python_code
stringlengths
0
4.04M
repo_name
stringlengths
8
58
file_path
stringlengths
5
147
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import re import tokenize import typing as tp from io import BytesIO import black # type: ignore from codegen_sources.preprocessing.obfuscation.bobskater_obfuscator import ( obfuscateString, ) from codegen_sources.preprocessing.obfuscation.utils_deobfuscation import dico_to_string from .lang_processor import LangProcessor, NEWLINE_TOK from .tokenization_utils import process_string class PythonProcessor(LangProcessor): def __init__(self) -> None: self.spetoken2char = { "STOKEN00": "#", "STOKEN1": "\\n", "STOKEN2": '"""', "STOKEN3": "'''", } self.char2spetoken = { value: " " + key + " " for key, value in self.spetoken2char.items() } @property def language(self) -> str: return "py" # TODO would "python" (default) be breaking stuff? this is unclear def tokenize_code(self, code, keep_comments=False, process_strings=True): assert isinstance(code, str) code = code.replace(r"\r", "") code = code.replace("\r", "") tokens = [] try: iterator = tokenize.tokenize(BytesIO(code.encode("utf-8")).readline) except SyntaxError as excep: raise SyntaxError(excep) removed_docstr = 0 while True: try: toktype, tok, _, _, line = next(iterator) except ( tokenize.TokenError, IndentationError, SyntaxError, UnicodeDecodeError, ) as e: raise ValueError( f'Impossible to parse tokens because of incorrect source code "{e}" ...' ) except StopIteration: raise StopIteration(f"End of iterator before ENDMARKER token.") if toktype == tokenize.ENCODING or toktype == tokenize.NL: continue elif toktype == tokenize.NEWLINE: if removed_docstr == 1: removed_docstr = 0 continue tokens.append(NEWLINE_TOK) elif toktype == tokenize.COMMENT: if keep_comments: com = process_string( tok, self.char2spetoken, self.spetoken2char, True, do_whole_processing=process_strings, ) if len(com) > 0: tokens.append(com) else: continue elif toktype == tokenize.STRING: if tok == line.strip(): # docstring if not keep_comments: removed_docstr = 1 continue else: coms = process_string( tok, self.char2spetoken, self.spetoken2char, True, do_whole_processing=process_strings, ) if len(coms) > 0: tokens.append(coms) else: removed_docstr = 1 else: tokens.append( process_string( tok, self.char2spetoken, self.spetoken2char, False, do_whole_processing=process_strings, ) ) elif toktype == tokenize.INDENT: tokens.append("INDENT") elif toktype == tokenize.DEDENT: # empty block if tokens[-1] == "INDENT": tokens = tokens[:-1] else: tokens.append("DEDENT") elif toktype == tokenize.ENDMARKER: tokens.append("ENDMARKER") break else: tokens.append(tok) assert tokens[-1] == "ENDMARKER", "Error, no end marker" return tokens[:-1] def detokenize_code(self, code): # replace recreate lines with \n and appropriate indent / dedent # removing indent/ dedent tokens assert isinstance(code, str) or isinstance(code, list) if isinstance(code, list): code = " ".join(code) code = code.replace("ENDCOM", NEWLINE_TOK) code = code.replace("▁", "SPACETOKEN") lines = code.split(NEWLINE_TOK) tabs = "" for i, line in enumerate(lines): line = line.strip() if line.startswith("INDENT "): tabs += " " line = line.replace("INDENT ", tabs) elif line.startswith("DEDENT"): number_dedent = line.count("DEDENT") tabs = tabs[4 * number_dedent :] line = line.replace("DEDENT", "") line = line.strip() line = tabs + line elif line == "DEDENT": line = "" else: line = tabs + line lines[i] = line untok_s = "\n".join(lines) # find string and comment with parser and detokenize string correctly try: for toktype, tok, _, _, line in tokenize.tokenize( BytesIO(untok_s.encode("utf-8")).readline ): if toktype == tokenize.STRING or toktype == tokenize.COMMENT: tok_ = ( tok.replace("STRNEWLINE", "\n") .replace("TABSYMBOL", "\t") .replace(" ", "") .replace("SPACETOKEN", " ") ) untok_s = untok_s.replace(tok, tok_) except KeyboardInterrupt: raise except: # TODO raise ValueError(f'Invalid python function \n {code}\n') pass # detokenize imports untok_s = ( untok_s.replace(". ", ".") .replace(" .", ".") .replace("import.", "import .") .replace("from.", "from .") ) # special strings string_modifiers = ["r", "u", "f", "rf", "fr", "b", "rb", "br"] for modifier in string_modifiers + [s.upper() for s in string_modifiers]: untok_s = untok_s.replace(f" {modifier} '", f" {modifier}'").replace( f' {modifier} "', f' {modifier}"' ) untok_s = untok_s.replace("> >", ">>").replace("< <", "<<") return untok_s def obfuscate_code(self, code): res, dico = obfuscateString(code, obfuscateNames=True, removeDocstrings=False) return res, dico_to_string(dico) def extract_functions( self, code: tp.Union[str, tp.List[str]], tokenized: bool = True, ) -> tp.Tuple[tp.List[str], tp.List[str]]: """Extract functions from tokenized python code""" if not tokenized: raise ValueError( "Function extraction not available for PythonProcessor and untokenized files. Please use PythonTreeSitterProcessor" ) if isinstance(code, str): tokenized_code = code.split() else: tokenized_code = code assert isinstance(tokenized_code, list) tokens = iter(tokenized_code) functions_standalone = [] functions_class = [] number_indent = 0 try: token = next(tokens) except StopIteration: return [], [] while True: try: if token == "def": function = ["def"] while not (token == "DEDENT" and number_indent == 0): token = next(tokens) if token == "INDENT": number_indent += 1 elif token == "DEDENT": number_indent -= 1 function.append(token) try: str_function = " ".join(function) if is_python_2(str_function): token = next(tokens) continue if function[function.index("(") + 1] == "self": functions_class.append(str_function) else: functions_standalone.append(str_function) except KeyboardInterrupt: raise except: print(function) token = next(tokens) else: token = next(tokens) except StopIteration: break return functions_standalone, functions_class def get_function_name(self, function): assert isinstance(function, str) or isinstance(function, list) if isinstance(function, str): function = function.split() return function[function.index("def") + 1] @staticmethod def format(code: str) -> str: """normalizes the input code by formatting it""" return apply_black(code) def is_python_2(code: str) -> bool: if ( re.search("print [^(]", code) is None and re.search("raise \w+ ,", code) is None and re.search("except \w+ ,", code) is None and re.search("[^ ]+ = \d+ L", code) is None and re.search(".[ ]*iterkeys[ ]*\([ ]*\)", code) is None and re.search(".[ ]*itervalues[ ]*\([ ]*\)", code) is None and re.search(".[ ]*iteritems[ ]*\([ ]*\)", code) is None and re.search("xrange[ ]*\(", code) is None and re.search("imap[ ]*\(", code) is None ): return False else: return True def apply_black(code: str, line_length: int = 88): """Apply black to code""" try: mode = black.FileMode(line_length=line_length) return black.format_str(code, mode=mode) except KeyboardInterrupt: raise except Exception: return code
CodeGen-main
codegen_sources/preprocessing/lang_processors/python_processor.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import re from pathlib import Path from .java_processor import JAVA_CHAR2TOKEN, JAVA_TOKEN2CHAR from .tokenization_utils import ind_iter from .tree_sitter_processor import ( COMMENT_TYPES, NEWLINE_TOK, TreeSitterLangProcessor, TREE_SITTER_ROOT, ) import tree_sitter as ts import typing as tp RUST_TOKEN2CHAR = JAVA_TOKEN2CHAR.copy() RUST_CHAR2TOKEN = JAVA_CHAR2TOKEN.copy() class RustProcessor(TreeSitterLangProcessor): def __init__(self, root_folder: Path = TREE_SITTER_ROOT) -> None: super().__init__( ast_nodes_type_string=[ "comment", "line_comment", "block_comment", "string_literal", "raw_string_literal", "char_literal", ], stokens_to_chars=RUST_TOKEN2CHAR, chars_to_stokens=RUST_CHAR2TOKEN, root_folder=root_folder, ) def dfs( self, code: bytes, node: ts.Node, tokens: tp.List[str], tokens_type: tp.List[str], scope_info: bool = False, ) -> None: previous_endpoints = [0] return self._dfs(code, node, tokens, tokens_type, previous_endpoints) def _dfs(self, code, node, tokens, tokens_type, previous_endpoints): if len(node.children) == 0 or node.type in self.ast_nodes_type_string: snippet = code[node.start_byte : node.end_byte] if node.start_byte > previous_endpoints[-1]: previous_snippet = ( code[previous_endpoints[-1] : node.start_byte] .strip() .decode("utf8") ) if len(previous_snippet) > 0: tokens.append(previous_snippet) tokens_type.append("was_missing") previous_endpoints.append(node.start_byte) if isinstance(snippet, bytes): snippet = snippet.decode("utf8") if len(snippet) > 0: tokens.append(snippet) tokens_type.append(node.type) previous_endpoints.append(node.end_byte) return for child in node.children: self._dfs(code, child, tokens, tokens_type, previous_endpoints) def detokenize_code(self, code): assert isinstance(code, str) or isinstance(code, list) if isinstance(code, list): code = " ".join(code) code = re.sub(r"' (.) '", r"'\1'", code) return super().detokenize_code(code) def get_function_name(self, function): assert isinstance(function, str) or isinstance( function, list ), f"function is not the right type, should be str or list : {function}" if isinstance(function, str): function = function.split() assert "fn" in function, "function definition in rust should contain token 'fn'" return function[function.index("fn") + 1] def extract_arguments(self, function): return self.extract_arguments_using_parentheses(function) def extract_functions( self, code: tp.Union[str, tp.List[str]], tokenized: bool = True, ) -> tp.Tuple[tp.List[str], tp.List[str]]: """Extract functions from tokenized rust code""" # TODO: make it use the AST to work on untokenized code if not tokenized: assert isinstance(code, str) code = " ".join(self.tokenize_code(code)) if isinstance(code, list): code_str = " ".join(code) else: code_str = code try: code_str = ( code_str.replace("ENDCOM", "\n") .replace("▁", "SPACETOKEN") .replace(NEWLINE_TOK, "\n") ) tokens, token_types = self.get_tokens_and_types(code_str) tokens_types = list(zip(tokens, token_types)) except KeyboardInterrupt: raise except: return [], [] i = ind_iter(len(tokens_types)) functions_standalone = [] functions_class = [] in_class = False class_indentation = 0 try: token, token_type = tokens_types[i.i] except: return [], [] while True: try: if token == "struct" or token == "trait" or token == "impl": in_class = True if in_class and token == "{": class_indentation += 1 if in_class and token == "}": class_indentation -= 1 if class_indentation < 0: raise ValueError("Issue parsing the scopes of the file") if class_indentation == 0: in_class = False # detect function if token == "fn": # We are at the beginning of the function token, token_type = tokens_types[i.i] function = [token] token_types = [token_type] definition_only = False while token != "{": i.next() token, token_type = tokens_types[i.i] if token == ";": definition_only = True function = [] break if token_type in COMMENT_TYPES: token = token.strip() token += " ENDCOM" function.append(token) token_types.append(token_type) if definition_only: continue if token == "{": number_indent = 1 while not (token == "}" and number_indent == 0): try: i.next() token, token_type = tokens_types[i.i] if token == "{": number_indent += 1 elif token == "}": number_indent -= 1 if token_type in COMMENT_TYPES: token = token.strip() token += " ENDCOM" function.append(token) except StopIteration: break function_str = " ".join(function) function_str = function_str.strip() function_str = function_str.replace("\n", "ENDCOM").replace( "SPACETOKEN", "▁" ) if in_class: functions_class.append(function_str) else: functions_standalone.append(function_str) i.next() token = tokens_types[i.i][0] except KeyboardInterrupt: raise except: break return functions_standalone, functions_class
CodeGen-main
codegen_sources/preprocessing/lang_processors/rust_processor.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import re from .lang_processor import LangProcessor, NEWLINE_TOK IR_LANGUAGE_NAME = "ir" class IRProcessor(LangProcessor): def tokenize_code( self, code: str, keep_comments: bool = False, process_strings: bool = True ): code = code.replace("\n", f" NEW_LINE ").replace("\r", "") return re.sub(r"\s+", " ", code).split(" ") def detokenize_code(self, code): return code.replace(f" NEW_LINE ", "\n").replace(NEWLINE_TOK, "\n")
CodeGen-main
codegen_sources/preprocessing/lang_processors/ir_processor.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from .lang_processor import LangProcessor as LangProcessor # for explicit reimport from .tree_sitter_processor import TREE_SITTER_ROOT as TREE_SITTER_ROOT from .cpp_processor import CppProcessor as CppProcessor from .go_processor import GoProcessor as GoProcessor from .java_processor import JavaProcessor as JavaProcessor from .python_processor import PythonProcessor as PythonProcessor from .python_tree_sitter_processor import ( PythonTreeSitterProcessor as PythonTreeSitterProcessor, ) from .rust_processor import RustProcessor as RustProcessor from .ir_processor import IRProcessor as IRProcessor
CodeGen-main
codegen_sources/preprocessing/lang_processors/__init__.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import re import uuid import logging import itertools import dataclasses import typing as tp from pathlib import Path from io import BytesIO import tokenize import tree_sitter as ts from codegen_sources.model.src.data.dictionary import ( ENDBLOCK, ENDCLASS, ENDFUNC, ) from codegen_sources.preprocessing.obfuscation import utils_deobfuscation from codegen_sources.preprocessing.obfuscation.bobskater_obfuscator import ( obfuscateString, ) from codegen_sources.preprocessing.obfuscation.utils_deobfuscation import dico_to_string from . import tree_sitter_processor as tsp from .python_processor import is_python_2 from .utils import obfuscation_tokens INDENT = "INDENT" DEDENT = "DEDENT" logger = logging.getLogger(__name__) class PythonTreeSitterProcessor(tsp.TreeSitterLangProcessor): def __init__(self, root_folder: Path = tsp.TREE_SITTER_ROOT) -> None: spetoken2char = { "STOKEN00": "#", "STOKEN1": "\\n", "STOKEN2": '"""', "STOKEN3": "'''", } char2spetoken = {value: " " + key + " " for key, value in spetoken2char.items()} super().__init__( ast_nodes_type_string=[ "string", "docstring", "comment", "string_literal", "character_literal", ], stokens_to_chars=spetoken2char, chars_to_stokens=char2spetoken, root_folder=root_folder, new_line_sensitive=True, ) @property def language(self) -> str: return "python" # legacy PythonProcessor uses "py" def detokenize_code(self, code: tp.Union[str, tp.List[str]]) -> str: # replace recreate lines with \n and appropriate indent / dedent # removing indent/ dedent tokens # current known issues: # - a comment inside a type node would be included in the type assert isinstance(code, (str, list)) if isinstance(code, list): code = " ".join(code) code = code.replace("ENDCOM", tsp.NEWLINE_TOK) code = code.replace(ENDBLOCK, "").replace(ENDFUNC, "").replace(ENDCLASS, "") code = code.replace("▁", "SPACETOKEN") lines = code.split(tsp.NEWLINE_TOK) tabs = "" for i, line in enumerate(lines): line = line.strip() if line.startswith(INDENT + " "): tabs += " " line = line.replace(INDENT + " ", tabs) elif line.startswith(DEDENT): number_dedent = line.count(DEDENT) tabs = tabs[4 * number_dedent :] line = line.replace(DEDENT, "") line = line.strip() line = tabs + line elif line == DEDENT: line = "" else: line = tabs + line lines[i] = line untok_s = "\n".join(lines) # find string and comment with parser and detokenize string correctly ref_line = "" wip_line = "" try: for toktype, tok, _, _, line in tokenize.tokenize( BytesIO(untok_s.encode("utf-8")).readline ): if ref_line != line: ref_line = line # we'll be update "wip_line" little by little # and replacing this line in the full code # little by little as well wip_line = line if toktype in (tokenize.STRING, tokenize.COMMENT): tok_ = ( tok.replace("STRNEWLINE", "\n") .replace("TABSYMBOL", "\t") .replace(" ", "") .replace("SPACETOKEN", " ") ) # replace in line so that replacing in the whole file # has limited border effect new_line = wip_line.replace(tok, tok_) untok_s = untok_s.replace(wip_line, new_line) wip_line = new_line except KeyboardInterrupt as e: raise e except Exception as e: # pylint: disable=broad-except # TODO raise ValueError(f'Invalid python function \n {code}\n') from e pass # detokenize imports untok_s = ( untok_s.replace(". ", ".") .replace(" .", ".") .replace("import.", "import .") .replace("from.", "from .") ) # special strings string_modifiers = ["r", "u", "f", "rf", "fr", "b", "rb", "br"] for modifier in string_modifiers + [s.upper() for s in string_modifiers]: untok_s = untok_s.replace(f" {modifier} '", f" {modifier}'").replace( f' {modifier} "', f' {modifier}"' ) untok_s = untok_s.replace("> >", ">>").replace("< <", "<<") return untok_s def obfuscate_code(self, code: str): res, dico = obfuscateString(code, obfuscateNames=True, removeDocstrings=False) return res, dico_to_string(dico) def _get_functions_from_ast( self, code: str, node: ts.Node, class_funcs: tp.List[str], standalone_funcs: tp.List[str], _in_class: bool = False, ) -> None: if node.type == "function_definition": if _in_class: class_funcs.append(code[node.start_byte : node.end_byte]) else: standalone_funcs.append(code[node.start_byte : node.end_byte]) for child in node.children: self._get_functions_from_ast( code, child, class_funcs, standalone_funcs, _in_class or node.type == "class_definition", ) def extract_functions( self, code: tp.Union[str, tp.List[str]], tokenized: bool = True, remove_python_2: bool = True, ) -> tp.Tuple[tp.List[str], tp.List[str]]: """ Extract functions from python code tokenized; whether the code is tokenized or not """ standalone_funcs, class_funcs = super( PythonTreeSitterProcessor, self ).extract_functions(code, tokenized) if remove_python_2: standalone_funcs = [x for x in standalone_funcs if not is_python_2(x)] class_funcs = [x for x in class_funcs if not is_python_2(x)] return standalone_funcs, class_funcs def dfs( self, code: bytes, node: ts.Node, tokens: tp.List[str], tokens_type: tp.List[str], scope_info: bool = False, # TODO propagate? ) -> None: if len(node.children) == 0 or node.type in self.ast_nodes_type_string: bsnippet = code[node.start_byte : node.end_byte].strip(b" ") snippet = bsnippet.decode("utf8") is_docstring = False # identify docstrings if node.type == "string": p = node.parent # parent should be a statement, with only the docstring if p.type == "expression_statement" and len(p.children) == 1: is_docstring = True if len(snippet) > 0: tokens.append(snippet) tokens_type.append("docstring" if is_docstring else node.type) if node.type == "comment": # comments at the end of line are marked as next line # because next lines are added for expression statements :s if len(tokens) > 1 and tokens[-2] == tsp.NEWLINE_TOK: prev = node.prev_sibling if prev is not None and prev.end_point[0] == node.end_point[0]: tokens[-1], tokens[-2] = tokens[-2], tokens[-1] tokens_type[-1], tokens_type[-2] = ( tokens_type[-2], tokens_type[-1], ) return if node.type == "block": tokens.append(tsp.NEWLINE_TOK) tokens_type.append(tsp.NEWLINE_TOK) tokens.append(INDENT) tokens_type.append(INDENT) for child in node.children: self.dfs(code, child, tokens, tokens_type, scope_info) if ( node.type in ("decorator", "block") or node.type.endswith("_statement") ) and tokens[-1] not in (tsp.NEWLINE_TOK, DEDENT): # after = node.next_sibling # if after is None or after.end_point[0] > node.start_point[0]: tokens.append(tsp.NEWLINE_TOK) tokens_type.append(tsp.NEWLINE_TOK) if node.type == "block": tokens.append(DEDENT) tokens_type.append(DEDENT) if scope_info: tokens.append(ENDBLOCK) tokens_type.append(ENDBLOCK) if scope_info and node.type in {"function_definition"}: tokens.append(ENDFUNC) tokens_type.append(ENDFUNC) if scope_info and node.type in {"class_definition"}: tokens.append(ENDCLASS) tokens_type.append(ENDCLASS) def get_function_name(self, function: tp.Union[str, tp.List[str]]) -> str: assert isinstance(function, (str, list)) if isinstance(function, str): function = function.split() return function[function.index("def") + 1] def obfuscate_types(self, code: str) -> tp.Tuple[str, str]: """Obfuscates all the type hints of the code""" obf_code, hints = self.extract_type_hints(code) ready = [] toprep = [] # prefill main special methods specials = { ".__len__": "int", ".__str__": "str", ".__repr__": "str", ".__hash__": "int", } for name in ["bool", "contains", "lt", "le", "eq", "ne", "gt", "ge"]: specials[f".__{name}__"] = "bool" for name in ["init", "init_subclass", "setattr", "setattribute"]: specials[f".__{name}__"] = "None" special_names = tuple(specials) for hint in hints: if hint.kind == "return" and hint.name.endswith(special_names): end = hint.name.split(".")[-1] ready.append(hint.with_value(specials["." + end])) elif name.endswith( (".__getattr__", ".__getattribute__") ): # nearly impossible to type ready.append(hint) elif not hint.value: # nothing to predict ready.append(hint) else: toprep.append(hint) # replace! tokens = obfuscation_tokens() cleaner = TypeCleaner() dico = {} for hint in toprep: tok = next(tokens) value = cleaner.clean(hint.value) # add optional if actually optional if hint.default is not None and hint.default == "None": if not value.startswith("Optional"): value = f"Optional [ {value} ]" dico[tok] = " ".join(self.tokenize_code(value)[:-1]) ready.append(hint.with_value(tok)) repl = {h.uid: h.to_string() for h in ready} # probably slow but safer that format which may do weird stuff for name, val in repl.items(): obf_code = obf_code.replace("{" + name + "}", val) for string in cleaner.get_imports(obf_code): obf_code = obf_code.replace(string, "") return obf_code, utils_deobfuscation.dico_to_string(dico) def extract_type_hints(self, code: str) -> tp.Tuple[str, tp.List["TypeHint"]]: """Extract all type hint emplacements in the code Parameter --------- code: str Python code to process Returns ------- str the code, where type hint emplacements are filled with identifiers replacing this identifier with "" is equivalent to having no type, otherwise the replacement must include ":" or "->" depending on the kind of type hint list of TypeHint: the list of TypeHint objects which gathers the identifier and all type hint related information such as variable name, default value etc """ handler = CodeHandler(code) tree = self.get_ast(handler.code) traversal = tsp.traverse_tree(tree, final=("parameters", "assignment")) hints = [] for node in traversal: # deal with function parameters if node.type == "parameters": scope = ".".join(handler.get_scopes(node)) params = 0 for sub in node.children: parts = [] if sub.type == "identifier": parts = [sub] elif "parameter" in sub.type: parts = sub.children if not parts: continue name = handler.read(parts[0]) if not params and name == "self": continue start = parts[0].end_byte end = start value = "" for p in parts: if p.type == "type": end = p.end_byte value = handler.read(p) # check for default default = None if "default_parameter" in sub.type: if parts[-2].type == "=": default = handler.read(parts[-1]) h = TypeHint( f"{scope}.{name}", value=value, kind="parameter", default=default, ) handler.add_replacement(start, end, "{" + h.uid + "}") hints.append(h) params += 1 # safeguard for errors children = itertools.takewhile( lambda n: n.type not in ("block", "expression_statement"), node.parent.children, ) sequence = ("parameters", "->", "type", ":") parts = [n for n in children if n.type in sequence][-4:] # now deal with function definitions if tuple(n.type for n in parts) == sequence: # type is present value = handler.read(parts[2]) h = TypeHint(scope, value=value, kind="return") handler.add_replacement( parts[0].end_byte, parts[2].end_byte, "{" + h.uid + "}" ) hints.append(h) elif parts: # no type h = TypeHint(scope, value="", kind="return") start = parts[-1].start_byte handler.add_replacement(start, start, "{" + h.uid + "}") hints.append(h) # deal with typed variables outside functions elif node.type == "assignment": parts = node.children[:3] if tuple(n.type for n in parts[1:]) == (":", "type"): if parts[0].type not in ["identifier", "attribute"]: continue id_nodes = parts[:1] scopes = handler.get_scopes(node) if parts[0].type == "attribute": id_nodes = [ x for x in parts[0].children[1:] if x.type == "identifier" ] if scopes[-1] == "__init__": scopes = scopes[:-1] name = ".".join(scopes + [handler.read(x) for x in id_nodes]) value = handler.read(node.children[2]) h = TypeHint(name, value=value, kind="variable") handler.add_replacement( node.children[0].end_byte, node.children[2].end_byte, "{" + h.uid + "}", ) hints.append(h) return handler.generate(), hints @dataclasses.dataclass class Replacement: start: int end: int value: bytes class CodeHandler: """Simpler operations on code with tree sitter nodes Parameters ---------- code: str or bytes Code parsed by tree sitter """ def __init__(self, code: tp.Union[str, bytes]) -> None: if not isinstance(code, bytes): code = code.encode("utf8") self.code = code self.replacements: tp.List[Replacement] = [] def read(self, node: tp.Union[Replacement, ts.Node]) -> str: """Reads the string referred by the provided node""" if isinstance(node, Replacement): return self.read_range(node.start, node.end) return self.read_range(node.start_byte, node.end_byte) def read_range(self, start: int, end: int) -> str: """Reads the string within the provided range""" return self.code[start:end].decode("utf8") def add_replacement( self, start: int, end: int, string: tp.Union[bytes, str] ) -> None: """Adds a range from the base string which needs to be replaced by the given string Caution: ranges must be added in increasing sequence, and must be non-overlapping """ if isinstance(string, str): string = string.encode("utf8") repl = Replacement(start, end, string) if self.replacements: last = self.replacements[-1] if start < last.end: error = ["Overlapping or unsorted replacements"] for z in (repl, last): error.append(f"({z}, {self.read(z)} -> {z.value.decode('utf8')})") raise ValueError("\n".join(error)) self.replacements.append(repl) def add_replacement_from_node( self, node: ts.Node, string: tp.Union[bytes, str] ) -> None: """Adds a node which needs to be replaced by a given string Caution: nodes must be added in increasing sequence, and must be non-overlapping """ self.add_replacement(node.start_byte, node.end_byte, string) def generate(self) -> str: """Generate the new code with replacements""" parts = [] start = 0 for repl in self.replacements: # code up to the node parts.append(self.code[start : repl.start]) parts.append(repl.value) start = repl.end parts.append(self.code[start:]) return b"".join(parts).decode("utf8") def get_scopes(self, node: ts.Node) -> tp.List[str]: scopes = [] while node is not None: if "_definition" in node.type: ids = [n for n in node.children if n.type == "identifier"] if ids: scopes.append(self.read(ids[0])) node = node.parent return list(reversed(scopes)) class TypeCleaner: """Aims at: - identifying imports so as to remove them (avoids biasing the model) - uniformize how types are expressed """ # TODO # - order in unions # - add optional ?? _TAG = "tag2Replace" def __init__(self) -> None: self.processor = PythonTreeSitterProcessor() self.typing_classes = set(x for x in dir(tp) if x[0].isupper()) def get_imports(self, code: tp.Union[str, bytes]) -> tp.List[str]: """Get a list of imports involving typing module""" handler = CodeHandler(code) tree = self.processor.get_ast(code) import_node = [ "import_from_statement", "import_statement", "future_import_statement", ] finals = ["assignment", "block", "function_definition", "class_definition"] traversal = tsp.traverse_tree(tree, final=import_node + finals) typing_imports_code = [] for node in traversal: if "import" not in node.type: continue data = [(n.type, handler.read(n)) for n in node.children] if len(data) < 2 or "typing" not in data[1][1].split(" ", maxsplit=1)[0]: continue # a bit ugly but robust enough for now typing_imports_code.append(handler.read(node)) return typing_imports_code def clean(self, typestr: str) -> str: """Clean a type string to make it as uniform as possible Eg: dict -> tp.Dict[str, tp.Any] """ # using a tag instead, we can replace later on by whatever we want # eg: tag2Replace.Dict -> tp.Dict tag = self._TAG handler = CodeHandler(typestr) tree = self.processor.get_ast(handler.code) traversal = tsp.traverse_tree(tree) updater = {x: x[0].upper() + x[1:] for x in ["set", "list", "dict", "tuple"]} updater["object"] = "Any" move_after = -1 for node in traversal: current = node if current.start_byte < move_after: continue if current.type == "comment": handler.add_replacement_from_node(current, "") move_after = current.end_byte continue val = handler.read(current) val = updater.get(val, val) if val in self.typing_classes: if current.parent is not None and current.parent.type == "attribute": current = current.parent handler.add_replacement_from_node(current, f"{tag}.