python_code
stringlengths
0
4.04M
repo_name
stringlengths
8
58
file_path
stringlengths
5
147
from setuptools import setup from Cython.Build import cythonize import numpy # python setup.py build_ext --inplace setup( ext_modules=cythonize( ['cooc_count.pyx'], annotate=True), include_dirs=[numpy.get_include()] )
coocmap-main
fast/setup.py
#!/usr/bin/env python3 # # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import math import torch import random import numpy as np from tqdm import tqdm import os import matplotlib.pyplot as plt import sys sys.path.append("fisher_information_loss") import models import dataloading def recons_attack(model, X, y, lam, link_func): """ Runs the Balle et al. GLM attack https://arxiv.org/abs/2201.04845. """ def compute_grad(model, X, y): return ((X @ model.theta).sigmoid() - y)[:, None] * X n = len(y) grad = compute_grad(model, X, y) B1 = (grad.sum(0)[None, :] - grad)[:, 0] denom = B1 + n * lam * model.theta[0][None] X_hat = (grad.sum(0)[None, :] - grad + n * lam * model.theta[None, :]) / denom[:, None] y_hat = link_func(X_hat @ model.theta) + denom return X_hat, y_hat def compute_correct_ratio(etas, num_bins, predictions, target): order = etas.argsort() bin_size = len(target) // num_bins + 1 bin_accs = [] for prediction in predictions: prediction = np.array(prediction) correct = (prediction == target) bin_accs.append([correct[order[lower:lower + bin_size]].mean() or lower in range(0, len(correct), bin_size)]) return np.array(bin_accs) parser = argparse.ArgumentParser(description="Evaluate GLM reconstruction attack.") parser.add_argument("--data_folder", default="data/", type=str, help="folder in which to store data") parser.add_argument("--num_trials", default=10000, type=int, help="Number of trials") parser.add_argument("--lam", default=0.01, type=float, help="regularization parameter for logistic regression") parser.add_argument("--sigma", default=1e-5, type=float, help="Gaussian noise parameter for output perturbation") args = parser.parse_args() train_data = dataloading.load_dataset( name="mnist", split="train", normalize=False, num_classes=2, root=args.data_folder, regression=False) test_data = dataloading.load_dataset( name="mnist", split="test", normalize=False, num_classes=2, root=args.data_folder, regression=False) train_data['features'] = torch.cat([torch.ones(len(train_data['targets']), 1), train_data['features']], 1) test_data['features'] = torch.cat([torch.ones(len(test_data['targets']), 1), test_data['features']], 1) model = models.get_model("logistic") model.train(train_data, l2=args.lam, weights=None) true_theta = model.theta.clone() predictions = model.predict(train_data["features"]) acc = ((predictions == train_data["targets"]).float()).mean() print(f"Training accuracy of classifier {acc.item():.3f}") predictions = model.predict(test_data["features"]) acc = ((predictions == test_data["targets"]).float()).mean() print(f"Test accuracy of classifier {acc.item():.3f}") J = model.influence_jacobian(train_data)[:, :, 1:-1] / args.sigma etas = J.pow(2).sum(1).mean(1) X = train_data["features"] y = train_data["targets"].float() n, d = X.size(0), X.size(1) - 1 link_func = torch.sigmoid X_means = torch.zeros(X.shape) errors = torch.zeros(len(y)) with torch.no_grad(): print('Running reconstruction attack for %d trials:' % args.num_trials) for i in tqdm(range(args.num_trials)): model.theta = true_theta + args.sigma * torch.randn(true_theta.size()) X_hat, y_hat = recons_attack(model, X, y, args.lam, link_func) X_means += X_hat / args.num_trials errors += (X_hat[:, 1:] - X[:, 1:]).pow(2).sum(1) / (d * args.num_trials) X_means = X_means[:, 1:] # filter out examples that the attack failed on mask = torch.logical_not(torch.isnan(errors)) etas = etas[mask] errors = errors[mask] _, order = etas.reciprocal().sort() # plot MSE lower bound vs. true MSE plt.figure(figsize=(8,5)) below_bound = etas.reciprocal() < errors plt.scatter(etas[below_bound].reciprocal().detach(), errors[below_bound].detach(), s=10) plt.scatter(etas[torch.logical_not(below_bound)].reciprocal().detach(), errors[torch.logical_not(below_bound)].detach(), s=10, color='indianred') plt.plot(np.power(10, np.arange(-5.5, 3, 0.1)), np.power(10, np.arange(-5.5, 3, 0.1)), 'k', label='Lower bound') plt.axvline(x=1, color='k', linestyle=':') plt.xticks(fontsize=20) plt.xlim([1e-6, 1e4]) plt.xlabel('Predicted MSE', fontsize=20) plt.xscale('log') plt.yticks(fontsize=20) plt.ylabel('Recons. attack MSE', fontsize=20) plt.yscale('log') plt.legend(loc='lower right', fontsize=20) os.makedirs("figs", exist_ok=True) plt.savefig("figs/recons_mse.pdf", bbox_inches="tight") # plot reconstructed samples plt.figure(figsize=(48, 6)) for i in range(8): plt.subplot(1, 8, i+1) plt.imshow(X[mask][order[i], 1:].clamp(0, 1).view(28, 28).detach()) plt.axis('off') plt.savefig("figs/orig_highest8.pdf", bbox_inches="tight") plt.figure(figsize=(48, 6)) for i in range(8): plt.subplot(1, 8, i+1) plt.imshow(X_means[mask][order[i]].clamp(0, 1).view(28, 28).detach()) plt.axis('off') plt.savefig("figs/recons_highest8.pdf", bbox_inches="tight") plt.figure(figsize=(48, 6)) for i in range(8): plt.subplot(1, 8, i+1) plt.imshow(X[mask][order[-i-1], 1:].clamp(0, 1).view(28, 28).detach()) plt.axis('off') plt.savefig("figs/orig_lowest8.pdf", bbox_inches="tight") plt.figure(figsize=(48, 6)) for i in range(8): plt.subplot(1, 8, i+1) plt.imshow(X_means[mask][order[-i-1]].clamp(0, 1).view(28, 28).detach()) plt.axis('off') plt.savefig("figs/recons_lowest8.pdf", bbox_inches="tight")
bounding_data_reconstruction-main
mnist_logistic_reconstruction.py
#!/usr/bin/env python3 # # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import array import gzip import logging import os from os import path import struct import math import urllib.request from torchvision import datasets as torch_datasets from torchvision import transforms import numpy as np import numpy.random as npr from sklearn.decomposition import PCA _DATA_FOLDER = "data/" def _download(url, data_folder, filename): """ Download a URL to a file in the temporary data directory, if it does not already exist. """ if not path.exists(data_folder): os.makedirs(data_folder) out_file = path.join(data_folder, filename) if not path.isfile(out_file): urllib.request.urlretrieve(url, out_file) logging.info(f"Downloaded {url} to {data_folder}") def _partial_flatten(x): """ Flatten all but the first dimension of an ndarray. """ return np.reshape(x, (x.shape[0], -1)) def _one_hot(x, k, dtype=np.float32): """ Create a one-hot encoding of x of size k. """ return np.array(x[:, None] == np.arange(k), dtype) def mnist_raw(dataset): """ Download and parse the raw MNIST dataset. """ if dataset == "mnist": # mirror of http://yann.lecun.com/exdb/mnist/: base_url = "https://storage.googleapis.com/cvdf-datasets/mnist/" elif dataset == "fmnist": base_url = "http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/" elif dataset == "kmnist": base_url = "http://codh.rois.ac.jp/kmnist/dataset/kmnist/" else: raise RuntimeError("Unknown dataset: " + dataset) data_folder = path.join(_DATA_FOLDER, dataset) def parse_labels(filename): """ Parses labels in MNIST raw label file. """ with gzip.open(filename, "rb") as fh: _ = struct.unpack(">II", fh.read(8)) return np.array(array.array("B", fh.read()), dtype=np.uint8) def parse_images(filename): """ Parses images in MNIST raw label file. """ with gzip.open(filename, "rb") as fh: _, num_DATA_FOLDER, rows, cols = struct.unpack(">IIII", fh.read(16)) return np.array(array.array("B", fh.read()), dtype=np.uint8).reshape( num_DATA_FOLDER, rows, cols ) # download all MNIST files: for filename in [ "train-images-idx3-ubyte.gz", "train-labels-idx1-ubyte.gz", "t10k-images-idx3-ubyte.gz", "t10k-labels-idx1-ubyte.gz", ]: _download(base_url + filename, data_folder, filename) # parse all images and labels: train_images = parse_images(path.join(data_folder, "train-images-idx3-ubyte.gz")) train_labels = parse_labels(path.join(data_folder, "train-labels-idx1-ubyte.gz")) test_images = parse_images(path.join(data_folder, "t10k-images-idx3-ubyte.gz")) test_labels = parse_labels(path.join(data_folder, "t10k-labels-idx1-ubyte.gz")) return train_images, train_labels, test_images, test_labels def preprocess_data(train_images, train_labels, test_images, test_labels, binary, permute_train, normalize, pca_dims): if binary: num_labels = 2 train_mask = np.logical_or(train_labels == 0, train_labels == 1) test_mask = np.logical_or(test_labels == 0, test_labels == 1) train_images, train_labels = train_images[train_mask], train_labels[train_mask] test_images, test_labels = test_images[test_mask], test_labels[test_mask] else: num_labels = np.max(test_labels) + 1 train_labels = _one_hot(train_labels, num_labels) test_labels = _one_hot(test_labels, num_labels) if pca_dims > 0: pca = PCA(n_components=pca_dims, svd_solver='full') pca.fit(train_images) train_images = pca.transform(train_images) test_images = pca.transform(test_images) if normalize: train_images /= np.linalg.norm(train_images, 2, 1)[:, None] test_images /= np.linalg.norm(test_images, 2, 1)[:, None] # permute training data: if permute_train: perm = np.random.RandomState(0).permutation(train_images.shape[0]) train_images = train_images[perm] train_labels = train_labels[perm] return train_images, train_labels, test_images, test_labels def mnist(dataset="mnist", binary=False, permute_train=False, normalize=False, pca_dims=0): """ Download, parse and process MNIST data to unit scale and one-hot labels. """ # obtain raw MNIST data: train_images, train_labels, test_images, test_labels = mnist_raw(dataset) # flatten and normalize images, create one-hot labels: train_images = _partial_flatten(train_images) / np.float32(255.0) test_images = _partial_flatten(test_images) / np.float32(255.0) return preprocess_data(train_images, train_labels, test_images, test_labels, binary, permute_train, normalize, pca_dims) def cifar(dataset="cifar10", binary=False, permute_train=False, normalize=False, pca_dims=0): data_folder = path.join(_DATA_FOLDER, dataset) normalizer = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) train_transforms = transforms.Compose([transforms.ToTensor(), normalizer]) if dataset == "cifar10": train_set = torch_datasets.CIFAR10(root=data_folder, train=True, transform=train_transforms, download=True) test_set = torch_datasets.CIFAR10(root=data_folder, train=False, transform=train_transforms, download=True) elif dataset == "cifar100": train_set = torch_datasets.CIFAR100(root=data_folder, train=True, transform=train_transforms, download=True) test_set = torch_datasets.CIFAR100(root=data_folder, train=False, transform=train_transforms, download=True) train_images = [] train_labels = [] for (x, y) in train_set: train_images.append(np.rollaxis(x.numpy(), 0, 3).flatten()) train_labels.append(y) train_images = np.stack(train_images) train_labels = np.array(train_labels) test_images = [] test_labels = [] for (x, y) in test_set: test_images.append(np.rollaxis(x.numpy(), 0, 3).flatten()) test_labels.append(y) test_images = np.stack(test_images) test_labels = np.array(test_labels) return preprocess_data(train_images, train_labels, test_images, test_labels, binary, permute_train, normalize, pca_dims) def get_datastream(images, labels, batch_size, permutation=False, last_batch=True): """ Returns a data stream of `images` and corresponding `labels` in batches of size `batch_size`. Also returns the number of batches per epoch, `num_batches`. To loop through the whole dataset in permuted order, set `permutation` to `True`. To not return the last batch, set `last_batch` to `False`. """ # compute number of batches to return: num_images = images.shape[0] def permutation_datastream(): """ Data stream iterator that returns randomly permuted images until eternity. """ while True: perm = npr.permutation(num_images) for i in range(num_batches): batch_idx = perm[i * batch_size : (i + 1) * batch_size] yield images[batch_idx], labels[batch_idx], batch_idx def random_sampler_datastream(): """ Data stream iterator that returns a uniformly random batch of images until eternity. """ while True: batch_idx = npr.permutation(num_images)[:batch_size] yield images[batch_idx], labels[batch_idx], batch_idx # return iterator factory: if permutation: num_batches = int((math.ceil if last_batch else math.floor)(float(num_images) / float(batch_size))) return random_sampler_datastream, num_batches else: num_complete_batches, leftover = divmod(num_images, batch_size) num_batches = num_complete_batches + (last_batch and bool(leftover)) return permutation_datastream, num_batches
bounding_data_reconstruction-main
datasets.py
#!/usr/bin/env python3 # # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import math import torch import numpy as np import os import matplotlib.pyplot as plt import sys sys.path.append("fisher_information_loss") import models import dataloading parser = argparse.ArgumentParser(description="MNIST training with FIL.") parser.add_argument("--data_folder", default="data/", type=str, help="folder in which to store data") parser.add_argument("--num_trials", default=10, type=int, help="number of repeated trials") parser.add_argument("--lam", default=0.01, type=float, help="l2 regularization parameter") parser.add_argument("--sigma", default=0.01, type=float, help="Gaussian noise multiplier") args = parser.parse_args() train_data = dataloading.load_dataset( name="mnist", split="train", normalize=False, num_classes=2, root=args.data_folder, regression=False) test_data = dataloading.load_dataset( name="mnist", split="test", normalize=False, num_classes=2, root=args.data_folder, regression=False) n = len(train_data["targets"]) all_etas, all_epsilons, all_rdp_epsilons = [], [], [] for i in range(args.num_trials): model = models.get_model("logistic") model.train(train_data, l2=args.lam, weights=None) # Renyi-DP accounting rdp_eps = 4 / (n * args.lam * args.sigma) ** 2 # FIL accounting J = model.influence_jacobian(train_data)[:, :, :-1] / args.sigma etas = J.pow(2).sum(1).mean(1).sqrt() print(f"Trial {i+1:d}: RDP epsilon = {rdp_eps:.4f}, Max FIL eta = {etas.max():.4f}") model.theta = model.theta + args.sigma * torch.randn_like(model.theta) all_etas.append(etas.detach().numpy()) all_rdp_epsilons.append(rdp_eps) predictions = model.predict(train_data["features"]) acc = ((predictions == train_data["targets"]).float()).mean() print(f"Training accuracy of classifier {acc.item():.3f}") predictions = model.predict(test_data["features"]) acc = ((predictions == test_data["targets"]).float()).mean() print(f"Test accuracy of classifier {acc.item():.3f}") all_etas = np.stack(all_etas, 0) all_rdp_epsilons = np.stack(all_rdp_epsilons, 0) fil_bound = 1 / np.power(all_etas, 2).mean(0) rdp_bound = 0.25 / (math.exp(all_rdp_epsilons.mean()) - 1) plt.figure(figsize=(8,5)) _ = plt.hist(np.log10(fil_bound), bins=100, label='dFIL bound', color='silver', edgecolor='black', linewidth=0.3) plt.axvline(x=np.log10(rdp_bound), color='k', linestyle='--', label='RDP bound') plt.axvline(x=0, color='k', linestyle=':') plt.xlabel('MSE lower bound', fontsize=20) plt.ylabel('Count', fontsize=20) plt.xticks(np.arange(-1, 11, 2), labels=['$10^{%d}$' % t for t in np.arange(-1, 11, 2)], fontsize=20) plt.yticks(fontsize=20) plt.legend(loc='upper left', fontsize=20) os.makedirs("figs", exist_ok=True) plt.savefig("figs/mnist_linear_hist.pdf", bbox_inches="tight")
bounding_data_reconstruction-main
mnist_logistic_regression.py
#!/usr/bin/env python3 # # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import jax import jax.numpy as jnp from jax.experimental import stax DTYPE_MAPPING = { "float32": "f32", "float64": "f64", "int32": "s32", "int64": "s64", "uint32": "u32", "uint64": "u64", } def _l2_normalize(x, eps=1e-7): return x * jax.lax.rsqrt((x ** 2).sum() + eps) def estimate_spectral_norm(f, input_shape, seed=0, n_steps=20): input_shape = tuple([1] + [input_shape[i] for i in range(1, len(input_shape))]) rng = jax.random.PRNGKey(seed) u0 = jax.random.normal(rng, input_shape) v0 = jnp.zeros_like(f(u0)) def fun(carry, _): u, v = carry v, f_vjp = jax.vjp(f, u) v = _l2_normalize(v) u, = f_vjp(v) u = _l2_normalize(u) return (u, v), None (u, v), _ = jax.lax.scan(fun, (u0, v0), xs=None, length=n_steps) return jnp.vdot(v, f(u)) def accuracy(predictions, targets): """ Compute accuracy of `predictions` given the associated `targets`. """ target_class = jnp.argmax(targets, axis=-1) predicted_class = jnp.argmax(predictions, axis=-1) return jnp.mean(predicted_class == target_class) def get_model(rng, model_name, input_shape, num_labels): """ Returns model specified by `model_name`. Model is initialized using the specified random number generator `rng`. Optionally, the input image `height` and `width` can be specified as well. """ # initialize convolutional network: if model_name == "cnn": init_random_params, predict = stax.serial( stax.Conv(16, (8, 8), padding="SAME", strides=(2, 2)), stax.Gelu, stax.AvgPool((2, 2), (1, 1)), stax.Conv(32, (4, 4), padding="VALID", strides=(2, 2)), stax.Gelu, stax.AvgPool((2, 2), (1, 1)), stax.Flatten, stax.Dense(32), stax.Gelu, stax.Dense(num_labels), ) _, init_params = init_random_params(rng, input_shape) elif model_name == "cnn_tanh": init_random_params, predict = stax.serial( stax.Conv(16, (8, 8), padding="SAME", strides=(2, 2)), stax.Tanh, stax.AvgPool((2, 2), (1, 1)), stax.Conv(32, (4, 4), padding="VALID", strides=(2, 2)), stax.Tanh, stax.AvgPool((2, 2), (1, 1)), stax.Flatten, stax.Dense(32), stax.Tanh, stax.Dense(num_labels), ) _, init_params = init_random_params(rng, input_shape) elif model_name == "cnn_cifar": init_random_params, predict = stax.serial( stax.Conv(32, (3, 3), padding="SAME", strides=(1, 1)), stax.Tanh, stax.Conv(32, (3, 3), padding="SAME", strides=(1, 1)), stax.Tanh, stax.AvgPool((2, 2), (2, 2)), stax.Conv(64, (3, 3), padding="SAME", strides=(1, 1)), stax.Tanh, stax.Conv(64, (3, 3), padding="SAME", strides=(1, 1)), stax.Tanh, stax.AvgPool((2, 2), (2, 2)), stax.Conv(128, (3, 3), padding="SAME", strides=(1, 1)), stax.Tanh, stax.Conv(128, (3, 3), padding="SAME", strides=(1, 1)), stax.Tanh, stax.AvgPool((2, 2), (2, 2)), stax.Flatten, stax.Dense(128), stax.Tanh, stax.Dense(num_labels), ) _, init_params = init_random_params(rng, input_shape) # initialize multi-layer perceptron: elif model_name == "mlp": init_random_params, predict = stax.serial( stax.Dense(256), stax.Gelu, stax.Dense(256), stax.Gelu, stax.Dense(num_labels), ) _, init_params = init_random_params(rng, input_shape) elif model_name == "mlp_tanh": init_random_params, predict = stax.serial( stax.Dense(256), stax.Tanh, stax.Dense(256), stax.Tanh, stax.Dense(num_labels), ) _, init_params = init_random_params(rng, input_shape) # initialize linear model: elif model_name == "linear": init_random_params, predict_raw = stax.Dense(num_labels) def predict(params, inputs): logits = predict_raw(params, inputs) return jnp.hstack([logits, jnp.zeros(logits.shape)]) _, init_params = init_random_params(rng, input_shape) else: raise ValueError(f"Unknown model: {model_name}") # return initial model parameters and prediction function: return init_params, predict
bounding_data_reconstruction-main
utils.py
#!/usr/bin/env python3 # # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import jax.numpy as jnp import jax.random as jnr from jax import jit, grad, vmap, nn from jax.tree_util import tree_flatten, tree_unflatten import math def get_loss_func(predict): """ Returns the loss function for the specified `predict`ion function. """ @jit def loss(params, inputs, targets): """ Multi-class loss entropy loss function for model with parameters `params` and the specified `inputs` and one-hot `targets`. """ predictions = nn.log_softmax(predict(params, inputs)) if predictions.ndim == 1: return -jnp.sum(predictions * targets) return -jnp.mean(jnp.sum(predictions * targets, axis=-1)) return loss def get_grad_func(loss, norm_clip=0, soft_clip=False): @jit def clipped_grad(params, inputs, targets): grads = grad(loss)(params, inputs, targets) if norm_clip == 0: return grads else: nonempty_grads, tree_def = tree_flatten(grads) total_grad_norm = jnp.add(jnp.linalg.norm( [jnp.linalg.norm(neg.ravel()) for neg in nonempty_grads]), 1e-7) if soft_clip: divisor = nn.gelu(total_grad_norm / norm_clip - 1) + 1 else: divisor = jnp.maximum(total_grad_norm / norm_clip, 1.) normalized_nonempty_grads = [g / divisor for g in nonempty_grads] return tree_unflatten(tree_def, normalized_nonempty_grads) return clipped_grad def get_update_func(get_params, grad_func, opt_update, norm_clip=0, reshape=True): """ Returns the parameter update function for the specified `predict`ion function. """ @jit def update(i, rng, opt_state, batch, sigma, weight_decay): """ Function that performs `i`-th model update using the specified `batch` on optimizer state `opt_state`. Updates are privatized by noise addition with variance `sigma`. """ # compute parameter gradient: inputs, targets = batch if reshape: inputs = jnp.expand_dims(inputs, 1) params = get_params(opt_state) multiplier = 1 if norm_clip == 0 else norm_clip # add noise to gradients: grads = vmap(grad_func, in_axes=(None, 0, 0))(params, inputs, targets) grads_flat, grads_treedef = tree_flatten(grads) grads_flat = [g.sum(0) for g in grads_flat] rngs = jnr.split(rng, len(grads_flat)) noisy_grads = [ (g + multiplier * sigma * jnr.normal(r, g.shape)) / len(targets) for r, g in zip(rngs, grads_flat) ] # weight decay params_flat, _ = tree_flatten(params) noisy_grads = [ g + weight_decay * param for g, param in zip(noisy_grads, params_flat) ] noisy_grads = tree_unflatten(grads_treedef, noisy_grads) # perform parameter update: return opt_update(i, noisy_grads, opt_state) return update
bounding_data_reconstruction-main
trainer.py
#!/usr/bin/env python3 # # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import itertools import logging import jax import jax.numpy as jnp import jax.random as jnr import hydra from jax import grad from jax.experimental import optimizers from jax.tree_util import tree_flatten, tree_unflatten import math import accountant import datasets import trainer import utils import time def batch_predict(predict, params, images, batch_size): num_images = images.shape[0] num_batches = int(math.ceil(float(num_images) / float(batch_size))) predictions = [] for i in range(num_batches): lower = i * batch_size upper = min((i+1) * batch_size, num_images) predictions.append(predict(params, images[lower:upper])) return jnp.concatenate(predictions) @hydra.main(config_path="configs", config_name="mnist") def main(cfg): # set up random number generator: logging.info(f"Running using JAX {jax.__version__}...") rng = jnr.PRNGKey(int(time.time())) # create dataloader for MNIST dataset: if cfg.dataset.startswith("cifar"): num_channels = 3 image_size = 32 train_images, train_labels, test_images, test_labels = datasets.cifar( dataset=cfg.dataset, binary=cfg.binary, pca_dims=cfg.pca_dims) else: num_channels = 1 image_size = 28 train_images, train_labels, test_images, test_labels = datasets.mnist( dataset=cfg.dataset, binary=cfg.binary, pca_dims=cfg.pca_dims) logging.info(f"Training set max variance: %.4f" % train_images.var(0).max()) num_samples, d = train_images.shape num_labels = train_labels.shape[1] if num_labels == 2: num_labels = 1 if cfg.model.startswith("cnn"): assert cfg.pca_dims == 0, f"Cannot use PCA with {cfg.model} model." image_shape = (-1, image_size, image_size, num_channels) train_images = jnp.reshape(train_images, image_shape) test_images = jnp.reshape(test_images, image_shape) data_stream, num_batches = datasets.get_datastream( train_images, train_labels, cfg.batch_size ) batches = data_stream() # set up model: if cfg.model.startswith("cnn"): input_shape = (-1, image_size, image_size, num_channels) else: input_shape = (-1, d) init_params, predict = utils.get_model(rng, cfg.model, input_shape, num_labels) num_params = sum(p.size for p in tree_flatten(init_params)[0]) # create optimizer: if cfg.optimizer == "sgd": opt_init, opt_update, get_params = optimizers.momentum( cfg.step_size, cfg.momentum_mass ) elif cfg.optimizer == "adam": opt_init, opt_update, get_params = optimizers.adam(cfg.step_size) else: raise ValueError(f"Unknown optimizer: {cfg.optimizer}") opt_state = opt_init(init_params) # get loss function and update functions: loss = trainer.get_loss_func(predict) grad_func = trainer.get_grad_func(loss, norm_clip=cfg.norm_clip, soft_clip=True) update = trainer.get_update_func( get_params, grad_func, opt_update, norm_clip=cfg.norm_clip, reshape=cfg.model.startswith("cnn") ) # get function that computes the Jacobian norms for privacy accounting: gelu_approx = 1.115 fil_accountant = accountant.get_grad_jacobian_trace_func( grad_func, get_params, reshape=cfg.model.startswith("cnn"), label_privacy=cfg.label_privacy ) dp_accountant = accountant.get_dp_accounting_func(cfg.batch_size, cfg.sigma / gelu_approx) # compute subsampling factor if cfg.sigma > 0: eps = math.sqrt(2 * math.log(1.25 / cfg.delta)) * 2 * gelu_approx / cfg.sigma q = float(cfg.batch_size) / num_samples subsampling_factor = q / (q + (1-q) * math.exp(-eps)) else: subsampling_factor = 0 logging.info(f"Subsampling factor is {subsampling_factor:.4f}") # train the model: logging.info(f"Training {cfg.model} model with {num_params} parameters using {cfg.optimizer}...") etas_squared = jnp.zeros((cfg.num_epochs, train_images.shape[0])) epsilons = jnp.zeros(cfg.num_epochs) rdp_epsilons = jnp.zeros(cfg.num_epochs) train_accs = jnp.zeros(cfg.num_epochs) test_accs = jnp.zeros(cfg.num_epochs) num_iters = 0 for epoch in range(cfg.num_epochs): # perform full training sweep through the data: itercount = itertools.count() if epoch > 0: etas_squared = etas_squared.at[epoch].set(etas_squared[epoch-1]) for batch_counter in range(num_batches): # get next batch: num_iters += 1 i = next(itercount) rng = jnr.fold_in(rng, i) images, labels, batch_idx = next(batches) batch = (images, labels) # update privacy loss: if cfg.sigma > 0 and cfg.do_accounting: etas_batch = fil_accountant(rng, opt_state, batch) / cfg.sigma / cfg.norm_clip etas_squared = etas_squared.at[epoch, batch_idx].add( subsampling_factor * jnp.power(etas_batch, 2), unique_indices=True ) # perform private parameter update: opt_state = update(i, rng, opt_state, batch, cfg.sigma, cfg.weight_decay) # measure training and test accuracy, and average privacy loss: params = get_params(opt_state) spectral_norm = utils.estimate_spectral_norm(lambda x: predict(params, x), input_shape) train_predictions = batch_predict(predict, params, train_images, cfg.batch_size) test_predictions = batch_predict(predict, params, test_images, cfg.batch_size) train_accuracy = utils.accuracy(train_predictions, train_labels) test_accuracy = utils.accuracy(test_predictions, test_labels) train_accs = train_accs.at[epoch].set(train_accuracy) test_accs = test_accs.at[epoch].set(test_accuracy) params, _ = tree_flatten(params) params_norm = math.sqrt(sum([jnp.power(p, 2).sum() for p in params])) if cfg.sigma > 0 and cfg.do_accounting: median_eta = jnp.median(jnp.sqrt(etas_squared[epoch])) max_eta = jnp.sqrt(etas_squared[epoch]).max() delta = 1e-5 epsilon = dp_accountant(num_iters, len(train_labels), delta) epsilons = epsilons.at[epoch].set(epsilon) rdp_epsilon = dp_accountant(num_iters, len(train_labels), delta, alpha=2) rdp_epsilons = rdp_epsilons.at[epoch].set(rdp_epsilon) # print out progress: logging.info(f"Epoch {epoch + 1}:") logging.info(f" -> training accuracy = {train_accuracy:.4f}") logging.info(f" -> test accuracy = {test_accuracy:.4f}") logging.info(f" -> parameter norm = {params_norm:.4f}, spectral norm = {spectral_norm:.4f}") if cfg.sigma > 0 and cfg.do_accounting: logging.info(f" -> Median FIL privacy loss = {median_eta:.4f}") logging.info(f" -> Max FIL privacy loss = {max_eta:.4f}") logging.info(f" -> DP privacy loss = ({epsilon:.4f}, {delta:.2e})") logging.info(f" -> 2-RDP privacy loss = {rdp_epsilon:.4f}") etas = jnp.sqrt(etas_squared) if cfg.sigma > 0 and cfg.do_accounting else float("inf") return etas, epsilons, rdp_epsilons, train_accs, test_accs # run all the things: if __name__ == "__main__": main()
bounding_data_reconstruction-main
train_classifier.py
#!/usr/bin/env python3 # # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import jax.numpy as jnp import jax.random as jnr from jax import jit, jvp, vjp, jacrev, vmap, nn from jax.tree_util import tree_flatten import trainer from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp, get_privacy_spent def get_grad_jacobian_norm_func(grad_func, get_params, method="jvp", reshape=True, label_privacy=False): """ Returns a function that computes norm of the Jacobian of the parameter gradients for the specified `loss` function for an optimizer in which the `get_params` function returns the model parameters. """ # assertions: assert method in ["jvp", "full"], f"Unknown method: {method}" @jit def compute_power_iteration_jvp(params, w, inputs, targets): """ Computes a single power iteration via the JVP method. Does not include Jacobian w.r.t. targets. """ # compute JVP of per-example parameter gradient Jacobian with w: if label_privacy: perex_grad = lambda x: vmap(grad_func, in_axes=(None, 0, 0))( params, inputs, x ) _, w = jvp(perex_grad, (targets,), (w,)) else: perex_grad = lambda x: vmap(grad_func, in_axes=(None, 0, 0))( params, x, targets ) _, w = jvp(perex_grad, (inputs,), (w,)) # compute norm of the JVP: w_flattened, _ = tree_flatten(w) norms = [ jnp.power(jnp.reshape(v, (v.shape[0], -1)), 2).sum(axis=1) for v in w_flattened ] norms = jnp.sqrt(sum(norms) + 1e-7) # compute VJP of per-example parameter gradient Jacobian with w: if label_privacy: _, f_vjp = vjp(perex_grad, targets) else: _, f_vjp = vjp(perex_grad, inputs) w_out = f_vjp(w)[0] return norms, w_out @jit def compute_power_iteration_full(params, w, inputs, targets): """ Computes a single power iteration by computing the full Jacobian and right-multiplying it. Does not include Jacobian w.r.t. targets. """ # compute per-example parameter gradient Jacobian: J = jacrev(grad_func, 1)(params, inputs, targets) J_flattened, _ = tree_flatten(J) # compute JVP with w: jvp_exact = [(v * w).sum(-1) for v in J_flattened] # compute norm of the JVP: norms = [ jnp.power(jnp.reshape(v, (-1, v.shape[-1])), 2).sum(axis=0) for v in jvp_exact ] norms = jnp.sqrt(sum(norms)) # compute VJP of per-example parameter gradient Jacobian with w: vjp_exact = [ J_flattened[i] * jnp.expand_dims(jvp_exact[i], -1) for i in jnp.arange(len(jvp_exact)) ] w_out = sum( [jnp.reshape(v, (-1, v.shape[-2], v.shape[-1])).sum(0) for v in vjp_exact] ) return norms, w_out @jit def grad_jacobian_norm(rng, opt_state, batch, num_iters=20): """ Computes norm of the Jacobian of the parameter gradients. The function performs `num_iters` power iterations. """ # initialize power iterates: inputs, targets = batch if reshape: inputs = jnp.expand_dims(inputs, 1) w = jnr.normal(rng, shape=(targets.shape if label_privacy else inputs.shape)) w_norm = jnp.sqrt(jnp.power(w.reshape(w.shape[0], -1), 2).sum(axis=1) + 1e-7) w = w / jnp.expand_dims(w_norm, tuple(range(1, len(w.shape)))) # perform power iterations: params = get_params(opt_state) for i in jnp.arange(num_iters): if method == "jvp": norms, w = compute_power_iteration_jvp(params, w, inputs, targets) elif method == "full": norms, w = compute_power_iteration_full(params, w, inputs, targets) w_norm = jnp.sqrt(jnp.power(w.reshape(w.shape[0], -1), 2).sum(axis=1) + 1e-7) w = w / jnp.expand_dims(w_norm, tuple(range(1, len(w.shape)))) # set nan values to 0 because gradient is 0 norms = jnp.nan_to_num(norms) return norms # return the function: return grad_jacobian_norm def get_grad_jacobian_trace_func(grad_func, get_params, reshape=True, label_privacy=False): """ Returns a function that computes the (square root of the) trace of the Jacobian of the parameters. """ @jit def grad_jacobian_trace(rng, opt_state, batch, num_iters=50): params = get_params(opt_state) inputs, targets = batch if reshape: inputs = jnp.expand_dims(inputs, 1) if label_privacy: flattened_shape = jnp.reshape(targets, (targets.shape[0], -1)).shape perex_grad = lambda x: vmap(grad_func, in_axes=(None, 0, 0))( params, inputs, x ) else: flattened_shape = jnp.reshape(inputs, (inputs.shape[0], -1)).shape perex_grad = lambda x: vmap(grad_func, in_axes=(None, 0, 0))( params, x, targets ) num_iters = targets.shape[1] if label_privacy else num_iters rngs = jnr.split(rng, num_iters) trace = jnp.zeros(inputs.shape[0]) for i, g in zip(jnp.arange(num_iters), rngs): indices = jnr.categorical(g, jnp.ones(shape=flattened_shape)) if label_privacy: indices = i * jnp.ones(flattened_shape[0]) w = jnp.reshape(nn.one_hot(indices, flattened_shape[1]), targets.shape) _, w = jvp(perex_grad, (targets,), (w,)) else: indices = jnr.categorical(rng, jnp.ones(shape=flattened_shape)) w = jnp.reshape(nn.one_hot(indices, flattened_shape[1]), inputs.shape) _, w = jvp(perex_grad, (inputs,), (w,)) # compute norm of the JVP: w_flattened, _ = tree_flatten(w) norms = [ jnp.power(jnp.reshape(v, (v.shape[0], -1)), 2).sum(axis=1) for v in w_flattened ] trace = trace + sum(norms) / num_iters # set nan values to 0 because gradient is 0 trace = jnp.nan_to_num(trace) return jnp.sqrt(trace + 1e-7) # return the function: return grad_jacobian_trace def get_dp_accounting_func(batch_size, sigma): """ Returns the (eps, delta)-DP accountant if alpha=None, or the (alpha, eps)-RDP accountant otherwise. """ def compute_epsilon(steps, num_examples, target_delta=1e-5, alpha=None): if num_examples * target_delta > 1.: warnings.warn('Your delta might be too high.') q = batch_size / float(num_examples) if alpha is None: orders = list(jnp.linspace(1.1, 10.9, 99)) + list(range(11, 64)) rdp_const = compute_rdp(q, sigma, steps, orders) eps, _, _ = get_privacy_spent(orders, rdp_const, target_delta=target_delta) else: eps = compute_rdp(q, sigma, steps, alpha) return eps return compute_epsilon
bounding_data_reconstruction-main
accountant.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import argparse import csv import logging import pickle import numpy as np import torch import transformers import src.slurm import src.contriever import src.utils import src.data import src.normalize_text def embed_passages(args, passages, model, tokenizer): total = 0 allids, allembeddings = [], [] batch_ids, batch_text = [], [] with torch.no_grad(): for k, p in enumerate(passages): batch_ids.append(p["id"]) if args.no_title or not "title" in p: text = p["text"] else: text = p["title"] + " " + p["text"] if args.lowercase: text = text.lower() if args.normalize_text: text = src.normalize_text.normalize(text) batch_text.append(text) if len(batch_text) == args.per_gpu_batch_size or k == len(passages) - 1: encoded_batch = tokenizer.batch_encode_plus( batch_text, return_tensors="pt", max_length=args.passage_maxlength, padding=True, truncation=True, ) encoded_batch = {k: v.cuda() for k, v in encoded_batch.items()} embeddings = model(**encoded_batch) embeddings = embeddings.cpu() total += len(batch_ids) allids.extend(batch_ids) allembeddings.append(embeddings) batch_text = [] batch_ids = [] if k % 100000 == 0 and k > 0: print(f"Encoded passages {total}") allembeddings = torch.cat(allembeddings, dim=0).numpy() return allids, allembeddings def main(args): model, tokenizer, _ = src.contriever.load_retriever(args.model_name_or_path) print(f"Model loaded from {args.model_name_or_path}.", flush=True) model.eval() model = model.cuda() if not args.no_fp16: model = model.half() passages = src.data.load_passages(args.passages) shard_size = len(passages) // args.num_shards start_idx = args.shard_id * shard_size end_idx = start_idx + shard_size if args.shard_id == args.num_shards - 1: end_idx = len(passages) passages = passages[start_idx:end_idx] print(f"Embedding generation for {len(passages)} passages from idx {start_idx} to {end_idx}.") allids, allembeddings = embed_passages(args, passages, model, tokenizer) save_file = os.path.join(args.output_dir, args.prefix + f"_{args.shard_id:02d}") os.makedirs(args.output_dir, exist_ok=True) print(f"Saving {len(allids)} passage embeddings to {save_file}.") with open(save_file, mode="wb") as f: pickle.dump((allids, allembeddings), f) print(f"Total passages processed {len(allids)}. Written to {save_file}.") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--passages", type=str, default=None, help="Path to passages (.tsv file)") parser.add_argument("--output_dir", type=str, default="wikipedia_embeddings", help="dir path to save embeddings") parser.add_argument("--prefix", type=str, default="passages", help="prefix path to save embeddings") parser.add_argument("--shard_id", type=int, default=0, help="Id of the current shard") parser.add_argument("--num_shards", type=int, default=1, help="Total number of shards") parser.add_argument( "--per_gpu_batch_size", type=int, default=512, help="Batch size for the passage encoder forward pass" ) parser.add_argument("--passage_maxlength", type=int, default=512, help="Maximum number of tokens in a passage") parser.add_argument( "--model_name_or_path", type=str, help="path to directory containing model weights and config file" ) parser.add_argument("--no_fp16", action="store_true", help="inference in fp32") parser.add_argument("--no_title", action="store_true", help="title not added to the passage body") parser.add_argument("--lowercase", action="store_true", help="lowercase text before encoding") parser.add_argument("--normalize_text", action="store_true", help="lowercase text before encoding") args = parser.parse_args() src.slurm.init_distributed_mode(args) main(args)
contriever-main
generate_passage_embeddings.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import sys import argparse import torch import logging import json import numpy as np import os import src.slurm import src.contriever import src.beir_utils import src.utils import src.dist_utils import src.contriever logger = logging.getLogger(__name__) def main(args): src.slurm.init_distributed_mode(args) src.slurm.init_signal_handler() os.makedirs(args.output_dir, exist_ok=True) logger = src.utils.init_logger(args) model, tokenizer, _ = src.contriever.load_retriever(args.model_name_or_path) model = model.cuda() model.eval() query_encoder = model doc_encoder = model logger.info("Start indexing") metrics = src.beir_utils.evaluate_model( query_encoder=query_encoder, doc_encoder=doc_encoder, tokenizer=tokenizer, dataset=args.dataset, batch_size=args.per_gpu_batch_size, norm_query=args.norm_query, norm_doc=args.norm_doc, is_main=src.dist_utils.is_main(), split="dev" if args.dataset == "msmarco" else "test", score_function=args.score_function, beir_dir=args.beir_dir, save_results_path=args.save_results_path, lower_case=args.lower_case, normalize_text=args.normalize_text, ) if src.dist_utils.is_main(): for key, value in metrics.items(): logger.info(f"{args.dataset} : {key}: {value:.1f}") if __name__ == "__main__": parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--dataset", type=str, help="Evaluation dataset from the BEIR benchmark") parser.add_argument("--beir_dir", type=str, default="./", help="Directory to save and load beir datasets") parser.add_argument("--text_maxlength", type=int, default=512, help="Maximum text length") parser.add_argument("--per_gpu_batch_size", default=128, type=int, help="Batch size per GPU/CPU for indexing.") parser.add_argument("--output_dir", type=str, default="./my_experiment", help="Output directory") parser.add_argument("--model_name_or_path", type=str, help="Model name or path") parser.add_argument( "--score_function", type=str, default="dot", help="Metric used to compute similarity between two embeddings" ) parser.add_argument("--norm_query", action="store_true", help="Normalize query representation") parser.add_argument("--norm_doc", action="store_true", help="Normalize document representation") parser.add_argument("--lower_case", action="store_true", help="lowercase query and document text") parser.add_argument( "--normalize_text", action="store_true", help="Apply function to normalize some common characters" ) parser.add_argument("--save_results_path", type=str, default=None, help="Path to save result object") parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument("--main_port", type=int, default=-1, help="Main port (for multi-node SLURM jobs)") args, _ = parser.parse_known_args() main(args)
contriever-main
eval_beir.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os import argparse import torch import transformers from src.normalize_text import normalize def save(tensor, split_path): if not os.path.exists(os.path.dirname(split_path)): os.makedirs(os.path.dirname(split_path)) with open(split_path, 'wb') as fout: torch.save(tensor, fout) def apply_tokenizer(path, tokenizer, normalize_text=False): alltokens = [] lines = [] with open(path, "r", encoding="utf-8") as fin: for k, line in enumerate(fin): if normalize_text: line = normalize(line) lines.append(line) if len(lines) > 1000000: tokens = tokenizer.batch_encode_plus(lines, add_special_tokens=False)['input_ids'] tokens = [torch.tensor(x, dtype=torch.int) for x in tokens] alltokens.extend(tokens) lines = [] tokens = tokenizer.batch_encode_plus(lines, add_special_tokens=False)['input_ids'] tokens = [torch.tensor(x, dtype=torch.int) for x in tokens] alltokens.extend(tokens) alltokens = torch.cat(alltokens) return alltokens def tokenize_file(args): filename = os.path.basename(args.datapath) savepath = os.path.join(args.outdir, f"{filename}.pkl") if os.path.exists(savepath): if args.overwrite: print(f"File {savepath} already exists, overwriting") else: print(f"File {savepath} already exists, exiting") return try: tokenizer = transformers.AutoTokenizer.from_pretrained(args.tokenizer, local_files_only=True) except: tokenizer = transformers.AutoTokenizer.from_pretrained(args.tokenizer, local_files_only=False) print(f"Encoding {args.datapath}...") tokens = apply_tokenizer(args.datapath, tokenizer, normalize_text=args.normalize_text) print(f"Saving at {savepath}...") save(tokens, savepath) if __name__ == '__main__': parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--datapath", type=str) parser.add_argument("--outdir", type=str) parser.add_argument("--tokenizer", type=str) parser.add_argument("--overwrite", action="store_true") parser.add_argument("--normalize_text", action="store_true") args, _ = parser.parse_known_args() tokenize_file(args)
contriever-main
preprocess.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import argparse import json import logging import glob import numpy as np import torch import src.utils from src.evaluation import calculate_matches logger = logging.getLogger(__name__) def validate(data, workers_num): match_stats = calculate_matches(data, workers_num) top_k_hits = match_stats.top_k_hits #logger.info('Validation results: top k documents hits %s', top_k_hits) top_k_hits = [v / len(data) for v in top_k_hits] #logger.info('Validation results: top k documents hits accuracy %s', top_k_hits) return top_k_hits def main(opt): logger = src.utils.init_logger(opt, stdout_only=True) datapaths = glob.glob(args.data) r20, r100 = [], [] for path in datapaths: data = [] with open(path, 'r') as fin: for line in fin: data.append(json.loads(line)) #data = json.load(fin) answers = [ex['answers'] for ex in data] top_k_hits = validate(data, args.validation_workers) message = f"Evaluate results from {path}:" for k in [5, 10, 20, 100]: if k <= len(top_k_hits): recall = 100 * top_k_hits[k-1] if k == 20: r20.append(f"{recall:.1f}") if k == 100: r100.append(f"{recall:.1f}") message += f' R@{k}: {recall:.1f}' logger.info(message) print(datapaths) print('\t'.join(r20)) print('\t'.join(r100)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--data', required=True, type=str, default=None) parser.add_argument('--validation_workers', type=int, default=16, help="Number of parallel processes to validate results") args = parser.parse_args() main(args)
contriever-main
evaluate_retrieved_passages.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import pdb import os import time import sys import torch from torch.utils.tensorboard import SummaryWriter import logging import json import numpy as np import torch.distributed as dist from torch.utils.data import DataLoader, RandomSampler, SequentialSampler from src.options import Options from src import data, beir_utils, slurm, dist_utils, utils, contriever, finetuning_data, inbatch import train os.environ["TOKENIZERS_PARALLELISM"] = "false" logger = logging.getLogger(__name__) def finetuning(opt, model, optimizer, scheduler, tokenizer, step): run_stats = utils.WeightedAvgStats() tb_logger = utils.init_tb_logger(opt.output_dir) if hasattr(model, "module"): eval_model = model.module else: eval_model = model eval_model = eval_model.get_encoder() train_dataset = finetuning_data.Dataset( datapaths=opt.train_data, negative_ctxs=opt.negative_ctxs, negative_hard_ratio=opt.negative_hard_ratio, negative_hard_min_idx=opt.negative_hard_min_idx, normalize=opt.eval_normalize_text, global_rank=dist_utils.get_rank(), world_size=dist_utils.get_world_size(), maxload=opt.maxload, training=True, ) collator = finetuning_data.Collator(tokenizer, passage_maxlength=opt.chunk_length) train_sampler = RandomSampler(train_dataset) train_dataloader = DataLoader( train_dataset, sampler=train_sampler, batch_size=opt.per_gpu_batch_size, drop_last=True, num_workers=opt.num_workers, collate_fn=collator, ) train.eval_model(opt, eval_model, None, tokenizer, tb_logger, step) evaluate(opt, eval_model, tokenizer, tb_logger, step) epoch = 1 model.train() prev_ids, prev_mask = None, None while step < opt.total_steps: logger.info(f"Start epoch {epoch}, number of batches: {len(train_dataloader)}") for i, batch in enumerate(train_dataloader): batch = {key: value.cuda() if isinstance(value, torch.Tensor) else value for key, value in batch.items()} step += 1 train_loss, iter_stats = model(**batch, stats_prefix="train") train_loss.backward() if opt.optim == "sam" or opt.optim == "asam": optimizer.first_step(zero_grad=True) sam_loss, _ = model(**batch, stats_prefix="train/sam_opt") sam_loss.backward() optimizer.second_step(zero_grad=True) else: optimizer.step() scheduler.step() optimizer.zero_grad() run_stats.update(iter_stats) if step % opt.log_freq == 0: log = f"{step} / {opt.total_steps}" for k, v in sorted(run_stats.average_stats.items()): log += f" | {k}: {v:.3f}" if tb_logger: tb_logger.add_scalar(k, v, step) log += f" | lr: {scheduler.get_last_lr()[0]:0.3g}" log += f" | Memory: {torch.cuda.max_memory_allocated()//1e9} GiB" logger.info(log) run_stats.reset() if step % opt.eval_freq == 0: train.eval_model(opt, eval_model, None, tokenizer, tb_logger, step) evaluate(opt, eval_model, tokenizer, tb_logger, step) if step % opt.save_freq == 0 and dist_utils.get_rank() == 0: utils.save( eval_model, optimizer, scheduler, step, opt, opt.output_dir, f"step-{step}", ) model.train() if step >= opt.total_steps: break epoch += 1 def evaluate(opt, model, tokenizer, tb_logger, step): dataset = finetuning_data.Dataset( datapaths=opt.eval_data, normalize=opt.eval_normalize_text, global_rank=dist_utils.get_rank(), world_size=dist_utils.get_world_size(), maxload=opt.maxload, training=False, ) collator = finetuning_data.Collator(tokenizer, passage_maxlength=opt.chunk_length) sampler = SequentialSampler(dataset) dataloader = DataLoader( dataset, sampler=sampler, batch_size=opt.per_gpu_batch_size, drop_last=False, num_workers=opt.num_workers, collate_fn=collator, ) model.eval() if hasattr(model, "module"): model = model.module correct_samples, total_samples, total_step = 0, 0, 0 all_q, all_g, all_n = [], [], [] with torch.no_grad(): for i, batch in enumerate(dataloader): batch = {key: value.cuda() if isinstance(value, torch.Tensor) else value for key, value in batch.items()} all_tokens = torch.cat([batch["g_tokens"], batch["n_tokens"]], dim=0) all_mask = torch.cat([batch["g_mask"], batch["n_mask"]], dim=0) q_emb = model(input_ids=batch["q_tokens"], attention_mask=batch["q_mask"], normalize=opt.norm_query) all_emb = model(input_ids=all_tokens, attention_mask=all_mask, normalize=opt.norm_doc) g_emb, n_emb = torch.split(all_emb, [len(batch["g_tokens"]), len(batch["n_tokens"])]) all_q.append(q_emb) all_g.append(g_emb) all_n.append(n_emb) all_q = torch.cat(all_q, dim=0) all_g = torch.cat(all_g, dim=0) all_n = torch.cat(all_n, dim=0) labels = torch.arange(0, len(all_q), device=all_q.device, dtype=torch.long) all_sizes = dist_utils.get_varsize(all_g) all_g = dist_utils.varsize_gather_nograd(all_g) all_n = dist_utils.varsize_gather_nograd(all_n) labels = labels + sum(all_sizes[: dist_utils.get_rank()]) scores_pos = torch.einsum("id, jd->ij", all_q, all_g) scores_neg = torch.einsum("id, jd->ij", all_q, all_n) scores = torch.cat([scores_pos, scores_neg], dim=-1) argmax_idx = torch.argmax(scores, dim=1) sorted_scores, indices = torch.sort(scores, descending=True) isrelevant = indices == labels[:, None] rs = [r.cpu().numpy().nonzero()[0] for r in isrelevant] mrr = np.mean([1.0 / (r[0] + 1) if r.size else 0.0 for r in rs]) acc = (argmax_idx == labels).sum() / all_q.size(0) acc, total = dist_utils.weighted_average(acc, all_q.size(0)) mrr, _ = dist_utils.weighted_average(mrr, all_q.size(0)) acc = 100 * acc message = [] if dist_utils.is_main(): message = [f"eval acc: {acc:.2f}%", f"eval mrr: {mrr:.3f}"] logger.info(" | ".join(message)) if tb_logger is not None: tb_logger.add_scalar(f"eval_acc", acc, step) tb_logger.add_scalar(f"mrr", mrr, step) def main(): logger.info("Start") options = Options() opt = options.parse() torch.manual_seed(opt.seed) slurm.init_distributed_mode(opt) slurm.init_signal_handler() directory_exists = os.path.isdir(opt.output_dir) if dist.is_initialized(): dist.barrier() os.makedirs(opt.output_dir, exist_ok=True) if not directory_exists and dist_utils.is_main(): options.print_options(opt) if dist.is_initialized(): dist.barrier() utils.init_logger(opt) step = 0 retriever, tokenizer, retriever_model_id = contriever.load_retriever(opt.model_path, opt.pooling, opt.random_init) opt.retriever_model_id = retriever_model_id model = inbatch.InBatch(opt, retriever, tokenizer) model = model.cuda() optimizer, scheduler = utils.set_optim(opt, model) # if dist_utils.is_main(): # utils.save(model, optimizer, scheduler, global_step, 0., opt, opt.output_dir, f"step-{0}") logger.info(utils.get_parameters(model)) for name, module in model.named_modules(): if isinstance(module, torch.nn.Dropout): module.p = opt.dropout if torch.distributed.is_initialized(): model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[opt.local_rank], output_device=opt.local_rank, find_unused_parameters=False, ) logger.info("Start training") finetuning(opt, model, optimizer, scheduler, tokenizer, step) if __name__ == "__main__": main()
contriever-main
finetuning.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os import time import sys import torch import logging import json import numpy as np import random import pickle import torch.distributed as dist from torch.utils.data import DataLoader, RandomSampler from src.options import Options from src import data, beir_utils, slurm, dist_utils, utils from src import moco, inbatch logger = logging.getLogger(__name__) def train(opt, model, optimizer, scheduler, step): run_stats = utils.WeightedAvgStats() tb_logger = utils.init_tb_logger(opt.output_dir) logger.info("Data loading") if isinstance(model, torch.nn.parallel.DistributedDataParallel): tokenizer = model.module.tokenizer else: tokenizer = model.tokenizer collator = data.Collator(opt=opt) train_dataset = data.load_data(opt, tokenizer) logger.warning(f"Data loading finished for rank {dist_utils.get_rank()}") train_sampler = RandomSampler(train_dataset) train_dataloader = DataLoader( train_dataset, sampler=train_sampler, batch_size=opt.per_gpu_batch_size, drop_last=True, num_workers=opt.num_workers, collate_fn=collator, ) epoch = 1 model.train() while step < opt.total_steps: train_dataset.generate_offset() logger.info(f"Start epoch {epoch}") for i, batch in enumerate(train_dataloader): step += 1 batch = {key: value.cuda() if isinstance(value, torch.Tensor) else value for key, value in batch.items()} train_loss, iter_stats = model(**batch, stats_prefix="train") train_loss.backward() optimizer.step() scheduler.step() model.zero_grad() run_stats.update(iter_stats) if step % opt.log_freq == 0: log = f"{step} / {opt.total_steps}" for k, v in sorted(run_stats.average_stats.items()): log += f" | {k}: {v:.3f}" if tb_logger: tb_logger.add_scalar(k, v, step) log += f" | lr: {scheduler.get_last_lr()[0]:0.3g}" log += f" | Memory: {torch.cuda.max_memory_allocated()//1e9} GiB" logger.info(log) run_stats.reset() if step % opt.eval_freq == 0: if isinstance(model, torch.nn.parallel.DistributedDataParallel): encoder = model.module.get_encoder() else: encoder = model.get_encoder() eval_model( opt, query_encoder=encoder, doc_encoder=encoder, tokenizer=tokenizer, tb_logger=tb_logger, step=step ) if dist_utils.is_main(): utils.save(model, optimizer, scheduler, step, opt, opt.output_dir, f"lastlog") model.train() if dist_utils.is_main() and step % opt.save_freq == 0: utils.save(model, optimizer, scheduler, step, opt, opt.output_dir, f"step-{step}") if step > opt.total_steps: break epoch += 1 def eval_model(opt, query_encoder, doc_encoder, tokenizer, tb_logger, step): for datasetname in opt.eval_datasets: metrics = beir_utils.evaluate_model( query_encoder, doc_encoder, tokenizer, dataset=datasetname, batch_size=opt.per_gpu_eval_batch_size, norm_doc=opt.norm_doc, norm_query=opt.norm_query, beir_dir=opt.eval_datasets_dir, score_function=opt.score_function, lower_case=opt.lower_case, normalize_text=opt.eval_normalize_text, ) message = [] if dist_utils.is_main(): for metric in ["NDCG@10", "Recall@10", "Recall@100"]: message.append(f"{datasetname}/{metric}: {metrics[metric]:.2f}") if tb_logger is not None: tb_logger.add_scalar(f"{datasetname}/{metric}", metrics[metric], step) logger.info(" | ".join(message)) if __name__ == "__main__": logger.info("Start") options = Options() opt = options.parse() torch.manual_seed(opt.seed) slurm.init_distributed_mode(opt) slurm.init_signal_handler() directory_exists = os.path.isdir(opt.output_dir) if dist.is_initialized(): dist.barrier() os.makedirs(opt.output_dir, exist_ok=True) if not directory_exists and dist_utils.is_main(): options.print_options(opt) if dist.is_initialized(): dist.barrier() utils.init_logger(opt) os.environ["TOKENIZERS_PARALLELISM"] = "false" if opt.contrastive_mode == "moco": model_class = moco.MoCo elif opt.contrastive_mode == "inbatch": model_class = inbatch.InBatch else: raise ValueError(f"contrastive mode: {opt.contrastive_mode} not recognised") if not directory_exists and opt.model_path == "none": model = model_class(opt) model = model.cuda() optimizer, scheduler = utils.set_optim(opt, model) step = 0 elif directory_exists: model_path = os.path.join(opt.output_dir, "checkpoint", "latest") model, optimizer, scheduler, opt_checkpoint, step = utils.load( model_class, model_path, opt, reset_params=False, ) logger.info(f"Model loaded from {opt.output_dir}") else: model, optimizer, scheduler, opt_checkpoint, step = utils.load( model_class, opt.model_path, opt, reset_params=False if opt.continue_training else True, ) if not opt.continue_training: step = 0 logger.info(f"Model loaded from {opt.model_path}") logger.info(utils.get_parameters(model)) if dist.is_initialized(): model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[opt.local_rank], output_device=opt.local_rank, find_unused_parameters=False, ) dist.barrier() logger.info("Start training") train(opt, model, optimizer, scheduler, step)
contriever-main
train.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import argparse import csv import json import logging import pickle import time import glob from pathlib import Path import numpy as np import torch import transformers import src.index import src.contriever import src.utils import src.slurm import src.data from src.evaluation import calculate_matches import src.normalize_text os.environ["TOKENIZERS_PARALLELISM"] = "true" def embed_queries(args, queries, model, tokenizer): model.eval() embeddings, batch_question = [], [] with torch.no_grad(): for k, q in enumerate(queries): if args.lowercase: q = q.lower() if args.normalize_text: q = src.normalize_text.normalize(q) batch_question.append(q) if len(batch_question) == args.per_gpu_batch_size or k == len(queries) - 1: encoded_batch = tokenizer.batch_encode_plus( batch_question, return_tensors="pt", max_length=args.question_maxlength, padding=True, truncation=True, ) encoded_batch = {k: v.cuda() for k, v in encoded_batch.items()} output = model(**encoded_batch) embeddings.append(output.cpu()) batch_question = [] embeddings = torch.cat(embeddings, dim=0) print(f"Questions embeddings shape: {embeddings.size()}") return embeddings.numpy() def index_encoded_data(index, embedding_files, indexing_batch_size): allids = [] allembeddings = np.array([]) for i, file_path in enumerate(embedding_files): print(f"Loading file {file_path}") with open(file_path, "rb") as fin: ids, embeddings = pickle.load(fin) allembeddings = np.vstack((allembeddings, embeddings)) if allembeddings.size else embeddings allids.extend(ids) while allembeddings.shape[0] > indexing_batch_size: allembeddings, allids = add_embeddings(index, allembeddings, allids, indexing_batch_size) while allembeddings.shape[0] > 0: allembeddings, allids = add_embeddings(index, allembeddings, allids, indexing_batch_size) print("Data indexing completed.") def add_embeddings(index, embeddings, ids, indexing_batch_size): end_idx = min(indexing_batch_size, embeddings.shape[0]) ids_toadd = ids[:end_idx] embeddings_toadd = embeddings[:end_idx] ids = ids[end_idx:] embeddings = embeddings[end_idx:] index.index_data(ids_toadd, embeddings_toadd) return embeddings, ids def validate(data, workers_num): match_stats = calculate_matches(data, workers_num) top_k_hits = match_stats.top_k_hits print("Validation results: top k documents hits %s", top_k_hits) top_k_hits = [v / len(data) for v in top_k_hits] message = "" for k in [5, 10, 20, 100]: if k <= len(top_k_hits): message += f"R@{k}: {top_k_hits[k-1]} " print(message) return match_stats.questions_doc_hits def add_passages(data, passages, top_passages_and_scores): # add passages to original data merged_data = [] assert len(data) == len(top_passages_and_scores) for i, d in enumerate(data): results_and_scores = top_passages_and_scores[i] docs = [passages[doc_id] for doc_id in results_and_scores[0]] scores = [str(score) for score in results_and_scores[1]] ctxs_num = len(docs) d["ctxs"] = [ { "id": results_and_scores[0][c], "title": docs[c]["title"], "text": docs[c]["text"], "score": scores[c], } for c in range(ctxs_num) ] def add_hasanswer(data, hasanswer): # add hasanswer to data for i, ex in enumerate(data): for k, d in enumerate(ex["ctxs"]): d["hasanswer"] = hasanswer[i][k] def load_data(data_path): if data_path.endswith(".json"): with open(data_path, "r") as fin: data = json.load(fin) elif data_path.endswith(".jsonl"): data = [] with open(data_path, "r") as fin: for k, example in enumerate(fin): example = json.loads(example) data.append(example) return data def main(args): print(f"Loading model from: {args.model_name_or_path}") model, tokenizer, _ = src.contriever.load_retriever(args.model_name_or_path) model.eval() model = model.cuda() if not args.no_fp16: model = model.half() index = src.index.Indexer(args.projection_size, args.n_subquantizers, args.n_bits) # index all passages input_paths = glob.glob(args.passages_embeddings) input_paths = sorted(input_paths) embeddings_dir = os.path.dirname(input_paths[0]) index_path = os.path.join(embeddings_dir, "index.faiss") if args.save_or_load_index and os.path.exists(index_path): index.deserialize_from(embeddings_dir) else: print(f"Indexing passages from files {input_paths}") start_time_indexing = time.time() index_encoded_data(index, input_paths, args.indexing_batch_size) print(f"Indexing time: {time.time()-start_time_indexing:.1f} s.") if args.save_or_load_index: index.serialize(embeddings_dir) # load passages passages = src.data.load_passages(args.passages) passage_id_map = {x["id"]: x for x in passages} data_paths = glob.glob(args.data) alldata = [] for path in data_paths: data = load_data(path) output_path = os.path.join(args.output_dir, os.path.basename(path)) queries = [ex["question"] for ex in data] questions_embedding = embed_queries(args, queries, model, tokenizer) # get top k results start_time_retrieval = time.time() top_ids_and_scores = index.search_knn(questions_embedding, args.n_docs) print(f"Search time: {time.time()-start_time_retrieval:.1f} s.") add_passages(data, passage_id_map, top_ids_and_scores) hasanswer = validate(data, args.validation_workers) add_hasanswer(data, hasanswer) os.makedirs(os.path.dirname(output_path), exist_ok=True) with open(output_path, "w") as fout: for ex in data: json.dump(ex, fout, ensure_ascii=False) fout.write("\n") print(f"Saved results to {output_path}") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--data", required=True, type=str, default=None, help=".json file containing question and answers, similar format to reader data", ) parser.add_argument("--passages", type=str, default=None, help="Path to passages (.tsv file)") parser.add_argument("--passages_embeddings", type=str, default=None, help="Glob path to encoded passages") parser.add_argument( "--output_dir", type=str, default=None, help="Results are written to outputdir with data suffix" ) parser.add_argument("--n_docs", type=int, default=100, help="Number of documents to retrieve per questions") parser.add_argument( "--validation_workers", type=int, default=32, help="Number of parallel processes to validate results" ) parser.add_argument("--per_gpu_batch_size", type=int, default=64, help="Batch size for question encoding") parser.add_argument( "--save_or_load_index", action="store_true", help="If enabled, save index and load index if it exists" ) parser.add_argument( "--model_name_or_path", type=str, help="path to directory containing model weights and config file" ) parser.add_argument("--no_fp16", action="store_true", help="inference in fp32") parser.add_argument("--question_maxlength", type=int, default=512, help="Maximum number of tokens in a question") parser.add_argument( "--indexing_batch_size", type=int, default=1000000, help="Batch size of the number of passages indexed" ) parser.add_argument("--projection_size", type=int, default=768) parser.add_argument( "--n_subquantizers", type=int, default=0, help="Number of subquantizer used for vector quantization, if 0 flat index is used", ) parser.add_argument("--n_bits", type=int, default=8, help="Number of bits per subquantizer") parser.add_argument("--lang", nargs="+") parser.add_argument("--dataset", type=str, default="none") parser.add_argument("--lowercase", action="store_true", help="lowercase text before encoding") parser.add_argument("--normalize_text", action="store_true", help="normalize text") args = parser.parse_args() src.slurm.init_distributed_mode(args) main(args)
