt', type=str2bool, default=False, help="Save model checkpoints as W&B Artifacts.") return parser def main(args): utils.init_distributed_mode(args) print(args) device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) cudnn.benchmark = True dataset_train, args.nb_classes = build_dataset(is_train=True, args=args) if args.disable_eval: args.dist_eval = False dataset_val = None else: dataset_val, _ = build_dataset(is_train=False, args=args) num_tasks = utils.get_world_size() global_rank = utils.get_rank() sampler_train = torch.utils.data.DistributedSampler( dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True, seed=args.seed, ) print("Sampler_train = %s" % str(sampler_train)) if args.dist_eval: if len(dataset_val) % num_tasks != 0: print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. ' 'This will slightly alter validation results as extra duplicate entries are added to achieve ' 'equal num of samples per-process.') sampler_val = torch.utils.data.DistributedSampler( dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False) else: sampler_val = torch.utils.data.SequentialSampler(dataset_val) if global_rank == 0 and args.log_dir is not None: os.makedirs(args.log_dir, exist_ok=True) log_writer = utils.TensorboardLogger(log_dir=args.log_dir) else: log_writer = None if global_rank == 0 and args.enable_wandb: wandb_logger = utils.WandbLogger(args) else: wandb_logger = None data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=True, ) if dataset_val is not None: data_loader_val = torch.utils.data.DataLoader( dataset_val, sampler=sampler_val, batch_size=int(1.5 * args.batch_size), num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=False ) else: data_loader_val = None mixup_fn = None mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None if mixup_active: print("Mixup is activated!") mixup_fn = Mixup( mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax, prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode, label_smoothing=args.smoothing, num_classes=args.nb_classes) model = create_model( args.model, pretrained=False, num_classes=args.nb_classes, drop_path_rate=args.drop_path, layer_scale_init_value=args.layer_scale_init_value, head_init_scale=args.head_init_scale, ) if args.finetune: if args.finetune.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.finetune, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.finetune, map_location='cpu') print("Load ckpt from %s" % args.finetune) checkpoint_model = None for model_key in args.model_key.split('|'): if model_key in checkpoint: checkpoint_model = checkpoint[model_key] print("Load state_dict by model_key = %s" % model_key) break if checkpoint_model is None: checkpoint_model = checkpoint state_dict = model.state_dict() for k in ['head.weight', 'head.bias']: if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape: print(f"Removing key {k} from pretrained checkpoint") del checkpoint_model[k] utils.load_state_dict(model, checkpoint_model, prefix=args.model_prefix) model.to(device) model_ema = None if args.model_ema: # Important to create EMA model after cuda(), DP wrapper, and AMP but before SyncBN and DDP wrapper model_ema = ModelEma( model, decay=args.model_ema_decay, device='cpu' if args.model_ema_force_cpu else '', resume='') print("Using EMA with decay = %.8f" % args.model_ema_decay) model_without_ddp = model n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print("Model = %s" % str(model_without_ddp)) print('number of params:', n_parameters) total_batch_size = args.batch_size * args.update_freq * utils.get_world_size() num_training_steps_per_epoch = len(dataset_train) // total_batch_size print("LR = %.8f" % args.lr) print("Batch size = %d" % total_batch_size) print("Update frequent = %d" % args.update_freq) print("Number of training examples = %d" % len(dataset_train)) print("Number of training training per epoch = %d" % num_training_steps_per_epoch) if args.layer_decay < 1.0 or args.layer_decay > 1.0: num_layers = 12 # convnext layers divided into 12 parts, each with a different decayed lr value. assert args.model in ['convnext_small', 'convnext_base', 'convnext_large', 'convnext_xlarge'], \ "Layer Decay impl only supports convnext_small/base/large/xlarge" assigner = LayerDecayValueAssigner(list(args.layer_decay ** (num_layers + 1 - i) for i in range(num_layers + 2))) else: assigner = None if assigner is not None: print("Assigned values = %s" % str(assigner.values)) if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=False) model_without_ddp = model.module optimizer = create_optimizer( args, model_without_ddp, skip_list=None, get_num_layer=assigner.get_layer_id if assigner is not None else None, get_layer_scale=assigner.get_scale if assigner is not None else None) loss_scaler = NativeScaler() # if args.use_amp is False, this won't be used print("Use Cosine LR scheduler") lr_schedule_values = utils.cosine_scheduler( args.lr, args.min_lr, args.epochs, num_training_steps_per_epoch, warmup_epochs=args.warmup_epochs, warmup_steps=args.warmup_steps, ) if args.weight_decay_end is None: args.weight_decay_end = args.weight_decay wd_schedule_values = utils.cosine_scheduler( args.weight_decay, args.weight_decay_end, args.epochs, num_training_steps_per_epoch) print("Max WD = %.7f, Min WD = %.7f" % (max(wd_schedule_values), min(wd_schedule_values))) if mixup_fn is not None: # smoothing is handled with mixup label transform criterion = SoftTargetCrossEntropy() elif args.smoothing > 0.: criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing) else: criterion = torch.nn.CrossEntropyLoss() print("criterion = %s" % str(criterion)) utils.auto_load_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, model_ema=model_ema) if args.eval: print(f"Eval only mode") test_stats = evaluate(data_loader_val, model, device, use_amp=args.use_amp) print(f"Accuracy of the network on {len(dataset_val)} test images: {test_stats['acc1']:.5f}%") return max_accuracy = 0.0 if args.model_ema and args.model_ema_eval: max_accuracy_ema = 0.0 print("Start training for %d epochs" % args.epochs) start_time = time.time() for epoch in range(args.start_epoch, args.epochs): if args.distributed: data_loader_train.sampler.set_epoch(epoch) if log_writer is not None: log_writer.set_step(epoch * num_training_steps_per_epoch * args.update_freq) if wandb_logger: wandb_logger.set_steps() train_stats = train_one_epoch( model, criterion, data_loader_train, optimizer, device, epoch, loss_scaler, args.clip_grad, model_ema, mixup_fn, log_writer=log_writer, wandb_logger=wandb_logger, start_steps=epoch * num_training_steps_per_epoch, lr_schedule_values=lr_schedule_values, wd_schedule_values=wd_schedule_values, num_training_steps_per_epoch=num_training_steps_per_epoch, update_freq=args.update_freq, use_amp=args.use_amp ) if args.output_dir and args.save_ckpt: if (epoch + 1) % args.save_ckpt_freq == 0 or epoch + 1 == args.epochs: utils.save_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch, model_ema=model_ema) if data_loader_val is not None: test_stats = evaluate(data_loader_val, model, device, use_amp=args.use_amp) print(f"Accuracy of the model on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%") if max_accuracy < test_stats["acc1"]: max_accuracy = test_stats["acc1"] if args.output_dir and args.save_ckpt: utils.save_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch="best", model_ema=model_ema) print(f'Max accuracy: {max_accuracy:.2f}%') if log_writer is not None: log_writer.update(test_acc1=test_stats['acc1'], head="perf", step=epoch) log_writer.update(test_acc5=test_stats['acc5'], head="perf", step=epoch) log_writer.update(test_loss=test_stats['loss'], head="perf", step=epoch) log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, **{f'test_{k}': v for k, v in test_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters} # repeat testing routines for EMA, if ema eval is turned on if args.model_ema and args.model_ema_eval: test_stats_ema = evaluate(data_loader_val, model_ema.ema, device, use_amp=args.use_amp) print(f"Accuracy of the model EMA on {len(dataset_val)} test images: {test_stats_ema['acc1']:.1f}%") if max_accuracy_ema < test_stats_ema["acc1"]: max_accuracy_ema = test_stats_ema["acc1"] if args.output_dir and args.save_ckpt: utils.save_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch="best-ema", model_ema=model_ema) print(f'Max EMA accuracy: {max_accuracy_ema:.2f}%') if log_writer is not None: log_writer.update(test_acc1_ema=test_stats_ema['acc1'], head="perf", step=epoch) log_stats.update({**{f'test_{k}_ema': v for k, v in test_stats_ema.items()}}) else: log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters} if args.output_dir and utils.is_main_process(): if log_writer is not None: log_writer.flush() with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: f.write(json.dumps(log_stats) + "\n") if wandb_logger: wandb_logger.log_epoch_metrics(log_stats) if wandb_logger and args.wandb_ckpt and args.save_ckpt and args.output_dir: wandb_logger.log_checkpoints() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('Training time {}'.format(total_time_str)) if __name__ == '__main__': parser = argparse.ArgumentParser('ConvNeXt training and evaluation script', parents=[get_args_parser()]) args = parser.parse_args() if args.output_dir: Path(args.output_dir).mkdir(parents=True, exist_ok=True) main(args)
ConvNeXt-main
main.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch from torch import optim as optim from timm.optim.adafactor import Adafactor from timm.optim.adahessian import Adahessian from timm.optim.adamp import AdamP from timm.optim.lookahead import Lookahead from timm.optim.nadam import Nadam from timm.optim.novograd import NovoGrad from timm.optim.nvnovograd import NvNovoGrad from timm.optim.radam import RAdam from timm.optim.rmsprop_tf import RMSpropTF from timm.optim.sgdp import SGDP import json try: from apex.optimizers import FusedNovoGrad, FusedAdam, FusedLAMB, FusedSGD has_apex = True except ImportError: has_apex = False def get_num_layer_for_convnext(var_name): """ Divide [3, 3, 27, 3] layers into 12 groups; each group is three consecutive blocks, including possible neighboring downsample layers; adapted from https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py """ num_max_layer = 12 if var_name.startswith("downsample_layers"): stage_id = int(var_name.split('.')[1]) if stage_id == 0: layer_id = 0 elif stage_id == 1 or stage_id == 2: layer_id = stage_id + 1 elif stage_id == 3: layer_id = 12 return layer_id elif var_name.startswith("stages"): stage_id = int(var_name.split('.')[1]) block_id = int(var_name.split('.')[2]) if stage_id == 0 or stage_id == 1: layer_id = stage_id + 1 elif stage_id == 2: layer_id = 3 + block_id // 3 elif stage_id == 3: layer_id = 12 return layer_id else: return num_max_layer + 1 class LayerDecayValueAssigner(object): def __init__(self, values): self.values = values def get_scale(self, layer_id): return self.values[layer_id] def get_layer_id(self, var_name): return get_num_layer_for_convnext(var_name) def get_parameter_groups(model, weight_decay=1e-5, skip_list=(), get_num_layer=None, get_layer_scale=None): parameter_group_names = {} parameter_group_vars = {} for name, param in model.named_parameters(): if not param.requires_grad: continue # frozen weights if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list: group_name = "no_decay" this_weight_decay = 0. else: group_name = "decay" this_weight_decay = weight_decay if get_num_layer is not None: layer_id = get_num_layer(name) group_name = "layer_%d_%s" % (layer_id, group_name) else: layer_id = None if group_name not in parameter_group_names: if get_layer_scale is not None: scale = get_layer_scale(layer_id) else: scale = 1. parameter_group_names[group_name] = { "weight_decay": this_weight_decay, "params": [], "lr_scale": scale } parameter_group_vars[group_name] = { "weight_decay": this_weight_decay, "params": [], "lr_scale": scale } parameter_group_vars[group_name]["params"].append(param) parameter_group_names[group_name]["params"].append(name) print("Param groups = %s" % json.dumps(parameter_group_names, indent=2)) return list(parameter_group_vars.values()) def create_optimizer(args, model, get_num_layer=None, get_layer_scale=None, filter_bias_and_bn=True, skip_list=None): opt_lower = args.opt.lower() weight_decay = args.weight_decay # if weight_decay and filter_bias_and_bn: if filter_bias_and_bn: skip = {} if skip_list is not None: skip = skip_list elif hasattr(model, 'no_weight_decay'): skip = model.no_weight_decay() parameters = get_parameter_groups(model, weight_decay, skip, get_num_layer, get_layer_scale) weight_decay = 0. else: parameters = model.parameters() if 'fused' in opt_lower: assert has_apex and torch.cuda.is_available(), 'APEX and CUDA required for fused optimizers' opt_args = dict(lr=args.lr, weight_decay=weight_decay) if hasattr(args, 'opt_eps') and args.opt_eps is not None: opt_args['eps'] = args.opt_eps if hasattr(args, 'opt_betas') and args.opt_betas is not None: opt_args['betas'] = args.opt_betas opt_split = opt_lower.split('_') opt_lower = opt_split[-1] if opt_lower == 'sgd' or opt_lower == 'nesterov': opt_args.pop('eps', None) optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=True, **opt_args) elif opt_lower == 'momentum': opt_args.pop('eps', None) optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=False, **opt_args) elif opt_lower == 'adam': optimizer = optim.Adam(parameters, **opt_args) elif opt_lower == 'adamw': optimizer = optim.AdamW(parameters, **opt_args) elif opt_lower == 'nadam': optimizer = Nadam(parameters, **opt_args) elif opt_lower == 'radam': optimizer = RAdam(parameters, **opt_args) elif opt_lower == 'adamp': optimizer = AdamP(parameters, wd_ratio=0.01, nesterov=True, **opt_args) elif opt_lower == 'sgdp': optimizer = SGDP(parameters, momentum=args.momentum, nesterov=True, **opt_args) elif opt_lower == 'adadelta': optimizer = optim.Adadelta(parameters, **opt_args) elif opt_lower == 'adafactor': if not args.lr: opt_args['lr'] = None optimizer = Adafactor(parameters, **opt_args) elif opt_lower == 'adahessian': optimizer = Adahessian(parameters, **opt_args) elif opt_lower == 'rmsprop': optimizer = optim.RMSprop(parameters, alpha=0.9, momentum=args.momentum, **opt_args) elif opt_lower == 'rmsproptf': optimizer = RMSpropTF(parameters, alpha=0.9, momentum=args.momentum, **opt_args) elif opt_lower == 'novograd': optimizer = NovoGrad(parameters, **opt_args) elif opt_lower == 'nvnovograd': optimizer = NvNovoGrad(parameters, **opt_args) elif opt_lower == 'fusedsgd': opt_args.pop('eps', None) optimizer = FusedSGD(parameters, momentum=args.momentum, nesterov=True, **opt_args) elif opt_lower == 'fusedmomentum': opt_args.pop('eps', None) optimizer = FusedSGD(parameters, momentum=args.momentum, nesterov=False, **opt_args) elif opt_lower == 'fusedadam': optimizer = FusedAdam(parameters, adam_w_mode=False, **opt_args) elif opt_lower == 'fusedadamw': optimizer = FusedAdam(parameters, adam_w_mode=True, **opt_args) elif opt_lower == 'fusedlamb': optimizer = FusedLAMB(parameters, **opt_args) elif opt_lower == 'fusednovograd': opt_args.setdefault('betas', (0.95, 0.98)) optimizer = FusedNovoGrad(parameters, **opt_args) else: assert False and "Invalid optimizer" if len(opt_split) > 1: if opt_split[0] == 'lookahead': optimizer = Lookahead(optimizer) return optimizer
ConvNeXt-main
optim_factory.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from timm.models.layers import trunc_normal_, DropPath from timm.models.registry import register_model from .convnext import Block, LayerNorm class ConvNeXtIsotropic(nn.Module): r""" ConvNeXt A PyTorch impl of : `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf Isotropic ConvNeXts (Section 3.3 in paper) Args: in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 depth (tuple(int)): Number of blocks. Default: 18. dims (int): Feature dimension. Default: 384 drop_path_rate (float): Stochastic depth rate. Default: 0. layer_scale_init_value (float): Init value for Layer Scale. Default: 0. head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. """ def __init__(self, in_chans=3, num_classes=1000, depth=18, dim=384, drop_path_rate=0., layer_scale_init_value=0, head_init_scale=1., ): super().__init__() self.stem = nn.Conv2d(in_chans, dim, kernel_size=16, stride=16) dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, depth)] self.blocks = nn.Sequential(*[Block(dim=dim, drop_path=dp_rates[i], layer_scale_init_value=layer_scale_init_value) for i in range(depth)]) self.norm = LayerNorm(dim, eps=1e-6) # final norm layer self.head = nn.Linear(dim, num_classes) self.apply(self._init_weights) self.head.weight.data.mul_(head_init_scale) self.head.bias.data.mul_(head_init_scale) def _init_weights(self, m): if isinstance(m, (nn.Conv2d, nn.Linear)): trunc_normal_(m.weight, std=.02) nn.init.constant_(m.bias, 0) def forward_features(self, x): x = self.stem(x) x = self.blocks(x) return self.norm(x.mean([-2, -1])) # global average pooling, (N, C, H, W) -> (N, C) def forward(self, x): x = self.forward_features(x) x = self.head(x) return x @register_model def convnext_isotropic_small(pretrained=False, **kwargs): model = ConvNeXtIsotropic(depth=18, dim=384, **kwargs) if pretrained: url = 'https://dl.fbaipublicfiles.com/convnext/convnext_iso_small_1k_224_ema.pth' checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") model.load_state_dict(checkpoint["model"]) return model @register_model def convnext_isotropic_base(pretrained=False, **kwargs): model = ConvNeXtIsotropic(depth=18, dim=768, **kwargs) if pretrained: url = 'https://dl.fbaipublicfiles.com/convnext/convnext_iso_base_1k_224_ema.pth' checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") model.load_state_dict(checkpoint["model"]) return model @register_model def convnext_isotropic_large(pretrained=False, **kwargs): model = ConvNeXtIsotropic(depth=36, dim=1024, **kwargs) if pretrained: url = 'https://dl.fbaipublicfiles.com/convnext/convnext_iso_large_1k_224_ema.pth' checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") model.load_state_dict(checkpoint["model"]) return model
ConvNeXt-main
models/convnext_isotropic.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from timm.models.layers import trunc_normal_, DropPath from timm.models.registry import register_model class Block(nn.Module): r""" ConvNeXt Block. There are two equivalent implementations: (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back We use (2) as we find it slightly faster in PyTorch Args: dim (int): Number of input channels. drop_path (float): Stochastic depth rate. Default: 0.0 layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. """ def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6): super().__init__() self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv self.norm = LayerNorm(dim, eps=1e-6) self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers self.act = nn.GELU() self.pwconv2 = nn.Linear(4 * dim, dim) self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True) if layer_scale_init_value > 0 else None self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): input = x x = self.dwconv(x) x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) x = self.norm(x) x = self.pwconv1(x) x = self.act(x) x = self.pwconv2(x) if self.gamma is not None: x = self.gamma * x x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) x = input + self.drop_path(x) return x class ConvNeXt(nn.Module): r""" ConvNeXt A PyTorch impl of : `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf Args: in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768] drop_path_rate (float): Stochastic depth rate. Default: 0. layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. """ def __init__(self, in_chans=3, num_classes=1000, depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0., layer_scale_init_value=1e-6, head_init_scale=1., ): super().__init__() self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers stem = nn.Sequential( nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), LayerNorm(dims[0], eps=1e-6, data_format="channels_first") ) self.downsample_layers.append(stem) for i in range(3): downsample_layer = nn.Sequential( LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2), ) self.downsample_layers.append(downsample_layer) self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] cur = 0 for i in range(4): stage = nn.Sequential( *[Block(dim=dims[i], drop_path=dp_rates[cur + j], layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])] ) self.stages.append(stage) cur += depths[i] self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer self.head = nn.Linear(dims[-1], num_classes) self.apply(self._init_weights) self.head.weight.data.mul_(head_init_scale) self.head.bias.data.mul_(head_init_scale) def _init_weights(self, m): if isinstance(m, (nn.Conv2d, nn.Linear)): trunc_normal_(m.weight, std=.02) nn.init.constant_(m.bias, 0) def forward_features(self, x): for i in range(4): x = self.downsample_layers[i](x) x = self.stages[i](x) return self.norm(x.mean([-2, -1])) # global average pooling, (N, C, H, W) -> (N, C) def forward(self, x): x = self.forward_features(x) x = self.head(x) return x class LayerNorm(nn.Module): r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). """ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): super().__init__() self.weight = nn.Parameter(torch.ones(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) self.eps = eps self.data_format = data_format if self.data_format not in ["channels_last", "channels_first"]: raise NotImplementedError self.normalized_shape = (normalized_shape, ) def forward(self, x): if self.data_format == "channels_last": return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) elif self.data_format == "channels_first": u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x model_urls = { "convnext_tiny_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth", "convnext_small_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth", "convnext_base_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth", "convnext_large_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth", "convnext_tiny_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_224.pth", "convnext_small_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_224.pth", "convnext_base_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth", "convnext_large_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth", "convnext_xlarge_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth", } @register_model def convnext_tiny(pretrained=False,in_22k=False, **kwargs): model = ConvNeXt(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs) if pretrained: url = model_urls['convnext_tiny_22k'] if in_22k else model_urls['convnext_tiny_1k'] checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True) model.load_state_dict(checkpoint["model"]) return model @register_model def convnext_small(pretrained=False,in_22k=False, **kwargs): model = ConvNeXt(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs) if pretrained: url = model_urls['convnext_small_22k'] if in_22k else model_urls['convnext_small_1k'] checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") model.load_state_dict(checkpoint["model"]) return model @register_model def convnext_base(pretrained=False, in_22k=False, **kwargs): model = ConvNeXt(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs) if pretrained: url = model_urls['convnext_base_22k'] if in_22k else model_urls['convnext_base_1k'] checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") model.load_state_dict(checkpoint["model"]) return model @register_model def convnext_large(pretrained=False, in_22k=False, **kwargs): model = ConvNeXt(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs) if pretrained: url = model_urls['convnext_large_22k'] if in_22k else model_urls['convnext_large_1k'] checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") model.load_state_dict(checkpoint["model"]) return model @register_model def convnext_xlarge(pretrained=False, in_22k=False, **kwargs): model = ConvNeXt(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], **kwargs) if pretrained: assert in_22k, "only ImageNet-22K pre-trained ConvNeXt-XL is available; please set in_22k=True" url = model_urls['convnext_xlarge_22k'] checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") model.load_state_dict(checkpoint["model"]) return model
ConvNeXt-main
models/convnext.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import json from mmcv.runner import OPTIMIZER_BUILDERS, DefaultOptimizerConstructor from mmcv.runner import get_dist_info def get_num_layer_layer_wise(var_name, num_max_layer=12): if var_name in ("backbone.cls_token", "backbone.mask_token", "backbone.pos_embed"): return 0 elif var_name.startswith("backbone.downsample_layers"): stage_id = int(var_name.split('.')[2]) if stage_id == 0: layer_id = 0 elif stage_id == 1: layer_id = 2 elif stage_id == 2: layer_id = 3 elif stage_id == 3: layer_id = num_max_layer return layer_id elif var_name.startswith("backbone.stages"): stage_id = int(var_name.split('.')[2]) block_id = int(var_name.split('.')[3]) if stage_id == 0: layer_id = 1 elif stage_id == 1: layer_id = 2 elif stage_id == 2: layer_id = 3 + block_id // 3 elif stage_id == 3: layer_id = num_max_layer return layer_id else: return num_max_layer + 1 def get_num_layer_stage_wise(var_name, num_max_layer): if var_name in ("backbone.cls_token", "backbone.mask_token", "backbone.pos_embed"): return 0 elif var_name.startswith("backbone.downsample_layers"): return 0 elif var_name.startswith("backbone.stages"): stage_id = int(var_name.split('.')[2]) return stage_id + 1 else: return num_max_layer - 1 @OPTIMIZER_BUILDERS.register_module() class LearningRateDecayOptimizerConstructor(DefaultOptimizerConstructor): def add_params(self, params, module, prefix='', is_dcn_module=None): """Add all parameters of module to the params list. The parameters of the given module will be added to the list of param groups, with specific rules defined by paramwise_cfg. Args: params (list[dict]): A list of param groups, it will be modified in place. module (nn.Module): The module to be added. prefix (str): The prefix of the module is_dcn_module (int|float|None): If the current module is a submodule of DCN, `is_dcn_module` will be passed to control conv_offset layer's learning rate. Defaults to None. """ parameter_groups = {} print(self.paramwise_cfg) num_layers = self.paramwise_cfg.get('num_layers') + 2 decay_rate = self.paramwise_cfg.get('decay_rate') decay_type = self.paramwise_cfg.get('decay_type', "layer_wise") print("Build LearningRateDecayOptimizerConstructor %s %f - %d" % (decay_type, decay_rate, num_layers)) weight_decay = self.base_wd for name, param in module.named_parameters(): if not param.requires_grad: continue # frozen weights if len(param.shape) == 1 or name.endswith(".bias") or name in ('pos_embed', 'cls_token'): group_name = "no_decay" this_weight_decay = 0. else: group_name = "decay" this_weight_decay = weight_decay if decay_type == "layer_wise": layer_id = get_num_layer_layer_wise(name, self.paramwise_cfg.get('num_layers')) elif decay_type == "stage_wise": layer_id = get_num_layer_stage_wise(name, num_layers) group_name = "layer_%d_%s" % (layer_id, group_name) if group_name not in parameter_groups: scale = decay_rate ** (num_layers - layer_id - 1) parameter_groups[group_name] = { "weight_decay": this_weight_decay, "params": [], "param_names": [], "lr_scale": scale, "group_name": group_name, "lr": scale * self.base_lr, } parameter_groups[group_name]["params"].append(param) parameter_groups[group_name]["param_names"].append(name) rank, _ = get_dist_info() if rank == 0: to_display = {} for key in parameter_groups: to_display[key] = { "param_names": parameter_groups[key]["param_names"], "lr_scale": parameter_groups[key]["lr_scale"], "lr": parameter_groups[key]["lr"], "weight_decay": parameter_groups[key]["weight_decay"], } print("Param groups = %s" % json.dumps(to_display, indent=2)) params.extend(parameter_groups.values())
ConvNeXt-main
object_detection/mmcv_custom/layer_decay_optimizer_constructor.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -*- coding: utf-8 -*- from .checkpoint import load_checkpoint from .layer_decay_optimizer_constructor import LearningRateDecayOptimizerConstructor from .customized_text import CustomizedTextLoggerHook __all__ = ['load_checkpoint', 'LearningRateDecayOptimizerConstructor', 'CustomizedTextLoggerHook']
ConvNeXt-main
object_detection/mmcv_custom/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import datetime from collections import OrderedDict import torch import mmcv from mmcv.runner import HOOKS from mmcv.runner import TextLoggerHook @HOOKS.register_module() class CustomizedTextLoggerHook(TextLoggerHook): """Customized Text Logger hook. This logger prints out both lr and layer_0_lr. """ def _log_info(self, log_dict, runner): # print exp name for users to distinguish experiments # at every ``interval_exp_name`` iterations and the end of each epoch if runner.meta is not None and 'exp_name' in runner.meta: if (self.every_n_iters(runner, self.interval_exp_name)) or ( self.by_epoch and self.end_of_epoch(runner)): exp_info = f'Exp name: {runner.meta["exp_name"]}' runner.logger.info(exp_info) if log_dict['mode'] == 'train': lr_str = {} for lr_type in ['lr', 'layer_0_lr']: if isinstance(log_dict[lr_type], dict): lr_str[lr_type] = [] for k, val in log_dict[lr_type].items(): lr_str.append(f'{lr_type}_{k}: {val:.3e}') lr_str[lr_type] = ' '.join(lr_str) else: lr_str[lr_type] = f'{lr_type}: {log_dict[lr_type]:.3e}' # by epoch: Epoch [4][100/1000] # by iter: Iter [100/100000] if self.by_epoch: log_str = f'Epoch [{log_dict["epoch"]}]' \ f'[{log_dict["iter"]}/{len(runner.data_loader)}]\t' else: log_str = f'Iter [{log_dict["iter"]}/{runner.max_iters}]\t' log_str += f'{lr_str["lr"]}, {lr_str["layer_0_lr"]}, ' if 'time' in log_dict.keys(): self.time_sec_tot += (log_dict['time'] * self.interval) time_sec_avg = self.time_sec_tot / ( runner.iter - self.start_iter + 1) eta_sec = time_sec_avg * (runner.max_iters - runner.iter - 1) eta_str = str(datetime.timedelta(seconds=int(eta_sec))) log_str += f'eta: {eta_str}, ' log_str += f'time: {log_dict["time"]:.3f}, ' \ f'data_time: {log_dict["data_time"]:.3f}, ' # statistic memory if torch.cuda.is_available(): log_str += f'memory: {log_dict["memory"]}, ' else: # val/test time # here 1000 is the length of the val dataloader # by epoch: Epoch[val] [4][1000] # by iter: Iter[val] [1000] if self.by_epoch: log_str = f'Epoch({log_dict["mode"]}) ' \ f'[{log_dict["epoch"]}][{log_dict["iter"]}]\t' else: log_str = f'Iter({log_dict["mode"]}) [{log_dict["iter"]}]\t' log_items = [] for name, val in log_dict.items(): # TODO: resolve this hack # these items have been in log_str if name in [ 'mode', 'Epoch', 'iter', 'lr', 'layer_0_lr', 'time', 'data_time', 'memory', 'epoch' ]: continue if isinstance(val, float): val = f'{val:.4f}' log_items.append(f'{name}: {val}') log_str += ', '.join(log_items) runner.logger.info(log_str) def log(self, runner): if 'eval_iter_num' in runner.log_buffer.output: # this doesn't modify runner.iter and is regardless of by_epoch cur_iter = runner.log_buffer.output.pop('eval_iter_num') else: cur_iter = self.get_iter(runner, inner_iter=True) log_dict = OrderedDict( mode=self.get_mode(runner), epoch=self.get_epoch(runner), iter=cur_iter) # record lr and layer_0_lr cur_lr = runner.current_lr() if isinstance(cur_lr, list): log_dict['layer_0_lr'] = min(cur_lr) log_dict['lr'] = max(cur_lr) else: assert isinstance(cur_lr, dict) log_dict['lr'], log_dict['layer_0_lr'] = {}, {} for k, lr_ in cur_lr.items(): assert isinstance(lr_, list) log_dict['layer_0_lr'].update({k: min(lr_)}) log_dict['lr'].update({k: max(lr_)}) if 'time' in runner.log_buffer.output: # statistic memory if torch.cuda.is_available(): log_dict['memory'] = self._get_max_memory(runner) log_dict = dict(log_dict, **runner.log_buffer.output) self._log_info(log_dict, runner) self._dump_log(log_dict, runner) return log_dict
ConvNeXt-main
object_detection/mmcv_custom/customized_text.py
# Copyright (c) Open-MMLab. All rights reserved. import os.path as osp import time from tempfile import TemporaryDirectory import torch from torch.optim import Optimizer import mmcv from mmcv.parallel import is_module_wrapper from mmcv.runner.checkpoint import weights_to_cpu, get_state_dict try: import apex except: print('apex is not installed') def save_checkpoint(model, filename, optimizer=None, meta=None): """Save checkpoint to file. The checkpoint will have 4 fields: ``meta``, ``state_dict`` and ``optimizer``, ``amp``. By default ``meta`` will contain version and time info. Args: model (Module): Module whose params are to be saved. filename (str): Checkpoint filename. optimizer (:obj:`Optimizer`, optional): Optimizer to be saved. meta (dict, optional): Metadata to be saved in checkpoint. """ if meta is None: meta = {} elif not isinstance(meta, dict): raise TypeError(f'meta must be a dict or None, but got {type(meta)}') meta.update(mmcv_version=mmcv.__version__, time=time.asctime()) if is_module_wrapper(model): model = model.module if hasattr(model, 'CLASSES') and model.CLASSES is not None: # save class name to the meta meta.update(CLASSES=model.CLASSES) checkpoint = { 'meta': meta, 'state_dict': weights_to_cpu(get_state_dict(model)) } # save optimizer state dict in the checkpoint if isinstance(optimizer, Optimizer): checkpoint['optimizer'] = optimizer.state_dict() elif isinstance(optimizer, dict): checkpoint['optimizer'] = {} for name, optim in optimizer.items(): checkpoint['optimizer'][name] = optim.state_dict() # save amp state dict in the checkpoint # checkpoint['amp'] = apex.amp.state_dict() if filename.startswith('pavi://'): try: from pavi import modelcloud from pavi.exception import NodeNotFoundError except ImportError: raise ImportError( 'Please install pavi to load checkpoint from modelcloud.') model_path = filename[7:] root = modelcloud.Folder() model_dir, model_name = osp.split(model_path) try: model = modelcloud.get(model_dir) except NodeNotFoundError: model = root.create_training_model(model_dir) with TemporaryDirectory() as tmp_dir: checkpoint_file = osp.join(tmp_dir, model_name) with open(checkpoint_file, 'wb') as f: torch.save(checkpoint, f) f.flush() model.create_file(checkpoint_file, name=model_name) else: mmcv.mkdir_or_exist(osp.dirname(filename)) # immediately flush buffer with open(filename, 'wb') as f: torch.save(checkpoint, f) f.flush()
ConvNeXt-main
object_detection/mmcv_custom/runner/checkpoint.py
checkpoint_config = dict(interval=1) # yapf:disable log_config = dict( interval=50, hooks=[ dict(type='CustomizedTextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) # yapf:enable custom_hooks = [dict(type='NumClassCheckHook')] dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)]
ConvNeXt-main
object_detection/configs/_base_/default_runtime.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # model settings model = dict( type='MaskRCNN', pretrained=None, backbone=dict( type='ConvNeXt', in_chans=3, depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0.2, layer_scale_init_value=1e-6, out_indices=[0, 1, 2, 3], ), neck=dict( type='FPN', in_channels=[128, 256, 512, 1024], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), roi_head=dict( type='StandardRoIHead', bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='L1Loss', loss_weight=1.0)), mask_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), mask_head=dict( type='FCNMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=-1, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=2000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False)), test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5)))
ConvNeXt-main
object_detection/configs/_base_/models/mask_rcnn_convnext_fpn.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # model settings model = dict( type='CascadeRCNN', pretrained=None, backbone=dict( type='ConvNeXt', in_chans=3, depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0.2, layer_scale_init_value=1e-6, out_indices=[0, 1, 2, 3], ), neck=dict( type='FPN', in_channels=[128, 256, 512, 1024], out_channels=256, num_outs=5), rpn_head=dict( type='RPNHead', in_channels=256, feat_channels=256, anchor_generator=dict( type='AnchorGenerator', scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64]), bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[.0, .0, .0, .0], target_stds=[1.0, 1.0, 1.0, 1.0]), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)), roi_head=dict( type='CascadeRoIHead', num_stages=3, stage_loss_weights=[1, 0.5, 0.25], bbox_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), bbox_head=[ dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)), dict( type='Shared2FCBBoxHead', in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=True, loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) ], mask_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32]), mask_head=dict( type='FCNMaskHead', num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict( type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))), # model training and testing settings train_cfg = dict( rpn=dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_across_levels=False, nms_pre=2000, nms_post=2000, max_per_img=2000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=[ dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.6, neg_iou_thr=0.6, min_pos_iou=0.6, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False), dict( assigner=dict( type='MaxIoUAssigner', pos_iou_thr=0.7, neg_iou_thr=0.7, min_pos_iou=0.7, match_low_quality=False, ignore_iof_thr=-1), sampler=dict( type='RandomSampler', num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True), mask_size=28, pos_weight=-1, debug=False) ]), test_cfg = dict( rpn=dict( nms_across_levels=False, nms_pre=1000, nms_post=1000, max_per_img=1000, nms=dict(type='nms', iou_threshold=0.7), min_bbox_size=0), rcnn=dict( score_thr=0.05, nms=dict(type='nms', iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5)))
ConvNeXt-main
object_detection/configs/_base_/models/cascade_mask_rcnn_convnext_fpn.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. _base_ = [ '../_base_/models/mask_rcnn_convnext_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( in_chans=3, depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0.4, layer_scale_init_value=1.0, out_indices=[0, 1, 2, 3], ), neck=dict(in_channels=[96, 192, 384, 768])) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # augmentation strategy originates from DETR / Sparse RCNN train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='AutoAugment', policies=[ [ dict(type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', keep_ratio=True) ], [ dict(type='Resize', img_scale=[(400, 1333), (500, 1333), (600, 1333)], multiscale_mode='value', keep_ratio=True), dict(type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict(type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', override=True, keep_ratio=True) ] ]), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] data = dict(train=dict(pipeline=train_pipeline)) optimizer = dict(constructor='LearningRateDecayOptimizerConstructor', _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, paramwise_cfg={'decay_rate': 0.95, 'decay_type': 'layer_wise', 'num_layers': 6}) lr_config = dict(step=[27, 33]) runner = dict(type='EpochBasedRunnerAmp', max_epochs=36) # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
ConvNeXt-main
object_detection/configs/convnext/mask_rcnn_convnext_tiny_patch4_window7_mstrain_480-800_adamw_3x_coco_in1k.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. _base_ = [ '../_base_/models/cascade_mask_rcnn_convnext_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( in_chans=3, depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], drop_path_rate=0.6, layer_scale_init_value=1.0, out_indices=[0, 1, 2, 3], ), neck=dict(in_channels=[96, 192, 384, 768]), roi_head=dict( bbox_head=[ dict( type='ConvFCBBoxHead', num_shared_convs=4, num_shared_fcs=1, in_channels=256, conv_out_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)), dict( type='ConvFCBBoxHead', num_shared_convs=4, num_shared_fcs=1, in_channels=256, conv_out_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=False, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)), dict( type='ConvFCBBoxHead', num_shared_convs=4, num_shared_fcs=1, in_channels=256, conv_out_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=False, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)) ])) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # augmentation strategy originates from DETR / Sparse RCNN train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='AutoAugment', policies=[ [ dict(type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', keep_ratio=True) ], [ dict(type='Resize', img_scale=[(400, 1333), (500, 1333), (600, 1333)], multiscale_mode='value', keep_ratio=True), dict(type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict(type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', override=True, keep_ratio=True) ] ]), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] data = dict(train=dict(pipeline=train_pipeline)) optimizer = dict(constructor='LearningRateDecayOptimizerConstructor', _delete_=True, type='AdamW', lr=0.0002, betas=(0.9, 0.999), weight_decay=0.05, paramwise_cfg={'decay_rate': 0.7, 'decay_type': 'layer_wise', 'num_layers': 12}) lr_config = dict(step=[27, 33]) runner = dict(type='EpochBasedRunnerAmp', max_epochs=36) # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
ConvNeXt-main
object_detection/configs/convnext/cascade_mask_rcnn_convnext_small_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco_in1k.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. _base_ = [ '../_base_/models/cascade_mask_rcnn_convnext_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( in_chans=3, depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], drop_path_rate=0.7, layer_scale_init_value=1.0, out_indices=[0, 1, 2, 3], ), neck=dict(in_channels=[192, 384, 768, 1536]), roi_head=dict( bbox_head=[ dict( type='ConvFCBBoxHead', num_shared_convs=4, num_shared_fcs=1, in_channels=256, conv_out_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)), dict( type='ConvFCBBoxHead', num_shared_convs=4, num_shared_fcs=1, in_channels=256, conv_out_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=False, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)), dict( type='ConvFCBBoxHead', num_shared_convs=4, num_shared_fcs=1, in_channels=256, conv_out_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=False, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)) ])) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # augmentation strategy originates from DETR / Sparse RCNN train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='AutoAugment', policies=[ [ dict(type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', keep_ratio=True) ], [ dict(type='Resize', img_scale=[(400, 1333), (500, 1333), (600, 1333)], multiscale_mode='value', keep_ratio=True), dict(type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict(type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', override=True, keep_ratio=True) ] ]), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] data = dict(train=dict(pipeline=train_pipeline)) optimizer = dict(constructor='LearningRateDecayOptimizerConstructor', _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, paramwise_cfg={'decay_rate': 0.7, 'decay_type': 'layer_wise', 'num_layers': 12}) lr_config = dict(step=[27, 33]) runner = dict(type='EpochBasedRunnerAmp', max_epochs=36) # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=False, )
ConvNeXt-main
object_detection/configs/convnext/cascade_mask_rcnn_convnext_large_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco_in22k.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. _base_ = [ '../_base_/models/cascade_mask_rcnn_convnext_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( in_chans=3, depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], drop_path_rate=0.7, layer_scale_init_value=1.0, out_indices=[0, 1, 2, 3], ), neck=dict(in_channels=[128, 256, 512, 1024]), roi_head=dict( bbox_head=[ dict( type='ConvFCBBoxHead', num_shared_convs=4, num_shared_fcs=1, in_channels=256, conv_out_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)), dict( type='ConvFCBBoxHead', num_shared_convs=4, num_shared_fcs=1, in_channels=256, conv_out_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=False, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)), dict( type='ConvFCBBoxHead', num_shared_convs=4, num_shared_fcs=1, in_channels=256, conv_out_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=False, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)) ])) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # augmentation strategy originates from DETR / Sparse RCNN train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='AutoAugment', policies=[ [ dict(type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', keep_ratio=True) ], [ dict(type='Resize', img_scale=[(400, 1333), (500, 1333), (600, 1333)], multiscale_mode='value', keep_ratio=True), dict(type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict(type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', override=True, keep_ratio=True) ] ]), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] data = dict(train=dict(pipeline=train_pipeline)) optimizer = dict(constructor='LearningRateDecayOptimizerConstructor', _delete_=True, type='AdamW', lr=0.0002, betas=(0.9, 0.999), weight_decay=0.05, paramwise_cfg={'decay_rate': 0.8, 'decay_type': 'layer_wise', 'num_layers': 12}) lr_config = dict(step=[27, 33]) runner = dict(type='EpochBasedRunnerAmp', max_epochs=36) # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
ConvNeXt-main
object_detection/configs/convnext/cascade_mask_rcnn_convnext_base_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco_in1k.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. _base_ = [ '../_base_/models/cascade_mask_rcnn_convnext_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( in_chans=3, depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], drop_path_rate=0.8, layer_scale_init_value=1.0, out_indices=[0, 1, 2, 3], ), neck=dict(in_channels=[256, 512, 1024, 2048]), roi_head=dict( bbox_head=[ dict( type='ConvFCBBoxHead', num_shared_convs=4, num_shared_fcs=1, in_channels=256, conv_out_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)), dict( type='ConvFCBBoxHead', num_shared_convs=4, num_shared_fcs=1, in_channels=256, conv_out_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=False, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)), dict( type='ConvFCBBoxHead', num_shared_convs=4, num_shared_fcs=1, in_channels=256, conv_out_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=False, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)) ])) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # augmentation strategy originates from DETR / Sparse RCNN train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='AutoAugment', policies=[ [ dict(type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', keep_ratio=True) ], [ dict(type='Resize', img_scale=[(400, 1333), (500, 1333), (600, 1333)], multiscale_mode='value', keep_ratio=True), dict(type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict(type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', override=True, keep_ratio=True) ] ]), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] data = dict(train=dict(pipeline=train_pipeline), samples_per_gpu=2) optimizer = dict(constructor='LearningRateDecayOptimizerConstructor', _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, paramwise_cfg={'decay_rate': 0.7, 'decay_type': 'layer_wise', 'num_layers': 12}) lr_config = dict(step=[27, 33]) runner = dict(type='EpochBasedRunnerAmp', max_epochs=36) # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=False, )
ConvNeXt-main
object_detection/configs/convnext/cascade_mask_rcnn_convnext_xlarge_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco_in22k.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. _base_ = [ '../_base_/models/cascade_mask_rcnn_convnext_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( in_chans=3, depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0.4, layer_scale_init_value=1.0, out_indices=[0, 1, 2, 3], ), neck=dict(in_channels=[96, 192, 384, 768]), roi_head=dict( bbox_head=[ dict( type='ConvFCBBoxHead', num_shared_convs=4, num_shared_fcs=1, in_channels=256, conv_out_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)), dict( type='ConvFCBBoxHead', num_shared_convs=4, num_shared_fcs=1, in_channels=256, conv_out_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=False, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)), dict( type='ConvFCBBoxHead', num_shared_convs=4, num_shared_fcs=1, in_channels=256, conv_out_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=False, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)) ])) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # augmentation strategy originates from DETR / Sparse RCNN train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='AutoAugment', policies=[ [ dict(type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', keep_ratio=True) ], [ dict(type='Resize', img_scale=[(400, 1333), (500, 1333), (600, 1333)], multiscale_mode='value', keep_ratio=True), dict(type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict(type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', override=True, keep_ratio=True) ] ]), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] data = dict(train=dict(pipeline=train_pipeline)) optimizer = dict(constructor='LearningRateDecayOptimizerConstructor', _delete_=True, type='AdamW', lr=0.0002, betas=(0.9, 0.999), weight_decay=0.05, paramwise_cfg={'decay_rate': 0.7, 'decay_type': 'layer_wise', 'num_layers': 6}) lr_config = dict(step=[27, 33]) runner = dict(type='EpochBasedRunnerAmp', max_epochs=36) # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
ConvNeXt-main
object_detection/configs/convnext/cascade_mask_rcnn_convnext_tiny_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco_in1k.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. _base_ = [ '../_base_/models/cascade_mask_rcnn_convnext_fpn.py', '../_base_/datasets/coco_instance.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict( backbone=dict( in_chans=3, depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], drop_path_rate=0.6, layer_scale_init_value=1.0, out_indices=[0, 1, 2, 3], ), neck=dict(in_channels=[128, 256, 512, 1024]), roi_head=dict( bbox_head=[ dict( type='ConvFCBBoxHead', num_shared_convs=4, num_shared_fcs=1, in_channels=256, conv_out_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.1, 0.1, 0.2, 0.2]), reg_class_agnostic=False, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)), dict( type='ConvFCBBoxHead', num_shared_convs=4, num_shared_fcs=1, in_channels=256, conv_out_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.05, 0.05, 0.1, 0.1]), reg_class_agnostic=False, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)), dict( type='ConvFCBBoxHead', num_shared_convs=4, num_shared_fcs=1, in_channels=256, conv_out_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type='DeltaXYWHBBoxCoder', target_means=[0., 0., 0., 0.], target_stds=[0.033, 0.033, 0.067, 0.067]), reg_class_agnostic=False, reg_decoded_bbox=True, norm_cfg=dict(type='SyncBN', requires_grad=True), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=10.0)) ])) img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) # augmentation strategy originates from DETR / Sparse RCNN train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='AutoAugment', policies=[ [ dict(type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', keep_ratio=True) ], [ dict(type='Resize', img_scale=[(400, 1333), (500, 1333), (600, 1333)], multiscale_mode='value', keep_ratio=True), dict(type='RandomCrop', crop_type='absolute_range', crop_size=(384, 600), allow_negative_crop=True), dict(type='Resize', img_scale=[(480, 1333), (512, 1333), (544, 1333), (576, 1333), (608, 1333), (640, 1333), (672, 1333), (704, 1333), (736, 1333), (768, 1333), (800, 1333)], multiscale_mode='value', override=True, keep_ratio=True) ] ]), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), ] data = dict(train=dict(pipeline=train_pipeline)) optimizer = dict(constructor='LearningRateDecayOptimizerConstructor', _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, paramwise_cfg={'decay_rate': 0.8, 'decay_type': 'layer_wise', 'num_layers': 12}) lr_config = dict(step=[27, 33]) runner = dict(type='EpochBasedRunnerAmp', max_epochs=36) # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
ConvNeXt-main
object_detection/configs/convnext/cascade_mask_rcnn_convnext_base_patch4_window7_mstrain_480-800_giou_4conv1f_adamw_3x_coco_in22k.py
from .darknet import Darknet from .detectors_resnet import DetectoRS_ResNet from .detectors_resnext import DetectoRS_ResNeXt from .hourglass import HourglassNet from .hrnet import HRNet from .regnet import RegNet from .res2net import Res2Net from .resnest import ResNeSt from .resnet import ResNet, ResNetV1d from .resnext import ResNeXt from .ssd_vgg import SSDVGG from .trident_resnet import TridentResNet from .swin_transformer import SwinTransformer from .convnext import ConvNeXt __all__ = [ 'RegNet', 'ResNet', 'ResNetV1d', 'ResNeXt', 'SSDVGG', 'HRNet', 'Res2Net', 'HourglassNet', 'DetectoRS_ResNet', 'DetectoRS_ResNeXt', 'Darknet', 'ResNeSt', 'TridentResNet', 'SwinTransformer', 'ConvNeXt' ]
ConvNeXt-main
object_detection/mmdet/models/backbones/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from timm.models.layers import trunc_normal_, DropPath from mmcv_custom import load_checkpoint from mmdet.utils import get_root_logger from ..builder import BACKBONES class Block(nn.Module): r""" ConvNeXt Block. There are two equivalent implementations: (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back We use (2) as we find it slightly faster in PyTorch Args: dim (int): Number of input channels. drop_path (float): Stochastic depth rate. Default: 0.0 layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. """ def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6): super().__init__() self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv self.norm = LayerNorm(dim, eps=1e-6) self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers self.act = nn.GELU() self.pwconv2 = nn.Linear(4 * dim, dim) self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True) if layer_scale_init_value > 0 else None self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): input = x x = self.dwconv(x) x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) x = self.norm(x) x = self.pwconv1(x) x = self.act(x) x = self.pwconv2(x) if self.gamma is not None: x = self.gamma * x x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) x = input + self.drop_path(x) return x @BACKBONES.register_module() class ConvNeXt(nn.Module): r""" ConvNeXt A PyTorch impl of : `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf Args: in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768] drop_path_rate (float): Stochastic depth rate. Default: 0. layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. """ def __init__(self, in_chans=3, depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0., layer_scale_init_value=1e-6, out_indices=[0, 1, 2, 3], ): super().__init__() self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers stem = nn.Sequential( nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), LayerNorm(dims[0], eps=1e-6, data_format="channels_first") ) self.downsample_layers.append(stem) for i in range(3): downsample_layer = nn.Sequential( LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2), ) self.downsample_layers.append(downsample_layer) self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] cur = 0 for i in range(4): stage = nn.Sequential( *[Block(dim=dims[i], drop_path=dp_rates[cur + j], layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])] ) self.stages.append(stage) cur += depths[i] self.out_indices = out_indices norm_layer = partial(LayerNorm, eps=1e-6, data_format="channels_first") for i_layer in range(4): layer = norm_layer(dims[i_layer]) layer_name = f'norm{i_layer}' self.add_module(layer_name, layer) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, (nn.Conv2d, nn.Linear)): trunc_normal_(m.weight, std=.02) nn.init.constant_(m.bias, 0) def init_weights(self, pretrained=None): """Initialize the weights in backbone. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ def _init_weights(m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) if isinstance(pretrained, str): self.apply(_init_weights) logger = get_root_logger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: self.apply(_init_weights) else: raise TypeError('pretrained must be a str or None') def forward_features(self, x): outs = [] for i in range(4): x = self.downsample_layers[i](x) x = self.stages[i](x) if i in self.out_indices: norm_layer = getattr(self, f'norm{i}') x_out = norm_layer(x) outs.append(x_out) return tuple(outs) def forward(self, x): x = self.forward_features(x) return x class LayerNorm(nn.Module): r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). """ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): super().__init__() self.weight = nn.Parameter(torch.ones(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) self.eps = eps self.data_format = data_format if self.data_format not in ["channels_last", "channels_first"]: raise NotImplementedError self.normalized_shape = (normalized_shape, ) def forward(self, x): if self.data_format == "channels_last": return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) elif self.data_format == "channels_first": u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x
ConvNeXt-main
object_detection/mmdet/models/backbones/convnext.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import json from mmcv.runner import OPTIMIZER_BUILDERS, DefaultOptimizerConstructor from mmcv.runner import get_dist_info def get_num_layer_layer_wise(var_name, num_max_layer=12): if var_name in ("backbone.cls_token", "backbone.mask_token", "backbone.pos_embed"): return 0 elif var_name.startswith("backbone.downsample_layers"): stage_id = int(var_name.split('.')[2]) if stage_id == 0: layer_id = 0 elif stage_id == 1: layer_id = 2 elif stage_id == 2: layer_id = 3 elif stage_id == 3: layer_id = num_max_layer return layer_id elif var_name.startswith("backbone.stages"): stage_id = int(var_name.split('.')[2]) block_id = int(var_name.split('.')[3]) if stage_id == 0: layer_id = 1 elif stage_id == 1: layer_id = 2 elif stage_id == 2: layer_id = 3 + block_id // 3 elif stage_id == 3: layer_id = num_max_layer return layer_id else: return num_max_layer + 1 def get_num_layer_stage_wise(var_name, num_max_layer): if var_name in ("backbone.cls_token", "backbone.mask_token", "backbone.pos_embed"): return 0 elif var_name.startswith("backbone.downsample_layers"): return 0 elif var_name.startswith("backbone.stages"): stage_id = int(var_name.split('.')[2]) return stage_id + 1 else: return num_max_layer - 1 @OPTIMIZER_BUILDERS.register_module() class LearningRateDecayOptimizerConstructor(DefaultOptimizerConstructor): def add_params(self, params, module, prefix='', is_dcn_module=None): """Add all parameters of module to the params list. The parameters of the given module will be added to the list of param groups, with specific rules defined by paramwise_cfg. Args: params (list[dict]): A list of param groups, it will be modified in place. module (nn.Module): The module to be added. prefix (str): The prefix of the module is_dcn_module (int|float|None): If the current module is a submodule of DCN, `is_dcn_module` will be passed to control conv_offset layer's learning rate. Defaults to None. """ parameter_groups = {} print(self.paramwise_cfg) num_layers = self.paramwise_cfg.get('num_layers') + 2 decay_rate = self.paramwise_cfg.get('decay_rate') decay_type = self.paramwise_cfg.get('decay_type', "layer_wise") print("Build LearningRateDecayOptimizerConstructor %s %f - %d" % (decay_type, decay_rate, num_layers)) weight_decay = self.base_wd for name, param in module.named_parameters(): if not param.requires_grad: continue # frozen weights if len(param.shape) == 1 or name.endswith(".bias") or name in ('pos_embed', 'cls_token'): group_name = "no_decay" this_weight_decay = 0. else: group_name = "decay" this_weight_decay = weight_decay if decay_type == "layer_wise": layer_id = get_num_layer_layer_wise(name, self.paramwise_cfg.get('num_layers')) elif decay_type == "stage_wise": layer_id = get_num_layer_stage_wise(name, num_layers) group_name = "layer_%d_%s" % (layer_id, group_name) if group_name not in parameter_groups: scale = decay_rate ** (num_layers - layer_id - 1) parameter_groups[group_name] = { "weight_decay": this_weight_decay, "params": [], "param_names": [], "lr_scale": scale, "group_name": group_name, "lr": scale * self.base_lr, } parameter_groups[group_name]["params"].append(param) parameter_groups[group_name]["param_names"].append(name) rank, _ = get_dist_info() if rank == 0: to_display = {} for key in parameter_groups: to_display[key] = { "param_names": parameter_groups[key]["param_names"], "lr_scale": parameter_groups[key]["lr_scale"], "lr": parameter_groups[key]["lr"], "weight_decay": parameter_groups[key]["weight_decay"], } print("Param groups = %s" % json.dumps(to_display, indent=2)) params.extend(parameter_groups.values())
ConvNeXt-main
semantic_segmentation/mmcv_custom/layer_decay_optimizer_constructor.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -*- coding: utf-8 -*- from .checkpoint import load_checkpoint from .layer_decay_optimizer_constructor import LearningRateDecayOptimizerConstructor from .resize_transform import SETR_Resize from .apex_runner.optimizer import DistOptimizerHook from .train_api import train_segmentor from .customized_text import CustomizedTextLoggerHook __all__ = ['load_checkpoint', 'LearningRateDecayOptimizerConstructor', 'SETR_Resize', 'DistOptimizerHook', 'train_segmentor', 'CustomizedTextLoggerHook']
ConvNeXt-main
semantic_segmentation/mmcv_custom/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import datetime from collections import OrderedDict import torch import mmcv from mmcv.runner import HOOKS from mmcv.runner import TextLoggerHook @HOOKS.register_module() class CustomizedTextLoggerHook(TextLoggerHook): """Customized Text Logger hook. This logger prints out both lr and layer_0_lr. """ def _log_info(self, log_dict, runner): # print exp name for users to distinguish experiments # at every ``interval_exp_name`` iterations and the end of each epoch if runner.meta is not None and 'exp_name' in runner.meta: if (self.every_n_iters(runner, self.interval_exp_name)) or ( self.by_epoch and self.end_of_epoch(runner)): exp_info = f'Exp name: {runner.meta["exp_name"]}' runner.logger.info(exp_info) if log_dict['mode'] == 'train': lr_str = {} for lr_type in ['lr', 'layer_0_lr']: if isinstance(log_dict[lr_type], dict): lr_str[lr_type] = [] for k, val in log_dict[lr_type].items(): lr_str.append(f'{lr_type}_{k}: {val:.3e}') lr_str[lr_type] = ' '.join(lr_str) else: lr_str[lr_type] = f'{lr_type}: {log_dict[lr_type]:.3e}' # by epoch: Epoch [4][100/1000] # by iter: Iter [100/100000] if self.by_epoch: log_str = f'Epoch [{log_dict["epoch"]}]' \ f'[{log_dict["iter"]}/{len(runner.data_loader)}]\t' else: log_str = f'Iter [{log_dict["iter"]}/{runner.max_iters}]\t' log_str += f'{lr_str["lr"]}, {lr_str["layer_0_lr"]}, ' if 'time' in log_dict.keys(): self.time_sec_tot += (log_dict['time'] * self.interval) time_sec_avg = self.time_sec_tot / ( runner.iter - self.start_iter + 1) eta_sec = time_sec_avg * (runner.max_iters - runner.iter - 1) eta_str = str(datetime.timedelta(seconds=int(eta_sec))) log_str += f'eta: {eta_str}, ' log_str += f'time: {log_dict["time"]:.3f}, ' \ f'data_time: {log_dict["data_time"]:.3f}, ' # statistic memory if torch.cuda.is_available(): log_str += f'memory: {log_dict["memory"]}, ' else: # val/test time # here 1000 is the length of the val dataloader # by epoch: Epoch[val] [4][1000] # by iter: Iter[val] [1000] if self.by_epoch: log_str = f'Epoch({log_dict["mode"]}) ' \ f'[{log_dict["epoch"]}][{log_dict["iter"]}]\t' else: log_str = f'Iter({log_dict["mode"]}) [{log_dict["iter"]}]\t' log_items = [] for name, val in log_dict.items(): # TODO: resolve this hack # these items have been in log_str if name in [ 'mode', 'Epoch', 'iter', 'lr', 'layer_0_lr', 'time', 'data_time', 'memory', 'epoch' ]: continue if isinstance(val, float): val = f'{val:.4f}' log_items.append(f'{name}: {val}') log_str += ', '.join(log_items) runner.logger.info(log_str) def log(self, runner): if 'eval_iter_num' in runner.log_buffer.output: # this doesn't modify runner.iter and is regardless of by_epoch cur_iter = runner.log_buffer.output.pop('eval_iter_num') else: cur_iter = self.get_iter(runner, inner_iter=True) log_dict = OrderedDict( mode=self.get_mode(runner), epoch=self.get_epoch(runner), iter=cur_iter) # record lr and layer_0_lr cur_lr = runner.current_lr() if isinstance(cur_lr, list): log_dict['layer_0_lr'] = min(cur_lr) log_dict['lr'] = max(cur_lr) else: assert isinstance(cur_lr, dict) log_dict['lr'], log_dict['layer_0_lr'] = {}, {} for k, lr_ in cur_lr.items(): assert isinstance(lr_, list) log_dict['layer_0_lr'].update({k: min(lr_)}) log_dict['lr'].update({k: max(lr_)}) if 'time' in runner.log_buffer.output: # statistic memory if torch.cuda.is_available(): log_dict['memory'] = self._get_max_memory(runner) log_dict = dict(log_dict, **runner.log_buffer.output) self._log_info(log_dict, runner) self._dump_log(log_dict, runner) return log_dict