{val}") move_after = current.end_byte output = handler.generate() textio = f"{tag}.TextIO" textio_ph = "!#TEXTIO_PLACEHOLDER#!" # avoid replacing TextIO by strIO replacements = {textio: textio_ph, f"{tag}.Text": "str"} # to be decided: replace np.ndarray? # replacements.update({x: "NDArray" for x in ["np.ndarray", "ndarray", "np.ndarray"]}) # no line break, and use type, not string of type replacements.update({x: "" for x in ["\n", "\r", "'", '"']}) for sin, sout in replacements.items(): output = output.replace(sin, sout) output = output.replace(textio_ph, textio) # sanitize main containers list_like = ["Set", "List", "Iterator", "Iterable", "Sequence"] add_any = {f"{tag}.{x}": f"{tag}.Any" for x in list_like} add_any.update( { f"{tag}.Dict": f"str,{tag}.Any", f"{tag}.Mapping": f"str,{tag}.Any", f"{tag}.Callable": f"...,{tag}.Any", f"{tag}.Generator": f"{tag}.Any,None,None", f"{tag}.Tuple": f"{tag}.Any,...", } ) for cls, content in add_any.items(): # when there is no subtype, add the default one output = re.sub(cls + r"(?!\[)", f"{cls}[{content}]", output) output = self._reorder_union(output) output = output.replace(" ", "").replace(tag + ".", "") # remove tag return output def _reorder_union(self, string: str) -> str: """Uniformize all unions (Union and | syntax) by applying Union syntax and ordering the options """ union = f"{self._TAG}.Union" if not any(x in string for x in [union, "|"]): return string handler = CodeHandler(string) tree = self.processor.get_ast(handler.code) traversal = tsp.traverse_tree(tree) move_after = -1 for node in traversal: if node.start_byte < move_after: continue children = self._extract_union_children(node, string) # test if children: content = [handler.read(n).strip() for n in children] content = sorted(set(self._reorder_union(x) for x in content)) is_opt = "None" in content if is_opt: content = [c for c in content if c != "None"] replacement = f"{union}[{','.join(content)}]" if len(content) == 1: replacement = content[0] if is_opt: replacement = f"{self._TAG}.Optional[{replacement}]" handler.add_replacement_from_node(node, replacement) move_after = node.end_byte return handler.generate() def _extract_union_children(self, node: ts.Node, string: str) -> tp.List[ts.Node]: """Recursively extract all the types in the union, whatever the format (Union or |) """ children = [] union = f"{self._TAG}.Union" handler = CodeHandler(string) if len(node.children) == 1: child = node.children[0] if node.start_byte == child.start_byte: if node.end_byte == child.end_byte: return self._extract_union_children(child, string) if node.type == "binary_operator" and node.children[1].type == "|": children = node.children if ( node.type in ["expression_statement", "subscript"] and len(node.children) > 1 ): if handler.read(node.children[0]) == union: children = node.children[2:-1] children = [c for c in children if c.type not in "|,"] resplit = [self._extract_union_children(c, string) for c in children] out = list( itertools.chain.from_iterable( r if r else [c] for r, c in zip(resplit, children) ) ) return out _counter = itertools.count() def id_maker() -> str: """Safe id for replacement in the string""" num = _counter.__next__() return f"cg_{num}_" + uuid.uuid4().hex[:4] @dataclasses.dataclass class TypeHint: """Keep track of all information about a type hint including a uid to use as placeholder in the origin string """ name: str value: str kind: str default: tp.Optional[str] = None uid: str = dataclasses.field(default_factory=id_maker, init=False) def __post_init__(self) -> None: if self.kind not in ("return", "parameter", "variable"): raise ValueError(f"Unknown kind {self.kind}") if self.default is not None and self.kind != "parameter": raise ValueError("Default can only be specified for parameters") def with_value(self, value: str) -> "TypeHint": """Creates a new TypeHint with all field similar but the value""" out = dataclasses.replace(self, value=value) out.uid = self.uid return out def to_string(self) -> str: """Returns the code for replacing the placeholder in the code. This includes the : or -> operator when the type hint is specified. """ op = " -> " if self.kind == "return" else ": " return "" if not self.value else op + self.value
CodeGen-main
codegen_sources/preprocessing/lang_processors/python_tree_sitter_processor.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import random import re import subprocess import uuid from pathlib import Path import typing as tp import codegen_sources from codegen_sources.preprocessing.obfuscation import javalang_obfuscator from codegen_sources.preprocessing.obfuscation.utils_deobfuscation import dico_to_string # BEWARE: two differente new line tokens? from .tokenization_utils import ind_iter from .tree_sitter_processor import ( TreeSitterLangProcessor, TREE_SITTER_ROOT, NEWLINE_TOK, ) import tree_sitter as ts from ...code_runners.code_runner import RUN_ROOT_DIR from ...code_runners.utils import MAX_VIRTUAL_MEMORY, limit_virtual_memory import typing as tp GOOGLE_JAVA_FORMAT_PATH = ( Path(codegen_sources.__file__).parents[1] / "data" / "tools" / "google-java-format-1.15.0-all-deps.jar" ) JAVA_TOKEN2CHAR: tp.Dict[str, str] = { "STOKEN00": "//", "STOKEN01": "/*", "STOKEN02": "*/", "STOKEN03": "/**", "STOKEN04": "**/", "STOKEN05": '"""', "STOKEN06": "\\n", "STOKEN07": "\\r", "STOKEN08": ";", "STOKEN09": "{", "STOKEN10": "}", "STOKEN11": r"\'", "STOKEN12": r"\"", "STOKEN13": r"\\", } JAVA_CHAR2TOKEN: tp.Dict[str, str] = { value: " " + key + " " for key, value in JAVA_TOKEN2CHAR.items() } class JavaProcessor(TreeSitterLangProcessor): def __init__(self, root_folder: Path = TREE_SITTER_ROOT) -> None: super().__init__( ast_nodes_type_string=[ "comment", "block_comment", "line_comment", "string_literal", "character_literal", ], stokens_to_chars=JAVA_TOKEN2CHAR, chars_to_stokens=JAVA_CHAR2TOKEN, root_folder=root_folder, ) def obfuscate_code(self, code): res, dico = javalang_obfuscator.obfuscate(code) return res, dico_to_string(dico) def _get_functions_from_ast( self, code: str, node: ts.Node, class_funcs: tp.List[str], standalone_funcs: tp.List[str], _in_class: bool = False, # ignored ) -> None: if node.type == "method_declaration": function = code[node.start_byte : node.end_byte] # There can be some issues where "{" is not in the function string. # In that case, it is not a proper function if "{" in function: if "static" in function[0 : function.index("{")]: standalone_funcs.append(function) else: class_funcs.append(function) for child in node.children: self._get_functions_from_ast( code, child, class_funcs, standalone_funcs, ) @staticmethod def remove_annotation(function): return re.sub( r"^@ (Override|Deprecated|SuppressWarnings) (\( .*? \) )", "", function ) def get_function_name(self, function): return self.get_first_token_before_first_parenthesis(function) def extract_arguments(self, function): return self.extract_arguments_using_parentheses(function) @staticmethod def get_class_name(tokenized_java): if isinstance(tokenized_java, str): tokenized_java = tokenized_java.split() assert ( "class" in tokenized_java ), f"No class definition or bad tokenization for {tokenized_java}" return tokenized_java[tokenized_java.index("class") + 1] @staticmethod def format(code: str) -> str: output_dir = RUN_ROOT_DIR / "formatting" / "java_formatting" output_dir.mkdir(exist_ok=True, parents=True) filename = f"{uuid.uuid4()}.java" filepath = output_dir / filename try: with open(filepath, "w") as f: f.write(code) cmd = f"clang-format {filepath}" proc = subprocess.run( cmd, stderr=subprocess.PIPE, stdout=subprocess.PIPE, shell=True ) if proc.returncode != 0: raise ValueError( f"Failed to format code with error: {proc.stderr.decode()}\nThe code was:\n{code}\nFull command: {cmd}" ) except Exception: raise finally: filepath.unlink(missing_ok=True) return proc.stdout.decode() def get_java_compilation_errors(code, timeout=20): file = write_java_function(code) comp_cmd = ( f"{limit_virtual_memory(MAX_VIRTUAL_MEMORY)}; module load java; javac {file}" ) timed_out = False try: proc = subprocess.run( comp_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, executable="/bin/bash", timeout=timeout, ) except subprocess.TimeoutExpired: return "timeout" file.unlink() classfile = file.with_suffix(".class") assert ( timed_out or proc.returncode != 0 or classfile.is_file() ), "compilation succeeded but .class file does not exist" assert "tmp_folder" in str(file.parent), file.parent for compiled_f in file.parent.glob("*"): compiled_f.unlink() file.parent.rmdir() if timed_out: return "timeout" return "success" if proc.returncode == 0 else proc.stderr.decode() def write_java_function(f: str, out_path: Path = Path("/tmp/java_functions/")) -> Path: rand_folder = str(random.getrandbits(64)) classname = f"JAVA_FUNC" tmp_folder = out_path.joinpath(f"tmp_folder_{rand_folder}") out_file = tmp_folder.joinpath(classname + ".java") tmp_folder.mkdir(parents=True, exist_ok=True) java_processor = JavaProcessor() with open(out_file, "w") as writefile: writefile.write( """ import java.util.*; import java.util.stream.*; import java.lang.*; import javafx.util.Pair; """ ) writefile.write("public class " + classname + "{\n") code = f.replace("\r", "") writefile.write(java_processor.detokenize_code(code)) writefile.write("}\n") return out_file
CodeGen-main
codegen_sources/preprocessing/lang_processors/java_processor.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import typing as tp from codegen_sources.model.src.data.dictionary import ( OBF, OBFS, ) def obfuscation_tokens(raise_finished: bool = True) -> tp.Iterator[str]: """Iterates on all obfuscation tokens""" for name in ["VAR", "FUNC", "CLASS"]: for k in range(OBFS[name]): yield OBF[name] % k if raise_finished: raise RuntimeError("Running out of obfuscation tokens")
CodeGen-main
codegen_sources/preprocessing/lang_processors/utils.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from abc import ABC import typing as tp NEWLINE_TOK = "NEW_LINE" # different name to avoid confusions by the tokenizer class LangProcessor(ABC): processors: tp.Dict[str, tp.Type["LangProcessor"]] = {} @classmethod def _language(cls) -> str: # note: properties only work on instances, not on the class # (unless we reimplement the decorator), so it's simpler to have # a method on the class for when we need it, and the property on # the instance for a simpler API parts = cls.__name__.split("Processor") if len(parts) != 2 or parts[1]: raise RuntimeError( "language processors class name should be that format: " f"YourlanguageProcessor (got: {cls.__name__})" ) return parts[0].lower() @property def language(self) -> str: """Language of the processor""" return self._language() @classmethod def __init_subclass__(cls) -> None: super().__init_subclass__() cls.processors[cls._language()] = cls def tokenize_code( self, code: str, keep_comments: bool = False, process_strings: bool = True ) -> tp.List[str]: raise NotImplementedError def detokenize_code(self, code: tp.Union[tp.List[str], str]) -> str: raise NotImplementedError def obfuscate_code(self, code): raise NotImplementedError def obfuscate_types(self, code: str) -> tp.Tuple[str, str]: raise NotImplementedError def extract_functions( self, code: tp.Union[str, tp.List[str]], tokenized: bool = True, ) -> tp.Tuple[tp.List[str], tp.List[str]]: raise NotImplementedError def get_function_name(self, function: str) -> str: raise NotImplementedError def extract_arguments(self, function): raise NotImplementedError @staticmethod def format(code: str) -> str: raise NotImplementedError
CodeGen-main
codegen_sources/preprocessing/lang_processors/lang_processor.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import re from pathlib import Path from .java_processor import JAVA_CHAR2TOKEN, JAVA_TOKEN2CHAR from .tokenization_utils import ind_iter from .tree_sitter_processor import ( COMMENT_TYPES, NEWLINE_TOK, TreeSitterLangProcessor, TREE_SITTER_ROOT, ) import typing as tp GO_TOKEN2CHAR = JAVA_TOKEN2CHAR.copy() GO_CHAR2TOKEN = JAVA_CHAR2TOKEN.copy() class GoProcessor(TreeSitterLangProcessor): def __init__(self, root_folder: Path = TREE_SITTER_ROOT) -> None: super().__init__( ast_nodes_type_string=[ "comment", "line_comment", "block_comment", "string_literal", "raw_string_literal", "interpreted_string_literal", "char_literal", ], stokens_to_chars=GO_TOKEN2CHAR, chars_to_stokens=GO_CHAR2TOKEN, root_folder=root_folder, new_line_sensitive=True, ) def detokenize_code(self, code): assert isinstance(code, str) or isinstance(code, list) if isinstance(code, list): code = " ".join(code) code = re.sub(r"' (.) '", r"'\1'", code) return super().detokenize_code(code) def get_function_name(self, function): assert isinstance(function, str) or isinstance( function, list ), f"function is not the right type, should be str or list : {function}" if isinstance(function, str): function = function.split() assert ( "func" in function ), "function definition in go should contain token 'func'" index = function.index("func") + 1 if function[index].startswith("("): # e.g. 'func (l *List) First() *Node {' while not function[index].endswith(")"): index += 1 index += 1 return function[index] def extract_arguments(self, function): return self.extract_arguments_using_parentheses(function) def extract_functions( self, code: tp.Union[str, tp.List[str]], tokenized: bool = True ) -> tp.Tuple[tp.List[str], tp.List[str]]: """Extract functions from tokenized go code""" # TODO: make it use the AST to work on untokenized code if not tokenized: assert isinstance(code, str) code = " ".join(self.tokenize_code(code)) if isinstance(code, list): code_str = " ".join(code) else: code_str = code assert isinstance(code_str, str) try: code_str = ( code_str.replace("ENDCOM", "\n") .replace("▁", "SPACETOKEN") .replace(NEWLINE_TOK, "\n") ) tokens, token_types = self.get_tokens_and_types(code_str) tokens_types = list(zip(tokens, token_types)) except KeyboardInterrupt: raise except: return [], [] i = ind_iter(len(tokens_types)) functions_standalone = [] functions_class = [] in_class = False class_indentation = 0 try: token, token_type = tokens_types[i.i] except: return [], [] while True: try: # detect function if token == "func": # We are at the beginning of the function token, token_type = tokens_types[i.i] function = [token] token_types = [token_type] while token != "{": i.next() token, token_type = tokens_types[i.i] if token_type in COMMENT_TYPES: token = token.strip() token += " ENDCOM" function.append(token) token_types.append(token_type) if token == "{": number_indent = 1 while not (token == "}" and number_indent == 0): try: i.next() token, token_type = tokens_types[i.i] if token == "{": number_indent += 1 elif token == "}": number_indent -= 1 if token_type in COMMENT_TYPES: token = token.strip() token += " ENDCOM" function.append(token) except StopIteration: break function_str = " ".join(function) function_str = function_str.strip() function_str = function_str.replace("\n", NEWLINE_TOK).replace( "SPACETOKEN", "▁" ) if in_class: functions_class.append(function_str) else: functions_standalone.append(function_str) i.next() token = tokens_types[i.i][0] except KeyboardInterrupt: raise except: break return functions_standalone, functions_class
CodeGen-main
codegen_sources/preprocessing/lang_processors/go_processor.py
CodeGen-main
codegen_sources/test_generation/__init__.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Translate sentences from the input stream. # The model will be faster is sentences are sorted by length. # Input sentences must have the same tokenization and BPE codes than the ones # used in the model. import argparse import typing as tp from concurrent.futures import ThreadPoolExecutor from hashlib import sha256 from itertools import repeat from pathlib import Path import numpy as np import submitit from tqdm import tqdm from codegen_sources.preprocessing.lang_processors.java_processor import ( get_java_compilation_errors, ) from codegen_sources.preprocessing.lang_processors import JavaProcessor from codegen_sources.preprocessing.utils import bool_flag from codegen_sources.test_generation.utils import chunks CHUNKSIZE = 2500 primitive_types = {"short", "int", "long", "float", "double", "boolean", "char"} java_standard_types = { "Double", "Float", "String", "Integer", "Boolean", "Long", "Short", } java_simple_types = primitive_types | java_standard_types java_supported_types = ( java_simple_types | {f"{t}[]" for t in java_simple_types} | {f"ArrayList<{t}>" for t in java_simple_types} ) def uses_ios(codestring): return ( "java.io.File(" in codestring.replace(" ", "") or "io.FileWriter" in codestring.replace(" ", "") or "zip.ZipFile" in codestring.replace(" ", "") or "IOException" in codestring ) def extract_return_type_java(f): return f.split("(", 1)[0].split()[-2] def is_simple_standalone_func(func): global java_processor try: args = java_processor.extract_arguments(func) return_type = extract_return_type_java(func) if all( [ arg.replace("final ", "").replace(" ", "") in java_supported_types | {"None"} for arg in args[0] ] ) and return_type in java_supported_types | {"void"}: if ( return_type == "void" and not any( [ "[]" in arg.replace(" ", "") or "List" in arg or "Array" in arg for arg in args[0] ] ) or java_processor.get_function_name(func).strip() == "main" ): return False if ( get_java_compilation_errors( java_processor.detokenize_code(func), timeout=120 ) == "success" ): return True return False except ValueError: return False except IndexError: return False def select_functions(funcpath): executor = ThreadPoolExecutor() global java_processor java_processor = JavaProcessor() jobs = [] with open(funcpath, "r") as f: functions = list(set([line.split(" | ", 1)[1] for line in f.readlines()])) for func in functions: jobs.append(executor.submit(is_simple_standalone_func, func)) mask = [j.result() for j in jobs] return np.array(functions)[mask] def select_functions_for_file(f_path, output_path): selected_functions = select_functions(f_path) out_filepath = output_path.joinpath(f_path.name) with open(out_filepath, "w") as out_f: print(f"Writing {len(selected_functions)} lines to {out_filepath}") out_f.writelines(selected_functions) if __name__ == "__main__": print("#" * 10, "Selecting input functions", "#" * 10) parser = argparse.ArgumentParser(description="") parser.add_argument( "--input_path", help="path to the input files", ) parser.add_argument( "--output_path", type=str, help="where the files should be outputed", ) parser.add_argument( "--local", type=bool_flag, default=True, help="True if you want to run the processing pipeline locally, false if want to use submitit.", ) parser.add_argument( "--rerun", type=bool_flag, default=False, help="True if you want to run the processing pipeline locally, false if want to use submitit.", ) args = parser.parse_args() input_path = Path(args.input_path) assert input_path.is_dir() output_path = Path(args.output_path) output_path.mkdir(parents=True, exist_ok=True) cluster: tp.Optional[submitit.AutoExecutor] = None if args.local is False: cluster = submitit.AutoExecutor(output_path / "log") cluster.update_parameters(cpus_per_task=80, mem_gb=300) cluster.update_parameters(timeout_min=40) tok_files_names = "java.[0-9]*.sa.tok" tok_files = sorted(list(input_path.glob(tok_files_names))) if not args.rerun: tok_files = [ f_path for f_path in tok_files if not (output_path.joinpath(f_path.name).is_file()) ] if cluster is None: for f in tqdm(tok_files): select_functions_for_file(f, output_path) else: jobs = cluster.map_array( select_functions_for_file, tok_files, repeat(output_path) ) for j in tqdm(jobs): j.result() selected_files = sorted(list(output_path.glob(tok_files_names))) all_funcs = [] for f_path in selected_files: with open(f_path) as f: all_funcs.extend(f.readlines()) deduped_funcs = list(set(all_funcs)) deduped_funcs = [f for f in deduped_funcs if not uses_ios(f)] deduped_funcs = [ f'{sha256(f.encode("utf8")).hexdigest()} | {f}' for f in deduped_funcs ] deduped_funcs_chunks = list(chunks(deduped_funcs, CHUNKSIZE)) deduped_output_path = output_path.joinpath("deduped") deduped_output_path.mkdir(exist_ok=True) for i, chunk in enumerate(deduped_funcs_chunks): out_file = deduped_output_path.joinpath(f"java.{i:012}.sa.tok") with open(out_file, "w", encoding="utf-8", errors="ignore") as out: for line in chunk: out.write(line.strip()) out.write("\n") print("\n")
CodeGen-main
codegen_sources/test_generation/select_java_inputs.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Translate sentences from the input stream. # The model will be faster is sentences are sorted by length. # Input sentences must have the same tokenization and BPE codes than the ones used in the model. # import sys from pathlib import Path ROOT_PATH = Path(__file__).absolute().parents[2] def chunks_df(df, n): """Yield successive n-sized chunks from df""" for i in range(0, len(df), n): yield df.iloc[i : i + n] def chunks(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i : i + n] def compute_results_one_test(test, translations, test_runner, truncate_errors=150): # executor = ThreadPoolExecutor(max_workers=5) # return list(executor.map(test_runner.get_tests_results, translations, repeat(test))) return [ test_runner.get_tests_results(code, test=test, truncate_errors=truncate_errors) for code in translations ] def get_beam_size(input_df, results_columns="translated_python_functions_beam_"): beam_size = 0 while f"{results_columns}{beam_size}" in input_df: beam_size += 1 return beam_size def add_root_to_path(): print(f"adding {ROOT_PATH} to path") sys.path.append(str(ROOT_PATH))
CodeGen-main