contriever-main
passage_retrieval.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import sys import os import csv import json def convert2beir(data_path, output_path): splits = ['test', 'dev', 'train'] queries_path = os.path.join(output_path, "queries.jsonl") corpus_path = os.path.join(output_path, "corpus.jsonl") os.makedirs(os.path.dirname(corpus_path), exist_ok=True) queries = [] with open(queries_path, "w", encoding="utf-8") as fout: with open(os.path.join(data_path, f"topic.tsv"), "r", encoding="utf-8") as fin: reader = csv.reader(fin, delimiter="\t") for x in reader: qdict = { "_id": x[0], "text": x[1] } json.dump(qdict, fout, ensure_ascii=False) fout.write('\n') with open(os.path.join(data_path, "collection", "docs.jsonl"), "r") as fin: with open(corpus_path, "w", encoding="utf-8") as fout: for line in fin: x = json.loads(line) x["_id"] = x["id"] x["text"] = x["contents"] x["title"] = "" del x["id"] del x["contents"] json.dump(x, fout, ensure_ascii=False) fout.write('\n') for split in splits: qrels_path = os.path.join(output_path, "qrels", f"{split}.tsv") os.makedirs(os.path.dirname(qrels_path), exist_ok=True) with open(os.path.join(data_path, f"qrels.{split}.txt"), "r", encoding="utf-8") as fin: with open(qrels_path, "w", encoding="utf-8") as fout: writer = csv.writer(fout, delimiter='\t') writer.writerow(["query-id", "corpus-id", "score"]) for line in fin: line = line.strip() el = line.split() qid = el[0] i = el[2] s = el[3] writer.writerow([qid, i, s]) if __name__ == '__main__': convert2beir(sys.argv[1], sys.argv[2])
contriever-main
data_scripts/convertmrtydi2beir.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import sys import os import json from collections import defaultdict def preprocess_xmkqa(input_path, output_dir): os.makedirs(output_dir, exist_ok=True) mkqa = [] with open(input_path, 'r') as fin: for line in fin: ex = json.loads(line) mkqa.append(ex) mkqadict = {ex['example_id']:ex for ex in mkqa} langs = ['en', 'ar', 'fi', 'ja', 'ko', 'ru', 'es', 'sv', 'he', 'th', \ 'da', 'de', 'fr', 'it', 'nl', 'pl', 'pt', 'hu', 'vi', 'ms', \ 'km', 'no', 'tr', 'zh_cn', 'zh_hk', 'zh_tw'] langdata = defaultdict(list) for ex in mkqa: answers = [] for a in ex['answers']['en']: flag = False if not (a['type'] == 'unanswerable' or a['type'] == 'binary' or a['type'] == 'long_answer'): flag = True answers.extend(a.get("aliases", [])) answers.append(a.get("text")) if flag: for lang in langs: langex = { 'id': ex['example_id'], 'lang': lang, 'question': ex['queries'][lang], #question in specific languages 'answers': answers #english answers } langdata[lang].append(langex) for lang, data in langdata.items(): with open(os.path.join(output_dir, f'{lang}.jsonl'), 'w') as fout: for ex in data: json.dump(ex, fout, ensure_ascii=False) fout.write('\n') if __name__ == '__main__': preprocess_xmkqa(sys.argv[1], sys.argv[2])
contriever-main
data_scripts/preprocess_xmkqa.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os import torch import transformers from transformers import BertModel, XLMRobertaModel from src import utils class Contriever(BertModel): def __init__(self, config, pooling="average", **kwargs): super().__init__(config, add_pooling_layer=False) if not hasattr(config, "pooling"): self.config.pooling = pooling def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions=None, output_hidden_states=None, normalize=False, ): model_output = super().forward( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) last_hidden = model_output["last_hidden_state"] last_hidden = last_hidden.masked_fill(~attention_mask[..., None].bool(), 0.0) if self.config.pooling == "average": emb = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] elif self.config.pooling == "cls": emb = last_hidden[:, 0] if normalize: emb = torch.nn.functional.normalize(emb, dim=-1) return emb class XLMRetriever(XLMRobertaModel): def __init__(self, config, pooling="average", **kwargs): super().__init__(config, add_pooling_layer=False) if not hasattr(config, "pooling"): self.config.pooling = pooling def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions=None, output_hidden_states=None, normalize=False, ): model_output = super().forward( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) last_hidden = model_output["last_hidden_state"] last_hidden = last_hidden.masked_fill(~attention_mask[..., None].bool(), 0.0) if self.config.pooling == "average": emb = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] elif self.config.pooling == "cls": emb = last_hidden[:, 0] if normalize: emb = torch.nn.functional.normalize(emb, dim=-1) return emb def load_retriever(model_path, pooling="average", random_init=False): # try: check if model exists locally path = os.path.join(model_path, "checkpoint.pth") if os.path.exists(path): pretrained_dict = torch.load(path, map_location="cpu") opt = pretrained_dict["opt"] if hasattr(opt, "retriever_model_id"): retriever_model_id = opt.retriever_model_id else: # retriever_model_id = "bert-base-uncased" retriever_model_id = "bert-base-multilingual-cased" tokenizer = utils.load_hf(transformers.AutoTokenizer, retriever_model_id) cfg = utils.load_hf(transformers.AutoConfig, retriever_model_id) if "xlm" in retriever_model_id: model_class = XLMRetriever else: model_class = Contriever retriever = model_class(cfg) pretrained_dict = pretrained_dict["model"] if any("encoder_q." in key for key in pretrained_dict.keys()): # test if model is defined with moco class pretrained_dict = {k.replace("encoder_q.", ""): v for k, v in pretrained_dict.items() if "encoder_q." in k} elif any("encoder." in key for key in pretrained_dict.keys()): # test if model is defined with inbatch class pretrained_dict = {k.replace("encoder.", ""): v for k, v in pretrained_dict.items() if "encoder." in k} retriever.load_state_dict(pretrained_dict, strict=False) else: retriever_model_id = model_path if "xlm" in retriever_model_id: model_class = XLMRetriever else: model_class = Contriever cfg = utils.load_hf(transformers.AutoConfig, model_path) tokenizer = utils.load_hf(transformers.AutoTokenizer, model_path) retriever = utils.load_hf(model_class, model_path) return retriever, tokenizer, retriever_model_id
contriever-main
src/contriever.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import argparse import os class Options: def __init__(self): self.parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) self.initialize() def initialize(self): # basic parameters self.parser.add_argument( "--output_dir", type=str, default="./checkpoint/my_experiments", help="models are saved here" ) self.parser.add_argument( "--train_data", nargs="+", default=[], help="Data used for training, passed as a list of directories splitted into tensor files.", ) self.parser.add_argument( "--eval_data", nargs="+", default=[], help="Data used for evaluation during finetuning, this option is not used during contrastive pre-training.", ) self.parser.add_argument( "--eval_datasets", nargs="+", default=[], help="List of datasets used for evaluation, in BEIR format" ) self.parser.add_argument( "--eval_datasets_dir", type=str, default="./", help="Directory where eval datasets are stored" ) self.parser.add_argument("--model_path", type=str, default="none", help="path for retraining") self.parser.add_argument("--continue_training", action="store_true") self.parser.add_argument("--num_workers", type=int, default=5) self.parser.add_argument("--chunk_length", type=int, default=256) self.parser.add_argument("--loading_mode", type=str, default="split") self.parser.add_argument("--lower_case", action="store_true", help="perform evaluation after lowercasing") self.parser.add_argument( "--sampling_coefficient", type=float, default=0.0, help="coefficient used for sampling between different datasets during training, \ by default sampling is uniform over datasets", ) self.parser.add_argument("--augmentation", type=str, default="none") self.parser.add_argument("--prob_augmentation", type=float, default=0.0) self.parser.add_argument("--dropout", type=float, default=0.1) self.parser.add_argument("--rho", type=float, default=0.05) self.parser.add_argument("--contrastive_mode", type=str, default="moco") self.parser.add_argument("--queue_size", type=int, default=65536) self.parser.add_argument("--temperature", type=float, default=1.0) self.parser.add_argument("--momentum", type=float, default=0.999) self.parser.add_argument("--moco_train_mode_encoder_k", action="store_true") self.parser.add_argument("--eval_normalize_text", action="store_true") self.parser.add_argument("--norm_query", action="store_true") self.parser.add_argument("--norm_doc", action="store_true") self.parser.add_argument("--projection_size", type=int, default=768) self.parser.add_argument("--ratio_min", type=float, default=0.1) self.parser.add_argument("--ratio_max", type=float, default=0.5) self.parser.add_argument("--score_function", type=str, default="dot") self.parser.add_argument("--retriever_model_id", type=str, default="bert-base-uncased") self.parser.add_argument("--pooling", type=str, default="average") self.parser.add_argument("--random_init", action="store_true", help="init model with random weights") # dataset parameters self.parser.add_argument("--per_gpu_batch_size", default=64, type=int, help="Batch size per GPU for training.") self.parser.add_argument( "--per_gpu_eval_batch_size", default=256, type=int, help="Batch size per GPU for evaluation." ) self.parser.add_argument("--total_steps", type=int, default=1000) self.parser.add_argument("--warmup_steps", type=int, default=-1) self.parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") self.parser.add_argument("--main_port", type=int, default=10001, help="Master port (for multi-node SLURM jobs)") self.parser.add_argument("--seed", type=int, default=0, help="random seed for initialization") # training parameters self.parser.add_argument("--optim", type=str, default="adamw") self.parser.add_argument("--scheduler", type=str, default="linear") self.parser.add_argument("--lr", type=float, default=1e-4, help="learning rate") self.parser.add_argument( "--lr_min_ratio", type=float, default=0.0, help="minimum learning rate at the end of the optimization schedule as a ratio of the learning rate", ) self.parser.add_argument("--weight_decay", type=float, default=0.01, help="learning rate") self.parser.add_argument("--beta1", type=float, default=0.9, help="beta1") self.parser.add_argument("--beta2", type=float, default=0.98, help="beta2") self.parser.add_argument("--eps", type=float, default=1e-6, help="eps") self.parser.add_argument( "--log_freq", type=int, default=100, help="log train stats every <log_freq> steps during training" ) self.parser.add_argument( "--eval_freq", type=int, default=500, help="evaluate model every <eval_freq> steps during training" ) self.parser.add_argument("--save_freq", type=int, default=50000) self.parser.add_argument("--maxload", type=int, default=None) self.parser.add_argument("--label_smoothing", type=float, default=0.0) # finetuning options self.parser.add_argument("--negative_ctxs", type=int, default=1) self.parser.add_argument("--negative_hard_min_idx", type=int, default=0) self.parser.add_argument("--negative_hard_ratio", type=float, default=0.0) def print_options(self, opt): message = "" for k, v in sorted(vars(opt).items()): comment = "" default = self.parser.get_default(k) if v != default: comment = f"\t[default: %s]" % str(default) message += f"{str(k):>40}: {str(v):<40}{comment}\n" print(message, flush=True) model_dir = os.path.join(opt.output_dir, "models") if not os.path.exists(model_dir): os.makedirs(os.path.join(opt.output_dir, "models")) file_name = os.path.join(opt.output_dir, "opt.txt") with open(file_name, "wt") as opt_file: opt_file.write(message) opt_file.write("\n") def parse(self): opt, _ = self.parser.parse_known_args() # opt = self.parser.parse_args() return opt
contriever-main
src/options.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch import torch.nn as nn import numpy as np import math import random import transformers import logging import torch.distributed as dist from src import contriever, dist_utils, utils logger = logging.getLogger(__name__) class InBatch(nn.Module): def __init__(self, opt, retriever=None, tokenizer=None): super(InBatch, self).__init__() self.opt = opt self.norm_doc = opt.norm_doc self.norm_query = opt.norm_query self.label_smoothing = opt.label_smoothing if retriever is None or tokenizer is None: retriever, tokenizer = self._load_retriever( opt.retriever_model_id, pooling=opt.pooling, random_init=opt.random_init ) self.tokenizer = tokenizer self.encoder = retriever def _load_retriever(self, model_id, pooling, random_init): cfg = utils.load_hf(transformers.AutoConfig, model_id) tokenizer = utils.load_hf(transformers.AutoTokenizer, model_id) if "xlm" in model_id: model_class = contriever.XLMRetriever else: model_class = contriever.Contriever if random_init: retriever = model_class(cfg) else: retriever = utils.load_hf(model_class, model_id) if "bert-" in model_id: if tokenizer.bos_token_id is None: tokenizer.bos_token = "[CLS]" if tokenizer.eos_token_id is None: tokenizer.eos_token = "[SEP]" retriever.config.pooling = pooling return retriever, tokenizer def get_encoder(self): return self.encoder def forward(self, q_tokens, q_mask, k_tokens, k_mask, stats_prefix="", iter_stats={}, **kwargs): bsz = len(q_tokens) labels = torch.arange(0, bsz, dtype=torch.long, device=q_tokens.device) qemb = self.encoder(input_ids=q_tokens, attention_mask=q_mask, normalize=self.norm_query) kemb = self.encoder(input_ids=k_tokens, attention_mask=k_mask, normalize=self.norm_doc) gather_fn = dist_utils.gather gather_kemb = gather_fn(kemb) labels = labels + dist_utils.get_rank() * len(kemb) scores = torch.einsum("id, jd->ij", qemb / self.opt.temperature, gather_kemb) loss = torch.nn.functional.cross_entropy(scores, labels, label_smoothing=self.label_smoothing) # log stats if len(stats_prefix) > 0: stats_prefix = stats_prefix + "/" iter_stats[f"{stats_prefix}loss"] = (loss.item(), bsz) predicted_idx = torch.argmax(scores, dim=-1) accuracy = 100 * (predicted_idx == labels).float().mean() stdq = torch.std(qemb, dim=0).mean().item() stdk = torch.std(kemb, dim=0).mean().item() iter_stats[f"{stats_prefix}accuracy"] = (accuracy, bsz) iter_stats[f"{stats_prefix}stdq"] = (stdq, bsz) iter_stats[f"{stats_prefix}stdk"] = (stdk, bsz) return loss, iter_stats
contriever-main
src/inbatch.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import pickle from typing import List, Tuple import faiss import numpy as np from tqdm import tqdm class Indexer(object): def __init__(self, vector_sz, n_subquantizers=0, n_bits=8): if n_subquantizers > 0: self.index = faiss.IndexPQ(vector_sz, n_subquantizers, n_bits, faiss.METRIC_INNER_PRODUCT) else: self.index = faiss.IndexFlatIP(vector_sz) #self.index_id_to_db_id = np.empty((0), dtype=np.int64) self.index_id_to_db_id = [] def index_data(self, ids, embeddings): self._update_id_mapping(ids) embeddings = embeddings.astype('float32') if not self.index.is_trained: self.index.train(embeddings) self.index.add(embeddings) print(f'Total data indexed {len(self.index_id_to_db_id)}') def search_knn(self, query_vectors: np.array, top_docs: int, index_batch_size: int = 2048) -> List[Tuple[List[object], List[float]]]: query_vectors = query_vectors.astype('float32') result = [] nbatch = (len(query_vectors)-1) // index_batch_size + 1 for k in tqdm(range(nbatch)): start_idx = k*index_batch_size end_idx = min((k+1)*index_batch_size, len(query_vectors)) q = query_vectors[start_idx: end_idx] scores, indexes = self.index.search(q, top_docs) # convert to external ids db_ids = [[str(self.index_id_to_db_id[i]) for i in query_top_idxs] for query_top_idxs in indexes] result.extend([(db_ids[i], scores[i]) for i in range(len(db_ids))]) return result def serialize(self, dir_path): index_file = os.path.join(dir_path, 'index.faiss') meta_file = os.path.join(dir_path, 'index_meta.faiss') print(f'Serializing index to {index_file}, meta data to {meta_file}') faiss.write_index(self.index, index_file) with open(meta_file, mode='wb') as f: pickle.dump(self.index_id_to_db_id, f) def deserialize_from(self, dir_path): index_file = os.path.join(dir_path, 'index.faiss') meta_file = os.path.join(dir_path, 'index_meta.faiss') print(f'Loading index from {index_file}, meta data from {meta_file}') self.index = faiss.read_index(index_file) print('Loaded index of type %s and size %d', type(self.index), self.index.ntotal) with open(meta_file, "rb") as reader: self.index_id_to_db_id = pickle.load(reader) assert len( self.index_id_to_db_id) == self.index.ntotal, 'Deserialized index_id_to_db_id should match faiss index size' def _update_id_mapping(self, db_ids: List): #new_ids = np.array(db_ids, dtype=np.int64) #self.index_id_to_db_id = np.concatenate((self.index_id_to_db_id, new_ids), axis=0) self.index_id_to_db_id.extend(db_ids)
contriever-main
src/index.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from logging import getLogger import os import sys import torch import socket import signal import subprocess logger = getLogger() def sig_handler(signum, frame): logger.warning("Signal handler called with signal " + str(signum)) prod_id = int(os.environ['SLURM_PROCID']) logger.warning("Host: %s - Global rank: %i" % (socket.gethostname(), prod_id)) if prod_id == 0: logger.warning("Requeuing job " + os.environ['SLURM_JOB_ID']) os.system('scontrol requeue ' + os.environ['SLURM_JOB_ID']) else: logger.warning("Not the main process, no need to requeue.") sys.exit(-1) def term_handler(signum, frame): logger.warning("Signal handler called with signal " + str(signum)) logger.warning("Bypassing SIGTERM.") def init_signal_handler(): """ Handle signals sent by SLURM for time limit / pre-emption. """ signal.signal(signal.SIGUSR1, sig_handler) signal.signal(signal.SIGTERM, term_handler) def init_distributed_mode(params): """ Handle single and multi-GPU / multi-node / SLURM jobs. Initialize the following variables: - local_rank - global_rank - world_size """ is_slurm_job = 'SLURM_JOB_ID' in os.environ and not 'WORLD_SIZE' in os.environ has_local_rank = hasattr(params, 'local_rank') # SLURM job without torch.distributed.launch if is_slurm_job and has_local_rank: assert params.local_rank == -1 # on the cluster, this is handled by SLURM # local rank on the current node / global rank params.local_rank = int(os.environ['SLURM_LOCALID']) params.global_rank = int(os.environ['SLURM_PROCID']) params.world_size = int(os.environ['SLURM_NTASKS']) # define master address and master port hostnames = subprocess.check_output(['scontrol', 'show', 'hostnames', os.environ['SLURM_JOB_NODELIST']]) params.main_addr = hostnames.split()[0].decode('utf-8') assert 10001 <= params.main_port <= 20000 or params.world_size == 1 # set environment variables for 'env://' os.environ['MASTER_ADDR'] = params.main_addr os.environ['MASTER_PORT'] = str(params.main_port) os.environ['WORLD_SIZE'] = str(params.world_size) os.environ['RANK'] = str(params.global_rank) is_distributed = True # multi-GPU job (local or multi-node) - jobs started with torch.distributed.launch elif has_local_rank and params.local_rank != -1: assert params.main_port == -1 # read environment variables params.global_rank = int(os.environ['RANK']) params.world_size = int(os.environ['WORLD_SIZE']) is_distributed = True # local job (single GPU) else: params.local_rank = 0 params.global_rank = 0 params.world_size = 1 is_distributed = False # set GPU device torch.cuda.set_device(params.local_rank) # initialize multi-GPU if is_distributed: # http://pytorch.apachecn.org/en/0.3.0/distributed.html#environment-variable-initialization # 'env://' will read these environment variables: # MASTER_PORT - required; has to be a free port on machine with rank 0 # MASTER_ADDR - required (except for rank 0); address of rank 0 node # WORLD_SIZE - required; can be set either here, or in a call to init function # RANK - required; can be set either here, or in a call to init function #print("Initializing PyTorch distributed ...") torch.distributed.init_process_group( init_method='env://', backend='nccl', #world_size=params.world_size, #rank=params.global_rank, )
contriever-main
src/slurm.py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import collections import logging import regex import string import unicodedata from functools import partial from multiprocessing import Pool as ProcessPool from typing import Tuple, List, Dict import numpy as np """ Evaluation code from DPR: https://github.com/facebookresearch/DPR """ class SimpleTokenizer(object): ALPHA_NUM = r'[\p{L}\p{N}\p{M}]+' NON_WS = r'[^\p{Z}\p{C}]' def __init__(self): """ Args: annotators: None or empty set (only tokenizes). """ self._regexp = regex.compile( '(%s)|(%s)' % (self.ALPHA_NUM, self.NON_WS), flags=regex.IGNORECASE + regex.UNICODE + regex.MULTILINE ) def tokenize(self, text, uncased=False): matches = [m for m in self._regexp.finditer(text)] if uncased: tokens = [m.group().lower() for m in matches] else: tokens = [m.group() for m in matches] return tokens logger = logging.getLogger(__name__) QAMatchStats = collections.namedtuple('QAMatchStats', ['top_k_hits', 'questions_doc_hits']) def calculate_matches(data: List, workers_num: int): """ Evaluates answers presence in the set of documents. This function is supposed to be used with a large collection of documents and results. It internally forks multiple sub-processes for evaluation and then merges results :param all_docs: dictionary of the entire documents database. doc_id -> (doc_text, title) :param answers: list of answers's list. One list per question :param closest_docs: document ids of the top results along with their scores :param workers_num: amount of parallel threads to process data :param match_type: type of answer matching. Refer to has_answer code for available options :return: matching information tuple. top_k_hits - a list where the index is the amount of top documents retrieved and the value is the total amount of valid matches across an entire dataset. questions_doc_hits - more detailed info with answer matches for every question and every retrieved document """ logger.info('Matching answers in top docs...') tokenizer = SimpleTokenizer() get_score_partial = partial(check_answer, tokenizer=tokenizer) processes = ProcessPool(processes=workers_num) scores = processes.map(get_score_partial, data) logger.info('Per question validation results len=%d', len(scores)) n_docs = len(data[0]['ctxs']) top_k_hits = [0] * n_docs for question_hits in scores: best_hit = next((i for i, x in enumerate(question_hits) if x), None) if best_hit is not None: top_k_hits[best_hit:] = [v + 1 for v in top_k_hits[best_hit:]] return QAMatchStats(top_k_hits, scores) def check_answer(example, tokenizer) -> List[bool]: """Search through all the top docs to see if they have any of the answers.""" answers = example['answers'] ctxs = example['ctxs'] hits = [] for i, doc in enumerate(ctxs): text = doc['text'] if text is None: # cannot find the document for some reason logger.warning("no doc in db") hits.append(False) continue hits.append(has_answer(answers, text, tokenizer)) return hits def has_answer(answers, text, tokenizer) -> bool: """Check if a document contains an answer string.""" text = _normalize(text) text = tokenizer.tokenize(text, uncased=True) for answer in answers: answer = _normalize(answer) answer = tokenizer.tokenize(answer, uncased=True) for i in range(0, len(text) - len(answer) + 1): if answer == text[i: i + len(answer)]: return True return False ################################################# ######## READER EVALUATION ######## ################################################# def _normalize(text): return unicodedata.normalize('NFD', text) #Normalization and score functions from SQuAD evaluation script https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/ def normalize_answer(s): def remove_articles(text): return regex.sub(r'\b(a|an|the)\b', ' ', text) def white_space_fix(text): return ' '.join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return ''.join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def em(prediction, ground_truth): return normalize_answer(prediction) == normalize_answer(ground_truth) def f1(prediction, ground_truth): prediction_tokens = normalize_answer(prediction).split() ground_truth_tokens = normalize_answer(ground_truth).split() common = Counter(prediction_tokens) & Counter(ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 = (2 * precision * recall) / (precision + recall) return f1 def f1_score(prediction, ground_truths): return max([f1(prediction, gt) for gt in ground_truths]) def exact_match_score(prediction, ground_truths): return max([em(prediction, gt) for gt in ground_truths]) #################################################### ######## RETRIEVER EVALUATION ######## #################################################### def eval_batch(scores, inversions, avg_topk, idx_topk): for k, s in enumerate(scores): s = s.cpu().numpy() sorted_idx = np.argsort(-s) score(sorted_idx, inversions, avg_topk, idx_topk) def count_inversions(arr): inv_count = 0 lenarr = len(arr) for i in range(lenarr): for j in range(i + 1, lenarr): if (arr[i] > arr[j]): inv_count += 1 return inv_count def score(x, inversions, avg_topk, idx_topk): x = np.array(x) inversions.append(count_inversions(x)) for k in avg_topk: # ratio of passages in the predicted top-k that are # also in the topk given by gold score avg_pred_topk = (x[:k]<k).mean() avg_topk[k].append(avg_pred_topk) for k in idx_topk: below_k = (x<k) # number of passages required to obtain all passages from gold top-k idx_gold_topk = len(x) - np.argmax(below_k[::-1]) idx_topk[k].append(idx_gold_topk)
contriever-main
src/evaluation.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch import random import json import sys import numpy as np from src import normalize_text class Dataset(torch.utils.data.Dataset): def __init__( self, datapaths, negative_ctxs=1, negative_hard_ratio=0.0, negative_hard_min_idx=0, training=False, global_rank=-1, world_size=-1, maxload=None, normalize=False, ): self.negative_ctxs = negative_ctxs self.negative_hard_ratio = negative_hard_ratio self.negative_hard_min_idx = negative_hard_min_idx self.training = training self.normalize_fn = normalize_text.normalize if normalize_text else lambda x: x self._load_data(datapaths, global_rank, world_size, maxload) def __len__(self): return len(self.data) def __getitem__(self, index): example = self.data[index] question = example["question"] if self.training: gold = random.choice(example["positive_ctxs"]) n_hard_negatives, n_random_negatives = self.sample_n_hard_negatives(example) negatives = [] if n_random_negatives > 0: random_negatives = random.sample(example["negative_ctxs"], n_random_negatives) negatives += random_negatives if n_hard_negatives > 0: hard_negatives = random.sample( example["hard_negative_ctxs"][self.negative_hard_min_idx :], n_hard_negatives ) negatives += hard_negatives else: gold = example["positive_ctxs"][0] nidx = 0 if "negative_ctxs" in example: negatives = [example["negative_ctxs"][nidx]] else: negatives = [] gold = gold["title"] + " " + gold["text"] if "title" in gold and len(gold["title"]) > 0 else gold["text"] negatives = [ n["title"] + " " + n["text"] if ("title" in n and len(n["title"]) > 0) else n["text"] for n in negatives ] example = { "query": self.normalize_fn(question), "gold": self.normalize_fn(gold), "negatives": [self.normalize_fn(n) for n in negatives], } return example def _load_data(self, datapaths, global_rank, world_size, maxload): counter = 0 self.data = [] for path in datapaths: path = str(path) if path.endswith(".jsonl"): file_data, counter = self._load_data_jsonl(path, global_rank, world_size, counter, maxload) elif path.endswith(".json"): file_data, counter = self._load_data_json(path, global_rank, world_size, counter, maxload) self.data.extend(file_data) if maxload is not None and maxload > 0 and counter >= maxload: break def _load_data_json(self, path, global_rank, world_size, counter, maxload=None): examples = [] with open(path, "r") as fin: data = json.load(fin) for example in data: counter += 1 if global_rank > -1 and not counter % world_size == global_rank: continue examples.append(example) if maxload is not None and maxload > 0 and counter == maxload: break return examples, counter def _load_data_jsonl(self, path, global_rank, world_size, counter, maxload=None): examples = [] with open(path, "r") as fin: for line in fin: counter += 1 if global_rank > -1 and not counter % world_size == global_rank: continue example = json.loads(line) examples.append(example) if maxload is not None and maxload > 0 and counter == maxload: break return examples, counter def sample_n_hard_negatives(self, ex): if "hard_negative_ctxs" in ex: n_hard_negatives = sum([random.random() < self.negative_hard_ratio for _ in range(self.negative_ctxs)]) n_hard_negatives = min(n_hard_negatives, len(ex["hard_negative_ctxs"][self.negative_hard_min_idx :])) else: n_hard_negatives = 0 n_random_negatives = self.negative_ctxs - n_hard_negatives if "negative_ctxs" in ex: n_random_negatives = min(n_random_negatives, len(ex["negative_ctxs"])) else: n_random_negatives = 0 return n_hard_negatives, n_random_negatives class Collator(object): def __init__(self, tokenizer, passage_maxlength=200): self.tokenizer = tokenizer self.passage_maxlength = passage_maxlength def __call__(self, batch): queries = [ex["query"] for ex in batch] golds = [ex["gold"] for ex in batch] negs = [item for ex in batch for item in ex["negatives"]] allpassages = golds + negs qout = self.tokenizer.batch_encode_plus( queries, max_length=self.passage_maxlength, truncation=True, padding=True, add_special_tokens=True, return_tensors="pt", ) kout = self.tokenizer.batch_encode_plus( allpassages, max_length=self.passage_maxlength, truncation=True, padding=True, add_special_tokens=True, return_tensors="pt", ) q_tokens, q_mask = qout["input_ids"], qout["attention_mask"].bool() k_tokens, k_mask = kout["input_ids"], kout["attention_mask"].bool() g_tokens, g_mask = k_tokens[: len(golds)], k_mask[: len(golds)] n_tokens, n_mask = k_tokens[len(golds) :], k_mask[len(golds) :] batch = { "q_tokens": q_tokens, "q_mask": q_mask, "k_tokens": k_tokens, "k_mask": k_mask, "g_tokens": g_tokens, "g_mask": g_mask, "n_tokens": n_tokens, "n_mask": n_mask, } return batch
contriever-main
src/finetuning_data.py
contriever-main
src/__init__.py
""" adapted from chemdataextractor.text.normalize ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Tools for normalizing text. https://github.com/mcs07/ChemDataExtractor :copyright: Copyright 2016 by Matt Swain. :license: MIT Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the 'Software'), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ #: Control characters. CONTROLS = { '\u0001', '\u0002', '\u0003', '\u0004', '\u0005', '\u0006', '\u0007', '\u0008', '\u000e', '\u000f', '\u0011', '\u0012', '\u0013', '\u0014', '\u0015', '\u0016', '\u0017', '\u0018', '\u0019', '\u001a', '\u001b', } # There are further control characters, but they are instead replaced with a space by unicode normalization # '\u0009', '\u000a', '\u000b', '\u000c', '\u000d', '\u001c', '\u001d', '\u001e', '\u001f' #: Hyphen and dash characters. HYPHENS = { '-', # \u002d Hyphen-minus '‐', # \u2010 Hyphen '‑', # \u2011 Non-breaking hyphen '⁃', # \u2043 Hyphen bullet '‒', # \u2012 figure dash '–', # \u2013 en dash '—', # \u2014 em dash '―', # \u2015 horizontal bar } #: Minus characters. MINUSES = { '-', # \u002d Hyphen-minus '−', # \u2212 Minus '-', # \uff0d Full-width Hyphen-minus '⁻', # \u207b Superscript minus } #: Plus characters. PLUSES = { '+', # \u002b Plus '+', # \uff0b Full-width Plus '⁺', # \u207a Superscript plus } #: Slash characters. SLASHES = { '/', # \u002f Solidus '⁄', # \u2044 Fraction slash '∕', # \u2215 Division slash } #: Tilde characters. TILDES = { '~', # \u007e Tilde '˜', # \u02dc Small tilde '⁓', # \u2053 Swung dash '∼', # \u223c Tilde operator #in mbert vocab '∽', # \u223d Reversed tilde '∿', # \u223f Sine wave '〜', # \u301c Wave dash #in mbert vocab '~', # \uff5e Full-width tilde #in mbert vocab } #: Apostrophe characters. APOSTROPHES = { "'", # \u0027 '’', # \u2019 '՚', # \u055a 'Ꞌ', # \ua78b 'ꞌ', # \ua78c ''', # \uff07 } #: Single quote characters. SINGLE_QUOTES = { "'", # \u0027 '‘', # \u2018 '’', # \u2019 '‚', # \u201a '‛', # \u201b } #: Double quote characters. DOUBLE_QUOTES = { '"', # \u0022 '“', # \u201c '”', # \u201d '„', # \u201e '‟', # \u201f } #: Accent characters. ACCENTS = { '`', # \u0060 '´', # \u00b4 } #: Prime characters. PRIMES = { '′', # \u2032 '″', # \u2033 '‴', # \u2034 '‵', # \u2035 '‶', # \u2036 '‷', # \u2037 '⁗', # \u2057 } #: Quote characters, including apostrophes, single quotes, double quotes, accents and primes. QUOTES = APOSTROPHES | SINGLE_QUOTES | DOUBLE_QUOTES | ACCENTS | PRIMES def normalize(text): for control in CONTROLS: text = text.replace(control, '') text = text.replace('\u000b', ' ').replace('\u000c', ' ').replace(u'\u0085', ' ') for hyphen in HYPHENS | MINUSES: text = text.replace(hyphen, '-') text = text.replace('\u00ad', '') for double_quote in DOUBLE_QUOTES: text = text.replace(double_quote, '"') # \u0022 for single_quote in (SINGLE_QUOTES | APOSTROPHES | ACCENTS): text = text.replace(single_quote, "'") # \u0027 text = text.replace('′', "'") # \u2032 prime text = text.replace('‵', "'") # \u2035 reversed prime text = text.replace('″', "''") # \u2033 double prime text = text.replace('‶', "''") # \u2036 reversed double prime text = text.replace('‴', "'''") # \u2034 triple prime text = text.replace('‷', "'''") # \u2037 reversed triple prime text = text.replace('⁗', "''''") # \u2057 quadruple prime text = text.replace('…', '...').replace(' . . . ', ' ... ') # \u2026 for slash in SLASHES: text = text.replace(slash, '/') #for tilde in TILDES: # text = text.replace(tilde, '~') return text
contriever-main
src/normalize_text.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os import sys import logging import torch import errno from typing import Union, Tuple, List, Dict from collections import defaultdict from src import dist_utils Number = Union[float, int] logger = logging.getLogger(__name__) def init_logger(args, stdout_only=False): if torch.distributed.is_initialized(): torch.distributed.barrier() stdout_handler = logging.StreamHandler(sys.stdout) handlers = [stdout_handler] if not stdout_only: file_handler = logging.FileHandler(filename=os.path.join(args.output_dir, "run.log")) handlers.append(file_handler) logging.basicConfig( datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if dist_utils.is_main() else logging.WARN, format="[%(asctime)s] {%(filename)s:%(lineno)d} %(levelname)s - %(message)s", handlers=handlers, ) return logger def symlink_force(target, link_name): try: os.symlink(target, link_name) except OSError as e: if e.errno == errno.EEXIST: os.remove(link_name) os.symlink(target, link_name) else: raise e def save(model, optimizer, scheduler, step, opt, dir_path, name): model_to_save = model.module if hasattr(model, "module") else model path = os.path.join(dir_path, "checkpoint") epoch_path = os.path.join(path, name) # "step-%s" % step) os.makedirs(epoch_path, exist_ok=True) cp = os.path.join(path, "latest") fp = os.path.join(epoch_path, "checkpoint.pth") checkpoint = { "step": step, "model": model_to_save.state_dict(), "optimizer": optimizer.state_dict(), "scheduler": scheduler.state_dict(), "opt": opt, } torch.save(checkpoint, fp) symlink_force(epoch_path, cp) if not name == "lastlog": logger.info(f"Saving model to {epoch_path}") def load(model_class, dir_path, opt, reset_params=False): epoch_path = os.path.realpath(dir_path) checkpoint_path = os.path.join(epoch_path, "checkpoint.pth") logger.info(f"loading checkpoint {checkpoint_path}") checkpoint = torch.load(checkpoint_path, map_location="cpu") opt_checkpoint = checkpoint["opt"] state_dict = checkpoint["model"] model = model_class(opt_checkpoint) model.load_state_dict(state_dict, strict=True) model = model.cuda() step = checkpoint["step"] if not reset_params: optimizer, scheduler = set_optim(opt_checkpoint, model) scheduler.load_state_dict(checkpoint["scheduler"]) optimizer.load_state_dict(checkpoint["optimizer"]) else: optimizer, scheduler = set_optim(opt, model) return model, optimizer, scheduler, opt_checkpoint, step ############ OPTIM class WarmupLinearScheduler(torch.optim.lr_scheduler.LambdaLR): def __init__(self, optimizer, warmup, total, ratio, last_epoch=-1): self.warmup = warmup self.total = total self.ratio = ratio super(WarmupLinearScheduler, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch) def lr_lambda(self, step): if step < self.warmup: return (1 - self.ratio) * step / float(max(1, self.warmup)) return max( 0.0, 1.0 + (self.ratio - 1) * (step - self.warmup) / float(max(1.0, self.total - self.warmup)), ) class CosineScheduler(torch.optim.lr_scheduler.LambdaLR): def __init__(self, optimizer, warmup, total, ratio=0.1, last_epoch=-1): self.warmup = warmup self.total = total self.ratio = ratio super(CosineScheduler, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch) def lr_lambda(self, step): if step < self.warmup: return float(step) / self.warmup s = float(step - self.warmup) / (self.total - self.warmup) return self.ratio + (1.0 - self.ratio) * math.cos(0.5 * math.pi * s) def set_optim(opt, model): if opt.optim == "adamw": optimizer = torch.optim.AdamW( model.parameters(), lr=opt.lr, betas=(opt.beta1, opt.beta2), eps=opt.eps, weight_decay=opt.weight_decay ) else: raise NotImplementedError("optimizer class not implemented") scheduler_args = { "warmup": opt.warmup_steps, "total": opt.total_steps, "ratio": opt.lr_min_ratio, } if opt.scheduler == "linear": scheduler_class = WarmupLinearScheduler elif opt.scheduler == "cosine": scheduler_class = CosineScheduler else: raise ValueError scheduler = scheduler_class(optimizer, **scheduler_args) return optimizer, scheduler def get_parameters(net, verbose=False): num_params = 0 for param in net.parameters(): num_params += param.numel() message = "[Network] Total number of parameters : %.6f M" % (num_params / 1e6) return message class WeightedAvgStats: """provides an average over a bunch of stats""" def __init__(self): self.raw_stats: Dict[str, float] = defaultdict(float) self.total_weights: Dict[str, float] = defaultdict(float) def update(self, vals: Dict[str, Tuple[Number, Number]]) -> None: for key, (value, weight) in vals.items(): self.raw_stats[key] += value * weight self.total_weights[key] += weight @property def stats(self) -> Dict[str, float]: return {x: self.raw_stats[x] / self.total_weights[x] for x in self.raw_stats.keys()} @property def tuple_stats(self) -> Dict[str, Tuple[float, float]]: return {x: (self.raw_stats[x] / self.total_weights[x], self.total_weights[x]) for x in self.raw_stats.keys()} def reset(self) -> None: self.raw_stats = defaultdict(float) self.total_weights = defaultdict(float) @property def average_stats(self) -> Dict[str, float]: keys = sorted(self.raw_stats.keys()) if torch.distributed.is_initialized(): torch.distributed.broadcast_object_list(keys, src=0) global_dict = {} for k in keys: if not k in self.total_weights: v = 0.0 else: v = self.raw_stats[k] / self.total_weights[k] v, _ = dist_utils.weighted_average(v, self.total_weights[k]) global_dict[k] = v return global_dict def load_hf(object_class, model_name): try: obj = object_class.from_pretrained(model_name, local_files_only=True) except: obj = object_class.from_pretrained(model_name, local_files_only=False) return obj def init_tb_logger(output_dir): try: from torch.utils import tensorboard if dist_utils.is_main(): tb_logger = tensorboard.SummaryWriter(output_dir) else: tb_logger = None except: logger.warning("Tensorboard is not available.") tb_logger = None return tb_logger
contriever-main
src/utils.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch import torch.nn as nn import logging import copy import transformers from src import contriever, dist_utils, utils logger = logging.getLogger(__name__) class MoCo(nn.Module): def __init__(self, opt): super(MoCo, self).__init__() self.queue_size = opt.queue_size self.momentum = opt.momentum self.temperature = opt.temperature self.label_smoothing = opt.label_smoothing self.norm_doc = opt.norm_doc self.norm_query = opt.norm_query self.moco_train_mode_encoder_k = opt.moco_train_mode_encoder_k # apply the encoder on keys in train mode retriever, tokenizer = self._load_retriever( opt.retriever_model_id, pooling=opt.pooling, random_init=opt.random_init ) self.tokenizer = tokenizer self.encoder_q = retriever self.encoder_k = copy.deepcopy(retriever) for param_q, param_k in zip(self.encoder_q.parameters(), self.encoder_k.parameters()): param_k.data.copy_(param_q.data) param_k.requires_grad = False # create the queue self.register_buffer("queue", torch.randn(opt.projection_size, self.queue_size)) self.queue = nn.functional.normalize(self.queue, dim=0) self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long)) def _load_retriever(self, model_id, pooling, random_init): cfg = utils.load_hf(transformers.AutoConfig, model_id) tokenizer = utils.load_hf(transformers.AutoTokenizer, model_id) if "xlm" in model_id: model_class = contriever.XLMRetriever else: model_class = contriever.Contriever if random_init: retriever = model_class(cfg) else: retriever = utils.load_hf(model_class, model_id) if "bert-" in model_id: if tokenizer.bos_token_id is None: tokenizer.bos_token = "[CLS]" if tokenizer.eos_token_id is None: tokenizer.eos_token = "[SEP]" retriever.config.pooling = pooling return retriever, tokenizer def get_encoder(self, return_encoder_k=False): if return_encoder_k: return self.encoder_k else: return self.encoder_q def _momentum_update_key_encoder(self): """ Update of the key encoder """ for param_q, param_k in zip(self.encoder_q.parameters(), self.encoder_k.parameters()): param_k.data = param_k.data * self.momentum + param_q.data * (1.0 - self.momentum) @torch.no_grad() def _dequeue_and_enqueue(self, keys): # gather keys before updating queue keys = dist_utils.gather_nograd(keys.contiguous()) batch_size = keys.shape[0] ptr = int(self.queue_ptr) assert self.queue_size % batch_size == 0, f"{batch_size}, {self.queue_size}" # for simplicity # replace the keys at ptr (dequeue and enqueue) self.queue[:, ptr : ptr + batch_size] = keys.T ptr = (ptr + batch_size) % self.queue_size # move pointer self.queue_ptr[0] = ptr def _compute_logits(self, q, k): l_pos = torch.einsum("nc,nc->n", [q, k]).unsqueeze(-1) l_neg = torch.einsum("nc,ck->nk", [q, self.queue.clone().detach()]) logits = torch.cat([l_pos, l_neg], dim=1) return logits def forward(self, q_tokens, q_mask, k_tokens, k_mask, stats_prefix="", iter_stats={}, **kwargs): bsz = q_tokens.size(0) q = self.encoder_q(input_ids=q_tokens, attention_mask=q_mask, normalize=self.norm_query) # compute key features with torch.no_grad(): # no gradient to keys self._momentum_update_key_encoder() # update the key encoder if not self.encoder_k.training and not self.moco_train_mode_encoder_k: self.encoder_k.eval() k = self.encoder_k(input_ids=k_tokens, attention_mask=k_mask, normalize=self.norm_doc) logits = self._compute_logits(q, k) / self.temperature # labels: positive key indicators labels = torch.zeros(bsz, dtype=torch.long).cuda() loss = torch.nn.functional.cross_entropy(logits, labels, label_smoothing=self.label_smoothing) self._dequeue_and_enqueue(k) # log stats if len(stats_prefix) > 0: stats_prefix = stats_prefix + "/" iter_stats[f"{stats_prefix}loss"] = (loss.item(), bsz) predicted_idx = torch.argmax(logits, dim=-1) accuracy = 100 * (predicted_idx == labels).float().mean() stdq = torch.std(q, dim=0).mean().item() stdk = torch.std(k, dim=0).mean().item() iter_stats[f"{stats_prefix}accuracy"] = (accuracy, bsz) iter_stats[f"{stats_prefix}stdq"] = (stdq, bsz) iter_stats[f"{stats_prefix}stdk"] = (stdk, bsz) return loss, iter_stats
contriever-main
src/moco.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os import glob import torch import random import json import csv import numpy as np import numpy.random import logging from collections import defaultdict import torch.distributed as dist from src import dist_utils logger = logging.getLogger(__name__) def load_data(opt, tokenizer): datasets = {} for path in opt.train_data: data = load_dataset(path, opt.loading_mode) if data is not None: datasets[path] = Dataset(data, opt.chunk_length, tokenizer, opt) dataset = MultiDataset(datasets) dataset.set_prob(coeff=opt.sampling_coefficient) return dataset def load_dataset(data_path, loading_mode): files = glob.glob(os.path.join(data_path, "*.p*")) files.sort() tensors = [] if loading_mode == "split": files_split = list(np.array_split(files, dist_utils.get_world_size()))[dist_utils.get_rank()] for filepath in files_split: try: tensors.append(torch.load(filepath, map_location="cpu")) except: logger.warning(f"Unable to load file {filepath}") elif loading_mode == "full": for fin in files: tensors.append(torch.load(fin, map_location="cpu")) elif loading_mode == "single": tensors.append(torch.load(files[0], map_location="cpu")) if len(tensors) == 0: return None tensor = torch.cat(tensors) return tensor class MultiDataset(torch.utils.data.Dataset): def __init__(self, datasets): self.datasets = datasets self.prob = [1 / len(self.datasets) for _ in self.datasets] self.dataset_ids = list(self.datasets.keys()) def __len__(self): return sum([len(dataset) for dataset in self.datasets.values()]) def __getitem__(self, index): dataset_idx = numpy.random.choice(range(len(self.prob)), 1, p=self.prob)[0] did = self.dataset_ids[dataset_idx] index = random.randint(0, len(self.datasets[did]) - 1) sample = self.datasets[did][index] sample["dataset_id"] = did return sample def generate_offset(self): for dataset in self.datasets.values(): dataset.generate_offset() def set_prob(self, coeff=0.0): prob = np.array([float(len(dataset)) for _, dataset in self.datasets.items()]) prob /= prob.sum() prob = np.array([p**coeff for p in prob]) prob /= prob.sum() self.prob = prob class Dataset(torch.utils.data.Dataset): """Monolingual dataset based on a list of paths""" def __init__(self, data, chunk_length, tokenizer, opt): self.data = data self.chunk_length = chunk_length self.tokenizer = tokenizer self.opt = opt self.generate_offset() def __len__(self): return (self.data.size(0) - self.offset) // self.chunk_length def __getitem__(self, index): start_idx = self.offset + index * self.chunk_length end_idx = start_idx + self.chunk_length tokens = self.data[start_idx:end_idx] q_tokens = randomcrop(tokens, self.opt.ratio_min, self.opt.ratio_max) k_tokens = randomcrop(tokens, self.opt.ratio_min, self.opt.ratio_max) q_tokens = apply_augmentation(q_tokens, self.opt) q_tokens = add_bos_eos(q_tokens, self.tokenizer.bos_token_id, self.tokenizer.eos_token_id) k_tokens = apply_augmentation(k_tokens, self.opt) k_tokens = add_bos_eos(k_tokens, self.tokenizer.bos_token_id, self.tokenizer.eos_token_id) return {"q_tokens": q_tokens, "k_tokens": k_tokens} def generate_offset(self): self.offset = random.randint(0, self.chunk_length - 1) class Collator(object): def __init__(self, opt): self.opt = opt def __call__(self, batch_examples): batch = defaultdict(list) for example in batch_examples: for k, v in example.items(): batch[k].append(v) q_tokens, q_mask = build_mask(batch["q_tokens"]) k_tokens, k_mask = build_mask(batch["k_tokens"]) batch["q_tokens"] = q_tokens batch["q_mask"] = q_mask batch["k_tokens"] = k_tokens batch["k_mask"] = k_mask return batch def randomcrop(x, ratio_min, ratio_max): ratio = random.uniform(ratio_min, ratio_max) length = int(len(x) * ratio) start = random.randint(0, len(x) - length) end = start + length crop = x[start:end].clone() return crop def build_mask(tensors): shapes = [x.shape for x in tensors] maxlength = max([len(x) for x in tensors]) returnmasks = [] ids = [] for k, x in enumerate(tensors): returnmasks.append(torch.tensor([1] * len(x) + [0] * (maxlength - len(x)))) ids.append(torch.cat((x, torch.tensor([0] * (maxlength - len(x)))))) ids = torch.stack(ids, dim=0).long() returnmasks = torch.stack(returnmasks, dim=0).bool() return ids, returnmasks def add_token(x, token): x = torch.cat((torch.tensor([token]), x)) return x def deleteword(x, p=0.1): mask = np.random.rand(len(x)) x = [e for e, m in zip(x, mask) if m > p] return x def replaceword(x, min_random, max_random, p=0.1): mask = np.random.rand(len(x)) x = [e if m > p else random.randint(min_random, max_random) for e, m in zip(x, mask)] return x def maskword(x, mask_id, p=0.1): mask = np.random.rand(len(x)) x = [e if m > p else mask_id for e, m in zip(x, mask)] return x def shuffleword(x, p=0.1): count = (np.random.rand(len(x)) < p).sum() """Shuffles any n number of values in a list""" indices_to_shuffle = random.sample(range(len(x)), k=count) to_shuffle = [x[i] for i in indices_to_shuffle] random.shuffle(to_shuffle) for index, value in enumerate(to_shuffle): old_index = indices_to_shuffle[index] x[old_index] = value return x def apply_augmentation(x, opt): if opt.augmentation == "mask": return torch.tensor(maskword(x, mask_id=opt.mask_id, p=opt.prob_augmentation)) elif opt.augmentation == "replace": return torch.tensor( replaceword(x, min_random=opt.start_id, max_random=opt.vocab_size - 1, p=opt.prob_augmentation) ) elif opt.augmentation == "delete": return torch.tensor(deleteword(x, p=opt.prob_augmentation)) elif opt.augmentation == "shuffle": return torch.tensor(shuffleword(x, p=opt.prob_augmentation)) else: if not isinstance(x, torch.Tensor): x = torch.Tensor(x) return x def add_bos_eos(x, bos_token_id, eos_token_id): if not isinstance(x, torch.Tensor): x = torch.Tensor(x) if bos_token_id is None and eos_token_id is not None: x = torch.cat([x.clone().detach(), torch.tensor([eos_token_id])]) elif bos_token_id is not None and eos_token_id is None: x = torch.cat([torch.tensor([bos_token_id]), x.clone().detach()]) elif bos_token_id is None and eos_token_id is None: pass else: x = torch.cat([torch.tensor([bos_token_id]), x.clone().detach(), torch.tensor([eos_token_id])]) return x # Used for passage retrieval def load_passages(path): if not os.path.exists(path): logger.info(f"{path} does not exist") return logger.info(f"Loading passages from: {path}") passages = [] with open(path) as fin: if path.endswith(".jsonl"): for k, line in enumerate(fin): ex = json.loads(line) passages.append(ex) else: reader = csv.reader(fin, delimiter="\t") for k, row in enumerate(reader): if not row[0] == "id": ex = {"id": row[0], "title": row[2], "text": row[1]} passages.append(ex) return passages
contriever-main
src/data.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import torch import torch.distributed as dist class Gather(torch.autograd.Function): @staticmethod def forward(ctx, x: torch.tensor): output = [torch.zeros_like(x) for _ in range(dist.get_world_size())] dist.all_gather(output, x) return tuple(output) @staticmethod def backward(ctx, *grads): all_gradients = torch.stack(grads) dist.all_reduce(all_gradients) return all_gradients[dist.get_rank()] def gather(x: torch.tensor): if not dist.is_initialized(): return x x_gather = Gather.apply(x) x_gather = torch.cat(x_gather, dim=0) return x_gather @torch.no_grad() def gather_nograd(x: torch.tensor): if not dist.is_initialized(): return x x_gather = [torch.ones_like(x) for _ in range(dist.get_world_size())] dist.all_gather(x_gather, x, async_op=False) x_gather = torch.cat(x_gather, dim=0) return x_gather @torch.no_grad() def varsize_gather_nograd(x: torch.Tensor): """gather tensors of different sizes along the first dimension""" if not dist.is_initialized(): return x # determine max size size = torch.tensor([x.shape[0]], device=x.device, dtype=torch.int) allsizes = [torch.zeros_like(size) for _ in range(dist.get_world_size())] dist.all_gather(allsizes, size) max_size = max([size.cpu().max() for size in allsizes]) padded = torch.empty(max_size, *x.shape[1:], dtype=x.dtype, device=x.device) padded[: x.shape[0]] = x output = [torch.zeros_like(padded) for _ in range(dist.get_world_size())] dist.all_gather(output, padded) output = [tensor[: allsizes[k]] for k, tensor in enumerate(output)] output = torch.cat(output, dim=0) return output @torch.no_grad() def get_varsize(x: torch.Tensor): """gather tensors of different sizes along the first dimension""" if not dist.is_initialized(): return [x.shape[0]] # determine max size size = torch.tensor([x.shape[0]], device=x.device, dtype=torch.int) allsizes = [torch.zeros_like(size) for _ in range(dist.get_world_size())] dist.all_gather(allsizes, size) allsizes = torch.cat(allsizes) return allsizes def get_rank(): if not dist.is_available(): return 0 if not dist.is_initialized(): return 0 return dist.get_rank() def is_main(): return get_rank() == 0 def get_world_size(): if not dist.is_initialized(): return 1 else: return dist.get_world_size() def barrier(): if dist.is_initialized(): dist.barrier() def average_main(x): if not dist.is_initialized(): return x if dist.is_initialized() and dist.get_world_size() > 1: dist.reduce(x, 0, op=dist.ReduceOp.SUM) if is_main(): x = x / dist.get_world_size() return x def sum_main(x): if not dist.is_initialized(): return x if dist.is_initialized() and dist.get_world_size() > 1: dist.reduce(x, 0, op=dist.ReduceOp.SUM) return x def weighted_average(x, count): if not dist.is_initialized(): if isinstance(x, torch.Tensor): x = x.item() return x, count t_loss = torch.tensor([x * count]).cuda() t_total = torch.tensor([count]).cuda() t_loss = sum_main(t_loss) t_total = sum_main(t_total) return (t_loss / t_total).item(), t_total.item()
contriever-main
src/dist_utils.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os from collections import defaultdict from typing import List, Dict import numpy as np import torch import torch.distributed as dist import beir.util from beir.datasets.data_loader import GenericDataLoader from beir.retrieval.evaluation import EvaluateRetrieval from beir.retrieval.search.dense import DenseRetrievalExactSearch from beir.reranking.models import CrossEncoder from beir.reranking import Rerank import src.dist_utils as dist_utils from src import normalize_text class DenseEncoderModel: def __init__( self, query_encoder, doc_encoder=None, tokenizer=None, max_length=512, add_special_tokens=True, norm_query=False, norm_doc=False, lower_case=False, normalize_text=False, **kwargs, ): self.query_encoder = query_encoder self.doc_encoder = doc_encoder self.tokenizer = tokenizer self.max_length = max_length self.add_special_tokens = add_special_tokens self.norm_query = norm_query self.norm_doc = norm_doc self.lower_case = lower_case self.normalize_text = normalize_text def encode_queries(self, queries: List[str], batch_size: int, **kwargs) -> np.ndarray: if dist.is_initialized(): idx = np.array_split(range(len(queries)), dist.get_world_size())[dist.get_rank()] else: idx = range(len(queries)) queries = [queries[i] for i in idx] if self.normalize_text: queries = [normalize_text.normalize(q) for q in queries] if self.lower_case: queries = [q.lower() for q in queries] allemb = [] nbatch = (len(queries) - 1) // batch_size + 1 with torch.no_grad(): for k in range(nbatch): start_idx = k * batch_size end_idx = min((k + 1) * batch_size, len(queries)) qencode = self.tokenizer.batch_encode_plus( queries[start_idx:end_idx], max_length=self.max_length, padding=True, truncation=True, add_special_tokens=self.add_special_tokens, return_tensors="pt", ) qencode = {key: value.cuda() for key, value in qencode.items()} emb = self.query_encoder(**qencode, normalize=self.norm_query) allemb.append(emb.cpu()) allemb = torch.cat(allemb, dim=0) allemb = allemb.cuda() if dist.is_initialized(): allemb = dist_utils.varsize_gather_nograd(allemb) allemb = allemb.cpu().numpy() return allemb def encode_corpus(self, corpus: List[Dict[str, str]], batch_size: int, **kwargs): if dist.is_initialized(): idx = np.array_split(range(len(corpus)), dist.get_world_size())[dist.get_rank()] else: idx = range(len(corpus)) corpus = [corpus[i] for i in idx] corpus = [c["title"] + " " + c["text"] if len(c["title"]) > 0 else c["text"] for c in corpus] if self.normalize_text: corpus = [normalize_text.normalize(c) for c in corpus] if self.lower_case: corpus = [c.lower() for c in corpus] allemb = [] nbatch = (len(corpus) - 1) // batch_size + 1 with torch.no_grad(): for k in range(nbatch): start_idx = k * batch_size end_idx = min((k + 1) * batch_size, len(corpus)) cencode = self.tokenizer.batch_encode_plus( corpus[start_idx:end_idx], max_length=self.max_length, padding=True, truncation=True, add_special_tokens=self.add_special_tokens, return_tensors="pt", ) cencode = {key: value.cuda() for key, value in cencode.items()} emb = self.doc_encoder(**cencode, normalize=self.norm_doc) allemb.append(emb.cpu()) allemb = torch.cat(allemb, dim=0) allemb = allemb.cuda() if dist.is_initialized(): allemb = dist_utils.varsize_gather_nograd(allemb) allemb = allemb.cpu().numpy() return allemb def evaluate_model( query_encoder, doc_encoder, tokenizer, dataset, batch_size=128, add_special_tokens=True, norm_query=False, norm_doc=False, is_main=True, split="test", score_function="dot", beir_dir="BEIR/datasets", save_results_path=None, lower_case=False, normalize_text=False, ): metrics = defaultdict(list) # store final results if hasattr(query_encoder, "module"): query_encoder = query_encoder.module query_encoder.eval() if doc_encoder is not None: if hasattr(doc_encoder, "module"): doc_encoder = doc_encoder.module doc_encoder.eval() else: doc_encoder = query_encoder dmodel = DenseRetrievalExactSearch( DenseEncoderModel( query_encoder=query_encoder, doc_encoder=doc_encoder, tokenizer=tokenizer, add_special_tokens=add_special_tokens, norm_query=norm_query, norm_doc=norm_doc, lower_case=lower_case, normalize_text=normalize_text, ), batch_size=batch_size, ) retriever = EvaluateRetrieval(dmodel, score_function=score_function) data_path = os.path.join(beir_dir, dataset) if not os.path.isdir(data_path) and is_main: url = "https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/{}.zip".format(dataset) data_path = beir.util.download_and_unzip(url, beir_dir) dist_utils.barrier() if not dataset == "cqadupstack": corpus, queries, qrels = GenericDataLoader(data_folder=data_path).load(split=split) results = retriever.retrieve(corpus, queries) if is_main: ndcg, _map, recall, precision = retriever.evaluate(qrels, results, retriever.k_values) for metric in (ndcg, _map, recall, precision, "mrr", "recall_cap", "hole"): if isinstance(metric, str): metric = retriever.evaluate_custom(qrels, results, retriever.k_values, metric=metric) for key, value in metric.items(): metrics[key].append(value) if save_results_path is not None: torch.save(results, f"{save_results_path}") elif dataset == "cqadupstack": # compute macroaverage over datasets paths = glob.glob(data_path) for path in paths: corpus, queries, qrels = GenericDataLoader(data_folder=data_folder).load(split=split) results = retriever.retrieve(corpus, queries) if is_main: ndcg, _map, recall, precision = retriever.evaluate(qrels, results, retriever.k_values) for metric in (ndcg, _map, recall, precision, "mrr", "recall_cap", "hole"): if isinstance(metric, str): metric = retriever.evaluate_custom(qrels, results, retriever.k_values, metric=metric) for key, value in metric.items(): metrics[key].append(value) for key, value in metrics.items(): assert ( len(value) == 12 ), f"cqadupstack includes 12 datasets, only {len(value)} values were compute for the {key} metric" metrics = {key: 100 * np.mean(value) for key, value in metrics.items()} return metrics
contriever-main
src/beir_utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import cv2 import numpy as np from utils.meshutils import read_mesh, process_head_model from utils.strandsutils import smooth_strands, downsample_strands, duplicate_strands, merge_strands from datautils.datautils import load_bin_strands, save_bin_strands from modules.neural_strands import NeuralStrands def neural_interp(conf): output_folder = os.path.join(conf['output']['dir'], conf['output']['name']) # for synthesized data if not os.path.exists(output_folder): os.makedirs(output_folder) # prepressing strands = load_bin_strands(conf['strands']['guide_strds']) strands = smooth_strands(strands, lap_constraint=4.0, pos_constraint=2.0) # strands = downsample_strands(strands) # fit head model head_mesh = read_mesh(conf['head']['head_path']) head_texture = cv2.imread(conf['head']['head_scalp_tex']) head_mesh, scalp_mesh, scalp_faces_idx = process_head_model(head_mesh, head_texture, conf['head']['roots_path'], np.array(conf['head']['target_face_base'], dtype=np.float32), is_deformation=True) head_write = head_mesh.export('%s/%sface_reg.ply'%(output_folder, conf['output']['name'])) neural_strands = NeuralStrands(is_resampled=False) neural_strands.prep_strands_data(strands, head_mesh, scalp_mesh, scalp_faces_idx) # interpolation neural_strands.get_neural_representations(iter_opt=0) # neural_strands.get_neural_representations(iter_opt=300, lr=1e-2) # new trained model fits very well, no need to fit again denoised_strds_idxs = neural_strands.denoise_neural_texture(num_del_cls=0, do_denoise=False) texel_roots_mask = cv2.imread(conf['head']['head_scalp_tex'], 2) / 255. neural_strands.interpolation_knn(texel_roots_mask, interp_kernel_size=5, interp_neig_pts=3) interp_strds = neural_strands.world_strands_from_texels(neural_strands.interp_neural_texture, neural_strands.interp_strds_idx_map) # save results save_bin_strands('%s/%s_interp.bin'%(output_folder, conf['output']['name']), interp_strds.detach().cpu().numpy().astype(np.float32)) merged_strands = merge_strands([neural_strands.original_strands, interp_strds.detach().cpu().numpy().astype(np.float32)]) merged_strands = downsample_strands(merged_strands) # TODO use neural spline with GPU to speed up. merged_strands = duplicate_strands(merged_strands, ratio=4) save_bin_strands('%s/%s_merged.bin'%(output_folder, conf['output']['name']), merged_strands) print('Saving done!')
