python_code
stringlengths
0
4.04M
repo_name
stringlengths
8
58
file_path
stringlengths
5
147
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. import functools import json import multiprocessing as mp import numpy as np import os import time from fvcore.common.download import download from panopticapi.utils import rgb2id from PIL import Image from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES def _process_panoptic_to_semantic(input_panoptic, output_semantic, segments, id_map): panoptic = np.asarray(Image.open(input_panoptic), dtype=np.uint32) panoptic = rgb2id(panoptic) output = np.zeros_like(panoptic, dtype=np.uint8) + 255 for seg in segments: cat_id = seg["category_id"] new_cat_id = id_map[cat_id] output[panoptic == seg["id"]] = new_cat_id Image.fromarray(output).save(output_semantic) def separate_coco_semantic_from_panoptic(panoptic_json, panoptic_root, sem_seg_root, categories): """ Create semantic segmentation annotations from panoptic segmentation annotations, to be used by PanopticFPN. It maps all thing categories to class 0, and maps all unlabeled pixels to class 255. It maps all stuff categories to contiguous ids starting from 1. Args: panoptic_json (str): path to the panoptic json file, in COCO's format. panoptic_root (str): a directory with panoptic annotation files, in COCO's format. sem_seg_root (str): a directory to output semantic annotation files categories (list[dict]): category metadata. Each dict needs to have: "id": corresponds to the "category_id" in the json annotations "isthing": 0 or 1 """ os.makedirs(sem_seg_root, exist_ok=True) stuff_ids = [k["id"] for k in categories if k["isthing"] == 0] thing_ids = [k["id"] for k in categories if k["isthing"] == 1] id_map = {} # map from category id to id in the output semantic annotation assert len(stuff_ids) <= 254 for i, stuff_id in enumerate(stuff_ids): id_map[stuff_id] = i + 1 for thing_id in thing_ids: id_map[thing_id] = 0 id_map[0] = 255 with open(panoptic_json) as f: obj = json.load(f) pool = mp.Pool(processes=max(mp.cpu_count() // 2, 4)) def iter_annotations(): for anno in obj["annotations"]: file_name = anno["file_name"] segments = anno["segments_info"] input = os.path.join(panoptic_root, file_name) output = os.path.join(sem_seg_root, file_name) yield input, output, segments print("Start writing to {} ...".format(sem_seg_root)) start = time.time() pool.starmap( functools.partial(_process_panoptic_to_semantic, id_map=id_map), iter_annotations(), chunksize=100, ) print("Finished. time: {:.2f}s".format(time.time() - start)) if __name__ == "__main__": dataset_dir = os.path.join(os.getenv("DETECTRON2_DATASETS", "datasets"), "coco") for s in ["val2017", "train2017"]: separate_coco_semantic_from_panoptic( os.path.join(dataset_dir, "annotations/panoptic_{}.json".format(s)), os.path.join(dataset_dir, "panoptic_{}".format(s)), os.path.join(dataset_dir, "panoptic_stuff_{}".format(s)), COCO_CATEGORIES, ) # Prepare val2017_100 for quick testing: dest_dir = os.path.join(dataset_dir, "annotations/") URL_PREFIX = "https://dl.fbaipublicfiles.com/detectron2/" download(URL_PREFIX + "annotations/coco/panoptic_val2017_100.json", dest_dir) with open(os.path.join(dest_dir, "panoptic_val2017_100.json")) as f: obj = json.load(f) def link_val100(dir_full, dir_100): print("Creating " + dir_100 + " ...") os.makedirs(dir_100, exist_ok=True) for img in obj["images"]: basename = os.path.splitext(img["file_name"])[0] src = os.path.join(dir_full, basename + ".png") dst = os.path.join(dir_100, basename + ".png") src = os.path.relpath(src, start=dir_100) os.symlink(src, dst) link_val100( os.path.join(dataset_dir, "panoptic_val2017"), os.path.join(dataset_dir, "panoptic_val2017_100"), ) link_val100( os.path.join(dataset_dir, "panoptic_stuff_val2017"), os.path.join(dataset_dir, "panoptic_stuff_val2017_100"), )
banmo-main
third_party/detectron2_old/datasets/prepare_panoptic_fpn.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. import numpy as np import os from pathlib import Path import tqdm from PIL import Image def convert(input, output): img = np.asarray(Image.open(input)) assert img.dtype == np.uint8 img = img - 1 # 0 (ignore) becomes 255. others are shifted by 1 Image.fromarray(img).save(output) if __name__ == "__main__": dataset_dir = Path(os.getenv("DETECTRON2_DATASETS", "datasets")) / "ADEChallengeData2016" for name in ["training", "validation"]: annotation_dir = dataset_dir / "annotations" / name output_dir = dataset_dir / "annotations_detectron2" / name output_dir.mkdir(parents=True, exist_ok=True) for file in tqdm.tqdm(list(annotation_dir.iterdir())): output_file = output_dir / file.name convert(file, output_file)
banmo-main
third_party/detectron2_old/datasets/prepare_ade20k_sem_seg.py
# Copyright (c) Facebook, Inc. and its affiliates. import unittest import torch from detectron2.modeling.meta_arch import GeneralizedRCNN from detectron2.utils.registry import _convert_target_to_string, locate class A: class B: pass class TestLocate(unittest.TestCase): def _test_obj(self, obj): name = _convert_target_to_string(obj) newobj = locate(name) self.assertIs(obj, newobj) def test_basic(self): self._test_obj(GeneralizedRCNN) def test_inside_class(self): # requires using __qualname__ instead of __name__ self._test_obj(A.B) def test_builtin(self): self._test_obj(len) self._test_obj(dict) def test_pytorch_optim(self): # pydoc.locate does not work for it self._test_obj(torch.optim.SGD) def test_failure(self): with self.assertRaises(ImportError): locate("asdf") def test_compress_target(self): from detectron2.data.transforms import RandomCrop name = _convert_target_to_string(RandomCrop) # name shouldn't contain 'augmentation_impl' self.assertEqual(name, "detectron2.data.transforms.RandomCrop") self.assertIs(RandomCrop, locate(name))
banmo-main
third_party/detectron2_old/tests/test_registry.py
# Copyright (c) Facebook, Inc. and its affiliates. import json import os import tempfile import time import unittest from unittest import mock import torch from fvcore.common.checkpoint import Checkpointer from torch import nn from detectron2.config import configurable, get_cfg from detectron2.engine import DefaultTrainer, SimpleTrainer, hooks from detectron2.modeling.meta_arch import META_ARCH_REGISTRY from detectron2.utils.events import CommonMetricPrinter, JSONWriter @META_ARCH_REGISTRY.register() class _SimpleModel(nn.Module): @configurable def __init__(self, sleep_sec=0): super().__init__() self.mod = nn.Linear(10, 20) self.sleep_sec = sleep_sec @classmethod def from_config(cls, cfg): return {} def forward(self, x): if self.sleep_sec > 0: time.sleep(self.sleep_sec) return {"loss": x.sum() + sum([x.mean() for x in self.parameters()])} class TestTrainer(unittest.TestCase): def _data_loader(self, device): device = torch.device(device) while True: yield torch.rand(3, 3).to(device) def test_simple_trainer(self, device="cpu"): model = _SimpleModel().to(device=device) trainer = SimpleTrainer( model, self._data_loader(device), torch.optim.SGD(model.parameters(), 0.1) ) trainer.train(0, 10) @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") def test_simple_trainer_cuda(self): self.test_simple_trainer(device="cuda") def test_writer_hooks(self): model = _SimpleModel(sleep_sec=0.1) trainer = SimpleTrainer( model, self._data_loader("cpu"), torch.optim.SGD(model.parameters(), 0.1) ) max_iter = 50 with tempfile.TemporaryDirectory(prefix="detectron2_test") as d: json_file = os.path.join(d, "metrics.json") writers = [CommonMetricPrinter(max_iter), JSONWriter(json_file)] trainer.register_hooks( [hooks.EvalHook(0, lambda: {"metric": 100}), hooks.PeriodicWriter(writers)] ) with self.assertLogs(writers[0].logger) as logs: trainer.train(0, max_iter) with open(json_file, "r") as f: data = [json.loads(line.strip()) for line in f] self.assertEqual([x["iteration"] for x in data], [19, 39, 49, 50]) # the eval metric is in the last line with iter 50 self.assertIn("metric", data[-1], "Eval metric must be in last line of JSON!") # test logged messages from CommonMetricPrinter self.assertEqual(len(logs.output), 3) for log, iter in zip(logs.output, [19, 39, 49]): self.assertIn(f"iter: {iter}", log) self.assertIn("eta: 0:00:00", logs.output[-1], "Last ETA must be 0!") @unittest.skipIf(os.environ.get("CI"), "Require COCO data.") def test_default_trainer(self): # TODO: this test requires manifold access, so changed device to CPU. see: T88318502 cfg = get_cfg() cfg.MODEL.DEVICE = "cpu" cfg.MODEL.META_ARCHITECTURE = "_SimpleModel" cfg.DATASETS.TRAIN = ("coco_2017_val_100",) with tempfile.TemporaryDirectory(prefix="detectron2_test") as d: cfg.OUTPUT_DIR = d trainer = DefaultTrainer(cfg) # test property self.assertIs(trainer.model, trainer._trainer.model) trainer.model = _SimpleModel() self.assertIs(trainer.model, trainer._trainer.model) def test_checkpoint_resume(self): model = _SimpleModel() dataloader = self._data_loader("cpu") opt = torch.optim.SGD(model.parameters(), 0.1) scheduler = torch.optim.lr_scheduler.StepLR(opt, 3) with tempfile.TemporaryDirectory(prefix="detectron2_test") as d: trainer = SimpleTrainer(model, dataloader, opt) checkpointer = Checkpointer(model, d, opt=opt, trainer=trainer) trainer.register_hooks( [ hooks.LRScheduler(scheduler=scheduler), # checkpoint after scheduler to properly save the state of scheduler hooks.PeriodicCheckpointer(checkpointer, 10), ] ) trainer.train(0, 12) self.assertAlmostEqual(opt.param_groups[0]["lr"], 1e-5) self.assertEqual(scheduler.last_epoch, 12) del trainer opt = torch.optim.SGD(model.parameters(), 999) # lr will be loaded trainer = SimpleTrainer(model, dataloader, opt) scheduler = torch.optim.lr_scheduler.StepLR(opt, 3) trainer.register_hooks( [ hooks.LRScheduler(scheduler=scheduler), ] ) checkpointer = Checkpointer(model, d, opt=opt, trainer=trainer) checkpointer.resume_or_load("non_exist.pth") self.assertEqual(trainer.iter, 11) # last finished iter number (0-based in Trainer) # number of times `scheduler.step()` was called (1-based) self.assertEqual(scheduler.last_epoch, 12) self.assertAlmostEqual(opt.param_groups[0]["lr"], 1e-5) def test_eval_hook(self): model = _SimpleModel() dataloader = self._data_loader("cpu") opt = torch.optim.SGD(model.parameters(), 0.1) for total_iter, period, eval_count in [(30, 15, 2), (31, 15, 3), (20, 0, 1)]: test_func = mock.Mock(return_value={"metric": 3.0}) trainer = SimpleTrainer(model, dataloader, opt) trainer.register_hooks([hooks.EvalHook(period, test_func)]) trainer.train(0, total_iter) self.assertEqual(test_func.call_count, eval_count)
banmo-main
third_party/detectron2_old/tests/test_engine.py
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. import numpy as np import os import tempfile import unittest import cv2 import torch from detectron2.data import MetadataCatalog from detectron2.structures import BoxMode, Instances, RotatedBoxes from detectron2.utils.visualizer import ColorMode, Visualizer class TestVisualizer(unittest.TestCase): def _random_data(self): H, W = 100, 100 N = 10 img = np.random.rand(H, W, 3) * 255 boxxy = np.random.rand(N, 2) * (H // 2) boxes = np.concatenate((boxxy, boxxy + H // 2), axis=1) def _rand_poly(): return np.random.rand(3, 2).flatten() * H polygons = [[_rand_poly() for _ in range(np.random.randint(1, 5))] for _ in range(N)] mask = np.zeros_like(img[:, :, 0], dtype=np.bool) mask[:40, 10:20] = 1 labels = [str(i) for i in range(N)] return img, boxes, labels, polygons, [mask] * N @property def metadata(self): return MetadataCatalog.get("coco_2017_train") def test_draw_dataset_dict(self): img = np.random.rand(512, 512, 3) * 255 dic = { "annotations": [ { "bbox": [ 368.9946492271106, 330.891438763377, 13.148537455410235, 13.644708680142685, ], "bbox_mode": BoxMode.XYWH_ABS, "category_id": 0, "iscrowd": 1, "segmentation": { "counts": "_jh52m?2N2N2N2O100O10O001N1O2MceP2", "size": [512, 512], }, } ], "height": 512, "image_id": 1, "width": 512, } v = Visualizer(img) v.draw_dataset_dict(dic) v = Visualizer(img, self.metadata) v.draw_dataset_dict(dic) def test_draw_rotated_dataset_dict(self): img = np.random.rand(512, 512, 3) * 255 dic = { "annotations": [ { "bbox": [ 368.9946492271106, 330.891438763377, 13.148537455410235, 13.644708680142685, 45.0, ], "bbox_mode": BoxMode.XYWHA_ABS, "category_id": 0, "iscrowd": 1, } ], "height": 512, "image_id": 1, "width": 512, } v = Visualizer(img, self.metadata) v.draw_dataset_dict(dic) def test_overlay_instances(self): img, boxes, labels, polygons, masks = self._random_data() v = Visualizer(img, self.metadata) output = v.overlay_instances(masks=polygons, boxes=boxes, labels=labels).get_image() self.assertEqual(output.shape, img.shape) # Test 2x scaling v = Visualizer(img, self.metadata, scale=2.0) output = v.overlay_instances(masks=polygons, boxes=boxes, labels=labels).get_image() self.assertEqual(output.shape[0], img.shape[0] * 2) # Test overlay masks v = Visualizer(img, self.metadata) output = v.overlay_instances(masks=masks, boxes=boxes, labels=labels).get_image() self.assertEqual(output.shape, img.shape) def test_overlay_instances_no_boxes(self): img, boxes, labels, polygons, _ = self._random_data() v = Visualizer(img, self.metadata) v.overlay_instances(masks=polygons, boxes=None, labels=labels).get_image() def test_draw_instance_predictions(self): img, boxes, _, _, masks = self._random_data() num_inst = len(boxes) inst = Instances((img.shape[0], img.shape[1])) inst.pred_classes = torch.randint(0, 80, size=(num_inst,)) inst.scores = torch.rand(num_inst) inst.pred_boxes = torch.from_numpy(boxes) inst.pred_masks = torch.from_numpy(np.asarray(masks)) v = Visualizer(img) v.draw_instance_predictions(inst) v = Visualizer(img, self.metadata) v.draw_instance_predictions(inst) def test_BWmode_nomask(self): img, boxes, _, _, masks = self._random_data() num_inst = len(boxes) inst = Instances((img.shape[0], img.shape[1])) inst.pred_classes = torch.randint(0, 80, size=(num_inst,)) inst.scores = torch.rand(num_inst) inst.pred_boxes = torch.from_numpy(boxes) v = Visualizer(img, self.metadata, instance_mode=ColorMode.IMAGE_BW) v.draw_instance_predictions(inst) def test_draw_empty_mask_predictions(self): img, boxes, _, _, masks = self._random_data() num_inst = len(boxes) inst = Instances((img.shape[0], img.shape[1])) inst.pred_classes = torch.randint(0, 80, size=(num_inst,)) inst.scores = torch.rand(num_inst) inst.pred_boxes = torch.from_numpy(boxes) inst.pred_masks = torch.from_numpy(np.zeros_like(np.asarray(masks))) v = Visualizer(img, self.metadata) v.draw_instance_predictions(inst) def test_correct_output_shape(self): img = np.random.rand(928, 928, 3) * 255 v = Visualizer(img, self.metadata) out = v.output.get_image() self.assertEqual(out.shape, img.shape) def test_overlay_rotated_instances(self): H, W = 100, 150 img = np.random.rand(H, W, 3) * 255 num_boxes = 50 boxes_5d = torch.zeros(num_boxes, 5) boxes_5d[:, 0] = torch.FloatTensor(num_boxes).uniform_(-0.1 * W, 1.1 * W) boxes_5d[:, 1] = torch.FloatTensor(num_boxes).uniform_(-0.1 * H, 1.1 * H) boxes_5d[:, 2] = torch.FloatTensor(num_boxes).uniform_(0, max(W, H)) boxes_5d[:, 3] = torch.FloatTensor(num_boxes).uniform_(0, max(W, H)) boxes_5d[:, 4] = torch.FloatTensor(num_boxes).uniform_(-1800, 1800) rotated_boxes = RotatedBoxes(boxes_5d) labels = [str(i) for i in range(num_boxes)] v = Visualizer(img, self.metadata) output = v.overlay_instances(boxes=rotated_boxes, labels=labels).get_image() self.assertEqual(output.shape, img.shape) def test_draw_no_metadata(self): img, boxes, _, _, masks = self._random_data() num_inst = len(boxes) inst = Instances((img.shape[0], img.shape[1])) inst.pred_classes = torch.randint(0, 80, size=(num_inst,)) inst.scores = torch.rand(num_inst) inst.pred_boxes = torch.from_numpy(boxes) inst.pred_masks = torch.from_numpy(np.asarray(masks)) v = Visualizer(img, MetadataCatalog.get("asdfasdf")) v.draw_instance_predictions(inst) def test_draw_binary_mask(self): img, boxes, _, _, masks = self._random_data() img[:, :, 0] = 0 # remove red color mask = masks[0] mask_with_hole = np.zeros_like(mask).astype("uint8") mask_with_hole = cv2.rectangle(mask_with_hole, (10, 10), (50, 50), 1, 5) for m in [mask, mask_with_hole]: for save in [True, False]: v = Visualizer(img) o = v.draw_binary_mask(m, color="red", text="test") if save: with tempfile.TemporaryDirectory(prefix="detectron2_viz") as d: path = os.path.join(d, "output.png") o.save(path) o = cv2.imread(path)[:, :, ::-1] else: o = o.get_image().astype("float32") # red color is drawn on the image self.assertTrue(o[:, :, 0].sum() > 0) def test_border_mask_with_holes(self): H, W = 200, 200 img = np.zeros((H, W, 3)) img[:, :, 0] = 255.0 v = Visualizer(img, scale=3) mask = np.zeros((H, W)) mask[:, 100:150] = 1 # create a hole, to trigger imshow mask = cv2.rectangle(mask, (110, 110), (130, 130), 0, thickness=-1) output = v.draw_binary_mask(mask, color="blue") output = output.get_image()[:, :, ::-1] first_row = {tuple(x.tolist()) for x in output[0]} last_row = {tuple(x.tolist()) for x in output[-1]} # Check quantization / off-by-1 error: the first and last row must have two colors self.assertEqual(len(last_row), 2) self.assertEqual(len(first_row), 2) self.assertIn((0, 0, 255), last_row) self.assertIn((0, 0, 255), first_row) def test_border_polygons(self): H, W = 200, 200 img = np.zeros((H, W, 3)) img[:, :, 0] = 255.0 v = Visualizer(img, scale=3) mask = np.zeros((H, W)) mask[:, 100:150] = 1 output = v.draw_binary_mask(mask, color="blue") output = output.get_image()[:, :, ::-1] first_row = {tuple(x.tolist()) for x in output[0]} last_row = {tuple(x.tolist()) for x in output[-1]} # Check quantization / off-by-1 error: # the first and last row must have >=2 colors, because the polygon # touches both rows self.assertGreaterEqual(len(last_row), 2) self.assertGreaterEqual(len(first_row), 2) self.assertIn((0, 0, 255), last_row) self.assertIn((0, 0, 255), first_row) if __name__ == "__main__": unittest.main()
banmo-main
third_party/detectron2_old/tests/test_visualizer.py
# Copyright (c) Facebook, Inc. and its affiliates. import unittest from detectron2.utils.collect_env import collect_env_info class TestProjects(unittest.TestCase): def test_import(self): from detectron2.projects import point_rend _ = point_rend.add_pointrend_config import detectron2.projects.deeplab as deeplab _ = deeplab.add_deeplab_config # import detectron2.projects.panoptic_deeplab as panoptic_deeplab # _ = panoptic_deeplab.add_panoptic_deeplab_config class TestCollectEnv(unittest.TestCase): def test(self): _ = collect_env_info()
banmo-main
third_party/detectron2_old/tests/test_packaging.py
# Copyright (c) Facebook, Inc. and its affiliates. import unittest import torch from detectron2.utils.analysis import flop_count_operators, parameter_count from detectron2.utils.testing import get_model_no_weights class RetinaNetTest(unittest.TestCase): def setUp(self): self.model = get_model_no_weights("COCO-Detection/retinanet_R_50_FPN_1x.yaml") def test_flop(self): # RetinaNet supports flop-counting with random inputs inputs = [{"image": torch.rand(3, 800, 800), "test_unused": "abcd"}] res = flop_count_operators(self.model, inputs) self.assertTrue(int(res["conv"]), 146) # 146B flops def test_param_count(self): res = parameter_count(self.model) self.assertTrue(res[""], 37915572) self.assertTrue(res["backbone"], 31452352) class FasterRCNNTest(unittest.TestCase): def setUp(self): self.model = get_model_no_weights("COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml") def test_flop(self): # Faster R-CNN supports flop-counting with random inputs inputs = [{"image": torch.rand(3, 800, 800)}] res = flop_count_operators(self.model, inputs) # This only checks flops for backbone & proposal generator # Flops for box head is not conv, and depends on #proposals, which is # almost 0 for random inputs. self.assertTrue(int(res["conv"]), 117) def test_param_count(self): res = parameter_count(self.model) self.assertTrue(res[""], 41699936) self.assertTrue(res["backbone"], 26799296)
banmo-main
third_party/detectron2_old/tests/test_model_analysis.py
# Copyright (c) Facebook, Inc. and its affiliates.
banmo-main
third_party/detectron2_old/tests/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. import math import numpy as np from unittest import TestCase import torch from fvcore.common.param_scheduler import CosineParamScheduler, MultiStepParamScheduler from torch import nn from detectron2.solver import LRMultiplier, WarmupParamScheduler class TestScheduler(TestCase): def test_warmup_multistep(self): p = nn.Parameter(torch.zeros(0)) opt = torch.optim.SGD([p], lr=5) multiplier = WarmupParamScheduler( MultiStepParamScheduler( [1, 0.1, 0.01, 0.001], milestones=[10, 15, 20], num_updates=30, ), 0.001, 5 / 30, ) sched = LRMultiplier(opt, multiplier, 30) # This is an equivalent of: # sched = WarmupMultiStepLR( # opt, milestones=[10, 15, 20], gamma=0.1, warmup_factor=0.001, warmup_iters=5) p.sum().backward() opt.step() lrs = [0.005] for _ in range(30): sched.step() lrs.append(opt.param_groups[0]["lr"]) self.assertTrue(np.allclose(lrs[:5], [0.005, 1.004, 2.003, 3.002, 4.001])) self.assertTrue(np.allclose(lrs[5:10], 5.0)) self.assertTrue(np.allclose(lrs[10:15], 0.5)) self.assertTrue(np.allclose(lrs[15:20], 0.05)) self.assertTrue(np.allclose(lrs[20:], 0.005)) def test_warmup_cosine(self): p = nn.Parameter(torch.zeros(0)) opt = torch.optim.SGD([p], lr=5) multiplier = WarmupParamScheduler( CosineParamScheduler(1, 0), 0.001, 5 / 30, ) sched = LRMultiplier(opt, multiplier, 30) p.sum().backward() opt.step() self.assertEqual(opt.param_groups[0]["lr"], 0.005) lrs = [0.005] for _ in range(30): sched.step() lrs.append(opt.param_groups[0]["lr"]) for idx, lr in enumerate(lrs): expected_cosine = 2.5 * (1.0 + math.cos(math.pi * idx / 30)) if idx >= 5: self.assertAlmostEqual(lr, expected_cosine) else: self.assertNotAlmostEqual(lr, expected_cosine)
banmo-main
third_party/detectron2_old/tests/test_scheduler.py
# Copyright (c) Facebook, Inc. and its affiliates. # -*- coding: utf-8 -*- import copy import os import tempfile import unittest import torch from detectron2 import model_zoo from detectron2.utils.logger import setup_logger from detectron2.utils.testing import get_sample_coco_image @unittest.skipIf(os.environ.get("CI"), "Require COCO data and model zoo.") class TestCaffe2Export(unittest.TestCase): def setUp(self): setup_logger() def _test_model(self, config_path, device="cpu"): # requires extra dependencies from detectron2.export import Caffe2Model, add_export_config, Caffe2Tracer cfg = model_zoo.get_config(config_path) add_export_config(cfg) cfg.MODEL.DEVICE = device model = model_zoo.get(config_path, trained=True, device=device) inputs = [{"image": get_sample_coco_image()}] tracer = Caffe2Tracer(cfg, model, copy.deepcopy(inputs)) c2_model = tracer.export_caffe2() with tempfile.TemporaryDirectory(prefix="detectron2_unittest") as d: c2_model.save_protobuf(d) c2_model.save_graph(os.path.join(d, "test.svg"), inputs=copy.deepcopy(inputs)) c2_model = Caffe2Model.load_protobuf(d) c2_model(inputs)[0]["instances"] ts_model = tracer.export_torchscript() ts_model.save(os.path.join(d, "model.ts")) def testMaskRCNN(self): # TODO: this test requires manifold access, see: T88318502 self._test_model("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") def testMaskRCNNGPU(self): # TODO: this test requires manifold access, see: T88318502 self._test_model("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml", device="cuda") def testRetinaNet(self): # TODO: this test requires manifold access, see: T88318502 self._test_model("COCO-Detection/retinanet_R_50_FPN_3x.yaml") def testPanopticFPN(self): # TODO: this test requires manifold access, see: T88318502 self._test_model("COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml")
banmo-main
third_party/detectron2_old/tests/test_export_caffe2.py
# Copyright (c) Facebook, Inc. and its affiliates. import json import os import tempfile import unittest from detectron2.utils.events import CommonMetricPrinter, EventStorage, JSONWriter class TestEventWriter(unittest.TestCase): def testScalar(self): with tempfile.TemporaryDirectory( prefix="detectron2_tests" ) as dir, EventStorage() as storage: json_file = os.path.join(dir, "test.json") writer = JSONWriter(json_file) for k in range(60): storage.put_scalar("key", k, smoothing_hint=False) if (k + 1) % 20 == 0: writer.write() storage.step() writer.close() with open(json_file) as f: data = [json.loads(l) for l in f] self.assertTrue([int(k["key"]) for k in data] == [19, 39, 59]) def testScalarMismatchedPeriod(self): with tempfile.TemporaryDirectory( prefix="detectron2_tests" ) as dir, EventStorage() as storage: json_file = os.path.join(dir, "test.json") writer = JSONWriter(json_file) for k in range(60): if k % 17 == 0: # write in a differnt period storage.put_scalar("key2", k, smoothing_hint=False) storage.put_scalar("key", k, smoothing_hint=False) if (k + 1) % 20 == 0: writer.write() storage.step() writer.close() with open(json_file) as f: data = [json.loads(l) for l in f] self.assertTrue([int(k.get("key2", 0)) for k in data] == [17, 0, 34, 0, 51, 0]) self.assertTrue([int(k.get("key", 0)) for k in data] == [0, 19, 0, 39, 0, 59]) self.assertTrue([int(k["iteration"]) for k in data] == [17, 19, 34, 39, 51, 59]) def testPrintETA(self): with EventStorage() as s: p1 = CommonMetricPrinter(10) p2 = CommonMetricPrinter() s.put_scalar("time", 1.0) s.step() s.put_scalar("time", 1.0) s.step() with self.assertLogs("detectron2.utils.events") as logs: p1.write() self.assertIn("eta", logs.output[0]) with self.assertLogs("detectron2.utils.events") as logs: p2.write() self.assertNotIn("eta", logs.output[0])
banmo-main
third_party/detectron2_old/tests/test_events.py
# Copyright (c) Facebook, Inc. and its affiliates. import json import os import tempfile import unittest import torch from torch import Tensor, nn from detectron2 import model_zoo from detectron2.config import get_cfg from detectron2.config.instantiate import dump_dataclass, instantiate from detectron2.export import dump_torchscript_IR, scripting_with_instances from detectron2.export.flatten import TracingAdapter, flatten_to_tuple from detectron2.export.torchscript_patch import patch_builtin_len from detectron2.layers import ShapeSpec from detectron2.modeling import build_backbone from detectron2.modeling.postprocessing import detector_postprocess from detectron2.modeling.roi_heads import KRCNNConvDeconvUpsampleHead from detectron2.structures import Boxes, Instances from detectron2.utils.env import TORCH_VERSION from detectron2.utils.testing import ( assert_instances_allclose, convert_scripted_instances, get_sample_coco_image, random_boxes, ) """ https://detectron2.readthedocs.io/tutorials/deployment.html contains some explanations of this file. """ @unittest.skipIf(os.environ.get("CI") or TORCH_VERSION < (1, 8), "Insufficient Pytorch version") class TestScripting(unittest.TestCase): @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") def testMaskRCNN(self): # TODO: this test requires manifold access, see: T88318502 self._test_rcnn_model("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") def testRetinaNet(self): # TODO: this test requires manifold access, see: T88318502 self._test_retinanet_model("COCO-Detection/retinanet_R_50_FPN_3x.yaml") def _test_rcnn_model(self, config_path): model = model_zoo.get(config_path, trained=True) model.eval() fields = { "proposal_boxes": Boxes, "objectness_logits": Tensor, "pred_boxes": Boxes, "scores": Tensor, "pred_classes": Tensor, "pred_masks": Tensor, } script_model = scripting_with_instances(model, fields) inputs = [{"image": get_sample_coco_image()}] * 2 with torch.no_grad(): instance = model.inference(inputs, do_postprocess=False)[0] scripted_instance = script_model.inference(inputs, do_postprocess=False)[0] assert_instances_allclose(instance, scripted_instance) def _test_retinanet_model(self, config_path): model = model_zoo.get(config_path, trained=True) model.eval() fields = { "pred_boxes": Boxes, "scores": Tensor, "pred_classes": Tensor, } script_model = scripting_with_instances(model, fields) img = get_sample_coco_image() inputs = [{"image": img}] * 2 with torch.no_grad(): instance = model(inputs)[0]["instances"] scripted_instance = convert_scripted_instances(script_model(inputs)[0]) scripted_instance = detector_postprocess(scripted_instance, img.shape[1], img.shape[2]) assert_instances_allclose(instance, scripted_instance) # Note that the model currently cannot be saved and loaded into a new process: # https://github.com/pytorch/pytorch/issues/46944 @unittest.skipIf(os.environ.get("CI") or TORCH_VERSION < (1, 8), "Insufficient Pytorch version") class TestTracing(unittest.TestCase): @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") def testMaskRCNN(self): # TODO: this test requires manifold access, see: T88318502 def inference_func(model, image): inputs = [{"image": image}] return model.inference(inputs, do_postprocess=False)[0] self._test_model("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml", inference_func) @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") def testRetinaNet(self): # TODO: this test requires manifold access, see: T88318502 def inference_func(model, image): return model.forward([{"image": image}])[0]["instances"] self._test_model("COCO-Detection/retinanet_R_50_FPN_3x.yaml", inference_func) def _test_model(self, config_path, inference_func): model = model_zoo.get(config_path, trained=True) image = get_sample_coco_image() wrapper = TracingAdapter(model, image, inference_func) wrapper.eval() with torch.no_grad(): small_image = nn.functional.interpolate(image, scale_factor=0.5) # trace with a different image, and the trace must still work traced_model = torch.jit.trace(wrapper, (small_image,)) output = inference_func(model, image) traced_output = wrapper.outputs_schema(traced_model(image)) assert_instances_allclose(output, traced_output, size_as_tensor=True) def testKeypointHead(self): class M(nn.Module): def __init__(self): super().__init__() self.model = KRCNNConvDeconvUpsampleHead( ShapeSpec(channels=4, height=14, width=14), num_keypoints=17, conv_dims=(4,) ) def forward(self, x, predbox1, predbox2): inst = [ Instances((100, 100), pred_boxes=Boxes(predbox1)), Instances((100, 100), pred_boxes=Boxes(predbox2)), ] ret = self.model(x, inst) return tuple(x.pred_keypoints for x in ret) model = M() model.eval() def gen_input(num1, num2): feat = torch.randn((num1 + num2, 4, 14, 14)) box1 = random_boxes(num1) box2 = random_boxes(num2) return feat, box1, box2 with torch.no_grad(), patch_builtin_len(): trace = torch.jit.trace(model, gen_input(15, 15), check_trace=False) inputs = gen_input(12, 10) trace_outputs = trace(*inputs) true_outputs = model(*inputs) for trace_output, true_output in zip(trace_outputs, true_outputs): self.assertTrue(torch.allclose(trace_output, true_output)) class TestTorchscriptUtils(unittest.TestCase): # TODO: add test to dump scripting def test_dump_IR_tracing(self): cfg = get_cfg() cfg.MODEL.RESNETS.DEPTH = 18 cfg.MODEL.RESNETS.RES2_OUT_CHANNELS = 64 class Mod(nn.Module): def forward(self, x): return tuple(self.m(x).values()) model = Mod() model.m = build_backbone(cfg) model.eval() with torch.no_grad(): ts_model = torch.jit.trace(model, (torch.rand(2, 3, 224, 224),)) with tempfile.TemporaryDirectory(prefix="detectron2_test") as d: dump_torchscript_IR(ts_model, d) # check that the files are created for name in ["model_ts_code", "model_ts_IR", "model_ts_IR_inlined", "model"]: fname = os.path.join(d, name + ".txt") self.assertTrue(os.stat(fname).st_size > 0, fname) def test_dump_IR_function(self): @torch.jit.script def gunc(x, y): return x + y def func(x, y): return x + y + gunc(x, y) ts_model = torch.jit.trace(func, (torch.rand(3), torch.rand(3))) with tempfile.TemporaryDirectory(prefix="detectron2_test") as d: dump_torchscript_IR(ts_model, d) for name in ["model_ts_code", "model_ts_IR", "model_ts_IR_inlined"]: fname = os.path.join(d, name + ".txt") self.assertTrue(os.stat(fname).st_size > 0, fname) def test_flatten_basic(self): obj = [3, ([5, 6], {"name": [7, 9], "name2": 3})] res, schema = flatten_to_tuple(obj) self.assertEqual(res, (3, 5, 6, 7, 9, 3)) new_obj = schema(res) self.assertEqual(new_obj, obj) _, new_schema = flatten_to_tuple(new_obj) self.assertEqual(schema, new_schema) # test __eq__ self._check_schema(schema) def _check_schema(self, schema): dumped_schema = dump_dataclass(schema) # Check that the schema is json-serializable # Although in reality you might want to use yaml because it often has many levels json.dumps(dumped_schema) # Check that the schema can be deserialized new_schema = instantiate(dumped_schema) self.assertEqual(schema, new_schema) def test_flatten_instances_boxes(self): inst = Instances( torch.tensor([5, 8]), pred_masks=torch.tensor([3]), pred_boxes=Boxes(torch.ones((1, 4))) ) obj = [3, ([5, 6], inst)] res, schema = flatten_to_tuple(obj) self.assertEqual(res[:3], (3, 5, 6)) for r, expected in zip(res[3:], (inst.pred_boxes.tensor, inst.pred_masks, inst.image_size)): self.assertIs(r, expected) new_obj = schema(res) assert_instances_allclose(new_obj[1][1], inst, rtol=0.0, size_as_tensor=True) self._check_schema(schema)
banmo-main
third_party/detectron2_old/tests/test_export_torchscript.py
# Copyright (c) Facebook, Inc. and its affiliates. import logging import unittest from detectron2 import model_zoo from detectron2.config import instantiate from detectron2.modeling import FPN, GeneralizedRCNN logger = logging.getLogger(__name__) class TestModelZoo(unittest.TestCase): def test_get_returns_model(self): model = model_zoo.get("Misc/scratch_mask_rcnn_R_50_FPN_3x_gn.yaml", trained=False) self.assertIsInstance(model, GeneralizedRCNN) self.assertIsInstance(model.backbone, FPN) def test_get_invalid_model(self): self.assertRaises(RuntimeError, model_zoo.get, "Invalid/config.yaml") def test_get_url(self): url = model_zoo.get_checkpoint_url("Misc/scratch_mask_rcnn_R_50_FPN_3x_gn.yaml") self.assertEqual( url, "https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn/138602908/model_final_01ca85.pkl", # noqa ) url2 = model_zoo.get_checkpoint_url("Misc/scratch_mask_rcnn_R_50_FPN_3x_gn.py") self.assertEqual(url, url2) def _build_lazy_model(self, name): cfg = model_zoo.get_config("common/models/" + name) instantiate(cfg.model) def test_mask_rcnn_fpn(self): self._build_lazy_model("mask_rcnn_fpn.py") def test_mask_rcnn_c4(self): self._build_lazy_model("mask_rcnn_c4.py") def test_panoptic_fpn(self): self._build_lazy_model("panoptic_fpn.py") def test_schedule(self): cfg = model_zoo.get_config("common/coco_schedule.py") for _, v in cfg.items(): instantiate(v) if __name__ == "__main__": unittest.main()
banmo-main
third_party/detectron2_old/tests/test_model_zoo.py
# Copyright (c) Facebook, Inc. and its affiliates. import unittest from collections import OrderedDict import torch from torch import nn from detectron2.checkpoint.c2_model_loading import align_and_update_state_dicts from detectron2.utils.logger import setup_logger class TestCheckpointer(unittest.TestCase): def setUp(self): setup_logger() def create_complex_model(self): m = nn.Module() m.block1 = nn.Module() m.block1.layer1 = nn.Linear(2, 3) m.layer2 = nn.Linear(3, 2) m.res = nn.Module() m.res.layer2 = nn.Linear(3, 2) state_dict = OrderedDict() state_dict["layer1.weight"] = torch.rand(3, 2) state_dict["layer1.bias"] = torch.rand(3) state_dict["layer2.weight"] = torch.rand(2, 3) state_dict["layer2.bias"] = torch.rand(2) state_dict["res.layer2.weight"] = torch.rand(2, 3) state_dict["res.layer2.bias"] = torch.rand(2) return m, state_dict def test_complex_model_loaded(self): for add_data_parallel in [False, True]: model, state_dict = self.create_complex_model() if add_data_parallel: model = nn.DataParallel(model) model_sd = model.state_dict() sd_to_load = align_and_update_state_dicts(model_sd, state_dict) model.load_state_dict(sd_to_load) for loaded, stored in zip(model_sd.values(), state_dict.values()): # different tensor references self.assertFalse(id(loaded) == id(stored)) # same content self.assertTrue(loaded.to(stored).equal(stored)) if __name__ == "__main__": unittest.main()
banmo-main
third_party/detectron2_old/tests/test_checkpoint.py