codegen_sources/test_generation/utils.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import sys import argparse import pickle from concurrent.futures.process import ProcessPoolExecutor from itertools import repeat from pathlib import Path import numpy as np import pandas as pd from submitit import AutoExecutor from tqdm import tqdm root_path = Path(__file__).absolute().parents[2] print(f"adding {root_path} to path") sys.path.append(str(root_path)) from codegen_sources.model.src.logger import create_logger from codegen_sources.preprocessing.utils import bool_flag from codegen_sources.test_generation.evosuite_tests_translators.evosuite_to_cpp import ( EvosuiteToCpp, ) from codegen_sources.test_generation.evosuite_tests_translators.evosuite_to_python import ( EvosuiteToPython, ) from codegen_sources.code_runners import test_runners from codegen_sources.test_generation.utils import ( chunks, compute_results_one_test, get_beam_size, ) logger = create_logger(None, 0) CHUNKSIZE_TEST_RESULTS = 2000 def get_joined_func_tests_df(csv_path, functions_path): assert Path(csv_path).is_file(), csv_path tests_dataframe = pd.read_csv(csv_path) java_functions_path = Path(functions_path) # reading functions to DF java_functions = [ func for f in java_functions_path.glob("java.0000*.sa.tok") for func in open(f).readlines() ] java_functions = pd.DataFrame( { "func_ids": [f.split(" | ")[0] for f in java_functions], "java_function": [f.split(" | ")[1] for f in java_functions], } ) # getting the IDs of the functions. The class name is created from it tests_dataframe["func_ids"] = tests_dataframe.TARGET_CLASS.apply( lambda x: x.replace("CLASS_", "", 1) ) merged = tests_dataframe.merge(java_functions, how="inner", on="func_ids") return merged def compute_all_tests_results(tests, functions, test_runner, output_path=None): executor = ProcessPoolExecutor() assert len(tests) == len( functions ), f"tests of length {len(tests)} while functions are of length {len(functions)}" jobs = [ executor.submit(compute_results_one_test, t, fs, test_runner, 150) for t, fs in zip(tests, functions) ] res = [] for i, job in enumerate(jobs): res.append(job.result()) if i % 100 == 0: logger.info(f"computed results for {i} tests over {len(tests)}") logger.info(f"Successes: {sum([r[0][0] == 'success' for r in res])}") logger.info(f"timeouts: {sum([r[0][0] == 'timeout' for r in res])}") # print(res[-1]) if output_path is not None: with open(output_path, "wb") as f: pickle.dump(res, f) return res def translate_tests(java_tests, translator): executor = ProcessPoolExecutor() return list(executor.map(safe_translate_test, repeat(translator), java_tests)) def safe_translate_test(test_translator, code): try: return test_translator.translate(code) except AssertionError as e: return f"AssertionError : {e}" except TypeError as e: return f"TypeError : {e}" def compute_test_results( translations_csv_path, target_language, output_folder, local, rerun=False ): logger.info("#" * 10 + "Computing Test Results" + "#" * 10) output_folder.mkdir(exist_ok=True, parents=True) logger.info( f"Computing test results for language {target_language} in {translations_csv_path}\n Results will be outputed in {output_folder}" ) input_df = pd.read_csv(translations_csv_path) if target_language == "python": test_runner = test_runners.PythonEvosuiteTestRunner() test_translator = EvosuiteToPython() else: assert target_language == "cpp" test_runner = test_runners.CppEvosuiteTestRunner(compilation_timeout=30) test_translator = EvosuiteToCpp() translated_func_col = f"translated_{target_language}_functions_beam_" beam_size = get_beam_size(input_df, translated_func_col) translated_functions = np.array( [input_df[f"{translated_func_col}{i}"].values for i in range(beam_size)] ).transpose() assert len(translated_functions) == len( input_df ), f"{translated_functions.shape} / {len(input_df)}" assert translated_functions.shape[1] == beam_size logger.info( f"computing output for {len(translated_functions)} tests and {beam_size} functions per test" ) logger.info(f"Translating Tests") translated_tests = translate_tests(input_df.tests_strings.values, test_translator) assert len(translated_tests) == len(input_df) input_df[f"{target_language}_translated_tests"] = translated_tests logger.info( f"Finished translating {len(translated_tests)} tests to {target_language}" ) if local is False: cluster = AutoExecutor(output_folder.joinpath("log")) cluster.update_parameters( cpus_per_task=40, mem_gb=300, partition="learnlab", ) cluster.update_parameters(timeout_min=500) else: cluster = None tests_chunks = list(chunks(translated_tests, CHUNKSIZE_TEST_RESULTS)) func_chuncs = list(chunks(translated_functions, CHUNKSIZE_TEST_RESULTS)) logger.info(f"{len(tests_chunks)} chunks of size {len(tests_chunks[0])}") assert len(tests_chunks) == len(func_chuncs) chunk_output_paths = [ output_folder.joinpath(f"{target_language}_chunk_{i}.pkl") for i in range(len(tests_chunks)) ] missing_output_files = chunk_output_paths if not rerun: indices_to_run = [ i for i, p in enumerate(chunk_output_paths) if not (p.is_file()) ] logger.info( f"Running on the remaining {len(indices_to_run)} among {len(chunk_output_paths)} files" ) tests_chunks = [tests_chunks[i] for i in indices_to_run] func_chuncs = [func_chuncs[i] for i in indices_to_run] missing_output_files = [chunk_output_paths[i] for i in indices_to_run] if cluster is None: for tc, fc, output in zip(tests_chunks, func_chuncs, missing_output_files): compute_all_tests_results(tc, fc, test_runner, output) else: jobs = cluster.map_array( compute_all_tests_results, tests_chunks, func_chuncs, repeat(test_runner), missing_output_files, ) for j in tqdm(jobs): _ = j.result() results = [] for p in chunk_output_paths: with open(p, "rb") as pickle_file: results.append(pickle.load(pickle_file)) results = [code for r in results for code in r] for i in range(beam_size): input_df[f"test_results_{target_language}_{i}"] = [res[i] for res in results] outpath = output_folder.joinpath(f"test_results_{target_language}_df.csv") logger.info(f"Writing results in {outpath}") input_df.to_csv(outpath, index=False) logger.info("\n" * 2) def parse_arguments(): parser = argparse.ArgumentParser(description="") parser.add_argument( "--translations_csv_path", help="path to the input files", ) parser.add_argument( "--output_path", type=str, help="where the files should be outputed", ) parser.add_argument( "--local", type=bool_flag, default=True, help="True if you want to run the processing pipeline locally, false if want to use submitit.", ) parser.add_argument( "--target_language", help="target language. python or cpp", default="python", ) args = parser.parse_args() return args if __name__ == "__main__": args = parse_arguments() compute_test_results( args.translations_csv_path, args.target_language, Path(args.output_path), args.local, )
CodeGen-main
codegen_sources/test_generation/compute_test_results.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import math import os import sys import subprocess import typing as tp from concurrent.futures.thread import ThreadPoolExecutor from pathlib import Path import argparse import submitit from tqdm import tqdm import pandas as pd root_path = Path(__file__).absolute().parents[2] print(f"adding {root_path} to path") sys.path.append(str(root_path)) from codegen_sources.model.src.utils import get_java_bin_path from codegen_sources.preprocessing.lang_processors import ( LangProcessor, JavaProcessor, TREE_SITTER_ROOT, ) from codegen_sources.preprocessing.utils import bool_flag import numpy as np EVOSUITE_JAR_PATH = Path( Path(__file__).absolute().parent.joinpath("evosuite-1.1.0.jar") ) assert ( EVOSUITE_JAR_PATH.is_file() ), "EvoSuite Jar is missing, run wget https://github.com/EvoSuite/evosuite/releases/download/v1.1.0/evosuite-1.1.0.jar" MUTATION_SCORE_CUTOFF = 0.9 MAX_JAVA_MEM = 4096 REPORT_FILE = "statistics.csv" def write_javacode_onefunctionperfile( codestring: str, line_number: int, folder: Path, with_id: bool = False ): if "java.io.File(" in codestring.replace( " ", "" ) or "io.FileWriter" in codestring.replace(" ", ""): return functionname = codestring.split("(")[0].strip().split(" ")[-1] if with_id: assert " | " in codestring, f'missing " | " in input: {codestring}' id_string, codestring = codestring.split(" | ", 1) classname = f"CLASS_{id_string}" else: classname = "CLASS_" + functionname.upper() + f"_{line_number}" print(classname) filepath = folder.joinpath(classname + ".java") writefile = open(filepath, "w") writefile.write( """ import java.util.*; import java.util.stream.*; import java.lang.*; import javafx.util.Pair;\n """ ) lang_processor = JavaProcessor(root_folder=TREE_SITTER_ROOT) writefile.write("public class " + classname + "{\n") code = codestring.replace("\r", "") writefile.write(lang_processor.detokenize_code(code)) writefile.write("}\n") writefile.close() def run_command_compile_java_file(folderpath): print(f"compiling files in {folderpath}") files = os.listdir(folderpath) executor = ThreadPoolExecutor() jobs = [] for file in files: jobs.append(executor.submit(compile_file, file, folderpath)) [j.result() for j in jobs] def compile_file(file, folderpath): try: proc = subprocess.Popen( f"ulimit -S -v {2 * 1024 * 1024 * 1024}; cd {folderpath} && {os.path.join(get_java_bin_path(), 'javac')} " + file, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, executable="/bin/bash", ) out, err = proc.communicate(timeout=180) except subprocess.TimeoutExpired: return err = err.decode("utf-8").strip() if len(err) > 0: print(err) def run_command_test_generation(folderpath): print(f"Generating tests in {folderpath}") executor = ThreadPoolExecutor() files = os.listdir(folderpath) jobs = [] report_dirs = [] for file in [f for f in files if f.endswith(".class")]: report_name = "es_report_" + file.replace(".class", "") report_dirs.append(report_name) jobs.append(executor.submit(create_tests, file, folderpath, report_name)) job_res = [j.result() for j in jobs] print( f"Percentage of timeouts: {len([j for j in job_res if j == 'timeout'])/len(job_res):.2%}" ) consolidated_report_path = get_consolidated_report_path(folderpath) consolidated_report_path.mkdir(exist_ok=True) consolidated_report_path = consolidated_report_path.joinpath(REPORT_FILE) consolidate_reports(consolidated_report_path, report_dirs, folderpath) def get_consolidated_report_path(folderpath): return Path(folderpath).joinpath("es-consolidated-report") def create_tests(file, folderpath, report_name): print(file) cmd = ( f"{os.path.join(get_java_bin_path(), 'java')} -jar {EVOSUITE_JAR_PATH} -class " + file.replace(".class", "") + f" -projectCP . " f'-criterion "LINE:BRANCH:WEAKMUTATION:OUTPUT:METHOD:CBRANCH:STRONGMUTATION" ' f" -Dshow_progress=false " f"-Dassertion_strategy=MUTATION " f"-Dminimize=true " f"-Dsearch_budget=20 " f"-Ddouble_precision=0.0001 " f"-Dmax_mutants_per_test 200 " f'-Danalysis_criteria="LINE,BRANCH,EXCEPTION,WEAKMUTATION,OUTPUT,METHOD,METHODNOEXCEPTION,CBRANCH,STRONGMUTATION" ' f"-Doutput_variables=TARGET_CLASS,Random_Seed,criterion,Size,Length,BranchCoverage,Lines,Coverage,Covered_Lines,LineCoverage,MethodCoverage,Size,Length,Total_Goals,Covered_Goals,MutationScore,OutputCoverage " f"-Dmax_int {int(math.sqrt(2 ** 31 - 1))} " f"-mem={MAX_JAVA_MEM} " f"-Dextra_timeout=180 " f"-Dreport_dir={report_name}" ) print(cmd) try: return subprocess.call( cmd, shell=True, timeout=1500, cwd=folderpath, executable="/bin/bash" ) except subprocess.TimeoutExpired: return "timeout" def consolidate_reports(consolidated_report_path, report_dirs, folderpath): with open(consolidated_report_path, "w") as output_report: header_printed = False for report_dir in report_dirs: report_path = Path(folderpath).joinpath(report_dir).joinpath(REPORT_FILE) if report_path.is_file(): with open(report_path, "r") as f: report_lines = f.readlines() output_report.writelines( report_lines if not header_printed else report_lines[1:] ) header_printed = True report_path.unlink() report_path.parent.rmdir() def generate_javafiles_withclass(filepath: Path, output_folder: Path): print(f"creating files from {filepath} in {output_folder}") lines = open(filepath).readlines() for i, line in enumerate(lines): write_javacode_onefunctionperfile(line, i, output_folder, with_id=True) def generate_tests_pipeline(in_file: Path, out_path: Path): print(f"Creating tests for {in_file}, outputting them in {out_path}") out_path.mkdir(exist_ok=True) generate_javafiles_withclass(in_file, out_path) run_command_compile_java_file(out_path) run_command_test_generation(out_path) def output_selected_tests_summary(tests_path): subfolders = [p for p in list(tests_path.glob("*")) if not str(p).endswith("/log")] csv_dfs = [] for folder in subfolders: csv_file = get_consolidated_report_path(folder).joinpath("statistics.csv") if csv_file.is_file(): csv = pd.read_csv(csv_file) csv["folder"] = folder csv_dfs.append(csv) concat_df = pd.concat(csv_dfs).reset_index(drop=True) concat_df = concat_df[concat_df["TARGET_CLASS"].apply(lambda x: not pd.isna(x))] concat_df["path_to_test"] = concat_df.apply( lambda row: row["folder"] .joinpath("evosuite-tests") .joinpath(row["TARGET_CLASS"] + "_ESTest.java"), axis="columns", ) test_exists = concat_df["path_to_test"].apply(lambda x: x.is_file()) print( f"{(~test_exists).sum() / len(test_exists):.2%} of the tests in the summary could not be found" ) concat_df = concat_df[test_exists] concat_df.to_csv(tests_path.joinpath("tests_summary.csv"), index=False) test_string = [] for p in concat_df.path_to_test: assert p.is_file(), f"test {p} does not exist" with open(p, "r", encoding="utf8") as input_file: test_string.append(input_file.read()) concat_df["tests_strings"] = test_string selected_df = concat_df[(concat_df.MutationScore > MUTATION_SCORE_CUTOFF)] selected_df = selected_df[selected_df.path_to_test.apply(lambda x: x.is_file())] selected_df.to_csv(tests_path.joinpath("selected_tests_summary.csv"), index=False) selected_df.to_csv(tests_path.joinpath("selected_tests.csv"), index=False) if __name__ == "__main__": print("#" * 10, "Creating Tests", "#" * 10) parser = argparse.ArgumentParser(description="") parser.add_argument( "--input_path", help="path to the input files", ) parser.add_argument( "--output_path", type=str, help="where the files should be outputed", ) parser.add_argument( "--local", type=bool_flag, default=True, help="True if you want to run the processing pipeline locally, false if want to use submitit.", ) parser.add_argument( "--rerun", type=bool_flag, default=False, help="True if you want to run the processing pipeline locally, false if want to use submitit.", ) args = parser.parse_args() input_path = Path(args.input_path) assert input_path.exists(), f"{input_path} does not exist" output_path = Path(args.output_path) output_path.mkdir(exist_ok=True) cluster: tp.Optional[submitit.AutoExecutor] = None if args.local is False: cluster = submitit.AutoExecutor(output_path / "log") cluster.update_parameters(cpus_per_task=80, mem_gb=300, partition="learnlab") input_path = Path(args.input_path) if input_path.is_file(): infiles = [input_path] else: infiles = sorted(list(input_path.glob("java.000*.sa.tok"))) out_folder = Path(args.output_path) sub_out_folders = [ out_folder.joinpath(func_file.name.replace(".", "_")) for func_file in infiles ] if not args.rerun: indices_to_run = [ i for i, p in enumerate(sub_out_folders) if not ( get_consolidated_report_path(p).is_dir() and get_consolidated_report_path(p).joinpath(REPORT_FILE).is_file() ) ] print( f"Running on the remaining {len(indices_to_run)} among {len(sub_out_folders)} files" ) infiles = np.array(infiles)[indices_to_run] # type: ignore sub_out_folders = np.array(sub_out_folders)[ # type: ignore indices_to_run ] if cluster is None: # Running everything locally in parallel can use too much memory for file, out_path in tqdm(list(zip(infiles, sub_out_folders))): generate_tests_pipeline(file, out_path) else: jobs = cluster.map_array(generate_tests_pipeline, infiles, sub_out_folders) for j in tqdm(jobs): j.result() output_selected_tests_summary(out_folder) print("\n" * 2)
CodeGen-main
codegen_sources/test_generation/create_tests.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import argparse import fastBPE import torch from pathlib import Path import pandas as pd INITIAL_CACHE_FOLDER = "initial_cache" LANGUAGES = ["cpp", "java", "python"] from logging import getLogger import numpy as np from utils import ROOT_PATH, add_root_to_path # type: ignore add_root_to_path() from codegen_sources.model.src.cache import ListCache from codegen_sources.model.preprocess import XLM_preprocess from codegen_sources.model.src.data.dataset import MUTATION_SCORE, ASSERTS_COUNT logger = getLogger() class Params: def __init__(self, pad_index=0, eos_index=1) -> None: self.pad_index = pad_index self.eos_index = eos_index self.tokens_per_batch = 1000 self.st_remove_proba = 0.3 def get_tensors(reloaded_data): pos = reloaded_data["positions"] sent = reloaded_data["sentences"] sentences = [sent[p[0] : p[1]] for p in pos] lengths = [torch.tensor(len(s) + 2) for s in sentences] out_sentences = [] for s in sentences: l = len(s) + 2 out_s = torch.LongTensor(l).fill_(1) out_s[1 : l - 1].copy_(torch.from_numpy(s.astype(np.int64))) out_sentences.append(out_s) return out_sentences, lengths def initialize_cache(dataset_path, output_path: Path): languages = [l + "_sa" for l in LANGUAGES] for l1 in languages: for l2 in [l for l in languages if l > l1]: print(f"computing initial cache for {l1}-{l2}") reloaded_data = torch.load( dataset_path.joinpath(f"train.{l1}-{l2}.{l1}.pth") ) sents1, len1 = get_tensors(reloaded_data) sents2, len2 = get_tensors( torch.load(dataset_path.joinpath(f"train.{l1}-{l2}.{l2}.pth")) ) assert len(sents1) == len(sents2) == len(len1) == len(len2) elements = list(zip(sents1, len1, sents2, len2)) ListCache(elements, Params()).save( output_path.joinpath(f"cache_{l1}-{l2}.pkl") ) def add_self_trained_dataset(data_df, dataset_path, vocab_path): logger.info(f"Self labelled dataset to {dataset_path}") bpe_model = fastBPE.fastBPE( str(ROOT_PATH.joinpath("data/bpe/cpp-java-python/codes")) ) print("unfiltered df:", len(data_df)) data_df = data_df[ data_df.python_translated_tests.apply(lambda x: x.count("assert")) > 1 ] print("filtered df:", len(data_df)) java_functions_with_indices = bpe_model.apply( pd.Series(data_df["TARGET_CLASS"] + " | " + data_df["java_function"]) ) output_folder = dataset_path output_files = [ open( output_folder.joinpath(f"self_training.java_sa.{i}.bpe"), "w", encoding="utf-8", errors="ignore", ) for i in range(args.n_gpus) ] output_files_all = open( output_folder.joinpath(f"self_training.java_sa.bpe"), "w", encoding="utf-8", errors="ignore", ) for i, l in enumerate(sorted(java_functions_with_indices)): output_files_all.write(l.strip()) output_files_all.write("\n") output_files[i % 8].write(l.strip()) output_files[i % 8].write("\n") for f in output_files: f.close() output_files_all.close() for file_path in Path(output_folder).glob("*.bpe"): print(f"Processing {file_path} with vocab {Path(vocab_path).absolute()}") XLM_preprocess( str(Path(vocab_path).absolute()), str(file_path), str(file_path).replace(".bpe", ".pth"), ) def output_multilingual_tests_dataset(df_python, df_cpp, output_path): data_df = df_python[ ["TARGET_CLASS", "java_function", "path_to_test", "python_translated_tests"] ] data_df["cpp_translated_tests"] = df_cpp["cpp_translated_tests"] data_df[MUTATION_SCORE] = df_python["MutationScore"] data_df[ASSERTS_COUNT] = data_df.python_translated_tests.apply( lambda x: x.count("assert") ) data_df[ [ "TARGET_CLASS", "path_to_test", "python_translated_tests", "cpp_translated_tests", MUTATION_SCORE, ASSERTS_COUNT, ] ].to_json( output_path.joinpath("translated_tests.json"), orient="records", lines=True ) return data_df if __name__ == "__main__": logger.info("#" * 10 + "Creating data for Online Self-Training" + "#" * 10) parser = argparse.ArgumentParser(description="") parser.add_argument( "--dataset_path", help="path to the offline dataset", ) parser.add_argument( "--input_dfs_path", help="Path to input dataframes", ) parser.add_argument( "--output_path", type=str, help="where the files should be outputed", default=Path(ROOT_PATH).joinpath("data"), ) parser.add_argument( "--n_gpus", type=int, help="number of train set splits", default=8 ) parser.add_argument( "--vocab_path", type=str, help="Path to vocab", default=Path(ROOT_PATH).joinpath("data", "bpe", "cpp-java-python", "vocab"), ) args = parser.parse_args() output_path = Path(args.output_path) dataset_path = Path(args.dataset_path) initialize_cache(dataset_path, output_path.joinpath(INITIAL_CACHE_FOLDER)) input_dfs_path = Path(args.input_dfs_path) assert input_dfs_path.is_dir() input_dfs_paths = { lang: input_dfs_path.joinpath(f"test_results_{lang}_df.csv") for lang in ["python", "cpp"] } test_results_dfs = { lang: pd.read_csv(path) for lang, path in input_dfs_paths.items() } data_df = output_multilingual_tests_dataset( test_results_dfs["python"], test_results_dfs["cpp"], output_path ) add_self_trained_dataset(data_df, output_path, args.vocab_path) logger.info("\n" * 2)
CodeGen-main
codegen_sources/test_generation/create_data_for_online_st.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import sys import argparse from itertools import repeat from logging import getLogger from pathlib import Path import pandas as pd import submitit from tqdm import tqdm root_path = Path(__file__).absolute().parents[2] print(f"adding {root_path} to path") sys.path.append(str(root_path)) from codegen_sources.test_generation.utils import chunks_df, add_root_to_path from codegen_sources.model.src.utils import set_MKL_env_vars from codegen_sources.model.translate import Translator from codegen_sources.preprocessing.utils import bool_flag from codegen_sources.test_generation.compute_test_results import compute_test_results CHUNKSIZE = 2500 SUPPORTED_LANGUAGES = ["python", "cpp"] primitive_types = {"short", "int", "long", "float", "double", "boolean", "char"} logger = getLogger() java_standard_types = { "Double", "Float", "String", "Integer", "Boolean", "Long", "Short", } java_simple_types = primitive_types | java_standard_types java_supported_types = ( java_simple_types | {f"{t}[]" for t in java_simple_types} | {f"ArrayList<{t}>" for t in java_simple_types} ) def get_joined_func_tests_df(csv_path, functions_path): assert Path(csv_path).is_file(), csv_path tests_dataframe = pd.read_csv(csv_path) java_functions_path = Path(functions_path) # reading functions to DF java_functions = [ func for f in java_functions_path.glob("java.0000*.sa.tok") for func in open(f).readlines() ] java_functions = pd.DataFrame( { "func_ids": [f.split(" | ")[0] for f in java_functions], "java_function": [f.split(" | ")[1] for f in java_functions], } ) # getting the IDs of the functions. The class name is created from it tests_dataframe["func_ids"] = tests_dataframe.TARGET_CLASS.apply( lambda x: x.replace("CLASS_", "", 1) ) merged = tests_dataframe.merge(java_functions, how="inner", on="func_ids") return merged def compute_transcoder_translation( df, output_file, model_path, bpe_path, target_language, len_penalty=1.0, beam_size=20, ): transcoder = Translator(model_path, bpe_path) res = [[] for _ in range(beam_size)] for i, func in enumerate(df["java_function"]): if i % 100 == 0: logger.info(f"computed {i} translations / {len(df)}") translations = transcoder.translate( func, "java", target_language, beam_size=beam_size, tokenized=True, detokenize=False, max_tokens=1024, length_penalty=len_penalty, ) for i, res_i in enumerate(translations): res[i].append(res_i) for i, res_i in enumerate(res): df[f"translated_{target_language}_functions_beam_{i}"] = res_i df.to_csv(output_file, index=False) def main(args): output_folder = Path(args.output_folder) output_folder.mkdir(exist_ok=True, parents=True) transcoder_output_folder = "transcoder_outputs" output_folder_translations = output_folder.joinpath(transcoder_output_folder) if args.local is False: logger.info("Executing on cluster") cluster = submitit.AutoExecutor(output_folder_translations.joinpath("log")) cluster.update_parameters( cpus_per_task=10, gpus_per_node=1, mem_gb=300, timeout_min=4319, constraint="volta32gb", partition="learnlab", ) else: logger.info("Executing locally") cluster = None merged_df = get_joined_func_tests_df(args.csv_path, args.functions_path) chunks = list(chunks_df(merged_df, CHUNKSIZE)) output_files = [ output_folder_translations.joinpath(f"{args.target_language}_chunk_{i}.csv") for i in range(len(chunks)) ] assert ( len(chunks) > 0 ), f"No chunks created from {args.csv_path } and {args.functions_path}" logger.info(f"{len(chunks)} chunks of size {CHUNKSIZE}") missing_output_files = output_files if not args.rerun: indices_to_run = [i for i, p in enumerate(output_files) if not (p.is_file())] # indices_to_run = [8] logger.info( f"Running on the remaining {len(indices_to_run)} among {len(output_files)} files" ) chunks = [chunks[i] for i in indices_to_run] missing_output_files = [output_files[i] for i in indices_to_run] assert len(chunks) == len(missing_output_files) if len(chunks) > 0: if cluster is None: for c, output_f in zip(chunks, missing_output_files): compute_transcoder_translation( c, output_f, args.model_path, args.bpe_path, args.target_language, args.len_penalty, ) else: jobs = cluster.map_array( compute_transcoder_translation, chunks, missing_output_files, repeat(args.model_path), repeat(args.bpe_path), repeat(args.target_language), repeat(args.len_penalty), ) for j in tqdm(jobs): j.result() chunks_files = [ output_folder_translations.joinpath(f"{args.target_language}_chunk_{i}.csv") for i in range(len(output_files)) ] output_csv_path = output_folder_translations.joinpath( f"{args.target_language}_transcoder_translation.csv" ) pd.concat([pd.read_csv(chunk) for chunk in chunks_files], axis=0).to_csv( output_csv_path, index=False ) compute_test_results( output_csv_path, args.target_language, output_folder.joinpath("test_results"), local=args.local, ) def parse_arguments(): parser = argparse.ArgumentParser(description="") parser.add_argument( "--functions_path", help="path to the input files", ) parser.add_argument( "--csv_path", help="path to the input test csv", ) parser.add_argument( "--output_folder", help="output path", ) parser.add_argument( "--target_language", help="target language. python or cpp", default="python", ) parser.add_argument( "--model_path", type=str, help="where the files should be outputed", ) parser.add_argument( "--bpe_path", type=str, help="where the files should be outputted", ) parser.add_argument( "--len_penalty", type=float, help="Length penalty for generations", default=0.5, ) parser.add_argument( "--local", type=bool_flag, default=True, help="True if you want to run the processing pipeline locally, false if want to use submitit.", ) parser.add_argument( "--rerun", type=bool_flag, default=False, help="True if you want to run the processing pipeline locally, false if want to use submitit.", ) # parser.add_argument('--filter_several_tests', type=bool_flag, default=True, help='Filter to keep only the examples with at least 2 tests') args = parser.parse_args() assert Path(args.bpe_path).is_file(), args.bpe_path assert Path(args.model_path).is_file() assert args.target_language in SUPPORTED_LANGUAGES return args if __name__ == "__main__": logger.info("#" * 10 + "Computing Translations" + "#" * 10) set_MKL_env_vars() args = parse_arguments() main(args) logger.info("\n" * 2)
CodeGen-main