CT2Hair-main
CT2Hair/interp.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os from utils.pcutils import load_pc from utils.strandsutils import strandspc2strands, smooth_strands from datautils.datautils import load_bin_strands, save_bin_strandspc, save_bin_strands from modules.strands_opt import StrandsOptimizerNeuralCubic def strands_opt(conf): input_strands = load_bin_strands(conf['strands']['interp_strds']) print("Load strands finished!") # target_pc = load_pc(conf['pc']['pc_path'], load_color=False, load_normal=False) target_pc, target_pc_colors = load_pc(conf['pc']['pc_path'], load_color=True, load_normal=False) print("Load point cloud finished!") strands_opt = StrandsOptimizerNeuralCubic(input_strands, target_pc, target_pc_colors[:, 0], num_strd_pts=64) ori_splined_pts, opted_splined_pts, strands_seps, opted_strands_pc, input_num_strds_pts = strands_opt.optimization() output_folder = os.path.join(conf['output']['dir'], conf['output']['name']) if not os.path.exists(output_folder): os.makedirs(output_folder) opted_strands = smooth_strands(strandspc2strands(opted_splined_pts, sep=strands_seps)) save_bin_strands('%s/%s_opted.bin'%(output_folder, conf['output']['name']), opted_strands)
CT2Hair-main
CT2Hair/optim.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import numpy as np import torch.utils.data as th_data from utils.strandsutils import spline_strand, pad_strand class TbnStrandsBinDataset(th_data.Dataset): def __init__(self, tbn_strands, is_resampled=True, num_strds_points=100): self.num_strands = len(tbn_strands) self.tbn_strands = tbn_strands self.batch_size = 300 self.num_workers = 12 self.num_strds_points = num_strds_points self.is_resampled = is_resampled def __len__(self): return self.num_strands def __getitem__(self, idx): strand = self.tbn_strands[idx].astype(np.float32) out_dict = {} if not self.is_resampled: if strand.shape[0] > self.num_strds_points: strand = spline_strand(strand, num_strand_points=self.num_strds_points) strand, time = pad_strand(strand, num_strand_points=self.num_strds_points) out_dict['times'] = torch.tensor(time).float() assert strand.shape[0] == self.num_strds_points, 'Need resample strands to a fixed number.' # Scale unit from mm to m strand = strand / 1000. out_dict['points'] = torch.tensor(strand).float() return out_dict def get_dataloader(self): return th_data.DataLoader(dataset=self, batch_size=self.batch_size, shuffle=False, num_workers=self.num_workers, drop_last=False)
CT2Hair-main
CT2Hair/datautils/dataloaders.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import time import pathlib import struct import numpy as np from utils.pcutils import pc_voxelization, save_pc def load_raw(path, raw_shape=[2048, 2048, 2048], offset=0, drop_masks=[], crop=[[0, -1], [0, -1], [0, -1]], is_downsample=True, downsample_ratio=2): start_time = time.time() if pathlib.Path(path).suffix == '.npy': raw_data = np.load(path) else: raw_data = np.fromfile(path, dtype=np.ushort) raw_data = raw_data[offset:] raw_data = raw_data.reshape(raw_shape) for i_del in range(len(drop_masks)): drop_mask = drop_masks[i_del] raw_data[drop_mask[0][0]:drop_mask[0][1], drop_mask[1][0]:drop_mask[1][1], drop_mask[2][0]:drop_mask[2][1]] = 0 raw_data = raw_data[crop[0][0]:crop[0][1], crop[1][0]:crop[1][1], crop[2][0]:crop[2][1]] current_shape = np.array(raw_data.shape) if is_downsample: downsample_shape = current_shape // downsample_ratio x_even = (np.arange(downsample_shape[0]) * downsample_ratio).astype(np.int16) y_even = (np.arange(downsample_shape[1]) * downsample_ratio).astype(np.int16) z_even = (np.arange(downsample_shape[2]) * downsample_ratio).astype(np.int16) raw_data = raw_data[x_even] raw_data = raw_data[:, y_even] raw_data = raw_data[:, :, z_even] path_ds = path.replace(pathlib.Path(path).suffix, '_ds.npy') np.save(path_ds, raw_data) print('Finish load the volume, used %fs. Original and final shapes are: '%(time.time() - start_time), current_shape, np.array(raw_data.shape)) return raw_data def crop_hair(raw_data, hair_density_range): start_time = time.time() hair_mask = (raw_data > hair_density_range[0]) & (raw_data < hair_density_range[1]) cropped_hair = raw_data * hair_mask print('Finish crop hair, used %fs.'%(time.time() - start_time)) return cropped_hair, hair_mask def crop_scalp(raw_data, scalp_range): start_time = time.time() scalp_mask = (raw_data > scalp_range[0]) & (raw_data < scalp_range[1]) cropped_hair = raw_data * scalp_mask print('Finish crop scalp, used %fs.'%(time.time() - start_time)) return cropped_hair, scalp_mask def get_hair_mask(raw_data, hair_density_range): hair_mask = (raw_data > hair_density_range[0]) & (raw_data < hair_density_range[1]) return hair_mask def expand_vidx(vidx_x, vidx_y, vidx_z, scale_rate=3): size = int(2 ** scale_rate) o_x, o_y, o_z = np.meshgrid(np.linspace(0, size - 1, size), np.linspace(0, size - 1, size), np.linspace(0, size - 1, size)) vidx_x = vidx_x[:, None].repeat(size ** 3, axis=-1).reshape(-1, size, size, size) vidx_y = vidx_y[:, None].repeat(size ** 3, axis=-1).reshape(-1, size, size, size) vidx_z = vidx_z[:, None].repeat(size ** 3, axis=-1).reshape(-1, size, size, size) vidx_x = vidx_x * size + o_x[None, ...] vidx_y = vidx_y * size + o_y[None, ...] vidx_z = vidx_z * size + o_z[None, ...] vidx_x = vidx_x.reshape(-1).astype(np.uint16) vidx_y = vidx_y.reshape(-1).astype(np.uint16) vidx_z = vidx_z.reshape(-1).astype(np.uint16) return vidx_x, vidx_y, vidx_z def del_wig_net(hair_data, scalp_mesh, voxel_size, scale_rate=3): start_time = time.time() print('Start delete wig net...') hair_voxel_shape = hair_data.shape scalp_voxel_shape = np.array(hair_voxel_shape) / (2 ** scale_rate) scalp_points = scalp_mesh.sample(100000) * (1 / voxel_size[None, :]) / (2 ** scale_rate) vidx_x, vidx_y, vidx_z = pc_voxelization(scalp_points, scalp_voxel_shape.astype(np.uint16)) vidx_x, vidx_y, vidx_z = expand_vidx(vidx_x, vidx_y, vidx_z, scale_rate) hair_data[vidx_x, vidx_y, vidx_z] = 0 print('Delete wig net finished, used %fs.'%(time.time() - start_time)) return hair_data def save_raw(data, path): data.astype('int16').tofile(path) def get_slide(data, id=0, axis='x', range=1): # x switch z if axis == 'z': slide = data[(id - range + 1):(id + range), :, :] slide = np.sum(slide, axis=0, keepdims=False) return slide elif axis == 'y': slide = data[:, (id - range + 1):(id + range), :] slide = np.sum(slide, axis=1, keepdims=False) return slide elif axis == 'x': slide = data[:, :, (id - range + 1):(id + range)] slide = np.sum(slide, axis=2, keepdims=False) return slide def load_bin_strands(bin_path): file = open(bin_path, 'rb') num_strands = struct.unpack('i', file.read(4))[0] strands = [] max_strds_pts = 0 for i in range(num_strands): num_verts = struct.unpack('i', file.read(4))[0] strand = np.zeros((num_verts, 6), dtype=np.float32) for j in range(num_verts): x = struct.unpack('f', file.read(4))[0] y = struct.unpack('f', file.read(4))[0] z = struct.unpack('f', file.read(4))[0] nx = struct.unpack('f', file.read(4))[0] ny = struct.unpack('f', file.read(4))[0] nz = struct.unpack('f', file.read(4))[0] label = struct.unpack('f', file.read(4))[0] strand[j][0] = x strand[j][1] = y strand[j][2] = z strand[j][3] = nx strand[j][4] = ny strand[j][5] = nz if np.isnan(np.sum(strand)): # FIXME why did I save some nan data continue if num_verts < 5: continue if max_strds_pts < num_verts: max_strds_pts = num_verts strands.append(strand) strands = np.array(strands, dtype=object) return strands def load_usc_data_strands(data_path): file = open(data_path, 'rb') num_strands = struct.unpack('i', file.read(4))[0] strands = [] for i in range(num_strands): num_verts = struct.unpack('i', file.read(4))[0] strand = np.zeros((num_verts, 3), dtype=np.float32) for j in range(num_verts): x = struct.unpack('f', file.read(4))[0] y = struct.unpack('f', file.read(4))[0] z = struct.unpack('f', file.read(4))[0] strand[j][0] = x strand[j][1] = y strand[j][2] = z if num_verts <= 1: continue if np.isnan(np.sum(strand)): continue strands.append(strand) strands = np.array(strands, dtype=object) return strands def save_bin_strands(filepath, strands, tangents=None): num_strands = strands.shape[0] file = open(filepath, 'wb') file.write(struct.pack('i', num_strands)) for i_strand in range(num_strands): num_points = int(strands[i_strand].shape[0]) file.write(struct.pack('i', num_points)) for j_point in range(num_points): file.write(struct.pack('f', strands[i_strand][j_point, 0])) file.write(struct.pack('f', strands[i_strand][j_point, 1])) file.write(struct.pack('f', strands[i_strand][j_point, 2])) if tangents is None: file.write(struct.pack('f', 0.0)) file.write(struct.pack('f', 0.0)) file.write(struct.pack('f', 0.0)) else: file.write(struct.pack('f', tangents[i_strand][j_point, 0])) file.write(struct.pack('f', tangents[i_strand][j_point, 1])) file.write(struct.pack('f', tangents[i_strand][j_point, 2])) file.write(struct.pack('f', 0.0)) # save strands with colors (PCA features mapping) def save_color_strands(filepath, strands, colors=None): num_strands = strands.shape[0] file = open(filepath, 'wb') file.write(struct.pack('i', num_strands)) for i_strand in range(num_strands): num_points = int(strands[i_strand].shape[0]) file.write(struct.pack('i', num_points)) for j_point in range(num_points): file.write(struct.pack('f', strands[i_strand][j_point, 0])) file.write(struct.pack('f', strands[i_strand][j_point, 1])) file.write(struct.pack('f', strands[i_strand][j_point, 2])) if colors is not None: file.write(struct.pack('f', colors[i_strand, 0])) file.write(struct.pack('f', colors[i_strand, 1])) file.write(struct.pack('f', colors[i_strand, 2])) else: assert strands[i_strand].shape[1] == 6, 'DataUtils::DataUtils No color of strands.' file.write(struct.pack('f', strands[i_strand][j_point, 3])) file.write(struct.pack('f', strands[i_strand][j_point, 4])) file.write(struct.pack('f', strands[i_strand][j_point, 5])) file.write(struct.pack('f', 0.0)) def save_bin_strandspc(filepath, pc, sep, tangents=None): num_strands = len(sep) file = open(filepath, 'wb') file.write(struct.pack('i', num_strands)) point_count = 0 for i_strand in range(num_strands): num_points = int(sep[i_strand]) file.write(struct.pack('i', num_points)) for j_point in range(num_points): file.write(struct.pack('f', pc[point_count, 0])) file.write(struct.pack('f', pc[point_count, 1])) file.write(struct.pack('f', pc[point_count, 2])) if tangents is None: file.write(struct.pack('f', 0.0)) file.write(struct.pack('f', 0.0)) file.write(struct.pack('f', 0.0)) else: file.write(struct.pack('f', tangents[point_count, 0])) file.write(struct.pack('f', tangents[point_count, 1])) file.write(struct.pack('f', tangents[point_count, 2])) file.write(struct.pack('f', 0.0)) point_count += 1 def merge_save_bin_strands(filepath, strands_list, tangents_list=None): num_all_strands = 0 num_groups = len(strands_list) for i_group in range(num_groups): num_all_strands += strands_list[i_group].shape[0] file = open(filepath, 'wb') file.write(struct.pack('i', num_all_strands)) for i_group in range(num_groups): strands = strands_list[i_group] num_strands = strands.shape[0] if tangents_list is None: tangents = strands else: tangents = tangents_list[i_group] for i_strand in range(num_strands): num_points = int(strands[i_strand].shape[0]) file.write(struct.pack('i', num_points)) for j_point in range(num_points): file.write(struct.pack('f', strands[i_strand][j_point, 0])) file.write(struct.pack('f', strands[i_strand][j_point, 1])) file.write(struct.pack('f', strands[i_strand][j_point, 2])) file.write(struct.pack('f', tangents[i_strand][j_point, 0])) file.write(struct.pack('f', tangents[i_strand][j_point, 1])) file.write(struct.pack('f', tangents[i_strand][j_point, 2])) file.write(struct.pack('f', 0.0)) def save_usc_strands(filepath, strands): num_strands = strands.shape[0] file = open(filepath, 'wb') file.write(struct.pack('i', num_strands)) for i_strand in range(num_strands): num_points = int(strands[i_strand].shape[0]) file.write(struct.pack('i', num_points)) for j_point in range(num_points): file.write(struct.pack('f', strands[i_strand][j_point, 0])) file.write(struct.pack('f', strands[i_strand][j_point, 1])) file.write(struct.pack('f', strands[i_strand][j_point, 2]))
CT2Hair-main
CT2Hair/datautils/datautils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math import splines import torch import numpy as np from tqdm import tqdm from scipy.sparse import coo_matrix from scipy.sparse.linalg import spsolve from utils.pcutils import get_bbox def scale_roots_positions(roots_points, scale_ratio): _, bbox_center = get_bbox(roots_points) temp_points = (roots_points - bbox_center) * scale_ratio + bbox_center roots_points = temp_points return roots_points def get_roots_normals(roots_points): _, bbox_center = get_bbox(roots_points) normals = roots_points - bbox_center normals = normals / np.linalg.norm(normals, axis=1)[:, None] return normals def get_strand_length(strand): delta = strand[:-1] - strand[1:] delta_length = np.sqrt(np.sum(delta**2, axis=1, keepdims=False)) length = np.sum(delta_length, axis=0, keepdims=False) return length, delta_length def get_strands_length(strands): deltas = strands[:, :-1] - strands[:, 1:] if torch.torch.is_tensor(strands): delta_lengths = torch.sqrt(torch.sum(deltas**2, dim=2, keepdim=False)) lengths = torch.sum(delta_lengths, dim=1, keepdim=False) else: delta_lengths = np.sqrt(np.sum(deltas**2, axis=2, keepdims=False)) lengths = np.sum(delta_lengths, axis=1, keepdims=False) return lengths, delta_lengths def get_strands_roots(strands, scale_ratio=1.0): roots = [] num_strands = strands.shape[0] for i_strand in range(num_strands): roots.append(strands[i_strand][0][:3]) points = np.array(roots) if not scale_ratio == 1.0: points = scale_roots_positions(points, scale_ratio) normals = get_roots_normals(points) return points, normals def line_interpolate(start_point, end_point, interp_count): interped_points = [] if interp_count == 0: return interped_points delta = end_point - start_point delta_length = math.sqrt(np.sum(delta**2, axis=0, keepdims=True)) step_dir = delta / delta_length step_size = delta_length / (interp_count + 1) for i in range(interp_count): interped_points.append(start_point + step_dir * (i + 1) * step_size) return interped_points def resample_strand(strand, tangents=None, num_strand_points=200): num_ori_points = strand.shape[0] assert num_ori_points < num_strand_points, "number of resampled points must larger than the original one" strand_length, delta_length = get_strand_length(strand) step_length = strand_length / (num_strand_points - 1) resampled_strand = [] if tangents is None: interp_idxs = np.where(delta_length > step_length)[0] interp_segs = delta_length[interp_idxs] interp_segs_rank_idxs = np.argsort(-1 * interp_segs) new_step_length = np.sum(interp_segs) / (num_strand_points - (num_ori_points - interp_idxs.shape[0])) interp_counts = np.clip((interp_segs / new_step_length).astype(np.int16) - 1, 0, num_strand_points - 1) # supposed to always be postive or zero interp_counts_sum = np.sum(interp_counts, axis=0, keepdims=False) # supposed to always less than num_strand_points assert interp_counts_sum + num_ori_points <= num_strand_points, "utils:strandsutils.py, FIXME, strand resample error, Interp counts: %d, Original Counts: %d"%(interp_counts_sum, num_ori_points) num_ext_interp = num_strand_points - num_ori_points - interp_counts_sum ext_interp_segs = interp_segs_rank_idxs[:num_ext_interp] interp_counts[ext_interp_segs] += 1 # Interpolate one more point in this segs interp_delta_count = 0 for i_delta in range(num_ori_points - 1): resampled_strand.append(strand[i_delta]) if delta_length[i_delta] > step_length: interped_points = line_interpolate(strand[i_delta], strand[i_delta + 1], interp_counts[interp_delta_count]) resampled_strand.extend(interped_points) interp_delta_count += 1 resampled_strand.append(strand[num_ori_points - 1]) resampled_strand = np.array(resampled_strand) assert resampled_strand.shape[0] == 200, "interpolation failed, number of resampled: %d."%(resampled_strand.shape[0]) return resampled_strand def augment_strand(strand, aug_config): if aug_config["rotation_z_max_angle"] > 0: theta_z = aug_config["rotation_z_max_angle"] rtheta = (np.random.rand() * 2. - 1.) * theta_z * np.pi / 180. rot_mat = np.asarray([[np.cos(rtheta), -np.sin(rtheta), 0.], [np.sin(rtheta), np.cos(rtheta), 0.], [ 0., 0., 1.]], dtype=np.float32) strand = (rot_mat[:, :] @ strand.T).T if np.sum(aug_config["random_stretch_xyz_magnitude"]) > 0: sc = np.random.rand(3) * 2 - 1 sc = 1 + np.asarray(aug_config["random_stretch_xyz_magnitude"]) * sc strand = strand * sc return strand def spline_strand(strand, num_strand_points=100): num_ori_points = strand.shape[0] interp_spline = splines.CatmullRom(strand) interp_idx = np.arange(num_strand_points) / (num_strand_points / (num_ori_points - 1)) interp_strand = interp_spline.evaluate(interp_idx) assert interp_strand.shape[0] == num_strand_points, "Spline error." return interp_strand def pad_strand(strand, num_strand_points=100): num_ori_points = strand.shape[0] if num_ori_points > num_strand_points: return strand[:num_strand_points] num_pad = num_strand_points - num_ori_points last_delta = strand[-1] - strand[-2] offsets = np.arange(num_pad) + 1 offsets = offsets[:, None] last_delta = last_delta[None, :] offsets = offsets * last_delta # padded_strand = np.zeros_like(offsets) + strand[-1] padded_strand = offsets + strand[-1] padded_strand = np.concatenate((strand, padded_strand), axis=0) ori_time = np.linspace(0, 1, num_ori_points) strd_len, delta_len = get_strand_length(strand) # modify time by length ori_time[1:] = delta_len / strd_len ori_time = np.add.accumulate(ori_time) padded_time = 1. + (np.arange(num_pad) + 1) * (1. / num_ori_points) padded_time = np.concatenate((ori_time, padded_time), axis=0) return padded_strand, padded_time def tridiagonal_solve(b, A_upper, A_diagonal, A_lower): A_upper, _ = torch.broadcast_tensors(A_upper[:, None, :], b[..., :-1]) A_lower, _ = torch.broadcast_tensors(A_lower[:, None, :], b[..., :-1]) A_diagonal, b = torch.broadcast_tensors(A_diagonal[:, None, :], b) channels = b.size(-1) new_b = np.empty(channels, dtype=object) new_A_diagonal = np.empty(channels, dtype=object) outs = np.empty(channels, dtype=object) new_b[0] = b[..., 0] new_A_diagonal[0] = A_diagonal[..., 0] for i in range(1, channels): w = A_lower[..., i - 1] / new_A_diagonal[i - 1] new_A_diagonal[i] = A_diagonal[..., i] - w * A_upper[..., i - 1] new_b[i] = b[..., i] - w * new_b[i - 1] outs[channels - 1] = new_b[channels - 1] / new_A_diagonal[channels - 1] for i in range(channels - 2, -1, -1): outs[i] = (new_b[i] - A_upper[..., i] * outs[i + 1]) / new_A_diagonal[i] return torch.stack(outs.tolist(), dim=-1) def cubic_spline_coeffs(t, x): # x should be a tensor of shape (..., length) # Will return the b, two_c, three_d coefficients of the derivative of the cubic spline interpolating the path. length = x.size(-1) if length < 2: # In practice this should always already be caught in __init__. raise ValueError("Must have a time dimension of size at least 2.") elif length == 2: a = x[..., :1] b = (x[..., 1:] - x[..., :1]) / (t[..., 1:] - t[..., :1]) two_c = torch.zeros(*x.shape[:-1], 1, dtype=x.dtype, device=x.device) three_d = torch.zeros(*x.shape[:-1], 1, dtype=x.dtype, device=x.device) else: # Set up some intermediate values time_diffs = t[..., 1:] - t[..., :-1] time_diffs_reciprocal = time_diffs.reciprocal() time_diffs_reciprocal_squared = time_diffs_reciprocal ** 2 three_path_diffs = 3 * (x[..., 1:] - x[..., :-1]) six_path_diffs = 2 * three_path_diffs path_diffs_scaled = three_path_diffs * time_diffs_reciprocal_squared[:, None, :] # Solve a tridiagonal linear system to find the derivatives at the knots system_diagonal = torch.empty((x.shape[0], length), dtype=x.dtype, device=x.device) system_diagonal[..., :-1] = time_diffs_reciprocal system_diagonal[..., -1] = 0 system_diagonal[..., 1:] += time_diffs_reciprocal system_diagonal *= 2 system_rhs = torch.empty_like(x) system_rhs[..., :-1] = path_diffs_scaled system_rhs[..., -1] = 0 system_rhs[..., 1:] += path_diffs_scaled knot_derivatives = tridiagonal_solve(system_rhs, time_diffs_reciprocal, system_diagonal, time_diffs_reciprocal) # Do some algebra to find the coefficients of the spline time_diffs_reciprocal = time_diffs_reciprocal[:, None, :] time_diffs_reciprocal_squared = time_diffs_reciprocal_squared[:, None, :] a = x[..., :-1] b = knot_derivatives[..., :-1] two_c = (six_path_diffs * time_diffs_reciprocal - 4 * knot_derivatives[..., :-1] - 2 * knot_derivatives[..., 1:]) * time_diffs_reciprocal three_d = (-six_path_diffs * time_diffs_reciprocal + 3 * (knot_derivatives[..., :-1] + knot_derivatives[..., 1:])) * time_diffs_reciprocal_squared return a, b, two_c, three_d def natural_cubic_spline_coeffs(t, x): a, b, two_c, three_d = cubic_spline_coeffs(t, x.transpose(-1, -2)) # These all have shape (..., length - 1, channels) a = a.transpose(-1, -2) b = b.transpose(-1, -2) c = two_c.transpose(-1, -2) / 2 d = three_d.transpose(-1, -2) / 3 return t, a, b, c, d class NaturalCubicSpline: def __init__(self, coeffs, **kwargs): super(NaturalCubicSpline, self).__init__(**kwargs) t, a, b, c, d = coeffs self._t = t self._a = a self._b = b self._c = c self._d = d def evaluate(self, t): maxlen = self._b.size(-2) - 1 inners = torch.zeros((t.shape[0], t.shape[1], 3)).to(t.device) for i_b in range(self._t.shape[0]): index = torch.bucketize(t.detach()[i_b], self._t[i_b]) - 1 index = index.clamp(0, maxlen) # clamp because t may go outside of [t[0], t[-1]]; this is fine # will never access the last element of self._t; this is correct behaviour fractional_part = t[i_b] - self._t[i_b][index] fractional_part = fractional_part.unsqueeze(-1) inner = self._c[i_b, index, :] + self._d[i_b, index, :] * fractional_part inner = self._b[i_b, index, :] + inner * fractional_part inner = self._a[i_b, index, :] + inner * fractional_part inners[i_b] = inner return inners def derivative(self, t, order=1): fractional_part, index = self._interpret_t(t) fractional_part = fractional_part.unsqueeze(-1) if order == 1: inner = 2 * self._c[..., index, :] + 3 * self._d[..., index, :] * fractional_part deriv = self._b[..., index, :] + inner * fractional_part elif order == 2: deriv = 2 * self._c[..., index, :] + 6 * self._d[..., index, :] * fractional_part else: raise ValueError('Derivative is not implemented for orders greater than 2.') return deriv # post-processing def merge_strands(strands_list): strands_all = [] for strands in strands_list: for i_strand in range(strands.shape[0]): strands_all.append(strands[i_strand]) strands_all = np.array(strands_all, dtype=object) return strands_all def strandspc2strands(strandspc, sep): num_strands = len(sep) strands = [] num_pts = 0 for i_strand in range(num_strands): strands.append(strandspc[num_pts : num_pts + int(sep[i_strand])]) num_pts += sep[i_strand] strands = np.array(strands, dtype=object) return strands def smnooth_strand(strand, lap_constraint=2.0, pos_constraint=1.0, fix_tips=False): num_pts = strand.shape[0] num_value = num_pts * 3 - 2 + num_pts smoothed_strand = np.copy(strand) # construct laplacian sparse matrix i, j, v = np.zeros(num_value, dtype=np.int16), np.zeros(num_value, dtype=np.int16), np.zeros(num_value) i[0], i[1], i[2 + (num_pts - 2) * 3], i[2 + (num_pts - 2) * 3 + 1] = 0, 0, num_pts - 1, num_pts - 1 i[2 : num_pts * 3 - 4] = np.repeat(np.arange(1, num_pts - 1), 3) i[num_pts * 3 - 2:] = np.arange(num_pts) + num_pts j[0], j[1], j[2 + (num_pts - 2) * 3], j[2 + (num_pts - 2) * 3 + 1] = 0, 1, num_pts - 2, num_pts - 1 j[2 : num_pts * 3 - 4] = np.repeat(np.arange(1, num_pts - 1), 3) \ + np.repeat(np.array([-1, 0, 1], dtype=np.int16), num_pts - 2).reshape(num_pts - 2, 3, order='F').ravel() j[num_pts * 3 - 2:] = np.arange(num_pts) v[0], v[1], v[2 + (num_pts - 2) * 3], v[2 + (num_pts - 2) * 3 + 1] = 1, -1, -1, 1 v[2 : num_pts * 3 - 4] = np.repeat(np.array([-1, 2, -1], dtype=np.int16), num_pts - 2).reshape(num_pts - 2, 3, order='F').ravel() v = v * lap_constraint v[num_pts * 3 - 2:] = pos_constraint A = coo_matrix((v, (i, j)), shape=(num_pts * 2, num_pts)) At = A.transpose() AtA = At.dot(A) # solving for j_axis in range(3): b = np.zeros(num_pts * 2) b[num_pts:] = smoothed_strand[:, j_axis] * pos_constraint Atb = At.dot(b) x = spsolve(AtA, Atb) smoothed_strand[:, j_axis] = x[:num_pts] if fix_tips: strand[1:-1] = smoothed_strand[1:-1] else: strand = smoothed_strand return strand def smooth_strands(strands, lap_constraint=2.0, pos_constraint=1.0, fix_tips=False): loop = tqdm(range(strands.shape[0])) loop.set_description("Smoothing strands") for i_strand in loop: strands[i_strand] = smnooth_strand(strands[i_strand], lap_constraint, pos_constraint, fix_tips) return strands def downsample_strands(strands, min_num_pts=5, tgt_num_pts=64): loop = tqdm(range(strands.shape[0])) loop.set_description("Downsampling strands points") for i_strand in loop: num_pts = strands[i_strand].shape[0] downsampled_strand = np.copy(strands[i_strand][:, 0:3]) if num_pts <= 2: pass elif num_pts > 2 and num_pts < min_num_pts: interp_pts = (downsampled_strand[:-1] + downsampled_strand[1:]) / 2. interp_strand = np.zeros((num_pts * 2 - 1, 3)) interp_strand[::2] = downsampled_strand interp_strand[1::2] = interp_pts downsampled_strand = interp_strand elif num_pts > min_num_pts and num_pts < tgt_num_pts: pass else: interp_spline = splines.CatmullRom(downsampled_strand) interp_idx = np.arange(tgt_num_pts) / (tgt_num_pts / (num_pts - 1)) downsampled_strand = interp_spline.evaluate(interp_idx) strands[i_strand] = downsampled_strand return strands def duplicate_strands(strands, ratio=5, perturation=1.0): loop = tqdm(range(strands.shape[0])) loop.set_description('Duplicating strands') duplicated_strands_list = [] for i_strand in loop: strand = strands[i_strand][:, 0:3] num_pts = strand.shape[0] duplicated_strands = np.repeat(strand.reshape(1, num_pts, 3), ratio, axis=0) start_tangent = strand[1] - strand[0] offsets = np.random.rand(ratio, 3) offsets[:, 2] = -(offsets[:, 0] * start_tangent[0] + offsets[:, 1] * start_tangent[1]) / (start_tangent[2] + 1e-6) offsets = offsets / np.linalg.norm(offsets, axis=1, keepdims=True) offsets[0] *= 0 scale_ratio = np.random.rand(ratio, 1) * perturation + perturation offsets = offsets * scale_ratio offsets = np.repeat(offsets.reshape(ratio, 1, 3), num_pts, axis=1) duplicated_strands = duplicated_strands + offsets for j in range(ratio): duplicated_strands_list.append(duplicated_strands[j]) strands = np.array(duplicated_strands_list, dtype=object) return strands
CT2Hair-main
CT2Hair/utils/strandsutils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math import copy import igl import trimesh import numpy as np from scipy.spatial.transform import Rotation as R from datautils.datautils import save_bin_strands from utils.pcutils import load_pc from utils.utils import translate2mat, homo_rot_mat def read_mesh(mesh_path): mesh = trimesh.load(mesh_path, force='mesh', process=True) return mesh def write_mesh(mesh_path, mesh): mesh.export(mesh_path) def quad2trimesh(quad_faces, vertices): assert quad_faces.shape[1] == 4, "Mesh is not a quad mesh." num_quad_faces = quad_faces.shape[0] num_tri_faces = num_quad_faces * 2 tri_faces = np.zeros((num_tri_faces, 3), dtype=np.uint32) tri_faces[::2] = quad_faces[:, [0, 1, 2]] tri_faces[1::2] = quad_faces[:, [0, 2, 3]] return trimesh.Trimesh(vertices=vertices, faces=tri_faces) def vertices_pairwise_dis(vertices): inner_vertices = -2 * (vertices @ vertices.T) vertices_2 = np.sum(vertices**2, axis=1, keepdims=True) pairwise_dis = vertices_2 + inner_vertices + vertices_2.T return pairwise_dis def mesh_deformation(head_mesh, target_pc, scalp_faces_mask, smooth=True, smooth_iterations=10, thres_min_movement=10.0): target_kdtree = target_pc.kdtree v = head_mesh.vertices f = head_mesh.faces u = v.copy() num_vertices = v.shape[0] dis, idx = target_kdtree.query(v, 1) s = np.zeros(num_vertices) for i_face in range(head_mesh.faces.shape[0]): if scalp_faces_mask[i_face]: for i_v in range(3): v_idx = f[i_face, i_v] if dis[v_idx] <= thres_min_movement: s[v_idx] = 1 b = np.array([[t[0] for t in [(i, s[i]) for i in range(0, v.shape[0])] if t[1] > 0]]).T # Boundary conditions directly on deformed positions u_bc = np.zeros((b.shape[0], v.shape[1])) v_bc = np.zeros((b.shape[0], v.shape[1])) for bi in range(b.shape[0]): v_bc[bi] = v[b[bi]] offset = target_pc.vertices[idx[b[bi]]] - v[b[bi]] u_bc[bi] = v[b[bi]] + offset u_bc_anim = v_bc + (u_bc - v_bc) d_bc = u_bc_anim - v_bc d = igl.harmonic_weights(v, f, b.astype(f.dtype), d_bc, 1) u = v + d head_mesh.vertices = u if smooth: smoothe_head_mesh = copy.deepcopy(head_mesh) trimesh.smoothing.filter_mut_dif_laplacian(smoothe_head_mesh, iterations=smooth_iterations) # trimesh.smoothing.filter_laplacian(head_mesh, iterations=smooth_iterations) head_mesh.vertices[head_mesh.faces[scalp_faces_mask]] = smoothe_head_mesh.vertices[head_mesh.faces[scalp_faces_mask]] return head_mesh def get_alignment_matrix(head_mesh, head_texture, target_roots_pc_path, target_face_base): uv_coords = head_mesh.visual.uv # num_vertices X 2 head_tex_width, head_tex_height, _ = head_texture.shape head_mesh_pairwise_dis = vertices_pairwise_dis(head_mesh.vertices) head_mesh_eye = np.eye(head_mesh_pairwise_dis.shape[0]) head_mesh_pairwise_dis = head_mesh_pairwise_dis + head_mesh_eye UV_bound_vertices = np.where(head_mesh_pairwise_dis < 1e-4) # boundary vertices in UV # for each face determiner whether it is scalp num_faces = head_mesh.faces.shape[0] face_uv_coords = uv_coords[head_mesh.faces] * [head_tex_height, head_tex_width] face_uv_coords = np.around(face_uv_coords).astype(np.uint16) face_uv_coords = np.clip(face_uv_coords, [0, 1], [head_tex_width - 1, head_tex_height]) face_uv_colors = head_texture[head_tex_height - face_uv_coords[:, :, 1], face_uv_coords[:, :, 0], :] face_avg_colors = np.sum(face_uv_colors, axis=1, keepdims=False) scalp_faces_mask = face_avg_colors[:, 0] > 255 * 0.3 scalp_faces_idx = np.where(face_avg_colors[:, 0] > 255 * 0.3)[0] scalp_mesh = copy.deepcopy(head_mesh) scalp_mesh.update_faces(scalp_faces_mask) scalp_mesh.remove_unreferenced_vertices() scalp_sampled_points = scalp_mesh.sample(50000) target_points, target_normals = load_pc(target_roots_pc_path, load_color=False, load_normal=True) source_pc = trimesh.points.PointCloud(scalp_sampled_points) target_pc = trimesh.points.PointCloud(target_points) trans_mat = np.eye(4) # align bound sphere size scale_ratio = math.pow(target_pc.bounding_sphere.volume / source_pc.bounding_sphere.volume, 1./3.) scalp_sampled_points = scalp_sampled_points * scale_ratio trans_offset = [0., 0., 0.] - (source_pc.centroid * scale_ratio) scalp_sampled_points += trans_offset trans_mat[0:3] = trans_mat[0:3] * scale_ratio trans_mat = translate2mat(trans_offset) @ trans_mat # base rotate to original coord base_rot = R.from_euler('xyz', [[0., 0., 0.]]) # MannequinHeadB base_rot_mat = base_rot.as_matrix()[0] scalp_sampled_points = np.dot(base_rot_mat, scalp_sampled_points.T).T trans_mat = homo_rot_mat(base_rot_mat) @ trans_mat # change of basis # target_face_base = np.array([[0., 1., 0.], [1., 0., 0.], [0., 0., -1]]) target_face_base_inv = target_face_base.T scalp_sampled_points = np.dot(target_face_base_inv, scalp_sampled_points.T).T trans_mat = homo_rot_mat(target_face_base_inv) @ trans_mat # move to same center with target scalp_sampled_points += target_pc.centroid trans_mat = translate2mat(target_pc.centroid) @ trans_mat # registration reg_mat, reg_points, cost = trimesh.registration.icp(scalp_sampled_points, target_points) trans_mat = reg_mat @ trans_mat return trans_mat def process_head_model(head_mesh, head_texture, target_roots_pc_path, target_face_base, is_deformation=True): print('Utils::MeshUtils Start processing head model (registration & deformation)...') uv_coords = head_mesh.visual.uv # num_vertices X 2 head_tex_width, head_tex_height, _ = head_texture.shape head_mesh_pairwise_dis = vertices_pairwise_dis(head_mesh.vertices) head_mesh_eye = np.eye(head_mesh_pairwise_dis.shape[0]) head_mesh_pairwise_dis = head_mesh_pairwise_dis + head_mesh_eye UV_bound_vertices = np.where(head_mesh_pairwise_dis < 1e-4) # boundary vertices in UV # for each face determiner whether it is scalp num_faces = head_mesh.faces.shape[0] face_uv_coords = uv_coords[head_mesh.faces] * [head_tex_height, head_tex_width] face_uv_coords = np.around(face_uv_coords).astype(np.uint16) face_uv_coords = np.clip(face_uv_coords, [0, 1], [head_tex_width - 1, head_tex_height]) face_uv_colors = head_texture[head_tex_height - face_uv_coords[:, :, 1], face_uv_coords[:, :, 0], :] face_avg_colors = np.sum(face_uv_colors, axis=1, keepdims=False) scalp_faces_mask = face_avg_colors[:, 0] > 255 * 0.3 scalp_faces_idx = np.where(face_avg_colors[:, 0] > 255 * 0.3)[0] scalp_mesh = copy.deepcopy(head_mesh) scalp_mesh.update_faces(scalp_faces_mask) scalp_mesh.remove_unreferenced_vertices() scalp_sampled_points = scalp_mesh.sample(50000) target_points = load_pc(target_roots_pc_path, load_color=False, load_normal=False) source_pc = trimesh.points.PointCloud(scalp_sampled_points) target_pc = trimesh.points.PointCloud(target_points) trans_mat = np.eye(4) # align bound sphere size scale_ratio = math.pow(target_pc.bounding_sphere.volume / source_pc.bounding_sphere.volume, 1./3.) scalp_sampled_points = scalp_sampled_points * scale_ratio trans_offset = [0., 0., 0.] - (source_pc.centroid * scale_ratio) scalp_sampled_points += trans_offset trans_mat = translate2mat(trans_offset) @ trans_mat # base rotate to original coord # base_rot = R.from_euler('yzx', [[211. / 180. * np.pi, -8. / 180. * np.pi, 0.]]) # Mugsy Head # base_rot = R.from_euler('xzy', [[180. / 180. * np.pi, 2. / 180. * np.pi, 3. / 180. * np.pi]]) # old MannequinHeadA base_rot = R.from_euler('xyz', [[0., 0., 0.]]) # MannequinHeadA and B base_rot_mat = base_rot.as_matrix()[0] scalp_sampled_points = np.dot(base_rot_mat, scalp_sampled_points.T).T trans_mat = homo_rot_mat(base_rot_mat) @ trans_mat # change of basis # target_face_base = np.array([[0., 1., 0.], [1., 0., 0.], [0., 0., -1]]) target_face_base_inv = target_face_base.T scalp_sampled_points = np.dot(target_face_base_inv, scalp_sampled_points.T).T trans_mat = homo_rot_mat(target_face_base_inv) @ trans_mat # move to same center with target scalp_sampled_points += target_pc.centroid trans_mat = translate2mat(target_pc.centroid) @ trans_mat # registration reg_mat, reg_points, cost = trimesh.registration.icp(scalp_sampled_points, target_points) # type: ignore (for avoid pyplace error report) trans_mat = reg_mat @ trans_mat # apply transformatioin to the head model head_mesh.apply_scale(scale_ratio) head_mesh.apply_transform(trans_mat) # head_mesh.export('temp/reg_head.ply') if is_deformation: # head_mesh = mesh_deformation(head_mesh, target_pc, scalp_faces_mask, smooth=False) # head_mesh = mesh_deformation(head_mesh, target_pc, scalp_faces_mask) head_mesh = mesh_deformation(head_mesh, target_pc, scalp_faces_mask, smooth_iterations=12, thres_min_movement=24) # head_mesh = mesh_deformation(head_mesh, target_pc, scalp_faces_mask, smooth_iterations=6, thres_min_movement=24) # head_mesh.export('temp/smoothed_deform_reg_head.ply') # sew vertices sewed_v = head_mesh.vertices.copy() for i_v in range(UV_bound_vertices[0].shape[0]): sewed_v[UV_bound_vertices[0][i_v]] = (head_mesh.vertices[UV_bound_vertices[0][i_v]] + head_mesh.vertices[UV_bound_vertices[1][i_v]]) / 2. sewed_v[UV_bound_vertices[1][i_v]] = (head_mesh.vertices[UV_bound_vertices[0][i_v]] + head_mesh.vertices[UV_bound_vertices[1][i_v]]) / 2. head_mesh.vertices = sewed_v # compute transed & registered & deformed scalp mesh again scalp_mesh = copy.deepcopy(head_mesh) scalp_mesh.update_faces(scalp_faces_mask) scalp_mesh.remove_unreferenced_vertices() print('Utils::MeshUtils End processing.') return head_mesh, scalp_mesh, scalp_faces_idx def seg_head_model(head_mesh, head_texture): uv_coords = head_mesh.visual.uv # num_vertices X 2 head_tex_width, head_tex_height, _ = head_texture.shape head_mesh_pairwise_dis = vertices_pairwise_dis(head_mesh.vertices) head_mesh_eye = np.eye(head_mesh_pairwise_dis.shape[0]) head_mesh_pairwise_dis = head_mesh_pairwise_dis + head_mesh_eye UV_bound_vertices = np.where(head_mesh_pairwise_dis < 1e-4) # boundary vertices in UV # for each face determiner whether it is scalp face_uv_coords = uv_coords[head_mesh.faces] * [head_tex_height, head_tex_width] face_uv_coords = np.around(face_uv_coords).astype(np.uint16) face_uv_coords = np.clip(face_uv_coords, [0, 1], [head_tex_width - 1, head_tex_height]) face_uv_colors = head_texture[head_tex_height - face_uv_coords[:, :, 1], face_uv_coords[:, :, 0], :] face_avg_colors = np.sum(face_uv_colors, axis=1, keepdims=False) scalp_faces_mask = face_avg_colors[:, 0] > 255 * 0.3 scalp_faces_idx = np.where(face_avg_colors[:, 0] > 255 * 0.3)[0] scalp_mesh = copy.deepcopy(head_mesh) scalp_mesh.update_faces(scalp_faces_mask) scalp_mesh.remove_unreferenced_vertices() return head_mesh, scalp_mesh, scalp_faces_idx import torch from typing import Union, Tuple from trimesh import Trimesh # from trimesh.proximity import closest_point # Too slow from trimesh.triangles import points_to_barycentric def closest_point_barycentrics(v, vi, points, filtering=False, filter_dis_thres=2.): """Given a 3D mesh and a set of query points, return closest point barycentrics Args: v: np.array (float) [N, 3] mesh vertices vi: np.array (int) [N, 3] mesh triangle indices points: np.array (float) [M, 3] query points Returns: Tuple[approx, barys, interp_idxs, face_idxs] approx: [M, 3] approximated (closest) points on the mesh barys: [M, 3] barycentric weights that produce "approx" interp_idxs: [M, 3] vertex indices for barycentric interpolation face_idxs: [M] face indices for barycentric interpolation. interp_idxs = vi[face_idxs] """ mesh = Trimesh(vertices=v, faces=vi) # p, distances, face_idxs = closest_point(mesh, points) # Slow, Change to IGL sqr_distances, face_idxs, p = igl.point_mesh_squared_distance(points, mesh.vertices, mesh.faces) # type: ignore for avoiding pylance error if filtering: valid_q_idx = np.where(np.sqrt(sqr_distances) < filter_dis_thres)[0] p = p[valid_q_idx] face_idxs = face_idxs[valid_q_idx] else: valid_q_idx = np.arange(p.shape[0]) barys = points_to_barycentric(mesh.triangles[face_idxs], p) b0, b1, b2 = np.split(barys, 3, axis=1) interp_idxs = vi[face_idxs] v0 = v[interp_idxs[:, 0]] v1 = v[interp_idxs[:, 1]] v2 = v[interp_idxs[:, 2]] approx = b0 * v0 + b1 * v1 + b2 * v2 return approx, barys, interp_idxs, face_idxs, valid_q_idx def make_closest_uv_barys( vt: torch.Tensor, vti: torch.Tensor, uv_shape: Union[Tuple[int, int], int], flip_uv: bool = True, ): """Compute a UV-space barycentric map where each texel contains barycentric coordinates for the closest point on a UV triangle. Args: vt: torch.Tensor Texture coordinates. Shape = [n_texcoords, 2] vti: torch.Tensor Face texture coordinate indices. Shape = [n_faces, 3] uv_shape: Tuple[int, int] or int Shape of the texture map. (HxW) flip_uv: bool Whether or not to flip UV coordinates along the V axis (OpenGL -> numpy/pytorch convention). Returns: torch.Tensor: index_img: Face index image, shape [uv_shape[0], uv_shape[1]] torch.Tensor: Barycentric coordinate map, shape [uv_shape[0], uv_shape[1], 3]Â """ if isinstance(uv_shape, int): uv_shape = (uv_shape, uv_shape) if flip_uv: # Flip here because texture coordinates in some of our topo files are # stored in OpenGL convention with Y=0 on the bottom of the texture # unlike numpy/torch arrays/tensors. vt = vt.clone() vt[:, 1] = 1 - vt[:, 1] # Texel to UV mapping (as per OpenGL linear filtering) # https://www.khronos.org/registry/OpenGL/specs/gl/glspec46.core.pdf # Sect. 8.14, page 261 # uv=(0.5,0.5)/w is at the center of texel [0,0] # uv=(w-0.5, w-0.5)/w is the center of texel [w-1,w-1] # texel = floor(u*w - 0.5) # u = (texel+0.5)/w uv_grid = torch.meshgrid( torch.linspace(0.5, uv_shape[0] - 1 + 0.5, uv_shape[0]) / uv_shape[0], torch.linspace(0.5, uv_shape[1] - 1 + 0.5, uv_shape[1]) / uv_shape[1], indexing='ij') # HxW, v,u uv_grid = torch.stack(uv_grid[::-1], dim=2) # HxW, u, v uv = uv_grid.reshape(-1, 2).data.to("cpu").numpy() vth = np.hstack((vt, vt[:, 0:1] * 0 + 1)) uvh = np.hstack((uv, uv[:, 0:1] * 0 + 1)) approx, barys, interp_idxs, face_idxs, _ = closest_point_barycentrics(vth, vti, uvh) index_img = torch.from_numpy(face_idxs.reshape(uv_shape[0], uv_shape[1])).long() bary_img = torch.from_numpy(barys.reshape(uv_shape[0], uv_shape[1], 3)).float() return index_img, bary_img def compute_tbn_uv(tri_xyz, tri_uv, eps=1e-5): """Compute tangents, bitangents, normals. Args: tri_xyz: [B,N,3,3] vertex coordinates tri_uv: [B,N,3,2] texture coordinates Returns: tangents, bitangents, normals """ v01 = tri_xyz[:, :, 1] - tri_xyz[:, :, 0] v02 = tri_xyz[:, :, 2] - tri_xyz[:, :, 0] normals = torch.cross(v01, v02, dim=-1) normals = normals / torch.norm(normals, dim=-1, keepdim=True).clamp(min=eps) vt01 = tri_uv[:, :, 1] - tri_uv[:, :, 0] vt02 = tri_uv[:, :, 2] - tri_uv[:, :, 0] f = 1.0 / (vt01[..., 0] * vt02[..., 1] - vt01[..., 1] * vt02[..., 0]) tangents = f[..., np.newaxis] * ( v01 * vt02[..., 1][..., np.newaxis] - v02 * vt01[..., 1][..., np.newaxis]) tangents = tangents / torch.norm(tangents, dim=-1, keepdim=True).clamp(min=eps) bitangents = torch.cross(normals, tangents, dim=-1) bitangents = bitangents / torch.norm(bitangents, dim=-1, keepdim=True).clamp(min=eps) return tangents, bitangents, normals def strands_world2tbn(strands, head_mesh, scalp_mesh, scalp_faces_idx): # print('Utils::MeshUtils Convert strands to TBN space...') num_strands = strands.shape[0] # get all roots points roots_pc = [] for i_strand in range(num_strands): roots_pc.append(strands[i_strand][0, 0:3]) roots_pc = np.array(roots_pc) approx, barys, interp_idxs, faces_idxs, valid_q_idxs = closest_point_barycentrics(scalp_mesh.vertices, scalp_mesh.faces, roots_pc, filtering=True, filter_dis_thres=6.4) # 3.6 -> 6.4, 7.2 valid_strands = strands[valid_q_idxs] # invalid_q_idxs = list(set(np.arange(roots_pc.shape[0])) - set(valid_q_idxs)) # invalid_strands = strands[invalid_q_idxs] # save_bin_strands('temp/valid_strands.bin', valid_strands) # save_bin_strands('temp/invalid_strands.bin', invalid_strands) num_valid_strands = valid_strands.shape[0] triangled_vertices = torch.tensor(head_mesh.vertices[head_mesh.faces, :])[None, :] triangled_vertices_uv = torch.tensor(head_mesh.visual.uv[head_mesh.faces, :])[None, :] tangents, bitangents, normals = compute_tbn_uv(triangled_vertices, triangled_vertices_uv) # get tbn for each face scalp_tangents = tangents[0][scalp_faces_idx].detach().cpu().numpy() scalp_bitangents = bitangents[0][scalp_faces_idx].detach().cpu().numpy() scalp_normals = normals[0][scalp_faces_idx].detach().cpu().numpy() tbn_strands = [] for i_strand in range(num_valid_strands): tangent = scalp_tangents[faces_idxs[i_strand]] bitangent = scalp_bitangents[faces_idxs[i_strand]] normal = scalp_normals[faces_idxs[i_strand]] tbn_basis_T = np.array([tangent, bitangent, normal]) tbn_strand = (tbn_basis_T @ valid_strands[i_strand][:, 0:3].T).T tbn_strand = tbn_strand - tbn_strand[0] tbn_strands.append(tbn_strand) # print('Utils::MeshUtils End converting, number of original strands: %d, number of valid strands: %d'%(num_strands, num_valid_strands)) return tbn_strands, barys, interp_idxs, faces_idxs, valid_q_idxs, tangents, bitangents, normals def strands_align_normal(strands, head_mesh): num_strands = len(strands) # get all roots points roots_pc = [] for i_strand in range(num_strands): roots_pc.append(strands[i_strand][0]) roots_pc = np.array(roots_pc)[:, 0:3] sqr_distances, face_idxs, p = igl.point_mesh_squared_distance(roots_pc, head_mesh.vertices, head_mesh.faces) closest_faces = head_mesh.faces[face_idxs] closest_triangles = torch.tensor(head_mesh.vertices[closest_faces, :])[None, :] v01 = closest_triangles[:, :, 1] - closest_triangles[:, :, 0] v02 = closest_triangles[:, :, 2] - closest_triangles[:, :, 0] normals = torch.cross(v01, v02, dim=-1) normals = normals / torch.norm(normals, dim=-1, keepdim=True).clamp(min=1e-5) z_aixs = torch.zeros_like(normals) z_aixs[:, :, 2] = 1 t_axises = torch.cross(normals, z_aixs) t_axises = t_axises / torch.norm(t_axises, dim=-1, keepdim=True).clamp(min=1e-5) b_axises = torch.cross(normals, t_axises) b_axises = b_axises / torch.norm(b_axises, dim=-1, keepdim=True).clamp(min=1e-5) tangents = t_axises[0].detach().cpu().numpy() bitangents = b_axises[0].detach().cpu().numpy() normals = normals[0].detach().cpu().numpy() aligned_strands = [] valid_rot_mats = [] valid_roots_pts = [] for i_strand in range(num_strands): tangent = tangents[i_strand] bitangent = bitangents[i_strand] normal = normals[i_strand] strand = np.array(strands[i_strand]) root_pts = strand[0] strand = strand - root_pts tbn_basis_T = np.array([tangent, bitangent, normal]) aligned_strand = (tbn_basis_T @ strand.T).T if np.sum(aligned_strand ** 2) < 1e-7 or np.isnan(np.sum(aligned_strand)): # delete some noise data for avoiding nan continue aligned_strands.append(aligned_strand) valid_rot_mats.append(tbn_basis_T) valid_roots_pts.append(root_pts) return aligned_strands, valid_rot_mats, valid_roots_pts
CT2Hair-main
CT2Hair/utils/meshutils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import time import numpy as np import open3d as o3d from copy import deepcopy from matplotlib import cm def volume2pc(voxels, threshold=1e-1, scale_ratio=np.array([0.125, 0.125, 0.125]), get_colors=True): start_time = time.time() x, y, z = np.where(voxels > threshold) points = np.concatenate((x[:, None], y[:, None], z[:, None]), axis=1).astype(np.float32) points = points * scale_ratio values = voxels[x, y, z] if get_colors: BuGn_color_map = cm.get_cmap('BuGn', 256) colors = np.array(BuGn_color_map(values))[:, 0:3] print('Finish volume to pc stage, used %fs'%(time.time() - start_time)) return points, colors else: print('Finish volume to pc stage, used %fs'%(time.time() - start_time)) return points, values def pc2volume(points, colors=None, normals=None, num_angles=12): min_bound = np.min(points, axis=0).astype(np.int16) max_bound = np.max(points, axis=0).astype(np.int16) voxel_size = max_bound - min_bound + 1 voxel_size = np.append(voxel_size, [4]) voxels = np.zeros(voxel_size) points = points.astype(np.int16) points = points - min_bound if colors is not None: voxels[points[:, 0], points[:, 1], points[:, 2], 0] = colors[:, 0] # confidence voxels[points[:, 0], points[:, 1], points[:, 2], 1] = colors[:, 1] * num_angles # thete voxels[points[:, 0], points[:, 1], points[:, 2], 2] = colors[:, 2] * num_angles # phi voxels[points[:, 0], points[:, 1], points[:, 2], 3] = np.arange(points.shape[0]) # point_index elif normals is not None: voxels[points[:, 0], points[:, 1], points[:, 2], 0:3] = normals # confidence voxels[points[:, 0], points[:, 1], points[:, 2], 3] = np.arange(points.shape[0]) # point_index return voxels, min_bound def strands2pc(strands, step_size=None, rand_color=True): num_strands = strands.shape[0] if step_size == None: strands_points = [] strands_normals = [] strands_colors = [] strands_tangents = [] strands_sep = [] # number of points for each strand for i_strand in range(num_strands): num_points = strands[i_strand].shape[0] points = strands[i_strand][:, :3] normals = strands[i_strand][:, 3:] tangents = points[1:] - points[:-1] tangents = tangents / np.linalg.norm(tangents, axis=-1, keepdims=True) tangents = np.concatenate((tangents, tangents[-1:]), axis=0) points = points.tolist() normals = normals.tolist() tangents = tangents.tolist() strands_points.extend(points) strands_normals.extend(normals) strands_tangents.extend(tangents) if rand_color: strand_color = np.random.rand(1, 3) strand_colors = np.repeat(strand_color, num_points, axis=0) strand_colors = strand_colors.tolist() strands_colors.extend(strand_colors) strands_sep.append(num_points) strands_points = np.array(strands_points) strands_tangents = np.array(strands_tangents) if rand_color: strands_colors = np.array(strands_colors) return strands_points, strands_colors, strands_sep else: return strands_points, strands_tangents, strands_sep else: max_step_lenght = 0 strands_steps_pos_norm = [] strands_steps_colors = [] for i_strand in range(num_strands): num_steps = strands[i_strand].shape[0] // step_size num_points = num_steps * step_size strand = np.reshape(strands[i_strand][:num_points], (num_steps, step_size, strands[i_strand].shape[-1])) strands_steps_pos_norm.append(strand) if rand_color: strand_color = np.random.rand(1, 3) strand_colors = np.repeat(strand_color, num_points, axis=0) strand_colors = np.reshape(strand_colors, (num_steps, step_size, 3)) strands_steps_colors.append(strand_colors) if num_steps > max_step_lenght: max_step_lenght = num_steps steps_points = [] steps_normals = [] steps_colors = [] for i_step in range(max_step_lenght): step_points = [] step_normals = [] step_colors = [] for j_strand in range(num_strands): step_lenght = strands_steps_pos_norm[j_strand].shape[0] if (step_lenght <= i_step): continue step_points.append(strands_steps_pos_norm[j_strand][i_step, :, :3]) step_normals.append(strands_steps_pos_norm[j_strand][i_step, :, 3:]) if rand_color: step_colors.append(strands_steps_colors[j_strand][i_step]) steps_points.append(np.array(step_points).reshape(-1, 3)) steps_normals.append(np.array(step_normals).reshape(-1, 3)) if rand_color: steps_colors.append(np.array(step_colors).reshape(-1, 3)) if rand_color: return max_step_lenght, steps_points, steps_colors else: return max_step_lenght, steps_points, None def read_pc(pc_path): point_cloud = o3d.io.read_point_cloud(pc_path) return point_cloud def load_pc(pc_path, load_color=True, load_normal=False): point_cloud = o3d.io.read_point_cloud(pc_path) points = np.asarray(point_cloud.points) if load_color: assert point_cloud.has_colors(), "Loaded point cloud has no colors" colors = np.asarray(point_cloud.colors) return points, colors elif load_normal: assert point_cloud.has_normals(), "Loaded point cloud has no normals" normals = np.asarray(point_cloud.normals) return points, normals else: return points def save_pc_float64(pc_path, points, colors=None, normals=None): point_cloud = o3d.geometry.PointCloud() point_cloud.points = o3d.utility.Vector3dVector(points) if colors is not None: assert points.shape[0] == colors.shape[0], "points and colors should have same numbers" point_cloud.colors = o3d.utility.Vector3dVector(colors) if normals is not None: point_cloud.normals = o3d.utility.Vector3dVector(normals) return o3d.io.write_point_cloud(pc_path, point_cloud) def save_pc(pc_path, points, colors=None, normals=None): pc_device = o3d.core.Device("CPU:0") pc_type = o3d.core.float32 point_cloud = o3d.t.geometry.PointCloud(pc_device) point_cloud.point["positions"] = o3d.core.Tensor(points.astype(np.float32), pc_type, pc_device) if normals is not None: point_cloud.point["normals"] = o3d.core.Tensor(normals.astype(np.float32), pc_type, pc_device) if colors is not None: assert points.shape[0] == colors.shape[0], "points and colors should have same numbers" colors = (colors * 255).astype(np.int8) # need to do this for open3d version 0.15.1, after this I can vis it via meshlab point_cloud.point["colors"] = o3d.core.Tensor(colors, o3d.core.uint8, pc_device) return o3d.t.io.write_point_cloud(pc_path, point_cloud, compressed=True, print_progress=True) def get_bbox(points): x_min = np.min(points[:, 0]) x_max = np.max(points[:, 0]) y_min = np.min(points[:, 1]) y_max = np.max(points[:, 1]) z_min = np.min(points[:, 2]) z_max = np.max(points[:, 2]) bbox = np.array([[x_min, x_max], [y_min, y_max], [z_min, z_max]]) center = ((bbox[:, 1] + bbox[:, 0]) / 2.).T return bbox, center def pc_voxelization(points, shape): segments = [] steps = [] for i in range(3): s, step = np.linspace(0, shape[i] - 1, num=shape[i], retstep=True) segments.append(s) steps.append(step) vidx_x = np.clip(np.searchsorted(segments[0], points[:, 0]), 0, shape[0] - 1) vidx_y = np.clip(np.searchsorted(segments[1], points[:, 1]), 0, shape[1] - 1) vidx_z = np.clip(np.searchsorted(segments[2], points[:, 2]), 0, shape[2] - 1) vidx = np.concatenate((vidx_x[:, None], vidx_y[:, None], vidx_z[:, None]), axis=-1) vidx = np.unique(vidx, axis=0) return vidx[:, 0], vidx[:, 1], vidx[:, 2] def patch_filter_major(points, voxels, weights, kernel_size=5): assert voxels.ndim == 3, "Only works for 1-dim voxel" assert voxels.dtype == np.int16, "Only works for int voxel" num_points = points.shape[0] offset = kernel_size // 2 padded_voxels = np.pad(voxels, ((offset, offset), (offset, offset), (offset, offset)), mode='reflect') padded_weights = np.pad(weights, ((offset, offset), (offset, offset), (offset, offset)), mode='reflect') filtered_voxels = deepcopy(voxels) for i_point in range(num_points): grid_idx = points[i_point] # selected_region_start_pos = grid_idx - offset selected_region = padded_voxels[grid_idx[0] : grid_idx[0] + kernel_size, grid_idx[1] : grid_idx[1] + kernel_size, grid_idx[2] : grid_idx[2] + kernel_size,] selected_weights = padded_weights[grid_idx[0] : grid_idx[0] + kernel_size, grid_idx[1] : grid_idx[1] + kernel_size, grid_idx[2] : grid_idx[2] + kernel_size,] major_value = np.bincount(selected_region.reshape(-1), selected_weights.reshape(-1)).argmax() filtered_voxels[grid_idx[0], grid_idx[1], grid_idx[2]] = major_value return filtered_voxels
CT2Hair-main
CT2Hair/utils/pcutils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import cv2 import math import torch import torch.nn as nn import numpy as np from matplotlib import cm def polar2vector(theta, phi, step_length=1, start_vector=np.array([1, 0, 0])): sin_a, cos_a = math.sin(0), math.cos(0) sin_b, cos_b = math.sin(phi), math.cos(phi) sin_g, cos_g = math.sin(theta), math.cos(theta) R_x = np.array([[1, 0, 0], [0, cos_a, -sin_a], [0, sin_a, cos_a]]) R_y = np.array([[ cos_b, 0, sin_b], [ 0, 1, 0], [-sin_b, 0, cos_b]]) R_z = np.array([[cos_g, -sin_g, 0], [sin_g, cos_g, 0], [ 0, 0, 1]],) R = R_z @ R_y @ R_x vector = start_vector * step_length vector = vector.T vector = R @ vector return vector def polar2vector_torch(theta, phi, step_length=1, start_vector=torch.tensor([1, 0, 0]), device='cuda'): if not torch.is_tensor(theta): theta = torch.tensor(theta, device=device) if not torch.is_tensor(phi): phi = torch.tensor(phi, device=device) start_vector = start_vector.float().to(device) num = theta.shape[0] sin_a, cos_a = torch.sin(torch.zeros(num, device=device)), torch.cos(torch.zeros(num, device=device)) sin_b, cos_b = torch.sin(phi), torch.cos(phi) sin_g, cos_g = torch.sin(theta), torch.cos(theta) R_x = torch.zeros(size=(num, 3, 3)).to(device) R_x[:, 1, 1] = cos_a R_x[:, 1, 2] = -sin_a R_x[:, 2, 1] = sin_a R_x[:, 2, 2] = cos_a R_x[:, 0, 0] = 1 R_y = torch.zeros(size=(num, 3, 3)).to(device) R_y[:, 0, 0] = cos_b R_y[:, 0, 2] = sin_b R_y[:, 2, 0] = -sin_b R_y[:, 2, 2] = cos_b R_y[:, 1, 1] = 1 R_z = torch.zeros(size=(num, 3, 3)).to(device) R_z[:, 0, 0] = cos_g R_z[:, 0, 1] = -sin_g R_z[:, 1, 0] = sin_g R_z[:, 1, 1] = cos_g R_z[:, 2, 2] = 1 with torch.no_grad(): R = R_z @ R_y @ R_x vector = start_vector * step_length vector = R @ vector return vector.detach().cpu().numpy() def downsample3dpool(data, ratio=2, mode='avg', dtype=torch.float32): data_shape = data.shape if not torch.is_tensor(data): data = torch.tensor(data, dtype=dtype, device='cuda') data = data.view((1, 1, data_shape[0], data_shape[1], data_shape[2])).contiguous() if mode == 'max': pool = nn.MaxPool3d(kernel_size=ratio) elif mode == 'avg': pool = nn.AvgPool3d(kernel_size=ratio) data = pool(data) # type: ignore (for avoid pyplace error report) return data[0, 0].detach().cpu().numpy() def get_color_mapping(samples=1024): # hsv_color_map = cm.get_cmap('hsv', 256) twi_color_map = cm.get_cmap('twilight', 256) twi_shift_color_map = cm.get_cmap('twilight_shifted', 256) x, y = np.meshgrid(np.linspace(0, 1, samples), np.linspace(0, 1, samples)) # hsv_rgb = np.float32(hsv_color_map(x)) # hsv_bgr = cv2.cvtColor(hsv_rgb, cv2.COLOR_RGBA2BGRA) # cv2.imwrite('temp/mapping.png', hsv_bgr * 255) twi_rgb = np.float32(twi_color_map(x)) # type: ignore (for avoid pyplace error report) twi_bgr = cv2.cvtColor(twi_rgb, cv2.COLOR_RGBA2BGRA) twi_sh_rgb = np.float32(twi_shift_color_map(y)) # type: ignore (for avoid pyplace error report) twi_sh_bgr = cv2.cvtColor(twi_sh_rgb, cv2.COLOR_RGBA2BGRA) cv2.imwrite('temp/mapping_theta.png', twi_bgr * 255) cv2.imwrite('temp/mapping_phi.png', twi_sh_bgr * 255) def batched_index_select(t, dim, inds): dummy = inds.unsqueeze(2).expand(inds.size(0), inds.size(1), t.size(2)) out = t.gather(dim, dummy) # b x e x f return out def scale2mat(scale_ratio): mat44 = np.eye(4) for i in range(3): mat44[i, i] = scale_ratio return mat44 def translate2mat(offset): mat44 = np.eye(4) mat44[0:3, 3] = offset.T return mat44 def homo_rot_mat(mat33): mat44 = np.eye(4) mat44[0:3, 0:3] = mat33 return mat44 def idx_map_2_rgb(idx_map): [map_height, map_width] = idx_map.shape[:2] idx_map_rgb = np.zeros((map_height, map_width, 3)) # R G B for cv2.imwrite # TODO convert to binary operator later idx_map_rgb[:, :, 2] = idx_map // (256 * 256) idx_map_rgb[:, :, 1] = (idx_map - (idx_map_rgb[:, :, 2] * 256 * 256)) // 256 idx_map_rgb[:, :, 0] = (idx_map - (idx_map_rgb[:, :, 2] * 256 * 256 + idx_map_rgb[:, :, 1] * 256)) return idx_map_rgb def idx_rgb_recover(idx_bgr): [map_height, map_width] = idx_bgr.shape[:2] idx_map = np.zeros((map_height, map_width)) idx_rgb = cv2.cvtColor(idx_bgr, cv2.COLOR_BGR2RGB).astype(np.int64) idx_map = idx_rgb[:, :, 0] * 256 * 256 + idx_rgb[:, :, 1] * 256 + idx_rgb[:, :, 2] - 1 return idx_map def cheap_stack(tensors, dim): if len(tensors) == 1: return tensors[0].unsqueeze(dim) else: return torch.stack(tensors, dim=dim)
CT2Hair-main
CT2Hair/utils/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn as nn import torch.nn.functional as F class Conv3dGaussian(nn.Module): ''' WARNING: the size of the kernel must be an odd number otherwise it'll be shifted with respect to the origin ''' def __init__(self, size: int, sigma=3, gamma_y=1.0, gamma_z=1.0, padding=None, device='cuda'): super().__init__() self.size = size self.device = device if padding: self.padding = padding else: self.padding = 0 self.sigma = sigma self.gamma_y = gamma_y self.gamma_z = gamma_z self.kernels = self.init_kernel() def init_kernel(self): sigma_x = self.sigma sigma_y = self.sigma * self.gamma_y sigma_z = self.sigma * self.gamma_z c_max, c_min = int(self.size / 2), -int(self.size / 2) (x, y, z) = torch.meshgrid(torch.arange(c_min, c_max + 1), torch.arange(c_min, c_max + 1), torch.arange(c_min, c_max + 1), indexing='ij') # for future warning x = x.to(self.device) y = y.to(self.device) z = z.to(self.device) kernel = torch.exp(-.5 * (x ** 2 / sigma_x ** 2 + y ** 2 / sigma_y ** 2 + z ** 2 / sigma_z ** 2)) # normalize kernel = F.normalize(kernel) return kernel.reshape(1, 1, self.size, self.size, self.size).contiguous() def forward(self, x): with torch.no_grad(): x = F.conv3d(x, weight=self.kernels, padding=self.padding) return x class Conv3dLaplacian(): ''' WARNING: the size of the kernel must be an odd number otherwise it'll be shifted with respect to the origin ''' def __init__(self, padding=None, device='cuda'): super().__init__() self.device = device if padding: self.padding = padding else: self.padding = 0 self.kernels = self.init_kernel() def init_kernel(self): kernel = torch.ones((3, 3, 3), device=self.device) * -1 kernel[1, 1, 1] = 26 return kernel.reshape(1, 1, 3, 3, 3) def forward(self, x): with torch.no_grad(): x = F.conv3d(x, weight=self.kernels, padding=self.padding) mask = x[0, 0] > 0 return mask.float() class Conv3dErosion(nn.Module): ''' WARNING: the size of the kernel must be an odd number otherwise it'll be shifted with respect to the origin ''' def __init__(self, size=3, padding=None, device='cuda'): super().__init__() self.size = size self.device = device if padding: self.padding = padding else: self.padding = 0 self.kernels = self.init_kernel() def init_kernel(self): kernel = torch.ones((self.size, self.size, self.size), device=self.device) return kernel.reshape(1, 1, self.size, self.size, self.size) def forward(self, x, ration=1): with torch.no_grad(): x = F.conv3d(x, weight=self.kernels, padding=self.padding) mask = x[0, 0] >= self.size ** 3 * ration return mask.float() class Conv3dGabor(): ''' Applies a 3d convolution over an input signal using Gabor filter banks. WARNING: the size of the kernel must be an odd number otherwise it'll be shifted with respect to the origin Refer to https://github.com/m-evdokimov/pytorch-gabor3d ''' def __init__(self, in_channels: int, out_channels: int, size: int, sigma=3, gamma_y=0.5, gamma_z=0.5, lambd=6, psi=0., padding=None, device='cuda'): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.num_filters = in_channels * out_channels self.size = size self.device = device if padding: self.padding = padding else: self.padding = 0 # all additional axes are made for correct broadcast # the bounds of uniform distribution adjust manually for every size (rn they're adjusted for 5x5x5 filters) # for better understanding: https://medium.com/@anuj_shah/through-the-eyes-of-gabor-filter-17d1fdb3ac97 self.sigma = torch.ones(size=(self.num_filters, 1, 1, 1)).to(self.device) * sigma self.gamma_y = torch.ones(size=(self.num_filters, 1, 1, 1)).to(self.device) * gamma_y self.gamma_z = torch.ones(size=(self.num_filters, 1, 1, 1)).to(self.device) * gamma_z self.lambd = torch.ones(size=(self.num_filters, 1, 1, 1)).to(self.device) * lambd self.psi = torch.ones(size=(self.num_filters, 1, 1, 1)).to(self.device) * psi self.angles = torch.zeros(size=(self.num_filters, 3)).to(self.device) num_angles_per_axis = round(math.sqrt(self.num_filters)) angle_step = math.pi / num_angles_per_axis # use polar coordinate, theta round with x, phi round with y for i_theta in range(num_angles_per_axis): for j_phi in range(num_angles_per_axis): rot_angle = torch.tensor([0, j_phi * angle_step, i_theta * angle_step]).to(self.device) self.angles[i_theta * num_angles_per_axis + j_phi] = rot_angle self.kernels = self.init_kernel() def init_kernel(self): ''' Initialize a gabor kernel with given parameters Returns torch.Tensor with size (out_channels, in_channels, size, size, size) ''' lambd = self.lambd psi = self.psi sigma_x = self.sigma sigma_y = self.sigma * self.gamma_y sigma_z = self.sigma * self.gamma_z R = self.get_rotation_matrix().reshape(self.num_filters, 3, 3, 1, 1, 1) c_max, c_min = int(self.size / 2), -int(self.size / 2) (x, y, z) = torch.meshgrid(torch.arange(c_min, c_max + 1), torch.arange(c_min, c_max + 1), torch.arange(c_min, c_max + 1), indexing='ij') # for future warning x = x.to(self.device) y = y.to(self.device) z = z.to(self.device) # meshgrid for every filter x = x.unsqueeze(0).repeat(self.num_filters, 1, 1, 1) y = y.unsqueeze(0).repeat(self.num_filters, 1, 1, 1) z = z.unsqueeze(0).repeat(self.num_filters, 1, 1, 1) x_prime = z * R[:, 2, 0] + y * R[:, 2, 1] + x * R[:, 2, 2] y_prime = z * R[:, 1, 0] + y * R[:, 1, 1] + x * R[:, 1, 2] z_prime = z * R[:, 0, 0] + y * R[:, 0, 1] + x * R[:, 0, 2] yz_prime = torch.sqrt(y_prime ** 2 + z_prime ** 2) # gabor formula kernel = torch.exp(-.5 * (x_prime ** 2 / sigma_x ** 2 + y_prime ** 2 / sigma_y ** 2 + z_prime ** 2 / sigma_z ** 2)) \ * torch.cos(2 * math.pi * yz_prime / (lambd + 1e-6) + psi) return kernel.reshape(self.out_channels, self.in_channels, self.size, self.size, self.size).contiguous() def get_rotation_matrix(self): ''' Makes 3d rotation matrix. R_x = torch.Tensor([[cos_a, -sin_a, 0], [sin_a, cos_a, 0], [0, 0, 1]],) R_y = torch.Tensor([[cos_b, 0, sin_b], [0 , 1, 0], [-sin_b, 0, cos_b]]) R_z = torch.Tensor([[1, 0, 0], [0, cos_g, -sin_g], [0, sin_g, cos_g]]) ''' sin_a, cos_a = torch.sin(self.angles[:, 0]), torch.cos(self.angles[:, 0]) sin_b, cos_b = torch.sin(self.angles[:, 1]), torch.cos(self.angles[:, 1]) sin_g, cos_g = torch.sin(self.angles[:, 2]), torch.cos(self.angles[:, 2]) R_x = torch.zeros(size=(self.num_filters, 3, 3)).to(self.device) R_x[:, 0, 0] = cos_a R_x[:, 0, 1] = -sin_a R_x[:, 1, 0] = sin_a R_x[:, 1, 1] = cos_a R_x[:, 2, 2] = 1 R_y = torch.zeros(size=(self.num_filters, 3, 3)).to(self.device) R_y[:, 0, 0] = cos_b R_y[:, 0, 2] = sin_b R_y[:, 2, 0] = -sin_b R_y[:, 2, 2] = cos_b R_y[:, 1, 1] = 1 R_z = torch.zeros(size=(self.num_filters, 3, 3)).to(self.device) R_z[:, 1, 1] = cos_g R_z[:, 1, 2] = -sin_g R_z[:, 2, 1] = sin_g R_z[:, 2, 2] = cos_g R_z[:, 0, 0] = 1 return R_x @ R_y @ R_z def forward(self, x): with torch.no_grad(): x = F.conv3d(x, weight=self.kernels, padding=self.padding) return x
CT2Hair-main
CT2Hair/utils/kernels.py
from .chamfer_distance import ChamferDistance
CT2Hair-main
CT2Hair/libs/chamfer_distance/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # https://github.com/chrdiller/pyTorchChamferDistance/tree/master import torch from torch.utils.cpp_extension import load cd = load(name="cd", sources=["CT2Hair/libs/chamfer_distance/chamfer_distance.cpp", "CT2Hair/libs/chamfer_distance/chamfer_distance.cu"]) class ChamferDistanceFunction(torch.autograd.Function): @staticmethod def forward(ctx, xyz1, xyz2): batchsize, n, _ = xyz1.size() _, m, _ = xyz2.size() xyz1 = xyz1.contiguous() xyz2 = xyz2.contiguous() dist1 = torch.zeros(batchsize, n) dist2 = torch.zeros(batchsize, m) idx1 = torch.zeros(batchsize, n, dtype=torch.int) idx2 = torch.zeros(batchsize, m, dtype=torch.int) if not xyz1.is_cuda: cd.forward(xyz1, xyz2, dist1, dist2, idx1, idx2) else: dist1 = dist1.cuda() dist2 = dist2.cuda() idx1 = idx1.cuda() idx2 = idx2.cuda() cd.forward_cuda(xyz1, xyz2, dist1, dist2, idx1, idx2) ctx.save_for_backward(xyz1, xyz2, idx1, idx2) return dist1, dist2 @staticmethod def backward(ctx, graddist1, graddist2): xyz1, xyz2, idx1, idx2 = ctx.saved_tensors graddist1 = graddist1.contiguous() graddist2 = graddist2.contiguous() gradxyz1 = torch.zeros(xyz1.size()) gradxyz2 = torch.zeros(xyz2.size()) if not graddist1.is_cuda: cd.backward(xyz1, xyz2, gradxyz1, gradxyz2, graddist1, graddist2, idx1, idx2) else: gradxyz1 = gradxyz1.cuda() gradxyz2 = gradxyz2.cuda() cd.backward_cuda(xyz1, xyz2, gradxyz1, gradxyz2, graddist1, graddist2, idx1, idx2) return gradxyz1, gradxyz2 class ChamferDistance(torch.nn.Module): def forward(self, xyz1, xyz2): return ChamferDistanceFunction.apply(xyz1, xyz2)
CT2Hair-main