ConvNeXt-main
semantic_segmentation/mmcv_custom/customized_text.py
# Copyright (c) Open-MMLab. All rights reserved. import os.path as osp import time from tempfile import TemporaryDirectory import torch from torch.optim import Optimizer import mmcv from mmcv.parallel import is_module_wrapper from mmcv.runner.checkpoint import weights_to_cpu, get_state_dict try: import apex except: print('apex is not installed') def save_checkpoint(model, filename, optimizer=None, meta=None): """Save checkpoint to file. The checkpoint will have 4 fields: ``meta``, ``state_dict`` and ``optimizer``, ``amp``. By default ``meta`` will contain version and time info. Args: model (Module): Module whose params are to be saved. filename (str): Checkpoint filename. optimizer (:obj:`Optimizer`, optional): Optimizer to be saved. meta (dict, optional): Metadata to be saved in checkpoint. """ if meta is None: meta = {} elif not isinstance(meta, dict): raise TypeError(f'meta must be a dict or None, but got {type(meta)}') meta.update(mmcv_version=mmcv.__version__, time=time.asctime()) if is_module_wrapper(model): model = model.module if hasattr(model, 'CLASSES') and model.CLASSES is not None: # save class name to the meta meta.update(CLASSES=model.CLASSES) checkpoint = { 'meta': meta, 'state_dict': weights_to_cpu(get_state_dict(model)) } # save optimizer state dict in the checkpoint if isinstance(optimizer, Optimizer): checkpoint['optimizer'] = optimizer.state_dict() elif isinstance(optimizer, dict): checkpoint['optimizer'] = {} for name, optim in optimizer.items(): checkpoint['optimizer'][name] = optim.state_dict() # save amp state dict in the checkpoint # checkpoint['amp'] = apex.amp.state_dict() if filename.startswith('pavi://'): try: from pavi import modelcloud from pavi.exception import NodeNotFoundError except ImportError: raise ImportError( 'Please install pavi to load checkpoint from modelcloud.') model_path = filename[7:] root = modelcloud.Folder() model_dir, model_name = osp.split(model_path) try: model = modelcloud.get(model_dir) except NodeNotFoundError: model = root.create_training_model(model_dir) with TemporaryDirectory() as tmp_dir: checkpoint_file = osp.join(tmp_dir, model_name) with open(checkpoint_file, 'wb') as f: torch.save(checkpoint, f) f.flush() model.create_file(checkpoint_file, name=model_name) else: mmcv.mkdir_or_exist(osp.dirname(filename)) # immediately flush buffer with open(filename, 'wb') as f: torch.save(checkpoint, f) f.flush()
ConvNeXt-main
semantic_segmentation/mmcv_custom/apex_runner/checkpoint.py
# yapf:disable log_config = dict( interval=50, hooks=[ dict(type='CustomizedTextLoggerHook', by_epoch=False), # dict(type='TensorboardLoggerHook') ]) # yapf:enable dist_params = dict(backend='nccl') log_level = 'INFO' load_from = None resume_from = None workflow = [('train', 1)] cudnn_benchmark = True
ConvNeXt-main
semantic_segmentation/configs/_base_/default_runtime.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained=None, backbone=dict( type='ConvNeXt', in_chans=3, depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0.2, layer_scale_init_value=1.0, out_indices=[0, 1, 2, 3], ), decode_head=dict( type='UPerHead', in_channels=[128, 256, 512, 1024], in_index=[0, 1, 2, 3], pool_scales=(1, 2, 3, 6), channels=512, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), auxiliary_head=dict( type='FCNHead', in_channels=384, in_index=2, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, num_classes=19, norm_cfg=norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))
ConvNeXt-main
semantic_segmentation/configs/_base_/models/upernet_convnext.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. _base_ = [ '../_base_/models/upernet_convnext.py', '../_base_/datasets/ade20k_640x640.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] crop_size = (640, 640) model = dict( backbone=dict( type='ConvNeXt', in_chans=3, depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], drop_path_rate=0.4, layer_scale_init_value=1.0, out_indices=[0, 1, 2, 3], ), decode_head=dict( in_channels=[192, 384, 768, 1536], num_classes=150, ), auxiliary_head=dict( in_channels=768, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(426, 426)), ) optimizer = dict(constructor='LearningRateDecayOptimizerConstructor', _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, paramwise_cfg={'decay_rate': 0.9, 'decay_type': 'stage_wise', 'num_layers': 12}) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=False, )
ConvNeXt-main
semantic_segmentation/configs/convnext/upernet_convnext_large_640_160k_ade20k_ss.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. _base_ = [ '../_base_/models/upernet_convnext.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] crop_size = (512, 512) model = dict( backbone=dict( type='ConvNeXt', in_chans=3, depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0.4, layer_scale_init_value=1.0, out_indices=[0, 1, 2, 3], ), decode_head=dict( in_channels=[96, 192, 384, 768], num_classes=150, ), auxiliary_head=dict( in_channels=384, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)), ) optimizer = dict(constructor='LearningRateDecayOptimizerConstructor', _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, paramwise_cfg={'decay_rate': 0.9, 'decay_type': 'stage_wise', 'num_layers': 6}) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
ConvNeXt-main
semantic_segmentation/configs/convnext/upernet_convnext_tiny_512_160k_ade20k_ss.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. _base_ = [ '../_base_/models/upernet_convnext.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] crop_size = (512, 512) model = dict( backbone=dict( in_chans=3, depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], drop_path_rate=0.3, layer_scale_init_value=1.0, out_indices=[0, 1, 2, 3], ), decode_head=dict( in_channels=[96, 192, 384, 768], num_classes=150, ), auxiliary_head=dict( in_channels=384, num_classes=150 ), ) optimizer = dict(constructor='LearningRateDecayOptimizerConstructor', _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, paramwise_cfg={'decay_rate': 0.9, 'decay_type': 'stage_wise', 'num_layers': 12}) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
ConvNeXt-main
semantic_segmentation/configs/convnext/upernet_convnext_small_512_160k_ade20k_ms.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. _base_ = [ '../_base_/models/upernet_convnext.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] crop_size = (512, 512) model = dict( backbone=dict( type='ConvNeXt', in_chans=3, depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], drop_path_rate=0.4, layer_scale_init_value=1.0, out_indices=[0, 1, 2, 3], ), decode_head=dict( in_channels=[128, 256, 512, 1024], num_classes=150, ), auxiliary_head=dict( in_channels=512, num_classes=150 ), ) optimizer = dict(constructor='LearningRateDecayOptimizerConstructor', _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, paramwise_cfg={'decay_rate': 0.9, 'decay_type': 'stage_wise', 'num_layers': 12}) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
ConvNeXt-main
semantic_segmentation/configs/convnext/upernet_convnext_base_512_160k_ade20k_ms.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. _base_ = [ '../_base_/models/upernet_convnext.py', '../_base_/datasets/ade20k_640x640.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] crop_size = (640, 640) model = dict( backbone=dict( type='ConvNeXt', in_chans=3, depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], drop_path_rate=0.4, layer_scale_init_value=1.0, out_indices=[0, 1, 2, 3], ), decode_head=dict( in_channels=[256, 512, 1024, 2048], num_classes=150, ), auxiliary_head=dict( in_channels=1024, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(426, 426)), ) optimizer = dict(constructor='LearningRateDecayOptimizerConstructor', _delete_=True, type='AdamW', lr=0.00008, betas=(0.9, 0.999), weight_decay=0.05, paramwise_cfg={'decay_rate': 0.9, 'decay_type': 'stage_wise', 'num_layers': 12}) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=False, )
ConvNeXt-main
semantic_segmentation/configs/convnext/upernet_convnext_xlarge_640_160k_ade20k_ss.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. _base_ = [ '../_base_/models/upernet_convnext.py', '../_base_/datasets/ade20k_640x640.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] crop_size = (640, 640) model = dict( backbone=dict( type='ConvNeXt', in_chans=3, depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], drop_path_rate=0.4, layer_scale_init_value=1.0, out_indices=[0, 1, 2, 3], ), decode_head=dict( in_channels=[128, 256, 512, 1024], num_classes=150, ), auxiliary_head=dict( in_channels=512, num_classes=150 ), ) optimizer = dict(constructor='LearningRateDecayOptimizerConstructor', _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, paramwise_cfg={'decay_rate': 0.9, 'decay_type': 'stage_wise', 'num_layers': 12}) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
ConvNeXt-main
semantic_segmentation/configs/convnext/upernet_convnext_base_640_160k_ade20k_ms.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. _base_ = [ '../_base_/models/upernet_convnext.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] crop_size = (512, 512) model = dict( backbone=dict( type='ConvNeXt', in_chans=3, depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0.4, layer_scale_init_value=1.0, out_indices=[0, 1, 2, 3], ), decode_head=dict( in_channels=[96, 192, 384, 768], num_classes=150, ), auxiliary_head=dict( in_channels=384, num_classes=150 ), ) optimizer = dict(constructor='LearningRateDecayOptimizerConstructor', _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, paramwise_cfg={'decay_rate': 0.9, 'decay_type': 'stage_wise', 'num_layers': 6}) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
ConvNeXt-main
semantic_segmentation/configs/convnext/upernet_convnext_tiny_512_160k_ade20k_ms.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. _base_ = [ '../_base_/models/upernet_convnext.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] crop_size = (512, 512) model = dict( backbone=dict( in_chans=3, depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], drop_path_rate=0.3, layer_scale_init_value=1.0, out_indices=[0, 1, 2, 3], ), decode_head=dict( in_channels=[96, 192, 384, 768], num_classes=150, ), auxiliary_head=dict( in_channels=384, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)), ) optimizer = dict(constructor='LearningRateDecayOptimizerConstructor', _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, paramwise_cfg={'decay_rate': 0.9, 'decay_type': 'stage_wise', 'num_layers': 12}) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
ConvNeXt-main
semantic_segmentation/configs/convnext/upernet_convnext_small_512_160k_ade20k_ss.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. _base_ = [ '../_base_/models/upernet_convnext.py', '../_base_/datasets/ade20k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] crop_size = (512, 512) model = dict( backbone=dict( type='ConvNeXt', in_chans=3, depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], drop_path_rate=0.4, layer_scale_init_value=1.0, out_indices=[0, 1, 2, 3], ), decode_head=dict( in_channels=[128, 256, 512, 1024], num_classes=150, ), auxiliary_head=dict( in_channels=512, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(341, 341)), ) optimizer = dict(constructor='LearningRateDecayOptimizerConstructor', _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, paramwise_cfg={'decay_rate': 0.9, 'decay_type': 'stage_wise', 'num_layers': 12}) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
ConvNeXt-main
semantic_segmentation/configs/convnext/upernet_convnext_base_512_160k_ade20k_ss.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. _base_ = [ '../_base_/models/upernet_convnext.py', '../_base_/datasets/ade20k_640x640.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] crop_size = (640, 640) model = dict( backbone=dict( type='ConvNeXt', in_chans=3, depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], drop_path_rate=0.4, layer_scale_init_value=1.0, out_indices=[0, 1, 2, 3], ), decode_head=dict( in_channels=[256, 512, 1024, 2048], num_classes=150, ), auxiliary_head=dict( in_channels=1024, num_classes=150 ), ) optimizer = dict(constructor='LearningRateDecayOptimizerConstructor', _delete_=True, type='AdamW', lr=0.00008, betas=(0.9, 0.999), weight_decay=0.05, paramwise_cfg={'decay_rate': 0.9, 'decay_type': 'stage_wise', 'num_layers': 12}) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=False, )
ConvNeXt-main
semantic_segmentation/configs/convnext/upernet_convnext_xlarge_640_160k_ade20k_ms.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. _base_ = [ '../_base_/models/upernet_convnext.py', '../_base_/datasets/ade20k_640x640.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] crop_size = (640, 640) model = dict( backbone=dict( type='ConvNeXt', in_chans=3, depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], drop_path_rate=0.4, layer_scale_init_value=1.0, out_indices=[0, 1, 2, 3], ), decode_head=dict( in_channels=[128, 256, 512, 1024], num_classes=150, ), auxiliary_head=dict( in_channels=512, num_classes=150 ), test_cfg = dict(mode='slide', crop_size=crop_size, stride=(426, 426)), ) optimizer = dict(constructor='LearningRateDecayOptimizerConstructor', _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, paramwise_cfg={'decay_rate': 0.9, 'decay_type': 'stage_wise', 'num_layers': 12}) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=True, )
ConvNeXt-main
semantic_segmentation/configs/convnext/upernet_convnext_base_640_160k_ade20k_ss.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. _base_ = [ '../_base_/models/upernet_convnext.py', '../_base_/datasets/ade20k_640x640.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] crop_size = (640, 640) model = dict( backbone=dict( type='ConvNeXt', in_chans=3, depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], drop_path_rate=0.4, layer_scale_init_value=1.0, out_indices=[0, 1, 2, 3], ), decode_head=dict( in_channels=[192, 384, 768, 1536], num_classes=150, ), auxiliary_head=dict( in_channels=768, num_classes=150 ), ) optimizer = dict(constructor='LearningRateDecayOptimizerConstructor', _delete_=True, type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05, paramwise_cfg={'decay_rate': 0.9, 'decay_type': 'stage_wise', 'num_layers': 12}) lr_config = dict(_delete_=True, policy='poly', warmup='linear', warmup_iters=1500, warmup_ratio=1e-6, power=1.0, min_lr=0.0, by_epoch=False) # By default, models are trained on 8 GPUs with 2 images per GPU data=dict(samples_per_gpu=2) runner = dict(type='IterBasedRunnerAmp') # do not use mmdet version fp16 fp16 = None optimizer_config = dict( type="DistOptimizerHook", update_interval=1, grad_clip=None, coalesce=True, bucket_size_mb=-1, use_fp16=False, )
ConvNeXt-main
semantic_segmentation/configs/convnext/upernet_convnext_large_640_160k_ade20k_ms.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from timm.models.layers import trunc_normal_, DropPath from mmcv_custom import load_checkpoint from mmseg.utils import get_root_logger from mmseg.models.builder import BACKBONES class Block(nn.Module): r""" ConvNeXt Block. There are two equivalent implementations: (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back We use (2) as we find it slightly faster in PyTorch Args: dim (int): Number of input channels. drop_path (float): Stochastic depth rate. Default: 0.0 layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. """ def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6): super().__init__() self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv self.norm = LayerNorm(dim, eps=1e-6) self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers self.act = nn.GELU() self.pwconv2 = nn.Linear(4 * dim, dim) self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True) if layer_scale_init_value > 0 else None self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): input = x x = self.dwconv(x) x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) x = self.norm(x) x = self.pwconv1(x) x = self.act(x) x = self.pwconv2(x) if self.gamma is not None: x = self.gamma * x x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) x = input + self.drop_path(x) return x @BACKBONES.register_module() class ConvNeXt(nn.Module): r""" ConvNeXt A PyTorch impl of : `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf Args: in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768] drop_path_rate (float): Stochastic depth rate. Default: 0. layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. """ def __init__(self, in_chans=3, depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0., layer_scale_init_value=1e-6, out_indices=[0, 1, 2, 3], ): super().__init__() self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers stem = nn.Sequential( nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), LayerNorm(dims[0], eps=1e-6, data_format="channels_first") ) self.downsample_layers.append(stem) for i in range(3): downsample_layer = nn.Sequential( LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2), ) self.downsample_layers.append(downsample_layer) self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] cur = 0 for i in range(4): stage = nn.Sequential( *[Block(dim=dims[i], drop_path=dp_rates[cur + j], layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])] ) self.stages.append(stage) cur += depths[i] self.out_indices = out_indices norm_layer = partial(LayerNorm, eps=1e-6, data_format="channels_first") for i_layer in range(4): layer = norm_layer(dims[i_layer]) layer_name = f'norm{i_layer}' self.add_module(layer_name, layer) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, (nn.Conv2d, nn.Linear)): trunc_normal_(m.weight, std=.02) nn.init.constant_(m.bias, 0) def init_weights(self, pretrained=None): """Initialize the weights in backbone. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ def _init_weights(m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) if isinstance(pretrained, str): self.apply(_init_weights) logger = get_root_logger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: self.apply(_init_weights) else: raise TypeError('pretrained must be a str or None') def forward_features(self, x): outs = [] for i in range(4): x = self.downsample_layers[i](x) x = self.stages[i](x) if i in self.out_indices: norm_layer = getattr(self, f'norm{i}') x_out = norm_layer(x) outs.append(x_out) return tuple(outs) def forward(self, x): x = self.forward_features(x) return x class LayerNorm(nn.Module): r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). """ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): super().__init__() self.weight = nn.Parameter(torch.ones(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) self.eps = eps self.data_format = data_format if self.data_format not in ["channels_last", "channels_first"]: raise NotImplementedError self.normalized_shape = (normalized_shape, ) def forward(self, x): if self.data_format == "channels_last": return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) elif self.data_format == "channels_first": u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x
ConvNeXt-main
semantic_segmentation/backbone/convnext.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import torch from util import str2bool parser = argparse.ArgumentParser(description='RL') # PPO & other optimization arguments. parser.add_argument( '--algo', type=str, default='ppo', choices=['ppo', 'a2c', 'acktr', 'ucb', 'mixreg'], help='Which RL algorithm to use.') parser.add_argument( '--lr', type=float, default=1e-4, help='Learning rate') parser.add_argument( '--eps', type=float, default=1e-5, help='RMSprop optimizer epsilon.') parser.add_argument( '--alpha', type=float, default=0.99, help='RMSprop optimizer alpha.') parser.add_argument( '--gamma', type=float, default=0.995, help='Discount factor for rewards.') parser.add_argument( '--use_gae', type=str2bool, nargs='?', const=True, default=True, help='Use generalized advantage estimator.') parser.add_argument( '--gae_lambda', type=float, default=0.95, help='GAE lambda parameter.') parser.add_argument( '--entropy_coef', type=float, default=0.0, help='Entropy bonus coefficient for student.') parser.add_argument( '--adv_entropy_coef', type=float, default=0.0, help='Entropy bonus coefficient for teacher.') parser.add_argument( '--value_loss_coef', type=float, default=0.5, help='Value loss coefficient.') parser.add_argument( '--max_grad_norm', type=float, default=0.5, help='Max norm of student gradients.') parser.add_argument( '--adv_max_grad_norm', type=float, default=0.5, help='Max norm of teacher gradients.') parser.add_argument( '--normalize_returns', type=str2bool, nargs='?', const=True, default=False, help='Whether to normalize student returns.') parser.add_argument( '--adv_normalize_returns', type=str2bool, nargs='?', const=True, default=False, help='Whether to normalize teacher returns.') parser.add_argument( '--use_popart', type=str2bool, nargs='?', const=True, default=False, help='Whether to normalize student values via PopArt.') parser.add_argument( '--adv_use_popart', type=str2bool, nargs='?', const=True, default=False, help='Whether to normalize teacher values using PopArt.') parser.add_argument( '--seed', type=int, default=1, help='Experiment random seed.') parser.add_argument( '--num_processes', type=int, default=32, help='How many training CPU processes to use for experience collection.') parser.add_argument( '--num_steps', type=int, default=256, help='Rollout horizon for A2C-style algorithms.') parser.add_argument( '--ppo_epoch', type=int, default=5, help='Number of PPO epochs.') parser.add_argument( '--adv_ppo_epoch', type=int, default=5, help='Number of PPO epochs used by teacher.') parser.add_argument( '--num_mini_batch', type=int, default=1, help='Number of batches for PPO for student.') parser.add_argument( '--adv_num_mini_batch', type=int, default=1, help='Number of batches for PPO for teacher.') parser.add_argument( '--clip_param', type=float, default=0.2, help='PPO advantage clipping.') parser.add_argument( '--clip_value_loss', type=str2bool, default=True, help='PPO value loss clipping.') parser.add_argument( '--clip_reward', type=float, default=None, help="Amount to clip student rewards. By default no clipping.") parser.add_argument( '--adv_clip_reward', type=float, default=None, help="Amount to clip teacher rewards. By default no clipping.") parser.add_argument( '--num_env_steps', type=int, default=500000, help='Number of environment steps for training.') # Architecture arguments. parser.add_argument( '--recurrent_arch', type=str, default='lstm', choices=['gru', 'lstm'], help='RNN architecture for student and teacher.') parser.add_argument( '--recurrent_agent', type=str2bool, nargs='?', const=True, default=True, help='Use a RNN architecture for student.') parser.add_argument( '--recurrent_adversary_env', type=str2bool, nargs='?', const=True, default=False, help='Use a RNN architecture for teacher.') parser.add_argument( '--recurrent_hidden_size', type=int, default=256, help='Recurrent hidden state size.') # === UED arguments === parser.add_argument( '--ued_algo', type=str, default='paired', choices=['domain_randomization', 'minimax', 'paired', 'flexible_paired', 'alp_gmm'], help='UED algorithm') parser.add_argument( '--protagonist_plr', type=str2bool, nargs='?', const=True, default=False, help="PLR via protagonist's trajectories.") parser.add_argument( '--antagonist_plr', type=str2bool, nargs='?', const=True, default=False, help="PLR via antagonist's lotrajectoriesss. If protagonist_plr is True, each agent trains using their own.") parser.add_argument( '--use_reset_random_dr', type=str2bool, nargs='?', const=True, default=False, help=''' Domain randomization (DR) resets using reset random. If False, DR resets using a uniformly random adversary policy. Defaults to False for legacy reasons.''') # PLR arguments. parser.add_argument( "--use_plr", type=str2bool, nargs='?', const=True, default=False, help='Whether to use PLR.' ) parser.add_argument( "--level_replay_strategy", type=str, default='value_l1', choices=['off', 'random', 'uniform', 'sequential', 'policy_entropy', 'least_confidence', 'min_margin', 'gae', 'value_l1', 'signed_value_loss', 'positive_value_loss', 'grounded_signed_value_loss', 'grounded_positive_value_loss', 'one_step_td_error', 'alt_advantage_abs', 'tscl_window'], help="PLR score function.") parser.add_argument( "--level_replay_eps", type=float, default=0.05, help="PLR epsilon for eps-greedy sampling. (Not typically used.)") parser.add_argument( "--level_replay_score_transform", type=str, default='rank', choices=['constant', 'max', 'eps_greedy', 'rank', 'power', 'softmax', 'match', 'match_rank'], help="PLR score transform.") parser.add_argument( "--level_replay_temperature", type=float, default=0.1, help="PLR replay distribution temperature.") parser.add_argument( "--level_replay_schedule", type=str, default='proportionate', help="PLR schedule for annealing the replay rate.") parser.add_argument( "--level_replay_rho", type=float, default=1.0, help="Minimum fill ratio for PLR buffer before sampling replays.") parser.add_argument( "--level_replay_prob", type=float, default=0., help="Probability of sampling a replay level instead of a new level.") parser.add_argument( "--level_replay_alpha", type=float, default=1.0, help="PLR level score EWA smoothing factor.") parser.add_argument( "--staleness_coef", type=float, default=0.3, help="Staleness-sampling weighting.") parser.add_argument( "--staleness_transform", type=str, default='power', choices=['max', 'eps_greedy', 'rank', 'power', 'softmax'], help="Staleness score transform.") parser.add_argument( "--staleness_temperature", type=float, default=1.0, help="Staleness distribution temperature.") parser.add_argument( "--train_full_distribution", type=str2bool, nargs='?', const=True, default=True, help='Train on the full distribution of levels.') parser.add_argument( "--level_replay_seed_buffer_size", type=int, default=4000, help="Size of PLR level buffer.") parser.add_argument( "--level_replay_seed_buffer_priority", type=str, default='replay_support', choices=['score', 'replay_support'], help="How to prioritize level buffer members when capacity is reached.") parser.add_argument( "--reject_unsolvable_seeds", type=str2bool, nargs='?', const=True, default=False, help='Do not add unsolvable seeds to the PLR buffer.') parser.add_argument( "--no_exploratory_grad_updates", type=str2bool, nargs='?', const=True, default=False, help='Turns on Robust PLR: Only perform gradient updates for episodes on replay levels.' ) # ACCEL arguments. parser.add_argument( "--use_editor", type=str2bool, nargs='?', const=True, default=False, help='Turns on ACCEL: Evaluate mutated replay levels for entry in PLR buffer.') parser.add_argument( "--level_editor_prob", type=float, default=0., help="Probability of mutating a replayed level under PLR.") parser.add_argument( "--level_editor_method", type=str, default='random', choices=['random'], help="Method for mutating levels. ACCEL simply uses random mutations.") parser.add_argument( "--base_levels", type=str, default='batch', choices=['batch', 'easy'], help="What kind of replayed level under PLR do we edit?") parser.add_argument( "--num_edits", type=int, default=0., help="Number of edits to make each time a level is mutated.") # Fine-tuning arguments. parser.add_argument( '--xpid_finetune', default=None, help='Checkpoint directory containing model for fine-tuning.') parser.add_argument( '--model_finetune', default='model', help='Name of .tar to load for fine-tuning.') # Hardware arguments. parser.add_argument( '--no_cuda', type=str2bool, nargs='?', const=True, default=False, help='Disables CUDA training.') # Logging arguments. parser.add_argument( '--xpid', default='latest', help='Name for the training run. Used for the name of the output results directory.') parser.add_argument( '--log_dir', default='~/logs/dcd/', help='Directory in which to save experimental outputs.') parser.add_argument( '--log_interval', type=int, default=1, help='Log training stats every this many updates.') parser.add_argument( "--checkpoint_interval", type=int, default=100, help="Save model every this many updates.") parser.add_argument( "--archive_interval", type=int, default=0, help="Save an archived checkpoint every this many updates.") parser.add_argument( "--checkpoint_basis", type=str, default="num_updates", choices=["num_updates", "student_grad_updates"], help=f'''Archive interval basis. num_updates: By # update cycles (full rollout cycle across all agents); student_grad_updates: By # grad updates performed by the student agent.''') parser.add_argument( "--weight_log_interval", type=int, default=0, help="Save level weights every this many updates. *Only for PLR with a fixed level buffer.*") parser.add_argument( "--screenshot_interval", type=int, default=5000, help="Save screenshot of the training environment every this many updates.") parser.add_argument( "--screenshot_batch_size", type=int, default=1, help="Number of training environments to screenshot each screenshot_interval.") parser.add_argument( '--render', type=str2bool, nargs='?', const=True, default=False, help='Render to environment to screen.') parser.add_argument( "--checkpoint", type=str2bool, nargs='?', const=True, default=False, help="Begin training from checkpoint. Needed for preemptible training on clusters.") parser.add_argument( "--disable_checkpoint", type=str2bool, nargs='?', const=True, default=False, help="Disable checkpointing.") parser.add_argument( '--log_grad_norm', type=str2bool, nargs='?', const=True, default=False, help="Log the gradient norm of the actor-critic.") parser.add_argument( '--log_action_complexity', type=str2bool, nargs='?', const=True, default=False, help="Log action-trajectory complexity metrics throughout training.") parser.add_argument( '--log_replay_complexity', type=str2bool, nargs='?', const=True, default=False, help="Log complexity metrics of replay levels.") parser.add_argument( '--log_plr_buffer_stats', type=str2bool, nargs='?', const=True, default=False, help="Log PLR buffer stats.") parser.add_argument( "--verbose", type=str2bool, nargs='?', const=True, default=False, help="Whether to print logs to stdout.") # Evaluation arguments. parser.add_argument( '--test_interval', type=int, default=250, help='Evaluate on test environments every this many updates.') parser.add_argument( '--test_num_episodes', type=int, default=10, help='Number of test episodes per environment.') parser.add_argument( '--test_num_processes', type=int, default=2, help='Number of test processes per environment.') parser.add_argument( '--test_env_names', type=str, default='MultiGrid-SixteenRooms-v0,MultiGrid-Labyrinth-v0,MultiGrid-Maze-v0', help='CSV string of test environments for evaluation during training.') # Environment arguments. parser.add_argument( '--env_name', type=str, default='MultiGrid-GoalLastAdversarial-v0', help='Environment to train on.') parser.add_argument( '--handle_timelimits', type=str2bool, nargs='?', const=True, default=False, help="Bootstrap off of early termination states. Requires env to be wrapped by envs.wrappers.TimeLimit.") parser.add_argument( '--singleton_env', type=str2bool, nargs='?', const=True, default=False, help="When using a fixed env, whether the same environment should also be reused across workers.") parser.add_argument( '--use_global_critic', type=str2bool, nargs='?', const=True, default=False, help="Student's critic is fully observable. *Only for MultiGrid.*") parser.add_argument( '--use_global_policy', type=str2bool, nargs='?', const=True, default=False, help="Student's policy is fully observable. *Only for MultiGrid.*") # CarRacing-specific arguments. parser.add_argument( '--grayscale', type=str2bool, nargs='?', const=True, default=False, help="Convert observations to grayscale for CarRacing.") parser.add_argument( '--crop_frame', type=str2bool, nargs='?', const=True, default=False, help="Convert observations to grayscale for CarRacing.") parser.add_argument( '--reward_shaping', type=str2bool, nargs='?', const=True, default=False, help="Use custom shaped rewards for CarRacing.") parser.add_argument( '--num_action_repeat', type=int, default=1, help="Repeat actions this many times for CarRacing.") parser.add_argument( '--frame_stack', type=int, default=1, help="Number of observation frames to stack for CarRacing.") parser.add_argument( '--num_control_points', type=int, default=12, help="Number of bezier control points for CarRacing-Bezier environments.") parser.add_argument( '--min_rad_ratio', type=float, default=0.333333333, help="Default minimum radius ratio for CarRacing-Classic (polar coordinates).") parser.add_argument( '--max_rad_ratio', type=float, default=1.0, help="Default minimum radius ratio for CarRacing-Classic (polar coordinates).") parser.add_argument( '--use_skip', type=str2bool, nargs='?', const=True, default=False, help="CarRacing teacher can use a skip action.") parser.add_argument( '--choose_start_pos', type=str2bool, nargs='?', const=True, default=False, help="CarRacing teacher also chooses the start position.") parser.add_argument( '--use_sketch', type=str2bool, nargs='?', const=True, default=True, help="CarRacing teacher designs tracks on a downsampled grid.") parser.add_argument( '--use_categorical_adv', type=str2bool, nargs='?', const=True, default=False, help="CarRacing teacher uses a categorical policy.") parser.add_argument( '--sparse_rewards', type=str2bool, nargs='?', const=True, default=False, help="Use sparse rewards + goal placement for CarRacing.") parser.add_argument( '--num_goal_bins', type=int, default=1, help="Number of goal bins when using sparse rewards for CarRacing.")
dcd-main
arguments.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import sys import os import time import timeit import logging from arguments import parser import torch import gym import matplotlib as mpl import matplotlib.pyplot as plt from baselines.logger import HumanOutputFormat display = None if sys.platform.startswith('linux'): print('Setting up virtual display') import pyvirtualdisplay display = pyvirtualdisplay.Display(visible=0, size=(1400, 900), color_depth=24) display.start() from envs.multigrid import * from envs.multigrid.adversarial import * from envs.box2d import * from envs.bipedalwalker import * from envs.runners.adversarial_runner import AdversarialRunner from util import make_agent, FileWriter, safe_checkpoint, create_parallel_env, make_plr_args, save_images from eval import Evaluator if __name__ == '__main__': os.environ["OMP_NUM_THREADS"] = "1" args = parser.parse_args() # === Configure logging == if args.xpid is None: args.xpid = "lr-%s" % time.strftime("%Y%m%d-%H%M%S") log_dir = os.path.expandvars(os.path.expanduser(args.log_dir)) filewriter = FileWriter( xpid=args.xpid, xp_args=args.__dict__, rootdir=log_dir ) screenshot_dir = os.path.join(log_dir, args.xpid, 'screenshots') if not os.path.exists(screenshot_dir): os.makedirs(screenshot_dir, exist_ok=True) def log_stats(stats): filewriter.log(stats) if args.verbose: HumanOutputFormat(sys.stdout).writekvs(stats) if args.verbose: logging.getLogger().setLevel(logging.INFO) else: logging.disable(logging.CRITICAL) # === Determine device ==== args.cuda = not args.no_cuda and torch.cuda.is_available() device = torch.device("cuda:0" if args.cuda else "cpu") if 'cuda' in device.type: torch.backends.cudnn.benchmark = True print('Using CUDA\n') # === Create parallel envs === venv, ued_venv = create_parallel_env(args) is_training_env = args.ued_algo in ['paired', 'flexible_paired', 'minimax'] is_paired = args.ued_algo in ['paired', 'flexible_paired'] agent = make_agent(name='agent', env=venv, args=args, device=device) adversary_agent, adversary_env = None, None if is_paired: adversary_agent = make_agent(name='adversary_agent', env=venv, args=args, device=device) if is_training_env: adversary_env = make_agent(name='adversary_env', env=venv, args=args, device=device) if args.ued_algo == 'domain_randomization' and args.use_plr and not args.use_reset_random_dr: adversary_env = make_agent(name='adversary_env', env=venv, args=args, device=device) adversary_env.random() # === Create runner === plr_args = None if args.use_plr: plr_args = make_plr_args(args, venv.observation_space, venv.action_space) train_runner = AdversarialRunner( args=args, venv=venv, agent=agent, ued_venv=ued_venv, adversary_agent=adversary_agent, adversary_env=adversary_env, flexible_protagonist=False, train=True, plr_args=plr_args, device=device) # === Configure checkpointing === timer = timeit.default_timer initial_update_count = 0 last_logged_update_at_restart = -1 checkpoint_path = os.path.expandvars( os.path.expanduser("%s/%s/%s" % (log_dir, args.xpid, "model.tar")) ) ## This is only used for the first iteration of finetuning if args.xpid_finetune: model_fname = f'{args.model_finetune}.tar' base_checkpoint_path = os.path.expandvars( os.path.expanduser("%s/%s/%s" % (log_dir, args.xpid_finetune, model_fname)) ) def checkpoint(index=None): if args.disable_checkpoint: return safe_checkpoint({'runner_state_dict': train_runner.state_dict()}, checkpoint_path, index=index, archive_interval=args.archive_interval) logging.info("Saved checkpoint to %s", checkpoint_path) # === Load checkpoint === if args.checkpoint and os.path.exists(checkpoint_path): checkpoint_states = torch.load(checkpoint_path, map_location=lambda storage, loc: storage) last_logged_update_at_restart = filewriter.latest_tick() # ticks are 0-indexed updates train_runner.load_state_dict(checkpoint_states['runner_state_dict']) initial_update_count = train_runner.num_updates logging.info(f"Resuming preempted job after {initial_update_count} updates\n") # 0-indexed next update elif args.xpid_finetune and not os.path.exists(checkpoint_path): checkpoint_states = torch.load(base_checkpoint_path) state_dict = checkpoint_states['runner_state_dict'] agent_state_dict = state_dict.get('agent_state_dict') optimizer_state_dict = state_dict.get('optimizer_state_dict') train_runner.agents['agent'].algo.actor_critic.load_state_dict(agent_state_dict['agent']) train_runner.agents['agent'].algo.optimizer.load_state_dict(optimizer_state_dict['agent']) # === Set up Evaluator === evaluator = None if args.test_env_names: evaluator = Evaluator( args.test_env_names.split(','), num_processes=args.test_num_processes, num_episodes=args.test_num_episodes, frame_stack=args.frame_stack, grayscale=args.grayscale, num_action_repeat=args.num_action_repeat, use_global_critic=args.use_global_critic, use_global_policy=args.use_global_policy, device=device) # === Train === last_checkpoint_idx = getattr(train_runner, args.checkpoint_basis) update_start_time = timer() num_updates = int(args.num_env_steps) // args.num_steps // args.num_processes for j in range(initial_update_count, num_updates): stats = train_runner.run() # === Perform logging === if train_runner.num_updates <= last_logged_update_at_restart: continue log = (j % args.log_interval == 0) or j == num_updates - 1 save_screenshot = \ args.screenshot_interval > 0 and \ (j % args.screenshot_interval == 0) if log: # Eval test_stats = {} if evaluator is not None and (j % args.test_interval == 0 or j == num_updates - 1): test_stats = evaluator.evaluate(train_runner.agents['agent']) stats.update(test_stats) else: stats.update({k:None for k in evaluator.get_stats_keys()}) update_end_time = timer() num_incremental_updates = 1 if j == 0 else args.log_interval sps = num_incremental_updates*(args.num_processes * args.num_steps) / (update_end_time - update_start_time) update_start_time = update_end_time stats.update({'sps': sps}) stats.update(test_stats) # Ensures sps column is always before test stats log_stats(stats) checkpoint_idx = getattr(train_runner, args.checkpoint_basis) if checkpoint_idx != last_checkpoint_idx: is_last_update = j == num_updates - 1 if is_last_update or \ (train_runner.num_updates > 0 and checkpoint_idx % args.checkpoint_interval == 0): checkpoint(checkpoint_idx) logging.info(f"\nSaved checkpoint after update {j}") logging.info(f"\nLast update: {is_last_update}") elif train_runner.num_updates > 0 and args.archive_interval > 0 \ and checkpoint_idx % args.archive_interval == 0: checkpoint(checkpoint_idx) logging.info(f"\nArchived checkpoint after update {j}") if save_screenshot: level_info = train_runner.sampled_level_info if args.env_name.startswith('BipedalWalker'): encodings = venv.get_level() df = bipedalwalker_df_from_encodings(args.env_name, encodings) if args.use_editor and level_info: df.to_csv(os.path.join( screenshot_dir, f"update{j}-replay{level_info['level_replay']}-n_edits{level_info['num_edits'][0]}.csv")) else: df.to_csv(os.path.join( screenshot_dir, f'update{j}.csv')) else: venv.reset_agent() images = venv.get_images() if args.use_editor and level_info: save_images( images[:args.screenshot_batch_size], os.path.join( screenshot_dir, f"update{j}-replay{level_info['level_replay']}-n_edits{level_info['num_edits'][0]}.png"), normalize=True, channels_first=False) else: save_images( images[:args.screenshot_batch_size], os.path.join(screenshot_dir, f'update{j}.png'), normalize=True, channels_first=False) plt.close() evaluator.close() venv.close() if display: display.stop()
dcd-main
train.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import sys import os import csv import json import argparse import fnmatch import re from collections import defaultdict import numpy as np import torch from baselines.common.vec_env import DummyVecEnv from baselines.logger import HumanOutputFormat from tqdm import tqdm import os import matplotlib as mpl import matplotlib.pyplot as plt from envs.registration import make as gym_make from envs.multigrid.maze import * from envs.multigrid.crossing import * from envs.multigrid.fourrooms import * from envs.multigrid.mst_maze import * from envs.box2d import * from envs.bipedalwalker import * from envs.wrappers import VecMonitor, VecPreprocessImageWrapper, ParallelAdversarialVecEnv, \ MultiGridFullyObsWrapper, VecFrameStack, CarRacingWrapper from util import DotDict, str2bool, make_agent, create_parallel_env, is_discrete_actions from arguments import parser """ Example usage: python -m eval \ --env_name=MultiGrid-SixteenRooms-v0 \ --xpid=<xpid> \ --base_path="~/logs/dcd" \ --result_path="eval_results/" --verbose """ def parse_args(): parser = argparse.ArgumentParser(description='Eval') parser.add_argument( '--base_path', type=str, default='~/logs/dcd', help='Base path to experiment results directories.') parser.add_argument( '--xpid', type=str, default='latest', help='Experiment ID (result directory name) for evaluation.') parser.add_argument( '--prefix', type=str, default=None, help='Experiment ID prefix for evaluation (evaluate all matches).' ) parser.add_argument( '--env_names', type=str, default='MultiGrid-Labyrinth-v0', help='CSV string of evaluation environments.') parser.add_argument( '--result_path', type=str, default='eval_results/', help='Relative path to evaluation results directory.') parser.add_argument( '--benchmark', type=str, default=None, choices=['maze', 'f1', 'bipedal', 'poetrose'], help="Name of benchmark for evaluation.") parser.add_argument( '--accumulator', type=str, default=None, help="Function for accumulating across multiple evaluation runs.") parser.add_argument( '--singleton_env', type=str2bool, nargs='?', const=True, default=False, help="When using a fixed env, whether the same environment should also be reused across workers.") parser.add_argument( '--seed', type=int, default=1, help='Random seed.') parser.add_argument( '--max_seeds', type=int, default=None, help='Maximum number of matched experiment IDs to evaluate.') parser.add_argument( '--num_processes', type=int, default=2, help='Number of CPU processes to use.') parser.add_argument( '--max_num_processes', type=int, default=10, help='Maximum number of CPU processes to use.') parser.add_argument( '--num_episodes', type=int, default=100, help='Number of evaluation episodes per xpid per environment.') parser.add_argument( '--model_tar', type=str, default='model', help='Name of .tar to evaluate.') parser.add_argument( '--model_name', type=str, default='agent', choices=['agent', 'adversary_agent'], help='Which agent to evaluate.') parser.add_argument( '--deterministic', type=str2bool, nargs='?', const=True, default=False, help="Evaluate policy greedily.") parser.add_argument( '--verbose', type=str2bool, nargs='?', const=True, default=False, help="Show logging messages in stdout") parser.add_argument( '--render', type=str2bool, nargs='?', const=True, default=False, help="Render environment in first evaluation process to screen.") parser.add_argument( '--record_video', type=str2bool, nargs='?', const=True, default=False, help="Record video of first environment evaluation process.") return parser.parse_args() class Evaluator(object): def __init__(self, env_names, num_processes, num_episodes=10, record_video=False, device='cpu', **kwargs): self.kwargs = kwargs # kwargs for env wrappers self._init_parallel_envs( env_names, num_processes, device=device, record_video=record_video, **kwargs) self.num_episodes = num_episodes if 'Bipedal' in env_names[0]: self.solved_threshold = 230 else: self.solved_threshold = 0 def get_stats_keys(self): keys = [] for env_name in self.env_names: keys += [f'solved_rate:{env_name}', f'test_returns:{env_name}'] return keys @staticmethod def make_env(env_name, record_video=False, **kwargs): if env_name in ['BipedalWalker-v3', 'BipedalWalkerHardcore-v3']: env = gym.make(env_name) else: env = gym_make(env_name) is_multigrid = env_name.startswith('MultiGrid') is_car_racing = env_name.startswith('CarRacing') if is_car_racing: grayscale = kwargs.get('grayscale', False) num_action_repeat = kwargs.get('num_action_repeat', 8) nstack = kwargs.get('frame_stack', 4) crop = kwargs.get('crop_frame', False) env = CarRacingWrapper( env=env, grayscale=grayscale, reward_shaping=False, num_action_repeat=num_action_repeat, nstack=nstack, crop=crop, eval_=True) if record_video: from gym.wrappers.monitor import Monitor env = Monitor(env, "videos/", force=True) print('Recording video!', flush=True) if is_multigrid and kwargs.get('use_global_policy'): env = MultiGridFullyObsWrapper(env, is_adversarial=False) return env @staticmethod def wrap_venv(venv, env_name, device='cpu'): is_multigrid = env_name.startswith('MultiGrid') or env_name.startswith('MiniGrid') is_car_racing = env_name.startswith('CarRacing') is_bipedal = env_name.startswith('BipedalWalker') obs_key = None scale = None if is_multigrid: obs_key = 'image' scale = 10.0 # Channels first transpose_order = [2,0,1] if is_bipedal: transpose_order = None venv = VecMonitor(venv=venv, filename=None, keep_buf=100) venv = VecPreprocessImageWrapper(venv=venv, obs_key=obs_key, transpose_order=transpose_order, scale=scale, device=device) return venv def _init_parallel_envs(self, env_names, num_processes, device=None, record_video=False, **kwargs): self.env_names = env_names self.num_processes = num_processes self.device = device self.venv = {env_name:None for env_name in env_names} make_fn = [] for env_name in env_names: make_fn = [lambda: Evaluator.make_env(env_name, record_video, **kwargs)]*self.num_processes venv = ParallelAdversarialVecEnv(make_fn, adversary=False, is_eval=True) venv = Evaluator.wrap_venv(venv, env_name, device=device) self.venv[env_name] = venv self.is_discrete_actions = is_discrete_actions(self.venv[env_names[0]]) def close(self): for _, venv in self.venv.items(): venv.close() def evaluate(self, agent, deterministic=False, show_progress=False, render=False, accumulator='mean'): # Evaluate agent for N episodes venv = self.venv env_returns = {} env_solved_episodes = {} for env_name, venv in self.venv.items(): returns = [] solved_episodes = 0 obs = venv.reset() recurrent_hidden_states = torch.zeros( self.num_processes, agent.algo.actor_critic.recurrent_hidden_state_size, device=self.device) if agent.algo.actor_critic.is_recurrent and agent.algo.actor_critic.rnn.arch == 'lstm': recurrent_hidden_states = (recurrent_hidden_states, torch.zeros_like(recurrent_hidden_states)) masks = torch.ones(self.num_processes, 1, device=self.device) pbar = None if show_progress: pbar = tqdm(total=self.num_episodes) while len(returns) < self.num_episodes: # Sample actions with torch.no_grad(): _, action, _, recurrent_hidden_states = agent.act( obs, recurrent_hidden_states, masks, deterministic=deterministic) # Observe reward and next obs action = action.cpu().numpy() if not self.is_discrete_actions: action = agent.process_action(action) obs, reward, done, infos = venv.step(action) masks = torch.tensor( [[0.0] if done_ else [1.0] for done_ in done], dtype=torch.float32, device=self.device) for i, info in enumerate(infos): if 'episode' in info.keys(): returns.append(info['episode']['r']) if returns[-1] > self.solved_threshold: solved_episodes += 1 if pbar: pbar.update(1) # zero hidden states if agent.is_recurrent: recurrent_hidden_states[0][i].zero_() recurrent_hidden_states[1][i].zero_() if len(returns) >= self.num_episodes: break if render: venv.render_to_screen() if pbar: pbar.close() env_returns[env_name] = returns env_solved_episodes[env_name] = solved_episodes stats = {} for env_name in self.env_names: if accumulator == 'mean': stats[f"solved_rate:{env_name}"] = env_solved_episodes[env_name]/self.num_episodes if accumulator == 'mean': stats[f"test_returns:{env_name}"] = np.mean(env_returns[env_name]) else: stats[f"test_returns:{env_name}"] = env_returns[env_name] return stats def _get_f1_env_names(): env_names = [f'CarRacingF1-{name}-v0' for name, cls in formula1.__dict__.items() if isinstance(cls, RaceTrack)] env_names.remove('CarRacingF1-LagunaSeca-v0') return env_names def _get_zs_minigrid_env_names(): env_names = [ 'MultiGrid-SixteenRooms-v0', 'MultiGrid-SixteenRoomsFewerDoors-v0' 'MultiGrid-Labyrinth-v0', 'MultiGrid-Labyrinth2-v0', 'MultiGrid-Maze-v0', 'MultiGrid-Maze2-v0', "MultiGrid-LargeCorridor-v0", "MultiGrid-PerfectMazeMedium-v0", "MultiGrid-PerfectMazeLarge-v0", "MultiGrid-PerfectMazeXL-v0", ] return env_names def _get_bipedal_env_names(): env_names = [ "BipedalWalker-v3", "BipedalWalkerHardcore-v3", "BipedalWalker-Med-Stairs-v0", "BipedalWalker-Med-PitGap-v0", "BipedalWalker-Med-StumpHeight-v0", "BipedalWalker-Med-Roughness-v0", ] return env_names def _get_poet_rose_env_names(): env_names = [f'BipedalWalker-POET-Rose-{id}-v0' for id in ['1a', '1b', '2a', '2b', '3a', '3b']] return env_names if __name__ == '__main__': os.environ["OMP_NUM_THREADS"] = "1" display = None if sys.platform.startswith('linux'): print('Setting up virtual display') import pyvirtualdisplay display = pyvirtualdisplay.Display(visible=0, size=(1400, 900), color_depth=24) display.start() args = DotDict(vars(parse_args())) args.num_processes = min(args.num_processes, args.num_episodes) # === Determine device ==== device = 'cpu' # === Load checkpoint === # Load meta.json into flags object base_path = os.path.expandvars(os.path.expanduser(args.base_path)) xpids = [args.xpid] if args.prefix is not None: all_xpids = fnmatch.filter(os.listdir(base_path), f"{args.prefix}*") filter_re = re.compile('.*_[0-9]*$') xpids = [x for x in all_xpids if filter_re.match(x)] # Set up results management os.makedirs(args.result_path, exist_ok=True) if args.prefix is not None: result_fname = args.prefix else: result_fname = args.xpid result_fname = f"{result_fname}-{args.model_tar}-{args.model_name}" result_fpath = os.path.join(args.result_path, result_fname) if os.path.exists(f'{result_fpath}.csv'): result_fpath = os.path.join(args.result_path, f'{result_fname}_redo') result_fpath = f'{result_fpath}.csv' csvout = open(result_fpath, 'w', newline='') csvwriter = csv.writer(csvout) env_results = defaultdict(list) # Get envs if args.benchmark == 'maze': env_names = _get_zs_minigrid_env_names() elif args.benchmark == 'f1': env_names = _get_f1_env_names() elif args.benchmark == 'bipedal': env_names = _get_bipedal_env_names() elif args.benchmark == 'poetrose': env_names = _get_poet_rose_env_names() else: env_names = args.env_names.split(',') num_envs = len(env_names) if num_envs*args.num_processes > args.max_num_processes: chunk_size = args.max_num_processes//args.num_processes else: chunk_size = num_envs num_chunks = int(np.ceil(num_envs/chunk_size)) if args.record_video: num_chunks = 1 chunk_size = 1 args.num_processes = 1 num_seeds = 0 for xpid in xpids: if args.max_seeds is not None and num_seeds >= args.max_seeds: break xpid_dir = os.path.join(base_path, xpid) meta_json_path = os.path.join(xpid_dir, 'meta.json') model_tar = f'{args.model_tar}.tar' checkpoint_path = os.path.join(xpid_dir, model_tar) if os.path.exists(checkpoint_path): meta_json_file = open(meta_json_path) xpid_flags = DotDict(json.load(meta_json_file)['args']) make_fn = [lambda: Evaluator.make_env(env_names[0])] dummy_venv = ParallelAdversarialVecEnv(make_fn, adversary=False, is_eval=True) dummy_venv = Evaluator.wrap_venv(dummy_venv, env_name=env_names[0], device=device) # Load the agent agent = make_agent(name='agent', env=dummy_venv, args=xpid_flags, device=device) try: checkpoint = torch.load(checkpoint_path, map_location='cpu') except: continue model_name = args.model_name if 'runner_state_dict' in checkpoint: agent.algo.actor_critic.load_state_dict(checkpoint['runner_state_dict']['agent_state_dict'][model_name]) else: agent.algo.actor_critic.load_state_dict(checkpoint) num_seeds += 1 # Evaluate environment batch in increments of chunk size for i in range(num_chunks): start_idx = i*chunk_size env_names_ = env_names[start_idx:start_idx+chunk_size] # Evaluate the model xpid_flags.update(args) xpid_flags.update({"use_skip": False}) evaluator = Evaluator(env_names_, num_processes=args.num_processes, num_episodes=args.num_episodes, frame_stack=xpid_flags.frame_stack, grayscale=xpid_flags.grayscale, use_global_critic=xpid_flags.use_global_critic, record_video=args.record_video) stats = evaluator.evaluate(agent, deterministic=args.deterministic, show_progress=args.verbose, render=args.render, accumulator=args.accumulator) for k,v in stats.items(): if args.accumulator: env_results[k].append(v) else: env_results[k] += v evaluator.close() else: print(f'No model path {checkpoint_path}') output_results = {} for k,_ in stats.items(): results = env_results[k] output_results[k] = f'{np.mean(results):.2f} +/- {np.std(results):.2f}' q1 = np.percentile(results, 25, interpolation='midpoint') q3 = np.percentile(results, 75, interpolation='midpoint') median = np.median(results) output_results[f'iq_{k}'] = f'{q1:.2f}--{median:.2f}--{q3:.2f}' print(f"{k}: {output_results[k]}") HumanOutputFormat(sys.stdout).writekvs(output_results) if args.accumulator: csvwriter.writerow(['metric',] + [x for x in range(num_seeds)]) else: csvwriter.writerow(['metric',] + [x for x in range(num_seeds*args.num_episodes)]) for k,v in env_results.items(): row = [k,] + v csvwriter.writerow(row) if display: display.stop()
dcd-main
eval.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from algos import PPO, RolloutStorage, ACAgent from models import \ MultigridNetwork, MultigridGlobalCriticNetwork, \ CarRacingNetwork, \ CarRacingBezierAdversaryEnvNetwork, \ BipedalWalkerStudentPolicy, \ BipedalWalkerAdversaryPolicy def model_for_multigrid_agent( env, agent_type='agent', recurrent_arch=None, recurrent_hidden_size=256, use_global_critic=False, use_global_policy=False): if agent_type == 'adversary_env': adversary_observation_space = env.adversary_observation_space adversary_action_space = env.adversary_action_space adversary_max_timestep = adversary_observation_space['time_step'].high[0] + 1 adversary_random_z_dim = adversary_observation_space['random_z'].shape[0] model = MultigridNetwork( observation_space=adversary_observation_space, action_space=adversary_action_space, conv_filters=128, scalar_fc=10, scalar_dim=adversary_max_timestep, random_z_dim=adversary_random_z_dim, recurrent_arch=recurrent_arch, recurrent_hidden_size=recurrent_hidden_size) else: observation_space = env.observation_space action_space = env.action_space num_directions = observation_space['direction'].high[0] + 1 model_kwargs = dict( observation_space=observation_space, action_space=action_space, scalar_fc=5, scalar_dim=num_directions, recurrent_arch=recurrent_arch, recurrent_hidden_size=recurrent_hidden_size) model_constructor = MultigridNetwork if use_global_critic: model_constructor = MultigridGlobalCriticNetwork if use_global_policy: model_kwargs.update({'use_global_policy': True}) model = model_constructor(**model_kwargs) return model def model_for_car_racing_agent( env, agent_type='agent', use_skip=False, choose_start_pos=False, use_popart=False, adv_use_popart=False, use_categorical_adv=False, use_goal=False, num_goal_bins=1): if agent_type == 'adversary_env': adversary_observation_space = env.adversary_observation_space adversary_action_space = env.adversary_action_space model = CarRacingBezierAdversaryEnvNetwork( observation_space=adversary_observation_space, action_space=adversary_action_space, use_categorical=use_categorical_adv, use_skip=use_skip, choose_start_pos=choose_start_pos, use_popart=adv_use_popart, use_goal=use_goal, num_goal_bins=num_goal_bins) else: action_space = env.action_space obs_shape = env.observation_space.shape model = CarRacingNetwork( obs_shape=obs_shape, action_space = action_space, hidden_size=100, use_popart=use_popart) return model def model_for_bipedalwalker_agent( env, agent_type='agent', recurrent_arch=False): if 'adversary_env' in agent_type: adversary_observation_space = env.adversary_observation_space adversary_action_space = env.adversary_action_space model = BipedalWalkerAdversaryPolicy( observation_space=adversary_observation_space, action_space=adversary_action_space) else: model = BipedalWalkerStudentPolicy( obs_shape=env.observation_space.shape, action_space=env.action_space, recurrent=recurrent_arch) return model def model_for_env_agent( env_name, env, agent_type='agent', recurrent_arch=None, recurrent_hidden_size=256, use_global_critic=False, use_global_policy=False, use_skip=False, choose_start_pos=False, use_popart=False, adv_use_popart=False, use_categorical_adv=False, use_goal=False, num_goal_bins=1): assert agent_type in ['agent', 'adversary_agent', 'adversary_env'] if env_name.startswith('MultiGrid'): model = model_for_multigrid_agent( env=env, agent_type=agent_type, recurrent_arch=recurrent_arch, recurrent_hidden_size=recurrent_hidden_size, use_global_critic=use_global_critic, use_global_policy=use_global_policy) elif env_name.startswith('CarRacing'): model = model_for_car_racing_agent( env=env, agent_type=agent_type, use_skip=use_skip, choose_start_pos=choose_start_pos, use_popart=use_popart, adv_use_popart=adv_use_popart, use_categorical_adv=use_categorical_adv, use_goal=use_goal, num_goal_bins=num_goal_bins) elif env_name.startswith('BipedalWalker'): model = model_for_bipedalwalker_agent( env=env, agent_type=agent_type, recurrent_arch=recurrent_arch) else: raise ValueError(f'Unsupported environment {env_name}.') return model def make_agent(name, env, args, device='cpu'): # Create model instance is_adversary_env = 'env' in name if is_adversary_env: observation_space = env.adversary_observation_space action_space = env.adversary_action_space num_steps = observation_space['time_step'].high[0] recurrent_arch = args.recurrent_adversary_env and args.recurrent_arch entropy_coef = args.adv_entropy_coef ppo_epoch = args.adv_ppo_epoch num_mini_batch = args.adv_num_mini_batch max_grad_norm = args.adv_max_grad_norm use_popart = vars(args).get('adv_use_popart', False) else: observation_space = env.observation_space action_space = env.action_space num_steps = args.num_steps recurrent_arch = args.recurrent_agent and args.recurrent_arch entropy_coef = args.entropy_coef ppo_epoch = args.ppo_epoch num_mini_batch = args.num_mini_batch max_grad_norm = args.max_grad_norm use_popart = vars(args).get('use_popart', False) recurrent_hidden_size = args.recurrent_hidden_size actor_critic = model_for_env_agent( args.env_name, env, name, recurrent_arch=recurrent_arch, recurrent_hidden_size=recurrent_hidden_size, use_global_critic=args.use_global_critic, use_global_policy=vars(args).get('use_global_policy', False), use_skip=vars(args).get('use_skip', False), choose_start_pos=vars(args).get('choose_start_pos', False), use_popart=vars(args).get('use_popart', False), adv_use_popart=vars(args).get('adv_use_popart', False), use_categorical_adv=vars(args).get('use_categorical_adv', False), use_goal=vars(args).get('sparse_rewards', False), num_goal_bins=vars(args).get('num_goal_bins', 1)) algo = None storage = None agent = None use_proper_time_limits = \ hasattr(env, 'get_max_episode_steps') \ and env.get_max_episode_steps() is not None \ and vars(args).get('handle_timelimits', False) if args.algo == 'ppo': # Create PPO algo = PPO( actor_critic=actor_critic, clip_param=args.clip_param, ppo_epoch=ppo_epoch, num_mini_batch=num_mini_batch, value_loss_coef=args.value_loss_coef, entropy_coef=entropy_coef, lr=args.lr, eps=args.eps, max_grad_norm=max_grad_norm, clip_value_loss=args.clip_value_loss, log_grad_norm=args.log_grad_norm ) # Create storage storage = RolloutStorage( model=actor_critic, num_steps=num_steps, num_processes=args.num_processes, observation_space=observation_space, action_space=action_space, recurrent_hidden_state_size=args.recurrent_hidden_size, recurrent_arch=args.recurrent_arch, use_proper_time_limits=use_proper_time_limits, use_popart=use_popart ) agent = ACAgent(algo=algo, storage=storage).to(device) else: raise ValueError(f'Unsupported RL algorithm {algo}.') return agent
dcd-main
util/make_agent.py
# Copyright (c) 2015 Peter Onrejka # # Licensed under the GNU General Public License; # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/gpl-license # # This file is a modified version of # https://github.com/sical/polygons_complexity/blob/master/complexity.py # which itself is based on # https://github.com/pondrejk/PolygonComplexity/blob/master/PolygonComplexity.py import math import os import pandas as pd import geopandas as gpd import shapely def get_notches(poly): """ Determine the number of notches in a polygon object and calculate normalized notches of polygon Based on: "Measuring the Complexity of Polygonal Objects" (Thomas Brinkhoff, Hans-Peter Kriegel, Ralf Schneider, Alexander Braun) http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.1045&rep=rep1&type=pdf https://github.com/pondrejk/PolygonComplexity/blob/master/PolygonComplexity.py @poly (Shapely Polygon object) Returns normalized notches """ notches = 0 coords = list(poly.exterior.coords) for i, pt in enumerate(coords[:-1]): x_diff = coords[i+1][0] - pt[0] y_diff = coords[i+1][1] - pt[1] angle = math.atan2(y_diff, x_diff) if angle < 0: angle += 2*math.pi if angle > math.pi: notches += 1 if notches != 0: notches_norm = notches / (len(coords)-3) else: notches_norm = 0 return notches_norm def get_stats(gdf, coeff_ampl, coeff_conv): """ Get polygon's amplitude of vibration: ampl(pol) = (boundary(pol) - boundary(convexhull(pol))) / boundary(pol) Get deviation from convex hull: conv(pol) = (area(convexhull(pol)) - area(pol)) / area(convexhull(pol)) Measure complexity Based on: "Measuring the Complexity of Polygonal Objects" (Thomas Brinkhoff, Hans-Peter Kriegel, Ralf Schneider, Alexander Braun) http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.1045&rep=rep1&type=pdf https://github.com/pondrejk/PolygonComplexity/blob/master/PolygonComplexity.py Get area, centroid, distance from each others, boudary, convex hull, perimeter, number of vertices. Returns tuple with dict of stats values and GeoDataframe with stats """ nb = gdf['geometry'].count() gdf['area'] = gdf['geometry'].area tot_area = gdf['area'].sum() gdf['centroid'] = gdf['geometry'].centroid gdf['boundary'] = gdf['geometry'].boundary gdf['convex_hull'] = gdf['geometry'].convex_hull gdf['convex_boundary'] = gdf['geometry'].convex_hull.boundary gdf['convex_area'] = gdf['geometry'].convex_hull.area gdf['nbvertices'] = gdf['geometry'].apply(lambda x: len(list(x.exterior.coords))) gdf['notches'] = gdf['geometry'].apply(lambda x: get_notches(x)) gdf['amplitude'] = gdf.apply( lambda x:( x['boundary'].length - x['convex_boundary'].length ) / (x['boundary'].length + 1e-3), axis=1) gdf['convex'] = gdf.apply( lambda x: ( x['convex_area'] - x['area'] ) / (x['convex_area'] + 1e-3), axis=1) gdf['complexity'] = gdf.apply( lambda x: coeff_ampl*x['amplitude'] * x['notches'] + coeff_conv * x['convex'], axis=1 ) mean_amplitude = gdf['amplitude'].mean() mean_convex = gdf['convex'].mean() mean_norm_notches = gdf['notches'].mean() mean_complexity = gdf['complexity'].mean() gdf['perimeter'] = gdf['geometry'].length tot_perimeter = gdf['perimeter'].sum() if ("lat" in gdf.columns) or ("lon" in gdf.columns): columns_drop = ["boundary", "convex_hull", "convex_boundary", "convex_area", "centroid", "lat", "lon"] else: columns_drop = ["boundary", "convex_hull", "convex_boundary", "convex_area", "centroid"] gdf = gdf.drop(columns_drop, axis=1) gdf = gdf.reset_index() if nb > 1: gdf = gdf.sort_values(by='perimeter', ascending=False) gdf = gdf.iloc[[0]] return { 'area':tot_area, 'perimeter':tot_perimeter, 'amplitude': mean_amplitude, 'convex': mean_convex, 'notches': mean_norm_notches, 'complexity': mean_complexity }, gdf def complexity(points, coeff_ampl=0.8, coeff_conv=0.2): polygon = shapely.geometry.Polygon(points) gdf = gpd.GeoDataFrame(geometry=gpd.GeoSeries([polygon])) dict_complexity, gdf = get_stats(gdf, coeff_ampl, coeff_conv) return dict_complexity
dcd-main