# Copyright (c) Facebook, Inc. and its affiliates. from __future__ import absolute_import, division, print_function, unicode_literals import unittest import torch from detectron2.layers import batched_nms from detectron2.utils.testing import random_boxes class TestNMS(unittest.TestCase): def _create_tensors(self, N): boxes = random_boxes(N, 200) scores = torch.rand(N) return boxes, scores def test_nms_scriptability(self): N = 2000 num_classes = 50 boxes, scores = self._create_tensors(N) idxs = torch.randint(0, num_classes, (N,)) scripted_batched_nms = torch.jit.script(batched_nms) err_msg = "NMS is incompatible with jit-scripted NMS for IoU={}" for iou in [0.2, 0.5, 0.8]: keep_ref = batched_nms(boxes, scores, idxs, iou) backup = boxes.clone() scripted_keep = scripted_batched_nms(boxes, scores, idxs, iou) assert torch.allclose(boxes, backup), "boxes modified by jit-scripted batched_nms" self.assertTrue(torch.equal(keep_ref, scripted_keep), err_msg.format(iou)) if __name__ == "__main__": unittest.main()
banmo-main
third_party/detectron2_old/tests/layers/test_nms.py
# Copyright (c) Facebook, Inc. and its affiliates. import unittest import torch from torch import nn from detectron2.layers import ASPP, DepthwiseSeparableConv2d, FrozenBatchNorm2d from detectron2.modeling.backbone.resnet import BasicStem, ResNet """ Test for misc layers. """ class TestBlocks(unittest.TestCase): def test_separable_conv(self): DepthwiseSeparableConv2d(3, 10, norm1="BN", activation1=nn.PReLU()) def test_aspp(self): m = ASPP(3, 10, [2, 3, 4], norm="", activation=nn.PReLU()) self.assertIsNot(m.convs[0].activation.weight, m.convs[1].activation.weight) self.assertIsNot(m.convs[0].activation.weight, m.project.activation.weight) @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") def test_frozen_batchnorm_fp16(self): from torch.cuda.amp import autocast C = 10 input = torch.rand(1, C, 10, 10).cuda() m = FrozenBatchNorm2d(C).cuda() with autocast(): output = m(input.half()) self.assertEqual(output.dtype, torch.float16) # requires_grad triggers a different codepath input.requires_grad_() with autocast(): output = m(input.half()) self.assertEqual(output.dtype, torch.float16) def test_resnet_unused_stages(self): resnet = ResNet(BasicStem(), ResNet.make_default_stages(18), out_features=["res2"]) self.assertTrue(hasattr(resnet, "res2")) self.assertFalse(hasattr(resnet, "res3")) self.assertFalse(hasattr(resnet, "res5")) resnet = ResNet(BasicStem(), ResNet.make_default_stages(18), out_features=["res2", "res5"]) self.assertTrue(hasattr(resnet, "res2")) self.assertTrue(hasattr(resnet, "res4")) self.assertTrue(hasattr(resnet, "res5"))
banmo-main
third_party/detectron2_old/tests/layers/test_blocks.py
banmo-main
third_party/detectron2_old/tests/layers/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. import numpy as np import unittest from copy import copy import cv2 import torch from fvcore.common.benchmark import benchmark from torch.nn import functional as F from detectron2.layers.roi_align import ROIAlign, roi_align class ROIAlignTest(unittest.TestCase): def test_forward_output(self): input = np.arange(25).reshape(5, 5).astype("float32") """ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 """ output = self._simple_roialign(input, [1, 1, 3, 3], (4, 4), aligned=False) output_correct = self._simple_roialign(input, [1, 1, 3, 3], (4, 4), aligned=True) # without correction: old_results = [ [7.5, 8, 8.5, 9], [10, 10.5, 11, 11.5], [12.5, 13, 13.5, 14], [15, 15.5, 16, 16.5], ] # with 0.5 correction: correct_results = [ [4.5, 5.0, 5.5, 6.0], [7.0, 7.5, 8.0, 8.5], [9.5, 10.0, 10.5, 11.0], [12.0, 12.5, 13.0, 13.5], ] # This is an upsampled version of [[6, 7], [11, 12]] self.assertTrue(np.allclose(output.flatten(), np.asarray(old_results).flatten())) self.assertTrue( np.allclose(output_correct.flatten(), np.asarray(correct_results).flatten()) ) # Also see similar issues in tensorflow at # https://github.com/tensorflow/tensorflow/issues/26278 def test_resize(self): H, W = 30, 30 input = np.random.rand(H, W).astype("float32") * 100 box = [10, 10, 20, 20] output = self._simple_roialign(input, box, (5, 5), aligned=True) input2x = cv2.resize(input, (W // 2, H // 2), interpolation=cv2.INTER_LINEAR) box2x = [x / 2 for x in box] output2x = self._simple_roialign(input2x, box2x, (5, 5), aligned=True) diff = np.abs(output2x - output) self.assertTrue(diff.max() < 1e-4) def test_grid_sample_equivalence(self): H, W = 30, 30 input = np.random.rand(H, W).astype("float32") * 100 box = [10, 10, 20, 20] for ratio in [1, 2, 3]: output = self._simple_roialign(input, box, (5, 5), sampling_ratio=ratio) output_grid_sample = grid_sample_roi_align( torch.from_numpy(input[None, None, :, :]).float(), torch.as_tensor(box).float()[None, :], 5, 1.0, ratio, ) self.assertTrue(torch.allclose(output, output_grid_sample)) def _simple_roialign(self, img, box, resolution, sampling_ratio=0, aligned=True): """ RoiAlign with scale 1.0. """ if isinstance(resolution, int): resolution = (resolution, resolution) op = ROIAlign(resolution, 1.0, sampling_ratio, aligned=aligned) input = torch.from_numpy(img[None, None, :, :].astype("float32")) rois = [0] + list(box) rois = torch.from_numpy(np.asarray(rois)[None, :].astype("float32")) output = op.forward(input, rois) if torch.cuda.is_available(): output_cuda = op.forward(input.cuda(), rois.cuda()).cpu() self.assertTrue(torch.allclose(output, output_cuda)) return output[0, 0] def _simple_roialign_with_grad(self, img, box, resolution, device): if isinstance(resolution, int): resolution = (resolution, resolution) op = ROIAlign(resolution, 1.0, 0, aligned=True) input = torch.from_numpy(img[None, None, :, :].astype("float32")) rois = [0] + list(box) rois = torch.from_numpy(np.asarray(rois)[None, :].astype("float32")) input = input.to(device=device) rois = rois.to(device=device) input.requires_grad = True output = op.forward(input, rois) return input, output def test_empty_box(self): img = np.random.rand(5, 5) box = [3, 4, 5, 4] o = self._simple_roialign(img, box, 7) self.assertTrue(o.shape == (7, 7)) self.assertTrue((o == 0).all()) for dev in ["cpu"] + ["cuda"] if torch.cuda.is_available() else []: input, output = self._simple_roialign_with_grad(img, box, 7, torch.device(dev)) output.sum().backward() self.assertTrue(torch.allclose(input.grad, torch.zeros_like(input))) def test_empty_batch(self): input = torch.zeros(0, 3, 10, 10, dtype=torch.float32) rois = torch.zeros(0, 5, dtype=torch.float32) op = ROIAlign((7, 7), 1.0, 0, aligned=True) output = op.forward(input, rois) self.assertTrue(output.shape == (0, 3, 7, 7)) def grid_sample_roi_align(input, boxes, output_size, scale, sampling_ratio): # unlike true roi_align, this does not support different batch_idx from detectron2.projects.point_rend.point_features import ( generate_regular_grid_point_coords, get_point_coords_wrt_image, point_sample, ) N, _, H, W = input.shape R = len(boxes) assert N == 1 boxes = boxes * scale grid = generate_regular_grid_point_coords(R, output_size * sampling_ratio, device=boxes.device) coords = get_point_coords_wrt_image(boxes, grid) coords = coords / torch.as_tensor([W, H], device=coords.device) # R, s^2, 2 res = point_sample(input, coords.unsqueeze(0), align_corners=False) # 1,C, R,s^2 res = ( res.squeeze(0) .permute(1, 0, 2) .reshape(R, -1, output_size * sampling_ratio, output_size * sampling_ratio) ) res = F.avg_pool2d(res, sampling_ratio) return res def benchmark_roi_align(): def random_boxes(mean_box, stdev, N, maxsize): ret = torch.rand(N, 4) * stdev + torch.tensor(mean_box, dtype=torch.float) ret.clamp_(min=0, max=maxsize) return ret def func(shape, nboxes_per_img, sampling_ratio, device, box_size="large"): N, _, H, _ = shape input = torch.rand(*shape) boxes = [] batch_idx = [] for k in range(N): if box_size == "large": b = random_boxes([80, 80, 130, 130], 24, nboxes_per_img, H) else: b = random_boxes([100, 100, 110, 110], 4, nboxes_per_img, H) boxes.append(b) batch_idx.append(torch.zeros(nboxes_per_img, 1, dtype=torch.float32) + k) boxes = torch.cat(boxes, axis=0) batch_idx = torch.cat(batch_idx, axis=0) boxes = torch.cat([batch_idx, boxes], axis=1) input = input.to(device=device) boxes = boxes.to(device=device) def bench(): if False and sampling_ratio > 0 and N == 1: # enable to benchmark grid_sample (slower) grid_sample_roi_align(input, boxes[:, 1:], 7, 1.0, sampling_ratio) else: roi_align(input, boxes, 7, 1.0, sampling_ratio, True) if device == "cuda": torch.cuda.synchronize() return bench def gen_args(arg): args = [] for size in ["small", "large"]: for ratio in [0, 2]: args.append(copy(arg)) args[-1]["sampling_ratio"] = ratio args[-1]["box_size"] = size return args arg = dict(shape=(1, 512, 256, 256), nboxes_per_img=512, device="cuda") benchmark(func, "cuda_roialign", gen_args(arg), num_iters=20, warmup_iters=1) arg.update({"device": "cpu", "shape": (1, 256, 128, 128)}) benchmark(func, "cpu_roialign", gen_args(arg), num_iters=5, warmup_iters=1) if __name__ == "__main__": if torch.cuda.is_available(): benchmark_roi_align() unittest.main()
banmo-main
third_party/detectron2_old/tests/layers/test_roi_align.py
# Copyright (c) Facebook, Inc. and its affiliates. import numpy as np import unittest import torch from detectron2.layers import DeformConv, ModulatedDeformConv class DeformableTest(unittest.TestCase): @unittest.skipIf(not torch.cuda.is_available(), "Deformable not supported for cpu") def test_forward_output(self): device = torch.device("cuda") N, C, H, W = shape = 1, 1, 5, 5 kernel_size = 3 padding = 1 inputs = torch.arange(np.prod(shape), dtype=torch.float32).reshape(*shape).to(device) """ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 """ offset_channels = kernel_size * kernel_size * 2 offset = torch.full((N, offset_channels, H, W), 0.5, dtype=torch.float32).to(device) # Test DCN v1 deform = DeformConv(C, C, kernel_size=kernel_size, padding=padding).to(device) deform.weight = torch.nn.Parameter(torch.ones_like(deform.weight)) output = deform(inputs, offset) output = output.detach().cpu().numpy() deform_results = np.array( [ [30, 41.25, 48.75, 45, 28.75], [62.25, 81, 90, 80.25, 50.25], [99.75, 126, 135, 117.75, 72.75], [105, 131.25, 138.75, 120, 73.75], [71.75, 89.25, 93.75, 80.75, 49.5], ] ) self.assertTrue(np.allclose(output.flatten(), deform_results.flatten())) # Test DCN v2 mask_channels = kernel_size * kernel_size mask = torch.full((N, mask_channels, H, W), 0.5, dtype=torch.float32).to(device) modulate_deform = ModulatedDeformConv(C, C, kernel_size, padding=padding, bias=False).to( device ) modulate_deform.weight = deform.weight output = modulate_deform(inputs, offset, mask) output = output.detach().cpu().numpy() self.assertTrue(np.allclose(output.flatten(), deform_results.flatten() * 0.5)) def test_forward_output_on_cpu(self): device = torch.device("cpu") N, C, H, W = shape = 1, 1, 5, 5 kernel_size = 3 padding = 1 inputs = torch.arange(np.prod(shape), dtype=torch.float32).reshape(*shape).to(device) offset_channels = kernel_size * kernel_size * 2 offset = torch.full((N, offset_channels, H, W), 0.5, dtype=torch.float32).to(device) # Test DCN v1 on cpu deform = DeformConv(C, C, kernel_size=kernel_size, padding=padding).to(device) deform.weight = torch.nn.Parameter(torch.ones_like(deform.weight)) output = deform(inputs, offset) output = output.detach().cpu().numpy() deform_results = np.array( [ [30, 41.25, 48.75, 45, 28.75], [62.25, 81, 90, 80.25, 50.25], [99.75, 126, 135, 117.75, 72.75], [105, 131.25, 138.75, 120, 73.75], [71.75, 89.25, 93.75, 80.75, 49.5], ] ) self.assertTrue(np.allclose(output.flatten(), deform_results.flatten())) @unittest.skipIf(not torch.cuda.is_available(), "This test requires gpu access") def test_forward_output_on_cpu_equals_output_on_gpu(self): N, C, H, W = shape = 2, 4, 10, 10 kernel_size = 3 padding = 1 for groups in [1, 2]: inputs = torch.arange(np.prod(shape), dtype=torch.float32).reshape(*shape) offset_channels = kernel_size * kernel_size * 2 offset = torch.full((N, offset_channels, H, W), 0.5, dtype=torch.float32) deform_gpu = DeformConv( C, C, kernel_size=kernel_size, padding=padding, groups=groups ).to("cuda") deform_gpu.weight = torch.nn.Parameter(torch.ones_like(deform_gpu.weight)) output_gpu = deform_gpu(inputs.to("cuda"), offset.to("cuda")).detach().cpu().numpy() deform_cpu = DeformConv( C, C, kernel_size=kernel_size, padding=padding, groups=groups ).to("cpu") deform_cpu.weight = torch.nn.Parameter(torch.ones_like(deform_cpu.weight)) output_cpu = deform_cpu(inputs.to("cpu"), offset.to("cpu")).detach().numpy() self.assertTrue(np.allclose(output_gpu.flatten(), output_cpu.flatten())) @unittest.skipIf(not torch.cuda.is_available(), "Deformable not supported for cpu") def test_small_input(self): device = torch.device("cuda") for kernel_size in [3, 5]: padding = kernel_size // 2 N, C, H, W = shape = (1, 1, kernel_size - 1, kernel_size - 1) inputs = torch.rand(shape).to(device) # input size is smaller than kernel size offset_channels = kernel_size * kernel_size * 2 offset = torch.randn((N, offset_channels, H, W), dtype=torch.float32).to(device) deform = DeformConv(C, C, kernel_size=kernel_size, padding=padding).to(device) output = deform(inputs, offset) self.assertTrue(output.shape == inputs.shape) mask_channels = kernel_size * kernel_size mask = torch.ones((N, mask_channels, H, W), dtype=torch.float32).to(device) modulate_deform = ModulatedDeformConv( C, C, kernel_size, padding=padding, bias=False ).to(device) output = modulate_deform(inputs, offset, mask) self.assertTrue(output.shape == inputs.shape) @unittest.skipIf(not torch.cuda.is_available(), "Deformable not supported for cpu") def test_raise_exception(self): device = torch.device("cuda") N, C, H, W = shape = 1, 1, 3, 3 kernel_size = 3 padding = 1 inputs = torch.rand(shape, dtype=torch.float32).to(device) offset_channels = kernel_size * kernel_size # This is wrong channels for offset offset = torch.randn((N, offset_channels, H, W), dtype=torch.float32).to(device) deform = DeformConv(C, C, kernel_size=kernel_size, padding=padding).to(device) self.assertRaises(RuntimeError, deform, inputs, offset) offset_channels = kernel_size * kernel_size * 2 offset = torch.randn((N, offset_channels, H, W), dtype=torch.float32).to(device) mask_channels = kernel_size * kernel_size * 2 # This is wrong channels for mask mask = torch.ones((N, mask_channels, H, W), dtype=torch.float32).to(device) modulate_deform = ModulatedDeformConv(C, C, kernel_size, padding=padding, bias=False).to( device ) self.assertRaises(RuntimeError, modulate_deform, inputs, offset, mask) def test_repr(self): module = DeformConv(3, 10, kernel_size=3, padding=1, deformable_groups=2) correct_string = ( "DeformConv(in_channels=3, out_channels=10, kernel_size=(3, 3), " "stride=(1, 1), padding=(1, 1), dilation=(1, 1), " "groups=1, deformable_groups=2, bias=False)" ) self.assertEqual(repr(module), correct_string) module = ModulatedDeformConv(3, 10, kernel_size=3, padding=1, deformable_groups=2) correct_string = ( "ModulatedDeformConv(in_channels=3, out_channels=10, kernel_size=(3, 3), " "stride=1, padding=1, dilation=1, groups=1, deformable_groups=2, bias=True)" ) self.assertEqual(repr(module), correct_string) if __name__ == "__main__": unittest.main()
banmo-main
third_party/detectron2_old/tests/layers/test_deformable.py
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. import contextlib import io import numpy as np import unittest from collections import defaultdict import torch import tqdm from fvcore.common.benchmark import benchmark from pycocotools.coco import COCO from tabulate import tabulate from torch.nn import functional as F from detectron2.data import MetadataCatalog from detectron2.layers.mask_ops import ( pad_masks, paste_mask_in_image_old, paste_masks_in_image, scale_boxes, ) from detectron2.structures import BitMasks, Boxes, BoxMode, PolygonMasks from detectron2.structures.masks import polygons_to_bitmask from detectron2.utils.file_io import PathManager from detectron2.utils.testing import random_boxes def iou_between_full_image_bit_masks(a, b): intersect = (a & b).sum() union = (a | b).sum() return intersect / union def rasterize_polygons_with_grid_sample(full_image_bit_mask, box, mask_size, threshold=0.5): x0, y0, x1, y1 = box[0], box[1], box[2], box[3] img_h, img_w = full_image_bit_mask.shape mask_y = np.arange(0.0, mask_size) + 0.5 # mask y sample coords in [0.5, mask_size - 0.5] mask_x = np.arange(0.0, mask_size) + 0.5 # mask x sample coords in [0.5, mask_size - 0.5] mask_y = mask_y / mask_size * (y1 - y0) + y0 mask_x = mask_x / mask_size * (x1 - x0) + x0 mask_x = (mask_x - 0.5) / (img_w - 1) * 2 + -1 mask_y = (mask_y - 0.5) / (img_h - 1) * 2 + -1 gy, gx = torch.meshgrid(torch.from_numpy(mask_y), torch.from_numpy(mask_x)) ind = torch.stack([gx, gy], dim=-1).to(dtype=torch.float32) full_image_bit_mask = torch.from_numpy(full_image_bit_mask) mask = F.grid_sample( full_image_bit_mask[None, None, :, :].to(dtype=torch.float32), ind[None, :, :, :], align_corners=True, ) return mask[0, 0] >= threshold class TestMaskCropPaste(unittest.TestCase): def setUp(self): json_file = MetadataCatalog.get("coco_2017_val_100").json_file if not PathManager.isfile(json_file): raise unittest.SkipTest("{} not found".format(json_file)) with contextlib.redirect_stdout(io.StringIO()): json_file = PathManager.get_local_path(json_file) self.coco = COCO(json_file) def test_crop_paste_consistency(self): """ rasterize_polygons_within_box (used in training) and paste_masks_in_image (used in inference) should be inverse operations to each other. This function runs several implementation of the above two operations and prints the reconstruction error. """ anns = self.coco.loadAnns(self.coco.getAnnIds(iscrowd=False)) # avoid crowd annotations selected_anns = anns[:100] ious = [] for ann in tqdm.tqdm(selected_anns): results = self.process_annotation(ann) ious.append([k[2] for k in results]) ious = np.array(ious) mean_ious = ious.mean(axis=0) table = [] res_dic = defaultdict(dict) for row, iou in zip(results, mean_ious): table.append((row[0], row[1], iou)) res_dic[row[0]][row[1]] = iou print(tabulate(table, headers=["rasterize", "paste", "iou"], tablefmt="simple")) # assert that the reconstruction is good: self.assertTrue(res_dic["polygon"]["aligned"] > 0.94) self.assertTrue(res_dic["roialign"]["aligned"] > 0.95) def process_annotation(self, ann, mask_side_len=28): # Parse annotation data img_info = self.coco.loadImgs(ids=[ann["image_id"]])[0] height, width = img_info["height"], img_info["width"] gt_polygons = [np.array(p, dtype=np.float64) for p in ann["segmentation"]] gt_bbox = BoxMode.convert(ann["bbox"], BoxMode.XYWH_ABS, BoxMode.XYXY_ABS) gt_bit_mask = polygons_to_bitmask(gt_polygons, height, width) # Run rasterize .. torch_gt_bbox = torch.tensor(gt_bbox).to(dtype=torch.float32).reshape(-1, 4) box_bitmasks = { "polygon": PolygonMasks([gt_polygons]).crop_and_resize(torch_gt_bbox, mask_side_len)[0], "gridsample": rasterize_polygons_with_grid_sample(gt_bit_mask, gt_bbox, mask_side_len), "roialign": BitMasks(torch.from_numpy(gt_bit_mask[None, :, :])).crop_and_resize( torch_gt_bbox, mask_side_len )[0], } # Run paste .. results = defaultdict(dict) for k, box_bitmask in box_bitmasks.items(): padded_bitmask, scale = pad_masks(box_bitmask[None, :, :], 1) scaled_boxes = scale_boxes(torch_gt_bbox, scale) r = results[k] r["old"] = paste_mask_in_image_old( padded_bitmask[0], scaled_boxes[0], height, width, threshold=0.5 ) r["aligned"] = paste_masks_in_image( box_bitmask[None, :, :], Boxes(torch_gt_bbox), (height, width) )[0] table = [] for rasterize_method, r in results.items(): for paste_method, mask in r.items(): mask = np.asarray(mask) iou = iou_between_full_image_bit_masks(gt_bit_mask.astype("uint8"), mask) table.append((rasterize_method, paste_method, iou)) return table def test_polygon_area(self): # Draw polygon boxes for d in [5.0, 10.0, 1000.0]: polygon = PolygonMasks([[[0, 0, 0, d, d, d, d, 0]]]) area = polygon.area()[0] target = d ** 2 self.assertEqual(area, target) # Draw polygon triangles for d in [5.0, 10.0, 1000.0]: polygon = PolygonMasks([[[0, 0, 0, d, d, d]]]) area = polygon.area()[0] target = d ** 2 / 2 self.assertEqual(area, target) def test_paste_mask_scriptable(self): scripted_f = torch.jit.script(paste_masks_in_image) N = 10 masks = torch.rand(N, 28, 28) boxes = Boxes(random_boxes(N, 100)) image_shape = (150, 150) out = paste_masks_in_image(masks, boxes, image_shape) scripted_out = scripted_f(masks, boxes, image_shape) self.assertTrue(torch.equal(out, scripted_out)) def benchmark_paste(): S = 800 H, W = image_shape = (S, S) N = 64 torch.manual_seed(42) masks = torch.rand(N, 28, 28) center = torch.rand(N, 2) * 600 + 100 wh = torch.clamp(torch.randn(N, 2) * 40 + 200, min=50) x0y0 = torch.clamp(center - wh * 0.5, min=0.0) x1y1 = torch.clamp(center + wh * 0.5, max=S) boxes = Boxes(torch.cat([x0y0, x1y1], axis=1)) def func(device, n=3): m = masks.to(device=device) b = boxes.to(device=device) def bench(): for _ in range(n): paste_masks_in_image(m, b, image_shape) if device.type == "cuda": torch.cuda.synchronize() return bench specs = [{"device": torch.device("cpu"), "n": 3}] if torch.cuda.is_available(): specs.append({"device": torch.device("cuda"), "n": 3}) benchmark(func, "paste_masks", specs, num_iters=10, warmup_iters=2) if __name__ == "__main__": benchmark_paste() unittest.main()
banmo-main
third_party/detectron2_old/tests/layers/test_mask_ops.py
# Copyright (c) Facebook, Inc. and its affiliates. import logging import unittest import cv2 import torch from torch.autograd import Variable, gradcheck from detectron2.layers.roi_align import ROIAlign from detectron2.layers.roi_align_rotated import ROIAlignRotated logger = logging.getLogger(__name__) class ROIAlignRotatedTest(unittest.TestCase): def _box_to_rotated_box(self, box, angle): return [ (box[0] + box[2]) / 2.0, (box[1] + box[3]) / 2.0, box[2] - box[0], box[3] - box[1], angle, ] def _rot90(self, img, num): num = num % 4 # note: -1 % 4 == 3 for _ in range(num): img = img.transpose(0, 1).flip(0) return img def test_forward_output_0_90_180_270(self): for i in range(4): # i = 0, 1, 2, 3 corresponding to 0, 90, 180, 270 degrees img = torch.arange(25, dtype=torch.float32).reshape(5, 5) """ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 """ box = [1, 1, 3, 3] rotated_box = self._box_to_rotated_box(box=box, angle=90 * i) result = self._simple_roi_align_rotated(img=img, box=rotated_box, resolution=(4, 4)) # Here's an explanation for 0 degree case: # point 0 in the original input lies at [0.5, 0.5] # (the center of bin [0, 1] x [0, 1]) # point 1 in the original input lies at [1.5, 0.5], etc. # since the resolution is (4, 4) that divides [1, 3] x [1, 3] # into 4 x 4 equal bins, # the top-left bin is [1, 1.5] x [1, 1.5], and its center # (1.25, 1.25) lies at the 3/4 position # between point 0 and point 1, point 5 and point 6, # point 0 and point 5, point 1 and point 6, so it can be calculated as # 0.25*(0*0.25+1*0.75)+(5*0.25+6*0.75)*0.75 = 4.5 result_expected = torch.tensor( [ [4.5, 5.0, 5.5, 6.0], [7.0, 7.5, 8.0, 8.5], [9.5, 10.0, 10.5, 11.0], [12.0, 12.5, 13.0, 13.5], ] ) # This is also an upsampled version of [[6, 7], [11, 12]] # When the box is rotated by 90 degrees CCW, # the result would be rotated by 90 degrees CW, thus it's -i here result_expected = self._rot90(result_expected, -i) assert torch.allclose(result, result_expected) def test_resize(self): H, W = 30, 30 input = torch.rand(H, W) * 100 box = [10, 10, 20, 20] rotated_box = self._box_to_rotated_box(box, angle=0) output = self._simple_roi_align_rotated(img=input, box=rotated_box, resolution=(5, 5)) input2x = cv2.resize(input.numpy(), (W // 2, H // 2), interpolation=cv2.INTER_LINEAR) input2x = torch.from_numpy(input2x) box2x = [x / 2 for x in box] rotated_box2x = self._box_to_rotated_box(box2x, angle=0) output2x = self._simple_roi_align_rotated(img=input2x, box=rotated_box2x, resolution=(5, 5)) assert torch.allclose(output2x, output) def _simple_roi_align_rotated(self, img, box, resolution): """ RoiAlignRotated with scale 1.0 and 0 sample ratio. """ op = ROIAlignRotated(output_size=resolution, spatial_scale=1.0, sampling_ratio=0) input = img[None, None, :, :] rois = [0] + list(box) rois = torch.tensor(rois, dtype=torch.float32)[None, :] result_cpu = op.forward(input, rois) if torch.cuda.is_available(): result_cuda = op.forward(input.cuda(), rois.cuda()) assert torch.allclose(result_cpu, result_cuda.cpu()) return result_cpu[0, 0] def test_empty_box(self): img = torch.rand(5, 5) out = self._simple_roi_align_rotated(img, [2, 3, 0, 0, 0], (7, 7)) self.assertTrue((out == 0).all()) def test_roi_align_rotated_gradcheck_cpu(self): dtype = torch.float64 device = torch.device("cpu") roi_align_rotated_op = ROIAlignRotated( output_size=(5, 5), spatial_scale=0.5, sampling_ratio=1 ).to(dtype=dtype, device=device) x = torch.rand(1, 1, 10, 10, dtype=dtype, device=device, requires_grad=True) # roi format is (batch index, x_center, y_center, width, height, angle) rois = torch.tensor( [[0, 4.5, 4.5, 9, 9, 0], [0, 2, 7, 4, 4, 0], [0, 7, 7, 4, 4, 0]], dtype=dtype, device=device, ) def func(input): return roi_align_rotated_op(input, rois) assert gradcheck(func, (x,)), "gradcheck failed for RoIAlignRotated CPU" assert gradcheck(func, (x.transpose(2, 3),)), "gradcheck failed for RoIAlignRotated CPU" @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") def test_roi_align_rotated_gradient_cuda(self): """ Compute gradients for ROIAlignRotated with multiple bounding boxes on the GPU, and compare the result with ROIAlign """ # torch.manual_seed(123) dtype = torch.float64 device = torch.device("cuda") pool_h, pool_w = (5, 5) roi_align = ROIAlign(output_size=(pool_h, pool_w), spatial_scale=1, sampling_ratio=2).to( device=device ) roi_align_rotated = ROIAlignRotated( output_size=(pool_h, pool_w), spatial_scale=1, sampling_ratio=2 ).to(device=device) x = torch.rand(1, 1, 10, 10, dtype=dtype, device=device, requires_grad=True) # x_rotated = x.clone() won't work (will lead to grad_fun=CloneBackward)! x_rotated = Variable(x.data.clone(), requires_grad=True) # roi_rotated format is (batch index, x_center, y_center, width, height, angle) rois_rotated = torch.tensor( [[0, 4.5, 4.5, 9, 9, 0], [0, 2, 7, 4, 4, 0], [0, 7, 7, 4, 4, 0]], dtype=dtype, device=device, ) y_rotated = roi_align_rotated(x_rotated, rois_rotated) s_rotated = y_rotated.sum() s_rotated.backward() # roi format is (batch index, x1, y1, x2, y2) rois = torch.tensor( [[0, 0, 0, 9, 9], [0, 0, 5, 4, 9], [0, 5, 5, 9, 9]], dtype=dtype, device=device ) y = roi_align(x, rois) s = y.sum() s.backward() assert torch.allclose( x.grad, x_rotated.grad ), "gradients for ROIAlign and ROIAlignRotated mismatch on CUDA" if __name__ == "__main__": unittest.main()
banmo-main
third_party/detectron2_old/tests/layers/test_roi_align_rotated.py
# Copyright (c) Facebook, Inc. and its affiliates. from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import unittest from copy import deepcopy import torch from torchvision import ops from detectron2.layers import batched_nms, batched_nms_rotated, nms_rotated from detectron2.utils.env import TORCH_VERSION from detectron2.utils.testing import random_boxes def nms_edit_distance(keep1, keep2): """ Compare the "keep" result of two nms call. They are allowed to be different in terms of edit distance due to floating point precision issues, e.g., if a box happen to have an IoU of 0.5 with another box, one implentation may choose to keep it while another may discard it. """ keep1, keep2 = keep1.cpu(), keep2.cpu() if torch.equal(keep1, keep2): # they should be equal most of the time return 0 keep1, keep2 = tuple(keep1), tuple(keep2) m, n = len(keep1), len(keep2) # edit distance with DP f = [np.arange(n + 1), np.arange(n + 1)] for i in range(m): cur_row = i % 2 other_row = (i + 1) % 2 f[other_row][0] = i + 1 for j in range(n): f[other_row][j + 1] = ( f[cur_row][j] if keep1[i] == keep2[j] else min(min(f[cur_row][j], f[cur_row][j + 1]), f[other_row][j]) + 1 ) return f[m % 2][n] class TestNMSRotated(unittest.TestCase): def reference_horizontal_nms(self, boxes, scores, iou_threshold): """ Args: box_scores (N, 5): boxes in corner-form and probabilities. (Note here 5 == 4 + 1, i.e., 4-dim horizontal box + 1-dim prob) iou_threshold: intersection over union threshold. Returns: picked: a list of indexes of the kept boxes """ picked = [] _, indexes = scores.sort(descending=True) while len(indexes) > 0: current = indexes[0] picked.append(current.item()) if len(indexes) == 1: break current_box = boxes[current, :] indexes = indexes[1:] rest_boxes = boxes[indexes, :] iou = ops.box_iou(rest_boxes, current_box.unsqueeze(0)).squeeze(1) indexes = indexes[iou <= iou_threshold] return torch.as_tensor(picked) def _create_tensors(self, N, device="cpu"): boxes = random_boxes(N, 200, device=device) scores = torch.rand(N, device=device) return boxes, scores def test_batched_nms_rotated_0_degree_cpu(self, device="cpu"): N = 2000 num_classes = 50 boxes, scores = self._create_tensors(N, device=device) idxs = torch.randint(0, num_classes, (N,)) rotated_boxes = torch.zeros(N, 5, device=device) rotated_boxes[:, 0] = (boxes[:, 0] + boxes[:, 2]) / 2.0 rotated_boxes[:, 1] = (boxes[:, 1] + boxes[:, 3]) / 2.0 rotated_boxes[:, 2] = boxes[:, 2] - boxes[:, 0] rotated_boxes[:, 3] = boxes[:, 3] - boxes[:, 1] err_msg = "Rotated NMS with 0 degree is incompatible with horizontal NMS for IoU={}" for iou in [0.2, 0.5, 0.8]: backup = boxes.clone() keep_ref = batched_nms(boxes, scores, idxs, iou) assert torch.allclose(boxes, backup), "boxes modified by batched_nms" backup = rotated_boxes.clone() keep = batched_nms_rotated(rotated_boxes, scores, idxs, iou) assert torch.allclose( rotated_boxes, backup ), "rotated_boxes modified by batched_nms_rotated" # Occasionally the gap can be large if there are many IOU on the threshold boundary self.assertLessEqual(nms_edit_distance(keep, keep_ref), 5, err_msg.format(iou)) @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") def test_batched_nms_rotated_0_degree_cuda(self): self.test_batched_nms_rotated_0_degree_cpu(device="cuda") def test_nms_rotated_0_degree_cpu(self, device="cpu"): N = 1000 boxes, scores = self._create_tensors(N, device=device) rotated_boxes = torch.zeros(N, 5, device=device) rotated_boxes[:, 0] = (boxes[:, 0] + boxes[:, 2]) / 2.0 rotated_boxes[:, 1] = (boxes[:, 1] + boxes[:, 3]) / 2.0 rotated_boxes[:, 2] = boxes[:, 2] - boxes[:, 0] rotated_boxes[:, 3] = boxes[:, 3] - boxes[:, 1] err_msg = "Rotated NMS incompatible between CPU and reference implementation for IoU={}" for iou in [0.2, 0.5, 0.8]: keep_ref = self.reference_horizontal_nms(boxes, scores, iou) keep = nms_rotated(rotated_boxes, scores, iou) self.assertLessEqual(nms_edit_distance(keep, keep_ref), 1, err_msg.format(iou)) @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") def test_nms_rotated_0_degree_cuda(self): self.test_nms_rotated_0_degree_cpu(device="cuda") def test_nms_rotated_90_degrees_cpu(self): N = 1000 boxes, scores = self._create_tensors(N) rotated_boxes = torch.zeros(N, 5) rotated_boxes[:, 0] = (boxes[:, 0] + boxes[:, 2]) / 2.0 rotated_boxes[:, 1] = (boxes[:, 1] + boxes[:, 3]) / 2.0 # Note for rotated_boxes[:, 2] and rotated_boxes[:, 3]: # widths and heights are intentionally swapped here for 90 degrees case # so that the reference horizontal nms could be used rotated_boxes[:, 2] = boxes[:, 3] - boxes[:, 1] rotated_boxes[:, 3] = boxes[:, 2] - boxes[:, 0] rotated_boxes[:, 4] = torch.ones(N) * 90 err_msg = "Rotated NMS incompatible between CPU and reference implementation for IoU={}" for iou in [0.2, 0.5, 0.8]: keep_ref = self.reference_horizontal_nms(boxes, scores, iou) keep = nms_rotated(rotated_boxes, scores, iou) self.assertLessEqual(nms_edit_distance(keep, keep_ref), 1, err_msg.format(iou)) def test_nms_rotated_180_degrees_cpu(self): N = 1000 boxes, scores = self._create_tensors(N) rotated_boxes = torch.zeros(N, 5) rotated_boxes[:, 0] = (boxes[:, 0] + boxes[:, 2]) / 2.0 rotated_boxes[:, 1] = (boxes[:, 1] + boxes[:, 3]) / 2.0 rotated_boxes[:, 2] = boxes[:, 2] - boxes[:, 0] rotated_boxes[:, 3] = boxes[:, 3] - boxes[:, 1] rotated_boxes[:, 4] = torch.ones(N) * 180 err_msg = "Rotated NMS incompatible between CPU and reference implementation for IoU={}" for iou in [0.2, 0.5, 0.8]: keep_ref = self.reference_horizontal_nms(boxes, scores, iou) keep = nms_rotated(rotated_boxes, scores, iou) self.assertLessEqual(nms_edit_distance(keep, keep_ref), 1, err_msg.format(iou)) class TestScriptable(unittest.TestCase): def setUp(self): class TestingModule(torch.nn.Module): def forward(self, boxes, scores, threshold): return nms_rotated(boxes, scores, threshold) self.module = TestingModule() @unittest.skipIf(TORCH_VERSION < (1, 7), "Insufficient pytorch version") def test_scriptable_cpu(self): m = deepcopy(self.module).cpu() _ = torch.jit.script(m) @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") @unittest.skipIf(TORCH_VERSION < (1, 7), "Insufficient pytorch version") def test_scriptable_cuda(self): m = deepcopy(self.module).cuda() _ = torch.jit.script(m) if __name__ == "__main__": unittest.main()
banmo-main
third_party/detectron2_old/tests/layers/test_nms_rotated.py
# Copyright (c) Facebook, Inc. and its affiliates. import unittest from typing import List, Sequence, Tuple import torch from detectron2.structures import ImageList from detectron2.utils.env import TORCH_VERSION class TestImageList(unittest.TestCase): @unittest.skipIf(TORCH_VERSION < (1, 7), "Insufficient pytorch version") def test_imagelist_padding_tracing(self): # test that the trace does not contain hard-coded constant sizes def to_imagelist(tensors: Sequence[torch.Tensor]): image_list = ImageList.from_tensors(tensors, 4) return image_list.tensor, image_list.image_sizes def _tensor(*shape): return torch.ones(shape, dtype=torch.float32) # test CHW (inputs needs padding vs. no padding) for shape in [(3, 10, 10), (3, 12, 12)]: func = torch.jit.trace(to_imagelist, ([_tensor(*shape)],)) tensor, image_sizes = func([_tensor(3, 15, 20)]) self.assertEqual(tensor.shape, (1, 3, 16, 20), tensor.shape) self.assertEqual(image_sizes[0].tolist(), [15, 20], image_sizes[0]) # test HW func = torch.jit.trace(to_imagelist, ([_tensor(10, 10)],)) tensor, image_sizes = func([_tensor(15, 20)]) self.assertEqual(tensor.shape, (1, 16, 20), tensor.shape) self.assertEqual(image_sizes[0].tolist(), [15, 20], image_sizes[0]) # test 2x CHW func = torch.jit.trace( to_imagelist, ([_tensor(3, 16, 10), _tensor(3, 13, 11)],), ) tensor, image_sizes = func([_tensor(3, 25, 20), _tensor(3, 10, 10)]) self.assertEqual(tensor.shape, (2, 3, 28, 20), tensor.shape) self.assertEqual(image_sizes[0].tolist(), [25, 20], image_sizes[0]) self.assertEqual(image_sizes[1].tolist(), [10, 10], image_sizes[1]) # support calling with different spatial sizes, but not with different #images @unittest.skipIf(TORCH_VERSION < (1, 7), "Insufficient pytorch version") def test_imagelist_scriptability(self): image_nums = 2 image_tensor = torch.randn((image_nums, 10, 20), dtype=torch.float32) image_shape = [(10, 20)] * image_nums def f(image_tensor, image_shape: List[Tuple[int, int]]): return ImageList(image_tensor, image_shape) ret = f(image_tensor, image_shape) ret_script = torch.jit.script(f)(image_tensor, image_shape) self.assertEqual(len(ret), len(ret_script)) for i in range(image_nums): self.assertTrue(torch.equal(ret[i], ret_script[i])) @unittest.skipIf(TORCH_VERSION < (1, 7), "Insufficient pytorch version") def test_imagelist_from_tensors_scriptability(self): image_tensor_0 = torch.randn(10, 20, dtype=torch.float32) image_tensor_1 = torch.randn(12, 22, dtype=torch.float32) inputs = [image_tensor_0, image_tensor_1] def f(image_tensor: List[torch.Tensor]): return ImageList.from_tensors(image_tensor, 10) ret = f(inputs) ret_script = torch.jit.script(f)(inputs) self.assertEqual(len(ret), len(ret_script)) self.assertTrue(torch.equal(ret.tensor, ret_script.tensor)) if __name__ == "__main__": unittest.main()
banmo-main
third_party/detectron2_old/tests/structures/test_imagelist.py
# Copyright (c) Facebook, Inc. and its affiliates. import unittest import torch from detectron2.structures.masks import BitMasks, PolygonMasks, polygons_to_bitmask class TestBitMask(unittest.TestCase): def test_get_bounding_box(self): masks = torch.tensor( [ [ [False, False, False, True], [False, False, True, True], [False, True, True, False], [False, True, True, False], ], [ [False, False, False, False], [False, False, True, False], [False, True, True, False], [False, True, True, False], ], torch.zeros(4, 4), ] ) bitmask = BitMasks(masks) box_true = torch.tensor([[1, 0, 4, 4], [1, 1, 3, 4], [0, 0, 0, 0]], dtype=torch.float32) box = bitmask.get_bounding_boxes() self.assertTrue(torch.all(box.tensor == box_true).item()) for box in box_true: poly = box[[0, 1, 2, 1, 2, 3, 0, 3]].numpy() mask = polygons_to_bitmask([poly], 4, 4) reconstruct_box = BitMasks(mask[None, :, :]).get_bounding_boxes()[0].tensor self.assertTrue(torch.all(box == reconstruct_box).item()) reconstruct_box = PolygonMasks([[poly]]).get_bounding_boxes()[0].tensor self.assertTrue(torch.all(box == reconstruct_box).item()) if __name__ == "__main__": unittest.main()
banmo-main