codegen_sources/test_generation/compute_transcoder_translations.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Translate sentences from the input stream. # The model will be faster is sentences are sorted by length. # Input sentences must have the same tokenization and BPE codes than the ones used in the model. # import sys import argparse from logging import getLogger from pathlib import Path import fastBPE import numpy as np import pandas as pd root_path = Path(__file__).absolute().parents[2] print(f"adding {root_path} to path") sys.path.append(str(root_path)) from codegen_sources.test_generation.utils import get_beam_size from codegen_sources.model.preprocess import XLM_preprocess SOURCE_LANG = "java" FAILURE = "failure" logger = getLogger() def get_arguments(): parser = argparse.ArgumentParser(description="") parser.add_argument( "--input_df", help="path to the input files", ) parser.add_argument( "--output_folder", type=str, help="where the files should be outputed", ) parser.add_argument( "--langs", type=list, nargs="+", help="List of target langs", default=["python", "cpp"], ) parser.add_argument( "--bpe_path", type=str, help="where the files should be outputed", ) parser.add_argument( "--bpe_vocab", type=str, help="where the files should be outputed", ) args = parser.parse_args() return args def main(input_path, output_folder, langs, bpe_model, bpe_vocab): input_path = Path(input_path) input_dfs_paths = { lang: input_path.joinpath(f"test_results_{lang}_df.csv") for lang in langs } test_results_dfs = { lang: pd.read_csv(path) for lang, path in input_dfs_paths.items() } test_results_dfs = select_tests_several_asserts(test_results_dfs) for ref_l in langs[1:]: assert len(test_results_dfs[ref_l]) == len( test_results_dfs[langs[0]] ), f"length of input {len(test_results_dfs[ref_l])} for {ref_l} while it is {len(test_results_dfs[langs[0]])} for {langs[0]}" assert ( test_results_dfs[ref_l][f"{SOURCE_LANG}_function"] == test_results_dfs[langs[0]][f"{SOURCE_LANG}_function"] ).all(), f"Dataframes order for {ref_l} and {langs[0]} do not match" langs = sorted(langs) assert len(langs) == len(set(langs)), langs output_folder = Path(output_folder) output_folder.mkdir(exist_ok=True, parents=True) number_examples = len(test_results_dfs[langs[0]]) for ref_l in langs[1:]: assert number_examples == len( test_results_dfs[langs[0]] ), f"length of input {number_examples} for {ref_l} while it is {len(test_results_dfs[langs[0]])} for {langs[0]}" assert ( test_results_dfs[ref_l][f"{SOURCE_LANG}_function"] == test_results_dfs[langs[0]][f"{SOURCE_LANG}_function"] ).all(), f"Dataframes order for {ref_l} and {langs[0]} do not match" langs = sorted(langs) assert len(langs) == len(set(langs)), langs output_folder = Path(output_folder) output_folder.mkdir(exist_ok=True, parents=True) first_successful_code = { lang: get_first_success(test_results_dfs[lang], lang) for lang in langs } for lang in langs: successful_translations_df = test_results_dfs[lang][ pd.Series(first_successful_code[lang]).apply(lambda x: x != FAILURE) ] successful_translations_df["first_successful_translation"] = [ c for c in first_successful_code[lang] if c != FAILURE ] logger.info( f"{SOURCE_LANG}-{lang}: {len(successful_translations_df)} among {number_examples} ({len(successful_translations_df) / number_examples:.1%})" ) print( f"{SOURCE_LANG}-{lang}: {len(successful_translations_df)} among {number_examples} ({len(successful_translations_df) / number_examples:.1%})" ) write_bpe_files( output_folder, successful_translations_df["java_function"], successful_translations_df["first_successful_translation"], SOURCE_LANG, lang, bpe_model=bpe_model, ) for lang1 in langs: for lang2 in langs[langs.index(lang1) + 1 :]: # the only parallel data we have is when the tests are successful for both languages successful_pairs = [ (c1, c2) for c1, c2 in zip( first_successful_code[lang1], first_successful_code[lang2] ) if c1 != FAILURE and c2 != FAILURE ] print( f"{lang1}-{lang2}: {len(successful_pairs)} among {number_examples} ({len(successful_pairs) / number_examples:.1%})" ) write_bpe_files( output_folder, [c1 for c1, c2 in successful_pairs], [c2 for c1, c2 in successful_pairs], lang1, lang2, bpe_model=bpe_model, ) for file_path in Path(output_folder).glob("*.bpe"): XLM_preprocess( str(bpe_vocab), str(file_path), str(file_path).replace(".bpe", ".pth") ) def select_tests_several_asserts(test_results_dfs): tests_several_asserts = test_results_dfs["python"].python_translated_tests.apply( lambda x: x.count("assert ") > 1 ) test_results_dfs = { lang: df[tests_several_asserts].reset_index(drop=True) for lang, df in test_results_dfs.items() } new_length = len(test_results_dfs["python"]) logger.info( f"removed {len(tests_several_asserts) - new_length} tests with only one assert ({1 - new_length / len(tests_several_asserts):.2%})" ) return test_results_dfs def get_first_success(test_results, language): beam_size = get_beam_size( test_results, results_columns=f"translated_{language}_functions_beam_" ) test_results_columns = [f"test_results_{language}_{i}" for i in range(beam_size)] translations_columns = [ f"translated_{language}_functions_beam_{beam}" for beam in range(beam_size) ] for col in test_results_columns: test_results[col] = test_results[col].apply(lambda x: eval(x)) translations = np.array( [test_results[col] for col in translations_columns] ).transpose() logger.info("getting the first successful function") tests_results = np.array( [test_results[col] for col in test_results_columns] ).transpose((1, 0, 2)) code = [] min_successful_len = float("inf") for translations_i, result_i in zip(translations, tests_results): any_successful = False for translated_code, res in zip(translations_i, result_i): if res[0] == "success": if not any_successful: code.append(translated_code) min_successful_len = len(translated_code) any_successful = True elif len(translated_code) < min_successful_len: min_successful_len = len(translated_code) code[-1] = translated_code if not any_successful: code.append(FAILURE) assert len(code) == len(test_results) first_successful_code = code return first_successful_code def write_bpe_files(output_folder, lang1_funcs, lang2_funcs, lang1, lang2, bpe_model): if not lang1 < lang2: lang1, lang2 = lang2, lang1 lang1_funcs, lang2_funcs = lang2_funcs, lang1_funcs lang1_funcs = bpe_model.apply([f.strip() for f in lang1_funcs]) lang2_funcs = bpe_model.apply([f.strip() for f in lang2_funcs]) output_files = { lang1: [ open( output_folder.joinpath( f"train.{lang1}_sa-{lang2}_sa.{lang1}_sa.{i}.bpe" ), "w", ) for i in range(8) ], lang2: [ open( output_folder.joinpath( f"train.{lang1}_sa-{lang2}_sa.{lang2}_sa.{i}.bpe" ), "w", ) for i in range(8) ], } output_files_all = { lang1: open( output_folder.joinpath(f"train.{lang1}_sa-{lang2}_sa.{lang1}_sa.bpe"), "w" ), lang2: open( output_folder.joinpath(f"train.{lang1}_sa-{lang2}_sa.{lang2}_sa.bpe"), "w" ), } for i, (c1, c2) in enumerate(zip(lang1_funcs, lang2_funcs)): c1 = c1.strip() c2 = c2.strip() output_files_all[lang1].write(c1) output_files_all[lang1].write("\n") output_files_all[lang2].write(c2) output_files_all[lang2].write("\n") output_files[lang1][i % 8].write(c1) output_files[lang1][i % 8].write("\n") output_files[lang2][i % 8].write(c2) output_files[lang2][i % 8].write("\n") for o in output_files[lang1] + output_files[lang2]: o.close() if __name__ == "__main__": args = get_arguments() bpe_model = fastBPE.fastBPE(args.bpe_path) # type: ignore main(Path(args.input_df), args.output_folder, args.langs, bpe_model, args.bpe_vocab)
CodeGen-main
codegen_sources/test_generation/select_successful_tests.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Translate sentences from the input stream. # The model will be faster is sentences are sorted by length. # Input sentences must have the same tokenization and BPE codes than the ones used in the model. # import re from codegen_sources.preprocessing.utils import split_arguments class EvosuiteTranslator: def __init__(self) -> None: self.primitive_types = { "short", "int", "long", "float", "double", "boolean", "char", } self.java_standard_types = { "Double", "Float", "String", "Integer", "Boolean", "Long", "Short", "Character", } self.java_simple_types = self.primitive_types | self.java_standard_types self.java_separator_chars = "[^0-9A-Za-z_]" self.java_arrays = {f"{t}[]" for t in self.java_simple_types} self.java_arrays_regexp = { x.replace("[", "\[").replace("]", "\]") for x in self.java_arrays } self.supported_list_objects = ["ArrayList", "LinkedList", "List"] self.java_list_objects = { f"{list_object}<{t}>" for t in self.java_simple_types for list_object in self.supported_list_objects } self.java_supported_types = ( self.java_simple_types | self.java_arrays | self.java_list_objects ) self.supported_asserts = [ "assertTrue", "assertFalse", "assertEquals", "assertArrayEquals", "assertNotNull", "assertNotSame", "assertSame", "assertNull", ] self.assert_argument_extractors = { assert_name: re.compile(assert_name + r"\((.+?)\);") for assert_name in self.supported_asserts } # translate_type_castings self.type_casting_regexp = { t: re.compile(r"\(%s\)[ ]*([^;,\n ?]+)" % t) for t in self.java_simple_types | self.java_list_objects | self.java_arrays_regexp | {"Object"} } # method and class name regexp self.method_name_regexp = re.compile( "public void test([0-9]+)\(\) throws Throwable {" ) # translate_equals self.equals_regexp = re.compile(r".equals\(([^;\n]*)\)") # translate_value_initializations self.double_initialization_regexp = re.compile( f"({self.java_separator_chars})([0-9]*\.[0-9E]+)[fFdD]({self.java_separator_chars})" ) self.long_initialization_regexp = re.compile( f"({self.java_separator_chars})([0-9]+)[lL]({self.java_separator_chars})" ) self.null_pointers_regexp = re.compile( f"({self.java_separator_chars})null({self.java_separator_chars})" ) # translate variable definitions self.object_variable_definition = { t: re.compile(r"%s ([^=;]+?) = new %s(\([^;]+?\));" % (t, t)) for t in self.java_standard_types } self.primitive_variable_definition = { t: re.compile(r"%s ([^=;]+?) = ([^;]+?);" % t) for t in self.primitive_types | self.java_standard_types } # array translation self.regexp_match_array_content_definition = { t: re.compile(r"new %s\[\] \{(.+)\}" % t) for t in self.java_simple_types } # \1 matches the content in the array definition self.regexp_match_array_definition_with_length = { t: re.compile(r"%s\[\] (.+?) = new %s\[([0-9]+)\];" % (t, t)) for t in self.java_simple_types } # \1 is the token identifier and \2 the length of the array self.regexp_match_array_length_getter = { t: re.compile(r" (%sArray[0-9]+)\.length" % t.lower()) for t in self.java_simple_types } # \1 is the array identifier name ## list translations self.list_objects_definitions = { t: re.compile(r"%s ([^=;]+?) = new %s\(\);" % (t, t)) for t in self.java_list_objects } self.regexp_match_list_definition = { simple_type: { list_type: re.compile(f"new {list_type}<{simple_type}>\(\)") for list_type in self.supported_list_objects } for simple_type in self.java_simple_types } # \1 matches the content in the array definition self.regexp_match_add_to_list = { list_type: re.compile(f"({self.type_to_varname(list_type)}[0-9]+)\.add\(") for list_type in self.supported_list_objects } self.regexp_match_list_contains = { list_type: re.compile( f"({self.type_to_varname(list_type)}[0-9]+)\.contains\(([^\n]*?)\)" ) for list_type in self.supported_list_objects } def type_to_varname(self, t): return t[0].lower() + t[1:] def get_asserts_arguments(self, code): return { assert_name: self.specifics_assert_args(code, assert_name) for assert_name in self.supported_asserts } def specifics_assert_args(self, code, assert_name): arguments = set(self.assert_argument_extractors[assert_name].findall(code)) return [split_arguments(a) for a in set(arguments)] @staticmethod def replace_func_calls(classname, code): return re.sub( f"([{classname[0].lower()}, {classname[0]}]{classname[1:]}(0|1|_0)?)" + r"\.(.+?)\(", r"f_filled(", code, ) @staticmethod def args_to_string(args_list): return ",".join(args_list) def get_default_value(self, t): if t not in self.primitive_types: return "None" elif t == "char": return "'\u0000'" elif t == "boolean": return "False" else: return "0"
CodeGen-main
codegen_sources/test_generation/evosuite_tests_translators/evosuite_translator.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Translate sentences from the input stream. # The model will be faster is sentences are sorted by length. # Input sentences must have the same tokenization and BPE codes than the ones used in the model. # import re from .evosuite_translator import EvosuiteTranslator class EvosuiteToPython(EvosuiteTranslator): def __init__(self) -> None: super().__init__() self.imports = "import numpy as np \nimport math\nfrom math import *\nimport collections\nfrom collections import *\nimport heapq\nimport itertools\nimport random\nimport sys\nimport unittest\n" self.remove_casting_null = { t: re.compile(r"%s\(null\)" % t) for t in ["int", "str", "float", "bool", "list"] } def translate(self, code): code = self.translate_class_method_name(code) code = self.replace_asserts(code) code = self.translate_arrays(code) code = self.translate_variable_definitions(code) code = self.translate_type_casting(code) code = self.translate_equals(code) code = self.translate_value_initializations(code) code = self.translation_wrapup(code) return code def translate_class_method_name(self, code): assert "_ESTest" in code, code classname = code.split("_ESTest")[0].split()[-1].strip() # print(classname) code = self.method_name_regexp.sub(r"def test\1(self):", code) code = code.replace( f"public class {classname}_ESTest extends {classname}_ESTest_scaffolding " + "{", f"class {classname}(unittest.TestCase):", ) code = self.replace_func_calls(classname, code) # code = code.replace(f'{classname}.', "") return code def translation_wrapup(self, code): tests = code.split("@Test(timeout = ")[1:] for t in tests: if "f_filled" not in t: code = code.replace(t, "") # removing tests that don't call the method code = code.replace("}", "") codelines = [ l for l in code.splitlines() if not l.startswith("import") and not l.startswith("@RunWith") and not l.startswith(" @Test(timeout =") ] for i, l in enumerate(codelines): if "*/" in l: break code = "\n".join(codelines[i + 1 :]) code = "\n".join( [self.imports] + ["\n\n#TOFILL\n"] + [code] + ["\nif __name__ == '__main__':\n unittest.main()"] ) return code def replace_asserts(self, code): assert_args = self.get_asserts_arguments(code) for assert_name, arguments_list in assert_args.items(): for args in arguments_list: # print(assert_name, args, len(args)) assert_string = f"{assert_name}({self.args_to_string(args)});" if assert_name == "assertTrue": assert len(args) == 1, args code = code.replace(assert_string, f"assert {args[0]}") elif assert_name == "assertFalse": assert len(args) == 1, args code = code.replace(assert_string, f"assert not ({args[0]})") elif ( assert_name == "assertEquals" or assert_name == "assertArrayEquals" ): assert len(args) == 2 or len(args) == 3, args if len(args) == 2: code = code.replace( assert_string, f"assert {args[0]} == {args[1]}" ) if len(args) == 3: code = code.replace( assert_string, f"assert abs({args[0]} - {args[1]}) <= {args[2]}", ) elif assert_name == "assertSame": assert len(args) == 2, args code = code.replace(assert_string, f"assert {args[0]} is {args[1]}") elif assert_name == "assertNotSame": assert len(args) == 2, args code = code.replace( assert_string, f"assert {args[0]} is not {args[1]}" ) elif assert_name == "assertNull": assert len(args) == 1, args code = code.replace(assert_string, f"assert {args[0]} is None") elif assert_name == "assertNotNull": assert len(args) == 1, args code = code.replace(assert_string, f"assert {args[0]} is not None") else: raise NotImplementedError(f"cannot translate {assert_name}") return code def translate_arrays(self, code): for t in self.java_simple_types: code = self.regexp_match_array_content_definition[t].sub(r"[\1]", code) code = self.regexp_match_array_definition_with_length[t].sub( r"\1 = [%s] * \2;" % self.get_default_value(t), code ) code = self.regexp_match_array_length_getter[t].sub(r" len(\1)", code) for t, regexp in self.list_objects_definitions.items(): code = regexp.sub(r"\1 = []", code) for t in self.java_simple_types: for regexp in self.regexp_match_list_definition[t].values(): code = regexp.sub(r"[]", code) for t, regexp in self.regexp_match_add_to_list.items(): code = regexp.sub(r"\1.append(", code) for t, regexp in self.regexp_match_list_contains.items(): code = regexp.sub(r"\2 in \1", code) return code def translate_variable_definitions(self, code): for t, regexp in self.object_variable_definition.items(): code = regexp.sub(r"\1 = \2", code) for t, regexp in self.primitive_variable_definition.items(): code = regexp.sub(r"\1 = \2", code) return code def translate_type_casting(self, code): for t in ["short", "int", "long", "Integer", "Long", "Short"]: code = self.type_casting_regexp[t].sub(r"int(\1)", code) for t in ["boolean", "Boolean"]: code = self.type_casting_regexp[t].sub(r"bool(\1)", code) for t in ["float", "Float", "double", "Double"]: code = self.type_casting_regexp[t].sub(r"float(\1)", code) for t in ["String", "char", "Character"]: code = self.type_casting_regexp[t].sub(r"str(\1)", code) for t in self.java_arrays_regexp | self.java_list_objects: code = self.type_casting_regexp[t].sub(r"list(\1)", code) code = self.type_casting_regexp["Object"].sub(r"\1", code) for t, regexp in self.remove_casting_null.items(): code = regexp.sub(r"None", code) return code def translate_equals(self, code): code = self.equals_regexp.sub(r" == (\1)", code) return code def translate_value_initializations(self, code): code = self.double_initialization_regexp.sub(r"\1\2\3", code) code = self.long_initialization_regexp.sub(r"\1\2\3", code) code = self.null_pointers_regexp.sub(r"\1None\2", code) return code
CodeGen-main
codegen_sources/test_generation/evosuite_tests_translators/evosuite_to_python.py
CodeGen-main
codegen_sources/test_generation/evosuite_tests_translators/__init__.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # # Translate sentences from the input stream. # The model will be faster is sentences are sorted by length. # Input sentences must have the same tokenization and BPE codes than the ones used in the model. # import re from .evosuite_translator import EvosuiteTranslator class EvosuiteToCpp(EvosuiteTranslator): def __init__(self) -> None: super().__init__() self.imports = """#include <iostream> #include <cstdlib> #include <string> #include <vector> #include <fstream> #include <iomanip> #include <bits/stdc++.h> #include "gtest/gtest.h" #include "gmock/gmock.h" using namespace std; """ self.cpp_tests_main = """int main(int argc, char **argv) { ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }""" self.java_standard_types_translations = { "Double": "double", "Float": "float", "String": "string", "Integer": "int", "Boolean": "bool", "boolean": "bool", "byte": "unsigned char", "Byte": "unsigned char", "Long": "long", "Short": "short", "Character": "char", } self.cpp_supported_types = list( self.java_standard_types_translations.values() ) + [f"{t}\*" for t in self.java_standard_types_translations.values()] # + [f"vector\<{t}\>" for t in self.java_standard_types_translations.values()] self.remove_casting_null = { t: re.compile(r"\(%s\)[ ]*null" % t) for t in self.cpp_supported_types } def translate(self, code): code = self.translate_class_method_name(code) code = code.replace("[]", "*") code = self.replace_asserts(code) code = self.translate_arrays(code) code = self.translate_variable_definitions(code) code = self.translate_type_casting(code) code = self.translate_equals(code) code = self.translate_value_initializations(code) code = self.translation_wrapup(code) return code def translate_class_method_name(self, code): assert "_ESTest" in code, code classname = code.split("_ESTest")[0].split()[-1].strip() # print(classname) code = self.method_name_regexp.sub(r"TEST(EvoSuiteTest, test\1){", code) code = code.replace( f"public class {classname}_ESTest extends {classname}_ESTest_scaffolding " + "{", "", ) code = self.replace_func_calls(classname, code) r = f"([{classname[0].lower()}, {classname[0]}]{classname[1:]}(0|1|_0)?)" code = re.sub(r + r"\s*" + r + r"\s*=\s*new\s*" + r + r"\s*\(.*\);", "", code) return code def translation_wrapup(self, code): tests = code.split("@Test(timeout = ")[1:] for t in tests: if "f_filled" not in t: code = code.replace(t, "") code = code.replace(" @Test(timeout = 4000)\n", "") code_lines = code.splitlines() code_lines = [ l for l in code_lines if not l.startswith("import") and not l.startswith("@RunWith") and not l.startswith(" @Test(timeout =") and not l.startswith(" System.setCurrentTimeMillis(") ] assert len(code_lines) > 0, "input to translation_wrapup is empty" for i, l in enumerate(code_lines): if "*/" in l: break code_lines = code_lines[i + 1 :] return "\n".join( [self.imports] + ["\n", "//TOFILL"] + code_lines + ["\n"] + [self.cpp_tests_main] ) def replace_asserts(self, code): assert_args = self.get_asserts_arguments(code) assert_that_num = 0 for assert_name, arguments_list in assert_args.items(): for args in arguments_list: # print(assert_name, args, len(args)) assert_string = f"{assert_name}({self.args_to_string(args)});" if assert_name == "assertTrue": assert len(args) == 1, args code = code.replace(assert_string, f"ASSERT_TRUE ({args[0]});") elif assert_name == "assertFalse": assert len(args) == 1, args code = code.replace(assert_string, f"ASSERT_FALSE ({args[0]});") elif assert_name == "assertEquals": assert len(args) == 2 or len(args) == 3, args if len(args) == 2: code = code.replace( assert_string, f"ASSERT_EQ ({args[0]}, {args[1]});", ) if len(args) == 3: code = code.replace( assert_string, f"ASSERT_NEAR ({args[0]},{args[1]},{args[2]});", ) elif assert_name == "assertArrayEquals": if args[0].startswith("new "): args[0] = re.sub( r"new\s*(.+)\*", f"vector<\g<1>> assert_array{assert_that_num} =", args[0], ) code = code.replace( assert_string, f"{args[0]};\nASSERT_THAT(assert_array{assert_that_num}, ::testing::ContainerEq({args[1]}));", ) assert_that_num += 1 else: code = code.replace( assert_string, f"ASSERT_THAT({args[0]}, ::testing::ContainerEq({args[1]}));", ) elif assert_name == "assertSame": assert len(args) == 2, args code = code.replace( assert_string, f"ASSERT_EQ(*{args[0]}, *{args[1]});", ) elif assert_name == "assertNotSame": assert len(args) == 2, args code = code.replace( assert_string, f"ASSERT_NE(*{args[0]}, *{args[1]});", ) elif assert_name == "assertNull": assert len(args) == 1, args code = code.replace( assert_string, "", # assert_string, f"ASSERT_EQ ({args[0]}, nullptr);", ) elif assert_name == "assertNotNull": assert len(args) == 1, args code = code.replace( assert_string, "", # assert_string, f"ASSERT_NE ({args[0]}, nullptr);", ) else: raise NotImplementedError(f"cannot translate {assert_name}") code = code.strip() c = "".join(code.split()) if len(c) >= 2 and c[-2:] == "}}": code = code[:-1] return code def translate_arrays(self, code): code = code.replace("ArrayList", "vector") code = re.sub(f" = new vector<" + r".+" + ">\(\);", ";", code) # code = re.sub( # r"(\s*)(.+)\* (.+) = new\s*(.+)\[(.*)\];", # f"\g<1>vector<\g<2>> \g<3>(\g<5>);", # code, # ) # for t in self.java_simple_types: # code = self.regexp_match_array_content_definition[t].sub( # r"// C++ array with elements [\1]", code # ) # code = self.regexp_match_array_definition_with_length[t].sub( # r"// C++ array definition with name \1 and \2 elements of default value %s;" # % self.get_default_value(t), # code, # ) # code = self.regexp_match_array_length_getter[t].sub( # r"// C++ to get length of array \1", code # ) for t, regexp in self.list_objects_definitions.items(): pass for t in self.java_simple_types: for regexp in self.regexp_match_list_definition[t].values(): # code = regexp.sub(r"[]", code) pass for t, regexp in self.regexp_match_add_to_list.items(): # code = regexp.sub(r'\1.append(', code) pass for t, regexp in self.regexp_match_list_contains.items(): # code = regexp.sub(r'\2 in \1', code) pass return code def translate_variable_definitions(self, code): for t, regexp in self.object_variable_definition.items(): translated_type = self.java_standard_types_translations[t] code = regexp.sub(translated_type + r" \1 = \2;", code) for t, regexp in self.primitive_variable_definition.items(): # no need to translate pass for t, translated_type in self.java_standard_types_translations.items(): code = code.replace(t, translated_type) return code def translate_type_casting(self, code): for t in self.java_standard_types: translated_type = self.java_standard_types_translations[t] code = self.type_casting_regexp[t].sub( f"({translated_type}) " + r"\1", code ) code = self.type_casting_regexp["Object"].sub(r"\1", code) # for t in self.java_arrays_regexp | self.java_list_objects: # code = self.type_casting_regexp[t].sub(r"list(\1)", code) # # code = self.type_casting_regexp[t].sub(r"\1", code) # for t, regexp in self.remove_casting_null.items(): code = regexp.sub(r"NULL", code) return code def translate_equals(self, code): code = self.equals_regexp.sub(r" == (\1)", code) return code def translate_value_initializations(self, code): # Translate null pointer to C++, it is NULL code = self.null_pointers_regexp.sub(r"\1NULL\2", code) return code
CodeGen-main
codegen_sources/test_generation/evosuite_tests_translators/evosuite_to_cpp.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import difflib from pathlib import Path from codegen_sources.preprocessing.lang_processors.python_processor import apply_black folder_path = Path(__file__).parent JAVA_PATH = folder_path.joinpath("resources/java_evosuite_tests") PYTHON_PATH = folder_path.joinpath("resources/expected_python_translations") CPP_PATH = folder_path.joinpath("resources/expected_cpp_translations") def translation_testing(examples_list, translator, should_apply_black=False): for input_test, expected_translation in examples_list: actual = translator.translate(input_test) if should_apply_black: actual = apply_black(actual) diff_tester(expected_translation, actual) def diff_tester(expected, res, split="\n"): expected = split.join([x.rstrip() for x in expected.split(split)]) res = split.join([x.rstrip() for x in res.split(split)]) d = difflib.Differ() if expected != res: print("Expected:") print(expected) print("#" * 50) print("Got:") print(res) print("#" * 50) diff = d.compare(expected.split(split), res.split(split)) for line in diff: print(line) assert expected == res def read_inputs(filename, target_lang): java_path = JAVA_PATH.joinpath(filename).with_suffix(".java").absolute() with open(java_path, "r") as java_file: input_test = java_file.read() if target_lang == "python": with open( PYTHON_PATH.joinpath(filename).with_suffix(".py"), "r" ) as python_file: expected_translation = python_file.read() elif target_lang == "cpp": with open(CPP_PATH.joinpath(filename).with_suffix(".cpp"), "r") as python_file: expected_translation = python_file.read() else: raise ValueError(f"target_lang {target_lang} not supported") return input_test, expected_translation
CodeGen-main
codegen_sources/test_generation/evosuite_tests_translators/tests/test_utils.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from .test_utils import read_inputs, translation_testing from ..evosuite_to_python import EvosuiteToPython ARRAYS = ["integer_array_check", "integer_array_casting"] JAVA_ARRAYS = ["java_list"] TEST_STRINGS = ["strings", "strings_null_casting"] TEST_FLOATS = ["floats", "doubles"] translator = EvosuiteToPython() def test_array_translation(): translations_list = [read_inputs(filename, "python") for filename in ARRAYS] translation_testing(translations_list, translator, True) def test_lists_translation(): translations_list = [read_inputs(filename, "python") for filename in JAVA_ARRAYS] translation_testing(translations_list, translator, True) def test_floats(): translations_list = [read_inputs(filename, "python") for filename in TEST_FLOATS] translation_testing(translations_list, translator, True) def test_string_translation(): translations_list = [read_inputs(filename, "python") for filename in TEST_STRINGS] translation_testing(translations_list, translator, True)
CodeGen-main
codegen_sources/test_generation/evosuite_tests_translators/tests/test_evosuite_to_python_translator.py
CodeGen-main
codegen_sources/test_generation/evosuite_tests_translators/tests/__init__.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from .test_utils import read_inputs, translation_testing from ..evosuite_to_cpp import EvosuiteToCpp ARRAYS = ["integer_array_casting"] JAVA_ARRAYS = ["java_list"] TEST_STRINGS = ["strings", "strings_null_casting"] TEST_FLOATS = ["floats", "doubles"] translator = EvosuiteToCpp() def test_array_translation(): translations_list = [read_inputs(filename, "cpp") for filename in ARRAYS] translation_testing(translations_list, translator) def test_lists_translation(): translations_list = [read_inputs(filename, "cpp") for filename in JAVA_ARRAYS] translation_testing(translations_list, translator) def test_floats(): translations_list = [read_inputs(filename, "cpp") for filename in TEST_FLOATS] translation_testing(translations_list, translator) def test_string_translation(): translations_list = [read_inputs(filename, "cpp") for filename in TEST_STRINGS] translation_testing(translations_list, translator) def test_different_object_name(): translations_list = [ read_inputs(filename, "cpp") for filename in ["different_object_name"] ] translation_testing(translations_list, translator)
CodeGen-main
codegen_sources/test_generation/evosuite_tests_translators/tests/test_evosuite_to_cpp_translator.py