util/geo_complexity.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import glob import os import shutil import collections import timeit import random import numpy as np import torch from torchvision import utils as vutils from envs.registration import make as gym_make from .make_agent import make_agent from .filewriter import FileWriter from envs.wrappers import ParallelAdversarialVecEnv, VecMonitor, VecNormalize, \ VecPreprocessImageWrapper, VecFrameStack, MultiGridFullyObsWrapper, CarRacingWrapper, TimeLimit class DotDict(dict): __getattr__ = dict.__getitem__ __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ def __init__(self, dct): for key, value in dct.items(): if hasattr(value, 'keys'): value = DotDict(value) self[key] = value def __getstate__(self): return self def __setstate__(self, state): self.update(state) self.__dict__ = self def array_to_csv(a): return ','.join([str(v) for v in a]) def cprint(condition, *args, **kwargs): if condition: print(*args, **kwargs) def init(module, weight_init, bias_init, gain=1): weight_init(module.weight.data, gain=gain) bias_init(module.bias.data) return module def safe_checkpoint(state_dict, path, index=None, archive_interval=None): filename, ext = os.path.splitext(path) path_tmp = f'{filename}_tmp{ext}' torch.save(state_dict, path_tmp) os.replace(path_tmp, path) if index is not None and archive_interval is not None and archive_interval > 0: if index % archive_interval == 0: archive_path = f'{filename}_{index}{ext}' shutil.copy(path, archive_path) def cleanup_log_dir(log_dir, pattern='*'): try: os.makedirs(log_dir) except OSError: files = glob.glob(os.path.join(log_dir, pattern)) for f in files: os.remove(f) def seed(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) def str2bool(v): if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def save_images(images, path=None, normalize=False, channels_first=False): if path is None: return if isinstance(images, (list, tuple)): images = torch.tensor(np.stack(images), dtype=torch.float) elif isinstance(images, np.ndarray): images = torch.tensor(images, dtype=torch.float) if normalize: images = images/255 if not channels_first: if len(images.shape) == 4: images = images.permute(0,3,1,2) else: images = images.permute(2,0,1) grid = vutils.make_grid(images) vutils.save_image(grid, path) def get_obs_at_index(obs, i): if isinstance(obs, dict): return {k: obs[k][i] for k in obs.keys()} else: return obs[i] def set_obs_at_index(obs, obs_, i): if isinstance(obs, dict): for k in obs.keys(): obs[k][i] = obs_[k].squeeze(0) else: obs[i] = obs_[0].squeeze(0) def is_discrete_actions(env, adversary=False): if adversary: return env.adversary_action_space.__class__.__name__ == 'Discrete' else: return env.action_space.__class__.__name__ == 'Discrete' def _make_env(args): env_kwargs = {'seed': args.seed} if args.singleton_env: env_kwargs.update({ 'fixed_environment': True}) if args.env_name.startswith('CarRacing'): env_kwargs.update({ 'n_control_points': args.num_control_points, 'min_rad_ratio': args.min_rad_ratio, 'max_rad_ratio': args.max_rad_ratio, 'use_categorical': args.use_categorical_adv, 'use_sketch': args.use_sketch, 'clip_reward': args.clip_reward, 'sparse_rewards': args.sparse_rewards, 'num_goal_bins': args.num_goal_bins, }) if args.env_name.startswith('CarRacing'): # Hack: This TimeLimit sandwich allows truncated obs to be passed # up the hierarchy with all necessary preprocessing. env = gym_make(args.env_name, **env_kwargs) max_episode_steps = env._max_episode_steps reward_shaping = args.reward_shaping and not args.sparse_rewards assert max_episode_steps % args.num_action_repeat == 0 return TimeLimit(CarRacingWrapper(env, grayscale=args.grayscale, reward_shaping=reward_shaping, num_action_repeat=args.num_action_repeat, nstack=args.frame_stack, crop=args.crop_frame), max_episode_steps=max_episode_steps//args.num_action_repeat) elif args.env_name.startswith('MultiGrid'): env = gym_make(args.env_name, **env_kwargs) if args.use_global_critic or args.use_global_policy: max_episode_steps = env._max_episode_steps env = TimeLimit(MultiGridFullyObsWrapper(env), max_episode_steps=max_episode_steps) return env else: return gym_make(args.env_name, **env_kwargs) def create_parallel_env(args, adversary=True): is_multigrid = args.env_name.startswith('MultiGrid') is_car_racing = args.env_name.startswith('CarRacing') is_bipedalwalker = args.env_name.startswith('BipedalWalker') make_fn = lambda: _make_env(args) venv = ParallelAdversarialVecEnv([make_fn]*args.num_processes, adversary=adversary) venv = VecMonitor(venv=venv, filename=None, keep_buf=100) venv = VecNormalize(venv=venv, ob=False, ret=args.normalize_returns) obs_key = None scale = None transpose_order = [2,0,1] # Channels first if is_multigrid: obs_key = 'image' scale = 10.0 if is_car_racing: ued_venv = VecPreprocessImageWrapper(venv=venv) # move to tensor if is_bipedalwalker: transpose_order = None venv = VecPreprocessImageWrapper(venv=venv, obs_key=obs_key, transpose_order=transpose_order, scale=scale) if is_multigrid or is_bipedalwalker: ued_venv = venv if args.singleton_env: seeds = [args.seed]*args.num_processes else: seeds = [i for i in range(args.num_processes)] venv.set_seed(seeds) return venv, ued_venv def is_dense_reward_env(env_name): if env_name.startswith('CarRacing'): return True else: return False def make_plr_args(args, obs_space, action_space): return dict( seeds=[], obs_space=obs_space, action_space=action_space, num_actors=args.num_processes, strategy=args.level_replay_strategy, replay_schedule=args.level_replay_schedule, score_transform=args.level_replay_score_transform, temperature=args.level_replay_temperature, eps=args.level_replay_eps, rho=args.level_replay_rho, replay_prob=args.level_replay_prob, alpha=args.level_replay_alpha, staleness_coef=args.staleness_coef, staleness_transform=args.staleness_transform, staleness_temperature=args.staleness_temperature, sample_full_distribution=args.train_full_distribution, seed_buffer_size=args.level_replay_seed_buffer_size, seed_buffer_priority=args.level_replay_seed_buffer_priority, use_dense_rewards=is_dense_reward_env(args.env_name), gamma=args.gamma )
dcd-main
util/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import csv import datetime import json import logging import os import time from typing import Dict import numpy as np def gather_metadata() -> Dict: date_start = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f") # Gathering git metadata. try: import git try: repo = git.Repo(search_parent_directories=True) git_sha = repo.commit().hexsha git_data = dict( commit=git_sha, branch=None if repo.head.is_detached else repo.active_branch.name, is_dirty=repo.is_dirty(), path=repo.git_dir, ) except git.InvalidGitRepositoryError: git_data = None except ImportError: git_data = None # Gathering slurm metadata. if "SLURM_JOB_ID" in os.environ: slurm_env_keys = [k for k in os.environ if k.startswith("SLURM")] slurm_data = {} for k in slurm_env_keys: d_key = k.replace("SLURM_", "").replace("SLURMD_", "").lower() slurm_data[d_key] = os.environ[k] else: slurm_data = None return dict( date_start=date_start, date_end=None, successful=False, git=git_data, slurm=slurm_data, env=os.environ.copy(), ) class FileWriter: def __init__( self, xpid: str = None, xp_args: dict = None, rootdir: str = "~/logs", symlink_to_latest: bool = True, seeds=None, ): if not xpid: # Make unique id. xpid = "{proc}_{unixtime}".format( proc=os.getpid(), unixtime=int(time.time()) ) self.xpid = xpid self._tick = 0 # Metadata gathering. if xp_args is None: xp_args = {} self.metadata = gather_metadata() # We need to copy the args, otherwise when we close the file writer # (and rewrite the args) we might have non-serializable objects (or # other unwanted side-effects). self.metadata["args"] = copy.deepcopy(xp_args) self.metadata["xpid"] = self.xpid formatter = logging.Formatter("%(message)s") self._logger = logging.getLogger("logs/out") train_full_distribution = xp_args.get('train_full_distribution', False) seed_buffer_size = xp_args.get('level_replay_seed_buffer_size', 0) self.record_seed_diffs = \ train_full_distribution and seed_buffer_size > 0 self.seeds = None if not self.record_seed_diffs and seeds: self.seeds = [str(seed) for seed in seeds] # To stdout handler. shandle = logging.StreamHandler() shandle.setFormatter(formatter) self._logger.addHandler(shandle) self._logger.setLevel(logging.INFO) rootdir = os.path.expandvars(os.path.expanduser(rootdir)) # To file handler. self.basepath = os.path.join(rootdir, self.xpid) if not os.path.exists(self.basepath): self._logger.info("Creating log directory: %s", self.basepath) os.makedirs(self.basepath, exist_ok=True) else: self._logger.info("Found log directory: %s", self.basepath) if symlink_to_latest: # Add 'latest' as symlink unless it exists and is no symlink. symlink = os.path.join(rootdir, "latest") try: if os.path.islink(symlink): os.remove(symlink) if not os.path.exists(symlink): os.symlink(self.basepath, symlink) self._logger.info("Symlinked log directory: %s", symlink) except OSError: # os.remove() or os.symlink() raced. Don't do anything. pass self.paths = dict( msg="{base}/out.log".format(base=self.basepath), logs="{base}/logs.csv".format(base=self.basepath), fields="{base}/fields.csv".format(base=self.basepath), meta="{base}/meta.json".format(base=self.basepath), level_weights="{base}/level_weights.csv".format(base=self.basepath), level_seeds="{base}/level_seeds.csv".format(base=self.basepath), final_test_eval="{base}/final_test_eval.csv".format(base=self.basepath) ) self._logger.info("Saving arguments to %s", self.paths["meta"]) if os.path.exists(self.paths["meta"]): self._logger.warning( "Path to meta file already exists. " "Not overriding meta." ) else: self._save_metadata() self._logger.info("Saving messages to %s", self.paths["msg"]) if os.path.exists(self.paths["msg"]): self._logger.warning( "Path to message file already exists. " "New data will be appended." ) fhandle = logging.FileHandler(self.paths["msg"]) fhandle.setFormatter(formatter) self._logger.addHandler(fhandle) self._logger.info("Saving logs data to %s", self.paths["logs"]) self._logger.info("Saving logs' fields to %s", self.paths["fields"]) self.fieldnames = ["_tick", "_time"] self.final_test_eval_fieldnames = ['num_test_seeds', 'mean_episode_return', 'median_episode_return'] self.level_seeds_fieldnames = ['new_seeds', 'new_seed_indices'] if os.path.exists(self.paths["logs"]): self._logger.warning( "Path to log file already exists. " "New data will be appended." ) # Override default fieldnames. with open(self.paths["fields"], "r") as csvfile: reader = csv.reader(csvfile) lines = list(reader) if len(lines) > 0: self.fieldnames = lines[-1] # Override default tick: use the last tick from the logs file plus 1. with open(self.paths["logs"], "r") as csvfile: reader = csv.reader(csvfile) lines = list(reader) # Need at least two lines in order to read the last tick: # the first is the csv header and the second is the first line # of data. if len(lines) > 1: self._tick = int(lines[-1][0]) + 1 self._fieldfile = open(self.paths["fields"], "a") self._fieldwriter = csv.writer(self._fieldfile) self._logfile = open(self.paths["logs"], "a") self._logwriter = csv.DictWriter(self._logfile, fieldnames=self.fieldnames) self._levelweightsfile = open(self.paths["level_weights"], "a") self._levelweightswriter = csv.writer(self._levelweightsfile) self._levelseedsfile = open(self.paths["level_seeds"], "a") self._levelseedswriter = csv.DictWriter(self._levelseedsfile, fieldnames=self.level_seeds_fieldnames) self._finaltestfile = open(self.paths["final_test_eval"], "a") self._finaltestwriter = csv.DictWriter(self._finaltestfile, fieldnames=self.final_test_eval_fieldnames) if self.seeds and not self.record_seed_diffs: self._levelweightsfile.write("# %s\n" % ",".join(self.seeds)) self._levelweightsfile.flush() self._finaltestwriter.writeheader() self._finaltestfile.flush() def log(self, to_log: Dict, tick: int = None, verbose: bool = False) -> None: if tick is not None: raise NotImplementedError else: to_log["_tick"] = self._tick self._tick += 1 to_log["_time"] = time.time() old_len = len(self.fieldnames) for k in to_log: if k not in self.fieldnames: self.fieldnames.append(k) if old_len != len(self.fieldnames): self._fieldwriter.writerow(self.fieldnames) self._logger.info("Updated log fields: %s", self.fieldnames) if to_log["_tick"] == 0: self._logfile.write("# %s\n" % ",".join(self.fieldnames)) if verbose: self._logger.info( "LOG | %s", ", ".join(["{}: {}".format(k, to_log[k]) for k in sorted(to_log)]), ) self._logwriter.writerow(to_log) self._logfile.flush() def log_level_weights(self, weights, seeds=None): if self.record_seed_diffs: if self.seeds is None: self.seeds = seeds.copy() level_seed_log = { 'new_seeds': " ".join([str(s) for s in self.seeds]), 'new_seed_indices': " ".join([str(i) for i in range(len(self.seeds))]), } else: new_seed_indices = np.nonzero(self.seeds - seeds)[0] new_seeds = seeds[new_seed_indices] self.seeds = seeds.copy() level_seed_log = { 'new_seeds': " ".join([str(s) for s in new_seeds]), 'new_seed_indices': " ".join([str(i) for i in new_seed_indices]), } self._levelseedswriter.writerow(level_seed_log) self._levelseedsfile.flush() self._levelweightswriter.writerow(weights) self._levelweightsfile.flush() def log_final_test_eval(self, to_log): self._finaltestwriter.writerow(to_log) self._finaltestfile.flush() def close(self, successful: bool = True) -> None: self.metadata["date_end"] = datetime.datetime.now().strftime( "%Y-%m-%d %H:%M:%S.%f" ) self.metadata["successful"] = successful self._save_metadata() for f in [self._logfile, self._fieldfile]: f.close() def _save_metadata(self) -> None: with open(self.paths["meta"], "w") as jsonfile: json.dump(self.metadata, jsonfile, indent=4, sort_keys=True) def latest_tick(self): with open(self.paths["logs"], "r") as logsfile: csvreader = csv.reader(logsfile) for row in csvreader: pass if row: return int(row[0]) else: return 0
dcd-main
util/filewriter.py
# Copyright (c) 2017 Debajyoti Nandi # # Licensed under the MIT License; # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/MIT # # This file is taken from # https://github.com/deehzee/unionfind/blob/master/unionfind.py """ A union-find disjoint set data structure. """ # Third-party libraries import numpy as np class UnionFind(object): """Union-find disjoint sets datastructure. Union-find is a data structure that maintains disjoint set (called connected components or components in short) membership, and makes it easier to merge (union) two components, and to find if two elements are connected (i.e., belong to the same component). This implements the "weighted-quick-union-with-path-compression" union-find algorithm. Only works if elements are immutable objects. Worst case for union and find: :math:`(N + M \log^* N)`, with :math:`N` elements and :math:`M` unions. The function :math:`\log^*` is the number of times needed to take :math:`\log` of a number until reaching 1. In practice, the amortized cost of each operation is nearly linear [1]_. Terms ----- Component Elements belonging to the same disjoint set Connected Two elements are connected if they belong to the same component. Union The operation where two components are merged into one. Root An internal representative of a disjoint set. Find The operation to find the root of a disjoint set. Parameters ---------- elements : NoneType or container, optional, default: None The initial list of elements. Attributes ---------- n_elts : int Number of elements. n_comps : int Number of distjoint sets or components. Implements ---------- __len__ Calling ``len(uf)`` (where ``uf`` is an instance of ``UnionFind``) returns the number of elements. __contains__ For ``uf`` an instance of ``UnionFind`` and ``x`` an immutable object, ``x in uf`` returns ``True`` if ``x`` is an element in ``uf``. __getitem__ For ``uf`` an instance of ``UnionFind`` and ``i`` an integer, ``res = uf[i]`` returns the element stored in the ``i``-th index. If ``i`` is not a valid index an ``IndexError`` is raised. __setitem__ For ``uf`` and instance of ``UnionFind``, ``i`` an integer and ``x`` an immutable object, ``uf[i] = x`` changes the element stored at the ``i``-th index. If ``i`` is not a valid index an ``IndexError`` is raised. .. [1] http://algs4.cs.princeton.edu/lectures/ """ def __init__(self, elements=None): self.n_elts = 0 # current num of elements self.n_comps = 0 # the number of disjoint sets or components self._next = 0 # next available id self._elts = [] # the elements self._indx = {} # dict mapping elt -> index in _elts self._par = [] # parent: for the internal tree structure self._siz = [] # size of the component - correct only for roots if elements is None: elements = [] for elt in elements: self.add(elt) def __repr__(self): return ( '<UnionFind:\n\telts={},\n\tsiz={},\n\tpar={},\nn_elts={},n_comps={}>' .format( self._elts, self._siz, self._par, self.n_elts, self.n_comps, )) def __len__(self): return self.n_elts def __contains__(self, x): return x in self._indx def __getitem__(self, index): if index < 0 or index >= self._next: raise IndexError('index {} is out of bound'.format(index)) return self._elts[index] def __setitem__(self, index, x): if index < 0 or index >= self._next: raise IndexError('index {} is out of bound'.format(index)) self._elts[index] = x def add(self, x): """Add a single disjoint element. Parameters ---------- x : immutable object Returns ------- None """ if x in self: return self._elts.append(x) self._indx[x] = self._next self._par.append(self._next) self._siz.append(1) self._next += 1 self.n_elts += 1 self.n_comps += 1 def find(self, x): """Find the root of the disjoint set containing the given element. Parameters ---------- x : immutable object Returns ------- int The (index of the) root. Raises ------ ValueError If the given element is not found. """ if x not in self._indx: raise ValueError('{} is not an element'.format(x)) p = self._indx[x] while p != self._par[p]: # path compression q = self._par[p] self._par[p] = self._par[q] p = q return p def connected(self, x, y): """Return whether the two given elements belong to the same component. Parameters ---------- x : immutable object y : immutable object Returns ------- bool True if x and y are connected, false otherwise. """ return self.find(x) == self.find(y) def union(self, x, y): """Merge the components of the two given elements into one. Parameters ---------- x : immutable object y : immutable object Returns ------- None """ # Initialize if they are not already in the collection for elt in [x, y]: if elt not in self: self.add(elt) xroot = self.find(x) yroot = self.find(y) if xroot == yroot: return if self._siz[xroot] < self._siz[yroot]: self._par[xroot] = yroot self._siz[yroot] += self._siz[xroot] else: self._par[yroot] = xroot self._siz[xroot] += self._siz[yroot] self.n_comps -= 1 def component(self, x): """Find the connected component containing the given element. Parameters ---------- x : immutable object Returns ------- set Raises ------ ValueError If the given element is not found. """ if x not in self: raise ValueError('{} is not an element'.format(x)) elts = np.array(self._elts) vfind = np.vectorize(self.find) roots = vfind(elts) return set(elts[roots == self.find(x)]) def components(self): """Return the list of connected components. Returns ------- list A list of sets. """ elts = np.array(self._elts) vfind = np.vectorize(self.find) roots = vfind(elts) distinct_roots = set(roots) return [set(elts[roots == root]) for root in distinct_roots] # comps = [] # for root in distinct_roots: # mask = (roots == root) # comp = set(elts[mask]) # comps.append(comp) # return comps def component_mapping(self): """Return a dict mapping elements to their components. The returned dict has the following semantics: `elt -> component containing elt` If x, y belong to the same component, the comp(x) and comp(y) are the same objects (i.e., share the same reference). Changing comp(x) will reflect in comp(y). This is done to reduce memory. But this behaviour should not be relied on. There may be inconsitency arising from such assumptions or lack thereof. If you want to do any operation on these sets, use caution. For example, instead of :: s = uf.component_mapping()[item] s.add(stuff) # This will have side effect in other sets do :: s = set(uf.component_mapping()[item]) # or s = uf.component_mapping()[item].copy() s.add(stuff) or :: s = uf.component_mapping()[item] s = s | {stuff} # Now s is different Returns ------- dict A dict with the semantics: `elt -> component contianing elt`. """ elts = np.array(self._elts) vfind = np.vectorize(self.find) roots = vfind(elts) distinct_roots = set(roots) comps = {} for root in distinct_roots: mask = (roots == root) comp = set(elts[mask]) comps.update({x: comp for x in comp}) # Change ^this^, if you want a different behaviour: # If you don't want to share the same set to different keys: # comps.update({x: set(comp) for x in comp}) return comps
dcd-main
util/unionfind.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from .level_sampler import LevelSampler from .level_store import LevelStore
dcd-main
level_replay/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from collections import namedtuple, defaultdict, deque import numpy as np import torch INT32_MAX = 2147483647 class LevelStore(object): """ Manages a mapping between level index --> level, where the level may be represented by any arbitrary data structure. Typically, we can represent any given level as a string. """ def __init__(self, max_size=None, data_info={}): self.max_size = max_size self.seed2level = defaultdict() self.level2seed = defaultdict() self.seed2parent = defaultdict() self.next_seed = 1 self.levels = set() self.data_info = data_info def __len__(self): return len(self.levels) def _insert(self, level, parent_seed=None): if level is None: return None if level not in self.levels: # FIFO if max size constraint if self.max_size is not None: while len(self.levels) >= self.max_size: first_idx = list(self.seed2level)[0] self._remove(first_idx) seed = self.next_seed self.seed2level[seed] = level if parent_seed is not None: self.seed2parent[seed] = \ self.seed2parent[parent_seed] + [self.seed2level[parent_seed]] else: self.seed2parent[seed] = [] self.level2seed[level] = seed self.levels.add(level) self.next_seed += 1 return seed else: return self.level2seed[level] def insert(self, level, parent_seeds=None): if hasattr(level, '__iter__'): idx = [] for i, l in enumerate(level): ps = None if parent_seeds is not None: ps = parent_seeds[i] idx.append(self._insert(l, ps)) return idx else: return self._insert(level) def _remove(self, level_seed): if level_seed is None or level_seed < 0: return level = self.seed2level[level_seed] self.levels.remove(level) del self.seed2level[level_seed] del self.level2seed[level] del self.seed2parent[level_seed] def remove(self, level_seed): if hasattr(level_seed, '__iter__'): for i in level_seed: self._remove(i) else: self._remove(level_seed) def reconcile_seeds(self, level_seeds): old_seeds = set(self.seed2level) new_seeds = set(level_seeds) # Don't update if empty seeds if len(new_seeds) == 1 and -1 in new_seeds: return ejected_seeds = old_seeds - new_seeds for seed in ejected_seeds: self._remove(seed) def get_level(self, level_seed): level = self.seed2level[level_seed] if self.data_info: if self.data_info.get('numpy', False): dtype = self.data_info['dtype'] shape = self.data_info['shape'] level = np.frombuffer(level, dtype=dtype).reshape(*shape) return level
dcd-main
level_replay/level_store.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from collections import namedtuple, defaultdict, deque import queue import numpy as np import torch INT32_MAX = 2147483647 np.seterr(all='raise') class LevelSampler(): def __init__( self, seeds, obs_space, action_space, num_actors=1, strategy='random', max_score_coef=0.0, replay_schedule='fixed', score_transform='power', temperature=1.0, eps=0.05, rho=1.0, replay_prob=0.95, alpha=1.0, staleness_coef=0, staleness_transform='power', staleness_temperature=1.0, sample_full_distribution=False, seed_buffer_size=0, seed_buffer_priority='replay_support', use_dense_rewards=False, tscl_window_size=0, gamma=0.999): """ Inputs: seeds: List, Seeds that can be sampled. rho: float, Minimum probability of sampling a replay level. Note math.round(rho * len(seeds)) will first be sampled before sampling replay levels. alpha: Smoothing factor for updating scores using an exponential weighted average. obs_space: Gym env observation space. action_space: Gym env action space. strategy: Sampling strategy (random, sequential, policy entropy). """ self.obs_space = obs_space self.action_space = action_space self.num_actors = num_actors self.strategy = strategy self.max_score_coef = max_score_coef self.replay_schedule = replay_schedule self.score_transform = score_transform self.temperature = temperature self.eps = eps self.rho = rho self.replay_prob = replay_prob # replay prob self.alpha = alpha self.staleness_coef = staleness_coef self.staleness_transform = staleness_transform self.staleness_temperature = staleness_temperature self.gamma = gamma self.use_dense_rewards = use_dense_rewards # Track seeds and scores as in np arrays backed by shared memory self.seed_buffer_size = seed_buffer_size if not seeds else len(seeds) N = self.seed_buffer_size self._init_seed_index(seeds) self.unseen_seed_weights = np.array([1.]*N) self.seed_scores = np.array([0.]*N, dtype=np.float) self.partial_seed_scores = np.zeros((num_actors, N), dtype=np.float) self.partial_seed_max_scores = np.ones((num_actors, N), dtype=np.float)*float('-inf') self.partial_seed_steps = np.zeros((num_actors, N), dtype=np.int32) self.seed_staleness = np.array([0.]*N, dtype=np.float) self.running_sample_count = 0 self.next_seed_index = 0 # Only used for sequential strategy self.track_solvable = False # Handle grounded value losses self.grounded_values = None if self.strategy.startswith('grounded'): self.grounded_values = np.array([np.NINF]*N, dtype=np.float) # Only used for infinite seed setting self.sample_full_distribution = sample_full_distribution if self.sample_full_distribution: self.seed2actor = defaultdict(set) self.working_seed_buffer_size = 0 self.seed_buffer_priority = seed_buffer_priority self.staging_seed_set = set() self.working_seed_set = set() self.seed2timestamp_buffer = {} # Buffer seeds are unique across actors self.partial_seed_scores_buffer = [{} for _ in range(num_actors)] self.partial_seed_max_scores_buffer = [{} for _ in range(num_actors)] self.partial_seed_steps_buffer = [{} for _ in range(num_actors)] # TSCL specific data structures if self.strategy.startswith('tscl'): self.tscl_window_size = tscl_window_size self.tscl_return_window = [deque(maxlen=self.tscl_window_size) for _ in range(N)] self.tscl_episode_window = [deque(maxlen=self.tscl_window_size) for _ in range(N)] self.unseen_seed_weights = np.zeros(N) # Force uniform distribution over seeds def seed_range(self): if not self.sample_full_distribution: return (int(min(self.seeds)), int(max(self.seeds))) else: return (0, INT32_MAX) def _init_seed_index(self, seeds): if seeds: self.seeds = np.array(seeds, dtype=np.int64) self.seed2index = {seed: i for i, seed in enumerate(seeds)} else: self.seeds = np.zeros(self.seed_buffer_size, dtype=np.int64) - 1 self.seed2index = {} def _init_solvable_tracking(self): """ Prepare data structures for tracking seed solvability. Currently only used with externally observed seeds. """ self.track_solvable = True self.staging_seed2solvable = {} self.seed_solvable = np.ones(self.seed_buffer_size, dtype=np.bool) @property def _proportion_filled(self): if self.sample_full_distribution: return self.working_seed_buffer_size/self.seed_buffer_size else: num_unseen = (self.unseen_seed_weights > 0).sum() proportion_seen = (len(self.seeds) - num_unseen)/len(self.seeds) return proportion_seen def update_with_rollouts(self, rollouts): if self.strategy in ['random', 'off']: return # Update with a RolloutStorage object if self.strategy == 'uniform': score_function = self._uniform elif self.strategy == 'policy_entropy': score_function = self._average_entropy elif self.strategy == 'least_confidence': score_function = self._average_least_confidence elif self.strategy == 'min_margin': score_function = self._average_min_margin elif self.strategy == 'gae': score_function = self._average_gae elif self.strategy == 'value_l1': score_function = self._average_value_l1 elif self.strategy == 'signed_value_loss': score_function = self._average_signed_value_loss elif self.strategy == 'positive_value_loss': score_function = self._average_positive_value_loss elif self.strategy == 'grounded_signed_value_loss': score_function = self._average_grounded_signed_value_loss elif self.strategy == 'grounded_positive_value_loss': score_function = self._average_grounded_positive_value_loss elif self.strategy == 'one_step_td_error': score_function = self._one_step_td_error elif self.strategy == 'alt_advantage_abs': score_function = self._average_alt_advantage_abs elif self.strategy == 'tscl_window': score_function = self._tscl_window else: raise ValueError(f'Unsupported strategy, {self.strategy}') self._update_with_rollouts(rollouts, score_function) def update_seed_score(self, actor_index, seed, score, max_score, num_steps): if self.sample_full_distribution and seed in self.staging_seed_set: score, seed_idx = self._partial_update_seed_score_buffer(actor_index, seed, score, num_steps, done=True) else: score, seed_idx = self._partial_update_seed_score(actor_index, seed, score, max_score, num_steps, done=True) return score, seed_idx def _partial_update_seed_score(self, actor_index, seed, score, max_score, num_steps, done=False): seed_idx = self.seed2index.get(seed, -1) if seed_idx < 0: return 0, None partial_score = self.partial_seed_scores[actor_index][seed_idx] partial_max_score = self.partial_seed_max_scores[actor_index][seed_idx] partial_num_steps = self.partial_seed_steps[actor_index][seed_idx] running_num_steps = partial_num_steps + num_steps merged_score = partial_score + (score - partial_score)*num_steps/float(running_num_steps) merged_max_score = max(partial_max_score, max_score) if done: self.partial_seed_scores[actor_index][seed_idx] = 0. # zero partial score, partial num_steps self.partial_seed_max_scores[actor_index][seed_idx] = float('-inf') self.partial_seed_steps[actor_index][seed_idx] = 0 self.unseen_seed_weights[seed_idx] = 0. # No longer unseen old_score = self.seed_scores[seed_idx] total_score = self.max_score_coef*merged_max_score + (1 - self.max_score_coef)*merged_score self.seed_scores[seed_idx] = (1 - self.alpha)*old_score + self.alpha*total_score else: self.partial_seed_scores[actor_index][seed_idx] = merged_score self.partial_seed_max_scores[actor_index][seed_idx] = merged_max_score self.partial_seed_steps[actor_index][seed_idx] = running_num_steps return merged_score, seed_idx @property def _next_buffer_index(self): if self._proportion_filled < 1.0: return self.working_seed_buffer_size else: if self.seed_buffer_priority == 'replay_support': return self.sample_weights().argmin() else: return self.seed_scores.argmin() def _partial_update_seed_score_buffer(self, actor_index, seed, score, num_steps, done=False): seed_idx = -1 self.seed2actor[seed].add(actor_index) partial_score = self.partial_seed_scores_buffer[actor_index].get(seed, 0) partial_num_steps = self.partial_seed_steps_buffer[actor_index].get(seed, 0) running_num_steps = partial_num_steps + num_steps merged_score = partial_score + (score - partial_score)*num_steps/float(running_num_steps) if done: # Move seed into working seed data structures seed_idx = self._next_buffer_index if self.seed_scores[seed_idx] <= merged_score or self.unseen_seed_weights[seed_idx] > 0: self.unseen_seed_weights[seed_idx] = 0. # Unmask this index self.working_seed_set.discard(self.seeds[seed_idx]) self.working_seed_set.add(seed) self.seeds[seed_idx] = seed self.seed2index[seed] = seed_idx self.seed_scores[seed_idx] = merged_score self.partial_seed_scores[:,seed_idx] = 0. self.partial_seed_steps[:,seed_idx] = 0 self.seed_staleness[seed_idx] = self.running_sample_count - self.seed2timestamp_buffer[seed] self.working_seed_buffer_size = min(self.working_seed_buffer_size + 1, self.seed_buffer_size) if self.track_solvable: self.seed_solvable[seed_idx] = self.staging_seed2solvable.get(seed, True) else: seed_idx = None # Zero partial score, partial num_steps, remove seed from staging data structures for a in self.seed2actor[seed]: self.partial_seed_scores_buffer[a].pop(seed, None) self.partial_seed_steps_buffer[a].pop(seed, None) del self.seed2timestamp_buffer[seed] del self.seed2actor[seed] self.staging_seed_set.remove(seed) if self.track_solvable: del self.staging_seed2solvable[seed] else: self.partial_seed_scores_buffer[actor_index][seed] = merged_score self.partial_seed_steps_buffer[actor_index][seed] = running_num_steps return merged_score, seed_idx def _uniform(self, **kwargs): return 1.0,1.0 def _average_entropy(self, **kwargs): episode_logits = kwargs['episode_logits'] num_actions = self.action_space.n max_entropy = -(1./num_actions)*np.log(1./num_actions)*num_actions scores = -torch.exp(episode_logits)*episode_logits.sum(-1)/max_entropy mean_score = scores.mean().item() max_score = scores.max().item() return mean_score, max_score def _average_least_confidence(self, **kwargs): episode_logits = kwargs['episode_logits'] scores = 1 - torch.exp(episode_logits.max(-1, keepdim=True)[0]) mean_score = scores.mean().item() max_score = scores.max().item() return mean_score, max_score def _average_min_margin(self, **kwargs): episode_logits = kwargs['episode_logits'] top2_confidence = torch.exp(episode_logits.topk(2, dim=-1)[0]) scores = top2_confidence[:,0] - top2_confidence[:,1] mean_score = 1 - scores.mean().item() max_score = 1 - scores.min().item() return mean_score, max_score def _average_gae(self, **kwargs): returns = kwargs['returns'] value_preds = kwargs['value_preds'] advantages = returns - value_preds mean_score = advantages.mean().item() max_score = advantages.max().item() return mean_score, max_score def _average_value_l1(self, **kwargs): returns = kwargs['returns'] value_preds = kwargs['value_preds'] abs_advantages = (returns - value_preds).abs() mean_score = abs_advantages.mean().item() max_score = abs_advantages.max().item() return mean_score, max_score def _average_signed_value_loss(self, **kwargs): returns = kwargs['returns'] value_preds = kwargs['value_preds'] advantages = returns - value_preds mean_score = advantages.mean().item() max_score = advantages.max().item() return mean_score, max_score def _average_positive_value_loss(self, **kwargs): returns = kwargs['returns'] value_preds = kwargs['value_preds'] clipped_advantages = (returns - value_preds).clamp(0) mean_score = clipped_advantages.mean().item() max_score = clipped_advantages.max().item() return mean_score, max_score def _average_grounded_signed_value_loss(self, **kwargs): """ Currently assumes sparse reward s.t. reward is 0 everywhere except final step """ seed = kwargs['seed'] seed_idx = self.seed2index.get(seed, None) actor_idx= kwargs['actor_index'] done = kwargs['done'] value_preds = kwargs['value_preds'] episode_logits = kwargs['episode_logits'] partial_steps = 0 if self.sample_full_distribution and seed in self.partial_seed_steps_buffer[actor_idx]: partial_steps = self.partial_seed_steps_buffer[actor_idx][seed] elif seed_idx is not None: partial_steps = self.partial_seed_steps[actor_idx][seed_idx] else: partial_steps = 0 new_steps = len(episode_logits) total_steps = partial_steps + new_steps grounded_value = kwargs.get('grounded_value', None) if done and grounded_value is not None: if self.use_dense_rewards: advantages = grounded_value - value_preds[0] else: advantages = grounded_value - value_preds mean_score = (total_steps/new_steps)*advantages.mean().item() max_score = advantages.max().item() else: mean_score, max_score = 0,0 return mean_score, max_score def _average_grounded_positive_value_loss(self, **kwargs): """ Currently assumes sparse reward s.t. reward is 0 everywhere except final step """ seed = kwargs['seed'] seed_idx = self.seed2index.get(seed, None) actor_idx= kwargs['actor_index'] done = kwargs['done'] value_preds = kwargs['value_preds'] episode_logits = kwargs['episode_logits'] partial_steps = 0 if self.sample_full_distribution and seed in self.partial_seed_steps_buffer[actor_idx]: partial_steps = self.partial_seed_steps_buffer[actor_idx][seed] elif seed_idx is not None: partial_steps = self.partial_seed_steps[actor_idx][seed_idx] else: partial_steps = 0 new_steps = len(episode_logits) total_steps = partial_steps + new_steps grounded_value = kwargs.get('grounded_value', None) if done and grounded_value is not None: if self.use_dense_rewards: advantages = grounded_value - value_preds[0] else: advantages = grounded_value - value_preds advantages = advantages.clamp(0) mean_score = (total_steps/new_steps)*advantages.mean().item() max_score = advantages.max().item() else: mean_score, max_score = 0,0 return mean_score, max_score def _one_step_td_error(self, **kwargs): rewards = kwargs['rewards'] value_preds = kwargs['value_preds'] max_t = len(rewards) if max_t > 1: td_errors = (rewards[:-1] + self.gamma*value_preds[1:max_t] - value_preds[:max_t-1]).abs() else: td_errors = rewards[0] - value_preds[0] mean_score = td_errors.mean().item() max_score = td_errors.max().item() return mean_score, max_score def _average_alt_advantage_abs(self, **kwargs): returns = kwargs['alt_returns'] value_preds = kwargs['value_preds'] abs_advantages = (returns - value_preds).abs() mean_score = abs_advantages.mean().item() max_score = abs_advantages.max().item() return mean_score, max_score def _tscl_window(self, **kwargs): rewards = kwargs['rewards'] seed = kwargs['seed'] seed_idx = self.seed2index.get(seed, -1) assert(seed_idx >= 0) # add rewards to the seed window episode_total_reward = rewards.sum().item() self.tscl_return_window[seed_idx].append(episode_total_reward) self.tscl_episode_window[seed_idx].append(self.running_sample_count) # compute linear regression coeficient in the window x = self.tscl_episode_window[seed] y = self.tscl_return_window[seed] A = np.vstack([x, np.ones(len(x))]).T c,_ = np.linalg.lstsq(A, y, rcond=None)[0] c = abs(c) return c, c @property def requires_value_buffers(self): return self.strategy in [ 'gae', 'value_l1', 'signed_value_loss', 'positive_value_loss', 'grounded_signed_value_loss', 'grounded_positive_value_loss', 'one_step_td_error', 'alt_advantage_abs', 'tscl_window'] @property def _has_working_seed_buffer(self): return not self.sample_full_distribution or (self.sample_full_distribution and self.seed_buffer_size > 0) def _update_with_rollouts(self, rollouts, score_function): if not self._has_working_seed_buffer: return level_seeds = rollouts.level_seeds policy_logits = rollouts.action_log_dist total_steps, num_actors = policy_logits.shape[:2] done = ~(rollouts.masks > 0) # early_done = ~(rollouts.bad_masks > 0) cliffhanger = ~(rollouts.cliffhanger_masks > 0) for actor_index in range(num_actors): start_t = 0 done_steps = done[:,actor_index].nonzero()[:,0] for t in done_steps: if not start_t < total_steps: break if t == 0: # if t is 0, then this done step caused a full update of previous seed last cycle continue seed_t = level_seeds[start_t,actor_index].item() score_function_kwargs = {} score_function_kwargs['actor_index'] = actor_index score_function_kwargs['done'] = True episode_logits = policy_logits[start_t:t,actor_index] score_function_kwargs['episode_logits'] = torch.log_softmax(episode_logits, -1) score_function_kwargs['seed'] = seed_t if self.requires_value_buffers: score_function_kwargs['returns'] = rollouts.returns[start_t:t,actor_index] if self.strategy == 'alt_advantage_abs': score_function_kwargs['alt_returns'] = rollouts.alt_returns[start_t:t,actor_index] score_function_kwargs['rewards'] = rollouts.rewards[start_t:t,actor_index] if rollouts.use_popart: score_function_kwargs['value_preds'] = rollouts.denorm_value_preds[start_t:t,actor_index] else: score_function_kwargs['value_preds'] = rollouts.value_preds[start_t:t,actor_index] # Only perform score updates on non-cliffhanger episodes ending in 'done' if not cliffhanger[t,actor_index]: # Update grounded values (highest achieved return per seed) grounded_value = None if self.grounded_values is not None: seed_idx = self.seed2index.get(seed_t, None) score_function_kwargs['seed_idx'] = seed_idx grounded_value_ = rollouts.rewards[start_t:t].sum(0)[actor_index] if seed_idx is not None: grounded_value = max(self.grounded_values[seed_idx], grounded_value_) else: grounded_value = grounded_value_ # Should this be discounted? score_function_kwargs['grounded_value'] = grounded_value score, max_score = score_function(**score_function_kwargs) num_steps = len(episode_logits) _, seed_idx = self.update_seed_score(actor_index, seed_t, score, max_score, num_steps) # Track grounded value for future reference if seed_idx is not None and self.grounded_values is not None and grounded_value is not None: self.grounded_values[seed_idx] = grounded_value start_t = t.item() if start_t < total_steps: seed_t = level_seeds[start_t,actor_index].item() score_function_kwargs = {} score_function_kwargs['actor_index'] = actor_index score_function_kwargs['done'] = False episode_logits = policy_logits[start_t:,actor_index] score_function_kwargs['episode_logits'] = torch.log_softmax(episode_logits, -1) score_function_kwargs['seed'] = seed_t if self.requires_value_buffers: score_function_kwargs['returns'] = rollouts.returns[start_t:,actor_index] if self.strategy == 'alt_advantage_abs': score_function_kwargs['alt_returns'] = rollouts.alt_returns[start_t:,actor_index] score_function_kwargs['rewards'] = rollouts.rewards[start_t:,actor_index] if rollouts.use_popart: score_function_kwargs['value_preds'] = rollouts.denorm_value_preds[start_t:t,actor_index] else: score_function_kwargs['value_preds'] = rollouts.value_preds[start_t:,actor_index] score, max_score = score_function(**score_function_kwargs) num_steps = len(episode_logits) if self.sample_full_distribution and seed_t in self.staging_seed_set: self._partial_update_seed_score_buffer(actor_index, seed_t, score, num_steps) else: self._partial_update_seed_score(actor_index, seed_t, score, max_score, num_steps) def after_update(self): if not self._has_working_seed_buffer: return # Reset partial updates, since weights have changed, and thus logits are now stale for actor_index in range(self.partial_seed_scores.shape[0]): for seed_idx in range(self.partial_seed_scores.shape[1]): if self.partial_seed_scores[actor_index][seed_idx] != 0: self.update_seed_score(actor_index, self.seeds[seed_idx], 0, float('-inf'), 0) self.partial_seed_scores.fill(0) self.partial_seed_steps.fill(0) # Likewise, reset partial update buffers if self.sample_full_distribution: for actor_index in range(self.num_actors): actor_staging_seeds = list(self.partial_seed_scores_buffer[actor_index].keys()) for seed in actor_staging_seeds: if self.partial_seed_scores_buffer[actor_index][seed] > 0: self.update_seed_score(actor_index, seed, 0, float('-inf'), 0) def _update_staleness(self, selected_idx): if self.staleness_coef > 0: self.seed_staleness = self.seed_staleness + 1 self.seed_staleness[selected_idx] = 0 def sample_replay_decision(self): if self.sample_full_distribution: proportion_filled = self._proportion_filled if self.seed_buffer_size > 0: if self.replay_schedule == 'fixed': if proportion_filled >= self.rho and np.random.rand() < self.replay_prob: return True else: return False else: if proportion_filled >= self.rho and np.random.rand() < min(proportion_filled, self.replay_prob): return True else: return False else: # If seed buffer has length 0, then just sample new random seed each time return False elif self.replay_schedule == 'fixed': proportion_seen = self._proportion_filled if proportion_seen >= self.rho: # Sample replay level with fixed replay_prob OR if all levels seen if np.random.rand() < self.replay_prob or not proportion_seen < 1.0: return True # Otherwise, sample a new level return False else: # Default to proportionate schedule proportion_seen = self._proportion_filled if proportion_seen >= self.rho and np.random.rand() < proportion_seen: return True else: return False @property def is_warm(self): return self._proportion_filled >= self.rho def observe_external_unseen_sample(self, seeds, solvable=None): for i, seed in enumerate(seeds): self.running_sample_count += 1 if not (seed in self.staging_seed_set or seed in self.working_seed_set): self.seed2timestamp_buffer[seed] = self.running_sample_count self.staging_seed_set.add(seed) if solvable is not None: if not self.track_solvable: # lazy init of solvable tracking self._init_solvable_tracking() self.staging_seed2solvable[seed] = solvable[i] else: seed_idx = self.seed2index.get(seed, None) if seed_idx is not None: self._update_staleness(seed_idx) def sample_replay_level(self, update_staleness=True): return self._sample_replay_level(update_staleness=update_staleness) def _sample_replay_level(self, update_staleness=True): sample_weights = self.sample_weights() if np.isclose(np.sum(sample_weights), 0): sample_weights = np.ones_like(self.seeds, dtype=np.float)/len(self.seeds) sample_weights = sample_weights*(1-self.unseen_seed_weights) sample_weights /= np.sum(sample_weights) elif np.sum(sample_weights, 0) != 1.0: sample_weights = sample_weights/np.sum(sample_weights,0) seed_idx = np.random.choice(range(len(self.seeds)), 1, p=sample_weights)[0] seed = self.seeds[seed_idx] if update_staleness: self._update_staleness(seed_idx) return int(seed) def _sample_unseen_level(self): if self.sample_full_distribution: seed = int(np.random.randint(1,INT32_MAX)) # Ensure unique new seed outside of working and staging set while seed in self.staging_seed_set or seed in self.working_seed_set: seed = int(np.random.randint(1,INT32_MAX)) self.seed2timestamp_buffer[seed] = self.running_sample_count self.staging_seed_set.add(seed) else: sample_weights = self.unseen_seed_weights/self.unseen_seed_weights.sum() seed_idx = np.random.choice(range(len(self.seeds)), 1, p=sample_weights)[0] seed = self.seeds[seed_idx] self._update_staleness(seed_idx) return int(seed) def sample(self, strategy=None): if strategy == 'full_distribution': raise ValueError('One-off sampling via full_distribution strategy is not supported.') self.running_sample_count += 1 if not strategy: strategy = self.strategy if not self.sample_full_distribution: if strategy == 'random': seed_idx = np.random.choice(range((len(self.seeds)))) seed = self.seeds[seed_idx] return int(seed) if strategy == 'sequential': seed_idx = self.next_seed_index self.next_seed_index = (self.next_seed_index + 1) % len(self.seeds) seed = self.seeds[seed_idx] return int(seed) replay_decision = self.sample_replay_decision() if replay_decision: return self._sample_replay_level() else: return self._sample_unseen_level() def sample_weights(self): weights = self._score_transform(self.score_transform, self.temperature, self.seed_scores) weights = weights * (1-self.unseen_seed_weights) # zero out unseen levels z = np.sum(weights) if z > 0: weights /= z else: weights = np.ones_like(weights, dtype=np.float)/len(weights) weights = weights * (1-self.unseen_seed_weights) weights /= np.sum(weights) staleness_weights = 0 if self.staleness_coef > 0: staleness_weights = self._score_transform(self.staleness_transform, self.staleness_temperature, self.seed_staleness) staleness_weights = staleness_weights * (1-self.unseen_seed_weights) z = np.sum(staleness_weights) if z > 0: staleness_weights /= z else: staleness_weights = 1./len(staleness_weights)*(1-self.unseen_seed_weights) weights = (1 - self.staleness_coef)*weights + self.staleness_coef*staleness_weights return weights def _score_transform(self, transform, temperature, scores): if transform == 'constant': weights = np.ones_like(scores) if transform == 'max': weights = np.zeros_like(scores) scores = scores[:] scores[self.unseen_seed_weights > 0] = -float('inf') # only argmax over seen levels argmax = np.random.choice(np.flatnonzero(np.isclose(scores, scores.max()))) weights[argmax] = 1. elif transform == 'eps_greedy': weights = np.zeros_like(scores) weights[scores.argmax()] = 1. - self.eps weights += self.eps/len(self.seeds) elif transform == 'rank': temp = np.flip(scores.argsort()) ranks = np.empty_like(temp) ranks[temp] = np.arange(len(temp)) + 1 weights = 1/ranks ** (1./temperature) elif transform == 'power': eps = 0 if self.staleness_coef > 0 else 1e-3 weights = (np.array(scores).clip(0) + eps) ** (1./temperature) elif transform == 'softmax': weights = np.exp(np.array(scores)/temperature) elif transform == 'match': weights = np.array([(1-score)*score for score in scores]) weights = weights ** (1./temperature) elif transform == 'match_rank': weights = np.array([(1-score)*score for score in scores]) temp = np.flip(weights.argsort()) ranks = np.empty_like(temp) ranks[temp] = np.arange(len(temp)) + 1 weights = 1/ranks ** (1./temperature) return weights @property def solvable_mass(self): if self.track_solvable: sample_weights = self.sample_weights() return np.sum(sample_weights[self.seed_solvable]) else: return 1. @property def max_score(self): return max(self.seed_scores)
dcd-main
level_replay/level_sampler.py
# Copyright (c) 2020 Tianshou contributors # # Licensed under the MIT License; # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/MIT # # This file is a modified version of # https://github.com/marlbenchmark/on-policy/blob/0fc8a9355bb7ce2589716eeb543f498edcc91dc6/onpolicy/algorithms/utils/popart.py import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from .common import DeviceAwareModule class PopArt(DeviceAwareModule): def __init__(self, input_shape, output_shape, norm_axes=1, beta=0.99999, epsilon=1e-5): super(PopArt, self).__init__() self.beta = beta self.epsilon = epsilon self.norm_axes = norm_axes self.input_shape = input_shape self.output_shape = output_shape self.weight = nn.Parameter(torch.Tensor(output_shape, input_shape)) self.bias = nn.Parameter(torch.Tensor(output_shape)) self.stddev = nn.Parameter(torch.ones(output_shape), requires_grad=False) self.mean = nn.Parameter(torch.zeros(output_shape), requires_grad=False) self.mean_sq = nn.Parameter(torch.zeros(output_shape), requires_grad=False) self.debiasing_term = nn.Parameter(torch.tensor(0.0), requires_grad=False) self.reset_parameters() def reset_parameters(self): torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) if self.bias is not None: fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(self.weight) bound = 1 / math.sqrt(fan_in) torch.nn.init.uniform_(self.bias, -bound, bound) self.mean.zero_() self.mean_sq.zero_() self.debiasing_term.zero_() def forward(self, input_vector): if type(input_vector) == np.ndarray: input_vector = torch.from_numpy(input_vector) input_vector = input_vector.to(self.device) return F.linear(input_vector, self.weight, self.bias) @torch.no_grad() def update(self, input_vector): if type(input_vector) == np.ndarray: input_vector = torch.from_numpy(input_vector) input_vector = input_vector.to(self.device) old_mean, old_stddev = self.mean, self.stddev batch_mean = input_vector.mean(dim=tuple(range(self.norm_axes))) batch_sq_mean = (input_vector ** 2).mean(dim=tuple(range(self.norm_axes))) self.mean.mul_(self.beta).add_(batch_mean * (1.0 - self.beta)) self.mean_sq.mul_(self.beta).add_(batch_sq_mean * (1.0 - self.beta)) self.debiasing_term.mul_(self.beta).add_(1.0 * (1.0 - self.beta)) self.stddev.data = (self.mean_sq - self.mean ** 2).sqrt().clamp(min=1e-4) self.weight.data = self.weight * old_stddev / self.stddev self.bias.data = (old_stddev * self.bias + old_mean - self.mean) / self.stddev def debiased_mean_var(self): debiased_mean = self.mean / self.debiasing_term.clamp(min=self.epsilon) debiased_mean_sq = self.mean_sq / self.debiasing_term.clamp(min=self.epsilon) debiased_var = (debiased_mean_sq - debiased_mean ** 2).clamp(min=1e-2) return debiased_mean, debiased_var def normalize(self, input_vector): if type(input_vector) == np.ndarray: input_vector = torch.from_numpy(input_vector) input_vector = input_vector.to(self.device) mean, var = self.debiased_mean_var() out = (input_vector - mean) / torch.sqrt(var) return out def denormalize(self, input_vector): if type(input_vector) == np.ndarray: input_vector = torch.from_numpy(input_vector) input_vector = input_vector.to(self.device) mean, var = self.debiased_mean_var() out = input_vector * torch.sqrt(var) + mean return out
dcd-main
models/popart.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from .distributions import Categorical from .common import * class MultigridNetwork(DeviceAwareModule): """ Actor-Critic module """ def __init__(self, observation_space, action_space, actor_fc_layers=(32, 32), value_fc_layers=(32, 32), conv_filters=16, conv_kernel_size=3, scalar_fc=5, scalar_dim=4, random_z_dim=0, xy_dim=0, recurrent_arch='lstm', recurrent_hidden_size=256, random=False): super(MultigridNetwork, self).__init__() self.random = random self.action_space = action_space num_actions = action_space.n # Image embeddings obs_shape = observation_space['image'].shape m = obs_shape[-2] # x input dim n = obs_shape[-1] # y input dim c = obs_shape[-3] # channel input dim self.image_conv = nn.Sequential( Conv2d_tf(3, conv_filters, kernel_size=conv_kernel_size, stride=1, padding='valid'), nn.Flatten(), nn.ReLU() ) self.image_embedding_size = (n-conv_kernel_size+1)*(m-conv_kernel_size+1)*conv_filters self.preprocessed_input_size = self.image_embedding_size # x, y positional embeddings self.xy_embed = None self.xy_dim = xy_dim if xy_dim: self.preprocessed_input_size += 2*xy_dim # Scalar embedding self.scalar_embed = None self.scalar_dim = scalar_dim if scalar_dim: self.scalar_embed = nn.Linear(scalar_dim, scalar_fc) self.preprocessed_input_size += scalar_fc self.preprocessed_input_size += random_z_dim self.base_output_size = self.preprocessed_input_size # RNN self.rnn = None if recurrent_arch: self.rnn = RNN( input_size=self.preprocessed_input_size, hidden_size=recurrent_hidden_size, arch=recurrent_arch) self.base_output_size = recurrent_hidden_size # Policy head self.actor = nn.Sequential( make_fc_layers_with_hidden_sizes(actor_fc_layers, input_size=self.base_output_size), Categorical(actor_fc_layers[-1], num_actions) ) # Value head self.critic = nn.Sequential( make_fc_layers_with_hidden_sizes(value_fc_layers, input_size=self.base_output_size), init_(nn.Linear(value_fc_layers[-1], 1)) ) apply_init_(self.modules()) self.train() @property def is_recurrent(self): return self.rnn is not None @property def recurrent_hidden_state_size(self): # """Size of rnn_hx.""" if self.rnn is not None: return self.rnn.recurrent_hidden_state_size else: return 0 def forward(self, inputs, rnn_hxs, masks): raise NotImplementedError def _forward_base(self, inputs, rnn_hxs, masks): # Unpack input key values image = inputs.get('image') scalar = inputs.get('direction') if scalar is None: scalar = inputs.get('time_step') x = inputs.get('x') y = inputs.get('y') in_z = inputs.get('random_z', torch.tensor([], device=self.device)) in_image = self.image_conv(image) if self.xy_embed: x = one_hot(self.xy_dim, x, device=self.device) y = one_hot(self.xy_dim, y, device=self.device) in_x = self.xy_embed(x) in_y = self.xy_embed(y) else: in_x = torch.tensor([], device=self.device) in_y = torch.tensor([], device=self.device) if self.scalar_embed: in_scalar = one_hot(self.scalar_dim, scalar).to(self.device) in_scalar = self.scalar_embed(in_scalar) else: in_scalar = torch.tensor([], device=self.device) in_embedded = torch.cat((in_image, in_x, in_y, in_scalar, in_z), dim=-1) if self.rnn is not None: core_features, rnn_hxs = self.rnn(in_embedded, rnn_hxs, masks) else: core_features = in_embedded return core_features, rnn_hxs def act(self, inputs, rnn_hxs, masks, deterministic=False): if self.random: B = inputs['image'].shape[0] action = torch.zeros((B,1), dtype=torch.int64, device=self.device) values = torch.zeros((B,1), device=self.device) action_log_dist = torch.ones(B, self.action_space.n, device=self.device) for b in range(B): action[b] = self.action_space.sample() return values, action, action_log_dist, rnn_hxs core_features, rnn_hxs = self._forward_base(inputs, rnn_hxs, masks) dist = self.actor(core_features) value = self.critic(core_features) if deterministic: action = dist.mode() else: action = dist.sample() action_log_dist = dist.logits return value, action, action_log_dist, rnn_hxs def get_value(self, inputs, rnn_hxs, masks): core_features, rnn_hxs = self._forward_base(inputs, rnn_hxs, masks) return self.critic(core_features) def evaluate_actions(self, inputs, rnn_hxs, masks, action): core_features, rnn_hxs = self._forward_base(inputs, rnn_hxs, masks) dist = self.actor(core_features) value = self.critic(core_features) action_log_probs = dist.log_probs(action) dist_entropy = dist.entropy().mean() return value, action_log_probs, dist_entropy, rnn_hxs
dcd-main
models/multigrid_models.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from .multigrid_models import MultigridNetwork from .multigrid_global_critic_models import MultigridGlobalCriticNetwork from .car_racing_models import CarRacingNetwork, CarRacingBezierAdversaryEnvNetwork from .walker_models import BipedalWalkerStudentPolicy, BipedalWalkerAdversaryPolicy
dcd-main
models/__init__.py
# Copyright (c) 2017 Roberta Raileanu # # Licensed under the MIT License; # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/MIT # # This file is a modified version of: # https://github.com/rraileanu/auto-drac/blob/master/ucb_rl2_meta/model.py import math import torch import torch.nn as nn from .common import init class FixedCategorical(torch.distributions.Categorical): """ Categorical distribution object """ def sample(self): return super().sample().unsqueeze(-1) def log_probs(self, actions): return ( super() .log_prob(actions.squeeze(-1)) .view(actions.size(0), -1) .sum(-1) .unsqueeze(-1) ) def mode(self): return self.probs.argmax(dim=-1, keepdim=True) class Categorical(nn.Module): """ Categorical distribution (NN module) """ def __init__(self, num_inputs, num_outputs): super(Categorical, self).__init__() init_ = lambda m: init( m, nn.init.orthogonal_, lambda x: nn.init.constant_(x, 0), gain=0.01) self.linear = init_(nn.Linear(num_inputs, num_outputs)) def forward(self, x): x = self.linear(x) return FixedCategorical(logits=x)
dcd-main
models/distributions.py
# Copyright (c) 2017 Ilya Kostrikov # # Licensed under the MIT License; # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/MIT # # This file is a modified version of # https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail/blob/master/a2c_ppo_acktr/model.py import numpy as np import torch import torch.nn as nn import torch.nn.functional as F def init(module, weight_init, bias_init, gain=1): weight_init(module.weight.data, gain=gain) bias_init(module.bias.data) return module init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init. constant_(x, 0)) init_relu_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init. constant_(x, 0), nn.init.calculate_gain('relu')) init_tanh_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init. constant_(x, 0), np.sqrt(2)) def apply_init_(modules, gain=None): """ Initialize NN modules """ for m in modules: if isinstance(m, nn.Conv2d): if gain: nn.init.xavier_uniform_(m.weight, gain=gain) else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) if m.bias is not None: nn.init.constant_(m.bias, 0) class Flatten(nn.Module): """ Flatten a tensor """ def forward(self, x): return x.reshape(x.size(0), -1) class DeviceAwareModule(nn.Module): @property def device(self): return next(self.parameters()).device class Conv2d_tf(nn.Conv2d): """ Conv2d with the padding behavior from TF """ def __init__(self, *args, **kwargs): super(Conv2d_tf, self).__init__(*args, **kwargs) self.padding = kwargs.get("padding", "same") def _compute_padding(self, input, dim): input_size = input.size(dim + 2) filter_size = self.weight.size(dim + 2) effective_filter_size = (filter_size - 1) * self.dilation[dim] + 1 out_size = (input_size + self.stride[dim] - 1) // self.stride[dim] total_padding = max( 0, (out_size - 1) * self.stride[dim] + effective_filter_size - input_size ) additional_padding = int(total_padding % 2 != 0) return additional_padding, total_padding def forward(self, input): if self.padding == "valid": return F.conv2d( input, self.weight, self.bias, self.stride, padding=0, dilation=self.dilation, groups=self.groups, ) rows_odd, padding_rows = self._compute_padding(input, dim=0) cols_odd, padding_cols = self._compute_padding(input, dim=1) if rows_odd or cols_odd: input = F.pad(input, [0, cols_odd, 0, rows_odd]) return F.conv2d( input, self.weight, self.bias, self.stride, padding=(padding_rows // 2, padding_cols // 2), dilation=self.dilation, groups=self.groups, ) class RNN(nn.Module): """ Actor-Critic network (base class) """ def __init__(self, input_size, hidden_size=128, arch='lstm'): super().__init__() self.arch = arch self.is_lstm = arch == 'lstm' self._hidden_size = hidden_size if arch == 'gru': self.rnn = nn.GRU(input_size, hidden_size) elif arch == 'lstm': self.rnn = nn.LSTM(input_size, hidden_size) else: raise ValueError(f'Unsupported RNN architecture {arch}.') for name, param in self.rnn.named_parameters(): if 'bias' in name: nn.init.constant_(param, 0) elif 'weight' in name: nn.init.orthogonal_(param) @property def recurrent_hidden_state_size(self): return self._hidden_size @property def output_size(self): return self._hidden_size def forward(self, x, hxs, masks): if self.is_lstm: # Since nn.LSTM defaults to all zero states if passed None state hidden_batch_size = x.size(0) if hxs is None else hxs[0].size(0) else: hidden_batch_size = hxs.size(0) if x.size(0) == hidden_batch_size: masked_hxs = tuple((h*masks).unsqueeze(0) for h in hxs) if self.is_lstm \ else (hxs*masks).unsqueeze(0) x, hxs = self.rnn(x.unsqueeze(0), masked_hxs) x = x.squeeze(0) hxs = tuple(h.squeeze(0) for h in hxs) if self.is_lstm else hxs.squeeze(0) else: # x is a (T, N, -1) tensor that has been flatten to (T * N, -1) N = hxs[0].size(0) if self.is_lstm else hxs.size(0) T = int(x.size(0) / N) # unflatten x = x.view(T, N, x.size(1)) # Same deal with masks masks = masks.view(T, N) # Let's figure out which steps in the sequence have a zero for any agent # We will always assume t=0 has a zero in it as that makes the logic cleaner has_zeros = ((masks[1:] == 0.0) \ .any(dim=-1) .nonzero() .squeeze() .cpu()) # +1 to correct the masks[1:] if has_zeros.dim() == 0: # Deal with scalar has_zeros = [has_zeros.item() + 1] else: has_zeros = (has_zeros + 1).numpy().tolist() # add t=0 and t=T to the list has_zeros = [0] + has_zeros + [T] hxs = (h.unsqueeze(0) for h in hxs) if self.is_lstm else hxs.unsqueeze(0) outputs = [] for i in range(len(has_zeros) - 1): # We can now process steps that don't have any zeros in masks together! # This is much faster start_idx = has_zeros[i] end_idx = has_zeros[i + 1] masked_hxs = tuple(h*masks[start_idx].view(1, -1, 1) for h in hxs) if self.is_lstm \ else hxs*masks[start_idx].view(1, -1, 1) rnn_scores, hxs = self.rnn( x[start_idx:end_idx], masked_hxs) outputs.append(rnn_scores) # assert len(outputs) == T # x is a (T, N, -1) tensor x = torch.cat(outputs, dim=0) # flatten x = x.view(T * N, -1) hxs = tuple(h.squeeze(0) for h in hxs) if self.is_lstm else hxs.squeeze(0) return x, hxs def one_hot(dim, inputs, device='cpu'): one_hot = torch.nn.functional.one_hot(inputs.long(), dim).squeeze(1).float() return one_hot def make_fc_layers_with_hidden_sizes(sizes, input_size): fc_layers = [] for i, layer_size in enumerate(sizes[:-1]): input_size = input_size if i == 0 else sizes[0] output_size = sizes[i+1] fc_layers.append(init_tanh_(nn.Linear(input_size, output_size))) fc_layers.append(nn.Tanh()) return nn.Sequential( *fc_layers )
dcd-main
models/common.py