third_party/detectron2_old/tests/structures/test_masks.py
banmo-main
third_party/detectron2_old/tests/structures/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. from __future__ import absolute_import, division, print_function, unicode_literals import logging import math import random import unittest import torch from fvcore.common.benchmark import benchmark from detectron2.layers.rotated_boxes import pairwise_iou_rotated from detectron2.structures.boxes import Boxes from detectron2.structures.rotated_boxes import RotatedBoxes, pairwise_iou from detectron2.utils.env import TORCH_VERSION from detectron2.utils.testing import reload_script_model logger = logging.getLogger(__name__) class TestRotatedBoxesLayer(unittest.TestCase): def test_iou_0_dim_cpu(self): boxes1 = torch.rand(0, 5, dtype=torch.float32) boxes2 = torch.rand(10, 5, dtype=torch.float32) expected_ious = torch.zeros(0, 10, dtype=torch.float32) ious = pairwise_iou_rotated(boxes1, boxes2) self.assertTrue(torch.allclose(ious, expected_ious)) boxes1 = torch.rand(10, 5, dtype=torch.float32) boxes2 = torch.rand(0, 5, dtype=torch.float32) expected_ious = torch.zeros(10, 0, dtype=torch.float32) ious = pairwise_iou_rotated(boxes1, boxes2) self.assertTrue(torch.allclose(ious, expected_ious)) @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") def test_iou_0_dim_cuda(self): boxes1 = torch.rand(0, 5, dtype=torch.float32) boxes2 = torch.rand(10, 5, dtype=torch.float32) expected_ious = torch.zeros(0, 10, dtype=torch.float32) ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda()) self.assertTrue(torch.allclose(ious_cuda.cpu(), expected_ious)) boxes1 = torch.rand(10, 5, dtype=torch.float32) boxes2 = torch.rand(0, 5, dtype=torch.float32) expected_ious = torch.zeros(10, 0, dtype=torch.float32) ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda()) self.assertTrue(torch.allclose(ious_cuda.cpu(), expected_ious)) def test_iou_half_overlap_cpu(self): boxes1 = torch.tensor([[0.5, 0.5, 1.0, 1.0, 0.0]], dtype=torch.float32) boxes2 = torch.tensor([[0.25, 0.5, 0.5, 1.0, 0.0]], dtype=torch.float32) expected_ious = torch.tensor([[0.5]], dtype=torch.float32) ious = pairwise_iou_rotated(boxes1, boxes2) self.assertTrue(torch.allclose(ious, expected_ious)) @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") def test_iou_half_overlap_cuda(self): boxes1 = torch.tensor([[0.5, 0.5, 1.0, 1.0, 0.0]], dtype=torch.float32) boxes2 = torch.tensor([[0.25, 0.5, 0.5, 1.0, 0.0]], dtype=torch.float32) expected_ious = torch.tensor([[0.5]], dtype=torch.float32) ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda()) self.assertTrue(torch.allclose(ious_cuda.cpu(), expected_ious)) def test_iou_precision(self): for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []): boxes1 = torch.tensor([[565, 565, 10, 10.0, 0]], dtype=torch.float32, device=device) boxes2 = torch.tensor([[565, 565, 10, 8.3, 0]], dtype=torch.float32, device=device) iou = 8.3 / 10.0 expected_ious = torch.tensor([[iou]], dtype=torch.float32) ious = pairwise_iou_rotated(boxes1, boxes2) self.assertTrue(torch.allclose(ious.cpu(), expected_ious)) @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") def test_iou_too_many_boxes_cuda(self): s1, s2 = 5, 1289035 boxes1 = torch.zeros(s1, 5) boxes2 = torch.zeros(s2, 5) ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda()) self.assertTupleEqual(tuple(ious_cuda.shape), (s1, s2)) def test_iou_extreme(self): # Cause floating point issues in cuda kernels (#1266) for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []): boxes1 = torch.tensor([[160.0, 153.0, 230.0, 23.0, -37.0]], device=device) boxes2 = torch.tensor( [ [ -1.117407639806935e17, 1.3858420478349148e18, 1000.0000610351562, 1000.0000610351562, 1612.0, ] ], device=device, ) ious = pairwise_iou_rotated(boxes1, boxes2) self.assertTrue(ious.min() >= 0, ious) def test_iou_issue_2154(self): for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []): boxes1 = torch.tensor( [ [ 296.6620178222656, 458.73883056640625, 23.515729904174805, 47.677001953125, 0.08795166015625, ] ], device=device, ) boxes2 = torch.tensor( [[296.66201, 458.73882000000003, 23.51573, 47.67702, 0.087951]], device=device, ) ious = pairwise_iou_rotated(boxes1, boxes2) expected_ious = torch.tensor([[1.0]], dtype=torch.float32) self.assertTrue(torch.allclose(ious.cpu(), expected_ious)) def test_iou_issue_2167(self): for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []): boxes1 = torch.tensor( [ [ 2563.74462890625000000000, 1436.79016113281250000000, 2174.70336914062500000000, 214.09500122070312500000, 115.11834716796875000000, ] ], device=device, ) boxes2 = torch.tensor( [ [ 2563.74462890625000000000, 1436.79028320312500000000, 2174.70288085937500000000, 214.09495544433593750000, 115.11835479736328125000, ] ], device=device, ) ious = pairwise_iou_rotated(boxes1, boxes2) expected_ious = torch.tensor([[1.0]], dtype=torch.float32) self.assertTrue(torch.allclose(ious.cpu(), expected_ious)) class TestRotatedBoxesStructure(unittest.TestCase): def test_clip_area_0_degree(self): for _ in range(50): num_boxes = 100 boxes_5d = torch.zeros(num_boxes, 5) boxes_5d[:, 0] = torch.FloatTensor(num_boxes).uniform_(-100, 500) boxes_5d[:, 1] = torch.FloatTensor(num_boxes).uniform_(-100, 500) boxes_5d[:, 2] = torch.FloatTensor(num_boxes).uniform_(0, 500) boxes_5d[:, 3] = torch.FloatTensor(num_boxes).uniform_(0, 500) # Convert from (x_ctr, y_ctr, w, h, 0) to (x1, y1, x2, y2) boxes_4d = torch.zeros(num_boxes, 4) boxes_4d[:, 0] = boxes_5d[:, 0] - boxes_5d[:, 2] / 2.0 boxes_4d[:, 1] = boxes_5d[:, 1] - boxes_5d[:, 3] / 2.0 boxes_4d[:, 2] = boxes_5d[:, 0] + boxes_5d[:, 2] / 2.0 boxes_4d[:, 3] = boxes_5d[:, 1] + boxes_5d[:, 3] / 2.0 image_size = (500, 600) test_boxes_4d = Boxes(boxes_4d) test_boxes_5d = RotatedBoxes(boxes_5d) # Before clip areas_4d = test_boxes_4d.area() areas_5d = test_boxes_5d.area() self.assertTrue(torch.allclose(areas_4d, areas_5d, atol=1e-1, rtol=1e-5)) # After clip test_boxes_4d.clip(image_size) test_boxes_5d.clip(image_size) areas_4d = test_boxes_4d.area() areas_5d = test_boxes_5d.area() self.assertTrue(torch.allclose(areas_4d, areas_5d, atol=1e-1, rtol=1e-5)) def test_clip_area_arbitrary_angle(self): num_boxes = 100 boxes_5d = torch.zeros(num_boxes, 5) boxes_5d[:, 0] = torch.FloatTensor(num_boxes).uniform_(-100, 500) boxes_5d[:, 1] = torch.FloatTensor(num_boxes).uniform_(-100, 500) boxes_5d[:, 2] = torch.FloatTensor(num_boxes).uniform_(0, 500) boxes_5d[:, 3] = torch.FloatTensor(num_boxes).uniform_(0, 500) boxes_5d[:, 4] = torch.FloatTensor(num_boxes).uniform_(-1800, 1800) clip_angle_threshold = random.uniform(0, 180) image_size = (500, 600) test_boxes_5d = RotatedBoxes(boxes_5d) # Before clip areas_before = test_boxes_5d.area() # After clip test_boxes_5d.clip(image_size, clip_angle_threshold) areas_diff = test_boxes_5d.area() - areas_before # the areas should only decrease after clipping self.assertTrue(torch.all(areas_diff <= 0)) # whenever the box is clipped (thus the area shrinks), # the angle for the box must be within the clip_angle_threshold # Note that the clip function will normalize the angle range # to be within (-180, 180] self.assertTrue( torch.all(torch.abs(boxes_5d[:, 4][torch.where(areas_diff < 0)]) < clip_angle_threshold) ) def test_normalize_angles(self): # torch.manual_seed(0) for _ in range(50): num_boxes = 100 boxes_5d = torch.zeros(num_boxes, 5) boxes_5d[:, 0] = torch.FloatTensor(num_boxes).uniform_(-100, 500) boxes_5d[:, 1] = torch.FloatTensor(num_boxes).uniform_(-100, 500) boxes_5d[:, 2] = torch.FloatTensor(num_boxes).uniform_(0, 500) boxes_5d[:, 3] = torch.FloatTensor(num_boxes).uniform_(0, 500) boxes_5d[:, 4] = torch.FloatTensor(num_boxes).uniform_(-1800, 1800) rotated_boxes = RotatedBoxes(boxes_5d) normalized_boxes = rotated_boxes.clone() normalized_boxes.normalize_angles() self.assertTrue(torch.all(normalized_boxes.tensor[:, 4] >= -180)) self.assertTrue(torch.all(normalized_boxes.tensor[:, 4] < 180)) # x, y, w, h should not change self.assertTrue(torch.allclose(boxes_5d[:, :4], normalized_boxes.tensor[:, :4])) # the cos/sin values of the angles should stay the same self.assertTrue( torch.allclose( torch.cos(boxes_5d[:, 4] * math.pi / 180), torch.cos(normalized_boxes.tensor[:, 4] * math.pi / 180), atol=1e-5, ) ) self.assertTrue( torch.allclose( torch.sin(boxes_5d[:, 4] * math.pi / 180), torch.sin(normalized_boxes.tensor[:, 4] * math.pi / 180), atol=1e-5, ) ) def test_pairwise_iou_0_degree(self): for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []): boxes1 = torch.tensor( [[0.5, 0.5, 1.0, 1.0, 0.0], [0.5, 0.5, 1.0, 1.0, 0.0]], dtype=torch.float32, device=device, ) boxes2 = torch.tensor( [ [0.5, 0.5, 1.0, 1.0, 0.0], [0.25, 0.5, 0.5, 1.0, 0.0], [0.5, 0.25, 1.0, 0.5, 0.0], [0.25, 0.25, 0.5, 0.5, 0.0], [0.75, 0.75, 0.5, 0.5, 0.0], [1.0, 1.0, 1.0, 1.0, 0.0], ], dtype=torch.float32, device=device, ) expected_ious = torch.tensor( [ [1.0, 0.5, 0.5, 0.25, 0.25, 0.25 / (2 - 0.25)], [1.0, 0.5, 0.5, 0.25, 0.25, 0.25 / (2 - 0.25)], ], dtype=torch.float32, device=device, ) ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2)) self.assertTrue(torch.allclose(ious, expected_ious)) def test_pairwise_iou_45_degrees(self): for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []): boxes1 = torch.tensor( [ [1, 1, math.sqrt(2), math.sqrt(2), 45], [1, 1, 2 * math.sqrt(2), 2 * math.sqrt(2), -45], ], dtype=torch.float32, device=device, ) boxes2 = torch.tensor([[1, 1, 2, 2, 0]], dtype=torch.float32, device=device) expected_ious = torch.tensor([[0.5], [0.5]], dtype=torch.float32, device=device) ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2)) self.assertTrue(torch.allclose(ious, expected_ious)) def test_pairwise_iou_orthogonal(self): for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []): boxes1 = torch.tensor([[5, 5, 10, 6, 55]], dtype=torch.float32, device=device) boxes2 = torch.tensor([[5, 5, 10, 6, -35]], dtype=torch.float32, device=device) iou = (6.0 * 6.0) / (6.0 * 6.0 + 4.0 * 6.0 + 4.0 * 6.0) expected_ious = torch.tensor([[iou]], dtype=torch.float32, device=device) ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2)) self.assertTrue(torch.allclose(ious, expected_ious)) def test_pairwise_iou_large_close_boxes(self): for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []): boxes1 = torch.tensor( [[299.500000, 417.370422, 600.000000, 364.259186, 27.1828]], dtype=torch.float32, device=device, ) boxes2 = torch.tensor( [[299.500000, 417.370422, 600.000000, 364.259155, 27.1828]], dtype=torch.float32, device=device, ) iou = 364.259155 / 364.259186 expected_ious = torch.tensor([[iou]], dtype=torch.float32, device=device) ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2)) self.assertTrue(torch.allclose(ious, expected_ious)) def test_pairwise_iou_many_boxes(self): for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []): num_boxes1 = 100 num_boxes2 = 200 boxes1 = torch.stack( [ torch.tensor( [5 + 20 * i, 5 + 20 * i, 10, 10, 0], dtype=torch.float32, device=device, ) for i in range(num_boxes1) ] ) boxes2 = torch.stack( [ torch.tensor( [5 + 20 * i, 5 + 20 * i, 10, 1 + 9 * i / num_boxes2, 0], dtype=torch.float32, device=device, ) for i in range(num_boxes2) ] ) expected_ious = torch.zeros(num_boxes1, num_boxes2, dtype=torch.float32, device=device) for i in range(min(num_boxes1, num_boxes2)): expected_ious[i][i] = (1 + 9 * i / num_boxes2) / 10.0 ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2)) self.assertTrue(torch.allclose(ious, expected_ious)) def test_pairwise_iou_issue1207_simplified(self): for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []): # Simplified test case of D2-issue-1207 boxes1 = torch.tensor([[3, 3, 8, 2, -45.0]], device=device) boxes2 = torch.tensor([[6, 0, 8, 2, -45.0]], device=device) iou = 0.0 expected_ious = torch.tensor([[iou]], dtype=torch.float32, device=device) ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2)) self.assertTrue(torch.allclose(ious, expected_ious)) def test_pairwise_iou_issue1207(self): for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []): # The original test case in D2-issue-1207 boxes1 = torch.tensor([[160.0, 153.0, 230.0, 23.0, -37.0]], device=device) boxes2 = torch.tensor([[190.0, 127.0, 80.0, 21.0, -46.0]], device=device) iou = 0.0 expected_ious = torch.tensor([[iou]], dtype=torch.float32, device=device) ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2)) self.assertTrue(torch.allclose(ious, expected_ious)) def test_empty_cat(self): x = RotatedBoxes.cat([]) self.assertTrue(x.tensor.shape, (0, 5)) @unittest.skipIf(TORCH_VERSION < (1, 8), "Insufficient pytorch version") def test_scriptability(self): def func(x): boxes = RotatedBoxes(x) test = boxes.to(torch.device("cpu")).tensor return boxes.area(), test f = torch.jit.script(func) f = reload_script_model(f) f(torch.rand((3, 5))) data = torch.rand((3, 5)) def func_cat(x: torch.Tensor): boxes1 = RotatedBoxes(x) boxes2 = RotatedBoxes(x) # this is not supported by torchscript for now. # boxes3 = RotatedBoxes.cat([boxes1, boxes2]) boxes3 = boxes1.cat([boxes1, boxes2]) return boxes3 f = torch.jit.script(func_cat) script_box = f(data) self.assertTrue(torch.equal(torch.cat([data, data]), script_box.tensor)) def benchmark_rotated_iou(): num_boxes1 = 200 num_boxes2 = 500 boxes1 = torch.stack( [ torch.tensor([5 + 20 * i, 5 + 20 * i, 10, 10, 0], dtype=torch.float32) for i in range(num_boxes1) ] ) boxes2 = torch.stack( [ torch.tensor( [5 + 20 * i, 5 + 20 * i, 10, 1 + 9 * i / num_boxes2, 0], dtype=torch.float32, ) for i in range(num_boxes2) ] ) def func(dev, n=1): b1 = boxes1.to(device=dev) b2 = boxes2.to(device=dev) def bench(): for _ in range(n): pairwise_iou_rotated(b1, b2) if dev.type == "cuda": torch.cuda.synchronize() return bench # only run it once per timed loop, since it's slow args = [{"dev": torch.device("cpu"), "n": 1}] if torch.cuda.is_available(): args.append({"dev": torch.device("cuda"), "n": 10}) benchmark(func, "rotated_iou", args, warmup_iters=3) if __name__ == "__main__": unittest.main() benchmark_rotated_iou()
banmo-main
third_party/detectron2_old/tests/structures/test_rotated_boxes.py
# Copyright (c) Facebook, Inc. and its affiliates. import json import math import numpy as np import unittest import torch from detectron2.structures import Boxes, BoxMode, pairwise_ioa, pairwise_iou from detectron2.utils.env import TORCH_VERSION from detectron2.utils.testing import reload_script_model class TestBoxMode(unittest.TestCase): def _convert_xy_to_wh(self, x): return BoxMode.convert(x, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS) def _convert_xywha_to_xyxy(self, x): return BoxMode.convert(x, BoxMode.XYWHA_ABS, BoxMode.XYXY_ABS) def _convert_xywh_to_xywha(self, x): return BoxMode.convert(x, BoxMode.XYWH_ABS, BoxMode.XYWHA_ABS) def test_convert_int_mode(self): BoxMode.convert([1, 2, 3, 4], 0, 1) def test_box_convert_list(self): for tp in [list, tuple]: box = tp([5.0, 5.0, 10.0, 10.0]) output = self._convert_xy_to_wh(box) self.assertIsInstance(output, tp) self.assertIsInstance(output[0], float) self.assertEqual(output, tp([5.0, 5.0, 5.0, 5.0])) with self.assertRaises(Exception): self._convert_xy_to_wh([box]) def test_box_convert_array(self): box = np.asarray([[5, 5, 10, 10], [1, 1, 2, 3]]) output = self._convert_xy_to_wh(box) self.assertEqual(output.dtype, box.dtype) self.assertEqual(output.shape, box.shape) self.assertTrue((output[0] == [5, 5, 5, 5]).all()) self.assertTrue((output[1] == [1, 1, 1, 2]).all()) def test_box_convert_cpu_tensor(self): box = torch.tensor([[5, 5, 10, 10], [1, 1, 2, 3]]) output = self._convert_xy_to_wh(box) self.assertEqual(output.dtype, box.dtype) self.assertEqual(output.shape, box.shape) output = output.numpy() self.assertTrue((output[0] == [5, 5, 5, 5]).all()) self.assertTrue((output[1] == [1, 1, 1, 2]).all()) @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") def test_box_convert_cuda_tensor(self): box = torch.tensor([[5, 5, 10, 10], [1, 1, 2, 3]]).cuda() output = self._convert_xy_to_wh(box) self.assertEqual(output.dtype, box.dtype) self.assertEqual(output.shape, box.shape) self.assertEqual(output.device, box.device) output = output.cpu().numpy() self.assertTrue((output[0] == [5, 5, 5, 5]).all()) self.assertTrue((output[1] == [1, 1, 1, 2]).all()) def test_box_convert_xywha_to_xyxy_list(self): for tp in [list, tuple]: box = tp([50, 50, 30, 20, 0]) output = self._convert_xywha_to_xyxy(box) self.assertIsInstance(output, tp) self.assertEqual(output, tp([35, 40, 65, 60])) with self.assertRaises(Exception): self._convert_xywha_to_xyxy([box]) def test_box_convert_xywha_to_xyxy_array(self): for dtype in [np.float64, np.float32]: box = np.asarray( [ [50, 50, 30, 20, 0], [50, 50, 30, 20, 90], [1, 1, math.sqrt(2), math.sqrt(2), -45], ], dtype=dtype, ) output = self._convert_xywha_to_xyxy(box) self.assertEqual(output.dtype, box.dtype) expected = np.asarray([[35, 40, 65, 60], [40, 35, 60, 65], [0, 0, 2, 2]], dtype=dtype) self.assertTrue(np.allclose(output, expected, atol=1e-6), "output={}".format(output)) def test_box_convert_xywha_to_xyxy_tensor(self): for dtype in [torch.float32, torch.float64]: box = torch.tensor( [ [50, 50, 30, 20, 0], [50, 50, 30, 20, 90], [1, 1, math.sqrt(2), math.sqrt(2), -45], ], dtype=dtype, ) output = self._convert_xywha_to_xyxy(box) self.assertEqual(output.dtype, box.dtype) expected = torch.tensor([[35, 40, 65, 60], [40, 35, 60, 65], [0, 0, 2, 2]], dtype=dtype) self.assertTrue(torch.allclose(output, expected, atol=1e-6), "output={}".format(output)) def test_box_convert_xywh_to_xywha_list(self): for tp in [list, tuple]: box = tp([50, 50, 30, 20]) output = self._convert_xywh_to_xywha(box) self.assertIsInstance(output, tp) self.assertEqual(output, tp([65, 60, 30, 20, 0])) with self.assertRaises(Exception): self._convert_xywh_to_xywha([box]) def test_box_convert_xywh_to_xywha_array(self): for dtype in [np.float64, np.float32]: box = np.asarray([[30, 40, 70, 60], [30, 40, 60, 70], [-1, -1, 2, 2]], dtype=dtype) output = self._convert_xywh_to_xywha(box) self.assertEqual(output.dtype, box.dtype) expected = np.asarray( [[65, 70, 70, 60, 0], [60, 75, 60, 70, 0], [0, 0, 2, 2, 0]], dtype=dtype ) self.assertTrue(np.allclose(output, expected, atol=1e-6), "output={}".format(output)) def test_box_convert_xywh_to_xywha_tensor(self): for dtype in [torch.float32, torch.float64]: box = torch.tensor([[30, 40, 70, 60], [30, 40, 60, 70], [-1, -1, 2, 2]], dtype=dtype) output = self._convert_xywh_to_xywha(box) self.assertEqual(output.dtype, box.dtype) expected = torch.tensor( [[65, 70, 70, 60, 0], [60, 75, 60, 70, 0], [0, 0, 2, 2, 0]], dtype=dtype ) self.assertTrue(torch.allclose(output, expected, atol=1e-6), "output={}".format(output)) def test_json_serializable(self): payload = {"box_mode": BoxMode.XYWH_REL} try: json.dumps(payload) except Exception: self.fail("JSON serialization failed") def test_json_deserializable(self): payload = '{"box_mode": 2}' obj = json.loads(payload) try: obj["box_mode"] = BoxMode(obj["box_mode"]) except Exception: self.fail("JSON deserialization failed") class TestBoxIOU(unittest.TestCase): def create_boxes(self): boxes1 = torch.tensor([[0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0]]) boxes2 = torch.tensor( [ [0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 0.5, 1.0], [0.0, 0.0, 1.0, 0.5], [0.0, 0.0, 0.5, 0.5], [0.5, 0.5, 1.0, 1.0], [0.5, 0.5, 1.5, 1.5], ] ) return boxes1, boxes2 def test_pairwise_iou(self): boxes1, boxes2 = self.create_boxes() expected_ious = torch.tensor( [ [1.0, 0.5, 0.5, 0.25, 0.25, 0.25 / (2 - 0.25)], [1.0, 0.5, 0.5, 0.25, 0.25, 0.25 / (2 - 0.25)], ] ) ious = pairwise_iou(Boxes(boxes1), Boxes(boxes2)) self.assertTrue(torch.allclose(ious, expected_ious)) def test_pairwise_ioa(self): boxes1, boxes2 = self.create_boxes() expected_ioas = torch.tensor( [[1.0, 1.0, 1.0, 1.0, 1.0, 0.25], [1.0, 1.0, 1.0, 1.0, 1.0, 0.25]] ) ioas = pairwise_ioa(Boxes(boxes1), Boxes(boxes2)) self.assertTrue(torch.allclose(ioas, expected_ioas)) class TestBoxes(unittest.TestCase): def test_empty_cat(self): x = Boxes.cat([]) self.assertTrue(x.tensor.shape, (0, 4)) def test_to(self): x = Boxes(torch.rand(3, 4)) self.assertEqual(x.to(device="cpu").tensor.device.type, "cpu") @unittest.skipIf(TORCH_VERSION < (1, 8), "Insufficient pytorch version") def test_scriptability(self): def func(x): boxes = Boxes(x) test = boxes.to(torch.device("cpu")).tensor return boxes.area(), test f = torch.jit.script(func) f = reload_script_model(f) f(torch.rand((3, 4))) data = torch.rand((3, 4)) def func_cat(x: torch.Tensor): boxes1 = Boxes(x) boxes2 = Boxes(x) # boxes3 = Boxes.cat([boxes1, boxes2]) # this is not supported by torchsript for now. boxes3 = boxes1.cat([boxes1, boxes2]) return boxes3 f = torch.jit.script(func_cat) script_box = f(data) self.assertTrue(torch.equal(torch.cat([data, data]), script_box.tensor)) if __name__ == "__main__": unittest.main()
banmo-main
third_party/detectron2_old/tests/structures/test_boxes.py
# Copyright (c) Facebook, Inc. and its affiliates. import unittest import torch from torch import Tensor from detectron2.export.torchscript import patch_instances from detectron2.structures import Boxes, Instances from detectron2.utils.env import TORCH_VERSION from detectron2.utils.testing import convert_scripted_instances class TestInstances(unittest.TestCase): def test_int_indexing(self): attr1 = torch.tensor([[0.0, 0.0, 1.0], [0.0, 0.0, 0.5], [0.0, 0.0, 1.0], [0.0, 0.5, 0.5]]) attr2 = torch.tensor([0.1, 0.2, 0.3, 0.4]) instances = Instances((100, 100)) instances.attr1 = attr1 instances.attr2 = attr2 for i in range(-len(instances), len(instances)): inst = instances[i] self.assertEqual((inst.attr1 == attr1[i]).all(), True) self.assertEqual((inst.attr2 == attr2[i]).all(), True) self.assertRaises(IndexError, lambda: instances[len(instances)]) self.assertRaises(IndexError, lambda: instances[-len(instances) - 1]) @unittest.skipIf(TORCH_VERSION < (1, 7), "Insufficient pytorch version") def test_script_new_fields(self): def get_mask(x: Instances) -> torch.Tensor: return x.mask class f(torch.nn.Module): def forward(self, x: Instances): proposal_boxes = x.proposal_boxes # noqa F841 objectness_logits = x.objectness_logits # noqa F841 return x class g(torch.nn.Module): def forward(self, x: Instances): return get_mask(x) class g2(torch.nn.Module): def __init__(self): super().__init__() self.g = g() def forward(self, x: Instances): proposal_boxes = x.proposal_boxes # noqa F841 return x, self.g(x) fields = {"proposal_boxes": Boxes, "objectness_logits": Tensor} with patch_instances(fields): torch.jit.script(f()) # can't script anymore after exiting the context with self.assertRaises(Exception): # will create a ConcreteType for g torch.jit.script(g2()) new_fields = {"mask": Tensor} with patch_instances(new_fields): # will compile g with a different Instances; this should pass torch.jit.script(g()) with self.assertRaises(Exception): torch.jit.script(g2()) new_fields = {"mask": Tensor, "proposal_boxes": Boxes} with patch_instances(new_fields) as NewInstances: # get_mask will be compiled with a different Instances; this should pass scripted_g2 = torch.jit.script(g2()) x = NewInstances((3, 4)) x.mask = torch.rand(3) x.proposal_boxes = Boxes(torch.rand(3, 4)) scripted_g2(x) # it should accept the new Instances object and run successfully @unittest.skipIf(TORCH_VERSION < (1, 7), "Insufficient pytorch version") def test_script_access_fields(self): class f(torch.nn.Module): def forward(self, x: Instances): proposal_boxes = x.proposal_boxes objectness_logits = x.objectness_logits return proposal_boxes.tensor + objectness_logits fields = {"proposal_boxes": Boxes, "objectness_logits": Tensor} with patch_instances(fields): torch.jit.script(f()) @unittest.skipIf(TORCH_VERSION < (1, 7), "Insufficient pytorch version") def test_script_len(self): class f(torch.nn.Module): def forward(self, x: Instances): return len(x) class g(torch.nn.Module): def forward(self, x: Instances): return len(x) image_shape = (15, 15) fields = {"proposal_boxes": Boxes} with patch_instances(fields) as new_instance: script_module = torch.jit.script(f()) x = new_instance(image_shape) with self.assertRaises(Exception): script_module(x) box_tensors = torch.tensor([[5, 5, 10, 10], [1, 1, 2, 3]]) x.proposal_boxes = Boxes(box_tensors) length = script_module(x) self.assertEqual(length, 2) fields = {"objectness_logits": Tensor} with patch_instances(fields) as new_instance: script_module = torch.jit.script(g()) x = new_instance(image_shape) objectness_logits = torch.tensor([1.0]).reshape(1, 1) x.objectness_logits = objectness_logits length = script_module(x) self.assertEqual(length, 1) @unittest.skipIf(TORCH_VERSION < (1, 7), "Insufficient pytorch version") def test_script_has(self): class f(torch.nn.Module): def forward(self, x: Instances): return x.has("proposal_boxes") image_shape = (15, 15) fields = {"proposal_boxes": Boxes} with patch_instances(fields) as new_instance: script_module = torch.jit.script(f()) x = new_instance(image_shape) self.assertFalse(script_module(x)) box_tensors = torch.tensor([[5, 5, 10, 10], [1, 1, 2, 3]]) x.proposal_boxes = Boxes(box_tensors) self.assertTrue(script_module(x)) @unittest.skipIf(TORCH_VERSION < (1, 8), "Insufficient pytorch version") def test_script_to(self): class f(torch.nn.Module): def forward(self, x: Instances): return x.to(torch.device("cpu")) image_shape = (15, 15) fields = {"proposal_boxes": Boxes, "a": Tensor} with patch_instances(fields) as new_instance: script_module = torch.jit.script(f()) x = new_instance(image_shape) script_module(x) box_tensors = torch.tensor([[5, 5, 10, 10], [1, 1, 2, 3]]) x.proposal_boxes = Boxes(box_tensors) x.a = box_tensors script_module(x) @unittest.skipIf(TORCH_VERSION < (1, 7), "Insufficient pytorch version") def test_script_getitem(self): class f(torch.nn.Module): def forward(self, x: Instances, idx): return x[idx] image_shape = (15, 15) fields = {"proposal_boxes": Boxes, "a": Tensor} inst = Instances(image_shape) inst.proposal_boxes = Boxes(torch.rand(4, 4)) inst.a = torch.rand(4, 10) idx = torch.tensor([True, False, True, False]) with patch_instances(fields) as new_instance: script_module = torch.jit.script(f()) out = f()(inst, idx) out_scripted = script_module(new_instance.from_instances(inst), idx) self.assertTrue( torch.equal(out.proposal_boxes.tensor, out_scripted.proposal_boxes.tensor) ) self.assertTrue(torch.equal(out.a, out_scripted.a)) @unittest.skipIf(TORCH_VERSION < (1, 7), "Insufficient pytorch version") def test_from_to_instances(self): orig = Instances((30, 30)) orig.proposal_boxes = Boxes(torch.rand(3, 4)) fields = {"proposal_boxes": Boxes, "a": Tensor} with patch_instances(fields) as NewInstances: # convert to NewInstances and back new1 = NewInstances.from_instances(orig) new2 = convert_scripted_instances(new1) self.assertTrue(torch.equal(orig.proposal_boxes.tensor, new1.proposal_boxes.tensor)) self.assertTrue(torch.equal(orig.proposal_boxes.tensor, new2.proposal_boxes.tensor)) if __name__ == "__main__": unittest.main()
banmo-main
third_party/detectron2_old/tests/structures/test_instances.py
# Copyright (c) Facebook, Inc. and its affiliates. import os import tempfile import unittest import yaml from omegaconf import OmegaConf from omegaconf import __version__ as oc_version from detectron2.config import instantiate, LazyCall as L from detectron2.layers import ShapeSpec OC_VERSION = tuple(int(x) for x in oc_version.split(".")[:2]) class TestClass: def __init__(self, int_arg, list_arg=None, dict_arg=None, extra_arg=None): self.int_arg = int_arg self.list_arg = list_arg self.dict_arg = dict_arg self.extra_arg = extra_arg def __call__(self, call_arg): return call_arg + self.int_arg @unittest.skipIf(OC_VERSION < (2, 1), "omegaconf version too old") class TestConstruction(unittest.TestCase): def test_basic_construct(self): objconf = L(TestClass)( int_arg=3, list_arg=[10], dict_arg={}, extra_arg=L(TestClass)(int_arg=4, list_arg="${..list_arg}"), ) obj = instantiate(objconf) self.assertIsInstance(obj, TestClass) self.assertEqual(obj.int_arg, 3) self.assertEqual(obj.extra_arg.int_arg, 4) self.assertEqual(obj.extra_arg.list_arg, obj.list_arg) objconf.extra_arg.list_arg = [5] obj = instantiate(objconf) self.assertIsInstance(obj, TestClass) self.assertEqual(obj.extra_arg.list_arg, [5]) def test_instantiate_other_obj(self): # do nothing for other obj self.assertEqual(instantiate(5), 5) x = [3, 4, 5] self.assertEqual(instantiate(x), x) x = TestClass(1) self.assertIs(instantiate(x), x) x = {"xx": "yy"} self.assertIs(instantiate(x), x) def test_instantiate_lazy_target(self): # _target_ is result of instantiate objconf = L(L(len)(int_arg=3))(call_arg=4) objconf._target_._target_ = TestClass self.assertEqual(instantiate(objconf), 7) def test_instantiate_lst(self): lst = [1, 2, L(TestClass)(int_arg=1)] x = L(TestClass)(int_arg=lst) # list as an argument should be recursively instantiated x = instantiate(x).int_arg self.assertEqual(x[:2], [1, 2]) self.assertIsInstance(x[2], TestClass) self.assertEqual(x[2].int_arg, 1) def test_instantiate_namedtuple(self): x = L(TestClass)(int_arg=ShapeSpec(channels=1, width=3)) # test serialization with tempfile.TemporaryDirectory() as d: fname = os.path.join(d, "d2_test.yaml") OmegaConf.save(x, fname) with open(fname) as f: x = yaml.unsafe_load(f) x = instantiate(x) self.assertIsInstance(x.int_arg, ShapeSpec) self.assertEqual(x.int_arg.channels, 1) def test_bad_lazycall(self): with self.assertRaises(Exception): L(3)
banmo-main
third_party/detectron2_old/tests/config/test_instantiate_config.py
# Copyright (c) Facebook, Inc. and its affiliates. from itertools import count from detectron2.config import LazyCall as L from .dir1.dir1_a import dir1a_dict, dir1a_str dir1a_dict.a = "modified" # modification above won't affect future imports from .dir1.dir1_b import dir1b_dict, dir1b_str lazyobj = L(count)(x=dir1a_str, y=dir1b_str)
banmo-main
third_party/detectron2_old/tests/config/root_cfg.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. import os import tempfile import unittest import torch from omegaconf import OmegaConf from detectron2 import model_zoo from detectron2.config import configurable, downgrade_config, get_cfg, upgrade_config from detectron2.layers import ShapeSpec from detectron2.modeling import build_model _V0_CFG = """ MODEL: RPN_HEAD: NAME: "TEST" VERSION: 0 """ _V1_CFG = """ MODEL: WEIGHT: "/path/to/weight" """ class TestConfigVersioning(unittest.TestCase): def test_upgrade_downgrade_consistency(self): cfg = get_cfg() # check that custom is preserved cfg.USER_CUSTOM = 1 down = downgrade_config(cfg, to_version=0) up = upgrade_config(down) self.assertTrue(up == cfg) def _merge_cfg_str(self, cfg, merge_str): f = tempfile.NamedTemporaryFile(mode="w", suffix=".yaml", delete=False) try: f.write(merge_str) f.close() cfg.merge_from_file(f.name) finally: os.remove(f.name) return cfg def test_auto_upgrade(self): cfg = get_cfg() latest_ver = cfg.VERSION cfg.USER_CUSTOM = 1 self._merge_cfg_str(cfg, _V0_CFG) self.assertEqual(cfg.MODEL.RPN.HEAD_NAME, "TEST") self.assertEqual(cfg.VERSION, latest_ver) def test_guess_v1(self): cfg = get_cfg() latest_ver = cfg.VERSION self._merge_cfg_str(cfg, _V1_CFG) self.assertEqual(cfg.VERSION, latest_ver) class _TestClassA(torch.nn.Module): @configurable def __init__(self, arg1, arg2, arg3=3): super().__init__() self.arg1 = arg1 self.arg2 = arg2 self.arg3 = arg3 assert arg1 == 1 assert arg2 == 2 assert arg3 == 3 @classmethod def from_config(cls, cfg): args = {"arg1": cfg.ARG1, "arg2": cfg.ARG2} return args class _TestClassB(_TestClassA): @configurable def __init__(self, input_shape, arg1, arg2, arg3=3): """ Doc of _TestClassB """ assert input_shape == "shape" super().__init__(arg1, arg2, arg3) @classmethod def from_config(cls, cfg, input_shape): # test extra positional arg in from_config args = {"arg1": cfg.ARG1, "arg2": cfg.ARG2} args["input_shape"] = input_shape return args class _LegacySubClass(_TestClassB): # an old subclass written in cfg style def __init__(self, cfg, input_shape, arg4=4): super().__init__(cfg, input_shape) assert self.arg1 == 1 assert self.arg2 == 2 assert self.arg3 == 3 class _NewSubClassNewInit(_TestClassB): # test new subclass with a new __init__ @configurable def __init__(self, input_shape, arg4=4, **kwargs): super().__init__(input_shape, **kwargs) assert self.arg1 == 1 assert self.arg2 == 2 assert self.arg3 == 3 class _LegacySubClassNotCfg(_TestClassB): # an old subclass written in cfg style, but argument is not called "cfg" def __init__(self, config, input_shape): super().__init__(config, input_shape) assert self.arg1 == 1 assert self.arg2 == 2 assert self.arg3 == 3 class _TestClassC(_TestClassB): @classmethod def from_config(cls, cfg, input_shape, **kwargs): # test extra kwarg overwrite args = {"arg1": cfg.ARG1, "arg2": cfg.ARG2} args["input_shape"] = input_shape args.update(kwargs) return args class _TestClassD(_TestClassA): @configurable def __init__(self, input_shape: ShapeSpec, arg1: int, arg2, arg3=3): assert input_shape == "shape" super().__init__(arg1, arg2, arg3) # _TestClassA.from_config does not have input_shape args. # Test whether input_shape will be forwarded to __init__ @configurable(from_config=lambda cfg, arg2: {"arg1": cfg.ARG1, "arg2": arg2, "arg3": cfg.ARG3}) def _test_func(arg1, arg2=2, arg3=3, arg4=4): return arg1, arg2, arg3, arg4 class TestConfigurable(unittest.TestCase): def testInitWithArgs(self): _ = _TestClassA(arg1=1, arg2=2, arg3=3) _ = _TestClassB("shape", arg1=1, arg2=2) _ = _TestClassC("shape", arg1=1, arg2=2) _ = _TestClassD("shape", arg1=1, arg2=2, arg3=3) def testPatchedAttr(self): self.assertTrue("Doc" in _TestClassB.__init__.__doc__) self.assertEqual(_TestClassD.__init__.__annotations__["arg1"], int) def testInitWithCfg(self): cfg = get_cfg() cfg.ARG1 = 1 cfg.ARG2 = 2 cfg.ARG3 = 3 _ = _TestClassA(cfg) _ = _TestClassB(cfg, input_shape="shape") _ = _TestClassC(cfg, input_shape="shape") _ = _TestClassD(cfg, input_shape="shape") _ = _LegacySubClass(cfg, input_shape="shape") _ = _NewSubClassNewInit(cfg, input_shape="shape") _ = _LegacySubClassNotCfg(cfg, input_shape="shape") with self.assertRaises(TypeError): # disallow forwarding positional args to __init__ since it's prone to errors _ = _TestClassD(cfg, "shape") # call with kwargs instead _ = _TestClassA(cfg=cfg) _ = _TestClassB(cfg=cfg, input_shape="shape") _ = _TestClassC(cfg=cfg, input_shape="shape") _ = _TestClassD(cfg=cfg, input_shape="shape") _ = _LegacySubClass(cfg=cfg, input_shape="shape") _ = _NewSubClassNewInit(cfg=cfg, input_shape="shape") _ = _LegacySubClassNotCfg(config=cfg, input_shape="shape") def testInitWithCfgOverwrite(self): cfg = get_cfg() cfg.ARG1 = 1 cfg.ARG2 = 999 # wrong config with self.assertRaises(AssertionError): _ = _TestClassA(cfg, arg3=3) # overwrite arg2 with correct config later: _ = _TestClassA(cfg, arg2=2, arg3=3) _ = _TestClassB(cfg, input_shape="shape", arg2=2, arg3=3) _ = _TestClassC(cfg, input_shape="shape", arg2=2, arg3=3) _ = _TestClassD(cfg, input_shape="shape", arg2=2, arg3=3) # call with kwargs cfg=cfg instead _ = _TestClassA(cfg=cfg, arg2=2, arg3=3) _ = _TestClassB(cfg=cfg, input_shape="shape", arg2=2, arg3=3) _ = _TestClassC(cfg=cfg, input_shape="shape", arg2=2, arg3=3) _ = _TestClassD(cfg=cfg, input_shape="shape", arg2=2, arg3=3) def testInitWithCfgWrongArgs(self): cfg = get_cfg() cfg.ARG1 = 1 cfg.ARG2 = 2 with self.assertRaises(TypeError): _ = _TestClassB(cfg, "shape", not_exist=1) with self.assertRaises(TypeError): _ = _TestClassC(cfg, "shape", not_exist=1) with self.assertRaises(TypeError): _ = _TestClassD(cfg, "shape", not_exist=1) def testBadClass(self): class _BadClass1: @configurable def __init__(self, a=1, b=2): pass class _BadClass2: @configurable def __init__(self, a=1, b=2): pass def from_config(self, cfg): # noqa pass class _BadClass3: @configurable def __init__(self, a=1, b=2): pass # bad name: must be cfg @classmethod def from_config(cls, config): # noqa pass with self.assertRaises(AttributeError): _ = _BadClass1(a=1) with self.assertRaises(TypeError): _ = _BadClass2(a=1) with self.assertRaises(TypeError): _ = _BadClass3(get_cfg()) def testFuncWithCfg(self): cfg = get_cfg() cfg.ARG1 = 10 cfg.ARG3 = 30 self.assertEqual(_test_func(1), (1, 2, 3, 4)) with self.assertRaises(TypeError): _test_func(cfg) self.assertEqual(_test_func(cfg, arg2=2), (10, 2, 30, 4)) self.assertEqual(_test_func(cfg, arg1=100, arg2=20), (100, 20, 30, 4)) self.assertEqual(_test_func(cfg, arg1=100, arg2=20, arg4=40), (100, 20, 30, 40)) def testOmegaConf(self): cfg = model_zoo.get_config("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml") cfg = OmegaConf.create(cfg.dump()) if not torch.cuda.is_available(): cfg.MODEL.DEVICE = "cpu" # test that a model can be built with omegaconf config as well build_model(cfg)