CT2Hair/libs/chamfer_distance/chamfer_distance.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import copy import math import torch import numpy as np from tqdm import tqdm from sklearn.cluster import MeanShift from scipy.spatial import KDTree from utils.meshutils import strands_world2tbn, make_closest_uv_barys from datautils.dataloaders import TbnStrandsBinDataset from modules.strands_codec import StrandCodec class NeuralStrands(): def __init__(self, is_resampled=True): self.is_resampled = is_resampled self.texture_height = 1024 self.texture_width = 1024 self.feature_channels = 128 # 64 for old, 128 for new self.num_strds_points = 256 # 100 for old, 256 for new self.neural_texture = np.zeros((self.texture_width, self.texture_height, self.feature_channels)) self.neural_texture_pca_rgb = np.zeros((self.texture_width, self.texture_height, 3)) self.strds_idx_map = np.zeros((self.texture_width, self.texture_height, 1), dtype=np.uint32) train_param = {"num_pts": self.num_strds_points, "code_channels": self.feature_channels} self.ckpt_path = 'CT2Hair/ckpt/neuralstrands_model.pt' self.model = StrandCodec(do_vae=True, decode_direct_xyz=False, decode_random_verts=False, train_params=train_param, is_train=False).to("cuda") checkpoint = torch.load(self.ckpt_path) self.model.load_state_dict(checkpoint['model_state_dict'], strict=False) self.model.eval() def prep_strands_data(self, strands, head_mesh, scalp_mesh, scalp_faces_idx): self.original_strands = strands self.head_mesh = head_mesh self.tbn_strands, barys, interp_idxs, face_idxs, self.valid_strds_idxs, \ self.tangents, self.bitangents, self.normals = strands_world2tbn(strands, head_mesh, scalp_mesh, scalp_faces_idx) self.head_index_map, self.head_bary_map = make_closest_uv_barys(torch.tensor(head_mesh.visual.uv), torch.tensor(head_mesh.faces), [self.texture_height, self.texture_width]) # type: ignore for avoiding pylance error # get uv coords for hair strands roots head_interp_idxs = head_mesh.faces[scalp_faces_idx][face_idxs] head_uv_coords = head_mesh.visual.uv # num_vertices x 2 v0 = head_uv_coords[head_interp_idxs[:, 0]] v1 = head_uv_coords[head_interp_idxs[:, 1]] v2 = head_uv_coords[head_interp_idxs[:, 2]] b0, b1, b2 = np.split(barys, 3, axis=1) self.strds_uv_coords = b0 * v0 + b1 * v1 + b2 * v2 # try to save a texture map for demonstration self.strds_texel_coords = self.strds_uv_coords * [self.texture_height, self.texture_width] self.strds_texel_coords = np.around(self.strds_texel_coords).astype(np.int32) tbn_strds_dataset = TbnStrandsBinDataset(self.tbn_strands, is_resampled=self.is_resampled, num_strds_points=self.num_strds_points) self.tbn_strds_dataloader = tbn_strds_dataset.get_dataloader() def decode(self, strds_code): strds_code_dict = {} strds_code_dict['s_shape'] = strds_code pred_dict = self.model.decode(strds_code_dict) pred_points = pred_dict["pred_points"] return pred_points def get_neural_representations(self, iter_opt=0, lr=1e-4): # loss_writer = SummaryWriter('log/neural_rep/') self.regular_strands = torch.zeros((0, self.num_strds_points, 3)).cuda() # valid strands in TBN space with the unified number of points self.strds_features = torch.zeros((0, self.feature_channels)).cuda() hair_loss_l2 = [] hair_loss_dir = [] loop = tqdm(enumerate(self.tbn_strds_dataloader, 0)) for i_data, input_data in loop: self.model.diff_spline(input_data) encoded_dict = self.model.encode() strds_code = encoded_dict['s_shape'].clone().detach() # setup optimization strds_code = strds_code.requires_grad_(True) strds_code_dict = {} strds_code_dict['s_shape'] = strds_code code_optimizer = torch.optim.Adam([strds_code_dict['s_shape']], lr=lr) if iter_opt == 0: prediction_dict = self.model.decode(strds_code_dict) loss_l2 = self.model.compute_loss_l2(prediction_dict) loss_dir = self.model.compute_loss_dir(prediction_dict) loss = loss_l2 + loss_dir * 1e-4 hair_loss_l2.append(loss_l2.item()) hair_loss_dir.append(loss_dir.item()) else: for i_iter in range(iter_opt): self.model.train() prediction_dict = self.model.decode(strds_code_dict) loss_l2 = self.model.compute_loss_l2(prediction_dict) loss_dir = self.model.compute_loss_dir(prediction_dict) loss = loss_l2 + loss_dir * 0.001 code_optimizer.zero_grad() loss.backward() code_optimizer.step() hair_loss_l2.append(loss_l2.item()) hair_loss_dir.append(loss_dir.item()) loop.set_description("Getting neural representations, batch loss: l2: %f, dir: %f"%(loss_l2.item(), loss_dir.item())) self.regular_strands = torch.concat((self.regular_strands, self.model.splined_points), dim=0) self.strds_features = torch.concat((self.strds_features, strds_code_dict['s_shape']), dim=0) hair_loss_l2 = np.array(hair_loss_l2) hair_loss_dir = np.array(hair_loss_dir) print('Average reconstruction errors: l2: %f, dir: %f'%(np.mean(hair_loss_l2), np.mean(hair_loss_dir))) self.regular_strands = self.regular_strands.reshape(-1, self.num_strds_points, 3).detach().cpu().numpy() self.strds_features = self.strds_features.reshape(-1, self.feature_channels).detach().cpu().numpy() self.neural_texture[np.clip(self.texture_height - self.strds_texel_coords[:, 1], 0, self.texture_height - 1), np.clip(self.strds_texel_coords[:, 0], 0, self.texture_width - 1), :] = self.strds_features[:, :] strds_idxs = np.arange(self.strds_features.shape[0]) + 1 self.strds_idx_map[np.clip(self.texture_height - self.strds_texel_coords[:, 1], 0, self.texture_height - 1), np.clip(self.strds_texel_coords[:, 0], 0, self.texture_width - 1), 0] = strds_idxs valid_texel_in_map = np.where(self.strds_idx_map > 0) self.texel_strds_idxs = self.strds_idx_map[valid_texel_in_map[0], valid_texel_in_map[1], 0] - 1 self.used_strands = self.original_strands[self.valid_strds_idxs][self.texel_strds_idxs] def denoise_on_strds(self, num_init_clusters=16, num_iters=64, max_cls_thres=2., num_strds_thres=64): ''' Denoising on regular TBN strands. Return denoised strands index on valid strands (tbn strands). ''' # Try classic K-means on points valid_texel_in_map = np.where(self.strds_idx_map > 0) texel_strds_idxs = self.strds_idx_map[valid_texel_in_map[0], valid_texel_in_map[1], 0] - 1 num_texel_strds = texel_strds_idxs.shape[0] init_centers_idxs = np.arange(num_init_clusters) * (num_texel_strds // num_init_clusters) init_strds_centriods = self.regular_strands[init_centers_idxs] num_clusters = num_init_clusters strds_centriods = init_strds_centriods adaptive_iter = 0 while(True): repeated_strds = self.regular_strands[:, None, :, :].repeat(num_clusters, axis=1) # type: ignore for avoiding pylance error for i_iter in range(num_iters): pts_dis_centriods = np.sqrt(np.sum((repeated_strds - strds_centriods) ** 2, axis=-1, keepdims=False)) strd_dis_centriods = np.sum(pts_dis_centriods, axis=-1, keepdims=False) # naive sum without weights strd_clusters = np.argmin(strd_dis_centriods, axis=-1) # update means pre_strds_centroids = copy.deepcopy(strds_centriods) for j_cls in range(num_clusters): cluster_strds = self.regular_strands[np.where(strd_clusters == j_cls)[0]] strds_centriods[j_cls] = np.sum(cluster_strds, axis=0, keepdims=False) / cluster_strds.shape[0] # centroid_dis = np.sum(np.sqrt(np.sum((strds_centriods - pre_strds_centroids) ** 2, axis=-1, keepdims=False))) # print(centroid_dis) # recalculate strands cluster use the final center pts_dis_centriods = np.sqrt(np.sum((repeated_strds - strds_centriods) ** 2, axis=-1, keepdims=False)) strd_dis_centriods = np.sum(pts_dis_centriods, axis=-1, keepdims=False) # naive sum without weights strd_clusters = np.argmin(strd_dis_centriods, axis=-1) # calculate the max distances in clusters strd_clusters_dis = np.min(strd_dis_centriods, axis=-1) num_currt_clusters = num_clusters for i_cls in range(num_currt_clusters): strd_cluster_idx = np.where(strd_clusters == i_cls)[0] cluster_dis = strd_clusters_dis[strd_cluster_idx] max_cls_dis = np.max(cluster_dis) max_strd_idx = np.argmax(cluster_dis) if max_cls_dis > max_cls_thres: num_clusters += 1 strds_centriods = np.concatenate((strds_centriods, self.regular_strands[strd_cluster_idx][max_strd_idx:max_strd_idx+1]), axis=0) if num_clusters == num_currt_clusters: break num_iters = num_iters // 2 if num_iters < 1: break adaptive_iter += 1 print('Adaptive K-means iter %d...'%(adaptive_iter)) denoised_strds_idxs = [] # for valid tbn_strands for i_cls in range(num_clusters): cluster_idxs = np.where(strd_clusters == i_cls)[0].tolist() if len(cluster_idxs) >= num_strds_thres: # type: ignore for avoiding pylance error denoised_strds_idxs.extend(cluster_idxs) # # temp visualization # cluster_strds = world_strands[cluster_idxs] # cluster_rgb = strd_clusters_rgb[cluster_idxs] # save_color_strands('../temp/KMeans/kmeans_strands_cls_%d.cin'%(i_cls), cluster_strds, cluster_rgb) print('Final number of clusters: %d, remove noise strands: %d.'%(num_clusters, self.regular_strands.shape[0] - len(denoised_strds_idxs))) self.denoised_regular_strds = self.regular_strands[denoised_strds_idxs] self.denoised_strds_features = self.strds_features[denoised_strds_idxs] self.denoised_strds_texel_coords = self.strds_texel_coords[denoised_strds_idxs] self.denoised_neural_texture = np.zeros((self.texture_height, self.texture_width, self.feature_channels)) self.denoised_strds_idx_map = np.zeros((self.texture_height, self.texture_width, 1), dtype=np.uint32) self.denoised_neural_texture[np.clip(self.texture_height - self.denoised_strds_texel_coords[:, 1], 0, self.texture_height - 1), np.clip(self.denoised_strds_texel_coords[:, 0], 0, self.texture_width - 1), :] = self.denoised_strds_features[:, :] strds_idxs = np.arange(self.denoised_strds_features.shape[0]) + 1 self.denoised_strds_idx_map[np.clip(self.texture_height - self.denoised_strds_texel_coords[:, 1], 0, self.texture_height - 1), np.clip(self.denoised_strds_texel_coords[:, 0], 0, self.texture_width - 1), 0] = strds_idxs return denoised_strds_idxs, strd_clusters def interpolation_on_strds(self, texel_roots_map, interp_kernel_size=5, interp_neig_pts=3, max_dis_thres=16): steps_height = self.texture_height // interp_kernel_size steps_width = self.texture_width // interp_kernel_size # build kd-tree for points texel_strds_pts = np.where(self.denoised_strds_idx_map > 0) texel_strds_pts = np.concatenate((texel_strds_pts[0][:, None], texel_strds_pts[1][:, None]), axis=1) texel_pts_kdtree = KDTree(texel_strds_pts) texel_strds_mask = self.denoised_strds_idx_map > 0 texel_roots_mask = texel_roots_map > 0.5 interped_strands = [] interped_strds_face_idxs = [] interped_strds_face_barys = [] self.interp_count = 0 for i_h in range(steps_height): for i_w in range(steps_width): cen_h = i_h * interp_kernel_size + (interp_kernel_size // 2) cen_w = i_w * interp_kernel_size + (interp_kernel_size // 2) if texel_roots_mask[cen_h, cen_w] == False or texel_strds_mask[cen_h, cen_w] == True: continue num_existing_features = np.sum(texel_strds_mask[cen_h - (interp_kernel_size // 2) : cen_h + (interp_kernel_size // 2) + 1, cen_w - (interp_kernel_size // 2) : cen_w + (interp_kernel_size // 2) + 1].astype(np.int16)) if num_existing_features > 0: continue dis, idx = texel_pts_kdtree.query(np.array([cen_h, cen_w]), interp_neig_pts) dis = np.array(dis) if np.sum(dis) > max_dis_thres * 3: continue dis = 1. / dis normalized_dis = dis / np.linalg.norm(dis) # add np.array for avoiding pylance error knn_strds_idxs = self.denoised_strds_idx_map[texel_strds_pts[idx, 0], texel_strds_pts[idx, 1], 0] # type: ignore for avoiding pylance error # for valid strands in TBN space knn_strands = self.regular_strands[knn_strds_idxs] if interp_neig_pts == 1: interped_strand = knn_strands else: interped_strand = np.average(knn_strands, axis=0, weights=normalized_dis) interped_strands.append(interped_strand) interped_strds_face_idxs.append(self.head_index_map[cen_h, cen_w].detach().numpy()) interped_strds_face_barys.append(self.head_bary_map[cen_h, cen_w].detach().numpy()) self.interp_count += 1 interped_strands = np.array(interped_strands) interped_strds_face_idxs = np.array(interped_strds_face_idxs) interped_strds_face_barys = np.array(interped_strds_face_barys) return interped_strands, interped_strds_face_idxs, interped_strds_face_barys def denoise_neural_texture(self, num_del_cls=4, do_denoise=True): if do_denoise: clustering = MeanShift().fit(self.strds_features) num_cls = np.max(clustering.labels_) + 1 strds_cls = clustering.labels_ cls_amount = np.zeros(num_cls) for i_cls in range(num_cls): cls_idx = np.where(strds_cls == i_cls)[0] cls_amount[i_cls] = cls_idx.shape[0] argsort_cls_idx = np.argsort(cls_amount) if num_del_cls == 0: num_del_cls = num_cls - 1 denoised_cls_idx = argsort_cls_idx[num_del_cls:] num_denoised_cls = denoised_cls_idx.shape[0] denoised_strds_idxs = [] for i_cls in range(num_denoised_cls): strds_idx = np.where(strds_cls == denoised_cls_idx[i_cls])[0].tolist() denoised_strds_idxs.extend(strds_idx) else: denoised_strds_idxs = np.arange(self.strds_features.shape[0]).tolist() self.denoised_strds_features = self.strds_features[denoised_strds_idxs] self.denoised_strds_texel_coords = self.strds_texel_coords[denoised_strds_idxs] self.denoised_neural_texture = np.zeros((self.texture_height, self.texture_width, self.feature_channels)) self.denoised_strds_idx_map = np.zeros((self.texture_height, self.texture_width, 1), dtype=np.uint32) self.denoised_neural_texture[np.clip(self.texture_height - self.denoised_strds_texel_coords[:, 1], 0, self.texture_height - 1), np.clip(self.denoised_strds_texel_coords[:, 0], 0, self.texture_width - 1), :] = self.denoised_strds_features[:, :] strds_idxs = np.arange(self.denoised_strds_features.shape[0]) + 1 self.denoised_strds_idx_map[np.clip(self.texture_height - self.denoised_strds_texel_coords[:, 1], 0, self.texture_height - 1), np.clip(self.denoised_strds_texel_coords[:, 0], 0, self.texture_width - 1), 0] = strds_idxs return denoised_strds_idxs def interpolation_local_average(self, texel_roots_map, interp_kernel_size=5, interp_neig_radius=16): steps_height = self.texture_height // interp_kernel_size steps_width = self.texture_width // interp_kernel_size texel_strds_mask = self.denoised_strds_idx_map > 0 texel_roots_mask = texel_roots_map > 0.5 self.interp_neural_texture = np.zeros_like(self.denoised_neural_texture) self.interp_strds_idx_map = np.zeros_like(self.denoised_strds_idx_map, dtype=np.uint32) self.interp_count = 0 for i_h in range(steps_height): for i_w in range(steps_width): cen_h = i_h * interp_kernel_size + (interp_kernel_size // 2) cen_w = i_w * interp_kernel_size + (interp_kernel_size // 2) if texel_roots_mask[cen_h, cen_w] == False or texel_strds_mask[cen_h, cen_w] == True: continue num_existing_features = np.sum(texel_strds_mask[cen_h - (interp_kernel_size // 2) : cen_h + (interp_kernel_size // 2) + 1, cen_w - (interp_kernel_size // 2) : cen_w + (interp_kernel_size // 2) + 1].astype(np.int16)) if num_existing_features > 0: continue # get the neighbor for centroid using neig_radius neig_ul = np.clip(np.array([cen_h, cen_w]) - interp_neig_radius, 0, [self.texture_height, self.texture_width]) neig_br = np.clip(np.array([cen_h, cen_w]) + interp_neig_radius, 0, [self.texture_height, self.texture_width]) neig = self.neural_texture[neig_ul[0]:neig_br[0], neig_ul[1]:neig_br[1]] num_features = np.sum(texel_strds_mask[neig_ul[0]:neig_br[0], neig_ul[1]:neig_br[1]].astype(np.int16)) if num_features == 0: continue self.interp_neural_texture[cen_h, cen_w] = np.sum(np.sum(neig, axis=1, keepdims=False), axis=0, keepdims=False) / num_features self.interp_strds_idx_map[cen_h, cen_w] = self.interp_count + 1 self.interp_count += 1 def interpolation_knn(self, texel_roots_map, interp_kernel_size=5, interp_neig_pts=3, is_bilateral=True, max_dis_thres=16): steps_height = self.texture_height // interp_kernel_size steps_width = self.texture_width // interp_kernel_size # build kd-tree for points texel_strds_pts = np.where(self.denoised_strds_idx_map > 0) texel_strds_pts = np.concatenate((texel_strds_pts[0][:, None], texel_strds_pts[1][:, None]), axis=1) texel_pts_kdtree = KDTree(texel_strds_pts) texel_strds_mask = self.denoised_strds_idx_map > 0 texel_roots_mask = texel_roots_map > 0.5 self.interp_neural_texture = np.zeros_like(self.denoised_neural_texture) self.interp_strds_idx_map = np.zeros_like(self.denoised_strds_idx_map, dtype=np.uint32) self.interp_count = 0 for i_h in range(steps_height): for i_w in range(steps_width): cen_h = i_h * interp_kernel_size + (interp_kernel_size // 2) cen_w = i_w * interp_kernel_size + (interp_kernel_size // 2) if texel_roots_mask[cen_h, cen_w] == False or texel_strds_mask[cen_h, cen_w] == True: continue num_existing_features = np.sum(texel_strds_mask[cen_h - (interp_kernel_size // 2) : cen_h + (interp_kernel_size // 2) + 1, cen_w - (interp_kernel_size // 2) : cen_w + (interp_kernel_size // 2) + 1].astype(np.int16)) if num_existing_features > 0: continue dis, idx = texel_pts_kdtree.query(np.array([cen_h, cen_w]), interp_neig_pts) dis = np.array(dis) if np.sum(dis) > max_dis_thres * 3: continue dis = 1. / dis normalized_dis = dis / np.linalg.norm(dis) knn_strds_codes = self.denoised_neural_texture[texel_strds_pts[idx, 0], texel_strds_pts[idx, 1]] # for valid strands in TBN space nn_strds_code = knn_strds_codes[0] similarities = np.abs(np.dot(knn_strds_codes, nn_strds_code.T) / (np.linalg.norm(knn_strds_codes, axis=-1) * np.linalg.norm(nn_strds_code, axis=-1))) if is_bilateral: interp_weigths = similarities * normalized_dis interp_weigths = interp_weigths / np.linalg.norm(interp_weigths) else: interp_weigths = normalized_dis if interp_neig_pts == 1: self.interp_neural_texture[cen_h, cen_w] = knn_strds_codes else: self.interp_neural_texture[cen_h, cen_w] = np.average(knn_strds_codes, axis=0, weights=interp_weigths) self.interp_strds_idx_map[cen_h, cen_w] = self.interp_count + 1 self.interp_count += 1 print('Interpolation done!') def world_strands_from_tbn(self, strands, face_idxs, face_barys): if not torch.is_tensor(strands): strands = torch.tensor(strands, dtype=torch.float32).cuda() if not torch.is_tensor(face_barys): face_barys = torch.tensor(face_barys, dtype=torch.float32) tbn_basis = torch.stack((self.tangents[0], self.bitangents[0], self.normals[0]), dim=2)[face_idxs] # basis change orig_points = torch.matmul(tbn_basis.float().cuda(), strands.permute(0, 2, 1)).permute(0, 2, 1) # scale orig_points = orig_points * 1000. # m -> mm # translate to world space with brad and triangle vertices triangled_vertices = torch.tensor(self.head_mesh.vertices[self.head_mesh.faces, :]) roots_triangles = triangled_vertices[face_idxs] roots_positions = roots_triangles[:, 0] * face_barys[:, 0:1] + \ roots_triangles[:, 1] * face_barys[:, 1:2] + \ roots_triangles[:, 2] * face_barys[:, 2:3] strds_points = orig_points + roots_positions[:, None, :].cuda() return strds_points def world_strands_from_texels(self, neural_texture, strds_idx_map, batch_size=300): texel_idx = np.where(strds_idx_map > 0) strds_codes = neural_texture[texel_idx[0], texel_idx[1], :] num_interped = strds_codes.shape[0] if not torch.is_tensor(strds_codes): strds_codes = torch.tensor(strds_codes, dtype=torch.float32).cuda() pred_points = torch.zeros((num_interped, self.num_strds_points, 3)).cuda() num_batches = math.ceil(num_interped / batch_size) loop = tqdm(range(num_batches)) loop.set_description('Decoding strands') for i_b in loop: i_start = i_b * batch_size i_end = min((i_b + 1) * batch_size, num_interped) pred_points[i_start:i_end] = self.decode(strds_codes[i_start:i_end]) face_idxs = self.head_index_map[texel_idx[0], texel_idx[1]] tbn_basis = torch.stack((self.tangents[0], self.bitangents[0], self.normals[0]), dim=2)[face_idxs] # basis change orig_points = torch.matmul(tbn_basis.float().cuda(), pred_points.permute(0, 2, 1)).permute(0, 2, 1) # scale orig_points = orig_points * 1000. # m -> mm # translate to world space with brad and triangle vertices triangled_vertices = torch.tensor(self.head_mesh.vertices[self.head_mesh.faces, :]) roots_triangles = triangled_vertices[face_idxs] face_barys = self.head_bary_map[texel_idx[0], texel_idx[1]] roots_positions = roots_triangles[:, 0] * face_barys[:, 0:1] + \ roots_triangles[:, 1] * face_barys[:, 1:2] + \ roots_triangles[:, 2] * face_barys[:, 2:3] strds_points = orig_points + roots_positions[:, None, :].cuda() return strds_points
CT2Hair-main
CT2Hair/modules/neural_strands.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn.functional as F import numpy as np from tqdm import tqdm from scipy.spatial import KDTree from libs.chamfer_distance import ChamferDistance from utils.strandsutils import spline_strand, pad_strand, natural_cubic_spline_coeffs, NaturalCubicSpline def uncompress_strand(strands_pc, strands_sep): sidx = 0 strands = [] for v in strands_sep: strands.append(strands_pc[sidx:sidx+v]) sidx += v return strands def strands_kdtree_query(input_pc, target_kdtree, target_pc, k=10, radius=None): if radius: idx = target_kdtree.query_ball_point(input_pc, radius) else: k = np.arange(k) + 1 dis, idx = target_kdtree.query(input_pc, k) idx = idx.reshape(-1) idx = np.unique(idx) knn_target_pc = target_pc[0, idx, :] knn_target_pc = knn_target_pc[None, :] return knn_target_pc, dis, idx def densify_pc(input_pc, density, dup=4): dup_sep = 256 // dup dense_pc = [] if torch.is_tensor(input_pc): for i in range(len(input_pc)): dense_pc.append(input_pc[i].detach().cpu().numpy().tolist()) num_dup = density[i] // dup_sep for j in range(int(num_dup)): dense_pc.append(input_pc[i].detach().cpu().numpy().tolist()) dense_pc = torch.tensor(dense_pc)[None, :].cuda() else: print("Densifying point cloud...") for i in tqdm(range(len(input_pc))): dense_pc.append(input_pc[i]) num_dup = density[i] // dup_sep for j in range(int(num_dup)): dense_pc.append(input_pc[i]) dense_pc = np.array(dense_pc) print("Number of origina points: %d, number of densified points: %d"%(input_pc.shape[0], dense_pc.shape[0])) return dense_pc def compute_len_loss(strands_pc, strands_pc_next, strands_sep, losstype="l2", **kwargs): strands = [] loss = 0 strands = uncompress_strand(strands_pc, strands_sep) strands_next = uncompress_strand(strands_pc_next, strands_sep) for s, s_next in zip(strands, strands_next): delta1 = s[:-1] - s[1:] delta2 = s_next[:-1] - s_next[1:] delta1 = torch.sqrt(torch.sum(delta1**2, dim=-1)) delta2 = torch.sqrt(torch.sum(delta2**2, dim=-1)) delta = delta1 - delta2 if losstype == "l2": loss += torch.mean(delta**2) elif losstype == "l1": loss += torch.mean(torch.abs(delta)) else: raise NotImplementedError(f"losstype {losstype} is not implemented for compute_len_loss") loss = loss / len(strands) return loss def compute_len2_loss(strands_pc, strands_pc_next, strands_sep, losstype="max", max_ratio=0.1, **kwargs): strands = uncompress_strand(strands_pc, strands_sep) strands_next = uncompress_strand(strands_pc_next, strands_sep) loss = 0 for s_ori, s_next in zip(strands, strands_next): delta_ori = s_ori[:-2] - s_ori[2:] delta_next = s_next[:-2] - s_next[2:] delta_ori = torch.sqrt(torch.sum(delta_ori**2, dim=-1)) delta_next = torch.sqrt(torch.sum(delta_next**2, dim=-1)) if losstype == "l1": loss += torch.mean(torch.abs(delta_next - delta_ori)) elif losstype == "l2": loss += torch.mean((delta_next - delta_ori)**2) elif losstype == "max": dismat = torch.abs(delta_next - delta_ori) thres = max_ratio * delta_ori dismat = F.relu(dismat - thres) loss += torch.mean(dismat) else: raise NotImplementedError(f"losstype {losstype} is not defined for compute_len2_loss") loss = loss / len(strands) return loss def compute_tangential_loss(strands_pc, strands_pc_next, strands_sep, losstype="l2", cycle=False, **kwargs): loss = 0 strands = uncompress_strand(strands_pc, strands_sep) strands_next = uncompress_strand(strands_pc_next, strands_sep) for s, s_next in zip(strands, strands_next): delta = s_next - s hair_dirs = s[1:] - s[:-1] hair_dirs_normalized = F.normalize(hair_dirs, p=2, dim=-1) dot_root = torch.sum(delta[:-1] * hair_dirs_normalized, dim=-1) dot_child = torch.sum(delta[1:] * hair_dirs_normalized, dim=-1) if cycle: hair_dirs_next = s_next[1:] - s_next[:-1] hair_dirs_next_normalized = F.normalize(hair_dirs_next, p=2, dim=-1) dot_root_next = torch.sum(delta[:-1] * hair_dirs_next_normalized, dim=-1) dot_child_next = torch.sum(delta[1:] * hair_dirs_next_normalized, dim=-1) if losstype == "l2": loss += torch.mean((dot_root - dot_child)**2) if cycle: loss += torch.mean((dot_root_next - dot_child_next)**2) elif losstype == "l1": loss += torch.mean(torch.abs(dot_root - dot_child)) if cycle: loss += torch.mean(torch.abs(dot_root_next - dot_child_next)) else: raise NotImplementedError(f"losstype {losstype} is not implemented for compute_tangential_loss") loss = loss / len(strands) return loss class StrandsOptimizerNeuralCubic(): def __init__(self, input_strands, target_pc, target_density, num_strd_pts=128, num_strands_per_opt=1600): self.target_pc = target_pc self.target_density = target_density * 255 self.target_pc = densify_pc(self.target_pc, self.target_density) print('Building KDTree for target point cloud...') self.target_kdtree = KDTree(self.target_pc) self.num_strands_per_opt = num_strands_per_opt num_origi_strands = input_strands.shape[0] filtered_strands = self.filtering_strands(input_strands) self.num_strands = len(filtered_strands) print('Number original strands: %d, filtered strands: %d'%(num_origi_strands, self.num_strands)) print('Pre-padding strands for neural cubic interpolation...') self.num_strd_pts = num_strd_pts self.input_strands = [] self.times = [] self.input_num_strds_pts = [] for i_strd in tqdm(range(self.num_strands)): strand = filtered_strands[i_strd][:, :3].astype(np.float32) if strand.shape[0] > self.num_strd_pts: strand = spline_strand(strand, num_strand_points=self.num_strd_pts) self.input_num_strds_pts.append(strand.shape[0]) strand, time = pad_strand(strand, num_strand_points=self.num_strd_pts) self.input_strands.append(strand) self.times.append(time) self.input_strands = np.array(self.input_strands) self.times = np.array(self.times) if not torch.is_tensor(self.target_pc): self.target_pc = torch.tensor(self.target_pc).float().cuda()[None, :] self.epoch = 80 self.eps = 1e-1 self.chamfer_dis = ChamferDistance().cuda() self.learning_rate = 1e-1 self.forward_weight = 1.0 self.backward_weight = 1.0 self.length_weight = 100.0 self.tangent_weight = 100.0 def filtering_strands(self, input_strands, eps=3.0): print("Filtering strands outliers...") num_strands = input_strands.shape[0] filtered_strands = [] for i_strd in tqdm(range(num_strands)): strand = np.array(input_strands[i_strd]).astype(np.float32)[:, :3] _, dis, _ = strands_kdtree_query(strand, self.target_kdtree, self.target_pc[None, :]) if (np.mean(dis) < eps): filtered_strands.append(strand) return filtered_strands def diff_spline(self, strands, times): coeffs = natural_cubic_spline_coeffs(times, strands) spline = NaturalCubicSpline(coeffs) time_pts = torch.arange(self.num_strd_pts).to(strands.device) / (self.num_strd_pts - 1) time_pts = time_pts.repeat(strands.shape[0], 1) splined_points = spline.evaluate(time_pts) return splined_points def optimization(self, regularization=True): num_opts = self.num_strands // self.num_strands_per_opt + 1 ori_splined_points = [] opted_splined_points = [] opted_strands_pc = [] strands_seps = np.ones(self.num_strands).astype(np.int16) * self.num_strd_pts print('Start optimization...') for i_opt in tqdm(range(num_opts)): i_start = i_opt * self.num_strands_per_opt i_end = min((i_opt + 1) * self.num_strands_per_opt, self.num_strands) num_strds_this_opt = i_end - i_start strands = torch.tensor(self.input_strands[i_start:i_end]).cuda() times = torch.tensor(self.times[i_start:i_end]).cuda() strands_noroots = strands[:, 1:, :].clone().detach() strands_roots = strands[:, 0:1, :].clone().detach() strands_noroots = strands_noroots.requires_grad_(True) strands_roots = strands_roots.requires_grad_(True) self.optimizer = torch.optim.Adam([strands_noroots], lr=self.learning_rate) # before optimization strands = torch.concat((strands_roots, strands_noroots), dim=1) splined_points = self.diff_spline(strands, times) ori_splined_points.extend(splined_points.view(-1, 3).detach().cpu().numpy().tolist()) constraint_pc = splined_points.view(-1, 3).clone().detach() strands_sep = np.ones(num_strds_this_opt).astype(np.int16) * self.num_strd_pts for i_epoch in range(self.epoch): strands = torch.concat((strands_roots, strands_noroots), dim=1) splined_points = self.diff_spline(strands, times) input_pc = splined_points.view(1, -1, 3) input_pc_numpy = input_pc.clone().detach().cpu().numpy()[0] knn_target_pc, _, knn_idx = strands_kdtree_query(input_pc_numpy, self.target_kdtree, self.target_pc) dist1, dist2 = self.chamfer_dis(input_pc, knn_target_pc) chamfer_loss = self.forward_weight * torch.mean(dist1) + self.backward_weight * torch.mean(dist2) if regularization: len_loss = compute_len_loss(constraint_pc, input_pc[0], strands_sep) len2_loss = compute_len2_loss(constraint_pc, input_pc[0], strands_sep) tangent_loss = compute_tangential_loss(constraint_pc, input_pc[0], strands_sep) loss = chamfer_loss + \ self.length_weight * len_loss + self.length_weight * len2_loss + \ self.tangent_weight * tangent_loss else: loss = chamfer_loss self.optimizer.zero_grad() loss.backward() self.optimizer.step() print('\topts: %d/%d, epochs: %d/%d, number of points: %d, current loss: %f'%(i_opt, num_opts, i_epoch, self.epoch, input_pc.shape[1], loss.data), end='\r') # after optimization strands = torch.concat((strands_roots, strands_noroots), dim=1) splined_points = self.diff_spline(strands, times) opted_splined_points.extend(splined_points.view(-1, 3).detach().cpu().numpy().tolist()) # original control points num_strds_pts = self.input_num_strds_pts[i_start:i_end] strands_pc = np.zeros((np.sum(num_strds_pts, keepdims=False), 3)) sidx = 0 for i_strd in range(num_strds_this_opt): strands_pc[sidx:sidx + num_strds_pts[i_strd]] = strands.detach().cpu().numpy()[i_strd, :num_strds_pts[i_strd]] sidx += num_strds_pts[i_strd] opted_strands_pc.extend(strands_pc.tolist()) return np.array(ori_splined_points), np.array(opted_splined_points), strands_seps, np.array(opted_strands_pc), self.input_num_strds_pts
CT2Hair-main
CT2Hair/modules/strands_opt.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import csv import torch import torch.nn as nn from modules.networks import * from utils.utils import batched_index_select from utils.strandsutils import natural_cubic_spline_coeffs, NaturalCubicSpline class StrandEncoder1dCNN(nn.Module): def __init__(self, do_vae, num_pts=100, out_channels=64): super(StrandEncoder1dCNN, self).__init__() self.do_vae = do_vae self.num_pts = num_pts self.training = False out_channels *= 2 # not that we do vae the features are dobules so that we can get mean and variance in_channels = 0 in_channels += 3 # 3 for the xyz in_channels += 3 # 3 for the direction if num_pts == 100: self.cnn_encoder = torch.nn.Sequential( Conv1dWN(in_channels, 32, kernel_size=4, stride=2, padding=1, padding_mode='zeros'), torch.nn.SiLU(), Conv1dWN(32, 32, kernel_size=4, stride=2, padding=1, padding_mode='zeros'), torch.nn.SiLU(), Conv1dWN(32, 64, kernel_size=4, stride=2, padding=1, padding_mode='zeros'), torch.nn.SiLU(), Conv1dWN(64, 128, kernel_size=4, stride=2, padding=1, padding_mode='zeros'), torch.nn.SiLU(), Conv1dWN(128, 128, kernel_size=4, stride=2, padding=1, padding_mode='zeros'), torch.nn.SiLU()) # after runnign cnn we still end up with some elments per strand, and we want to pool over them with something better than an avg pool self.final_cnn_aggregator=torch.nn.Sequential( LinearWN(128*3, 128), torch.nn.SiLU(), LinearWN(128, out_channels)) elif num_pts == 256: self.cnn_encoder = torch.nn.Sequential( Conv1dWN(in_channels, 32, kernel_size=3, stride=2, padding=1, padding_mode='replicate'), torch.nn.SiLU(), Conv1dWN(32, 32, kernel_size=3, stride=2, padding=1, padding_mode='replicate'), torch.nn.SiLU(), Conv1dWN(32, 64, kernel_size=3, stride=2, padding=1, padding_mode='replicate'), torch.nn.SiLU(), Conv1dWN(64, 128, kernel_size=3, stride=2, padding=1, padding_mode='replicate'), torch.nn.SiLU(), Conv1dWN(128, 256, kernel_size=3, stride=2, padding=1, padding_mode='replicate'), torch.nn.SiLU(), Conv1dWN(256, 256, kernel_size=3, stride=2, padding=1, padding_mode='replicate'), torch.nn.SiLU()) self.final_cnn_aggregator = torch.nn.Sequential( LinearWN(256 * int(self.num_pts / 64), 256), torch.nn.SiLU(), LinearWN(256, out_channels)) else: print("Number of points %d is not supported."%(num_pts)) exit(0) self.pred_mean = torch.nn.Sequential( torch.nn.SiLU(), LinearWN(out_channels, out_channels), torch.nn.SiLU(), LinearWN(out_channels, int(out_channels / 2)) ) self.pred_logstd = torch.nn.Sequential( torch.nn.SiLU(), LinearWN(out_channels, out_channels), torch.nn.SiLU(), LinearWN(out_channels, int(out_channels / 2)) ) self.apply(lambda x: swish_init(x, False)) swish_init(self.pred_mean, True) swish_init(self.pred_logstd, True) self.pe = LearnedPE(in_channels=1, num_encoding_functions=5, logsampling=True) def forward(self, points): points = points.view(-1, self.num_pts, 3) # nr_strands, points_per_strand, xyz original_points = points points = points.permute(0, 2, 1) ## nr_strands, xyz, 100 nr_strands = points.shape[0] ### get also the direciton from point to the next cur_points = original_points[:, 0:self.num_pts - 1, : ] next_points = original_points[:, 1:self.num_pts, :] direction = next_points - cur_points # pad_zero=torch.zeros(nr_strands,1,3).cuda() # direction = torch.cat([direction,pad_zero],1) # make the direction nr_strands, 100, 3 last_dir = direction[:, self.num_pts - 2:self.num_pts - 1, :] direction = torch.cat([direction, last_dir],1) # make the direction nr_strands, 100, 3 direction = direction.permute(0, 2, 1) # nr_strands, xyz, 100 # direction=direction * 100 # (we multiply by the nr of segments so that the value is not so small and is closer to our desired range) per_point_features = torch.cat([points, direction] ,1) strand_features = self.cnn_encoder(per_point_features) # nr_strands, 128(nr_features), 3(elements per string) strand_features = strand_features.view(nr_strands, -1).contiguous() strand_features = self.final_cnn_aggregator(strand_features) # outputs nr_strands x 128 s = self.pred_mean(strand_features) s_mean_and_logstd_dict = {} if self.do_vae: s_mean = s # print("s_mean has mean std ", s_mean.mean(), s_mean.std()) s_logstd = 0.1 * self.pred_logstd(strand_features) s_mean_and_logstd_dict["mean"] = s_mean s_mean_and_logstd_dict["logstd"] = s_logstd # print("s_logstd has mean std ", s_logstd.mean(), s_logstd.std()) if self.training: std = torch.exp(s_logstd) eps = torch.empty_like(std).normal_() s = s + std * eps # print("strand std min max", std.min(), " ", std.max()) return s, s_mean_and_logstd_dict class StrandGeneratorSiren(nn.Module): # a siren network which predicts various direction vectors along the strand similar ot FakeODE. # the idea is that siren works well when periodic thing needs to be predicted and the strand can be seen as some periodic direction vectors being repeted at some points on the strand # the idea is similar to modulation siren https://arxiv.org/pdf/2104.03960.pdf def __init__(self, in_channels, modulation_hidden_dim, siren_hidden_dim, scale_init, decode_direct_xyz, decode_random_verts, num_pts=100): super(StrandGeneratorSiren, self).__init__() self.num_pts = num_pts self.decode_direct_xyz = decode_direct_xyz self.decode_random_verts = decode_random_verts self.swish = torch.nn.SiLU() self.tanh = torch.nn.Tanh() self.nr_layers = 3 cur_nr_channels = in_channels # cur_nr_channels+=1 #+1 for the time t self.modulation_layers = torch.nn.ModuleList([]) for i in range(self.nr_layers): self.modulation_layers.append(LinearWN(cur_nr_channels, modulation_hidden_dim)) cur_nr_channels = modulation_hidden_dim+in_channels # at the end we concatenate the input z self.decode_dir = LinearWN(siren_hidden_dim, 3) self.apply(lambda x: swish_init(x, False)) swish_init(self.decode_dir, True) self.siren_layers = torch.nn.ModuleList([]) self.siren_layers.append(BlockSiren(in_channels=1, out_channels=siren_hidden_dim, is_first_layer=True, scale_init=scale_init)) for i in range(self.nr_layers-1): self.siren_layers.append(BlockSiren(in_channels=siren_hidden_dim, out_channels=siren_hidden_dim)) def forward(self, strand_features): nr_verts_to_create = self.num_pts - 1 # we create only 99 because the frist one is just the origin if self.decode_random_verts: nr_verts_to_create = 1 nr_strands = strand_features.shape[0] strand_features = strand_features.view(nr_strands, 1, -1).repeat(1, nr_verts_to_create, 1) # nr_strands x 100 x nr_channels # sampling t t = torch.linspace(0, 1, self.num_pts).cuda() t = t.view(self.num_pts, 1) if self.decode_direct_xyz: t = t[1:self.num_pts, :] # we don't create the root because it's already given else: # we are decoding direction therefore the first direction should be computed but the last direction should be ingored because the tip doesnt need a direction t = t[0:self.num_pts - 1, :] # repeat strand featues to be nr_strands x nr_vert x nr_channels # concat for each vertex the positional encoding t = t.view(1, self.num_pts - 1, -1).repeat(nr_strands, 1, 1) #nrstrands, nr_verts, nr_channels # strand_features_with_time=torch.cat([strand_features,t],2) point_indices = None if self.decode_random_verts: # choose a random t for each strand # we can create only up until the very last vertex, except the tip, we need to be able to sample the next vertex so as to get a direction vector probability = torch.ones([nr_strands, self.num_pts - 2], dtype=torch.float32, device=torch.device("cuda")) point_indices = torch.multinomial(probability, nr_verts_to_create, replacement=False) # size of the chunk size we selected # add also the next vertex on the strand so that we can compute directions point_indices = torch.cat([point_indices, point_indices + 1], 1) t = batched_index_select(t, 1, point_indices) # decode xyz h_siren = t # z_scaling=0.001 #this has to be initialized so that the h_modulation is something like 0.2.If its lower, # then no gradient will flow into Z and then the network will not be optimized. You might need to do one run and check the gradients of the network with model.summary to see if the gradients don't vanish z_scaling = 1.0 z = strand_features z_initial = z * z_scaling z = z * z_scaling with_checkpointing = True for i in range(self.nr_layers): h_modulation = self.swish( self.modulation_layers[i](z)) s = self.siren_layers[i](h_siren) h_siren = (1 - h_modulation) * s # for next iter z = torch.cat([z_initial, h_modulation], 2) if self.decode_direct_xyz: points_dir = self.decode_dir(h_siren) * 0.1 if self.decode_random_verts: pred_strands = points_dir else: start_positions = torch.zeros(nr_strands, 1, 3).cuda() pred_strands = torch.cat([start_positions, points_dir], 1) else: # divide by the nr of points on the strand otherwise the direction will have norm=1 and then when integrated you end up with a gigantic strand that has 100 units hair_dir = self.decode_dir(h_siren) * 0.01 pred_strands = torch.cumsum(hair_dir, dim=1) # nr_strands, nr_verts-1, 3 # we know that the first vertex is 0,0,0 so we just concatenate that one start_positions = torch.zeros(nr_strands, 1, 3).cuda() pred_strands = torch.cat([start_positions, pred_strands], 1) return pred_strands, point_indices ''' uses only one Z tensor and predicts the strands using SIREN. There is no normalization apart from moving the strands to origin is used to predict and regress only strand data, with no scalp ''' class StrandCodec(nn.Module): def __init__(self, do_vae, decode_direct_xyz, decode_random_verts, train_params, is_train=True): super(StrandCodec, self).__init__() self.do_vae = do_vae self.decode_direct_xyz = decode_direct_xyz self.decode_random_verts = decode_random_verts self.nr_verts_per_strand = train_params['num_pts'] if self.decode_random_verts: self.nr_verts_per_strand = 2 self.cosine_embed_loss = nn.CosineEmbeddingLoss() if is_train: self.weight_pts = train_params['weight_pts'] self.weight_dir = train_params['weight_dir'] # 0.001 self.weight_kl= train_params['weight_kl'] # 0.0001 # encode self.strand_encoder_for_shape = StrandEncoder1dCNN(self.do_vae, self.nr_verts_per_strand, train_params['code_channels']) # predicts 64 vector of shape, gets the inputs after they were normalized # decoder self.strand_generator = StrandGeneratorSiren(in_channels=train_params['code_channels'], modulation_hidden_dim=32, siren_hidden_dim=32, scale_init=5, decode_direct_xyz=decode_direct_xyz, decode_random_verts=decode_random_verts, num_pts=self.nr_verts_per_strand) # generate a whoel strand from 64 dimensional shape vector def save(self, root_folder, experiment_name, iter_nr): models_path = os.path.join(root_folder, experiment_name, str(iter_nr), "models") if not os.path.exists(models_path): os.makedirs(models_path, exist_ok=True) torch.save(self.state_dict(), os.path.join(models_path, "strand_codec.pt")) # write csv with some info out_info_path = os.path.join(models_path, "strand_codec_info.csv") with open(out_info_path, "w") as f: #we need to put the writer in a block so that it closes the file automaticaly afterwards w = csv.writer(f) w.writerow(["do_vae", self.do_vae]) w.writerow(["decode_direct_xyz", self.decode_direct_xyz]) w.writerow(["decode_random_verts", self.decode_random_verts]) def diff_spline(self, hair_data_dict): points = hair_data_dict["points"].cuda() times = hair_data_dict["times"].cuda() coeffs = natural_cubic_spline_coeffs(times, points) spline = NaturalCubicSpline(coeffs) time_pts = torch.arange(self.nr_verts_per_strand).cuda() / (self.nr_verts_per_strand - 1) time_pts = time_pts.repeat(points.shape[0], 1) self.splined_points = spline.evaluate(time_pts) self.splined_points = self.splined_points.detach() def encode(self): s_shape, s_shape_mean_and_logstd_dict = self.strand_encoder_for_shape(self.splined_points) encoded_dict = {} encoded_dict["s_shape"] = s_shape encoded_dict["s_shape_mean_and_logstd_dict"] = s_shape_mean_and_logstd_dict return encoded_dict def decode(self, encoded_dict): s_shape = encoded_dict["s_shape"] # generate the strand points pred_points, point_indices = self.strand_generator(s_shape) prediction_dict = {} prediction_dict["pred_points"] = pred_points prediction_dict["point_indices"] = point_indices return prediction_dict def compute_loss(self, prediction_dict, encoded_dict): loss_l2 = self.compute_loss_l2(prediction_dict) loss_dir = self.compute_loss_dir(prediction_dict) loss_kl = self.compute_loss_kl(encoded_dict) loss = self.weight_pts * loss_l2 + self.weight_dir * loss_dir + self.weight_kl * loss_kl # loss = loss_l2 + loss_dir * 0.01 + loss_kl * 0.001 # loss = loss_l2 + loss_dir * 0.1 + loss_kl * 0.001 # this gives the lowest kl and the autodecoding looks nice loss_dict = {} loss_dict['loss'] = loss loss_dict['loss_l2'] = loss_l2 loss_dict['loss_dir'] = loss_dir loss_dict['loss_kl'] = loss_kl return loss_dict def compute_loss_l2(self, prediction_dict): pred_points = prediction_dict["pred_points"].view(-1, self.nr_verts_per_strand, 3) loss_l2 = ((pred_points - self.splined_points) ** 2).mean() return loss_l2 def compute_loss_dir(self, prediction_dict): pred_points = prediction_dict["pred_points"].view(-1, self.nr_verts_per_strand, 3) # get also a loss for the direciton, we need to compute the direction cur_points = pred_points[:, 0:self.nr_verts_per_strand - 1, : ] next_points = pred_points[:, 1:self.nr_verts_per_strand, :] pred_deltas = next_points - cur_points pred_deltas = pred_deltas.view(-1, 3) gt_cur_points = self.splined_points[:, 0:self.nr_verts_per_strand - 1, : ] gt_next_points = self.splined_points[:, 1:self.nr_verts_per_strand, :] gt_dir = gt_next_points - gt_cur_points gt_dir = gt_dir.view(-1, 3) loss_dir = self.cosine_embed_loss(pred_deltas, gt_dir, torch.ones(gt_dir.shape[0]).cuda()) return loss_dir def compute_loss_kl(self, encoded_dict): #get input data kl_loss = 0 if self.do_vae: #kl loss s_shape_mean_and_logstd_dict = encoded_dict["s_shape_mean_and_logstd_dict"] kl_shape = self.kl( s_shape_mean_and_logstd_dict["mean"], s_shape_mean_and_logstd_dict["logstd"]) # free bits from IAF-VAE. so that if the KL drops below a certan value, then we stop reducing the KL kl_shape = torch.clamp(kl_shape, min=0.25) kl_loss = kl_shape.mean() return kl_loss def kl(self, mean, logstd): kl = (-0.5 - logstd + 0.5 * mean ** 2 + 0.5 * torch.exp(2 * logstd)) return kl def forward(self, hair_data_dict): self.diff_spline(hair_data_dict) encoded_dict=self.encode() prediction_dict=self.decode(encoded_dict) return prediction_dict, encoded_dict
CT2Hair-main
CT2Hair/modules/strands_codec.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import copy import torch import inspect import numpy as np from typing import Dict, List, Optional, Tuple from torch.nn.utils.weight_norm import WeightNorm, remove_weight_norm class LearnedPE(torch.nn.Module): def __init__(self, in_channels, num_encoding_functions, logsampling): super(LearnedPE, self).__init__() self.in_channels = in_channels self.num_encoding_functions = num_encoding_functions self.logsampling = logsampling out_channels = in_channels * self.num_encoding_functions * 2 self.conv = torch.nn.Linear(in_channels, int(out_channels / 2), bias=True).cuda() #in the case we set the weight ourselves self.init_weights() def init_weights(self): with torch.no_grad(): num_input = self.in_channels self.conv.weight.uniform_(-np.sqrt(6 / num_input) , np.sqrt(6 / num_input)) # print("weight is ", self.conv.weight.shape) #60x3 # we make the same as the positonal encoding, which is mutiplying each coordinate with this linespaced frequencies lin = 2.0 ** torch.linspace(0.0, self.num_encoding_functions - 1, self.num_encoding_functions, dtype=torch.float32, device=torch.device("cuda")) lin_size = lin.shape[0] weight = torch.zeros([self.in_channels, self.num_encoding_functions * self.in_channels], dtype=torch.float32, device=torch.device("cuda")) for i in range(self.in_channels): weight[i : i + 1, i * lin_size : i * lin_size + lin_size ] = lin weight = weight.t().contiguous() self.conv.weight = torch.nn.Parameter(weight) def forward(self, x): x_proj = self.conv(x) return torch.cat([torch.sin(x_proj), torch.cos(x_proj), x], -1).contiguous() class BlockSiren(torch.nn.Module): def __init__(self, in_channels, out_channels, bias=True, activ=torch.sin, is_first_layer=False, scale_init=90): super(BlockSiren, self).__init__() self.bias = bias self.activ = activ self.is_first_layer = is_first_layer self.scale_init = scale_init self.conv = torch.nn.Linear(in_channels, out_channels, bias=self.bias).cuda() # if self.activ==torch.sin or self.activ==None: with torch.no_grad(): if self.activ == torch.sin: num_input = in_channels # See supplement Sec. 1.5 for discussion of factor 30 if self.is_first_layer: self.conv.weight.uniform_(-np.sqrt(6 / num_input) , np.sqrt(6 / num_input)) else: self.conv.weight.uniform_(-np.sqrt(6 / num_input) , np.sqrt(6 / num_input)) elif self.activ == None: # self.conv.weight.normal_(0, 0.1) swish_init(self.conv, True) def forward(self, x): x = self.conv(x) if self.activ == torch.sin: if self.is_first_layer: x = self.scale_init * x else: x = x * 1 x = self.activ(x) elif self.activ is not None: x = self.activ(x) return x def check_args_shadowing(name, method, arg_names): spec = inspect.getfullargspec(method) init_args = {*spec.args, *spec.kwonlyargs} for arg_name in arg_names: if arg_name in init_args: raise TypeError(f"{name} attempted to shadow a wrapped argument: {arg_name}") # For backward compatibility. class TensorMappingHook(object): def __init__( self, name_mapping: List[Tuple[str, str]], expected_shape: Optional[Dict[str, List[int]]] = None, ): """This hook is expected to be used with "_register_load_state_dict_pre_hook" to modify names and tensor shapes in the loaded state dictionary. Args: name_mapping: list of string tuples A list of tuples containing expected names from the state dict and names expected by the module. expected_shape: dict A mapping from parameter names to expected tensor shapes. """ self.name_mapping = name_mapping self.expected_shape = expected_shape if expected_shape is not None else {} def __call__( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ): for old_name, new_name in self.name_mapping: if prefix + old_name in state_dict: tensor = state_dict.pop(prefix + old_name) if new_name in self.expected_shape: tensor = tensor.view(*self.expected_shape[new_name]) state_dict[prefix + new_name] = tensor def weight_norm_wrapper(cls, name="weight", g_dim=0, v_dim=0): """Wraps a torch.nn.Module class to support weight normalization. The wrapped class is compatible with the fuse/unfuse syntax and is able to load state dict from previous implementations. Args: name: str Name of the parameter to apply weight normalization. g_dim: int Learnable dimension of the magnitude tensor. Set to None or -1 for single scalar magnitude. Default values for Linear and Conv2d layers are 0s and for ConvTranspose2d layers are 1s. v_dim: int Of which dimension of the direction tensor is calutated independently for the norm. Set to None or -1 for calculating norm over the entire direction tensor (weight tensor). Default values for most of the WN layers are None to preserve the existing behavior. """ class Wrap(cls): def __init__(self, *args, name=name, g_dim=g_dim, v_dim=v_dim, **kwargs): # Check if the extra arguments are overwriting arguments for the wrapped class check_args_shadowing( "weight_norm_wrapper", super().__init__, ["name", "g_dim", "v_dim"] ) super().__init__(*args, **kwargs) # Sanitize v_dim since we are hacking the built-in utility to support # a non-standard WeightNorm implementation. if v_dim is None: v_dim = -1 self.weight_norm_args = {"name": name, "g_dim": g_dim, "v_dim": v_dim} self.is_fused = True self.unfuse() # For backward compatibility. self._register_load_state_dict_pre_hook( TensorMappingHook( [(name, name + "_v"), ("g", name + "_g")], {name + "_g": getattr(self, name + "_g").shape}, ) ) def fuse(self): if self.is_fused: return # Check if the module is frozen. param_name = self.weight_norm_args["name"] + "_g" if hasattr(self, param_name) and param_name not in self._parameters: raise ValueError("Trying to fuse frozen module.") remove_weight_norm(self, self.weight_norm_args["name"]) self.is_fused = True def unfuse(self): if not self.is_fused: return # Check if the module is frozen. param_name = self.weight_norm_args["name"] if hasattr(self, param_name) and param_name not in self._parameters: raise ValueError("Trying to unfuse frozen module.") wn = WeightNorm.apply( self, self.weight_norm_args["name"], self.weight_norm_args["g_dim"] ) # Overwrite the dim property to support mismatched norm calculate for v and g tensor. if wn.dim != self.weight_norm_args["v_dim"]: wn.dim = self.weight_norm_args["v_dim"] # Adjust the norm values. weight = getattr(self, self.weight_norm_args["name"] + "_v") norm = getattr(self, self.weight_norm_args["name"] + "_g") norm.data[:] = torch.norm_except_dim(weight, 2, wn.dim) self.is_fused = False def __deepcopy__(self, memo): # Delete derived tensor to avoid deepcopy error. if not self.is_fused: delattr(self, self.weight_norm_args["name"]) # Deepcopy. cls = self.__class__ result = cls.__new__(cls) memo[id(self)] = result for k, v in self.__dict__.items(): setattr(result, k, copy.deepcopy(v, memo)) if not self.is_fused: setattr(result, self.weight_norm_args["name"], None) setattr(self, self.weight_norm_args["name"], None) return result return Wrap def is_weight_norm_wrapped(module): for hook in module._forward_pre_hooks.values(): if isinstance(hook, WeightNorm): return True return False LinearWN = weight_norm_wrapper(torch.nn.Linear, g_dim=0, v_dim=None) Conv1dWN = weight_norm_wrapper(torch.nn.Conv1d, g_dim=0, v_dim=None) def swish_init(m, is_linear, scale=1): # normally relu has a gain of sqrt(2) # however swish has a gain of sqrt(2.952) as per the paper https://arxiv.org/pdf/1805.08266.pdf gain=np.sqrt(2.952) # gain=np.sqrt(2) if is_linear: gain = 1 # gain = np.sqrt(2.0 / (1.0 + 1 ** 2)) if isinstance(m, torch.nn.Conv1d): ksize = m.kernel_size[0] n1 = m.in_channels n2 = m.out_channels # std = gain * np.sqrt(2.0 / ((n1 + n2) * ksize)) std = gain / np.sqrt(n1 * ksize) elif isinstance(m, torch.nn.Conv2d): ksize = m.kernel_size[0] * m.kernel_size[1] n1 = m.in_channels n2 = m.out_channels # std = gain * np.sqrt(2.0 / ((n1 + n2) * ksize)) std = gain / np.sqrt(n1 * ksize) elif isinstance(m, torch.nn.Linear): n1 = m.in_features n2 = m.out_features std = gain / np.sqrt((n1)) else: return is_wnw = is_weight_norm_wrapped(m) if is_wnw: m.fuse() m.weight.data.normal_(0, std*scale) if m.bias is not None: m.bias.data.zero_() if is_wnw: m.unfuse()
CT2Hair-main
CT2Hair/modules/networks.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import sys import argparse from pyhocon import ConfigFactory from termcolor import colored sys.path.append('CT2Hair/') from interp import neural_interp parser = argparse.ArgumentParser() parser.add_argument('--conf', type=str, default='conf/data/Curly.conf') parser.add_argument('--datapath', type=str, default='data') parser.add_argument('--gpu', type=str, default='0') k_args = parser.parse_args() if __name__ == '__main__': conf_text = open(k_args.conf).read() conf_text = conf_text.replace('DATAPATH', k_args.datapath) conf = ConfigFactory.parse_string(conf_text) conf_text = conf_text.replace('DATAPATH', k_args.datapath) conf_text = conf_text.replace('CASENAME', conf['output']['name']) conf = ConfigFactory.parse_string(conf_text) strands_out_dir = os.path.join(conf['output']['dir'], conf['output']['name']) strands_name = conf['output']['name'] \ + '_guide.bin' conf['strands']['guide_strds'] = os.path.join(strands_out_dir, strands_name) if not os.path.exists(os.path.join(strands_out_dir, strands_name)): print(colored("Guide hair strands not found, please run scripts/gen_guide_strands.py first.", "red")) exit(1) print(colored("Running interpolation:", "yellow")) neural_interp(conf)
CT2Hair-main
scripts/interpolation.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import sys import argparse from pyhocon import ConfigFactory from termcolor import colored sys.path.append('CT2Hair/') from optim import strands_opt parser = argparse.ArgumentParser() parser.add_argument('--conf', type=str, default='conf/data/Curly.conf') parser.add_argument('--datapath', type=str, default='data') parser.add_argument('--gpu', type=str, default='0') k_args = parser.parse_args() if __name__ == '__main__': conf_text = open(k_args.conf).read() conf = ConfigFactory.parse_string(conf_text) conf_text = conf_text.replace('DATAPATH', k_args.datapath) conf_text = conf_text.replace('CASENAME', conf['output']['name']) conf = ConfigFactory.parse_string(conf_text) strands_out_dir = os.path.join(conf['output']['dir'], conf['output']['name']) pc_name = conf['output']['name'] \ + '_oriens' \ + '_wd_' + str(conf['guide']['wignet_dis']) \ + '.ply' strands_name = conf['output']['name'] \ + '_merged.bin' conf['pc']['pc_path'] = os.path.join(strands_out_dir, pc_name) conf['strands']['interp_strds'] = os.path.join(strands_out_dir, strands_name) if not os.path.exists(os.path.join(strands_out_dir, strands_name)): print(colored("Interpolated hair strands not found, please run scripts/interpolation.py first.", "red")) exit(1) print(colored("Running optimization:", "yellow")) strands_opt(conf)
CT2Hair-main
scripts/optimization.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import platform import argparse from pyhocon import ConfigFactory from termcolor import colored parser = argparse.ArgumentParser() parser.add_argument('--conf', type=str, default='conf/data/Curly.conf') parser.add_argument('--datapath', type=str, default='data') parser.add_argument('--gpu', type=str, default='0') k_args = parser.parse_args() if __name__ == '__main__': conf_text = open(k_args.conf).read() conf = ConfigFactory.parse_string(conf_text) conf_text = conf_text.replace('DATAPATH', k_args.datapath) conf_text = conf_text.replace('CASENAME', conf['output']['name']) conf = ConfigFactory.parse_string(conf_text) if not os.path.exists(str(conf['vdb']['path'])): print("Input VDB file does not exists.") exit(1) oriens_out_dir = os.path.join(conf['output']['dir'], conf['output']['name']) os.makedirs(oriens_out_dir, exist_ok=True) oriens_out_name = conf['output']['name'] \ + '_oriens' \ + '_wd_' + str(conf['guide']['wignet_dis']) \ + '.ply' if platform.system() == 'Linux': exe_path = 'CT2Hair/GuideHairStrands/GuideHairStrands' elif platform.system() == 'Windows': exe_path = 'CT2Hair\\GuideHairStrands\\Release\\GuideHairStrands.exe' cmd = '{} 0 '.format(exe_path) \ + str(conf['vdb']['path']) + ' ' \ + str(conf['vdb']['voxel_size']) + ' ' \ + conf['head']['roots_path'] + ' ' \ + str(conf['guide']['wignet_dis']) + ' ' \ + os.path.join(oriens_out_dir, oriens_out_name) print(colored("Running command:", "yellow"), colored(cmd, "green")) os.system(cmd)
CT2Hair-main
scripts/est_orientations.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os import platform import argparse from shutil import copyfile from pyhocon import ConfigFactory from termcolor import colored parser = argparse.ArgumentParser() parser.add_argument('--conf', type=str, default='conf/data/Curly.conf') parser.add_argument('--datapath', type=str, default='data') parser.add_argument('--gpu', type=str, default='0') k_args = parser.parse_args() if __name__ == '__main__': conf_text = open(k_args.conf).read() conf = ConfigFactory.parse_string(conf_text) conf_text = conf_text.replace('DATAPATH', k_args.datapath) conf_text = conf_text.replace('CASENAME', conf['output']['name']) conf = ConfigFactory.parse_string(conf_text) strands_out_dir = os.path.join(conf['output']['dir'], conf['output']['name']) oriens_name = conf['output']['name'] \ + '_oriens' \ + '_wd_' + str(conf['guide']['wignet_dis']) \ + '.ply' if not os.path.exists(os.path.join(strands_out_dir, oriens_name)): print(colored("Orientations not found, please run scripts/est_orientations.py first.", "red")) exit(1) strands_out_name = conf['output']['name'] \ + '_oriens' \ + '_wd_' + str(conf['guide']['wignet_dis']) \ + '_nr_' + str(conf['guide']['nei_radius']) \ + '_se_' + str(conf['guide']['sigma_e']) \ + '_so_' + str(conf['guide']['sigma_o']) \ + '_ts_' + str(conf['guide']['thres_shift']) \ + '_nrs_' + str(conf['guide']['nei_radius_seg']) \ + '_to_' + str(conf['guide']['thres_orient']) \ + '_tl_' + str(conf['guide']['thres_length']) \ + '_tnrd_' + str(conf['guide']['thres_nn_roots_dis']) \ + '_tlg_' + str(conf['guide']['thres_length_grow']) \ + '.ply' strands_out_name_simp = conf['output']['name'] + '_guide.bin' if platform.system() == 'Linux': exe_path = 'CT2Hair/GuideHairStrands/GuideHairStrands' elif platform.system() == 'Windows': exe_path = 'CT2Hair\\GuideHairStrands\\Release\\GuideHairStrands.exe' cmd = '{} 1 '.format(exe_path) \ + os.path.join(strands_out_dir, oriens_name) + ' ' \ + os.path.join(strands_out_dir, strands_out_name) + ' ' \ + str(conf['guide']['nei_radius']) + ' ' \ + str(conf['guide']['sigma_e']) + ' ' \ + str(conf['guide']['sigma_o']) + ' ' \ + str(conf['guide']['thres_shift']) + ' ' \ + str(conf['guide']['use_cuda']) + ' ' \ + k_args.gpu + ' ' \ + str(conf['guide']['nei_radius_seg']) + ' ' \ + str(conf['guide']['thres_orient']) + ' ' \ + str(conf['guide']['thres_length']) + ' ' \ + conf['head']['roots_path'] + ' ' \ + str(conf['guide']['thres_nn_roots_dis']) + ' ' \ + str(conf['guide']['thres_length_grow']) print(colored("Running command:", "yellow"), colored(cmd, "green")) os.system(cmd) copyfile(os.path.join(strands_out_dir, strands_out_name).replace('ply', 'bin'), os.path.join(strands_out_dir, strands_out_name_simp))
CT2Hair-main
scripts/gen_guide_strands.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Main class to decode and produce an answer. Answer decoder for explicit visual coreference resolution model in visual dialog using neural module networks, called CorefNMN. Support two kinds of decoders: (a) Generative: A recurrent neural network based language model that can generate novel answers. At test time, all candidate answers are scored based on loglikelihood of the language model. (b) Discriminative: A discriminative classifier to identify the correct answer from a pool of candidate options at train time. At test time, options are ranked based on class probabilities. Author: Satwik Kottur """ import numpy as np import tensorflow as tf from tensorflow.python.ops.nn import dropout from tensorflow.contrib.layers import fully_connected as FC from util import support class AnswerDecoder: def __init__(self, inputs, output_pool, params): """Initialize answer decoder. Args: inputs: output_pool: params: """ self.params = params # keep track of inputs and outputs used_inputs = [] outputs = {} # alias for criterion criterion = tf.nn.sparse_softmax_cross_entropy_with_logits # begin decoding with tf.variable_scope(self.params['embed_scope'], reuse=True): size = [params['text_vocab_size'], params['text_embed_size']] embed_mat = tf.get_variable('embed_mat') output = tf.nn.embedding_lookup(embed_mat, inputs['ans_in']) used_inputs.extend(['ans_in', 'ans_out', 'ans_len']) # recurrent neural network cell cell = tf.contrib.rnn.BasicLSTMCell(params['lstm_size']) # decide the source based on train / evaluation source = output_pool if params['train_mode'] else inputs # concatenate question to both concat_list = [] # add program context vector concat_list.append(source['context']) # adding last hidden size concat_list.append(source['enc_dec_h'][-1]) used_inputs.extend(['enc_dec_h', 'enc_dec_c']) if not params['train_mode']: used_inputs.append('context') #-------------------------------------------------------------------------- # stack all the vectors stack_vec = tf.concat(concat_list, axis=1) stack_vec = FC(stack_vec, params['lstm_size']) # construct encoder decoder H enc_dec_h = [source['enc_dec_h'][ii] for ii in range(params['num_layers'] - 1)] enc_dec_h.append(stack_vec) # construct encoder decoder C enc_dec_c = [source['enc_dec_c'][ii] for ii in range(params['num_layers'])] init_state = [tf.contrib.rnn.LSTMStateTuple(cc, hh) for cc, hh in zip(enc_dec_c, enc_dec_h)] if params['decoder'] == 'gen': for ii in range(params['num_layers']): # dynamic rnn output, _ = tf.nn.dynamic_rnn(cell, output, sequence_length=inputs['ans_len'], initial_state=init_state[ii], dtype=tf.float32, scope='layer_%d' % ii) # predict the output words output = FC(output, params['text_vocab_size'], activation_fn=None) # create a mask mask = tf.not_equal(inputs['ans_out'], params['pad_id']) mask = tf.cast(mask, tf.float32) # multiply by mask for variable length sequences answer_loss = criterion(logits=output, labels=inputs['ans_out']) masked_answer_loss = tf.multiply(answer_loss, mask) token_likelihood = tf.reduce_sum(masked_answer_loss) num_tokens = tf.maximum(tf.reduce_sum(mask), 1) outputs['ans_token_loss'] = token_likelihood/num_tokens outputs['per_sample_loss'] = tf.reduce_sum(masked_answer_loss, 1) # extract the probabilities out_softmax = tf.nn.log_softmax(output) out_softmax_flat = tf.reshape(out_softmax, [-1, params['text_vocab_size']]) orig_shape = tf.shape(inputs['ans_out']) ans_out_flat = tf.reshape(inputs['ans_out'], [-1]) inds = [tf.range(0, tf.shape(ans_out_flat)[0]), ans_out_flat] inds = tf.stack(inds, axis=1) prob_tokens = tf.gather_nd(out_softmax_flat, inds) prob_tokens = tf.reshape(prob_tokens, orig_shape) prob_tokens = tf.multiply(prob_tokens, mask) # compute the loglikelihood outputs['llh'] = tf.reduce_sum(prob_tokens, 1) # compute mean instead of sum num_tokens = tf.maximum(tf.reduce_sum(mask, 1), 1) outputs['llh_mean'] = outputs['llh'] / num_tokens elif params['decoder'] == 'disc': # embed options and encode via lstm with tf.variable_scope(self.params['embed_scope'], reuse=True): size = [params['text_vocab_size'], params['text_embed_size']] embed_mat = tf.get_variable('embed_mat') opt_embed = tf.nn.embedding_lookup(embed_mat, inputs['opt']) # transpose and merging batch and option dimension opt_embed = tf.transpose(opt_embed, [0, 2, 1, 3]) shape = opt_embed.shape.as_list() opt_embed = tf.reshape(opt_embed, [-1, shape[2], shape[3]]) opt_len = tf.reshape(inputs['opt_len'], [-1]) output, _ = tf.nn.dynamic_rnn(cell, opt_embed, sequence_length=opt_len, dtype=tf.float32, scope='opt_layer_0') for ii in range(1, params['num_layers']): # dynamic rnn output, _ = tf.nn.dynamic_rnn(cell, output, \ sequence_length=opt_len, dtype=tf.float32, scope='opt_layer_%d' % ii) opt_encode = support.last_relevant(output, opt_len) # reshape back opt_encode = tf.reshape(opt_encode, [-1, shape[1], params['lstm_size']]) # score the options with context vector score_vec = tf.matmul(opt_encode, tf.expand_dims(stack_vec, -1)) score_vec = tf.squeeze(score_vec, -1) scores = criterion(logits=score_vec, labels=inputs['gt_ind']) outputs['ans_token_loss'] = tf.reduce_mean(scores) outputs['scores'] = score_vec used_inputs.extend(['opt', 'opt_len', 'gt_ind']) # setup the inputs and outputs self.outputs = outputs self.inputs = {ii: inputs[ii] for ii in used_inputs} #---------------------------------------------------------------------------- # setters and getters def get_outputs(self): return self.outputs def get_inputs(self): return self.inputs #---------------------------------------------------------------------------- # produce feed dict def produce_feed_dict(self, batch, output_pool=None): """Produces the feed dict for this subcomponent. Args: batch: Batch returned from dataloader output_pool: Outputs from previous subcomponents, mostly when evaluating Returns: feed_dict: Returns the feed dictionary """ feed_dict = {} for key in ['ans_in', 'ans_out', 'ans_len']: feed_dict[self.inputs[key]] = batch[key] # if not in train mode, use output_pool if not self.params['train_mode']: for key in ['context', 'enc_dec_h', 'enc_dec_c']: feed_dict[self.inputs[key]] = output_pool[key] # additional feeds for discriminative decoder if self.params['decoder'] == 'disc': feed_dict[self.inputs['opt']] = np.stack(batch['opt_out'], -1) feed_dict[self.inputs['opt_len']] = np.stack(batch['opt_len'], -1) feed_dict[self.inputs['gt_ind']] = batch['gt_ind'] return feed_dict #----------------------------------------------------------------------------
corefnmn-main
models_vd/decoder.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. TODO(satwik): Add a reasonable description to the file. """ from __future__ import absolute_import, division, print_function import numpy as np import tensorflow as tf from tensorflow import convert_to_tensor as to_T from util.cnn import fc_layer as fc, conv_relu_layer as conv_relu from tensorflow.contrib.layers import fully_connected as FC from tensorflow.contrib.rnn import LSTMStateTuple from util import support def _get_valid_tokens(X, W, b): constraints_validity = tf.greater_equal(tf.tensordot(X, W, axes=1) - b, 0) token_validity = tf.reduce_all(constraints_validity, axis=2) return tf.stop_gradient(token_validity) #------------------------------------------------------------------------------ def _update_decoding_state(X, s, P): X = X + tf.nn.embedding_lookup(P, s) # X = X + S P return tf.stop_gradient(X) #------------------------------------------------------------------------------ def _get_lstm_cell(num_layers, lstm_dim, apply_dropout): if isinstance(lstm_dim, list): # Different layers have different dimensions if not len(lstm_dim) == num_layers: raise ValueError('the length of lstm_dim must be equal to num_layers') cell_list = [] for l in range(num_layers): lstm_cell = tf.contrib.rnn.BasicLSTMCell(lstm_dim[l], state_is_tuple=True) # Dropout is only applied on output of the 1st to second-last layer. # The output of the last layer has no dropout if apply_dropout and l < num_layers-1: dropout_cell = tf.contrib.rnn.DropoutWrapper(lstm_cell, output_keep_prob=0.5) else: dropout_cell = lstm_cell cell_list.append(dropout_cell) else: # All layers has the same dimension. lstm_cell = tf.contrib.rnn.BasicLSTMCell(lstm_dim, state_is_tuple=True) # Dropout is only applied on output of the 1st to second-last layer. # The output of the last layer has no dropout if apply_dropout: dropout_cell = tf.contrib.rnn.DropoutWrapper(lstm_cell, output_keep_prob=0.5) else: dropout_cell = lstm_cell cell_list = [dropout_cell] * (num_layers-1) + [lstm_cell] cell = tf.contrib.rnn.MultiRNNCell(cell_list, state_is_tuple=True) return cell #------------------------------------------------------------------------------ # Sequence to Sequence with attention class AttSeq2Seq: def __init__(self, holders, use_gt_prog, assembler, params, reuse=None): self.T_decoder = params['max_dec_len'] self.encoder_num_vocab = params['text_vocab_size'] self.encoder_embed_dim = params['text_embed_size'] self.decoder_num_vocab = params['prog_vocab_size'] self.decoder_embed_dim = params['prog_embed_size'] self.lstm_dim = params['lstm_size'] self.num_layers = params['num_layers'] self.EOS_token = assembler.EOS_idx self.embed_scope = params['embed_scope'] self.temperature = params.get('temperature', 1) # if word vectors need to be used or lstm outputs for attention params['use_word_vectors'] = 'wv-att' in params['model'] params['generator'] = params.get('generator', 'ques') self.params = params # decoding transition variables self.P = to_T(assembler.P, dtype=tf.int32) self.W = to_T(assembler.W, dtype=tf.int32) self.b = to_T(assembler.b, dtype=tf.int32) self.encoder_dropout = params['enc_dropout'] self.decoder_dropout = params['dec_dropout'] self.decoder_sampling = params['dec_sampling'] # detect fake inputs if 'fake' in holders: scope = 'enc_dec_cap' else: scope = 'enc_dec' with tf.variable_scope(scope, reuse=reuse): # build a special encoder, if needed if 'fake' not in holders and params['generator'] == 'mem': self._build_memory_encoder(holders) else: # build a normal encoder self._build_encoder(holders['ques'], holders['ques_len']) self._build_decoder(use_gt_prog, holders['prog_gt']) # build a usual encoder, ques based def _build_encoder(self, input_seq_batch, seq_len_batch, scope='encoder', reuse=None): lstm_dim = self.lstm_dim num_layers = self.num_layers apply_dropout = self.encoder_dropout with tf.variable_scope(scope, reuse=reuse): #T = tf.shape(input_seq_batch)[0] T = input_seq_batch.shape.as_list()[0] N = tf.shape(input_seq_batch)[1] self.T_encoder = T self.N = N with tf.variable_scope(self.embed_scope, reuse=True): embedding_mat = tf.get_variable('embed_mat', [self.encoder_num_vocab, self.encoder_embed_dim]) # text_seq has shape [T, N] and embedded_seq has shape [T, N, D]. embedded_seq = tf.nn.embedding_lookup(embedding_mat, input_seq_batch) self.embedded_input_seq = embedded_seq # The RNN cell = _get_lstm_cell(num_layers, lstm_dim, apply_dropout) # encoder_outputs has shape [T, N, lstm_dim] encoder_outputs, encoder_states = tf.nn.dynamic_rnn(cell, embedded_seq, seq_len_batch, dtype=tf.float32, time_major=True, scope='lstm') self.encoder_outputs = encoder_outputs self.encoder_states = encoder_states # check if wv flag is set if self.params['use_word_vectors']: # transform the encoder outputs for further attention alignments # encoder_outputs_flat has shape [T, N, lstm_dim] encoder_h_transformed = fc('encoder_h_transform', tf.reshape(embedded_seq, [-1, self.encoder_embed_dim]), output_dim=lstm_dim) else: # transform the encoder outputs for further attention alignments # encoder_outputs_flat has shape [T, N, lstm_dim] encoder_h_transformed = fc('encoder_h_transform', tf.reshape(encoder_outputs, [-1, lstm_dim]), output_dim=lstm_dim) encoder_h_transformed = tf.reshape(encoder_h_transformed, to_T([T, N, lstm_dim])) self.encoder_h_transformed = encoder_h_transformed # seq_not_finished has shape [T, N, 1], where seq_not_finished[t, n] # is 1 iff sequence n is not finished at time t, and 0 otherwise seq_not_finished = tf.less(tf.range(T)[:, tf.newaxis, tf.newaxis], seq_len_batch[:, tf.newaxis]) seq_not_finished = tf.cast(seq_not_finished, tf.float32) self.seq_not_finished = seq_not_finished # build a special encoder def _build_memory_encoder(self, holders, scope='encoder', reuse=None): lstm_dim = self.lstm_dim num_layers = self.num_layers apply_dropout = self.encoder_dropout input_seq = holders['ques'] input_seq_len = holders['ques_len'] # facts/memories hist_size = holders['hist'].shape.as_list() hist_flat = tf.reshape(holders['hist'], [-1, hist_size[2]]) hist_len_flat = tf.reshape(holders['hist_len'], [-1]) with tf.variable_scope(scope, reuse=reuse): T = input_seq.shape.as_list()[0] N = tf.shape(input_seq)[1] self.T_encoder = T self.N = N with tf.variable_scope(self.embed_scope, reuse=True): embed_mat = tf.get_variable('embed_mat', [self.encoder_num_vocab, self.encoder_embed_dim]) # text_seq has shape [T, N] and embedded_seq has shape [T, N, D]. embed_seq = tf.nn.embedding_lookup(embed_mat, input_seq) self.embedded_input_seq = embed_seq # The RNN cell = _get_lstm_cell(num_layers, lstm_dim, apply_dropout) # encoder_outputs has shape [T, N, lstm_dim] encoder_outputs, encoder_states = tf.nn.dynamic_rnn(cell, embed_seq, input_seq_len, dtype=tf.float32, time_major=True, scope='lstm') self.encoder_outputs = encoder_outputs # batch first encoder outputs batch_encoder_outputs = tf.transpose(encoder_outputs, [1, 0, 2]) ques_enc = support.last_relevant(batch_encoder_outputs, input_seq_len) size = [-1, self.params['num_rounds'], self.params['lstm_size']] ques_enc = tf.reshape(ques_enc, size) self.encoder_states = encoder_states # similarly encode history hist_out = tf.nn.embedding_lookup(embed_mat, hist_flat) # rnns to encode history cell = tf.contrib.rnn.BasicLSTMCell(self.params['lstm_size']) for ii in range(0, self.params['num_layers']): # dynamic rnn hist_out, states = tf.nn.dynamic_rnn(cell, hist_out, \ sequence_length=hist_len_flat, \ dtype=tf.float32, scope='hist_layer_%d' % ii) # get output from last timestep hist_enc = support.last_relevant(hist_out, hist_len_flat) # reshape back size = [-1, hist_size[1], self.params['lstm_size']] hist_enc = tf.reshape(hist_enc, size) # concatenate, mlp and tanh num_r = self.params['num_rounds'] # dot product attention = tf.matmul(ques_enc, hist_enc, transpose_b=True) # a very small large number u_mat = np.full((num_r, num_r), -1e10) suppress_mat = tf.constant(np.triu(u_mat, 1), dtype=tf.float32) l_mat = np.full((num_r, num_r), 1) mask_mat = tf.constant(np.tril(l_mat), dtype=tf.float32) attention = tf.nn.softmax(tf.multiply(attention, mask_mat) + suppress_mat) self.att_history = attention att_hist_enc = tf.matmul(attention, hist_enc) # flatten out size = [-1, self.params['lstm_size']] att_hist_flat = tf.reshape(att_hist_enc, size) # concatenate attended history and encoder state for the last layer concat = tf.concat([encoder_states[-1].h, att_hist_flat], -1) new_state = LSTMStateTuple(encoder_states[-1].c, FC(concat, self.params['lstm_size'])) # make it mutable encoder_states = list(encoder_states) encoder_states[-1] = new_state self.encoder_states = tuple(encoder_states) # check if wv flag is set if self.params['use_word_vectors']: # transform the encoder outputs for further attention alignments # encoder_outputs_flat has shape [T, N, lstm_dim] encoder_h_transformed = fc('encoder_h_transform', tf.reshape(embedded_seq, [-1, self.encoder_embed_dim]), output_dim=lstm_dim) else: # transform the encoder outputs for further attention alignments # encoder_outputs_flat has shape [T, N, lstm_dim] encoder_h_transformed = fc('encoder_h_transform', tf.reshape(encoder_outputs, [-1, lstm_dim]), output_dim=lstm_dim) encoder_h_transformed = tf.reshape(encoder_h_transformed, to_T([T, N, lstm_dim])) self.encoder_h_transformed = encoder_h_transformed # seq_not_finished is a shape [T, N, 1] tensor, where seq_not_finished[t, n] # is 1 iff sequence n is not finished at time t, and 0 otherwise seq_not_finished = tf.less(tf.range(T)[:, tf.newaxis, tf.newaxis], input_seq_len[:, tf.newaxis]) seq_not_finished = tf.cast(seq_not_finished, tf.float32) self.seq_not_finished = seq_not_finished def _build_decoder(self, use_gt_layout, gt_layout_batch, scope='decoder', reuse=None): # The main difference from before is that the decoders now takes another # input (the attention) when computing the next step # T_max is the maximum length of decoded sequence (including <eos>) # # This function is for decoding only. It performs greedy search or sampling. # the first input is <go> (its embedding vector) and the subsequent inputs # are the outputs from previous time step # num_vocab does not include <go> # # use_gt_layout is None or a bool tensor, and gt_layout_batch is a tenwor # with shape [T_max, N]. # If use_gt_layout is not None, then when use_gt_layout is true, predict # exactly the tokens in gt_layout_batch, regardless of actual probability. # Otherwise, if sampling is True, sample from the token probability # If sampling is False, do greedy decoding (beam size 1) N = self.N encoder_states = self.encoder_states T_max = self.T_decoder lstm_dim = self.lstm_dim num_layers = self.num_layers apply_dropout = self.decoder_dropout EOS_token = self.EOS_token sampling = self.decoder_sampling with tf.variable_scope(scope, reuse=reuse): embedding_mat = tf.get_variable('embedding_mat', [self.decoder_num_vocab, self.decoder_embed_dim]) # we use a separate embedding for <go>, as it is only used in the # beginning of the sequence go_embedding = tf.get_variable('go_embedding', [1, self.decoder_embed_dim]) with tf.variable_scope('att_prediction'): v = tf.get_variable('v', [lstm_dim]) W_a = tf.get_variable('weights', [lstm_dim, lstm_dim], initializer=tf.contrib.layers.xavier_initializer()) b_a = tf.get_variable('biases', lstm_dim, initializer=tf.constant_initializer(0.)) # The parameters to predict the next token with tf.variable_scope('token_prediction'): W_y = tf.get_variable('weights', [lstm_dim*2, self.decoder_num_vocab], initializer=tf.contrib.layers.xavier_initializer()) b_y = tf.get_variable('biases', self.decoder_num_vocab, initializer=tf.constant_initializer(0.)) # Attentional decoding # Loop function is called at time t BEFORE the cell execution at time t, # and its next_input is used as the input at time t (not t+1) # c.f. https://www.tensorflow.org/api_docs/python/tf/nn/raw_rnn mask_range = tf.reshape(tf.range(self.decoder_num_vocab, dtype=tf.int32), [1, -1]) if use_gt_layout is not None: gt_layout_mult = tf.cast(use_gt_layout, tf.int32) pred_layout_mult = 1 - gt_layout_mult def loop_fn(time, cell_output, cell_state, loop_state): if cell_output is None: # time == 0 next_cell_state = encoder_states next_input = tf.tile(go_embedding, to_T([N, 1])) else: # time > 0 next_cell_state = cell_state # compute the attention map over the input sequence # a_raw has shape [T, N, 1] att_raw = tf.reduce_sum( tf.tanh(tf.nn.xw_plus_b(cell_output, W_a, b_a) + self.encoder_h_transformed) * v, axis=2, keep_dims=True) # softmax along the first dimension (T) over not finished examples # att has shape [T, N, 1] att = tf.nn.softmax(att_raw, dim=0)*self.seq_not_finished att = att / tf.reduce_sum(att + 1e-10, axis=0, keep_dims=True) # d has shape [N, lstm_dim] d2 = tf.reduce_sum(att*self.encoder_outputs, axis=0) # token_scores has shape [N, num_vocab] token_scores = tf.nn.xw_plus_b( tf.concat([cell_output, d2], axis=1), W_y, b_y) decoding_state = loop_state[2] # token_validity has shape [N, num_vocab] token_validity = _get_valid_tokens(decoding_state, self.W, self.b) token_validity.set_shape([None, self.decoder_num_vocab]) if use_gt_layout is not None: # when there's ground-truth layout, do not re-normalize prob # and treat all tokens as valid token_validity = tf.logical_or(token_validity, use_gt_layout) validity_mult = tf.cast(token_validity, tf.float32) # predict the next token (behavior depending on parameters) if sampling: token_scores_valid = token_scores - (1-validity_mult) * 50 # TODO:debug sampled_token = tf.cast(tf.reshape( tf.multinomial(token_scores_valid/self.temperature, 1), [-1]), tf.int32) # make sure that the predictions are ALWAYS valid # (it can be invalid with very small prob) # If not, just fall back to min cases # pred_mask has shape [N, num_vocab] sampled_mask = tf.equal(mask_range, tf.reshape(sampled_token, [-1, 1])) is_sampled_valid = tf.reduce_any( tf.logical_and(sampled_mask, token_validity), axis=1) # Fall back to max score (no sampling) min_score = tf.reduce_min(token_scores) token_scores_valid = tf.where(token_validity, token_scores, tf.ones_like(token_scores)*(min_score-1)) max_score_token = tf.cast(tf.argmax(token_scores_valid, 1), tf.int32) predicted_token = tf.where(is_sampled_valid, sampled_token, max_score_token) else: min_score = tf.reduce_min(token_scores) token_scores_valid = tf.where(token_validity, token_scores, tf.ones_like(token_scores)*(min_score-1)) # predicted_token has shape [N] predicted_token = tf.cast(tf.argmax(token_scores_valid, 1), tf.int32) if use_gt_layout is not None: predicted_token = (gt_layout_batch[time-1] * gt_layout_mult + predicted_token * pred_layout_mult) # a robust version of softmax # all_token_probs has shape [N, num_vocab] all_token_probs = tf.nn.softmax(token_scores) * validity_mult # tf.check_numerics(all_token_probs, 'NaN/Inf before div') all_token_probs = all_token_probs / tf.reduce_sum(all_token_probs + 1e-10, axis=1, keep_dims=True) # tf.check_numerics(all_token_probs, 'NaN/Inf after div') # mask has shape [N, num_vocab] mask = tf.equal(mask_range, tf.reshape(predicted_token, [-1, 1])) # token_prob has shape [N], the probability of the predicted token # although token_prob is not needed for predicting the next token # it is needed in output (for policy gradient training) # [N, num_vocab] token_prob = tf.reduce_sum(all_token_probs * tf.cast(mask, tf.float32), axis=1) # tf.assert_positive(token_prob) neg_entropy = tf.reduce_sum( all_token_probs * tf.log(all_token_probs + (1-validity_mult) + 1e-10), axis=1) # update states updated_decoding_state = _update_decoding_state( decoding_state, predicted_token, self.P) # the prediction is from the cell output of the last step # timestep (t-1), feed it as input into timestep t next_input = tf.nn.embedding_lookup(embedding_mat, predicted_token) elements_finished = tf.greater_equal(time, T_max) # loop_state is a 5-tuple, representing # 1) the predicted_tokens # 2) the prob of predicted_tokens # 3) the decoding state (used for validity) # 4) the negative entropy of policy (accumulated across timesteps) # 5) the attention if loop_state is None: # time == 0 # Write the predicted token into the output predicted_token_array = tf.TensorArray(dtype=tf.int32, size=T_max, infer_shape=False) token_prob_array = tf.TensorArray(dtype=tf.float32, size=T_max, infer_shape=False) init_decoding_state = tf.tile(to_T([[0, 0, T_max]], dtype=tf.int32), to_T([N, 1])) att_array = tf.TensorArray(dtype=tf.float32, size=T_max, infer_shape=False) next_loop_state = (predicted_token_array, token_prob_array, init_decoding_state, tf.zeros(to_T([N]), dtype=tf.float32), att_array) else: # time > 0 t_write = time-1 next_loop_state = (loop_state[0].write(t_write, predicted_token), loop_state[1].write(t_write, token_prob), updated_decoding_state, loop_state[3] + neg_entropy, loop_state[4].write(t_write, att)) return (elements_finished, next_input, next_cell_state, cell_output, next_loop_state) # The RNN cell = _get_lstm_cell(num_layers, lstm_dim, apply_dropout) _, _, decodes_ta = tf.nn.raw_rnn(cell, loop_fn, scope='lstm') predicted_tokens = decodes_ta[0].stack() token_probs = decodes_ta[1].stack() neg_entropy = decodes_ta[3] # atts has shape [T_decoder, T_encoder, N, 1] atts = decodes_ta[4].stack() # static dimension recast atts = tf.reshape(atts, [self.T_decoder, self.T_encoder, -1, 1]) self.atts = atts # word_vec has shape [T_decoder, N, 1] word_vecs = tf.reduce_sum(atts*self.embedded_input_seq, axis=1) predicted_tokens.set_shape([None, None]) token_probs.set_shape([None, None]) neg_entropy.set_shape([None]) #word_vecs.set_shape([None, None, self.encoder_embed_dim]) # static shapes word_vecs.set_shape([self.T_decoder, None, self.encoder_embed_dim]) self.predicted_tokens = predicted_tokens self.token_probs = token_probs self.neg_entropy = neg_entropy self.word_vecs = word_vecs #------------------------------------------------------------------------------