# Copyright (c) 2017 Ilya Kostrikov # # Licensed under the MIT License; # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/MIT # # This file is a modified version code found in # https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail/ import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.distributions import Beta from gym.spaces import MultiDiscrete from collections import namedtuple from .common import * from torch.distributions.normal import Normal from .popart import PopArt # Necessary for my KFAC implementation. class AddBias(nn.Module): def __init__(self, bias): super(AddBias, self).__init__() self._bias = nn.Parameter(bias.unsqueeze(1)) def forward(self, x): if x.dim() == 2: bias = self._bias.t().view(1, -1) else: bias = self._bias.t().view(1, -1, 1, 1) return x + bias # Normal class FixedNormal(torch.distributions.Normal): def log_probs(self, actions): return super().log_prob(actions).sum(-1, keepdim=True) def entropy(self): return super().entropy().sum(-1) def mode(self): return self.mean class DiagGaussian(DeviceAwareModule): def __init__(self, num_inputs, num_outputs): super(DiagGaussian, self).__init__() init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init. constant_(x, 0)) self.fc_mean = init_(nn.Linear(num_inputs, num_outputs)) self.logstd = AddBias(torch.zeros(num_outputs)) def forward(self, x): action_mean = self.fc_mean(x) # An ugly hack for my KFAC implementation. zeros = torch.zeros(action_mean.size()) if x.is_cuda: zeros = zeros.cuda() action_logstd = self.logstd(zeros) return FixedNormal(action_mean, action_logstd.exp()) class FixedCategorical(torch.distributions.Categorical): def sample(self): return super().sample().unsqueeze(-1) def log_probs(self, actions): return ( super() .log_prob(actions.squeeze(-1)) .view(actions.size(0), -1) .sum(-1) .unsqueeze(-1) ) def mode(self): return self.probs.argmax(dim=-1, keepdim=True) class Categorical(nn.Module): def __init__(self, num_inputs, num_outputs): super(Categorical, self).__init__() init_ = lambda m: init( m, nn.init.orthogonal_, lambda x: nn.init.constant_(x, 0), gain=0.01) self.linear = init_(nn.Linear(num_inputs, num_outputs)) def forward(self, x): x = self.linear(x) return FixedCategorical(logits=x) def init(module, weight_init, bias_init, gain=1): weight_init(module.weight.data, gain=gain) bias_init(module.bias.data) return module ## Policy from https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail/blob/master/a2c_ppo_acktr/model.py class Flatten(nn.Module): def forward(self, x): return x.view(x.size(0), -1) class BipedalWalkerStudentPolicy(DeviceAwareModule): def __init__(self, obs_shape, action_space, recurrent=False,base_kwargs=None): super(BipedalWalkerStudentPolicy, self).__init__() if base_kwargs is None: base_kwargs = {} self.base = MLPBase(obs_shape[0], recurrent=recurrent, **base_kwargs) num_outputs = action_space.shape[0] self.dist = DiagGaussian(self.base.output_size, num_outputs) if recurrent: RNN = namedtuple("RNN", 'arch') self.rnn = RNN('gru') @property def is_recurrent(self): return self.base.is_recurrent @property def recurrent_hidden_state_size(self): """Size of rnn_hx.""" return self.base.recurrent_hidden_state_size def forward(self, inputs): value, action, action_log_probs, rnn_hxs = self.act(inputs, rnn_hxs=None, masks=None, deterministic=False) return action def act(self, inputs, rnn_hxs, masks, deterministic=False): value, actor_features, rnn_hxs = self.base(inputs, rnn_hxs, masks) dist = self.dist(actor_features) if deterministic: action = dist.mode() else: action = dist.sample() action_log_probs = dist.log_probs(action) dist_entropy = dist.entropy().mean() return value, action, action_log_probs, rnn_hxs def get_value(self, inputs, rnn_hxs, masks): value, _, _ = self.base(inputs, rnn_hxs, masks) return value def evaluate_actions(self, inputs, rnn_hxs, masks, action): value, actor_features, rnn_hxs = self.base(inputs, rnn_hxs, masks) dist = self.dist(actor_features) action_log_probs = dist.log_probs(action) dist_entropy = dist.entropy().mean() return value, action_log_probs, dist_entropy, rnn_hxs class BipedalWalkerAdversaryPolicy(DeviceAwareModule): def __init__(self, observation_space, action_space, editor=False, random=False, base_kwargs=None): super(BipedalWalkerAdversaryPolicy, self).__init__() if base_kwargs is None: base_kwargs = {} self.random = random self.design_dim = observation_space['image'].shape[0] self.random_z_dim = observation_space['random_z'].shape[0] obs_dim = self.design_dim + self.random_z_dim + 1 self.base = MLPBase(obs_dim, **base_kwargs) self.editor = editor self.action_dim = action_space.shape[0] if self.editor: self.dist = [Categorical(self.base.output_size, x) for x in action_space.nvec] self.action_space = action_space else: self.dist = DiagGaussian(self.base.output_size, self.action_dim) @property def is_recurrent(self): return self.base.is_recurrent @property def recurrent_hidden_state_size(self): """Size of rnn_hx.""" return self.base.recurrent_hidden_state_size def preprocess(self, inputs): obs = torch.cat([inputs['image'], inputs['random_z'], inputs['time_step']], axis=1) return obs def act(self, inputs, rnn_hxs, masks, deterministic=False): inputs = self.preprocess(inputs) if self.random: if self.editor: B = inputs.shape[0] action = torch.zeros((B, 2), dtype=torch.int64, device=self.device) action_log_dist = torch.ones(B, self.action_space.nvec[0] + self.action_space.nvec[1], device=self.device) for b in range(B): action[b] = torch.tensor(self.action_space.sample()).to(self.device) else: action = torch.tensor(np.random.uniform(-1,1, inputs.shape[0]), device=self.device).reshape(-1,1) action_log_dist = torch.ones(inputs.shape[0], self.action_dim, device=self.device) values = torch.zeros(inputs.shape[0], 1, device=self.device) return values, action, action_log_dist, rnn_hxs value, actor_features, rnn_hxs = self.base(inputs, rnn_hxs, masks) if self.editor: dist = [fwd(actor_features) for fwd in self.dist] else: dist = self.dist(actor_features) if deterministic: action = dist.mode() else: action = dist.sample() action = F.tanh(action) action_log_probs = dist.log_probs(action) dist_entropy = dist.entropy().mean() return value, action, action_log_probs, rnn_hxs def get_value(self, inputs, rnn_hxs, masks): inputs = self.preprocess(inputs) value, _, _ = self.base(inputs, rnn_hxs, masks) return value def evaluate_actions(self, inputs, rnn_hxs, masks, action): inputs = self.preprocess(inputs) value, actor_features, rnn_hxs = self.base(inputs, rnn_hxs, masks) dist = self.dist(actor_features) action_log_probs = dist.log_probs(action) dist_entropy = dist.entropy().mean() return value, action_log_probs, dist_entropy, rnn_hxs class NNBase(nn.Module): def __init__(self, recurrent, recurrent_input_size, hidden_size): super(NNBase, self).__init__() self._hidden_size = hidden_size self._recurrent = recurrent if recurrent: self.rnn = nn.GRU(recurrent_input_size, hidden_size) for name, param in self.rnn.named_parameters(): if 'bias' in name: nn.init.constant_(param, 0) elif 'weight' in name: nn.init.orthogonal_(param) @property def is_recurrent(self): return self._recurrent @property def recurrent_hidden_state_size(self): if self._recurrent: return self._hidden_size return 1 @property def output_size(self): return self._hidden_size def _forward_gru(self, x, hxs, masks): if x.size(0) == hxs.size(0): x, hxs = self.rnn(x.unsqueeze(0), (hxs * masks).unsqueeze(0)) x = x.squeeze(0) hxs = hxs.squeeze(0) else: # x is a (T, N, -1) tensor that has been flatten to (T * N, -1) N = hxs.size(0) T = int(x.size(0) / N) # unflatten x = x.view(T, N, x.size(1)) # Same deal with masks masks = masks.view(T, N) # Let's figure out which steps in the sequence have a zero for any agent # We will always assume t=0 has a zero in it as that makes the logic cleaner has_zeros = ((masks[1:] == 0.0) \ .any(dim=-1) .nonzero() .squeeze() .cpu()) # +1 to correct the masks[1:] if has_zeros.dim() == 0: # Deal with scalar has_zeros = [has_zeros.item() + 1] else: has_zeros = (has_zeros + 1).numpy().tolist() # add t=0 and t=T to the list has_zeros = [0] + has_zeros + [T] hxs = hxs.unsqueeze(0) outputs = [] for i in range(len(has_zeros) - 1): # We can now process steps that don't have any zeros in masks together! # This is much faster start_idx = has_zeros[i] end_idx = has_zeros[i + 1] rnn_scores, hxs = self.rnn( x[start_idx:end_idx], hxs * masks[start_idx].view(1, -1, 1)) outputs.append(rnn_scores) # assert len(outputs) == T # x is a (T, N, -1) tensor x = torch.cat(outputs, dim=0) # flatten x = x.view(T * N, -1) hxs = hxs.squeeze(0) return x, hxs class MLPBase(NNBase): def __init__(self, num_inputs, recurrent=False, hidden_size=64): super(MLPBase, self).__init__(recurrent, num_inputs, hidden_size) if recurrent: num_inputs = hidden_size init_ = lambda m: init(m, nn.init.orthogonal_, lambda x: nn.init. constant_(x, 0), np.sqrt(2)) self.actor = nn.Sequential( init_(nn.Linear(num_inputs, hidden_size)), nn.Tanh(), init_(nn.Linear(hidden_size, hidden_size)), nn.Tanh()) self.critic = nn.Sequential( init_(nn.Linear(num_inputs, hidden_size)), nn.Tanh(), init_(nn.Linear(hidden_size, hidden_size)), nn.Tanh()) self.critic_linear = init_(nn.Linear(hidden_size, 1)) self.train() def forward(self, inputs, rnn_hxs, masks): x = inputs if self.is_recurrent: x, rnn_hxs = self._forward_gru(x, rnn_hxs, masks) hidden_critic = self.critic(x) hidden_actor = self.actor(x) return self.critic_linear(hidden_critic), hidden_actor, rnn_hxs
dcd-main
models/walker_models.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.distributions import Beta from .common import * from .distributions import FixedCategorical, Categorical from .popart import PopArt class CarRacingNetwork(DeviceAwareModule): def __init__(self, obs_shape, action_space, hidden_size=100, crop=False, use_popart=False): super(CarRacingNetwork, self).__init__() m = obs_shape[-2] # x input dim n = obs_shape[-1] # y input dim c = obs_shape[-3] # channel input dim self.action_low = np.array(action_space.low, dtype=np.float32) self.action_high = np.array(action_space.high, dtype=np.float32) self.action_dim = action_space.shape[0] self.crop = crop if self.crop: self.image_embed = nn.Sequential( # input shape (4, 84, 84) nn.Conv2d(c, 8, kernel_size=2, stride=2), nn.ReLU(), # activation nn.Conv2d(8, 16, kernel_size=2, stride=2), # (8, 42, 42) nn.ReLU(), # activation nn.Conv2d(16, 32, kernel_size=2, stride=2), # (16, 21, 21) nn.ReLU(), # activation nn.Conv2d(32, 64, kernel_size=2, stride=2), # (32, 10, 10) nn.ReLU(), # activation nn.Conv2d(64, 128, kernel_size=3, stride=1), # (64, 5, 5) nn.ReLU(), # activation nn.Conv2d(128, 256, kernel_size=3, stride=1), # (128, 3, 3) nn.ReLU(), # activation ) # output shape (256, 1, 1) else: self.image_embed = nn.Sequential( # input shape (4, 96, 96) nn.Conv2d(c, 8, kernel_size=4, stride=2), nn.ReLU(), # activation nn.Conv2d(8, 16, kernel_size=3, stride=2), # (8, 47, 47) nn.ReLU(), # activation nn.Conv2d(16, 32, kernel_size=3, stride=2), # (16, 23, 23) nn.ReLU(), # activation nn.Conv2d(32, 64, kernel_size=3, stride=2), # (32, 11, 11) nn.ReLU(), # activation nn.Conv2d(64, 128, kernel_size=3, stride=1), # (64, 5, 5) nn.ReLU(), # activation nn.Conv2d(128, 256, kernel_size=3, stride=1), # (128, 3, 3) nn.ReLU(), # activation ) # output shape (256, 1, 1) self.image_embedding_size = 256 # # Policy head self.actor_fc = nn.Sequential( init_relu_(nn.Linear(self.image_embedding_size, hidden_size)), nn.ReLU(), ) self.actor_alpha = nn.Sequential( init_relu_(nn.Linear(hidden_size, self.action_dim)), nn.Softplus(), ) self.actor_beta = nn.Sequential( init_relu_(nn.Linear(hidden_size, self.action_dim)), nn.Softplus(), ) # Value head if use_popart: value_out = init_(PopArt(hidden_size, 1)) self.popart = value_out else: value_out = init_(nn.Linear(hidden_size, 1)) self.popart = None self.critic = nn.Sequential( init_relu_(nn.Linear(self.image_embedding_size, hidden_size)), nn.ReLU(), value_out ) # apply_init_(self.modules(), gain=nn.init.calculate_gain('relu')) self.apply(self._weights_init) self.train() @staticmethod def _weights_init(m): if isinstance(m, nn.Conv2d): nn.init.xavier_uniform_(m.weight, gain=nn.init.calculate_gain('relu')) nn.init.constant_(m.bias, 0.1) @property def is_recurrent(self): return False @property def recurrent_hidden_state_size(self): # """Size of rnn_hx.""" return 1 def forward(self, inputs, rnn_hxs, masks): raise NotImplementedError def process_action(self, action): return action*(self.action_high - self.action_low) + self.action_low def act(self, inputs, rnn_hxs, masks, deterministic=False): image_embedding = self.image_embed(inputs).squeeze() actor_fc_embed = self.actor_fc(image_embedding) alpha = 1 + self.actor_alpha(actor_fc_embed) beta = 1 + self.actor_beta(actor_fc_embed) dist = Beta(alpha, beta) # action = alpha/(alpha + beta) action = dist.sample() # For continuous action spaces, we just return dirac delta over # sampled action tuple action_log_dist = dist.log_prob(action).sum(dim=-1).unsqueeze(-1) value = self.critic(image_embedding) if inputs.shape[0] == 1: action = action.unsqueeze(0) return value, action, action_log_dist, rnn_hxs def get_value(self, inputs, rnn_hxs, masks): image_embedding = self.image_embed(inputs).squeeze() return self.critic(image_embedding) def evaluate_actions(self, inputs, rnn_hxs, masks, action): image_embedding = self.image_embed(inputs).squeeze() actor_fc_embed = self.actor_fc(image_embedding) alpha = self.actor_alpha(actor_fc_embed) + 1 beta = self.actor_beta(actor_fc_embed) + 1 a_range = (torch.min(alpha).item(), torch.max(alpha).item()) b_range = (torch.min(beta).item(), torch.max(beta).item()) dist = Beta(alpha, beta) action_log_probs = dist.log_prob(action).sum(dim=-1).unsqueeze(-1) dist_entropy = dist.entropy().mean() value = self.critic(image_embedding) return value, action_log_probs, dist_entropy, rnn_hxs class CarRacingBezierAdversaryEnvNetwork(DeviceAwareModule): def __init__(self, observation_space, action_space, scalar_fc=8, use_categorical=False, use_skip=False, choose_start_pos=False, use_popart=False, set_start_pos=False, use_goal=False, num_goal_bins=1): super().__init__() self.sketch_dim = observation_space['control_points'].shape self.random_z_dim = observation_space['random_z'].shape[0] self.total_time_steps = observation_space['time_step'].high[0] self.time_step_dim = self.total_time_steps + 1 # Handles terminal time step if use_goal: self.goal_bin_dim = observation_space['goal_bin'].high[0] self.scalar_fc = scalar_fc self.set_start_pos = set_start_pos self.use_categorical = use_categorical self.use_skip = use_skip self.use_goal = use_goal self.num_goal_bins = num_goal_bins self.random = False self.action_space = action_space self.n_control_points = self.time_step_dim if self.use_goal: self.n_control_points -= 1 if self.set_start_pos: self.n_control_points -= 1 if use_categorical: self.action_dim = np.prod(self.sketch_dim) + 1 # +1 for skip action else: self.action_dim = action_space.shape[0] if self.use_goal: self.action_dim -= 1 # Sinc we don't learn Beta for goal prefix self.sketch_embedding = nn.Sequential( Conv2d_tf(1, 8, kernel_size=2, stride=1, padding='valid'), # (8, 9, 9) Conv2d_tf(8, 16, kernel_size=2, stride=1, padding='valid'), # (16, 8, 8) nn.Flatten(), nn.ReLU() # output is 1024 dimensions ) self.sketch_embed_dim = 1024 # Time step embedding self.ts_embedding = nn.Linear(self.time_step_dim, scalar_fc) self.base_output_size = self.sketch_embed_dim + \ self.scalar_fc + self.random_z_dim if use_goal: self.goal_bin_embedding = nn.Linear(num_goal_bins + 1, self.scalar_fc) self.base_output_size += self.scalar_fc # Value head self.critic = init_(nn.Linear(self.base_output_size, 1)) # Value head if use_popart: self.critic = init_(PopArt(self.base_output_size, 1)) self.popart = self.critic else: self.critic = init_(nn.Linear(self.base_output_size, 1)) self.popart = None # Policy heads if self.use_categorical: self.actor = nn.Sequential( init_(nn.Linear(self.base_output_size, 256)), nn.ReLU(), init_(nn.Linear(256, self.action_dim)), ) else: self.fc_alpha = nn.Sequential( init_relu_(nn.Linear(self.base_output_size, self.action_dim)), nn.Softplus() ) self.fc_beta = nn.Sequential( init_relu_(nn.Linear(self.base_output_size, self.action_dim)), nn.Softplus() ) # Create a policy head to select a goal bin if use_goal: self.goal_head = nn.Sequential( init_(nn.Linear(self.base_output_size, 256)), nn.ReLU(), init_(nn.Linear(256, num_goal_bins)), ) apply_init_(self.modules()) self.train() @property def is_recurrent(self): return False @property def recurrent_hidden_state_size(self): # """Size of rnn_hx.""" return 1 def forward(self, inputs, rnn_hxs, masks): raise NotImplementedError def _forward_base(self, inputs, rnn_hxs, masks): sketch = inputs['control_points'] time_step = inputs['time_step'] in_z = inputs['random_z'] in_sketch = self.sketch_embedding(sketch) in_time_step = one_hot(self.time_step_dim, time_step).to(self.device) in_time_step = self.ts_embedding(in_time_step) if self.use_goal: goal_bin = inputs['goal_bin'] in_goal_bin = one_hot(self.goal_bin_dim, goal_bin).to(self.device) in_goal_bin = self.goal_bin_embedding(in_goal_bin) in_embedded = torch.cat((in_sketch, in_time_step, in_z, in_goal_bin), dim=-1) else: in_embedded = torch.cat((in_sketch, in_time_step, in_z), dim=-1) return in_embedded def process_action(self, action): if self.use_goal: if action[0][0]: # Check if it's a goal step action_ = action[:,1] return action_ else: action = action[:,1:] if self.use_categorical: x = ((action - 1.) % self.sketch_dim[-1])/self.sketch_dim[-1] y = ((action - 1.) // self.sketch_dim[-2])/self.sketch_dim[-2] skip_action = (action == 0).float() action_ = torch.cat((x,y,skip_action), dim=-1) else: xy_action = action[:,:-1] skip_logits = torch.log(action[:,-1] + 1e-5) # ensure > 0 skip_action = F.gumbel_softmax(skip_logits, tau=1, hard=True).unsqueeze(-1) action_ = torch.cat((xy_action, skip_action), dim=-1) return action_ def _sketch_to_mask(self, sketch): mask = torch.cat((torch.zeros(sketch.shape[0],1, dtype=torch.bool, device=self.device), (sketch.flatten(1).bool())), dim=-1) return mask def _is_goal_step(self, t): if self.use_goal: return t == self.total_time_steps - 1 # since time_step is +1 total time steps else: return False def _is_start_pos_step(self, t): if self.set_start_pos: return t == self.n_control_points else: return False def act_random(self, inputs, rnn_hxs): time_step = inputs['time_step'][0] is_goal_step = self._is_goal_step(time_step) B = inputs['time_step'].shape[0] values = torch.zeros((B,1), device=self.device) action_log_dist = torch.ones((B,1), device=self.device) action_shape = self.action_space.shape if self.use_goal: action_shape = (action_shape[0] - 1,) # import pdb; pdb.set_trace() if is_goal_step: # random goal bin action = torch.zeros((B,1), dtype=torch.int64, device=self.device) for b in range(B): action[b] = np.random.randint(self.num_goal_bins) else: action = torch.zeros(B, *action_shape, dtype=torch.int64, device=self.device) if self.use_categorical: action_high = self.action_space.high[1] if self.use_goal \ else self.action_space.high[0] for b in range(B): action[b] = np.random.randint(1, action_high) # avoid skip action 0 else: for b in range(B): action[b] = np.random.rand(self.action_shape) if self.use_goal: if is_goal_step: prefix = torch.ones_like(action[:,0].unsqueeze(-1)) else: prefix = torch.zeros_like(action[:,0].unsqueeze(-1)) action = torch.cat((prefix, action), dim=-1) return values, action, action_log_dist, rnn_hxs def act(self, inputs, rnn_hxs, masks, deterministic=False): if self.random: return self.act_random(inputs, rnn_hxs) in_embedded = self._forward_base(inputs, rnn_hxs, masks) value = self.critic(in_embedded) time_step = inputs['time_step'][0] is_goal_step = self._is_goal_step(time_step) if is_goal_step: # generate goal bin action logits = self.goal_head(in_embedded) dist = FixedCategorical(logits=logits) action = dist.sample() action_log_probs = dist.log_probs(action) else: if self.use_categorical: logits = self.actor(in_embedded) mask = self._sketch_to_mask(inputs['control_points']) # Conditionally mask out skip action if self.use_skip: if self._is_start_pos_step(time_step): mask[:,0] = True # Can't skip setting start pos if necessary else: mask[mask.sum(-1) < 3,0] = True else: mask[:,0] = True logits[mask] = torch.finfo(logits.dtype).min dist = FixedCategorical(logits=logits) action = dist.sample() action_log_probs = dist.log_probs(action) else: # All B x 3 alpha = 1 + self.fc_alpha(in_embedded) beta = 1 + self.fc_beta(in_embedded) dist = Beta(alpha, beta) action = dist.sample() action_log_probs = dist.log_prob(action).sum(dim=1).unsqueeze(1) # Hack: Just set action log dist to action log probs, since it's not used. action_log_dist = action_log_probs # Append [0] or [1] prefix to actions to signal goal step if self.use_goal: if is_goal_step: prefix = torch.ones_like(action[:,0].unsqueeze(-1)) else: prefix = torch.zeros_like(action[:,0].unsqueeze(-1)) action = torch.cat((prefix, action), dim=-1) return value, action, action_log_dist, rnn_hxs def get_value(self, inputs, rnn_hxs, masks): in_embedded = self._forward_base(inputs, rnn_hxs, masks) return self.critic(in_embedded) def evaluate_actions(self, inputs, rnn_hxs, masks, action): B = len(inputs['time_step']) in_embedded = self._forward_base(inputs, rnn_hxs, masks) value = self.critic(in_embedded) time_steps = inputs['time_step'] mask = self._sketch_to_mask(inputs['control_points']) if self.use_goal: action = action[:,1:] # Need to mask out both selectively goal_steps = self._is_goal_step(time_steps) if self.use_goal: goal_steps = goal_steps.flatten() has_goal_steps = goal_steps.any() has_nongoal_steps = (~goal_steps).any() else: has_goal_steps = False has_nongoal_steps = True if has_goal_steps: # Get logits for goal actions goal_in_embed = in_embedded[goal_steps] action_in_embed = in_embedded[~goal_steps] mask = mask[~goal_steps] goal_actions = action[goal_steps][0] goal_logits = self.goal_head(goal_in_embed) action = action[~goal_steps] goal_dist = FixedCategorical(logits=goal_logits) goal_action_log_probs = goal_dist.log_probs(goal_actions) else: action_in_embed = in_embedded if has_nongoal_steps: if self.use_categorical: logits = self.actor(action_in_embed) if self.use_skip: start_pos_steps = self._is_start_pos_step(time_steps[~goal_steps]) mask[mask.sum(-1) < 3,0] = True logits[start_pos_steps] = torch.finfo(logits.dtype).min else: mask[:,0] = True logits[mask] = torch.finfo(logits.dtype).min dist = FixedCategorical(logits=logits) action_log_probs = dist.log_probs(action) else: # All B x 3 alpha = 1 + self.fc_alpha(action_in_embed) beta = 1 + self.fc_beta(action_in_embed) dist = Beta(alpha, beta) action_log_probs = dist.log_prob(action).sum(dim=1).unsqueeze(1) if self.use_goal: combined_log_probs = torch.zeros((B,1), dtype=torch.float, device=self.device) mean_entropy = 0 if goal_steps.any(): combined_log_probs[goal_steps] = goal_action_log_probs mean_entropy += goal_dist.entropy().sum() if (~goal_steps).any(): combined_log_probs[~goal_steps] = action_log_probs mean_entropy += dist.entropy().sum() action_log_probs = combined_log_probs dist_entropy = mean_entropy/B else: dist_entropy = dist.entropy().mean() return value, action_log_probs, dist_entropy, rnn_hxs
dcd-main
models/car_racing_models.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from .distributions import Categorical from .common import * class MultigridGlobalCriticNetwork(DeviceAwareModule): """ Actor-Critic module """ def __init__(self, observation_space, action_space, actor_fc_layers=(32, 32), value_fc_layers=(32, 32), conv_filters=16, conv_kernel_size=3, scalar_fc=5, scalar_dim=4, random_z_dim=0, xy_dim=0, recurrent_arch='lstm', recurrent_hidden_size=256, use_global_policy=False): super(MultigridGlobalCriticNetwork, self).__init__() num_actions = action_space.n self.use_global_policy = use_global_policy # Image embedding obs_shape = observation_space['image'].shape m = obs_shape[-2] # x input dim n = obs_shape[-1] # y input dim c = obs_shape[-3] # channel input dim # Full obs embedding full_obs_shape = observation_space['full_obs'].shape global_m = full_obs_shape[-2] global_n = full_obs_shape[-1] global_c = full_obs_shape[-3] self.global_image_conv = nn.Sequential( Conv2d_tf(3, 8, kernel_size=2, stride=2, padding='VALID'), nn.ReLU(), Conv2d_tf(8, 16, kernel_size=3, stride=1, padding='VALID'), nn.Flatten(), ) self.global_image_embedding_size = (((((global_n-2)//2)+1)-3)+1)*(((((global_n-2)//2)+1)-3)+1)*16 if self.use_global_policy: self.image_conv = self.global_image_conv self.image_embedding_size = self.global_image_embedding_size self.preprocessed_input_size = self.image_embedding_size else: self.image_conv = nn.Sequential( Conv2d_tf(3, conv_filters, kernel_size=conv_kernel_size, stride=1, padding='VALID'), nn.Flatten(), nn.ReLU() ) self.image_embedding_size = (n-conv_kernel_size+1)*(m-conv_kernel_size+1)*conv_filters self.preprocessed_input_size = self.image_embedding_size # x, y positional embeddings self.xy_embed = None self.xy_dim = xy_dim if xy_dim: self.preprocessed_input_size += 2*xy_dim # Scalar embedding self.scalar_embed = None self.scalar_dim = scalar_dim if scalar_dim: self.scalar_embed = nn.Linear(scalar_dim, scalar_fc) self.preprocessed_input_size += scalar_fc self.preprocessed_input_size += random_z_dim self.base_output_size = self.preprocessed_input_size # RNN (only for policy) self.rnn = None if recurrent_arch: self.rnn = RNN( input_size=self.preprocessed_input_size, hidden_size=recurrent_hidden_size, arch=recurrent_arch) self.base_output_size = recurrent_hidden_size # Policy head self.actor = nn.Sequential( make_fc_layers_with_hidden_sizes(actor_fc_layers, input_size=self.base_output_size), Categorical(actor_fc_layers[-1], num_actions) ) # Value head if self.use_global_policy: self.global_base_output_size = self.base_output_size else: self.global_base_output_size = self.global_image_embedding_size + self.base_output_size self.critic = nn.Sequential( make_fc_layers_with_hidden_sizes(value_fc_layers, input_size=self.global_base_output_size), init_(nn.Linear(value_fc_layers[-1], 1)) ) apply_init_(self.modules()) self.train() @property def is_recurrent(self): return self.rnn is not None @property def recurrent_hidden_state_size(self): # """Size of rnn_hx.""" if self.rnn is not None: return self.rnn.recurrent_hidden_state_size else: return 0 def forward(self, inputs, rnn_hxs, masks): raise NotImplementedError def _forward_base(self, inputs, rnn_hxs, masks): # Unpack input key values if self.use_global_policy: image = inputs.get('full_obs', None) else: image = inputs.get('image') scalar = inputs.get('direction') if scalar is None: scalar = inputs.get('time_step') x = inputs.get('x') y = inputs.get('y') in_z = inputs.get('random_z', torch.tensor([], device=self.device)) in_image = self.image_conv(image) if self.xy_embed: x = one_hot(self.xy_dim, x, device=self.device) y = one_hot(self.xy_dim, y, device=self.device) in_x = self.xy_embed(x) in_y = self.xy_embed(y) else: in_x = torch.tensor([], device=self.device) in_y = torch.tensor([], device=self.device) if self.scalar_embed: in_scalar = one_hot(self.scalar_dim, scalar).to(self.device) in_scalar = self.scalar_embed(in_scalar) else: in_scalar = torch.tensor([], device=self.device) in_embedded = torch.cat((in_image, in_x, in_y, in_scalar, in_z), dim=-1) if self.rnn is not None: core_features, rnn_hxs = self.rnn(in_embedded, rnn_hxs, masks) else: core_features = in_embedded global_image = inputs.get('full_obs', None) if global_image is not None: if self.use_global_policy: global_core_features = core_features else: in_global_image = self.global_image_conv(global_image) global_core_features = torch.cat((core_features, in_global_image), dim=-1) else: global_core_features = None return core_features, rnn_hxs, global_core_features def act(self, inputs, rnn_hxs, masks, deterministic=False): core_features, rnn_hxs, global_core_features = self._forward_base(inputs, rnn_hxs, masks) dist = self.actor(core_features) if global_core_features is not None: value = self.critic(global_core_features) else: value = 0 if deterministic: action = dist.mode() else: action = dist.sample() action_log_dist = dist.logits return value, action, action_log_dist, rnn_hxs def get_value(self, inputs, rnn_hxs, masks): core_features, rnn_hxs, global_core_features = self._forward_base(inputs, rnn_hxs, masks) if global_core_features is not None: value = self.critic(global_core_features) else: value = 0 return value def evaluate_actions(self, inputs, rnn_hxs, masks, action): core_features, rnn_hxs, global_core_features = self._forward_base(inputs, rnn_hxs, masks) dist = self.actor(core_features) if global_core_features is not None: value = self.critic(global_core_features) else: value = 0 action_log_probs = dist.log_probs(action) dist_entropy = dist.entropy().mean() return value, action_log_probs, dist_entropy, rnn_hxs
dcd-main
models/multigrid_global_critic_models.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from .ppo import PPO from .storage import RolloutStorage from .agent import ACAgent
dcd-main
algos/__init__.py
# Copyright (c) 2017 Ilya Kostrikov # # Licensed under the MIT License; # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/MIT # # This file is a heavily modified version of: # https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail/blob/master/a2c_ppo_acktr/storage.py from collections import defaultdict import numpy as np import torch import gym from torch.utils.data.sampler import \ BatchSampler, SubsetRandomSampler, SequentialSampler from lempel_ziv_complexity import lempel_ziv_complexity def to_tensor(a): if isinstance(a, dict): for k in a.keys(): if isinstance(a[k], np.ndarray): a[k] = torch.from_numpy(a[k]).float() elif isinstance(a, np.ndarray): a = torch.from_numpy(a).float() elif isinstance(a, list): a = torch.tensor(a, dtype=torch.float) return a def _flatten_helper(T, N, _tensor): if isinstance(_tensor, dict): return {k: _tensor[k].view(T * N, *_tensor[k].size()[2:]) for k in _tensor.keys()} else: return _tensor.view(T * N, *_tensor.size()[2:]) class RolloutStorage(object): def __init__(self, model, num_steps, num_processes, observation_space, action_space, recurrent_hidden_state_size, recurrent_arch='rnn', use_proper_time_limits=False, use_popart=False, device='cpu'): self.device = device self.model = model self.num_processes = num_processes self.recurrent_arch = recurrent_arch self.recurrent_hidden_state_size = recurrent_hidden_state_size self.is_lstm = recurrent_arch == 'lstm' recurrent_hidden_state_buffer_size = 2*recurrent_hidden_state_size if self.is_lstm \ else recurrent_hidden_state_size self.use_proper_time_limits = use_proper_time_limits self.use_popart = use_popart self.truncated_obs = None if isinstance(observation_space, dict): self.is_dict_obs = True self.obs = {k:torch.zeros(num_steps + 1, num_processes, *(observation_space[k]).shape) \ for k,obs in observation_space.items()} if self.use_proper_time_limits: self.truncated_obs = {k:torch.zeros(num_steps + 1, num_processes, *(observation_space[k]).shape) \ for k,obs in observation_space.items()} else: self.is_dict_obs = False self.obs = torch.zeros(num_steps + 1, num_processes, *observation_space.shape) if self.use_proper_time_limits: self.truncated_obs = torch.zeros_like(self.obs) self.recurrent_hidden_states = torch.zeros( num_steps + 1, num_processes, recurrent_hidden_state_buffer_size) self.rewards = torch.zeros(num_steps, num_processes, 1) self.value_preds = torch.zeros(num_steps + 1, num_processes, 1) self.returns = torch.zeros(num_steps + 1, num_processes, 1) self.action_log_probs = torch.zeros(num_steps, num_processes, 1) if action_space.__class__.__name__ == 'Discrete': action_shape = 1 self.action_log_dist = torch.zeros(num_steps, num_processes, action_space.n) else: # Hack it to just store action prob for sampled action if continuous action_shape = action_space.shape[0] self.action_log_dist = torch.zeros(num_steps, num_processes, 1) self.actions = torch.zeros(num_steps, num_processes, action_shape) if action_space.__class__.__name__ == 'Discrete': self.actions = self.actions.long() self.masks = torch.ones(num_steps + 1, num_processes, 1) # Masks that indicate whether it's a true terminal state # or time limit end state self.bad_masks = torch.ones(num_steps + 1, num_processes, 1) # Keep track of cliffhanger timesteps self.cliffhanger_masks = torch.ones(num_steps + 1, num_processes, 1) self.truncated_value_preds = None if self.use_proper_time_limits: self.truncated_value_preds = torch.zeros_like(self.value_preds) self.denorm_value_preds = None self.level_seeds = torch.zeros(num_steps, num_processes, 1, dtype=torch.int) self.num_steps = num_steps self.step = 0 def to(self, device): self.device = device if self.is_dict_obs: for k, obs in self.obs.items(): self.obs[k] = obs.to(device) else: self.obs = self.obs.to(device) self.recurrent_hidden_states = self.recurrent_hidden_states.to(device) self.rewards = self.rewards.to(device) self.value_preds = self.value_preds.to(device) self.returns = self.returns.to(device) self.action_log_probs = self.action_log_probs.to(device) self.action_log_dist = self.action_log_dist.to(device) self.actions = self.actions.to(device) self.masks = self.masks.to(device) self.bad_masks = self.bad_masks.to(device) self.cliffhanger_masks = self.cliffhanger_masks.to(device) self.level_seeds = self.level_seeds.to(device) if self.use_proper_time_limits: if self.is_dict_obs: for k, obs in self.truncated_obs.items(): self.truncated_obs[k] = obs.to(device) else: self.truncated_obs = self.truncated_obs.to(device) self.truncated_value_preds = self.truncated_value_preds.to(device) def get_obs(self, idx): if self.is_dict_obs: return {k: self.obs[k][idx] for k in self.obs.keys()} else: return self.obs[idx] def copy_obs_to_index(self, obs, index): if self.is_dict_obs: [self.obs[k][index].copy_(obs[k]) for k in self.obs.keys()] else: self.obs[index].copy_(obs) def insert(self, obs, recurrent_hidden_states, actions, action_log_probs, action_log_dist, value_preds, rewards, masks, bad_masks, level_seeds=None, cliffhanger_masks=None): if len(rewards.shape) == 3: rewards = rewards.squeeze(2) if self.is_dict_obs: [self.obs[k][self.step + 1].copy_(obs[k]) for k in self.obs.keys()] else: self.obs[self.step + 1].copy_(obs) if self.is_lstm: self.recurrent_hidden_states[self.step +1,:, :self.recurrent_hidden_state_size].copy_(recurrent_hidden_states[0]) self.recurrent_hidden_states[self.step +1,:, self.recurrent_hidden_state_size:].copy_(recurrent_hidden_states[1]) else: self.recurrent_hidden_states[self.step + 1].copy_(recurrent_hidden_states) self.actions[self.step].copy_(actions) self.action_log_probs[self.step].copy_(action_log_probs) self.action_log_dist[self.step].copy_(action_log_dist) self.value_preds[self.step].copy_(value_preds) self.rewards[self.step].copy_(rewards) self.masks[self.step + 1].copy_(masks) self.bad_masks[self.step + 1].copy_(bad_masks) if cliffhanger_masks is not None: self.cliffhanger_masks[self.step + 1].copy_(cliffhanger_masks) if level_seeds is not None: self.level_seeds[self.step].copy_(level_seeds) self.step = (self.step + 1) % self.num_steps def insert_truncated_obs(self, obs, index): if self.is_dict_obs: [self.truncated_obs[k][self.step + 1][index].copy_( to_tensor(obs[k])) for k in self.truncated_obs.keys()] else: self.truncated_obs[self.step + 1][index].copy_(to_tensor(obs)) def after_update(self): if self.is_dict_obs: [self.obs[k][0].copy_(self.obs[k][-1]) for k in self.obs.keys()] else: self.obs[0].copy_(self.obs[-1]) self.recurrent_hidden_states[0].copy_(self.recurrent_hidden_states[-1]) self.masks[0].copy_(self.masks[-1]) self.bad_masks[0].copy_(self.bad_masks[-1]) self.cliffhanger_masks[0].copy_(self.cliffhanger_masks[-1]) def replace_final_return(self, returns): self.rewards[-1] = returns def _compute_truncated_value_preds(self): self.truncated_value_preds.copy_(self.value_preds) with torch.no_grad(): # For each process, forward truncated obs for i in range(self.num_processes): steps = (self.bad_masks[:,i,0] == 0).nonzero().squeeze() if len(steps.shape) == 0 or steps.shape[0] == 0: continue if self.is_dict_obs: obs = {k:self.truncated_obs[k][steps.squeeze(), i, :] for k in self.truncated_obs.keys()} else: obs = self.truncated_obs[steps.squeeze(),i,:] rnn_hxs = self.recurrent_hidden_states[steps,i,:] if self.is_lstm: rnn_hxs = self._split_batched_lstm_recurrent_hidden_states(rnn_hxs) masks = torch.ones((len(steps), 1), device=self.device) value_preds = self.model.get_value(obs, rnn_hxs, masks) self.truncated_value_preds[steps,i,:] = value_preds return self.truncated_value_preds def compute_gae_returns(self, returns_buffer, next_value, gamma, gae_lambda): self.value_preds[-1] = next_value gae = 0 value_preds = self.value_preds if self.use_proper_time_limits: # Get truncated value preds self._compute_truncated_value_preds() value_preds = self.truncated_value_preds if self.use_popart: self.denorm_value_preds = self.model.popart.denormalize(value_preds) # denormalize all value predictions value_preds = self.denorm_value_preds for step in reversed(range(self.rewards.size(0))): delta = self.rewards[step] + \ gamma*value_preds[step + 1]*self.masks[step + 1] - value_preds[step] gae = delta + gamma * gae_lambda * self.masks[step + 1] * gae self.returns[step] = gae + value_preds[step] def compute_discounted_returns(self, returns_buffer, next_value, gamma): self.value_preds[-1] = next_value value_preds = self.value_preds if self.use_proper_time_limits: self._compute_truncated_value_preds() value_preds = self.truncated_value_preds if self.use_popart: self.denorm_value_preds = self.model.popart.denormalize(value_preds) # denormalize all value predictions self.returns[-1] = value_preds[-1] for step in reversed(range(self.rewards.size(0))): returns_buffer[step] = returns_buffer[step + 1] * \ gamma * self.masks[step + 1] + self.rewards[step] def compute_returns(self, next_value, use_gae, gamma, gae_lambda): if use_gae: self.compute_gae_returns( self.returns, next_value, gamma, gae_lambda) else: self.compute_discounted_returns( self.returns, next_value, gamma) def get_batched_value_loss(self, signed=False, positive_only=False, power=1, clipped=True, batched=True): """ Assumes buffer contains pre-computed returns via compute_returns. Computes the mean episodic value loss per batch. """ # If agent uses popart, then value_preds are normalized, while # returns are not. if self.use_popart: value_preds = self.denorm_value_preds[:-1] else: value_preds = self.value_preds[:-1] returns = self.returns[:-1] if signed: td = returns - value_preds elif positive_only: td = (returns - value_preds).clamp(0) else: td = (returns - value_preds).abs() if power > 1: td = td**power batch_td = td.mean(0) # B x 1 if clipped: batch_td = torch.clamp(batch_td, -1, 1) if batched: return batch_td else: return batch_td.mean().item() def get_batched_action_complexity(self): """ Returns per-batch LZ complexity scores of the action trajectories in the buffer """ num_processes = self.actions.shape[1] batched_complexity = torch.zeros(num_processes, 1, dtype=torch.float) for b in range(num_processes): num_traj = 0 avg_complexity = 0 done_steps = [0] + (self.masks[:,b,0] == 0).nonzero().flatten().tolist() for i, t in enumerate(done_steps[:-1]): if len(done_steps) > 1: next_done = done_steps[i+1] else: next_done = self.actions.shape[0] action_str = ' '.join([str(a.item()) for a in self.actions[t:next_done,b,0]]) avg_complexity += lempel_ziv_complexity(action_str) num_traj += 1 batched_complexity[b] = avg_complexity/num_traj return batched_complexity def get_action_complexity(self): """ Returns mean LZ complexity scores of the action trajectories in the buffer """ num_processes = self.actions.shape[1] avg_complexity = 0 num_traj = 0 for b in range(num_processes): done_steps = [0] + (self.masks[:,b,0] == 0).nonzero().flatten().tolist() for i, t in enumerate(done_steps[:-1]): if len(done_steps) > 1: next_done = done_steps[i+1] else: next_done = self.actions.shape[0] action_str = ' '.join([str(a.item()) for a in self.actions[t:next_done,b,0]]) avg_complexity += lempel_ziv_complexity(action_str) num_traj += 1 return avg_complexity/num_traj def get_action_traj(self, as_string=False): if as_string: num_processes = self.actions.shape[1] traj = [] for b in range(num_processes): action_str = ' '.join([str(a.item()) for a in self.actions[:,b,0]]) traj.append(action_str) return traj else: return self.actions.squeeze(-1) def _split_batched_lstm_recurrent_hidden_states(self, hxs): return (hxs[:, :self.recurrent_hidden_state_size], hxs[:, self.recurrent_hidden_state_size:]) def get_recurrent_hidden_state(self, step): if self.is_lstm: return self._split_batched_lstm_recurrent_hidden_states( self.recurrent_hidden_states[step,:].squeeze(0)) return self.recurrent_hidden_states[step] def feed_forward_generator(self, advantages, num_mini_batch=None, mini_batch_size=None): num_steps, num_processes = self.rewards.size()[0:2] batch_size = num_processes * num_steps if mini_batch_size is None: assert batch_size >= num_mini_batch, ( "PPO requires the number of processes ({}) " "* number of steps ({}) = {} " "to be greater than or equal to the number of PPO mini batches ({})." "".format(num_processes, num_steps, num_processes * num_steps, num_mini_batch)) mini_batch_size = batch_size // num_mini_batch sampler = BatchSampler( SubsetRandomSampler(range(batch_size)), mini_batch_size, drop_last=False) for indices in sampler: if self.is_dict_obs: obs_batch = {k: self.obs[k][:-1].view(-1, *self.obs[k].size()[2:])[indices] for k in self.obs.keys()} else: obs_batch = self.obs[:-1].view(-1, *self.obs.size()[2:])[indices] recurrent_hidden_states_batch = self.recurrent_hidden_states[:-1].view( -1, self.recurrent_hidden_states.size(-1))[indices] actions_batch = self.actions.view(-1, self.actions.size(-1))[indices] value_preds_batch = self.value_preds[:-1].view(-1, 1)[indices] return_batch = self.returns[:-1].view(-1, 1)[indices] masks_batch = self.masks[:-1].view(-1, 1)[indices] old_action_log_probs_batch = self.action_log_probs.view(-1, 1)[indices] if advantages is None: adv_targ = None else: adv_targ = advantages.view(-1, 1)[indices] if self.is_lstm: # Split into (hxs, cxs) for LSTM recurrent_hidden_states_batch = \ self._split_batched_lstm_recurrent_hidden_states(recurrent_hidden_states_batch) yield obs_batch, recurrent_hidden_states_batch, actions_batch, \ value_preds_batch, return_batch, masks_batch, old_action_log_probs_batch, adv_targ def recurrent_generator(self, advantages, num_mini_batch): num_processes = self.rewards.size(1) assert num_processes >= num_mini_batch, ( "PPO requires the number of processes ({}) " "to be greater than or equal to the number of " "PPO mini batches ({}).".format(num_processes, num_mini_batch)) num_envs_per_batch = num_processes // num_mini_batch perm = torch.randperm(num_processes) for start_ind in range(0, num_processes, num_envs_per_batch): if self.is_dict_obs: obs_batch = defaultdict(list) else: obs_batch = [] recurrent_hidden_states_batch = [] actions_batch = [] value_preds_batch = [] return_batch = [] masks_batch = [] old_action_log_probs_batch = [] adv_targ = [] for offset in range(num_envs_per_batch): ind = perm[start_ind + offset] if self.is_dict_obs: [obs_batch[k].append(self.obs[k][:-1,ind]) for k in self.obs.keys()] else: obs_batch.append(self.obs[:-1, ind]) recurrent_hidden_states_batch.append( self.recurrent_hidden_states[0:1, ind]) actions_batch.append(self.actions[:, ind]) value_preds_batch.append(self.value_preds[:-1, ind]) return_batch.append(self.returns[:-1, ind]) masks_batch.append(self.masks[:-1, ind]) old_action_log_probs_batch.append( self.action_log_probs[:, ind]) adv_targ.append(advantages[:, ind]) T, N = self.num_steps, num_envs_per_batch # These are all tensors of size (T, N, -1) if self.is_dict_obs: for k in obs_batch.keys(): obs_batch[k] = torch.stack(obs_batch[k],1) else: obs_batch = torch.stack(obs_batch, 1) actions_batch = torch.stack(actions_batch, 1) value_preds_batch = torch.stack(value_preds_batch, 1) return_batch = torch.stack(return_batch, 1) masks_batch = torch.stack(masks_batch, 1) old_action_log_probs_batch = torch.stack( old_action_log_probs_batch, 1) adv_targ = torch.stack(adv_targ, 1) # States is just a (N, -1) tensor recurrent_hidden_states_batch = torch.stack( recurrent_hidden_states_batch, 1).view(N, -1) # Flatten the (T, N, ...) tensors to (T * N, ...) obs_batch = _flatten_helper(T, N, obs_batch) actions_batch = _flatten_helper(T, N, actions_batch) value_preds_batch = _flatten_helper(T, N, value_preds_batch) return_batch = _flatten_helper(T, N, return_batch) masks_batch = _flatten_helper(T, N, masks_batch) old_action_log_probs_batch = _flatten_helper(T, N, \ old_action_log_probs_batch) adv_targ = _flatten_helper(T, N, adv_targ) if self.is_lstm: # Split into (hxs, cxs) for LSTM recurrent_hidden_states_batch = \ self._split_batched_lstm_recurrent_hidden_states(recurrent_hidden_states_batch) yield obs_batch, recurrent_hidden_states_batch, actions_batch, \ value_preds_batch, return_batch, masks_batch, old_action_log_probs_batch, adv_targ
dcd-main
algos/storage.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. class ACAgent(object): def __init__(self, algo, storage): self.algo = algo self.storage = storage def update(self, discard_grad=False): info = self.algo.update(self.storage, discard_grad=discard_grad) self.storage.after_update() return info def to(self, device): self.algo.actor_critic.to(device) self.storage.to(device) return self def train(self): self.algo.actor_critic.train() def eval(self): self.algo.actor_critic.eval() def random(self): self.algo.actor_critic.random = True def process_action(self, action): if hasattr(self.algo.actor_critic, 'process_action'): return self.algo.actor_critic.process_action(action) else: return action def act(self, *args, **kwargs): return self.algo.actor_critic.act(*args, **kwargs) def get_value(self, *args, **kwargs): return self.algo.actor_critic.get_value(*args, **kwargs) def insert(self, *args, **kwargs): return self.storage.insert(*args, **kwargs) @property def is_recurrent(self): return self.algo.actor_critic.is_recurrent
dcd-main
algos/agent.py
# Copyright (c) 2017 Ilya Kostrikov # # Licensed under the MIT License; # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/MIT # # This file is a modified version of: # https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail/blob/master/a2c_ppo_acktr/algo/ppo.py import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import random class PPO(): """ Vanilla PPO """ def __init__(self, actor_critic, clip_param, ppo_epoch, num_mini_batch, value_loss_coef, entropy_coef, lr=None, eps=None, max_grad_norm=None, clip_value_loss=True, log_grad_norm=False): self.actor_critic = actor_critic self.clip_param = clip_param self.ppo_epoch = ppo_epoch self.num_mini_batch = num_mini_batch self.clip_value_loss = clip_value_loss self.value_loss_coef = value_loss_coef self.entropy_coef = entropy_coef self.max_grad_norm = max_grad_norm self.optimizer = optim.Adam(actor_critic.parameters(), lr=lr, eps=eps) self.log_grad_norm = log_grad_norm def _grad_norm(self): total_norm = 0 for p in self.actor_critic.parameters(): if p.grad is not None: param_norm = p.grad.data.norm(2) total_norm += param_norm.item() ** 2 total_norm = total_norm ** (1. / 2) return total_norm def update(self, rollouts, discard_grad=False): if rollouts.use_popart: value_preds = rollouts.denorm_value_preds else: value_preds = rollouts.value_preds advantages = rollouts.returns[:-1] - value_preds[:-1] advantages = (advantages - advantages.mean()) / ( advantages.std() + 1e-5) value_loss_epoch = 0 action_loss_epoch = 0 dist_entropy_epoch = 0 if self.log_grad_norm: grad_norms = [] for e in range(self.ppo_epoch): if self.actor_critic.is_recurrent: data_generator = rollouts.recurrent_generator( advantages, self.num_mini_batch) else: data_generator = rollouts.feed_forward_generator( advantages, self.num_mini_batch) for sample in data_generator: obs_batch, recurrent_hidden_states_batch, actions_batch, \ value_preds_batch, return_batch, masks_batch, old_action_log_probs_batch, \ adv_targ = sample values, action_log_probs, dist_entropy, _ = self.actor_critic.evaluate_actions( obs_batch, recurrent_hidden_states_batch, masks_batch, actions_batch) ratio = torch.exp(action_log_probs - old_action_log_probs_batch) surr1 = ratio * adv_targ surr2 = torch.clamp(ratio, 1.0 - self.clip_param, 1.0 + self.clip_param) * adv_targ action_loss = -torch.min(surr1, surr2).mean() if rollouts.use_popart: self.actor_critic.popart.update(return_batch) return_batch = self.actor_critic.popart.normalize(return_batch) if self.clip_value_loss: value_pred_clipped = value_preds_batch + \ (values - value_preds_batch).clamp(-self.clip_param, self.clip_param) value_losses = (values - return_batch).pow(2) value_losses_clipped = ( value_pred_clipped - return_batch).pow(2) value_loss = 0.5 * torch.max(value_losses, value_losses_clipped).mean() else: value_loss = F.smooth_l1_loss(values, return_batch) self.optimizer.zero_grad() loss = (value_loss*self.value_loss_coef + action_loss - dist_entropy*self.entropy_coef) loss.backward() if self.log_grad_norm: grad_norms.append(self._grad_norm()) if self.max_grad_norm is not None and self.max_grad_norm > 0: nn.utils.clip_grad_norm_(self.actor_critic.parameters(), self.max_grad_norm) if not discard_grad: self.optimizer.step() value_loss_epoch += value_loss.item() action_loss_epoch += action_loss.item() dist_entropy_epoch += dist_entropy.item() num_updates = self.ppo_epoch * self.num_mini_batch value_loss_epoch /= num_updates action_loss_epoch /= num_updates dist_entropy_epoch /= num_updates info = {} if self.log_grad_norm: info = {'grad_norms': grad_norms} return value_loss_epoch, action_loss_epoch, dist_entropy_epoch, info
dcd-main
algos/ppo.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import csv import argparse from collections import defaultdict import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns sns.set_style("whitegrid") sns.set_palette("bright") """ Usage: Plot MiniGrid results for 25 blocks (Robust PLR and REPAIRED uses half as many gradients as baselines): python results/plot_eval_bars.py \ -r results/minigrid_ood \ -f \ mg_25_blocks-dr-250M_steps.csv \ mg_25_blocks-minimax-250M_steps.csv \ mg_25_blocks-paired-250M_steps.csv \ mg_25_blocks-repaired-250M_steps.csv \ mg_25_blocks-plr-250M_steps.csv \ mg_25_blocks-robust_plr-250M_steps.csv \ -l "DR" Minimax PAIRED REPAIRED PLR "Robust PLR" \ --savename minigrid_25_blocks_eval ------------------------------------------------------------------------ Plot MiniGrid results for uniform block count in [0,60]: python results/plot_eval_bars.py \ -r results/minigrid_ood \ -f \ mg_60_blocks_uni-dr_20k_updates.csv \ mg_60_blocks_uni-robust_plr_20k_updates.csv \ mg_60_blocks-accel_20k_updates.csv \ -l "DR" "Robust PLR" ACCEL \ --figsize 24,2 \ --savename minigrid_60_blocks_uni_eval Plot BipedalWalker results: python results/plot_eval_bars.py \ -r results/bipedal \ -f \ bipedal8d-dr_20k-updates.csv \ bipedal8d-robust_plr-20k_updates.csv \ bipedal8d-accel_20k-updates.csv \ -l "DR" "Robust PLR" ACCEL \ --savename bipedal_eval """ def parse_args(): parser = argparse.ArgumentParser(description='RL') parser.add_argument( '-r', '--result_path', type=str, default='results/', help='Relative path to results directory.' ) parser.add_argument( '-f', '--files', type=str, nargs='+', default=['test.csv', 'test2.csv'], help='Name of results .csv file, output by eval.py.' ) parser.add_argument( '-l', '--labels', type=str, nargs='+', default=[], help='Name of condition corresponding to each results file.' ) parser.add_argument( '--row_prefix', type=str, default='solved_rate', help='Plot rows in results .csv whose metric column matches this prefix.' ) parser.add_argument( '-m', '--metrics', type=str, nargs='+', default=[], help='List of metric names to plot, without the --row_prefix.', ) parser.add_argument( '--include', type=str, nargs='+', default=None, help='Further filter matched metric rows with a list of substrings.' ) parser.add_argument( '--ylabel', type=str, default='Solved rate', help='Y-axis label.' ) parser.add_argument( '--savename', type=str, default='latest', help='Filename of saved .pdf of plot, saved to figures/.' ) parser.add_argument( '--figsize', type=str, default='(14,2)', help='Dimensions of output figure.' ) return parser.parse_args() LABEL_COLORS = { 'DR': 'gray', 'Minimax': 'red', 'PAIRED': (0.8859561388376407,0.5226505841897354,0.195714831410001), 'REPAIRED': (0.2038148518479279,0.6871367484391159,0.5309645021239799), 'PLR': (0.9637256003082545,0.40964669235271706,0.7430230442501574), 'PLR Robust': (0.3711152842731098,0.6174124752499043,0.9586047646790773), 'Robust PLR': (0.3711152842731098,0.6174124752499043,0.9586047646790773), 'ACCEL': (0.30588235,0.83921569,0.27843137) } ENV_ALIASES = { 'SixteenRooms': '16Rooms', 'SixteenRoomsFewerDoors': '16Rooms2', 'SimpleCrossingS11N5': 'SimpleCrossing', 'PerfectMazeMedium': 'PerfectMazeMed', 'BipedalWalkerHardcore': 'HardCore' } if __name__ == '__main__': args = parse_args() assert(len(args.files) == len(args.labels)) num_labels = len(args.labels) colors = sns.husl_palette(num_labels, h=.1) df = pd.DataFrame() for i, f in enumerate(args.files): fpath = os.path.join(args.result_path, f) df_ = pd.read_csv(fpath) df_ = df_[df_['metric'].str.startswith(args.row_prefix)] if args.include is not None: df_ = df_[df_['metric'].str.contains('|'.join(args.include))] df_['label'] = args.labels[i] out_cols = ['metric', 'label'] df_['median'] = df_.median(axis=1) df_['q1'] = df_.quantile(0.25, axis=1) df_['q3'] = df_.quantile(0.75, axis=1) out_cols += ['median', 'q1', 'q3'] out = df_[out_cols] df = pd.concat([df, out]) df_metrics = df['metric'].unique() num_subplots = len(df_metrics) nrows,ncols = 1,num_subplots f, axes = plt.subplots(nrows=nrows, ncols=ncols, sharey=True, sharex=True, figsize=eval(args.figsize)) x=np.arange(len(args.labels)) width=0.35 for i, ax in enumerate(axes.flatten()): metric = df_metrics[i] for j, label in enumerate(args.labels): idx = (df['metric'] == metric) & (df['label'] == label) if label in LABEL_COLORS: color = LABEL_COLORS[label] else: color = colors[j] if label == 'PLR Robust' or label == 'Robust PLR': label = r'$\mathregular{PLR^{\perp}}$' value = df[idx]['median'] error = (df[idx]['q3'] - df[idx]['q1'])/2. x1 = ax.bar(x[j]*width, value, width, label=label, color=color, yerr=error) title = metric.split(':')[-1].split('-') if len(title) > 2: title = ''.join(title[1:-1]) elif len(title) > 1: title = title[0] if title in ENV_ALIASES: title = ENV_ALIASES[title] ax.set_title(title, fontsize=14) ax.grid() ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.get_xaxis().set_visible(False) ax.set_yticks([0, 0.5, 1]) ax.set_ylim(0,1) if i == 0: ax.set_ylabel(args.ylabel, fontsize=12) handles, labels = ax.get_legend_handles_labels() legend = f.legend(handles, labels, ncol=len(args.labels), loc='upper center', bbox_to_anchor=(0.5,1.25), frameon=False, fontsize=12) plt.savefig(f"figures/{args.savename}.pdf", bbox_extra_artists=(legend,), bbox_inches='tight') plt.show()
dcd-main
results/plot_eval_bars.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import csv import argparse from collections import defaultdict import numpy as np from scipy import stats import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns sns.set_style("whitegrid") sns.set_palette("bright") """ Usage: Plot CarRacingF1 Benchmark results: python results/plot_f1.py \ -r results/car_racing_f1 \ -f \ f1-dr-5M_steps.csv \ f1-paired-5M_steps.csv \ f1-repaired-5M_steps.csv \ f1-plr-5M_steps.csv \ f1-robust_plr-5M_steps.csv \ -l DR PAIRED REPAIRED PLR "PLR Robust" \ --num_test_episodes 10 \ --threshold 477.71 \ --threshold_label 'Tang et al, 2020' \ --savename f1_eval """ def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( '-r', '--result_path', type=str, default='result/', help='Relative path to results directory.' ) parser.add_argument( '-f', '--files', type=str, nargs='+', default=[], help='Name of results .csv file, output by eval.py.' ) parser.add_argument( '-l', '--labels', type=str, nargs='+', default=[], help='Name of condition corresponding to each results file.' ) parser.add_argument( '-p', '--row_prefix', type=str, default='test_returns', help='Plot rows in results .csv whose metric column matches this prefix.' ) parser.add_argument( '-t', '--num_test_episodes', type=int, default=10 ) parser.add_argument( '--savename', type=str, default="latest", help='Filename of saved .pdf of plot, saved to figures/.' ) parser.add_argument( '--figsize', type=str, default="2,2", help='Dimensions of output figure.' ) parser.add_argument( '--threshold', type=float, default=None ) parser.add_argument( '--threshold_label', type=str, default=None ) return parser.parse_args() def agg_test_episodes_by_seed(row, num_test_episodes, stat='mean'): assert(len(row) % num_test_episodes == 0) total_steps = len(row) // num_test_episodes row = [float(x) for x in row] step = num_test_episodes return [np.mean(row[i*step:i*step + step]) for i in range(total_steps)] LABEL_COLORS = { 'DR': 'gray', 'PAIRED': (0.8859561388376407, 0.5226505841897354, 0.195714831410001), 'REPAIRED': (0.2038148518479279, 0.6871367484391159, 0.5309645021239799), 'PLR': (0.9637256003082545, 0.40964669235271706, 0.7430230442501574), 'PLR Robust': (0.3711152842731098, 0.6174124752499043, 0.9586047646790773), 'Robust PLR': (0.3711152842731098, 0.6174124752499043, 0.9586047646790773), } if __name__ == '__main__': args = parse_args() plt.rcParams["figure.figsize"] = eval(args.figsize) result_path = os.path.expandvars(os.path.expanduser(args.result_path)) num_labels = len(args.labels) colors = sns.husl_palette(num_labels, h=.1) colors_ = [] for l in args.labels: if l in LABEL_COLORS: colors_.append(LABEL_COLORS[l]) else: colors_.append(colors[i]) colors = colors_ x = np.arange(len(args.files)) width = 0.35 all_stats = defaultdict(list) for i, f in enumerate(args.files): fpath = os.path.join(result_path, f) with open(fpath, mode='r', newline='') as csvfile: csvreader = csv.reader(csvfile, delimiter=',') for row in csvreader: if row[0].startswith(args.row_prefix): agg_stats = agg_test_episodes_by_seed(row[1:], args.num_test_episodes) all_stats[args.labels[i]] += agg_stats label_stats = all_stats[args.labels[i]] value = np.mean(label_stats) err = stats.sem(label_stats) label = args.labels[i] if label == 'PLR Robust' or label == 'Robust PLR': label = r'$\mathregular{PLR^{\perp}}$' x1 = plt.bar(x[i]*width, value, width, label=label, color=colors[i], yerr=err) x = np.arange(len(args.files)) plt.grid() sns.despine(top=True, right=True, left=False, bottom=False) plt.gca().get_xaxis().set_visible(False) plt.ylabel('Test return', fontsize=12) # Add threshold if args.threshold: plt.axhline(y=args.threshold, label=args.threshold_label, color='green', linestyle='dotted') legend = plt.legend( ncol=1, loc='upper left', bbox_to_anchor=(1, 1), frameon=False, fontsize=12) plt.savefig(f"figures/{args.savename}.pdf", bbox_extra_artists=(legend,), bbox_inches='tight') plt.show()
dcd-main
results/plot_f1.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import json import os def generate_train_cmds( params, num_trials=1, start_index=0, newlines=False, xpid_generator=None, xpid_prefix='', xvfb=False, count_set=None): separator = ' \\\n' if newlines else ' ' cmds = [] if xpid_generator: params['xpid'] = xpid_generator(params, xpid_prefix) start_seed = params['seed'] for t in range(num_trials): params['seed'] = start_seed + t + start_index if xvfb: cmd = [f'xvfb-run -a -s "-screen 0 1400x900x24 +extension RANDR -noreset" -- python -m train'] else: cmd = [f'python -m train'] trial_idx = t + start_index for k,v in params.items(): if k == 'xpid': v = f'{v}_{trial_idx}' if count_set is not None: count_set.add(v) cmd.append(f'--{k}={v}') cmd = separator.join(cmd) cmds.append(cmd) return cmds def generate_all_params_for_grid(grid, defaults={}): def update_params_with_choices(prev_params, param, choices): updated_params = [] for v in choices: for p in prev_params: updated = p.copy() updated[param] = v updated_params.append(updated) return updated_params all_params = [{}] for param, choices in grid.items(): all_params = update_params_with_choices(all_params, param, choices) full_params = [] for p in all_params: d = defaults.copy() d.update(p) full_params.append(d) return full_params def parse_args(): parser = argparse.ArgumentParser(description='Make commands') parser.add_argument( '--dir', type=str, default='train_scripts/grid_configs/', help='Path to directory with .json configs') parser.add_argument( '--json', type=str, default=None, help='Name of .json config for hyperparameter search-grid') parser.add_argument( '--num_trials', type=int, default=1, help='Name of .json config for hyperparameter search-grid') parser.add_argument( '--start_index', default=0, type=int, help='Starting trial index of xpid runs') parser.add_argument( '--count', action='store_true', help='Print number of generated commands at the end of output.') parser.add_argument( "--checkpoint", action='store_true', help='Whether to start from checkpoint' ) parser.add_argument( '--use_ucb', action="store_true", help='Whether to include ucb arguments.') parser.add_argument( '--xvfb', action="store_true", help='Whether to use xvfb.') return parser.parse_args() def xpid_from_params(p, prefix=''): ued_algo = p['ued_algo'] is_train_env = ued_algo in ['paired', 'flexible_paired', 'minimax'] env_prefix = '' if p['env_name'].startswith('MultiGrid') or p['env_name'].startswith('Bipedal'): env_prefix = p['env_name'] elif p['env_name'].startswith('CarRacing'): env_prefix = f"{p['env_name']}_{p['num_control_points']}pts" if p.get('grayscale', False): env_prefix = f"{env_prefix}_gray" prefix_str = '' if prefix == '' else f'-{prefix}' rnn_prefix = '' rnn_agent = 'a' if p['recurrent_agent'] else '' rnn_env = 'e' if p['recurrent_adversary_env'] and is_train_env else '' if rnn_agent or rnn_env: rnn_arch = p['recurrent_arch'] rnn_hidden = p['recurrent_hidden_size'] rnn_prefix = f'-{rnn_arch}{rnn_hidden}{rnn_agent}{rnn_env}' ppo_prefix = f"-lr{p['lr']}-epoch{p['ppo_epoch']}-mb{p['num_mini_batch']}-v{p['value_loss_coef']}-gc{p['max_grad_norm']}" if p['env_name'].startswith('CarRacing'): clip_v_prefix = '' if not p['clip_value_loss']: clip_v_prefix = '-no_clipv' ppo_prefix = f"{ppo_prefix}{clip_v_prefix}-gamma-{p['gamma']}-lambda{p['gae_lambda']}-gclip{p['clip_param']}" entropy_prefix = f"-henv{p['adv_entropy_coef']}-ha{p['entropy_coef']}" plr_prefix = '' if p['use_plr']: if 'level_replay_prob' in p and p['level_replay_prob'] > 0: plr_prefix = f"-plr{p['level_replay_prob']}-rho{p['level_replay_rho']}-n{p['level_replay_seed_buffer_size']}-st{p['staleness_coef']}-{p['level_replay_strategy']}-{p['level_replay_score_transform']}-t{p['level_replay_temperature']}" else: plr_prefix = '' editing_prefix = '' if p['use_editor']: editing_prefix = f"-editor{p['level_editor_prob']}-{p['level_editor_method']}-n{p['num_edits']}-base{p['base_levels']}" timelimits = '-tl' if p['handle_timelimits'] else '' global_critic = '-global' if p['use_global_critic'] else '' noexpgrad = '' if p['no_exploratory_grad_updates']: noexpgrad = '-noexpgrad' finetune = '' if p.get('xpid_finetune', None): finetune = f'-ft_{p["xpid_finetune"]}' else: return f'ued{prefix_str}-{env_prefix}-{ued_algo}{finetune}{noexpgrad}{rnn_prefix}{ppo_prefix}{entropy_prefix}{plr_prefix}{editing_prefix}{global_critic}{timelimits}' if __name__ == '__main__': args = parse_args() # Default parameters params = { 'xpid': 'test', # Env params 'env_name': 'MultiGrid-GoalLastAdversarial-v0', 'use_gae': True, 'gamma': 0.995, 'gae_lambda': 0.95, 'seed': 88, # CarRacing specific 'num_control_points': 12, # Model params 'recurrent_arch': 'lstm', 'recurrent_agent': True, 'recurrent_adversary_env': True, 'recurrent_hidden_size': 256, 'use_global_critic': False, # Learning params 'lr': 1e-4, 'num_steps': 256, # unroll length 'num_processes': 32, # number of actor processes 'num_env_steps': 1000000000, # total training steps 'ppo_epoch': 20, 'num_mini_batch': 1, 'entropy_coef': 0., 'value_loss_coef': 0.5, 'clip_param': 0.2, 'clip_value_loss': True, 'adv_entropy_coef': 0., 'max_grad_norm': 0.5, 'algo': 'ppo', 'ued_algo': 'paired', # PLR params 'use_plr': False, 'level_replay_prob': 0.0, 'level_replay_rho': 1.0, 'level_replay_seed_buffer_size': 5000, 'level_replay_score_transform': "rank", 'level_replay_temperature': 0.1, 'staleness_coef': 0.3, 'no_exploratory_grad_updates': False, # Editor params 'use_editor': False, 'level_editor_prob': 0, 'level_editor_method': 'random', 'num_edits': 0, 'base_levels': 'batch', # Logging params 'log_interval': 25, 'screenshot_interval':1000, 'log_grad_norm': False, } json_filename = args.json if not json_filename.endswith('.json'): json_filename += '.json' grid_path = os.path.join(os.path.expandvars(os.path.expanduser(args.dir)), json_filename) config = json.load(open(grid_path)) grid = config['grid'] xpid_prefix = '' if 'xpid_prefix' not in config else config['xpid_prefix'] if args.checkpoint: params['checkpoint'] = True # Generate all parameter combinations within grid, using defaults for fixed params all_params = generate_all_params_for_grid(grid, defaults=params) unique_xpids = None if args.count: unique_xpids = set() # Print all commands count = 0 for p in all_params: cmds = generate_train_cmds(p, num_trials=args.num_trials, start_index=args.start_index, newlines=True, xpid_generator=xpid_from_params, xpid_prefix=xpid_prefix, xvfb=args.xvfb, count_set=unique_xpids) for c in cmds: print(c + '\n') count += 1 if args.count: print(f'Generated {len(unique_xpids)} unique commands.')