import numpy as np import math from math import * import collections from collections import * import heapq import itertools import random import sys import unittest # TOFILL class CLASS_9167f62308cfc555ab31a6e4dcdcc95ca2bdcab48016d16bd5b42146ef1977eb( unittest.TestCase ): def test0(self): float0 = f_filled(31337.701) assert abs(9.8205152e8 - float0) <= 0.01 def test1(self): float0 = f_filled(0.0) assert abs(0.0 - float0) <= 0.01 if __name__ == "__main__": unittest.main()
CodeGen-main
codegen_sources/test_generation/evosuite_tests_translators/tests/resources/expected_python_translations/floats.py
import numpy as np import math from math import * import collections from collections import * import heapq import itertools import random import sys import unittest # TOFILL class CLASS_196a45f8932c033f06f6a086488b268404e77353d16c9bc6407a417f237da6db( unittest.TestCase ): def test3(self): int0 = f_filled(None) assert 0 == int0 if __name__ == "__main__": unittest.main()
CodeGen-main
codegen_sources/test_generation/evosuite_tests_translators/tests/resources/expected_python_translations/integer_array_casting.py
import numpy as np import math from math import * import collections from collections import * import heapq import itertools import random import sys import unittest # TOFILL class CLASS_db35bde703321c750c7134d5769b704c9ab7f9841c6654abb814683a361f9de1( unittest.TestCase ): def test0(self): arrayList0 = [] double0 = 0.0 arrayList0.append(double0) double1 = 1.0 f_filled(arrayList0, double1) assert not (double1 in arrayList0) def test1(self): arrayList0 = [] double0 = 0.0 arrayList0.append(double0) f_filled(arrayList0, double0) assert 0.0 in arrayList0 def test2(self): arrayList0 = [] double0 = 9000.554 arrayList0.append(double0) f_filled(arrayList0, double0) assert 9001 == arrayList0.size() def test3(self): arrayList0 = [] double0 = 0.0 f_filled(arrayList0, double0) assert not (double0 in arrayList0) if __name__ == "__main__": unittest.main()
CodeGen-main
codegen_sources/test_generation/evosuite_tests_translators/tests/resources/expected_python_translations/java_list.py
import numpy as np import math from math import * import collections from collections import * import heapq import itertools import random import sys import unittest # TOFILL class CLASS_4819651a89a417bce7b2158d1101004f26892e6022f6d1e6348175e23666ec38( unittest.TestCase ): def test0(self): double0 = 3051.0 double1 = f_filled(double0) assert abs(3051.0 - double1) <= 1.0e-4 if __name__ == "__main__": unittest.main()
CodeGen-main
codegen_sources/test_generation/evosuite_tests_translators/tests/resources/expected_python_translations/doubles.py
import numpy as np import math from math import * import collections from collections import * import heapq import itertools import random import sys import unittest # TOFILL class CLASS_c2a773c670339b0d7be430a133f7f597ae56ad8ebb7f7209c0fe9edbd248fd04( unittest.TestCase ): def test2(self): boolean0 = f_filled("", None) assert not (boolean0) if __name__ == "__main__": unittest.main()
CodeGen-main
codegen_sources/test_generation/evosuite_tests_translators/tests/resources/expected_python_translations/strings_null_casting.py
import numpy as np import math from math import * import collections from collections import * import heapq import itertools import random import sys import unittest # TOFILL class CLASS_27c05c7602b81c3bcf7ac99abf940ebc4c909da67935bb59bc30e51ac3933ace( unittest.TestCase ): def test1(self): string0 = f_filled("", "") assert string0 is None if __name__ == "__main__": unittest.main()
CodeGen-main
codegen_sources/test_generation/evosuite_tests_translators/tests/resources/expected_python_translations/strings.py
import numpy as np import math from math import * import collections from collections import * import heapq import itertools import random import sys import unittest # TOFILL class PERMUTE_TWO_ARRAYS_SUM_EVERY_PAIR_GREATER_EQUAL_K(unittest.TestCase): def test0(self): integerArray0 = [None] * 2 int0 = -1 integer0 = -1 assert (-1) == int(integer0) assert integer0 == (int0) assert integer0 is not None integerArray0[0] = integer0 integer1 = 1 assert 1 == int(integer1) assert not (integer1 == (int0)) assert not (integer1 == (integer0)) assert integer1 is not None integerArray0[1] = integer1 intArray0 = [0] * 3 intArray0[2] = int0 boolean0 = f_filled(integerArray0, intArray0, 1, 0) assert boolean0 assert [(-1), 0, 0] == intArray0 assert 2 == len(integerArray0) assert 3 == len(intArray0) def test1(self): integerArray0 = [None] * 2 int0 = -1 integer0 = -1 assert (-1) == int(integer0) assert integer0 == (int0) assert integer0 is not None integerArray0[0] = integer0 int1 = 1 integerArray0[1] = integer0 intArray0 = [0] * 3 intArray0[2] = int0 boolean0 = f_filled(integerArray0, intArray0, int1, (-50146)) assert boolean0 assert [(-1), 0, 0] == intArray0 assert not (int1 == int0) assert 2 == len(integerArray0) assert 3 == len(intArray0) def test2(self): integerArray0 = [None] * 2 integer0 = -1 assert (-1) == int(integer0) assert integer0 is not None integerArray0[0] = integer0 integerArray0[1] = integer0 intArray0 = [0] * 3 boolean0 = f_filled(integerArray0, intArray0, (-54229), 1) assert boolean0 assert [0, 0, 0] == intArray0 assert 2 == len(integerArray0) assert 3 == len(intArray0) def test3(self): integerArray0 = [None] * 2 integer0 = -1 assert (-1) == int(integer0) assert integer0 is not None integerArray0[0] = integer0 int0 = 1 integerArray0[1] = integerArray0[0] intArray0 = [0] * 3 boolean0 = f_filled(integerArray0, intArray0, 1, int0) assert not (boolean0) assert [0, 0, 0] == intArray0 assert 2 == len(integerArray0) assert 3 == len(intArray0) if __name__ == "__main__": unittest.main()
CodeGen-main
codegen_sources/test_generation/evosuite_tests_translators/tests/resources/expected_python_translations/integer_array_check.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name="dadaptation", version="3.1", author="Aaron Defazio", author_email="adefazio@meta.com", description="Learning Rate Free Learning for Adam, SGD and AdaGrad", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/facebookresearch/dadaptation", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.6', )
dadaptation-main
setup.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math from typing import TYPE_CHECKING, Any, Callable, Optional import torch import torch.optim import pdb import logging import os import torch.distributed as dist if TYPE_CHECKING: from torch.optim.optimizer import _params_t else: _params_t = Any class DAdaptAdam(torch.optim.Optimizer): r""" Implements Adam with D-Adaptation automatic step-sizes. Leave LR set to 1 unless you encounter instability. Arguments: params (iterable): Iterable of parameters to optimize or dicts defining parameter groups. lr (float): Learning rate adjustment parameter. Increases or decreases the D-adapted learning rate. betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float): Term added to the denominator outside of the root operation to improve numerical stability. (default: 1e-8). weight_decay (float): Weight decay, i.e. a L2 penalty (default: 0). log_every (int): Log using print every k steps, default 0 (no logging). decouple (boolean): Use AdamW style decoupled weight decay use_bias_correction (boolean): Turn on Adam's bias correction. Off by default. d0 (float): Initial D estimate for D-adaptation (default 1e-6). Rarely needs changing. growth_rate (float): prevent the D estimate from growing faster than this multiplicative rate. Default is inf, for unrestricted. Values like 1.02 give a kind of learning rate warmup effect. fsdp_in_use (bool): If you're using sharded parameters, this should be set to True. The optimizer will attempt to auto-detect this, but if you're using an implementation other than PyTorch's builtin version, the auto-detection won't work. """ def __init__(self, params, lr=1.0, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, log_every=0, decouple=False, use_bias_correction=False, d0=1e-6, growth_rate=float('inf'), fsdp_in_use=False): if not 0.0 < d0: raise ValueError("Invalid d0 value: {}".format(d0)) if not 0.0 < lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 < eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) if decouple: print(f"Using decoupled weight decay") defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, d = d0, k=0, numerator_weighted=0.0, log_every=log_every, growth_rate=growth_rate, use_bias_correction=use_bias_correction, decouple=decouple, fsdp_in_use=fsdp_in_use) self.d0 = d0 super().__init__(params, defaults) @property def supports_memory_efficient_fp16(self): return False @property def supports_flat_params(self): return True def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() sk_l1 = 0.0 group = self.param_groups[0] use_bias_correction = group['use_bias_correction'] numerator_weighted = group['numerator_weighted'] beta1, beta2 = group['betas'] k = group['k'] d = group['d'] lr = max(group['lr'] for group in self.param_groups) if use_bias_correction: bias_correction = ((1-beta2**(k+1))**0.5)/(1-beta1**(k+1)) else: bias_correction = 1 dlr = d*lr*bias_correction growth_rate = group['growth_rate'] decouple = group['decouple'] log_every = group['log_every'] fsdp_in_use = group['fsdp_in_use'] sqrt_beta2 = beta2**(0.5) numerator_acum = 0.0 for group in self.param_groups: decay = group['weight_decay'] k = group['k'] eps = group['eps'] group_lr = group['lr'] if group_lr not in [lr, 0.0]: raise RuntimeError(f"Setting different lr values in different parameter groups is only supported for values of 0") for p in group['params']: if p.grad is None: continue if hasattr(p, "_fsdp_flattened"): fsdp_in_use = True grad = p.grad.data # Apply weight decay (coupled variant) if decay != 0 and not decouple: grad.add_(p.data, alpha=decay) state = self.state[p] # State initialization if 'step' not in state: state['step'] = 0 state['s'] = torch.zeros_like(p.data).detach() # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data).detach() # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data).detach() exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] s = state['s'] if group_lr > 0.0: denom = exp_avg_sq.sqrt().add_(eps) numerator_acum += dlr * torch.dot(grad.flatten(), s.div(denom).flatten()).item() # Adam EMA updates exp_avg.mul_(beta1).add_(grad, alpha=dlr*(1-beta1)) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1-beta2) s.mul_(sqrt_beta2).add_(grad, alpha=dlr*(1-sqrt_beta2)) sk_l1 += s.abs().sum().item() ###### numerator_weighted = sqrt_beta2*numerator_weighted + (1-sqrt_beta2)*numerator_acum d_hat = d # if we have not done any progres, return # if we have any gradients available, will have sk_l1 > 0 (unless \|g\|=0) if sk_l1 == 0: return loss if lr > 0.0: if fsdp_in_use: dist_tensor = torch.zeros(2).cuda() dist_tensor[0] = numerator_weighted dist_tensor[1] = sk_l1 dist.all_reduce(dist_tensor, op=dist.ReduceOp.SUM) global_numerator_weighted = dist_tensor[0] global_sk_l1 = dist_tensor[1] else: global_numerator_weighted = numerator_weighted global_sk_l1 = sk_l1 d_hat = global_numerator_weighted/((1-sqrt_beta2)*global_sk_l1) d = max(d, min(d_hat, d*growth_rate)) if log_every > 0 and k % log_every == 0: logging.info(f"lr: {lr} dlr: {dlr} d_hat: {d_hat}, d: {d}. sk_l1={global_sk_l1:1.1e} numerator_weighted={global_numerator_weighted:1.1e}") for group in self.param_groups: group['numerator_weighted'] = numerator_weighted group['d'] = d decay = group['weight_decay'] k = group['k'] eps = group['eps'] for p in group['params']: if p.grad is None: continue grad = p.grad.data state = self.state[p] exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] state['step'] += 1 denom = exp_avg_sq.sqrt().add_(eps) # Apply weight decay (decoupled variant) if decay != 0 and decouple: p.data.add_(p.data, alpha=-decay * dlr) ### Take step p.data.addcdiv_(exp_avg, denom, value=-1) group['k'] = k + 1 return loss
dadaptation-main
dadaptation/dadapt_adam.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from .dadapt_adagrad import DAdaptAdaGrad from .dadapt_adam import DAdaptAdam from .dadapt_sgd import DAdaptSGD from .dadapt_adan import DAdaptAdan from .dadapt_lion import DAdaptLion
dadaptation-main
dadaptation/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.optim import pdb import math import logging import torch.distributed as dist class DAdaptSGD(torch.optim.Optimizer): r""" Implements SGD with D-Adaptation automatic step-sizes. Leave LR set to 1 unless you encounter instability. Arguments: params (iterable): Iterable of parameters to optimize or dicts defining parameter groups. lr (float): Learning rate adjustment parameter. Increases or decreases the D-adapted learning rate. momentum (float): Momentum value in the range [0,1) (default: 0). weight_decay (float): Weight decay, i.e. a L2 penalty (default: 0). log_every (int): Log using print every k steps, default 0 (no logging). d0 (float): Initial D estimate for D-adaptation (default 1e-6). Rarely needs changing. growth_rate (float): prevent the D estimate from growing faster than this multiplicative rate. Default is inf, for unrestricted. More conservative values like 1.02 may help if training is unstable. fsdp_in_use (bool): If you're using sharded parameters, this should be set to True. The optimizer will attempt to auto-detect this, but if you're using an implementation other than PyTorch's builtin version, the auto-detection won't work. """ def __init__(self, params, lr=1.0, momentum=0.0, weight_decay=0, log_every=0, d0=1e-6, growth_rate=float('inf'), fsdp_in_use=False): if not 0.0 < d0: raise ValueError("Invalid d0 value: {}".format(d0)) if not 0.0 < lr: raise ValueError("Invalid learning rate: {}".format(lr)) defaults = dict(lr=lr, momentum=momentum, weight_decay=weight_decay, k=0, log_every=log_every, numerator_weighted=0.0, d=d0, growth_rate=growth_rate, fsdp_in_use=fsdp_in_use) self.loggables = {} try: self.rank = torch.distributed.get_rank() except: self.rank = 0 super().__init__(params, defaults) def step(self, closure=None): loss = None if closure is not None: loss = closure() group = self.param_groups[0] lr = max(group['lr'] for group in self.param_groups) decay = group['weight_decay'] momentum = group['momentum'] log_every = group['log_every'] ck = 1 - momentum k = group['k'] numerator_weighted = group['numerator_weighted'] growth_rate = group['growth_rate'] d = group['d'] fsdp_in_use = group['fsdp_in_use'] group = self.param_groups[0] sk_sq = 0.0 if k == 0: g_sq = 0.0 for group in self.param_groups: group_lr = group['lr'] for p in group['params']: if p.grad is None: continue if hasattr(p, "_fsdp_flattened"): fsdp_in_use = True grad = p.grad.data # Apply weight decay if decay != 0: grad.add(p.data, alpha=decay) state = self.state[p] if group_lr > 0.0: g_sq += (grad * grad).sum().item() if fsdp_in_use: dist_tensor = torch.zeros(1).cuda() dist_tensor[0] = g_sq dist.all_reduce(dist_tensor, op=dist.ReduceOp.SUM) global_gsq = dist_tensor[0] else: global_gsq = g_sq group['g0_norm'] = g0_norm = math.sqrt(global_gsq) g0_norm = group['g0_norm'] dlr = d*lr/g0_norm for group in self.param_groups: group_lr = group['lr'] if group_lr not in [lr, 0.0]: raise RuntimeError(f"Setting different lr values in different parameter groups is only supported for values of 0") for p in group['params']: if p.grad is None: continue grad = p.grad.data state = self.state[p] if 'z' not in state: z = state['z'] = torch.clone(p.data).detach() s = state['s'] = torch.zeros_like(p.data).detach() x0 = state['x0'] = torch.clone(p.data).detach() # Apply weight decay if decay != 0: grad.add_(p.data, alpha=decay) s = state['s'] if group_lr > 0.0: numerator_weighted += dlr * torch.dot(grad.flatten(), s.flatten()).item() s.data.add_(grad, alpha=dlr) sk_sq += (s * s).sum().item() ###### d_hat = d if lr > 0.0: if fsdp_in_use: dist_tensor = torch.zeros(2).cuda() dist_tensor[0] = sk_sq dist_tensor[1] = numerator_weighted dist.all_reduce(dist_tensor, op=dist.ReduceOp.SUM) global_sk_sq = dist_tensor[0] global_numerator_weighted = dist_tensor[1] else: global_sk_sq = sk_sq global_numerator_weighted = numerator_weighted d_hat = 2*global_numerator_weighted/math.sqrt(global_sk_sq) d = max(d, min(d_hat, d*growth_rate)) # if we have not done any updates # if we have any gradients available, will have sk_sq > 0 (unless \|g\|=0) if global_sk_sq == 0: return loss if log_every > 0 and k % log_every == 0: logging.info(f"(r={self.rank},k={k}) dlr: {dlr} d_hat: {d_hat}, d: {d}. sk_norm={math.sqrt(global_sk_sq)} numerator_weighted={global_numerator_weighted} g0_norm={g0_norm}") for group in self.param_groups: group['numerator_weighted'] = numerator_weighted group['d'] = d group['g0_norm'] = g0_norm ###################################### for p in group['params']: if p.grad is None: continue grad = p.grad.data state = self.state[p] s = state['s'] x0 = state['x0'] z = state['z'] # z step z.data.copy_(x0 - s) # x step p.data.mul_(1-ck).add_(z, alpha=ck) group['k'] = k + 1 return loss
dadaptation-main
dadaptation/dadapt_sgd.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math from typing import TYPE_CHECKING, Any, Callable, Optional import torch import torch.optim import pdb import logging if TYPE_CHECKING: from torch.optim.optimizer import _params_t else: _params_t = Any class DAdaptAdaGrad(torch.optim.Optimizer): """ Adagrad with D-Adaptation. We recommend Adam or SGD be used instead in most situations, as D-Adaptation on top of AdaGrad does not adapt the learning rate as quickly in practice as the other variants. Leave LR set to 1 unless you encounter instability. Arguments: params (iterable): Iterable of parameters to optimize or dicts defining parameter groups. lr (float): Learning rate adjustment parameter. Increases or decreases the D-adapted learning rate. log_every (int): Log using print every k steps, default 0 (no logging). weight_decay (float): Weight decay, i.e. a L2 penalty (default: 0). eps (float): Term added to the denominator outside of the root operation to improve numerical stability. (default: 1e-6). d0 (float): Initial D estimate for D-adaptation (default 1e-6). Rarely needs changing. growth_rate (float): prevent the D estimate from growing faster than this multiplicative rate. Default is inf, for unrestricted. """ def __init__( self, params: _params_t, lr: float = 1.0, momentum: float = 0, log_every: int = 0, weight_decay: float = 0.0, eps: float = 0.0, d0 = 1e-6, growth_rate=float('inf') ): if d0 <= 0: raise ValueError("Invalid d0 value: {}".format(d0)) if lr <= 0: raise ValueError(f"Learning rate {lr} must be positive") if momentum < 0: raise ValueError(f"Momentum {momentum} must be non-negative") if eps <= 0: raise ValueError("Invalid epsilon value: {}".format(eps)) defaults = dict(lr=lr, momentum=momentum, eps=eps, weight_decay=weight_decay, gsq_weighted=0.0, log_every=log_every, d=d0, growth_rate=growth_rate, k = 0, sksq_weighted=0.0, skl1=0.0) self.d0 = d0 super().__init__(params, defaults) def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]: """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() group = self.param_groups[0] lr = group["lr"] momentum = group['momentum'] ck = 1 - momentum log_every = group['log_every'] growth_rate = group['growth_rate'] gsq_weighted = group['gsq_weighted'] sksq_weighted = group['sksq_weighted'] skl1 = group['skl1'] d = group['d'] dlr = d*lr g_sq = 0.0 sksq_weighted_change = 0.0 skl1_change = 0.0 for group in self.param_groups: eps = group["eps"] k = group['k'] decay = group['weight_decay'] ###### for p in group['params']: if p.grad is None: continue if hasattr(p, "_fsdp_flattened"): raise RuntimeError("D-Adapt AdaGrad doesn't currently support fully-sharded data parallel. Use D-Adapt Adam instead") grad = p.grad.data state = self.state[p] if "alphak" not in state: state["alphak"] = torch.full_like(p.data, fill_value=1e-6).detach() state['sk'] = torch.zeros_like(p.data).detach() state["x0"] = torch.clone(p.data).detach() if grad.is_sparse: state['weighted_sk'] = torch.zeros_like(p.data).detach() sk = state['sk'] alphak = state['alphak'] grad_sq = 0.0 if grad.is_sparse: weighted_sk = state['weighted_sk'] grad = grad.coalesce() grad_vals = grad._values() vk_vals = grad_vals*grad_vals sk_vals = sk.sparse_mask(grad).coalesce()._values() old_skl1_vals = sk_vals.abs().sum().item() sk.data.add_(grad, alpha=dlr) sk_vals = sk.sparse_mask(grad).coalesce()._values() alphak_vals = alphak.sparse_mask(grad).coalesce()._values() weighted_sk_vals = weighted_sk.sparse_mask(grad).coalesce()._values() ### Update alpha before step alphak_vals = alphak.sparse_mask(grad).coalesce()._values() alphakp1_vals = alphak_vals + vk_vals alphak_delta_vals = alphakp1_vals - alphak_vals alphak_delta = torch.sparse_coo_tensor(grad.indices(), alphak_delta_vals, grad.shape) alphak.add_(alphak_delta) #### denominator = torch.sqrt(alphakp1_vals + eps) grad_sq = (grad_vals * grad_vals).div(denominator).sum().item() g_sq += grad_sq ### Update weighted sk sq tracking weighted_skp1_vals = (sk_vals * sk_vals).div(denominator) sksq_weighted_change += weighted_skp1_vals.sum().item() - weighted_sk_vals.sum().item() weighted_skp1_delta_vals = weighted_skp1_vals - weighted_sk_vals weighted_skp1_delta = torch.sparse_coo_tensor(grad.indices(), weighted_skp1_delta_vals, grad.shape) weighted_sk.add_(weighted_skp1_delta) skl1_vals = sk_vals.abs().sum().item() skl1_change += skl1_vals - old_skl1_vals else: if decay != 0: grad.add_(p.data, alpha=decay) old_sksq_weighted_param = (sk * sk).div(torch.sqrt(alphak) + eps).sum().item() old_skl1_param = sk.abs().sum().item() alphak.data.add_(grad * grad) grad_sq = (grad * grad).div(torch.sqrt(alphak) + eps).sum().item() g_sq += grad_sq sk.data.add_(grad, alpha=dlr) sksq_weighted_param = (sk * sk).div(torch.sqrt(alphak) + eps).sum().item() skl1_param = sk.abs().sum().item() sksq_weighted_change += sksq_weighted_param - old_sksq_weighted_param skl1_change += skl1_param - old_skl1_param ###### sksq_weighted = sksq_weighted + sksq_weighted_change skl1 = skl1 + skl1_change # if we have not done any progres, return # if we have any gradients available, will have skl1 > 0 (unless \|g\|=0) if skl1 == 0: return loss gsq_weighted = gsq_weighted + dlr*dlr*g_sq d_hat = d if lr > 0.0: d_hat = (sksq_weighted - gsq_weighted)/skl1 d = group['d'] = max(d, min(d_hat, d*growth_rate)) if log_every > 0 and k % log_every == 0: logging.info(f"d_hat: {d_hat}, d: {d}. sksq_weighted={sksq_weighted:1.1e} skl1={skl1:1.1e} gsq_weighted={gsq_weighted:1.1e} lr={lr}") for group in self.param_groups: group['gsq_weighted'] = gsq_weighted group['skl1'] = skl1 group['sksq_weighted'] = sksq_weighted group['d'] = d decay = group['weight_decay'] k = group['k'] eps = group['eps'] for p in group["params"]: if p.grad is None: continue grad = p.grad.data state = self.state[p] alphak = state["alphak"] sk = state["sk"] x0 = state["x0"] if grad.is_sparse: grad = grad.coalesce() grad_vals = grad._values() sk_vals = sk.sparse_mask(grad).coalesce()._values() alphak_vals = alphak.sparse_mask(grad).coalesce()._values() x0_vals = x0.sparse_mask(grad).coalesce()._values() p_vals = p.data.sparse_mask(grad).coalesce()._values() loc_vals = x0_vals - sk_vals.div(torch.sqrt(alphak_vals + eps)) loc_delta_vals = loc_vals - p_vals loc_delta = torch.sparse_coo_tensor(grad.indices(), loc_delta_vals, grad.shape) p.data.add_(loc_delta) else: z = x0 - sk.div(torch.sqrt(alphak) + eps) if momentum != 0: p.data.mul_(1-ck).add_(z, alpha=ck) else: p.data.copy_(z) group['k'] = k + 1 return loss
dadaptation-main
dadaptation/dadapt_adagrad.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import Tuple, Optional, Callable import torch from torch.optim.optimizer import Optimizer import torch.distributed as dist import logging import pdb class DAdaptLion(Optimizer): r""" Implements Lion with D-Adaptation automatic step-sizes. Has not been as heavily tested as DAdaptAdam and should be considered experimental. Leave LR set to 1 unless you encounter instability. Arguments: params (iterable): Iterable of parameters to optimize or dicts defining parameter groups. lr (float): Learning rate adjustment parameter. Increases or decreases the D-adapted learning rate. betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) weight_decay (float): Weight decay, i.e. a L2 penalty (default: 0). log_every (int): Log using print every k steps, default 0 (no logging). d0 (float): Initial D estimate for D-adaptation (default 1e-6). Rarely needs changing. fsdp_in_use (bool): If you're using sharded parameters, this should be set to True. The optimizer will attempt to auto-detect this, but if you're using an implementation other than PyTorch's builtin version, the auto-detection won't work. """ def __init__( self, params, lr: float = 1.0, betas: Tuple[float, float] = (0.9, 0.99), weight_decay: float = 0.0, log_every=0, d0=1e-6, fsdp_in_use=False): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict( lr=lr, betas=betas, weight_decay=weight_decay, d=d0, k=0, log_every=log_every, numerator_weighted=0.0, fsdp_in_use=fsdp_in_use) super().__init__(params, defaults) def step(self, closure: Optional[Callable] = None): loss = None if closure is not None: with torch.enable_grad(): loss = closure() group = self.param_groups[0] numerator_weighted = group['numerator_weighted'] d = group['d'] lr = max(group['lr'] for group in self.param_groups) dlr = d*lr log_every = group['log_every'] fsdp_in_use = group['fsdp_in_use'] beta1, beta2 = group['betas'] sqrt_beta2 = beta2**0.5 numerator_acum = 0.0 sk_l1 = 0.0 for group in self.param_groups: k = group['k'] group_lr = group['lr'] wd = group['weight_decay'] if group_lr not in [lr, 0.0]: raise RuntimeError(f"Setting different lr values in different parameter groups is only supported for values of 0") for p in group['params']: if p.grad is None: continue grad = p.grad state = self.state[p] if 'exp_avg' not in state: state['exp_avg'] = torch.zeros_like(p).detach() state['s'] = torch.zeros_like(p).detach() exp_avg = state['exp_avg'] s = state['s'] #AdamW style weight decay p.data.mul_(1-dlr*wd) update = exp_avg.clone().mul_(beta1).add_(grad, alpha=(1-beta1)).sign_() p.data.add_(update, alpha=-dlr) exp_avg.mul_(beta2).add_(grad, alpha=(1-beta2)*dlr) numerator_acum += dlr * torch.dot(update.flatten(), s.flatten()).item() s.mul_(sqrt_beta2).add_(update, alpha=(1-sqrt_beta2)*dlr) sk_l1 += s.abs().sum().item() numerator_weighted = sqrt_beta2*numerator_weighted + (1-sqrt_beta2)*numerator_acum d_hat = d # if we have not done any progres, return # if we have any gradients available, will have sk_l1 > 0 (unless \|g\|=0) if sk_l1 == 0: return loss if lr > 0.0: if fsdp_in_use: dist_tensor = torch.zeros(2).cuda() dist_tensor[0] = numerator_weighted dist_tensor[1] = sk_l1 dist.all_reduce(dist_tensor, op=dist.ReduceOp.SUM) global_numerator_weighted = dist_tensor[0] global_sk_l1 = dist_tensor[1] else: global_numerator_weighted = numerator_weighted global_sk_l1 = sk_l1 d_hat = global_numerator_weighted/((1-sqrt_beta2)*global_sk_l1) d = max(d, d_hat) if log_every > 0 and k % log_every == 0: logging.info(f"lr: {lr} dlr: {dlr} d_hat: {d_hat}, d: {d}. sk_l1={global_sk_l1:1.1e} numerator_weighted={global_numerator_weighted:1.1e}") for group in self.param_groups: group['numerator_weighted'] = numerator_weighted group['d'] = d group['k'] = group['k'] + 1 return loss