banmo-main
third_party/detectron2_old/tests/config/test_yacs_config.py
# Copyright (c) Facebook, Inc. and its affiliates. import os import unittest import tempfile from itertools import count from detectron2.config import LazyConfig, LazyCall as L class TestLazyPythonConfig(unittest.TestCase): def setUp(self): self.root_filename = os.path.join(os.path.dirname(__file__), "root_cfg.py") def test_load(self): cfg = LazyConfig.load(self.root_filename) self.assertEqual(cfg.dir1a_dict.a, "modified") self.assertEqual(cfg.dir1b_dict.a, 1) self.assertEqual(cfg.lazyobj.x, "base_a_1") cfg.lazyobj.x = "new_x" # reload cfg = LazyConfig.load(self.root_filename) self.assertEqual(cfg.lazyobj.x, "base_a_1") def test_save_load(self): cfg = LazyConfig.load(self.root_filename) with tempfile.TemporaryDirectory(prefix="detectron2") as d: fname = os.path.join(d, "test_config.yaml") LazyConfig.save(cfg, fname) cfg2 = LazyConfig.load(fname) self.assertEqual(cfg2.lazyobj._target_, "itertools.count") self.assertEqual(cfg.lazyobj._target_, count) cfg2.lazyobj.pop("_target_") cfg.lazyobj.pop("_target_") # the rest are equal self.assertEqual(cfg, cfg2) def test_overrides(self): cfg = LazyConfig.load(self.root_filename) LazyConfig.apply_overrides(cfg, ["lazyobj.x=123", 'dir1b_dict.a="123"']) self.assertEqual(cfg.dir1b_dict.a, "123") self.assertEqual(cfg.lazyobj.x, 123) def test_invalid_overrides(self): cfg = LazyConfig.load(self.root_filename) with self.assertRaises(KeyError): LazyConfig.apply_overrides(cfg, ["lazyobj.x.xxx=123"]) def test_to_py(self): cfg = LazyConfig.load(self.root_filename) cfg.lazyobj.x = {"a": 1, "b": 2, "c": L(count)(x={"r": "a", "s": 2.4, "t": [1, 2, 3, "z"]})} cfg.list = ["a", 1, "b", 3.2] py_str = LazyConfig.to_py(cfg) expected = """cfg.dir1a_dict.a = "modified" cfg.dir1a_dict.b = 2 cfg.dir1b_dict.a = 1 cfg.dir1b_dict.b = 2 cfg.lazyobj = itertools.count( x={ "a": 1, "b": 2, "c": itertools.count(x={"r": "a", "s": 2.4, "t": [1, 2, 3, "z"]}), }, y="base_a_1_from_b", ) cfg.list = ["a", 1, "b", 3.2] """ self.assertEqual(py_str, expected)
banmo-main
third_party/detectron2_old/tests/config/test_lazy_config.py
# Copyright (c) Facebook, Inc. and its affiliates. dir1a_str = "base_a_1" dir1a_dict = {"a": 1, "b": 2}
banmo-main
third_party/detectron2_old/tests/config/dir1/dir1_a.py
# Copyright (c) Facebook, Inc. and its affiliates. from detectron2.config import LazyConfig # equivalent to relative import dir1a_str, dir1a_dict = LazyConfig.load_rel("dir1_a.py", ("dir1a_str", "dir1a_dict")) dir1b_str = dir1a_str + "_from_b" dir1b_dict = dir1a_dict # Every import is a reload: not modified by other config files assert dir1a_dict.a == 1
banmo-main
third_party/detectron2_old/tests/config/dir1/dir1_b.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import unittest import torch import detectron2.export.torchscript # apply patch # noqa from detectron2 import model_zoo from detectron2.config import get_cfg from detectron2.layers import ShapeSpec from detectron2.modeling.backbone import build_resnet_backbone from detectron2.modeling.backbone.fpn import build_resnet_fpn_backbone from detectron2.utils.env import TORCH_VERSION class TestBackBone(unittest.TestCase): @unittest.skipIf(TORCH_VERSION < (1, 8), "Insufficient pytorch version") def test_resnet_scriptability(self): cfg = get_cfg() resnet = build_resnet_backbone(cfg, ShapeSpec(channels=3)) scripted_resnet = torch.jit.script(resnet) inp = torch.rand(2, 3, 100, 100) out1 = resnet(inp)["res4"] out2 = scripted_resnet(inp)["res4"] self.assertTrue(torch.allclose(out1, out2)) @unittest.skipIf(TORCH_VERSION < (1, 8), "Insufficient pytorch version") def test_fpn_scriptability(self): cfg = model_zoo.get_config("Misc/scratch_mask_rcnn_R_50_FPN_3x_gn.yaml") bb = build_resnet_fpn_backbone(cfg, ShapeSpec(channels=3)) bb_s = torch.jit.script(bb) inp = torch.rand(2, 3, 128, 128) out1 = bb(inp)["p5"] out2 = bb_s(inp)["p5"] self.assertTrue(torch.allclose(out1, out2))
banmo-main
third_party/detectron2_old/tests/modeling/test_backbone.py
# Copyright (c) Facebook, Inc. and its affiliates. import unittest from typing import List import torch from detectron2.config import get_cfg from detectron2.modeling.matcher import Matcher class TestMatcher(unittest.TestCase): def test_scriptability(self): cfg = get_cfg() anchor_matcher = Matcher( cfg.MODEL.RPN.IOU_THRESHOLDS, cfg.MODEL.RPN.IOU_LABELS, allow_low_quality_matches=True ) match_quality_matrix = torch.tensor( [[0.15, 0.45, 0.2, 0.6], [0.3, 0.65, 0.05, 0.1], [0.05, 0.4, 0.25, 0.4]] ) expected_matches = torch.tensor([1, 1, 2, 0]) expected_match_labels = torch.tensor([-1, 1, 0, 1], dtype=torch.int8) matches, match_labels = anchor_matcher(match_quality_matrix) self.assertTrue(torch.allclose(matches, expected_matches)) self.assertTrue(torch.allclose(match_labels, expected_match_labels)) # nonzero_tuple must be import explicitly to let jit know what it is. # https://github.com/pytorch/pytorch/issues/38964 from detectron2.layers import nonzero_tuple # noqa F401 def f(thresholds: List[float], labels: List[int]): return Matcher(thresholds, labels, allow_low_quality_matches=True) scripted_anchor_matcher = torch.jit.script(f)( cfg.MODEL.RPN.IOU_THRESHOLDS, cfg.MODEL.RPN.IOU_LABELS ) matches, match_labels = scripted_anchor_matcher(match_quality_matrix) self.assertTrue(torch.allclose(matches, expected_matches)) self.assertTrue(torch.allclose(match_labels, expected_match_labels)) if __name__ == "__main__": unittest.main()
banmo-main
third_party/detectron2_old/tests/modeling/test_matcher.py
# Copyright (c) Facebook, Inc. and its affiliates. import logging import unittest import torch from detectron2.modeling.poolers import ROIPooler, _fmt_box_list from detectron2.structures import Boxes, RotatedBoxes from detectron2.utils.env import TORCH_VERSION from detectron2.utils.testing import random_boxes logger = logging.getLogger(__name__) class TestROIPooler(unittest.TestCase): def _test_roialignv2_roialignrotated_match(self, device): pooler_resolution = 14 canonical_level = 4 canonical_scale_factor = 2 ** canonical_level pooler_scales = (1.0 / canonical_scale_factor,) sampling_ratio = 0 N, C, H, W = 2, 4, 10, 8 N_rois = 10 std = 11 mean = 0 feature = (torch.rand(N, C, H, W) - 0.5) * 2 * std + mean features = [feature.to(device)] rois = [] rois_rotated = [] for _ in range(N): boxes = random_boxes(N_rois, W * canonical_scale_factor) rotated_boxes = torch.zeros(N_rois, 5) rotated_boxes[:, 0] = (boxes[:, 0] + boxes[:, 2]) / 2.0 rotated_boxes[:, 1] = (boxes[:, 1] + boxes[:, 3]) / 2.0 rotated_boxes[:, 2] = boxes[:, 2] - boxes[:, 0] rotated_boxes[:, 3] = boxes[:, 3] - boxes[:, 1] rois.append(Boxes(boxes).to(device)) rois_rotated.append(RotatedBoxes(rotated_boxes).to(device)) roialignv2_pooler = ROIPooler( output_size=pooler_resolution, scales=pooler_scales, sampling_ratio=sampling_ratio, pooler_type="ROIAlignV2", ) roialignv2_out = roialignv2_pooler(features, rois) roialignrotated_pooler = ROIPooler( output_size=pooler_resolution, scales=pooler_scales, sampling_ratio=sampling_ratio, pooler_type="ROIAlignRotated", ) roialignrotated_out = roialignrotated_pooler(features, rois_rotated) self.assertTrue(torch.allclose(roialignv2_out, roialignrotated_out, atol=1e-4)) def test_roialignv2_roialignrotated_match_cpu(self): self._test_roialignv2_roialignrotated_match(device="cpu") @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") def test_roialignv2_roialignrotated_match_cuda(self): self._test_roialignv2_roialignrotated_match(device="cuda") def _test_scriptability(self, device): pooler_resolution = 14 canonical_level = 4 canonical_scale_factor = 2 ** canonical_level pooler_scales = (1.0 / canonical_scale_factor,) sampling_ratio = 0 N, C, H, W = 2, 4, 10, 8 N_rois = 10 std = 11 mean = 0 feature = (torch.rand(N, C, H, W) - 0.5) * 2 * std + mean features = [feature.to(device)] rois = [] for _ in range(N): boxes = random_boxes(N_rois, W * canonical_scale_factor) rois.append(Boxes(boxes).to(device)) roialignv2_pooler = ROIPooler( output_size=pooler_resolution, scales=pooler_scales, sampling_ratio=sampling_ratio, pooler_type="ROIAlignV2", ) roialignv2_out = roialignv2_pooler(features, rois) scripted_roialignv2_out = torch.jit.script(roialignv2_pooler)(features, rois) self.assertTrue(torch.equal(roialignv2_out, scripted_roialignv2_out)) @unittest.skipIf(TORCH_VERSION < (1, 7), "Insufficient pytorch version") def test_scriptability_cpu(self): self._test_scriptability(device="cpu") @unittest.skipIf(TORCH_VERSION < (1, 7), "Insufficient pytorch version") @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") def test_scriptability_gpu(self): self._test_scriptability(device="cuda") def test_no_images(self): N, C, H, W = 0, 32, 32, 32 feature = torch.rand(N, C, H, W) - 0.5 features = [feature] pooler = ROIPooler( output_size=14, scales=(1.0,), sampling_ratio=0.0, pooler_type="ROIAlignV2" ) output = pooler.forward(features, []) self.assertEqual(output.shape, (0, C, 14, 14)) def test_fmt_box_list_tracing(self): class Model(torch.nn.Module): def forward(self, box_tensor): return _fmt_box_list(box_tensor, 0) with torch.no_grad(): func = torch.jit.trace(Model(), torch.ones(10, 4)) self.assertEqual(func(torch.ones(10, 4)).shape, (10, 5)) self.assertEqual(func(torch.ones(5, 4)).shape, (5, 5)) self.assertEqual(func(torch.ones(20, 4)).shape, (20, 5)) def test_roi_pooler_tracing(self): class Model(torch.nn.Module): def __init__(self, roi): super(Model, self).__init__() self.roi = roi def forward(self, x, boxes): return self.roi(x, [Boxes(boxes)]) pooler_resolution = 14 canonical_level = 4 canonical_scale_factor = 2 ** canonical_level pooler_scales = (1.0 / canonical_scale_factor, 0.5 / canonical_scale_factor) sampling_ratio = 0 N, C, H, W = 1, 4, 10, 8 N_rois = 10 std = 11 mean = 0 feature = (torch.rand(N, C, H, W) - 0.5) * 2 * std + mean feature = [feature, feature] rois = random_boxes(N_rois, W * canonical_scale_factor) # Add one larger box so that this level has only one box. # This may trigger the bug https://github.com/pytorch/pytorch/issues/49852 # that we shall workaround. rois = torch.cat([rois, torch.tensor([[0, 0, 448, 448]])]) model = Model( ROIPooler( output_size=pooler_resolution, scales=pooler_scales, sampling_ratio=sampling_ratio, pooler_type="ROIAlign", ) ) with torch.no_grad(): func = torch.jit.trace(model, (feature, rois)) o = func(feature, rois) self.assertEqual(o.shape, (11, 4, 14, 14)) o = func(feature, rois[:5]) self.assertEqual(o.shape, (5, 4, 14, 14)) o = func(feature, random_boxes(20, W * canonical_scale_factor)) self.assertEqual(o.shape, (20, 4, 14, 14)) if __name__ == "__main__": unittest.main()
banmo-main
third_party/detectron2_old/tests/modeling/test_roi_pooler.py
import unittest from detectron2.layers import ShapeSpec from detectron2.modeling.mmdet_wrapper import MMDetBackbone, MMDetDetector try: import mmdet.models # noqa HAS_MMDET = True except ImportError: HAS_MMDET = False @unittest.skipIf(not HAS_MMDET, "mmdet not available") class TestMMDetWrapper(unittest.TestCase): def test_backbone(self): MMDetBackbone( backbone=dict( type="DetectoRS_ResNet", conv_cfg=dict(type="ConvAWS"), sac=dict(type="SAC", use_deform=True), stage_with_sac=(False, True, True, True), depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type="BN", requires_grad=True), norm_eval=True, style="pytorch", ), neck=dict( type="FPN", in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5, ), # skip pretrained model for tests # pretrained_backbone="torchvision://resnet50", output_shapes=[ShapeSpec(channels=256, stride=s) for s in [4, 8, 16, 32, 64]], output_names=["p2", "p3", "p4", "p5", "p6"], ) def test_detector(self): # a basic R50 Mask R-CNN MMDetDetector( detector=dict( type="MaskRCNN", # skip pretrained model for tests # pretrained="torchvision://resnet50", backbone=dict( type="ResNet", depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type="BN", requires_grad=True), norm_eval=True, style="pytorch", ), neck=dict( type="FPN", in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5 ), rpn_head=dict( type="RPNHead", in_channels=256, feat_channels=256, anchor_generator=dict( type="AnchorGenerator", scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64], ), bbox_coder=dict( type="DeltaXYWHBBoxCoder", target_means=[0.0, 0.0, 0.0, 0.0], target_stds=[1.0, 1.0, 1.0, 1.0], ), loss_cls=dict(type="CrossEntropyLoss", use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type="L1Loss", loss_weight=1.0), ), roi_head=dict( type="StandardRoIHead", bbox_roi_extractor=dict( type="SingleRoIExtractor", roi_layer=dict(type="RoIAlign", output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32], ), bbox_head=dict( type="Shared2FCBBoxHead", in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type="DeltaXYWHBBoxCoder", target_means=[0.0, 0.0, 0.0, 0.0], target_stds=[0.1, 0.1, 0.2, 0.2], ), reg_class_agnostic=False, loss_cls=dict(type="CrossEntropyLoss", use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type="L1Loss", loss_weight=1.0), ), mask_roi_extractor=dict( type="SingleRoIExtractor", roi_layer=dict(type="RoIAlign", output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32], ), mask_head=dict( type="FCNMaskHead", num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict(type="CrossEntropyLoss", use_mask=True, loss_weight=1.0), ), ), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type="MaxIoUAssigner", pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1, ), sampler=dict( type="RandomSampler", num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False, ), allowed_border=-1, pos_weight=-1, debug=False, ), rpn_proposal=dict( nms_pre=2000, max_per_img=1000, nms=dict(type="nms", iou_threshold=0.7), min_bbox_size=0, ), rcnn=dict( assigner=dict( type="MaxIoUAssigner", pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=True, ignore_iof_thr=-1, ), sampler=dict( type="RandomSampler", num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True, ), mask_size=28, pos_weight=-1, debug=False, ), ), test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type="nms", iou_threshold=0.7), min_bbox_size=0, ), rcnn=dict( score_thr=0.05, nms=dict(type="nms", iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5, ), ), ), pixel_mean=[1, 2, 3], pixel_std=[1, 2, 3], )
banmo-main
third_party/detectron2_old/tests/modeling/test_mmdet.py
# Copyright (c) Facebook, Inc. and its affiliates. import itertools import numpy as np import unittest from contextlib import contextmanager from copy import deepcopy import torch from detectron2.structures import BitMasks, Boxes, ImageList, Instances from detectron2.utils.events import EventStorage from detectron2.utils.testing import get_model_no_weights @contextmanager def typecheck_hook(model, *, in_dtype=None, out_dtype=None): """ Check that the model must be called with the given input/output dtype """ if not isinstance(in_dtype, set): in_dtype = {in_dtype} if not isinstance(out_dtype, set): out_dtype = {out_dtype} def flatten(x): if isinstance(x, torch.Tensor): return [x] if isinstance(x, (list, tuple)): return list(itertools.chain(*[flatten(t) for t in x])) if isinstance(x, dict): return flatten(list(x.values())) return [] def hook(module, input, output): if in_dtype is not None: dtypes = {x.dtype for x in flatten(input)} assert ( dtypes == in_dtype ), f"Expected input dtype of {type(module)} is {in_dtype}. Got {dtypes} instead!" if out_dtype is not None: dtypes = {x.dtype for x in flatten(output)} assert ( dtypes == out_dtype ), f"Expected output dtype of {type(module)} is {out_dtype}. Got {dtypes} instead!" with model.register_forward_hook(hook): yield def create_model_input(img, inst=None): if inst is not None: return {"image": img, "instances": inst} else: return {"image": img} def get_empty_instance(h, w): inst = Instances((h, w)) inst.gt_boxes = Boxes(torch.rand(0, 4)) inst.gt_classes = torch.tensor([]).to(dtype=torch.int64) inst.gt_masks = BitMasks(torch.rand(0, h, w)) return inst def get_regular_bitmask_instances(h, w): inst = Instances((h, w)) inst.gt_boxes = Boxes(torch.rand(3, 4)) inst.gt_boxes.tensor[:, 2:] += inst.gt_boxes.tensor[:, :2] inst.gt_classes = torch.tensor([3, 4, 5]).to(dtype=torch.int64) inst.gt_masks = BitMasks((torch.rand(3, h, w) > 0.5)) return inst class ModelE2ETest: def setUp(self): torch.manual_seed(43) self.model = get_model_no_weights(self.CONFIG_PATH) def _test_eval(self, input_sizes): inputs = [create_model_input(torch.rand(3, s[0], s[1])) for s in input_sizes] self.model.eval() self.model(inputs) def _test_train(self, input_sizes, instances): assert len(input_sizes) == len(instances) inputs = [ create_model_input(torch.rand(3, s[0], s[1]), inst) for s, inst in zip(input_sizes, instances) ] self.model.train() with EventStorage(): losses = self.model(inputs) sum(losses.values()).backward() del losses def _inf_tensor(self, *shape): return 1.0 / torch.zeros(*shape, device=self.model.device) def _nan_tensor(self, *shape): return torch.zeros(*shape, device=self.model.device).fill_(float("nan")) def test_empty_data(self): instances = [get_empty_instance(200, 250), get_empty_instance(200, 249)] self._test_eval([(200, 250), (200, 249)]) self._test_train([(200, 250), (200, 249)], instances) @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable") def test_eval_tocpu(self): model = deepcopy(self.model).cpu() model.eval() input_sizes = [(200, 250), (200, 249)] inputs = [create_model_input(torch.rand(3, s[0], s[1])) for s in input_sizes] model(inputs) class MaskRCNNE2ETest(ModelE2ETest, unittest.TestCase): CONFIG_PATH = "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml" def test_half_empty_data(self): instances = [get_empty_instance(200, 250), get_regular_bitmask_instances(200, 249)] self._test_train([(200, 250), (200, 249)], instances) # This test is flaky because in some environment the output features are zero due to relu # def test_rpn_inf_nan_data(self): # self.model.eval() # for tensor in [self._inf_tensor, self._nan_tensor]: # images = ImageList(tensor(1, 3, 512, 512), [(510, 510)]) # features = { # "p2": tensor(1, 256, 256, 256), # "p3": tensor(1, 256, 128, 128), # "p4": tensor(1, 256, 64, 64), # "p5": tensor(1, 256, 32, 32), # "p6": tensor(1, 256, 16, 16), # } # props, _ = self.model.proposal_generator(images, features) # self.assertEqual(len(props[0]), 0) def test_roiheads_inf_nan_data(self): self.model.eval() for tensor in [self._inf_tensor, self._nan_tensor]: images = ImageList(tensor(1, 3, 512, 512), [(510, 510)]) features = { "p2": tensor(1, 256, 256, 256), "p3": tensor(1, 256, 128, 128), "p4": tensor(1, 256, 64, 64), "p5": tensor(1, 256, 32, 32), "p6": tensor(1, 256, 16, 16), } props = [Instances((510, 510))] props[0].proposal_boxes = Boxes([[10, 10, 20, 20]]).to(device=self.model.device) props[0].objectness_logits = torch.tensor([1.0]).reshape(1, 1) det, _ = self.model.roi_heads(images, features, props) self.assertEqual(len(det[0]), 0) @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") def test_autocast(self): from torch.cuda.amp import autocast inputs = [{"image": torch.rand(3, 100, 100)}] self.model.eval() with autocast(), typecheck_hook( self.model.backbone, in_dtype=torch.float32, out_dtype=torch.float16 ), typecheck_hook( self.model.roi_heads.box_predictor, in_dtype=torch.float16, out_dtype=torch.float16 ): out = self.model.inference(inputs, do_postprocess=False)[0] self.assertEqual(out.pred_boxes.tensor.dtype, torch.float32) self.assertEqual(out.pred_masks.dtype, torch.float16) self.assertEqual(out.scores.dtype, torch.float32) # scores comes from softmax class RetinaNetE2ETest(ModelE2ETest, unittest.TestCase): CONFIG_PATH = "COCO-Detection/retinanet_R_50_FPN_1x.yaml" def test_inf_nan_data(self): self.model.eval() self.model.score_threshold = -999999999 for tensor in [self._inf_tensor, self._nan_tensor]: images = ImageList(tensor(1, 3, 512, 512), [(510, 510)]) features = [ tensor(1, 256, 128, 128), tensor(1, 256, 64, 64), tensor(1, 256, 32, 32), tensor(1, 256, 16, 16), tensor(1, 256, 8, 8), ] anchors = self.model.anchor_generator(features) _, pred_anchor_deltas = self.model.head(features) HWAs = [np.prod(x.shape[-3:]) // 4 for x in pred_anchor_deltas] pred_logits = [tensor(1, HWA, self.model.num_classes) for HWA in HWAs] pred_anchor_deltas = [tensor(1, HWA, 4) for HWA in HWAs] det = self.model.inference(anchors, pred_logits, pred_anchor_deltas, images.image_sizes) # all predictions (if any) are infinite or nan if len(det[0]): self.assertTrue(torch.isfinite(det[0].pred_boxes.tensor).sum() == 0) @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") def test_autocast(self): from torch.cuda.amp import autocast inputs = [{"image": torch.rand(3, 100, 100)}] self.model.eval() with autocast(), typecheck_hook( self.model.backbone, in_dtype=torch.float32, out_dtype=torch.float16 ), typecheck_hook(self.model.head, in_dtype=torch.float16, out_dtype=torch.float16): out = self.model(inputs)[0]["instances"] self.assertEqual(out.pred_boxes.tensor.dtype, torch.float32) self.assertEqual(out.scores.dtype, torch.float16)
banmo-main
third_party/detectron2_old/tests/modeling/test_model_e2e.py
# Copyright (c) Facebook, Inc. and its affiliates. import logging import unittest import torch from detectron2.config import get_cfg from detectron2.layers import ShapeSpec from detectron2.modeling.anchor_generator import DefaultAnchorGenerator, RotatedAnchorGenerator logger = logging.getLogger(__name__) class TestAnchorGenerator(unittest.TestCase): def test_default_anchor_generator(self): cfg = get_cfg() cfg.MODEL.ANCHOR_GENERATOR.SIZES = [[32, 64]] cfg.MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS = [[0.25, 1, 4]] anchor_generator = DefaultAnchorGenerator(cfg, [ShapeSpec(stride=4)]) # only the last two dimensions of features matter here num_images = 2 features = {"stage3": torch.rand(num_images, 96, 1, 2)} anchors = anchor_generator([features["stage3"]]) expected_anchor_tensor = torch.tensor( [ [-32.0, -8.0, 32.0, 8.0], [-16.0, -16.0, 16.0, 16.0], [-8.0, -32.0, 8.0, 32.0], [-64.0, -16.0, 64.0, 16.0], [-32.0, -32.0, 32.0, 32.0], [-16.0, -64.0, 16.0, 64.0], [-28.0, -8.0, 36.0, 8.0], # -28.0 == -32.0 + STRIDE (4) [-12.0, -16.0, 20.0, 16.0], [-4.0, -32.0, 12.0, 32.0], [-60.0, -16.0, 68.0, 16.0], [-28.0, -32.0, 36.0, 32.0], [-12.0, -64.0, 20.0, 64.0], ] ) self.assertTrue(torch.allclose(anchors[0].tensor, expected_anchor_tensor)) def test_default_anchor_generator_centered(self): # test explicit args anchor_generator = DefaultAnchorGenerator( sizes=[32, 64], aspect_ratios=[0.25, 1, 4], strides=[4] ) # only the last two dimensions of features matter here num_images = 2 features = {"stage3": torch.rand(num_images, 96, 1, 2)} expected_anchor_tensor = torch.tensor( [ [-30.0, -6.0, 34.0, 10.0], [-14.0, -14.0, 18.0, 18.0], [-6.0, -30.0, 10.0, 34.0], [-62.0, -14.0, 66.0, 18.0], [-30.0, -30.0, 34.0, 34.0], [-14.0, -62.0, 18.0, 66.0], [-26.0, -6.0, 38.0, 10.0], [-10.0, -14.0, 22.0, 18.0], [-2.0, -30.0, 14.0, 34.0], [-58.0, -14.0, 70.0, 18.0], [-26.0, -30.0, 38.0, 34.0], [-10.0, -62.0, 22.0, 66.0], ] ) anchors = anchor_generator([features["stage3"]]) self.assertTrue(torch.allclose(anchors[0].tensor, expected_anchor_tensor)) anchors = torch.jit.script(anchor_generator)([features["stage3"]]) self.assertTrue(torch.allclose(anchors[0].tensor, expected_anchor_tensor)) def test_rrpn_anchor_generator(self): cfg = get_cfg() cfg.MODEL.ANCHOR_GENERATOR.SIZES = [[32, 64]] cfg.MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS = [[0.25, 1, 4]] cfg.MODEL.ANCHOR_GENERATOR.ANGLES = [0, 45] # test single list[float] anchor_generator = RotatedAnchorGenerator(cfg, [ShapeSpec(stride=4)]) # only the last two dimensions of features matter here num_images = 2 features = {"stage3": torch.rand(num_images, 96, 1, 2)} anchors = anchor_generator([features["stage3"]]) expected_anchor_tensor = torch.tensor( [ [0.0, 0.0, 64.0, 16.0, 0.0], [0.0, 0.0, 64.0, 16.0, 45.0], [0.0, 0.0, 32.0, 32.0, 0.0], [0.0, 0.0, 32.0, 32.0, 45.0], [0.0, 0.0, 16.0, 64.0, 0.0], [0.0, 0.0, 16.0, 64.0, 45.0], [0.0, 0.0, 128.0, 32.0, 0.0], [0.0, 0.0, 128.0, 32.0, 45.0], [0.0, 0.0, 64.0, 64.0, 0.0], [0.0, 0.0, 64.0, 64.0, 45.0], [0.0, 0.0, 32.0, 128.0, 0.0], [0.0, 0.0, 32.0, 128.0, 45.0], [4.0, 0.0, 64.0, 16.0, 0.0], # 4.0 == 0.0 + STRIDE (4) [4.0, 0.0, 64.0, 16.0, 45.0], [4.0, 0.0, 32.0, 32.0, 0.0], [4.0, 0.0, 32.0, 32.0, 45.0], [4.0, 0.0, 16.0, 64.0, 0.0], [4.0, 0.0, 16.0, 64.0, 45.0], [4.0, 0.0, 128.0, 32.0, 0.0], [4.0, 0.0, 128.0, 32.0, 45.0], [4.0, 0.0, 64.0, 64.0, 0.0], [4.0, 0.0, 64.0, 64.0, 45.0], [4.0, 0.0, 32.0, 128.0, 0.0], [4.0, 0.0, 32.0, 128.0, 45.0], ] ) self.assertTrue(torch.allclose(anchors[0].tensor, expected_anchor_tensor)) if __name__ == "__main__": unittest.main()
banmo-main
third_party/detectron2_old/tests/modeling/test_anchor_generator.py
# Copyright (c) Facebook, Inc. and its affiliates. import logging import unittest from copy import deepcopy import torch from torch import nn from detectron2 import model_zoo from detectron2.config import get_cfg from detectron2.export.torchscript_patch import ( freeze_training_mode, patch_builtin_len, patch_instances, ) from detectron2.layers import ShapeSpec from detectron2.modeling.proposal_generator.build import build_proposal_generator from detectron2.modeling.roi_heads import ( FastRCNNConvFCHead, KRCNNConvDeconvUpsampleHead, MaskRCNNConvUpsampleHead, StandardROIHeads, build_roi_heads, ) from detectron2.projects import point_rend from detectron2.structures import BitMasks, Boxes, ImageList, Instances, RotatedBoxes from detectron2.utils.env import TORCH_VERSION from detectron2.utils.events import EventStorage from detectron2.utils.testing import assert_instances_allclose, random_boxes logger = logging.getLogger(__name__) """ Make sure the losses of ROIHeads/RPN do not change, to avoid breaking the forward logic by mistake. This relies on assumption that pytorch's RNG is stable. """ class ROIHeadsTest(unittest.TestCase): def test_roi_heads(self): torch.manual_seed(121) cfg = get_cfg() cfg.MODEL.ROI_BOX_HEAD.NAME = "FastRCNNConvFCHead" cfg.MODEL.ROI_BOX_HEAD.NUM_FC = 2 cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE = "ROIAlignV2" cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS = (10, 10, 5, 5) cfg.MODEL.MASK_ON = True num_images = 2 images_tensor = torch.rand(num_images, 20, 30) image_sizes = [(10, 10), (20, 30)] images = ImageList(images_tensor, image_sizes) num_channels = 1024 features = {"res4": torch.rand(num_images, num_channels, 1, 2)} feature_shape = {"res4": ShapeSpec(channels=num_channels, stride=16)} image_shape = (15, 15) gt_boxes0 = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6]], dtype=torch.float32) gt_instance0 = Instances(image_shape) gt_instance0.gt_boxes = Boxes(gt_boxes0) gt_instance0.gt_classes = torch.tensor([2, 1]) gt_instance0.gt_masks = BitMasks(torch.rand((2,) + image_shape) > 0.5) gt_boxes1 = torch.tensor([[1, 5, 2, 8], [7, 3, 10, 5]], dtype=torch.float32) gt_instance1 = Instances(image_shape) gt_instance1.gt_boxes = Boxes(gt_boxes1) gt_instance1.gt_classes = torch.tensor([1, 2]) gt_instance1.gt_masks = BitMasks(torch.rand((2,) + image_shape) > 0.5) gt_instances = [gt_instance0, gt_instance1] proposal_generator = build_proposal_generator(cfg, feature_shape) roi_heads = StandardROIHeads(cfg, feature_shape) with EventStorage(): # capture events in a new storage to discard them proposals, proposal_losses = proposal_generator(images, features, gt_instances) _, detector_losses = roi_heads(images, features, proposals, gt_instances) detector_losses.update(proposal_losses) expected_losses = { "loss_cls": 4.5253729820251465, "loss_box_reg": 0.009785720147192478, "loss_mask": 0.693184494972229, "loss_rpn_cls": 0.08186662942171097, "loss_rpn_loc": 0.1104838103055954, } succ = all( torch.allclose(detector_losses[name], torch.tensor(expected_losses.get(name, 0.0))) for name in detector_losses.keys() ) self.assertTrue( succ, "Losses has changed! New losses: {}".format( {k: v.item() for k, v in detector_losses.items()} ), ) def test_rroi_heads(self): torch.manual_seed(121) cfg = get_cfg() cfg.MODEL.PROPOSAL_GENERATOR.NAME = "RRPN" cfg.MODEL.ANCHOR_GENERATOR.NAME = "RotatedAnchorGenerator" cfg.MODEL.ROI_HEADS.NAME = "RROIHeads" cfg.MODEL.ROI_BOX_HEAD.NAME = "FastRCNNConvFCHead" cfg.MODEL.ROI_BOX_HEAD.NUM_FC = 2 cfg.MODEL.RPN.BBOX_REG_WEIGHTS = (1, 1, 1, 1, 1) cfg.MODEL.RPN.HEAD_NAME = "StandardRPNHead" cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE = "ROIAlignRotated" cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS = (10, 10, 5, 5, 1) num_images = 2 images_tensor = torch.rand(num_images, 20, 30) image_sizes = [(10, 10), (20, 30)] images = ImageList(images_tensor, image_sizes) num_channels = 1024 features = {"res4": torch.rand(num_images, num_channels, 1, 2)} feature_shape = {"res4": ShapeSpec(channels=num_channels, stride=16)} image_shape = (15, 15) gt_boxes0 = torch.tensor([[2, 2, 2, 2, 30], [4, 4, 4, 4, 0]], dtype=torch.float32) gt_instance0 = Instances(image_shape) gt_instance0.gt_boxes = RotatedBoxes(gt_boxes0) gt_instance0.gt_classes = torch.tensor([2, 1]) gt_boxes1 = torch.tensor([[1.5, 5.5, 1, 3, 0], [8.5, 4, 3, 2, -50]], dtype=torch.float32) gt_instance1 = Instances(image_shape) gt_instance1.gt_boxes = RotatedBoxes(gt_boxes1) gt_instance1.gt_classes = torch.tensor([1, 2]) gt_instances = [gt_instance0, gt_instance1] proposal_generator = build_proposal_generator(cfg, feature_shape) roi_heads = build_roi_heads(cfg, feature_shape) with EventStorage(): # capture events in a new storage to discard them proposals, proposal_losses = proposal_generator(images, features, gt_instances) _, detector_losses = roi_heads(images, features, proposals, gt_instances) detector_losses.update(proposal_losses) expected_losses = { "loss_cls": 4.365657806396484, "loss_box_reg": 0.0015851043863222003, "loss_rpn_cls": 0.2427729219198227, "loss_rpn_loc": 0.3646621108055115, } succ = all( torch.allclose(detector_losses[name], torch.tensor(expected_losses.get(name, 0.0))) for name in detector_losses.keys() ) self.assertTrue( succ, "Losses has changed! New losses: {}".format( {k: v.item() for k, v in detector_losses.items()} ), ) @unittest.skipIf(TORCH_VERSION < (1, 7), "Insufficient pytorch version") def test_box_head_scriptability(self): input_shape = ShapeSpec(channels=1024, height=14, width=14) box_features = torch.randn(4, 1024, 14, 14) box_head = FastRCNNConvFCHead( input_shape, conv_dims=[512, 512], fc_dims=[1024, 1024] ).eval() script_box_head = torch.jit.script(box_head) origin_output = box_head(box_features) script_output = script_box_head(box_features) self.assertTrue(torch.equal(origin_output, script_output)) @unittest.skipIf(TORCH_VERSION < (1, 8), "Insufficient pytorch version") def test_mask_head_scriptability(self): input_shape = ShapeSpec(channels=1024) mask_features = torch.randn(4, 1024, 14, 14) image_shapes = [(10, 10), (15, 15)] pred_instance0 = Instances(image_shapes[0]) pred_classes0 = torch.tensor([1, 2, 3], dtype=torch.int64) pred_instance0.pred_classes = pred_classes0 pred_instance1 = Instances(image_shapes[1]) pred_classes1 = torch.tensor([4], dtype=torch.int64) pred_instance1.pred_classes = pred_classes1 mask_head = MaskRCNNConvUpsampleHead( input_shape, num_classes=80, conv_dims=[256, 256] ).eval() # pred_instance will be in-place changed during the inference # process of `MaskRCNNConvUpsampleHead` origin_outputs = mask_head(mask_features, deepcopy([pred_instance0, pred_instance1])) fields = {"pred_masks": torch.Tensor, "pred_classes": torch.Tensor} with freeze_training_mode(mask_head), patch_instances(fields) as NewInstances: sciript_mask_head = torch.jit.script(mask_head) pred_instance0 = NewInstances.from_instances(pred_instance0) pred_instance1 = NewInstances.from_instances(pred_instance1) script_outputs = sciript_mask_head(mask_features, [pred_instance0, pred_instance1]) for origin_ins, script_ins in zip(origin_outputs, script_outputs): assert_instances_allclose(origin_ins, script_ins, rtol=0) @unittest.skipIf(TORCH_VERSION < (1, 8), "Insufficient pytorch version") def test_keypoint_head_scriptability(self): input_shape = ShapeSpec(channels=1024, height=14, width=14) keypoint_features = torch.randn(4, 1024, 14, 14) image_shapes = [(10, 10), (15, 15)] pred_boxes0 = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6], [1, 5, 2, 8]], dtype=torch.float32) pred_instance0 = Instances(image_shapes[0]) pred_instance0.pred_boxes = Boxes(pred_boxes0) pred_boxes1 = torch.tensor([[7, 3, 10, 5]], dtype=torch.float32) pred_instance1 = Instances(image_shapes[1]) pred_instance1.pred_boxes = Boxes(pred_boxes1) keypoint_head = KRCNNConvDeconvUpsampleHead( input_shape, num_keypoints=17, conv_dims=[512, 512] ).eval() origin_outputs = keypoint_head( keypoint_features, deepcopy([pred_instance0, pred_instance1]) ) fields = { "pred_boxes": Boxes, "pred_keypoints": torch.Tensor, "pred_keypoint_heatmaps": torch.Tensor, } with freeze_training_mode(keypoint_head), patch_instances(fields) as NewInstances: sciript_keypoint_head = torch.jit.script(keypoint_head) pred_instance0 = NewInstances.from_instances(pred_instance0) pred_instance1 = NewInstances.from_instances(pred_instance1) script_outputs = sciript_keypoint_head( keypoint_features, [pred_instance0, pred_instance1] ) for origin_ins, script_ins in zip(origin_outputs, script_outputs): assert_instances_allclose(origin_ins, script_ins, rtol=0) @unittest.skipIf(TORCH_VERSION < (1, 8), "Insufficient pytorch version") def test_StandardROIHeads_scriptability(self): cfg = get_cfg() cfg.MODEL.ROI_BOX_HEAD.NAME = "FastRCNNConvFCHead" cfg.MODEL.ROI_BOX_HEAD.NUM_FC = 2 cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE = "ROIAlignV2" cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS = (10, 10, 5, 5) cfg.MODEL.MASK_ON = True cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST = 0.01 cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.01 num_images = 2 images_tensor = torch.rand(num_images, 20, 30) image_sizes = [(10, 10), (20, 30)] images = ImageList(images_tensor, image_sizes) num_channels = 1024 features = {"res4": torch.rand(num_images, num_channels, 1, 2)} feature_shape = {"res4": ShapeSpec(channels=num_channels, stride=16)} roi_heads = StandardROIHeads(cfg, feature_shape).eval() proposal0 = Instances(image_sizes[0]) proposal_boxes0 = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6]], dtype=torch.float32) proposal0.proposal_boxes = Boxes(proposal_boxes0) proposal0.objectness_logits = torch.tensor([0.5, 0.7], dtype=torch.float32) proposal1 = Instances(image_sizes[1]) proposal_boxes1 = torch.tensor([[1, 5, 2, 8], [7, 3, 10, 5]], dtype=torch.float32) proposal1.proposal_boxes = Boxes(proposal_boxes1) proposal1.objectness_logits = torch.tensor([0.1, 0.9], dtype=torch.float32) proposals = [proposal0, proposal1] pred_instances, _ = roi_heads(images, features, proposals) fields = { "objectness_logits": torch.Tensor, "proposal_boxes": Boxes, "pred_classes": torch.Tensor, "scores": torch.Tensor, "pred_masks": torch.Tensor, "pred_boxes": Boxes, "pred_keypoints": torch.Tensor, "pred_keypoint_heatmaps": torch.Tensor, } with freeze_training_mode(roi_heads), patch_instances(fields) as new_instances: proposal0 = new_instances.from_instances(proposal0) proposal1 = new_instances.from_instances(proposal1) proposals = [proposal0, proposal1] scripted_rot_heads = torch.jit.script(roi_heads) scripted_pred_instances, _ = scripted_rot_heads(images, features, proposals) for instance, scripted_instance in zip(pred_instances, scripted_pred_instances): assert_instances_allclose(instance, scripted_instance, rtol=0) @unittest.skipIf(TORCH_VERSION < (1, 8), "Insufficient pytorch version") def test_PointRend_mask_head_tracing(self): cfg = model_zoo.get_config("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml") point_rend.add_pointrend_config(cfg) cfg.MODEL.ROI_HEADS.IN_FEATURES = ["p2", "p3"] cfg.MODEL.ROI_MASK_HEAD.NAME = "PointRendMaskHead" cfg.MODEL.ROI_MASK_HEAD.POOLER_TYPE = "" cfg.MODEL.ROI_MASK_HEAD.POINT_HEAD_ON = True chan = 256 head = point_rend.PointRendMaskHead( cfg, { "p2": ShapeSpec(channels=chan, stride=4), "p3": ShapeSpec(channels=chan, stride=8), }, ) def gen_inputs(h, w, N): p2 = torch.rand(1, chan, h, w) p3 = torch.rand(1, chan, h // 2, w // 2) boxes = random_boxes(N, max_coord=h) return p2, p3, boxes class Wrap(nn.ModuleDict): def forward(self, p2, p3, boxes): features = { "p2": p2, "p3": p3, } inst = Instances((p2.shape[2] * 4, p2.shape[3] * 4)) inst.pred_boxes = Boxes(boxes) inst.pred_classes = torch.zeros(inst.__len__(), dtype=torch.long) out = self.head(features, [inst])[0] return out.pred_masks model = Wrap({"head": head}) model.eval() with torch.no_grad(), patch_builtin_len(): traced = torch.jit.trace(model, gen_inputs(302, 208, 20)) inputs = gen_inputs(100, 120, 30) out_eager = model(*inputs) out_trace = traced(*inputs) self.assertTrue(torch.allclose(out_eager, out_trace)) if __name__ == "__main__": unittest.main()
banmo-main