dcd-main
train_scripts/make_cmd.py
# Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re import importlib import warnings from gym import error, logger # This format is true today, but it's *not* an official spec. # [username/](env-name)-v(version) env-name is group 1, version is group 2 # # 2016-10-31: We're experimentally expanding the environment ID format # to include an optional username. env_id_re = re.compile(r'^(?:[\w:-]+\/)?([\w:.-]+)-v(\d+)$') def load(name): mod_name, attr_name = name.split(":") mod = importlib.import_module(mod_name) fn = getattr(mod, attr_name) return fn class EnvSpec(object): """A specification for a particular instance of the environment. Used to register the parameters for official evaluations. Args: id (str): The official environment ID entry_point (Optional[str]): The Python entrypoint of the environment class (e.g. module.name:Class) reward_threshold (Optional[int]): The reward threshold before the task is considered solved kwargs (dict): The kwargs to pass to the environment class nondeterministic (bool): Whether this environment is non-deterministic even after seeding tags (dict[str:any]): A set of arbitrary key-value tags on this environment, including simple property=True tags max_episode_steps (Optional[int]): The maximum number of steps that an episode can consist of Attributes: id (str): The official environment ID """ def __init__(self, id, entry_point=None, reward_threshold=None, kwargs=None, nondeterministic=False, tags=None, max_episode_steps=None): self.id = id # Evaluation parameters self.reward_threshold = reward_threshold # Environment properties self.nondeterministic = nondeterministic self.entry_point = entry_point if tags is None: tags = {} self.tags = tags tags['wrapper_config.TimeLimit.max_episode_steps'] = max_episode_steps self.max_episode_steps = max_episode_steps # We may make some of these other parameters public if they're # useful. match = env_id_re.search(id) if not match: raise error.Error('Attempted to register malformed environment ID: {}. (Currently all IDs must be of the form {}.)'.format(id, env_id_re.pattern)) self._env_name = match.group(1) self._kwargs = {} if kwargs is None else kwargs def make(self, **kwargs): """Instantiates an instance of the environment with appropriate kwargs""" if self.entry_point is None: raise error.Error('Attempting to make deprecated env {}. (HINT: is there a newer registered version of this env?)'.format(self.id)) _kwargs = self._kwargs.copy() _kwargs.update(kwargs) if callable(self.entry_point): env = self.entry_point(**_kwargs) else: cls = load(self.entry_point) env = cls(**_kwargs) # Make the enviroment aware of which spec it came from. env.unwrapped.spec = self return env def __repr__(self): return "EnvSpec({})".format(self.id) class EnvRegistry(object): """Register an env by ID. IDs remain stable over time and are guaranteed to resolve to the same environment dynamics (or be desupported). The goal is that results on a particular environment should always be comparable, and not depend on the version of the code that was running. """ def __init__(self): self.env_specs = {} def make(self, path, **kwargs): if len(kwargs) > 0: logger.info('Making new env: %s (%s)', path, kwargs) else: logger.info('Making new env: %s', path) spec = self.spec(path) env = spec.make(**kwargs) # We used to have people override _reset/_step rather than # reset/step. Set _gym_disable_underscore_compat = True on # your environment if you use these methods and don't want # compatibility code to be invoked. if hasattr(env, "_reset") and hasattr(env, "_step") and not getattr(env, "_gym_disable_underscore_compat", False): patch_deprecated_methods(env) if (env.spec.max_episode_steps is not None) and not spec.tags.get('vnc'): from envs.wrappers import TimeLimit env = TimeLimit(env, max_episode_steps=env.spec.max_episode_steps) return env def all(self): return self.env_specs.values() def spec(self, path): if ':' in path: mod_name, _sep, id = path.partition(':') try: importlib.import_module(mod_name) # catch ImportError for python2.7 compatibility except ImportError: raise error.Error('A module ({}) was specified for the environment but was not found, make sure the package is installed with `pip install` before calling `gym.make()`'.format(mod_name)) else: id = path match = env_id_re.search(id) if not match: raise error.Error('Attempted to look up malformed environment ID: {}. (Currently all IDs must be of the form {}.)'.format(id.encode('utf-8'), env_id_re.pattern)) try: return self.env_specs[id] except KeyError: # Parse the env name and check to see if it matches the non-version # part of a valid env (could also check the exact number here) env_name = match.group(1) matching_envs = [valid_env_name for valid_env_name, valid_env_spec in self.env_specs.items() if env_name == valid_env_spec._env_name] if matching_envs: raise error.DeprecatedEnv('Env {} not found (valid versions include {})'.format(id, matching_envs)) else: raise error.UnregisteredEnv('No registered env with id: {}'.format(id)) def register(self, id, **kwargs): if id in self.env_specs: raise error.Error('Cannot re-register id: {}'.format(id)) self.env_specs[id] = EnvSpec(id, **kwargs) # Have a global registry registry = EnvRegistry() def register(id, **kwargs): return registry.register(id, **kwargs) def make(id, **kwargs): return registry.make(id, **kwargs) def spec(id): return registry.spec(id) warn_once = True def patch_deprecated_methods(env): """ Methods renamed from '_method' to 'method', render() no longer has 'close' parameter, close is a separate method. For backward compatibility, this makes it possible to work with unmodified environments. """ global warn_once if warn_once: logger.warn("Environment '%s' has deprecated methods '_step' and '_reset' rather than 'step' and 'reset'. Compatibility code invoked. Set _gym_disable_underscore_compat = True to disable this behavior." % str(type(env))) warn_once = False env.reset = env._reset env.step = env._step env.seed = env._seed def render(mode): return env._render(mode, close=False) def close(): env._render("human", close=True) env.render = render env.close = close
dcd-main
envs/registration.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from .multigrid.adversarial import *
dcd-main
envs/__init__.py
# Copyright (c) 2019 Antonin Raffin # # Licensed under the MIT License; # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/MIT # # This file is an extended version of # https://github.com/DLR-RM/stable-baselines3/blob/master/stable_baselines3/common/vec_env/vec_frame_stack.py from .vec_env import VecEnvWrapper import numpy as np from gym import spaces class VecFrameStack(VecEnvWrapper): def __init__(self, venv, nstack, obs_key=None): self.venv = venv self.n_frame_channels = venv.observation_space.shape[-1] self.nstack = nstack self.obs_key = obs_key wos = venv.observation_space # wrapped ob space low = np.repeat(wos.low, self.nstack, axis=-1) high = np.repeat(wos.high, self.nstack, axis=-1) self.stackedobs = np.zeros((venv.num_envs,) + low.shape, low.dtype) observation_space = spaces.Box(low=low, high=high, dtype=venv.observation_space.dtype) VecEnvWrapper.__init__(self, venv, observation_space=observation_space) def step_wait(self): obs, rews, news, infos = self.venv.step_wait() if self.obs_key: obs = obs[obs_key] self.stackedobs = np.roll(self.stackedobs, shift=-self.n_frame_channels, axis=-1) for (i, new) in enumerate(news): if new: self.stackedobs[i] = 0 self.stackedobs[..., -obs.shape[-1]:] = obs return self.stackedobs, rews, news, infos def reset(self, seed=None, index=None): if seed is not None and index is not None: obs = self.venv.seed(seed, index) if self.obs_key: obs = obs[obs_key] self.stackedobs[index] = 0 self.stackedobs[index,...,-obs.shape[-1]:] = obs return self.stackedobs[index,:] else: obs = self.venv.reset() if self.obs_key: obs = obs[obs_key] self.stackedobs[...] = 0 self.stackedobs[..., -obs.shape[-1]:] = obs return self.stackedobs def reset_agent(self): obs = self.venv.reset_agent() if self.obs_key: obs = obs[obs_key] self.stackedobs[...] = 0 self.stackedobs[..., -obs.shape[-1]:] = obs return self.stackedobs def reset_random(self): obs = self.venv.reset_random() if self.obs_key: obs = obs[obs_key] self.stackedobs[...] = 0 self.stackedobs[..., -obs.shape[-1]:] = obs return self.stackedobs
dcd-main
envs/wrappers/vec_frame_stack.py
# Copyright (c) OpenAI # # Licensed under the MIT License; # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/MIT # # This file is an extended version of # https://github.com/openai/baselines/blob/master/baselines/common/vec_env/vec_env.py import contextlib import os from abc import ABC, abstractmethod from baselines.common.tile_images import tile_images class AlreadySteppingError(Exception): """ Raised when an asynchronous step is running while step_async() is called again. """ def __init__(self): msg = 'already running an async step' Exception.__init__(self, msg) class NotSteppingError(Exception): """ Raised when an asynchronous step is not running but step_wait() is called. """ def __init__(self): msg = 'not running an async step' Exception.__init__(self, msg) class VecEnv(ABC): """ An abstract asynchronous, vectorized environment. Used to batch data from multiple copies of an environment, so that each observation becomes an batch of observations, and expected action is a batch of actions to be applied per-environment. """ closed = False viewer = None metadata = { 'render.modes': ['human', 'rgb_array'] } def __init__(self, num_envs, observation_space, action_space): self.num_envs = num_envs self.observation_space = observation_space self.action_space = action_space @abstractmethod def reset(self): """ Reset all the environments and return an array of observations, or a dict of observation arrays. If step_async is still doing work, that work will be cancelled and step_wait() should not be called until step_async() is invoked again. """ pass @abstractmethod def step_async(self, actions): """ Tell all the environments to start taking a step with the given actions. Call step_wait() to get the results of the step. You should not call this if a step_async run is already pending. """ pass @abstractmethod def step_wait(self): """ Wait for the step taken with step_async(). Returns (obs, rews, dones, infos): - obs: an array of observations, or a dict of arrays of observations. - rews: an array of rewards - dones: an array of "episode done" booleans - infos: a sequence of info objects """ pass def close_extras(self): """ Clean up the extra resources, beyond what's in this base class. Only runs when not self.closed. """ pass def close(self): if self.closed: return if self.viewer is not None: self.viewer.close() self.close_extras() self.closed = True def step(self, actions): """ Step the environments synchronously. This is available for backwards compatibility. """ self.step_async(actions) return self.step_wait() def step_env(self, actions, reset_random=False): if reset_random: self.step_env_reset_random_async(actions) else: self.step_env_async(actions) return self.step_wait() def render(self, mode='human'): imgs = self.get_images() bigimg = tile_images(imgs) if mode == 'human': self.get_viewer().imshow(bigimg) return self.get_viewer().isopen elif mode == 'rgb_array': return bigimg else: raise NotImplementedError def get_images(self): """ Return RGB images from each environment """ raise NotImplementedError @property def unwrapped(self): if isinstance(self, VecEnvWrapper): return self.venv.unwrapped else: return self def get_viewer(self): if self.viewer is None: from gym.envs.classic_control import rendering self.viewer = rendering.SimpleImageViewer() return self.viewer class VecEnvWrapper(VecEnv): """ An environment wrapper that applies to an entire batch of environments at once. """ def __init__(self, venv, observation_space=None, action_space=None): self.venv = venv super().__init__(num_envs=venv.num_envs, observation_space=observation_space or venv.observation_space, action_space=action_space or venv.action_space) def step_async(self, actions): self.venv.step_async(actions) @abstractmethod def reset(self): pass @abstractmethod def step_wait(self): pass def close(self): return self.venv.close() def render(self, mode='human'): return self.venv.render(mode=mode) def get_images(self): return self.venv.get_images() def __getattr__(self, name): if name.startswith('_'): raise AttributeError("attempted to get missing private attribute '{}'".format(name)) return getattr(self.venv, name) class VecEnvObservationWrapper(VecEnvWrapper): @abstractmethod def process(self, obs): pass def reset(self): obs = self.venv.reset() return self.process(obs) def step_wait(self): obs, rews, dones, infos = self.venv.step_wait() return self.process(obs), rews, dones, infos class CloudpickleWrapper(object): """ Uses cloudpickle to serialize contents (otherwise multiprocessing tries to use pickle) """ def __init__(self, x): self.x = x def __getstate__(self): import cloudpickle return cloudpickle.dumps(self.x) def __setstate__(self, ob): import pickle self.x = pickle.loads(ob) @contextlib.contextmanager def clear_mpi_env_vars(): """ from mpi4py import MPI will call MPI_Init by default. If the child process has MPI environment variables, MPI will think that the child process is an MPI process just like the parent and do bad things such as hang. This context manager is a hacky way to clear those environment variables temporarily such as when we are starting multiprocessing Processes. """ removed_environment = {} for k, v in list(os.environ.items()): for prefix in ['OMPI_', 'PMI_']: if k.startswith(prefix): removed_environment[k] = v del os.environ[k] try: yield finally: os.environ.update(removed_environment)
dcd-main
envs/wrappers/vec_env.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch import gym from .vec_env import VecEnvWrapper class AdversarialObservationWrapper(gym.core.Wrapper): def step(self, action): observation, reward, done, info = self.env.step(action) return self.agent_observation(observation), reward, done, info def reset(self, **kwargs): return self.env.reset(**kwargs) def reset_agent(self, **kwargs): observation = self.env.reset_agent(**kwargs) return self.agent_observation(observation) def reset_random(self, **kwargs): observation = self.env.reset_random(**kwargs) return self.agent_observation(observation) def reset_to_level(self, level, **kwargs): observation = self.env.reset_to_level(level, **kwargs) return self.agent_observation(observation) def agent_observation(self, observation): raise NotImplementedError class VecPreprocessImageWrapper(VecEnvWrapper): def __init__(self, venv, obs_key=None, transpose_order=None, scale=None, channel_first=False, to_tensor=True, device=None): super().__init__(venv) self.is_dict_obs = isinstance(venv.observation_space, gym.spaces.Dict) self.transpose_order = transpose_order if self.transpose_order: self.batch_transpose_order = [0,] + list([i + 1 for i in transpose_order]) else: self.batch_transpose_order = None self.obs_key = obs_key self._obs_space = None self._adversary_obs_space = None self.to_tensor = to_tensor self.device = device # Colorspace parameters self.scale = scale self.channel_first = channel_first self.channel_index = 1 if channel_first else -1 image_obs_space = self.venv.observation_space if self.obs_key: image_obs_space = image_obs_space[self.obs_key] self.num_channels = image_obs_space.shape[self.channel_index] delattr(self, 'observation_space') def _obs_dict_to_tensor(self, obs): for k in obs.keys(): if isinstance(obs[k], np.ndarray): obs[k] = torch.from_numpy(obs[k]).float() if self.device: obs[k] = obs[k].to(self.device) return obs def _transpose(self, obs): if len(obs.shape) == len(self.batch_transpose_order): return obs.transpose(*self.batch_transpose_order) else: return obs.transpose(*self.transpose_order) def _preprocess(self, obs, obs_key=None): if obs_key is None: if self.scale: obs = obs/self.scale if self.batch_transpose_order: # obs = obs.transpose(*self.batch_transpose_order) obs = self._transpose(obs) if isinstance(obs, np.ndarray) and self.to_tensor: obs = torch.from_numpy(obs).float() if self.device: obs = obs.to(self.device) elif isinstance(obs, dict) and self.to_tensor: obs = self._obs_dict_to_tensor(obs) else: if self.scale: obs[self.obs_key] = obs[self.obs_key]/self.scale if self.batch_transpose_order: obs[self.obs_key] = self._transpose(obs[self.obs_key]) if 'full_obs' in obs: obs['full_obs'] = self._transpose(obs['full_obs']) if self.to_tensor: obs = self._obs_dict_to_tensor(obs) return obs def _transpose_box_space(self, space): if isinstance(space, gym.spaces.Box): shape = np.array(space.shape) shape = shape[self.transpose_order] return gym.spaces.Box( low=0, high=255, shape=shape, dtype='uint8') else: raise ValueError('Expected gym.spaces.Box') def _transpose_obs_space(self, obs_space): if self.obs_key: if isinstance(obs_space, gym.spaces.Dict): keys = obs_space.spaces else: keys = obs_space.keys() transposed_obs_space = {k:obs_space[k] for k in keys} transposed_obs_space[self.obs_key] = \ self._transpose_box_space(transposed_obs_space[self.obs_key]) if 'full_obs' in transposed_obs_space: transposed_obs_space['full_obs'] = \ self._transpose_box_space(transposed_obs_space['full_obs']) else: transposed_obs_space = self._transpose_box_space(obs_space) return transposed_obs_space # Public interface def reset(self): obs = self.venv.reset() return self._preprocess(obs, obs_key=self.obs_key) def reset_random(self): obs = self.venv.reset_random() return self._preprocess(obs, obs_key=self.obs_key) def reset_agent(self): obs = self.venv.reset_agent() return self._preprocess(obs, obs_key=self.obs_key) def reset_to_level(self, level, index): obs = self.venv.reset_to_level(level, index) return self._preprocess(obs, obs_key=self.obs_key) def reset_to_level_batch(self, level): obs = self.venv.reset_to_level_batch(level) return self._preprocess(obs, obs_key=self.obs_key) def step_wait(self): obs, rews, dones, infos = self.venv.step_wait() obs = self._preprocess(obs, obs_key=self.obs_key) for i, info in enumerate(infos): if 'truncated_obs' in info: truncated_obs = info['truncated_obs'] infos[i]['truncated_obs'] = \ self._preprocess(truncated_obs, obs_key=self.obs_key) if self.to_tensor: rews = torch.from_numpy(rews).unsqueeze(dim=1).float() return obs, rews, dones, infos def step_adversary(self, action): obs, rews, dones, infos = self.venv.step_adversary(action) obs = self._preprocess(obs, obs_key=self.obs_key) if self.to_tensor: rews = torch.from_numpy(rews).unsqueeze(dim=1).float() return obs, rews, dones, infos def get_observation_space(self): if self._obs_space: return self._obs_space obs_space = self.venv.observation_space if self.batch_transpose_order: self._obs_space = self._transpose_obs_space(obs_space) else: self._obs_space = obs_space return self._obs_space def get_adversary_observation_space(self): if self._adversary_obs_space: return self._adversary_obs_space adversary_obs_space = self.venv.adversary_observation_space obs_space = self.venv.observation_space same_shape = hasattr(adversary_obs_space, 'shape') and hasattr(obs_space, 'shape') and \ adversary_obs_space.shape == obs_space.shape same_obs_key = self.obs_key and self.obs_key in adversary_obs_space if self.batch_transpose_order and (same_shape or same_obs_key): self._adversary_obs_space = self._transpose_obs_space(adversary_obs_space) else: self._adversary_obs_space = adversary_obs_space return self._adversary_obs_space def __getattr__(self, name): if name == 'observation_space': return self.get_observation_space() elif name == 'adversary_observation_space': return self.get_adversary_observation_space() elif name == 'adversary_action_space': return self.venv.get_adversary_action_space() else: return getattr(self.venv, name)
dcd-main
envs/wrappers/obs_wrappers.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import gym from gym import spaces from gym_minigrid.minigrid import OBJECT_TO_IDX, COLOR_TO_IDX, STATE_TO_IDX from .obs_wrappers import AdversarialObservationWrapper class MultiGridFullyObsWrapper(AdversarialObservationWrapper): """ Fully observable gridworld using a compact grid encoding """ def __init__(self, env, is_adversarial=True): super().__init__(env) self.is_adversarial = is_adversarial self.observation_space.spaces["full_obs"] = spaces.Box( low=0, high=255, shape=(self.env.width, self.env.height, 3), # number of cells dtype='uint8' ) def agent_observation(self, obs): env = self.unwrapped full_grid = env.grid.encode() # Note env.agent_pos is an array of length K, for K multigrid agents if env.agent_pos[0] is not None: full_grid[env.agent_pos[0][0]][env.agent_pos[0][1]] = np.array([ OBJECT_TO_IDX['agent'], COLOR_TO_IDX['red'], env.agent_dir[0] ]) obs['full_obs'] = full_grid return obs def reset(self, **kwargs): observation = self.env.reset(**kwargs) if self.is_adversarial: return observation else: return self.agent_observation(observation)
dcd-main
envs/wrappers/multigrid_wrappers.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from .obs_wrappers import VecPreprocessImageWrapper, AdversarialObservationWrapper from .parallel_wrappers import ParallelAdversarialVecEnv from .time_limit import TimeLimit from .vec_monitor import VecMonitor from .vec_normalize import VecNormalize from .vec_frame_stack import VecFrameStack from .multigrid_wrappers import * from .car_racing_wrappers import CarRacingWrapper
dcd-main
envs/wrappers/__init__.py
# Copyright (c) OpenAI # # Licensed under the MIT License; # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/MIT # # This file is an extended version of # https://github.com/openai/gym/blob/master/gym/wrappers/time_limit.py import gym class TimeLimit(gym.Wrapper): def __init__(self, env, max_episode_steps=None): super(TimeLimit, self).__init__(env) if max_episode_steps is None and self.env.spec is not None: max_episode_steps = env.spec.max_episode_steps if self.env.spec is not None: self.env.spec.max_episode_steps = max_episode_steps self._max_episode_steps = max_episode_steps self._elapsed_steps = None def step(self, action): assert self._elapsed_steps is not None, "Cannot call env.step() before calling reset()" observation, reward, done, info = self.env.step(action) self._elapsed_steps += 1 if self._elapsed_steps >= self._max_episode_steps: info['truncated'] = not done info['truncated_obs'] = observation done = True return observation, reward, done, info def reset(self): self._elapsed_steps = 0 return self.env.reset() def reset_random(self): self._elapsed_steps = 0 return self.env.reset_random() def reset_to_level(self, level): self._elapsed_steps = 0 return self.env.reset_to_level(level) def reset_agent(self): self._elapsed_steps = 0 return self.env.reset_agent()
dcd-main
envs/wrappers/time_limit.py
# Copyright (c) 2019 Antonin Raffin # # Licensed under the MIT License; # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/MIT # # This file is an extended version of # https://github.com/DLR-RM/stable-baselines3/blob/master/stable_baselines3/common/vec_env/vec_monitor.py from .vec_env import VecEnvWrapper from baselines.bench.monitor import ResultsWriter import numpy as np import time from collections import deque class VecMonitor(VecEnvWrapper): def __init__(self, venv, filename=None, keep_buf=0, info_keywords=()): VecEnvWrapper.__init__(self, venv) self.eprets = None self.eplens = None self.epcount = 0 self.tstart = time.time() if filename: self.results_writer = ResultsWriter(filename, header={'t_start': self.tstart}, extra_keys=info_keywords) else: self.results_writer = None self.info_keywords = info_keywords self.keep_buf = keep_buf if self.keep_buf: self.epret_buf = deque([], maxlen=keep_buf) self.eplen_buf = deque([], maxlen=keep_buf) def reset(self): obs = self.venv.reset() self.eprets = np.zeros(self.num_envs, 'f') self.eplens = np.zeros(self.num_envs, 'i') return obs def reset_agent(self): obs = self.venv.reset_agent() self.eprets = np.zeros(self.num_envs, 'f') self.eplens = np.zeros(self.num_envs, 'i') return obs def reset_random(self): obs = self.venv.reset_random() self.eprets = np.zeros(self.num_envs, 'f') self.eplens = np.zeros(self.num_envs, 'i') return obs def reset_alp_gmm(self, level): obs = self.venv.reset_alp_gmm(level) self.eprets = np.zeros(self.num_envs, 'f') self.eplens = np.zeros(self.num_envs, 'i') return obs def step_wait(self): obs, rews, dones, infos = self.venv.step_wait() self.eprets += rews self.eplens += 1 newinfos = list(infos[:]) for i in range(len(dones)): if dones[i]: info = infos[i].copy() ret = self.eprets[i] eplen = self.eplens[i] epinfo = {'r': ret, 'l': eplen, 't': round(time.time() - self.tstart, 6)} for k in self.info_keywords: epinfo[k] = info[k] info['episode'] = epinfo if self.keep_buf: self.epret_buf.append(ret) self.eplen_buf.append(eplen) self.epcount += 1 self.eprets[i] = 0 self.eplens[i] = 0 if self.results_writer: self.results_writer.write_row(epinfo) newinfos[i] = info return obs, rews, dones, newinfos
dcd-main
envs/wrappers/vec_monitor.py
# Copyright (c) 2019 Antonin Raffin # # Licensed under the MIT License; # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/MIT # # This file is an extended version of # https://github.com/DLR-RM/stable-baselines3/blob/master/stable_baselines3/common/vec_env/vec_normalize.py from .vec_env import VecEnvWrapper import numpy as np class VecNormalize(VecEnvWrapper): """ A vectorized wrapper that normalizes the observations and returns from an environment. """ def __init__(self, venv, ob=True, ret=True, clipob=10., cliprew=10., gamma=0.99, epsilon=1e-8, use_tf=False): VecEnvWrapper.__init__(self, venv) if use_tf: from baselines.common.running_mean_std import TfRunningMeanStd self.ob_rms = TfRunningMeanStd(shape=self.observation_space.shape, scope='ob_rms') if ob else None self.ret_rms = TfRunningMeanStd(shape=(), scope='ret_rms') if ret else None else: from baselines.common.running_mean_std import RunningMeanStd self.ob_rms = RunningMeanStd(shape=self.observation_space.shape) if ob else None self.ret_rms = RunningMeanStd(shape=()) if ret else None self.clipob = clipob self.cliprew = cliprew self.ret = np.zeros(self.num_envs) self.gamma = gamma self.epsilon = epsilon def step_wait(self): obs, rews, news, infos = self.venv.step_wait() self.ret = self.ret * self.gamma + rews obs = self._obfilt(obs) if self.ret_rms: self.ret_rms.update(self.ret) rews = np.clip(rews / np.sqrt(self.ret_rms.var + self.epsilon), -self.cliprew, self.cliprew) self.ret[news] = 0. return obs, rews, news, infos def _obfilt(self, obs): if self.ob_rms: self.ob_rms.update(obs) obs = np.clip((obs - self.ob_rms.mean) / np.sqrt(self.ob_rms.var + self.epsilon), -self.clipob, self.clipob) return obs else: return obs def reset(self): self.ret = np.zeros(self.num_envs) obs = self.venv.reset() return self._obfilt(obs) def reset_agent(self): self.ret = np.zeros(self.num_envs) obs = self.venv.reset_agent() return self._obfilt(obs) def reset_random(self): self.ret = np.zeros(self.num_envs) obs = self.venv.reset_random() return self._obfilt(obs) def reset_alp_gmm(self, level): self.ret = np.zeros(self.num_envs) obs = self.venv.reset_alp_gmm(level) return self._obfilt(obs)
dcd-main
envs/wrappers/vec_normalize.py
# Copyright (c) 2019 Antonin Raffin # # Licensed under the MIT License; # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/MIT # # This file is a heavily modified version of # https://github.com/DLR-RM/stable-baselines3/blob/master/stable_baselines3/common/vec_env/subproc_vec_env.py import multiprocessing as mp import numpy as np from .vec_env import VecEnv, CloudpickleWrapper from baselines.common.vec_env.vec_env import clear_mpi_env_vars def worker(remote, parent_remote, env_fn_wrappers): def step(env, action): ob, reward, done, info = env.step(action) if done: ob = env.reset() return ob, reward, done, info def step_env(env, action, reset_random=False): ob, reward, done, info = env.step(action) if done: if reset_random: env.reset_random() ob = env.reset_agent() else: ob = env.reset_agent() return ob, reward, done, info def get_env_attr(env, attr): if hasattr(env, attr): return getattr(env, attr) while hasattr(env, 'env'): env = env.env if hasattr(env, attr): return getattr(env, attr) return None parent_remote.close() envs = [env_fn_wrapper() for env_fn_wrapper in env_fn_wrappers.x] try: while True: cmd, data = remote.recv() if cmd == 'step': remote.send([step(env, action) for env, action in zip(envs, data)]) elif cmd == 'step_env': remote.send([step_env(env, action) for env, action in zip(envs, data)]) elif cmd == 'step_env_reset_random': remote.send([step_env(env, action, reset_random=True) for env, action in zip(envs, data)]) elif cmd == 'observation_space': remote.send(envs[0].observation_space) elif cmd == 'adversary_observation_space': remote.send(envs[0].adversary_observation_space) elif cmd == 'adversary_action_space': remote.send(envs[0].adversary_action_space) elif cmd == 'max_steps': remote.send(envs[0].max_steps) elif cmd == 'render': remote.send([env.render(mode='level') for env in envs]) elif cmd == 'render_to_screen': remote.send([envs[0].render('human')]) elif cmd == 'close': remote.close() break elif cmd == 'get_spaces_spec': remote.send(CloudpickleWrapper((envs[0].observation_space, envs[0].action_space, envs[0].spec))) elif cmd == 'reset_to_level': remote.send([envs[0].reset_to_level(data)]) elif cmd == 'reset_alp_gmm': remote.send([envs[0].reset_alp_gmm(data)]) elif cmd == 'max_episode_steps': max_episode_steps = get_env_attr(envs[0], '_max_episode_steps') remote.send(max_episode_steps) elif hasattr(envs[0], cmd): attrs = [getattr(env, cmd) for env in envs] is_callable = hasattr(attrs[0], '__call__') if is_callable: if not hasattr(data, '__len__'): data = [data]*len(attrs) remote.send([attr(d) if d is not None else attr() for attr, d in zip(attrs, data)]) else: remote.send([attr for attr in attrs]) else: raise NotImplementedError except KeyboardInterrupt: print('SubprocVecEnv worker: got KeyboardInterrupt') finally: for env in envs: env.close() class SubprocVecEnv(VecEnv): """ VecEnv that runs multiple environments in parallel in subproceses and communicates with them via pipes. Recommended to use when num_envs > 1 and step() can be a bottleneck. """ def __init__(self, env_fns, spaces=None, context='spawn', in_series=1, is_eval=False): """ Arguments: env_fns: iterable of callables - functions that create environments to run in subprocesses. Need to be cloud-pickleable in_series: number of environments to run in series in a single process (e.g. when len(env_fns) == 12 and in_series == 3, it will run 4 processes, each running 3 envs in series) """ self.waiting = False self.closed = False self.in_series = in_series nenvs = len(env_fns) assert nenvs % in_series == 0, "Number of envs must be divisible by number of envs to run in series" self.nremotes = nenvs // in_series env_fns = np.array_split(env_fns, self.nremotes) ctx = mp.get_context(context) self.remotes, self.work_remotes = zip(*[ctx.Pipe() for _ in range(self.nremotes)]) self.ps = [ctx.Process(target=worker, args=(work_remote, remote, CloudpickleWrapper(env_fn))) for (work_remote, remote, env_fn) in zip(self.work_remotes, self.remotes, env_fns)] for p in self.ps: p.daemon = True # if the main process crashes, we should not cause things to hang with clear_mpi_env_vars(): p.start() for remote in self.work_remotes: remote.close() self.remotes[0].send(('get_spaces_spec', None)) observation_space, action_space, self.spec = self.remotes[0].recv().x self.viewer = None VecEnv.__init__(self, nenvs, observation_space, action_space) # Get processed action dim self.is_eval = is_eval self.processed_action_dim = 1 if not is_eval: self.remotes[0].send(('processed_action_dim', None)) self.processed_action_dim = self.remotes[0].recv()[0] def step_async(self, action): self._assert_not_closed() action = np.array_split(action, self.nremotes) for remote, action in zip(self.remotes, action): remote.send(('step', action)) self.waiting = True def step_wait(self): self._assert_not_closed() results = [remote.recv() for remote in self.remotes] results = _flatten_list(results) self.waiting = False obs, rews, dones, infos = zip(*results) return _flatten_obs(obs), np.stack(rews), np.stack(dones), infos def reset(self): self._assert_not_closed() for remote in self.remotes: remote.send(('reset', None)) obs = [remote.recv() for remote in self.remotes] obs = _flatten_list(obs) return _flatten_obs(obs) def close_extras(self): self.closed = True if self.waiting: for remote in self.remotes: remote.recv() for remote in self.remotes: remote.send(('close', None)) for p in self.ps: p.join() def get_complexity_info(self): self._assert_not_closed() for remote in self.remotes: remote.send(('get_complexity_info', None)) info = [remote.recv() for remote in self.remotes] info = _flatten_list(info) return info def get_images(self): self._assert_not_closed() for remote in self.remotes: remote.send(('render', None)) imgs = [remote.recv() for remote in self.remotes] imgs = _flatten_list(imgs) return imgs def render_to_screen(self): self._assert_not_closed() self.remotes[0].send(('render_to_screen', None)) return self.remotes[0].recv() def max_episode_steps(self): self._assert_not_closed() self.remotes[0].send(('max_episode_steps', None)) return self.remotes[0].recv() def _assert_not_closed(self): assert not self.closed, "Trying to operate on a SubprocVecEnv after calling close()" def __del__(self): if not self.closed: self.close() def _flatten_obs(obs): assert isinstance(obs, (list, tuple)) assert len(obs) > 0 if isinstance(obs[0], dict): keys = obs[0].keys() return {k: np.stack([o[k] for o in obs]) for k in keys} else: return np.stack(obs) def _flatten_list(l): assert isinstance(l, (list, tuple)) assert len(l) > 0 assert all([len(l_) > 0 for l_ in l]) return [l__ for l_ in l for l__ in l_] class ParallelAdversarialVecEnv(SubprocVecEnv): def __init__(self, env_fns, adversary=True, is_eval=False): super().__init__(env_fns, is_eval=is_eval) action_space = self.action_space if action_space.__class__.__name__ == 'Box': self.action_dim = action_space.shape[0] else: self.action_dim = 1 self.adv_action_dim = 0 if adversary: adv_action_space = self.adversary_action_space if adv_action_space.__class__.__name__ == 'Box': self.adv_action_dim = adv_action_space.shape[0] else: self.adv_action_dim = 1 def _should_expand_action(self, action, adversary=False): if not adversary: action_dim = self.action_dim else: action_dim = self.adv_action_dim # print('expanding actions?', action_dim>1, flush=True) return action_dim > 1 or self.processed_action_dim > 1 def seed_async(self, seed, index): self._assert_not_closed() self.remotes[index].send(('seed', seed)) self.waiting = True def seed_wait(self, index): self._assert_not_closed() obs = self.remotes[index].recv() self.waiting = False return obs def seed(self, seed, index): self.seed_async(seed, index) return self.seed_wait(index) def level_seed_async(self, index): self._assert_not_closed() self.remotes[index].send(('level_seed', None)) self.waiting = True def level_seed_wait(self, index): self._assert_not_closed() level_seed = self.remotes[index].recv() self.waiting = False return level_seed def level_seed(self, index): self.level_seed_async(index) return self.level_seed_wait(index) # step_adversary def step_adversary(self, action): if self._should_expand_action(action, adversary=True): action = np.expand_dims(action, 1) self.step_adversary_async(action) return self.step_wait() def step_adversary_async(self, action): self._assert_not_closed() [remote.send(('step_adversary', a)) for remote, a in zip(self.remotes, action)] self.waiting = True def step_env_async(self, action): self._assert_not_closed() if self._should_expand_action(action): action = np.expand_dims(action, 1) [remote.send(('step_env', a)) for remote, a in zip(self.remotes, action)] self.waiting = True def step_env_reset_random_async(self, action): self._assert_not_closed() if self._should_expand_action(action): action = np.expand_dims(action, 1) [remote.send(('step_env_reset_random', a)) for remote, a in zip(self.remotes, action)] self.waiting = True # reset_agent def reset_agent(self): self._assert_not_closed() [remote.send(('reset_agent', None)) for remote in self.remotes] self.waiting = True obs = [remote.recv() for remote in self.remotes] self.waiting = False obs = _flatten_list(obs) return _flatten_obs(obs) # reset_random def reset_random(self): self._assert_not_closed() [remote.send(('reset_random', None)) for remote in self.remotes] self.waiting = True obs = [remote.recv() for remote in self.remotes] self.waiting = False obs = _flatten_list(obs) return _flatten_obs(obs) # reset_to_level def reset_to_level(self, level, index): self._assert_not_closed() self.remotes[index].send(('reset_to_level', level)) self.waiting = True obs = self.remotes[index].recv() self.waiting = False return _flatten_obs(obs) def reset_to_level_batch(self, level): self._assert_not_closed() [remote.send(('reset_to_level', level[i])) for i, remote in enumerate(self.remotes)] self.waiting = True obs = [remote.recv() for remote in self.remotes] self.waiting = False obs = _flatten_list(obs) return _flatten_obs(obs) # mutate level def mutate_level(self, num_edits): self._assert_not_closed() [remote.send(('mutate_level', num_edits)) for _, remote in enumerate(self.remotes)] self.waiting = True obs = [remote.recv() for remote in self.remotes] self.waiting = False obs = _flatten_list(obs) return _flatten_obs(obs) # observation_space def get_observation_space(self): self._assert_not_closed() self.remotes[0].send(('observation_space', None)) obs_space = self.remotes[0].recv() if hasattr(obs_space, 'spaces'): obs_space = obs_space.spaces return obs_space # adversary_observation_space def get_adversary_observation_space(self): self._assert_not_closed() self.remotes[0].send(('adversary_observation_space', None)) obs_space = self.remotes[0].recv() if hasattr(obs_space, 'spaces'): obs_space = obs_space.spaces return obs_space def get_adversary_action_space(self): self._assert_not_closed() self.remotes[0].send(('adversary_action_space', None)) action_dim = self.remotes[0].recv() return action_dim def get_max_episode_steps(self): self._assert_not_closed() self.remotes[0].send(('max_episode_steps', None)) self.waiting = True max_episode_steps = self.remotes[0].recv() self.waiting = False return max_episode_steps # Generic getter def remote_attr(self, name, data=None, flatten=False, index=None): self._assert_not_closed() if index is None or len(index) == 0: remotes = self.remotes else: remotes = [self.remotes[i] for i in index] if hasattr(data, '__len__'): assert len(data) == len(remotes) [remote.send((name, d)) for remote, d in zip(remotes, data)] else: [remote.send((name, data)) for remote in remotes] self.waiting = True result = [remote.recv() for remote in remotes] self.waiting = False return _flatten_list(result) if flatten else result def get_seed(self): return self.remote_attr('seed_value', flatten=True) def set_seed(self, seeds): return self.remote_attr('seed', data=seeds, flatten=True) def get_level(self): levels = self.remote_attr('level') return [l[0] for l in levels] # flatten def get_encodings(self, index=None): return self.remote_attr('encoding', flatten=True, index=index) # Navigation-specific def get_distance_to_goal(self): return self.remote_attr('distance_to_goal', flatten=True) def get_passable(self): return self.remote_attr('passable', flatten=True) def get_shortest_path_length(self): return self.remote_attr('shortest_path_length', flatten=True) # ALP-GMM-specific def reset_alp_gmm(self, levels): self._assert_not_closed() [remote.send(('reset_alp_gmm', levels[i])) for i, remote in enumerate(self.remotes)] self.waiting = True self._assert_not_closed() obs = [remote.recv() for remote in self.remotes] self.waiting = False obs = _flatten_list(obs) return _flatten_obs(obs) # === Multigrid-specific === def get_num_blocks(self): return self.remote_attr('n_clutter_placed', flatten=True) def __getattr__(self, name): if name == 'observation_space': return self.get_observation_space() elif name == 'adversary_observation_space': return self.get_adversary_observation_space() elif name == 'adversary_action_space': return self.get_adversary_action_space() elif name == 'max_steps': return self.get_max_steps() else: return self.__getattribute__(name)
dcd-main
envs/wrappers/parallel_wrappers.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from collections import deque import numpy as np import torch import gym from .vec_env import VecEnvWrapper class CarRacingWrapper(gym.Wrapper): def __init__(self, env, grayscale=True, reward_shaping=True, sparse_rewards=False, early_termination=True, timelimit_bonus=True, num_action_repeat=8, nstack=1, channel_first=False, crop=True, eval_=False): super().__init__(env) self.eval_ = eval_ self.grayscale = grayscale self.reward_shaping = reward_shaping self.sparse_rewards = sparse_rewards self.num_action_repeat = num_action_repeat self.early_termination = early_termination self.timelimit_bonus = timelimit_bonus self.crop = crop self.nstack = nstack self.channel_first = channel_first self.reset_reward_history() self.set_observation_space() if self.sparse_rewards: self.accumulated_rewards = 0.0 def reset_reward_history(self): if self.early_termination: self.reward_history = deque([0]*100,maxlen=100) if self.sparse_rewards: self.accumulated_rewards = 0.0 def _preprocess(self, obs): # Crop if self.crop: obs = obs[:-12, 6:-6] # Grayscale if self.grayscale: obs = np.expand_dims(np.dot(obs[..., :], [0.299, 0.587, 0.114]), -1) obs = obs/128. - 1. return obs @property def _average_reward(self): return np.mean(self.reward_history) def _reset_stack(self, obs): if self.nstack > 1: self.stack = [obs] * self.nstack # four frames for decision obs = np.concatenate(self.stack, axis=-1) return obs def _transpose(self, obs): if self.channel_first: obs = np.swapaxes(obs, 0, 2) obs = np.swapaxes(obs, 1, 2) return obs # Public interface def reset(self): self.reset_reward_history() if self.eval_: obs = self.env.reset() obs = self._preprocess(obs) obs = self._reset_stack(obs) obs = self._transpose(obs) return obs else: return self.env.reset() def reset_random(self): self.reset_reward_history() obs = self.env.reset_random() obs = self._preprocess(obs) obs = self._reset_stack(obs) obs = self._transpose(obs) return obs def reset_agent(self): self.reset_reward_history() obs = self.env.reset_agent() obs = self._preprocess(obs) obs = self._reset_stack(obs) obs = self._transpose(obs) return obs def reset_to_level(self, level): self.reset_reward_history() obs = self.env.reset_to_level(level) obs = self._preprocess(obs) obs = self._reset_stack(obs) obs = self._transpose(obs) return obs def step(self, action): done = False total_reward = 0 for i in range(self.num_action_repeat): obs, reward, die, info = self.env.step(action) if self.reward_shaping: # Don't penalize "done state" if die: if self.timelimit_bonus: reward += 100 # Green penalty if np.mean(obs[:, :, 1]) > 185.0: reward -= 0.05 if self.early_termination: self.reward_history.append(reward) done = True if self._average_reward <= -0.1 else False total_reward += reward # If no reward recently, end the episode if done or die: break obs = self._preprocess(obs) if self.nstack > 1: self.stack.pop(0) self.stack.append(obs) obs = np.concatenate(self.stack, axis=-1) obs = self._transpose(obs) if self.sparse_rewards: if self.env.goal_reached: revealed_reward = self.accumulated_rewards self.accumulated_rewards = 0.0 else: self.accumulated_rewards += total_reward revealed_reward = 0.0 else: revealed_reward = total_reward # obs = np.expand_dims(obs, 0) return obs, revealed_reward, done or die, info def set_observation_space(self): obs_space = self.env.observation_space num_channels = 1 if self.grayscale else 3 if self.nstack > 1: num_channels *= self.nstack # Cropped and potentially grayscaled observation if self.crop: obs_shape = (obs_space.shape[0] - 12, obs_space.shape[1] - 12, num_channels) else: obs_shape = (obs_space.shape[0], obs_space.shape[1], num_channels) if self.channel_first: obs_shape = (obs_shape[2], obs_shape[0], obs_shape[1]) self.observation_space = gym.spaces.Box( low=-1, high=1, shape=obs_shape, dtype='float32') return self.observation_space
dcd-main
envs/wrappers/car_racing_wrappers.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import gym from envs.registration import register as gym_register env_list = [] def register(env_id, entry_point, reward_threshold=0.95, max_episode_steps=None): assert env_id.startswith("MultiGrid-") if env_id in env_list: del gym.envs.registry.env_specs[id] else: env_list.append(id) kwargs = dict( id=env_id, entry_point=entry_point, reward_threshold=reward_threshold ) if max_episode_steps: kwargs.update({'max_episode_steps':max_episode_steps}) gym_register(**kwargs)
dcd-main
envs/bipedalwalker/register.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import gym import time import numpy as np import torch from gym.envs.box2d import BipedalWalker, BipedalWalkerHardcore from .walker_env import EnvConfig, BipedalWalkerCustom from envs.registration import register as gym_register """ actions 1. ground_roughness 2,3. pit_gap stump_width (fixed) 4,5. stump_height stump_float (fixed) 6,7 stair_height stair_width (fixed) 8 stair_steps """ PARAM_RANGES_DEBUG = { 1: [0,0.01], # ground roughness 2: [0,0], # pit gap 1 3: [0.01,0.01], # pit gap 2 4: [0,0], # stump height 1 5: [0.01,0.01], # stump height 2 6: [0,0], # stair height 1 7: [0.01,0.01], # stair height 2 8: [1,1], # stair steps } PARAM_RANGES_EASY = { 1: [0,0.6], # ground roughness 2: [0,0], # pit gap 1 3: [0.8,0.8], # pit gap 2 4: [0,0], # stump height 1 5: [0.4,0.4], # stump height 2 6: [0,0], # stair height 1 7: [0.4,0.4], # stair height 2 8: [1,1], # stair steps } PARAM_RANGES_FULL = { 1: [0,10], # ground roughness 2: [0,10], # pit gap 1 3: [0,10], # pit gap 2 4: [0,5], # stump height 1 5: [0,5], # stump height 2 6: [0,5], # stair height 1 7: [0,5], # stair height 2 8: [1,9], # stair steps } PARAM_MUTATIONS = { 1: [0,0.6], # ground roughness 2: [0.4], # pit gap 1 3: [0.4], # pit gap 2 4: [0.2], # stump height 1 5: [0.2], # stump height 2 6: [0.2], # stair height 1 7: [0.2], # stair height 2 8: [1], # stair steps } DEFAULT_LEVEL_PARAMS_VEC = [0,0,10,0,5,0,5,9] STUMP_WIDTH_RANGE = [1, 2] STUMP_FLOAT_RANGE = [0, 1] STAIR_WIDTH_RANGE = [4, 5] def rand_int_seed(): return int.from_bytes(os.urandom(4), byteorder="little") class BipedalWalkerAdversarialEnv(BipedalWalkerCustom): def __init__(self, mode='full', poet=False, random_z_dim=10, seed=0): self.mode = mode self.level_seed = seed self.poet = poet # POET didn't use the stairs, not clear why default_config = EnvConfig( name='default_conf', ground_roughness=0, pit_gap=[0,10], stump_width=[4,5], stump_height=[0,5], stump_float=[0,1], stair_height=[0,5], stair_width=[4,5], stair_steps=[1]) super().__init__(default_config, seed=seed) if self.poet: self.adversary_max_steps = 5 else: self.adversary_max_steps = 8 self.random_z_dim = random_z_dim self.passable = True # Level vec is the *tunable* UED params self.level_params_vec = DEFAULT_LEVEL_PARAMS_VEC if self.poet: self.level_params_vec = self.level_params_vec[:5] self._update_params(self.level_params_vec) if poet: self.mutations = {k:v for k,v in list(PARAM_MUTATIONS.items())[:5]} else: self.mutations = PARAM_MUTATIONS n_u_chars = max(12, len(str(rand_int_seed()))) self.encoding_u_chars = np.dtype(('U', n_u_chars)) # Fixed params self.stump_width = STUMP_WIDTH_RANGE self.stump_float = STUMP_FLOAT_RANGE self.stair_width = STAIR_WIDTH_RANGE # Create spaces for adversary agent's specs. self.adversary_action_dim = 1 self.adversary_action_space = gym.spaces.Box(low=-1, high=1, shape=(1,), dtype=np.float32) self.adversary_ts_obs_space = \ gym.spaces.Box( low=0, high=self.adversary_max_steps, shape=(1,), dtype='uint8') self.adversary_randomz_obs_space = \ gym.spaces.Box( low=0, high=1.0, shape=(random_z_dim,), dtype=np.float32) self.adversary_image_obs_space = \ gym.spaces.Box( low=0, high=10.0, shape=(len(self.level_params_vec),), dtype=np.float32) self.adversary_observation_space = \ gym.spaces.Dict({ 'image': self.adversary_image_obs_space, 'time_step': self.adversary_ts_obs_space, 'random_z': self.adversary_randomz_obs_space}) def reset(self): self.step_count = 0 self.adversary_step_count = 0 # Reset to default parameters self.level_params_vec = DEFAULT_LEVEL_PARAMS_VEC if self.poet: self.level_params_vec = self.level_params_vec[:5] self._update_params(self.level_params_vec) self.level_seed = rand_int_seed() obs = { 'image': self.get_obs(), 'time_step': [self.adversary_step_count], 'random_z': self.generate_random_z() } return obs def get_obs(self): ## vector of *tunable* environment params obs = [] obs += [self.ground_roughness] obs += self.pit_gap obs += self.stump_height if not self.poet: obs += self.stair_height obs += self.stair_steps return np.array(obs) def reset_agent(self): super().seed(self.level_seed) obs = super()._reset_env() return obs def _update_params(self, level_params_vec): self.ground_roughness = level_params_vec[0] self.pit_gap = [level_params_vec[1],level_params_vec[2]] self.pit_gap.sort() self.stump_height = [level_params_vec[3],level_params_vec[4]] self.stump_height.sort() if self.poet: self.stair_height = [] self.stair_steps = [] else: self.stair_height = [level_params_vec[5],level_params_vec[6]] self.stair_height.sort() self.stair_steps = [int(round(level_params_vec[7]))] def get_complexity_info(self): complexity_info = { 'ground_roughness': self.ground_roughness, 'pit_gap_low': self.pit_gap[0], 'pit_gap_high': self.pit_gap[1], 'stump_height_low': self.stump_height[0], 'stump_height_high': self.stump_height[1] } if not self.poet: complexity_info['stair_height_low'] = self.stair_height[0] complexity_info['stair_height_high'] = self.stair_height[1] complexity_info['stair_steps'] = self.stair_steps[0] return complexity_info def get_config(self): """ Gets the config to use to create the level. If the range is zer or below a min threshold, we put blank entries. """ if self.stump_height[1] < 0.2: stump_height = [] stump_width = [] stump_float = [] else: stump_height = self.stump_height stump_width = self.stump_width stump_float = self.stump_float if self.pit_gap[1] < 0.8: pit_gap = [] else: pit_gap = self.pit_gap if self.poet: stair_height = [] stair_width = [] stair_steps = [] elif self.stair_height[1] < 0.2: stair_height = [] stair_width = [] stair_steps = [] else: stair_height = self.stair_height stair_width = self.stair_width stair_steps = self.stair_steps # get the current config config = EnvConfig( name='config', ground_roughness=self.ground_roughness, pit_gap=pit_gap, stump_width=stump_width, stump_height=stump_height, stump_float=stump_float, stair_height=stair_height, stair_width=stair_width, stair_steps=stair_steps) return config def _reset_env_config(self): """ Resets the environment based on current level encoding. """ config = self.get_config() try: super().re_init(config, self.level_seed) except AssertionError: super().re_init(config, self.level_seed+1) def reset_to_level(self, level, editing=False): self.reset() if isinstance(level, str): encoding = list(np.fromstring(level)) else: encoding = [float(x) for x in level[:-1]] + [int(level[-1])] assert len(level) == len(self.level_params_vec) + 1, \ f'Level input is the wrong length.' self.level_params_vec = encoding[:-1] self._update_params(self.level_params_vec) self._reset_env_config() self.level_seed = int(level[-1]) return self.reset_agent() @property def param_ranges(self): if self.mode == 'easy': param_ranges = PARAM_RANGES_EASY elif self.mode == 'full': param_ranges = PARAM_RANGES_FULL elif self.mode == 'debug': param_ranges = PARAM_RANGES_DEBUG else: raise ValueError("Mode must be 'easy' or 'full'") return param_ranges @property def encoding(self): enc = self.level_params_vec + [self.level_seed] enc = [str(x) for x in enc] return np.array(enc, dtype=self.encoding_u_chars) @property def level(self): return self.encoding def reset_random(self): """ Must reset randomly as step_adversary would otherwise do """ # action will be between [-1,1] # this maps to a range, depending on the index param_ranges = self.param_ranges rand_norm_params = np.random.rand(len(param_ranges)) self.level_params_vec = \ [rand_norm_params[i]*(param_range[1]-param_range[0]) + param_range[0] for i,param_range in enumerate(param_ranges.values())] self._update_params(self.level_params_vec) self.level_seed = rand_int_seed() self._reset_env_config() return self.reset_agent() def reset_alp_gmm(self, level): self.reset() level = list(level) param_ranges = self.param_ranges for idx, action in enumerate(level): val_range = param_ranges[idx + 1] action -= 1 value = ((action + 1)/2) * (val_range[1]-val_range[0]) + val_range[0] # update the level vec self.level_params_vec[idx] = value self.level_seed = rand_int_seed() self._update_params(self.level_params_vec) self._reset_env_config() obs = { 'image': self.level_params_vec, 'time_step': [self.adversary_step_count], 'random_z': self.generate_random_z() } return obs @property def processed_action_dim(self): return 1 def generate_random_z(self): return np.random.uniform(size=(self.random_z_dim,)).astype(np.float32) def mutate_level(self, num_edits=1): if num_edits > 0: # Perform mutations on current level vector param_ranges = self.param_ranges edit_actions = np.random.randint(1, len(self.mutations) + 1, num_edits) edit_dirs = np.random.randint(0, 3, num_edits) - 1 # Update level_params_vec for a,d in zip(edit_actions, edit_dirs): mutation_range = self.mutations[a] if len(mutation_range) == 1: mutation = d*mutation_range[0] elif len(mutation_range) == 2: mutation = d*np.random.uniform(*mutation_range) self.level_params_vec[a-1] = \ np.clip(self.level_params_vec[a-1]+mutation, *PARAM_RANGES_FULL[a]) self.level_seed = rand_int_seed() self._update_params(self.level_params_vec) self._reset_env_config() return self.reset_agent() def step_adversary(self, action): # action will be between [-1,1] # this maps to a range, depending on the index param_ranges = self.param_ranges val_range = param_ranges[self.adversary_step_count+1] if torch.is_tensor(action): action = action.item() # get unnormalized value from the action value = ((action + 1)/2) * (val_range[1]-val_range[0]) + val_range[0] # update the level vec self.level_params_vec[self.adversary_step_count] = value self.adversary_step_count += 1 if self.adversary_step_count >= self.adversary_max_steps: self.level_seed = rand_int_seed() self._update_params(self.level_params_vec) self._reset_env_config() done=True else: done=False obs = { 'image': self.level_params_vec, 'time_step': [self.adversary_step_count], 'random_z': self.generate_random_z() } return obs, 0, done, {} class BipedalWalkerDev(BipedalWalker): def __init__(self, random_z_dim=5): super().__init__() self.adversary_action_space = gym.spaces.Box(low=-1, high=1, shape=(1,), dtype=np.float32) self.adversary_max_steps = 5 self.level_params_vec = [0] self.adversary_ts_obs_space = \ gym.spaces.Box( low=0, high=self.adversary_max_steps, shape=(1,), dtype='uint8') self.adversary_randomz_obs_space = \ gym.spaces.Box( low=0, high=1.0, shape=(random_z_dim,), dtype=np.float32) self.adversary_image_obs_space = \ gym.spaces.Box( low=0, high=10.0, shape=(len(self.level_params_vec),), dtype=np.float32) self.adversary_observation_space = \ gym.spaces.Dict({ 'image': self.adversary_image_obs_space, 'time_step': self.adversary_ts_obs_space, 'random_z': self.adversary_randomz_obs_space}) def reset_random(self): seed = rand_int_seed() super().seed(seed) return super().reset() def reset_agent(self): return super().reset() def step_adversary(self): pass @property def processed_action_dim(self): return 1 def get_complexity_info(self): complexity_info = { 'ground_roughness': 0, } return complexity_info class BipedalWalkerHC(BipedalWalkerHardcore): def __init__(self, random_z_dim=5, seed=0): super().__init__() self.adversary_action_space = gym.spaces.Box(low=-1, high=1, shape=(1,), dtype=np.float32) self.adversary_max_steps = 5 self.level_params_vec = [0] self.adversary_ts_obs_space = \ gym.spaces.Box( low=0, high=self.adversary_max_steps, shape=(1,), dtype='uint8') self.adversary_randomz_obs_space = \ gym.spaces.Box( low=0, high=1.0, shape=(random_z_dim,), dtype=np.float32) self.adversary_image_obs_space = \ gym.spaces.Box( low=0, high=10.0, shape=(len(self.level_params_vec),), dtype=np.float32) self.adversary_observation_space = \ gym.spaces.Dict({ 'image': self.adversary_image_obs_space, 'time_step': self.adversary_ts_obs_space, 'random_z': self.adversary_randomz_obs_space}) self.adversary_editor_action_space = gym.spaces.MultiDiscrete([3, 3]) def reset_random(self): seed = rand_int_seed() super().seed(seed) return super().reset() def reset_agent(self): return super().reset() def step_adversary(self): pass @property def processed_action_dim(self): return 1 def get_complexity_info(self): complexity_info = { 'ground_roughness': 0, } return complexity_info class BipedalWalkerFull(BipedalWalkerAdversarialEnv): def __init__(self, seed=0): super().__init__(mode='full', seed=seed) class BipedalWalkerEasy(BipedalWalkerAdversarialEnv): def __init__(self, seed=0): super().__init__(mode='easy', seed=seed) class BipedalWalkerDebug(BipedalWalkerDev): def __init__(self, seed=0): super().__init__() class BipedalWalkerPOET(BipedalWalkerAdversarialEnv): def __init__(self, seed=0): super().__init__(mode='full', poet=True, seed=seed) class BipedalWalkerEasyPOET(BipedalWalkerAdversarialEnv): def __init__(self, seed=0): super().__init__(mode='easy', poet=True, seed=seed) if hasattr(__loader__, 'name'): module_path = __loader__.name elif hasattr(__loader__, 'fullname'): module_path = __loader__.fullname gym_register(id='BipedalWalker-Adversarial-v0', entry_point=module_path + ':BipedalWalkerFull', max_episode_steps=2000) gym_register(id='BipedalWalker-Adversarial-Easy-v0', entry_point=module_path + ':BipedalWalkerEasy', max_episode_steps=2000) gym_register(id='BipedalWalker-Vanilla-v0', entry_point=module_path + ':BipedalWalkerDebug', max_episode_steps=2000) gym_register(id='BipedalWalker-HC-v0', entry_point=module_path + ':BipedalWalkerHC', max_episode_steps=2000) gym_register(id='BipedalWalker-POET-v0', entry_point=module_path + ':BipedalWalkerPOET', max_episode_steps=2000) gym_register(id='BipedalWalker-POET-Easy-v0', entry_point=module_path + ':BipedalWalkerEasyPOET', max_episode_steps=2000)