corefnmn-main
models_vd/generator_attnet.py
corefnmn-main
models_vd/__init__.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. TODO(satwik): Write a description about what this file contains and what it does. """ from __future__ import absolute_import, division, print_function import numpy as np import tensorflow as tf import tensorflow_fold as td from tensorflow import convert_to_tensor as to_T from models_vd import modules as lm # the number of attention input to each module _module_input_num = { '_Find': 0, '_Refer': 0, '_Exclude': 0, '_Transform': 1, '_And': 2, '_Describe': 1 } # output type of each module _module_output_type = { '_Find': 'att', '_Refer': 'att', '_Exclude': 'att', '_Transform': 'att', '_And': 'att', '_Describe': 'ans' } INVALID_EXPR = 'INVALID_EXPR' # decoding validity: maintaining a state x of [#att, #ans, T_remain] # when T_remain is T_decoder when decoding the first module token # a token s can be predicted iff all(<x, w_s> - b_s >= 0) # the validity token list is # XW - b >= 0 # the state transition matrix is P, so the state update is X += S P, # where S is the predicted tokens (one-hot vectors) def _build_validity_mats(module_names): state_size = 3 num_vocab_nmn = len(module_names) num_constraints = 4 P = np.zeros((num_vocab_nmn, state_size), np.int32) W = np.zeros((state_size, num_vocab_nmn, num_constraints), np.int32) b = np.zeros((num_vocab_nmn, num_constraints), np.int32) # collect the input and output numbers of each module att_in_nums = np.zeros(num_vocab_nmn) att_out_nums = np.zeros(num_vocab_nmn) ans_out_nums = np.zeros(num_vocab_nmn) for n_s, s in enumerate(module_names): if s != '<eos>': att_in_nums[n_s] = _module_input_num[s] att_out_nums[n_s] = _module_output_type[s] == 'att' ans_out_nums[n_s] = _module_output_type[s] == 'ans' # construct the trasition matrix P for n_s, s in enumerate(module_names): P[n_s, 0] = att_out_nums[n_s] - att_in_nums[n_s] P[n_s, 1] = ans_out_nums[n_s] P[n_s, 2] = -1 # construct the validity W and b att_absorb_nums = (att_in_nums - att_out_nums) max_att_absorb_nonans = np.max(att_absorb_nums * (ans_out_nums == 0)) max_att_absorb_ans = np.max(att_absorb_nums * (ans_out_nums != 0)) for n_s, s in enumerate(module_names): if s != '<eos>': # constraint: a non-<eos> module can be outputted iff all the following # hold: # * 0) there's enough att in the stack # #att >= att_in_nums[n_s] W[0, n_s, 0] = 1 b[n_s, 0] = att_in_nums[n_s] # * 1) for answer modules, there's no extra att in the stack # #att <= att_in_nums[n_s] # -#att >= -att_in_nums[n_s] # for non-answer modules, T_remain >= 3 # (the last two has to be AnswerType and <eos>) if ans_out_nums[n_s] != 0: W[0, n_s, 1] = -1 b[n_s, 1] = -att_in_nums[n_s] else: W[2, n_s, 1] = 1 b[n_s, 1] = 3 # * 2) there's no answer in the stack (otherwise <eos> only) # #ans <= 0 # -#ans >= 0 W[1, n_s, 2] = -1 # * 3) there's enough time to consume the all attentions, output answer # plus <eos> # 3.1) for non-answer modules, we already have T_remain>= 3 from # constraint 2 # In maximum (T_remain-3) further steps # (plus 3 steps for this, ans, <eos>) to consume atts # (T_remain-3) * max_att_absorb_nonans + max_att_absorb_ans + # att_absorb_nums[n_s] >= #att # T_remain*MANA - #att >= 3*MANA - MAA - A[s] # - #att + MANA * T_remain >= 3*MANA - MAA - A[s] # 3.2) for answer modules, if it can be decoded then constraint 0&1 # ensures that there'll be no att left in stack after decoding # this answer, hence no further constraints here if ans_out_nums[n_s] == 0: W[0, n_s, 3] = -1 W[2, n_s, 3] = max_att_absorb_nonans b[n_s, 3] = (3 * max_att_absorb_nonans - max_att_absorb_ans - att_absorb_nums[n_s]) else: # <eos>-case # constraint: a <eos> token can be outputted iff all the following holds # * 0) there's ans in the stack # #ans >= 1 W[1, n_s, 0] = 1 b[n_s, 0] = 1 return P, W, b #------------------------------------------------------------------------------ class Assembler: def __init__(self, module_vocab_file): # read the module list, and record the index of each module and <eos> with open(module_vocab_file) as f: self.module_names = [s.strip() for s in f.readlines()] # find the index of <eos> for n_s in range(len(self.module_names)): if self.module_names[n_s] == '<eos>': self.EOS_idx = n_s break # build a dictionary from module name to token index self.name2idx_dict = {name: n_s for n_s, name in enumerate(self.module_names)} self.num_vocab_nmn = len(self.module_names) self.P, self.W, self.b = _build_validity_mats(self.module_names) def module_list2tokens(self, module_list, T=None): layout_tokens = [self.name2idx_dict[name] for name in module_list] if T is not None: if len(module_list) >= T: raise ValueError('Not enough time steps to add <eos>') layout_tokens += [self.EOS_idx]*(T-len(module_list)) return layout_tokens def _layout_tokens2str(self, layout_tokens): return ' '.join([self.module_names[idx] for idx in layout_tokens]) def assemble_refer(self, text_att, round_id, reuse_stack): # aliases weaver = self.weaver executor = self.executor # compute the scores logits = [] for find_arg in reuse_stack: # compute the weights for each of the attention map inputs = (text_att, find_arg[1], round_id, find_arg[2]) logits.append(weaver.align_text(*inputs)) # exponential each logit weights = [] for ii in logits: weights.append(weaver.exp(ii)) # normalize the weights if len(weights) < 2: norm = weights[0] else: norm = weaver.add(weights[0], weights[1]) for ii in weights[2:]: norm = weaver.add(norm, ii) for index, ii in enumerate(weights): weights[index] = weaver.divide(ii, norm) # multiply the attention with softmax weight prev_att = [] for (att, _, _, _, _), weight in zip(reuse_stack, weights): prev_att.append(weaver.weight_attention(att, weight)) # add all attentions to get the result if len(prev_att) < 2: out = prev_att[0] else: out = weaver.add_attention(prev_att[0], prev_att[1]) for ii in prev_att[2:]: out = weaver.add_attention(out, ii) return out, weights, logits def assemble_exclude(self, text_att, round_id, reuse_stack): # aliases weaver = self.weaver executor = self.executor # compute the scores weights = [] exclude_att = reuse_stack[0][0] if len(reuse_stack) > 1: for find_arg in reuse_stack: exclude_att = weaver.max_attention(exclude_att, find_arg[0]) return weaver.normalize_exclude(exclude_att) # code to check if the program makes sense # typically contains all the checks from the _assemble_program method def sanity_check_program(self, layout): decode_stack = [] for t_id, cur_op_id in enumerate(layout): cur_op_name = self.module_names[cur_op_id] # <eos> would mean stop if cur_op_id == self.EOS_idx: break # insufficient number of inputs num_inputs = _module_input_num[cur_op_name] if len(decode_stack) < num_inputs: return False, 'Insufficient inputs' # read the inputs inputs = [] for ii in range(num_inputs): arg_type = decode_stack.pop() # cannot consume anything but attention if arg_type != 'att': return False, 'Intermediate not attention' decode_stack.append(_module_output_type[cur_op_name]) # Check if only one element is left if len(decode_stack) != 1: return False, 'Left with more than one outputs' # final output is not answer type elif decode_stack[0] != 'ans': return False, 'Final output not an answer' return True, 'Valid program' def assemble(self, layout_tokens, executor, visualize=False): # layout_tokens_batch is a numpy array with shape [T, N], # containing module tokens and <eos>, in Reverse Polish Notation. # internalize executor and weaver self.executor = executor # build a weaver if hasattr(self, 'weaver'): del self.weaver weaver = executor.create_weaver() self.weaver = weaver # visualize flag self.visualize = visualize # get extent of layout tokens max_time, batch_size = layout_tokens['ques'].shape num_rounds = executor.params['num_rounds'] batch_size = batch_size // num_rounds outputs = [] reuse = [[]] * batch_size cap_invalid_prog = [] ques_invalid_prog = [] # program on questions and captions, if needed cap_tokens = layout_tokens.get('caption', None) ques_tokens = layout_tokens['ques'] for b_id in range(batch_size): image = weaver.batch_input(executor._loom_types['image'], b_id) if executor.params['use_fact']: fact = weaver.batch_input(executor._loom_types['fact'], b_id) else: fact = None # run module networks on captions only if needed if 'nmn-cap' in executor.params['model']: # convert caption to text type cap = weaver.batch_input(executor._loom_types['caption'], b_id) cap_text = weaver.convert_cap_in(cap) # convert cap feature to text feature for alignment cap_feat = weaver.batch_input(executor._loom_types['cap_feat'], b_id) cap_feat = weaver.convert_cap_feat(cap_feat) # collect root node outputs for down the rounds tokens = cap_tokens[:, num_rounds * b_id : num_rounds * (b_id + 1)] inputs = (image, cap_text, None, cap_feat, tokens, []) out, reuse[b_id], invalid_prog = self._assemble_program(*inputs) cap_invalid_prog.extend(invalid_prog) # convert context to align type cap_out = [weaver.convert_cap_out(ii) for ii in out['comp']] outputs.extend(cap_out) # add the visualization outputs, if needed if visualize: outputs.extend([ii[0] for ii in out['vis']['att'] if ii[1]==0]) # Now run program on questions text = weaver.batch_input(executor._loom_types['text'], b_id) text_feat = weaver.batch_input(executor._loom_types['text_feat'], b_id) # collect root node outputs for down the rounds # tuples are immutable, recreate to ensure caption is round 0 round_zero = weaver.batch_input(executor._loom_types['round'], 0) cur_reuse = [(ii[0], ii[1], round_zero, ii[3], ii[4]) for ii in reuse[b_id] if ii[3] == 0] tokens = ques_tokens[:, num_rounds*b_id : num_rounds*(b_id+1)] inputs = (image, text, fact, text_feat, tokens, cur_reuse) out, _, invalid_prog = self._assemble_program(*inputs) ques_invalid_prog.extend(invalid_prog) outputs.extend(out['comp']) if visualize: outputs.extend([ii for ii, _ in out['vis']['att']]) outputs.extend(out['vis']['weights']) invalid_prog = {'ques': ques_invalid_prog, 'cap': cap_invalid_prog} return weaver, outputs, invalid_prog def _assemble_program(self, image, text, fact, text_feat, tokens, reuse_stack): # aliases weaver = self.weaver executor = self.executor # get extent of layout tokens max_time, batch_size = tokens.shape num_rounds = executor.params['num_rounds'] outputs = [] validity = [] # for visualizing internal nodes vis_outputs = {'att': [], 'weights': [], 'logits': []} for r_id in range(num_rounds): layout = tokens[:, r_id] invalid_prog = False round_id = weaver.batch_input(executor._loom_types['round'], r_id) if fact is not None: fact_slice = weaver.slice_fact(fact, round_id) # valid layout must contain <eos>. Assembly fails if it doesn't. if not np.any(layout == self.EOS_idx): invalid_prog = True decode_stack = [] penult_out = None # penultimate output for t_id in range(len(layout)): weights = None time = weaver.batch_input(executor._loom_types['time'], t_id) text_att = weaver.slice_text(text, round_id, time) # slice the text feature text_feat_slice = weaver.slice_text_feat(text_feat, round_id, time) cur_op_id = layout[t_id] cur_op_name = self.module_names[cur_op_id] # <eos> would mean stop if cur_op_id == self.EOS_idx: break # insufficient number of inputs num_inputs = _module_input_num[cur_op_name] if len(decode_stack) < num_inputs: invalid_prog = True break # read the inputs inputs = [] for ii in range(num_inputs): arg, arg_type = decode_stack.pop() # cannot consume anything but attention if arg_type != 'att': invalid_prog = True break inputs.append(arg) # switch cases if cur_op_name == '_Find': out = weaver.find(image, text_att) # collect in reuse stack (always) #if fact is None: reuse_stack.append((out, text_feat_slice, round_id, r_id, t_id)) #reuse_stack.append((out, text_att, round_id, r_id, t_id)) if cur_op_name == '_Refer': if len(reuse_stack) == 0: print('Something wrong with Refer') continue # if baseline is in the model, take the last output if 'baseline' in self.executor.params['model']: out = reuse_stack[-1][0] else: inputs = (text_feat_slice, round_id, reuse_stack) out, weights, logits = self.assemble_refer(*inputs) if cur_op_name == '_Exclude': # clean up reuse stack to avoid current finds neat_stack = reuse_stack.copy() for prev_time in range(t_id - 1, 0, -1): if neat_stack[-1][-2] == prev_time: neat_stack.pop(-1) inputs = (text_att, round_id, neat_stack) out = self.assemble_exclude(*inputs) # collect in reuse stack #reuse_stack.append((out, text_att, round_id, r_id, t_id)) elif cur_op_name == '_Transform': out = weaver.transform(inputs[0], image, text_att) elif cur_op_name == '_Describe': out = weaver.describe(inputs[0], image, text_att) # TODO: Do this more carefully! penult_out = arg elif cur_op_name == '_And': out = weaver.and_op(inputs[0], inputs[1]) # collect outputs from all modules (visualize) if self.visualize: if _module_output_type[cur_op_name] == 'att': vis_outputs['att'].append((out, r_id)) if weights is not None: vis_outputs['weights'].extend(weights) #vis_outputs['logits'].extend(logits) # also add weights to usual outputs #if weights is not None: print(r_id, len(weights)) if weights is not None: if executor.params['train_mode']: outputs.extend(logits) decode_stack.append((out, _module_output_type[cur_op_name])) # Check if only one element is left if len(decode_stack) != 1: invalid_prog = True # final output is not answer type elif decode_stack[0][1] != 'ans': invalid_prog = True # record program validity validity.append(invalid_prog) # if program is invalid, return zeros if invalid_prog: outputs.append(weaver.invalid(image)) else: outputs.append(decode_stack[-1][0]) if fact is not None: # record fact embedding against penultimate output reuse_stack.append((penult_out, fact_slice, round_id, r_id, -1)) return {'comp': outputs, 'vis': vis_outputs}, reuse_stack, validity #------------------------------------------------------------------------------
corefnmn-main
models_vd/assembler.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Main CorefNMN model class. Explicit visual coreference resolution in visual dialog using neural module networks. Takes parameters and assemblers as input. Author: Satwik Kottur """ from __future__ import absolute_import, division, print_function import numpy as np import tensorflow as tf import tensorflow_fold as td from models_vd.generator import ProgramGenerator from models_vd.executor import ProgramExecutor from models_vd.decoder import AnswerDecoder from util import support class CorefNMN: def __init__(self, params, assemblers, reuse=None): # train mode params['train_mode'] = 'test_split' not in params print('Building model with train_model as: ' + str(params['train_mode'])) self.params = params self.assemblers = assemblers # module phases self.phases = ['generate_program', 'execute_program', 'generate_answer'] # initializing input and output placeholders self.inputs = {ii: {} for ii in self.phases} self.outputs = self.inputs.copy() # build place holders for inputs and outputs in the tensorflow graph holders = self._build_placeholders(params) self.holders = holders with tf.variable_scope(params['model'], reuse=reuse): # keep track of all outputs output_pool = {} # Part 1: Seq2seq RNN to generate module layout tokens with tf.variable_scope('generate_program'): self.generator = ProgramGenerator(holders, assemblers['ques'], params) self.inputs['generate_program'] = self.generator.get_inputs() self.outputs['generate_program'] = self.generator.get_outputs() # add outputs to pool output_pool.update(self.outputs['generate_program']) # Part 2: Neural Module Network with tf.variable_scope('execute_program'): self.executor = ProgramExecutor(holders, output_pool, assemblers['cap'], params) self.inputs['execute_program'] = self.executor.get_inputs() self.outputs['execute_program'] = self.executor.get_outputs() # add outputs to pool output_pool.update(self.outputs['execute_program']) # Part 3: Seq2Seq decoding of the answer with tf.variable_scope('generate_answer'): self.decoder = AnswerDecoder(holders, output_pool, params) self.inputs['generate_answer'] = self.decoder.get_inputs() self.outputs['generate_answer'] = self.decoder.get_outputs() # pool up all the outputs pooled_dict = [] outputs = self.outputs.copy() for ii in outputs: pooled_dict += outputs[ii].items() self.pooled_outputs = dict(pooled_dict) #--------------------------------------------------------------------------- def _build_placeholders(self, params): inputs = {} # Phase 1 - program generation size = [params['max_enc_len'], None] inputs['ques'] = tf.placeholder(tf.int32, size, 'ques') inputs['ques_len'] = tf.placeholder(tf.int32, [None], 'ques_len') inputs['prog_gt'] = tf.placeholder(tf.int32, [None, None], 'prog') size = [None, params['max_enc_len']] inputs['cap'] = tf.placeholder(tf.int32, size, 'caption') inputs['cap_len'] = tf.placeholder(tf.int32, [None], 'cap_len') inputs['cap_prog_gt'] = tf.placeholder(tf.int32, [None, None], 'cap_prog_gt') # mask for pairwise program token loss inputs['prog_att_mask'] = tf.placeholder(tf.float32, [None, None, None], 'mask') # for supervising placeholders if params['supervise_attention']: size = [params['max_dec_len'], params['max_enc_len'], None, 1] inputs['prog_att_gt'] = tf.placeholder(tf.float32, size, 'gt_att') inputs['cap_att_gt'] = tf.placeholder(tf.float32, size, 'cap_att') # masking out relevant parts for complete supervision inputs['ques_super_mask'] = tf.placeholder(tf.float32, size, 'q_mask') inputs['cap_super_mask'] = tf.placeholder(tf.float32, size, 'c_mask') inputs['supervise_switch'] = tf.placeholder(tf.bool, [], 'supervise_switch') # tie encoder and decoder size = [params['num_layers'], None, params['lstm_size']] inputs['enc_dec_h'] = tf.placeholder(tf.float32, size, 'enc_dec_h') inputs['enc_dec_c'] = tf.placeholder(tf.float32, size, 'enc_dec_c') # Phase 2 - program execution size = [None, params['h_feat'], params['w_feat'], params['d_feat']] inputs['img_feat'] = tf.placeholder(tf.float32, size, 'img_feat') inputs['prog_validity'] = tf.placeholder(tf.bool, [None]) # Phase 2.5 - caption execution inputs['align_gt'] = tf.placeholder(tf.int32, [None], 'align_cap') inputs['prog_validity_cap'] = tf.placeholder(tf.bool, [None]) # Phase 3 - answer generation inputs['ans_in'] = tf.placeholder(tf.int32, [None, None], 'ans_in') inputs['ans_out'] = tf.placeholder(tf.int32, [None, None], 'ans_out') inputs['ans'] = tf.placeholder(tf.int32, [None, None], 'ans') inputs['ans_len'] = tf.placeholder(tf.int32, [None], 'ans_len') # if discriminative, encode options # NOTE: num_options hard coded to 100 num_options = 100 size = [None, params['max_enc_len'], num_options] inputs['opt'] = tf.placeholder(tf.int32, size, 'opt_out') inputs['opt_len'] = tf.placeholder(tf.int32, [None, num_options], 'opt_len') inputs['gt_ind'] = tf.placeholder(tf.int32, [None], 'gt_ind') # history size = [None, params['num_rounds'], 2 * params['max_enc_len']] inputs['hist'] = tf.placeholder(tf.int32, size, 'history') size = [None, params['num_rounds']] inputs['hist_len'] = tf.placeholder(tf.int32, size, 'hist_len') # place holders for fact size = [None, params['max_enc_len']] inputs['fact'] = tf.placeholder(tf.int32, size, 'fact') inputs['fact_len'] = tf.placeholder(tf.int32, [None], 'fact_len') if not self.params['train_mode']: # additional placeholders during evaluation size = [None, params['lstm_size']] inputs['context'] = tf.placeholder(tf.float32, size, 'context') size = [1, 1, None, params['lstm_size']] inputs['cap_enc'] = tf.placeholder(tf.float32, size, 'cap_enc') size = [None, None, None, params['lstm_size']] inputs['ques_enc'] = tf.placeholder(tf.float32, size, 'ques_enc') size = [None, params['lstm_size']] inputs['hist_enc'] = tf.placeholder(tf.float32, size, 'hist_enc') size = [params['max_dec_len'], None, params['text_embed_size']] inputs['ques_attended'] = tf.placeholder(tf.float32, size, 'ques_att') inputs['cap_attended'] = tf.placeholder(tf.float32, size, 'cap_att') return inputs #--------------------------------------------------------------------------- # method to initialize training related attributes def setup_training(self): # answer prediction loss total_loss = self.outputs['generate_answer']['ans_token_loss'] # supervised sequence prediction loss total_loss += self.outputs['generate_program']['prog_pred_loss'] if 'nmn-cap' in self.params['model'] and self.params['cap_alignment']: total_loss += self.outputs['execute_program']['cap_align_loss'] # add the total loss to the list of outputs self.pooled_outputs['total_loss'] = total_loss # setters and getters def get_total_loss(self): return self.pooled_outputs['total_loss'] def add_solver_op(self, op): self.pooled_outputs['solver'] = op #--------------------------------------------------------------------------- def run_train_iteration(self, batch, sess): iter_loss = {} # collect feeds from all subcomponents feeder = self.generator.produce_feed_dict(batch) feeder.update(self.executor.produce_feed_dict(batch)) feeder.update(self.decoder.produce_feed_dict(batch)) # run all subcomponents together output = sess.run(self.pooled_outputs, feed_dict=feeder) # record all the loss values iter_loss['prog'] = output['prog_pred_loss'] if 'nmn-cap' in self.params['model']: iter_loss['align'] = output['cap_align_loss'] else: iter_loss['align'] = 0. iter_loss['ans'] = output['ans_token_loss'] iter_loss['total'] = output['total_loss'] return iter_loss, None #--------------------------------------------------------------------------- def run_evaluate_iteration(self, batch, sess, eval_options=True): # Part 0 & 1: Run Convnet and generate module layout feeder = self.generator.produce_feed_dict(batch) output = sess.run(self.outputs['generate_program'], feed_dict=feeder) # Part 2: Run NMN and learning steps feeder = self.executor.produce_feed_dict(batch, output) output.update(sess.run(self.outputs['execute_program'], feed_dict=feeder)) if 'pred_tokens' in output: output['matches'] = [batch['gt_layout'] == output['pred_tokens']] # if options are not to be scored if not eval_options: return None, outputs # Part 3: Run the answer generation language model (disc | gen) if self.params['decoder'] == 'gen': option_batch = output.copy() option_batch.update(batch) phase_output = self.outputs['generate_answer']['llh'] num_options = len(batch['opt_len']) batch_size = batch['opt_len'][0].shape[0] option_scores = np.zeros((batch_size, num_options)) option_probs = np.zeros((batch_size, num_options)) for opt_id in range(num_options): option_batch['ans_in'] = batch['opt_in'][opt_id] option_batch['ans_out'] = batch['opt_out'][opt_id] option_batch['ans_len'] = batch['opt_len'][opt_id] feeder = self.decoder.produce_feed_dict(option_batch, output) scores = sess.run(phase_output, feed_dict=feeder) option_scores[:, opt_id] = scores # Part 3: Run the decoder model elif self.params['decoder'] == 'disc': batch_size = batch['opt_len'][0].shape[0] feeder = self.decoder.produce_feed_dict(batch, output) output.update(sess.run(self.outputs['generate_answer'], feeder)) option_scores = output['scores'] # extract ground truth score, and get ranks gt_scores = option_scores[(range(batch_size), batch['gt_ind'])] ranks = np.sum(option_scores > gt_scores.reshape(-1, 1), axis=1) + 1 output['scores'] = option_scores return ranks, output #--------------------------------------------------------------------------- def run_visualize_iteration(self, batch, sess, eval_options=True): output = batch.copy() # Part 0 & 1: Run Convnet and generate module layout feeder = self.generator.produce_feed_dict(batch) output.update(sess.run(self.outputs['generate_program'], feeder)) # Part 2: Run NMN and learning steps feeder = self.executor.produce_feed_dict(batch, output, True) output.update(sess.run(self.outputs['execute_program'], feeder)) # segregate weights and attention maps output['intermediates'] = self.executor.segregrate_outputs(output) if not eval_options: return None, output # Part 3: Run the answer generation language model if self.params['decoder'] == 'gen': option_batch = output.copy() option_batch.update(batch) phase_output = self.outputs['generate_answer']['llh'] # Part 3: Run the answer generation language model for each option num_options = len(batch['opt_len']) batch_size = batch['opt_len'][0].shape[0] option_scores = np.zeros((batch_size, num_options)) for opt_id in range(num_options): option_batch['ans_in'] = batch['opt_in'][opt_id] option_batch['ans_out'] = batch['opt_out'][opt_id] option_batch['ans_len'] = batch['opt_len'][opt_id] feeder = self.decoder.produce_feed_dict(option_batch, output) scores = sess.run(phase_output, feed_dict=feeder) option_scores[:, opt_id] = scores # Part 3: Run the decoder model elif self.params['decoder'] == 'disc': batch_size = batch['opt_len'][0].shape[0] feeder = self.decoder.produce_feed_dict(batch, output) output.update(sess.run(self.outputs['generate_answer'], feeder)) option_scores = output['scores'] # extract ground truth score, and get ranks gt_scores = option_scores[(range(batch_size), batch['gt_ind'])] ranks = np.sum(option_scores > gt_scores.reshape(-1, 1), axis=1) + 1 output['scores'] = option_scores return ranks, output #-------------------------------------------------------------------------
corefnmn-main
models_vd/model.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Main class to generate programs for questions and captions. Program generator for explicit visual coreference resolution model in visual dialog using neural module networks, called CorefNMN. This subcomponent uses memory network augmentation to figure out if an entity has been seen before and/or if it needs resolution using history. Author: Satwik Kottur """ import numpy as np import tensorflow as tf from models_vd.generator_attnet import AttSeq2Seq from util import support # alias linear = tf.contrib.layers.fully_connected # behavior based on type of model class ProgramGenerator: def __init__(self, inputs, assembler, params): """Initialize program generator. Args: inputs: assembler: params: """ self.params = params outputs = {} used_inputs = [] # create embedding matrix with tf.variable_scope('embed', reuse=None) as embed_scope: size = [params['text_vocab_size'], params['text_embed_size']] embed_mat = tf.get_variable('embed_mat', size) # remember the scope for further use params['embed_scope'] = embed_scope cell = tf.contrib.rnn.BasicLSTMCell(params['lstm_size']) #-------------------------------------------------------- # if program is to be predicted if 'prog' in params['model']: # define a constant for internal use use_gt_prog = tf.constant(params['use_gt_prog'], dtype=tf.bool) # use a low level model and construct internals self.rnn = AttSeq2Seq(inputs, use_gt_prog, assembler, params) # if memory based generator is used if params['generator'] == 'mem': used_inputs.extend(['hist', 'hist_len']) outputs['encoder_output'] = self.rnn.encoder_outputs outputs['pred_tokens'] = self.rnn.predicted_tokens outputs['neg_entropy'] = tf.reduce_mean(self.rnn.neg_entropy) # check if attHistory exists if hasattr(self.rnn, 'att_history'): outputs['att_history'] = self.rnn.att_history # also add the encoder states (based on the flag) concat_list = [ii.h for ii in self.rnn.encoder_states] outputs['enc_dec_h'] = tf.stack(concat_list) concat_list = [ii.c for ii in self.rnn.encoder_states] outputs['enc_dec_c'] = tf.stack(concat_list) # alias attention = self.rnn.atts # if attention is to be supervised if params['supervise_attention']: # get mask out of the program supervision mask = tf.cast(inputs['prog_att_gt'] > 0, tf.float32) used_inputs.append('prog_att_gt') # binary supervision loss sum_mask = tf.reduce_sum(mask, 1) sum_mask = tf.expand_dims(sum_mask, 1) sum_mask = tf.cast(sum_mask > 0, tf.float32) tile_size = (1, self.params['max_enc_len'], 1, 1) tile_mask = tf.tile(sum_mask, tile_size) num_tokens = tf.maximum(tf.reduce_sum(tile_mask), 1) # stop gradients num_tokens = tf.stop_gradient(num_tokens) tile_mask = tf.stop_gradient(tile_mask) criterion = tf.nn.sigmoid_cross_entropy_with_logits att_loss = criterion(labels=mask,logits=attention) att_loss = tf.reduce_sum(tf.multiply(att_loss, tile_mask)) att_loss = att_loss / num_tokens outputs['att_loss'] = att_loss # compute attended questions here # word_vec has shape [T_decoder, N, 1] word_vecs = tf.reduce_sum(attention * self.rnn.embedded_input_seq, axis=1) size = [params['max_dec_len'], None, params['text_embed_size']] word_vecs.set_shape(size) outputs['attention'] = attention outputs['ques_attended'] = word_vecs #outputs['ques_attended'] = self.rnn.word_vecs # log probability of each generated sequence outputs['log_seq_prob'] = tf.reduce_sum( tf.log(self.rnn.token_probs + 1e-10), axis=0) outputs['ques_prog_loss'] = tf.reduce_mean(-outputs['log_seq_prob']) q_output = tf.transpose(self.rnn.encoder_outputs, perm=[1, 0, 2]) q_output = support.last_relevant(q_output, inputs['ques_len']) # bloat the first two dimensions q_output = tf.expand_dims(q_output, axis=0) outputs['ques_enc'] = tf.expand_dims(q_output, axis=0) # keep track of inputs actually used used_inputs.extend(['ques', 'ques_len', 'prog_gt']) #------------------------------------------------------------------ # programs for captions if 'nmn-cap' in params['model']: # define a constant for internal use use_gt_prog = tf.constant(params['use_gt_prog'], dtype=tf.bool) # use a low level model and construct internals # pretend captions to be questions for code reusability fake_ins = {'ques': tf.transpose(inputs['cap'], perm=[1, 0]), 'ques_len': inputs['cap_len'], 'prog_gt': inputs['cap_prog_gt']} function_ins = [fake_ins, use_gt_prog, assembler, params] # if captions and questions share encoder # default value for sharing encoding self.params['share_encoder'] = self.params.get('share_encoder', False) if not self.params['share_encoder']: function_ins[0]['fake'] = True else: function_ins += [True] self.rnn_cap = AttSeq2Seq(*function_ins) used_inputs.extend(['cap', 'cap_len', 'cap_prog_gt']) outputs['pred_tokens_cap'] = self.rnn_cap.predicted_tokens outputs['neg_entropy_cap'] = tf.reduce_mean(self.rnn_cap.neg_entropy) #------------------------------------------------------------------ # alias attention = self.rnn_cap.atts # if attention is to be supervised if params['supervise_attention']: # get mask out of the program supervision mask = tf.cast(inputs['cap_att_gt'] > 0, tf.float32) # binary supervision loss sum_mask = tf.reduce_sum(mask, 1) sum_mask = tf.expand_dims(sum_mask, 1) sum_mask = tf.cast(sum_mask > 0, tf.float32) tile_size = (1, self.params['max_enc_len'], 1, 1) tile_mask = tf.tile(sum_mask, tile_size) num_tokens = tf.maximum(tf.reduce_sum(tile_mask), 1) # stop gradients num_tokens = tf.stop_gradient(num_tokens) tile_mask = tf.stop_gradient(tile_mask) criterion = tf.nn.sigmoid_cross_entropy_with_logits att_loss = criterion(labels=mask,logits=attention) att_loss = tf.reduce_sum(tf.multiply(att_loss, tile_mask)) att_loss_cap = att_loss / num_tokens # additional add the multiplier outputs['att_loss_cap'] = att_loss_cap used_inputs.append('cap_att_gt') # compute attended questions here # word_vec has shape [T_decoder, N, 1] word_vecs = tf.reduce_sum(attention * self.rnn_cap.embedded_input_seq, axis=1) size = [params['max_dec_len'], None, params['text_embed_size']] word_vecs.set_shape(size) outputs['attention_cap'] = attention outputs['cap_attended'] = word_vecs #outputs['cap_attended'] = self.rnn_cap.word_vecs #------------------------------------------------------------------ # log probability of each generated sequence log_prob_cap_token = tf.log(self.rnn_cap.token_probs + 1e-10) outputs['log_seq_prob_cap'] = tf.reduce_sum(log_prob_cap_token, axis=0) outputs['cap_prog_loss'] = tf.reduce_mean(-outputs['log_seq_prob_cap']) c_output = tf.transpose(self.rnn_cap.encoder_outputs, perm=[1, 0, 2]) c_output = support.last_relevant(c_output, inputs['cap_len']) # bloat the first two dimensions c_output = tf.expand_dims(c_output, axis=0) outputs['cap_enc'] = tf.expand_dims(c_output, axis=0) used_inputs.extend(['cap', 'cap_len']) #------------------------------------------------------------------ # setup the inputs and outputs # should have at least one loss total_loss = (outputs.get('ques_prog_loss', tf.constant(0.0)) + outputs.get('cap_prog_loss', tf.constant(0.0)) + outputs.get('att_loss', tf.constant(0.0)) + outputs.get('att_loss_cap', tf.constant(0.0))) outputs['prog_pred_loss'] = total_loss self.outputs = outputs self.inputs = {ii: inputs[ii] for ii in used_inputs} #------------------------------------------------------------ # setters and getters def get_outputs(self): return self.outputs def get_inputs(self): return self.inputs #------------------------------------------------------------ # produce feed dict def produce_feed_dict(self, batch, prev_output=None): feed_dict = {} feed_dict[self.inputs['ques']] = batch['ques'] feed_dict[self.inputs['ques_len']] = batch['ques_len'] # add program if 'prog' in self.params['model']: feed_dict[self.inputs['prog_gt']] = batch['gt_layout'] # attention for program if self.params['supervise_attention']: feed_dict[self.inputs['prog_att_gt']] = batch['gt_att'] # add captions if 'cap' in self.params['model']: feed_dict[self.inputs['cap']] = batch['cap'] feed_dict[self.inputs['cap_len']] = batch['cap_len'] # add history if self.params['generator'] == 'mem': feed_dict[self.inputs['hist']] = batch['hist'] feed_dict[self.inputs['hist_len']] = batch['hist_len'] # nmn on captions if 'nmn-cap' in self.params['model']: feed_dict[self.inputs['cap']] = batch['sh_cap'] feed_dict[self.inputs['cap_len']] = batch['sh_cap_len'] feed_dict[self.inputs['cap_prog_gt']] = batch['sh_cap_prog'] if self.params['supervise_attention']: feed_dict[self.inputs['cap_att_gt']] = batch['sh_cap_att'] return feed_dict #------------------------------------------------------------
corefnmn-main
models_vd/generator.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Module definitions for Loom API. Explicit visual coreference resolution in visual dialog using neural module networks. Neural module definitions. Author: Satwik Kottur """ from __future__ import absolute_import, division, print_function import numpy as np import tensorflow as tf from tensorflow import convert_to_tensor as to_T from tensorflow_fold.public import loom from util.cnn import fc_layer as fc, conv_layer as conv from util.empty_safe_conv import empty_safe_1x1_conv as _1x1_conv from util.empty_safe_conv import empty_safe_conv as _conv def add_spatial_coord_map(image_feat_grid): image_feat_shape = tf.shape(image_feat_grid) N = image_feat_shape[0] # static dimensions #H = image_feat_shape[1] #W = image_feat_shape[2] H, W = image_feat_grid.shape.as_list()[1:3] x_map = tf.tile( tf.reshape(tf.linspace(-1., 1., W), [1, 1, -1, 1]), to_T([N, H, 1, 1])) y_map = tf.tile( tf.reshape(tf.linspace(-1., 1., H), [1, -1, 1, 1]), to_T([N, 1, W, 1])) # stop gradient on coords_map (needed to fix the tile grad error on TF 1.0.0) coords_map = tf.stop_gradient(tf.concat([x_map, y_map], axis=3)) image_feat_with_coords = tf.concat([image_feat_grid, coords_map], axis=3) # set shapes of the new feature maps image_feat_static_shape = image_feat_grid.get_shape().as_list() image_feat_static_shape[3] += 2 image_feat_with_coords.set_shape(image_feat_static_shape) image_feat_static_shape[3] = 2 coords_map.set_shape(image_feat_static_shape) return image_feat_with_coords, coords_map #------------------------------------------------------------------------------ # Simple tensorflow ops as loom ops class BinaryLoomOp(loom.LoomOp): def __init__(self, in_types, out_types, op): self._op = op super(BinaryLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, inputs): arg1, arg2 = inputs return [self._op(arg1, arg2)] #------------------------------------------------------------------------------ class UnaryLoomOp(loom.LoomOp): def __init__(self, in_types, out_types, op): self._op = op super(UnaryLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, arg): return [self._op(arg[0])] #------------------------------------------------------------------------------ # slice text attention class SliceTextLoomOp(loom.LoomOp): def __init__(self, in_types, out_types): super(SliceTextLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, inputs): text, round_id, time = inputs round_squeeze = tf.squeeze(round_id, -1) time_squeeze = tf.squeeze(time, -1) # select the right round shape = text.shape.as_list() B = tf.shape(text)[0] num_rounds, T, text_dim = shape[1], shape[2], shape[3] indices = round_squeeze + num_rounds * tf.range(B) # flatten result = tf.gather(tf.reshape(text, [-1, T, text_dim]), indices) # select the right time indices = time_squeeze + T * tf.range(B) # flatten result = tf.gather(tf.reshape(result, [-1, text_dim]), indices) return [result] #------------------------------------------------------------------------------ # slice answer embeddding class SliceAnswerLoomOp(loom.LoomOp): def __init__(self, in_types, out_types): super(SliceAnswerLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, inputs): answer, round_id = inputs round_squeeze = tf.squeeze(round_id, -1) # select the right round shape = answer.shape.as_list() B = tf.shape(answer)[0] num_rounds, text_dim = shape[1], shape[2] indices = round_squeeze + num_rounds * tf.range(B) result = tf.gather(tf.reshape(answer, [-1, text_dim]), indices) return [result] #-------------------------------------------------------------------- # attention weighting class AttentionWeightLoomOp(loom.LoomOp): def __init__(self, in_types, out_types): super(AttentionWeightLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, inputs): vis_att, scalar = inputs # simple weighting scalar = tf.expand_dims(tf.expand_dims(scalar, -1), -1) att_grid = tf.multiply(vis_att, scalar) return [att_grid] #-------------------------------------------------------------------- # identity op to convert types class IdentityLoomOp(loom.LoomOp): def __init__(self, in_types, out_types): super(IdentityLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, inputs): return inputs #-------------------------------------------------------------------- # normalize and complementary attention class NormalizeExcludeLoomOp(loom.LoomOp): def __init__(self, in_types, out_types): super(NormalizeExcludeLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, inputs): att_grid = inputs[0] # complement the attention max_entry = tf.reduce_max(tf.reduce_max(att_grid, 1), 1) max_entry = tf.expand_dims(tf.expand_dims(max_entry, 1), 1) att_grid = att_grid / max_entry att_grid = 1 - att_grid # normalize norms = tf.reduce_sum(tf.reduce_sum(att_grid, 1), 1) norms = tf.expand_dims(tf.expand_dims(norms, 1), 1) # cutoff norms = tf.clip_by_value(norms, 1e-6, 1e6) att_grid = att_grid / norms return [att_grid] #------------------------------------------------------------------- class AlignTextLoomOp(loom.LoomOp): """ Takes in two text attention and computes the alignment between them Mapping: text_param x text_param -> scalar Input: text_param: [N, D_txt] text_param: [N, D_txt] Output: scalar: [N, 1] Implementation: Parameters typically contain: map_dim = 1024 module_scope = alignTextOp reuse = True scope """ def __init__(self, in_types, out_types, params): self._params = params self._scope = params.get('scope', 'alignTextOp') self._module_scope = params['module_scope'] self._reuse = params.get('reuse', None) super(AlignTextLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, inputs): """ Inputs: image feature for the example text attention for all modules for the example time id for current module """ text_att1, text_att2, round_id1, round_id2 = inputs # text feature dimension, intermediate mapping dimension # batch size, image feature height and width text_dim = text_att1.shape.as_list()[-1] map_dim = self._params['map_dim'] embed_dim = self._params['text_embed_size'] with tf.variable_scope(self._module_scope): with tf.variable_scope(self._scope, reuse=self._reuse): # concat both text attentions, along with round diff (if need be) concat_list = [text_att1, text_att2] # additional weight for the distance to the past if self._params['amalgam_text_feats']: round_diff = tf.cast(round_id1 - round_id2, tf.float32) concat_list.append(round_diff) concat = tf.concat(concat_list, axis=-1) # deeper 2 layer align network weights = tf.contrib.layers.fully_connected(concat, embed_dim) weights = tf.contrib.layers.fully_connected(weights, 1, activation_fn=None) return [weights] #-------------------------------------------------------------------- # Modules as Loom Ops class FindLoomOp(loom.LoomOp): """ Mapping: image_feat_grid x text_param -> att_grid Input: image_feat_grid: [N, H, W, D_im] text_param: [N, D_txt] Output: att_grid: [N, H, W, 1] Implementation: 1. Elementwise multiplication between image_feat_grid and text_param 2. L2-normalization 3. Linear classification Parameters typically contain: map_dim = 1024 module_scope = findModule reuse = True scope """ def __init__(self, in_types, out_types, params): self._params = params self._scope = params.get('scope', 'find_module') self._module_scope = params['module_scope'] self._reuse = params.get('reuse', None) super(FindLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, inputs): """ Inputs: image feature for the example text attention for all modules for the example time id for current module """ img_feat, text_att = inputs # text feature dimension, intermediate mapping dimension # batch size, image feature height and width text_dim = text_att.shape.as_list()[-1] map_dim = self._params['map_dim'] N = tf.shape(img_feat)[0] H, W = img_feat.shape.as_list()[1:3] with tf.variable_scope(self._module_scope): with tf.variable_scope(self._scope, reuse=self._reuse): # image_feat_mapped has shape [N, H, W, map_dim] img_map = _1x1_conv('conv_image', img_feat, output_dim=map_dim) # nonlinearity img_map = tf.nn.relu(img_map) text_map = fc('fc_text', text_att, output_dim=map_dim) # nonlinearity text_map = tf.nn.relu(text_map) text_map = tf.reshape(text_map, [-1, 1, 1, map_dim]) # interact via element wise map eltwise_mult = tf.nn.l2_normalize(img_map * text_map, 3) att_grid = _1x1_conv('conv_eltwise', eltwise_mult, output_dim=1) # softmax att_grid_soft = tf.nn.softmax(tf.reshape(att_grid, [-1, H*W])) att_grid = tf.reshape(att_grid_soft, [-1, H, W, 1]) return [att_grid] #------------------------------------------------------------------------------ class AndLoomOp(loom.LoomOp): """ Mapping: att_grid x att_grid -> att_grid Input: input_0: [N, H, W, 1] input_1: [N, H, W, 1] Output: att_grid: [N, H, W, 1] Implementation: Take the elementwise-min Parameters typically contain: map_dim = 1024 module_scope = findModule reuse = True scope """ def __init__(self, in_types, out_types, params): self._params = params self._scope = params.get('scope', 'and_module') self._module_scope = params['module_scope'] self._reuse = params.get('reuse', None) super(AndLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, inputs): """ Inputs: visual attention outputs time id for current module """ input1, input2 = inputs with tf.variable_scope(self._module_scope): with tf.variable_scope(self._scope, reuse=self._reuse): att_grid = tf.minimum(input1, input2) # now L1 normalize norms = tf.einsum('ijkl->i', att_grid) norms = tf.reshape(norms, [-1, 1, 1, 1]) #norms = tf.tile(tf.reshape(norms, [-1, 1, 1, 1]), [1, H, W, 1]) # NOTE: if norm is too low, then clip it norms = tf.clip_by_value(norms, 1e-6, 1e6) att_grid = att_grid / norms return [att_grid] #------------------------------------------------------------------------------ class InvalidLoomOp(loom.LoomOp): """ Mapping: returns a context of zeros Output: context: [N, encodeSize] of zeros Implementation: Take the elementwise-min Parameters typically contain: map_dim = 1024 module_scope = findModule reuse = True scope """ def __init__(self, in_types, out_types, params): self._params = params self._scope = params.get('scope', 'invalid_module') self._module_scope = params['module_scope'] self._reuse = params.get('reuse', None) super(InvalidLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, inputs): """ Inputs: visual attention outputs time id for current module """ img_feat = inputs encode_size = self._params['encode_size'] with tf.variable_scope(self._module_scope): with tf.variable_scope(self._scope, reuse=self._reuse): N = tf.shape(img_feat)[0] context = tf.zeros([N, encode_size], tf.float32) return [context] #------------------------------------------------------------------------------ class DescribeLoomOp(loom.LoomOp): """ Mapping: att_grid -> context vector Input: input_0: [N, H, W, 1] Output: answer_scores: [N, outputSize] Implementation: 1. Extract visual features using the input attention map, and linear transform to map_dim 2. linear transform language features to map_dim 3. Element-wise multiplication of the two, l2_normalize, linear transform. """ def __init__(self, in_types, out_types, params): self._params = params self._scope = params.get('scope', 'describe_module') self._module_scope = params['module_scope'] self._reuse = params.get('reuse', None) super(DescribeLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, inputs): """ Inputs: output from the previous modules image feature for the example text attention for all modules for the example time id for current module """ vis_att, img_feat, text_att = inputs # text feature dimension, intermediate mapping dimension # batch size, image feature height and width text_dim = text_att.shape.as_list()[-1] map_dim = self._params['map_dim'] encode_size = self._params['encode_size'] N = tf.shape(img_feat)[0] H, W = img_feat.shape.as_list()[1:3] with tf.variable_scope(self._module_scope): with tf.variable_scope(self._scope, reuse=self._reuse): text_map = fc('fc_text', text_att, output_dim=map_dim) # nonlinearity text_map = tf.nn.relu(text_map) # att_feat, att_feat_1 has shape [N, D_vis] att_feats = tf.reduce_sum(img_feat * vis_att, axis=[1, 2]) img_map = tf.reshape(fc('fc_att', att_feats, output_dim=map_dim), [N, map_dim]) # nonlinearity img_map = tf.nn.relu(img_map) eltwise_mult = tf.nn.l2_normalize(img_map * text_map, 1) context = fc('fc_eltwise', eltwise_mult, output_dim=encode_size) return [context] #------------------------------------------------------------------------------ class TransformLoomOp(loom.LoomOp): """ Mapping: att_grid x text_param -> att_grid Input: input_0: [N, H, W, 1] text_param: [N, D_txt] Output: att_grid: [N, H, W, 1] Implementation: 1. Extract visual features using the input attention map, and linear transform to map_dim 2. linear transform language features to map_dim 3. Convolve image features to map_dim 4. Element-wise multiplication of the three, l2_normalize, linear transform. """ def __init__(self, in_types, out_types, params): self._params = params self._scope = params.get('scope', 'transform_module') self._module_scope = params['module_scope'] self._reuse = params.get('reuse', None) super(TransformLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, inputs): """ Inputs: output from the previous modules image feature for the example text attention for all modules for the example time id for current module """ vis_att, img_feat, text_att = inputs # text feature dimension, intermediate mapping dimension # batch size, image feature height and width text_dim = text_att.shape.as_list()[-1] map_dim = self._params['map_dim'] encode_size = self._params['encode_size'] N = tf.shape(img_feat)[0] H, W = img_feat.shape.as_list()[1:3] with tf.variable_scope(self._module_scope): with tf.variable_scope(self._scope, reuse=self._reuse): # image_feat_mapped has shape [N, H, W, map_dim] img_map = _1x1_conv('conv_image', img_feat, output_dim=map_dim) # nonlinearity img_map = tf.nn.relu(img_map) text_map = fc('fc_text', text_att, output_dim=map_dim) text_map = tf.reshape(text_map, [-1, 1, 1, map_dim]) # nonlinearity text_map = tf.nn.relu(text_map) att_feats = tf.reduce_sum(img_feat * vis_att, axis=[1, 2]) att_map = tf.reshape(fc('fc_att', att_feats, output_dim=map_dim), [N, 1, 1, map_dim]) # interact via element wise map eltwise_mult = tf.nn.l2_normalize(img_map * text_map * att_map, 3) att_grid = _1x1_conv('conv_eltwise', eltwise_mult, output_dim=1) # softmax att_grid_soft = tf.nn.softmax(tf.reshape(att_grid, [-1, H*W])) att_grid = tf.reshape(att_grid_soft, [-1, H, W, 1]) return [att_grid] #------------------------------------------------------------------------------
corefnmn-main
models_vd/modules.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Main class to execute programs using tensorflow fold loom API. Program execution for explicit visual coreference resolution model in visual dialog using neural module networks. Uses low-level loom API in tensorflow fold: https://github.com/tensorflow/fold/blob/master/tensorflow_fold/g3doc/py/loom.md for dynamic creation and execution of computation graphs. Author: Satwik Kottur """ import math import numpy as np import tensorflow as tf import tensorflow_fold as td from tensorflow_fold.public import loom import models_vd.modules as lm from models_vd.assembler import INVALID_EXPR, _module_output_type class ProgramExecutor: def __init__(self, inputs, output_pool, assembler, params): """Initialize program execution subcomponent. Args: inputs: output_pool: assembler: params: """ self.params = params # assembler dynamically assembles the graph at run time self._assembler = assembler #-------------------------------------------------------------------------- # A. Create loom data inputs loom_inputs, used_inputs = self._build_loom_inputs(inputs, output_pool) # B. Create loom data types types = self._build_loom_types() self._loom_types = types # C. Create loom operations loom_ops_dict = self._build_loom_ops() self._loom_ops = loom_ops_dict # create a loom object keys = ['text', 'image', 'answer', 'caption', 'time', 'fact', 'round', 'text_feat', 'cap_feat'] batch_ins = {types[k]: loom_inputs[k] for k in keys if k in loom_inputs} self._loom = loom.Loom(batch_inputs=batch_ins, named_ops=loom_ops_dict) # setup the inputs and outputs self.outputs = {'context': self.get_loom_output(), 'att': self.get_loom_output(types['attention']), 'logits': self.get_loom_output(types['float'])} # build alignment networks if 'nmn-cap' in params['model']: # binary classification over the alignment align_context = self.get_loom_output(types['align']) align_loss = self._build_align_network(align_context, inputs['align_gt']) self.outputs['cap_align_loss'] = align_loss used_inputs.append('align_gt') # add invalid prog to used inputs used_inputs.extend(['prog_validity', 'prog_validity_cap']) self.inputs = {ii: inputs[ii] for ii in used_inputs} # time/round place holder self.inputs['time'] = loom_inputs['time'] self.inputs['round'] = loom_inputs['round'] def create_weaver(self): """Creates a weaver object within the current loom object. """ return self._loom.make_weaver() def get_loom_output(self, type_shape=None): """Return the loom output given the type and shape. """ # default output is the context vector if type_shape is None: type_shape = self._loom_types['context'] return self._loom.output_tensor(type_shape) #--------------------------------------------------------- def _adjust_text(self, text): """ takes text attention output from generator modifies it to have certain dimensions """ params = self.params # transpose text to have batch first dimension text_mod = tf.transpose(text, [1, 0, 2]) # split across rounds shape = text_mod.shape.as_list() new_size = [-1, params['num_rounds'], shape[1], shape[2]] return tf.reshape(text_mod, new_size) def _build_fact_encoder(self, inputs): """ """ # local alias params = self.params with tf.variable_scope(self.params['embed_scope'], reuse=True): embed_mat = tf.get_variable('embed_mat') # flatten # embed the words output = tf.nn.embedding_lookup(embed_mat, inputs['fact']) # pass through encoder cell = tf.contrib.rnn.BasicLSTMCell(params['text_embed_size']) # begin decoding for ii in range(0, params['num_layers']): # dynamic rnn output, states = tf.nn.dynamic_rnn(cell, output, sequence_length=inputs['fact_len'], dtype=tf.float32, scope='fact_layer_%d' % ii) # split roundwise fact_embed = states[1] text_dim = fact_embed.shape.as_list()[-1] fact_embed = tf.reshape(fact_embed, [-1, params['num_rounds'], text_dim]) return fact_embed def _build_align_network(self, align_vec, align_gt): """ Takes the caption alignment vector in and produces a binary classifier """ params = self.params with tf.variable_scope('cap_align'): # construct an mlp on top to a binary classification align_vec = tf.contrib.layers.fully_connected(align_vec, params['lstm_size']//2) align_vec = tf.contrib.layers.fully_connected(align_vec, 2, activation_fn=None) # alias for criterion criterion = tf.nn.sparse_softmax_cross_entropy_with_logits align_loss = criterion(logits=align_vec, labels=align_gt) align_loss = tf.reduce_mean(align_loss) return align_loss def _build_loom_inputs(self, inputs, output_pool): ''' Sub routine to build the inputs to loom ''' # --------- grab required inputs ------------- loom_inputs = {} params = self.params # A. image loom_inputs['image'], _ = lm.add_spatial_coord_map(inputs['img_feat']) #loom_inputs['image'] = inputs['img_feat'] used_inputs = ['img_feat'] # B. text -- both question and caption key = 'ques_attended' if params['train_mode']: text = output_pool[key] else: text = inputs[key] used_inputs.append(key) adjusted_text = self._adjust_text(text) loom_inputs['text'] = adjusted_text batch_size = tf.shape(adjusted_text)[0] # C. Facts if params['use_fact']: loom_inputs['fact'] = self._build_fact_encoder(inputs) used_inputs.extend(['fact', 'fact_len']) concat_list = [adjusted_text] loom_inputs['text_feat'] = tf.concat(concat_list, -1) # C. Get captions, if needed if 'nmn-cap' in params['model']: key = 'cap_attended' if params['train_mode']: text = output_pool[key] else: text = inputs[key] used_inputs.append(key) loom_inputs['caption'] = self._adjust_text(text) loom_inputs['cap_feat'] = loom_inputs['caption'] # D. time steps (internal placeholder) loom_inputs['time'] = tf.placeholder(tf.int32, (None, 1), 'time') loom_inputs['round'] = tf.placeholder(tf.int32, (None, 1), 'round') return loom_inputs, used_inputs def _build_loom_types(self): """Method to build loom types for given setting. """ params = self.params encode_size = params['lstm_size'] # create and save loom types types = {} types['time'] = loom.TypeShape('int32', (1,), 'time') types['round'] = loom.TypeShape('int32', (1,), 'round') types['float'] = loom.TypeShape('float32', (1,)) types['context'] = loom.TypeShape('float32', (encode_size,), 'context') types['align'] = loom.TypeShape('float32', (encode_size,), 'align') size = (params['num_rounds'], params['text_embed_size']) types['fact'] = loom.TypeShape('float32', size, 'fact') size = (params['num_rounds'], params['max_dec_len'], params['text_embed_size']) types['text'] = loom.TypeShape('float32', size, 'text') types['caption'] = loom.TypeShape('float32', size, 'caption') size = (params['text_embed_size'],) types['text_slice'] = loom.TypeShape('float32', size, 'text_slice') # this depends on whether we want all features concat_dim = params['text_embed_size'] size = (params['num_rounds'], params['max_dec_len'], concat_dim) types['text_feat'] = loom.TypeShape('float32', size, 'text_feat') types['cap_feat'] = loom.TypeShape('float32', size, 'cap_feat') size = (concat_dim,) types['text_feat_slice'] = loom.TypeShape('float32', size, 'text_feat_slice') # include spatial dimensions (x, y), add 2 size = (params['h_feat'], params['w_feat'], params['d_feat'] + 2) types['image'] = loom.TypeShape('float32', size, 'image') size = (params['h_feat'], params['w_feat'], 1) types['attention'] = loom.TypeShape('float32', size, 'att') return types def _build_loom_ops(self): """TODO(satwik): Some helper text here """ params = self.params types = self._loom_types # create all modules under the same scope wt = params.get('priority_weight', 1.0) op_params = {'map_dim': 1024, 'priority_weight': wt} with tf.variable_scope('loom_modules') as module_scope: op_params['module_scope'] = module_scope # creating ops loom_ops_dict = {} in_types = [types['float'], types['float']] out_types = [types['float']] loom_ops_dict['add'] = lm.BinaryLoomOp(in_types, out_types, tf.add) loom_ops_dict['divide'] = lm.BinaryLoomOp(in_types, out_types, tf.divide) in_types = [types['float']] loom_ops_dict['exp'] = lm.UnaryLoomOp(in_types, out_types, tf.exp) in_types = [types['attention'], types['attention']] out_types = [types['attention']] loom_ops_dict['add_attention'] = lm.BinaryLoomOp(in_types, out_types, tf.add) in_types = [types['attention'], types['attention']] out_types = [types['attention']] loom_ops_dict['max_attention'] = lm.BinaryLoomOp(in_types, out_types, tf.maximum) # basic attention manipulation ops in_types = [types['attention'], types['float']] out_types = [types['attention']] loom_ops_dict['weight_attention'] = lm.AttentionWeightLoomOp(in_types, out_types) in_types = [types['text_feat_slice'], types['text_feat_slice'], types['round'], types['round']] out_types = [types['float']] op_params['amalgam_text_feats'] = params['amalgam_text_feats'] op_params['text_embed_size'] = params['text_embed_size'] loom_ops_dict['align_text'] = lm.AlignTextLoomOp(in_types, out_types, op_params) # slicing ops in_types = [types['text'], types['round'], types['time']] out_types = [types['text_slice']] loom_ops_dict['slice_text'] = lm.SliceTextLoomOp(in_types, out_types) in_types = [types['text_feat'], types['round'], types['time']] out_types = [types['text_feat_slice']] loom_ops_dict['slice_text_feat'] = lm.SliceTextLoomOp(in_types, out_types) # slice_answer_embedding in_types = [types['fact'], types['round']] out_types = [types['text_feat_slice']] loom_ops_dict['slice_fact'] = lm.SliceAnswerLoomOp(in_types, out_types) # normalize and complement in_types = [types['attention']] out_types = [types['attention']] loom_ops_dict['normalize_exclude']= lm.NormalizeExcludeLoomOp(in_types, out_types) #------------------------------------------------------------------ # find module in_types = [types['image'], types['text_slice']] out_types = [types['attention']] loom_ops_dict['find'] = lm.FindLoomOp(in_types, out_types, op_params) # and module in_types = [types['attention'], types['attention']] loom_ops_dict['and_op'] = lm.AndLoomOp(in_types, out_types, op_params) # transform module in_types = [types['attention'], types['image'], types['text_slice']] loom_ops_dict['transform'] = lm.TransformLoomOp(in_types, out_types, op_params) # describe module out_types = [types['context']] op_params['encode_size'] = params['lstm_size'] loom_ops_dict['describe'] = lm.DescribeLoomOp(in_types, out_types, op_params) # invalid Module in_types = [types['image']] loom_ops_dict['invalid'] = lm.InvalidLoomOp(in_types, out_types, op_params) #------------------------------------------------------------------ # type converter ops in_types, out_types = [types['caption']], [types['text']] loom_ops_dict['convert_cap_in'] = lm.IdentityLoomOp(in_types, out_types) in_types, out_types = [types['context']], [types['align']] loom_ops_dict['convert_cap_out'] = lm.IdentityLoomOp(in_types, out_types) in_types, out_types = [types['cap_feat']], [types['text_feat']] loom_ops_dict['convert_cap_feat'] = lm.IdentityLoomOp(in_types, out_types) return loom_ops_dict #--------------------------------------------------------- # setters and getters def get_outputs(self): return self.outputs def get_inputs(self): return self.inputs #------------------------------------------------------------ # produce feed dict def produce_feed_dict(self, batch, output_pool=None, visualize=False): if 'prog' not in self.params['model']: return # dynamically assemble the graph, based on predicted tokens if self.params['train_mode']: ques_programs = batch['gt_layout'] if 'nmn-cap' in self.params['model']: cap_programs = batch['sh_cap_prog'] else: ques_programs = output_pool['pred_tokens'] if 'nmn-cap' in self.params['model']: cap_programs = output_pool['pred_tokens_cap'] tokens = {'ques': ques_programs} if 'nmn-cap' in self.params['model']: tokens['caption'] = cap_programs weaver, loom_outputs, invalid_prog \ = self._assembler.assemble(tokens, self, visualize) # build feed dict from loom feed_dict = weaver.build_feed_dict(loom_outputs) # additional feeds feed_dict.update(self._produce_add_feeds(batch, output_pool, invalid_prog)) return feed_dict #------------------------------------------------------------ def _produce_add_feeds(self, batch, output_pool, invalid_prog): feed_dict = {} # feed invalid Prog feed_dict[self.inputs['prog_validity']] = np.array(invalid_prog['ques']) if 'nmn-cap' in self.params['model']: feed_dict[self.inputs['prog_validity_cap']] = np.array(invalid_prog['cap']) # additional feeds feed_dict[self.inputs['img_feat']] = batch['img_feat'] if self.params['use_fact']: feed_dict[self.inputs['fact']] = batch['fact'] feed_dict[self.inputs['fact_len']] = batch['fact_len'] if 'nmn-cap' in self.params['model']: feed_dict[self.inputs['align_gt']] = batch['align_gt'] max_time = self.params['max_dec_len'] feed_dict[self.inputs['time']] = np.arange(max_time).reshape([-1, 1]) round_ranges = np.arange(self.params['num_rounds']).reshape([-1, 1]) feed_dict[self.inputs['round']] = round_ranges if not self.params['train_mode']: # list of labels to read from output pool conditionally labels = ['ques_attended', 'cap_attended', 'ques_enc', 'cap_enc'] for label in labels: if label in self.inputs: feed_dict[self.inputs[label]] = output_pool[label] feed_dict[self.inputs['img_feat']] = batch['img_feat'] return feed_dict #------------------------------------------------------------ # segregating the outputs def segregrate_outputs(self, output): ''' Go over the outputs, cap tokens and ques tokens ''' if 'nmn-cap' in self.params['model']: cap_tokens = output['pred_tokens_cap'][:, 0] ques_tokens = output['pred_tokens'] mod_out_type = _module_output_type mod_dict = self._assembler.module_names att = output['att'] # logits -> weights when visualizing weights = output['logits'] # segregrated outputs sep_att = [] sep_wts = [] wt_labels = [] num_reuse = 0 att_ind = 0 weight_ind = 0 # go over caption if 'nmn-cap' in self.params['model']: for t_id in range(self.params['max_dec_len']): cur_module = mod_dict[cap_tokens[t_id]] if cur_module == '<eos>': break if mod_out_type[cur_module] == 'att': sep_att.append(('cap', t_id, 0, att[att_ind])) att_ind += 1 if cur_module == '_Find': wt_labels.append('C_%d' % t_id) num_reuse += 1 # assume a batch size of 1 for r_id in range(self.params['num_rounds']): for t_id in range(self.params['max_dec_len']): cur_module = mod_dict[ques_tokens[t_id, r_id]] if cur_module == '<eos>': # even answer has a weight now if self.params['use_fact']: wt_labels.append('A%d' % r_id) num_reuse += 1 break if mod_out_type[cur_module] == 'att': sep_att.append(('ques', t_id, r_id, att[att_ind])) att_ind += 1 if cur_module == '_Refer': st = weight_ind end = weight_ind + num_reuse sep_wts.append((r_id, weights[st:end], wt_labels)) weight_ind += num_reuse if cur_module == '_Find': wt_labels.append('Q%d_%d' % (r_id, t_id)) num_reuse += 1 # do not assert if baseline if 'baseline' in self.params['model']: return sep_att, sep_wts for arg in sep_wts: assert(abs(np.sum(arg[1]) - 1.0) < 1e-5) # Sanity checks to ensure Refer is not doing anything weird. assert(weight_ind == weights.shape[0]) assert(att_ind == att.shape[0]) return sep_att, sep_wts
corefnmn-main
models_vd/executor.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Methods to compute metrics given the list of ranks. Author: Satwik Kottur """ import numpy as np # static list of metrics metric_list = ['r1', 'r5', 'r10', 'mean', 'mrr'] # +1 - greater the better # -1 - lower the better trends = [1, 1, 1, -1, -1, 1] def evaluate_metric(ranks, metric): """ Args: ranks: List of ranks metric: Name of the metric to be computed Returns: Appropriate evaluation of the metric """ if metric == 'r1': ranks = ranks.reshape(-1) return 100 * np.sum(ranks <= 1)/float(ranks.shape[0]) if metric == 'r5': ranks = ranks.reshape(-1) return 100 * np.sum(ranks <= 5)/float(ranks.shape[0]) if metric == 'r10': ranks = ranks.reshape(-1) return 100 * np.sum(ranks <= 10)/float(ranks.shape[0]) if metric == 'mean': ranks = ranks.reshape(-1) return np.mean(ranks) if metric == 'mrr': ranks = ranks.reshape(-1) return np.mean(1/ranks) def compute_metrics(ranks, silent=False): """Compute standard metrics, given the ranks. Args: ranks: List of ranks silent: To decide the verbosity Returns: results: Dictionary of metrics """ results = {metric: evaluate_metric(ranks, metric) for metric in metric_list} # pretty print metrics if not silent: pretty_print_metrics(results) return results def pretty_print_metrics(results): """Pretty print the metrics given as a dictionary. """ # pretty print metrics print('\n') for metric in metric_list: print('\t%s : %.3f' % (metric, results[metric])) class ExponentialSmoothing: """Class responsible to exponentially smooth and track losses. """ def __init__(self): self.value = None self.blur = 0.95 self.op = lambda x, y: self.blur * x + (1 - self.blur) * y # add a new value def report(self, new_val): if self.value == None: self.value = new_val else: self.value = {key: self.op(value, new_val[key]) for key, value in self.value.items()} return self.value
corefnmn-main
util/metrics.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Script with supporting functions for the main train program. """ import os import sys import subprocess import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from skimage import transform, filters from PIL import Image def last_relevant(output, length): batch_size = tf.shape(output)[0] max_length = tf.shape(output)[1] out_size = int(output.shape[2]) index = tf.range(0, batch_size) * max_length + (length - 1) flat = tf.reshape(output, [-1, out_size]) relevant = tf.gather(flat, index) return relevant # blending attention map with an image # source: # github.com/abhshkdz/neural-vqa-attention/blob/master/attention_visualization.ipynb def get_blend_map(img, att_map, blur=True, overlap=True): # range it from -1 to 1 att_map -= att_map.min() if att_map.max() != 0: att_map /= att_map.max() image_size = img.shape[:2] att_map = transform.resize(att_map, image_size, order = 3) if blur: att_map = filters.gaussian(att_map, 0.05 * max(img.shape)) #att_map -= att_map.min() att_map /= att_map.max() cmap = plt.get_cmap('jet') att_map_v = cmap(att_map) att_map_v = np.delete(att_map_v, 3, 2) att_map_v *= 255 if overlap: #vis_im = att_map_v * att_map + (1-att_reshaped)*all_white #vis_im = att_map_v*im + (1-att_reshaped)*all_white att_map = 1 * (1 - att_map**0.7).reshape(att_map.shape + (1,)) * img \ + (att_map**0.7).reshape(image_size + (1,)) * att_map_v return att_map # pretty prints dictionary def pretty_print_dict(parsed): max_len = max([len(ii) for ii in parsed.keys()]) fmt_string = '\t%' + str(max_len) + 's : %s' print('Arguments:') #for key_pair in parsed.items(): print(fmt_string % key_pair) # sort in alphabetical order keys = [ii for ii in parsed.keys()] keys.sort() for key in keys: print(fmt_string % (key, parsed[key])) # softmax # correct solution: def softmax(x): """Compute softmax values for each sets of scores in x.""" e_x = np.exp(x - np.max(x)) return e_x / e_x.sum() # only difference # interpolate attention def interpolate_attention(im, att): # steps: # 1. reshape the attention to image size (with cubic) #soft_att = softmax(att) soft_att = att att_reshaped = transform.resize(soft_att, im.shape[:2], order=3) att_reshaped /= np.max(att_reshaped) att_reshaped = att_reshaped[..., np.newaxis] # heat map #cmap = plt.get_cmap('jet') #vis_im = cmap(att_reshaped) #vis_im *= (255 if im.dtype == np.uint8 else 1) # white + image all_white = np.ones_like(im) * (255 if im.dtype == np.uint8 else 1) vis_im = att_reshaped * im + (1 - att_reshaped) * all_white vis_im = vis_im.astype(im.dtype) return vis_im # shuffling data for image - caption to train alignment def shuffle(arg_list, batch_size): # get the batch size #batch_size = arg_list[0].shape[0] // 10 # first five remain the same indices = np.random.randint(0, batch_size-1, 10*batch_size) for ii in range(batch_size): indices[10*ii:10*ii+5] = ii diag = indices[10*ii+5:10*ii+10] diag[diag >= ii] += 1 indices[10*ii+5:10*ii+10] = diag shuffled = [None for args in arg_list] for ii, args in enumerate(arg_list): assert batch_size == args.shape[0] shuffled[ii] = args[indices] return shuffled # loading an image and converting to numpy def load_image(file_name) : img = Image.open(file_name) img.load() data = np.asarray(img, dtype="int32") return data # temporary launching of evaluation job (slurm) def launch_evaluation_job(output_path, checkpoint): script_path = 'run_slurm_eval_mnist.sh' # read and edit accordingly with open(script_path, 'r') as file_id: template = file_id.read(); # write a temporary script, run and remove temp_path = script_path.replace('.sh', '_temp.sh'); with open(temp_path, 'w') as file_id: file_id.write(template % (output_path, checkpoint)); subprocess.call('sbatch %s' % temp_path, shell=True); def save_batch(batch, save_path, terminate=False): """Saves a batch to visualize or debug. Args: batch: List of intermediate outputs (see visualize_sl.py for example) save_path: Path to save the batch terminate: In debug mode, terminate the program """ print('Saved batch: {0}'.format(save_path)) np.save(save_path, batch); assert not terminate, 'Program terminated!'