third_party/detectron2_old/tests/modeling/test_roi_heads.py
# Copyright (c) Facebook, Inc. and its affiliates. import logging import sys import unittest import torch from detectron2.config import get_cfg from detectron2.export import scripting_with_instances from detectron2.layers import ShapeSpec from detectron2.modeling.backbone import build_backbone from detectron2.modeling.proposal_generator import RPN, build_proposal_generator from detectron2.modeling.proposal_generator.proposal_utils import ( add_ground_truth_to_proposals, find_top_rpn_proposals, ) from detectron2.structures import Boxes, ImageList, Instances, RotatedBoxes from detectron2.utils.env import TORCH_VERSION from detectron2.utils.events import EventStorage logger = logging.getLogger(__name__) class RPNTest(unittest.TestCase): def get_gt_and_features(self): num_images = 2 images_tensor = torch.rand(num_images, 20, 30) image_sizes = [(10, 10), (20, 30)] images = ImageList(images_tensor, image_sizes) image_shape = (15, 15) num_channels = 1024 features = {"res4": torch.rand(num_images, num_channels, 1, 2)} gt_boxes = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6]], dtype=torch.float32) gt_instances = Instances(image_shape) gt_instances.gt_boxes = Boxes(gt_boxes) return (gt_instances, features, images, image_sizes) def test_rpn(self): torch.manual_seed(121) cfg = get_cfg() backbone = build_backbone(cfg) proposal_generator = RPN(cfg, backbone.output_shape()) (gt_instances, features, images, image_sizes) = self.get_gt_and_features() with EventStorage(): # capture events in a new storage to discard them proposals, proposal_losses = proposal_generator( images, features, [gt_instances[0], gt_instances[1]] ) expected_losses = { "loss_rpn_cls": torch.tensor(0.08011703193), "loss_rpn_loc": torch.tensor(0.101470276), } for name in expected_losses.keys(): err_msg = "proposal_losses[{}] = {}, expected losses = {}".format( name, proposal_losses[name], expected_losses[name] ) self.assertTrue(torch.allclose(proposal_losses[name], expected_losses[name]), err_msg) self.assertEqual(len(proposals), len(image_sizes)) for proposal, im_size in zip(proposals, image_sizes): self.assertEqual(proposal.image_size, im_size) expected_proposal_box = torch.tensor([[0, 0, 10, 10], [7.2702, 0, 10, 10]]) expected_objectness_logit = torch.tensor([0.1596, -0.0007]) self.assertTrue( torch.allclose(proposals[0].proposal_boxes.tensor, expected_proposal_box, atol=1e-4) ) self.assertTrue( torch.allclose(proposals[0].objectness_logits, expected_objectness_logit, atol=1e-4) ) def verify_rpn(self, conv_dims, expected_conv_dims): torch.manual_seed(121) cfg = get_cfg() cfg.MODEL.RPN.CONV_DIMS = conv_dims backbone = build_backbone(cfg) proposal_generator = RPN(cfg, backbone.output_shape()) for k, conv in enumerate(proposal_generator.rpn_head.conv): self.assertEqual(expected_conv_dims[k], conv.out_channels) return proposal_generator def test_rpn_larger_num_convs(self): conv_dims = [64, 64, 64, 64, 64] proposal_generator = self.verify_rpn(conv_dims, conv_dims) (gt_instances, features, images, image_sizes) = self.get_gt_and_features() with EventStorage(): # capture events in a new storage to discard them proposals, proposal_losses = proposal_generator( images, features, [gt_instances[0], gt_instances[1]] ) expected_losses = { "loss_rpn_cls": torch.tensor(0.08122821152), "loss_rpn_loc": torch.tensor(0.10064548254), } for name in expected_losses.keys(): err_msg = "proposal_losses[{}] = {}, expected losses = {}".format( name, proposal_losses[name], expected_losses[name] ) self.assertTrue(torch.allclose(proposal_losses[name], expected_losses[name]), err_msg) def test_rpn_conv_dims_not_set(self): conv_dims = [-1, -1, -1] expected_conv_dims = [1024, 1024, 1024] self.verify_rpn(conv_dims, expected_conv_dims) # https://github.com/pytorch/pytorch/issues/46964 @unittest.skipIf( TORCH_VERSION < (1, 7) or sys.version_info.minor <= 6, "Insufficient pytorch version" ) def test_rpn_scriptability(self): cfg = get_cfg() proposal_generator = RPN(cfg, {"res4": ShapeSpec(channels=1024, stride=16)}).eval() num_images = 2 images_tensor = torch.rand(num_images, 30, 40) image_sizes = [(32, 32), (30, 40)] images = ImageList(images_tensor, image_sizes) features = {"res4": torch.rand(num_images, 1024, 1, 2)} fields = {"proposal_boxes": Boxes, "objectness_logits": torch.Tensor} proposal_generator_ts = scripting_with_instances(proposal_generator, fields) proposals, _ = proposal_generator(images, features) proposals_ts, _ = proposal_generator_ts(images, features) for proposal, proposal_ts in zip(proposals, proposals_ts): self.assertEqual(proposal.image_size, proposal_ts.image_size) self.assertTrue( torch.equal(proposal.proposal_boxes.tensor, proposal_ts.proposal_boxes.tensor) ) self.assertTrue(torch.equal(proposal.objectness_logits, proposal_ts.objectness_logits)) def test_rrpn(self): torch.manual_seed(121) cfg = get_cfg() cfg.MODEL.PROPOSAL_GENERATOR.NAME = "RRPN" cfg.MODEL.ANCHOR_GENERATOR.NAME = "RotatedAnchorGenerator" cfg.MODEL.ANCHOR_GENERATOR.SIZES = [[32, 64]] cfg.MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS = [[0.25, 1]] cfg.MODEL.ANCHOR_GENERATOR.ANGLES = [[0, 60]] cfg.MODEL.RPN.BBOX_REG_WEIGHTS = (1, 1, 1, 1, 1) cfg.MODEL.RPN.HEAD_NAME = "StandardRPNHead" backbone = build_backbone(cfg) proposal_generator = build_proposal_generator(cfg, backbone.output_shape()) num_images = 2 images_tensor = torch.rand(num_images, 20, 30) image_sizes = [(10, 10), (20, 30)] images = ImageList(images_tensor, image_sizes) image_shape = (15, 15) num_channels = 1024 features = {"res4": torch.rand(num_images, num_channels, 1, 2)} gt_boxes = torch.tensor([[2, 2, 2, 2, 0], [4, 4, 4, 4, 0]], dtype=torch.float32) gt_instances = Instances(image_shape) gt_instances.gt_boxes = RotatedBoxes(gt_boxes) with EventStorage(): # capture events in a new storage to discard them proposals, proposal_losses = proposal_generator( images, features, [gt_instances[0], gt_instances[1]] ) expected_losses = { "loss_rpn_cls": torch.tensor(0.04291602224), "loss_rpn_loc": torch.tensor(0.145077362), } for name in expected_losses.keys(): err_msg = "proposal_losses[{}] = {}, expected losses = {}".format( name, proposal_losses[name], expected_losses[name] ) self.assertTrue(torch.allclose(proposal_losses[name], expected_losses[name]), err_msg) expected_proposal_box = torch.tensor( [ [-1.77999556, 0.78155339, 68.04367828, 14.78156471, 60.59333801], [13.82740974, -1.50282836, 34.67269897, 29.19676590, -3.81942749], [8.10392570, -0.99071521, 145.39100647, 32.13126373, 3.67242432], [5.00000000, 4.57370186, 10.00000000, 9.14740372, 0.89196777], ] ) expected_objectness_logit = torch.tensor([0.10924313, 0.09881870, 0.07649877, 0.05858029]) torch.set_printoptions(precision=8, sci_mode=False) self.assertEqual(len(proposals), len(image_sizes)) proposal = proposals[0] # It seems that there's some randomness in the result across different machines: # This test can be run on a local machine for 100 times with exactly the same result, # However, a different machine might produce slightly different results, # thus the atol here. err_msg = "computed proposal boxes = {}, expected {}".format( proposal.proposal_boxes.tensor, expected_proposal_box ) self.assertTrue( torch.allclose(proposal.proposal_boxes.tensor[:4], expected_proposal_box, atol=1e-5), err_msg, ) err_msg = "computed objectness logits = {}, expected {}".format( proposal.objectness_logits, expected_objectness_logit ) self.assertTrue( torch.allclose(proposal.objectness_logits[:4], expected_objectness_logit, atol=1e-5), err_msg, ) def test_find_rpn_proposals_inf(self): N, Hi, Wi, A = 3, 3, 3, 3 proposals = [torch.rand(N, Hi * Wi * A, 4)] pred_logits = [torch.rand(N, Hi * Wi * A)] pred_logits[0][1][3:5].fill_(float("inf")) find_top_rpn_proposals(proposals, pred_logits, [(10, 10)], 0.5, 1000, 1000, 0, False) @unittest.skipIf(TORCH_VERSION < (1, 7), "Insufficient pytorch version") def test_find_rpn_proposals_tracing(self): N, Hi, Wi, A = 3, 50, 50, 9 proposal = torch.rand(N, Hi * Wi * A, 4) pred_logit = torch.rand(N, Hi * Wi * A) def func(proposal, logit, image_size): r = find_top_rpn_proposals( [proposal], [logit], [image_size], 0.7, 1000, 1000, 0, False )[0] size = r.image_size if not isinstance(size, torch.Tensor): size = torch.tensor(size) return (size, r.proposal_boxes.tensor, r.objectness_logits) other_inputs = [] # test that it generalizes to other shapes for Hi, Wi, shp in [(30, 30, 60), (10, 10, 800)]: other_inputs.append( ( torch.rand(N, Hi * Wi * A, 4), torch.rand(N, Hi * Wi * A), torch.tensor([shp, shp]), ) ) torch.jit.trace( func, (proposal, pred_logit, torch.tensor([100, 100])), check_inputs=other_inputs ) def test_append_gt_to_proposal(self): proposals = Instances( (10, 10), **{ "proposal_boxes": Boxes(torch.empty((0, 4))), "objectness_logits": torch.tensor([]), "custom_attribute": torch.tensor([]), } ) gt_boxes = Boxes(torch.tensor([[0, 0, 1, 1]])) self.assertRaises(AssertionError, add_ground_truth_to_proposals, [gt_boxes], [proposals]) gt_instances = Instances((10, 10)) gt_instances.gt_boxes = gt_boxes self.assertRaises( AssertionError, add_ground_truth_to_proposals, [gt_instances], [proposals] ) gt_instances.custom_attribute = torch.tensor([1]) gt_instances.custom_attribute2 = torch.tensor([1]) new_proposals = add_ground_truth_to_proposals([gt_instances], [proposals])[0] self.assertEqual(new_proposals.custom_attribute[0], 1) # new proposals should only include the attributes in proposals self.assertRaises(AttributeError, lambda: new_proposals.custom_attribute2) if __name__ == "__main__": unittest.main()
banmo-main
third_party/detectron2_old/tests/modeling/test_rpn.py
banmo-main
third_party/detectron2_old/tests/modeling/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. import logging import unittest import torch from detectron2.layers import ShapeSpec from detectron2.modeling.box_regression import Box2BoxTransform, Box2BoxTransformRotated from detectron2.modeling.roi_heads.fast_rcnn import FastRCNNOutputLayers from detectron2.modeling.roi_heads.rotated_fast_rcnn import RotatedFastRCNNOutputLayers from detectron2.structures import Boxes, Instances, RotatedBoxes from detectron2.utils.env import TORCH_VERSION from detectron2.utils.events import EventStorage logger = logging.getLogger(__name__) class FastRCNNTest(unittest.TestCase): def test_fast_rcnn(self): torch.manual_seed(132) box_head_output_size = 8 box_predictor = FastRCNNOutputLayers( ShapeSpec(channels=box_head_output_size), box2box_transform=Box2BoxTransform(weights=(10, 10, 5, 5)), num_classes=5, ) feature_pooled = torch.rand(2, box_head_output_size) predictions = box_predictor(feature_pooled) proposal_boxes = torch.tensor([[0.8, 1.1, 3.2, 2.8], [2.3, 2.5, 7, 8]], dtype=torch.float32) gt_boxes = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6]], dtype=torch.float32) proposal = Instances((10, 10)) proposal.proposal_boxes = Boxes(proposal_boxes) proposal.gt_boxes = Boxes(gt_boxes) proposal.gt_classes = torch.tensor([1, 2]) with EventStorage(): # capture events in a new storage to discard them losses = box_predictor.losses(predictions, [proposal]) expected_losses = { "loss_cls": torch.tensor(1.7951188087), "loss_box_reg": torch.tensor(4.0357131958), } for name in expected_losses.keys(): assert torch.allclose(losses[name], expected_losses[name]) def test_fast_rcnn_empty_batch(self, device="cpu"): box_predictor = FastRCNNOutputLayers( ShapeSpec(channels=10), box2box_transform=Box2BoxTransform(weights=(10, 10, 5, 5)), num_classes=8, ).to(device=device) logits = torch.randn(0, 100, requires_grad=True, device=device) deltas = torch.randn(0, 4, requires_grad=True, device=device) losses = box_predictor.losses([logits, deltas], []) for value in losses.values(): self.assertTrue(torch.allclose(value, torch.zeros_like(value))) sum(losses.values()).backward() self.assertTrue(logits.grad is not None) self.assertTrue(deltas.grad is not None) predictions, _ = box_predictor.inference([logits, deltas], []) self.assertEqual(len(predictions), 0) @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") def test_fast_rcnn_empty_batch_cuda(self): self.test_fast_rcnn_empty_batch(device=torch.device("cuda")) def test_fast_rcnn_rotated(self): torch.manual_seed(132) box_head_output_size = 8 box_predictor = RotatedFastRCNNOutputLayers( ShapeSpec(channels=box_head_output_size), box2box_transform=Box2BoxTransformRotated(weights=(10, 10, 5, 5, 1)), num_classes=5, ) feature_pooled = torch.rand(2, box_head_output_size) predictions = box_predictor(feature_pooled) proposal_boxes = torch.tensor( [[2, 1.95, 2.4, 1.7, 0], [4.65, 5.25, 4.7, 5.5, 0]], dtype=torch.float32 ) gt_boxes = torch.tensor([[2, 2, 2, 2, 0], [4, 4, 4, 4, 0]], dtype=torch.float32) proposal = Instances((10, 10)) proposal.proposal_boxes = RotatedBoxes(proposal_boxes) proposal.gt_boxes = RotatedBoxes(gt_boxes) proposal.gt_classes = torch.tensor([1, 2]) with EventStorage(): # capture events in a new storage to discard them losses = box_predictor.losses(predictions, [proposal]) # Note: the expected losses are slightly different even if # the boxes are essentially the same as in the FastRCNNOutput test, because # bbox_pred in FastRCNNOutputLayers have different Linear layers/initialization # between the two cases. expected_losses = { "loss_cls": torch.tensor(1.7920907736), "loss_box_reg": torch.tensor(4.0410838127), } for name in expected_losses.keys(): assert torch.allclose(losses[name], expected_losses[name]) @unittest.skipIf(TORCH_VERSION < (1, 8), "Insufficient pytorch version") def test_predict_boxes_tracing(self): class Model(torch.nn.Module): def __init__(self, output_layer): super(Model, self).__init__() self._output_layer = output_layer def forward(self, proposal_deltas, proposal_boxes): instances = Instances((10, 10)) instances.proposal_boxes = Boxes(proposal_boxes) return self._output_layer.predict_boxes((None, proposal_deltas), [instances]) box_head_output_size = 8 box_predictor = FastRCNNOutputLayers( ShapeSpec(channels=box_head_output_size), box2box_transform=Box2BoxTransform(weights=(10, 10, 5, 5)), num_classes=5, ) model = Model(box_predictor) from detectron2.export.torchscript_patch import patch_builtin_len with torch.no_grad(), patch_builtin_len(): func = torch.jit.trace(model, (torch.randn(10, 20), torch.randn(10, 4))) o = func(torch.randn(10, 20), torch.randn(10, 4)) self.assertEqual(o[0].shape, (10, 20)) o = func(torch.randn(5, 20), torch.randn(5, 4)) self.assertEqual(o[0].shape, (5, 20)) o = func(torch.randn(20, 20), torch.randn(20, 4)) self.assertEqual(o[0].shape, (20, 20)) def test_predict_probs_tracing(self): class Model(torch.nn.Module): def __init__(self, output_layer): super(Model, self).__init__() self._output_layer = output_layer def forward(self, scores, proposal_boxes): instances = Instances((10, 10)) instances.proposal_boxes = Boxes(proposal_boxes) return self._output_layer.predict_probs((scores, None), [instances]) box_head_output_size = 8 box_predictor = FastRCNNOutputLayers( ShapeSpec(channels=box_head_output_size), box2box_transform=Box2BoxTransform(weights=(10, 10, 5, 5)), num_classes=5, ) model = Model(box_predictor) from detectron2.export.torchscript_patch import patch_builtin_len with torch.no_grad(), patch_builtin_len(): func = torch.jit.trace(model, (torch.randn(10, 6), torch.rand(10, 4))) o = func(torch.randn(10, 6), torch.randn(10, 4)) self.assertEqual(o[0].shape, (10, 6)) o = func(torch.randn(5, 6), torch.randn(5, 4)) self.assertEqual(o[0].shape, (5, 6)) o = func(torch.randn(20, 6), torch.randn(20, 4)) self.assertEqual(o[0].shape, (20, 6)) if __name__ == "__main__": unittest.main()
banmo-main
third_party/detectron2_old/tests/modeling/test_fast_rcnn.py
# Copyright (c) Facebook, Inc. and its affiliates. import logging import unittest import torch from detectron2.modeling.box_regression import Box2BoxTransform, Box2BoxTransformRotated from detectron2.utils.env import TORCH_VERSION from detectron2.utils.testing import random_boxes logger = logging.getLogger(__name__) class TestBox2BoxTransform(unittest.TestCase): def test_reconstruction(self): weights = (5, 5, 10, 10) b2b_tfm = Box2BoxTransform(weights=weights) src_boxes = random_boxes(10) dst_boxes = random_boxes(10) devices = [torch.device("cpu")] if torch.cuda.is_available(): devices.append(torch.device("cuda")) for device in devices: src_boxes = src_boxes.to(device=device) dst_boxes = dst_boxes.to(device=device) deltas = b2b_tfm.get_deltas(src_boxes, dst_boxes) dst_boxes_reconstructed = b2b_tfm.apply_deltas(deltas, src_boxes) self.assertTrue(torch.allclose(dst_boxes, dst_boxes_reconstructed)) @unittest.skipIf(TORCH_VERSION < (1, 8), "Insufficient pytorch version") def test_apply_deltas_tracing(self): weights = (5, 5, 10, 10) b2b_tfm = Box2BoxTransform(weights=weights) with torch.no_grad(): func = torch.jit.trace(b2b_tfm.apply_deltas, (torch.randn(10, 20), torch.randn(10, 4))) o = func(torch.randn(10, 20), torch.randn(10, 4)) self.assertEqual(o.shape, (10, 20)) o = func(torch.randn(5, 20), torch.randn(5, 4)) self.assertEqual(o.shape, (5, 20)) def random_rotated_boxes(mean_box, std_length, std_angle, N): return torch.cat( [torch.rand(N, 4) * std_length, torch.rand(N, 1) * std_angle], dim=1 ) + torch.tensor(mean_box, dtype=torch.float) class TestBox2BoxTransformRotated(unittest.TestCase): def test_reconstruction(self): weights = (5, 5, 10, 10, 1) b2b_transform = Box2BoxTransformRotated(weights=weights) src_boxes = random_rotated_boxes([10, 10, 20, 20, -30], 5, 60.0, 10) dst_boxes = random_rotated_boxes([10, 10, 20, 20, -30], 5, 60.0, 10) devices = [torch.device("cpu")] if torch.cuda.is_available(): devices.append(torch.device("cuda")) for device in devices: src_boxes = src_boxes.to(device=device) dst_boxes = dst_boxes.to(device=device) deltas = b2b_transform.get_deltas(src_boxes, dst_boxes) dst_boxes_reconstructed = b2b_transform.apply_deltas(deltas, src_boxes) assert torch.allclose(dst_boxes[:, :4], dst_boxes_reconstructed[:, :4], atol=1e-5) # angle difference has to be normalized assert torch.allclose( (dst_boxes[:, 4] - dst_boxes_reconstructed[:, 4] + 180.0) % 360.0 - 180.0, torch.zeros_like(dst_boxes[:, 4]), atol=1e-4, ) if __name__ == "__main__": unittest.main()
banmo-main
third_party/detectron2_old/tests/modeling/test_box2box_transform.py
# Copyright (c) Facebook, Inc. and its affiliates. import json import numpy as np import os import tempfile import unittest import pycocotools.mask as mask_util from detectron2.data import DatasetCatalog, MetadataCatalog from detectron2.data.datasets.coco import convert_to_coco_dict, load_coco_json from detectron2.structures import BoxMode def make_mask(): """ Makes a donut shaped binary mask. """ H = 100 W = 100 mask = np.zeros([H, W], dtype=np.uint8) for x in range(W): for y in range(H): d = np.linalg.norm(np.array([W, H]) / 2 - np.array([x, y])) if d > 10 and d < 20: mask[y, x] = 1 return mask def uncompressed_rle(mask): l = mask.flatten(order="F").tolist() counts = [] p = False cnt = 0 for i in l: if i == p: cnt += 1 else: counts.append(cnt) p = i cnt = 1 counts.append(cnt) return {"counts": counts, "size": [mask.shape[0], mask.shape[1]]} def make_dataset_dicts(mask, compressed: bool = True): """ Returns a list of dicts that represents a single COCO data point for object detection. The single instance given by `mask` is represented by RLE, either compressed or uncompressed. """ record = {} record["file_name"] = "test" record["image_id"] = 0 record["height"] = mask.shape[0] record["width"] = mask.shape[1] y, x = np.nonzero(mask) if compressed: segmentation = mask_util.encode(np.asarray(mask, order="F")) else: segmentation = uncompressed_rle(mask) min_x = np.min(x) max_x = np.max(x) min_y = np.min(y) max_y = np.max(y) obj = { "bbox": [min_x, min_y, max_x, max_y], "bbox_mode": BoxMode.XYXY_ABS, "category_id": 0, "iscrowd": 0, "segmentation": segmentation, } record["annotations"] = [obj] return [record] class TestRLEToJson(unittest.TestCase): def test(self): # Make a dummy dataset. mask = make_mask() DatasetCatalog.register("test_dataset", lambda: make_dataset_dicts(mask)) MetadataCatalog.get("test_dataset").set(thing_classes=["test_label"]) # Dump to json. json_dict = convert_to_coco_dict("test_dataset") with tempfile.TemporaryDirectory() as tmpdir: json_file_name = os.path.join(tmpdir, "test.json") with open(json_file_name, "w") as f: json.dump(json_dict, f) # Load from json. dicts = load_coco_json(json_file_name, "") # Check the loaded mask matches the original. anno = dicts[0]["annotations"][0] loaded_mask = mask_util.decode(anno["segmentation"]) self.assertTrue(np.array_equal(loaded_mask, mask)) DatasetCatalog.pop("test_dataset") MetadataCatalog.pop("test_dataset") def test_uncompressed_RLE(self): mask = make_mask() rle = mask_util.encode(np.asarray(mask, order="F")) uncompressed = uncompressed_rle(mask) compressed = mask_util.frPyObjects(uncompressed, *rle["size"]) self.assertEqual(rle, compressed) class TestConvertCOCO(unittest.TestCase): @staticmethod def generate_data(): record = { "file_name": "test", "image_id": 0, "height": 100, "width": 100, "annotations": [ { "bbox": [10, 10, 10, 10, 5], "bbox_mode": BoxMode.XYWHA_ABS, "category_id": 0, "iscrowd": 0, }, { "bbox": [15, 15, 3, 3], "bbox_mode": BoxMode.XYXY_ABS, "category_id": 0, "iscrowd": 0, }, ], } return [record] def test_convert_to_coco(self): DatasetCatalog.register("test_dataset", lambda: TestConvertCOCO.generate_data()) MetadataCatalog.get("test_dataset").set(thing_classes=["test_label"]) convert_to_coco_dict("test_dataset") DatasetCatalog.pop("test_dataset") MetadataCatalog.pop("test_dataset")
banmo-main
third_party/detectron2_old/tests/data/test_coco.py
banmo-main
third_party/detectron2_old/tests/data/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. import numpy as np import unittest from detectron2.data.transforms.transform import RotationTransform class TestRotationTransform(unittest.TestCase): def assertEqualsArrays(self, a1, a2): self.assertTrue(np.allclose(a1, a2)) def randomData(self, h=5, w=5): image = np.random.rand(h, w) coords = np.array([[i, j] for j in range(h + 1) for i in range(w + 1)], dtype=float) return image, coords, h, w def test180(self): image, coords, h, w = self.randomData(6, 6) rot = RotationTransform(h, w, 180, expand=False, center=None) self.assertEqualsArrays(rot.apply_image(image), image[::-1, ::-1]) rotated_coords = [[w - c[0], h - c[1]] for c in coords] self.assertEqualsArrays(rot.apply_coords(coords), rotated_coords) def test45_coords(self): _, coords, h, w = self.randomData(4, 6) rot = RotationTransform(h, w, 45, expand=False, center=None) rotated_coords = [ [(x + y - (h + w) / 2) / np.sqrt(2) + w / 2, h / 2 + (y + (w - h) / 2 - x) / np.sqrt(2)] for (x, y) in coords ] self.assertEqualsArrays(rot.apply_coords(coords), rotated_coords) def test90(self): image, coords, h, w = self.randomData() rot = RotationTransform(h, w, 90, expand=False, center=None) self.assertEqualsArrays(rot.apply_image(image), image.T[::-1]) rotated_coords = [[c[1], w - c[0]] for c in coords] self.assertEqualsArrays(rot.apply_coords(coords), rotated_coords) def test90_expand(self): # non-square image image, coords, h, w = self.randomData(h=5, w=8) rot = RotationTransform(h, w, 90, expand=True, center=None) self.assertEqualsArrays(rot.apply_image(image), image.T[::-1]) rotated_coords = [[c[1], w - c[0]] for c in coords] self.assertEqualsArrays(rot.apply_coords(coords), rotated_coords) def test_center_expand(self): # center has no effect if expand=True because it only affects shifting image, coords, h, w = self.randomData(h=5, w=8) angle = np.random.randint(360) rot1 = RotationTransform(h, w, angle, expand=True, center=None) rot2 = RotationTransform(h, w, angle, expand=True, center=(0, 0)) rot3 = RotationTransform(h, w, angle, expand=True, center=(h, w)) rot4 = RotationTransform(h, w, angle, expand=True, center=(2, 5)) for r1 in [rot1, rot2, rot3, rot4]: for r2 in [rot1, rot2, rot3, rot4]: self.assertEqualsArrays(r1.apply_image(image), r2.apply_image(image)) self.assertEqualsArrays(r1.apply_coords(coords), r2.apply_coords(coords)) def test_inverse_transform(self): image, coords, h, w = self.randomData(h=5, w=8) rot = RotationTransform(h, w, 90, expand=True, center=None) rot_image = rot.apply_image(image) self.assertEqualsArrays(rot.inverse().apply_image(rot_image), image) rot = RotationTransform(h, w, 65, expand=True, center=None) rotated_coords = rot.apply_coords(coords) self.assertEqualsArrays(rot.inverse().apply_coords(rotated_coords), coords) if __name__ == "__main__": unittest.main()
banmo-main
third_party/detectron2_old/tests/data/test_rotation_transform.py
# Copyright (c) Facebook, Inc. and its affiliates. import os import unittest from functools import partial from iopath.common.file_io import LazyPath from detectron2.data.build import DatasetFromList def _a_slow_func(x): return "path/{}".format(x) class TestDatasetFromList(unittest.TestCase): def test_using_lazy_path(self): dataset = [] for i in range(10): dataset.append({"file_name": LazyPath(partial(_a_slow_func, i))}) dataset = DatasetFromList(dataset) for i in range(10): path = dataset[i]["file_name"] self.assertTrue(isinstance(path, LazyPath)) self.assertEqual(os.fspath(path), _a_slow_func(i))
banmo-main
third_party/detectron2_old/tests/data/test_dataset.py
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. import logging import numpy as np import unittest from unittest import mock from PIL import Image, ImageOps from detectron2.config import get_cfg from detectron2.data import detection_utils from detectron2.data import transforms as T from detectron2.utils.logger import setup_logger logger = logging.getLogger(__name__) class TestTransforms(unittest.TestCase): def setUp(self): setup_logger() def test_apply_rotated_boxes(self): np.random.seed(125) cfg = get_cfg() is_train = True augs = detection_utils.build_augmentation(cfg, is_train) image = np.random.rand(200, 300) image, transforms = T.apply_augmentations(augs, image) image_shape = image.shape[:2] # h, w assert image_shape == (800, 1200) annotation = {"bbox": [179, 97, 62, 40, -56]} boxes = np.array([annotation["bbox"]], dtype=np.float64) # boxes.shape = (1, 5) transformed_bbox = transforms.apply_rotated_box(boxes)[0] expected_bbox = np.array([484, 388, 248, 160, 56], dtype=np.float64) err_msg = "transformed_bbox = {}, expected {}".format(transformed_bbox, expected_bbox) assert np.allclose(transformed_bbox, expected_bbox), err_msg def test_resize_and_crop(self): np.random.seed(125) min_scale = 0.2 max_scale = 2.0 target_height = 1100 target_width = 1000 resize_aug = T.ResizeScale(min_scale, max_scale, target_height, target_width) fixed_size_crop_aug = T.FixedSizeCrop((target_height, target_width)) hflip_aug = T.RandomFlip() augs = [resize_aug, fixed_size_crop_aug, hflip_aug] original_image = np.random.rand(900, 800) image, transforms = T.apply_augmentations(augs, original_image) image_shape = image.shape[:2] # h, w self.assertEqual((1100, 1000), image_shape) boxes = np.array( [[91, 46, 144, 111], [523, 251, 614, 295]], dtype=np.float64, ) transformed_bboxs = transforms.apply_box(boxes) expected_bboxs = np.array( [ [895.42, 33.42666667, 933.91125, 80.66], [554.0825, 182.39333333, 620.17125, 214.36666667], ], dtype=np.float64, ) err_msg = "transformed_bbox = {}, expected {}".format(transformed_bboxs, expected_bboxs) self.assertTrue(np.allclose(transformed_bboxs, expected_bboxs), err_msg) polygon = np.array([[91, 46], [144, 46], [144, 111], [91, 111]]) transformed_polygons = transforms.apply_polygons([polygon]) expected_polygon = np.array([[934.0, 33.0], [934.0, 80.0], [896.0, 80.0], [896.0, 33.0]]) self.assertEqual(1, len(transformed_polygons)) err_msg = "transformed_polygon = {}, expected {}".format( transformed_polygons[0], expected_polygon ) self.assertTrue(np.allclose(transformed_polygons[0], expected_polygon), err_msg) def test_apply_rotated_boxes_unequal_scaling_factor(self): np.random.seed(125) h, w = 400, 200 newh, neww = 800, 800 image = np.random.rand(h, w) augs = [] augs.append(T.Resize(shape=(newh, neww))) image, transforms = T.apply_augmentations(augs, image) image_shape = image.shape[:2] # h, w assert image_shape == (newh, neww) boxes = np.array( [ [150, 100, 40, 20, 0], [150, 100, 40, 20, 30], [150, 100, 40, 20, 90], [150, 100, 40, 20, -90], ], dtype=np.float64, ) transformed_boxes = transforms.apply_rotated_box(boxes) expected_bboxes = np.array( [ [600, 200, 160, 40, 0], [600, 200, 144.22205102, 52.91502622, 49.10660535], [600, 200, 80, 80, 90], [600, 200, 80, 80, -90], ], dtype=np.float64, ) err_msg = "transformed_boxes = {}, expected {}".format(transformed_boxes, expected_bboxes) assert np.allclose(transformed_boxes, expected_bboxes), err_msg def test_print_augmentation(self): t = T.RandomCrop("relative", (100, 100)) self.assertEqual(str(t), "RandomCrop(crop_type='relative', crop_size=(100, 100))") t0 = T.RandomFlip(prob=0.5) self.assertEqual(str(t0), "RandomFlip(prob=0.5)") t1 = T.RandomFlip() self.assertEqual(str(t1), "RandomFlip()") t = T.AugmentationList([t0, t1]) self.assertEqual(str(t), f"AugmentationList[{t0}, {t1}]") def test_random_apply_prob_out_of_range_check(self): test_probabilities = {0.0: True, 0.5: True, 1.0: True, -0.01: False, 1.01: False} for given_probability, is_valid in test_probabilities.items(): if not is_valid: self.assertRaises(AssertionError, T.RandomApply, None, prob=given_probability) else: T.RandomApply(T.NoOpTransform(), prob=given_probability) def test_random_apply_wrapping_aug_probability_occured_evaluation(self): transform_mock = mock.MagicMock(name="MockTransform", spec=T.Augmentation) image_mock = mock.MagicMock(name="MockImage") random_apply = T.RandomApply(transform_mock, prob=0.001) with mock.patch.object(random_apply, "_rand_range", return_value=0.0001): transform = random_apply.get_transform(image_mock) transform_mock.get_transform.assert_called_once_with(image_mock) self.assertIsNot(transform, transform_mock) def test_random_apply_wrapping_std_transform_probability_occured_evaluation(self): transform_mock = mock.MagicMock(name="MockTransform", spec=T.Transform) image_mock = mock.MagicMock(name="MockImage") random_apply = T.RandomApply(transform_mock, prob=0.001) with mock.patch.object(random_apply, "_rand_range", return_value=0.0001): transform = random_apply.get_transform(image_mock) self.assertIs(transform, transform_mock) def test_random_apply_probability_not_occured_evaluation(self): transform_mock = mock.MagicMock(name="MockTransform", spec=T.Augmentation) image_mock = mock.MagicMock(name="MockImage") random_apply = T.RandomApply(transform_mock, prob=0.001) with mock.patch.object(random_apply, "_rand_range", return_value=0.9): transform = random_apply.get_transform(image_mock) transform_mock.get_transform.assert_not_called() self.assertIsInstance(transform, T.NoOpTransform) def test_augmentation_input_args(self): input_shape = (100, 100) output_shape = (50, 50) # define two augmentations with different args class TG1(T.Augmentation): def get_transform(self, image, sem_seg): return T.ResizeTransform( input_shape[0], input_shape[1], output_shape[0], output_shape[1] ) class TG2(T.Augmentation): def get_transform(self, image): assert image.shape[:2] == output_shape # check that TG1 is applied return T.HFlipTransform(output_shape[1]) image = np.random.rand(*input_shape).astype("float32") sem_seg = (np.random.rand(*input_shape) < 0.5).astype("uint8") inputs = T.AugInput(image, sem_seg=sem_seg) # provide two args tfms = inputs.apply_augmentations([TG1(), TG2()]) self.assertIsInstance(tfms[0], T.ResizeTransform) self.assertIsInstance(tfms[1], T.HFlipTransform) self.assertTrue(inputs.image.shape[:2] == output_shape) self.assertTrue(inputs.sem_seg.shape[:2] == output_shape) class TG3(T.Augmentation): def get_transform(self, image, nonexist): pass with self.assertRaises(AttributeError): inputs.apply_augmentations([TG3()]) def test_augmentation_list(self): input_shape = (100, 100) image = np.random.rand(*input_shape).astype("float32") sem_seg = (np.random.rand(*input_shape) < 0.5).astype("uint8") inputs = T.AugInput(image, sem_seg=sem_seg) # provide two args augs = T.AugmentationList([T.RandomFlip(), T.Resize(20)]) _ = T.AugmentationList([augs, T.Resize(30)])(inputs) # 3 in latest fvcore (flattened transformlist), 2 in older # self.assertEqual(len(tfms), 3) def test_color_transforms(self): rand_img = np.random.random((100, 100, 3)) * 255 rand_img = rand_img.astype("uint8") # Test no-op noop_transform = T.ColorTransform(lambda img: img) self.assertTrue(np.array_equal(rand_img, noop_transform.apply_image(rand_img))) # Test a ImageOps operation magnitude = np.random.randint(0, 256) solarize_transform = T.PILColorTransform(lambda img: ImageOps.solarize(img, magnitude)) expected_img = ImageOps.solarize(Image.fromarray(rand_img), magnitude) self.assertTrue(np.array_equal(expected_img, solarize_transform.apply_image(rand_img))) def test_resize_transform(self): input_shapes = [(100, 100), (100, 100, 1), (100, 100, 3)] output_shapes = [(200, 200), (200, 200, 1), (200, 200, 3)] for in_shape, out_shape in zip(input_shapes, output_shapes): in_img = np.random.randint(0, 255, size=in_shape, dtype=np.uint8) tfm = T.ResizeTransform(in_shape[0], in_shape[1], out_shape[0], out_shape[1]) out_img = tfm.apply_image(in_img) self.assertTrue(out_img.shape == out_shape) def test_extent_transform(self): input_shapes = [(100, 100), (100, 100, 1), (100, 100, 3)] src_rect = (20, 20, 80, 80) output_shapes = [(200, 200), (200, 200, 1), (200, 200, 3)] for in_shape, out_shape in zip(input_shapes, output_shapes): in_img = np.random.randint(0, 255, size=in_shape, dtype=np.uint8) tfm = T.ExtentTransform(src_rect, out_shape[:2]) out_img = tfm.apply_image(in_img) self.assertTrue(out_img.shape == out_shape)
banmo-main
third_party/detectron2_old/tests/data/test_transforms.py