dcd-main
envs/bipedalwalker/adversarial.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from .adversarial import BipedalWalkerAdversarialEnv from .walker_test_envs import BipedalWalkerDefault import pandas as pd BIPEDALWALKER_POET_DF_COLUMNS = \ ['roughness', 'pitgap_low', 'pitgap_high', 'stumpheight_low', 'stumpheight_high', 'seed'] BIPEDALWALKER_DF_COLUMNS = \ ['roughness', 'pitgap_low', 'pitgap_high', 'stumpheight_low', 'stumpheight_high', 'stairheight_low', 'stairheight_high', 'stair_steps', 'seed'] def bipedalwalker_df_from_encodings(env_name, encodings): df = pd.DataFrame(encodings) if 'POET' in env_name: df.columns = BIPEDALWALKER_POET_DF_COLUMNS else: df.columns = BIPEDALWALKER_DF_COLUMNS return df
dcd-main
envs/bipedalwalker/__init__.py
# Copyright (c) OpenAI # # Licensed under the MIT License; # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/MIT # # This file is an extended version of # https://github.com/openai/gym/blob/master/gym/envs/box2d/bipedal_walker.py import sys import math import numpy as np import Box2D from Box2D.b2 import (edgeShape, circleShape, fixtureDef, polygonShape, revoluteJointDef, contactListener) import gym from gym import spaces from gym.utils import colorize, seeding from collections import namedtuple EnvConfig = namedtuple('EnvConfig', [ 'name', 'ground_roughness', 'pit_gap', 'stump_width', 'stump_height', 'stump_float', 'stair_height', 'stair_width', 'stair_steps' ]) FPS = 50 SCALE = 30.0 # Affects how fast-paced the game is, forces should be adjusted as well MOTORS_TORQUE = 80 SPEED_HIP = 4 SPEED_KNEE = 6 LIDAR_RANGE = 160 / SCALE INITIAL_RANDOM = 5 HULL_POLY = [ (-30, +9), (+6, +9), (+34, +1), (+34, -8), (-30, -8) ] LEG_DOWN = -8 / SCALE LEG_W, LEG_H = 8 / SCALE, 34 / SCALE VIEWPORT_W = 600 VIEWPORT_H = 400 TERRAIN_STEP = 14 / SCALE TERRAIN_LENGTH = 200 # in steps TERRAIN_HEIGHT = VIEWPORT_H / SCALE / 4 TERRAIN_GRASS = 10 # low long are grass spots, in steps TERRAIN_STARTPAD = 20 # in steps FRICTION = 2.5 HULL_FD = fixtureDef( shape=polygonShape(vertices=[(x / SCALE, y / SCALE) for x, y in HULL_POLY]), density=5.0, friction=0.1, categoryBits=0x0020, maskBits=0x001, # collide only with ground restitution=0.0) # 0.99 bouncy LEG_FD = fixtureDef( shape=polygonShape(box=(LEG_W / 2, LEG_H / 2)), density=1.0, restitution=0.0, categoryBits=0x0020, maskBits=0x001) LOWER_FD = fixtureDef( shape=polygonShape(box=(0.8 * LEG_W / 2, LEG_H / 2)), density=1.0, restitution=0.0, categoryBits=0x0020, maskBits=0x001) STAIR_HEIGHT_EPS = 1e-2 class ContactDetector(contactListener): def __init__(self, env): contactListener.__init__(self) self.env = env def BeginContact(self, contact): if self.env.hull == contact.fixtureA.body or self.env.hull == contact.fixtureB.body: self.env.game_over = True for leg in [self.env.legs[1], self.env.legs[3]]: if leg in [contact.fixtureA.body, contact.fixtureB.body]: leg.ground_contact = True def EndContact(self, contact): for leg in [self.env.legs[1], self.env.legs[3]]: if leg in [contact.fixtureA.body, contact.fixtureB.body]: leg.ground_contact = False class BipedalWalkerCustom(gym.Env): metadata = { 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': FPS } def __repr__(self): return "{}\nenv\n{}".format(self.__dict__, self.__dict__["np_random"].get_state()) def __init__(self, env_config, seed=None): self.spec = None self.set_env_config(env_config) self.env_params = None self.env_seed = seed self._seed(seed) self.viewer = None self.world = Box2D.b2World() self.terrain = None self.hull = None self.prev_shaping = None self.fd_polygon = fixtureDef( shape=polygonShape(vertices=[(0, 0), (1, 0), (1, -1), (0, -1)]), friction=FRICTION) self.fd_edge = fixtureDef( shape=edgeShape(vertices=[(0, 0), (1, 1)]), friction=FRICTION, categoryBits=0x0001, ) self._reset_env() high = np.array([np.inf] * 24) self.action_space = spaces.Box( np.array([-1, -1, -1, -1]), np.array([+1, +1, +1, +1])) self.observation_space = spaces.Box(-high, high) def re_init(self, env_config, seed): self.spec = None self.set_env_config(env_config) self._seed(seed) self.env_params = None self.world = Box2D.b2World() self.terrain = None self.hull = None self.prev_shaping = None self.fd_polygon = fixtureDef( shape=polygonShape(vertices=[(0, 0), (1, 0), (1, -1), (0, -1)]), friction=FRICTION) self.fd_edge = fixtureDef( shape=edgeShape(vertices=[(0, 0), (1, 1)]), friction=FRICTION, categoryBits=0x0001, ) self._reset_env() def set_env_config(self, env_config): self.config = env_config def augment(self, params): self.env_params = params def _set_terrain_number(self): self.hardcore = False self.GRASS = 0 self.STUMP, self.STAIRS, self.PIT = -1, -1, -1 self._STATES_ = 1 if self.config.stump_width and self.config.stump_height and self.config.stump_float: # STUMP exist self.STUMP = self._STATES_ self._STATES_ += 1 if self.config.stair_height and self.config.stair_width and self.config.stair_steps: # STAIRS exist self.STAIRS = self._STATES_ self._STATES_ += 1 if self.config.pit_gap: # PIT exist self.PIT = self._STATES_ self._STATES_ += 1 if self._STATES_ > 1: self.hardcore = True def save_env_def(self, filename): import json a = {'config': self.config._asdict(), 'seed': self.env_seed} with open(filename, 'w') as f: json.dump(a, f) def seed(self, seed=None): return self._seed(seed) def _seed(self, seed=None): self.env_seed = seed self.np_random, seed = seeding.np_random(seed) return [seed] def _destroy(self): if not self.terrain: return self.world.contactListener = None for t in self.terrain: self.world.DestroyBody(t) self.terrain = [] self.world.DestroyBody(self.hull) self.hull = None for leg in self.legs: self.world.DestroyBody(leg) self.legs = [] self.joints = [] self.world = None def _get_poly_stump(self, x, y, terrain_step): stump_width = self.np_random.randint(*self.config.stump_width) stump_height = self.np_random.uniform(*self.config.stump_height) stump_float = self.np_random.randint(*self.config.stump_float) # counter = np.ceil(stump_width) counter = stump_width countery = stump_height poly = [(x, y + stump_float * terrain_step), (x + stump_width * terrain_step, y + stump_float * terrain_step), (x + stump_width * terrain_step, y + countery * terrain_step + stump_float * terrain_step), (x, y + countery * terrain_step + stump_float * terrain_step), ] return poly def _generate_terrain(self, hardcore): #GRASS, STUMP, STAIRS, PIT, _STATES_ = range(5) state = self.GRASS velocity = 0.0 y = TERRAIN_HEIGHT counter = TERRAIN_STARTPAD oneshot = False self.terrain = [] self.terrain_x = [] self.terrain_y = [] pit_diff = 0 for i in range(TERRAIN_LENGTH): x = i * TERRAIN_STEP self.terrain_x.append(x) if state == self.GRASS and not oneshot: velocity = 0.8 * velocity + 0.01 * np.sign(TERRAIN_HEIGHT - y) if self.env_params is not None and self.env_params.altitude_fn is not None: y += velocity if i > TERRAIN_STARTPAD: mid = TERRAIN_LENGTH * TERRAIN_STEP / 2. x_ = (x - mid) * np.pi / mid y = TERRAIN_HEIGHT + self.env_params.altitude_fn((x_, ))[0] if i == TERRAIN_STARTPAD+1: y_norm = self.env_params.altitude_fn((x_, ))[0] y -= y_norm else: if i > TERRAIN_STARTPAD: velocity += self.np_random.uniform(-1, 1) / SCALE # 1 y += self.config.ground_roughness * velocity elif state == self.PIT and oneshot: pit_gap = 1.0 + self.np_random.uniform(*self.config.pit_gap) counter = np.ceil(pit_gap) pit_diff = counter - pit_gap poly = [ (x, y), (x + TERRAIN_STEP, y), (x + TERRAIN_STEP, y - 4 * TERRAIN_STEP), (x, y - 4 * TERRAIN_STEP), ] self.fd_polygon.shape.vertices = poly t = self.world.CreateStaticBody( fixtures=self.fd_polygon) t.color1, t.color2 = (1, 1, 1), (0.6, 0.6, 0.6) self.terrain.append(t) self.fd_polygon.shape.vertices = [ (p[0] + TERRAIN_STEP * pit_gap, p[1]) for p in poly] t = self.world.CreateStaticBody( fixtures=self.fd_polygon) t.color1, t.color2 = (1, 1, 1), (0.6, 0.6, 0.6) self.terrain.append(t) counter += 2 original_y = y elif state == self.PIT and not oneshot: y = original_y if counter > 1: y -= 4 * TERRAIN_STEP if counter == 1: self.terrain_x[-1] = self.terrain_x[-1] - pit_diff * TERRAIN_STEP pit_diff = 0 elif state == self.STUMP and oneshot: # Sometimes this doesnt work due to randomness, # so iterate until it does attempts = 0 done = False while not done: try: poly = self._get_poly_stump(x, y, TERRAIN_STEP) self.fd_polygon.shape.vertices = poly done = True self.env_seed -= int(attempts) except: self.seed(self.env_seed + int(1)) attempts += 1 if attempts > 10: print("Stump issues: num attempts: ", attempts) done = True t = self.world.CreateStaticBody( fixtures=self.fd_polygon) t.color1, t.color2 = (1, 1, 1), (0.6, 0.6, 0.6) self.terrain.append(t) elif state == self.STAIRS and oneshot: stair_height = self.np_random.uniform( *self.config.stair_height) stair_slope = 1 if self.np_random.rand() > 0.5 else -1 stair_width = self.np_random.randint(*self.config.stair_width) stair_steps = self.np_random.randint(*self.config.stair_steps) original_y = y if stair_height > STAIR_HEIGHT_EPS: for s in range(stair_steps): poly = [(x + (s * stair_width) * TERRAIN_STEP, y + (s * stair_height * stair_slope) * TERRAIN_STEP), (x + ((1 + s) * stair_width) * TERRAIN_STEP, y + (s * stair_height * stair_slope) * TERRAIN_STEP), (x + ((1 + s) * stair_width) * TERRAIN_STEP, y + (-stair_height + s * stair_height * stair_slope) * TERRAIN_STEP), (x + (s * stair_width) * TERRAIN_STEP, y + (-stair_height + s * stair_height * stair_slope) * TERRAIN_STEP), ] self.fd_polygon.shape.vertices = poly t = self.world.CreateStaticBody( fixtures=self.fd_polygon) t.color1, t.color2 = (1, 1, 1), (0.6, 0.6, 0.6) self.terrain.append(t) counter = stair_steps * stair_width + 1 elif state == self.STAIRS and not oneshot: s = stair_steps * stair_width - counter n = s // stair_width y = original_y + (n * stair_height * stair_slope) * TERRAIN_STEP - \ (stair_height if stair_slope == -1 else 0) * TERRAIN_STEP oneshot = False self.terrain_y.append(y) counter -= 1 if counter == 0: counter = self.np_random.randint( TERRAIN_GRASS / 2, TERRAIN_GRASS) if state == self.GRASS and hardcore: state = self.np_random.randint(1, self._STATES_) oneshot = True else: state = self.GRASS oneshot = True self.terrain_poly = [] for i in range(TERRAIN_LENGTH - 1): poly = [ (self.terrain_x[i], self.terrain_y[i]), (self.terrain_x[i + 1], self.terrain_y[i + 1]) ] self.fd_edge.shape.vertices = poly t = self.world.CreateStaticBody( fixtures=self.fd_edge) color = (0.3, 1.0 if i % 2 == 0 else 0.8, 0.3) t.color1 = color t.color2 = color self.terrain.append(t) color = (0.4, 0.6, 0.3) poly += [(poly[1][0], 0), (poly[0][0], 0)] self.terrain_poly.append((poly, color)) self.terrain.reverse() def _generate_clouds(self): # Sorry for the clouds, couldn't resist self.cloud_poly = [] for i in range(TERRAIN_LENGTH // 20): x = self.np_random.uniform(0, TERRAIN_LENGTH) * TERRAIN_STEP y = VIEWPORT_H / SCALE * 3 / 4 poly = [ (x + 15 * TERRAIN_STEP * math.sin(3.14 * 2 * a / 5) + self.np_random.uniform(0, 5 * TERRAIN_STEP), y + 5 * TERRAIN_STEP * math.cos(3.14 * 2 * a / 5) + self.np_random.uniform(0, 5 * TERRAIN_STEP)) for a in range(5)] x1 = min([p[0] for p in poly]) x2 = max([p[0] for p in poly]) self.cloud_poly.append((poly, x1, x2)) def _reset_env(self): self._destroy() self.world = Box2D.b2World() self.world.contactListener_bug_workaround = ContactDetector(self) self.world.contactListener = self.world.contactListener_bug_workaround self.game_over = False self.prev_shaping = None self.scroll = 0.0 self.lidar_render = 0 W = VIEWPORT_W / SCALE H = VIEWPORT_H / SCALE self._set_terrain_number() self._generate_terrain(self.hardcore) self._generate_clouds() init_x = TERRAIN_STEP * TERRAIN_STARTPAD / 2 init_y = TERRAIN_HEIGHT + 2 * LEG_H self.hull = self.world.CreateDynamicBody( position=(init_x, init_y), fixtures=HULL_FD ) self.hull.color1 = (0.5, 0.4, 0.9) self.hull.color2 = (0.3, 0.3, 0.5) self.hull.ApplyForceToCenter( (self.np_random.uniform(-INITIAL_RANDOM, INITIAL_RANDOM), 0), True) self.legs = [] self.joints = [] for i in [-1, +1]: leg = self.world.CreateDynamicBody( position=(init_x, init_y - LEG_H / 2 - LEG_DOWN), angle=(i * 0.05), fixtures=LEG_FD ) leg.color1 = (0.6 - i / 10., 0.3 - i / 10., 0.5 - i / 10.) leg.color2 = (0.4 - i / 10., 0.2 - i / 10., 0.3 - i / 10.) rjd = revoluteJointDef( bodyA=self.hull, bodyB=leg, localAnchorA=(0, LEG_DOWN), localAnchorB=(0, LEG_H / 2), enableMotor=True, enableLimit=True, maxMotorTorque=MOTORS_TORQUE, motorSpeed=i, lowerAngle=-0.8, upperAngle=1.1, ) self.legs.append(leg) self.joints.append(self.world.CreateJoint(rjd)) lower = self.world.CreateDynamicBody( position=(init_x, init_y - LEG_H * 3 / 2 - LEG_DOWN), angle=(i * 0.05), fixtures=LOWER_FD ) lower.color1 = (0.6 - i / 10., 0.3 - i / 10., 0.5 - i / 10.) lower.color2 = (0.4 - i / 10., 0.2 - i / 10., 0.3 - i / 10.) rjd = revoluteJointDef( bodyA=leg, bodyB=lower, localAnchorA=(0, -LEG_H / 2), localAnchorB=(0, LEG_H / 2), enableMotor=True, enableLimit=True, maxMotorTorque=MOTORS_TORQUE, motorSpeed=1, lowerAngle=-1.6, upperAngle=-0.1, ) lower.ground_contact = False self.legs.append(lower) self.joints.append(self.world.CreateJoint(rjd)) self.drawlist = self.terrain + self.legs + [self.hull] class LidarCallback(Box2D.b2.rayCastCallback): def ReportFixture(self, fixture, point, normal, fraction): if (fixture.filterData.categoryBits & 1) == 0: return -1 self.p2 = point self.fraction = fraction return fraction self.lidar = [LidarCallback() for _ in range(10)] return self._step(np.array([0, 0, 0, 0]))[0] def step(self, action): return self._step(action) def _step(self, action): # self.hull.ApplyForceToCenter((0, 20), True) -- Uncomment this to receive a bit of stability help control_speed = False # Should be easier as well if control_speed: self.joints[0].motorSpeed = float( SPEED_HIP * np.clip(action[0], -1, 1)) self.joints[1].motorSpeed = float( SPEED_KNEE * np.clip(action[1], -1, 1)) self.joints[2].motorSpeed = float( SPEED_HIP * np.clip(action[2], -1, 1)) self.joints[3].motorSpeed = float( SPEED_KNEE * np.clip(action[3], -1, 1)) else: self.joints[0].motorSpeed = float(SPEED_HIP * np.sign(action[0])) self.joints[0].maxMotorTorque = float( MOTORS_TORQUE * np.clip(np.abs(action[0]), 0, 1)) self.joints[1].motorSpeed = float(SPEED_KNEE * np.sign(action[1])) self.joints[1].maxMotorTorque = float( MOTORS_TORQUE * np.clip(np.abs(action[1]), 0, 1)) self.joints[2].motorSpeed = float(SPEED_HIP * np.sign(action[2])) self.joints[2].maxMotorTorque = float( MOTORS_TORQUE * np.clip(np.abs(action[2]), 0, 1)) self.joints[3].motorSpeed = float(SPEED_KNEE * np.sign(action[3])) self.joints[3].maxMotorTorque = float( MOTORS_TORQUE * np.clip(np.abs(action[3]), 0, 1)) self.world.Step(1.0 / FPS, 6 * 30, 2 * 30) pos = self.hull.position vel = self.hull.linearVelocity for i in range(10): self.lidar[i].fraction = 1.0 self.lidar[i].p1 = pos self.lidar[i].p2 = ( pos[0] + math.sin(1.5 * i / 10.0) * LIDAR_RANGE, pos[1] - math.cos(1.5 * i / 10.0) * LIDAR_RANGE) self.world.RayCast( self.lidar[i], self.lidar[i].p1, self.lidar[i].p2) state = [ # Normal angles up to 0.5 here, but sure more is possible. self.hull.angle, 2.0 * self.hull.angularVelocity / FPS, # Normalized to get -1..1 range 0.3 * vel.x * (VIEWPORT_W / SCALE) / FPS, 0.3 * vel.y * (VIEWPORT_H / SCALE) / FPS, # This will give 1.1 on high up, but it's still OK (and there should be spikes on hiting the ground, that's normal too) self.joints[0].angle, self.joints[0].speed / SPEED_HIP, self.joints[1].angle + 1.0, self.joints[1].speed / SPEED_KNEE, 1.0 if self.legs[1].ground_contact else 0.0, self.joints[2].angle, self.joints[2].speed / SPEED_HIP, self.joints[3].angle + 1.0, self.joints[3].speed / SPEED_KNEE, 1.0 if self.legs[3].ground_contact else 0.0 ] state += [l.fraction for l in self.lidar] assert len(state) == 24 self.scroll = pos.x - VIEWPORT_W / SCALE / 5 # moving forward is a way to receive reward (normalized to get 300 on completion) shaping = 130 * pos[0] / SCALE # keep head straight, other than that and falling, any behavior is unpunished shaping -= 5.0 * abs(state[0]) reward = 0 if self.prev_shaping is not None: reward = shaping - self.prev_shaping self.prev_shaping = shaping for a in action: reward -= 0.00035 * MOTORS_TORQUE * np.clip(np.abs(a), 0, 1) # normalized to about -50.0 using heuristic, more optimal agent should spend less done = False finish = False if self.game_over or pos[0] < 0: reward = -100 done = True if pos[0] > (TERRAIN_LENGTH - TERRAIN_GRASS) * TERRAIN_STEP: done = True finish = True return np.array(state), reward, done, {"finish": finish} def render(self, *args, **kwargs): return self._render(*args, **kwargs) def _render(self, mode='level', close=False): if close: if self.viewer is not None: self.viewer.close() self.viewer = None return from gym.envs.classic_control import rendering if self.viewer is None: self.viewer = rendering.Viewer(VIEWPORT_W, VIEWPORT_H) self.viewer.set_bounds(self.scroll, VIEWPORT_W / SCALE + self.scroll, 0, VIEWPORT_H / SCALE) self.viewer.draw_polygon([ (self.scroll, 0), (self.scroll + VIEWPORT_W / SCALE, 0), (self.scroll + VIEWPORT_W / SCALE, VIEWPORT_H / SCALE), (self.scroll, VIEWPORT_H / SCALE), ], color=(0.9, 0.9, 1.0)) for poly, x1, x2 in self.cloud_poly: if x2 < self.scroll / 2: continue if x1 > self.scroll / 2 + VIEWPORT_W / SCALE: continue self.viewer.draw_polygon( [(p[0] + self.scroll / 2, p[1]) for p in poly], color=(1, 1, 1)) for poly, color in self.terrain_poly: if poly[1][0] < self.scroll: continue if poly[0][0] > self.scroll + VIEWPORT_W / SCALE: continue self.viewer.draw_polygon(poly, color=color) self.lidar_render = (self.lidar_render + 1) % 100 i = self.lidar_render if i < 2 * len(self.lidar): l = self.lidar[i] if i < len( self.lidar) else self.lidar[len(self.lidar) - i - 1] self.viewer.draw_polyline( [l.p1, l.p2], color=(1, 0, 0), linewidth=1) for obj in self.drawlist: for f in obj.fixtures: trans = f.body.transform if type(f.shape) is circleShape: t = rendering.Transform(translation=trans * f.shape.pos) self.viewer.draw_circle( f.shape.radius, 30, color=obj.color1).add_attr(t) self.viewer.draw_circle( f.shape.radius, 30, color=obj.color2, filled=False, linewidth=2).add_attr(t) else: path = [trans * v for v in f.shape.vertices] self.viewer.draw_polygon(path, color=obj.color1) path.append(path[0]) self.viewer.draw_polyline( path, color=obj.color2, linewidth=2) flagy1 = TERRAIN_HEIGHT flagy2 = flagy1 + 50 / SCALE x = TERRAIN_STEP * 3 self.viewer.draw_polyline( [(x, flagy1), (x, flagy2)], color=(0, 0, 0), linewidth=2) f = [(x, flagy2), (x, flagy2 - 10 / SCALE), (x + 25 / SCALE, flagy2 - 5 / SCALE)] self.viewer.draw_polygon(f, color=(0.9, 0.2, 0)) self.viewer.draw_polyline(f + [f[0]], color=(0, 0, 0), linewidth=2) return_rgb_array = mode in ['rgb_array', 'level'] return self.viewer.render(return_rgb_array=mode == 'rgb_array')
dcd-main
envs/bipedalwalker/walker_env.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import gym import time import numpy as np import torch from .walker_env import EnvConfig, BipedalWalkerCustom from envs.registration import register as gym_register def get_config(name='default', ground_roughness=0, pit_gap=[], stump_width=[], stump_height=[], stump_float=[], stair_height=[], stair_width=[], stair_steps=[]): config = EnvConfig( name=name, ground_roughness=ground_roughness, pit_gap=pit_gap, stump_width=stump_width, stump_height=stump_height, stump_float=stump_float, stair_height=stair_height, stair_width=stair_width, stair_steps=stair_steps) return config class BipedalWalkerDefault(BipedalWalkerCustom): def __init__(self): config = get_config() super().__init__(env_config=config, seed=int(str(time.time() / 1000)[-3:])) def reset(self): super().seed(int(str(time.time() / 1000)[-3:])) return super()._reset_env() ## stump height class BipedalWalkerMedStumps(BipedalWalkerCustom): def __init__(self): config = get_config( stump_height=[2, 2], stump_width=[1, 2], stump_float=[0, 1] ) super().__init__(env_config=config, seed=int(str(time.time() / 1000)[-3:])) def reset(self): super().seed(int(str(time.time() / 1000)[-3:])) return super()._reset_env() class BipedalWalkerHighStumps(BipedalWalkerCustom): def __init__(self): config = get_config( stump_height=[5, 5], stump_width=[1, 2], stump_float=[0, 1] ) super().__init__(env_config=config, seed=int(str(time.time() / 1000)[-3:])) def reset(self): super().seed(int(str(time.time() / 1000)[-3:])) return super()._reset_env() ## pit gap class BipedalWalkerMedPits(BipedalWalkerCustom): def __init__(self): config = get_config( pit_gap=[5, 5] ) super().__init__(env_config=config, seed=int(str(time.time() / 1000)[-3:])) def reset(self): super().seed(int(str(time.time() / 1000)[-3:])) return super()._reset_env() class BipedalWalkerWidePits(BipedalWalkerCustom): def __init__(self): config = get_config( pit_gap=[10, 10] ) super().__init__(env_config=config, seed=int(str(time.time() / 1000)[-3:])) def reset(self): super().seed(int(str(time.time() / 1000)[-3:])) return super()._reset_env() # stair height + number of stairs class BipedalWalkerMedStairs(BipedalWalkerCustom): def __init__(self): config = get_config( stair_height=[2, 2], stair_steps=[5], stair_width = [4, 5] ) super().__init__(env_config=config, seed=int(str(time.time() / 1000)[-3:])) def reset(self): super().seed(int(str(time.time() / 1000)[-3:])) return super()._reset_env() class BipedalWalkerHighStairs(BipedalWalkerCustom): def __init__(self): config = get_config( stair_height=[5, 5], stair_steps=[9], stair_width=[4, 5] ) super().__init__(env_config=config, seed=int(str(time.time() / 1000)[-3:])) def reset(self): super().seed(int(str(time.time() / 1000)[-3:])) return super()._reset_env() # ground roughness class BipedalWalkerMedRoughness(BipedalWalkerCustom): def __init__(self): config = get_config( ground_roughness=5 ) super().__init__(env_config=config, seed=int(str(time.time() / 1000)[-3:])) def reset(self): super().seed(int(str(time.time() / 1000)[-3:])) return super()._reset_env() class BipedalWalkerHighRoughness(BipedalWalkerCustom): def __init__(self): config = get_config( ground_roughness=9 ) super().__init__(env_config=config, seed=int(str(time.time() / 1000)[-3:])) def reset(self): super().seed(int(str(time.time() / 1000)[-3:])) return super()._reset_env() # everything maxed out class BipedalWalkerInsane(BipedalWalkerCustom): def __init__(self): config = get_config( stump_height=[5, 5], stump_width=[1, 2], stump_float=[0, 1], pit_gap=[10, 10], stair_height=[5, 5], stair_steps=[9], stair_width=[4, 5], ground_roughness=9 ) super().__init__(env_config=config, seed=int(str(time.time() / 1000)[-3:])) def reset(self): super().seed(int(str(time.time() / 1000)[-3:])) return super()._reset_env() ## PCG "Extremely Challenging" Env # First samples params, then generates level class BipedalWalkerXChal(BipedalWalkerCustom): def __init__(self): config = get_config( stump_height=[], stump_width=[], stump_float=[], pit_gap=[], stair_height=[], stair_steps=0, stair_width=[], ground_roughness=0 ) super().__init__(env_config=config, seed=int(str(time.time() / 1000)[-3:])) def reset(self): self.level_seed = int(str(time.time() / 1000)[-3:]) super().seed(self.level_seed) stump_high = np.random.uniform(2.4, 3) gap_high = np.random.uniform(6, 8) roughness = np.random.uniform(4.5, 8) config = get_config( stump_height=[0, stump_high], stump_width=[1, 2], stump_float=[0, 1], pit_gap=[0, gap_high], stair_height=[], stair_steps=0, stair_width=[], ground_roughness=roughness) super().re_init(config, self.level_seed) return super()._reset_env() ## POET Rose roses = { '1a': [5.6, 2.4, 2.82, 6.4, 4.48], '1b': [5.44, 1.8, 2.82, 6.72, 4.48], '2a': [7.2, 1.98, 2.82, 7.2, 5.6], '2b': [5.76, 2.16, 2.76, 7.2, 1.6], '3a': [5.28, 1.98, 2.76, 7.2, 4.8], '3b': [4.8, 2.4, 2.76, 4.48, 4.8] } class BipedalWalkerPOETRose(BipedalWalkerCustom): def __init__(self, rose_id='1a'): id = roses[rose_id] config = get_config( stump_height=[id[1], id[2]], stump_width=[1, 2], stump_float=[0, 1], pit_gap=[id[4], id[3]], stair_height=[], stair_steps=[], stair_width=[], ground_roughness=id[0] ) super().__init__(env_config=config, seed=int(str(time.time() / 1000)[-3:])) def reset(self): super().seed(int(str(time.time() / 1000)[-3:])) return super()._reset_env() class BipedalWalkerPOETRose1a(BipedalWalkerPOETRose): def __init__(self): super().__init__(rose_id='1a') class BipedalWalkerPOETRose1b(BipedalWalkerPOETRose): def __init__(self): super().__init__(rose_id='1b') class BipedalWalkerPOETRose2a(BipedalWalkerPOETRose): def __init__(self): super().__init__(rose_id='2a') class BipedalWalkerPOETRose2b(BipedalWalkerPOETRose): def __init__(self): super().__init__(rose_id='2b') class BipedalWalkerPOETRose3a(BipedalWalkerPOETRose): def __init__(self): super().__init__(rose_id='3a') class BipedalWalkerPOETRose3b(BipedalWalkerPOETRose): def __init__(self): super().__init__(rose_id='3b') if hasattr(__loader__, 'name'): module_path = __loader__.name elif hasattr(__loader__, 'fullname'): module_path = __loader__.fullname gym_register(id='BipedalWalker-Default-v0', entry_point=module_path + ':BipedalWalkerDefault', max_episode_steps=2000) gym_register(id='BipedalWalker-Med-Roughness-v0', entry_point=module_path + ':BipedalWalkerMedRoughness', max_episode_steps=2000) gym_register(id='BipedalWalker-High-Roughness-v0', entry_point=module_path + ':BipedalWalkerHighRoughness', max_episode_steps=2000) gym_register(id='BipedalWalker-Med-StumpHeight-v0', entry_point=module_path + ':BipedalWalkerMedStumps', max_episode_steps=2000) gym_register(id='BipedalWalker-High-StumpHeight-v0', entry_point=module_path + ':BipedalWalkerHighStumps', max_episode_steps=2000) gym_register(id='BipedalWalker-Med-Stairs-v0', entry_point=module_path + ':BipedalWalkerMedStairs', max_episode_steps=2000) gym_register(id='BipedalWalker-High-Stairs-v0', entry_point=module_path + ':BipedalWalkerHighStairs', max_episode_steps=2000) gym_register(id='BipedalWalker-Med-PitGap-v0', entry_point=module_path + ':BipedalWalkerMedPits', max_episode_steps=2000) gym_register(id='BipedalWalker-Wide-PitGap-v0', entry_point=module_path + ':BipedalWalkerWidePits', max_episode_steps=2000) gym_register(id='BipedalWalker-Insane-v0', entry_point=module_path + ':BipedalWalkerInsane', max_episode_steps=2000) gym_register(id='BipedalWalker-XChal-v0', entry_point=module_path + ':BipedalWalkerXChal', max_episode_steps=2000) for id in ['1a', '1b', '2a', '2b', '3a', '3b']: gym_register(id=f'BipedalWalker-POET-Rose-{id}-v0', entry_point=module_path + f':BipedalWalkerPOETRose{id}', max_episode_steps=2000)
dcd-main
envs/bipedalwalker/walker_test_envs.py
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Multi-agent goal-seeking task with many static obstacles. """ import gym_minigrid.minigrid as minigrid from . import multigrid from . import register class ClutteredMultiGrid(multigrid.MultiGridEnv): """Goal seeking environment with obstacles.""" def __init__(self, size=15, n_agents=3, n_clutter=25, randomize_goal=True, agent_view_size=5, max_steps=250, walls_are_lava=False, **kwargs): self.n_clutter = n_clutter self.randomize_goal = randomize_goal self.walls_are_lava = walls_are_lava super().__init__(grid_size=size, max_steps=max_steps, n_agents=n_agents, agent_view_size=agent_view_size, **kwargs) def _gen_grid(self, width, height): self.grid = multigrid.Grid(width, height) self.grid.wall_rect(0, 0, width, height) if self.randomize_goal: self.place_obj(minigrid.Goal(), max_tries=100) else: self.put_obj(minigrid.Goal(), width - 2, height - 2) for _ in range(self.n_clutter): if self.walls_are_lava: self.place_obj(minigrid.Lava(), max_tries=100) else: self.place_obj(minigrid.Wall(), max_tries=100) self.place_agent() self.mission = 'get to the green square' def step(self, action): obs, reward, done, info = multigrid.MultiGridEnv.step(self, action) return obs, reward, done, info class ClutteredMultiGridSingle6x6(ClutteredMultiGrid): def __init__(self): super().__init__(n_agents=1, size=6, n_clutter=5, randomize_goal=True, agent_view_size=5, max_steps=50) class ClutteredMultiGridSingle(ClutteredMultiGrid): def __init__(self): super().__init__(n_agents=1, size=15, n_clutter=25, randomize_goal=True, agent_view_size=5, max_steps=250) class Cluttered40Minigrid(ClutteredMultiGrid): def __init__(self): super().__init__(n_agents=1, n_clutter=40, minigrid_mode=True) class Cluttered10Minigrid(ClutteredMultiGrid): def __init__(self): super().__init__(n_agents=1, n_clutter=10, minigrid_mode=True) class Cluttered50Minigrid(ClutteredMultiGrid): def __init__(self): super().__init__(n_agents=1, n_clutter=50, minigrid_mode=True) class Cluttered5Minigrid(ClutteredMultiGrid): def __init__(self): super().__init__(n_agents=1, n_clutter=5, minigrid_mode=True) class Cluttered1MinigridMini(ClutteredMultiGrid): def __init__(self): super().__init__(n_agents=1, n_clutter=1, minigrid_mode=True, size=6) class Cluttered6MinigridMini(ClutteredMultiGrid): def __init__(self): super().__init__(n_agents=1, n_clutter=6, minigrid_mode=True, size=6) class Cluttered7MinigridMini(ClutteredMultiGrid): def __init__(self): super().__init__(n_agents=1, n_clutter=7, minigrid_mode=True, size=6) class ClutteredMinigridLava(ClutteredMultiGrid): def __init__(self): super().__init__(n_agents=1, walls_are_lava=True, minigrid_mode=True) class ClutteredMinigridLavaMini(ClutteredMultiGrid): def __init__(self): super().__init__(n_agents=1, n_clutter=4, walls_are_lava=True, size=6, minigrid_mode=True) class ClutteredMinigridLavaMedium(ClutteredMultiGrid): def __init__(self): super().__init__(n_agents=1, n_clutter=15, walls_are_lava=True, size=10, minigrid_mode=True) class Cluttered15MinigridMedium(ClutteredMultiGrid): def __init__(self): super().__init__(n_agents=1, n_clutter=15, minigrid_mode=True, size=10) if hasattr(__loader__, 'name'): module_path = __loader__.name elif hasattr(__loader__, 'fullname'): module_path = __loader__.fullname register.register( env_id='MultiGrid-Cluttered-v0', entry_point=module_path + ':ClutteredMultiGrid' ) register.register( env_id='MultiGrid-Cluttered-Single-v0', entry_point=module_path + ':ClutteredMultiGridSingle' ) register.register( env_id='MultiGrid-Cluttered-Single-6x6-v0', entry_point=module_path + ':ClutteredMultiGridSingle6x6' ) register.register( env_id='MultiGrid-Cluttered40-Minigrid-v0', entry_point=module_path + ':Cluttered40Minigrid' ) register.register( env_id='MultiGrid-Cluttered10-Minigrid-v0', entry_point=module_path + ':Cluttered10Minigrid' ) register.register( env_id='MultiGrid-Cluttered50-Minigrid-v0', entry_point=module_path + ':Cluttered50Minigrid' ) register.register( env_id='MultiGrid-Cluttered5-Minigrid-v0', entry_point=module_path + ':Cluttered5Minigrid' ) register.register( env_id='MultiGrid-MiniCluttered1-Minigrid-v0', entry_point=module_path + ':Cluttered1MinigridMini' ) register.register( env_id='MultiGrid-MiniCluttered6-Minigrid-v0', entry_point=module_path + ':Cluttered6MinigridMini' ) register.register( env_id='MultiGrid-MiniCluttered7-Minigrid-v0', entry_point=module_path + ':Cluttered7MinigridMini' ) register.register( env_id='MultiGrid-Cluttered-Lava-Minigrid-v0', entry_point=module_path + ':ClutteredMinigridLava' ) register.register( env_id='MultiGrid-MiniCluttered-Lava-Minigrid-v0', entry_point=module_path + ':ClutteredMinigridLavaMini' ) register.register( env_id='MultiGrid-MediumCluttered-Lava-Minigrid-v0', entry_point=module_path + ':ClutteredMinigridLavaMedium' ) register.register( env_id='MultiGrid-MediumCluttered15-Minigrid-v0', entry_point=module_path + ':Cluttered15MinigridMedium' )
dcd-main
envs/multigrid/cluttered.py
# Copyright (c) 2019 Maxime Chevalier-Boisvert. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 import sys import numpy as np # Only ask users to install matplotlib if they actually need it try: import matplotlib.pyplot as plt except: print('To display the environment in a window, please install matplotlib, eg:') print('pip3 install --user matplotlib') sys.exit(-1) class Window: """ Window to draw a gridworld instance using Matplotlib """ def __init__(self, title): self.fig = None self.imshow_obj = None # Create the figure and axes self.fig, self.ax = plt.subplots() # Show the env name in the window title self.fig.canvas.manager.set_window_title(title) plt.axis('off') # Turn off x/y axis numbering/ticks # self.ax.set_xticks([], []) # self.ax.set_yticks([], []) # Flag indicating the window was closed self.closed = False def close_handler(evt): self.closed = True self.fig.canvas.mpl_connect('close_event', close_handler) def show_img(self, img): """ Show an image or update the image being shown """ # Show the first image of the environment if self.imshow_obj is None: self.imshow_obj = self.ax.imshow(img, interpolation='bilinear') self.imshow_obj.set_data(img) self.fig.canvas.draw() # Let matplotlib process UI events # This is needed for interactive mode to work properly plt.pause(0.001) def set_caption(self, text): """ Set/update the caption text below the image """ plt.xlabel(text) def reg_key_handler(self, key_handler): """ Register a keyboard event handler """ # Keyboard handler self.fig.canvas.mpl_connect('key_press_event', key_handler) def show(self, block=True): """ Show the window, and start an event loop """ # If not blocking, trigger interactive mode if not block: plt.ion() # Show the plot # In non-interative mode, this enters the matplotlib event loop # In interactive mode, this call does not block plt.show() def close(self): """ Close the window """ plt.close()
dcd-main
envs/multigrid/window.py
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Register MultiGrid environments with OpenAI gym.""" import gym from envs.registration import register as gym_register env_list = [] def register(env_id, entry_point, reward_threshold=0.95, max_episode_steps=None): """Register a new environment with OpenAI gym based on id.""" assert env_id.startswith("MultiGrid-") if env_id in env_list: del gym.envs.registry.env_specs[id] else: # Add the environment to the set env_list.append(id) kwargs = dict( id=env_id, entry_point=entry_point, reward_threshold=reward_threshold ) if max_episode_steps: kwargs.update({'max_episode_steps':max_episode_steps}) # Register the environment with OpenAI gym gym_register(**kwargs)
dcd-main
envs/multigrid/register.py
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """An environment which is built by a learning adversary. Has additional functions, step_adversary, and reset_agent. How to use: 1. Call reset() to reset to an empty environment 2. Call step_adversary() to place the goal, agent, and obstacles. Repeat until a done is received. 3. Normal RL loop. Use learning agent to generate actions and use them to call step() until a done is received. 4. If required, call reset_agent() to reset the environment the way the adversary designed it. A new agent can now play it using the step() function. """ import random import time import gym import gym_minigrid.minigrid as minigrid import networkx as nx from networkx import grid_graph import numpy as np from . import multigrid from . import register EDITOR_ACTION_SPACES = { 'walls_none': { 0: '-', 1: '.', }, 'walls_none_goal': { 0: '-', 1: '.', 2: 'g', }, 'walls_none_agent_goal': { 0: '-', 1: '.', 2: 'a', 3: 'g', }, } class AdversarialEnv(multigrid.MultiGridEnv): """Grid world where an adversary build the environment the agent plays. The adversary places the goal, agent, and up to n_clutter blocks in sequence. The action dimension is the number of squares in the grid, and each action chooses where the next item should be placed. """ def __init__(self, n_clutter=50, resample_n_clutter=False, size=15, agent_view_size=5, max_steps=250, goal_noise=0., random_z_dim=50, choose_goal_last=False, see_through_walls=True, seed=0, editor_actions='walls_none_agent_goal', fixed_environment=False): """Initializes environment in which adversary places goal, agent, obstacles. Args: n_clutter: The maximum number of obstacles the adversary can place. size: The number of tiles across one side of the grid; i.e. make a size x size grid. agent_view_size: The number of tiles in one side of the agent's partially observed view of the grid. max_steps: The maximum number of steps that can be taken before the episode terminates. goal_noise: The probability with which the goal will move to a different location than the one chosen by the adversary. random_z_dim: The environment generates a random vector z to condition the adversary. This gives the dimension of that vector. choose_goal_last: If True, will place the goal and agent as the last actions, rather than the first actions. """ self.agent_start_pos = None self.goal_pos = None self.n_clutter = n_clutter self.resample_n_clutter = resample_n_clutter self.goal_noise = goal_noise self.random_z_dim = random_z_dim self.choose_goal_last = choose_goal_last # Add two actions for placing the agent and goal. self.n_clutter_sampled = False self.adversary_max_steps = self.n_clutter + 2 super().__init__( n_agents=1, minigrid_mode=True, grid_size=size, max_steps=max_steps, agent_view_size=agent_view_size, see_through_walls=see_through_walls, # Set this to True for maximum speed competitive=True, seed=seed, fixed_environment=fixed_environment, ) # Metrics self.reset_metrics() self.editor_actions = list(EDITOR_ACTION_SPACES[editor_actions].values()) # Create spaces for adversary agent's specs. self.adversary_action_dim = (size - 2)**2 self.adversary_action_space = gym.spaces.Discrete(self.adversary_action_dim) self.adversary_ts_obs_space = gym.spaces.Box( low=0, high=self.adversary_max_steps, shape=(1,), dtype='uint8') self.adversary_randomz_obs_space = gym.spaces.Box( low=0, high=1.0, shape=(random_z_dim,), dtype=np.float32) self.adversary_image_obs_space = gym.spaces.Box( low=0, high=255, shape=(self.width, self.height, 3), dtype='uint8') # Adversary observations are dictionaries containing an encoding of the # grid, the current time step, and a randomly generated vector used to # condition generation (as in a GAN). self.adversary_observation_space = gym.spaces.Dict( {'image': self.adversary_image_obs_space, 'time_step': self.adversary_ts_obs_space, 'random_z': self.adversary_randomz_obs_space}) # NetworkX graph used for computing shortest path self.graph = grid_graph(dim=[size-2, size-2]) self.wall_locs = [] def _resample_n_clutter(self): n_clutter = np.random.randint(0, self.n_clutter) self.adversary_max_steps = n_clutter + 2 self.n_clutter_sampled = True return n_clutter @property def processed_action_dim(self): return 1 @property def encoding(self): return self.grid.encode() def _gen_grid(self, width, height): """Grid is initially empty, because adversary will create it.""" # Create an empty grid self.grid = multigrid.Grid(width, height) # Generate the surrounding walls self.grid.wall_rect(0, 0, width, height) def get_goal_x(self): if self.goal_pos is None: return -1 return self.goal_pos[0] def get_goal_y(self): if self.goal_pos is None: return -1 return self.goal_pos[1] def reset_metrics(self): self.distance_to_goal = -1 self.n_clutter_placed = 0 self.passable = -1 self.shortest_path_length = (self.width - 2) * (self.height - 2) + 1 def compute_metrics(self): self.n_clutter_placed = self._count_walls() self.compute_shortest_path() def reset(self): """Fully resets the environment to an empty grid with no agent or goal.""" self.graph = grid_graph(dim=[self.width-2, self.height-2]) self.wall_locs = [] self.step_count = 0 self.adversary_step_count = 0 if self.resample_n_clutter: self.n_clutter_sampled = False self.agent_start_dir = self._rand_int(0, 4) # Current position and direction of the agent self.reset_agent_status() self.agent_start_pos = None self.goal_pos = None self.done = False # Extra metrics self.reset_metrics() # Generate the grid. Will be random by default, or same environment if # 'fixed_environment' is True. self._gen_grid(self.width, self.height) image = self.grid.encode() obs = { 'image': image, 'time_step': [self.adversary_step_count], 'random_z': self.generate_random_z() } return obs def reset_agent_status(self): """Reset the agent's position, direction, done, and carrying status.""" self.agent_pos = [None] * self.n_agents self.agent_dir = [self.agent_start_dir] * self.n_agents self.done = [False] * self.n_agents self.carrying = [None] * self.n_agents def reset_agent(self): """Resets the agent's start position, but leaves goal and walls.""" # Remove the previous agents from the world for a in range(self.n_agents): if self.agent_pos[a] is not None: self.grid.set(self.agent_pos[a][0], self.agent_pos[a][1], None) # Current position and direction of the agent self.reset_agent_status() if self.agent_start_pos is None: raise ValueError('Trying to place agent at empty start position.') else: self.place_agent_at_pos(0, self.agent_start_pos, rand_dir=False) for a in range(self.n_agents): assert self.agent_pos[a] is not None assert self.agent_dir[a] is not None # Check that the agent doesn't overlap with an object start_cell = self.grid.get(*self.agent_pos[a]) if not (start_cell.type == 'agent' or start_cell is None or start_cell.can_overlap()): raise ValueError('Wrong object in agent start position.') # Step count since episode start self.step_count = 0 # Return first observation obs = self.gen_obs() return obs def reset_to_level(self, level): self.reset() if isinstance(level, str): actions = [int(a) for a in level.split()] if self.resample_n_clutter: self.adversary_max_steps = len(actions) for a in actions: obs, _, done, _ = self.step_adversary(a) if done: obs = self.reset_agent() else: # reset based on encoding obs = self.reset_to_encoding(level) return obs def reset_to_encoding(self, encoding): self.grid.set_encoding(encoding, multigrid_env=self) self.compute_metrics() return self.reset_agent() def _clean_loc(self, x,y): # Remove any walls self.remove_wall(x, y) # print(f'cleaning loc {x}, {y}', flush=True) if isinstance(self.grid.get(x,y), minigrid.Goal): self.goal_pos = None elif isinstance(self.grid.get(x,y), multigrid.Agent): self.agent_start_pos = None self.grid.set(x, y, None) def _free_xy_from_mask(self, free_mask): free_idx = free_mask.flatten().nonzero()[0] free_loc = np.random.choice(free_idx) mask_w, mask_h = free_mask.shape x = free_loc % mask_w y = free_loc // mask_w return x,y def mutate_level(self, num_edits=1): """ Mutate the current level: - Select num_edits locations (with replacement). - Take the unique set of locations, which can be < num_edits. - Choose a unique entity for each location. - Place entities in each location. - Place goal and agent if they do not exist. """ num_tiles = (self.width-2)*(self.height-2) edit_locs = list(set(np.random.randint(0, num_tiles, num_edits))) action_idx = np.random.randint(0, len(self.editor_actions), len(edit_locs)) actions = [self.editor_actions[i] for i in action_idx] free_mask = ~self.wall_mask free_mask[self.agent_start_pos[1]-1, self.agent_start_pos[0]-1] = False free_mask[self.goal_pos[1]-1, self.goal_pos[0]-1] = False for loc, a in zip(edit_locs, actions): x = loc % (self.width - 2) + 1 y = loc // (self.width - 2) + 1 self._clean_loc(x,y) if a == '-': self.put_obj(minigrid.Wall(), x, y) self.wall_locs.append((x-1, y-1)) self.n_clutter_placed += 1 free_mask[y-1,x-1] = False elif a == '.': self.remove_wall(x, y) self.grid.set(x, y, None) free_mask[y-1,x-1] = True elif a == 'a': if self.agent_start_pos is not None: ax,ay = self.agent_start_pos self.grid.set(ax, ay, None) free_mask[ay-1,ax-1] = True self.place_one_agent(0, top=(x,y), size=(1,1)) self.agent_start_pos = np.array((x,y)) free_mask[y-1,x-1] = False elif a == 'g': if self.goal_pos is not None: gx,gy = self.goal_pos self.grid.set(gx, gy, None) free_mask[gy-1,gx-1] = True self.put_obj(minigrid.Goal(), x, y) self.goal_pos = np.array((x,y)) free_mask[y-1,x-1] = False # Make sure goal exists if self.goal_pos is None: x,y = self._free_xy_from_mask(free_mask) free_mask[y,x] = False x += 1 y += 1 self.put_obj(minigrid.Goal(), x, y) self.goal_pos = np.array((x,y)) # Make sure agent exists if self.agent_start_pos is None: x,y = self._free_xy_from_mask(free_mask) free_mask[y,x] = False x += 1 y += 1 self.place_one_agent(0, top=(x,y), size=(1,1)) self.agent_start_pos = np.array((x,y)) # Reset meta info self.graph = grid_graph(dim=[self.width-2, self.height-2]) self.step_count = 0 self.adversary_step_count = 0 self.reset_metrics() self.compute_metrics() return self.reset_agent() def remove_wall(self, x, y): if (x-1, y-1) in self.wall_locs: self.wall_locs.remove((x-1, y-1)) self.n_clutter_placed -= 1 obj = self.grid.get(x, y) if obj is not None and obj.type == 'wall': self.grid.set(x, y, None) def _count_walls(self): wall_mask = np.array( [1 if isinstance(x, minigrid.Wall) else 0 for x in self.grid.grid], dtype=np.bool)\ .reshape(self.height, self.width)[1:-1,1:-1] self.wall_mask = wall_mask num_walls = wall_mask.sum() wall_pos = list(zip(*np.nonzero(wall_mask))) self.wall_locs = [(x+1,y+1) for y,x in wall_pos] for y,x in wall_pos: self.graph.remove_node((x,y)) return num_walls def compute_shortest_path(self): if self.agent_start_pos is None or self.goal_pos is None: return self.distance_to_goal = abs( self.goal_pos[0] - self.agent_start_pos[0]) + abs( self.goal_pos[1] - self.agent_start_pos[1]) # Check if there is a path between agent start position and goal. Remember # to subtract 1 due to outside walls existing in the Grid, but not in the # networkx graph. self.passable = nx.has_path( self.graph, source=(self.agent_start_pos[0] - 1, self.agent_start_pos[1] - 1), target=(self.goal_pos[0]-1, self.goal_pos[1]-1)) if self.passable: # Compute shortest path self.shortest_path_length = nx.shortest_path_length( self.graph, source=(self.agent_start_pos[0]-1, self.agent_start_pos[1]-1), target=(self.goal_pos[0]-1, self.goal_pos[1]-1)) else: # Impassable environments have a shortest path length 1 longer than # longest possible path self.shortest_path_length = (self.width - 2) * (self.height - 2) + 1 def generate_random_z(self): return np.random.uniform(size=(self.random_z_dim,)).astype(np.float32) def step_adversary(self, loc): """The adversary gets n_clutter + 2 moves to place the goal, agent, blocks. The action space is the number of possible squares in the grid. The squares are numbered from left to right, top to bottom. Args: loc: An integer specifying the location to place the next object which must be decoded into x, y coordinates. Returns: Standard RL observation, reward (always 0), done, and info """ if loc >= self.adversary_action_dim: raise ValueError('Position passed to step_adversary is outside the grid.') # Resample block count if necessary, based on first loc if self.resample_n_clutter and not self.n_clutter_sampled: n_clutter = int((loc/self.adversary_action_dim)*self.n_clutter) self.adversary_max_steps = n_clutter + 2 self.n_clutter_sampled = True if self.adversary_step_count < self.adversary_max_steps: # Add offset of 1 for outside walls x = int(loc % (self.width - 2)) + 1 y = int(loc / (self.width - 2)) + 1 done = False if self.choose_goal_last: should_choose_goal = self.adversary_step_count == self.adversary_max_steps - 2 should_choose_agent = self.adversary_step_count == self.adversary_max_steps - 1 else: should_choose_goal = self.adversary_step_count == 0 should_choose_agent = self.adversary_step_count == 1 # print(f"{self.adversary_step_count}/{self.adversary_max_steps}", flush=True) # print(f"goal/agent = {should_choose_goal}/{should_choose_agent}", flush=True) # Place goal if should_choose_goal: # If there is goal noise, sometimes randomly place the goal if random.random() < self.goal_noise: self.goal_pos = self.place_obj(minigrid.Goal(), max_tries=100) else: self.remove_wall(x, y) # Remove any walls that might be in this loc self.put_obj(minigrid.Goal(), x, y) self.goal_pos = (x, y) # Place the agent elif should_choose_agent: self.remove_wall(x, y) # Remove any walls that might be in this loc # Goal has already been placed here if self.grid.get(x, y) is not None: # Place agent randomly self.agent_start_pos = self.place_one_agent(0, rand_dir=False) self.deliberate_agent_placement = 0 else: self.agent_start_pos = np.array([x, y]) self.place_agent_at_pos(0, self.agent_start_pos, rand_dir=False) self.deliberate_agent_placement = 1 # Place wall elif self.adversary_step_count < self.adversary_max_steps: # If there is already an object there, action does nothing if self.grid.get(x, y) is None: self.put_obj(minigrid.Wall(), x, y) self.n_clutter_placed += 1 self.wall_locs.append((x-1, y-1)) self.adversary_step_count += 1 # End of episode if self.adversary_step_count >= self.n_clutter + 2: done = True self.reset_metrics() self.compute_metrics() else: done = False image = self.grid.encode() obs = { 'image': image, 'time_step': [self.adversary_step_count], 'random_z': self.generate_random_z() } return obs, 0, done, {} def reset_random(self): if self.fixed_environment: self.seed(self.seed_value) """Use domain randomization to create the environment.""" self.graph = grid_graph(dim=[self.width-2, self.height-2]) self.step_count = 0 self.adversary_step_count = 0 # Current position and direction of the agent self.reset_agent_status() self.agent_start_pos = None self.goal_pos = None # Extra metrics self.reset_metrics() # Create empty grid self._gen_grid(self.width, self.height) # Randomly place goal self.goal_pos = self.place_obj(minigrid.Goal(), max_tries=100) # Randomly place agent self.agent_start_dir = self._rand_int(0, 4) self.agent_start_pos = self.place_one_agent(0, rand_dir=False) # Randomly place walls if self.resample_n_clutter: n_clutter = self._resample_n_clutter() else: n_clutter = int(self.n_clutter/2) # Based on original PAIRED logic for _ in range(n_clutter): self.place_obj(minigrid.Wall(), max_tries=100) self.compute_metrics() return self.reset_agent() class MiniAdversarialEnv(AdversarialEnv): def __init__(self): super().__init__(n_clutter=7, size=6, agent_view_size=5, max_steps=50) class NoisyAdversarialEnv(AdversarialEnv): def __init__(self): super().__init__(goal_noise=0.3) class MediumAdversarialEnv(AdversarialEnv): def __init__(self): super().__init__(n_clutter=30, size=10, agent_view_size=5, max_steps=200) class GoalLastAdversarialEnv(AdversarialEnv): def __init__(self, fixed_environment=False, seed=None): super().__init__(choose_goal_last=True, fixed_environment=fixed_environment, seed=seed, max_steps=250) class GoalLastAdversarialEnv30(AdversarialEnv): def __init__(self, fixed_environment=False, seed=None): super().__init__(choose_goal_last=True, n_clutter=30, fixed_environment=fixed_environment, seed=seed, max_steps=250) class GoalLastAdversarialEnv60(AdversarialEnv): def __init__(self, fixed_environment=False, seed=None): super().__init__(choose_goal_last=True, n_clutter=60, fixed_environment=fixed_environment, seed=seed, max_steps=250) class GoalLastOpaqueWallsAdversarialEnv(AdversarialEnv): def __init__(self, fixed_environment=False, seed=None): super().__init__( choose_goal_last=True, see_through_walls=False, fixed_environment=fixed_environment, seed=seed, max_steps=250) class GoalLastFewerBlocksAdversarialEnv(AdversarialEnv): def __init__(self, fixed_environment=False, seed=None): super().__init__( choose_goal_last=True, n_clutter=25, fixed_environment=fixed_environment, seed=seed, max_steps=250) class GoalLastFewerBlocksAdversarialEnv_WN(AdversarialEnv): def __init__(self, fixed_environment=False, seed=None): super().__init__( choose_goal_last=True, n_clutter=25, fixed_environment=fixed_environment, seed=seed, max_steps=250, editor_actions='walls_none') class GoalLastFewerBlocksAdversarialEnv_WNG(AdversarialEnv): def __init__(self, fixed_environment=False, seed=None): super().__init__( choose_goal_last=True, n_clutter=25, fixed_environment=fixed_environment, seed=seed, max_steps=250, editor_actions='walls_none_goal') class GoalLastVariableBlocksAdversarialEnv_WNG(AdversarialEnv): def __init__(self, fixed_environment=False, seed=None): super().__init__( choose_goal_last=True, n_clutter=60, resample_n_clutter=True, fixed_environment=fixed_environment, seed=seed, max_steps=250, editor_actions='walls_none_goal') class GoalLastVariableBlocksAdversarialEnv(AdversarialEnv): def __init__(self, fixed_environment=False, seed=None): super().__init__( choose_goal_last=True, n_clutter=60, resample_n_clutter=True, fixed_environment=fixed_environment, seed=seed, max_steps=250) class GoalLastEmptyAdversarialEnv_WNG(AdversarialEnv): def __init__(self, fixed_environment=False, seed=None): super().__init__( choose_goal_last=True, n_clutter=0, fixed_environment=fixed_environment, seed=seed, max_steps=250, editor_actions='walls_none_goal') class GoalLastFewerBlocksOpaqueWallsAdversarialEnv(AdversarialEnv): def __init__(self, fixed_environment=False, seed=None): super().__init__( choose_goal_last=True, n_clutter=25, see_through_walls=False, fixed_environment=fixed_environment, seed=seed, max_steps=250) class MiniGoalLastAdversarialEnv(AdversarialEnv): def __init__(self, fixed_environment=False, seed=None): super().__init__(n_clutter=7, size=6, agent_view_size=5, max_steps=50, choose_goal_last=True, fixed_environment=fixed_environment, seed=seed) class FixedAdversarialEnv(AdversarialEnv): def __init__(self): super().__init__(n_clutter=50, size=15, agent_view_size=5, max_steps=50, fixed_environment=True) class EmptyMiniFixedAdversarialEnv(AdversarialEnv): def __init__(self): super().__init__(n_clutter=0, size=6, agent_view_size=5, max_steps=50, fixed_environment=True) if hasattr(__loader__, 'name'): module_path = __loader__.name elif hasattr(__loader__, 'fullname'): module_path = __loader__.fullname register.register( env_id='MultiGrid-Adversarial-v0', entry_point=module_path + ':AdversarialEnv', max_episode_steps=250, ) register.register( env_id='MultiGrid-MiniAdversarial-v0', entry_point=module_path + ':MiniAdversarialEnv', max_episode_steps=50, ) register.register( env_id='MultiGrid-NoisyAdversarial-v0', entry_point=module_path + ':NoisyAdversarialEnv', max_episode_steps=250, ) register.register( env_id='MultiGrid-MediumAdversarial-v0', entry_point=module_path + ':MediumAdversarialEnv', max_episode_steps=200, ) register.register( env_id='MultiGrid-GoalLastAdversarial-v0', entry_point=module_path + ':GoalLastAdversarialEnv', max_episode_steps=250, ) register.register( env_id='MultiGrid-GoalLastOpaqueWallsAdversarial-v0', entry_point=module_path + ':GoalLastOpaqueWallsAdversarialEnv', max_episode_steps=250, ) register.register( env_id='MultiGrid-GoalLastFewerBlocksAdversarial-v0', entry_point=module_path + ':GoalLastFewerBlocksAdversarialEnv', max_episode_steps=250, ) register.register( env_id='MultiGrid-GoalLastFewerBlocksAdversarial-EditWN-v0', entry_point=module_path + ':GoalLastFewerBlocksAdversarialEnv_WN', max_episode_steps=250, ) register.register( env_id='MultiGrid-GoalLastFewerBlocksAdversarial-EditWNG-v0', entry_point=module_path + ':GoalLastFewerBlocksAdversarialEnv_WNG', max_episode_steps=250, ) register.register( env_id='MultiGrid-GoalLastVariableBlocksAdversarialEnv-v0', entry_point=module_path + ':GoalLastVariableBlocksAdversarialEnv', max_episode_steps=250, ) register.register( env_id='MultiGrid-GoalLastVariableBlocksAdversarialEnv-Edit-v0', entry_point=module_path + ':GoalLastVariableBlocksAdversarialEnv_WNG', max_episode_steps=250, ) register.register( env_id='MultiGrid-GoalLastEmptyAdversarialEnv-Edit-v0', entry_point=module_path + ':GoalLastEmptyAdversarialEnv_WNG', max_episode_steps=250, ) register.register( env_id='MultiGrid-GoalLastFewerBlocksOpaqueWallsAdversarial-v0', entry_point=module_path + ':GoalLastFewerBlocksOpaqueWallsAdversarialEnv', max_episode_steps=250, ) register.register( env_id='MultiGrid-MiniGoalLastAdversarial-v0', entry_point=module_path + ':MiniGoalLastAdversarialEnv', max_episode_steps=50, ) register.register( env_id='MultiGrid-FixedAdversarial-v0', entry_point=module_path + ':FixedAdversarialEnv', max_episode_steps=50, ) register.register( env_id='MultiGrid-EmptyMiniFixedAdversarial-v0', entry_point=module_path + ':EmptyMiniFixedAdversarialEnv', max_episode_steps=50, ) register.register( env_id='MultiGrid-GoalLastAdversarialEnv30-v0', entry_point=module_path + ':GoalLastAdversarialEnv30', max_episode_steps=50, ) register.register( env_id='MultiGrid-GoalLastAdversarialEnv60-v0', entry_point=module_path + ':GoalLastAdversarialEnv60', max_episode_steps=50, )