corefnmn-main
util/support.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. """ # Script that contains methods for processing answers and questions # coding: utf-8 import re, pdb from unidecode import unidecode # Method used to clean up and convert non ascii to unicode def clean_non_ascii(text): try: text = text.decode('ascii') except: # Contains non-ascii symbols # Check if it needs to be converted to unicode try: text = unicode(text, encoding = 'utf-8') except: pass text = unidecode(text) return text
corefnmn-main
util/clean.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Script that converts Stanford parser outputs to neural module network layout outputs. """ import argparse import copy import json import os import pdb import re import sys import sexpdata import numpy as np from models_vd.assembler import Assembler from tqdm import tqdm as progressbar def extract_parse(p): """Given string, extracts a parse. """ if isinstance(p, sexpdata.Symbol): return p.value() elif isinstance(p, int): return str(p) elif isinstance(p, bool): return str(p).lower() elif isinstance(p, float): return str(p).lower() return tuple(extract_parse(q) for q in p) def parse_tree(p): if "'" in p: p = "none" parsed = sexpdata.loads(p) extracted = extract_parse(parsed) return extracted parse2module_dict = {'find': '_Find', 'relate': '_Transform', 'and': '_And', 'is': '_Describe', # All the top modules go to '_Describe' 'describe': '_Describe' } def flatten_layout(parse): # Postorder traversal to generate Reverse Polish Notation (RPN) if isinstance(parse, str): return [parse2module_dict[parse]] RPN = [] head = parse[0] body = parse[1:] module = parse2module_dict[head] for m in body: RPN += flatten_layout(m) RPN += [module] return RPN def extract_set(params): # assembler to look for incorrect programs assembler = Assembler(params.prog_vocab_file) # manual correction to layouts layout_correct = {('_Find', '_Transform', '_And', '_Describe') :['_Find', '_Transform', '_Describe'], ('_Transform', '_Describe') :['_Find', '_Transform', '_Describe'], ('_Transform', '_Transform', '_And', '_Describe') :['_Find', '_Transform', '_Transform', '_Describe'], ('_Describe',) :['_Find', '_Describe'], ('_Transform', '_Find', '_And', '_Describe') :['_Find', '_Transform', '_Describe']} with open(params.nmn_file) as f: # drop the spans read_layouts = [re.sub(r'\[\d*,\d*\]', '', ll) for ll in f.readlines()] layouts = [flatten_layout(parse_tree(ll)) for ll in read_layouts] layouts = [layout_correct.get(tuple(ii), tuple(ii)) for ii in layouts] with open(params.nmn_file) as f: # extracting spans as well lines = [ii for ii in f.readlines()] attentions = [] for index, ii in enumerate(lines): layout = layouts[index] # extract the spans matches = re.findall('(\w\w)\[(\d*),(\d*)\]', ii) # match module with attention, if present att = [] for token in layout: candidates = [] if token == '_Find': candidates = [jj for jj in matches if jj[0] == 'nd'] if token == '_Transform': candidates = [jj for jj in matches if jj[0] == 'te'] if token == '_Describe': candidates = [jj for jj in matches if jj[0] != 'te' or jj[0] != 'nd'] if len(candidates) >= 1: att.append((int(candidates[0][1]), int(candidates[0][2]))) matches.remove(candidates[0]) else: att.append((0, 0)) # record attentions and layouts attentions.append(att) # correct the layouts according to the above dictionary layouts = [layout_correct.get(tuple(ii), ii) for ii in layouts] layout_set = {tuple(l) for l in layouts} print('Found %d unique layouts' % len(layout_set)) for l in layout_set: print(' ', ' '.join(list(l))) # check whether the layout is valid for l in layout_set: batch = assembler.module_list2tokens(l, T=20) validity, error = assembler.sanity_check_program(batch) if not validity: raise Exception('invalid expr:' + str(l) + ' ' + error) # read the original data path with open(params.visdial_file, 'r') as file_id: vd_data = json.load(file_id) # question id to layout dictionary if params.question: qid2layout_dict = {} for datum in progressbar(vd_data['data']['dialogs']): img_id = datum['image_id'] for r_id, round_datum in enumerate(datum['dialog']): q_id = img_id * 10 + r_id q_layout = layouts[round_datum['question']] # record qid2layout_dict[q_id] = q_layout np.save(params.save_path, np.array(qid2layout_dict)) else: np.save(params.save_path, np.array(layouts)) print('Saving to: ' + params.save_path) save_file_att = params.save_path.replace('.layout', '.attention') print('Saving (att) to: ' + save_file_att) np.save(save_file_att, np.array(attentions)) set_layout_length = [len(l) for l in layouts] return set_layout_length def main(FLAGS): # check if it is question or caption FLAGS.question = 'ques' in FLAGS.nmn_file FLAGS.save_path = FLAGS.nmn_file.replace('pgm', 'layout') print('Saving at: %s' % FLAGS.save_path) layout_length = extract_set(FLAGS) print('Program length distribution:') print(np.unique(layout_length, return_counts=True)) if __name__ == '__main__': title = 'Converting parser outputs to neural module network programs' parser = argparse.ArgumentParser(description=title) parser.add_argument('--nmn_file', required=True, help='Neural Module file path') parser.add_argument('--visdial_file', required=True, help='Path to the original visdial file') parser.add_argument('--prog_vocab_file', required=True, help='Path to program vocabulary file for the assembler') FLAGS = parser.parse_args() main(FLAGS)
corefnmn-main
util/convert_nmn_layouts.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Extracts coreference supervision for visdial dataset using off-the-shelf system. """ import argparse import json import sys import neuralcoref import spacy from tqdm import tqdm as progressbar def get_question_answer(data, i_dialog, i_question): """Extracts question + answer for a dialog turn. Args: data: Visdial data i_dialog: Index for the dialog i_question: Index for the turn """ dialog = data["data"]["dialogs"][i_dialog]["dialog"][i_question] return ( data["data"]["questions"][dialog["question"]], data["data"]["answers"][dialog["answer"]], ) def get_coref_cluster_sentence(utterance_cluster): """Visualize the co-reference clusters as string using, e.g [1 ]. Args: utterance_cluster: Cluster corresponding to the utterance """ sentence = "" for utterance in utterance_cluster: if not sentence: # print(utterance["sentence"]) sentence = list(" " * (len(utterance["sentence"]) + 2)) s = utterance["start_char"] sentence[s] = "[" sentence[utterance["end_char"]] = "]" s += 1 if not sentence[s] == " ": s += 2 id_str = str(utterance["cluster_id"]) sentence[s : (s + len(id_str))] = id_str # print("".join(sentence)) return "".join(sentence) def get_coref_cluster_list(utterance_cluster_map, ui): if ui in utterance_cluster_map: return utterance_cluster_map[ui] else: return [] def extract_corefs(data_file_name, out_file_name): print("Reading: {}".format(data_file_name)) with open(data_file_name) as data_file: data = json.load(data_file) n_dialogs = len(data["data"]["dialogs"]) coref = neuralcoref.Coref() # NOTE: neuralcoref gets stuck if there are numbers with an apostrophe. # Replacing them with equally long strings as a temporary fix. def remove_numbered_age(string): REPLACE_STRINGS = { "10's": "10ss", "20's": "20ss", "30's": "30ss", "40's": "40ss", "50's": "50ss", "60's": "60ss", "70's": "70ss", "80's": "80ss", "90's": "90ss", "100's": "100ss", } final_string = string for key, replacement in REPLACE_STRINGS.items(): final_string = final_string.replace(key, replacement) return final_string for i_dialog in progressbar(range(n_dialogs)): dialog = data["data"]["dialogs"][i_dialog] str_dialog = dialog["caption"] + ". " list_dialog = [dialog["caption"] + "."] for i_question in range(len(dialog["dialog"])): q, a = get_question_answer(data, i_dialog, i_question) str_dialog += q + "? " + a + ". " list_dialog.append(q + "?") list_dialog.append(a + ".") list_dialog = [remove_numbered_age(ii) for ii in list_dialog] clusters = coref.one_shot_coref(utterances=list_dialog) mentions = coref.get_mentions() cluster_keys = list(clusters.keys()) # match from utterance to cluster utterance_cluster_map = {} utterance_referrer_map = {} utterance_reference_map = {} for i_key in range(len(cluster_keys)): # assume reference is the first occurance reference = min(clusters[cluster_keys[i_key]]) cluster_dict_ref = {} cluster_dict_ref["reference_sentence_id"] = mentions[ reference ].utterance_index cluster_dict_ref["reference_start_word"] = mentions[reference].start cluster_dict_ref["reference_end_word"] = mentions[reference].end cluster_dict_ref["reference_start_char"] = mentions[reference].start_char cluster_dict_ref["reference_end_char"] = mentions[reference].end_char for i_mention in clusters[cluster_keys[i_key]]: cluster_dict = {} ui = mentions[i_mention].utterance_index cluster_dict["cluster_id"] = i_key cluster_dict["start_word"] = mentions[i_mention].start cluster_dict["end_word"] = mentions[i_mention].end cluster_dict["start_char"] = mentions[i_mention].start_char cluster_dict["end_char"] = mentions[i_mention].end_char cluster_dict["sentence"] = list_dialog[ui] if ui not in utterance_cluster_map: utterance_cluster_map[ui] = [] utterance_referrer_map[ui] = [] utterance_reference_map[ui] = [] utterance_cluster_map[ui].append(cluster_dict) if i_mention == reference: utterance_reference_map[ui].append(cluster_dict) else: cluster_dict.update(cluster_dict_ref) utterance_referrer_map[ui].append(cluster_dict) cluster_list = get_coref_cluster_list(utterance_cluster_map, 0) data["data"]["dialogs"][i_dialog]["caption_coref_clusters"] = cluster_list data["data"]["dialogs"][i_dialog][ "caption_coref_visualized" ] = get_coref_cluster_sentence(cluster_list) data["data"]["dialogs"][i_dialog][ "caption_reference_clusters" ] = get_coref_cluster_list(utterance_reference_map, 0) for i_question in range(len(dialog["dialog"])): # set which utterance it came from cluster_list = get_coref_cluster_list( utterance_cluster_map, (i_question + 1) * 2 ) data["data"]["dialogs"][i_dialog]["dialog"][i_question][ "answer_coref_clusters" ] = cluster_list data["data"]["dialogs"][i_dialog]["dialog"][i_question][ "answer_coref_visualized" ] = get_coref_cluster_sentence(cluster_list) cluster_list = get_coref_cluster_list( utterance_cluster_map, (i_question) * 2 + 1 ) data["data"]["dialogs"][i_dialog]["dialog"][i_question][ "question_coref_clusters" ] = cluster_list data["data"]["dialogs"][i_dialog]["dialog"][i_question][ "question_coref_visualized" ] = get_coref_cluster_sentence(cluster_list) data["data"]["dialogs"][i_dialog]["dialog"][i_question][ "answer_referrer_clusters" ] = get_coref_cluster_list(utterance_referrer_map, (i_question + 1) * 2) data["data"]["dialogs"][i_dialog]["dialog"][i_question][ "question_referrer_clusters" ] = get_coref_cluster_list(utterance_referrer_map, (i_question) * 2 + 1) data["data"]["dialogs"][i_dialog]["dialog"][i_question][ "answer_reference_clusters" ] = get_coref_cluster_list(utterance_reference_map, (i_question + 1) * 2) data["data"]["dialogs"][i_dialog]["dialog"][i_question][ "question_reference_clusters" ] = get_coref_cluster_list(utterance_reference_map, (i_question) * 2 + 1) print("Saving: {}".format(out_file_name)) with open(out_file_name, "w") as outfile: json.dump(data, outfile) return clusters, coref, data if __name__ == "__main__": parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( "--input_data_path", required=True, help="Path to VisDial JSON files" ) parser.add_argument( "--output_save_path", default="-", help="Path to save the coreferences" ) try: parsed_args = vars(parser.parse_args()) except (IOError) as msg: parser.error(str(msg)) extract_corefs(parsed_args["input_data_path"], parsed_args["output_save_path"])
corefnmn-main
util/extract_coreference_supervision.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. """ import re SENTENCE_SPLIT_REGEX = re.compile(r'(\W+)') def tokenize(sentence): tokens = SENTENCE_SPLIT_REGEX.split(sentence.lower()) tokens = [t.strip() for t in tokens if len(t.strip()) > 0] return tokens def load_str_list(fname): with open(fname) as f: lines = f.readlines() lines = [l.strip() for l in lines] return lines class VocabDict: def __init__(self, vocab_file): self.word_list = load_str_list(vocab_file) self.word2idx_dict = {w:n_w for n_w, w in enumerate(self.word_list)} self.num_vocab = len(self.word_list) self.UNK_idx = self.word2idx_dict['<unk>'] \ if '<unk>' in self.word2idx_dict else None def idx2word(self, n_w): return self.word_list[n_w] def word2idx(self, w): if w in self.word2idx_dict: return self.word2idx_dict[w] elif self.UNK_idx is not None: return self.UNK_idx else: raise ValueError('word %s not in dictionary ' + \ '(while dictionary does not contain <unk>)' % w) def tokenize_and_index(self, sentence): inds = [self.word2idx(w) for w in tokenize(sentence)] return inds # add new tokens for decoding def add_new_tokens(self, new_token_list): for new_token in new_token_list: if new_token in self.word_list: print('%d already exists in vocabulary!' % new_token) continue print('Adding %s to vocabulary' % new_token) self.word2idx_dict[self.num_vocab] = new_token self.num_vocab += 1
corefnmn-main
util/text_processing.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Given the data file, create a vocabulary file and extract the glove features for embedding initializations. """ import argparse from collections import defaultdict import json import re import sys from unidecode import unidecode import matplotlib.pyplot as plt from nltk.tokenize import word_tokenize import numpy as np import spacy def main(args): # initialize vocab from file print('Reading vocabulary from: %s' % args.vocab_file) with open(args.vocab_file, 'r') as fileId: vocab_dict = json.load(fileId) vocab_set = set(vocab_dict['word2ind'].keys()) # Though we have collected all the words from source vocabulary, add <UNK> # and add other tokens for answer decoding # <start> <end> <pad> vocab_set.add('<unk>') vocab_set.add('<start>') vocab_set.add('<end>') vocab_set.add('<pad>') print('Vocabulary size: %d, keeping all of them ..' % len(vocab_set)) vocab_list = list(vocab_set) vocab_list.sort() print('Saving vocabulary: ' + args.save_path) with open(args.save_path, 'w') as file_id: file_id.writelines([w.replace('\u2019', '') + '\n' for w in vocab_list]) # Collect glove vectors for the words, and save. glove_dim = 300 glove_mat = np.zeros((len(vocab_list), glove_dim), np.float32) nlp = spacy.load('en_vectors_web_lg') for index, word in enumerate(vocab_list): glove_mat[index] = nlp(word).vector glove_mat_file = args.save_path.replace('.txt', '_glove.npy') print('Saving glove vectors: ' + glove_mat_file) np.save(glove_mat_file, glove_mat) if __name__ == '__main__': title = 'Restructure Stanford Parser to a single line' parser = argparse.ArgumentParser(description=title) parser.add_argument('--vocab_file', required=True, help='Vocabulary file from original visdial code') parser.add_argument('--save_path', required=True, help=('Path to save the vocabulary text file and ' 'glove embeddings for corefnmn code')) args = parser.parse_args() main(args)
corefnmn-main
util/collect_glove_features.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Final preprocessing script to create the image dialog database that can be used to serve batches by the batch loader while training and evaluation for MNIST experiments. """ import argparse from collections import defaultdict import copy import json import os import pdb import sys import numpy as np from nltk.tokenize import word_tokenize from tqdm import tqdm as progressbar from util import text_processing, clean, support # program supervision # question types vs layouts (manually done) prog_ques_type = { 'Qa': '_Find _Exist', 'Qb': '_Find _Count', 'Qc': '_Find _Describe', 'Qd': '_Refer _Transform _Describe', 'Qe': '_Refer _Not _Find _And _Exist' } def build_imdb(data, split, vocab, ans_list, FLAGS): """Function to build the image dialog dataset, given the data split. Args: data: MNIST Dialog dataset json split: Data split -- train | valid | test vocab: Vocabulary object created from question vocabulary (train only) ans_list: List of answers, created from train set FLAGS: Command line arguments Returns: imdb: Image dialog database to train corefnmn """ print('Building imdb for %s' % split) source = data['%sExamples' % split] ans_dict = {word: ii for ii, word in enumerate(ans_list)} # process and tokenize all questions and answers tokenizer = lambda x: [vocab.word2idx(ii) for ii in word_tokenize(clean.clean_non_ascii(x))] print('Collecting and tokenizing questions') ques_dict = {} ques_list = [] for datum in progressbar(source): for round_datum in datum['qa']: ques = round_datum['question'] if ques in ques_dict: continue else: ques_list.append(ques) ques_dict[ques] = len(ques_dict) clean_ques = [tokenizer(ques.lower()) for ques in progressbar(ques_list)] max_ques_len = max([len(ii) for ii in clean_ques]) ques_tokens = np.zeros((len(clean_ques), max_ques_len)).astype('int32') ques_tokens.fill(vocab.word2idx('<pad>')) ques_lens = np.zeros(len(clean_ques)).astype('int32') for q_id, tokens in progressbar(enumerate(clean_ques)): ques_lens[q_id] = len(tokens) ques_tokens[q_id, :ques_lens[q_id]] = np.array(tokens) #-------------------------------------------------------------------------- imdb = {} # number of entries in the database num_dialogs = len(source) imdb['data'] = [None] * num_dialogs imdb['ans_inds'] = ans_list imdb['ques'], imdb['ques_len'] = ques_tokens, ques_lens #-------------------------------------------------------------------------- for dialog_id, datum in progressbar(enumerate(source)): img_id = datum['img'] img_path = os.path.join(FLAGS.image_root, split, '%05d.jpg' % img_id) # compact bundle with all the information bundle = {'image_name': img_id, 'image_path': img_path, 'question_id': [], 'question_ind': [], 'answer_ind': [], 'gt_layout_tokens': []} # bundle as questions in a conversation together for r_id, round_data in enumerate(datum['qa']): q_id = img_id * 10 + r_id bundle['question_id'].append(q_id) ques_ind = ques_dict[round_data['question']] bundle['question_ind'].append(ques_ind) answer = ans_dict.get(round_data['answer'], '<unk>') bundle['answer_ind'].append(answer) # sanity check if answer == '<unk>': print(answer) # layout layout = prog_ques_type[round_data['metaInfo'][0]] # replace find with refer if r_id > 0 and round_data['metaInfo'][0] in ['Qa', 'Qb']: layout = layout.replace('_Find', '_Refer _Find _And'); if r_id > 0 and round_data['metaInfo'][0] == 'Qc': layout = layout.replace('_Find', '_Refer'); """Layout modifications for NMN version (baseline) if round_data['metaInfo'][0] == 'Qd': layout = layout.replace('Refer', 'Find') if round_data['metaInfo'][0] == 'Qe': layout = '_Find _Exist' """ # layout for independent questions bundle['gt_layout_tokens'].append(layout) # record imdb['data'][dialog_id] = bundle return imdb def save_vocabularies(train_examples, FLAGS): """Extract and save vocabularies for questions and answers. Args: train_examples: Training examples Returns: words: Vocabulary (dictionary) extracted from the questions ans_list: List of possible answers, extracted from train set """ words = {} ans_list = {} for datum in progressbar(train_examples): for ques_datum in datum['qa']: token = ques_datum['answer'].lower() words[token] = words.get(token, 0) + 1 ans_list[token] = 1 for token in word_tokenize(ques_datum['question']): token = token.lower() words[token] = words.get(token, 0) + 1 # additional tokens words['<pad>'] = 1 words['<start>'] = 1 words['<end>'] = 1 words['<unk>'] = 1 print('Saving to: ' + FLAGS.vocab_save_path) with open(FLAGS.vocab_save_path, 'w') as file_id: file_id.write('\n'.join(sorted(words.keys()))) # answer lists ans_list = list(ans_list.keys()) ans_list.append('<unk>') print('Saving to: ' + FLAGS.answers_save_path) with open(FLAGS.answers_save_path, 'w') as file_id: file_id.write('\n'.join(ans_list)) def save_mean_std_image(FLAGS): """Compute and save mean and std image from train images. Args: FLAGS: Commandline arguments """ import pdb image_list = os.listdir(os.path.join(FLAGS.image_root, 'train')) # compute the mean of the train images and save mean_img = None std_img = None for image_name in progressbar(image_list): image_path = os.path.join(FLAGS.image_root, 'train', image_name) image = support.load_image(image_path) if mean_img is None: mean_img = image std_img = image ** 2 else: mean_img += image std_img += image ** 2 mean_img = mean_img / len(image_list) std_img = std_img / len(image_list) mean_img = np.mean(np.mean(mean_img, 0), 0) std_img = np.mean(np.mean(std_img, 0), 0) std_img = np.sqrt(std_img - mean_img ** 2) print('Saving mean and std at: %s' % FLAGS.mean_save_path) np.save(FLAGS.mean_save_path, {'mean_img': mean_img, 'std_img': std_img}) def main(FLAGS): """Main function. 1. Extracts vocabularies from questions and answers. 2. Creates and saves image dialog databases for train | valid | test splits. Args: FLAGS: Command-line options. """ # Read the dataset. with open(FLAGS.json_path) as file_id: data = json.load(file_id) # Extract vocabulary and answer list. save_vocabularies(data['trainExamples'], FLAGS) # Extract mean and std of train images. save_mean_std_image(FLAGS) # Read the vocabulary files (questions | answers) and create objects vocab = text_processing.VocabDict(FLAGS.vocab_save_path) with open(FLAGS.answers_save_path, 'r') as file_id: ans_list = [ii.strip('\n') for ii in file_id.readlines()] # data splits for split in ['train', 'valid', 'test']: imdb_split = build_imdb(data, split, vocab, ans_list, FLAGS) save_path = os.path.join(FLAGS.imdb_save_path, 'imdb_%s.npy' % split) print('Saving imdb build: %s' % save_path) np.save(save_path, np.array(imdb_split)) if __name__ == '__main__': title = 'Process all the information into a database for easier access' parser = argparse.ArgumentParser(description=title) parser.add_argument('--json_path', required=True, help='Path to MNIST Dialog dataset json file') parser.add_argument('--image_root', required=True, help='Path to root folder of all the images') parser.add_argument('--vocab_save_path', required=True, help='Path to save the vocabulary from training set') parser.add_argument('--answers_save_path', required=True, help='Path to save the answers file from training set') parser.add_argument('--imdb_save_path', required=True, help='Path to save the image dialog dataset') parser.add_argument('--mean_save_path', required=True, help='Path to save the mean and std of train images') FLAGS = parser.parse_args() main(FLAGS)
corefnmn-main
util/build_imdb_mnist.py
corefnmn-main
util/__init__.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. """ from __future__ import absolute_import, division, print_function import tensorflow as tf def conv_layer(name, bottom, kernel_size, stride, output_dim, padding='SAME', bias_term=True, weights_initializer=None, biases_initializer=None, reuse=None): # input has shape [batch, in_height, in_width, in_channels] input_dim = bottom.get_shape().as_list()[-1] # weights and biases variables with tf.variable_scope(name, reuse=reuse): # initialize the variables if weights_initializer is None: weights_initializer = tf.contrib.layers.xavier_initializer_conv2d() if bias_term and biases_initializer is None: biases_initializer = tf.constant_initializer(0.) # filter has shape [filter_height, filter_width, in_channels, out_channels] weights = tf.get_variable("weights", [kernel_size, kernel_size, input_dim, output_dim], initializer=weights_initializer) if bias_term: biases = tf.get_variable("biases", output_dim, initializer=biases_initializer) if not reuse: tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, tf.nn.l2_loss(weights)) conv = tf.nn.conv2d(bottom, filter=weights, strides=[1, stride, stride, 1], padding=padding) if bias_term: conv = tf.nn.bias_add(conv, biases) return conv def conv_relu_layer(name, bottom, kernel_size, stride, output_dim, padding='SAME', bias_term=True, weights_initializer=None, biases_initializer=None, reuse=None): conv = conv_layer(name, bottom, kernel_size, stride, output_dim, padding, bias_term, weights_initializer, biases_initializer, reuse=reuse) relu = tf.nn.relu(conv) return relu def deconv_layer(name, bottom, kernel_size, stride, output_dim, padding='SAME', bias_term=True, weights_initializer=None, biases_initializer=None): # input_shape is [batch, in_height, in_width, in_channels] input_shape = bottom.get_shape().as_list() batch_size, input_height, input_width, input_dim = input_shape output_shape = [batch_size, input_height*stride, input_width*stride, output_dim] # weights and biases variables with tf.variable_scope(name, reuse=reuse): # initialize the variables if weights_initializer is None: weights_initializer = tf.contrib.layers.xavier_initializer_conv2d() if bias_term and biases_initializer is None: biases_initializer = tf.constant_initializer(0.) # filter has shape [filter_height, filter_width, out_channels, in_channels] weights = tf.get_variable("weights", [kernel_size, kernel_size, output_dim, input_dim], initializer=weights_initializer) if bias_term: biases = tf.get_variable("biases", output_dim, initializer=biases_initializer) if not reuse: tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, tf.nn.l2_loss(weights)) deconv = tf.nn.conv2d_transpose(bottom, filter=weights, output_shape=output_shape, strides=[1, stride, stride, 1], padding=padding) if bias_term: deconv = tf.nn.bias_add(deconv, biases) return deconv def deconv_relu_layer(name, bottom, kernel_size, stride, output_dim, padding='SAME', bias_term=True, weights_initializer=None, biases_initializer=None, reuse=None): deconv = deconv_layer(name, bottom, kernel_size, stride, output_dim, padding, bias_term, weights_initializer, biases_initializer, reuse=reuse) relu = tf.nn.relu(deconv) return relu def pooling_layer(name, bottom, kernel_size, stride): pool = tf.nn.max_pool(bottom, ksize=[1, kernel_size, kernel_size, 1], strides=[1, stride, stride, 1], padding='SAME', name=name) return pool def fc_layer(name, bottom, output_dim, bias_term=True, weights_initializer=None, biases_initializer=None, reuse=None): # flatten bottom input # input has shape [batch, in_height, in_width, in_channels] shape = bottom.get_shape().as_list() input_dim = 1 for d in shape[1:]: input_dim *= d flat_bottom = tf.reshape(bottom, [-1, input_dim]) # weights and biases variables with tf.variable_scope(name, reuse=reuse): # initialize the variables if weights_initializer is None: weights_initializer = tf.contrib.layers.xavier_initializer() if bias_term and biases_initializer is None: biases_initializer = tf.constant_initializer(0.) # weights has shape [input_dim, output_dim] weights = tf.get_variable("weights", [input_dim, output_dim], initializer=weights_initializer) if bias_term: biases = tf.get_variable("biases", output_dim, initializer=biases_initializer) if not reuse: tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, tf.nn.l2_loss(weights)) if bias_term: fc = tf.nn.xw_plus_b(flat_bottom, weights, biases) else: fc = tf.matmul(flat_bottom, weights) return fc def fc_relu_layer(name, bottom, output_dim, bias_term=True, weights_initializer=None, biases_initializer=None, reuse=None): fc = fc_layer(name, bottom, output_dim, bias_term, weights_initializer, biases_initializer, reuse=reuse) relu = tf.nn.relu(fc) return relu
corefnmn-main
util/cnn.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Script to flatten the dataset for Stanford parser. """ import argparse import json import sys from unidecode import unidecode from tqdm import tqdm as progressbar def clean_non_ascii(text): """Method to clean up and convert non-ascii to unicode. """ try: text = text.decode('ascii') except: # Contains non-ascii symbols # Check if it needs to be converted to unicode try: text = unicode(text, encoding = 'utf-8') except: pass text = unidecode(text) return text def main(args): # reading data print('Reading from: ' + args.data_file) with open(args.data_file, 'r') as file_id: data = json.load(file_id) # open a text file to write the questions save_path = args.data_file.replace('.json', '_ques_flat.txt') print('Saving to: ' + save_path) with open(save_path, 'w') as file_id: for ques in progressbar(data['data']['questions']): file_id.write(clean_non_ascii(ques) + ' ?\n') # open a text file to write the captions save_path = args.data_file.replace('.json', '_cap_flat.txt') print('Saving to: ' + save_path) with open(save_path, 'w') as file_id: captions = [ii['caption'] for ii in data['data']['dialogs']] for cap in captions: file_id.write(clean_non_ascii(cap) + ' .\n') if __name__ == '__main__': title = 'Flattening the dataset to a text file' parser = argparse.ArgumentParser(description=title) parser.add_argument('--data_file', required=True, help='Data file path') args = parser.parse_args() main(args)
corefnmn-main
util/dataset_to_text.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Script to read the data files and emit sentences as a file. """ import argparse import sys def main(args): print('Reading : ' + args.parser_file) with open(args.parser_file, 'r') as file_id: lines = [ii.strip('\n') for ii in file_id.readlines()] # compress trees from multiple lines -> single line trees = [] cur_tree = '' for line in lines: if line == '': trees.append(cur_tree) cur_tree = '' else: cur_tree += line # write back to another file save_path = args.parser_file.replace('.sps', '_compress.sps') print('Saving to: ' + save_path) with open(save_path, 'w') as file_id: file_id.write('\n'.join(trees)) if __name__ == '__main__': title = 'Restructure Stanford Parser to a single line' parser = argparse.ArgumentParser(description=title) parser.add_argument('--parser_file', required=True, help='Stanford parser output file') args = parser.parse_args() main(args)
corefnmn-main
util/compress_parser_trees.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Final preprocessing script to create the image dialog database that can be used to serve batches by the batch loader while training and evaluation. """ import argparse from collections import defaultdict import copy import json import os import pdb import sys import numpy as np from nltk.tokenize import word_tokenize from tqdm import tqdm as progressbar from util import text_processing, clean stop_words = ['the', 'a', 'an', 'you', 'was', 'and', 'are'] def build_imdb(FLAGS): """Method to construct and save the image-database for the dataset """ print('Building imdb for visdial split: %s' % FLAGS.visdial_file) qid2layout_dict = np.load(FLAGS.ques_prog_file)[()] ques_att_file = FLAGS.ques_prog_file.replace('.layout', '.attention') ques_prog_att = np.load(ques_att_file)[()] cap_progs = np.load(FLAGS.cap_prog_file)[()] cap_att_file = FLAGS.cap_prog_file.replace('.layout', '.attention') cap_prog_att = np.load(cap_att_file)[()] vocab = text_processing.VocabDict(FLAGS.vocab_file) # load the data with open(FLAGS.visdial_file, 'r') as file_id: vd_data = json.load(file_id) # load the reference data with open(FLAGS.coreference_file, 'r') as file_id: references = json.load(file_id) references = references['data']['dialogs'] # coco_name = img_split + '2014' # img_root = os.path.abspath(image_dir % coco_name) # feat_root = os.path.abspath(feature_dir % coco_name) # img_name_format = 'COCO_' + coco_name + '_%012d' # process and tokenize all questions and answers tokenizer = lambda x, suff: [vocab.word2idx(ii) for ii in word_tokenize(clean.clean_non_ascii(x + suff))] print('Tokenizing captions') caption_list = [ii['caption'] for ii in vd_data['data']['dialogs']] clean_cap = [tokenizer(cap, '') for cap in progressbar(caption_list)] max_cap_len = max([len(ii) for ii in clean_cap]) cap_tokens = np.zeros((len(clean_cap), max_cap_len)).astype('int32') cap_tokens.fill(vocab.word2idx('<pad>')) cap_lens = np.zeros(len(clean_cap)).astype('int32') for q_id, tokens in progressbar(enumerate(clean_cap)): cap_lens[q_id] = len(tokens) cap_tokens[q_id, :cap_lens[q_id]] = np.array(tokens) print('Tokenizing questions') question_list = vd_data['data']['questions'] clean_ques = [tokenizer(ques, '?') for ques in progressbar(question_list)] max_ques_len = max([len(ii) for ii in clean_ques]) ques_tokens = np.zeros((len(clean_ques), max_ques_len)).astype('int32') ques_tokens.fill(vocab.word2idx('<pad>')) ques_lens = np.zeros(len(clean_ques)).astype('int32') for q_id, tokens in progressbar(enumerate(clean_ques)): ques_lens[q_id] = len(tokens) ques_tokens[q_id, :ques_lens[q_id]] = np.array(tokens) print('Tokenizing answers') answer_list = vd_data['data']['answers'] clean_ans = [tokenizer(ans, '') for ans in progressbar(answer_list)] max_ans_len = max([len(ii) for ii in clean_ans]) ans_tokens = np.zeros((len(clean_ans), max_ans_len)).astype('int32') ans_tokens.fill(vocab.word2idx('<pad>')) ans_lens = np.zeros(len(clean_ans)).astype('int32') ans_in = np.zeros((len(clean_ans), max_ans_len + 1)).astype('int32') ans_out = np.zeros((len(clean_ans), max_ans_len + 1)).astype('int32') ans_in.fill(vocab.word2idx('<pad>')) ans_out.fill(vocab.word2idx('<pad>')) start_token_id = vocab.word2idx('<start>') end_token_id = vocab.word2idx('<end>') ans_in[:, 0] = start_token_id for a_id, tokens in progressbar(enumerate(clean_ans)): ans_lens[a_id] = len(tokens) answer = np.array(tokens) ans_tokens[a_id, :ans_lens[a_id]] = answer ans_in[a_id, 1:ans_lens[a_id]+1] = answer ans_out[a_id, :ans_lens[a_id]] = answer ans_out[a_id, ans_lens[a_id]] = end_token_id ans_lens += 1 imdb = {} # number of entries in the database num_dialogs = len(vd_data['data']['dialogs']) imdb['data'] = [None] * num_dialogs imdb['ans'], imdb['ans_len'] = ans_tokens, ans_lens imdb['ans_in'], imdb['ans_out'] = ans_in, ans_out imdb['ques'], imdb['ques_len'] = ques_tokens, ques_lens imdb['cap'], imdb['cap_len'] = cap_tokens, cap_lens imdb['cap_prog'], imdb['cap_prog_att'] = cap_progs, np.array(cap_prog_att) for dialog_id, datum in progressbar(enumerate(vd_data['data']['dialogs'])): img_id = datum['image_id'] img_path = FLAGS.image_path_format % img_id feat_path = FLAGS.feature_path % img_id # compact bundle with all the information bundle = {'image_name': img_id, 'image_path': img_path, 'feature_path': feat_path, 'caption_ind': dialog_id, 'question_id': [], 'question_ind': [], 'answer_ind': [], 'option_ind': [], 'gt_ind' : [], 'gt_layout_tokens': [], 'gt_layout_att': []} # reference datum refer_datum = references[dialog_id] assert(refer_datum['image_id'] == img_id) # for each cluster, get the first mention clusters = {} caption_clusters = (refer_datum['caption_reference_clusters'] + refer_datum['caption_coref_clusters']) for ii in caption_clusters: c_id = ii['cluster_id'] clusters[c_id] = clusters.get(c_id, 'c') # each round for r_id in range(10): # assuming 10 rounds for now referrer = refer_datum['dialog'][r_id] for ii in referrer['question_reference_clusters']: c_id = ii['cluster_id'] clusters[c_id] = clusters.get(c_id, 'q%d' % r_id) for ii in referrer['answer_reference_clusters']: c_id = ii['cluster_id'] # to distinguish answer clusters[c_id] = clusters.get(c_id, 'a%d' % r_id) # bundle as questions in a conversation together num_refers = 0 for r_id, round_data in enumerate(datum['dialog']): q_id = img_id * 10 + r_id bundle['question_id'].append(q_id) bundle['question_ind'].append(round_data['question']) bundle['answer_ind'].append(round_data['answer']) bundle['option_ind'].append(round_data['answer_options']) bundle['gt_ind'].append(round_data['gt_index']) # gt attention for parsed layout attention = np.array(ques_prog_att[round_data['question']]) # check if references is non-empty and replace with _Refer layout = copy.deepcopy(list(qid2layout_dict[q_id])) referrer = refer_datum['dialog'][r_id]['question_referrer_clusters'] if len(referrer) > 0: refer = referrer[0] # pick _Find module with max attention overlap max_overlap = (0, 0) for pos, token in enumerate(layout): if token == '_Find': start = max(attention[pos][0], refer['start_word']) end = min(attention[pos][1], refer['end_word']) overlap = min(0, end - start) if max_overlap[1] < overlap: max_overlap = (pos, overlap) # reset it to _Refer pos, _ = max_overlap layout[pos] = '_Refer' attention[pos] = [refer['start_word'], refer['end_word']] # get that cluster id, and corresponding history attention num_refers += 1 bundle['gt_layout_tokens'].append(layout) # check for the words attending to ques_tokens = imdb['ques'][round_data['question']] ques_words = [vocab.idx2word(ii) for ii in ques_tokens] for index, pos in enumerate(attention): # if single word, 'the', 'a', 'of', 'you' try: if (pos[1] - pos[0]) == 1 and ques_words[pos[0]] in stop_words: attention[index] = [0, 0] except: pdb.set_trace() bundle['gt_layout_att'].append(attention) # record imdb['data'][dialog_id] = bundle return imdb if __name__ == '__main__': title = 'Process all the information into a database for easier access' parser = argparse.ArgumentParser(description=title) parser.add_argument('--ques_prog_file', required=True, help='Path to question ground truth programs') parser.add_argument('--cap_prog_file', required=True, help='Path to caption ground truth programs') parser.add_argument('--image_path_format', required=True, help='Path to find the image given the COCO id') parser.add_argument('--feature_path', required=True, help='Path to find the features given the COCO id') parser.add_argument('--coreference_file', required=True, help='Visdial file infused with coreference supervision') parser.add_argument('--visdial_file', required=True, help='Original visdial file') parser.add_argument('--vocab_file', required=True, help='Visual Dialog vocabulary file') parser.add_argument('--save_path', required=True, help='Path to save the image dialog dataset') FLAGS = parser.parse_args() imdb_data = build_imdb(FLAGS) print('Saving imdb build: %s' % FLAGS.save_path) np.save(FLAGS.save_path, np.array(imdb_data))
corefnmn-main
util/build_imdb.py
#!/usr/bin/env python2 """Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Parse the stanford output into NMN programs. Adapted from: https://github.com/ronghanghu/n2nmn """ from nltk.tree import Tree, ParentedTree import sys import re, pdb from tqdm import tqdm as progressbar KEEP = [ ("WHNP", "WH"), ("WHADVP", "WH"), (r"NP", "NP"), ("VP", "VP"), ("PP", "PP"), ("ADVP", "AP"), ("ADJP", "AP"), ("this", "null"), ("these", "null"), ("it", "null"), ("EX", "null"), ("PRP$", "null"), ] KEEP = [(re.compile(k), v) for k, v in KEEP] def flatten(tree): if not isinstance(tree, list): return [tree] return sum([flatten(s) for s in tree], []) def collect_span(term): parts = flatten(term) lo = 1000 hi = -1000 for part in parts: assert isinstance(part, tuple) and len(part) == 2 lo = min(lo, part[1][0]) hi = max(hi, part[1][1]) assert lo < 1000 assert hi > -1000 return (lo, hi) def finalize(col, top=True): dcol = despan(col) is_wh = isinstance(dcol, list) and len(dcol) > 1 and flatten(dcol[0])[0] == "WH" out = [] if not top: rest = col elif is_wh: whspan = flatten(col[0])[0][1] #out.append("describe") out.append("describe[%s,%s]" % (whspan)) rest = col[1:] else: out.append("is") rest = col if len(rest) == 0: return out elif len(rest) == 1: body = out else: body = ["and"] out.append(body) for term in rest: if term[0][0] == "PP": span_below = collect_span(term[1:]) span_full = term[0][1] span_here = (span_full[0], span_below[0]) #body.append(["relate"]) body.append(["relate[%s,%s]" % span_here, finalize(term[1:], top=False)]) elif isinstance(term, tuple) and isinstance(term[0], str): #body.append("find") body.append("find[%s,%s]" % term[1]) else: # TODO more structure here #body.append("find") body.append("find[%s,%s]" % collect_span(term)) if len(body) > 3: del body[3:] if isinstance(out, list) and len(out) == 1: out = out[0] return out def strip(tree): if not isinstance(tree, Tree): label = tree flat_children = [] span = () else: label = tree.label() # children = [strip(child) for child in tree.subtrees().next()] children = [strip(child) for child in next(tree.subtrees())] flat_children = sum(children, []) leaves = tree.leaves() span = (int(leaves[0]), int(leaves[-1]) + 1) proj_label = [v for m, v in KEEP if m.match(label)] if len(proj_label) == 0: return flat_children else: return [[(proj_label[0], span)] + flat_children] def despan(rr): out = [] for r in rr: if isinstance(r, tuple) and len(r) == 2 and isinstance(r[1], tuple): out.append(r[0]) elif isinstance(r, list): out.append(despan(r)) else: out.append(r) return out def collapse(tree): if not isinstance(tree, list): return tree rr = [collapse(st) for st in tree] rr = [r for r in rr if r != []] drr = despan(rr) if drr == ["NP", ["null"]]: return [] if drr == ["null"]: return [] if drr == ["PP"]: return [] members = set(flatten(rr)) if len(members) == 1: return list(members) if len(drr) == 2 and drr[0] == "VP" and isinstance(drr[1], list): if len(drr[1]) == 0: return [] elif drr[1][0] == "VP" and len(drr[1]) == 2: return [rr[1][0], rr[1][1]] return rr def pp(lol): if isinstance(lol, str): return lol return "(%s)" % " ".join([pp(l) for l in lol]) with open(sys.argv[1]) as ptb_f: for line in progressbar(ptb_f): tree = ParentedTree.fromstring(line) # record the list of substitutions lookup = {}; index = 0 for st in tree.subtrees(): if len(list(st.subtrees())) == 1: lookup[index] = st[0]; st[0] = str(index) index += 1 colparse = collapse(strip(tree)) final = finalize(colparse) print(pp(final)) #print(lookup) #print('') #pdb.set_trace(); #print pp(final) #print " ".join(tree.leaves()) #print colparse #print finalize(colparse) #print
corefnmn-main
util/parse.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. """ from __future__ import absolute_import, division, print_function import tensorflow as tf from tensorflow import convert_to_tensor as to_T from util.cnn import conv_layer as conv def empty_safe_1x1_conv(name, bottom, output_dim, reuse=None): # TensorFlow Fold can generate zero-size batch for conv layer # which will crash cuDNN on backward pass. So use this # for 1x1 convolution in modules to avoid the crash. bottom_shape = tf.shape(bottom) N = bottom_shape[0] # NOTE: these are now static shapes H, W = bottom.shape.as_list()[1:3] #H = bottom_shape[1] #W = bottom_shape[2] input_dim = bottom.get_shape().as_list()[-1] bottom_flat = tf.reshape(bottom, [-1, input_dim]) # weights and biases variables with tf.variable_scope(name, reuse=reuse): # initialize the variables weights_initializer = tf.contrib.layers.xavier_initializer() biases_initializer = tf.constant_initializer(0.) weights = tf.get_variable('weights', [input_dim, output_dim], initializer=weights_initializer) biases = tf.get_variable('biases', output_dim, initializer=biases_initializer) conv_flat = tf.nn.xw_plus_b(bottom_flat, weights, biases) conv = tf.reshape(conv_flat, to_T([N, H, W, output_dim])) return conv # TensorFlow Fold can generate zero-size batch for conv layer # which will crash cuDNN on backward pass. So use this # for arbitrary convolution in modules to avoid the crash. def empty_safe_conv(name, bottom, kernel_size, stride, output_dim, padding='SAME', bias_term=True, weights_initializer=None, biases_initializer=None, reuse=None): g = tf.get_default_graph() with g.gradient_override_map({'Conv2D': 'Conv2D_handle_empty_batch'}): return conv(name, bottom, kernel_size, stride, output_dim, padding, bias_term, weights_initializer, biases_initializer, reuse=reuse) @tf.RegisterGradient('Conv2D_handle_empty_batch') def _Conv2DGrad(op, grad): with tf.device('/cpu:0'): return [tf.nn.conv2d_backprop_input( tf.shape(op.inputs[0]), op.inputs[1], grad, op.get_attr('strides'), op.get_attr('padding'), op.get_attr('use_cudnn_on_gpu'), op.get_attr('data_format')), tf.nn.conv2d_backprop_filter(op.inputs[0], tf.shape(op.inputs[1]), grad, op.get_attr('strides'), op.get_attr('padding'), op.get_attr('use_cudnn_on_gpu'), op.get_attr('data_format'))] # @tf.RegisterGradient('Conv2D_handle_empty_batch') # def _Conv2DGrad(op, grad): # def _input_nonempty(): # return tf.nn.conv2d_backprop_input( # tf.shape(op.inputs[0]), op.inputs[1], grad, op.get_attr('strides'), # op.get_attr('padding'), op.get_attr('use_cudnn_on_gpu'), # op.get_attr('data_format')) # def _filter_nonempty(): # return tf.nn.conv2d_backprop_filter(op.inputs[0], # tf.shape(op.inputs[1]), grad, # op.get_attr('strides'), # op.get_attr('padding'), # op.get_attr('use_cudnn_on_gpu'), # op.get_attr('data_format')) # def _input_empty(): # return tf.zeros_like(op.inputs[0]) # def _filter_empty(): # return tf.zeros_like(op.inputs[1]) # is_nonempty = tf.greater(tf.size(op.inputs[0]), 0) # return [tf.cond(is_nonempty, _input_nonempty, _input_empty), # tf.cond(is_nonempty, _filter_nonempty, _filter_empty)]
corefnmn-main
util/empty_safe_conv.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Script to read command line flags. Uses argparse library to read command line flags. Author: Satwik Kottur """ import argparse import os import pdb from util import support # read command line arguments def read_command_line(): title = 'Train explicit coreference resolution visual dialog model' parser = argparse.ArgumentParser(description=title) #------------------------------------------------------------------------- # data input settings parser.add_argument('--dataset', default='mnist', help='Visdial dataset type') parser.add_argument('--input_img', default='data/resnet_res5c/',\ help='Path with image features') parser.add_argument('--data_root', default='data/',\ help='HDF5 file with preprocessed questions') parser.add_argument('--text_vocab_path', default='', help='Path to the vocabulary for text') parser.add_argument('--prog_vocab_path', default='', help='Path to the vocabulary for programs') parser.add_argument('--snapshot_path', default='checkpoints/', help='Path to save checkpoints') #-------------------------------------------------------------------------- # specify encoder/decoder parser.add_argument('--model', default='nmn', help='Name of the model') parser.add_argument('--generator', default='ques', help='Name of the generator to use (ques | memory)') parser.add_argument('--img_norm', default=1, type=int, help='Normalize the image feature. 1=yes, 0=no') #------------------------------------------------------------------------- # model hyperparameters parser.add_argument('--h_feat', default=7, type=int, help='Height of visual conv feature') parser.add_argument('--w_feat', default=7, type=int, help='Width of visual conv feature') parser.add_argument('--d_feat', default=64, type=int, help='Size of visual conv feature') parser.add_argument('--text_embed_size', default=32, type=int, help='Size of embedding for text') parser.add_argument('--map_size', default=128, type=int, help='Size of the final mapping') parser.add_argument('--prog_embed_size', default=32, type=int, help='Size of embedding for program tokens') parser.add_argument('--lstm_size', default=64, type=int, help='Size of hidden state in LSTM') parser.add_argument('--enc_dropout', default=True, type=bool, help='Dropout in encoder') parser.add_argument('--dec_dropout', default=True, type=bool, help='Dropout in decoder') parser.add_argument('--num_layers', default=1, type=int, help='Number of layers in LSTM') parser.add_argument('--max_enc_len', default=14, type=int, help='Maximum encoding length for sentences (ques|cap)') parser.add_argument('--max_dec_len', default=8, type=int, help='Maximum decoding length for programs (ques|cap)') parser.add_argument('--dec_sampling', default=False, type=bool, help='Sample while decoding program') parser.add_argument('--use_refer', dest='use_refer', action='store_true', help='Flag for Refer Module') parser.set_defaults(use_refer=False) parser.add_argument('--remove_aux_find', dest='remove_aux_find', action='store_true', help='Flag to remove auxilliary find modules') parser.set_defaults(remove_aux_find=False) parser.add_argument('--use_fact', dest='use_fact', action='store_true', help='Flag to use Q+A as fact') parser.set_defaults(use_fact=False) parser.add_argument('--amalgam_text_feats', dest='amalgam_text_feats', action='store_true', help='Flag to amalgamate text features') parser.set_defaults(amalgam_text_feats=False) #------------------------------------------------------------------------- # optimization params parser.add_argument('--batch_size', default=30, type=int, help='Training batch size (adjust based on GPU memory)') parser.add_argument('--learning_rate', default=1e-3, type=float, help='Learning rate for training') parser.add_argument('--dropout', default=0.5, type=float, help='Dropout') parser.add_argument('--num_epochs', default=200, type=int, help='Maximum number of epochs to run training') parser.add_argument('--gpu_id', type=int, default=0, help='GPU id to use for training, -1 for CPU') #------------------------------------------------------------------------- try: parsed_args = vars(parser.parse_args()) except (IOError) as msg: parser.error(str(msg)) # set the cuda environment variable for the gpu to use gpu_id = '' if parsed_args['gpu_id'] < 0 else str(parsed_args['gpu_id']) print('Using GPU id: %s' % gpu_id) os.environ['CUDA_VISIBLE_DEVICES'] = gpu_id # pretty print arguments and return support.pretty_print_dict(parsed_args) return parsed_args
corefnmn-main
exp_mnist/options.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. """ # script to visualize intermediate outputs from a trained checkpoint from __future__ import absolute_import, division, print_function import numpy as np import tensorflow as tf import pdb, sys, argparse, os, json from time import gmtime, strftime from tqdm import tqdm as progressbar from exp_mnist import options from util import support # read command line options parser = argparse.ArgumentParser(); parser.add_argument('-checkpoint', required=True, \ help='Checkpoint to load the models'); parser.add_argument('-batchSize', type=int, default=10, \ help='Batch size for evaluation / visualization'); parser.add_argument('-testSplit', default='valid', \ help='Which split to run evaluation on'); parser.add_argument('-gpuID', type=int, default=0) try: args = vars(parser.parse_args()); except (IOError) as msg: parser.error(str(msg)); # set the cuda environment variable for the gpu to use if args['gpuID'] >= 0: os.environ['CUDA_VISIBLE_DEVICES'] = str(args['gpuID']); print(os.environ['CUDA_VISIBLE_DEVICES']) else: os.environ['CUDA_VISIBLE_DEVICES'] = ''; # Start the session BEFORE importing tensorflow_fold # to avoid taking up all GPU memory sess = tf.Session(config=tf.ConfigProto( gpu_options=tf.GPUOptions(allow_growth=True), allow_soft_placement=False, log_device_placement=False)) from models_mnist.assembler import Assembler from models_mnist.model import NMN3Model from util.mnist_train.data_reader import DataReader from util.metrics import computeMetrics, ExpSmoothing # setting random seeds np.random.seed(1234); tf.set_random_seed(1234); # read the train args from checkpoint paramPath = args['checkpoint'].replace('.tmodel', '_params.json'); with open(paramPath, 'r') as fileId: savedArgs = json.load(fileId); savedArgs.update(args); args = savedArgs; args['preloadFeats'] = False; args['superviseAttention'] = False; args['useFact'] = args.get('useFact', False); print('Current model: ' + args['model']) # Data files imdbPathVal = os.path.join(args['dataRoot'],'imdb/imdb_%s.npy'%args['testSplit']); imdbPathVal = imdbPathVal.replace('.npy', '_%s.npy' % args['dataLabel']); # assembler assembler = Assembler(args['progVocabPath']); # dataloader for val inputDict = {'path':imdbPathVal, 'shuffle':False, 'onePass':True, 'args':args,\ 'assembler': assembler, 'useCount': False, 'fetchOptions': True}; valLoader = DataReader(inputDict); # The model for training evalParams = args.copy(); evalParams['useGTProg'] = False; # for training evalParams['encDropout'] = False; evalParams['decDropout'] = False; evalParams['decSampling'] = False; # do not sample, take argmax # for models trained later if 'numRounds' not in evalParams: evalParams['numRounds'] = valLoader.batchLoader.numRounds; # model for evaluation # create another assembler of caption assemblers = {'ques': assembler, 'cap': Assembler(args['progVocabPath'])}; model = NMN3Model(evalParams, assemblers); # Load snapshot print('Loading checkpoint from: %s' % args['checkpoint']) snapshot_saver = tf.train.Saver(max_to_keep=None); # keep all snapshots snapshot_saver.restore(sess, args['checkpoint']); print('Evaluating on %s' % args['testSplit']) ansMatches = []; progMatches = []; totalIter = int(valLoader.batchLoader.numInst / args['batchSize']); maxIters = 100; curIter = 0; toSave = {'output': [], 'batch': []}; for batch in progressbar(valLoader.batches(), total=totalIter): _, outputs = model.runVisualizeIteration(batch, sess); toSave['output'].append(outputs); toSave['batch'].append(batch); # debug -- also compute the ranks during visualization #ranks.append(batchRanks); curIter += 1; if curIter >= maxIters: break; # save the output + batch batchPath = args['checkpoint'] + '.100_batches.npy'; print('Printing the batches: ' + batchPath) support.saveBatch(toSave, batchPath); # debug evaluate #metrics = computeMetrics(np.hstack(ranks));
corefnmn-main
exp_mnist/visualize_sl.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Script to train Visual Dialog model using supervised learning. Trains visual dialog model that performs explicit visual coreference resolution using neural module networks. Additional details are in the paper: Visual Coreference Resolution in Visual Dialog using Neural Module Networks Satwik Kottur, José M. F. Moura, Devi Parikh, Dhruv Batra, Marcus Rohrbach European Conference on Computer Vision (ECCV), 2018 Usage: python -u exp_mnist/eval_sl.py --gpu_id=0 --test_split='valid' \ --checkpoint='checkpoints/model_epoch_005.tmodel' """ from __future__ import absolute_import, division, print_function import argparse import json import os import sys import time from tqdm import tqdm as progressbar import numpy as np import tensorflow as tf from exp_mnist import options # read command line options parser = argparse.ArgumentParser() parser.add_argument('--checkpoint', required=True) parser.add_argument('--test_split', default='valid', \ help='Which split to run evaluation on') parser.add_argument('--gpu_id', type=int, default=0) try: args = vars(parser.parse_args()) except (IOError) as msg: parser.error(str(msg)) # set the cuda environment variable for the gpu to use gpu_id = '' if args['gpu_id'] < 0 else str(args['gpu_id']) print('Using GPU id: %s' % gpu_id) os.environ['CUDA_VISIBLE_DEVICES'] = gpu_id # Start the session BEFORE importing tensorflow_fold # to avoid taking up all GPU memory tf_config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True), allow_soft_placement=False, log_device_placement=False) sess = tf.Session(config=tf_config) from models_mnist.assembler import Assembler from models_mnist.model import CorefNMN from loader_mnist.data_reader import DataReader from util import metrics from util import support # setting random seeds np.random.seed(1234) tf.set_random_seed(1234) # read the train args from checkpoint param_path = args['checkpoint'].replace('.tmodel', '_params.json') with open(param_path, 'r') as file_id: saved_args = json.load(file_id) saved_args.update(args) args = saved_args support.pretty_print_dict(args) # Data files root = args['data_root'] imdb_path_val = os.path.join(root, 'imdb_%s.npy' % args['test_split']) # assembler question_assembler = Assembler(args['prog_vocab_path']) copy_assembler = Assembler(args['prog_vocab_path']) assemblers = {'ques': question_assembler, 'copy': copy_assembler} # dataloader for val input_dict = {'path': imdb_path_val, 'shuffle': False, 'one_pass': True, 'args': args, 'assembler': question_assembler} val_loader = DataReader(input_dict) # model for training eval_params = args.copy() eval_params['use_gt_prog'] = False # for training eval_params['enc_dropout'] = False eval_params['dec_dropout'] = False eval_params['dec_sampling'] = False # do not sample, take argmax # model for evaluation model = CorefNMN(eval_params, assemblers) # Load snapshot print('Loading checkpoint from: %s' % args['checkpoint']) snapshot_saver = tf.train.Saver(max_to_keep=None) # keep all snapshots snapshot_saver.restore(sess, args['checkpoint']) print('Evaluating on %s' % args['test_split']) ans_matches = [] prog_matches = [] total_iter = int(val_loader.batch_loader.num_inst / args['batch_size']) num_iters = 0 for batch in progressbar(val_loader.batches(), total=total_iter): batch_matches, outputs = model.run_evaluate_iteration(batch, sess) # batch['ans_ind'] = np.argmax(outputs['ans_logits'], 1) # np.save('batch_model.npy', batch) # sys.exit(1) ans_matches.append(batch_matches) if 'matches' in outputs: prog_matches.append(outputs['matches']) if len(prog_matches) > 0: prog_matches = np.concatenate(prog_matches) percent = 100 * np.sum(prog_matches) / prog_matches.size print('Program accuracy: %f percent\n' % percent) ans_matches = np.concatenate(ans_matches) percent = 100 * np.sum(ans_matches) / ans_matches.size print('Answer accuracy: %f percent\n' % percent)
corefnmn-main
exp_mnist/eval_sl.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Script to train MNIST Dialog model using supervised learning. Trains mnist dialog model that performs explicit visual coreference resolution using neural module networks. Additional details are in the paper: Visual Coreference Resolution in Visual Dialog using Neural Module Networks Satwik Kottur, José M. F. Moura, Devi Parikh, Dhruv Batra, Marcus Rohrbach European Conference on Computer Vision (ECCV), 2018 """ from __future__ import absolute_import, division, print_function import argparse import json import os import sys import time from tqdm import tqdm as progressbar import numpy as np import tensorflow as tf from exp_mnist import options # read command line options args = options.read_command_line() # Start the session BEFORE importing tensorflow_fold # to avoid taking up all GPU memory tf_config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True), allow_soft_placement=False, log_device_placement=False) sess = tf.Session(config=tf_config) from models_mnist.assembler import Assembler from models_mnist.model import CorefNMN from loader_mnist.data_reader import DataReader from util import metrics from util import support # setting random seeds np.random.seed(1234) tf.set_random_seed(1234) # Data files args['data_root'] = os.path.join(args['data_root'], args['dataset']) args['text_vocab_path'] = os.path.join(args['data_root'], 'vocabulary_mnist.txt') root = args['data_root'] args['prog_vocab_path'] = os.path.join(root, 'vocabulary_layout_mnist.txt') args['answer_list_path'] = os.path.join(root, 'answers_mnist.txt') imdb_path_train = os.path.join(root, 'imdb_train.npy') # assemblers for question and caption programs question_assembler = Assembler(args['prog_vocab_path']) copy_assembler = Assembler(args['prog_vocab_path']) assemblers = {'ques': question_assembler, 'copy': copy_assembler} # Dataloader for train input_dict = {'path': imdb_path_train, 'shuffle': True, 'one_pass': False, 'assembler': question_assembler, 'use_count': False, 'args': args} train_loader = DataReader(input_dict) # model params for training train_params = args.copy() # use the ground truth program for training train_params['use_gt_prog'] = True train_params['text_vocab_size'] = train_loader.batch_loader.vocab_dict.num_vocab train_params['prog_vocab_size'] = len(question_assembler.module_names) train_params['pad_id'] = train_loader.batch_loader.vocab_dict.word2idx('<pad>') train_params['num_rounds'] = train_loader.batch_loader.num_rounds train_params['num_choices'] = train_loader.num_choices print('Using a vocab size: %d' % train_params['text_vocab_size']) # model for training model = CorefNMN(train_params, assemblers) model.setup_training() # train with Adam, optimization ops solver = tf.train.AdamOptimizer(learning_rate=train_params['learning_rate']) gradients = solver.compute_gradients(model.get_total_loss()) # clip gradients based on value gradients = [(tf.clip_by_value(g, -2.0, 2.0), v) if g is not None else (g, v) for g, v in gradients] solver_op = solver.apply_gradients(gradients) # Training operation # Partial-run can't fetch training operations # some workaround to make partial-run work update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS); with tf.control_dependencies([solver_op]): model.set_train_step(tf.constant(0)); with tf.control_dependencies(update_ops): model.set_train_step(tf.constant(0)); # add it to the output # model.add_solver_op(solver_op) # adjust snapshot to have a time stamp folder cur_time = time.strftime('%a-%d%b%y-%X', time.gmtime()) args['snapshot_path'] = os.path.join(args['snapshot_path'], cur_time) os.makedirs(args['snapshot_path'], exist_ok=True) snapshot_saver = tf.train.Saver(max_to_keep=None) # keep all snapshots print('Saving checkpoints at: %s' % args['snapshot_path']) # initialize all variables sess.run(tf.global_variables_initializer()) # forget about embed and module scopes del train_params['embed_scope'] if 'module_scope' in train_params: del train_params['module_scope'] #------------------------------------------------------------------------- print('Running training iteration..') num_iter_per_epoch = int(train_loader.batch_loader.num_inst/args['batch_size']) print('Number of iterations per epoch: %d' % num_iter_per_epoch) # exponential smoothing for loss smoother = metrics.ExponentialSmoothing() for n_iter, batch in enumerate(train_loader.batches()): # add epoch and iteration epoch = float(n_iter) / num_iter_per_epoch batch['epoch'] = epoch batch['n_iter'] = n_iter if n_iter >= args['num_epochs'] * num_iter_per_epoch: break # perform training iteration losses, _ = model.run_train_iteration(batch, sess) losses = smoother.report(losses) # printing log if n_iter % 10 == 0: cur_time = time.strftime('%a %d%b%y %X', time.gmtime()) print_format = ('[%s][It: %d][Ep: %.2f][Loss: %.3f Prog: %.3f Ans: %.3f]') print_info = (cur_time, n_iter, epoch, losses['total'], losses['prog'], losses['ans']) print(print_format % print_info) # save snapshot after every epoch if n_iter % num_iter_per_epoch == 0: epoch = float(n_iter) / num_iter_per_epoch # Save snapshot at every epoch file_name = 'model_epoch_%03d.tmodel' % epoch snapshot_path = os.path.join(args['snapshot_path'], file_name) snapshot_saver.save(sess, snapshot_path, write_meta_graph=False) # also save the arguments params_path = snapshot_path.replace('.tmodel', '_params.json') with open(params_path, 'w') as file_id: json.dump(train_params, file_id) print('Snapshot saved to: ' + snapshot_path) print('Launching evaluation job') log_path = snapshot_path.replace('.tmodel', '_eval.log') support.launch_evaluation_job(log_path, snapshot_path)
corefnmn-main
exp_mnist/train_sl.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Dataloader file for Visual Dialog experiments. Explicit visual coreference resolution in visual dialog using neural module networks. Author: Satwik Kottur """ from __future__ import absolute_import, division, print_function import h5py import json import os import threading import queue import numpy as np from tqdm import tqdm as progressbar from util import text_processing, support class BatchLoaderMNIST: """Subclass to DataReader that serves batches during training. """ def __init__(self, imdb, params): """Initialize by reading the data and pre-processing it. """ self.imdb = imdb self.params = params self.num_inst = len(self.imdb['data']) self.num_rounds = len(self.imdb['data'][0]['question_ind']) # load vocabulary vocab_path = params['text_vocab_path'] self.vocab_dict = text_processing.VocabDict(vocab_path) self.T_encoder = params['max_enc_len'] # record special token ids self.start_token_id = self.vocab_dict.word2idx('<start>') self.end_token_id = self.vocab_dict.word2idx('<end>') self.pad_token_id = self.vocab_dict.word2idx('<pad>') # Load answers with open(params['args']['answer_list_path'], 'r') as file_id: choices = [ii.strip('\n') for ii in file_id.readlines()] self.num_choices = len(choices) self.choices2ind = {ii: index for index, ii in enumerate(choices)} self.ind2choices = {index: ii for index, ii in enumerate(choices)} # peek one example to see whether answer and gt_layout are in the data test_data = self.imdb['data'][0] self.load_gt_layout = test_data.get('gt_layout_tokens', False) if 'load_gt_layout' in params: self.load_gt_layout = params['load_gt_layout'] if self.load_gt_layout: self.T_decoder = params['max_dec_len'] self.assembler = params['assembler'] # load the mean of the images load_path = params['path'].split('/')[:-1] + ['train_image_mean.npy'] load_path = '/'.join(load_path) print('Loading training image stats from: ' + load_path) img_stats = np.load(load_path)[()] mean_img = img_stats['mean_img'].reshape([1, 1, -1]) std_img = img_stats['std_img'].reshape([1, 1, -1]) # read all the images images = {} print('Reading images..') #TODO: Change this back! for datum in progressbar(self.imdb['data'][::3]): img_path = datum['image_path'] if img_path not in images: cur_img = support.load_image(img_path) cur_img = (cur_img - mean_img) / std_img images[img_path] = cur_img self.images = images # get the shape from random image for _, sample in self.images.items(): self.img_size = sample.shape break # convert to tokens self.digitizer = lambda x: [self.vocab_dict.word2idx(w) for w in x] # use history if needed by the program generator self.use_history = self.params['generator'] == 'mem' if self.use_history: self._construct_history() # if fact is to be used if self.params['use_fact']: self._construct_fact() #-------------------------------------------------------------------------- def _construct_fact(self): """Method to construct facts. Facts are previous question and answers strings concatenated as one. These serve as memory units that the model can refer back to. For example, 'Q: What is the man wearing? A: Sweater.' will have a fact 'What is the man wearing? Sweater.' so that the model can address follow-up questions like 'What color is it?' by referring to this fact. """ print('Constructing facts..') num_diags = len(self.imdb['data']) max_len = self.T_encoder + 1 # question + answer appended num_rounds = len(self.imdb['data'][0]['question_ind']) fact = np.zeros((num_diags, num_rounds, max_len)) fact_len = np.zeros((num_diags, num_rounds)) fact.fill(self.pad_token_id) for diag_id, datum in enumerate(self.imdb['data']): for r_id in range(num_rounds - 1): q_id = datum['question_ind'][r_id] a_id = datum['answer_ind'][r_id] ques, q_len = self.imdb['ques'][q_id], self.imdb['ques_len'][q_id] ans = self.vocab_dict.word2idx(self.ind2choices[a_id]) # handle overflow bound = min(q_len, max_len) fact[diag_id, r_id, :bound] = ques[:bound] if bound < max_len: fact[diag_id, r_id, bound] = ans fact_len[diag_id, r_id] = bound + 1 # flatten self.imdb['fact'] = fact self.imdb['fact_len'] = fact_len #-------------------------------------------------------------------------- def _construct_history(self): """Method to construct history, which concatenates entire dialogs so far. """ print('Constructing history..') num_diags = len(self.imdb['data']) max_len = self.T_encoder + 1 # question + answer appended num_rounds = len(self.imdb['data'][0]['question_ind']) history = np.zeros((num_diags, num_rounds, max_len)) hist_len = np.zeros((num_diags, num_rounds)) history.fill(self.pad_token_id) for diag_id, datum in enumerate(self.imdb['data']): for r_id in range(num_rounds - 1): q_id = datum['question_ind'][r_id] a_id = datum['answer_ind'][r_id] ques, q_len = self.imdb['ques'][q_id], self.imdb['ques_len'][q_id] ans = self.vocab_dict.word2idx(self.ind2choices[a_id]) # handle overflow bound = min(q_len, max_len) history[diag_id, r_id, :bound] = ques[:bound] if bound < max_len: history[diag_id, r_id, bound] = ans hist_len[diag_id, r_id] = bound + 1 self.imdb['hist'] = history self.imdb['hist_len'] = hist_len #-------------------------------------------------------------------------- def load_one_batch(self, sample_ids): """Load data given the sample ids. """ actual_batch_size = len(sample_ids) batch = {} eos_token = self.assembler.name2idx_dict['<eos>'] num_rounds = self.num_rounds # questions ques_inds = [jj for ii in sample_ids for jj in self.imdb['data'][ii]['question_ind']] ques_batch = self.imdb['ques'][ques_inds][:, :self.T_encoder].transpose() ques_len = self.imdb['ques_len'][ques_inds] ques_ids = [jj for ii in sample_ids for jj in self.imdb['data'][ii]['question_id']] # answers ans_inds_batch = [jj for ii in sample_ids for jj in self.imdb['data'][ii]['answer_ind']] image_path = [None] * actual_batch_size # load fact if self.params['use_fact']: fact = self.imdb['fact'][sample_ids] fact_len = self.imdb['fact_len'][sample_ids] # flatten fact = np.reshape(fact, [-1, fact.shape[-1]]) fact_len = np.reshape(fact_len, [-1]) else: fact, fact_len = None, None # programs if self.load_gt_layout: gt_layout_batch = np.zeros((self.T_decoder, num_rounds * actual_batch_size), np.int32) gt_layout_batch.fill(eos_token) # if features are needed, load images if 'prog' in self.params['model']: image_feats = np.zeros((actual_batch_size,) + self.img_size, np.float32) for n in range(len(sample_ids)): iminfo = self.imdb['data'][sample_ids[n]] image_path[n] = iminfo['image_path'] image_feats[n] = self.images[iminfo['image_path']] # programs if self.load_gt_layout: # go over all the questions for r_id, layout in enumerate(iminfo['gt_layout_tokens']): split_layout = layout.split(' ') gt_layout_batch[:, num_rounds * n + r_id] = \ self.assembler.module_list2tokens(split_layout, self.T_decoder) # if history is needed if self.use_history: history = self.imdb['hist'][sample_ids] hist_len = self.imdb['hist_len'][sample_ids] else: history, hist_len = None, None batch = {'ques': ques_batch, 'ques_len': ques_len, 'fact': fact, 'fact_len': fact_len, 'hist': history, 'hist_len': hist_len, 'ans_ind': ans_inds_batch, 'img_path': image_path, 'imgs': image_feats, 'ques_id': ques_ids, 'gt_layout': gt_layout_batch} return batch class DataReader: """Main dataloader class for experiments on Visual Dialog. """ def __init__(self, params): imdb_path = params['path'] print('Loading imdb from: %s' % params['path']) if imdb_path.endswith('.npy'): imdb = np.load(imdb_path) else: raise TypeError('unknown imdb format.') self.imdb = imdb[()] self.shuffle = params.get('shuffle', True) self.one_pass = params.get('one_pass', False) self.prefetch_num = params.get('num_prefetch', 8) self.params = params copy_args = {'max_enc_len', 'max_dec_len', 'text_vocab_path', 'model', 'batch_size', 'use_fact', 'answer_list_path', 'generator'} self.params.update({ii: params['args'][ii] for ii in copy_args if ii in params['args'] and params['args'][ii] is not None}) # MNIST data loader self.batch_loader = BatchLoaderMNIST(self.imdb, self.params) self.num_choices = self.batch_loader.num_choices # Start prefetching thread self.prefetch_queue = queue.Queue(maxsize=self.prefetch_num) self.prefetch_thread = threading.Thread(target=_run_prefetch, args=(self.prefetch_queue, self.batch_loader, self.imdb, self.shuffle, self.one_pass, self.params)) self.prefetch_thread.daemon = True self.prefetch_thread.start() def batches(self): while True: # Get a batch from the prefetching queue if self.prefetch_queue.empty(): pass #print('data reader: waiting for data loading (IO is slow)...') batch = self.prefetch_queue.get(block=True) if batch is None: assert(self.one_pass) print('data reader: one pass finished') raise StopIteration() yield batch def _run_prefetch(prefetch_queue, batch_loader, imdb, shuffle, one_pass, params): num_samples = len(imdb['data']) batch_size = params['batch_size'] n_sample = 0 fetch_order = np.arange(num_samples) while True: # Shuffle the sample order for every epoch if n_sample == 0 and shuffle: fetch_order = np.random.permutation(num_samples) # Load batch from file # note that len(sample_ids) <= batch_size, not necessarily equal sample_ids = fetch_order[n_sample:n_sample+batch_size] batch = batch_loader.load_one_batch(sample_ids) prefetch_queue.put(batch, block=True) n_sample += len(sample_ids) if n_sample >= num_samples: # Put in a None batch to indicate a whole pass is over if one_pass: prefetch_queue.put(None, block=True) n_sample = 0