dadaptation-main
dadaptation/dadapt_lion.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from typing import TYPE_CHECKING, Any import torch import torch.optim if TYPE_CHECKING: from torch.optim.optimizer import _params_t else: _params_t = Any def to_real(x): if torch.is_complex(x): return x.real else: return x class DAdaptAdan(torch.optim.Optimizer): r""" Implements Adan with D-Adaptation automatic step-sizes. Has not been as heavily tested as DAdaptAdam and should be considered experimental. Leave LR set to 1 unless you encounter instability. Adan was proposed in Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models[J]. arXiv preprint arXiv:2208.06677, 2022. https://arxiv.org/abs/2208.06677 Arguments: params (iterable): Iterable of parameters to optimize or dicts defining parameter groups. lr (float): Learning rate adjustment parameter. Increases or decreases the D-adapted learning rate. betas (Tuple[float, float, flot], optional): coefficients used for computing running averages of gradient and its norm. (default: (0.98, 0.92, 0.99)) eps (float): Term added to the denominator outside of the root operation to improve numerical stability. (default: 1e-8). weight_decay (float): Weight decay, i.e. a L2 penalty (default: 0.02). no_prox (boolean): how to perform the decoupled weight decay (default: False) log_every (int): Log using print every k steps, default 0 (no logging). d0 (float): Initial D estimate for D-adaptation (default 1e-6). Rarely needs changing. growth_rate (float): prevent the D estimate from growing faster than this multiplicative rate. Default is inf, for unrestricted. Values like 1.02 give a kind of learning rate warmup effect. """ def __init__(self, params, lr=1.0, betas=(0.98, 0.92, 0.99), eps=1e-8, weight_decay=0.02, no_prox=False, log_every=0, d0=1e-6, growth_rate=float('inf')): if not 0.0 < d0: raise ValueError("Invalid d0 value: {}".format(d0)) if not 0.0 < lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 < eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) if not 0.0 <= betas[2] < 1.0: raise ValueError("Invalid beta parameter at index 2: {}".format(betas[2])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, no_prox=no_prox, d = d0, k=0, gsq_weighted=0.0, log_every=log_every, growth_rate=growth_rate) super().__init__(params, defaults) @property def supports_memory_efficient_fp16(self): return False @property def supports_flat_params(self): return True # Experimental implementation of Adan's restart strategy @torch.no_grad() def restart_opt(self): for group in self.param_groups: group['gsq_weighted'] = 0.0 for p in group['params']: if p.requires_grad: state = self.state[p] # State initialization state['step'] = 0 state['s'] = torch.zeros_like(p.data, memory_format=torch.preserve_format).detach() # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data, memory_format=torch.preserve_format).detach() # Exponential moving average of gradient difference state['exp_avg_diff'] = torch.zeros_like(to_real(p.data), memory_format=torch.preserve_format).detach() # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data, memory_format=torch.preserve_format).detach() @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() g_sq = 0.0 sksq_weighted = 0.0 sk_l1 = 0.0 ngroups = len(self.param_groups) group = self.param_groups[0] gsq_weighted = group['gsq_weighted'] d = group['d'] lr = group['lr'] dlr = d*lr no_prox = group['no_prox'] growth_rate = group['growth_rate'] log_every = group['log_every'] beta1, beta2, beta3 = group['betas'] for group in self.param_groups: decay = group['weight_decay'] k = group['k'] eps = group['eps'] for p in group['params']: if p.grad is None: continue grad = p.grad.data state = self.state[p] # State initialization if 'step' not in state: state['step'] = 0 state['s'] = torch.zeros_like(p.data, memory_format=torch.preserve_format).detach() # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data, memory_format=torch.preserve_format).detach() # Exponential moving average of gradient difference state['exp_avg_diff'] = torch.zeros_like(p.data, memory_format=torch.preserve_format).detach() # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(to_real(p.data), memory_format=torch.preserve_format).detach() if state['step'] == 0: # Previous gradient values state['pre_grad'] = grad.clone() exp_avg, exp_avg_diff, exp_avg_sq = state['exp_avg'], state['exp_avg_diff'], state['exp_avg_sq'] grad_diff = grad - state['pre_grad'] grad_grad = to_real(grad * grad.conj()) update = grad + beta2 * grad_diff update_update = to_real(update * update.conj()) exp_avg.mul_(beta1).add_(grad, alpha=dlr*(1. - beta1)) exp_avg_diff.mul_(beta2).add_(grad_diff, alpha=dlr*(1. - beta2)) exp_avg_sq.mul_(beta3).add_(update_update, alpha=1. - beta3) denom = exp_avg_sq.sqrt().add_(eps) g_sq += grad_grad.div_(denom).sum().item() s = state['s'] s.mul_(beta3).add_(grad, alpha=dlr*(1. - beta3)) sksq_weighted += to_real(s * s.conj()).div_(denom).sum().item() sk_l1 += s.abs().sum().item() ###### gsq_weighted = beta3*gsq_weighted + g_sq*(dlr**2)*(1-beta3) d_hat = d # if we have not done any progres, return # if we have any gradients available, will have sk_l1 > 0 (unless \|g\|=0) if sk_l1 == 0: return loss if lr > 0.0: d_hat = (sksq_weighted/(1-beta3) - gsq_weighted)/sk_l1 d = max(d, min(d_hat, d*growth_rate)) if log_every > 0 and k % log_every == 0: print(f"ng: {ngroups} lr: {lr} dlr: {dlr} d_hat: {d_hat}, d: {d}. sksq_weighted={sksq_weighted:1.1e} sk_l1={sk_l1:1.1e} gsq_weighted={gsq_weighted:1.1e}") for group in self.param_groups: group['gsq_weighted'] = gsq_weighted group['d'] = d decay = group['weight_decay'] k = group['k'] eps = group['eps'] for p in group['params']: if p.grad is None: continue grad = p.grad.data state = self.state[p] exp_avg, exp_avg_diff, exp_avg_sq = state['exp_avg'], state['exp_avg_diff'], state['exp_avg_sq'] state['step'] += 1 denom = exp_avg_sq.sqrt().add_(eps) denom = denom.type(p.type()) update = (exp_avg + beta2 * exp_avg_diff).div_(denom) ### Take step if no_prox: p.data.mul_(1 - dlr * decay) p.add_(update, alpha=-1) else: p.add_(update, alpha=-1) p.data.div_(1 + dlr * decay) state['pre_grad'].copy_(grad) group['k'] = k + 1 return loss
dadaptation-main
dadaptation/dadapt_adan.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. from .dadapt_adan_ip import DAdaptAdanIP from .dadapt_adam_preprint import DAdaptAdamPreprint
dadaptation-main
dadaptation/experimental/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math from typing import TYPE_CHECKING, Any, Callable, Optional import torch import torch.optim import pdb import logging import os if TYPE_CHECKING: from torch.optim.optimizer import _params_t else: _params_t = Any def to_real(x): if torch.is_complex(x): return x.real else: return x class DAdaptAdanIP(torch.optim.Optimizer): r""" Implements Adan with D-Adaptation automatic step-sizes. Leave LR set to 1 unless you encounter instability. Adan was proposed in Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models[J]. arXiv preprint arXiv:2208.06677, 2022. https://arxiv.org/abs/2208.06677 This IP variant uses a tighter bound than the non-IP version, and so will typically choose larger step sizes. It has not been as extensively tested. Arguments: params (iterable): Iterable of parameters to optimize or dicts defining parameter groups. lr (float): Learning rate adjustment parameter. Increases or decreases the D-adapted learning rate. betas (Tuple[float, float, flot], optional): coefficients used for computing running averages of gradient and its norm. (default: (0.98, 0.92, 0.99)) eps (float): Term added to the denominator outside of the root operation to improve numerical stability. (default: 1e-8). weight_decay (float): Weight decay, i.e. a L2 penalty (default: 0.02). no_prox (boolean): how to perform the decoupled weight decay (default: False) log_every (int): Log using print every k steps, default 0 (no logging). d0 (float): Initial D estimate for D-adaptation (default 1e-6). Rarely needs changing. growth_rate (float): prevent the D estimate from growing faster than this multiplicative rate. Default is inf, for unrestricted. Values like 1.02 give a kind of learning rate warmup effect. """ def __init__(self, params, lr=1.0, betas=(0.98, 0.92, 0.99), eps=1e-8, weight_decay=0.02, no_prox=False, log_every=0, d0=1e-6, growth_rate=float('inf')): if not 0.0 < d0: raise ValueError("Invalid d0 value: {}".format(d0)) if not 0.0 < lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 < eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) if not 0.0 <= betas[2] < 1.0: raise ValueError("Invalid beta parameter at index 2: {}".format(betas[2])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, no_prox=no_prox, d = d0, k=0, numerator_weighted=0.0, log_every=log_every, growth_rate=growth_rate) self.d0 = d0 super().__init__(params, defaults) @property def supports_memory_efficient_fp16(self): return False @property def supports_flat_params(self): return True # Experimental implementation of Adan's restart strategy @torch.no_grad() def restart_opt(self): for group in self.param_groups: group['numerator_weighted'] = 0.0 for p in group['params']: if p.requires_grad: state = self.state[p] # State initialization state['step'] = 0 state['s'] = torch.zeros_like(p.data, memory_format=torch.preserve_format).detach() # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data, memory_format=torch.preserve_format).detach() # Exponential moving average of gradient difference state['exp_avg_diff'] = torch.zeros_like(to_real(p.data), memory_format=torch.preserve_format).detach() # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data, memory_format=torch.preserve_format).detach() @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() g_sq = 0.0 sksq_weighted = 0.0 sk_l1 = 0.0 ngroups = len(self.param_groups) group = self.param_groups[0] numerator_weighted = group['numerator_weighted'] d = group['d'] lr = group['lr'] dlr = d*lr no_prox = group['no_prox'] growth_rate = group['growth_rate'] log_every = group['log_every'] beta1, beta2, beta3 = group['betas'] numerator_acum = 0.0 for group in self.param_groups: decay = group['weight_decay'] k = group['k'] eps = group['eps'] for p in group['params']: if p.grad is None: continue grad = p.grad.data state = self.state[p] # State initialization if 'step' not in state: state['step'] = 0 state['s'] = torch.zeros_like(p.data, memory_format=torch.preserve_format).detach() # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data, memory_format=torch.preserve_format).detach() # Exponential moving average of gradient difference state['exp_avg_diff'] = torch.zeros_like(p.data, memory_format=torch.preserve_format).detach() # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(to_real(p.data), memory_format=torch.preserve_format).detach() if state['step'] == 0: # Previous gradient values state['pre_grad'] = grad.clone() exp_avg, exp_avg_sq, exp_avg_diff = state['exp_avg'], state['exp_avg_diff'], state['exp_avg_sq'] grad_diff = grad - state['pre_grad'] update = grad + beta2 * grad_diff update_update = to_real(update * update.conj()) s = state['s'] denom = exp_avg_sq.sqrt().add_(eps) numerator_acum += dlr * torch.dot(grad.flatten(), s.div(denom).flatten()) exp_avg.mul_(beta1).add_(grad, alpha=dlr*(1. - beta1)) exp_avg_diff.mul_(beta2).add_(grad_diff, alpha=dlr*(1. - beta2)) exp_avg_sq.mul_(beta3).add_(update_update, alpha=1. - beta3) s.mul_(beta3).add_(grad, alpha=dlr*(1. - beta3)) sk_l1 += s.abs().sum().item() ###### numerator_weighted = beta3*numerator_weighted + (1-beta3)*numerator_acum d_hat = d # if we have not done any progres, return # if we have any gradients available, will have sk_l1 > 0 (unless \|g\|=0) if sk_l1 == 0: return loss if lr > 0.0: d_hat = 2*(beta3/(1-beta3))*numerator_weighted/sk_l1 d = max(d, min(d_hat, d*growth_rate)) if log_every > 0 and k % log_every == 0: print(f"ng: {ngroups} lr: {lr} dlr: {dlr} d_hat: {d_hat}, d: {d}. sk_l1={sk_l1:1.1e} numerator_weighted={numerator_weighted:1.1e}") for group in self.param_groups: group['numerator_weighted'] = numerator_weighted group['d'] = d decay = group['weight_decay'] k = group['k'] eps = group['eps'] for p in group['params']: if p.grad is None: continue grad = p.grad.data state = self.state[p] exp_avg, exp_avg_sq, exp_avg_diff = state['exp_avg'], state['exp_avg_diff'], state['exp_avg_sq'] state['step'] += 1 denom = exp_avg_sq.sqrt().add_(eps) denom = denom.type(p.type()) update = (exp_avg + beta2 * exp_avg_diff).div_(denom) ### Take step if no_prox: p.data.mul_(1 - dlr * decay) p.add_(update, alpha=-1) else: p.add_(update, alpha=-1) p.data.div_(1 + dlr * decay) state['pre_grad'].copy_(grad) group['k'] = k + 1 return loss
dadaptation-main
dadaptation/experimental/dadapt_adan_ip.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import math from typing import TYPE_CHECKING, Any, Callable, Optional import torch import torch.optim import pdb import logging import os import torch.distributed as dist if TYPE_CHECKING: from torch.optim.optimizer import _params_t else: _params_t = Any def to_real(x): if torch.is_complex(x): return x.real else: return x class DAdaptAdamPreprint(torch.optim.Optimizer): r""" This is an earlier variant of D-Adapt Adam used in early preprints of the paper, and source code releases V1 and V2. Use this if you encounter performance regressions after the latest update. Arguments: params (iterable): Iterable of parameters to optimize or dicts defining parameter groups. lr (float): Learning rate adjustment parameter. Increases or decreases the D-adapted learning rate. betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) momentum (float): Momentum value in the range [0,1) (default: 0.9). eps (float): Term added to the denominator outside of the root operation to improve numerical stability. (default: 1e-8). weight_decay (float): Weight decay, i.e. a L2 penalty (default: 0). log_every (int): Log using print every k steps, default 0 (no logging). decouple (boolean): Use AdamW style decoupled weight decay d0 (float): Initial D estimate for D-adaptation (default 1e-6). Rarely needs changing. growth_rate (float): prevent the D estimate from growing faster than this multiplicative rate. Default is inf, for unrestricted. Values like 1.02 give a kind of learning rate warmup effect. fsdp_in_use (bool): If you're using sharded parameters, this should be set to True. The optimizer will attempt to auto-detect this, but if you're using an implementation other than PyTorch's builtin version, the auto-detection won't work. """ def __init__(self, params, lr=1.0, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, log_every=0, decouple=False, d0=1e-6, growth_rate=float('inf'), fsdp_in_use=False): if not 0.0 < d0: raise ValueError("Invalid d0 value: {}".format(d0)) if not 0.0 < lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 < eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) if decouple: print(f"Using decoupled weight decay") defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, d = d0, k=0, gsq_weighted=0.0, log_every=log_every, decouple=decouple, growth_rate=growth_rate, fsdp_in_use=fsdp_in_use) super().__init__(params, defaults) @property def supports_memory_efficient_fp16(self): return False @property def supports_flat_params(self): return True def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() g_sq = 0.0 sksq_weighted = 0.0 sk_l1 = 0.0 lr = max(group['lr'] for group in self.param_groups) group = self.param_groups[0] gsq_weighted = group['gsq_weighted'] d = group['d'] dlr = d*lr growth_rate = group['growth_rate'] decouple = group['decouple'] fsdp_in_use = group['fsdp_in_use'] log_every = group['log_every'] beta1, beta2 = group['betas'] for group in self.param_groups: group_lr = group['lr'] decay = group['weight_decay'] k = group['k'] eps = group['eps'] if group_lr not in [lr, 0.0]: raise RuntimeError(f"Setting different lr values in different parameter groups is only supported for values of 0") for p in group['params']: if p.grad is None: continue if hasattr(p, "_fsdp_flattened"): fsdp_in_use = True grad = p.grad.data # Apply weight decay (coupled variant) if decay != 0 and not decouple: grad.add_(p.data, alpha=decay) state = self.state[p] # State initialization if 'step' not in state: state['step'] = 0 state['s'] = torch.zeros_like(p.data, memory_format=torch.preserve_format).detach() # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data, memory_format=torch.preserve_format).detach() # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(to_real(p.data), memory_format=torch.preserve_format).detach() exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] grad_grad = to_real(grad * grad.conj()) # Adam EMA updates if group_lr > 0: exp_avg.mul_(beta1).add_(grad, alpha=dlr*(1-beta1)) exp_avg_sq.mul_(beta2).add_(grad_grad, alpha=1-beta2) denom = exp_avg_sq.sqrt().add_(eps) g_sq += grad_grad.div_(denom).sum().item() s = state['s'] s.mul_(beta2).add_(grad, alpha=dlr*(1-beta2)) sksq_weighted += to_real(s * s.conj()).div_(denom).sum().item() sk_l1 += s.abs().sum().item() ###### gsq_weighted = beta2*gsq_weighted + g_sq*(dlr**2)*(1-beta2) d_hat = d # if we have not done any progres, return # if we have any gradients available, will have sk_l1 > 0 (unless \|g\|=0) if sk_l1 == 0: return loss if lr > 0.0: if fsdp_in_use: dist_tensor = torch.zeros(3).cuda() dist_tensor[0] = sksq_weighted dist_tensor[1] = gsq_weighted dist_tensor[2] = sk_l1 dist.all_reduce(dist_tensor, op=dist.ReduceOp.SUM) global_sksq_weighted = dist_tensor[0] global_gsq_weighted = dist_tensor[1] global_sk_l1 = dist_tensor[2] else: global_sksq_weighted = sksq_weighted global_gsq_weighted = gsq_weighted global_sk_l1 = sk_l1 d_hat = (global_sksq_weighted/(1-beta2) - global_gsq_weighted)/global_sk_l1 d = max(d, min(d_hat, d*growth_rate)) if log_every > 0 and k % log_every == 0: logging.info( f"(k={k}) dlr: {dlr:1.1e} d_hat: {d_hat:1.1e}, d: {d:1.8}. " f"sksq_weighted={global_sksq_weighted:1.1e} gsq_weighted={global_gsq_weighted:1.1e} " f"sk_l1={global_sk_l1:1.1e}{' (FSDP)' if fsdp_in_use else ''}") for group in self.param_groups: group['gsq_weighted'] = gsq_weighted group['d'] = d group_lr = group['lr'] decay = group['weight_decay'] k = group['k'] eps = group['eps'] for p in group['params']: if p.grad is None: continue grad = p.grad.data state = self.state[p] exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] state['step'] += 1 denom = exp_avg_sq.sqrt().add_(eps) denom = denom.type(p.type()) # Apply weight decay (decoupled variant) if decay != 0 and decouple and group_lr > 0: p.data.add_(p.data, alpha=-decay * dlr) ### Take step p.data.addcdiv_(exp_avg, denom, value=-1) group['k'] = k + 1 return loss
dadaptation-main
dadaptation/experimental/dadapt_adam_preprint.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import sys sys.path.insert(0, './pytorch-seq2seq/') from seq2seq.models import EncoderRNN from seq2seq.loss import Perplexity, NLLLoss from seq2seq.optim import Optimizer from t2s import SamplingDecoderRNN as DecoderRNN from t2s.util import dump_agent from t2s import T2S, Seq2seq from t2s.evaluator import PolyEvaluator from t2s.trainer import MirrorTrainer import argparse import pickle import random from torch import nn import numpy as np import torch import torchtext from torchtext.data import Field device = torch.cuda.current_device() if torch.cuda.is_available() else None def set_seed(seed): random.seed(seed) torch.manual_seed(seed) np.random.seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) if __name__ == '__main__': ### Define params ### parser = argparse.ArgumentParser() parser.add_argument('--random_seed', default=1234, type=int, help='random seed to initialize your model') parser.add_argument('--hidden_size', default=8, type=int, help='Size of the hidden layer of the encoder and decoder (default 8)') parser.add_argument('--batch_size', default=32, type=int, help='batch size (default 32)') parser.add_argument('--n_layers', default=1, type=int, help='number of hidden layers of the encoder and decoder (default 1)') parser.add_argument('--n_epochs', default=10, type=int, help='number of training epochs (default 10)') parser.add_argument('--teacher_forcing_ratio', default=1.0, type=float, help='teacher_forcing_ratio: teaching forcing ratio (default 1). Only applicable ' 'when one of the agents is trained.') parser.add_argument('--use_attention', default=1, type=int, help='attention') parser.add_argument('--polyglot', default=0, type=int, help='how to optimize teacher part') parser.add_argument('--generations', default=0, type=int, help='Agent generations in the iterated learning') parser.add_argument('--data_path_prefix', default='./data/Iconic_LessCounting/iconicity_markers', help='where to find the supervised training set for the student and the teacher') parser.add_argument('--pretrain_agent', default=0, type=int, help="Toggle this option to pretrain a model as a S2S model") parser.add_argument('--tied', default=1, type=int, help="""Integer 0 or 1. If 1, tie the encoder's input embedding and the decoder's outputs matrix""") parser.add_argument('--save_model_path', default='model', help='where to save the model') parser.add_argument('--init_A1', type=str, help='Load a pre-trained model') parser.add_argument('--init_A1_from_A2', type=str, help='Load a pre-trained model') parser.add_argument('--max_len', default=30, type=int, help="Maximum length of the sequences") parser.add_argument('--explosion_train', default=20, type=int, help="During training, how many instructions to sample") parser.add_argument('--explosion_eval', default=120, type=int, help="Maximal number of permutations for instructions") parser.add_argument('--eval', default=None, type=str, help="Evaluate the A12 agent (use with --init_A1 or --init_A1_from_A2)") parser.add_argument('--no_dev_eval', default=0, type=int, help="Disable evaluation during training") parser.add_argument('--no_test_eval', default=1, type=int, help="Disable evaluation during training") args = parser.parse_args() print(args, flush=True) use_attention = args.use_attention == 1 tied = args.tied == 1 polyglot = args.polyglot == 1 if polyglot and not args.pretrain_agent: assert False, "Shouldn't use polyglot when not pre-training" set_seed(args.random_seed) language = args.data_path_prefix.split('/')[-1] save_model_path = f'./experiment/models/{args.save_model_path}_attention{args.use_attention}_hidden{args.hidden_size}_batch{args.batch_size}_epoch{args.n_epochs}_tied{args.tied}_seed{args.random_seed}.p' teacher_train_path = f'{args.data_path_prefix}_teacher/train/action_instruction.txt' teacher_dev_path = f'{args.data_path_prefix}_teacher/dev/action_instruction.txt' teacher_test_path = f'{args.data_path_prefix}_teacher/test/action_instruction.txt' all_dataset_vocab = './data/Iconic_LessCounting/vocabulary.txt' field = Field(preprocessing=lambda x: [ '<sos>'] + x + ['<eos>'], unk_token=None, batch_first=True, include_lengths=True, pad_token='<pad>') vocab = torchtext.data.TabularDataset( path=all_dataset_vocab, format='tsv', fields=[('src', field), ('tgt', field)] ) field.build_vocab(vocab, max_size=50000) teacher_train = torchtext.data.TabularDataset( path=teacher_train_path, format='tsv', fields=[('src', field), ('tgt', field)] ) teacher_dev = torchtext.data.TabularDataset( path=teacher_dev_path, format='tsv', fields=[('src', field), ('tgt', field)] ) teacher_test = torchtext.data.TabularDataset( path=teacher_test_path, format='tsv', fields=[('src', field), ('tgt', field)] ) print("Vocab: {}".format(field.vocab.stoi), flush=True) bidirectional = False rnn_cell = 'lstm' def get_seq2seq(): decoder = DecoderRNN(len(field.vocab.stoi), args.max_len, args.hidden_size * 2 if bidirectional else args.hidden_size, n_layers=args.n_layers, rnn_cell=rnn_cell, input_dropout_p=0.0, dropout_p=0.0, use_attention=use_attention, bidirectional=bidirectional, eos_id=field.vocab.stoi['<eos>'], sos_id=field.vocab.stoi['<sos>']).to(device) if tied: # compatibility with the older code nn.init.normal_(decoder.out.weight) encoder = EncoderRNN(len(field.vocab.stoi), args.max_len, args.hidden_size, input_dropout_p=0.0, dropout_p=0.0, n_layers=args.n_layers, bidirectional=bidirectional, rnn_cell=rnn_cell, variable_lengths=True, embedding=(decoder.out.weight if tied else None)).to(device) return Seq2seq(encoder, decoder) if args.init_A1: with open(args.init_A1, "rb") as fin: m = pickle.load(fin) if hasattr(m, "A1"): A1 = m.A1 print('Loaded A1 as submodel') else: A1 = m A1.to(device) else: A1 = get_seq2seq() if args.init_A1_from_A2: with open(args.init_A1_from_A2, "rb") as fin: A1 = pickle.load(fin).A2.to(device) print('Loaded A1 as an A2 submodel') A1.flatten_parameters() weight = torch.ones(len(field.vocab.stoi), device=device) pad = field.vocab.stoi['<pad>'] loss = NLLLoss(weight, pad) train_dataset = teacher_train dev_dataset = teacher_dev test_dataset = teacher_test if args.eval is not None: evaluator = PolyEvaluator( loss=loss, explosion_rate=args.explosion_eval, batch_size=2048, polyglot=polyglot) with open(args.eval, "rb") as fin: model = pickle.load(fin) eval_results = evaluator.evaluate(model, dev_dataset) dev_loss, teacher_accuracy, student_accuracy = eval_results log_msg = "Dev %s: %.4f, Accuracy Teacher: %.4f, Accuracy Student: %.4f" % ( loss.name, dev_loss, teacher_accuracy, student_accuracy) print(log_msg, flush=True) def train_model(m, poly, pretraining): m.train() optimizer = Optimizer(torch.optim.Adam( m.parameters(), amsgrad=True), max_grad_norm=5) t = MirrorTrainer(loss=loss, batch_size=args.batch_size, checkpoint_every=100, expt_dir="./experiments", pretraining=pretraining, polyglot=poly, explosion_train=args.explosion_train, explosion_eval=args.explosion_eval) m = t.train(m, train_dataset, n_epochs=args.n_epochs, dev_data=(None if args.no_dev_eval == 1 else dev_dataset), test_data=(None if args.no_test_eval == 1 else test_dataset), optimizer=optimizer, teacher_forcing_ratio=args.teacher_forcing_ratio, resume=False) return m def dump(agent, path): return dump_agent(agent, torchtext.data.BucketIterator(dataset=dev_dataset, batch_size=1024, sort=True, sort_within_batch=True, sort_key=lambda x: len(x.src), device=("cuda" if torch.cuda.is_available() else "cpu"), repeat=False), path, field) if args.pretrain_agent: A1 = train_model(A1, polyglot, pretraining=True) evaluator = PolyEvaluator( loss=loss, explosion_rate=args.explosion_eval, batch_size=2048, polyglot=polyglot) with open(save_model_path, 'wb') as fout: pickle.dump(A1, fout) print(f"Saved model to {save_model_path}") dump_path = f"{save_model_path}.dump" dump(A1, dump_path) print(f"Saved model dump to {dump_path}") if args.generations > 0: for gen in range(1, args.generations + 1): set_seed(args.random_seed + gen) print("*" * 10, f"Starting generation #{gen}", "*" * 10) A2 = get_seq2seq() A2.flatten_parameters() t2s = T2S(A1, A2) t2s = train_model(t2s, poly=False, pretraining=False) evaluator = PolyEvaluator( loss=loss, explosion_rate=args.explosion_eval, batch_size=2048, polyglot=False) eval_results = evaluator.evaluate(t2s, dev_dataset) dev_loss, teacher_accuracy, student_accuracy = eval_results log_msg = "Dev %s: %.4f, Accuracy Teacher: %.4f, Accuracy Student: %.4f" % ( loss.name, dev_loss, teacher_accuracy, student_accuracy) print(log_msg, flush=True) evaluator = PolyEvaluator( loss=loss, explosion_rate=args.explosion_eval, batch_size=2048, polyglot=True) eval_results = evaluator.evaluate(t2s.A2, dev_dataset) dev_loss, teacher_accuracy, student_accuracy = eval_results log_msg = "Dev %s: %.4f, Accuracy Teacher GT: %.4f, Accuracy Student GT: %.4f" % ( loss.name, dev_loss, teacher_accuracy, student_accuracy) print(log_msg, flush=True) name = f"{save_model_path}.iteration_{gen}" with open(name, 'wb') as fout: pickle.dump(t2s, fout) print(f"Saved model to {name}") dump_path = f"{name}.dump" dump(t2s.A2, dump_path) print(f"Saved model dump to {dump_path}") A1 = t2s.A2