dcd-main
envs/multigrid/adversarial.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from .adversarial import *
dcd-main
envs/multigrid/__init__.py
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gym_minigrid.minigrid as minigrid import numpy as np from . import multigrid # from . import register import envs.registration as register class MazeEnv(multigrid.MultiGridEnv): """Single-agent maze environment specified via a bit map.""" def __init__(self, agent_view_size=5, minigrid_mode=True, max_steps=None, bit_map=None, start_pos=None, goal_pos=None, size=15): default_agent_start_x = 7 default_agent_start_y = 1 default_goal_start_x = 7 default_goal_start_y = 13 self.start_pos = np.array( [default_agent_start_x, default_agent_start_y]) if start_pos is None else start_pos self.goal_pos = ( default_goal_start_x, default_goal_start_y) if goal_pos is None else goal_pos if max_steps is None: max_steps = 2*size*size if bit_map is not None: bit_map = np.array(bit_map) if bit_map.shape != (size-2, size-2): print('Error! Bit map shape does not match size. Using default maze.') bit_map = None if bit_map is None: self.bit_map = np.array([ [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0], [0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0], [0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1], [0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0], [1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0], [1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0], [1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0], [0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0] ]) else: self.bit_map = bit_map super().__init__( n_agents=1, grid_size=size, agent_view_size=agent_view_size, max_steps=max_steps, see_through_walls=True, # Set this to True for maximum speed minigrid_mode=minigrid_mode ) def _gen_grid(self, width, height): # Create an empty grid self.grid = multigrid.Grid(width, height) # Generate the surrounding walls self.grid.wall_rect(0, 0, width, height) # Goal self.put_obj(minigrid.Goal(), self.goal_pos[0], self.goal_pos[1]) # Agent self.place_agent_at_pos(0, self.start_pos) # Walls for x in range(self.bit_map.shape[0]): for y in range(self.bit_map.shape[1]): if self.bit_map[y, x]: # Add an offset of 1 for the outer walls self.put_obj(minigrid.Wall(), x+1, y+1) class HorizontalMazeEnv(MazeEnv): """A short but non-optimal path is 80 moves.""" def __init__(self): # positions go col, row start_pos = np.array([1, 7]) goal_pos = np.array([13, 5]) bit_map = np.array([ [0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0], [0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1], [0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0], [1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0], [0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0], [0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0], [0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0], [0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0] ]) super().__init__(size=15, bit_map=bit_map, start_pos=start_pos, goal_pos=goal_pos) class Maze3Env(MazeEnv): """A short but non-optimal path is 80 moves.""" def __init__(self): # positions go col, row and indexing starts at 1 start_pos = np.array([4, 1]) goal_pos = np.array([13, 7]) bit_map = np.array([ [0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0], [0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1], [1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0], [0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0], [0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1], [0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0], [0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0], [0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0], [0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0] ]) super().__init__(size=15, bit_map=bit_map, start_pos=start_pos, goal_pos=goal_pos) class SmallCorridorEnv(MazeEnv): """A shorter backtracking env.""" def __init__(self): # positions go col, row and indexing starts at 1 start_pos = np.array([1, 7]) row = np.random.choice([6,8]) col = np.random.choice([3,5,7,9,11]) goal_pos = np.array([col,row]) bit_map = np.array([ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]) super().__init__(size=15, bit_map=bit_map, start_pos=start_pos, goal_pos=goal_pos) class LargeCorridorEnv(MazeEnv): """A long backtracking env.""" def __init__(self): # positions go col, row and indexing starts at 1 start_pos = np.array([1, 10]) row = np.random.choice([9, 11]) col = np.random.choice([3,5,7,9,11,13,15,17]) goal_pos = np.array([col,row]) bit_map = np.array([ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ]) super().__init__(size=21, bit_map=bit_map, start_pos=start_pos, goal_pos=goal_pos) class LabyrinthEnv(MazeEnv): """A short but non-optimal path is 118 moves.""" def __init__(self): # positions go col, row start_pos = np.array([1, 13]) goal_pos = np.array([7, 7]) bit_map = np.array([ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0], [0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0], [1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0] ]) super().__init__(size=15, bit_map=bit_map, start_pos=start_pos, goal_pos=goal_pos) class Labyrinth2Env(MazeEnv): """A short but non-optimal path is 118 moves.""" def __init__(self): # positions go col, row start_pos = np.array([1, 1]) goal_pos = np.array([7, 7]) bit_map = np.array([ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], [0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0], [0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0], [0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0], [0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0], [0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0], [0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]) super().__init__(size=15, bit_map=bit_map, start_pos=start_pos, goal_pos=goal_pos) class NineRoomsEnv(MazeEnv): """Can be completed in 27 moves.""" def __init__(self): # positions go col, row start_pos = np.array([2, 2]) goal_pos = np.array([12, 12]) bit_map = np.array([ [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0], [1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1], [0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0] ]) super().__init__(size=15, bit_map=bit_map, start_pos=start_pos, goal_pos=goal_pos) class NineRoomsFewerDoorsEnv(MazeEnv): """Can be completed in 27 moves.""" def __init__(self): # positions go col, row start_pos = np.array([2, 2]) goal_pos = np.array([12, 12]) bit_map = np.array([ [0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0], [1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1], [0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0] ]) super().__init__(size=15, bit_map=bit_map, start_pos=start_pos, goal_pos=goal_pos) class SixteenRoomsEnv(MazeEnv): """Can be completed in 16 moves.""" def __init__(self): # positions go col, row start_pos = np.array([2, 2]) goal_pos = np.array([12, 12]) bit_map = np.array([ [0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0], [1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0], [1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1], [0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1], [0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0] ]) super().__init__(size=15, bit_map=bit_map, start_pos=start_pos, goal_pos=goal_pos) class SixteenRoomsFewerDoorsEnv(MazeEnv): """Can be completed in 16 moves.""" def __init__(self): # positions go col, row start_pos = np.array([2, 2]) goal_pos = np.array([12, 12]) bit_map = np.array([ [0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0], [1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1], [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0], [1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1], [0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1], [0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0] ]) super().__init__(size=15, bit_map=bit_map, start_pos=start_pos, goal_pos=goal_pos) class MiniMazeEnv(MazeEnv): """A smaller maze for debugging.""" def __init__(self): start_pos = np.array([1, 1]) goal_pos = np.array([1, 3]) bit_map = np.array([ [0, 0, 0, 0], [1, 1, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1], ]) super().__init__(size=6, bit_map=bit_map, start_pos=start_pos, goal_pos=goal_pos) class MediumMazeEnv(MazeEnv): """A 10x10 Maze environment.""" def __init__(self): start_pos = np.array([5, 1]) goal_pos = np.array([3, 8]) bit_map = np.array([ [0, 1, 0, 0, 0, 1, 1, 0], [0, 1, 0, 1, 0, 1, 0, 0], [0, 1, 0, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 1, 0, 0], [1, 1, 1, 1, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 1, 0, 0, 0, 0], ]) super().__init__(size=10, bit_map=bit_map, start_pos=start_pos, goal_pos=goal_pos) if hasattr(__loader__, 'name'): module_path = __loader__.name elif hasattr(__loader__, 'fullname'): module_path = __loader__.fullname register.register( id='MultiGrid-Maze-v0', entry_point=module_path + ':MazeEnv' ) register.register( id='MultiGrid-MiniMaze-v0', entry_point=module_path + ':MiniMazeEnv' ) register.register( id='MultiGrid-MediumMaze-v0', entry_point=module_path + ':MediumMazeEnv' ) register.register( id='MultiGrid-Maze2-v0', entry_point=module_path + ':HorizontalMazeEnv' ) register.register( id='MultiGrid-Maze3-v0', entry_point=module_path + ':Maze3Env' ) register.register( id='MultiGrid-SmallCorridor-v0', entry_point=module_path + ':SmallCorridorEnv' ) register.register( id='MultiGrid-LargeCorridor-v0', entry_point=module_path + ':LargeCorridorEnv' ) register.register( id='MultiGrid-Labyrinth-v0', entry_point=module_path + ':LabyrinthEnv' ) register.register( id='MultiGrid-Labyrinth2-v0', entry_point=module_path + ':Labyrinth2Env' ) register.register( id='MultiGrid-SixteenRooms-v0', entry_point=module_path + ':SixteenRoomsEnv' ) register.register( id='MultiGrid-SixteenRoomsFewerDoors-v0', entry_point=module_path + ':SixteenRoomsFewerDoorsEnv' ) register.register( id='MultiGrid-NineRooms-v0', entry_point=module_path + ':NineRoomsEnv' ) register.register( id='MultiGrid-NineRoomsFewerDoors-v0', entry_point=module_path + ':NineRoomsFewerDoorsEnv' )
dcd-main
envs/multigrid/maze.py
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implements the multi-agent version of the Grid and MultiGridEnv classes. Note that at each step, the environment expects an array of actions equal to the number of agents with which the class was initialized. Similarly, it will return an array of observations, and an array of rewards. In the competitive version, as soon as one agent finds the goal, the game is over. In the non-competitive case, all episodes have a fixed length based on the maximum number of steps. To avoid issues with some agents finishing early and therefore requiring support for non-scalar step types, if an agent finishes before the step deadlie it will be respawned in a new location. To make the single-agent case comparable to this design, it should also run for a fixed number of steps and allow the agent to find the goal as many times as possible within this step budget. Unlike Minigrid, Multigrid does not include the string text of the 'mission' with each observation. """ import math import gym import gym_minigrid.minigrid as minigrid import gym_minigrid.rendering as rendering import numpy as np from . import window # Map of color names to RGB values AGENT_COLOURS = [ np.array([60, 182, 234]), # Blue np.array([229, 52, 52]), # Red np.array([144, 32, 249]), # Purple np.array([69, 196, 60]), # Green np.array([252, 227, 35]), # Yellow ] class WorldObj(minigrid.WorldObj): """Override MiniGrid base class to deal with Agent objects.""" def __init__(self, obj_type, color=None): assert obj_type in minigrid.OBJECT_TO_IDX, obj_type self.type = obj_type if color: assert color in minigrid.COLOR_TO_IDX, color self.color = color self.contains = None # Initial position of the object self.init_pos = None # Current position of the object self.cur_pos = None @staticmethod def decode(type_idx, color_idx, state): """Create an object from a 3-tuple state description.""" obj_type = minigrid.IDX_TO_OBJECT[type_idx] if obj_type != 'agent': color = minigrid.IDX_TO_COLOR[color_idx] if obj_type == 'empty' or obj_type == 'unseen': return None if obj_type == 'wall': v = minigrid.Wall(color) elif obj_type == 'floor': v = minigrid.Floor(color) elif obj_type == 'ball': v = minigrid.Ball(color) elif obj_type == 'key': v = minigrid.Key(color) elif obj_type == 'box': v = minigrid.Box(color) elif obj_type == 'door': # State, 0: open, 1: closed, 2: locked is_open = state == 0 is_locked = state == 2 v = Door(color, is_open, is_locked) elif obj_type == 'goal': v = minigrid.Goal() elif obj_type == 'lava': v = minigrid.Lava() elif obj_type == 'agent': v = Agent(color_idx, state) else: assert False, "unknown object type in decode '%s'" % obj_type return v class Door(minigrid.Door): """Extends minigrid Door class to multiple agents possibly carrying keys.""" def toggle(self, env, pos, carrying): # If the player has the right key to open the door if self.is_locked: if isinstance(carrying, minigrid.Key) and carrying.color == self.color: self.is_locked = False self.is_open = True return True return False self.is_open = not self.is_open return True class Agent(WorldObj): """Class to represent other agents existing in the world.""" def __init__(self, agent_id, state): super(Agent, self).__init__('agent') self.agent_id = agent_id self.dir = state def can_contain(self): """Can this contain another object?""" return True def encode(self): """Encode the a description of this object as a 3-tuple of integers.""" return (minigrid.OBJECT_TO_IDX[self.type], self.agent_id, self.dir) def render(self, img): tri_fn = rendering.point_in_triangle( (0.12, 0.19), (0.87, 0.50), (0.12, 0.81), ) # Rotate the agent based on its direction tri_fn = rendering.rotate_fn( tri_fn, cx=0.5, cy=0.5, theta=0.5 * math.pi * self.dir) color = AGENT_COLOURS[self.agent_id] rendering.fill_coords(img, tri_fn, color) class Grid(minigrid.Grid): """Extends Grid class, overrides some functions to cope with multi-agent case.""" @classmethod def render_tile(cls, obj, highlight=None, tile_size=minigrid.TILE_PIXELS, subdivs=3, cell_type=None): """Render a tile and cache the result.""" # Hash map lookup key for the cache if isinstance(highlight, list): key = (tuple(highlight), tile_size) else: key = (highlight, tile_size) key = obj.encode() + key if obj else key if key in cls.tile_cache: return cls.tile_cache[key] img = np.zeros( shape=(tile_size * subdivs, tile_size * subdivs, 3), dtype=np.uint8) # Draw the grid lines (top and left edges) rendering.fill_coords(img, rendering.point_in_rect(0, 0.031, 0, 1), (100, 100, 100)) rendering.fill_coords(img, rendering.point_in_rect(0, 1, 0, 0.031), (100, 100, 100)) if obj is not None and obj.type != 'agent': obj.render(img) # Highlight the cell if needed (do not highlight walls) if highlight and not (cell_type is not None and cell_type == 'wall'): if isinstance(highlight, list): for a, agent_highlight in enumerate(highlight): if agent_highlight: rendering.highlight_img(img, color=AGENT_COLOURS[a]) else: # Default highlighting for agent's partially observed views rendering.highlight_img(img) # Render agents after highlight to avoid highlighting agent triangle (the # combination of colours makes it difficult to ID agent) if obj is not None and obj.type == 'agent': obj.render(img) # Downsample the image to perform supersampling/anti-aliasing img = rendering.downsample(img, subdivs) # Cache the rendered tile cls.tile_cache[key] = img return img def render(self, tile_size, highlight_mask=None): """Render this grid at a given scale. Args: tile_size: Tile size in pixels. highlight_mask: An array of binary masks, showing which part of the grid should be highlighted for each agent. Can also be used in partial observation for single agent, which must be handled differently. Returns: An image of the rendered Grid. """ if highlight_mask is None: highlight_mask = np.zeros(shape=(self.width, self.height), dtype=np.bool) # Compute the total grid size width_px = self.width * tile_size height_px = self.height * tile_size img = np.zeros(shape=(height_px, width_px, 3), dtype=np.uint8) # Render the grid for y in range(0, self.height): for x in range(0, self.width): cell = self.get(x, y) cell_type = cell.type if cell else None if isinstance(highlight_mask, list): # Figure out highlighting for each agent n_agents = len(highlight_mask) highlights = [highlight_mask[a][x, y] for a in range(n_agents)] else: highlights = highlight_mask[x, y] tile_img = Grid.render_tile( cell, highlight=highlights, tile_size=tile_size, cell_type=cell_type, ) ymin = y * tile_size ymax = (y + 1) * tile_size xmin = x * tile_size xmax = (x + 1) * tile_size img[ymin:ymax, xmin:xmax, :] = tile_img return img def set_encoding(self, encoding, multigrid_env=None): assert tuple(encoding.shape[:2]) == (self.height, self.width) for i in range(self.height): for j in range(self.width): v = WorldObj.decode(*encoding[i,j,:]) if isinstance(v, Agent): v.agent_id = 0 if multigrid_env: multigrid_env.agent_start_pos = np.array((i,j), dtype=np.int64) elif isinstance(v, minigrid.Goal): if multigrid_env: multigrid_env.goal_pos = np.array((i,j), dtype=np.int64) self.set(i, j, v) @staticmethod def decode(array): """Decode an array grid encoding back into a grid.""" width, height, channels = array.shape assert channels == 3 vis_mask = np.ones(shape=(width, height), dtype=np.bool) grid = Grid(width, height) for i in range(width): for j in range(height): type_idx, color_idx, state = array[i, j] v = WorldObj.decode(type_idx, color_idx, state) grid.set(i, j, v) vis_mask[i, j] = (type_idx != minigrid.OBJECT_TO_IDX['unseen']) return grid, vis_mask def rotate_left(self): """Rotate the grid counter-clockwise, including agents within it.""" grid = Grid(self.height, self.width) for i in range(self.width): for j in range(self.height): v = self.get(i, j) # Directions are relative to the agent so must be modified if v is not None and v.type == 'agent': # Make a new agent so original grid isn't modified v = Agent(v.agent_id, v.dir) v.dir -= 1 if v.dir < 0: v.dir += 4 grid.set(j, grid.height - 1 - i, v) return grid def slice(self, top_x, top_y, width, height, agent_pos=None): """Get a subset of the grid for agents' partial observations.""" grid = Grid(width, height) for j in range(0, height): for i in range(0, width): x = top_x + i y = top_y + j if x >= 0 and x < self.width and \ y >= 0 and y < self.height: v = self.get(x, y) else: v = minigrid.Wall() grid.set(i, j, v) return grid class MultiGridEnv(minigrid.MiniGridEnv): """2D grid world game environment with multi-agent support.""" def __init__( self, grid_size=None, width=None, height=None, max_steps=100, see_through_walls=False, seed=52, agent_view_size=7, n_agents=3, competitive=False, fixed_environment=False, minigrid_mode=False ): """Constructor for multi-agent gridworld environment generator. Args: grid_size: Number of tiles for the width and height of the square grid. width: Number of tiles across grid width. height: Number of tiles in height of grid. max_steps: Number of environment steps before the episode end (max episode length). see_through_walls: True if agents can see through walls. seed: Random seed used in generating environments. agent_view_size: Number of tiles in the agent's square, partially observed view of the world. n_agents: The number of agents playing in the world. competitive: If True, as soon as one agent locates the goal, the episode ends for all agents. If False, if one agent locates the goal it is respawned somewhere else in the grid, and the episode continues until max_steps is reached. fixed_environment: If True, will use the same random seed each time the environment is generated, so it will remain constant / be the same environment each time. minigrid_mode: Set to True to maintain backwards compatibility with minigrid in the single agent case. """ # Can't set both grid_size and width/height if grid_size: assert width is None and height is None width = grid_size height = grid_size # Set the number of agents self.n_agents = n_agents # If competitive, only one agent is allowed to reach the goal. self.competitive = competitive if self.n_agents == 1: self.competitive = True # Action enumeration for this environment self.actions = MultiGridEnv.Actions # Number of cells (width and height) in the agent view self.agent_view_size = agent_view_size # Range of possible rewards self.reward_range = (0, 1) # Compute observation and action spaces # Direction always has an extra dimension for tf-agents compatibility self.direction_obs_space = gym.spaces.Box( low=0, high=3, shape=(self.n_agents,), dtype='uint8') # Maintain for backwards compatibility with minigrid. self.minigrid_mode = minigrid_mode if self.minigrid_mode: msg = 'Backwards compatibility with minigrid only possible with 1 agent' assert self.n_agents == 1, msg # Single agent case # Actions are discrete integer values self.action_space = gym.spaces.Discrete(len(self.actions)) # Images have three dimensions self.image_obs_space = gym.spaces.Box( low=0, high=255, shape=(self.agent_view_size, self.agent_view_size, 3), dtype='uint8') else: # First dimension of all observations is the agent ID self.action_space = gym.spaces.Box(low=0, high=len(self.actions)-1, shape=(self.n_agents,), dtype='int64') self.image_obs_space = gym.spaces.Box( low=0, high=255, shape=(self.n_agents, self.agent_view_size, self.agent_view_size, 3), dtype='uint8') # Observations are dictionaries containing an encoding of the grid and the # agent's direction self.observation_space = gym.spaces.Dict( {'image': self.image_obs_space, 'direction': self.direction_obs_space}) # Window to use for human rendering mode self.window = None # Environment configuration self.width = width self.height = height self.max_steps = max_steps self.see_through_walls = see_through_walls # Current position and direction of the agent self.agent_pos = [None] * self.n_agents self.agent_dir = [None] * self.n_agents # Maintain a done variable for each agent self.done = [False] * self.n_agents # Initialize the RNG self.seed(seed=seed) self.fixed_environment = fixed_environment # Initialize the state self.reset() def seed(self, seed): super().seed(seed=seed) self.seed_value = seed return [seed] def reset(self): if self.fixed_environment: self.seed(self.seed_value) # Current position and direction of the agent self.agent_pos = [None] * self.n_agents self.agent_dir = [None] * self.n_agents self.done = [False] * self.n_agents # Generate the grid. Will be random by default, or same environment if # 'fixed_environment' is True. self._gen_grid(self.width, self.height) # These fields should be defined by _gen_grid for a in range(self.n_agents): assert self.agent_pos[a] is not None assert self.agent_dir[a] is not None # Check that the agent doesn't overlap with an object start_cell = self.grid.get(*self.agent_pos[a]) assert (start_cell.type == 'agent' or start_cell is None or start_cell.can_overlap()) # Item picked up, being carried, initially nothing self.carrying = [None] * self.n_agents # Step count since episode start self.step_count = 0 # Return first observation obs = self.gen_obs() return obs def __str__(self): """Produce a pretty string of the environment's grid along with the agent. A grid cell is represented by 2-character string, the first one for the object and the second one for the color. Returns: String representation of the grid. """ # Map of object types to short string obj_to_str = { 'wall': 'W', 'floor': 'F', 'door': 'D', 'key': 'K', 'ball': 'A', 'box': 'B', 'goal': 'G', 'lava': 'V', } # Map agent's direction to short string agent_dir_to_str = {0: '>', 1: 'V', 2: '<', 3: '^'} text = '' for j in range(self.grid.height): for i in range(self.grid.width): # Draw agents agent_here = False for a in range(self.n_agents): if self.agent_pos[a] is not None and (i == self.agent_pos[a][0] and j == self.agent_pos[a][1]): text += str(a) + agent_dir_to_str[self.agent_dir[a]] agent_here = True if agent_here: continue c = self.grid.get(i, j) if c is None: text += ' ' continue if c.type == 'door': if c.is_open: text += '__' elif c.is_locked: text += 'L' + c.color[0].upper() else: text += 'D' + c.color[0].upper() continue text += obj_to_str[c.type] + c.color[0].upper() if j < self.grid.height - 1: text += '\n' return text def place_obj(self, obj, top=None, size=None, reject_fn=None, max_tries=math.inf): """Place an object at an empty position in the grid. Args: obj: Instance of Minigrid WorldObj class (such as Door, Key, etc.). top: (x,y) position of the top-left corner of rectangle where to place. size: Size of the rectangle where to place. reject_fn: Function to filter out potential positions. max_tries: Throw an error if a position can't be found after this many tries. Returns: Position where object was placed. """ if top is None: top = (0, 0) else: top = (max(top[0], 0), max(top[1], 0)) if size is None: size = (self.grid.width, self.grid.height) num_tries = 0 while True: # This is to handle with rare cases where rejection sampling # gets stuck in an infinite loop if num_tries > max_tries: raise gym.error.RetriesExceededError( 'Rejection sampling failed in place_obj') num_tries += 1 pos = np.array((self._rand_int(top[0], min(top[0] + size[0], self.grid.width)), self._rand_int(top[1], min(top[1] + size[1], self.grid.height)))) # Don't place the object on top of another object if self.grid.get(*pos) is not None: continue # Don't place the object where the agent is pos_no_good = False for a in range(self.n_agents): if np.array_equal(pos, self.agent_pos[a]): pos_no_good = True if pos_no_good: continue # Check if there is a filtering criterion if reject_fn and reject_fn(self, pos): continue break self.grid.set(pos[0], pos[1], obj) if obj is not None: obj.init_pos = pos obj.cur_pos = pos return pos def place_agent(self, top=None, size=None, rand_dir=True, max_tries=math.inf): """Set the starting point of all agents in the world. Name chosen for backwards compatibility. Args: top: (x,y) position of the top-left corner of rectangle where agents can be placed. size: Size of the rectangle where to place. rand_dir: Choose a random direction for agents. max_tries: Throw an error if a position can't be found after this many tries. """ for a in range(self.n_agents): self.place_one_agent( a, top=top, size=size, rand_dir=rand_dir, max_tries=math.inf) def place_one_agent(self, agent_id, top=None, size=None, rand_dir=True, max_tries=math.inf, agent_obj=None): """Set the agent's starting point at an empty position in the grid.""" self.agent_pos[agent_id] = None pos = self.place_obj(None, top, size, max_tries=max_tries) self.place_agent_at_pos(agent_id, pos, agent_obj=agent_obj, rand_dir=rand_dir) return pos def place_agent_at_pos(self, agent_id, pos, agent_obj=None, rand_dir=True): self.agent_pos[agent_id] = pos if rand_dir: # self.agent_dir[agent_id] = self._rand_int(0, 4) self.agent_dir[agent_id] = 0 # Place the agent object into the grid if not agent_obj: agent_obj = Agent(agent_id, self.agent_dir[agent_id]) agent_obj.init_pos = pos else: agent_obj.dir = self.agent_dir[agent_id] agent_obj.cur_pos = pos self.grid.set(pos[0], pos[1], agent_obj) @property def dir_vec(self): """Get the direction vector for the agent (points toward forward movement). Returns: An array of directions that each agent is facing. """ for a in range(self.n_agents): assert self.agent_dir[a] >= 0 and self.agent_dir[a] < 4 return [ minigrid.DIR_TO_VEC[self.agent_dir[a]] for a in range(self.n_agents) ] @property def right_vec(self): """Get the vector pointing to the right of the agents.""" return [np.array((-dy, dx)) for (dx, dy) in self.dir_vec] @property def front_pos(self): """Get the position of the cell that is right in front of the agent.""" front_pos = [None] * self.n_agents for a in range(self.n_agents): assert self.agent_pos[a] is not None and self.dir_vec[a] is not None front_pos[a] = self.agent_pos[a] + self.dir_vec[a] return front_pos def get_view_coords(self, i, j, agent_id): """Convert grid coordinates into agent's partially observed view. Translate and rotate absolute grid coordinates (i, j) into the agent's partially observable view (sub-grid). Note that the resulting coordinates may be negative or outside of the agent's view size. Args: i: Integer x coordinate. j: Integer y coordinate. agent_id: ID of the agent. Returns: Agent-centric coordinates. """ ax, ay = self.agent_pos[agent_id] dx, dy = self.dir_vec[agent_id] rx, ry = self.right_vec[agent_id] # Compute the absolute coordinates of the top-left view corner sz = self.agent_view_size hs = self.agent_view_size // 2 tx = ax + (dx * (sz - 1)) - (rx * hs) ty = ay + (dy * (sz - 1)) - (ry * hs) lx = i - tx ly = j - ty # Project the coordinates of the object relative to the top-left # corner onto the agent's own coordinate system vx = (rx * lx + ry * ly) vy = -(dx * lx + dy * ly) return vx, vy def get_view_exts(self, agent_id): """Get the extents of the square set of tiles visible to the agent. Note: the bottom extent indices are not included in the set Args: agent_id: Integer ID of the agent. Returns: Top left and bottom right (x,y) coordinates of set of visible tiles. """ # Facing right if self.agent_dir[agent_id] == 0: top_x = self.agent_pos[agent_id][0] top_y = self.agent_pos[agent_id][1] - self.agent_view_size // 2 # Facing down elif self.agent_dir[agent_id] == 1: top_x = self.agent_pos[agent_id][0] - self.agent_view_size // 2 top_y = self.agent_pos[agent_id][1] # Facing left elif self.agent_dir[agent_id] == 2: top_x = self.agent_pos[agent_id][0] - self.agent_view_size + 1 top_y = self.agent_pos[agent_id][1] - self.agent_view_size // 2 # Facing up elif self.agent_dir[agent_id] == 3: top_x = self.agent_pos[agent_id][0] - self.agent_view_size // 2 top_y = self.agent_pos[agent_id][1] - self.agent_view_size + 1 else: assert False, 'invalid agent direction' bot_x = top_x + self.agent_view_size bot_y = top_y + self.agent_view_size return (top_x, top_y, bot_x, bot_y) def relative_coords(self, x, y, agent_id): """Check if a grid position belongs to the agent's field of view. Args: x: Integer x coordinate. y: Integer y coordinate. agent_id: ID of the agent. Returns: The corresponding agent-centric coordinates of the grid position. """ vx, vy = self.get_view_coords(x, y, agent_id) if (vx < 0 or vy < 0 or vx >= self.agent_view_size or vy >= self.agent_view_size): return None return vx, vy def in_view(self, x, y, agent_id): """Check if a grid position is visible to the agent.""" return self.relative_coords(x, y, agent_id) is not None def agent_sees(self, x, y, agent_id): """Check if a non-empty grid position is visible to the agent.""" coordinates = self.relative_coords(x, y, agent_id) if coordinates is None: return False vx, vy = coordinates obs = self.gen_obs() obs_grid, _ = Grid.decode(obs['image'][agent_id]) obs_cell = obs_grid.get(vx, vy) world_cell = self.grid.get(x, y) return obs_cell is not None and obs_cell.type == world_cell.type def agent_is_done(self, agent_id): # Remove correspnding agent object from the grid pos = self.agent_pos[agent_id] agent_obj = self.grid.get(pos[0], pos[1]) self.grid.set(pos[0], pos[1], None) self.done[agent_id] = True # If an agent finishes the level while carrying an object, it is randomly # respawned in a new position. Warning: this may break dependencies for the # level (e.g. if a key is spawned on the wrong side of a door). # TODO(natashajaques): environments can define respawn behavior if self.carrying[agent_id]: self.place_obj(obj=self.carrying[agent_id]) self.carrying[agent_id] = None # Respawn agent in new location self.place_one_agent(agent_id, agent_obj=agent_obj) def move_agent(self, agent_id, new_pos): # Retrieve agent object old_pos = self.agent_pos[agent_id] agent_obj = self.grid.get(old_pos[0], old_pos[1]) assert agent_obj.agent_id == agent_id assert (agent_obj.cur_pos == old_pos).all() # Update the agent position in grid and environment self.grid.set(old_pos[0], old_pos[1], None) self.agent_pos[agent_id] = new_pos agent_obj.cur_pos = new_pos self.grid.set(new_pos[0], new_pos[1], agent_obj) assert (self.grid.get( new_pos[0], new_pos[1]).cur_pos == self.agent_pos[agent_id]).all() def rotate_agent(self, agent_id): # Retrieve agent object pos = self.agent_pos[agent_id] agent_obj = self.grid.get(pos[0], pos[1]) assert agent_obj.agent_id == agent_id # Update the dir agent_obj.dir = self.agent_dir[agent_id] self.grid.set(pos[0], pos[1], agent_obj) assert self.grid.get(pos[0], pos[1]).dir == self.agent_dir[agent_id] def step_one_agent(self, action, agent_id): reward = 0 # Get the position in front of the agent fwd_pos = self.front_pos[agent_id] # Get the contents of the cell in front of the agent fwd_cell = self.grid.get(*fwd_pos) # Rotate left if action == self.actions.left: self.agent_dir[agent_id] -= 1 if self.agent_dir[agent_id] < 0: self.agent_dir[agent_id] += 4 self.rotate_agent(agent_id) # Rotate right elif action == self.actions.right: self.agent_dir[agent_id] = (self.agent_dir[agent_id] + 1) % 4 self.rotate_agent(agent_id) # Move forward elif action == self.actions.forward: # Make sure agents can't walk into each other agent_blocking = False for a in range(self.n_agents): if a != agent_id and np.array_equal(self.agent_pos[a], fwd_pos): agent_blocking = True # Deal with object interactions if not agent_blocking: if fwd_cell is not None and fwd_cell.type == 'goal': self.agent_is_done(agent_id) reward = self._reward() elif fwd_cell is not None and fwd_cell.type == 'lava': self.agent_is_done(agent_id) elif fwd_cell is None or fwd_cell.can_overlap(): self.move_agent(agent_id, fwd_pos) # Pick up an object elif action == self.actions.pickup: if fwd_cell and fwd_cell.can_pickup(): if self.carrying[agent_id] is None: self.carrying[agent_id] = fwd_cell self.carrying[agent_id].cur_pos = np.array([-1, -1]) self.grid.set(fwd_pos[0], fwd_pos[1], None) a_pos = self.agent_pos[agent_id] agent_obj = self.grid.get(a_pos[0], a_pos[1]) agent_obj.contains = fwd_cell # Drop an object elif action == self.actions.drop: if not fwd_cell and self.carrying[agent_id]: self.grid.set(fwd_pos[0], fwd_pos[1], self.carrying[agent_id]) self.carrying[agent_id].cur_pos = fwd_pos self.carrying[agent_id] = None a_pos = self.agent_pos[agent_id] agent_obj = self.grid.get(a_pos[0], a_pos[1]) agent_obj.contains = None # Toggle/activate an object elif action == self.actions.toggle: if fwd_cell: if fwd_cell.type == 'door': fwd_cell.toggle(self, fwd_pos, self.carrying[agent_id]) else: fwd_cell.toggle(self, fwd_pos) # Done action -- by default acts as no-op. elif action == self.actions.done: pass else: assert False, 'unknown action' return reward def step(self, actions): # Maintain backwards compatibility with MiniGrid when there is one agent if not isinstance(actions, list) and self.n_agents == 1: actions = [actions] self.step_count += 1 rewards = [0] * self.n_agents # Randomize order in which agents act for fairness agent_ordering = np.arange(self.n_agents) np.random.shuffle(agent_ordering) # Step each agent for a in agent_ordering: rewards[a] = self.step_one_agent(actions[a], a) obs = self.gen_obs() # Backwards compatibility if self.minigrid_mode: rewards = rewards[0] collective_done = False # In competitive version, if one agent finishes the episode is over. if self.competitive: collective_done = np.sum(self.done) >= 1 # Running out of time applies to all agents if self.step_count >= self.max_steps: collective_done = True return obs, rewards, collective_done, {} def gen_obs_grid(self, agent_id): """Generate the sub-grid observed by the agent. This method also outputs a visibility mask telling us which grid cells the agent can actually see. Args: agent_id: Integer ID of the agent for which to generate the grid. Returns: Sub-grid and visibility mask. """ top_x, top_y, _, _ = self.get_view_exts(agent_id) grid = self.grid.slice(top_x, top_y, self.agent_view_size, self.agent_view_size) for _ in range(self.agent_dir[agent_id] + 1): grid = grid.rotate_left() # Process occluders and visibility # Note that this incurs some performance cost if not self.see_through_walls: vis_mask = grid.process_vis( agent_pos=(self.agent_view_size // 2, self.agent_view_size - 1)) else: vis_mask = np.ones(shape=(grid.width, grid.height), dtype=np.bool) # Make it so the agent sees what it's carrying # We do this by placing the carried object at the agent's position # in the agent's partially observable view agent_pos = grid.width // 2, grid.height - 1 if self.carrying[agent_id]: grid.set(agent_pos[0], agent_pos[1], self.carrying[agent_id]) else: grid.set(agent_pos[0], agent_pos[1], None) return grid, vis_mask def gen_obs(self): """Generate the stacked observation for all agents.""" images = [] dirs = [] for a in range(self.n_agents): image, direction = self.gen_agent_obs(a) images.append(image) dirs.append(direction) # Backwards compatibility: if there is a single agent do not return an array if self.minigrid_mode: images = images[0] # Observations are dictionaries containing: # - an image (partially observable view of the environment) # - the agent's direction/orientation (acting as a compass) # Note direction has shape (1,) for tfagents compatibility obs = { 'image': images, 'direction': dirs } return obs def gen_agent_obs(self, agent_id): """Generate the agent's view (partially observed, low-resolution encoding). Args: agent_id: ID of the agent for which to generate the observation. Returns: 3-dimensional partially observed agent-centric view, and int direction """ grid, vis_mask = self.gen_obs_grid(agent_id) # Encode the partially observable view into a numpy array image = grid.encode(vis_mask) return image, self.agent_dir[agent_id] def get_obs_render(self, obs, tile_size=minigrid.TILE_PIXELS // 2): """Render an agent observation for visualization.""" grid, vis_mask = Grid.decode(obs) # Render the whole grid img = grid.render( tile_size, # agent_pos=self.agent_pos, # agent_dir=self.agent_dir, highlight_mask=vis_mask) return img def compute_agent_visibility_mask(self, agent_id): # Mask of which cells to highlight highlight_mask = np.zeros(shape=(self.width, self.height), dtype=np.bool) # Compute which cells are visible to the agent _, vis_mask = self.gen_obs_grid(agent_id) # Compute the world coordinates of the bottom-left corner # of the agent's view area f_vec = self.dir_vec[agent_id] r_vec = self.right_vec[agent_id] top_left = self.agent_pos[agent_id] + f_vec * (self.agent_view_size-1) - \ r_vec * (self.agent_view_size // 2) # For each cell in the visibility mask for vis_j in range(0, self.agent_view_size): for vis_i in range(0, self.agent_view_size): # If this cell is not visible, don't highlight it if not vis_mask[vis_i, vis_j]: continue # Compute the world coordinates of this cell abs_i, abs_j = top_left - (f_vec * vis_j) + (r_vec * vis_i) if abs_i < 0 or abs_i >= self.width: continue if abs_j < 0 or abs_j >= self.height: continue # Mark this cell to be highlighted highlight_mask[abs_i, abs_j] = True return highlight_mask def render(self, mode='human', close=False, highlight=True, tile_size=minigrid.TILE_PIXELS): """Render the whole-grid human view.""" if close: if self.window: self.window.close() return None if mode == 'human' and not self.window: self.window = window.Window('gym_minigrid') self.window.show(block=False) if highlight: highlight_mask = [] for a in range(self.n_agents): if self.agent_pos[a] is not None: highlight_mask.append(self.compute_agent_visibility_mask(a)) else: highlight_mask = None # Render the whole grid img = self.grid.render(tile_size, highlight_mask=highlight_mask) if mode == 'human': self.window.show_img(img) if hasattr(self, 'mission'): self.window.set_caption(self.mission) if mode == 'human': self.window.show() return img
dcd-main
envs/multigrid/multigrid.py
# Copyright (c) 2019 Maxime Chevalier-Boisvert. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 from gym_minigrid.minigrid import * from envs.registration import register as register class FourRoomsEnv(MiniGridEnv): """ Classic 4 rooms gridworld environment. Can specify agent and goal position, if not it set at random. """ def __init__(self, agent_pos=None, goal_pos=None): self._agent_default_pos = agent_pos self._goal_default_pos = goal_pos super().__init__( grid_size=19, max_steps=100, agent_view_size=5) direction_obs_space = gym.spaces.Box( low=0, high=3, shape=(1,), dtype='uint8') self.observation_space = spaces.Dict({ 'image': self.observation_space['image'], 'direction': direction_obs_space }) def _gen_grid(self, width, height): # Create the grid self.grid = Grid(width, height) # Generate the surrounding walls self.grid.horz_wall(0, 0) self.grid.horz_wall(0, height - 1) self.grid.vert_wall(0, 0) self.grid.vert_wall(width - 1, 0) room_w = width // 2 room_h = height // 2 # For each row of rooms for j in range(0, 2): # For each column for i in range(0, 2): xL = i * room_w yT = j * room_h xR = xL + room_w yB = yT + room_h # Bottom wall and door if i + 1 < 2: self.grid.vert_wall(xR, yT, room_h) pos = (xR, self._rand_int(yT + 1, yB)) self.grid.set(*pos, None) # Bottom wall and door if j + 1 < 2: self.grid.horz_wall(xL, yB, room_w) pos = (self._rand_int(xL + 1, xR), yB) self.grid.set(*pos, None) # Randomize the player start position and orientation if self._agent_default_pos is not None: self.agent_pos = self._agent_default_pos self.grid.set(*self._agent_default_pos, None) self.agent_dir = self._rand_int(0, 4) # assuming random start direction else: self.place_agent() if self._goal_default_pos is not None: goal = Goal() self.put_obj(goal, *self._goal_default_pos) goal.init_pos, goal.cur_pos = self._goal_default_pos else: self.place_obj(Goal()) self.mission = 'Reach the goal' def step(self, action): obs, rewards, done, info = super().step(action) del obs['mission'] obs['image'] = obs['image'] obs['direction'] = [self.agent_dir] return obs, rewards, done, info def reset(self): obs = super().reset() del obs['mission'] obs['image'] = obs['image'] obs['direction'] = [self.agent_dir] return obs if hasattr(__loader__, 'name'): module_path = __loader__.name elif hasattr(__loader__, 'fullname'): module_path = __loader__.fullname register( id='MiniGrid-FourRooms-v0', entry_point=module_path+':FourRoomsEnv' )
dcd-main
envs/multigrid/fourrooms.py
# Copyright (c) 2019 Maxime Chevalier-Boisvert. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 #!/usr/bin/env python3 import time import argparse import numpy as np import gym import gym_minigrid from gym_minigrid.wrappers import * from . import window as multigrid_window from .maze import * from .mst_maze import * from .crossing import * from envs.registration import make as gym_make def redraw(img): if not args.agent_view: img = env.render('rgb_array', tile_size=args.tile_size) window.show_img(img) def reset(): if args.seed != -1: env.seed(args.seed) obs = env.reset() if hasattr(env, 'mission'): print('Mission: %s' % env.mission) window.set_caption(env.mission) redraw(obs) def step(action): print('taking action', action) obs, reward, done, info = env.step(action) # print('step=%s, reward=%.2f' % (env.step_count, reward)) if done or action == env.actions.done: print('done!') reset() else: redraw(obs) def key_handler(event): print('pressed', event.key) if event.key == 'escape': window.close() return if event.key == 'backspace': reset() return if event.key == 'left': step(env.actions.left) return if event.key == 'right': step(env.actions.right) return if event.key == 'up': step(env.actions.forward) return # Spacebar if event.key == ' ': step(env.actions.toggle) return if event.key == 'pageup': step(env.actions.pickup) return if event.key == 'pagedown': step(env.actions.drop) return if event.key == 'enter': step(env.actions.done) return parser = argparse.ArgumentParser() parser.add_argument( "--env", help="gym environment to load", default='MultiGrid-MultiRoom-N4-S5-v0' ) parser.add_argument( "--seed", type=int, help="random seed to generate the environment with", default=-1 ) parser.add_argument( "--tile_size", type=int, help="size at which to render tiles", default=32 ) parser.add_argument( '--agent_view', default=False, help="draw the agent sees (partially observable view)", action='store_true' ) parser.add_argument( '--use_walls', default=False, action='store_true', help="draw the agent sees (partially observable view)", ) args = parser.parse_args() env = gym_make(args.env) window = multigrid_window.Window('gym_minigrid - ' + args.env) window.reg_key_handler(key_handler) reset() # Blocking event loop window.show(block=True)
dcd-main
envs/multigrid/manual_control.py
# coding=utf-8 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np import networkx import gym_minigrid.minigrid as minigrid from . import multigrid from util.unionfind import UnionFind import envs.registration as register class MSTMazeEnv(multigrid.MultiGridEnv): """Single-agent maze environment specified via a bit map.""" def __init__(self, agent_view_size=5, minigrid_mode=True, max_steps=None, start_pos=None, goal_pos=None, size=15, seed=None): self.seed(seed) self.size = size self._sample_start_and_goal_pos() if max_steps is None: max_steps = 2*size*size super().__init__( n_agents=1, grid_size=size, agent_view_size=agent_view_size, max_steps=max_steps, see_through_walls=True, # Set this to True for maximum speed minigrid_mode=minigrid_mode ) def _sample_start_and_goal_pos(self): size = self.size top_left = (1,1) top_right = (size-2,1) bottom_left = (1,size-2) bottom_right = (size-2,size-2) choices = [top_left, top_right, bottom_left, bottom_right] agent_idx, goal_idx = self.np_random.choice(range(len(choices)), size=(2,), replace=False) agent_pos = choices[agent_idx] goal_pos = choices[goal_idx] self.start_pos = np.array(agent_pos) self.goal_pos = np.array(goal_pos) def _gen_maze(self, width, height): # Use Kruskal's to compute a MST with random edges (walls) # connecting a grid of cells assert (width-2) % 2 == 1 and (height-2) % 2 == 1, 'Dimensions must be 2n+1' self._sample_start_and_goal_pos() h,w = (height-2)//2 + 1, (width-2)//2 + 1 g = networkx.grid_graph([h,w]) bit_map = np.ones((width-2, height-2)) ds = UnionFind() # track connected components for v in g.nodes: y,x = v[0],v[1] bit_map[y*2][x*2] = 0 ds.add(v) # Randomly sample edge edges = list(g.edges) self.np_random.shuffle(edges) for u,v in edges: # convert u,v to full bitmap coordinates if not ds.connected(u,v): y1,x1 = u[0]*2,u[1]*2 y2,x2 = v[0]*2,v[1]*2 wall_y = y1 + (y2 - y1)//2 wall_x = x1 + (x2 - x1)//2 bit_map[wall_y][wall_x] = 0 ds.union(u,v) self.bit_map = bit_map return bit_map def _gen_grid(self, width, height): self._gen_maze(width, height) # Create an empty grid self.grid = multigrid.Grid(width, height) # Generate the surrounding walls self.grid.wall_rect(0, 0, width, height) # Goal self.put_obj(minigrid.Goal(), self.goal_pos[0], self.goal_pos[1]) # Agent self.place_agent_at_pos(0, self.start_pos) # Walls for x in range(self.bit_map.shape[0]): for y in range(self.bit_map.shape[1]): if self.bit_map[y, x]: # Add an offset of 1 for the outer walls self.put_obj(minigrid.Wall(), x+1, y+1) class PerfectMazeSmall(MSTMazeEnv): """A 11x11 Maze environment.""" def __init__(self, seed=None): super().__init__(size=11, seed=seed) class PerfectMazeMedium(MSTMazeEnv): """A 11x11 Maze environment.""" def __init__(self, seed=None): super().__init__(size=21, seed=seed) class PerfectMazeLarge(MSTMazeEnv): """A 11x11 Maze environment.""" def __init__(self, seed=None): super().__init__(size=51, seed=seed) class PerfectMazeXL(MSTMazeEnv): """A 11x11 Maze environment.""" def __init__(self, seed=None): super().__init__(size=101, seed=seed) if hasattr(__loader__, 'name'): module_path = __loader__.name elif hasattr(__loader__, 'fullname'): module_path = __loader__.fullname register.register( id='MultiGrid-PerfectMazeSmall-v0', entry_point=module_path + ':PerfectMazeSmall' ) register.register( id='MultiGrid-PerfectMazeMedium-v0', entry_point=module_path + ':PerfectMazeMedium' ) register.register( id='MultiGrid-PerfectMazeLarge-v0', entry_point=module_path + ':PerfectMazeLarge' ) register.register( id='MultiGrid-PerfectMazeXL-v0', entry_point=module_path + ':PerfectMazeXL' )
dcd-main
envs/multigrid/mst_maze.py
# Copyright (c) 2019 Maxime Chevalier-Boisvert. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 from gym_minigrid.minigrid import * import itertools as itt from envs.registration import register as register class CrossingEnv(MiniGridEnv): """ Environment with wall or lava obstacles, sparse reward. """ def __init__(self, size=9, num_crossings=1, obstacle_type=Lava, seed=None): self.num_crossings = num_crossings self.obstacle_type = obstacle_type super().__init__( grid_size=size, max_steps=4*size*size, # Set this to True for maximum speed see_through_walls=False, seed=None, agent_view_size=5 ) direction_obs_space = gym.spaces.Box( low=0, high=3, shape=(1,), dtype='uint8') self.observation_space = spaces.Dict({ 'image': self.observation_space['image'], 'direction': direction_obs_space }) def _gen_grid(self, width, height): assert width % 2 == 1 and height % 2 == 1 # odd size # Create an empty grid self.grid = Grid(width, height) # Generate the surrounding walls self.grid.wall_rect(0, 0, width, height) # Place the agent in the top-left corner self.agent_pos = (1, 1) self.agent_dir = 0 # Place a goal square in the bottom-right corner self.put_obj(Goal(), width - 2, height - 2) # Place obstacles (lava or walls) v, h = object(), object() # singleton `vertical` and `horizontal` objects # Lava rivers or walls specified by direction and position in grid rivers = [(v, i) for i in range(2, height - 2, 2)] rivers += [(h, j) for j in range(2, width - 2, 2)] self.np_random.shuffle(rivers) rivers = rivers[:self.num_crossings] # sample random rivers rivers_v = sorted([pos for direction, pos in rivers if direction is v]) rivers_h = sorted([pos for direction, pos in rivers if direction is h]) obstacle_pos = itt.chain( itt.product(range(1, width - 1), rivers_h), itt.product(rivers_v, range(1, height - 1)), ) for i, j in obstacle_pos: self.put_obj(self.obstacle_type(), i, j) # Sample path to goal path = [h] * len(rivers_v) + [v] * len(rivers_h) self.np_random.shuffle(path) # Create openings limits_v = [0] + rivers_v + [height - 1] limits_h = [0] + rivers_h + [width - 1] room_i, room_j = 0, 0 for direction in path: if direction is h: i = limits_v[room_i + 1] j = self.np_random.choice( range(limits_h[room_j] + 1, limits_h[room_j + 1])) room_i += 1 elif direction is v: i = self.np_random.choice( range(limits_v[room_i] + 1, limits_v[room_i + 1])) j = limits_h[room_j + 1] room_j += 1 else: assert False self.grid.set(i, j, None) self.mission = ( "avoid the lava and get to the green goal square" if self.obstacle_type == Lava else "find the opening and get to the green goal square" ) def step(self, action): obs, rewards, done, info = super().step(action) del obs['mission'] obs['image'] = obs['image'] obs['direction'] = [self.agent_dir] return obs, rewards, done, info def reset(self): obs = super().reset() del obs['mission'] obs['image'] = obs['image'] obs['direction'] = [self.agent_dir] return obs class LavaCrossingEnv(CrossingEnv): def __init__(self): super().__init__(size=9, num_crossings=1) class LavaCrossingS9N2Env(CrossingEnv): def __init__(self): super().__init__(size=9, num_crossings=2) class LavaCrossingS9N3Env(CrossingEnv): def __init__(self): super().__init__(size=9, num_crossings=3) class LavaCrossingS11N5Env(CrossingEnv): def __init__(self): super().__init__(size=11, num_crossings=5) register( id='MiniGrid-LavaCrossingS9N1-v0', entry_point='gym_minigrid.envs:LavaCrossingEnv' ) register( id='MiniGrid-LavaCrossingS9N2-v0', entry_point='gym_minigrid.envs:LavaCrossingS9N2Env' ) register( id='MiniGrid-LavaCrossingS9N3-v0', entry_point='gym_minigrid.envs:LavaCrossingS9N3Env' ) register( id='MiniGrid-LavaCrossingS11N5-v0', entry_point='gym_minigrid.envs:LavaCrossingS11N5Env' ) class SimpleCrossingEnv(CrossingEnv): def __init__(self): super().__init__(size=9, num_crossings=1, obstacle_type=Wall) class SimpleCrossingS9N2Env(CrossingEnv): def __init__(self): super().__init__(size=9, num_crossings=2, obstacle_type=Wall) class SimpleCrossingS9N3Env(CrossingEnv): def __init__(self): super().__init__(size=9, num_crossings=3, obstacle_type=Wall) class SimpleCrossingS11N5Env(CrossingEnv): def __init__(self): super().__init__(size=11, num_crossings=5, obstacle_type=Wall) if hasattr(__loader__, 'name'): module_path = __loader__.name elif hasattr(__loader__, 'fullname'): module_path = __loader__.fullname register( id='MiniGrid-SimpleCrossingS9N1-v0', entry_point=module_path+':SimpleCrossingEnv' ) register( id='MiniGrid-SimpleCrossingS9N2-v0', entry_point=module_path+':SimpleCrossingS9N2Env' ) register( id='MiniGrid-SimpleCrossingS9N3-v0', entry_point=module_path+':SimpleCrossingS9N3Env' ) register( id='MiniGrid-SimpleCrossingS11N5-v0', entry_point=module_path+':SimpleCrossingS11N5Env' )
dcd-main
envs/multigrid/crossing.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree.