corefnmn-main
loader_mnist/data_reader.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. """ import pdb import sys import numpy as np class HTML(): def __init__(self, cols, header_file='vis/jquery_header.html'): self.template = '<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"+\ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">' +\ '<html xmlns="http://www.w3.org/1999/xhtml"><head>' self.template += '<style>'+\ 'table#t01{width:100%; background-color:#fff}'\ +'table#t01 tr:nth-child(odd){background-color:#ddd;}'\ +'table#t01 tr:nth-child(even){background-color:#fff;}'\ +'table#t01 tr td tr:nth-child(odd){background-color:#ddd;}'\ +'table#t01 tr td tr:nth-child(even){background-color:#fff;}'\ +'table#t01 th{background-color:black;color:white}'+\ '</style>' self.colors = ['maroon', 'red', 'purple', 'fuchsia', 'green', 'lime', 'olive', 'yellow', 'navy', 'blue', 'teal', 'aqua', 'orange'] with open(header_file, 'r') as file_id: self.template += file_id.read() self.template += '</head><body><table id ="t01">' self.end = '</table></body></html>' self.content = '' self.row_content = '<tr>'+'<td valign="top">%s</td>'*cols+'</tr>' self.span_first_content = '<tr>'+'<td valign="top" rowspan="%s">%s</td>'+\ '<td valign="top">%s</td>' * (cols-1)+'</tr>' self.span_other_content = '<tr>'+ '<td valign="top">%s</td>'*(cols-1)\ +'</tr>' self.att_template = '<mark style="background-color:rgba(255,0,0,%f)"> %s </mark>|' self.img_template = '<img src="%s" height="%d" width="%d"></img>' # creating table self.num_rows = None self.num_cols = cols # Add a new row def add_spanning_row(self, mega_row, *entries): # if first element is list, take it if type(entries[0]) == list: entries = entries[0] for index, ii in enumerate(entries): if len(ii) != self.num_cols - 1: print('Warning: Incompatible entries.\n_taking needed!') if len(ii) < self.num_cols - 1: # add 'null' for jj in range(self.num_cols - 1 - len(entries)): entries[index].append('NULL') num_rows = len(entries) content = (num_rows, mega_row)+tuple(entries[0]) new_row = self.span_first_content % content for ii in range(1, num_rows): new_row += self.span_other_content % tuple(entries[ii]) # Add new_row to content self.content += new_row # Add a new row def add_row(self, *entries): # if first element is list, take it if type(entries[0]) == list: entries = entries[0] if len(entries) != self.num_cols: print('Warning: Incompatible number of entries.\n_taking needed!') if len(entries) < self.num_cols: # add 'null' for ii in range(self.num_cols - len(entries)): entries.append('NULL') new_row = self.row_content % tuple(entries) # Add new_row to content self.content += new_row # setting the title def set_title(self, titles): new_titles = [] for ii in titles: new_titles.append('<strong>%s</strong>' % ii) self.add_row(new_titles) # coloring text def get_colored_text(self, text, group_id=None): ''' If group id is None, pick a random color ''' if group_id is None: color = self.colors[1] else: color = self.colors[group_id % len(self.colors)] return '<b><font color="%s">%s</font></b>' % (color, text) # render and save page def save_page(self, file_path): # allow new page and tab space self.content = self.content.replace('\n', '</br>') self.content = self.content.replace('\t', '&nbsp'*10) page_content = self.template + self.content + self.end with open(file_path, 'w') as file_id: file_id.write(page_content) print('Written page to: %s' % file_path) # Return the string for an image def link_image(self, img_path, caption=None, height=100): # No caption provided if caption == None: return self.img_template % (img_path, height, height) string = 'Caption: %s</br>' % caption return string + (self.img_template % (img_path, height, height)) # add table with question encoding def add_question_attention(self, question, program, att): table = '<table class="heat-map" id="heat-map-3"><thead><tr><th></th>' row = ''.join(['<th>%s</th>' % ii for ii in program]) row += '</tr></thead><tbody>' table += row for ii in range(len(question)): table += '<tr class="stats-row"><td class="stats-title">%s</td>'\ % question[ii] table += ''.join(['<td>%2d</td>' % att[ii, jj] \ for jj in range(len(program))]) table += '</tr>' table += '</tbody></table>' return table # add history attention def add_history_attention(self, att_wt, att_labels = None): num_ques = att_wt.size if att_labels is None: titles = ['Cap'] titles.extend(['%02d' % ii for ii in range(1, num_ques)]) else: titles = att_labels max_att = np.max(att_wt) string = '' for ii in range(0, num_ques): if ii % 6 == 0: string += '\n' string += self.att_template % (att_wt[ii]/max_att, titles[ii]) return string
corefnmn-main
vis/html.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Visualizing the dialog output from the model. Explicit visual coreference resolution in visual dialog using neural module networks. Author: Satwik Kottur """ import argparse import numpy as np import sys import h5py import json import os from vis import html from util import support # PIL from PIL import Image import requests from io import BytesIO from util import support from tqdm import tqdm as progressbar from skimage import io, transform def main(args): titles = ['Image', 'Answers', 'Predictions', 'Modules', 'Attention'] # load the batch data = np.load(args.batch_path)[()] batch, outputs = data['batch'], data['output'] # load dictionary with open(args.text_vocab_path, 'r') as file_id: word2ind = {word.strip('\n'): ind for ind, word in enumerate(file_id.readlines())} ind2word = {ind: word for word, ind in word2ind.items()} # get the program dictionary with open(args.prog_vocab_path, 'r') as file_id: word2ind_prog = {word.strip('\n'): ind for ind, word in enumerate(file_id.readlines())} ind2word_prog = {ind: word for word, ind in word2ind_prog.items()} stringify = lambda vector: ' '.join([ind2word[w] for w in vector]) stringify_prog = lambda vector: ' '.join([ind2word_prog[w] for w in vector]) # Get html related info page = html.HTML(len(titles)) page.set_title(titles) template = 'Q%d: %s\nA [GT]: %s\nP [GT]: %s\nP: %s' pred_template = 'GT Rank: %d\n_top-5: \n%s' # saving intermediate outputs end_prog_token = word2ind_prog['<eos>'] server_save = './attention/%d_%d_%d_%d.png' local_save = os.path.join(args.image_save_root, 'attention/%d_%d_%d_%d.png') # Create folders. os.makedirs(args.image_save_root, exist_ok=True) os.makedirs(os.path.join(args.image_save_root, 'attention'), exist_ok=True) for ii in progressbar(range(args.num_examples)): # Read image. img_name = '/'.join(batch[ii]['img_path'][0].split('/')[-2:]) image = io.imread(os.path.join(args.image_load_root, img_name)) # Deal with black and white images. if len(image.shape) < 3: image = np.expand_dims(image, -1) image = np.tile(image, [1, 1, 3]) # Caption. if batch[ii]['cap_len'].ndim == 2: cap_len = batch[ii]['cap_len'][0] cap_string = stringify(batch[ii]['cap'][0, :cap_len]) else: cap_len = batch[ii]['cap_len'][0] cap_string = stringify(batch[ii]['cap'][0, :cap_len]) span_content = page.link_image('coco_images/' + img_name, cap_string, 400) # decide length based on first appearance of 14 <eos> if 'pred_tokens_cap' in outputs[ii]: caption_prog = outputs[ii]['pred_tokens_cap'] prog_len = np.where(caption_prog[:, 0] == end_prog_token)[0][0] cap_tokens = [ind2word[w] for w in batch[ii]['cap'][0, :cap_len]] prog_tokens = [ind2word_prog[w] for w in caption_prog[:prog_len, 0]] att = 100 * outputs[ii]['attention_cap'][:, :, 0, 0].transpose() word_att_str = page.add_question_attention(cap_tokens, prog_tokens, att) # caption module outputs stack = outputs[ii]['intermediates'][0] cap_stack = [datum for datum in stack if datum[0] == 'cap'] string = {'c_1':'', 'c_2':''} for _, step, _, attention in cap_stack: # reshape and renormalize att = attention[:, :, 0] att_image = support.get_blend_map(image, att) att_image = Image.fromarray(np.uint8(att_image)) att_image = att_image.resize((200, 200)) att_image.save(local_save % (2, ii, 0, step), 'png') # caption first row string['c_1'] += page.link_image(server_save % (2, ii, 0, step)) att = attention[:, :, 0] att_image = support.interpolate_attention(image, att) #att_image = support.get_blend_map(image, att) att_image = Image.fromarray(np.uint8(att_image)) att_image = att_image.resize((200, 200)) att_image.save(local_save % (3, ii, 0, step), 'png') # caption second row string['c_2'] += page.link_image(server_save % (3, ii, 0, step)) # add the neural module visualization for captions span_content += '\n'.join(['', string['c_1'], string['c_2'], word_att_str]) ques_content = [] for jj in range(10): row_content = [] # question ques_len = batch[ii]['ques_len'][jj] ques_string = stringify(batch[ii]['ques'][:ques_len, jj]) # answer ans_len = batch[ii]['ans_len'][jj] ans_in = stringify(batch[ii]['ans_in'][jj, :ans_len]) ans_out = stringify(batch[ii]['ans_out'][jj, :ans_len]) # program gt_prog_str = stringify_prog(batch[ii]['gt_layout'][:, jj]) cur_prog = outputs[ii]['pred_tokens'][:, jj] prog_pred = stringify_prog(outputs[ii]['pred_tokens'][:, jj]) print_slot = (jj, ques_string, ans_in, gt_prog_str, prog_pred) row_content.append(template % print_slot) # get predictions sort_arg = np.argsort(outputs[ii]['scores'][jj])[::-1][:args.top_options] gt_score = outputs[ii]['scores'][jj][batch[ii]['gt_ind'][jj]] gt_rank = np.sum(outputs[ii]['scores'][jj] > gt_score) + 1 options = [stringify(batch[ii]['opt_in'][kk][jj]) for kk in sort_arg] row_content.append(pred_template % (gt_rank, '\n'.join(options))) # visualizing intermediate outputs for each question stack = outputs[ii]['intermediates'][0] ques_stack = [datum for datum in stack if (datum[0] == 'ques') and (datum[2] == jj)] string = {'q_1':'', 'q_2':''} for _, step, _, attention in ques_stack: # reshape and renormalize att = attention[:, :, 0] #att_image = support.interpolate_attention(image, att) att_image = support.get_blend_map(image, att) att_image = Image.fromarray(np.uint8(att_image)) att_image = att_image.resize((200, 200)) att_image.save(local_save % (0, ii, jj, step), 'png') # string for first row string['q_1'] += page.link_image(server_save % (0, ii, jj, step)) att = attention[:, :, 0] att_image = support.interpolate_attention(image, att) #att_image = support.get_blend_map(image, att) att_image = Image.fromarray(np.uint8(att_image)) att_image = att_image.resize((200, 200)) att_image.save(local_save % (1, ii, jj, step), 'png') # string for second row string['q_2'] += page.link_image(server_save % (1, ii, jj, step)) # if refer module, add weights if ind2word_prog[cur_prog[step]] == '_Refer': wt_stack = outputs[ii]['intermediates'][1] cur_wt = [datum for datum in wt_stack if datum[0] == jj] assert (len(cur_wt) == 1), 'Weights over history do not sum to one' wts = cur_wt[0][1] wt_labels = cur_wt[0][2] if len(wts) > 0: string['q_1'] = page.add_history_attention(wts, wt_labels) string['q_1'] += ('\n' + string['q_1']) row_content.append('\n'.join(['', string['q_1'], string['q_2']])) # decide length based on first appearance of 14 <eos> ques_prog = outputs[ii]['pred_tokens'][:, jj] prog_len = np.where(ques_prog == end_prog_token)[0][0] ques_tokens = [ind2word[w] for w in batch[ii]['ques'][:ques_len, jj]] prog_tokens = [ind2word_prog[w] for w in ques_prog[:prog_len]] att = 100 * outputs[ii]['attention'][:, :, jj, 0].transpose() string = page.add_question_attention(ques_tokens, prog_tokens, att) row_content.append(string) ques_content.append(row_content) # Add the span row page.add_spanning_row(span_content, ques_content) # render page and save page.save_page(args.save_path) if __name__ == '__main__': # read command line arguments title = 'Visualizing dialog by creating a HTML page.' parser = argparse.ArgumentParser(description=title) parser.add_argument('--batch_path', default='logs/sample_run_batches.npy', help='Path to batches saved by visualize_sl.py') parser.add_argument('--text_vocab_path', default='data/vocab_vd.txt', help='Text vocabulary to decode sentence outputs') parser.add_argument('--prog_vocab_path', default='data/vocab_layout.txt', help='Program vocabulary to decode program outputs') parser.add_argument('--save_path', default='vis/sample_run_examples.html', help='Save the HTML file that visualizes examples') parser.add_argument('--image_load_root', default='vis/coco_images/', help='Path to the COCO images') parser.add_argument('--image_save_root', default='vis/images/', help='Path to the images to load in HTML') parser.add_argument('--num_examples', default=50, type=int, help='Number of examples to visualize') parser.add_argument('--top_options', default=5, type=int, help='Number of top ranked options to show') args = parser.parse_args() main(args)
corefnmn-main
vis/visualize_dialogs.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Main class to decode and produce an answer. Answer decoder for explicit visual coreference resolution model in visual dialog using neural module networks, called CorefNMN. Author: Satwik Kottur """ import numpy as np import tensorflow as tf from tensorflow.python.ops.nn import dropout from tensorflow.contrib.layers import fully_connected as FC from util import support class AnswerDecoder: def __init__(self, inputs, output_pool, params): """Initialize answer decoder. Args: inputs: output_pool: params: """ self.params = params # keep track of inputs and outputs used_inputs = [] outputs = {} # alias for criterion criterion = tf.nn.sparse_softmax_cross_entropy_with_logits # decide the source based on train / evaluation source = output_pool if params['train_mode'] else inputs # a linear to number of choices logits = FC(source['context'], params['num_choices'], activation_fn=None) outputs['ans_logits'] = logits # add program context vector, if not training if not self.params['train_mode']: used_inputs.append('context') # softmax over the choices answer_loss = criterion(logits=logits, labels=inputs['ans_ind']) used_inputs.append('ans_ind') outputs['ans_token_loss'] = tf.reduce_mean(answer_loss) # setup the inputs and outputs self.outputs = outputs self.inputs = {ii: inputs[ii] for ii in used_inputs} #---------------------------------------------------------------------------- # setters and getters def get_outputs(self): return self.outputs def get_inputs(self): return self.inputs #---------------------------------------------------------------------------- # produce feed dict def produce_feed_dict(self, batch, output_pool=None): """Produces the feed dict for this subcomponent. Args: batch: Batch returned from dataloader output_pool: Outputs from previous subcomponents, mostly when evaluating Returns: feed_dict: Returns the feed dictionary """ feed_dict = {} feed_dict[self.inputs['ans_ind']] = batch['ans_ind'] # if not training, use previous outputs, else inputs if not self.params['train_mode']: feed_dict[self.inputs['context']] = output_pool['context'] return feed_dict
corefnmn-main
models_mnist/decoder.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. TODO(satwik): Add a reasonable description to the file. """ from __future__ import absolute_import, division, print_function import numpy as np import tensorflow as tf from tensorflow import convert_to_tensor as to_T from util.cnn import fc_layer as fc, conv_relu_layer as conv_relu from tensorflow.contrib.layers import fully_connected as FC from tensorflow.contrib.rnn import LSTMStateTuple from util import support def _get_valid_tokens(X, W, b): constraints_validity = tf.greater_equal(tf.tensordot(X, W, axes=1) - b, 0) token_validity = tf.reduce_all(constraints_validity, axis=2) return tf.stop_gradient(token_validity) #------------------------------------------------------------------------------ def _update_decoding_state(X, s, P): X = X + tf.nn.embedding_lookup(P, s) # X = X + S P return tf.stop_gradient(X) #------------------------------------------------------------------------------ def _get_lstm_cell(num_layers, lstm_dim, apply_dropout): if isinstance(lstm_dim, list): # Different layers have different dimensions if not len(lstm_dim) == num_layers: raise ValueError('the length of lstm_dim must be equal to num_layers') cell_list = [] for l in range(num_layers): lstm_cell = tf.contrib.rnn.BasicLSTMCell(lstm_dim[l], state_is_tuple=True) # Dropout is only applied on output of the 1st to second-last layer. # The output of the last layer has no dropout if apply_dropout and l < num_layers-1: dropout_cell = tf.contrib.rnn.DropoutWrapper(lstm_cell, output_keep_prob=0.5) else: dropout_cell = lstm_cell cell_list.append(dropout_cell) else: # All layers has the same dimension. lstm_cell = tf.contrib.rnn.BasicLSTMCell(lstm_dim, state_is_tuple=True) # Dropout is only applied on output of the 1st to second-last layer. # The output of the last layer has no dropout if apply_dropout: dropout_cell = tf.contrib.rnn.DropoutWrapper(lstm_cell, output_keep_prob=0.5) else: dropout_cell = lstm_cell cell_list = [dropout_cell] * (num_layers-1) + [lstm_cell] cell = tf.contrib.rnn.MultiRNNCell(cell_list, state_is_tuple=True) return cell #------------------------------------------------------------------------------ # Sequence to Sequence with attention class AttSeq2Seq: def __init__(self, holders, use_gt_prog, assembler, params, reuse=None): self.T_decoder = params['max_dec_len'] self.encoder_num_vocab = params['text_vocab_size'] self.encoder_embed_dim = params['text_embed_size'] self.decoder_num_vocab = params['prog_vocab_size'] self.decoder_embed_dim = params['prog_embed_size'] self.lstm_dim = params['lstm_size'] self.num_layers = params['num_layers'] self.EOS_token = assembler.EOS_idx self.embed_scope = params['embed_scope'] self.temperature = params.get('temperature', 1) # if word vectors need to be used or lstm outputs for attention params['use_word_vectors'] = 'wv-att' in params['model'] params['generator'] = params.get('generator', 'ques') self.params = params # decoding transition variables self.P = to_T(assembler.P, dtype=tf.int32) self.W = to_T(assembler.W, dtype=tf.int32) self.b = to_T(assembler.b, dtype=tf.int32) self.encoder_dropout = params['enc_dropout'] self.decoder_dropout = params['dec_dropout'] self.decoder_sampling = params['dec_sampling'] # detect fake inputs if 'fake' in holders: scope = 'enc_dec_cap' else: scope = 'enc_dec' with tf.variable_scope(scope, reuse=reuse): # build a special encoder, if needed if 'fake' not in holders and params['generator'] == 'mem': self._build_memory_encoder(holders) else: # build a normal encoder self._build_encoder(holders['ques'], holders['ques_len']) self._build_decoder(use_gt_prog, holders['prog_gt']) # build a usual encoder, ques based def _build_encoder(self, input_seq_batch, seq_len_batch, scope='encoder', reuse=None): lstm_dim = self.lstm_dim num_layers = self.num_layers apply_dropout = self.encoder_dropout with tf.variable_scope(scope, reuse=reuse): #T = tf.shape(input_seq_batch)[0] T = input_seq_batch.shape.as_list()[0] N = tf.shape(input_seq_batch)[1] self.T_encoder = T self.N = N with tf.variable_scope(self.embed_scope, reuse=True): embedding_mat = tf.get_variable('embed_mat', [self.encoder_num_vocab, self.encoder_embed_dim]) # text_seq has shape [T, N] and embedded_seq has shape [T, N, D]. embedded_seq = tf.nn.embedding_lookup(embedding_mat, input_seq_batch) self.embedded_input_seq = embedded_seq # The RNN cell = _get_lstm_cell(num_layers, lstm_dim, apply_dropout) # encoder_outputs has shape [T, N, lstm_dim] encoder_outputs, encoder_states = tf.nn.dynamic_rnn(cell, embedded_seq, seq_len_batch, dtype=tf.float32, time_major=True, scope='lstm') self.encoder_outputs = encoder_outputs self.encoder_states = encoder_states # check if wv flag is set if self.params['use_word_vectors']: # transform the encoder outputs for further attention alignments # encoder_outputs_flat has shape [T, N, lstm_dim] encoder_h_transformed = fc('encoder_h_transform', tf.reshape(embedded_seq, [-1, self.encoder_embed_dim]), output_dim=lstm_dim) else: # transform the encoder outputs for further attention alignments # encoder_outputs_flat has shape [T, N, lstm_dim] encoder_h_transformed = fc('encoder_h_transform', tf.reshape(encoder_outputs, [-1, lstm_dim]), output_dim=lstm_dim) encoder_h_transformed = tf.reshape(encoder_h_transformed, to_T([T, N, lstm_dim])) self.encoder_h_transformed = encoder_h_transformed # seq_not_finished has shape [T, N, 1], where seq_not_finished[t, n] # is 1 iff sequence n is not finished at time t, and 0 otherwise seq_not_finished = tf.less(tf.range(T)[:, tf.newaxis, tf.newaxis], seq_len_batch[:, tf.newaxis]) seq_not_finished = tf.cast(seq_not_finished, tf.float32) self.seq_not_finished = seq_not_finished # build a special encoder def _build_memory_encoder(self, holders, scope='encoder', reuse=None): lstm_dim = self.lstm_dim num_layers = self.num_layers apply_dropout = self.encoder_dropout input_seq = holders['ques'] input_seq_len = holders['ques_len'] # facts/memories hist_size = holders['hist'].shape.as_list() hist_flat = tf.reshape(holders['hist'], [-1, hist_size[2]]) hist_len_flat = tf.reshape(holders['hist_len'], [-1]) with tf.variable_scope(scope, reuse=reuse): T = input_seq.shape.as_list()[0] N = tf.shape(input_seq)[1] self.T_encoder = T self.N = N with tf.variable_scope(self.embed_scope, reuse=True): embed_mat = tf.get_variable('embed_mat', [self.encoder_num_vocab, self.encoder_embed_dim]) # text_seq has shape [T, N] and embedded_seq has shape [T, N, D]. embed_seq = tf.nn.embedding_lookup(embed_mat, input_seq) self.embedded_input_seq = embed_seq # The RNN cell = _get_lstm_cell(num_layers, lstm_dim, apply_dropout) # encoder_outputs has shape [T, N, lstm_dim] encoder_outputs, encoder_states = tf.nn.dynamic_rnn(cell, embed_seq, input_seq_len, dtype=tf.float32, time_major=True, scope='lstm') self.encoder_outputs = encoder_outputs # batch first encoder outputs batch_encoder_outputs = tf.transpose(encoder_outputs, [1, 0, 2]) ques_enc = support.last_relevant(batch_encoder_outputs, input_seq_len) size = [-1, self.params['num_rounds'], self.params['lstm_size']] ques_enc = tf.reshape(ques_enc, size) self.encoder_states = encoder_states # similarly encode history hist_out = tf.nn.embedding_lookup(embed_mat, hist_flat) # rnns to encode history cell = tf.contrib.rnn.BasicLSTMCell(self.params['lstm_size']) for ii in range(0, self.params['num_layers']): # dynamic rnn hist_out, states = tf.nn.dynamic_rnn(cell, hist_out, \ sequence_length=hist_len_flat, \ dtype=tf.float32, scope='hist_layer_%d' % ii) # get output from last timestep hist_enc = support.last_relevant(hist_out, hist_len_flat) # reshape back size = [-1, hist_size[1], self.params['lstm_size']] hist_enc = tf.reshape(hist_enc, size) # concatenate, mlp and tanh num_r = self.params['num_rounds'] # dot product attention = tf.matmul(ques_enc, hist_enc, transpose_b=True) # a very small large number u_mat = np.full((num_r, num_r), -1e10) suppress_mat = tf.constant(np.triu(u_mat, 1), dtype=tf.float32) l_mat = np.full((num_r, num_r), 1) mask_mat = tf.constant(np.tril(l_mat), dtype=tf.float32) attention = tf.nn.softmax(tf.multiply(attention, mask_mat) + suppress_mat) self.att_history = attention att_hist_enc = tf.matmul(attention, hist_enc) # flatten out size = [-1, self.params['lstm_size']] att_hist_flat = tf.reshape(att_hist_enc, size) # concatenate attended history and encoder state for the last layer concat = tf.concat([encoder_states[-1].h, att_hist_flat], -1) new_state = LSTMStateTuple(encoder_states[-1].c, FC(concat, self.params['lstm_size'])) # make it mutable encoder_states = list(encoder_states) encoder_states[-1] = new_state self.encoder_states = tuple(encoder_states) # check if wv flag is set if self.params['use_word_vectors']: # transform the encoder outputs for further attention alignments # encoder_outputs_flat has shape [T, N, lstm_dim] encoder_h_transformed = fc('encoder_h_transform', tf.reshape(embedded_seq, [-1, self.encoder_embed_dim]), output_dim=lstm_dim) else: # transform the encoder outputs for further attention alignments # encoder_outputs_flat has shape [T, N, lstm_dim] encoder_h_transformed = fc('encoder_h_transform', tf.reshape(encoder_outputs, [-1, lstm_dim]), output_dim=lstm_dim) encoder_h_transformed = tf.reshape(encoder_h_transformed, to_T([T, N, lstm_dim])) self.encoder_h_transformed = encoder_h_transformed # seq_not_finished is a shape [T, N, 1] tensor, where seq_not_finished[t, n] # is 1 iff sequence n is not finished at time t, and 0 otherwise seq_not_finished = tf.less(tf.range(T)[:, tf.newaxis, tf.newaxis], input_seq_len[:, tf.newaxis]) seq_not_finished = tf.cast(seq_not_finished, tf.float32) self.seq_not_finished = seq_not_finished def _build_decoder(self, use_gt_layout, gt_layout_batch, scope='decoder', reuse=None): # The main difference from before is that the decoders now takes another # input (the attention) when computing the next step # T_max is the maximum length of decoded sequence (including <eos>) # # This function is for decoding only. It performs greedy search or sampling. # the first input is <go> (its embedding vector) and the subsequent inputs # are the outputs from previous time step # num_vocab does not include <go> # # use_gt_layout is None or a bool tensor, and gt_layout_batch is a tenwor # with shape [T_max, N]. # If use_gt_layout is not None, then when use_gt_layout is true, predict # exactly the tokens in gt_layout_batch, regardless of actual probability. # Otherwise, if sampling is True, sample from the token probability # If sampling is False, do greedy decoding (beam size 1) N = self.N encoder_states = self.encoder_states T_max = self.T_decoder lstm_dim = self.lstm_dim num_layers = self.num_layers apply_dropout = self.decoder_dropout EOS_token = self.EOS_token sampling = self.decoder_sampling with tf.variable_scope(scope, reuse=reuse): embedding_mat = tf.get_variable('embedding_mat', [self.decoder_num_vocab, self.decoder_embed_dim]) # we use a separate embedding for <go>, as it is only used in the # beginning of the sequence go_embedding = tf.get_variable('go_embedding', [1, self.decoder_embed_dim]) with tf.variable_scope('att_prediction'): v = tf.get_variable('v', [lstm_dim]) W_a = tf.get_variable('weights', [lstm_dim, lstm_dim], initializer=tf.contrib.layers.xavier_initializer()) b_a = tf.get_variable('biases', lstm_dim, initializer=tf.constant_initializer(0.)) # The parameters to predict the next token with tf.variable_scope('token_prediction'): W_y = tf.get_variable('weights', [lstm_dim*2, self.decoder_num_vocab], initializer=tf.contrib.layers.xavier_initializer()) b_y = tf.get_variable('biases', self.decoder_num_vocab, initializer=tf.constant_initializer(0.)) # Attentional decoding # Loop function is called at time t BEFORE the cell execution at time t, # and its next_input is used as the input at time t (not t+1) # c.f. https://www.tensorflow.org/api_docs/python/tf/nn/raw_rnn mask_range = tf.reshape(tf.range(self.decoder_num_vocab, dtype=tf.int32), [1, -1]) if use_gt_layout is not None: gt_layout_mult = tf.cast(use_gt_layout, tf.int32) pred_layout_mult = 1 - gt_layout_mult def loop_fn(time, cell_output, cell_state, loop_state): if cell_output is None: # time == 0 next_cell_state = encoder_states next_input = tf.tile(go_embedding, to_T([N, 1])) else: # time > 0 next_cell_state = cell_state # compute the attention map over the input sequence # a_raw has shape [T, N, 1] att_raw = tf.reduce_sum( tf.tanh(tf.nn.xw_plus_b(cell_output, W_a, b_a) + self.encoder_h_transformed) * v, axis=2, keep_dims=True) # softmax along the first dimension (T) over not finished examples # att has shape [T, N, 1] att = tf.nn.softmax(att_raw, dim=0)*self.seq_not_finished att = att / tf.reduce_sum(att + 1e-10, axis=0, keep_dims=True) # d has shape [N, lstm_dim] d2 = tf.reduce_sum(att*self.encoder_outputs, axis=0) # token_scores has shape [N, num_vocab] token_scores = tf.nn.xw_plus_b( tf.concat([cell_output, d2], axis=1), W_y, b_y) decoding_state = loop_state[2] # token_validity has shape [N, num_vocab] token_validity = _get_valid_tokens(decoding_state, self.W, self.b) token_validity.set_shape([None, self.decoder_num_vocab]) if use_gt_layout is not None: # when there's ground-truth layout, do not re-normalize prob # and treat all tokens as valid token_validity = tf.logical_or(token_validity, use_gt_layout) validity_mult = tf.cast(token_validity, tf.float32) # predict the next token (behavior depending on parameters) if sampling: token_scores_valid = token_scores - (1-validity_mult) * 50 # TODO:debug sampled_token = tf.cast(tf.reshape( tf.multinomial(token_scores_valid/self.temperature, 1), [-1]), tf.int32) # make sure that the predictions are ALWAYS valid # (it can be invalid with very small prob) # If not, just fall back to min cases # pred_mask has shape [N, num_vocab] sampled_mask = tf.equal(mask_range, tf.reshape(sampled_token, [-1, 1])) is_sampled_valid = tf.reduce_any( tf.logical_and(sampled_mask, token_validity), axis=1) # Fall back to max score (no sampling) min_score = tf.reduce_min(token_scores) token_scores_valid = tf.where(token_validity, token_scores, tf.ones_like(token_scores)*(min_score-1)) max_score_token = tf.cast(tf.argmax(token_scores_valid, 1), tf.int32) predicted_token = tf.where(is_sampled_valid, sampled_token, max_score_token) else: min_score = tf.reduce_min(token_scores) token_scores_valid = tf.where(token_validity, token_scores, tf.ones_like(token_scores)*(min_score-1)) # predicted_token has shape [N] predicted_token = tf.cast(tf.argmax(token_scores_valid, 1), tf.int32) if use_gt_layout is not None: predicted_token = (gt_layout_batch[time-1] * gt_layout_mult + predicted_token * pred_layout_mult) # a robust version of softmax # all_token_probs has shape [N, num_vocab] all_token_probs = tf.nn.softmax(token_scores) * validity_mult # tf.check_numerics(all_token_probs, 'NaN/Inf before div') all_token_probs = all_token_probs / tf.reduce_sum(all_token_probs + 1e-10, axis=1, keep_dims=True) # tf.check_numerics(all_token_probs, 'NaN/Inf after div') # mask has shape [N, num_vocab] mask = tf.equal(mask_range, tf.reshape(predicted_token, [-1, 1])) # token_prob has shape [N], the probability of the predicted token # although token_prob is not needed for predicting the next token # it is needed in output (for policy gradient training) # [N, num_vocab] token_prob = tf.reduce_sum(all_token_probs * tf.cast(mask, tf.float32), axis=1) # tf.assert_positive(token_prob) neg_entropy = tf.reduce_sum( all_token_probs * tf.log(all_token_probs + (1-validity_mult) + 1e-10), axis=1) # update states updated_decoding_state = _update_decoding_state( decoding_state, predicted_token, self.P) # the prediction is from the cell output of the last step # timestep (t-1), feed it as input into timestep t next_input = tf.nn.embedding_lookup(embedding_mat, predicted_token) elements_finished = tf.greater_equal(time, T_max) # loop_state is a 5-tuple, representing # 1) the predicted_tokens # 2) the prob of predicted_tokens # 3) the decoding state (used for validity) # 4) the negative entropy of policy (accumulated across timesteps) # 5) the attention if loop_state is None: # time == 0 # Write the predicted token into the output predicted_token_array = tf.TensorArray(dtype=tf.int32, size=T_max, infer_shape=False) token_prob_array = tf.TensorArray(dtype=tf.float32, size=T_max, infer_shape=False) init_decoding_state = tf.tile(to_T([[0, 0, T_max]], dtype=tf.int32), to_T([N, 1])) att_array = tf.TensorArray(dtype=tf.float32, size=T_max, infer_shape=False) next_loop_state = (predicted_token_array, token_prob_array, init_decoding_state, tf.zeros(to_T([N]), dtype=tf.float32), att_array) else: # time > 0 t_write = time-1 next_loop_state = (loop_state[0].write(t_write, predicted_token), loop_state[1].write(t_write, token_prob), updated_decoding_state, loop_state[3] + neg_entropy, loop_state[4].write(t_write, att)) return (elements_finished, next_input, next_cell_state, cell_output, next_loop_state) # The RNN cell = _get_lstm_cell(num_layers, lstm_dim, apply_dropout) _, _, decodes_ta = tf.nn.raw_rnn(cell, loop_fn, scope='lstm') predicted_tokens = decodes_ta[0].stack() token_probs = decodes_ta[1].stack() neg_entropy = decodes_ta[3] # atts has shape [T_decoder, T_encoder, N, 1] atts = decodes_ta[4].stack() # static dimension recast atts = tf.reshape(atts, [self.T_decoder, self.T_encoder, -1, 1]) self.atts = atts # word_vec has shape [T_decoder, N, 1] word_vecs = tf.reduce_sum(atts*self.embedded_input_seq, axis=1) predicted_tokens.set_shape([None, None]) token_probs.set_shape([None, None]) neg_entropy.set_shape([None]) #word_vecs.set_shape([None, None, self.encoder_embed_dim]) # static shapes word_vecs.set_shape([self.T_decoder, None, self.encoder_embed_dim]) self.predicted_tokens = predicted_tokens self.token_probs = token_probs self.neg_entropy = neg_entropy self.word_vecs = word_vecs #------------------------------------------------------------------------------
corefnmn-main
models_mnist/generator_attnet.py
corefnmn-main
models_mnist/__init__.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. TODO(satwik): Write a description about what this file contains and what it does. """ from __future__ import absolute_import, division, print_function import numpy as np import tensorflow as tf import tensorflow_fold as td from tensorflow import convert_to_tensor as to_T from models_mnist import modules as lm # the number of attention input to each module _module_input_num = { '_Find': 0, '_Refer': 0, '_Exclude': 0, '_Transform': 1, '_Exist': 1, '_Count': 1, '_And': 2, '_Diff': 2, '_Not': 1, '_Describe': 1 } # output type of each module _module_output_type = { '_Find': 'att', '_Refer': 'att', '_Exclude': 'att', '_Exist': 'ans', '_Count': 'ans', '_Transform': 'att', '_And': 'att', '_Diff': 'att', '_Not': 'att', '_Describe': 'ans' } INVALID_EXPR = 'INVALID_EXPR' # decoding validity: maintaining a state x of [#att, #ans, T_remain] # when T_remain is T_decoder when decoding the first module token # a token s can be predicted iff all(<x, w_s> - b_s >= 0) # the validity token list is # XW - b >= 0 # the state transition matrix is P, so the state update is X += S P, # where S is the predicted tokens (one-hot vectors) def _build_validity_mats(module_names): state_size = 3 num_vocab_nmn = len(module_names) num_constraints = 4 P = np.zeros((num_vocab_nmn, state_size), np.int32) W = np.zeros((state_size, num_vocab_nmn, num_constraints), np.int32) b = np.zeros((num_vocab_nmn, num_constraints), np.int32) # collect the input and output numbers of each module att_in_nums = np.zeros(num_vocab_nmn) att_out_nums = np.zeros(num_vocab_nmn) ans_out_nums = np.zeros(num_vocab_nmn) for n_s, s in enumerate(module_names): if s != '<eos>': att_in_nums[n_s] = _module_input_num[s] att_out_nums[n_s] = _module_output_type[s] == 'att' ans_out_nums[n_s] = _module_output_type[s] == 'ans' # construct the trasition matrix P for n_s, s in enumerate(module_names): P[n_s, 0] = att_out_nums[n_s] - att_in_nums[n_s] P[n_s, 1] = ans_out_nums[n_s] P[n_s, 2] = -1 # construct the validity W and b att_absorb_nums = (att_in_nums - att_out_nums) max_att_absorb_nonans = np.max(att_absorb_nums * (ans_out_nums == 0)) max_att_absorb_ans = np.max(att_absorb_nums * (ans_out_nums != 0)) for n_s, s in enumerate(module_names): if s != '<eos>': # constraint: a non-<eos> module can be outputted iff all the following # hold: # * 0) there's enough att in the stack # #att >= att_in_nums[n_s] W[0, n_s, 0] = 1 b[n_s, 0] = att_in_nums[n_s] # * 1) for answer modules, there's no extra att in the stack # #att <= att_in_nums[n_s] # -#att >= -att_in_nums[n_s] # for non-answer modules, T_remain >= 3 # (the last two has to be AnswerType and <eos>) if ans_out_nums[n_s] != 0: W[0, n_s, 1] = -1 b[n_s, 1] = -att_in_nums[n_s] else: W[2, n_s, 1] = 1 b[n_s, 1] = 3 # * 2) there's no answer in the stack (otherwise <eos> only) # #ans <= 0 # -#ans >= 0 W[1, n_s, 2] = -1 # * 3) there's enough time to consume the all attentions, output answer # plus <eos> # 3.1) for non-answer modules, we already have T_remain>= 3 from # constraint 2 # In maximum (T_remain-3) further steps # (plus 3 steps for this, ans, <eos>) to consume atts # (T_remain-3) * max_att_absorb_nonans + max_att_absorb_ans + # att_absorb_nums[n_s] >= #att # T_remain*MANA - #att >= 3*MANA - MAA - A[s] # - #att + MANA * T_remain >= 3*MANA - MAA - A[s] # 3.2) for answer modules, if it can be decoded then constraint 0&1 # ensures that there'll be no att left in stack after decoding # this answer, hence no further constraints here if ans_out_nums[n_s] == 0: W[0, n_s, 3] = -1 W[2, n_s, 3] = max_att_absorb_nonans b[n_s, 3] = (3 * max_att_absorb_nonans - max_att_absorb_ans - att_absorb_nums[n_s]) else: # <eos>-case # constraint: a <eos> token can be outputted iff all the following holds # * 0) there's ans in the stack # #ans >= 1 W[1, n_s, 0] = 1 b[n_s, 0] = 1 return P, W, b #------------------------------------------------------------------------------ class Assembler: def __init__(self, module_vocab_file): # read the module list, and record the index of each module and <eos> with open(module_vocab_file) as f: self.module_names = [s.strip() for s in f.readlines()] # find the index of <eos> for n_s in range(len(self.module_names)): if self.module_names[n_s] == '<eos>': self.EOS_idx = n_s break # build a dictionary from module name to token index self.name2idx_dict = {name: n_s for n_s, name in enumerate(self.module_names)} self.num_vocab_nmn = len(self.module_names) self.P, self.W, self.b = _build_validity_mats(self.module_names) def module_list2tokens(self, module_list, T=None): layout_tokens = [self.name2idx_dict[name] for name in module_list] if T is not None: if len(module_list) >= T: raise ValueError('Not enough time steps to add <eos>') layout_tokens += [self.EOS_idx]*(T-len(module_list)) return layout_tokens def _layout_tokens2str(self, layout_tokens): return ' '.join([self.module_names[idx] for idx in layout_tokens]) def assemble_refer(self, text_att, round_id, reuse_stack): # aliases weaver = self.weaver executor = self.executor # compute the scores logits = [] for find_arg in reuse_stack: # compute the weights for each of the attention map inputs = (text_att, find_arg[1], round_id, find_arg[2]) logits.append(weaver.align_text(*inputs)) # exponential each logit weights = [] for ii in logits: weights.append(weaver.exp(ii)) # normalize the weights if len(weights) < 2: norm = weights[0] else: norm = weaver.add(weights[0], weights[1]) for ii in weights[2:]: norm = weaver.add(norm, ii) for index, ii in enumerate(weights): weights[index] = weaver.divide(ii, norm) # multiply the attention with softmax weight prev_att = [] for (att, _, _, _, _), weight in zip(reuse_stack, weights): prev_att.append(weaver.weight_attention(att, weight)) # add all attentions to get the result if len(prev_att) < 2: out = prev_att[0] else: out = weaver.add_attention(prev_att[0], prev_att[1]) for ii in prev_att[2:]: out = weaver.add_attention(out, ii) return out, weights, logits def assemble_exclude(self, text_att, round_id, reuse_stack): # aliases weaver = self.weaver executor = self.executor # compute the scores weights = [] exclude_att = reuse_stack[0][0] if len(reuse_stack) > 1: for find_arg in reuse_stack: exclude_att = weaver.max_attention(exclude_att, find_arg[0]) return weaver.normalize_exclude(exclude_att) # code to check if the program makes sense # typically contains all the checks from the _assemble_program method def sanity_check_program(self, layout): decode_stack = [] for t_id, cur_op_id in enumerate(layout): cur_op_name = self.module_names[cur_op_id] # <eos> would mean stop if cur_op_id == self.EOS_idx: break # insufficient number of inputs num_inputs = _module_input_num[cur_op_name] if len(decode_stack) < num_inputs: return False, 'Insufficient inputs' # read the inputs inputs = [] for ii in range(num_inputs): arg_type = decode_stack.pop() # cannot consume anything but attention if arg_type != 'att': return False, 'Intermediate not attention' decode_stack.append(_module_output_type[cur_op_name]) # Check if only one element is left if len(decode_stack) != 1: return False, 'Left with more than one outputs' # final output is not answer type elif decode_stack[0] != 'ans': return False, 'Final output not an answer' return True, 'Valid program' def assemble(self, layout_tokens, executor, visualize=False): # layout_tokens_batch is a numpy array with shape [T, N], # containing module tokens and <eos>, in Reverse Polish Notation. # internalize executor and weaver self.executor = executor # build a weaver weaver = executor.create_weaver() self.weaver = weaver # visualize flag self.visualize = visualize # get extent of layout tokens max_time, batch_size = layout_tokens['ques'].shape num_rounds = executor.params['num_rounds'] batch_size = batch_size // num_rounds outputs = [] reuse = [None] * batch_size ques_invalid_prog = [] # program on questions and captions, if needed ques_tokens = layout_tokens['ques'] for b_id in range(batch_size): image = weaver.batch_input(executor._loom_types['image'], b_id) if executor.params['use_fact']: fact = weaver.batch_input(executor._loom_types['fact'], b_id) else: fact = None # Now run program on questions text = weaver.batch_input(executor._loom_types['text'], b_id) text_feat = weaver.batch_input(executor._loom_types['text_feat'], b_id) # collect root node outputs for down the rounds # tuples are immutable, recreate to ensure caption is round 0 round_zero = weaver.batch_input(executor._loom_types['round'], 0) tokens = ques_tokens[:, num_rounds*b_id : num_rounds*(b_id+1)] inputs = (image, text, fact, text_feat, tokens, []) out, _, invalid_prog = self._assemble_program(*inputs) ques_invalid_prog.extend(invalid_prog) outputs.extend(out['comp']) if visualize: outputs.extend([ii for ii, _ in out['vis']['att']]) outputs.extend(out['vis']['weights']) invalid_prog = {'ques': ques_invalid_prog} return weaver, outputs, invalid_prog def _assemble_program(self, image, text, fact, text_feat, tokens, reuse_stack): # aliases weaver = self.weaver executor = self.executor # get extent of layout tokens max_time, batch_size = tokens.shape num_rounds = executor.params['num_rounds'] outputs = [] validity = [] # for visualizing internal nodes vis_outputs = {'att': [], 'weights': []} for r_id in range(num_rounds): layout = tokens[:, r_id] invalid_prog = False round_id = weaver.batch_input(executor._loom_types['round'], r_id) if fact is not None: fact_slice = weaver.slice_fact(fact, round_id) # valid layout must contain <eos>. Assembly fails if it doesn't. if not np.any(layout == self.EOS_idx): invalid_prog = True decode_stack = [] penult_out = None # penultimate output for t_id in range(len(layout)): weights = None time = weaver.batch_input(executor._loom_types['time'], t_id) text_att = weaver.slice_text(text, round_id, time) # slice the text feature text_feat_slice = weaver.slice_text_feat(text_feat, round_id, time) cur_op_id = layout[t_id] cur_op_name = self.module_names[cur_op_id] # <eos> would mean stop if cur_op_id == self.EOS_idx: break # insufficient number of inputs num_inputs = _module_input_num[cur_op_name] if len(decode_stack) < num_inputs: invalid_prog = True break # read the inputs inputs = [] for ii in range(num_inputs): arg, arg_type = decode_stack.pop() # cannot consume anything but attention if arg_type != 'att': invalid_prog = True break inputs.append(arg) # switch cases if cur_op_name == '_Find': out = weaver.find(image, text_att) elif cur_op_name == '_Refer': # nothing to refer to, wrong program if len(reuse_stack) == 0: invalid_prog = True break # if baseline is in the model, take the last output if 'baseline' in self.executor.params['model']: out = reuse_stack[-1][0] else: inputs = (text_feat_slice, round_id, reuse_stack) out, weights, logits = self.assemble_refer(*inputs) elif cur_op_name == '_Exclude': # clean up reuse stack to avoid current finds neat_stack = reuse_stack.copy() for prev_time in range(t_id - 1, 0, -1): if neat_stack[-1][-2] == prev_time: neat_stack.pop(-1) # nothing to exclude to, wrong program if len(neat_stack) == 0: invalid_prog = True break inputs = (text_att, round_id, neat_stack) out = self.assemble_exclude(*inputs) # collect in reuse stack #reuse_stack.append((out, text_att, round_id, r_id, t_id)) elif cur_op_name == '_Transform': out = weaver.transform(inputs[0], image, text_att) elif cur_op_name == '_Describe': out = weaver.describe(inputs[0], image, text_att) # TODO: Do this more carefully! penult_out = arg elif cur_op_name == '_Exist': out = weaver.exist(inputs[0], image, text_att) # TODO: Do this more carefully! penult_out = arg elif cur_op_name == '_Count': out = weaver.count(inputs[0], image, text_att) # TODO: Do this more carefully! penult_out = arg elif cur_op_name == '_And': out = weaver.and_op(inputs[0], inputs[1]) elif cur_op_name == '_Diff': out = weaver.diff_op(inputs[0], inputs[1]) # just invert the attention elif cur_op_name == '_Not': out = weaver.normalize_exclude(inputs[0]) else: print('Current operand not defined: ' + cur_op_name) invalid_prog = True # collect outputs from all modules (visualize) if self.visualize: if _module_output_type[cur_op_name] == 'att': vis_outputs['att'].append((out, r_id)) if weights is not None: vis_outputs['weights'].extend(weights) decode_stack.append((out, _module_output_type[cur_op_name])) # Check if only one element is left if len(decode_stack) != 1: invalid_prog = True # final output is not answer type elif decode_stack[0][1] != 'ans': invalid_prog = True # record program validity validity.append(invalid_prog) # if program is invalid, return zeros if invalid_prog: outputs.append(weaver.invalid(image)) else: outputs.append(decode_stack[-1][0]) # if fact is to be used, take the penultimate output if executor.params['use_fact']: reuse_stack.append((penult_out, fact_slice, round_id, r_id, -1)) return {'comp': outputs, 'vis': vis_outputs}, reuse_stack, validity
corefnmn-main
models_mnist/assembler.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Main CorefNMN model class. Explicit visual coreference resolution in visual dialog using neural module networks. Takes parameters and assemblers as input. Author: Satwik Kottur """ from __future__ import absolute_import, division, print_function import numpy as np import tensorflow as tf import tensorflow_fold as td from models_mnist.generator import ProgramGenerator from models_mnist.executor import ProgramExecutor from models_mnist.decoder import AnswerDecoder from util import support class CorefNMN: def __init__(self, params, assemblers, reuse=None): # train mode params['train_mode'] = 'test_split' not in params print('Building model with train_model as: ' + str(params['train_mode'])) self.params = params self.assemblers = assemblers # module phases self.phases = ['generate_program', 'execute_program', 'generate_answer'] # initializing input and output placeholders self.inputs = {ii: {} for ii in self.phases} self.outputs = self.inputs.copy() # build place holders for inputs and outputs in the tensorflow graph holders = self._build_placeholders(params) self.holders = holders with tf.variable_scope(params['model'], reuse=reuse): # keep track of all outputs output_pool = {} # Part 1: Seq2seq RNN to generate module layout tokens with tf.variable_scope('generate_program'): self.generator = ProgramGenerator(holders, assemblers['ques'], params) self.inputs['generate_program'] = self.generator.get_inputs() self.outputs['generate_program'] = self.generator.get_outputs() # add outputs to pool output_pool.update(self.outputs['generate_program']) # Part 2: Neural Module Network with tf.variable_scope('execute_program'): self.executor = ProgramExecutor(holders, output_pool, assemblers['copy'], params) self.inputs['execute_program'] = self.executor.get_inputs() self.outputs['execute_program'] = self.executor.get_outputs() # add outputs to pool output_pool.update(self.outputs['execute_program']) # Part 3: Seq2Seq decoding of the answer with tf.variable_scope('generate_answer'): self.decoder = AnswerDecoder(holders, output_pool, params) self.inputs['generate_answer'] = self.decoder.get_inputs() self.outputs['generate_answer'] = self.decoder.get_outputs() # pool up all the outputs pooled_dict = [] outputs = self.outputs.copy() for ii in outputs: pooled_dict += outputs[ii].items() self.pooled_outputs = dict(pooled_dict) self.run_outputs = [ii for _, jj in self.outputs.items() for _, ii in jj.items()] self.run_inputs = list(set([ii for _, jj in self.inputs.items() for _, ii in jj.items()])) # add additional input tensorflow fold if 'prog' in params['model']: self.run_inputs.append(self.executor._loom._loom_input_tensor) #--------------------------------------------------------------------------- def _build_placeholders(self, params): inputs = {} # Phase 1 - program generation size = [params['max_enc_len'], None] inputs['ques'] = tf.placeholder(tf.int32, size, 'ques') inputs['ques_len'] = tf.placeholder(tf.int32, [None], 'ques_len') inputs['prog_gt'] = tf.placeholder(tf.int32, [None, None], 'prog') # place holders for fact size = [None, params['max_enc_len'] + 1] inputs['fact'] = tf.placeholder(tf.int32, size, 'fact') inputs['fact_len'] = tf.placeholder(tf.int32, [None], 'fact_len') # tie encoder and decoder size = [params['num_layers'], None, params['lstm_size']] inputs['enc_dec_h'] = tf.placeholder(tf.float32, size, 'enc_dec_h') inputs['enc_dec_c'] = tf.placeholder(tf.float32, size, 'enc_dec_c') # Phase 2 - program execution size = [None, 112, 112, 3] inputs['image'] = tf.placeholder(tf.float32, size, 'image') inputs['prog_validity'] = tf.placeholder(tf.bool, [None]) # for the answer indices inputs['ans_ind'] = tf.placeholder(tf.int32, [None], 'ans_ind') # history size = [None, params['num_rounds'], params['max_enc_len'] + 1] inputs['hist'] = tf.placeholder(tf.int32, size, 'history') size = [None, params['num_rounds']] inputs['hist_len'] = tf.placeholder(tf.int32, size, 'hist_len') if not self.params['train_mode']: # additional placeholders during evaluation size = [None, params['lstm_size']] inputs['context'] = tf.placeholder(tf.float32, size, 'context') size = [None, None, None, params['lstm_size']] inputs['ques_enc'] = tf.placeholder(tf.float32, size, 'ques_enc') size = [None, params['lstm_size']] inputs['hist_enc'] = tf.placeholder(tf.float32, size, 'hist_enc') size = [params['max_dec_len'], None, params['text_embed_size']] inputs['ques_attended'] = tf.placeholder(tf.float32, size, 'ques_att') return inputs #--------------------------------------------------------------------------- # method to initialize training related attributes def setup_training(self): # answer prediction loss total_loss = self.outputs['generate_answer']['ans_token_loss'] # supervised sequence prediction loss total_loss += self.outputs['generate_program']['prog_pred_loss'] # add the total loss to the list of outputs self.pooled_outputs['total_loss'] = total_loss self.total_loss = total_loss self.run_outputs.append(self.total_loss) # setters and getters def get_total_loss(self): return self.total_loss # return self.pooled_outputs['total_loss'] def set_train_step(self, step): if hasattr(self, 'train_step'): self.train_step.append(step) else: self.train_step = [step] self.run_outputs.append(step) def add_solver_op(self, op): self.pooled_outputs['solver'] = op #--------------------------------------------------------------------------- def run_train_iteration(self, batch, sess): iter_loss = {} h = sess.partial_run_setup(self.run_outputs, self.run_inputs) # Part 0 & 1: Run Convnet and generate module layout feeder = self.generator.produce_feed_dict(batch) output = sess.partial_run(h, self.outputs['generate_program'], feeder) iter_loss['prog'] = output['prog_pred_loss'] # record loss # Part 2: Run NMN and learning steps feeder = self.executor.produce_feed_dict(batch, output) output.update(sess.partial_run(h, self.outputs['execute_program'], feeder)) # Part 3: Run the answer generation language model feeder = self.decoder.produce_feed_dict(batch, output) output.update(sess.partial_run(h, self.outputs['generate_answer'], feeder)) iter_loss['ans'] = output['ans_token_loss'] # record loss # End: perform the gradient steps output = sess.partial_run(h, self.train_step + [self.total_loss]) iter_loss['total'] = output[-1] # record loss return iter_loss, None #--------------------------------------------------------------------------- def run_train_iteration_legacy(self, batch, sess): iter_loss = {} # collect feeds from all subcomponents feeder = self.generator.produce_feed_dict(batch) feeder.update(self.executor.produce_feed_dict(batch)) feeder.update(self.decoder.produce_feed_dict(batch)) # run all subcomponents together output = sess.run(self.pooled_outputs, feed_dict=feeder) # record all the loss values iter_loss['prog'] = output['prog_pred_loss'] iter_loss['ans'] = output['ans_token_loss'] iter_loss['total'] = output['total_loss'] return iter_loss, None #--------------------------------------------------------------------------- def run_evaluate_iteration(self, batch, sess, eval_options=True): # Part 0 & 1: Run Convnet and generate module layout feeder = self.generator.produce_feed_dict(batch) output = sess.run(self.outputs['generate_program'], feed_dict=feeder) # Part 2: Run NMN and learning steps feeder = self.executor.produce_feed_dict(batch, output) output.update(sess.run(self.outputs['execute_program'], feed_dict=feeder)) if 'pred_tokens' in output: prog_matches = [] prog_matches.append(batch['gt_layout'] == output['pred_tokens']) output['matches'] = prog_matches # Part 3: Run the answer generation language model feeder = self.decoder.produce_feed_dict(batch, output) output.update(sess.run(self.outputs['generate_answer'], feeder)) # use the logits and get the prediction matches = np.argmax(output['ans_logits'], 1) == batch['ans_ind'] return matches, output #--------------------------------------------------------------------------- def run_visualize_iteration(self, batch, sess, eval_options=True): output = batch.copy() # Part 0 & 1: Run Convnet and generate module layout feeder = self.generator.produce_feed_dict(batch) output.update(sess.run(self.outputs['generate_program'], feeder)) # Part 2: Run NMN and learning steps feeder = self.executor.produce_feed_dict(batch, output, True) output.update(sess.run(self.outputs['execute_program'], feeder)) # Part 3: Run the answer generation language model feeder = self.decoder.produce_feed_dict(batch, output) output.update(sess.run(self.outputs['generate_answer'], feeder)) # segregate weights and attention maps output['intermediates'] = self.executor.segregrate_outputs(output) return None, output #-------------------------------------------------------------------------
corefnmn-main
models_mnist/model.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Main class to generate programs for questions and captions. Program generator for explicit visual coreference resolution model in visual dialog using neural module networks, called CorefNMN. This subcomponent uses memory network augmentation to figure out if an entity has been seen before and/or if it needs resolution using history. Author: Satwik Kottur """ import numpy as np import tensorflow as tf from models_mnist.generator_attnet import AttSeq2Seq from util import support # alias linear = tf.contrib.layers.fully_connected # behavior based on type of model class ProgramGenerator: def __init__(self, inputs, assembler, params): """Initialize program generator. Args: inputs: assembler: params: """ self.params = params outputs = {} used_inputs = [] # create embedding matrix with tf.variable_scope('embed', reuse=None) as embed_scope: size = [params['text_vocab_size'], params['text_embed_size']] embed_mat = tf.get_variable('embed_mat', size) # remember the scope for further use params['embed_scope'] = embed_scope cell = tf.contrib.rnn.BasicLSTMCell(params['lstm_size']) #-------------------------------------------------------- # if program is to be predicted if 'prog' in params['model']: # define a constant for internal use use_gt_prog = tf.constant(params['use_gt_prog'], dtype=tf.bool) # use a low level model and construct internals self.rnn = AttSeq2Seq(inputs, use_gt_prog, assembler, params) # if memory based generator is used if params['generator'] == 'mem': used_inputs.extend(['hist', 'hist_len']) outputs['encoder_output'] = self.rnn.encoder_outputs outputs['pred_tokens'] = self.rnn.predicted_tokens outputs['neg_entropy'] = tf.reduce_mean(self.rnn.neg_entropy) # check if attHistory exists if hasattr(self.rnn, 'att_history'): outputs['att_history'] = self.rnn.att_history # also add the encoder states (based on the flag) concat_list = [ii.h for ii in self.rnn.encoder_states] outputs['enc_dec_h'] = tf.stack(concat_list) concat_list = [ii.c for ii in self.rnn.encoder_states] outputs['enc_dec_c'] = tf.stack(concat_list) # alias attention = self.rnn.atts # compute attended questions here # word_vec has shape [T_decoder, N, 1] word_vecs = tf.reduce_sum(attention * self.rnn.embedded_input_seq, axis=1) size = [params['max_dec_len'], None, params['text_embed_size']] word_vecs.set_shape(size) outputs['attention'] = attention outputs['ques_attended'] = word_vecs #outputs['ques_attended'] = self.rnn.word_vecs # log probability of each generated sequence outputs['log_seq_prob'] = tf.reduce_sum( tf.log(self.rnn.token_probs + 1e-10), axis=0) outputs['ques_prog_loss'] = tf.reduce_mean(-outputs['log_seq_prob']) q_output = tf.transpose(self.rnn.encoder_outputs, perm=[1, 0, 2]) q_output = support.last_relevant(q_output, inputs['ques_len']) # bloat the first two dimensions q_output = tf.expand_dims(q_output, axis=0) outputs['ques_enc'] = tf.expand_dims(q_output, axis=0) # keep track of inputs actually used used_inputs.extend(['ques', 'ques_len', 'prog_gt']) #------------------------------------------------------------------ #------------------------------------------------------------------ # setup the inputs and outputs # should have at least one loss total_loss = outputs.get('ques_prog_loss', tf.constant(0.0)) outputs['prog_pred_loss'] = outputs['ques_prog_loss'] self.outputs = outputs self.inputs = {ii: inputs[ii] for ii in used_inputs} #------------------------------------------------------------ # setters and getters def get_outputs(self): return self.outputs def get_inputs(self): return self.inputs #------------------------------------------------------------ # produce feed dict def produce_feed_dict(self, batch, prev_output=None): feed_dict = {} feed_dict[self.inputs['ques']] = batch['ques'] feed_dict[self.inputs['ques_len']] = batch['ques_len'] # add program if 'prog' in self.params['model']: feed_dict[self.inputs['prog_gt']] = batch['gt_layout'] # add history if self.params['generator'] == 'mem': feed_dict[self.inputs['hist']] = batch['hist'] feed_dict[self.inputs['hist_len']] = batch['hist_len'] return feed_dict
corefnmn-main