brica-master
train.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import numpy as np import random from torch.distributions import Categorical import torch.nn.functional as F from seq2seq.models import DecoderRNN class SamplingDecoderRNN(DecoderRNN): """ Drop-in replacement for DecoderRNN that _always_ samples sequences (even during the evaluation phase). """ def __init__(self, *args, **kwargs): super(SamplingDecoderRNN, self).__init__(*args, **kwargs) def forward(self, inputs=None, encoder_hidden=None, encoder_outputs=None, function=F.log_softmax, teacher_forcing_ratio=0): ret_dict = dict() if self.use_attention: ret_dict[DecoderRNN.KEY_ATTN_SCORE] = list() inputs, batch_size, max_length = self._validate_args(inputs, encoder_hidden, encoder_outputs, function, teacher_forcing_ratio) decoder_hidden = self._init_state(encoder_hidden) use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False decoder_outputs = [] sequence_symbols = [] lengths = np.array([max_length] * batch_size) def decode(step, step_output, step_attn): decoder_outputs.append(step_output) if self.use_attention: ret_dict[DecoderRNN.KEY_ATTN_SCORE].append(step_attn) # NB: here we changed argmax for sampling symbols = Categorical(logits=step_output).sample().unsqueeze(1) # sequence_symbols.append(symbols) eos_batches = symbols.data.eq(self.eos_id) if eos_batches.dim() > 0: eos_batches = eos_batches.cpu().view(-1).numpy() update_idx = ((lengths > step) & eos_batches) != 0 lengths[update_idx] = len(sequence_symbols) return symbols # Manual unrolling is used to support random teacher forcing. # If teacher_forcing_ratio is True or False instead of a probability, the unrolling can be done in graph if use_teacher_forcing: decoder_input = inputs[:, :-1] decoder_output, decoder_hidden, attn = self.forward_step(decoder_input, decoder_hidden, encoder_outputs, function=function) for di in range(decoder_output.size(1)): step_output = decoder_output[:, di, :] if attn is not None: step_attn = attn[:, di, :] else: step_attn = None decode(di, step_output, step_attn) else: decoder_input = inputs[:, 0].unsqueeze(1) for di in range(max_length): decoder_output, decoder_hidden, step_attn = self.forward_step(decoder_input, decoder_hidden, encoder_outputs, function=function) step_output = decoder_output.squeeze(1) symbols = decode(di, step_output, step_attn) decoder_input = symbols ret_dict[DecoderRNN.KEY_SEQUENCE] = sequence_symbols ret_dict[DecoderRNN.KEY_LENGTH] = lengths.tolist() return decoder_outputs, decoder_hidden, ret_dict
brica-master
t2s/sampling_decoder.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn import torch.nn.functional as F class Seq2seq(nn.Module): def __init__(self, encoder, decoder): super(Seq2seq, self).__init__() self.encoder = encoder self.decoder = decoder @staticmethod def get_batch_permutation(lengths, device): """ Returns a permutation and its reverse that turns `lengths` in a sorted list in descending order. >>> lengths = [4, 1, 0, 100] >>> permutation, inverse = Seq2seq.get_batch_permutation(lengths, torch.device("cpu")) >>> permutation tensor([3, 0, 1, 2]) >>> rearranged = torch.index_select(torch.tensor(lengths), 0, permutation) >>> rearranged tensor([100, 4, 1, 0]) >>> torch.index_select(rearranged, 0, inverse) tensor([ 4, 1, 0, 100]) """ lengths = torch.tensor(lengths, device=device) _, rearrange = torch.sort(lengths, descending=True) inverse = torch.zeros_like(lengths) for i, v in enumerate(rearrange): inverse[v] = i return rearrange.to(device), inverse.to(device) def rearrange_output(self, rearrange, decoder_outputs, other): new_other = {} new_other[self.decoder.KEY_LENGTH] = [ other[self.decoder.KEY_LENGTH][i] for i in rearrange] new_other[self.decoder.KEY_SEQUENCE] = [torch.index_select( s, 0, rearrange) for s in other[self.decoder.KEY_SEQUENCE]] new_decoder_outputs = [torch.index_select( t, 0, rearrange) for t in decoder_outputs] return new_decoder_outputs, new_other def flatten_parameters(self): self.encoder.rnn.flatten_parameters() self.decoder.rnn.flatten_parameters() def forward(self, input_variable, input_lengths=None, target_variable=None, teacher_forcing_ratio=0, presorted=False): if not input_lengths is None and not presorted: rearrange, inverse = self.get_batch_permutation( input_lengths, input_variable.device) input_variable = torch.index_select(input_variable, 0, rearrange) input_lengths = [input_lengths[i] for i in rearrange] if not target_variable is None: target_variable = torch.index_select( target_variable, 0, rearrange) encoder_outputs, encoder_hidden = self.encoder( input_variable, input_lengths) result = self.decoder(inputs=target_variable, encoder_hidden=encoder_hidden, encoder_outputs=encoder_outputs, function=F.log_softmax, teacher_forcing_ratio=teacher_forcing_ratio) if not input_lengths is None and not presorted: decoder, other = self.rearrange_output( inverse, result[0], result[2]) result = decoder, None, other batch_size = input_variable.size(0) sos_tensor = torch.tensor( [self.decoder.sos_id] * batch_size, device=input_variable.device).view(-1, 1) # add sos at the start key = self.decoder.KEY_SEQUENCE result[2][key] = [sos_tensor] + result[2][key] return result
brica-master
t2s/s2s.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import itertools import random import json def repeat_explode(input, input_length, n_times): """ >>> input, input_length = torch.tensor([[5, 1, 2, 3, 4, 0]]), torch.tensor([5]) >>> exploded_input, exploded_input_length, src_id = repeat_explode(input=input, input_length=input_length, n_times=3) >>> exploded_input tensor([[5, 1, 2, 3, 4, 0], [5, 1, 2, 3, 4, 0], [5, 1, 2, 3, 4, 0]]) >>> exploded_input_length tensor([5, 5, 5]) >>> src_id [0, 0, 0] """ new_input, new_input_length = [], [] src_id = [] for i in range(input.size(0)): new_input.extend([input[i, :]] * n_times) new_input_length.extend([input_length[i]] * n_times) src_id.extend([i] * n_times) device = input.device new_input = torch.stack(new_input).to(device) new_input_length = torch.tensor(new_input_length, device=device) return new_input, new_input_length, src_id def pretrain_explode(input, input_length, target_variable, polyglot, sos, eos, pad, sample, n_samples): """ Batch explosion logic; makes it possible to train an agent on samples from another agent. Examples: >>> input, input_length = torch.tensor([[5, 1, 2, 3, 4, 0]]), torch.tensor([5]) >>> target, target_length = torch.tensor([[5, 100, 200, 300, 400, 500, 600, 4, 0, 0]]), torch.tensor([8]) >>> random.seed(7) >>> exploded = pretrain_explode(input=input, input_length=input_length, target_variable=(target, target_length), polyglot=True, sos=5, eos=4, pad=0, n_samples=3, sample=True) >>> exploded_input, exploded_input_length, (exploded_target, exploded_target_length), src_ids = exploded >>> exploded_input tensor([[5, 1, 2, 3, 4, 0], [5, 1, 2, 3, 4, 0], [5, 1, 2, 3, 4, 0]]) >>> exploded_input_length tensor([5, 5, 5]) >>> exploded_target tensor([[ 5, 100, 200, 300, 400, 500, 600, 4, 0, 0], [ 5, 100, 200, 300, 400, 500, 600, 4, 0, 0], [ 5, 400, 500, 600, 100, 200, 300, 4, 0, 0]]) >>> exploded_target_length tensor([8, 8, 8]) >>> src_ids [0, 0, 0] >>> # now w/o sampling; all possible permutations >>> exploded = pretrain_explode(input=input, input_length=input_length, target_variable=(target, target_length), polyglot=True, sos=5, eos=4, pad=0, n_samples=6, sample=False) >>> exploded_input, exploded_input_length, (exploded_target, exploded_target_length), src_ids = exploded >>> exploded_target tensor([[ 5, 100, 200, 300, 400, 500, 600, 4, 0, 0], [ 5, 400, 500, 600, 100, 200, 300, 4, 0, 0]]) >>> src_ids [0, 0] """ new_input, new_length, new_target, new_target_length, src_ids = [], [], [], [], [] batch_size = input.size(0) target, target_length = target_variable np_target = target.cpu().numpy() max_len = target.size(1) for i in range(batch_size): l = target_length[i].item() grouped = np_target[i, 1:l-1].reshape(-1, 3) n_trigram = grouped.shape[0] all_permutations = list(itertools.permutations( range(n_trigram))) if polyglot else [range(n_trigram)] selected_permutations = random.choices( all_permutations, k=n_samples) if sample else all_permutations for permutation in selected_permutations: permutation = grouped[permutation, :].reshape(-1) new_input.append(input[i, :]) new_length.append(input_length[i]) permutation = [sos] + permutation.tolist() + [eos] + \ [pad] * (max_len - l) new_target.append(permutation) new_target_length.append(l) src_ids.append(i) device = input.device new_input = torch.stack(new_input).to(device) new_length = torch.tensor(new_length, device=device) new_target_length = torch.tensor(new_target_length, device=device) new_target = torch.tensor(new_target, device=device) return new_input, new_length, (new_target, new_target_length), src_ids def cut_after_eos(seq): try: p = seq.index("<eos>") out_seq = seq[:p+1] except ValueError: out_seq = seq return out_seq class LangStats: def __init__(self): self.language_stats = {} def push_stat(self, terms): length = self.get_length(terms) name = self.get_language_name(terms) if length not in self.language_stats: self.language_stats[length] = {} self.language_stats[length][name] = self.language_stats[length].get( name, 0) + 1 def get_length(self, terms): # minus <sos>, <eos> return len(terms) - 2 def get_language_name(self, terms): name = [] for term in terms: if term in ['first', 'then', 'finally'] + [f'M{i}' for i in range(6)]: name.append(term) return '-'.join(name) def get_json(self): result = {} for key, distr in self.language_stats.items(): per_length = list(distr.items()) per_length = sorted(per_length, key=lambda x: x[1], reverse=True) result[key] = per_length return json.dumps(result) def dump_agent(A, iterator, output_file, field, instruction_explosion_rate=10): def id_to_text(ids): return [field.vocab.itos[x.item()] for x in ids] stats = LangStats() with torch.no_grad(), open(output_file, 'w') as log: batch_generator = iterator.__iter__() src = [] for batch in batch_generator: tasks = [(batch.src, instruction_explosion_rate, "a->i"), (batch.tgt, 1, "i->a")] for ((src, length), explosion_rate, name) in tasks: src, length, src_id = repeat_explode( src, length, explosion_rate) _1, _2, other = A.forward(src, length, None, 0.0) out = torch.stack(other['sequence']).squeeze(2).permute(1, 0) prev_src_id = src_id[0] for i in range(src.size(0)): if src_id[i] != prev_src_id: prev_src_id = src_id[i] print("*"*20, file=log) src_seq = cut_after_eos(id_to_text(src[i, :])) out_seq = cut_after_eos(id_to_text(out[i, :])) print(src_seq, "->", out_seq, file=log) if name == "a->i": stats.push_stat(out_seq) print("*"*20, file=log) print("-"*20, file=log) print(stats.get_json(), file=log)
brica-master
t2s/util.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch import torch.nn as nn class T2S(nn.Module): def __init__(self, A1, A2): super(T2S, self).__init__() self.A1 = A1 self.A2 = A2 def get_lengths(self, sequence, eos_id): eos = sequence.eq(eos_id) # eos contains ones on positions where <eos> occur in the outputs, and zeros otherwise # eos.cumsum(dim=1) would contain non-zeros on all positions after <eos> occurred # eos.cumsum(dim=1) > 0 would contain ones on all positions after <eos> occurred # (eos.cumsum(dim=1) > 0).sum(dim=1) equates to the number of timestamps that happened after <eos> occured (including it) # eos.size(1) - (eos.cumsum(dim=1) > 0).sum(dim=1) is the number of steps before eos took place lengths = eos.size(1) - (eos.cumsum(dim=1) > 0).sum(dim=1) return lengths def forward(self, input_variable, input_lengths, target_variable, teacher_forcing_ratio=0.0, presorted=False): # turn off sampling in the teacher or in the student # when needed. A1 = self.A1 with torch.no_grad(): teacher_decoder_outputs, _, teacher_other = A1( input_variable, input_lengths, None, 0.0, presorted=presorted) sequence_tensor = torch.stack(teacher_other['sequence']).squeeze(2).permute(1, 0) t_out_lengths = self.get_lengths( sequence_tensor, A1.decoder.eos_id) # NOTE: we increase len by 1 so that the final <eos> is also # fed into the student. At the same time, it might be the case that # the teacher never produced <eos>. In tat case, we cap length. max_len = len(teacher_other['sequence']) t_out_lengths.add_(1.0).clamp_(max=max_len) student_decoder_outputs, _, student_other = self.A2(sequence_tensor, t_out_lengths, target_variable=target_variable, teacher_forcing_ratio=teacher_forcing_ratio) student_other['teacher_decoder'] = teacher_other['sequence'] student_other['teacher_decoder_outputs'] = teacher_decoder_outputs student_other['teacher_dict'] = teacher_other student_other['teacher_lengths'] = t_out_lengths return student_decoder_outputs, None, student_other
brica-master
t2s/t2s.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from .s2s import Seq2seq from .t2s import T2S from .util import dump_agent from .sampling_decoder import SamplingDecoderRNN
brica-master
t2s/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from .poly_evaluator import PolyEvaluator
brica-master
t2s/evaluator/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from __future__ import print_function, division from ..util import repeat_explode, pretrain_explode from seq2seq.loss import NLLLoss import seq2seq import torch import torchtext import sys sys.path.insert(0, 'pytorch_seq2seq') class PolyEvaluator(object): """ Class to evaluate models with given datasets. Args: loss (seq2seq.loss, optional): loss for evaluator (default: seq2seq.loss.NLLLoss) batch_size (int, optional): batch size for evaluator (default: 64) """ def __init__(self, loss=NLLLoss(), explosion_rate=120, batch_size=1024, polyglot=False): self.loss = loss self.batch_size = batch_size self.polyglot = polyglot self.explosion_rate = explosion_rate def evaluate(self, model, data): """ Evaluate a model on given dataset and return performance. Args: model (seq2seq.models): model to evaluate data (seq2seq.dataset.dataset.Dataset): dataset to evaluate against Returns: loss (float): loss of the given model on the given dataset """ loss = self.loss loss.reset() student_match, teacher_match = 0, 0 student_total, teacher_total = 0, 0 device = torch.device("cuda") if torch.cuda.is_available() else None batch_iterator = torchtext.data.BucketIterator( dataset=data, batch_size=self.batch_size, sort=True, sort_key=lambda x: len(x.src), device=device, train=False) tgt_vocab = data.fields[seq2seq.tgt_field_name].vocab pad = tgt_vocab.stoi[data.fields[seq2seq.tgt_field_name].pad_token] def eval_one_way(m, src, src_len, dst): decoder_outputs, decoder_hidden, other = m(src, src_len, dst) for step, step_output in enumerate(decoder_outputs): target = dst[:, step + 1] loss.eval_batch(step_output.view(dst.size(0), -1), target) match, total = 0, 0 seqlist = other['sequence'][1:] # cut <sos> predictions = torch.stack(seqlist).squeeze(2).permute(1, 0) for i in range(src.size(0)): total += 1 target = dst[i, 1:] non_padding = target.ne(pad) correct = predictions[i].view(-1).eq( target).masked_select(non_padding).sum().item() len_non_padding = non_padding.sum().item() if correct == len_non_padding: match += 1 return total, match def eval_polyglot_T(m, src, src_len, tgt, tgt_exploded, instance_ids): "A bit tricky, as we want to allow any valid output out of possible permutations" decoder_outputs, _, other = m(src, src_len, tgt) seqlist = other['sequence'] seqlist = torch.stack(seqlist) output_seq = seqlist.squeeze(2).permute(1, 0) acc = [0.0 for _ in range(src.size(0))] for example_id in range(src.size(0)): # get the possible target candidates candidate_index = [i for i in range( len(instance_ids)) if instance_ids[i] == example_id] for index in candidate_index: if acc[example_id] == 1: # already matched, no point in comparing continue target_candidate = tgt_exploded[index] non_padding = target_candidate.ne(pad) correct = output_seq[example_id, :].view(-1).eq( target_candidate).masked_select(non_padding).sum().item() len_non_padding = non_padding.sum().item() if correct == len_non_padding: acc[example_id] = 1 return len(acc), sum(acc) with torch.no_grad(): for batch in batch_iterator: input_variable, input_lengths = getattr( batch, seq2seq.src_field_name) target_variable = getattr(batch, seq2seq.tgt_field_name) if hasattr(model, "A2"): A1 = model.A1 exploded_input_variable, exploded_input_lengths, src_ids = repeat_explode( input_variable, input_lengths, n_times=self.explosion_rate) teacher_decoder_outputs, _, teacher_other = A1( exploded_input_variable, exploded_input_lengths, None, 0.0) max_len = len(teacher_other['sequence']) A1_target_variable = torch.stack(teacher_other['sequence']).squeeze(2).permute(1, 0) t_out_lengths = model.get_lengths( A1_target_variable, A1.decoder.eos_id).add_(1.0).clamp_(max=max_len) A1_target_variable = torch.stack( teacher_other['sequence']).squeeze(2).permute(1, 0) for i in range(A1_target_variable.size(0)): l = t_out_lengths[i] A1_target_variable[i, l:] = pad A2 = model.A2 _total, _match = eval_one_way( A2, A1_target_variable, t_out_lengths, exploded_input_variable) student_total += _total student_match += _match _total, _match = eval_polyglot_T( A2, input_variable, input_lengths, None, A1_target_variable, src_ids) teacher_total += _total teacher_match += _match else: A1 = model exploded_input, exploded_input_length, (exploded_target, exploded_target_length), src_ids = \ pretrain_explode(input=input_variable, input_length=input_lengths, target_variable=target_variable, polyglot=self.polyglot, sos=tgt_vocab.stoi[ '<sos>'], eos=tgt_vocab.stoi['<eos>'], pad=pad, n_samples=self.explosion_rate, sample=True) _total, _match = eval_one_way( A1, exploded_target, exploded_target_length, exploded_input) student_total += _total student_match += _match _total, _match = eval_polyglot_T( A1, input_variable, input_lengths, target_variable[0], exploded_target, src_ids) teacher_total += _total teacher_match += _match student_accuracy, teacher_accuracy = student_match / \ student_total, teacher_match / teacher_total return loss.get_loss(), teacher_accuracy, student_accuracy
brica-master
t2s/evaluator/poly_evaluator.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from .mirror_trainer import MirrorTrainer
brica-master
t2s/trainer/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # from __future__ import division import torch from seq2seq.loss import NLLLoss from ..evaluator import PolyEvaluator from ..util import repeat_explode, pretrain_explode from .supervised_trainer import SupervisedTrainer class MirrorTrainer(SupervisedTrainer): def __init__(self, expt_dir='experiment', loss=NLLLoss(), batch_size=64, random_seed=None, checkpoint_every=100, pretraining=False, polyglot=False, explosion_train=10, explosion_eval=120): super(MirrorTrainer, self).__init__( expt_dir=expt_dir, loss=loss, batch_size=batch_size, random_seed=random_seed, checkpoint_every=checkpoint_every) self._trainer = "Mirror Trainer" self.pretraining = pretraining self.polyglot = polyglot self.evaluator = PolyEvaluator( explosion_rate=explosion_eval, loss=self.loss, batch_size=512, polyglot=self.polyglot) self.explosion_train = explosion_train def _one_direction_pass(self, input_variable, input_lengths, target_variable, model, teacher_forcing_ratio, presorted): batch_size = target_variable.size(0) outputs, _, other = model(input_variable, input_lengths, target_variable, teacher_forcing_ratio=teacher_forcing_ratio, presorted=presorted) for step, step_output in enumerate(outputs): self.loss.eval_batch(step_output.contiguous().view( batch_size, -1), target_variable[:, step + 1]) return outputs, other def _train_batch(self, input_variable, input_lengths, target_variable, model, teacher_forcing_ratio): self.loss.reset() sos, eos = None, None if hasattr(model, 'A1'): sos, eos = model.A1.decoder.sos_id, model.A1.decoder.eos_id else: sos, eos = model.decoder.sos_id, model.decoder.eos_id if self.pretraining: input_variable, input_lengths, target_variable, _ = pretrain_explode(input_variable, input_lengths, target_variable, polyglot=self.polyglot, sos=sos, eos=eos, pad=0, n_samples=self.explosion_train, sample=True) self._one_direction_pass( input_variable, input_lengths, target_variable[0], model, teacher_forcing_ratio, True) self._one_direction_pass( target_variable[0], target_variable[1], input_variable, model, teacher_forcing_ratio, False) else: input_variable, input_lengths, _ = repeat_explode( input_variable, input_lengths, self.explosion_train) _, outputs = self._one_direction_pass( input_variable, input_lengths, input_variable, model, teacher_forcing_ratio, True) batch_size = input_variable.size(0) i_A1 = torch.stack(outputs['teacher_decoder']).squeeze(2).permute(1, 0) i_A1_length = outputs['teacher_lengths'] pad_id = 0 for i in range(batch_size): l = i_A1_length[i] i_A1[i, l:] = pad_id self._one_direction_pass( input_variable, input_lengths, i_A1, model.A2, teacher_forcing_ratio, False) model.zero_grad() self.loss.backward() self.optimizer.step() return self.loss.get_loss()
brica-master
t2s/trainer/mirror_trainer.py
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # class EarlyStopping_NoImprovement(object): def __init__(self, min_delta=1e-5, patience=5): self.min_delta = min_delta self.patience = patience self.wait = 0 self.best_acc = 0 self.stopped_epoch = 0 self._stop_training = False def on_epoch_end(self, epoch, current_acc): if current_acc is None: pass else: if (current_acc - self.best_acc) > self.min_delta: self.best_acc = current_acc self.wait = 0 # reset self._stop_training = False else: self.wait += 1 if self.wait >= self.patience: self.stopped_epoch = epoch + 1 self._stop_training = True def on_train_end(self): if self.stopped_epoch > 0: print('\nTerminated Training for Early Stopping at Epoch %04i' % self.stopped_epoch, flush=True) class EarlyStopping_GoodAccuracy(object): def __init__(self, patience=5): self.patience = patience self.wait = 0 self.best_accuracy = 0.999 self.stopped_epoch = 0 self._stop_training = False def on_epoch_end(self, epoch, current_acc): if current_acc is None: pass else: if current_acc >= self.best_accuracy: self.wait += 1 else: self.wait = 0 if self.wait >= self.patience: self.stopped_epoch = epoch + 1 self._stop_training = True def on_train_end(self): if self.stopped_epoch > 0: print('\nTerminated Training for Early Stopping at Epoch %04i' % self.stopped_epoch, flush=True)
brica-master
t2s/trainer/early_stopping.py
# # Copyright 2017- IBM Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Below is a modification of the SupervisedTrainer from pytorch-seq2seq/seq2seq/trainer/supervised_trainer.py # which is adopted from https://github.com/IBM/pytorch-seq2seq/blob/master/seq2seq/trainer/supervised_trainer.py # The changes we have introduced relate to: early stopping and progress report logic. import sys sys.path.insert(0, './pytorch_seq2seq') from seq2seq.util.checkpoint import Checkpoint from seq2seq.optim import Optimizer from seq2seq.loss import NLLLoss import seq2seq import os import random import torch import torchtext from torch import optim from .early_stopping import EarlyStopping_NoImprovement class SupervisedTrainer(object): def __init__(self, expt_dir='experiment', loss=NLLLoss(), batch_size=64, random_seed=None, checkpoint_every=100, patience=5): self._trainer = "Simple Trainer" self.random_seed = random_seed if random_seed is not None: random.seed(random_seed) torch.manual_seed(random_seed) self.loss = loss # set by a subclass self.evaluator = None self.optimizer = None self.checkpoint_every = checkpoint_every self.early_stopping_teacher = EarlyStopping_NoImprovement( patience=patience) self.early_stopping_student = EarlyStopping_NoImprovement( patience=patience) if not os.path.isabs(expt_dir): expt_dir = os.path.join(os.getcwd(), expt_dir) self.expt_dir = expt_dir if not os.path.exists(self.expt_dir): os.makedirs(self.expt_dir) self.batch_size = batch_size def _train_batch(self, input_variable, input_lengths, target_variable, model, teacher_forcing_ratio): raise NotImplementedError('Not implemented!') def _train_epoches(self, data, model, n_epochs, start_epoch, start_step, dev_data=None, test_data=None, teacher_forcing_ratio=0): epoch_loss_total = 0 # Reset every epoch device = torch.device("cuda") if torch.cuda.is_available() else -1 batch_iterator = torchtext.data.BucketIterator( dataset=data, batch_size=self.batch_size, sort=False, sort_within_batch=True, sort_key=lambda x: len(x.src), device=device, repeat=False) steps_per_epoch = len(batch_iterator) total_steps = steps_per_epoch * n_epochs print('total steps is equal to ', total_steps) step = start_step step_elapsed = 0 epoch = start_epoch max_epoch_iteration = n_epochs + 1 while epoch < max_epoch_iteration: batch_generator = batch_iterator.__iter__() # consuming seen batches from previous training for _ in range((epoch - 1) * steps_per_epoch, step): next(batch_generator) for batch in batch_generator: step += 1 step_elapsed += 1 input_variables, input_lengths = getattr( batch, seq2seq.src_field_name) target_variables = getattr(batch, seq2seq.tgt_field_name) loss = self._train_batch(input_variables, input_lengths.tolist( ), target_variables, model, teacher_forcing_ratio) # Record average loss epoch_loss_total += loss if step_elapsed == 0: continue epoch_loss_avg = epoch_loss_total / \ min(steps_per_epoch, step - start_step) epoch_loss_total = 0 log_msg = "Finished epoch %d: Train %s: %.4f" % ( epoch, self.loss.name, epoch_loss_avg) time_logging = 1 if dev_data is not None and (epoch % time_logging) == 0: eval_results = self.evaluator.evaluate(model, dev_data) assert len(eval_results) == 3 # if two-hat agent, we have accuracies for the both hats (Student and Teacher) dev_loss, teacher_accuracy, student_accuracy = eval_results log_msg += ", Dev %s: %.4f, Accuracy Teacher: %.4f, Accuracy Student: %.4f" % ( self.loss.name, dev_loss, teacher_accuracy, student_accuracy) self.early_stopping_student.on_epoch_end( epoch, student_accuracy) self.early_stopping_teacher.on_epoch_end( epoch, teacher_accuracy) if self.early_stopping_student._stop_training and self.early_stopping_teacher._stop_training: max_epoch_iteration = self.early_stopping_teacher.stopped_epoch model.train(mode=True) if test_data is not None and (epoch % time_logging) == 0: assert len(eval_results) == 3 # if two-hat agent, we have accuracies for the both hats (Student and Teacher) test_loss, teacher_accuracy, student_accuracy = eval_results log_msg += ", Test %s: %.4f, Accuracy Teacher: %.4f, Accuracy Student: %.4f" % ( self.loss.name, test_loss, teacher_accuracy, student_accuracy) epoch += 1 print(log_msg, flush=True) def train(self, model, data, n_epochs=5, resume=False, dev_data=None, test_data=None, optimizer=None, teacher_forcing_ratio=0): """ Run training for a given model. Args: model (seq2seq.models): model to run training on, if `resume=True`, it would be overwritten by the model loaded from the latest checkpoint. data (seq2seq.dataset.dataset.Dataset): dataset object to train on n_epochs (int, optional): number of epochs to run (default 5) resume(bool, optional): resume training with the latest checkpoint, (default False) dev_data (seq2seq.dataset.dataset.Dataset, optional): dev Dataset (default None) test_data (seq2seq.dataset.dataset.Dataset, optional): test Dataset (default None) optimizer (seq2seq.optim.Optimizer, optional): optimizer for training (default: Optimizer(pytorch.optim.Adam, max_grad_norm=5)) teacher_forcing_ratio (float, optional): teaching forcing ratio (default 0) Returns: model (seq2seq.models): trained model. """ # If training is set to resume if resume: latest_checkpoint_path = Checkpoint.get_latest_checkpoint( self.expt_dir) resume_checkpoint = Checkpoint.load(latest_checkpoint_path) model = resume_checkpoint.model self.optimizer = resume_checkpoint.optimizer # A walk around to set optimizing parameters properly resume_optim = self.optimizer.optimizer defaults = resume_optim.param_groups[0] defaults.pop('params', None) defaults.pop('initial_lr', None) self.optimizer.optimizer = resume_optim.__class__( model.parameters(), **defaults) start_epoch = resume_checkpoint.epoch step = resume_checkpoint.step else: start_epoch = 1 step = 0 if optimizer is None: optimizer = Optimizer(optim.Adam( model.parameters()), max_grad_norm=5) self.optimizer = optimizer self._train_epoches(data, model, n_epochs, start_epoch, step, dev_data=dev_data, test_data=test_data, teacher_forcing_ratio=teacher_forcing_ratio) if self.early_stopping_student.stopped_epoch > 0 and self.early_stopping_teacher._stop_training > 0: print('\nTerminated Training for Early Stopping at Epoch %04i' % (max(self.early_stopping_student.stopped_epoch, self.early_stopping_teacher.stopped_epoch)), flush=True) return model
brica-master