# Copyright (c) Facebook, Inc. and its affiliates. import copy import numpy as np import os import unittest import pycocotools.mask as mask_util from detectron2.data import MetadataCatalog, detection_utils from detectron2.data import transforms as T from detectron2.structures import BitMasks, BoxMode from detectron2.utils.file_io import PathManager class TestTransformAnnotations(unittest.TestCase): def test_transform_simple_annotation(self): transforms = T.TransformList([T.HFlipTransform(400)]) anno = { "bbox": np.asarray([10, 10, 200, 300]), "bbox_mode": BoxMode.XYXY_ABS, "category_id": 3, "segmentation": [[10, 10, 100, 100, 100, 10], [150, 150, 200, 150, 200, 200]], } output = detection_utils.transform_instance_annotations(anno, transforms, (400, 400)) self.assertTrue(np.allclose(output["bbox"], [200, 10, 390, 300])) self.assertEqual(len(output["segmentation"]), len(anno["segmentation"])) self.assertTrue(np.allclose(output["segmentation"][0], [390, 10, 300, 100, 300, 10])) detection_utils.annotations_to_instances([output, output], (400, 400)) def test_flip_keypoints(self): transforms = T.TransformList([T.HFlipTransform(400)]) anno = { "bbox": np.asarray([10, 10, 200, 300]), "bbox_mode": BoxMode.XYXY_ABS, "keypoints": np.random.rand(17, 3) * 50 + 15, } output = detection_utils.transform_instance_annotations( copy.deepcopy(anno), transforms, (400, 400), keypoint_hflip_indices=detection_utils.create_keypoint_hflip_indices( ["keypoints_coco_2017_train"] ), ) # The first keypoint is nose self.assertTrue(np.allclose(output["keypoints"][0, 0], 400 - anno["keypoints"][0, 0])) # The last 16 keypoints are 8 left-right pairs self.assertTrue( np.allclose( output["keypoints"][1:, 0].reshape(-1, 2)[:, ::-1], 400 - anno["keypoints"][1:, 0].reshape(-1, 2), ) ) self.assertTrue( np.allclose( output["keypoints"][1:, 1:].reshape(-1, 2, 2)[:, ::-1, :], anno["keypoints"][1:, 1:].reshape(-1, 2, 2), ) ) def test_crop(self): transforms = T.TransformList([T.CropTransform(300, 300, 10, 10)]) keypoints = np.random.rand(17, 3) * 50 + 15 keypoints[:, 2] = 2 anno = { "bbox": np.asarray([10, 10, 200, 400]), "bbox_mode": BoxMode.XYXY_ABS, "keypoints": keypoints, } output = detection_utils.transform_instance_annotations( copy.deepcopy(anno), transforms, (10, 10) ) # box is shifted and cropped self.assertTrue((output["bbox"] == np.asarray([0, 0, 0, 10])).all()) # keypoints are no longer visible self.assertTrue((output["keypoints"][:, 2] == 0).all()) def test_transform_RLE(self): transforms = T.TransformList([T.HFlipTransform(400)]) mask = np.zeros((300, 400), order="F").astype("uint8") mask[:, :200] = 1 anno = { "bbox": np.asarray([10, 10, 200, 300]), "bbox_mode": BoxMode.XYXY_ABS, "segmentation": mask_util.encode(mask[:, :, None])[0], "category_id": 3, } output = detection_utils.transform_instance_annotations( copy.deepcopy(anno), transforms, (300, 400) ) mask = output["segmentation"] self.assertTrue((mask[:, 200:] == 1).all()) self.assertTrue((mask[:, :200] == 0).all()) inst = detection_utils.annotations_to_instances( [output, output], (400, 400), mask_format="bitmask" ) self.assertTrue(isinstance(inst.gt_masks, BitMasks)) def test_transform_RLE_resize(self): transforms = T.TransformList( [T.HFlipTransform(400), T.ScaleTransform(300, 400, 400, 400, "bilinear")] ) mask = np.zeros((300, 400), order="F").astype("uint8") mask[:, :200] = 1 anno = { "bbox": np.asarray([10, 10, 200, 300]), "bbox_mode": BoxMode.XYXY_ABS, "segmentation": mask_util.encode(mask[:, :, None])[0], "category_id": 3, } output = detection_utils.transform_instance_annotations( copy.deepcopy(anno), transforms, (400, 400) ) inst = detection_utils.annotations_to_instances( [output, output], (400, 400), mask_format="bitmask" ) self.assertTrue(isinstance(inst.gt_masks, BitMasks)) def test_gen_crop(self): instance = {"bbox": [10, 10, 100, 100], "bbox_mode": BoxMode.XYXY_ABS} t = detection_utils.gen_crop_transform_with_instance((10, 10), (150, 150), instance) # the box center must fall into the cropped region self.assertTrue(t.x0 <= 55 <= t.x0 + t.w) def test_gen_crop_outside_boxes(self): instance = {"bbox": [10, 10, 100, 100], "bbox_mode": BoxMode.XYXY_ABS} with self.assertRaises(AssertionError): detection_utils.gen_crop_transform_with_instance((10, 10), (15, 15), instance) def test_read_sem_seg(self): cityscapes_dir = MetadataCatalog.get("cityscapes_fine_sem_seg_val").gt_dir sem_seg_gt_path = os.path.join( cityscapes_dir, "frankfurt", "frankfurt_000001_083852_gtFine_labelIds.png" ) if not PathManager.exists(sem_seg_gt_path): raise unittest.SkipTest( "Semantic segmentation ground truth {} not found.".format(sem_seg_gt_path) ) sem_seg = detection_utils.read_image(sem_seg_gt_path, "L") self.assertEqual(sem_seg.ndim, 3) self.assertEqual(sem_seg.shape[2], 1) self.assertEqual(sem_seg.dtype, np.uint8) self.assertEqual(sem_seg.max(), 32) self.assertEqual(sem_seg.min(), 1) def test_read_exif_orientation(self): # https://github.com/recurser/exif-orientation-examples/raw/master/Landscape_5.jpg URL = "detectron2://assets/Landscape_5.jpg" img = detection_utils.read_image(URL, "RGB") self.assertEqual(img.ndim, 3) self.assertEqual(img.dtype, np.uint8) self.assertEqual(img.shape, (1200, 1800, 3)) # check that shape is not transposed if __name__ == "__main__": unittest.main()
banmo-main
third_party/detectron2_old/tests/data/test_detection_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. import contextlib import copy import io import json import numpy as np import os import tempfile import unittest import torch from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from detectron2.data import DatasetCatalog from detectron2.evaluation import COCOEvaluator from detectron2.evaluation.fast_eval_api import COCOeval_opt from detectron2.structures import Boxes, Instances class TestCOCOeval(unittest.TestCase): def test_fast_eval(self): # A small set of images/categories from COCO val # fmt: off detections = [{"image_id": 139, "category_id": 1, "bbox": [417.3332824707031, 159.27003479003906, 47.66064453125, 143.00193786621094], "score": 0.9949821829795837, "segmentation": {"size": [426, 640], "counts": "Tc`52W=3N0N4aNN^E7]:4XE1g:8kDMT;U100000001O1gE[Nk8h1dFiNY9Z1aFkN]9g2J3NdN`FlN`9S1cFRN07]9g1bFoM6;X9c1cFoM=8R9g1bFQN>3U9Y30O01OO1O001N2O1N1O4L4L5UNoE3V:CVF6Q:@YF9l9@ZF<k9[O`F=];HYnX2"}}, {"image_id": 139, "category_id": 1, "bbox": [383.5909118652344, 172.0777587890625, 17.959075927734375, 36.94813537597656], "score": 0.7685421705245972, "segmentation": {"size": [426, 640], "counts": "lZP5m0Z<300O100O100000001O00]OlC0T<OnCOT<OnCNX<JnC2bQT3"}}, {"image_id": 139, "category_id": 1, "bbox": [457.8359069824219, 158.88027954101562, 9.89764404296875, 8.771820068359375], "score": 0.07092753797769547, "segmentation": {"size": [426, 640], "counts": "bSo54T=2N2O1001O006ImiW2"}}] # noqa gt_annotations = {"categories": [{"supercategory": "person", "id": 1, "name": "person"}, {"supercategory": "furniture", "id": 65, "name": "bed"}], "images": [{"license": 4, "file_name": "000000000285.jpg", "coco_url": "http://images.cocodataset.org/val2017/000000000285.jpg", "height": 640, "width": 586, "date_captured": "2013-11-18 13:09:47", "flickr_url": "http://farm8.staticflickr.com/7434/9138147604_c6225224b8_z.jpg", "id": 285}, {"license": 2, "file_name": "000000000139.jpg", "coco_url": "http://images.cocodataset.org/val2017/000000000139.jpg", "height": 426, "width": 640, "date_captured": "2013-11-21 01:34:01", "flickr_url": "http://farm9.staticflickr.com/8035/8024364858_9c41dc1666_z.jpg", "id": 139}], "annotations": [{"segmentation": [[428.19, 219.47, 430.94, 209.57, 430.39, 210.12, 421.32, 216.17, 412.8, 217.27, 413.9, 214.24, 422.42, 211.22, 429.29, 201.6, 430.67, 181.8, 430.12, 175.2, 427.09, 168.06, 426.27, 164.21, 430.94, 159.26, 440.29, 157.61, 446.06, 163.93, 448.53, 168.06, 448.53, 173.01, 449.08, 174.93, 454.03, 185.1, 455.41, 188.4, 458.43, 195.0, 460.08, 210.94, 462.28, 226.61, 460.91, 233.76, 454.31, 234.04, 460.08, 256.85, 462.56, 268.13, 465.58, 290.67, 465.85, 293.14, 463.38, 295.62, 452.66, 295.34, 448.26, 294.52, 443.59, 282.7, 446.06, 235.14, 446.34, 230.19, 438.09, 232.39, 438.09, 221.67, 434.24, 221.12, 427.09, 219.74]], "area": 2913.1103999999987, "iscrowd": 0, "image_id": 139, "bbox": [412.8, 157.61, 53.05, 138.01], "category_id": 1, "id": 230831}, {"segmentation": [[384.98, 206.58, 384.43, 199.98, 385.25, 193.66, 385.25, 190.08, 387.18, 185.13, 387.18, 182.93, 386.08, 181.01, 385.25, 178.81, 385.25, 175.79, 388.0, 172.76, 394.88, 172.21, 398.72, 173.31, 399.27, 176.06, 399.55, 183.48, 397.9, 185.68, 395.15, 188.98, 396.8, 193.38, 398.45, 194.48, 399.0, 205.75, 395.43, 207.95, 388.83, 206.03]], "area": 435.1449499999997, "iscrowd": 0, "image_id": 139, "bbox": [384.43, 172.21, 15.12, 35.74], "category_id": 1, "id": 233201}]} # noqa # fmt: on # Test a small dataset for typical COCO format experiments = {"full": (detections, gt_annotations, {})} # Test what happens if the list of detections or ground truth annotations is empty experiments["empty_dt"] = ([], gt_annotations, {}) gt = copy.deepcopy(gt_annotations) gt["annotations"] = [] experiments["empty_gt"] = (detections, gt, {}) # Test changing parameter settings experiments["no_categories"] = (detections, gt_annotations, {"useCats": 0}) experiments["no_ious"] = (detections, gt_annotations, {"iouThrs": []}) experiments["no_rec_thrs"] = (detections, gt_annotations, {"recThrs": []}) experiments["no_max_dets"] = (detections, gt_annotations, {"maxDets": []}) experiments["one_max_det"] = (detections, gt_annotations, {"maxDets": [1]}) experiments["no_area"] = (detections, gt_annotations, {"areaRng": [], "areaRngLbl": []}) # Test what happens if one omits different fields from the annotation structure annotation_fields = [ "id", "image_id", "category_id", "score", "area", "iscrowd", "ignore", "bbox", "segmentation", ] for a in annotation_fields: gt = copy.deepcopy(gt_annotations) for g in gt["annotations"]: if a in g: del g[a] dt = copy.deepcopy(detections) for d in dt: if a in d: del d[a] experiments["omit_gt_" + a] = (detections, gt, {}) experiments["omit_dt_" + a] = (dt, gt_annotations, {}) # Compare precision/recall for original COCO PythonAPI to custom optimized one for name, (dt, gt, params) in experiments.items(): # Dump to json. try: with tempfile.TemporaryDirectory() as tmpdir: json_file_name = os.path.join(tmpdir, "gt_" + name + ".json") with open(json_file_name, "w") as f: json.dump(gt, f) with contextlib.redirect_stdout(io.StringIO()): coco_api = COCO(json_file_name) except Exception: pass for iou_type in ["bbox", "segm", "keypoints"]: # Run original COCOeval PythonAPI api_exception = None try: with contextlib.redirect_stdout(io.StringIO()): coco_dt = coco_api.loadRes(dt) coco_eval = COCOeval(coco_api, coco_dt, iou_type) for p, v in params.items(): setattr(coco_eval.params, p, v) coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() except Exception as ex: api_exception = ex # Run optimized COCOeval_opt API opt_exception = None try: with contextlib.redirect_stdout(io.StringIO()): coco_dt = coco_api.loadRes(dt) coco_eval_opt = COCOeval_opt(coco_api, coco_dt, iou_type) for p, v in params.items(): setattr(coco_eval_opt.params, p, v) coco_eval_opt.evaluate() coco_eval_opt.accumulate() coco_eval_opt.summarize() except Exception as ex: opt_exception = ex if api_exception is not None and opt_exception is not None: # Original API and optimized API should throw the same exception if annotation # format is bad api_error = "" if api_exception is None else type(api_exception).__name__ opt_error = "" if opt_exception is None else type(opt_exception).__name__ msg = "%s: comparing COCO APIs, '%s' != '%s'" % (name, api_error, opt_error) self.assertTrue(api_error == opt_error, msg=msg) else: # Original API and optimized API should produce the same precision/recalls for k in ["precision", "recall"]: diff = np.abs(coco_eval.eval[k] - coco_eval_opt.eval[k]) abs_diff = np.max(diff) if diff.size > 0 else 0.0 msg = "%s: comparing COCO APIs, %s differs by %f" % (name, k, abs_diff) self.assertTrue(abs_diff < 1e-4, msg=msg) @unittest.skipIf(os.environ.get("CI"), "Require COCO data.") def test_unknown_category(self): dataset = "coco_2017_val_100" evaluator = COCOEvaluator(dataset) evaluator.reset() inputs = DatasetCatalog.get(dataset)[:2] pred = Instances((100, 100)) pred.pred_boxes = Boxes(torch.rand(2, 4)) pred.scores = torch.rand(2) pred.pred_classes = torch.tensor([10, 80]) output = {"instances": pred} evaluator.process(inputs, [output, output]) with self.assertRaises(AssertionError): evaluator.evaluate()
banmo-main
third_party/detectron2_old/tests/data/test_coco_evaluation.py
# Copyright (c) Facebook, Inc. and its affiliates. import itertools import math import operator import unittest import torch from torch.utils import data from torch.utils.data.sampler import SequentialSampler from detectron2.data.build import worker_init_reset_seed from detectron2.data.common import DatasetFromList, ToIterableDataset from detectron2.data.samplers import ( GroupedBatchSampler, RepeatFactorTrainingSampler, TrainingSampler, ) from detectron2.utils.env import seed_all_rng class TestGroupedBatchSampler(unittest.TestCase): def test_missing_group_id(self): sampler = SequentialSampler(list(range(100))) group_ids = [1] * 100 samples = GroupedBatchSampler(sampler, group_ids, 2) for mini_batch in samples: self.assertEqual(len(mini_batch), 2) def test_groups(self): sampler = SequentialSampler(list(range(100))) group_ids = [1, 0] * 50 samples = GroupedBatchSampler(sampler, group_ids, 2) for mini_batch in samples: self.assertEqual((mini_batch[0] + mini_batch[1]) % 2, 0) class TestSamplerDeterministic(unittest.TestCase): def test_to_iterable(self): sampler = TrainingSampler(100, seed=10) dataset = DatasetFromList(list(range(100))) dataset = ToIterableDataset(dataset, sampler) data_loader = data.DataLoader(dataset, num_workers=0, collate_fn=operator.itemgetter(0)) output = list(itertools.islice(data_loader, 100)) self.assertEqual(set(output), set(range(100))) data_loader = data.DataLoader( dataset, num_workers=2, collate_fn=operator.itemgetter(0), worker_init_fn=worker_init_reset_seed, # reset seed should not affect behavior of TrainingSampler ) output = list(itertools.islice(data_loader, 100)) # multiple workers should not lead to duplicate or different data self.assertEqual(set(output), set(range(100))) def test_training_sampler_seed(self): seed_all_rng(42) sampler = TrainingSampler(30) data = list(itertools.islice(sampler, 65)) seed_all_rng(42) sampler = TrainingSampler(30) seed_all_rng(999) # should be ineffective data2 = list(itertools.islice(sampler, 65)) self.assertEqual(data, data2) class TestRepeatFactorTrainingSampler(unittest.TestCase): def test_repeat_factors_from_category_frequency(self): repeat_thresh = 0.5 dataset_dicts = [ {"annotations": [{"category_id": 0}, {"category_id": 1}]}, {"annotations": [{"category_id": 0}]}, {"annotations": []}, ] rep_factors = RepeatFactorTrainingSampler.repeat_factors_from_category_frequency( dataset_dicts, repeat_thresh ) expected_rep_factors = torch.tensor([math.sqrt(3 / 2), 1.0, 1.0]) self.assertTrue(torch.allclose(rep_factors, expected_rep_factors))
banmo-main
third_party/detectron2_old/tests/data/test_sampler.py
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. # flake8: noqa # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys from unittest import mock from sphinx.domains import Domain from typing import Dict, List, Tuple # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # import sphinx_rtd_theme class GithubURLDomain(Domain): """ Resolve certain links in markdown files to github source. """ name = "githuburl" ROOT = "https://github.com/facebookresearch/detectron2/blob/master/" LINKED_DOC = ["tutorials/install", "tutorials/getting_started"] def resolve_any_xref(self, env, fromdocname, builder, target, node, contnode): github_url = None if not target.endswith("html") and target.startswith("../../"): url = target.replace("../", "") github_url = url if fromdocname in self.LINKED_DOC: # unresolved links in these docs are all github links github_url = target if github_url is not None: if github_url.endswith("MODEL_ZOO") or github_url.endswith("README"): # bug of recommonmark. # https://github.com/readthedocs/recommonmark/blob/ddd56e7717e9745f11300059e4268e204138a6b1/recommonmark/parser.py#L152-L155 github_url += ".md" print("Ref {} resolved to github:{}".format(target, github_url)) contnode["refuri"] = self.ROOT + github_url return [("githuburl:any", contnode)] else: return [] # to support markdown from recommonmark.parser import CommonMarkParser sys.path.insert(0, os.path.abspath("../")) os.environ["_DOC_BUILDING"] = "True" DEPLOY = os.environ.get("READTHEDOCS") == "True" # -- Project information ----------------------------------------------------- # fmt: off try: import torch # noqa except ImportError: for m in [ "torch", "torchvision", "torch.nn", "torch.nn.parallel", "torch.distributed", "torch.multiprocessing", "torch.autograd", "torch.autograd.function", "torch.nn.modules", "torch.nn.modules.utils", "torch.utils", "torch.utils.data", "torch.onnx", "torchvision", "torchvision.ops", ]: sys.modules[m] = mock.Mock(name=m) sys.modules['torch'].__version__ = "1.7" # fake version HAS_TORCH = False else: try: torch.ops.detectron2 = mock.Mock(name="torch.ops.detectron2") except: pass HAS_TORCH = True for m in [ "cv2", "scipy", "portalocker", "detectron2._C", "pycocotools", "pycocotools.mask", "pycocotools.coco", "pycocotools.cocoeval", "google", "google.protobuf", "google.protobuf.internal", "onnx", "caffe2", "caffe2.proto", "caffe2.python", "caffe2.python.utils", "caffe2.python.onnx", "caffe2.python.onnx.backend", ]: sys.modules[m] = mock.Mock(name=m) # fmt: on sys.modules["cv2"].__version__ = "3.4" import detectron2 # isort: skip if HAS_TORCH: from detectron2.utils.env import fixup_module_metadata fixup_module_metadata("torch.nn", torch.nn.__dict__) fixup_module_metadata("torch.utils.data", torch.utils.data.__dict__) project = "detectron2" copyright = "2019-2020, detectron2 contributors" author = "detectron2 contributors" # The short X.Y version version = detectron2.__version__ # The full version, including alpha/beta/rc tags release = version # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = "3.0" # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "recommonmark", "sphinx.ext.autodoc", "sphinx.ext.napoleon", "sphinx.ext.intersphinx", "sphinx.ext.todo", "sphinx.ext.coverage", "sphinx.ext.mathjax", "sphinx.ext.viewcode", "sphinx.ext.githubpages", ] # -- Configurations for plugins ------------ napoleon_google_docstring = True napoleon_include_init_with_doc = True napoleon_include_special_with_doc = True napoleon_numpy_docstring = False napoleon_use_rtype = False autodoc_inherit_docstrings = False autodoc_member_order = "bysource" if DEPLOY: intersphinx_timeout = 10 else: # skip this when building locally intersphinx_timeout = 0.5 intersphinx_mapping = { "python": ("https://docs.python.org/3.6", None), "numpy": ("https://docs.scipy.org/doc/numpy/", None), "torch": ("https://pytorch.org/docs/master/", None), } # ------------------------- # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] source_suffix = [".rst", ".md"] # The master toctree document. master_doc = "index" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ["_build", "Thumbs.db", ".DS_Store", "build", "README.md", "tutorials/README.md"] # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # -- Options for HTML output ------------------------------------------------- html_theme = "sphinx_rtd_theme" html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] html_css_files = ["css/custom.css"] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = "detectron2doc" # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, "detectron2.tex", "detectron2 Documentation", "detectron2 contributors", "manual") ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [(master_doc, "detectron2", "detectron2 Documentation", [author], 1)] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( master_doc, "detectron2", "detectron2 Documentation", author, "detectron2", "One line description of project.", "Miscellaneous", ) ] # -- Options for todo extension ---------------------------------------------- # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True def autodoc_skip_member(app, what, name, obj, skip, options): # we hide something deliberately if getattr(obj, "__HIDE_SPHINX_DOC__", False): return True # Hide some that are deprecated or not intended to be used HIDDEN = { "ResNetBlockBase", "GroupedBatchSampler", "build_transform_gen", "export_caffe2_model", "export_onnx_model", "apply_transform_gens", "TransformGen", "apply_augmentations", "StandardAugInput", "build_batch_data_loader", "draw_panoptic_seg_predictions", "WarmupCosineLR", "WarmupMultiStepLR", } try: if name in HIDDEN or ( hasattr(obj, "__doc__") and obj.__doc__.lower().strip().startswith("deprecated") ): print("Skipping deprecated object: {}".format(name)) return True except: pass return skip _PAPER_DATA = { "resnet": ("1512.03385", "Deep Residual Learning for Image Recognition"), "fpn": ("1612.03144", "Feature Pyramid Networks for Object Detection"), "mask r-cnn": ("1703.06870", "Mask R-CNN"), "faster r-cnn": ( "1506.01497", "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", ), "deformconv": ("1703.06211", "Deformable Convolutional Networks"), "deformconv2": ("1811.11168", "Deformable ConvNets v2: More Deformable, Better Results"), "panopticfpn": ("1901.02446", "Panoptic Feature Pyramid Networks"), "retinanet": ("1708.02002", "Focal Loss for Dense Object Detection"), "cascade r-cnn": ("1712.00726", "Cascade R-CNN: Delving into High Quality Object Detection"), "lvis": ("1908.03195", "LVIS: A Dataset for Large Vocabulary Instance Segmentation"), "rrpn": ("1703.01086", "Arbitrary-Oriented Scene Text Detection via Rotation Proposals"), "imagenet in 1h": ("1706.02677", "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour"), "xception": ("1610.02357", "Xception: Deep Learning with Depthwise Separable Convolutions"), "mobilenet": ( "1704.04861", "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications", ), "deeplabv3+": ( "1802.02611", "Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation", ), "dds": ("2003.13678", "Designing Network Design Spaces"), "scaling": ("2103.06877", "Fast and Accurate Model Scaling"), } def paper_ref_role( typ: str, rawtext: str, text: str, lineno: int, inliner, options: Dict = {}, content: List[str] = [], ): """ Parse :paper:`xxx`. Similar to the "extlinks" sphinx extension. """ from docutils import nodes, utils from sphinx.util.nodes import split_explicit_title text = utils.unescape(text) has_explicit_title, title, link = split_explicit_title(text) link = link.lower() if link not in _PAPER_DATA: inliner.reporter.warning("Cannot find paper " + link) paper_url, paper_title = "#", link else: paper_url, paper_title = _PAPER_DATA[link] if "/" not in paper_url: paper_url = "https://arxiv.org/abs/" + paper_url if not has_explicit_title: title = paper_title pnode = nodes.reference(title, title, internal=False, refuri=paper_url) return [pnode], [] def setup(app): from recommonmark.transform import AutoStructify app.add_domain(GithubURLDomain) app.connect("autodoc-skip-member", autodoc_skip_member) app.add_role("paper", paper_ref_role) app.add_config_value( "recommonmark_config", {"enable_math": True, "enable_inline_math": True, "enable_eval_rst": True}, True, ) app.add_transform(AutoStructify)
banmo-main
third_party/detectron2_old/docs/conf.py
# An example config to train a mmdetection model using detectron2. from ..common.data.coco import dataloader from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier from ..common.optim import SGD as optimizer from ..common.train import train from detectron2.modeling.mmdet_wrapper import MMDetDetector from detectron2.config import LazyCall as L model = L(MMDetDetector)( detector=dict( type="MaskRCNN", pretrained="torchvision://resnet50", backbone=dict( type="ResNet", depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type="BN", requires_grad=True), norm_eval=True, style="pytorch", ), neck=dict(type="FPN", in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type="RPNHead", in_channels=256, feat_channels=256, anchor_generator=dict( type="AnchorGenerator", scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64], ), bbox_coder=dict( type="DeltaXYWHBBoxCoder", target_means=[0.0, 0.0, 0.0, 0.0], target_stds=[1.0, 1.0, 1.0, 1.0], ), loss_cls=dict(type="CrossEntropyLoss", use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type="L1Loss", loss_weight=1.0), ), roi_head=dict( type="StandardRoIHead", bbox_roi_extractor=dict( type="SingleRoIExtractor", roi_layer=dict(type="RoIAlign", output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32], ), bbox_head=dict( type="Shared2FCBBoxHead", in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type="DeltaXYWHBBoxCoder", target_means=[0.0, 0.0, 0.0, 0.0], target_stds=[0.1, 0.1, 0.2, 0.2], ), reg_class_agnostic=False, loss_cls=dict(type="CrossEntropyLoss", use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type="L1Loss", loss_weight=1.0), ), mask_roi_extractor=dict( type="SingleRoIExtractor", roi_layer=dict(type="RoIAlign", output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32], ), mask_head=dict( type="FCNMaskHead", num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict(type="CrossEntropyLoss", use_mask=True, loss_weight=1.0), ), ), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type="MaxIoUAssigner", pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1, ), sampler=dict( type="RandomSampler", num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False, ), allowed_border=-1, pos_weight=-1, debug=False, ), rpn_proposal=dict( nms_pre=2000, max_per_img=1000, nms=dict(type="nms", iou_threshold=0.7), min_bbox_size=0, ), rcnn=dict( assigner=dict( type="MaxIoUAssigner", pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=True, ignore_iof_thr=-1, ), sampler=dict( type="RandomSampler", num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True, ), mask_size=28, pos_weight=-1, debug=False, ), ), test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type="nms", iou_threshold=0.7), min_bbox_size=0, ), rcnn=dict( score_thr=0.05, nms=dict(type="nms", iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5, ), ), ), pixel_mean=[123.675, 116.280, 103.530], pixel_std=[58.395, 57.120, 57.375], ) dataloader.train.mapper.image_format = "RGB" # torchvision pretrained model train.init_checkpoint = None # pretrained model is loaded inside backbone
banmo-main
third_party/detectron2_old/configs/Misc/mmdet_mask_rcnn_R_50_FPN_1x.py
""" An example config file to train a ImageNet classifier with detectron2. Model and dataloader both come from torchvision. This shows how to use detectron2 as a general engine for any new models and tasks. To run, use the following command: python tools/lazyconfig_train_net.py --config-file configs/Misc/torchvision_imagenet_R_50.py \ --num-gpus 8 dataloader.train.dataset.root=/path/to/imagenet/ """ import torch from torch import nn from torch.nn import functional as F from omegaconf import OmegaConf import torchvision from torchvision.transforms import transforms as T from torchvision.models.resnet import ResNet, Bottleneck from fvcore.common.param_scheduler import MultiStepParamScheduler from detectron2.solver import WarmupParamScheduler from detectron2.solver.build import get_default_optimizer_params from detectron2.config import LazyCall as L from detectron2.model_zoo import get_config from detectron2.data.samplers import TrainingSampler, InferenceSampler from detectron2.evaluation import DatasetEvaluator from detectron2.utils import comm """ Note: Here we put reusable code (models, evaluation, data) together with configs just as a proof-of-concept, to easily demonstrate what's needed to train a ImageNet classifier in detectron2. Writing code in configs offers extreme flexibility but is often not a good engineering practice. In practice, you might want to put code in your project and import them instead. """ def build_data_loader(dataset, batch_size, num_workers, training=True): return torch.utils.data.DataLoader( dataset, sampler=(TrainingSampler if training else InferenceSampler)(len(dataset)), batch_size=batch_size, num_workers=num_workers, pin_memory=True, ) class ClassificationNet(nn.Module): def __init__(self, model: nn.Module): super().__init__() self.model = model @property def device(self): return list(self.model.parameters())[0].device def forward(self, inputs): image, label = inputs pred = self.model(image.to(self.device)) if self.training: label = label.to(self.device) return F.cross_entropy(pred, label) else: return pred class ClassificationAcc(DatasetEvaluator): def reset(self): self.corr = self.total = 0 def process(self, inputs, outputs): image, label = inputs self.corr += (outputs.argmax(dim=1).cpu() == label.cpu()).sum().item() self.total += len(label) def evaluate(self): all_corr_total = comm.all_gather([self.corr, self.total]) corr = sum(x[0] for x in all_corr_total) total = sum(x[1] for x in all_corr_total) return {"accuracy": corr / total} # --- End of code that could be in a project and be imported dataloader = OmegaConf.create() dataloader.train = L(build_data_loader)( dataset=L(torchvision.datasets.ImageNet)( root="/path/to/imagenet", split="train", transform=L(T.Compose)( transforms=[ L(T.RandomResizedCrop)(size=224), L(T.RandomHorizontalFlip)(), T.ToTensor(), L(T.Normalize)(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), ] ), ), batch_size=256 // 8, num_workers=4, training=True, ) dataloader.test = L(build_data_loader)( dataset=L(torchvision.datasets.ImageNet)( root="${...train.dataset.root}", split="val", transform=L(T.Compose)( transforms=[ L(T.Resize)(size=256), L(T.CenterCrop)(size=224), T.ToTensor(), L(T.Normalize)(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), ] ), ), batch_size=256 // 8, num_workers=4, training=False, ) dataloader.evaluator = L(ClassificationAcc)() model = L(ClassificationNet)( model=(ResNet)(block=Bottleneck, layers=[3, 4, 6, 3], zero_init_residual=True) ) optimizer = L(torch.optim.SGD)( params=L(get_default_optimizer_params)(), lr=0.1, momentum=0.9, weight_decay=1e-4, ) lr_multiplier = L(WarmupParamScheduler)( scheduler=L(MultiStepParamScheduler)( values=[1.0, 0.1, 0.01, 0.001], milestones=[30, 60, 90, 100] ), warmup_length=1 / 100, warmup_factor=0.1, ) train = get_config("common/train.py").train train.init_checkpoint = None train.max_iter = 100 * 1281167 // 256
banmo-main
third_party/detectron2_old/configs/Misc/torchvision_imagenet_R_50.py
from ..common.optim import SGD as optimizer from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier from ..common.data.coco_keypoint import dataloader from ..common.models.keypoint_rcnn_fpn import model from ..common.train import train model.backbone.bottom_up.freeze_at = 2
banmo-main
third_party/detectron2_old/configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.py
from ..common.optim import SGD as optimizer from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier from ..common.data.coco import dataloader from ..common.models.retinanet import model from ..common.train import train dataloader.train.mapper.use_instance_mask = False model.backbone.bottom_up.freeze_at = 2 optimizer.lr = 0.01
banmo-main
third_party/detectron2_old/configs/COCO-Detection/retinanet_R_50_FPN_1x.py
from fvcore.common.param_scheduler import MultiStepParamScheduler from detectron2.config import LazyCall as L from detectron2.solver import WarmupParamScheduler def default_X_scheduler(num_X): """ Returns the config for a default multi-step LR scheduler such as "1x", "3x", commonly referred to in papers, where every 1x has the total length of 1440k training images (~12 COCO epochs). LR is decayed twice at the end of training following the strategy defined in "Rethinking ImageNet Pretraining", Sec 4. Args: num_X: a positive real number Returns: DictConfig: configs that define the multiplier for LR during training """ # total number of iterations assuming 16 batch size, using 1440000/16=90000 total_steps_16bs = num_X * 90000 if num_X <= 2: scheduler = L(MultiStepParamScheduler)( values=[1.0, 0.1, 0.01], # note that scheduler is scale-invariant. This is equivalent to # milestones=[6, 8, 9] milestones=[60000, 80000, 90000], ) else: scheduler = L(MultiStepParamScheduler)( values=[1.0, 0.1, 0.01], milestones=[total_steps_16bs - 60000, total_steps_16bs - 20000, total_steps_16bs], ) return L(WarmupParamScheduler)( scheduler=scheduler, warmup_length=1000 / total_steps_16bs, warmup_method="linear", warmup_factor=0.001, ) lr_multiplier_1x = default_X_scheduler(1) lr_multiplier_2x = default_X_scheduler(2) lr_multiplier_3x = default_X_scheduler(3) lr_multiplier_6x = default_X_scheduler(6) lr_multiplier_9x = default_X_scheduler(9)
banmo-main
third_party/detectron2_old/configs/common/coco_schedule.py
# Common training-related configs that are designed for "tools/lazyconfig_train_net.py" # You can use your own instead, together with your own train_net.py train = dict( output_dir="./output", init_checkpoint="detectron2://ImageNetPretrained/MSRA/R-50.pkl", max_iter=90000, amp=dict(enabled=False), # options for Automatic Mixed Precision ddp=dict( # options for DistributedDataParallel broadcast_buffers=False, find_unused_parameters=False, fp16_compression=False, ), checkpointer=dict(period=5000, max_to_keep=100), # options for PeriodicCheckpointer eval_period=5000, log_period=20, device="cuda" # ... )
banmo-main
third_party/detectron2_old/configs/common/train.py
import torch from detectron2.config import LazyCall as L from detectron2.solver.build import get_default_optimizer_params SGD = L(torch.optim.SGD)( params=L(get_default_optimizer_params)( # params.model is meant to be set to the model object, before instantiating # the optimizer. weight_decay_norm=0.0 ), lr=0.02, momentum=0.9, weight_decay=1e-4, )
banmo-main
third_party/detectron2_old/configs/common/optim.py
from detectron2.config import LazyCall as L from detectron2.layers import ShapeSpec from detectron2.modeling import PanopticFPN from detectron2.modeling.meta_arch.semantic_seg import SemSegFPNHead from .mask_rcnn_fpn import model model._target_ = PanopticFPN model.sem_seg_head = L(SemSegFPNHead)( input_shape={ f: L(ShapeSpec)(stride=s, channels="${....backbone.out_channels}") for f, s in zip(["p2", "p3", "p4", "p5"], [4, 8, 16, 32]) }, ignore_value=255, num_classes=54, # COCO stuff + 1 conv_dims=128, common_stride=4, loss_weight=0.5, norm="GN", )
banmo-main
third_party/detectron2_old/configs/common/models/panoptic_fpn.py
from detectron2.config import LazyCall as L from detectron2.layers import ShapeSpec from detectron2.modeling.poolers import ROIPooler from detectron2.modeling.roi_heads import KRCNNConvDeconvUpsampleHead from .mask_rcnn_fpn import model [model.roi_heads.pop(x) for x in ["mask_in_features", "mask_pooler", "mask_head"]] model.roi_heads.update( num_classes=1, keypoint_in_features=["p2", "p3", "p4", "p5"], keypoint_pooler=L(ROIPooler)( output_size=14, scales=(1.0 / 4, 1.0 / 8, 1.0 / 16, 1.0 / 32), sampling_ratio=0, pooler_type="ROIAlignV2", ), keypoint_head=L(KRCNNConvDeconvUpsampleHead)( input_shape=ShapeSpec(channels=256, width=14, height=14), num_keypoints=17, conv_dims=[512] * 8, loss_normalizer="visible", ), ) # Detectron1 uses 2000 proposals per-batch, but this option is per-image in detectron2. # 1000 proposals per-image is found to hurt box AP. # Therefore we increase it to 1500 per-image. model.proposal_generator.post_nms_topk = (1500, 1000) # Keypoint AP degrades (though box AP improves) when using plain L1 loss model.roi_heads.box_predictor.smooth_l1_beta = 0.5
banmo-main
third_party/detectron2_old/configs/common/models/keypoint_rcnn_fpn.py
from detectron2.config import LazyCall as L from detectron2.layers import ShapeSpec from detectron2.modeling.meta_arch import GeneralizedRCNN from detectron2.modeling.anchor_generator import DefaultAnchorGenerator from detectron2.modeling.backbone import BasicStem, BottleneckBlock, ResNet from detectron2.modeling.box_regression import Box2BoxTransform from detectron2.modeling.matcher import Matcher from detectron2.modeling.poolers import ROIPooler from detectron2.modeling.proposal_generator import RPN, StandardRPNHead from detectron2.modeling.roi_heads import ( FastRCNNOutputLayers, MaskRCNNConvUpsampleHead, Res5ROIHeads, ) model = L(GeneralizedRCNN)( backbone=L(ResNet)( stem=L(BasicStem)(in_channels=3, out_channels=64, norm="FrozenBN"), stages=L(ResNet.make_default_stages)( depth=50, stride_in_1x1=True, norm="FrozenBN", ), out_features=["res4"], ), proposal_generator=L(RPN)( in_features=["res4"], head=L(StandardRPNHead)(in_channels=1024, num_anchors=15), anchor_generator=L(DefaultAnchorGenerator)( sizes=[[32, 64, 128, 256, 512]], aspect_ratios=[0.5, 1.0, 2.0], strides=[16], offset=0.0, ), anchor_matcher=L(Matcher)( thresholds=[0.3, 0.7], labels=[0, -1, 1], allow_low_quality_matches=True ), box2box_transform=L(Box2BoxTransform)(weights=[1.0, 1.0, 1.0, 1.0]), batch_size_per_image=256, positive_fraction=0.5, pre_nms_topk=(12000, 6000), post_nms_topk=(2000, 1000), nms_thresh=0.7, ), roi_heads=L(Res5ROIHeads)( num_classes=80, batch_size_per_image=512, positive_fraction=0.25, proposal_matcher=L(Matcher)( thresholds=[0.5], labels=[0, 1], allow_low_quality_matches=False ), in_features=["res4"], pooler=L(ROIPooler)( output_size=14, scales=(1.0 / 16,), sampling_ratio=0, pooler_type="ROIAlignV2", ), res5=L(ResNet.make_stage)( block_class=BottleneckBlock, num_blocks=3, stride_per_block=[2, 1, 1], in_channels=1024, bottleneck_channels=512, out_channels=2048, norm="FrozenBN", stride_in_1x1=True, ), box_predictor=L(FastRCNNOutputLayers)( input_shape=L(ShapeSpec)(channels="${...res5.out_channels}", height=1, width=1), test_score_thresh=0.05, box2box_transform=L(Box2BoxTransform)(weights=(10, 10, 5, 5)), num_classes="${..num_classes}", ), mask_head=L(MaskRCNNConvUpsampleHead)( input_shape=L(ShapeSpec)( channels="${...res5.out_channels}", width="${...pooler.output_size}", height="${...pooler.output_size}", ), num_classes="${..num_classes}", conv_dims=[256], ), ), pixel_mean=[103.530, 116.280, 123.675], pixel_std=[1.0, 1.0, 1.0], input_format="BGR", )
banmo-main
third_party/detectron2_old/configs/common/models/mask_rcnn_c4.py