models_mnist/generator.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Module definitions for Loom API. Explicit visual coreference resolution in visual dialog using neural module networks. Neural module definitions. Author: Satwik Kottur """ from __future__ import absolute_import, division, print_function import numpy as np import tensorflow as tf from tensorflow import convert_to_tensor as to_T from tensorflow_fold.public import loom from util.cnn import fc_layer as fc, conv_layer as conv from util.empty_safe_conv import empty_safe_1x1_conv as _1x1_conv from util.empty_safe_conv import empty_safe_conv as _conv def add_spatial_coord_map(image_feat_grid): image_feat_shape = tf.shape(image_feat_grid) N = image_feat_shape[0] # static dimensions #H = image_feat_shape[1] #W = image_feat_shape[2] H, W = image_feat_grid.shape.as_list()[1:3] x_map = tf.tile( tf.reshape(tf.linspace(-1., 1., W), [1, 1, -1, 1]), to_T([N, H, 1, 1])) y_map = tf.tile( tf.reshape(tf.linspace(-1., 1., H), [1, -1, 1, 1]), to_T([N, 1, W, 1])) # stop gradient on coords_map (needed to fix the tile grad error on TF 1.0.0) coords_map = tf.stop_gradient(tf.concat([x_map, y_map], axis=3)) image_feat_with_coords = tf.concat([image_feat_grid, coords_map], axis=3) # set shapes of the new feature maps image_feat_static_shape = image_feat_grid.get_shape().as_list() image_feat_static_shape[3] += 2 image_feat_with_coords.set_shape(image_feat_static_shape) image_feat_static_shape[3] = 2 coords_map.set_shape(image_feat_static_shape) return image_feat_with_coords, coords_map #------------------------------------------------------------------------------ # Simple tensorflow ops as loom ops class BinaryLoomOp(loom.LoomOp): def __init__(self, in_types, out_types, op): self._op = op super(BinaryLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, inputs): arg1, arg2 = inputs return [self._op(arg1, arg2)] #------------------------------------------------------------------------------ class UnaryLoomOp(loom.LoomOp): def __init__(self, in_types, out_types, op): self._op = op super(UnaryLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, arg): return [self._op(arg[0])] #------------------------------------------------------------------------------ # slice text attention class SliceTextLoomOp(loom.LoomOp): def __init__(self, in_types, out_types): super(SliceTextLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, inputs): text, round_id, time = inputs round_squeeze = tf.squeeze(round_id, -1) time_squeeze = tf.squeeze(time, -1) # select the right round shape = text.shape.as_list() B = tf.shape(text)[0] num_rounds, T, text_dim = shape[1], shape[2], shape[3] indices = round_squeeze + num_rounds * tf.range(B) # flatten result = tf.gather(tf.reshape(text, [-1, T, text_dim]), indices) # select the right time indices = time_squeeze + T * tf.range(B) # flatten result = tf.gather(tf.reshape(result, [-1, text_dim]), indices) return [result] #------------------------------------------------------------------------------ # slice answer embeddding class SliceAnswerLoomOp(loom.LoomOp): def __init__(self, in_types, out_types): super(SliceAnswerLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, inputs): answer, round_id = inputs round_squeeze = tf.squeeze(round_id, -1) # select the right round shape = answer.shape.as_list() B = tf.shape(answer)[0] num_rounds, text_dim = shape[1], shape[2] indices = round_squeeze + num_rounds * tf.range(B) result = tf.gather(tf.reshape(answer, [-1, text_dim]), indices) return [result] #-------------------------------------------------------------------- # attention weighting class AttentionWeightLoomOp(loom.LoomOp): def __init__(self, in_types, out_types): super(AttentionWeightLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, inputs): vis_att, scalar = inputs # simple weighting scalar = tf.expand_dims(tf.expand_dims(scalar, -1), -1) att_grid = tf.multiply(vis_att, scalar) return [att_grid] #-------------------------------------------------------------------- # identity op to convert types class IdentityLoomOp(loom.LoomOp): def __init__(self, in_types, out_types): super(IdentityLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, inputs): return inputs #-------------------------------------------------------------------- # normalize and complementary attention class NormalizeExcludeLoomOp(loom.LoomOp): def __init__(self, in_types, out_types): super(NormalizeExcludeLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, inputs): att_grid = inputs[0] # complement the attention max_entry = tf.reduce_max(tf.reduce_max(att_grid, 1), 1) max_entry = tf.expand_dims(tf.expand_dims(max_entry, 1), 1) att_grid = att_grid / max_entry att_grid = 1 - att_grid # normalize norms = tf.reduce_sum(tf.reduce_sum(att_grid, 1), 1) norms = tf.expand_dims(tf.expand_dims(norms, 1), 1) # cutoff norms = tf.clip_by_value(norms, 1e-6, 1e6) att_grid = att_grid / norms return [att_grid] #------------------------------------------------------------------- class AlignTextLoomOp(loom.LoomOp): """ Takes in two text attention and computes the alignment between them Mapping: text_param x text_param -> scalar Input: text_param: [N, D_txt] text_param: [N, D_txt] Output: scalar: [N, 1] Implementation: Parameters typically contain: map_dim = 1024 module_scope = alignTextOp reuse = True scope """ def __init__(self, in_types, out_types, params): self._params = params self._scope = params.get('scope', 'alignTextOp') self._module_scope = params['module_scope'] self._reuse = params.get('reuse', None) super(AlignTextLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, inputs): """ Inputs: image feature for the example text attention for all modules for the example time id for current module """ text_att1, text_att2, round_id1, round_id2 = inputs # text feature dimension, intermediate mapping dimension # batch size, image feature height and width text_dim = text_att1.shape.as_list()[-1] map_dim = self._params['map_dim'] embed_dim = self._params['text_embed_size'] with tf.variable_scope(self._module_scope): with tf.variable_scope(self._scope, reuse=self._reuse): # concat both text attentions, along with round diff (if need be) concat_list = [text_att1, text_att2] # additional weight for the distance to the past if self._params['amalgam_text_feats']: round_diff = tf.cast(round_id1 - round_id2, tf.float32) concat_list.append(round_diff) concat = tf.concat(concat_list, axis=-1) # deeper 2 layer align network weights = tf.contrib.layers.fully_connected(concat, embed_dim) weights = tf.contrib.layers.fully_connected(weights, 1, activation_fn=None) return [weights] #-------------------------------------------------------------------- # Modules as Loom Ops class FindLoomOp(loom.LoomOp): """ Mapping: image_feat_grid x text_param -> att_grid Input: image_feat_grid: [N, H, W, D_im] text_param: [N, D_txt] Output: att_grid: [N, H, W, 1] Implementation: 1. Elementwise multiplication between image_feat_grid and text_param 2. L2-normalization 3. Linear classification Parameters typically contain: map_dim = 1024 module_scope = findModule reuse = True scope """ def __init__(self, in_types, out_types, params): self._params = params self._scope = params.get('scope', 'find_module') self._module_scope = params['module_scope'] self._reuse = params.get('reuse', None) super(FindLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, inputs): """ Inputs: image feature for the example text attention for all modules for the example time id for current module """ img_feat, text_att = inputs # text feature dimension, intermediate mapping dimension # batch size, image feature height and width text_dim = text_att.shape.as_list()[-1] map_dim = self._params['map_dim'] N = tf.shape(img_feat)[0] H, W = img_feat.shape.as_list()[1:3] with tf.variable_scope(self._module_scope): with tf.variable_scope(self._scope, reuse=self._reuse): # image_feat_mapped has shape [N, H, W, map_dim] img_map = _1x1_conv('conv_image', img_feat, output_dim=map_dim) # nonlinearity img_map = tf.nn.relu(img_map) text_map = fc('fc_text', text_att, output_dim=map_dim) # nonlinearity text_map = tf.nn.relu(text_map) text_map = tf.reshape(text_map, [-1, 1, 1, map_dim]) # interact via element wise map eltwise_mult = tf.nn.l2_normalize(img_map * text_map, 3) att_grid = _1x1_conv('conv_eltwise', eltwise_mult, output_dim=1) # softmax att_grid_soft = tf.nn.softmax(tf.reshape(att_grid, [-1, H*W])) att_grid = tf.reshape(att_grid_soft, [-1, H, W, 1]) return [att_grid] #------------------------------------------------------------------------------ class AndLoomOp(loom.LoomOp): """ Mapping: att_grid x att_grid -> att_grid Input: input_0: [N, H, W, 1] input_1: [N, H, W, 1] Output: att_grid: [N, H, W, 1] Implementation: Take the elementwise-min Parameters typically contain: map_dim = 1024 module_scope = findModule reuse = True scope """ def __init__(self, in_types, out_types, params): self._params = params self._scope = params.get('scope', 'and_module') self._module_scope = params['module_scope'] self._reuse = params.get('reuse', None) super(AndLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, inputs): """ Inputs: visual attention outputs time id for current module """ input1, input2 = inputs with tf.variable_scope(self._module_scope): with tf.variable_scope(self._scope, reuse=self._reuse): att_grid = tf.minimum(input1, input2) # now L1 normalize norms = tf.einsum('ijkl->i', att_grid) norms = tf.reshape(norms, [-1, 1, 1, 1]) #norms = tf.tile(tf.reshape(norms, [-1, 1, 1, 1]), [1, H, W, 1]) # NOTE: if norm is too low, then clip it norms = tf.clip_by_value(norms, 1e-6, 1e6) att_grid = att_grid / norms return [att_grid] #------------------------------------------------------------------------------ class CountLoomOp(loom.LoomOp): """ Mapping: att_grid -> answer probs Input: input_0: [N, H, W, 1] Output: answer_scores: [N, self.num_choices] Implementation: 1. linear transform of the attention map (also including max and min) Parameters typically contain: map_dim = 1024 module_scope = count_module reuse = True scope """ def __init__(self, in_types, out_types, params): self._params = params self._scope = params.get('scope', 'count_module') self._module_scope = params['module_scope'] self._reuse = params.get('reuse', None) super(CountLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, inputs): """ Inputs: image feature for the example text attention for all modules for the example time id for current module """ vis_att, img_feat, _ = inputs encode_size = self._params['encode_size'] with tf.variable_scope(self._module_scope): with tf.variable_scope(self._scope, reuse=self._reuse): H, W = img_feat.shape.as_list()[1:3] att_all = tf.reshape(vis_att, to_T([-1, H * W])) att_min = tf.reduce_min(vis_att, axis=[1, 2]) att_max = tf.reduce_max(vis_att, axis=[1, 2]) # att_reduced has shape [N, 3] att_concat = tf.concat([att_all, att_min, att_max], axis=1) context = fc('fc_scores', att_concat, output_dim=encode_size) return [context] #------------------------------------------------------------------------------ class ExistLoomOp(loom.LoomOp): ''' Mapping: att_grid -> answer probs Input: att_grid: [N, H, W, 1] Output: answer_scores: [N, self.num_choices] Implementation: 1. Max-pool over att_grid 2. a linear mapping layer (without Re_lU) Mapping: image_feat_grid x text_param -> att_grid Input: image_feat_grid: [N, H, W, D_im] text_param: [N, D_txt] Output: att_grid: [N, H, W, 1] Parameters typically contain: map_dim = 1024 module_scope = find_module reuse = True scope ''' def __init__(self, in_types, out_types, params): self._params = params self._scope = params.get('scope', 'exist_module') self._module_scope = params['module_scope'] self._reuse = params.get('reuse', None) super(ExistLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, inputs): ''' Inputs: image feature for the example text attention for all modules for the example time id for current module ''' vis_att, _, _ = inputs encode_size = self._params['encode_size'] with tf.variable_scope(self._module_scope): with tf.variable_scope(self._scope, reuse=self._reuse): att_min = tf.reduce_min(vis_att, axis=[1, 2]) att_avg = tf.reduce_mean(vis_att, axis=[1, 2]) att_max = tf.reduce_max(vis_att, axis=[1, 2]) # att_reduced has shape [N, 3] att_reduced = tf.concat([att_min, att_avg, att_max], axis=1) context = fc('fc_scores', att_reduced, output_dim=encode_size) return [context] #------------------------------------------------------------------------------ class DiffLoomOp(loom.LoomOp): ''' Mapping: att_grid x att_grid -> att_grid Input: input_0: [N, H, W, 1] input_1: [N, H, W, 1] Output: att_grid: [N, H, W, 1] Implementation: Take the elementwise diff and lower caps it to zero Parameters typically contain: map_dim = 1024 module_scope = find_module reuse = True scope ''' def __init__(self, in_types, out_types, params): self._params = params self._scope = params.get('scope', 'diff_module') self._module_scope = params['module_scope'] self._reuse = params.get('reuse', None) super(DiffLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, inputs): ''' Inputs: visual attention outputs time id for current module ''' input1, input2 = inputs with tf.variable_scope(self._module_scope): with tf.variable_scope(self._scope, reuse=self._reuse): att_grid = tf.maximum(input1 - input2, 0.) # now L1 normalize norms = tf.einsum('ijkl->i', att_grid) norms = tf.reshape(norms, [-1, 1, 1, 1]) #norms = tf.tile(tf.reshape(norms, [-1, 1, 1, 1]), [1, H, W, 1]) # NOTE: if norm is too low, then clip it norms = tf.clip_by_value(norms, 1e-6, 1e6) att_grid = att_grid / norms return [att_grid] #------------------------------------------------------------------------------ class InvalidLoomOp(loom.LoomOp): """ Mapping: returns a context of zeros Output: context: [N, encode_size] of zeros Implementation: Take the elementwise-min Parameters typically contain: map_dim = 1024 module_scope = find_module reuse = True scope """ def __init__(self, in_types, out_types, params): self._params = params self._scope = params.get('scope', 'invalid_module') self._module_scope = params['module_scope'] self._reuse = params.get('reuse', None) super(InvalidLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, inputs): """ Inputs: visual attention outputs time id for current module """ img_feat = inputs encode_size = self._params['encode_size'] with tf.variable_scope(self._module_scope): with tf.variable_scope(self._scope, reuse=self._reuse): N = tf.shape(img_feat)[0] context = tf.zeros([N, encode_size], tf.float32) return [context] #------------------------------------------------------------------------------ class DescribeLoomOp(loom.LoomOp): """ Mapping: att_grid -> context vector Input: input_0: [N, H, W, 1] Output: answer_scores: [N, outputSize] Implementation: 1. Extract visual features using the input attention map, and linear transform to map_dim 2. linear transform language features to map_dim 3. Element-wise multiplication of the two, l2_normalize, linear transform. """ def __init__(self, in_types, out_types, params): self._params = params self._scope = params.get('scope', 'describe_module') self._module_scope = params['module_scope'] self._reuse = params.get('reuse', None) super(DescribeLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, inputs): """ Inputs: output from the previous modules image feature for the example text attention for all modules for the example time id for current module """ vis_att, img_feat, text_att = inputs # text feature dimension, intermediate mapping dimension # batch size, image feature height and width text_dim = text_att.shape.as_list()[-1] map_dim = self._params['map_dim'] encode_size = self._params['encode_size'] N = tf.shape(img_feat)[0] H, W = img_feat.shape.as_list()[1:3] with tf.variable_scope(self._module_scope): with tf.variable_scope(self._scope, reuse=self._reuse): text_map = fc('fc_text', text_att, output_dim=map_dim) # nonlinearity text_map = tf.nn.relu(text_map) # att_feat, att_feat_1 has shape [N, D_vis] att_feats = tf.reduce_sum(img_feat * vis_att, axis=[1, 2]) img_map = tf.reshape(fc('fc_att', att_feats, output_dim=map_dim), [N, map_dim]) # nonlinearity img_map = tf.nn.relu(img_map) eltwise_mult = tf.nn.l2_normalize(img_map * text_map, 1) context = fc('fc_eltwise', eltwise_mult, output_dim=encode_size) return [context] #------------------------------------------------------------------------------ class TransformLoomOp(loom.LoomOp): """ Mapping: att_grid x text_param -> att_grid Input: input_0: [N, H, W, 1] text_param: [N, D_txt] Output: att_grid: [N, H, W, 1] Implementation: 1. Extract visual features using the input attention map, and linear transform to map_dim 2. linear transform language features to map_dim 3. Convolve image features to map_dim 4. Element-wise multiplication of the three, l2_normalize, linear transform. """ def __init__(self, in_types, out_types, params): self._params = params self._scope = params.get('scope', 'transform_module') self._module_scope = params['module_scope'] self._reuse = params.get('reuse', None) super(TransformLoomOp, self).__init__(in_types, out_types) def instantiate_batch(self, inputs): """ Inputs: output from the previous modules image feature for the example text attention for all modules for the example time id for current module """ vis_att, img_feat, text_att = inputs # text feature dimension, intermediate mapping dimension # batch size, image feature height and width text_dim = text_att.shape.as_list()[-1] map_dim = self._params['map_dim'] encode_size = self._params['encode_size'] N = tf.shape(img_feat)[0] H, W = img_feat.shape.as_list()[1:3] with tf.variable_scope(self._module_scope): with tf.variable_scope(self._scope, reuse=self._reuse): # image_feat_mapped has shape [N, H, W, map_dim] img_map = _1x1_conv('conv_image', img_feat, output_dim=map_dim) # nonlinearity img_map = tf.nn.relu(img_map) text_map = fc('fc_text', text_att, output_dim=map_dim) text_map = tf.reshape(text_map, [-1, 1, 1, map_dim]) # nonlinearity text_map = tf.nn.relu(text_map) att_feats = tf.reduce_sum(img_feat * vis_att, axis=[1, 2]) att_map = tf.reshape(fc('fc_att', att_feats, output_dim=map_dim), [N, 1, 1, map_dim]) # interact via element wise map eltwise_mult = tf.nn.l2_normalize(img_map * text_map * att_map, 3) att_grid = _1x1_conv('conv_eltwise', eltwise_mult, output_dim=1) # softmax att_grid_soft = tf.nn.softmax(tf.reshape(att_grid, [-1, H*W])) att_grid = tf.reshape(att_grid_soft, [-1, H, W, 1]) return [att_grid] #------------------------------------------------------------------------------
corefnmn-main
models_mnist/modules.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Main class to execute programs using tensorflow fold loom API. Program execution for explicit visual coreference resolution model in visual dialog using neural module networks. Uses low-level loom API in tensorflow fold: https://github.com/tensorflow/fold/blob/master/tensorflow_fold/g3doc/py/loom.md for dynamic creation and execution of computation graphs. Author: Satwik Kottur """ import math import numpy as np import tensorflow as tf import tensorflow_fold as td from tensorflow_fold.public import loom import models_mnist.modules as lm from models_mnist.assembler import INVALID_EXPR, _module_output_type class ProgramExecutor: def __init__(self, inputs, output_pool, assembler, params) : """Initialize program execution subcomponent. Args: inputs: output_pool: assembler: params: """ self.params = params # assembler dynamically assembles the graph at run time self._assembler = assembler #-------------------------------------------------------------------------- # A. Create loom data inputs loom_inputs, used_inputs = self._build_loom_inputs(inputs, output_pool) # B. Create loom data types types = self._build_loom_types() self._loom_types = types # C. Create loom operations loom_ops_dict = self._build_loom_ops() self._loom_ops = loom_ops_dict # create a loom object keys = ['text', 'image', 'fact', 'time', 'round', 'text_feat'] batch_ins = {types[k]: loom_inputs[k] for k in keys if k in loom_inputs} self._loom = loom.Loom(batch_inputs=batch_ins, named_ops=loom_ops_dict) # setup the inputs and outputs self.outputs = {'context': self.get_loom_output(), 'att': self.get_loom_output(types['attention']), 'logits': self.get_loom_output(types['float'])} # add invalid prog to used inputs used_inputs.extend(['prog_validity']) self.inputs = {ii: inputs[ii] for ii in used_inputs} # time/round place holder self.inputs['time'] = loom_inputs['time'] self.inputs['round'] = loom_inputs['round'] def create_weaver(self): """Creates a weaver object within the current loom object. """ self._weaver = self._loom.make_weaver() return self._weaver def get_loom_output(self, type_shape=None): """Return the loom output given the type and shape. """ # default output is the context vector if type_shape is None: type_shape = self._loom_types['context'] return self._loom.output_tensor(type_shape) #--------------------------------------------------------- def _adjust_text(self, text): """ takes text attention output from generator modifies it to have certain dimensions """ params = self.params # transpose text to have batch first dimension text_mod = tf.transpose(text, [1, 0, 2]) # split across rounds shape = text_mod.shape.as_list() new_size = [-1, params['num_rounds'], shape[1], shape[2]] return tf.reshape(text_mod, new_size) def _build_image_feature_network(self, image): """ Takes in images and build features for the program """ output = image # local aliases BN = tf.contrib.layers.batch_norm max_pool = tf.layers.max_pooling2d # Four convolutions networks followed by pooling for ii in range(2): # Convolutional Layer output = tf.layers.conv2d(inputs=output, filters=32, kernel_size=[3, 3], padding="same", activation=None) # if batch norm is to be used output = BN(output, center=True, scale=True, is_training=self.params['train_mode']) # Re_lU output = tf.nn.relu(output, 'relu') # Pooling Layer output = max_pool(output, pool_size=[2, 2], strides=2) for ii in range(2): # Convolutional Layer output = tf.layers.conv2d(inputs=output, filters=64, kernel_size=[3, 3], padding="same", activation=None) # if batch norm is to be used output = BN(output, center=True, scale=True, is_training=self.params['train_mode']) # Re_lU output = tf.nn.relu(output, 'relu') # Pooling Layer output = max_pool(output, pool_size=[2, 2], strides=2) return output def _build_fact_encoder(self, inputs): """ """ # local alias params = self.params with tf.variable_scope(self.params['embed_scope'], reuse=True): embed_mat = tf.get_variable('embed_mat') # flatten # embed the words output = tf.nn.embedding_lookup(embed_mat, inputs['fact']) # pass through encoder cell = tf.contrib.rnn.BasicLSTMCell(params['text_embed_size']) # begin decoding for ii in range(0, params['num_layers']): # dynamic rnn output, states = tf.nn.dynamic_rnn(cell, output, sequence_length=inputs['fact_len'], dtype=tf.float32, scope='fact_layer_%d' % ii) # split roundwise fact_embed = states[1] text_dim = fact_embed.shape.as_list()[-1] fact_embed = tf.reshape(fact_embed, [-1, params['num_rounds'], text_dim]) return fact_embed def _build_loom_inputs(self, inputs, output_pool): ''' Sub routine to build the inputs to loom ''' # --------- grab required inputs ------------- loom_inputs = {} params = self.params # A. image # build image feature network image_feat = self._build_image_feature_network(inputs['image']) loom_inputs['image'], _ = lm.add_spatial_coord_map(image_feat) used_inputs = ['image'] # B. text -- both question and caption key = 'ques_attended' if params['train_mode']: text = output_pool[key] else: text = inputs[key] used_inputs.append(key) adjusted_text = self._adjust_text(text) loom_inputs['text'] = adjusted_text batch_size = tf.shape(adjusted_text)[0] # C. Facts if params['use_fact']: loom_inputs['fact'] = self._build_fact_encoder(inputs) used_inputs.extend(['fact', 'fact_len']) concat_list = [adjusted_text] loom_inputs['text_feat'] = tf.concat(concat_list, -1) # D. time steps (internal placeholder) loom_inputs['time'] = tf.placeholder(tf.int32, (None, 1), 'time') loom_inputs['round'] = tf.placeholder(tf.int32, (None, 1), 'round') return loom_inputs, used_inputs def _build_loom_types(self): """Method to build loom types for given setting. """ params = self.params encode_size = params['lstm_size'] # create and save loom types types = {} types['time'] = loom.TypeShape('int32', (1,), 'time') types['round'] = loom.TypeShape('int32', (1,), 'round') types['float'] = loom.TypeShape('float32', (1,)) types['context'] = loom.TypeShape('float32', (encode_size,), 'context') types['align'] = loom.TypeShape('float32', (encode_size,), 'align') size = (params['num_rounds'], params['text_embed_size']) types['fact'] = loom.TypeShape('float32', size, 'fact') size = (params['num_rounds'], params['max_dec_len'], params['text_embed_size']) types['text'] = loom.TypeShape('float32', size, 'text') size = (params['text_embed_size'],) types['text_slice'] = loom.TypeShape('float32', size, 'text_slice') # this depends on whether we want all features concat_dim = params['text_embed_size'] size = (params['num_rounds'], params['max_dec_len'], concat_dim) types['text_feat'] = loom.TypeShape('float32', size, 'text_feat') size = (concat_dim,) types['text_feat_slice'] = loom.TypeShape('float32', size, 'text_feat_slice') # TODO: cleaner way to include spatial dimensions for img_feat size = (params['h_feat'], params['w_feat'], params['d_feat'] + 2) types['image'] = loom.TypeShape('float32', size, 'image') size = (params['h_feat'], params['w_feat'], 1) types['attention'] = loom.TypeShape('float32', size, 'att') return types def _build_loom_ops(self): """TODO(satwik): Some helper text here """ params = self.params types = self._loom_types # create all modules under the same scope op_params = {'map_dim': params['map_size']} with tf.variable_scope('loom_modules') as module_scope: op_params['module_scope'] = module_scope # creating ops loom_ops_dict = {} in_types = [types['float'], types['float']] out_types = [types['float']] loom_ops_dict['add'] = lm.BinaryLoomOp(in_types, out_types, tf.add) loom_ops_dict['divide'] = lm.BinaryLoomOp(in_types, out_types, tf.divide) in_types = [types['float']] loom_ops_dict['exp'] = lm.UnaryLoomOp(in_types, out_types, tf.exp) in_types = [types['attention'], types['attention']] out_types = [types['attention']] loom_ops_dict['add_attention'] = lm.BinaryLoomOp(in_types, out_types, tf.add) in_types = [types['attention'], types['attention']] out_types = [types['attention']] loom_ops_dict['max_attention'] = lm.BinaryLoomOp(in_types, out_types, tf.maximum) # basic attention manipulation ops in_types = [types['attention'], types['float']] out_types = [types['attention']] loom_ops_dict['weight_attention'] = lm.AttentionWeightLoomOp(in_types, out_types) in_types = [types['text_feat_slice'], types['text_feat_slice'], types['round'], types['round']] out_types = [types['float']] op_params['amalgam_text_feats'] = params['amalgam_text_feats'] op_params['text_embed_size'] = params['text_embed_size'] loom_ops_dict['align_text'] = lm.AlignTextLoomOp(in_types, out_types, op_params) # slicing ops in_types = [types['text'], types['round'], types['time']] out_types = [types['text_slice']] loom_ops_dict['slice_text'] = lm.SliceTextLoomOp(in_types, out_types) in_types = [types['text_feat'], types['round'], types['time']] out_types = [types['text_feat_slice']] loom_ops_dict['slice_text_feat'] = lm.SliceTextLoomOp(in_types, out_types) # slice_answer_embedding in_types = [types['fact'], types['round']] out_types = [types['text_feat_slice']] loom_ops_dict['slice_fact'] = lm.SliceAnswerLoomOp(in_types, out_types) # normalize and complement in_types = [types['attention']] out_types = [types['attention']] loom_ops_dict['normalize_exclude']= lm.NormalizeExcludeLoomOp(in_types, out_types) #------------------------------------------------------------------ # find module in_types = [types['image'], types['text_slice']] out_types = [types['attention']] loom_ops_dict['find'] = lm.FindLoomOp(in_types, out_types, op_params) # and module in_types = [types['attention'], types['attention']] loom_ops_dict['and_op'] = lm.AndLoomOp(in_types, out_types, op_params) # diff module loom_ops_dict['diff_op'] = lm.DiffLoomOp(in_types, out_types, op_params) # transform module in_types = [types['attention'], types['image'], types['text_slice']] loom_ops_dict['transform'] = lm.TransformLoomOp(in_types, out_types, op_params) # describe module out_types = [types['context']] op_params['encode_size'] = params['lstm_size'] loom_ops_dict['describe'] = lm.DescribeLoomOp(in_types, out_types, op_params) # exist module loom_ops_dict['exist'] = lm.ExistLoomOp(in_types, out_types, op_params) # count module loom_ops_dict['count'] = lm.CountLoomOp(in_types, out_types, op_params) # invalid Module in_types = [types['image']] loom_ops_dict['invalid'] = lm.InvalidLoomOp(in_types, out_types, op_params) return loom_ops_dict #--------------------------------------------------------- # setters and getters def get_outputs(self): return self.outputs def get_inputs(self): return self.inputs #------------------------------------------------------------ # produce feed dict def produce_feed_dict(self, batch, output_pool=None, visualize=False): if 'prog' not in self.params['model']: return # dynamically assemble the graph, based on predicted tokens if self.params['train_mode']: ques_programs = batch['gt_layout'] else: ques_programs = output_pool['pred_tokens'] tokens = {'ques': ques_programs} weaver, loom_outputs, invalid_prog \ = self._assembler.assemble(tokens, self, visualize) # build feed dict from loom feed_dict = weaver.build_feed_dict(loom_outputs) # feed invalid Prog feed_dict[self.inputs['prog_validity']] = np.array(invalid_prog['ques']) # additional feeds feed_dict[self.inputs['image']] = batch['imgs'] max_time = self.params['max_dec_len'] feed_dict[self.inputs['time']] = np.arange(max_time).reshape([-1, 1]) round_ranges = np.arange(self.params['num_rounds']).reshape([-1, 1]) feed_dict[self.inputs['round']] = round_ranges # fact is needed if self.params['use_fact']: feed_dict[self.inputs['fact']] = batch['fact'] feed_dict[self.inputs['fact_len']] = batch['fact_len'] if not self.params['train_mode']: # list of labels to read from output pool conditionally labels = ['ques_attended', 'ques_enc'] for label in labels: if label in self.inputs: feed_dict[self.inputs[label]] = output_pool[label] return feed_dict #------------------------------------------------------------ # segregating the outputs def segregrate_outputs(self, output): ''' Go over the outputs, cap tokens and ques tokens ''' ques_tokens = output['pred_tokens'] mod_out_type = _module_output_type mod_dict = self._assembler.module_names att = output['att'] weights = output['weight'] # segregrated outputs sep_att = [] sep_wts = [] wt_labels = [] num_reuse = 0 att_ind = 0 weight_ind = 0 # assume a batch size of 1 for r_id in range(self.params['num_rounds']): #refer_seen = False for t_id in range(self.params['max_dec_length']): cur_module = mod_dict[ques_tokens[t_id, r_id]] if cur_module == '<eos>': # even answer has a weight now if self.params['use_answer'] or self.params['use_fact']: wt_labels.append('A%d' % r_id) num_reuse += 1 break if mod_out_type[cur_module] == 'att': sep_att.append(('ques', t_id, r_id, att[att_ind])) att_ind += 1 if cur_module == '_Refer': refer_seen = True st = weight_ind end = weight_ind + num_reuse sep_wts.append((r_id, weights[st:end], wt_labels)) weight_ind += num_reuse ''' if self.params['reuse_refer'] and cur_module == '_Refer': wt_labels.append('Q%d_%d' % (r_id, t_id)) num_reuse += 1 if cur_module == '_Find': if refer_seen and self.params['remove_aux_find']: continue wt_labels.append('Q%d_%d' % (r_id, t_id)) num_reuse += 1 ''' for arg in sep_wts: assert(abs(np.sum(arg[1]) - 1.0) < 1e-5) assert(weight_ind == weights.shape[0]) #assert(att_ind == att.shape[0]) return sep_att, sep_wts
corefnmn-main
models_mnist/executor.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Dataloader file for Visual Dialog experiments. Explicit visual coreference resolution in visual dialog using neural module networks. Author: Satwik Kottur """ from __future__ import absolute_import, division, print_function import h5py import json import os import threading import queue import numpy as np from tqdm import tqdm as progressbar from util import text_processing, support class BatchLoaderVD: """Subclass to DataReader that serves batches during training. """ # adjust for current directory def _adjust_image_dir(self, path): # split before data, and append with pwd return os.path.join(os.getcwd(), 'data', path.split('data/')[-1]) def __init__(self, imdb, params): """Initialize by reading the data and pre-processing it. """ self.imdb = imdb self.params = params self.fetch_options = self.params.get('fetch_options', False) self.preload_features = params['preload_features'] self.num_inst = len(self.imdb['data']) self.num_rounds = len(self.imdb['data'][0]['question_ind']) # check if vgg features are to be used self.use_vgg = 'vgg' in self.params['feature_path'] # load vocabulary vocab_path = params['text_vocab_path'] self.vocab_dict = text_processing.VocabDict(vocab_path) self.T_encoder = params['max_enc_len'] # record special token ids self.start_token_id = self.vocab_dict.word2idx('<start>') self.end_token_id = self.vocab_dict.word2idx('<end>') self.pad_token_id = self.vocab_dict.word2idx('<pad>') # peek one example to see whether answer and gt_layout are in the data test_data = self.imdb['data'][0] self.load_gt_layout = test_data.get('gt_layout_tokens', False) if 'load_gt_layout' in params: self.load_gt_layout = params['load_gt_layout'] # decide whether or not to load gt textatt self.supervise_attention = params['supervise_attention'] self.T_decoder = params['max_dec_len'] self.assembler = params['assembler'] # load one feature map to peek its size feats = np.load(self._adjust_image_dir(test_data['feature_path'])) self.feat_H, self.feat_W, self.feat_D = feats.shape[1:] # convert to tokens self.digitizer = lambda x: [self.vocab_dict.word2idx(w) for w in x] if 'prog' in self.params['model']: # preload features if self.preload_features: img_paths = set([ii['feature_path'] for ii in self.imdb['data']]) self.img_feats = {ii:np.load(ii) for ii in progressbar(img_paths)} # if VGG is to be used if self.use_vgg: # inform the dataloader to use self.img_feats self.preload_features = True img_paths = set([ii['feature_path'] for ii in self.imdb['data']]) # first read the index file index_file = os.path.join(self.params['input_img'], 'img_id.json') with open(index_file, 'r') as file_id: index_data = json.load(file_id) # get the split -- either train / val for ii in img_paths: break split = ii.split('/')[-2][:-4] # read the features for that particular split self.img_index = {img_id: index for index, img_id in enumerate(index_data[split])} feature_file = os.path.join(self.params['input_img'], 'data_img_%s.h5' % split) key = 'images_test' if split == 'val' else 'images_train' self.img_feats = h5py.File(feature_file)[key] # check if all the images in img_paths are in img_index count = 0 for ii in img_paths: img_id = '/'.join(ii.split('/')[-2:]) if img_id.replace('npy', 'jpg') not in self.img_index: count += 1 print('Missing: %d image features' % count) # adjust the feature sizes self.feat_H, self.feat_W, self.feat_D = self.img_feats.shape[1:] self.zero_feature = np.zeros((1,) + self.img_feats.shape[1:]) # use history if needed by the program generator self.use_history = self.params['generator'] == 'mem' if self.use_history: self._construct_history() # if fact is to be used if self.params['use_fact']: self._construct_fact() #-------------------------------------------------------------------------- def _construct_fact(self): """Method to construct facts. Facts are previous question and answers strings concatenated as one. These serve as memory units that the model can refer back to. For example, 'Q: What is the man wearing? A: Sweater.' will have a fact 'What is the man wearing? Sweater.' so that the model can address follow-up questions like 'What color is it?' by referring to this fact. """ print('Constructing facts..') num_diags = len(self.imdb['data']) max_len = self.T_encoder # question + answer appended num_rounds = len(self.imdb['data'][0]['question_ind']) fact = np.zeros((num_diags, num_rounds, max_len)) fact_len = np.zeros((num_diags, num_rounds)) fact.fill(self.pad_token_id) for diag_id, datum in enumerate(self.imdb['data']): for r_id in range(num_rounds - 1): q_id = datum['question_ind'][r_id] a_id = datum['answer_ind'][r_id] ques, q_len = self.imdb['ques'][q_id], self.imdb['ques_len'][q_id] ans, a_len = self.imdb['ans'][a_id], self.imdb['ans_len'][a_id] # handle overflow bound = min(q_len, max_len) fact[diag_id, r_id, :bound] = ques[:bound] if bound < max_len: bound = min(q_len + a_len, max_len) fact[diag_id, r_id, q_len:bound] = ans[:bound-q_len] fact_len[diag_id, r_id] = bound # flatten self.imdb['fact'] = fact self.imdb['fact_len'] = fact_len #-------------------------------------------------------------------------- def _construct_history(self): """Method to construct history, which concatenates entire dialogs so far. """ print('Constructing history..') num_diags = len(self.imdb['data']) max_len = self.T_encoder * 2 # question + answer appended num_rounds = len(self.imdb['data'][0]['question_ind']) history = np.zeros((num_diags, num_rounds, max_len)) hist_len = np.zeros((num_diags, num_rounds)) history.fill(self.pad_token_id) for diag_id, datum in enumerate(self.imdb['data']): # history for first round is caption c_id = datum['caption_ind'] cap_len = self.imdb['cap_len'][c_id] caption = self.imdb['cap'][c_id] # handle overflow bound = min(cap_len, max_len) hist_len[diag_id, 0] = bound history[diag_id, 0, :bound] = caption[:bound] for r_id in range(num_rounds - 1): q_id = datum['question_ind'][r_id] a_id = datum['answer_ind'][r_id] ques, q_len = self.imdb['ques'][q_id], self.imdb['ques_len'][q_id] ans, a_len = self.imdb['ans'][a_id], self.imdb['ans_len'][a_id] # handle overflow bound = min(q_len, max_len) history[diag_id, r_id + 1, :bound] = ques[:bound] if bound < max_len: bound = min(q_len + a_len, max_len) history[diag_id, r_id + 1, q_len:bound] = ans[:bound-q_len] hist_len[diag_id, r_id + 1] = bound self.imdb['hist'] = history self.imdb['hist_len'] = hist_len #-------------------------------------------------------------------------- def load_one_batch(self, sample_ids): """Load data given the sample ids. """ actual_batch_size = len(sample_ids) batch = {} # replace question _Find with _Refer find_module_token = self.assembler.name2idx_dict['_Find'] #refer_module_token = self.assembler.name2idx_dict['_Refer'] eos_token = self.assembler.name2idx_dict['<eos>'] # whether to flatten or not flatten = 'dial' not in self.params['model'] flatten = 'nmn-cap' not in self.params['model'] num_rounds = self.num_rounds # captions if flatten: cap_inds = [self.imdb['data'][ii]['caption_ind'] for ii in sample_ids for _ in range(num_rounds)] else: cap_inds = [self.imdb['data'][ii]['caption_ind'] for ii in sample_ids] cap_batch = self.imdb['cap'][cap_inds][:, :self.T_encoder] cap_len = self.imdb['cap_len'][cap_inds] # get caption programs cap_prog = None cap_gt_att = None if 'nmn-cap' in self.params['model']: cap_prog = np.zeros((self.T_decoder, len(cap_inds)), np.int32) cap_prog.fill(eos_token) for spot, ii in enumerate(cap_inds): layout = self.imdb['cap_prog'][ii] cap_prog[:, spot] = \ self.assembler.module_list2tokens(layout, self.T_decoder) # also get attention for supervision if self.supervise_attention: cap_gt_att = np.zeros((self.T_decoder, self.T_encoder, \ actual_batch_size, 1), np.float32) for spot, ii in enumerate(cap_inds): for t_id, att in enumerate(self.imdb['cap_prog_att'][ii]): span = att[1] - att[0] # NOTE: number of attention hardwired to be <= 4 if span > 0 or span == 0: continue if span == 0: continue cap_gt_att[t_id, att[0]:att[1], spot] = 1/span # questions ques_inds = [jj for ii in sample_ids for jj in self.imdb['data'][ii]['question_ind']] ques_batch = self.imdb['ques'][ques_inds][:, :self.T_encoder].transpose() ques_len = self.imdb['ques_len'][ques_inds] ques_ids = [jj for ii in sample_ids for jj in self.imdb['data'][ii]['question_id']] gt_index = [jj for ii in sample_ids for jj in self.imdb['data'][ii]['gt_ind']] # answers ans_inds = [jj for ii in sample_ids for jj in self.imdb['data'][ii]['answer_ind']] ans_batch_in = self.imdb['ans_in'][ans_inds][:, :self.T_encoder] ans_batch_out = self.imdb['ans_out'][ans_inds][:, :self.T_encoder] ans_batch = self.imdb['ans_in'][ans_inds][:, 1:self.T_encoder] ans_len = self.imdb['ans_len'][ans_inds] # getting history if self.use_history: history = self.imdb['hist'][sample_ids] hist_len = self.imdb['hist_len'][sample_ids] else: history, hist_len = None, None # image features if 'prog' in self.params['model']: # single copy per conversation image_feats = np.zeros((actual_batch_size, self.feat_H, self.feat_W, self.feat_D), np.float32) else: image_feats = None image_path = [None] * actual_batch_size # load fact if self.params['use_fact']: fact = self.imdb['fact'][sample_ids] fact_len = self.imdb['fact_len'][sample_ids] # flatten fact = np.reshape(fact, [-1, fact.shape[-1]]) fact_len = np.reshape(fact_len, [-1]) else: fact, fact_len = None, None # programs if self.load_gt_layout: gt_layout_batch = np.zeros((self.T_decoder, num_rounds * actual_batch_size), np.int32) gt_layout_batch.fill(eos_token) gt_attention = None if self.supervise_attention: gt_attention = np.zeros((self.T_decoder, self.T_encoder, num_rounds * actual_batch_size, 1), np.float32) # mask for weights, for history attention weight_mask = [] for n in range(len(sample_ids)): iminfo = self.imdb['data'][sample_ids[n]] # image features if 'prog' in self.params['model']: # if VGG features are to be used if self.use_vgg: img_id = '/'.join(iminfo['feature_path'].split('/')[-2:]) img_id = img_id.replace('npy', 'jpg') if img_id in self.img_index: f_ind = self.img_index[img_id] cur_feat = self.img_feats[f_ind] else: cur_feat = self.zero_feature else: # use preloaded image features feat_path = self._adjust_image_dir(iminfo['feature_path']) if not self.preload_features: cur_feat = np.load(feat_path) else: cur_feat = self.img_feats[feat_path] # single copy per conversation image_feats[n] = cur_feat image_path[n] = iminfo['image_path'] # programs if self.load_gt_layout: # go over all the questions for r_id, layout in enumerate(iminfo['gt_layout_tokens']): gt_layout_batch[:, num_rounds * n + r_id] = \ self.assembler.module_list2tokens(layout, self.T_decoder) if self.supervise_attention: num_refers = 0 for r_id, att in enumerate(iminfo['gt_layout_att']): for t_id in range(att.shape[0]): index = num_rounds * n + r_id span = att[t_id, 1] - att[t_id, 0] # NOTE: number of attention timesteps hardwired to be <= 4 if span > 4 or span == 0: continue gt_attention[t_id, att[t_id,0]:att[t_id,1], index] = 1/span # if options are not needed, continue if not self.fetch_options: continue #------------------------------------------------------------------ # get options opt_inds = [jj for ii in sample_ids for jj in self.imdb['data'][ii]['option_ind']] num_options = len(opt_inds[0]) opt_batch_in = [None] * num_options opt_batch_out = [None] * num_options opt_len = [None] * num_options for ii in range(num_options): cur_inds = [jj[ii] for jj in opt_inds] opt_batch_in[ii] = self.imdb['ans_in'][cur_inds][:, :self.T_encoder] opt_batch_out[ii] = self.imdb['ans_out'][cur_inds][:, :self.T_encoder] opt_len[ii] = self.imdb['ans_len'][cur_inds] #------------------------------------------------------------------ batch = {'ques': ques_batch, 'ques_len': ques_len, 'ques_id': ques_ids, 'gt_layout': gt_layout_batch, 'gt_att' : gt_attention, 'cap': cap_batch, 'cap_len': cap_len, 'cap_prog': cap_prog, 'cap_att': cap_gt_att, 'hist': history, 'hist_len': hist_len, 'ans_in': ans_batch_in, 'ans_out': ans_batch_out, 'ans_len':ans_len, 'ans': ans_batch, 'fact': fact, 'fact_len': fact_len, 'img_feat': image_feats, 'img_path': image_path} #------------------------------------------------------------------ # further add options if self.fetch_options: options = {'opt_in': opt_batch_in, 'opt_out': opt_batch_out,\ 'opt_len': opt_len, 'gt_ind': gt_index} batch.update(options) #------------------------------------------------------------------ if 'nmn-cap' not in self.params['model']: return batch # getting data for training alignment on caption if actual_batch_size > 1: info = [batch['cap'], batch['cap_len'], batch['cap_prog'].transpose()] if batch['cap_att'] is not None: info.append(batch['cap_att'].transpose((2, 0, 1, 3))) shuffled = support.shuffle(info, actual_batch_size) batch['sh_cap'], batch['sh_cap_len'] = shuffled[:2] batch['sh_cap_prog'] = shuffled[2].transpose() batch['align_gt'] = np.ones(num_rounds*actual_batch_size).astype('int32') if batch['cap_att'] is not None: batch['sh_cap_att'] = shuffled[3].transpose((1, 2, 0, 3)) for ii in range(actual_batch_size): start = num_rounds * ii + num_rounds // 2 end = num_rounds * (ii+1) batch['align_gt'][start:end] = 0 else: batch['sh_cap'] = np.tile(batch['cap'], [num_rounds, 1]) batch['sh_cap_len'] = np.tile(batch['cap_len'], [num_rounds]) batch['sh_cap_prog'] = np.tile(batch['cap_prog'], [1, num_rounds]) batch['sh_cap_att'] = np.tile(batch['cap_att'], [1, 1, num_rounds, 1]) batch['align_gt'] = np.ones(num_rounds*actual_batch_size).astype('int32') return batch class DataReader: """Main dataloader class for experiments on Visual Dialog. """ def __init__(self, params): imdb_path = params['path'] print('Loading imdb from: %s' % imdb_path) if imdb_path.endswith('.npy'): imdb = np.load(imdb_path) else: raise Type_error('unknown imdb format.') self.imdb = imdb[()] self.shuffle = params.get('shuffle', True) self.one_pass = params.get('one_pass', False) self.prefetch_num = params.get('num_prefetch', 8) self.params = params copy_args = {'max_enc_len', 'max_dec_len', 'text_vocab_path', 'model', 'batch_size', 'use_fact', 'preload_features', 'supervise_attention','generator', 'feature_path'} self.params.update({ii: params['args'][ii] for ii in copy_args if ii in params['args'] and params['args'][ii] is not None}) # VD data loader self.batch_loader = BatchLoaderVD(self.imdb, self.params) # Start prefetching thread self.prefetch_queue = queue.Queue(maxsize=self.prefetch_num) self.prefetch_thread = threading.Thread(target=_run_prefetch, args=(self.prefetch_queue, self.batch_loader, self.imdb, self.shuffle, self.one_pass, self.params)) self.prefetch_thread.daemon = True self.prefetch_thread.start() def batches(self): while True: # Get a batch from the prefetching queue if self.prefetch_queue.empty(): pass #print('data reader: waiting for data loading (IO is slow)...') batch = self.prefetch_queue.get(block=True) if batch is None: assert(self.one_pass) print('data reader: one pass finished') raise StopIteration() yield batch def _run_prefetch(prefetch_queue, batch_loader, imdb, shuffle, one_pass, params): num_samples = len(imdb['data']) batch_size = params['batch_size'] n_sample = 0 fetch_order = np.arange(num_samples) while True: # Shuffle the sample order for every epoch if n_sample == 0 and shuffle: fetch_order = np.random.permutation(num_samples) # Load batch from file # note that len(sample_ids) <= batch_size, not necessarily equal sample_ids = fetch_order[n_sample:n_sample+batch_size] batch = batch_loader.load_one_batch(sample_ids) prefetch_queue.put(batch, block=True) n_sample += len(sample_ids) if n_sample >= num_samples: # Put in a None batch to indicate a whole pass is over if one_pass: prefetch_queue.put(None, block=True) n_sample = 0
corefnmn-main
loader_vd/data_reader.py
"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Script to read command line flags. Uses argparse library to read command line flags. Author: Satwik Kottur """ import argparse import os import pdb from util import support # read command line arguments def read_command_line(): title = 'Train explicit coreference resolution visual dialog model' parser = argparse.ArgumentParser(description=title) #------------------------------------------------------------------------- # data input settings parser.add_argument('--dataset', default='visdial_v0.9_tiny', help='Visdial dataset type') parser.add_argument('--data_root', default='data/', help='Root to the data') parser.add_argument('--feature_path', default='data/resnet_res5c/', help='Path to the image features') parser.add_argument('--text_vocab_path', default='', help='Path to the vocabulary for text') parser.add_argument('--prog_vocab_path', default='', help='Path to the vocabulary for programs') parser.add_argument('--snapshot_path', default='checkpoints/', help='Path to save checkpoints') #-------------------------------------------------------------------------- # specify encoder/decoder parser.add_argument('--model', default='nmn-cap-prog-only', help='Name of the model, will be changed later') parser.add_argument('--generator', default='ques', help='Name of the generator to use (ques | memory)') parser.add_argument('--decoder', default='gen', help='Name of the decoder to use (gen | disc)') parser.add_argument('--preload_features', default=False, type=bool, help='Preload visual features on RAM') #------------------------------------------------------------------------- # model hyperparameters parser.add_argument('--h_feat', default=14, type=int, help='Height of visual conv feature') parser.add_argument('--w_feat', default=14, type=int, help='Width of visual conv feature') parser.add_argument('--d_feat', default=2048, type=int, help='Size of visual conv feature') parser.add_argument('--text_embed_size', default=300, type=int, help='Size of embedding for text') parser.add_argument('--map_size', default=1024, type=int, help='Size of the final mapping') parser.add_argument('--prog_embed_size', default=300, type=int, help='Size of embedding for program tokens') parser.add_argument('--lstm_size', default=1000, type=int, help='Size of hidden state in LSTM') parser.add_argument('--enc_dropout', default=True, type=bool, help='Dropout in encoder') parser.add_argument('--dec_dropout', default=True, type=bool, help='Dropout in decoder') parser.add_argument('--num_layers', default=2, type=int, help='Number of layers in LSTM') parser.add_argument('--max_enc_len', default=24, type=int, help='Maximum encoding length for sentences (ques|cap)') parser.add_argument('--max_dec_len', default=14, type=int, help='Maximum decoding length for programs (ques|cap)') parser.add_argument('--dec_sampling', default=False, type=bool, help='Sample while decoding programs vs argmax') #--------------------------------------------------------------------------- parser.add_argument('--use_refer', dest='use_refer', action='store_true', help='Flag to use Refer for coreference resolution') parser.set_defaults(use_refer=False) parser.add_argument('--use_fact', dest='use_fact', action='store_true', help='Flag to use the fact in coreference pool') parser.set_defaults(use_fact=False) parser.add_argument('--supervise_attention', dest='supervise_attention', action='store_true', help='Flag to supervise attention for the modules') parser.set_defaults(supervise_attention=False) parser.add_argument('--amalgam_text_feats', dest='amalgam_text_feats', action='store_true', help='Flag to amalgamate text features') parser.set_defaults(amalgam_text_feats=False) parser.add_argument('--no_cap_alignment', dest='cap_alignment', action='store_false', help='Use the auxiliary caption alignment loss') parser.set_defaults(cap_alignment=True) #------------------------------------------------------------------------- # optimization params parser.add_argument('--batch_size', default=20, type=int, help='Training batch size (adjust based on GPU memory)') parser.add_argument('--learning_rate', default=1e-3, type=float, help='Learning rate for training') parser.add_argument('--dropout', default=0.5, type=float, help='Dropout') parser.add_argument('--num_epochs', default=20, type=int, help='Maximum number of epochs to run training') parser.add_argument('--gpu_id', type=int, default=0, help='GPU id to use for training, -1 for CPU') #------------------------------------------------------------------------- try: parsed_args = vars(parser.parse_args()) except (IOError) as msg: parser.error(str(msg)) # set the cuda environment variable for the gpu to use gpu_id = '' if parsed_args['gpu_id'] < 0 else str(parsed_args['gpu_id']) print('Using GPU id: %s' % gpu_id) os.environ['CUDA_VISIBLE_DEVICES'] = gpu_id # pretty print arguments and return support.pretty_print_dict(parsed_args) return parsed_args
corefnmn-main
exp_vd/options.py
r"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Script to visualize trained Visual Dialog model using supervised learning. Visualizes visual dialog model that performs explicit visual coreference resolution using neural module networks. Additional details are in the paper: Visual Coreference Resolution in Visual Dialog using Neural Module Networks Satwik Kottur, José M. F. Moura, Devi Parikh, Dhruv Batra, Marcus Rohrbach European Conference on Computer Vision (ECCV), 2018 Usage: python -u exp_vd/visualize_sl.py --gpu_id=0 --test_split='val' \ --checkpoint='checkpoints/model_epoch_005.tmodel' --batch_size 1 """ from __future__ import absolute_import, division, print_function import argparse import json import os import sys import time from tqdm import tqdm as progressbar import numpy as np import tensorflow as tf from exp_vd import options # Read command line options. parser = argparse.ArgumentParser() parser.add_argument('--checkpoint', required=True, help="Checkpoint to load") parser.add_argument('--batch_size', type=int, default=10, help='Batch size for visualization') parser.add_argument('--test_split', default='val', help='Split to run visualization') parser.add_argument('--gpu_id', type=int, default=0) parser.add_argument('--num_instances', type=int, default=50) try: args = vars(parser.parse_args()) except (IOError) as msg: parser.error(str(msg)) # Set the cuda environment variable for the gpu to use. gpu_id = '' if args['gpu_id'] < 0 else str(args['gpu_id']) print('Using GPU id: %s' % gpu_id) os.environ['CUDA_VISIBLE_DEVICES'] = gpu_id # Start the session BEFORE importing tensorflow_fold # to avoid taking up all GPU memory tf_config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True), allow_soft_placement=False, log_device_placement=False) sess = tf.Session(config=tf_config) from models_vd.assembler import Assembler from models_vd.model import CorefNMN from loader_vd.data_reader import DataReader from util import metrics from util import support # setting random seeds np.random.seed(1234) tf.set_random_seed(1234) # read the train args from checkpoint param_path = args['checkpoint'].replace('.tmodel', '_params.json') with open(param_path, 'r') as file_id: saved_args = json.load(file_id) saved_args.update(args) args = saved_args args['preload_feats'] = False args['supervise_attention'] = False print('Current model: ' + args['model']) support.pretty_print_dict(args) # Data files root = args['data_root'] imdb_path_val = os.path.join(root, 'imdb_%s.npy' % args['test_split']) # assemblers for question and caption programs question_assembler = Assembler(args['prog_vocab_path']) caption_assembler = Assembler(args['prog_vocab_path']) assemblers = {'ques': question_assembler, 'cap': caption_assembler} # dataloader for val input_dict = {'path': imdb_path_val, 'shuffle': False, 'one_pass': True, 'args': args, 'assembler': question_assembler, 'fetch_options': True} val_loader = DataReader(input_dict) # model for training eval_params = args.copy() eval_params['use_gt_prog'] = False # for training eval_params['enc_dropout'] = False eval_params['dec_dropout'] = False eval_params['dec_sampling'] = False # do not sample, take argmax # for models trained later if 'num_rounds' not in eval_params: eval_params['num_rounds'] = val_loader.batch_loader.num_rounds # model for evaluation # create another assembler of caption model = CorefNMN(eval_params, assemblers) # Load snapshot print('Loading checkpoint from: %s' % args['checkpoint']) snapshot_saver = tf.train.Saver(max_to_keep=None) # keep all snapshots snapshot_saver.restore(sess, args['checkpoint']) print('Evaluating on %s' % args['test_split']) ranks = [] matches = [] cur_iter = 0 to_save = {'output': [], 'batch': []} for batch in progressbar(val_loader.batches(), total=args['num_instances']): _, outputs = model.run_visualize_iteration(batch, sess) to_save['output'].append(outputs) to_save['batch'].append(batch) cur_iter += 1 if cur_iter >= args['num_instances']: break # Save the output + batch batch_path = '{0}.{1}_batches.npy'.format(args['checkpoint'], args['num_instances']) support.save_batch(to_save, batch_path)
corefnmn-main
exp_vd/visualize_sl.py
r"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Script to evaluate trained Visual Dialog model using supervised learning. Evaluates visual dialog model that performs explicit visual coreference resolution using neural module networks. Additional details are in the paper: Visual Coreference Resolution in Visual Dialog using Neural Module Networks Satwik Kottur, José M. F. Moura, Devi Parikh, Dhruv Batra, Marcus Rohrbach European Conference on Computer Vision (ECCV), 2018 Usage: python -u exp_vd/eval_sl.py --gpu_id=0 --test_split='val' \ --checkpoint='checkpoints/model_epoch_005.tmodel' """ from __future__ import absolute_import, division, print_function import argparse import json import os import sys import time from tqdm import tqdm as progressbar import numpy as np import tensorflow as tf from exp_vd import options # Read command line options. parser = argparse.ArgumentParser() parser.add_argument('--checkpoint', required=True, help="Checkpoint to load") parser.add_argument('--test_split', default='val', help='Split to run evaluation') parser.add_argument('--gpu_id', type=int, default=0) try: args = vars(parser.parse_args()) except (IOError) as msg: parser.error(str(msg)) # set the cuda environment variable for the gpu to use gpu_id = '' if args['gpu_id'] < 0 else str(args['gpu_id']) print('Using GPU id: %s' % gpu_id) os.environ['CUDA_VISIBLE_DEVICES'] = gpu_id # Start the session BEFORE importing tensorflow_fold # to avoid taking up all GPU memory tf_config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True), allow_soft_placement=False, log_device_placement=False) sess = tf.Session(config=tf_config) from models_vd.assembler import Assembler from models_vd.model import CorefNMN from loader_vd.data_reader import DataReader from util import metrics from util import support # setting random seeds np.random.seed(1234) tf.set_random_seed(1234) # read the train args from checkpoint param_path = args['checkpoint'].replace('.tmodel', '_params.json') with open(param_path, 'r') as file_id: saved_args = json.load(file_id) saved_args.update(args) args = saved_args args['preload_feats'] = False # no supervision is needed args['supervise_attention'] = False # adjust for complex models args['batch_size'] = min(args['batch_size'], 10) support.pretty_print_dict(args) # Data files root = args['data_root'] imdb_path_val = os.path.join(root, 'imdb_%s.npy' % args['test_split']) # assemblers for question and caption programs question_assembler = Assembler(args['prog_vocab_path']) caption_assembler = Assembler(args['prog_vocab_path']) assemblers = {'ques': question_assembler, 'cap': caption_assembler} # dataloader for val input_dict = {'path': imdb_path_val, 'shuffle': False, 'one_pass': True, 'args': args, 'assembler': question_assembler, 'fetch_options': True} val_loader = DataReader(input_dict) # model for training eval_params = args.copy() eval_params['use_gt_prog'] = False # for training eval_params['enc_dropout'] = False eval_params['dec_dropout'] = False eval_params['dec_sampling'] = False # do not sample, take argmax # for models trained later if 'num_rounds' not in eval_params: eval_params['num_rounds'] = val_loader.batch_loader.num_rounds # model for evaluation # create another assembler of caption model = CorefNMN(eval_params, assemblers) # Load snapshot print('Loading checkpoint from: %s' % args['checkpoint']) snapshot_saver = tf.train.Saver(max_to_keep=None) # keep all snapshots snapshot_saver.restore(sess, args['checkpoint']) print('Evaluating on %s' % args['test_split']) ranks = [] matches = [] total_iter = int(val_loader.batch_loader.num_inst / args['batch_size']) num_iters = 0 # get confusion matrix only if using refer confusion_mat = np.zeros((2, 2)) if args['use_refer']: refer_token = question_assembler.name2idx_dict['_Refer'] find_token = question_assembler.name2idx_dict['_Find'] for batch in progressbar(val_loader.batches(), total=total_iter): batch_ranks, outputs = model.run_evaluate_iteration(batch, sess) ranks.append(batch_ranks) if 'matches' in outputs: matches.append(outputs['matches']) # debug, get confusion between find/refer if args['use_refer']: find_gt = batch['gt_layout'] == find_token refer_gt = batch['gt_layout'] == refer_token find_pred = outputs['pred_tokens'] == find_token refer_pred = outputs['pred_tokens'] == refer_token confusion_mat[0, 0] += np.sum(find_pred & find_gt) confusion_mat[0, 1] += np.sum(refer_pred & find_gt) confusion_mat[1, 0] += np.sum(find_pred & refer_gt) confusion_mat[1, 1] += np.sum(refer_pred & refer_gt) try: if len(matches) > 0: matches = np.concatenate(matches) percent = 100*np.sum(matches) / matches.size print('Program accuracy: %f percent\n' % percent) except: pass # print confusion matrix print(confusion_mat) # save the ranks param_path = args['checkpoint'].replace('.tmodel', '_rankdump.npy') np.save(param_path, np.hstack(ranks)) metrics = metrics.compute_metrics(np.hstack(ranks))
corefnmn-main
exp_vd/eval_sl.py
r"""Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are from the n2nmn project which notice below and in LICENSE.n2nmn in the root directory of this source tree. Copyright (c) 2017, Ronghang Hu All rights reserved. Script to train Visual Dialog model using supervised learning. Trains visual dialog model that performs explicit visual coreference resolution using neural module networks. Additional details are in the paper: Visual Coreference Resolution in Visual Dialog using Neural Module Networks Satwik Kottur, José M. F. Moura, Devi Parikh, Dhruv Batra, Marcus Rohrbach European Conference on Computer Vision (ECCV), 2018 Usage (check scripts/run_train.sh): python -u exp_vd/train_sl.py --gpu_id=0 --dataset='visdial_v0.9' \ --data_root='data/' --model='nmn-cap-prog-only' --batch_size=5 \ --use_refer --use_fact --generator='mem' --feature_path='data/' \ --learning_rate=0.0001 --amalgam_text_feats \ --decoder='disc' --lstm_size 512 """ from __future__ import absolute_import, division, print_function import argparse import json import os import sys import time from tqdm import tqdm as progressbar import numpy as np import tensorflow as tf from exp_vd import options # read command line options args = options.read_command_line() # Start the session BEFORE importing tensorflow_fold # to avoid taking up all GPU memory tf_config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True), allow_soft_placement=False, log_device_placement=False) sess = tf.Session(config=tf_config) from models_vd.assembler import Assembler from models_vd.model import CorefNMN from loader_vd.data_reader import DataReader from util import metrics from util import support # setting random seeds np.random.seed(1234) tf.set_random_seed(1234) # Data files glove_mat_path = args['data_root'] + 'vocabulary_vd_glove.npy' args['data_root'] = os.path.join(args['data_root'], args['dataset']) args['text_vocab_path'] = os.path.join(args['data_root'], 'vocabulary_vd.txt') root = args['data_root'] if args['use_refer']: # use refer module args['prog_vocab_path'] = os.path.join(root, 'vocabulary_layout_5.txt') else: # no explicit refer module args['prog_vocab_path'] = os.path.join(root, 'vocabulary_layout_4.txt') imdb_path_train = os.path.join(root, 'imdb_train.npy') # assemblers for question and caption programs question_assembler = Assembler(args['prog_vocab_path']) caption_assembler = Assembler(args['prog_vocab_path']) assemblers = {'ques': question_assembler, 'cap': caption_assembler} # Dataloader for train input_dict = {'path': imdb_path_train, 'shuffle': True, 'one_pass': False, 'assembler': question_assembler, 'use_count': False, 'args': args} if args['decoder'] == 'disc': input_dict['fetch_options'] = True train_loader = DataReader(input_dict) # model params for training train_params = args.copy() # use the ground truth program for training train_params['use_gt_prog'] = True train_params['text_vocab_size'] = train_loader.batch_loader.vocab_dict.num_vocab train_params['prog_vocab_size'] = len(question_assembler.module_names) train_params['pad_id'] = train_loader.batch_loader.vocab_dict.word2idx('<pad>') train_params['num_rounds'] = train_loader.batch_loader.num_rounds print('Using a vocab size: %d' % train_params['text_vocab_size']) # model for training model = CorefNMN(train_params, assemblers) model.setup_training() # train with Adam, optimization ops solver = tf.train.AdamOptimizer(learning_rate=train_params['learning_rate']) gradients = solver.compute_gradients(model.get_total_loss()) # clip gradients based on value gradients = [(tf.clip_by_value(g, -2.0, 2.0), v) if g is not None else (g, v) for g, v in gradients] solver_op = solver.apply_gradients(gradients) # add it to the output model.add_solver_op(solver_op) # adjust snapshot to have a time stamp folder cur_time = time.strftime('%a-%d%b%y-%X', time.gmtime()) args['snapshot_path'] = os.path.join(args['snapshot_path'], cur_time) os.makedirs(args['snapshot_path'], exist_ok=True) snapshot_saver = tf.train.Saver(max_to_keep=None) # keep all snapshots print('Saving checkpoints at: %s' % args['snapshot_path']) # initialize all variables sess.run(tf.global_variables_initializer()) # load glove vectors for embedding glove_mat_path = os.path.join(args['data_root'], 'vocabulary_vd_glove.npy') glove_mat = np.load(glove_mat_path) with tf.variable_scope(train_params['embed_scope'], reuse=True): embed_mat = tf.get_variable('embed_mat') sess.run(tf.assign(embed_mat, glove_mat)) #------------------------------------------------------------------------------ # forget about embed and module scopes del train_params['embed_scope'] if 'module_scope' in train_params: del train_params['module_scope'] #------------------------------------------------------------------------- print('Running training iteration..') num_iter_per_epoch = int(train_loader.batch_loader.num_inst/args['batch_size']) print('Number of iterations per epoch: %d' % num_iter_per_epoch) # exponential smoothing for loss smoother = metrics.ExponentialSmoothing() for n_iter, batch in enumerate(train_loader.batches()): # add epoch and iteration epoch = float(n_iter) / num_iter_per_epoch batch['epoch'] = epoch batch['n_iter'] = n_iter if n_iter >= args['num_epochs'] * num_iter_per_epoch: break # perform training iteration losses, _ = model.run_train_iteration(batch, sess) losses = smoother.report(losses) # printing log if n_iter % 10 == 0: cur_time = time.strftime('%a %d%b%y %X', time.gmtime()) print_format = ('[%s][It: %d][Ep: %.2f][Loss: %.3f ' + 'Prog: %.3f Ans: %.3f Align: %.3f]') print_info = (cur_time, n_iter, epoch, losses['total'], losses['prog'], losses['ans'], losses['align']) print(print_format % print_info) # save snapshot after every epoch if n_iter % num_iter_per_epoch == 0: epoch = float(n_iter) / num_iter_per_epoch # Save snapshot at every epoch file_name = 'model_epoch_%03d.tmodel' % epoch snapshot_path = os.path.join(args['snapshot_path'], file_name) snapshot_saver.save(sess, snapshot_path, write_meta_graph=False) # also save the arguments params_path = snapshot_path.replace('.tmodel', '_params.json') with open(params_path, 'w') as file_id: json.dump(train_params, file_id) print('Snapshot saved to: ' + snapshot_path) #-------------------------------------------------------------------------
corefnmn-main
exp_vd/train_sl.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import setuptools setuptools.setup( name="cop3d", version="1.0.0", author="Meta AI", author_email="romansh@meta.com", packages=setuptools.find_packages(), license="LICENSE", description="Common Pets in 3D tools", long_description=open("README.md").read(), install_requires=[ "co3d @ git+ssh://git@github.com/facebookresearch/co3d.git#egg=co3d-2.1.0" ], )
cop3d-main
setup.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os from co3d.dataset.download_dataset_impl import build_arg_parser, download_dataset REPO_ROOT = __file__.rsplit(os.sep, 2)[0] DEFAULT_LINK_LIST_FILE = os.path.join(REPO_ROOT, "links", "links.json") DEFAULT_SHA256S_FILE = os.path.join(REPO_ROOT, "links", "cop3d_sha256.json") if __name__ == "__main__": parser = build_arg_parser("COP3D", DEFAULT_LINK_LIST_FILE, DEFAULT_SHA256S_FILE) args = parser.parse_args() download_dataset( str(args.link_list_file), str(args.download_folder), n_download_workers=int(args.n_download_workers), n_extract_workers=int(args.n_extract_workers), download_categories=args.download_categories, checksum_check=bool(args.checksum_check), single_sequence_subset=False, clear_archives_after_unpacking=bool(args.clear_archives_after_unpacking), sha256s_file=str(args.sha256_file), skip_downloaded_archives=not bool(args.redownload_existing_archives), )
cop3d-main
cop3d/download_dataset.py
# Copyright (c) 2021-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import re from distutils.core import setup from setuptools import find_packages def find_version() -> str: with open('bisk/__init__.py', 'r') as f: version_file = f.read() version_match = re.search( r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M ) if version_match: return version_match.group(1) raise RuntimeError("Unable to find version string.") setup( name='bipedal-skills', version=find_version(), author='Meta AI Research', author_email='jgehring@meta.com', url='https://facebookresearch.github.io/hsd3', license='MIT License', description='Bipedal Skills RL Benchmark', python_requires='>=3.7', install_requires=[ 'dm-control>=0.0.32', 'gym>=0.26', 'numpy>=1.9.0', ], packages=find_packages(), package_data={'bisk': ['assets/*.xml', 'assets/*.png']}, long_description=open('README.md').read(), long_description_content_type="text/markdown", )
bipedal-skills-main
setup.py
# Copyright (c) 2021-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import gym import pytest import bisk @pytest.fixture def env(): env = gym.make('BiskGoalWall-v1', robot='testcube') obs, _ = env.reset(seed=0) yield env env.close() @pytest.fixture def env2d(): env = gym.make('BiskGoalWall-v1', robot='testcube2d') obs, _ = env.reset(seed=0) yield env env.close() def test_eoe_if_touched_wall(env): upf = (env.p.named.model.body_mass['robot/torso'] * 9.81) / ( env.p.named.model.actuator_gear['robot/z'][0] ) terminated = False step = 0 while not terminated: obs, reward, terminated, truncated, info = env.step([1, 0, upf]) step += 1 assert reward == 0 assert step < 250 def test_reward_goal1(env): env.p.named.data.qvel['ball'][0:3] = [10, -3, 2.5] terminated = False ret = 0 step = 0 while not terminated: obs, reward, terminated, truncated, info = env.step([0, 0, 0]) ret += reward step += 1 assert step < 250 assert ret == 1 def test_reward_goal2(env): env.p.named.data.qvel['ball'][0:3] = [10, 3, 4] terminated = False ret = 0 step = 0 while not terminated: obs, reward, terminated, truncated, info = env.step([0, 0, 0]) ret += reward step += 1 assert step < 250 assert ret == 2 def test_reward_nogoal(env): env.p.named.data.qvel['ball'][0:3] = [10, 0, 2] terminated = False ret = 0 step = 0 while not terminated: obs, reward, terminated, truncated, info = env.step([0, 0, 0]) ret += reward step += 1 assert step < 250 assert ret == 0 def test_no_reward_if_beyond_line(env): upf = (env.p.named.model.body_mass['robot/torso'] * 9.81) / ( env.p.named.model.actuator_gear['robot/z'][0] ) # Move beyond line without touching the ball for _ in range(2): obs, reward, terminated, truncated, info = env.step([0, 1, upf]) assert terminated == False for _ in range(18): obs, reward, terminated, truncated, info = env.step([1, 0, upf]) assert terminated == False env.p.named.data.qvel['ball'][0:3] = [10, 0, 2] terminated = False ret = 0 step = 0 while not terminated: obs, reward, terminated, truncated, info = env.step([0, 0, 0]) ret += reward step += 1 assert step < 250 assert ret == 0 env.p.named.data.qvel['ball'][0:3] = [10, -3, 2.5] terminated = False ret = 0 step = 0 while not terminated: obs, reward, terminated, truncated, info = env.step([0, 0, 0]) ret += reward step += 1 assert step < 250 assert ret == 0 def test_reward_goal2d(env2d): env = env2d env.p.named.data.qvel['ball-x'] = 10 env.p.named.data.qvel['ball-z'] = 4 terminated = False ret = 0 step = 0 while not terminated: obs, reward, terminated, truncated, info = env.step([0, 0]) ret += reward step += 1 assert step < 250 assert ret == 1 def test_reward_nogoal2d_1(env2d): env = env2d env.p.named.data.qvel['ball-x'] = 10 env.p.named.data.qvel['ball-z'] = 0 terminated = False ret = 0 step = 0 while not terminated: obs, reward, terminated, truncated, info = env.step([0, 0]) ret += reward step += 1 assert step < 250 assert ret == 0 def test_reward_nogoal2d_2(env2d): env = env2d env.p.named.data.qvel['ball-x'] = 10 env.p.named.data.qvel['ball-z'] = 10 terminated = False ret = 0 step = 0 while not terminated: obs, reward, terminated, truncated, info = env.step([0, 0]) ret += reward step += 1 assert step < 250 assert ret == 0
bipedal-skills-main
tests/test_goalwall.py
# Copyright (c) 2022-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import gym import pytest import numpy as np import bisk @pytest.fixture def env(): env = gym.make('BiskGoToSphere-v1', robot='testcube') obs, _ = env.reset(seed=0) yield env env.close() def test_scripted_policy(env): for i in range(4): obs, reward, terminated, truncated, info = env.step([0, 0, 0]) retrn = 0 while not (terminated or truncated): target = obs['targets'][:2] dir = target / np.linalg.norm(target) dx, dy = 0, 0 if np.abs(target[0]) > np.abs(target[1]): dx = np.sign(target[0]) else: dy = np.sign(target[1]) obs, reward, terminated, truncated, info = env.step([dx, dy, 0]) retrn += reward assert terminated assert not truncated assert retrn == 1
bipedal-skills-main
tests/test_gotosphere.py
# Copyright (c) 2021-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import gym import pytest import bisk @pytest.fixture def env(): env = gym.make('BiskHurdles-v1', robot='testcube') obs, _ = env.reset(seed=0) yield env env.close() def test_reward_clear(env): upf = (env.p.named.model.body_mass['robot/torso'] * 9.81) / ( env.p.named.model.actuator_gear['robot/z'][0] ) obs, reward, terminated, truncated, info = env.step([0, 0, 1]) # Cross hurdle for _ in range(64): next_obs, reward, terminated, truncated, info = env.step([1, 0, upf]) if next_obs['next_hurdle'][0] > obs['next_hurdle'][0]: assert reward == 1 break else: assert reward == 0 obs = next_obs # Go back for _ in range(64): obs, reward, terminated, truncated, info = env.step([-1, 0, upf]) if obs['next_hurdle'][2] == 0: break obs, reward, terminated, truncated, info = env.step([-1, 0, upf]) for _ in range(4): obs, reward, terminated, truncated, info = env.step([0, 0, upf]) # Cross hurdle again, receive no reward for _ in range(64): next_obs, reward, terminated, truncated, info = env.step([1, 0, upf]) if next_obs['next_hurdle'][0] > obs['next_hurdle'][0]: assert reward == 0 break else: assert reward == 0 obs = next_obs obs = next_obs # Cross next hurdle, receive reward for _ in range(64): next_obs, reward, terminated, truncated, info = env.step([1, 0, upf]) if next_obs['next_hurdle'][0] > obs['next_hurdle'][0]: assert reward == 1 break else: assert reward == 0 obs = next_obs def test_reward_stuck(env): upf = (env.p.named.model.body_mass['robot/torso'] * 9.81) / ( env.p.named.model.actuator_gear['robot/z'][0] ) # Go forward -- should be stuck at first hurdle for _ in range(64): obs, reward, terminated, truncated, info = env.step([1, 0, upf]) assert reward == 0
bipedal-skills-main
tests/test_hurdles.py
# Copyright (c) 2021-present, Facebook, Inc. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # import gym import pytest import bisk # Simple test whether we can instantiate the env with a robot and do a single # step. def _create_helper(env_name: str, robot: str): env = gym.make(env_name, robot='Walker') env.reset(seed=0) env.step(env.action_space.sample()) env.close() env = gym.make(env_name.replace('-v', f'{robot}-v')) env.reset(seed=0) env.step(env.action_space.sample()) env.close() def _envs_helper(robot: str): _create_helper('BiskHurdles-v1', robot) _create_helper('BiskLimbo-v1', robot) _create_helper('BiskHurdlesLimbo-v1', robot) _create_helper('BiskGaps-v1', robot) _create_helper('BiskStairs-v1', robot) _create_helper('BiskGoalWall-v1', robot) _create_helper('BiskGoToTargets-v1', robot) def test_halfcheetah_create(): _envs_helper('HalfCheetah') def test_walker_create(): _envs_helper('Walker') def test_humanoid_create(): _envs_helper('Humanoid') def test_humanoidpc_create(): _envs_helper('HumanoidPC') def test_humanoidamasspc_create(): _envs_helper('HumanoidAMASSPC')
bipedal-skills-main
tests/test_robots.py