dcd-main
envs/runners/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os from collections import deque, defaultdict import numpy as np import torch from baselines.common.running_mean_std import RunningMeanStd from level_replay import LevelSampler, LevelStore from util import \ array_to_csv, \ is_discrete_actions, \ get_obs_at_index, \ set_obs_at_index from teachDeepRL.teachers.teacher_controller import TeacherController import matplotlib as mpl import matplotlib.pyplot as plt class AdversarialRunner(object): """ Performs rollouts of an adversarial environment, given protagonist (agent), antogonist (adversary_agent), and environment adversary (advesary_env) """ def __init__( self, args, venv, agent, ued_venv=None, adversary_agent=None, adversary_env=None, flexible_protagonist=False, train=False, plr_args=None, device='cpu'): """ venv: Vectorized, adversarial gym env with agent-specific wrappers. agent: Protagonist trainer. ued_venv: Vectorized, adversarial gym env with adversary-env-specific wrappers. adversary_agent: Antogonist trainer. adversary_env: Environment adversary trainer. flexible_protagonist: Which agent plays the role of protagonist in calculating the regret depends on which has the lowest score. """ self.args = args self.venv = venv if ued_venv is None: self.ued_venv = venv else: self.ued_venv = ued_venv # Since adv env can have different env wrappers self.is_discrete_actions = is_discrete_actions(self.venv) self.is_discrete_adversary_env_actions = is_discrete_actions(self.venv, adversary=True) self.agents = { 'agent': agent, 'adversary_agent': adversary_agent, 'adversary_env': adversary_env, } self.agent_rollout_steps = args.num_steps self.adversary_env_rollout_steps = self.venv.adversary_observation_space['time_step'].high[0] self.is_dr = args.ued_algo == 'domain_randomization' self.is_training_env = args.ued_algo in ['paired', 'flexible_paired', 'minimax'] self.is_paired = args.ued_algo in ['paired', 'flexible_paired'] self.requires_batched_vloss = args.use_editor and args.base_levels == 'easy' self.is_alp_gmm = args.ued_algo == 'alp_gmm' # Track running mean and std of env returns for return normalization if args.adv_normalize_returns: self.env_return_rms = RunningMeanStd(shape=()) self.device = device if train: self.train() else: self.eval() self.reset() # Set up PLR self.level_store = None self.level_samplers = {} self.current_level_seeds = None self.weighted_num_edits = 0 self.latest_env_stats = defaultdict(float) if plr_args: if self.is_paired: if not args.protagonist_plr and not args.antagonist_plr: self.level_samplers.update({ 'agent': LevelSampler(**plr_args), 'adversary_agent': LevelSampler(**plr_args) }) elif args.protagonist_plr: self.level_samplers['agent'] = LevelSampler(**plr_args) elif args.antagonist_plr: self.level_samplers['adversary_agent'] = LevelSampler(**plr_args) else: self.level_samplers['agent'] = LevelSampler(**plr_args) if self.use_byte_encoding: example = self.ued_venv.get_encodings()[0] data_info = { 'numpy': True, 'dtype': example.dtype, 'shape': example.shape } self.level_store = LevelStore(data_info=data_info) else: self.level_store = LevelStore() self.current_level_seeds = [-1 for i in range(args.num_processes)] self._default_level_sampler = self.all_level_samplers[0] self.use_editor = args.use_editor self.edit_prob = args.level_editor_prob self.base_levels = args.base_levels else: self.use_editor = False self.edit_prob = 0 self.base_levels = None # Set up ALP-GMM if self.is_alp_gmm: self._init_alp_gmm() @property def use_byte_encoding(self): env_name = self.args.env_name if self.args.use_editor \ or env_name.startswith('BipedalWalker') \ or (env_name.startswith('MultiGrid') and self.args.use_reset_random_dr): return True else: return False def _init_alp_gmm(self): args = self.args param_env_bounds = [] if args.env_name.startswith('MultiGrid'): param_env_bounds = {'actions':[0,168,26]} reward_bounds = None elif args.env_name.startswith('Bipedal'): if 'POET' in args.env_name: param_env_bounds = {'actions': [0,2,5]} else: param_env_bounds = {'actions': [0,2,8]} reward_bounds = (-200, 350) else: raise ValueError(f'Environment {args.env_name} not supported for ALP-GMM') self.alp_gmm_teacher = TeacherController( teacher='ALP-GMM', nb_test_episodes=0, param_env_bounds=param_env_bounds, reward_bounds=reward_bounds, seed=args.seed, teacher_params={}) # Use defaults def reset(self): self.num_updates = 0 self.total_num_edits = 0 self.total_episodes_collected = 0 self.total_seeds_collected = 0 self.student_grad_updates = 0 self.sampled_level_info = None max_return_queue_size = 10 self.agent_returns = deque(maxlen=max_return_queue_size) self.adversary_agent_returns = deque(maxlen=max_return_queue_size) def train(self): self.is_training = True [agent.train() if agent else agent for _,agent in self.agents.items()] def eval(self): self.is_training = False [agent.eval() if agent else agent for _,agent in self.agents.items()] def state_dict(self): agent_state_dict = {} optimizer_state_dict = {} for k, agent in self.agents.items(): if agent: agent_state_dict[k] = agent.algo.actor_critic.state_dict() optimizer_state_dict[k] = agent.algo.optimizer.state_dict() return { 'agent_state_dict': agent_state_dict, 'optimizer_state_dict': optimizer_state_dict, 'agent_returns': self.agent_returns, 'adversary_agent_returns': self.adversary_agent_returns, 'num_updates': self.num_updates, 'total_episodes_collected': self.total_episodes_collected, 'total_seeds_collected': self.total_seeds_collected, 'total_num_edits': self.total_num_edits, 'student_grad_updates': self.student_grad_updates, 'latest_env_stats': self.latest_env_stats, 'level_store': self.level_store, 'level_samplers': self.level_samplers, } def load_state_dict(self, state_dict): agent_state_dict = state_dict.get('agent_state_dict') for k,state in agent_state_dict.items(): self.agents[k].algo.actor_critic.load_state_dict(state) optimizer_state_dict = state_dict.get('optimizer_state_dict') for k, state in optimizer_state_dict.items(): self.agents[k].algo.optimizer.load_state_dict(state) self.agent_returns = state_dict.get('agent_returns') self.adversary_agent_returns = state_dict.get('adversary_agent_returns') self.num_updates = state_dict.get('num_updates') self.total_episodes_collected = state_dict.get('total_episodes_collected') self.total_seeds_collected = state_dict.get('total_seeds_collected') self.total_num_edits = state_dict.get('total_num_edits') self.student_grad_updates = state_dict.get('student_grad_updates') self.latest_env_stats = state_dict.get('latest_env_stats') self.level_store = state_dict.get('level_store') self.level_samplers = state_dict.get('level_samplers') if self.args.use_plr: self._default_level_sampler = self.all_level_samplers[0] if self.use_editor: self.weighted_num_edits = self._get_weighted_num_edits() def _get_batched_value_loss(self, agent, clipped=True, batched=True): batched_value_loss = agent.storage.get_batched_value_loss( signed=False, positive_only=False, clipped=clipped, batched=batched) return batched_value_loss def _get_rollout_return_stats(self, rollout_returns): mean_return = torch.zeros(self.args.num_processes, 1) max_return = torch.zeros(self.args.num_processes, 1) for b, returns in enumerate(rollout_returns): if len(returns) > 0: mean_return[b] = float(np.mean(returns)) max_return[b] = float(np.max(returns)) stats = { 'mean_return': mean_return, 'max_return': max_return, 'returns': rollout_returns } return stats def _get_env_stats_multigrid(self, agent_info, adversary_agent_info): num_blocks = np.mean(agent_info.get( 'num_blocks', self.venv.get_num_blocks())) passable_ratio = np.mean(agent_info.get( 'passable_ratio', self.venv.get_passable())) shortest_path_lengths = agent_info.get( 'shortest_path_lengths', self.venv.get_shortest_path_length()) shortest_path_length = np.mean(shortest_path_lengths) solved_idx = agent_info.get('solved_idx', None) if solved_idx is None: if 'max_returns' in adversary_agent_info: solved_idx = \ (torch.max(agent_info['max_return'], \ adversary_agent_info['max_return']) > 0).numpy().squeeze() else: solved_idx = (agent_info['max_return'] > 0).numpy().squeeze() solved_path_lengths = np.array(shortest_path_lengths)[solved_idx] solved_path_length = np.mean(solved_path_lengths) if len(solved_path_lengths) > 0 else 0 stats = { 'num_blocks': num_blocks, 'passable_ratio': passable_ratio, 'shortest_path_length': shortest_path_length, 'solved_path_length': solved_path_length } return stats def _get_plr_buffer_stats(self): stats = {} for k,sampler in self.level_samplers.items(): stats[k + '_plr_passable_mass'] = sampler.solvable_mass stats[k + '_plr_max_score'] = sampler.max_score stats[k + '_plr_weighted_num_edits'] = self.weighted_num_edits return stats def _get_env_stats_car_racing(self, agent_info, adversary_agent_info): infos = self.venv.get_complexity_info() num_envs = len(infos) sums = defaultdict(float) for info in infos: for k,v in info.items(): sums[k] += v stats = {} for k,v in sums.items(): stats['track_' + k] = sums[k]/num_envs return stats def _get_env_stats_bipedalwalker(self, agent_info, adversary_agent_info): infos = self.venv.get_complexity_info() num_envs = len(infos) sums = defaultdict(float) for info in infos: for k,v in info.items(): sums[k] += v stats = {} for k,v in sums.items(): stats['track_' + k] = sums[k]/num_envs return stats def _get_env_stats(self, agent_info, adversary_agent_info, log_replay_complexity=False): env_name = self.args.env_name if env_name.startswith('MultiGrid'): stats = self._get_env_stats_multigrid(agent_info, adversary_agent_info) elif env_name.startswith('CarRacing'): stats = self._get_env_stats_car_racing(agent_info, adversary_agent_info) elif env_name.startswith('BipedalWalker'): stats = self._get_env_stats_bipedalwalker(agent_info, adversary_agent_info) else: raise ValueError(f'Unsupported environment, {self.args.env_name}') stats_ = {} for k,v in stats.items(): stats_['plr_' + k] = v if log_replay_complexity else None stats_[k] = v if not log_replay_complexity else None return stats_ def _get_active_levels(self): assert self.args.use_plr, 'Only call _get_active_levels when using PLR.' env_name = self.args.env_name is_multigrid = env_name.startswith('MultiGrid') is_car_racing = env_name.startswith('CarRacing') is_bipedal_walker = env_name.startswith('BipedalWalker') if self.use_byte_encoding: return [x.tobytes() for x in self.ued_venv.get_encodings()] elif is_multigrid: return self.agents['adversary_env'].storage.get_action_traj(as_string=True) else: return self.ued_venv.get_level() def _get_level_sampler(self, name): other = 'adversary_agent' if name == 'adversary_agent': other = 'agent' level_sampler = self.level_samplers.get(name) or self.level_samplers.get(other) updateable = name in self.level_samplers return level_sampler, updateable @property def all_level_samplers(self): if len(self.level_samplers) == 0: return [] return list(filter(lambda x: x is not None, [v for _, v in self.level_samplers.items()])) def _should_edit_level(self): if self.use_editor: return np.random.rand() < self.edit_prob else: return False def _update_plr_with_current_unseen_levels(self, parent_seeds=None): args = self.args levels = self._get_active_levels() self.current_level_seeds = \ self.level_store.insert(levels, parent_seeds=parent_seeds) if args.log_plr_buffer_stats or args.reject_unsolvable_seeds: passable = self.venv.get_passable() else: passable = None self._update_level_samplers_with_external_unseen_sample( self.current_level_seeds, solvable=passable) def _update_level_samplers_with_external_unseen_sample(self, seeds, solvable=None): level_samplers = self.all_level_samplers if self.args.reject_unsolvable_seeds: solvable = np.array(solvable, dtype=np.bool) seeds = np.array(seeds, dtype=np.int)[solvable] solvable = solvable[solvable] for level_sampler in level_samplers: level_sampler.observe_external_unseen_sample(seeds, solvable) def _reconcile_level_store_and_samplers(self): all_replay_seeds = set() for level_sampler in self.all_level_samplers: all_replay_seeds.update([x for x in level_sampler.seeds if x >= 0]) self.level_store.reconcile_seeds(all_replay_seeds) def _get_weighted_num_edits(self): level_sampler = self.all_level_samplers[0] seed_num_edits = np.zeros(level_sampler.seed_buffer_size) for idx, value in enumerate(self.level_store.seed2parent.values()): seed_num_edits[idx] = len(value) weighted_num_edits = np.dot(level_sampler.sample_weights(), seed_num_edits) return weighted_num_edits def _sample_replay_decision(self): return self._default_level_sampler.sample_replay_decision() def agent_rollout(self, agent, num_steps, update=False, is_env=False, level_replay=False, level_sampler=None, update_level_sampler=False, discard_grad=False, edit_level=False, num_edits=0, fixed_seeds=None): args = self.args if is_env: if edit_level: # Get mutated levels levels = [self.level_store.get_level(seed) for seed in fixed_seeds] self.ued_venv.reset_to_level_batch(levels) self.ued_venv.mutate_level(num_edits=num_edits) self._update_plr_with_current_unseen_levels(parent_seeds=fixed_seeds) return if level_replay: # Get replay levels self.current_level_seeds = [level_sampler.sample_replay_level() for _ in range(args.num_processes)] levels = [self.level_store.get_level(seed) for seed in self.current_level_seeds] self.ued_venv.reset_to_level_batch(levels) return self.current_level_seeds elif self.is_dr and not args.use_plr: obs = self.ued_venv.reset_random() # don't need obs here self.total_seeds_collected += args.num_processes return elif self.is_dr and args.use_plr and args.use_reset_random_dr: obs = self.ued_venv.reset_random() # don't need obs here self._update_plr_with_current_unseen_levels(parent_seeds=fixed_seeds) self.total_seeds_collected += args.num_processes return elif self.is_alp_gmm: obs = self.alp_gmm_teacher.set_env_params(self.ued_venv) self.total_seeds_collected += args.num_processes return else: obs = self.ued_venv.reset() # Prepare for constructive rollout self.total_seeds_collected += args.num_processes else: obs = self.venv.reset_agent() # Initialize first observation agent.storage.copy_obs_to_index(obs,0) rollout_info = {} rollout_returns = [[] for _ in range(args.num_processes)] if level_sampler and level_replay: rollout_info.update({ 'solved_idx': np.zeros(args.num_processes, dtype=np.bool) }) for step in range(num_steps): if args.render: self.venv.render_to_screen() # Sample actions with torch.no_grad(): obs_id = agent.storage.get_obs(step) value, action, action_log_dist, recurrent_hidden_states = agent.act( obs_id, agent.storage.get_recurrent_hidden_state(step), agent.storage.masks[step]) if self.is_discrete_actions: action_log_prob = action_log_dist.gather(-1, action) else: action_log_prob = action_log_dist # Observe reward and next obs reset_random = self.is_dr and not args.use_plr _action = agent.process_action(action.cpu()) if is_env: obs, reward, done, infos = self.ued_venv.step_adversary(_action) else: obs, reward, done, infos = self.venv.step_env(_action, reset_random=reset_random) if args.clip_reward: reward = torch.clamp(reward, -args.clip_reward, args.clip_reward) if not is_env and step >= num_steps - 1: # Handle early termination due to cliffhanger rollout if agent.storage.use_proper_time_limits: for i, done_ in enumerate(done): if not done_: infos[i]['cliffhanger'] = True infos[i]['truncated'] = True infos[i]['truncated_obs'] = get_obs_at_index(obs, i) done = np.ones_like(done, dtype=np.float) if level_sampler and level_replay: next_level_seeds = [s for s in self.current_level_seeds] for i, info in enumerate(infos): if 'episode' in info.keys(): rollout_returns[i].append(info['episode']['r']) if reset_random: self.total_seeds_collected += 1 if not is_env: self.total_episodes_collected += 1 # Handle early termination if agent.storage.use_proper_time_limits: if 'truncated_obs' in info.keys(): truncated_obs = info['truncated_obs'] agent.storage.insert_truncated_obs(truncated_obs, index=i) # If using PLR, sample next level if level_sampler and level_replay: level_seed = level_sampler.sample_replay_level() level = self.level_store.get_level(level_seed) obs_i = self.venv.reset_to_level(level, i) set_obs_at_index(obs, obs_i, i) next_level_seeds[i] = level_seed rollout_info['solved_idx'][i] = True # If using ALP-GMM, sample next level if self.is_alp_gmm: self.alp_gmm_teacher.record_train_episode(rollout_returns[i][-1], index=i) self.alp_gmm_teacher.set_env_params(self.venv) # If done then clean the history of observations. masks = torch.FloatTensor( [[0.0] if done_ else [1.0] for done_ in done]) bad_masks = torch.FloatTensor( [[0.0] if 'truncated' in info.keys() else [1.0] for info in infos]) cliffhanger_masks = torch.FloatTensor( [[0.0] if 'cliffhanger' in info.keys() else [1.0] for info in infos]) # Need to store level seeds alongside non-env agent steps current_level_seeds = None if (not is_env) and level_sampler: current_level_seeds = torch.tensor(self.current_level_seeds, dtype=torch.int).view(-1, 1) agent.insert( obs, recurrent_hidden_states, action, action_log_prob, action_log_dist, value, reward, masks, bad_masks, level_seeds=current_level_seeds, cliffhanger_masks=cliffhanger_masks) if level_sampler and level_replay: self.current_level_seeds = next_level_seeds # Add generated env to level store (as a constructive string representation) if is_env and args.use_plr and not level_replay: self._update_plr_with_current_unseen_levels() rollout_info.update(self._get_rollout_return_stats(rollout_returns)) # Update non-env agent if required if not is_env and update: with torch.no_grad(): obs_id = agent.storage.get_obs(-1) next_value = agent.get_value( obs_id, agent.storage.get_recurrent_hidden_state(-1), agent.storage.masks[-1]).detach() agent.storage.compute_returns( next_value, args.use_gae, args.gamma, args.gae_lambda) # Compute batched value loss if using value_l1-maximizing adversary if self.requires_batched_vloss: # Don't clip value loss reward if env adversary normalizes returns clipped = not args.adv_use_popart and not args.adv_normalize_returns batched_value_loss = self._get_batched_value_loss( agent, clipped=clipped, batched=True) rollout_info.update({'batched_value_loss': batched_value_loss}) # Update level sampler and remove any ejected seeds from level store if level_sampler and update_level_sampler: level_sampler.update_with_rollouts(agent.storage) value_loss, action_loss, dist_entropy, info = agent.update(discard_grad=discard_grad) if level_sampler and update_level_sampler: level_sampler.after_update() rollout_info.update({ 'value_loss': value_loss, 'action_loss': action_loss, 'dist_entropy': dist_entropy, 'update_info': info, }) # Compute LZ complexity of action trajectories if args.log_action_complexity: rollout_info.update({'action_complexity': agent.storage.get_action_complexity()}) return rollout_info def _compute_env_return(self, agent_info, adversary_agent_info): args = self.args if args.ued_algo == 'paired': env_return = torch.max(adversary_agent_info['max_return'] - agent_info['mean_return'], \ torch.zeros_like(agent_info['mean_return'])) elif args.ued_algo == 'flexible_paired': env_return = torch.zeros_like(agent_info['max_return'], dtype=torch.float, device=self.device) adversary_agent_max_idx = adversary_agent_info['max_return'] > agent_info['max_return'] agent_max_idx = ~adversary_agent_max_idx env_return[adversary_agent_max_idx] = \ adversary_agent_info['max_return'][adversary_agent_max_idx] env_return[agent_max_idx] = agent_info['max_return'][agent_max_idx] env_mean_return = torch.zeros_like(env_return, dtype=torch.float) env_mean_return[adversary_agent_max_idx] = \ agent_info['mean_return'][adversary_agent_max_idx] env_mean_return[agent_max_idx] = \ adversary_agent_info['mean_return'][agent_max_idx] env_return = torch.max(env_return - env_mean_return, torch.zeros_like(env_return)) elif args.ued_algo == 'minimax': env_return = -agent_info['max_return'] else: env_return = torch.zeros_like(agent_info['mean_return']) if args.adv_normalize_returns: self.env_return_rms.update(env_return.flatten().cpu().numpy()) env_return /= np.sqrt(self.env_return_rms.var + 1e-8) if args.adv_clip_reward is not None: clip_max_abs = args.adv_clip_reward env_return = env_return.clamp(-clip_max_abs, clip_max_abs) return env_return def run(self): args = self.args adversary_env = self.agents['adversary_env'] agent = self.agents['agent'] adversary_agent = self.agents['adversary_agent'] level_replay = False if args.use_plr and self.is_training: level_replay = self._sample_replay_decision() # Discard student gradients if not level replay (sampling new levels) student_discard_grad = False no_exploratory_grad_updates = \ vars(args).get('no_exploratory_grad_updates', False) if args.use_plr and (not level_replay) and no_exploratory_grad_updates: student_discard_grad = True if self.is_training and not student_discard_grad: self.student_grad_updates += 1 # Generate a batch of adversarial environments env_info = self.agent_rollout( agent=adversary_env, num_steps=self.adversary_env_rollout_steps, update=False, is_env=True, level_replay=level_replay, level_sampler=self._get_level_sampler('agent')[0], update_level_sampler=False) # Run agent episodes level_sampler, is_updateable = self._get_level_sampler('agent') agent_info = self.agent_rollout( agent=agent, num_steps=self.agent_rollout_steps, update=self.is_training, level_replay=level_replay, level_sampler=level_sampler, update_level_sampler=is_updateable, discard_grad=student_discard_grad) # Use a separate PLR curriculum for the antagonist if level_replay and self.is_paired and (args.protagonist_plr == args.antagonist_plr): self.agent_rollout( agent=adversary_env, num_steps=self.adversary_env_rollout_steps, update=False, is_env=True, level_replay=level_replay, level_sampler=self._get_level_sampler('adversary_agent')[0], update_level_sampler=False) adversary_agent_info = defaultdict(float) if self.is_paired: # Run adversary agent episodes level_sampler, is_updateable = self._get_level_sampler('adversary_agent') adversary_agent_info = self.agent_rollout( agent=adversary_agent, num_steps=self.agent_rollout_steps, update=self.is_training, level_replay=level_replay, level_sampler=level_sampler, update_level_sampler=is_updateable, discard_grad=student_discard_grad) # Sample whether the decision to edit levels edit_level = self._should_edit_level() and level_replay if level_replay: sampled_level_info = { 'level_replay': True, 'num_edits': [len(self.level_store.seed2parent[x])+1 for x in env_info], } else: sampled_level_info = { 'level_replay': False, 'num_edits': [0 for _ in range(args.num_processes)] } # ==== This part performs ACCEL ==== # If editing, mutate levels just replayed by PLR if level_replay and edit_level: # Choose base levels for mutation if self.base_levels == 'batch': fixed_seeds = env_info elif self.base_levels == 'easy': if args.num_processes >= 4: # take top 4 easy = list(np.argsort((agent_info['mean_return'].detach().cpu().numpy() - agent_info['batched_value_loss'].detach().cpu().numpy()))[:4]) fixed_seeds = [env_info[x.item()] for x in easy] * int(args.num_processes/4) else: # take top 1 easy = np.argmax((agent_info['mean_return'].detach().cpu().numpy() - agent_info['batched_value_loss'].detach().cpu().numpy())) fixed_seeds = [env_info[easy]] * args.num_processes level_sampler, is_updateable = self._get_level_sampler('agent') # Edit selected levels self.agent_rollout( agent=None, num_steps=None, is_env=True, edit_level=True, num_edits=args.num_edits, fixed_seeds=fixed_seeds) self.total_num_edits += 1 sampled_level_info['num_edits'] = [x+1 for x in sampled_level_info['num_edits']] # Evaluate edited levels agent_info_edited_level = self.agent_rollout( agent=agent, num_steps=self.agent_rollout_steps, update=self.is_training, level_replay=False, level_sampler=level_sampler, update_level_sampler=is_updateable, discard_grad=True) # ==== ACCEL end ==== if args.use_plr: self._reconcile_level_store_and_samplers() if self.use_editor: self.weighted_num_edits = self._get_weighted_num_edits() # Update adversary agent final return env_return = self._compute_env_return(agent_info, adversary_agent_info) adversary_env_info = defaultdict(float) if self.is_training and self.is_training_env: with torch.no_grad(): obs_id = adversary_env.storage.get_obs(-1) next_value = adversary_env.get_value( obs_id, adversary_env.storage.get_recurrent_hidden_state(-1), adversary_env.storage.masks[-1]).detach() adversary_env.storage.replace_final_return(env_return) adversary_env.storage.compute_returns(next_value, args.use_gae, args.gamma, args.gae_lambda) env_value_loss, env_action_loss, env_dist_entropy, info = adversary_env.update() adversary_env_info.update({ 'action_loss': env_action_loss, 'value_loss': env_value_loss, 'dist_entropy': env_dist_entropy, 'update_info': info }) if self.is_training: self.num_updates += 1 # === LOGGING === # Only update env-related stats when run generates new envs (not level replay) log_replay_complexity = level_replay and args.log_replay_complexity if (not level_replay) or log_replay_complexity: stats = self._get_env_stats(agent_info, adversary_agent_info, log_replay_complexity=log_replay_complexity) stats.update({ 'mean_env_return': env_return.mean().item(), 'adversary_env_pg_loss': adversary_env_info['action_loss'], 'adversary_env_value_loss': adversary_env_info['value_loss'], 'adversary_env_dist_entropy': adversary_env_info['dist_entropy'], }) if args.use_plr: self.latest_env_stats.update(stats) # Log latest UED curriculum stats instead of PLR env stats else: stats = self.latest_env_stats.copy() # Log PLR buffer stats if args.use_plr and args.log_plr_buffer_stats: stats.update(self._get_plr_buffer_stats()) [self.agent_returns.append(r) for b in agent_info['returns'] for r in reversed(b)] mean_agent_return = 0 if len(self.agent_returns) > 0: mean_agent_return = np.mean(self.agent_returns) mean_adversary_agent_return = 0 if self.is_paired: [self.adversary_agent_returns.append(r) for b in adversary_agent_info['returns'] for r in reversed(b)] if len(self.adversary_agent_returns) > 0: mean_adversary_agent_return = np.mean(self.adversary_agent_returns) self.sampled_level_info = sampled_level_info stats.update({ 'steps': (self.num_updates + self.total_num_edits) * args.num_processes * args.num_steps, 'total_episodes': self.total_episodes_collected, 'total_seeds': self.total_seeds_collected, 'total_student_grad_updates': self.student_grad_updates, 'mean_agent_return': mean_agent_return, 'agent_value_loss': agent_info['value_loss'], 'agent_pg_loss': agent_info['action_loss'], 'agent_dist_entropy': agent_info['dist_entropy'], 'mean_adversary_agent_return': mean_adversary_agent_return, 'adversary_value_loss': adversary_agent_info['value_loss'], 'adversary_pg_loss': adversary_agent_info['action_loss'], 'adversary_dist_entropy': adversary_agent_info['dist_entropy'], }) if args.log_grad_norm: agent_grad_norm = np.mean(agent_info['update_info']['grad_norms']) adversary_grad_norm = 0 adversary_env_grad_norm = 0 if self.is_paired: adversary_grad_norm = np.mean(adversary_agent_info['update_info']['grad_norms']) if self.is_training_env: adversary_env_grad_norm = np.mean(adversary_env_info['update_info']['grad_norms']) stats.update({ 'agent_grad_norm': agent_grad_norm, 'adversary_grad_norm': adversary_grad_norm, 'adversary_env_grad_norm': adversary_env_grad_norm }) if args.log_action_complexity: stats.update({ 'agent_action_complexity': agent_info['action_complexity'], 'adversary_action_complexity': adversary_agent_info['action_complexity'] }) return stats
dcd-main
envs/runners/adversarial_runner.py
# Copyright (c) OpenAI # # Licensed under the MIT License; # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/MIT """ 2D rendering framework """ import os import sys import pyvirtualdisplay if "Apple" in sys.version: if 'DYLD_FALLBACK_LIBRARY_PATH' in os.environ: os.environ['DYLD_FALLBACK_LIBRARY_PATH'] += ':/usr/lib' # (JDS 2016/04/15): avoid bug on Anaconda 2.3.0 / Yosemite from gym import error try: import pyglet except ImportError as e: raise ImportError(''' Cannot import pyglet. HINT: you can install pyglet directly via 'pip install pyglet'. But if you really just want to install all Gym dependencies and not have to think about it, 'pip install -e .[all]' or 'pip install gym[all]' will do it. ''') try: from pyglet.gl import * except ImportError as e: raise ImportError(''' Error occurred while running `from pyglet.gl import *` HINT: make sure you have OpenGL install. On Ubuntu, you can run 'apt-get install python-opengl'. If you're running on a server, you may need a virtual frame buffer; something like this should work: 'xvfb-run -s \"-screen 0 1400x900x24\" python <your_script.py>' ''') import math import numpy as np RAD2DEG = 57.29577951308232 def get_display(spec): """Convert a display specification (such as :0) into an actual Display object. Pyglet only supports multiple Displays on Linux. """ if spec is None: return pyglet.canvas.get_display() # returns already available pyglet_display, # if there is no pyglet display available then it creates one elif isinstance(spec, str): return pyglet.canvas.Display(spec) else: raise error.Error('Invalid display specification: {}. (Must be a string like :0 or None.)'.format(spec)) def get_window(width, height, display, **kwargs): """ Will create a pyglet window from the display specification provided. """ screen = display.get_screens() #available screens config = screen[0].get_best_config() context = config.create_context(None) #create GL context return pyglet.window.Window(width=width, height=height, display=display, config=config, context=context, **kwargs) class Viewer(object): def __init__(self, width, height, display=None): display = get_display(display) self.width = width self.height = height self.window = get_window(width=width, height=height, display=display) self.window.on_close = self.window_closed_by_user self.isopen = True self.geoms = [] self.onetime_geoms = [] self.transform = Transform() glEnable(GL_BLEND) glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) def close(self): if self.isopen and sys.meta_path: # ^^^ check sys.meta_path to avoid 'ImportError: sys.meta_path is None, Python is likely shutting down' self.window.close() self.isopen = False def window_closed_by_user(self): self.isopen = False def set_bounds(self, left, right, bottom, top): assert right > left and top > bottom scalex = self.width/(right-left) scaley = self.height/(top-bottom) self.transform = Transform( translation=(-left*scalex, -bottom*scaley), scale=(scalex, scaley)) def add_geom(self, geom): self.geoms.append(geom) def add_onetime(self, geom): self.onetime_geoms.append(geom) def render(self, return_rgb_array=False): glClearColor(1,1,1,1) self.window.clear() self.window.switch_to() self.window.dispatch_events() self.transform.enable() for geom in self.geoms: geom.render() for geom in self.onetime_geoms: geom.render() self.transform.disable() arr = None if return_rgb_array: buffer = pyglet.image.get_buffer_manager().get_color_buffer() image_data = buffer.get_image_data() arr = np.frombuffer(image_data.get_data(), dtype=np.uint8) # In https://github.com/openai/gym-http-api/issues/2, we # discovered that someone using Xmonad on Arch was having # a window of size 598 x 398, though a 600 x 400 window # was requested. (Guess Xmonad was preserving a pixel for # the boundary.) So we use the buffer height/width rather # than the requested one. arr = arr.reshape(buffer.height, buffer.width, 4) arr = arr[::-1,:,0:3] self.window.flip() self.onetime_geoms = [] return arr if return_rgb_array else self.isopen # Convenience def draw_circle(self, radius=10, res=30, filled=True, **attrs): geom = make_circle(radius=radius, res=res, filled=filled) _add_attrs(geom, attrs) self.add_onetime(geom) return geom def draw_polygon(self, v, filled=True, **attrs): geom = make_polygon(v=v, filled=filled) _add_attrs(geom, attrs) self.add_onetime(geom) return geom def draw_polyline(self, v, **attrs): geom = make_polyline(v=v) _add_attrs(geom, attrs) self.add_onetime(geom) return geom def draw_line(self, start, end, **attrs): geom = Line(start, end) _add_attrs(geom, attrs) self.add_onetime(geom) return geom def get_array(self): self.window.flip() image_data = pyglet.image.get_buffer_manager().get_color_buffer().get_image_data() self.window.flip() arr = np.fromstring(image_data.get_data(), dtype=np.uint8, sep='') arr = arr.reshape(self.height, self.width, 4) return arr[::-1,:,0:3] def __del__(self): self.close() def _add_attrs(geom, attrs): if "color" in attrs: geom.set_color(*attrs["color"]) if "linewidth" in attrs: geom.set_linewidth(attrs["linewidth"]) class Geom(object): def __init__(self): self._color=Color((0, 0, 0, 1.0)) self.attrs = [self._color] def render(self): for attr in reversed(self.attrs): attr.enable() self.render1() for attr in self.attrs: attr.disable() def render1(self): raise NotImplementedError def add_attr(self, attr): self.attrs.append(attr) def set_color(self, r, g, b): self._color.vec4 = (r, g, b, 1) class Attr(object): def enable(self): raise NotImplementedError def disable(self): pass class Transform(Attr): def __init__(self, translation=(0.0, 0.0), rotation=0.0, scale=(1,1)): self.set_translation(*translation) self.set_rotation(rotation) self.set_scale(*scale) def enable(self): glPushMatrix() glTranslatef(self.translation[0], self.translation[1], 0) # translate to GL loc ppint glRotatef(RAD2DEG * self.rotation, 0, 0, 1.0) glScalef(self.scale[0], self.scale[1], 1) def disable(self): glPopMatrix() def set_translation(self, newx, newy): self.translation = (float(newx), float(newy)) def set_rotation(self, new): self.rotation = float(new) def set_scale(self, newx, newy): self.scale = (float(newx), float(newy)) class Color(Attr): def __init__(self, vec4): self.vec4 = vec4 def enable(self): glColor4f(*self.vec4) class LineStyle(Attr): def __init__(self, style): self.style = style def enable(self): glEnable(GL_LINE_STIPPLE) glLineStipple(1, self.style) def disable(self): glDisable(GL_LINE_STIPPLE) class LineWidth(Attr): def __init__(self, stroke): self.stroke = stroke def enable(self): glLineWidth(self.stroke) class Point(Geom): def __init__(self): Geom.__init__(self) def render1(self): glBegin(GL_POINTS) # draw point glVertex3f(0.0, 0.0, 0.0) glEnd() class FilledPolygon(Geom): def __init__(self, v): Geom.__init__(self) self.v = v def render1(self): if len(self.v) == 4 : glBegin(GL_QUADS) elif len(self.v) > 4 : glBegin(GL_POLYGON) else: glBegin(GL_TRIANGLES) for p in self.v: glVertex3f(p[0], p[1],0) # draw each vertex glEnd() def make_circle(radius=10, res=30, filled=True): points = [] for i in range(res): ang = 2*math.pi*i / res points.append((math.cos(ang)*radius, math.sin(ang)*radius)) if filled: return FilledPolygon(points) else: return PolyLine(points, True) def make_polygon(v, filled=True): if filled: return FilledPolygon(v) else: return PolyLine(v, True) def make_polyline(v): return PolyLine(v, False) def make_capsule(length, width): l, r, t, b = 0, length, width/2, -width/2 box = make_polygon([(l,b), (l,t), (r,t), (r,b)]) circ0 = make_circle(width/2) circ1 = make_circle(width/2) circ1.add_attr(Transform(translation=(length, 0))) geom = Compound([box, circ0, circ1]) return geom class Compound(Geom): def __init__(self, gs): Geom.__init__(self) self.gs = gs for g in self.gs: g.attrs = [a for a in g.attrs if not isinstance(a, Color)] def render1(self): for g in self.gs: g.render() class PolyLine(Geom): def __init__(self, v, close): Geom.__init__(self) self.v = v self.close = close self.linewidth = LineWidth(1) self.add_attr(self.linewidth) def render1(self): glBegin(GL_LINE_LOOP if self.close else GL_LINE_STRIP) for p in self.v: glVertex3f(p[0], p[1],0) # draw each vertex glEnd() def set_linewidth(self, x): self.linewidth.stroke = x class Line(Geom): def __init__(self, start=(0.0, 0.0), end=(0.0, 0.0)): Geom.__init__(self) self.start = start self.end = end self.linewidth = LineWidth(1) self.add_attr(self.linewidth) def render1(self): glBegin(GL_LINES) glVertex2f(*self.start) glVertex2f(*self.end) glEnd() class Image(Geom): def __init__(self, fname, width, height): Geom.__init__(self) self.set_color(1.0, 1.0, 1.0) self.width = width self.height = height img = pyglet.image.load(fname) self.img = img self.flip = False def render1(self): self.img.blit(-self.width/2, -self.height/2, width=self.width, height=self.height) # ================================================================ class SimpleImageViewer(object): def __init__(self, display=None, maxwidth=500): self.window = None self.isopen = False self.display = get_display(display) self.maxwidth = maxwidth def imshow(self, arr): if self.window is None: height, width, _channels = arr.shape if width > self.maxwidth: scale = self.maxwidth / width width = int(scale * width) height = int(scale * height) self.window = get_window(width=width, height=height, display=self.display, vsync=False, resizable=True) self.width = width self.height = height self.isopen = True @self.window.event def on_resize(width, height): self.width = width self.height = height @self.window.event def on_close(): self.isopen = False assert len(arr.shape) == 3, "You passed in an image with the wrong number shape" image = pyglet.image.ImageData(arr.shape[1], arr.shape[0], 'RGB', arr.tobytes(), pitch=arr.shape[1]*-3) gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MAG_FILTER, gl.GL_NEAREST) texture = image.get_texture() texture.width = self.width texture.height = self.height self.window.clear() self.window.switch_to() self.window.dispatch_events() texture.blit(0, 0) # draw self.window.flip() def close(self): if self.isopen and sys.meta_path: # ^^^ check sys.meta_path to avoid 'ImportError: sys.meta_path is None, Python is likely shutting down' self.window.close() self.isopen = False def __del__(self): self.close()
dcd-main
envs/box2d/rendering.py
# Copyright (c) Stack Exchange, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the CC BY-SA 3.0 license. import numpy as np from scipy.special import binom import matplotlib.pyplot as plt bernstein = lambda n, k, t: binom(n,k)* t**k * (1.-t)**(n-k) def bezier(points, num=200): N = len(points) t = np.linspace(0, 1, num=num) curve = np.zeros((num, 2)) for i in range(N): curve += np.outer(bernstein(N - 1, i, t), points[i]) return curve class Segment(): def __init__(self, p1, p2, angle1, angle2, **kw): self.p1 = p1; self.p2 = p2 self.angle1 = angle1; self.angle2 = angle2 self.numpoints = kw.get("numpoints", 100) r = kw.get("r", 0.3) d = np.sqrt(np.sum((self.p2-self.p1)**2)) self.r = r*d self.p = np.zeros((4,2)) self.p[0,:] = self.p1[:] self.p[3,:] = self.p2[:] self.calc_intermediate_points(self.r) def calc_intermediate_points(self,r): self.p[1,:] = self.p1 + np.array([self.r*np.cos(self.angle1), self.r*np.sin(self.angle1)]) self.p[2,:] = self.p2 + np.array([self.r*np.cos(self.angle2+np.pi), self.r*np.sin(self.angle2+np.pi)]) self.curve = bezier(self.p,self.numpoints) def get_curve(points, **kw): segments = [] for i in range(len(points)-1): seg = Segment(points[i,:2], points[i+1,:2], points[i,2],points[i+1,2],**kw) segments.append(seg) curve = np.concatenate([s.curve for s in segments]) return segments, curve def ccw_sort(p): d = p-np.mean(p,axis=0) s = np.arctan2(d[:,0], d[:,1]) return p[np.argsort(s),:] def get_bezier_curve(a=None, rad=0.2, edgy=0, **kw): """ Given an array of points *a*, create a curve through those points. *rad* is a number between 0 and 1 to steer the distance of control points. *edgy* is a parameter which controls how "edgy" the curve is, edgy=0 is smoothest.""" if a is None: a = get_random_points(**kw) numpoints = kw.get('numpoints', 30) p = np.arctan(edgy)/np.pi+.5 a = ccw_sort(a) a = np.append(a, np.atleast_2d(a[0,:]), axis=0) d = np.diff(a, axis=0) ang = np.arctan2(d[:,1],d[:,0]) f = lambda ang : (ang>=0)*ang + (ang<0)*(ang+2*np.pi) ang = f(ang) ang1 = ang ang2 = np.roll(ang,1) ang = p*ang1 + (1-p)*ang2 + (np.abs(ang2-ang1) > np.pi )*np.pi ang = np.append(ang, [ang[0]]) a = np.append(a, np.atleast_2d(ang).T, axis=1) s, c = get_curve(a, r=rad, method="var", numpoints=numpoints) x,y = c.T return x,y,a def get_random_points(n=5, scale=0.8, mindst=None, rec=0, **kw): """Create n random points in the unit square, which are *mindst* apart, then scale them.""" mindst = mindst or 0.7/n np_random = kw.get('np_random', np.random) a = np_random.rand(n,2) d = np.sqrt(np.sum(np.diff(ccw_sort(a), axis=0), axis=1)**2) if np.all(d >= mindst) or rec>=200: return a*scale else: return get_random_points(n=n, scale=scale, mindst=mindst, rec=rec+1, np_random=np_random) if __name__ == '__main__': fig, ax = plt.subplots() ax.set_aspect("equal") rad = 0.2 edgy = 0.5 for c in np.array([[0,0], [0,1], [1,0], [1,1]]): a = get_random_points(n=12, scale=1) + c x,y, _ = get_bezier_curve(a,rad=rad, edgy=edgy) plt.plot(x,y) plt.show()
dcd-main
envs/box2d/bezier.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from envs.registration import register as gym_register from .racetracks import RaceTrack from .racetracks import formula1 from .car_racing_bezier import CarRacingBezier def set_global(name, value): globals()[name] = value racetracks = dict([(name, cls) for name, cls in formula1.__dict__.items() if isinstance(cls, RaceTrack)]) if hasattr(__loader__, 'name'): module_path = __loader__.name elif hasattr(__loader__, 'fullname'): module_path = __loader__.fullname def _create_constructor(track): def constructor(self, **kwargs): return CarRacingBezier.__init__(self, track_name=track.name, **kwargs) return constructor for name, track in racetracks.items(): class_name = f"CarRacingF1-{track.name}" env = type(class_name, (CarRacingBezier, ), { "__init__": _create_constructor(track), }) set_global(class_name, env) gym_register( id=f'CarRacingF1-{track.name}-v0', entry_point=module_path + f':{class_name}', max_episode_steps=track.max_episode_steps, reward_threshold=900)
dcd-main
envs/box2d/car_racing_f1.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from .car_racing import CarRacing from .car_racing_bezier import CarRacingBezier from .car_racing_adversarial import CarRacingBezierAdversarial from .car_racing_f1 import *
dcd-main
envs/box2d/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import sys import math import random import numpy as np import gym from gym.envs.box2d.car_dynamics import Car from envs.registration import register as gym_register from .car_racing_bezier import CarRacingBezier from envs.box2d import * class CarRacingBezierAdversarial(CarRacingBezier): def __init__(self, n_control_points=12, random_z_dim=4, track_name=None, bezier=True, show_borders=True, show_indicators=True, birdseye=False, seed=None, fixed_environment=False, animate_zoom=False, min_rad_ratio=None, max_rad_ratio=None, use_sketch=None, choose_start_pos=False, use_categorical=False, clip_reward=None, sparse_rewards=False, num_goal_bins=24, verbose=1): super().__init__( track_name=track_name, bezier=bezier, show_borders=show_borders, show_indicators=show_indicators, birdseye=birdseye, seed=seed, fixed_environment=fixed_environment, animate_zoom=False, clip_reward=clip_reward, sparse_rewards=sparse_rewards, num_goal_bins=num_goal_bins, verbose=verbose) self.passable = True self.random_z_dim = random_z_dim self.choose_start_pos = choose_start_pos self._adv_start_alpha = None self.n_control_points = n_control_points self._adversary_control_points = [] # sketch_dim = int(np.round(self.playfield/self.track_width)) sketch_dim = 10 self.sketch_dim = sketch_dim # Should be 50 self.sketch_ratio = self.playfield/self.sketch_dim self._adversary_sketch = np.zeros((self.sketch_dim, self.sketch_dim)) self.adversary_max_steps = n_control_points if choose_start_pos: self.adversary_max_steps += 1 # Extra step to choose start pos if sparse_rewards: self.adversary_max_steps += 1 # Extra step to choose goal bin (last action) self.adversary_step_count = 0 # === Adversary env observations === self._clear_adversary_sketch() self._adversary_sketch_dirty = False # === Adversary observation and action space === self.adversary_ts_obs_space = gym.spaces.Box( low=0, high=self.adversary_max_steps, shape=(1,), dtype='uint8') self.adversary_randomz_obs_space = gym.spaces.Box( low=0, high=1.0, shape=(random_z_dim,), dtype=np.float32) self.adversary_control_points_obs_space = gym.spaces.Box( low=0, high=sketch_dim, shape=(1, sketch_dim, sketch_dim), dtype='uint8') if sparse_rewards: self.adversary_goal_bin_obs_space = gym.spaces.Box( low=0, high=num_goal_bins + 1, # +1 for placeholder (at last, extra index) shape=(1,), dtype='uint8' ) self.adversary_observation_space = gym.spaces.Dict( {'control_points': self.adversary_control_points_obs_space, 'time_step': self.adversary_ts_obs_space, 'random_z': self.adversary_randomz_obs_space, 'goal_bin': self.adversary_goal_bin_obs_space}) else: self.adversary_observation_space = gym.spaces.Dict( {'control_points': self.adversary_control_points_obs_space, 'time_step': self.adversary_ts_obs_space, 'random_z': self.adversary_randomz_obs_space}) # Note adversary_action_space is only used to communicate to storage # the proper dimensions for storing the *unprocessed* actions if use_categorical: action_low, action_high = np.array((0,)), np.array((self.sketch_dim**2 + 1,)) # +1 for skip action if sparse_rewards: action_low = np.array((0, *action_low)) action_high = np.array((1, *action_high)) self.adversary_action_space = gym.spaces.Box( low=action_low, high=action_high, dtype='uint8') else: action_shape = (3,) if sparse_rewards: action_shape = (4,) # First dim stores goal flag self.adversary_action_space = gym.spaces.Box( low=0, high=1, shape=action_shape, dtype='float32') @property def processed_action_dim(self): return 3 def reset(self): self.steps = 0 self.adversary_step_count = 0 if self._adversary_sketch_dirty: self._clear_adversary_sketch() # Clear track and agent status self.reset_agent_status() obs = { 'control_points': np.expand_dims(self._adversary_sketch,0), 'time_step': [self.adversary_step_count], 'random_z': self.generate_random_z() } # Set goal bin to 1 more than max 0-indexed goal bin if self.sparse_rewards: obs.update({'goal_bin': [self.num_goal_bins]}) self.goal_bin = None return obs def _alpha_from_xy(self, x,y): alpha = np.arctan2(y,x) if alpha < 0: alpha += 2*math.pi return alpha def _set_start_position(self, x, y): _,_,unnorm_x,unnorm_y = self.unnormalize_xy(x,y) u = np.mean(np.array(self._adversary_control_points), axis=0) alpha = self._alpha_from_xy(unnorm_x-u[0],unnorm_y-u[1]) self._adv_start_alpha = alpha return alpha def _closest_track_index(self, alpha): if len(self._adversary_control_points) == 0: return 0 u = np.mean(np.array(self._adversary_control_points), axis=0) track_alphas = np.array([self._alpha_from_xy(x-u[0],y-u[1]) for _,_,x,y in self.track]) i = np.argmin(np.abs(track_alphas - alpha)) return np.argmin(np.abs(track_alphas - alpha)) def reset_agent_status(self): # Reset env-specific meta-data self._destroy() self.reward = 0.0 self.prev_reward = 0.0 self.tile_visited_count = 0 self.t = 0.0 self.road_poly = [] self.steps = 0 self._create_track(control_points=self.track_data) if self._adv_start_alpha is None: start_idx = 0 else: start_idx = self._closest_track_index(self._adv_start_alpha) beta0, x0, y0 = 0,0,0 if self._adversary_sketch_dirty: # Car only if track (because reset was called) beta0, x0, y0 = self.track[start_idx][1:4] x0 -= self.x_offset y0 -= self.y_offset if self.car: self.car.destroy() self.car = None self.car = Car(self.world, beta0, x0, y0) self.reset_sparse_state() def reset_agent(self): self.reset_agent_status() return self.step(None)[0] def reset_to_level(self, level): self.reset() level_features = eval(level) self._adversary_control_points = level_features[:-1] self._adv_start_alpha = level_features[-1] # Build new level self._adversary_sketch_dirty = True self._create_track_adversary() obs = self.reset_agent() return obs @property def level(self): return str(tuple(self._adversary_control_points + [self._adv_start_alpha,])) def generate_random_z(self): return np.random.uniform(size=(self.random_z_dim,)).astype(np.float32) def unnormalize_xy(self, x,y): scaled_x = int(np.minimum(np.maximum(np.round(self.sketch_dim*x), 0), self.sketch_dim - 1)) scaled_y = int(np.minimum(np.maximum(np.round(self.sketch_dim*y), 0), self.sketch_dim - 1)) unnorm_x = (scaled_x + 1)*self.sketch_ratio unnorm_y = (scaled_y + 1)*self.sketch_ratio return scaled_x, scaled_y, unnorm_x, unnorm_y def _update_adversary_sketch(self, x, y): # Update sketch based on latest control points scaled_x, scaled_y, unnorm_x, unnorm_y = self.unnormalize_xy(x,y) self._adversary_control_points.append((unnorm_x, unnorm_y)) self._adversary_sketch_dirty = True self._adversary_sketch[scaled_x][scaled_y] = 1.0 return unnorm_x, unnorm_y, self._adversary_sketch def _clear_adversary_sketch(self): self._adversary_sketch.fill(0) self._adversary_control_points = [] self._adversary_sketch_dirty = False self._adv_start_alpha = None def _create_track_adversary(self): # Compile adversary control points into playfield coordinates # Note that each sketch grid point corresponds to to at least a track width apart if self.bezier: self.track_data = self._adversary_control_points else: raise NotImplementedError @property def is_goal_step(self): if self.sparse_rewards: return self.adversary_step_count == self.adversary_max_steps - 1 else: return False @property def is_start_pos_step(self): if self.choose_start_pos: return self.adversary_step_count == self.n_control_points else: return False def step_adversary(self, action): # Updates sketch with a new control pt (action) # Obs is the latest sketch of control points scaled by self.sketch_dim. done = False goal_bin = self.num_goal_bins if self.is_goal_step: goal_bin = action else: x,y,skip = action # Place control point if self.adversary_step_count < self.n_control_points: if not (self.adversary_step_count > 3 and np.isclose(skip, 1)): self._update_adversary_sketch(x,y) elif self.is_start_pos_step: self._set_start_position(x,y) elif self.is_goal_step: self.goal_bin = goal_bin self.set_goal(goal_bin) self.adversary_step_count += 1 if self.adversary_step_count == self.adversary_max_steps: self._create_track_adversary() self.reset_agent_status() done = True obs = { 'control_points': np.expand_dims(self._adversary_sketch,0), # 1 x sketch_dim x sketch_dim 'time_step': [self.adversary_step_count], 'random_z': self.generate_random_z() } if self.sparse_rewards: obs.update({'goal_bin': [goal_bin]}) return obs, 0., done, {} def reset_random(self): self._adversary_sketch_dirty = True if self.fixed_environment: self.seed(self.level_seed) if self.sparse_rewards: self.goal_bin = None self.set_goal() return super().reset() if hasattr(__loader__, 'name'): module_path = __loader__.name elif hasattr(__loader__, 'fullname'): module_path = __loader__.fullname gym_register( id='CarRacing-Bezier-Adversarial-v0', entry_point=module_path + ':CarRacingBezierAdversarial', max_episode_steps=1000, reward_threshold=900)
dcd-main
envs/box2d/car_racing_adversarial.py