# -*- coding: utf-8 -*- from detectron2.config import LazyCall as L from detectron2.layers import ShapeSpec from detectron2.modeling.meta_arch import RetinaNet from detectron2.modeling.anchor_generator import DefaultAnchorGenerator from detectron2.modeling.backbone.fpn import LastLevelP6P7 from detectron2.modeling.backbone import BasicStem, FPN, ResNet from detectron2.modeling.box_regression import Box2BoxTransform from detectron2.modeling.matcher import Matcher from detectron2.modeling.meta_arch.retinanet import RetinaNetHead model = L(RetinaNet)( backbone=L(FPN)( bottom_up=L(ResNet)( stem=L(BasicStem)(in_channels=3, out_channels=64, norm="FrozenBN"), stages=L(ResNet.make_default_stages)( depth=50, stride_in_1x1=True, norm="FrozenBN", ), out_features=["res3", "res4", "res5"], ), in_features=["res3", "res4", "res5"], out_channels=256, top_block=L(LastLevelP6P7)(in_channels=2048, out_channels="${..out_channels}"), ), head=L(RetinaNetHead)( input_shape=[ShapeSpec(channels=256)], num_classes="${..num_classes}", conv_dims=[256, 256, 256, 256], prior_prob=0.01, num_anchors=9, ), anchor_generator=L(DefaultAnchorGenerator)( sizes=[[x, x * 2 ** (1.0 / 3), x * 2 ** (2.0 / 3)] for x in [32, 64, 128, 256, 512]], aspect_ratios=[0.5, 1.0, 2.0], strides=[8, 16, 32, 64, 128], offset=0.0, ), box2box_transform=L(Box2BoxTransform)(weights=[1.0, 1.0, 1.0, 1.0]), anchor_matcher=L(Matcher)( thresholds=[0.4, 0.5], labels=[0, -1, 1], allow_low_quality_matches=True ), num_classes=80, head_in_features=["p3", "p4", "p5", "p6", "p7"], focal_loss_alpha=0.25, focal_loss_gamma=2.0, pixel_mean=[103.530, 116.280, 123.675], pixel_std=[1.0, 1.0, 1.0], input_format="BGR", )
banmo-main
third_party/detectron2_old/configs/common/models/retinanet.py
from detectron2.config import LazyCall as L from detectron2.layers import ShapeSpec from detectron2.modeling.box_regression import Box2BoxTransform from detectron2.modeling.matcher import Matcher from detectron2.modeling.roi_heads import FastRCNNOutputLayers, FastRCNNConvFCHead, CascadeROIHeads from .mask_rcnn_fpn import model # arguments that don't exist for Cascade R-CNN [model.roi_heads.pop(k) for k in ["box_head", "box_predictor", "proposal_matcher"]] model.roi_heads.update( _target_=CascadeROIHeads, box_heads=[ L(FastRCNNConvFCHead)( input_shape=ShapeSpec(channels=256, height=7, width=7), conv_dims=[], fc_dims=[1024, 1024], ) for k in range(3) ], box_predictors=[ L(FastRCNNOutputLayers)( input_shape=ShapeSpec(channels=1024), test_score_thresh=0.05, box2box_transform=L(Box2BoxTransform)(weights=(w1, w1, w2, w2)), cls_agnostic_bbox_reg=True, num_classes="${...num_classes}", ) for (w1, w2) in [(10, 5), (20, 10), (30, 15)] ], proposal_matchers=[ L(Matcher)(thresholds=[th], labels=[0, 1], allow_low_quality_matches=False) for th in [0.5, 0.6, 0.7] ], )
banmo-main
third_party/detectron2_old/configs/common/models/cascade_rcnn.py
from detectron2.config import LazyCall as L from detectron2.layers import ShapeSpec from detectron2.modeling.meta_arch import GeneralizedRCNN from detectron2.modeling.anchor_generator import DefaultAnchorGenerator from detectron2.modeling.backbone.fpn import LastLevelMaxPool from detectron2.modeling.backbone import BasicStem, FPN, ResNet from detectron2.modeling.box_regression import Box2BoxTransform from detectron2.modeling.matcher import Matcher from detectron2.modeling.poolers import ROIPooler from detectron2.modeling.proposal_generator import RPN, StandardRPNHead from detectron2.modeling.roi_heads import ( StandardROIHeads, FastRCNNOutputLayers, MaskRCNNConvUpsampleHead, FastRCNNConvFCHead, ) model = L(GeneralizedRCNN)( backbone=L(FPN)( bottom_up=L(ResNet)( stem=L(BasicStem)(in_channels=3, out_channels=64, norm="FrozenBN"), stages=L(ResNet.make_default_stages)( depth=50, stride_in_1x1=True, norm="FrozenBN", ), out_features=["res2", "res3", "res4", "res5"], ), in_features="${.bottom_up.out_features}", out_channels=256, top_block=L(LastLevelMaxPool)(), ), proposal_generator=L(RPN)( in_features=["p2", "p3", "p4", "p5", "p6"], head=L(StandardRPNHead)(in_channels=256, num_anchors=3), anchor_generator=L(DefaultAnchorGenerator)( sizes=[[32], [64], [128], [256], [512]], aspect_ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64], offset=0.0, ), anchor_matcher=L(Matcher)( thresholds=[0.3, 0.7], labels=[0, -1, 1], allow_low_quality_matches=True ), box2box_transform=L(Box2BoxTransform)(weights=[1.0, 1.0, 1.0, 1.0]), batch_size_per_image=256, positive_fraction=0.5, pre_nms_topk=(2000, 1000), post_nms_topk=(1000, 1000), nms_thresh=0.7, ), roi_heads=L(StandardROIHeads)( num_classes=80, batch_size_per_image=512, positive_fraction=0.25, proposal_matcher=L(Matcher)( thresholds=[0.5], labels=[0, 1], allow_low_quality_matches=False ), box_in_features=["p2", "p3", "p4", "p5"], box_pooler=L(ROIPooler)( output_size=7, scales=(1.0 / 4, 1.0 / 8, 1.0 / 16, 1.0 / 32), sampling_ratio=0, pooler_type="ROIAlignV2", ), box_head=L(FastRCNNConvFCHead)( input_shape=ShapeSpec(channels=256, height=7, width=7), conv_dims=[], fc_dims=[1024, 1024], ), box_predictor=L(FastRCNNOutputLayers)( input_shape=ShapeSpec(channels=1024), test_score_thresh=0.05, box2box_transform=L(Box2BoxTransform)(weights=(10, 10, 5, 5)), num_classes="${..num_classes}", ), mask_in_features=["p2", "p3", "p4", "p5"], mask_pooler=L(ROIPooler)( output_size=14, scales=(1.0 / 4, 1.0 / 8, 1.0 / 16, 1.0 / 32), sampling_ratio=0, pooler_type="ROIAlignV2", ), mask_head=L(MaskRCNNConvUpsampleHead)( input_shape=ShapeSpec(channels=256, width=14, height=14), num_classes="${..num_classes}", conv_dims=[256, 256, 256, 256, 256], ), ), pixel_mean=[103.530, 116.280, 123.675], pixel_std=[1.0, 1.0, 1.0], input_format="BGR", )
banmo-main
third_party/detectron2_old/configs/common/models/mask_rcnn_fpn.py
from omegaconf import OmegaConf import detectron2.data.transforms as T from detectron2.config import LazyCall as L from detectron2.data import ( DatasetMapper, build_detection_test_loader, build_detection_train_loader, get_detection_dataset_dicts, ) from detectron2.evaluation import COCOEvaluator dataloader = OmegaConf.create() dataloader.train = L(build_detection_train_loader)( dataset=L(get_detection_dataset_dicts)(names="coco_2017_train"), mapper=L(DatasetMapper)( is_train=True, augmentations=[ L(T.ResizeShortestEdge)( short_edge_length=(640, 672, 704, 736, 768, 800), sample_style="choice", max_size=1333, ), L(T.RandomFlip)(horizontal=True), ], image_format="BGR", use_instance_mask=True, ), total_batch_size=16, num_workers=4, ) dataloader.test = L(build_detection_test_loader)( dataset=L(get_detection_dataset_dicts)(names="coco_2017_val", filter_empty=False), mapper=L(DatasetMapper)( is_train=False, augmentations=[ L(T.ResizeShortestEdge)(short_edge_length=800, max_size=1333), ], image_format="${...train.mapper.image_format}", ), num_workers=4, ) dataloader.evaluator = L(COCOEvaluator)( dataset_name="${..test.dataset.names}", )
banmo-main
third_party/detectron2_old/configs/common/data/coco.py
from detectron2.config import LazyCall as L from detectron2.evaluation import ( COCOEvaluator, COCOPanopticEvaluator, DatasetEvaluators, SemSegEvaluator, ) from .coco import dataloader dataloader.train.dataset.names = "coco_2017_train_panoptic_separated" dataloader.train.dataset.filter_empty = False dataloader.test.dataset.names = "coco_2017_val_panoptic_separated" dataloader.evaluator = [ L(COCOEvaluator)( dataset_name="${...test.dataset.names}", ), L(SemSegEvaluator)( dataset_name="${...test.dataset.names}", ), L(COCOPanopticEvaluator)( dataset_name="${...test.dataset.names}", ), ]
banmo-main
third_party/detectron2_old/configs/common/data/coco_panoptic_separated.py
from detectron2.data.detection_utils import create_keypoint_hflip_indices from .coco import dataloader dataloader.train.dataset.min_keypoints = 1 dataloader.train.dataset.names = "keypoints_coco_2017_train" dataloader.test.dataset.names = "keypoints_coco_2017_val" dataloader.train.mapper.update( use_instance_mask=False, use_keypoint=True, keypoint_hflip_indices=create_keypoint_hflip_indices(dataloader.train.dataset.names), )
banmo-main
third_party/detectron2_old/configs/common/data/coco_keypoint.py
from ..common.optim import SGD as optimizer from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier from ..common.data.coco_panoptic_separated import dataloader from ..common.models.panoptic_fpn import model from ..common.train import train model.backbone.bottom_up.freeze_at = 2
banmo-main
third_party/detectron2_old/configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.py
from .mask_rcnn_R_101_FPN_100ep_LSJ import ( dataloader, lr_multiplier, model, optimizer, train, ) train.max_iter *= 2 # 100ep -> 200ep
banmo-main
third_party/detectron2_old/configs/new_baselines/mask_rcnn_R_101_FPN_200ep_LSJ.py
from .mask_rcnn_R_50_FPN_100ep_LSJ import ( dataloader, lr_multiplier, model, optimizer, train, ) from detectron2.config import LazyCall as L from detectron2.modeling.backbone import RegNet from detectron2.modeling.backbone.regnet import SimpleStem, ResBottleneckBlock # Config source: # https://github.com/facebookresearch/detectron2/blob/master/configs/COCO-InstanceSegmentation/mask_rcnn_regnetx_4gf_dds_fpn_1x.py # noqa model.backbone.bottom_up = L(RegNet)( stem_class=SimpleStem, stem_width=32, block_class=ResBottleneckBlock, depth=23, w_a=38.65, w_0=96, w_m=2.43, group_width=40, norm="SyncBN", out_features=["s1", "s2", "s3", "s4"], ) model.pixel_std = [57.375, 57.120, 58.395] # RegNets benefit from enabling cudnn benchmark mode train.cudnn_benchmark = True
banmo-main
third_party/detectron2_old/configs/new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_100ep_LSJ.py
from .mask_rcnn_regnetx_4gf_dds_FPN_100ep_LSJ import ( dataloader, lr_multiplier, model, optimizer, train, ) train.max_iter *= 4 # 100ep -> 400ep
banmo-main
third_party/detectron2_old/configs/new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_400ep_LSJ.py
from .mask_rcnn_regnety_4gf_dds_FPN_100ep_LSJ import ( dataloader, lr_multiplier, model, optimizer, train, ) train.max_iter *= 4 # 100ep -> 400ep
banmo-main
third_party/detectron2_old/configs/new_baselines/mask_rcnn_regnety_4gf_dds_FPN_400ep_LSJ.py
from .mask_rcnn_R_50_FPN_100ep_LSJ import ( dataloader, lr_multiplier, model, optimizer, train, ) train.max_iter *= 2 # 100ep -> 200ep
banmo-main
third_party/detectron2_old/configs/new_baselines/mask_rcnn_R_50_FPN_200ep_LSJ.py
from .mask_rcnn_R_50_FPN_100ep_LSJ import ( dataloader, lr_multiplier, model, optimizer, train, ) from detectron2.config import LazyCall as L from detectron2.modeling.backbone import RegNet from detectron2.modeling.backbone.regnet import SimpleStem, ResBottleneckBlock # Config source: # https://github.com/facebookresearch/detectron2/blob/master/configs/COCO-InstanceSegmentation/mask_rcnn_regnety_4gf_dds_fpn_1x.py # noqa model.backbone.bottom_up = L(RegNet)( stem_class=SimpleStem, stem_width=32, block_class=ResBottleneckBlock, depth=22, w_a=31.41, w_0=96, w_m=2.24, group_width=64, se_ratio=0.25, norm="SyncBN", out_features=["s1", "s2", "s3", "s4"], ) model.pixel_std = [57.375, 57.120, 58.395] # RegNets benefit from enabling cudnn benchmark mode train.cudnn_benchmark = True
banmo-main
third_party/detectron2_old/configs/new_baselines/mask_rcnn_regnety_4gf_dds_FPN_100ep_LSJ.py
import detectron2.data.transforms as T from detectron2.config.lazy import LazyCall as L from detectron2.layers.batch_norm import NaiveSyncBatchNorm from detectron2.solver import WarmupParamScheduler from fvcore.common.param_scheduler import CosineParamScheduler from ..common.data.coco import dataloader from ..common.models.mask_rcnn_fpn import model from ..common.optim import SGD as optimizer from ..common.train import train # train from scratch train.init_checkpoint = "" train.amp.enabled = True train.ddp.fp16_compression = True model.backbone.bottom_up.freeze_at = 0 # SyncBN # fmt: off model.backbone.bottom_up.stem.norm = \ model.backbone.bottom_up.stages.norm = \ model.backbone.norm = "SyncBN" # Using NaiveSyncBatchNorm becase heads may have empty input. That is not supported by # torch.nn.SyncBatchNorm. We can remove this after # https://github.com/pytorch/pytorch/issues/36530 is fixed. model.roi_heads.box_head.conv_norm = \ model.roi_heads.mask_head.conv_norm = lambda c: NaiveSyncBatchNorm(c, stats_mode="N") # fmt: on # 2conv in RPN: # https://github.com/tensorflow/tpu/blob/b24729de804fdb751b06467d3dce0637fa652060/models/official/detection/modeling/architecture/heads.py#L95-L97 # noqa: E501, B950 model.proposal_generator.head.conv_dims = [-1, -1] # 4conv1fc box head model.roi_heads.box_head.conv_dims = [256, 256, 256, 256] model.roi_heads.box_head.fc_dims = [1024] # resize_and_crop_image in: # https://github.com/tensorflow/tpu/blob/b24729de804fdb751b06467d3dce0637fa652060/models/official/detection/utils/input_utils.py#L127 # noqa: E501, B950 image_size = 1024 dataloader.train.mapper.augmentations = [ L(T.ResizeScale)( min_scale=0.1, max_scale=2.0, target_height=image_size, target_width=image_size ), L(T.FixedSizeCrop)(crop_size=(image_size, image_size)), L(T.RandomFlip)(horizontal=True), ] # recompute boxes due to cropping dataloader.train.mapper.recompute_boxes = True # larger batch-size. dataloader.train.total_batch_size = 64 # Equivalent to 100 epochs. # 100 ep = 184375 iters * 64 images/iter / 118000 images/ep train.max_iter = 184375 lr_multiplier = L(WarmupParamScheduler)( scheduler=CosineParamScheduler(1.0, 0.0), warmup_length=500 / train.max_iter, warmup_factor=0.067, ) optimizer.lr = 0.1 optimizer.weight_decay = 4e-5
banmo-main
third_party/detectron2_old/configs/new_baselines/mask_rcnn_R_50_FPN_100ep_LSJ.py
from .mask_rcnn_regnety_4gf_dds_FPN_100ep_LSJ import ( dataloader, lr_multiplier, model, optimizer, train, ) train.max_iter *= 2 # 100ep -> 200ep
banmo-main
third_party/detectron2_old/configs/new_baselines/mask_rcnn_regnety_4gf_dds_FPN_200ep_LSJ.py
from .mask_rcnn_R_50_FPN_100ep_LSJ import ( dataloader, lr_multiplier, model, optimizer, train, ) train.max_iter *= 4 # 100ep -> 400ep
banmo-main
third_party/detectron2_old/configs/new_baselines/mask_rcnn_R_50_FPN_400ep_LSJ.py
from .mask_rcnn_R_101_FPN_100ep_LSJ import ( dataloader, lr_multiplier, model, optimizer, train, ) train.max_iter *= 4 # 100ep -> 400ep
banmo-main
third_party/detectron2_old/configs/new_baselines/mask_rcnn_R_101_FPN_400ep_LSJ.py
from .mask_rcnn_R_50_FPN_100ep_LSJ import ( dataloader, lr_multiplier, model, optimizer, train, ) model.backbone.bottom_up.stages.depth = 101
banmo-main
third_party/detectron2_old/configs/new_baselines/mask_rcnn_R_101_FPN_100ep_LSJ.py
from .mask_rcnn_regnetx_4gf_dds_FPN_100ep_LSJ import ( dataloader, lr_multiplier, model, optimizer, train, ) train.max_iter *= 2 # 100ep -> 200ep
banmo-main
third_party/detectron2_old/configs/new_baselines/mask_rcnn_regnetx_4gf_dds_FPN_200ep_LSJ.py
from ..common.optim import SGD as optimizer from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier from ..common.data.coco import dataloader from ..common.models.mask_rcnn_fpn import model from ..common.train import train from detectron2.config import LazyCall as L from detectron2.modeling.backbone import RegNet from detectron2.modeling.backbone.regnet import SimpleStem, ResBottleneckBlock # Replace default ResNet with RegNetX-4GF from the DDS paper. Config source: # https://github.com/facebookresearch/pycls/blob/2c152a6e5d913e898cca4f0a758f41e6b976714d/configs/dds_baselines/regnetx/RegNetX-4.0GF_dds_8gpu.yaml#L4-L9 # noqa model.backbone.bottom_up = L(RegNet)( stem_class=SimpleStem, stem_width=32, block_class=ResBottleneckBlock, depth=23, w_a=38.65, w_0=96, w_m=2.43, group_width=40, freeze_at=2, norm="FrozenBN", out_features=["s1", "s2", "s3", "s4"], ) model.pixel_std = [57.375, 57.120, 58.395] optimizer.weight_decay = 5e-5 train.init_checkpoint = ( "https://dl.fbaipublicfiles.com/pycls/dds_baselines/160906383/RegNetX-4.0GF_dds_8gpu.pyth" ) # RegNets benefit from enabling cudnn benchmark mode train.cudnn_benchmark = True
banmo-main
third_party/detectron2_old/configs/COCO-InstanceSegmentation/mask_rcnn_regnetx_4gf_dds_fpn_1x.py
from ..common.optim import SGD as optimizer from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier from ..common.data.coco import dataloader from ..common.models.mask_rcnn_fpn import model from ..common.train import train from detectron2.config import LazyCall as L from detectron2.modeling.backbone import RegNet from detectron2.modeling.backbone.regnet import SimpleStem, ResBottleneckBlock # Replace default ResNet with RegNetY-4GF from the DDS paper. Config source: # https://github.com/facebookresearch/pycls/blob/2c152a6e5d913e898cca4f0a758f41e6b976714d/configs/dds_baselines/regnety/RegNetY-4.0GF_dds_8gpu.yaml#L4-L10 # noqa model.backbone.bottom_up = L(RegNet)( stem_class=SimpleStem, stem_width=32, block_class=ResBottleneckBlock, depth=22, w_a=31.41, w_0=96, w_m=2.24, group_width=64, se_ratio=0.25, freeze_at=2, norm="FrozenBN", out_features=["s1", "s2", "s3", "s4"], ) model.pixel_std = [57.375, 57.120, 58.395] optimizer.weight_decay = 5e-5 train.init_checkpoint = ( "https://dl.fbaipublicfiles.com/pycls/dds_baselines/160906838/RegNetY-4.0GF_dds_8gpu.pyth" ) # RegNets benefit from enabling cudnn benchmark mode train.cudnn_benchmark = True
banmo-main
third_party/detectron2_old/configs/COCO-InstanceSegmentation/mask_rcnn_regnety_4gf_dds_fpn_1x.py
from ..common.optim import SGD as optimizer from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier from ..common.data.coco import dataloader from ..common.models.mask_rcnn_fpn import model from ..common.train import train model.backbone.bottom_up.freeze_at = 2
banmo-main
third_party/detectron2_old/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.py
from ..common.train import train from ..common.optim import SGD as optimizer from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier from ..common.data.coco import dataloader from ..common.models.mask_rcnn_c4 import model model.backbone.freeze_at = 2
banmo-main
third_party/detectron2_old/configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.py
#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. # -*- coding: utf-8 -*- import argparse template = """<details><summary> install </summary><pre><code>\ python -m pip install detectron2{d2_version} -f \\ https://dl.fbaipublicfiles.com/detectron2/wheels/{cuda}/torch{torch}/index.html </code></pre> </details>""" CUDA_SUFFIX = { "11.1": "cu111", "11.0": "cu110", "10.2": "cu102", "10.1": "cu101", "10.0": "cu100", "9.2": "cu92", "cpu": "cpu", } def gen_header(torch_versions): return '<table class="docutils"><tbody><th width="80"> CUDA </th>' + "".join( [ '<th valign="bottom" align="left" width="100">torch {}</th>'.format(t) for t in torch_versions ] ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--d2-version", help="detectron2 version number, default to empty") args = parser.parse_args() d2_version = f"=={args.d2_version}" if args.d2_version else "" all_versions = ( [("1.6", k) for k in ["10.2", "10.1", "9.2", "cpu"]] + [("1.7", k) for k in ["11.0", "10.2", "10.1", "9.2", "cpu"]] + [("1.8", k) for k in ["11.1", "10.2", "10.1", "cpu"]] ) torch_versions = sorted({k[0] for k in all_versions}, key=float, reverse=True) cuda_versions = sorted( {k[1] for k in all_versions}, key=lambda x: float(x) if x != "cpu" else 0, reverse=True ) table = gen_header(torch_versions) for cu in cuda_versions: table += f""" <tr><td align="left">{cu}</td>""" cu_suffix = CUDA_SUFFIX[cu] for torch in torch_versions: if (torch, cu) in all_versions: cell = template.format(d2_version=d2_version, cuda=cu_suffix, torch=torch) else: cell = "" table += f"""<td align="left">{cell} </td> """ table += "</tr>" table += "</tbody></table>" print(table)
banmo-main
third_party/detectron2_old/dev/packaging/gen_install_table.py
# Copyright (c) Facebook, Inc. and its affiliates. from .utils.env import setup_environment setup_environment() # This line will be programatically read/write by setup.py. # Leave them at the bottom of this file and don't touch them. __version__ = "0.4"
banmo-main
third_party/detectron2_old/detectron2/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. import logging from detectron2.utils.file_io import PathHandler, PathManager class ModelCatalog(object): """ Store mappings from names to third-party models. """ S3_C2_DETECTRON_PREFIX = "https://dl.fbaipublicfiles.com/detectron" # MSRA models have STRIDE_IN_1X1=True. False otherwise. # NOTE: all BN models here have fused BN into an affine layer. # As a result, you should only load them to a model with "FrozenBN". # Loading them to a model with regular BN or SyncBN is wrong. # Even when loaded to FrozenBN, it is still different from affine by an epsilon, # which should be negligible for training. # NOTE: all models here uses PIXEL_STD=[1,1,1] # NOTE: Most of the BN models here are no longer used. We use the # re-converted pre-trained models under detectron2 model zoo instead. C2_IMAGENET_MODELS = { "MSRA/R-50": "ImageNetPretrained/MSRA/R-50.pkl", "MSRA/R-101": "ImageNetPretrained/MSRA/R-101.pkl", "FAIR/R-50-GN": "ImageNetPretrained/47261647/R-50-GN.pkl", "FAIR/R-101-GN": "ImageNetPretrained/47592356/R-101-GN.pkl", "FAIR/X-101-32x8d": "ImageNetPretrained/20171220/X-101-32x8d.pkl", "FAIR/X-101-64x4d": "ImageNetPretrained/FBResNeXt/X-101-64x4d.pkl", "FAIR/X-152-32x8d-IN5k": "ImageNetPretrained/25093814/X-152-32x8d-IN5k.pkl", } C2_DETECTRON_PATH_FORMAT = ( "{prefix}/{url}/output/train/{dataset}/{type}/model_final.pkl" # noqa B950 ) C2_DATASET_COCO = "coco_2014_train%3Acoco_2014_valminusminival" C2_DATASET_COCO_KEYPOINTS = "keypoints_coco_2014_train%3Akeypoints_coco_2014_valminusminival" # format: {model_name} -> part of the url C2_DETECTRON_MODELS = { "35857197/e2e_faster_rcnn_R-50-C4_1x": "35857197/12_2017_baselines/e2e_faster_rcnn_R-50-C4_1x.yaml.01_33_49.iAX0mXvW", # noqa B950 "35857345/e2e_faster_rcnn_R-50-FPN_1x": "35857345/12_2017_baselines/e2e_faster_rcnn_R-50-FPN_1x.yaml.01_36_30.cUF7QR7I", # noqa B950 "35857890/e2e_faster_rcnn_R-101-FPN_1x": "35857890/12_2017_baselines/e2e_faster_rcnn_R-101-FPN_1x.yaml.01_38_50.sNxI7sX7", # noqa B950 "36761737/e2e_faster_rcnn_X-101-32x8d-FPN_1x": "36761737/12_2017_baselines/e2e_faster_rcnn_X-101-32x8d-FPN_1x.yaml.06_31_39.5MIHi1fZ", # noqa B950 "35858791/e2e_mask_rcnn_R-50-C4_1x": "35858791/12_2017_baselines/e2e_mask_rcnn_R-50-C4_1x.yaml.01_45_57.ZgkA7hPB", # noqa B950 "35858933/e2e_mask_rcnn_R-50-FPN_1x": "35858933/12_2017_baselines/e2e_mask_rcnn_R-50-FPN_1x.yaml.01_48_14.DzEQe4wC", # noqa B950 "35861795/e2e_mask_rcnn_R-101-FPN_1x": "35861795/12_2017_baselines/e2e_mask_rcnn_R-101-FPN_1x.yaml.02_31_37.KqyEK4tT", # noqa B950 "36761843/e2e_mask_rcnn_X-101-32x8d-FPN_1x": "36761843/12_2017_baselines/e2e_mask_rcnn_X-101-32x8d-FPN_1x.yaml.06_35_59.RZotkLKI", # noqa B950 "48616381/e2e_mask_rcnn_R-50-FPN_2x_gn": "GN/48616381/04_2018_gn_baselines/e2e_mask_rcnn_R-50-FPN_2x_gn_0416.13_23_38.bTlTI97Q", # noqa B950 "37697547/e2e_keypoint_rcnn_R-50-FPN_1x": "37697547/12_2017_baselines/e2e_keypoint_rcnn_R-50-FPN_1x.yaml.08_42_54.kdzV35ao", # noqa B950 "35998355/rpn_R-50-C4_1x": "35998355/12_2017_baselines/rpn_R-50-C4_1x.yaml.08_00_43.njH5oD9L", # noqa B950 "35998814/rpn_R-50-FPN_1x": "35998814/12_2017_baselines/rpn_R-50-FPN_1x.yaml.08_06_03.Axg0r179", # noqa B950 "36225147/fast_R-50-FPN_1x": "36225147/12_2017_baselines/fast_rcnn_R-50-FPN_1x.yaml.08_39_09.L3obSdQ2", # noqa B950 } @staticmethod def get(name): if name.startswith("Caffe2Detectron/COCO"): return ModelCatalog._get_c2_detectron_baseline(name) if name.startswith("ImageNetPretrained/"): return ModelCatalog._get_c2_imagenet_pretrained(name) raise RuntimeError("model not present in the catalog: {}".format(name)) @staticmethod def _get_c2_imagenet_pretrained(name): prefix = ModelCatalog.S3_C2_DETECTRON_PREFIX name = name[len("ImageNetPretrained/") :] name = ModelCatalog.C2_IMAGENET_MODELS[name] url = "/".join([prefix, name]) return url @staticmethod def _get_c2_detectron_baseline(name): name = name[len("Caffe2Detectron/COCO/") :] url = ModelCatalog.C2_DETECTRON_MODELS[name] if "keypoint_rcnn" in name: dataset = ModelCatalog.C2_DATASET_COCO_KEYPOINTS else: dataset = ModelCatalog.C2_DATASET_COCO if "35998355/rpn_R-50-C4_1x" in name: # this one model is somehow different from others .. type = "rpn" else: type = "generalized_rcnn" # Detectron C2 models are stored in the structure defined in `C2_DETECTRON_PATH_FORMAT`. url = ModelCatalog.C2_DETECTRON_PATH_FORMAT.format( prefix=ModelCatalog.S3_C2_DETECTRON_PREFIX, url=url, type=type, dataset=dataset ) return url class ModelCatalogHandler(PathHandler): """ Resolve URL like catalog://. """ PREFIX = "catalog://" def _get_supported_prefixes(self): return [self.PREFIX] def _get_local_path(self, path, **kwargs): logger = logging.getLogger(__name__) catalog_path = ModelCatalog.get(path[len(self.PREFIX) :]) logger.info("Catalog entry {} points to {}".format(path, catalog_path)) return PathManager.get_local_path(catalog_path, **kwargs) def _open(self, path, mode="r", **kwargs): return PathManager.open(self._get_local_path(path), mode, **kwargs) PathManager.register_handler(ModelCatalogHandler())
banmo-main
third_party/detectron2_old/detectron2/checkpoint/catalog.py
# Copyright (c) Facebook, Inc. and its affiliates. import copy import logging import re from typing import Dict, List import torch from tabulate import tabulate def convert_basic_c2_names(original_keys): """ Apply some basic name conversion to names in C2 weights. It only deals with typical backbone models. Args: original_keys (list[str]): Returns: list[str]: The same number of strings matching those in original_keys. """ layer_keys = copy.deepcopy(original_keys) layer_keys = [ {"pred_b": "linear_b", "pred_w": "linear_w"}.get(k, k) for k in layer_keys ] # some hard-coded mappings layer_keys = [k.replace("_", ".") for k in layer_keys] layer_keys = [re.sub("\\.b$", ".bias", k) for k in layer_keys] layer_keys = [re.sub("\\.w$", ".weight", k) for k in layer_keys] # Uniform both bn and gn names to "norm" layer_keys = [re.sub("bn\\.s$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("bn\\.bias$", "norm.bias", k) for k in layer_keys] layer_keys = [re.sub("bn\\.rm", "norm.running_mean", k) for k in layer_keys] layer_keys = [re.sub("bn\\.running.mean$", "norm.running_mean", k) for k in layer_keys] layer_keys = [re.sub("bn\\.riv$", "norm.running_var", k) for k in layer_keys] layer_keys = [re.sub("bn\\.running.var$", "norm.running_var", k) for k in layer_keys] layer_keys = [re.sub("bn\\.gamma$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("bn\\.beta$", "norm.bias", k) for k in layer_keys] layer_keys = [re.sub("gn\\.s$", "norm.weight", k) for k in layer_keys] layer_keys = [re.sub("gn\\.bias$", "norm.bias", k) for k in layer_keys] # stem layer_keys = [re.sub("^res\\.conv1\\.norm\\.", "conv1.norm.", k) for k in layer_keys] # to avoid mis-matching with "conv1" in other components (e.g. detection head) layer_keys = [re.sub("^conv1\\.", "stem.conv1.", k) for k in layer_keys] # layer1-4 is used by torchvision, however we follow the C2 naming strategy (res2-5) # layer_keys = [re.sub("^res2.", "layer1.", k) for k in layer_keys] # layer_keys = [re.sub("^res3.", "layer2.", k) for k in layer_keys] # layer_keys = [re.sub("^res4.", "layer3.", k) for k in layer_keys] # layer_keys = [re.sub("^res5.", "layer4.", k) for k in layer_keys] # blocks layer_keys = [k.replace(".branch1.", ".shortcut.") for k in layer_keys] layer_keys = [k.replace(".branch2a.", ".conv1.") for k in layer_keys] layer_keys = [k.replace(".branch2b.", ".conv2.") for k in layer_keys] layer_keys = [k.replace(".branch2c.", ".conv3.") for k in layer_keys] # DensePose substitutions layer_keys = [re.sub("^body.conv.fcn", "body_conv_fcn", k) for k in layer_keys] layer_keys = [k.replace("AnnIndex.lowres", "ann_index_lowres") for k in layer_keys] layer_keys = [k.replace("Index.UV.lowres", "index_uv_lowres") for k in layer_keys] layer_keys = [k.replace("U.lowres", "u_lowres") for k in layer_keys] layer_keys = [k.replace("V.lowres", "v_lowres") for k in layer_keys] return layer_keys def convert_c2_detectron_names(weights): """ Map Caffe2 Detectron weight names to Detectron2 names. Args: weights (dict): name -> tensor Returns: dict: detectron2 names -> tensor dict: detectron2 names -> C2 names """ logger = logging.getLogger(__name__) logger.info("Renaming Caffe2 weights ......") original_keys = sorted(weights.keys()) layer_keys = copy.deepcopy(original_keys) layer_keys = convert_basic_c2_names(layer_keys) # -------------------------------------------------------------------------- # RPN hidden representation conv # -------------------------------------------------------------------------- # FPN case # In the C2 model, the RPN hidden layer conv is defined for FPN level 2 and then # shared for all other levels, hence the appearance of "fpn2" layer_keys = [ k.replace("conv.rpn.fpn2", "proposal_generator.rpn_head.conv") for k in layer_keys ] # Non-FPN case layer_keys = [k.replace("conv.rpn", "proposal_generator.rpn_head.conv") for k in layer_keys] # -------------------------------------------------------------------------- # RPN box transformation conv # -------------------------------------------------------------------------- # FPN case (see note above about "fpn2") layer_keys = [ k.replace("rpn.bbox.pred.fpn2", "proposal_generator.rpn_head.anchor_deltas") for k in layer_keys ] layer_keys = [ k.replace("rpn.cls.logits.fpn2", "proposal_generator.rpn_head.objectness_logits") for k in layer_keys ] # Non-FPN case layer_keys = [ k.replace("rpn.bbox.pred", "proposal_generator.rpn_head.anchor_deltas") for k in layer_keys ] layer_keys = [ k.replace("rpn.cls.logits", "proposal_generator.rpn_head.objectness_logits") for k in layer_keys ] # -------------------------------------------------------------------------- # Fast R-CNN box head # -------------------------------------------------------------------------- layer_keys = [re.sub("^bbox\\.pred", "bbox_pred", k) for k in layer_keys] layer_keys = [re.sub("^cls\\.score", "cls_score", k) for k in layer_keys] layer_keys = [re.sub("^fc6\\.", "box_head.fc1.", k) for k in layer_keys] layer_keys = [re.sub("^fc7\\.", "box_head.fc2.", k) for k in layer_keys] # 4conv1fc head tensor names: head_conv1_w, head_conv1_gn_s layer_keys = [re.sub("^head\\.conv", "box_head.conv", k) for k in layer_keys] # -------------------------------------------------------------------------- # FPN lateral and output convolutions # -------------------------------------------------------------------------- def fpn_map(name): """ Look for keys with the following patterns: 1) Starts with "fpn.inner." Example: "fpn.inner.res2.2.sum.lateral.weight" Meaning: These are lateral pathway convolutions 2) Starts with "fpn.res" Example: "fpn.res2.2.sum.weight" Meaning: These are FPN output convolutions """ splits = name.split(".") norm = ".norm" if "norm" in splits else "" if name.startswith("fpn.inner."): # splits example: ['fpn', 'inner', 'res2', '2', 'sum', 'lateral', 'weight'] stage = int(splits[2][len("res") :]) return "fpn_lateral{}{}.{}".format(stage, norm, splits[-1]) elif name.startswith("fpn.res"): # splits example: ['fpn', 'res2', '2', 'sum', 'weight'] stage = int(splits[1][len("res") :]) return "fpn_output{}{}.{}".format(stage, norm, splits[-1]) return name layer_keys = [fpn_map(k) for k in layer_keys] # -------------------------------------------------------------------------- # Mask R-CNN mask head # -------------------------------------------------------------------------- # roi_heads.StandardROIHeads case layer_keys = [k.replace(".[mask].fcn", "mask_head.mask_fcn") for k in layer_keys] layer_keys = [re.sub("^\\.mask\\.fcn", "mask_head.mask_fcn", k) for k in layer_keys] layer_keys = [k.replace("mask.fcn.logits", "mask_head.predictor") for k in layer_keys] # roi_heads.Res5ROIHeads case layer_keys = [k.replace("conv5.mask", "mask_head.deconv") for k in layer_keys] # -------------------------------------------------------------------------- # Keypoint R-CNN head # -------------------------------------------------------------------------- # interestingly, the keypoint head convs have blob names that are simply "conv_fcnX" layer_keys = [k.replace("conv.fcn", "roi_heads.keypoint_head.conv_fcn") for k in layer_keys] layer_keys = [ k.replace("kps.score.lowres", "roi_heads.keypoint_head.score_lowres") for k in layer_keys ] layer_keys = [k.replace("kps.score.", "roi_heads.keypoint_head.score.") for k in layer_keys] # -------------------------------------------------------------------------- # Done with replacements # -------------------------------------------------------------------------- assert len(set(layer_keys)) == len(layer_keys) assert len(original_keys) == len(layer_keys) new_weights = {} new_keys_to_original_keys = {} for orig, renamed in zip(original_keys, layer_keys): new_keys_to_original_keys[renamed] = orig if renamed.startswith("bbox_pred.") or renamed.startswith("mask_head.predictor."): # remove the meaningless prediction weight for background class new_start_idx = 4 if renamed.startswith("bbox_pred.") else 1 new_weights[renamed] = weights[orig][new_start_idx:] logger.info( "Remove prediction weight for background class in {}. The shape changes from " "{} to {}.".format( renamed, tuple(weights[orig].shape), tuple(new_weights[renamed].shape) ) ) elif renamed.startswith("cls_score."): # move weights of bg class from original index 0 to last index logger.info( "Move classification weights for background class in {} from index 0 to " "index {}.".format(renamed, weights[orig].shape[0] - 1) ) new_weights[renamed] = torch.cat([weights[orig][1:], weights[orig][:1]]) else: new_weights[renamed] = weights[orig] return new_weights, new_keys_to_original_keys # Note the current matching is not symmetric. # it assumes model_state_dict will have longer names. def align_and_update_state_dicts(model_state_dict, ckpt_state_dict, c2_conversion=True): """ Match names between the two state-dict, and returns a new chkpt_state_dict with names converted to match model_state_dict with heuristics. The returned dict can be later loaded with fvcore checkpointer. If `c2_conversion==True`, `ckpt_state_dict` is assumed to be a Caffe2 model and will be renamed at first. Strategy: suppose that the models that we will create will have prefixes appended to each of its keys, for example due to an extra level of nesting that the original pre-trained weights from ImageNet won't contain. For example, model.state_dict() might return backbone[0].body.res2.conv1.weight, while the pre-trained model contains res2.conv1.weight. We thus want to match both parameters together. For that, we look for each model weight, look among all loaded keys if there is one that is a suffix of the current weight name, and use it if that's the case. If multiple matches exist, take the one with longest size of the corresponding name. For example, for the same model as before, the pretrained weight file can contain both res2.conv1.weight, as well as conv1.weight. In this case, we want to match backbone[0].body.conv1.weight to conv1.weight, and backbone[0].body.res2.conv1.weight to res2.conv1.weight. """ model_keys = sorted(model_state_dict.keys()) if c2_conversion: ckpt_state_dict, original_keys = convert_c2_detectron_names(ckpt_state_dict) # original_keys: the name in the original dict (before renaming) else: original_keys = {x: x for x in ckpt_state_dict.keys()} ckpt_keys = sorted(ckpt_state_dict.keys()) def match(a, b): # Matched ckpt_key should be a complete (starts with '.') suffix. # For example, roi_heads.mesh_head.whatever_conv1 does not match conv1, # but matches whatever_conv1 or mesh_head.whatever_conv1. return a == b or a.endswith("." + b) # get a matrix of string matches, where each (i, j) entry correspond to the size of the # ckpt_key string, if it matches match_matrix = [len(j) if match(i, j) else 0 for i in model_keys for j in ckpt_keys] match_matrix = torch.as_tensor(match_matrix).view(len(model_keys), len(ckpt_keys)) # use the matched one with longest size in case of multiple matches max_match_size, idxs = match_matrix.max(1) # remove indices that correspond to no-match idxs[max_match_size == 0] = -1 logger = logging.getLogger(__name__) # matched_pairs (matched checkpoint key --> matched model key) matched_keys = {} result_state_dict = {} for idx_model, idx_ckpt in enumerate(idxs.tolist()): if idx_ckpt == -1: continue key_model = model_keys[idx_model] key_ckpt = ckpt_keys[idx_ckpt] value_ckpt = ckpt_state_dict[key_ckpt] shape_in_model = model_state_dict[key_model].shape if shape_in_model != value_ckpt.shape: logger.warning( "Shape of {} in checkpoint is {}, while shape of {} in model is {}.".format( key_ckpt, value_ckpt.shape, key_model, shape_in_model ) ) logger.warning( "{} will not be loaded. Please double check and see if this is desired.".format( key_ckpt ) ) continue assert key_model not in result_state_dict result_state_dict[key_model] = value_ckpt if key_ckpt in matched_keys: # already added to matched_keys logger.error( "Ambiguity found for {} in checkpoint!" "It matches at least two keys in the model ({} and {}).".format( key_ckpt, key_model, matched_keys[key_ckpt] ) ) raise ValueError("Cannot match one checkpoint key to multiple keys in the model.") matched_keys[key_ckpt] = key_model # logging: matched_model_keys = sorted(matched_keys.values()) if len(matched_model_keys) == 0: logger.warning("No weights in checkpoint matched with model.") return ckpt_state_dict common_prefix = _longest_common_prefix(matched_model_keys) rev_matched_keys = {v: k for k, v in matched_keys.items()} original_keys = {k: original_keys[rev_matched_keys[k]] for k in matched_model_keys} model_key_groups = _group_keys_by_module(matched_model_keys, original_keys) table = [] memo = set() for key_model in matched_model_keys: if key_model in memo: continue if key_model in model_key_groups: group = model_key_groups[key_model] memo |= set(group) shapes = [tuple(model_state_dict[k].shape) for k in group] table.append( ( _longest_common_prefix([k[len(common_prefix) :] for k in group]) + "*", _group_str([original_keys[k] for k in group]), " ".join([str(x).replace(" ", "") for x in shapes]), ) ) else: key_checkpoint = original_keys[key_model] shape = str(tuple(model_state_dict[key_model].shape)) table.append((key_model[len(common_prefix) :], key_checkpoint, shape)) table_str = tabulate( table, tablefmt="pipe", headers=["Names in Model", "Names in Checkpoint", "Shapes"] ) logger.info( "Following weights matched with " + (f"submodule {common_prefix[:-1]}" if common_prefix else "model") + ":\n" + table_str ) unmatched_ckpt_keys = [k for k in ckpt_keys if k not in set(matched_keys.keys())] for k in unmatched_ckpt_keys: result_state_dict[k] = ckpt_state_dict[k] return result_state_dict def _group_keys_by_module(keys: List[str], original_names: Dict[str, str]): """ Params in the same submodule are grouped together. Args: keys: names of all parameters original_names: mapping from parameter name to their name in the checkpoint Returns: dict[name -> all other names in the same group] """ def _submodule_name(key): pos = key.rfind(".") if pos < 0: return None prefix = key[: pos + 1] return prefix all_submodules = [_submodule_name(k) for k in keys] all_submodules = [x for x in all_submodules if x] all_submodules = sorted(all_submodules, key=len) ret = {} for prefix in all_submodules: group = [k for k in keys if k.startswith(prefix)] if len(group) <= 1: continue original_name_lcp = _longest_common_prefix_str([original_names[k] for k in group]) if len(original_name_lcp) == 0: # don't group weights if original names don't share prefix continue for k in group: if k in ret: continue ret[k] = group return ret def _longest_common_prefix(names: List[str]) -> str: """ ["abc.zfg", "abc.zef"] -> "abc." """ names = [n.split(".") for n in names] m1, m2 = min(names), max(names) ret = [a for a, b in zip(m1, m2) if a == b] ret = ".".join(ret) + "." if len(ret) else "" return ret def _longest_common_prefix_str(names: List[str]) -> str: m1, m2 = min(names), max(names) lcp = [a for a, b in zip(m1, m2) if a == b] lcp = "".join(lcp) return lcp def _group_str(names: List[str]) -> str: """ Turn "common1", "common2", "common3" into "common{1,2,3}" """ lcp = _longest_common_prefix_str(names) rest = [x[len(lcp) :] for x in names] rest = "{" + ",".join(rest) + "}" ret = lcp + rest # add some simplification for BN specifically ret = ret.replace("bn_{beta,running_mean,running_var,gamma}", "bn_*") ret = ret.replace("bn_beta,bn_running_mean,bn_running_var,bn_gamma", "bn_*") return ret
banmo-main
third_party/detectron2_old/detectron2/checkpoint/c2_model_loading.py
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. # File: from . import catalog as _UNUSED # register the handler from .detection_checkpoint import DetectionCheckpointer from fvcore.common.checkpoint import Checkpointer, PeriodicCheckpointer __all__ = ["Checkpointer", "PeriodicCheckpointer", "DetectionCheckpointer"]
banmo-main
third_party/detectron2_old/detectron2/checkpoint/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. import logging import os import pickle import torch from fvcore.common.checkpoint import Checkpointer from torch.nn.parallel import DistributedDataParallel import detectron2.utils.comm as comm from detectron2.utils.env import TORCH_VERSION from detectron2.utils.file_io import PathManager from .c2_model_loading import align_and_update_state_dicts class DetectionCheckpointer(Checkpointer): """ Same as :class:`Checkpointer`, but is able to: 1. handle models in detectron & detectron2 model zoo, and apply conversions for legacy models. 2. correctly load checkpoints that are only available on the master worker """ def __init__(self, model, save_dir="", *, save_to_disk=None, **checkpointables): is_main_process = comm.is_main_process() super().__init__( model, save_dir, save_to_disk=is_main_process if save_to_disk is None else save_to_disk, **checkpointables, ) self.path_manager = PathManager def load(self, path, *args, **kwargs): need_sync = False if path and isinstance(self.model, DistributedDataParallel): logger = logging.getLogger(__name__) path = self.path_manager.get_local_path(path) has_file = os.path.isfile(path) all_has_file = comm.all_gather(has_file) if not all_has_file[0]: raise OSError(f"File {path} not found on main worker.") if not all(all_has_file): logger.warning( f"Not all workers can read checkpoint {path}. " "Training may fail to fully resume." ) # TODO: broadcast the checkpoint file contents from main # worker, and load from it instead. need_sync = True if not has_file: path = None # don't load if not readable ret = super().load(path, *args, **kwargs) if need_sync: logger.info("Broadcasting model states from main worker ...") if TORCH_VERSION >= (1, 7): self.model._sync_params_and_buffers() return ret def _load_file(self, filename): if filename.endswith(".pkl"): with PathManager.open(filename, "rb") as f: data = pickle.load(f, encoding="latin1") if "model" in data and "__author__" in data: # file is in Detectron2 model zoo format self.logger.info("Reading a file from '{}'".format(data["__author__"])) return data else: # assume file is from Caffe2 / Detectron1 model zoo if "blobs" in data: # Detection models have "blobs", but ImageNet models don't data = data["blobs"] data = {k: v for k, v in data.items() if not k.endswith("_momentum")} return {"model": data, "__author__": "Caffe2", "matching_heuristics": True} elif filename.endswith(".pyth"): # assume file is from pycls; no one else seems to use the ".pyth" extension with PathManager.open(filename, "rb") as f: data = torch.load(f) assert ( "model_state" in data ), f"Cannot load .pyth file {filename}; pycls checkpoints must contain 'model_state'." model_state = { k: v for k, v in data["model_state"].items() if not k.endswith("num_batches_tracked") } return {"model": model_state, "__author__": "pycls", "matching_heuristics": True} loaded = super()._load_file(filename) # load native pth checkpoint if "model" not in loaded: loaded = {"model": loaded} return loaded def _load_model(self, checkpoint): if checkpoint.get("matching_heuristics", False): self._convert_ndarray_to_tensor(checkpoint["model"]) # convert weights by name-matching heuristics checkpoint["model"] = align_and_update_state_dicts( self.model.state_dict(), checkpoint["model"], c2_conversion=checkpoint.get("__author__", None) == "Caffe2", ) # for non-caffe2 models, use standard ways to load it incompatible = super()._load_model(checkpoint) model_buffers = dict(self.model.named_buffers(recurse=False)) for k in ["pixel_mean", "pixel_std"]: # Ignore missing key message about pixel_mean/std. # Though they may be missing in old checkpoints, they will be correctly # initialized from config anyway. if k in model_buffers: try: incompatible.missing_keys.remove(k) except ValueError: pass return incompatible
banmo-main
third_party/detectron2_old/detectron2/checkpoint/detection_checkpoint.py
# Copyright (c) Facebook, Inc. and its affiliates. import math from functools import lru_cache import torch from torch import nn from torch.autograd import Function from torch.autograd.function import once_differentiable from torch.nn.modules.utils import _pair from torchvision.ops import deform_conv2d from detectron2 import _C from .wrappers import _NewEmptyTensorOp class _DeformConv(Function): @staticmethod def forward( ctx, input, offset, weight, stride=1, padding=0, dilation=1, groups=1, deformable_groups=1, im2col_step=64, ): if input is not None and input.dim() != 4: raise ValueError( "Expected 4D tensor as input, got {}D tensor instead.".format(input.dim()) ) ctx.stride = _pair(stride) ctx.padding = _pair(padding) ctx.dilation = _pair(dilation) ctx.groups = groups ctx.deformable_groups = deformable_groups ctx.im2col_step = im2col_step ctx.save_for_backward(input, offset, weight) output = input.new_empty( _DeformConv._output_size(input, weight, ctx.padding, ctx.dilation, ctx.stride) ) ctx.bufs_ = [input.new_empty(0), input.new_empty(0)] # columns, ones if not input.is_cuda: if deformable_groups != 1: raise NotImplementedError( "Deformable Conv with deformable_groups != 1 is not supported on CPUs!" ) return deform_conv2d( input, offset, weight, stride=stride, padding=padding, dilation=dilation ) else: cur_im2col_step = _DeformConv._cal_im2col_step(input.shape[0], ctx.im2col_step) assert (input.shape[0] % cur_im2col_step) == 0, "im2col step must divide batchsize" _C.deform_conv_forward( input, weight, offset, output, ctx.bufs_[0], ctx.bufs_[1], weight.size(3), weight.size(2), ctx.stride[1], ctx.stride[0], ctx.padding[1], ctx.padding[0], ctx.dilation[1], ctx.dilation[0], ctx.groups, ctx.deformable_groups, cur_im2col_step, ) return output @staticmethod @once_differentiable def backward(ctx, grad_output): input, offset, weight = ctx.saved_tensors grad_input = grad_offset = grad_weight = None if not grad_output.is_cuda: raise NotImplementedError("Deformable Conv is not supported on CPUs!") else: cur_im2col_step = _DeformConv._cal_im2col_step(input.shape[0], ctx.im2col_step) assert (input.shape[0] % cur_im2col_step) == 0, "im2col step must divide batchsize" if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]: grad_input = torch.zeros_like(input) grad_offset = torch.zeros_like(offset) _C.deform_conv_backward_input( input, offset, grad_output, grad_input, grad_offset, weight, ctx.bufs_[0], weight.size(3), weight.size(2), ctx.stride[1], ctx.stride[0], ctx.padding[1], ctx.padding[0], ctx.dilation[1], ctx.dilation[0], ctx.groups, ctx.deformable_groups, cur_im2col_step, ) if ctx.needs_input_grad[2]: grad_weight = torch.zeros_like(weight) _C.deform_conv_backward_filter( input, offset, grad_output, grad_weight, ctx.bufs_[0], ctx.bufs_[1], weight.size(3), weight.size(2), ctx.stride[1], ctx.stride[0], ctx.padding[1], ctx.padding[0], ctx.dilation[1], ctx.dilation[0], ctx.groups, ctx.deformable_groups, 1, cur_im2col_step, ) return grad_input, grad_offset, grad_weight, None, None, None, None, None, None @staticmethod def _output_size(input, weight, padding, dilation, stride): channels = weight.size(0) output_size = (input.size(0), channels) for d in range(input.dim() - 2): in_size = input.size(d + 2) pad = padding[d] kernel = dilation[d] * (weight.size(d + 2) - 1) + 1 stride_ = stride[d] output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1,) if not all(map(lambda s: s > 0, output_size)): raise ValueError( "convolution input is too small (output would be {})".format( "x".join(map(str, output_size)) ) ) return output_size @staticmethod @lru_cache(maxsize=128) def _cal_im2col_step(input_size, default_size): """ Calculate proper im2col step size, which should be divisible by input_size and not larger than prefer_size. Meanwhile the step size should be as large as possible to be more efficient. So we choose the largest one among all divisors of input_size which are smaller than prefer_size. :param input_size: input batch size . :param default_size: default preferred im2col step size. :return: the largest proper step size. """ if input_size <= default_size: return input_size best_step = 1 for step in range(2, min(int(math.sqrt(input_size)) + 1, default_size)): if input_size % step == 0: if input_size // step <= default_size: return input_size // step best_step = step return best_step class _ModulatedDeformConv(Function): @staticmethod def forward( ctx, input, offset, mask, weight, bias=None, stride=1, padding=0, dilation=1, groups=1, deformable_groups=1, ): ctx.stride = stride ctx.padding = padding ctx.dilation = dilation ctx.groups = groups ctx.deformable_groups = deformable_groups ctx.with_bias = bias is not None if not ctx.with_bias: bias = input.new_empty(1) # fake tensor if not input.is_cuda: raise NotImplementedError("Deformable Conv is not supported on CPUs!") if ( weight.requires_grad or mask.requires_grad or offset.requires_grad or input.requires_grad ): ctx.save_for_backward(input, offset, mask, weight, bias) output = input.new_empty(_ModulatedDeformConv._infer_shape(ctx, input, weight)) ctx._bufs = [input.new_empty(0), input.new_empty(0)] _C.modulated_deform_conv_forward( input, weight, bias, ctx._bufs[0], offset, mask, output, ctx._bufs[1], weight.shape[2], weight.shape[3], ctx.stride, ctx.stride, ctx.padding, ctx.padding, ctx.dilation, ctx.dilation, ctx.groups, ctx.deformable_groups, ctx.with_bias, ) return output @staticmethod @once_differentiable def backward(ctx, grad_output): if not grad_output.is_cuda: raise NotImplementedError("Deformable Conv is not supported on CPUs!") input, offset, mask, weight, bias = ctx.saved_tensors grad_input = torch.zeros_like(input) grad_offset = torch.zeros_like(offset) grad_mask = torch.zeros_like(mask) grad_weight = torch.zeros_like(weight) grad_bias = torch.zeros_like(bias) _C.modulated_deform_conv_backward( input, weight, bias, ctx._bufs[0], offset, mask, ctx._bufs[1], grad_input, grad_weight, grad_bias, grad_offset, grad_mask, grad_output, weight.shape[2], weight.shape[3], ctx.stride, ctx.stride, ctx.padding, ctx.padding, ctx.dilation, ctx.dilation, ctx.groups, ctx.deformable_groups, ctx.with_bias, ) if not ctx.with_bias: grad_bias = None return ( grad_input, grad_offset, grad_mask, grad_weight, grad_bias, None, None, None, None, None, ) @staticmethod def _infer_shape(ctx, input, weight): n = input.size(0) channels_out = weight.size(0) height, width = input.shape[2:4] kernel_h, kernel_w = weight.shape[2:4] height_out = ( height + 2 * ctx.padding - (ctx.dilation * (kernel_h - 1) + 1) ) // ctx.stride + 1 width_out = ( width + 2 * ctx.padding - (ctx.dilation * (kernel_w - 1) + 1) ) // ctx.stride + 1 return n, channels_out, height_out, width_out deform_conv = _DeformConv.apply modulated_deform_conv = _ModulatedDeformConv.apply class DeformConv(nn.Module): def __init__( self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, deformable_groups=1, bias=False, norm=None, activation=None, ): """ Deformable convolution from :paper:`deformconv`. Arguments are similar to :class:`Conv2D`. Extra arguments: Args: deformable_groups (int): number of groups used in deformable convolution. norm (nn.Module, optional): a normalization layer activation (callable(Tensor) -> Tensor): a callable activation function """ super(DeformConv, self).__init__() assert not bias assert in_channels % groups == 0, "in_channels {} cannot be divisible by groups {}".format( in_channels, groups ) assert ( out_channels % groups == 0 ), "out_channels {} cannot be divisible by groups {}".format(out_channels, groups) self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = _pair(kernel_size) self.stride = _pair(stride) self.padding = _pair(padding) self.dilation = _pair(dilation) self.groups = groups self.deformable_groups = deformable_groups self.norm = norm self.activation = activation self.weight = nn.Parameter( torch.Tensor(out_channels, in_channels // self.groups, *self.kernel_size) ) self.bias = None nn.init.kaiming_uniform_(self.weight, nonlinearity="relu") def forward(self, x, offset): if x.numel() == 0: # When input is empty, we want to return a empty tensor with "correct" shape, # So that the following operations will not panic # if they check for the shape of the tensor. # This computes the height and width of the output tensor output_shape = [ (i + 2 * p - (di * (k - 1) + 1)) // s + 1 for i, p, di, k, s in zip( x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride ) ] output_shape = [x.shape[0], self.weight.shape[0]] + output_shape return _NewEmptyTensorOp.apply(x, output_shape) x = deform_conv( x, offset, self.weight, self.stride, self.padding, self.dilation, self.groups, self.deformable_groups, ) if self.norm is not None: x = self.norm(x) if self.activation is not None: x = self.activation(x) return x def extra_repr(self): tmpstr = "in_channels=" + str(self.in_channels) tmpstr += ", out_channels=" + str(self.out_channels) tmpstr += ", kernel_size=" + str(self.kernel_size) tmpstr += ", stride=" + str(self.stride) tmpstr += ", padding=" + str(self.padding) tmpstr += ", dilation=" + str(self.dilation) tmpstr += ", groups=" + str(self.groups) tmpstr += ", deformable_groups=" + str(self.deformable_groups) tmpstr += ", bias=False" return tmpstr class ModulatedDeformConv(nn.Module): def __init__( self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, deformable_groups=1, bias=True, norm=None, activation=None, ): """ Modulated deformable convolution from :paper:`deformconv2`. Arguments are similar to :class:`Conv2D`. Extra arguments: Args: deformable_groups (int): number of groups used in deformable convolution. norm (nn.Module, optional): a normalization layer activation (callable(Tensor) -> Tensor): a callable activation function """ super(ModulatedDeformConv, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = _pair(kernel_size) self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups self.deformable_groups = deformable_groups self.with_bias = bias self.norm = norm self.activation = activation self.weight = nn.Parameter( torch.Tensor(out_channels, in_channels // groups, *self.kernel_size) ) if bias: self.bias = nn.Parameter(torch.Tensor(out_channels)) else: self.bias = None nn.init.kaiming_uniform_(self.weight, nonlinearity="relu") if self.bias is not None: nn.init.constant_(self.bias, 0) def forward(self, x, offset, mask): if x.numel() == 0: output_shape = [ (i + 2 * p - (di * (k - 1) + 1)) // s + 1 for i, p, di, k, s in zip( x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride ) ] output_shape = [x.shape[0], self.weight.shape[0]] + output_shape return _NewEmptyTensorOp.apply(x, output_shape) x = modulated_deform_conv( x, offset, mask, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups, self.deformable_groups, ) if self.norm is not None: x = self.norm(x) if self.activation is not None: x = self.activation(x) return x def extra_repr(self): tmpstr = "in_channels=" + str(self.in_channels) tmpstr += ", out_channels=" + str(self.out_channels) tmpstr += ", kernel_size=" + str(self.kernel_size) tmpstr += ", stride=" + str(self.stride) tmpstr += ", padding=" + str(self.padding) tmpstr += ", dilation=" + str(self.dilation) tmpstr += ", groups=" + str(self.groups) tmpstr += ", deformable_groups=" + str(self.deformable_groups) tmpstr += ", bias=" + str(self.with_bias) return tmpstr
banmo-main
third_party/detectron2_old/detectron2/layers/deform_conv.py
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. from collections import namedtuple class ShapeSpec(namedtuple("_ShapeSpec", ["channels", "height", "width", "stride"])): """ A simple structure that contains basic shape specification about a tensor. It is often used as the auxiliary inputs/outputs of models, to complement the lack of shape inference ability among pytorch modules. Attributes: channels: height: width: stride: """ def __new__(cls, channels=None, height=None, width=None, stride=None): return super().__new__(cls, channels, height, width, stride)
banmo-main
third_party/detectron2_old/detectron2/layers/shape_spec.py
# Copyright (c) Facebook, Inc. and its affiliates. from torch import nn from torchvision.ops import roi_align # NOTE: torchvision's RoIAlign has a different default aligned=False class ROIAlign(nn.Module): def __init__(self, output_size, spatial_scale, sampling_ratio, aligned=True): """ Args: output_size (tuple): h, w spatial_scale (float): scale the input boxes by this number sampling_ratio (int): number of inputs samples to take for each output sample. 0 to take samples densely. aligned (bool): if False, use the legacy implementation in Detectron. If True, align the results more perfectly. Note: The meaning of aligned=True: Given a continuous coordinate c, its two neighboring pixel indices (in our pixel model) are computed by floor(c - 0.5) and ceil(c - 0.5). For example, c=1.3 has pixel neighbors with discrete indices [0] and [1] (which are sampled from the underlying signal at continuous coordinates 0.5 and 1.5). But the original roi_align (aligned=False) does not subtract the 0.5 when computing neighboring pixel indices and therefore it uses pixels with a slightly incorrect alignment (relative to our pixel model) when performing bilinear interpolation. With `aligned=True`, we first appropriately scale the ROI and then shift it by -0.5 prior to calling roi_align. This produces the correct neighbors; see detectron2/tests/test_roi_align.py for verification. The difference does not make a difference to the model's performance if ROIAlign is used together with conv layers. """ super().__init__() self.output_size = output_size self.spatial_scale = spatial_scale self.sampling_ratio = sampling_ratio self.aligned = aligned from torchvision import __version__ version = tuple(int(x) for x in __version__.split(".")[:2]) # https://github.com/pytorch/vision/pull/2438 assert version >= (0, 7), "Require torchvision >= 0.7" def forward(self, input, rois): """ Args: input: NCHW images rois: Bx5 boxes. First column is the index into N. The other 4 columns are xyxy. """ assert rois.dim() == 2 and rois.size(1) == 5 if input.is_quantized: input = input.dequantize() return roi_align( input, rois.to(dtype=input.dtype), self.output_size, self.spatial_scale, self.sampling_ratio, self.aligned, ) def __repr__(self): tmpstr = self.__class__.__name__ + "(" tmpstr += "output_size=" + str(self.output_size) tmpstr += ", spatial_scale=" + str(self.spatial_scale) tmpstr += ", sampling_ratio=" + str(self.sampling_ratio) tmpstr += ", aligned=" + str(self.aligned) tmpstr += ")" return tmpstr
banmo-main
third_party/detectron2_old/detectron2/layers/roi_align.py
# Copyright (c) Facebook, Inc. and its affiliates. import torch from torch import nn from torch.autograd import Function from torch.autograd.function import once_differentiable from torch.nn.modules.utils import _pair from detectron2 import _C class _ROIAlignRotated(Function): @staticmethod def forward(ctx, input, roi, output_size, spatial_scale, sampling_ratio): ctx.save_for_backward(roi) ctx.output_size = _pair(output_size) ctx.spatial_scale = spatial_scale ctx.sampling_ratio = sampling_ratio ctx.input_shape = input.size() output = _C.roi_align_rotated_forward( input, roi, spatial_scale, output_size[0], output_size[1], sampling_ratio ) return output @staticmethod @once_differentiable def backward(ctx, grad_output): (rois,) = ctx.saved_tensors output_size = ctx.output_size spatial_scale = ctx.spatial_scale sampling_ratio = ctx.sampling_ratio bs, ch, h, w = ctx.input_shape grad_input = _C.roi_align_rotated_backward( grad_output, rois, spatial_scale, output_size[0], output_size[1], bs, ch, h, w, sampling_ratio, ) return grad_input, None, None, None, None, None roi_align_rotated = _ROIAlignRotated.apply class ROIAlignRotated(nn.Module): def __init__(self, output_size, spatial_scale, sampling_ratio): """ Args: output_size (tuple): h, w spatial_scale (float): scale the input boxes by this number sampling_ratio (int): number of inputs samples to take for each output sample. 0 to take samples densely. Note: ROIAlignRotated supports continuous coordinate by default: Given a continuous coordinate c, its two neighboring pixel indices (in our pixel model) are computed by floor(c - 0.5) and ceil(c - 0.5). For example, c=1.3 has pixel neighbors with discrete indices [0] and [1] (which are sampled from the underlying signal at continuous coordinates 0.5 and 1.5). """ super(ROIAlignRotated, self).__init__() self.output_size = output_size self.spatial_scale = spatial_scale self.sampling_ratio = sampling_ratio def forward(self, input, rois): """ Args: input: NCHW images rois: Bx6 boxes. First column is the index into N. The other 5 columns are (x_ctr, y_ctr, width, height, angle_degrees). """ assert rois.dim() == 2 and rois.size(1) == 6 orig_dtype = input.dtype if orig_dtype == torch.float16: input = input.float() rois = rois.float() return roi_align_rotated( input, rois, self.output_size, self.spatial_scale, self.sampling_ratio ).to(dtype=orig_dtype) def __repr__(self): tmpstr = self.__class__.__name__ + "(" tmpstr += "output_size=" + str(self.output_size) tmpstr += ", spatial_scale=" + str(self.spatial_scale) tmpstr += ", sampling_ratio=" + str(self.sampling_ratio) tmpstr += ")" return tmpstr
banmo-main
third_party/detectron2_old/detectron2/layers/roi_align_rotated.py
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. from typing import List import torch from torchvision.ops import boxes as box_ops from torchvision.ops import nms # BC-compat from detectron2.utils.env import TORCH_VERSION if TORCH_VERSION < (1, 7): from detectron2 import _C nms_rotated_func = _C.nms_rotated else: nms_rotated_func = torch.ops.detectron2.nms_rotated def batched_nms( boxes: torch.Tensor, scores: torch.Tensor, idxs: torch.Tensor, iou_threshold: float ): """ Same as torchvision.ops.boxes.batched_nms, but safer. """ assert boxes.shape[-1] == 4 # TODO may need better strategy. # Investigate after having a fully-cuda NMS op. if len(boxes) < 40000: # fp16 does not have enough range for batched NMS return box_ops.batched_nms(boxes.float(), scores, idxs, iou_threshold) result_mask = scores.new_zeros(scores.size(), dtype=torch.bool) for id in torch.jit.annotate(List[int], torch.unique(idxs).cpu().tolist()): mask = (idxs == id).nonzero().view(-1) keep = nms(boxes[mask], scores[mask], iou_threshold) result_mask[mask[keep]] = True keep = result_mask.nonzero().view(-1) keep = keep[scores[keep].argsort(descending=True)] return keep # Note: this function (nms_rotated) might be moved into # torchvision/ops/boxes.py in the future def nms_rotated(boxes, scores, iou_threshold): """ Performs non-maximum suppression (NMS) on the rotated boxes according to their intersection-over-union (IoU). Rotated NMS iteratively removes lower scoring rotated boxes which have an IoU greater than iou_threshold with another (higher scoring) rotated box. Note that RotatedBox (5, 3, 4, 2, -90) covers exactly the same region as RotatedBox (5, 3, 4, 2, 90) does, and their IoU will be 1. However, they can be representing completely different objects in certain tasks, e.g., OCR. As for the question of whether rotated-NMS should treat them as faraway boxes even though their IOU is 1, it depends on the application and/or ground truth annotation. As an extreme example, consider a single character v and the square box around it. If the angle is 0 degree, the object (text) would be read as 'v'; If the angle is 90 degrees, the object (text) would become '>'; If the angle is 180 degrees, the object (text) would become '^'; If the angle is 270/-90 degrees, the object (text) would become '<' All of these cases have IoU of 1 to each other, and rotated NMS that only uses IoU as criterion would only keep one of them with the highest score - which, practically, still makes sense in most cases because typically only one of theses orientations is the correct one. Also, it does not matter as much if the box is only used to classify the object (instead of transcribing them with a sequential OCR recognition model) later. On the other hand, when we use IoU to filter proposals that are close to the ground truth during training, we should definitely take the angle into account if we know the ground truth is labeled with the strictly correct orientation (as in, upside-down words are annotated with -180 degrees even though they can be covered with a 0/90/-90 degree box, etc.) The way the original dataset is annotated also matters. For example, if the dataset is a 4-point polygon dataset that does not enforce ordering of vertices/orientation, we can estimate a minimum rotated bounding box to this polygon, but there's no way we can tell the correct angle with 100% confidence (as shown above, there could be 4 different rotated boxes, with angles differed by 90 degrees to each other, covering the exactly same region). In that case we have to just use IoU to determine the box proximity (as many detection benchmarks (even for text) do) unless there're other assumptions we can make (like width is always larger than height, or the object is not rotated by more than 90 degrees CCW/CW, etc.) In summary, not considering angles in rotated NMS seems to be a good option for now, but we should be aware of its implications. Args: boxes (Tensor[N, 5]): Rotated boxes to perform NMS on. They are expected to be in (x_center, y_center, width, height, angle_degrees) format. scores (Tensor[N]): Scores for each one of the rotated boxes iou_threshold (float): Discards all overlapping rotated boxes with IoU < iou_threshold Returns: keep (Tensor): int64 tensor with the indices of the elements that have been kept by Rotated NMS, sorted in decreasing order of scores """ return nms_rotated_func(boxes, scores, iou_threshold) # Note: this function (batched_nms_rotated) might be moved into # torchvision/ops/boxes.py in the future def batched_nms_rotated(boxes, scores, idxs, iou_threshold): """ Performs non-maximum suppression in a batched fashion. Each index value correspond to a category, and NMS will not be applied between elements of different categories. Args: boxes (Tensor[N, 5]): boxes where NMS will be performed. They are expected to be in (x_ctr, y_ctr, width, height, angle_degrees) format scores (Tensor[N]): scores for each one of the boxes idxs (Tensor[N]): indices of the categories for each one of the boxes. iou_threshold (float): discards all overlapping boxes with IoU < iou_threshold Returns: Tensor: int64 tensor with the indices of the elements that have been kept by NMS, sorted in decreasing order of scores """ assert boxes.shape[-1] == 5 if boxes.numel() == 0: return torch.empty((0,), dtype=torch.int64, device=boxes.device) boxes = boxes.float() # fp16 does not have enough range for batched NMS # Strategy: in order to perform NMS independently per class, # we add an offset to all the boxes. The offset is dependent # only on the class idx, and is large enough so that boxes # from different classes do not overlap # Note that batched_nms in torchvision/ops/boxes.py only uses max_coordinate, # which won't handle negative coordinates correctly. # Here by using min_coordinate we can make sure the negative coordinates are # correctly handled. max_coordinate = ( torch.max(boxes[:, 0], boxes[:, 1]) + torch.max(boxes[:, 2], boxes[:, 3]) / 2 ).max() min_coordinate = ( torch.min(boxes[:, 0], boxes[:, 1]) - torch.max(boxes[:, 2], boxes[:, 3]) / 2 ).min() offsets = idxs.to(boxes) * (max_coordinate - min_coordinate + 1) boxes_for_nms = boxes.clone() # avoid modifying the original values in boxes boxes_for_nms[:, :2] += offsets[:, None] keep = nms_rotated(boxes_for_nms, scores, iou_threshold) return keep
banmo-main
third_party/detectron2_old/detectron2/layers/nms.py
# Copyright (c) Facebook, Inc. and its affiliates. from .batch_norm import FrozenBatchNorm2d, get_norm, NaiveSyncBatchNorm from .deform_conv import DeformConv, ModulatedDeformConv from .mask_ops import paste_masks_in_image from .nms import batched_nms, batched_nms_rotated, nms, nms_rotated from .roi_align import ROIAlign, roi_align from .roi_align_rotated import ROIAlignRotated, roi_align_rotated from .shape_spec import ShapeSpec from .wrappers import ( BatchNorm2d, Conv2d, ConvTranspose2d, cat, interpolate, Linear, nonzero_tuple, cross_entropy, ) from .blocks import CNNBlockBase, DepthwiseSeparableConv2d from .aspp import ASPP __all__ = [k for k in globals().keys() if not k.startswith("_")]
banmo-main
third_party/detectron2_old/detectron2/layers/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. from copy import deepcopy import fvcore.nn.weight_init as weight_init import torch from torch import nn from torch.nn import functional as F from .batch_norm import get_norm from .blocks import DepthwiseSeparableConv2d from .wrappers import Conv2d class ASPP(nn.Module): """ Atrous Spatial Pyramid Pooling (ASPP). """ def __init__( self, in_channels, out_channels, dilations, *, norm, activation, pool_kernel_size=None, dropout: float = 0.0, use_depthwise_separable_conv=False, ): """ Args: in_channels (int): number of input channels for ASPP. out_channels (int): number of output channels. dilations (list): a list of 3 dilations in ASPP. norm (str or callable): normalization for all conv layers. See :func:`layers.get_norm` for supported format. norm is applied to all conv layers except the conv following global average pooling. activation (callable): activation function. pool_kernel_size (tuple, list): the average pooling size (kh, kw) for image pooling layer in ASPP. If set to None, it always performs global average pooling. If not None, it must be divisible by the shape of inputs in forward(). It is recommended to use a fixed input feature size in training, and set this option to match this size, so that it performs global average pooling in training, and the size of the pooling window stays consistent in inference. dropout (float): apply dropout on the output of ASPP. It is used in the official DeepLab implementation with a rate of 0.1: https://github.com/tensorflow/models/blob/21b73d22f3ed05b650e85ac50849408dd36de32e/research/deeplab/model.py#L532 # noqa use_depthwise_separable_conv (bool): use DepthwiseSeparableConv2d for 3x3 convs in ASPP, proposed in :paper:`DeepLabV3+`. """ super(ASPP, self).__init__() assert len(dilations) == 3, "ASPP expects 3 dilations, got {}".format(len(dilations)) self.pool_kernel_size = pool_kernel_size self.dropout = dropout use_bias = norm == "" self.convs = nn.ModuleList() # conv 1x1 self.convs.append( Conv2d( in_channels, out_channels, kernel_size=1, bias=use_bias, norm=get_norm(norm, out_channels), activation=deepcopy(activation), ) ) weight_init.c2_xavier_fill(self.convs[-1]) # atrous convs for dilation in dilations: if use_depthwise_separable_conv: self.convs.append( DepthwiseSeparableConv2d( in_channels, out_channels, kernel_size=3, padding=dilation, dilation=dilation, norm1=norm, activation1=deepcopy(activation), norm2=norm, activation2=deepcopy(activation), ) ) else: self.convs.append( Conv2d( in_channels, out_channels, kernel_size=3, padding=dilation, dilation=dilation, bias=use_bias, norm=get_norm(norm, out_channels), activation=deepcopy(activation), ) ) weight_init.c2_xavier_fill(self.convs[-1]) # image pooling # We do not add BatchNorm because the spatial resolution is 1x1, # the original TF implementation has BatchNorm. if pool_kernel_size is None: image_pooling = nn.Sequential( nn.AdaptiveAvgPool2d(1), Conv2d(in_channels, out_channels, 1, bias=True, activation=deepcopy(activation)), ) else: image_pooling = nn.Sequential( nn.AvgPool2d(kernel_size=pool_kernel_size, stride=1), Conv2d(in_channels, out_channels, 1, bias=True, activation=deepcopy(activation)), ) weight_init.c2_xavier_fill(image_pooling[1]) self.convs.append(image_pooling) self.project = Conv2d( 5 * out_channels, out_channels, kernel_size=1, bias=use_bias, norm=get_norm(norm, out_channels), activation=deepcopy(activation), ) weight_init.c2_xavier_fill(self.project) def forward(self, x): size = x.shape[-2:] if self.pool_kernel_size is not None: if size[0] % self.pool_kernel_size[0] or size[1] % self.pool_kernel_size[1]: raise ValueError( "`pool_kernel_size` must be divisible by the shape of inputs. " "Input size: {} `pool_kernel_size`: {}".format(size, self.pool_kernel_size) ) res = [] for conv in self.convs: res.append(conv(x)) res[-1] = F.interpolate(res[-1], size=size, mode="bilinear", align_corners=False) res = torch.cat(res, dim=1) res = self.project(res) res = F.dropout(res, self.dropout, training=self.training) if self.dropout > 0 else res return res
banmo-main
third_party/detectron2_old/detectron2/layers/aspp.py