t2s/trainer/supervised_trainer.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from setuptools import find_packages, setup requirements = [ "torch", "gpytorch", "botorch>=0.6", "scipy", "jupyter", "matplotlib", "nevergrad", "sklearn", "statsmodels", "xgboost", ] dev_requires = [ "black", "flake8", "pytest", "coverage", ] setup( name="bo_pr", version="0.1", description="Bayesian Optimization over Discrete and Mixed Spaces via Probabilistic Reparameterization", author="Anonymous Authors", packages=find_packages(), install_requires=requirements, extras_require={"dev": dev_requires}, )
bo_pr-main
setup.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from typing import List, Optional, Tuple import torch from statsmodels.distributions.empirical_distribution import ECDF from torch import Tensor from torch.distributions import Normal def apply_normal_copula_transform( Y: Tensor, ecdfs: Optional[List[ECDF]] = None ) -> Tuple[Tensor, List[ECDF]]: r"""Apply a copula transform independently to each output. Values are first mapped to quantiles through the empirical cdf, then through an inverse standard normal cdf. Note: this is not currently differentiable and it does not support batched `Y`. TODO: Remove dependency on ECDF or at least write an abstract specification of what we expect ECDF to do. Args: Y: A `n x m`-dim tensor of values ecdfs: A list of ecdfs to use in the transformation Returns: 2-element tuple containing - A `n x m`-dim tensor of transformed values - A list of `m` ECDF objects. """ if Y.ndim > 2: raise NotImplementedError("Batched Y is not currently supported.") normal = Normal(0, 1) Y_i_tfs = [] ecdfs = ecdfs or [] for i in range(Y.shape[-1]): Y_i = Y[:, i].cpu().numpy() if len(ecdfs) <= i: # compute new ecdf if None were provided ecdf = ECDF(Y_i) ecdfs.append(ecdf) else: # Otherwise use existing ecdf ecdf = ecdfs[i] # clamp quantiles here to avoid (-)infs at the extremes Y_i_tf = normal.icdf(torch.from_numpy(ecdf(Y_i)).to(Y).clamp(0.0001, 0.9999)) Y_i_tfs.append(Y_i_tf) return torch.stack(Y_i_tfs, dim=-1), ecdfs
bo_pr-main
discrete_mixed_bo/model_utils.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Methods for optimizing acquisition functions. This is a copy of botorch.optim.optimize.py that uses the custom gen_candidates_scipy method in ./gen.py to use finite differences when specified. """ from __future__ import annotations from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from botorch.acquisition.acquisition import ( AcquisitionFunction, OneShotAcquisitionFunction, ) from botorch.acquisition.fixed_feature import FixedFeatureAcquisitionFunction from botorch.acquisition.knowledge_gradient import qKnowledgeGradient from botorch.logging import logger from botorch.optim.stopping import ExpMAStoppingCriterion from torch import Tensor from discrete_mixed_bo.gen import gen_candidates_scipy, gen_candidates_torch from discrete_mixed_bo.initializers import ( gen_batch_initial_conditions, gen_one_shot_kg_initial_conditions, ) INIT_OPTION_KEYS = { # set of options for initialization that we should # not pass to scipy.optimize.minimize to avoid # warnings "alpha", "batch_limit", "eta", "init_batch_limit", "nonnegative", "n_burnin", "sample_around_best", "sample_around_best_sigma", "sample_around_best_prob_perturb", "sample_around_best_prob_perturb", "seed", "thinning", } def optimize_acqf( acq_function: AcquisitionFunction, bounds: Tensor, q: int, num_restarts: int, raw_samples: Optional[int] = None, options: Optional[Dict[str, Union[bool, float, int, str]]] = None, inequality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, equality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, nonlinear_inequality_constraints: Optional[List[Callable]] = None, fixed_features: Optional[Dict[int, float]] = None, post_processing_func: Optional[Callable[[Tensor], Tensor]] = None, batch_initial_conditions: Optional[Tensor] = None, return_best_only: bool = True, sequential: bool = False, stochastic: bool = False, **kwargs: Any, ) -> Tuple[Tensor, Tensor]: r"""Generate a set of candidates via multi-start optimization. Args: acq_function: An AcquisitionFunction. bounds: A `2 x d` tensor of lower and upper bounds for each column of `X`. q: The number of candidates. num_restarts: The number of starting points for multistart acquisition function optimization. raw_samples: The number of samples for initialization. This is required if `batch_initial_conditions` is not specified. options: Options for candidate generation. inequality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) >= rhs` equality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) = rhs` nonlinear_inequality_constraints: A list of callables with that represent non-linear inequality constraints of the form `callable(x) >= 0`. Each callable is expected to take a `(num_restarts) x q x d`-dim tensor as an input and return a `(num_restarts) x q`-dim tensor with the constraint values. The constraints will later be passed to SLSQP. You need to pass in `batch_initial_conditions` in this case. Using non-linear inequality constraints also requires that `batch_limit` is set to 1, which will be done automatically if not specified in `options`. fixed_features: A map `{feature_index: value}` for features that should be fixed to a particular value during generation. post_processing_func: A function that post-processes an optimization result appropriately (i.e., according to `round-trip` transformations). batch_initial_conditions: A tensor to specify the initial conditions. Set this if you do not want to use default initialization strategy. return_best_only: If False, outputs the solutions corresponding to all random restart initializations of the optimization. sequential: If False, uses joint optimization, otherwise uses sequential optimization. kwargs: Additonal keyword arguments. Returns: A two-element tuple containing - a `(num_restarts) x q x d`-dim tensor of generated candidates. - a tensor of associated acquisition values. If `sequential=False`, this is a `(num_restarts)`-dim tensor of joint acquisition values (with explicit restart dimension if `return_best_only=False`). If `sequential=True`, this is a `q`-dim tensor of expected acquisition values conditional on having observed canidates `0,1,...,i-1`. Example: >>> # generate `q=2` candidates jointly using 20 random restarts >>> # and 512 raw samples >>> candidates, acq_value = optimize_acqf(qEI, bounds, 2, 20, 512) >>> generate `q=3` candidates sequentially using 15 random restarts >>> # and 256 raw samples >>> qEI = qExpectedImprovement(model, best_f=0.2) >>> bounds = torch.tensor([[0.], [1.]]) >>> candidates, acq_value_list = optimize_acqf( >>> qEI, bounds, 3, 15, 256, sequential=True >>> ) """ if not (bounds.ndim == 2 and bounds.shape[0] == 2): raise ValueError( f"bounds should be a `2 x d` tensor, current shape: {list(bounds.shape)}." ) if sequential and q > 1: if not return_best_only: raise NotImplementedError( "`return_best_only=False` only supported for joint optimization." ) if isinstance(acq_function, OneShotAcquisitionFunction): raise NotImplementedError( "sequential optimization currently not supported for one-shot " "acquisition functions. Must have `sequential=False`." ) candidate_list, acq_value_list = [], [] base_X_pending = acq_function.X_pending for i in range(q): candidate, acq_value = optimize_acqf( acq_function=acq_function, bounds=bounds, q=1, num_restarts=num_restarts, raw_samples=raw_samples, options=options or {}, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, nonlinear_inequality_constraints=nonlinear_inequality_constraints, fixed_features=fixed_features, post_processing_func=post_processing_func, batch_initial_conditions=None, return_best_only=True, sequential=False, stochastic=stochastic, ) candidate_list.append(candidate) acq_value_list.append(acq_value) candidates = torch.cat(candidate_list, dim=-2) acq_function.set_X_pending( torch.cat([base_X_pending, candidates], dim=-2) if base_X_pending is not None else candidates ) logger.info(f"Generated sequential candidate {i+1} of {q}") # Reset acq_func to previous X_pending state acq_function.set_X_pending(base_X_pending) return candidates, torch.stack(acq_value_list) options = options or {} # Handle the trivial case when all features are fixed if fixed_features is not None and len(fixed_features) == bounds.shape[-1]: X = torch.tensor( [fixed_features[i] for i in range(bounds.shape[-1])], device=bounds.device, dtype=bounds.dtype, ) X = X.expand(q, *X.shape) with torch.no_grad(): acq_value = acq_function(X) return X, acq_value if batch_initial_conditions is None: if nonlinear_inequality_constraints: raise NotImplementedError( "`batch_initial_conditions` must be given if there are non-linear " "inequality constraints." ) if raw_samples is None: raise ValueError( "Must specify `raw_samples` when `batch_initial_conditions` is `None`." ) ic_gen = ( gen_one_shot_kg_initial_conditions if isinstance(acq_function, qKnowledgeGradient) else gen_batch_initial_conditions ) batch_initial_conditions = ic_gen( acq_function=acq_function, bounds=bounds, q=q, num_restarts=num_restarts, raw_samples=raw_samples, fixed_features=fixed_features, options=options, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, ) batch_limit: int = options.get( "batch_limit", num_restarts if not nonlinear_inequality_constraints else 1 ) batch_candidates_list: List[Tensor] = [] batch_acq_values_list: List[Tensor] = [] batched_ics = batch_initial_conditions.split(batch_limit) gen_kwargs = {} if stochastic: gen_candidates = gen_candidates_torch else: gen_candidates = gen_candidates_scipy gen_kwargs.update( { "inequality_constraints": inequality_constraints, "equality_constraints": equality_constraints, "nonlinear_inequality_constraints": nonlinear_inequality_constraints, } ) for i, batched_ics_ in enumerate(batched_ics): # optimize using random restart optimization batch_candidates_curr, batch_acq_values_curr = gen_candidates( initial_conditions=batched_ics_, acquisition_function=acq_function, lower_bounds=bounds[0], upper_bounds=bounds[1], options={k: v for k, v in options.items() if k not in INIT_OPTION_KEYS}, fixed_features=fixed_features, **gen_kwargs, ) batch_candidates_list.append(batch_candidates_curr) batch_acq_values_list.append(batch_acq_values_curr) logger.info(f"Generated candidate batch {i+1} of {len(batched_ics)}.") batch_candidates = torch.cat(batch_candidates_list) batch_acq_values = torch.cat(batch_acq_values_list) if post_processing_func is not None: batch_candidates = post_processing_func(batch_candidates) if return_best_only: best = torch.argmax(batch_acq_values.view(-1), dim=0) batch_candidates = batch_candidates[best] batch_acq_values = batch_acq_values[best] if isinstance(acq_function, OneShotAcquisitionFunction): if not kwargs.get("return_full_tree", False): batch_candidates = acq_function.extract_candidates(X_full=batch_candidates) return batch_candidates, batch_acq_values def optimize_acqf_cyclic( acq_function: AcquisitionFunction, bounds: Tensor, q: int, num_restarts: int, raw_samples: Optional[int] = None, options: Optional[Dict[str, Union[bool, float, int, str]]] = None, inequality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, equality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, fixed_features: Optional[Dict[int, float]] = None, post_processing_func: Optional[Callable[[Tensor], Tensor]] = None, batch_initial_conditions: Optional[Tensor] = None, cyclic_options: Optional[Dict[str, Union[bool, float, int, str]]] = None, ) -> Tuple[Tensor, Tensor]: r"""Generate a set of `q` candidates via cyclic optimization. Args: acq_function: An AcquisitionFunction bounds: A `2 x d` tensor of lower and upper bounds for each column of `X`. q: The number of candidates. num_restarts: Number of starting points for multistart acquisition function optimization. raw_samples: Number of samples for initialization. This is required if `batch_initial_conditions` is not specified. options: Options for candidate generation. inequality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) >= rhs` equality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) = rhs` fixed_features: A map `{feature_index: value}` for features that should be fixed to a particular value during generation. post_processing_func: A function that post-processes an optimization result appropriately (i.e., according to `round-trip` transformations). batch_initial_conditions: A tensor to specify the initial conditions. If no initial conditions are provided, the default initialization will be used. cyclic_options: Options for stopping criterion for outer cyclic optimization. Returns: A two-element tuple containing - a `q x d`-dim tensor of generated candidates. - a `q`-dim tensor of expected acquisition values, where the value at index `i` is the acquisition value conditional on having observed all candidates except candidate `i`. Example: >>> # generate `q=3` candidates cyclically using 15 random restarts >>> # 256 raw samples, and 4 cycles >>> >>> qEI = qExpectedImprovement(model, best_f=0.2) >>> bounds = torch.tensor([[0.], [1.]]) >>> candidates, acq_value_list = optimize_acqf_cyclic( >>> qEI, bounds, 3, 15, 256, cyclic_options={"maxiter": 4} >>> ) """ # for the first cycle, optimize the q candidates sequentially candidates, acq_vals = optimize_acqf( acq_function=acq_function, bounds=bounds, q=q, num_restarts=num_restarts, raw_samples=raw_samples, options=options, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, fixed_features=fixed_features, post_processing_func=post_processing_func, batch_initial_conditions=batch_initial_conditions, return_best_only=True, sequential=True, ) if q > 1: cyclic_options = cyclic_options or {} stopping_criterion = ExpMAStoppingCriterion(**cyclic_options) stop = stopping_criterion.evaluate(fvals=acq_vals) base_X_pending = acq_function.X_pending idxr = torch.ones(q, dtype=torch.bool, device=bounds.device) while not stop: for i in range(q): # optimize only candidate i idxr[i] = 0 acq_function.set_X_pending( torch.cat([base_X_pending, candidates[idxr]], dim=-2) if base_X_pending is not None else candidates[idxr] ) candidate_i, acq_val_i = optimize_acqf( acq_function=acq_function, bounds=bounds, q=1, num_restarts=num_restarts, raw_samples=raw_samples, options=options, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, fixed_features=fixed_features, post_processing_func=post_processing_func, batch_initial_conditions=candidates[i].unsqueeze(0), return_best_only=True, sequential=True, ) candidates[i] = candidate_i acq_vals[i] = acq_val_i idxr[i] = 1 stop = stopping_criterion.evaluate(fvals=acq_vals) acq_function.set_X_pending(base_X_pending) return candidates, acq_vals def optimize_acqf_list( acq_function_list: List[AcquisitionFunction], bounds: Tensor, num_restarts: int, raw_samples: Optional[int] = None, options: Optional[Dict[str, Union[bool, float, int, str]]] = None, inequality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, equality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, fixed_features: Optional[Dict[int, float]] = None, post_processing_func: Optional[Callable[[Tensor], Tensor]] = None, ) -> Tuple[Tensor, Tensor]: r"""Generate a list of candidates from a list of acquisition functions. The acquisition functions are optimized in sequence, with previous candidates set as `X_pending`. This is also known as sequential greedy optimization. Args: acq_function_list: A list of acquisition functions. bounds: A `2 x d` tensor of lower and upper bounds for each column of `X`. num_restarts: Number of starting points for multistart acquisition function optimization. raw_samples: Number of samples for initialization. This is required if `batch_initial_conditions` is not specified. options: Options for candidate generation. inequality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) >= rhs` equality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) = rhs` fixed_features: A map `{feature_index: value}` for features that should be fixed to a particular value during generation. post_processing_func: A function that post-processes an optimization result appropriately (i.e., according to `round-trip` transformations). Returns: A two-element tuple containing - a `q x d`-dim tensor of generated candidates. - a `q`-dim tensor of expected acquisition values, where the value at index `i` is the acquisition value conditional on having observed all candidates except candidate `i`. """ if not acq_function_list: raise ValueError("acq_function_list must be non-empty.") candidate_list, acq_value_list = [], [] candidates = torch.tensor([], device=bounds.device, dtype=bounds.dtype) base_X_pending = acq_function_list[0].X_pending for acq_function in acq_function_list: if candidate_list: acq_function.set_X_pending( torch.cat([base_X_pending, candidates], dim=-2) if base_X_pending is not None else candidates ) candidate, acq_value = optimize_acqf( acq_function=acq_function, bounds=bounds, q=1, num_restarts=num_restarts, raw_samples=raw_samples, options=options or {}, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, fixed_features=fixed_features, post_processing_func=post_processing_func, return_best_only=True, sequential=False, ) candidate_list.append(candidate) acq_value_list.append(acq_value) candidates = torch.cat(candidate_list, dim=-2) return candidates, torch.stack(acq_value_list) def optimize_acqf_mixed( acq_function: AcquisitionFunction, bounds: Tensor, q: int, num_restarts: int, fixed_features_list: List[Dict[int, float]], raw_samples: Optional[int] = None, options: Optional[Dict[str, Union[bool, float, int, str]]] = None, inequality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, equality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, post_processing_func: Optional[Callable[[Tensor], Tensor]] = None, batch_initial_conditions: Optional[Tensor] = None, **kwargs: Any, ) -> Tuple[Tensor, Tensor]: r"""Optimize over a list of fixed_features and returns the best solution. This is useful for optimizing over mixed continuous and discrete domains. For q > 1 this function always performs sequential greedy optimization (with proper conditioning on generated candidates). Args: acq_function: An AcquisitionFunction bounds: A `2 x d` tensor of lower and upper bounds for each column of `X`. q: The number of candidates. num_restarts: Number of starting points for multistart acquisition function optimization. raw_samples: Number of samples for initialization. This is required if `batch_initial_conditions` is not specified. fixed_features_list: A list of maps `{feature_index: value}`. The i-th item represents the fixed_feature for the i-th optimization. options: Options for candidate generation. inequality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) >= rhs` equality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) = rhs` post_processing_func: A function that post-processes an optimization result appropriately (i.e., according to `round-trip` transformations). batch_initial_conditions: A tensor to specify the initial conditions. Set this if you do not want to use default initialization strategy. Returns: A two-element tuple containing - a `q x d`-dim tensor of generated candidates. - an associated acquisition value. """ if not fixed_features_list: raise ValueError("fixed_features_list must be non-empty.") if isinstance(acq_function, OneShotAcquisitionFunction): if not hasattr(acq_function, "evaluate") and q > 1: raise ValueError( "`OneShotAcquisitionFunction`s that do not implement `evaluate` " "are currently not supported when `q > 1`. This is needed to " "compute the joint acquisition value." ) all_columns = set(range(bounds.shape[-1])) if q == 1: ff_candidate_list, ff_acq_value_list = [], [] for fixed_features in fixed_features_list: ff_columns, ff_vals = list(zip(*fixed_features.items())) ff_acq_function = FixedFeatureAcquisitionFunction( acq_function=acq_function, d=bounds.shape[-1], columns=list(ff_columns), values=torch.tensor(ff_vals, dtype=bounds.dtype, device=bounds.device), ) keep_columns = sorted(list(set(all_columns) - set(ff_columns))) candidate, acq_value = optimize_acqf( acq_function=ff_acq_function, bounds=bounds[:, keep_columns], q=q, num_restarts=num_restarts, raw_samples=raw_samples, options=options or {}, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, post_processing_func=post_processing_func, batch_initial_conditions=batch_initial_conditions, return_best_only=True, ) candidate = ff_acq_function._construct_X_full(X=candidate) ff_candidate_list.append(candidate) ff_acq_value_list.append(acq_value) ff_acq_values = torch.stack(ff_acq_value_list) best = torch.argmax(ff_acq_values) return ff_candidate_list[best], ff_acq_values[best] # For batch optimization with q > 1 we do not want to enumerate all n_combos^n # possible combinations of discrete choices. Instead, we use sequential greedy # optimization. base_X_pending = acq_function.X_pending candidates = torch.tensor([], device=bounds.device, dtype=bounds.dtype) for _ in range(q): candidate, acq_value = optimize_acqf_mixed( acq_function=acq_function, bounds=bounds, q=1, num_restarts=num_restarts, raw_samples=raw_samples, fixed_features_list=fixed_features_list, options=options or {}, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, post_processing_func=post_processing_func, batch_initial_conditions=batch_initial_conditions, ) candidates = torch.cat([candidates, candidate], dim=-2) acq_function.set_X_pending( torch.cat([base_X_pending, candidates], dim=-2) if base_X_pending is not None else candidates ) acq_function.set_X_pending(base_X_pending) # compute joint acquisition value if isinstance(acq_function, OneShotAcquisitionFunction): acq_value = acq_function.evaluate(X=candidates, bounds=bounds) else: acq_value = acq_function(candidates) return candidates, acq_value def optimize_acqf_discrete( acq_function: AcquisitionFunction, q: int, choices: Tensor, max_batch_size: int = 2048, unique: bool = True, **kwargs: Any, ) -> Tuple[Tensor, Tensor]: r"""Optimize over a discrete set of points using batch evaluation. For `q > 1` this function generates candidates by means of sequential conditioning (rather than joint optimization), since for all but the smalles number of choices the set `choices^q` of discrete points to evaluate quickly explodes. Args: acq_function: An AcquisitionFunction. q: The number of candidates. choices: A `num_choices x d` tensor of possible choices. max_batch_size: The maximum number of choices to evaluate in batch. A large limit can cause excessive memory usage if the model has a large training set. unique: If True return unique choices, o/w choices may be repeated (only relevant if `q > 1`). Returns: A three-element tuple containing - a `q x d`-dim tensor of generated candidates. - an associated acquisition value. """ choices_batched = choices.unsqueeze(-2) if q > 1: candidate_list, acq_value_list = [], [] base_X_pending = acq_function.X_pending for _ in range(q): with torch.no_grad(): acq_values = _split_batch_eval_acqf( acq_function=acq_function, X=choices_batched, max_batch_size=max_batch_size, ) best_idx = torch.argmax(acq_values) candidate_list.append(choices_batched[best_idx]) acq_value_list.append(acq_values[best_idx]) # set pending points candidates = torch.cat(candidate_list, dim=-2) acq_function.set_X_pending( torch.cat([base_X_pending, candidates], dim=-2) if base_X_pending is not None else candidates ) # need to remove choice from choice set if enforcing uniqueness if unique: choices_batched = torch.cat( [choices_batched[:best_idx], choices_batched[best_idx + 1 :]] ) # Reset acq_func to previous X_pending state acq_function.set_X_pending(base_X_pending) return candidates, torch.stack(acq_value_list) with torch.no_grad(): acq_values = _split_batch_eval_acqf( acq_function=acq_function, X=choices_batched, max_batch_size=max_batch_size ) best_idx = torch.argmax(acq_values) return choices_batched[best_idx], acq_values[best_idx] def _split_batch_eval_acqf( acq_function: AcquisitionFunction, X: Tensor, max_batch_size: int ) -> Tensor: return torch.cat([acq_function(X_) for X_ in X.split(max_batch_size)]) def _generate_neighbors( x: Tensor, discrete_choices: List[Tensor], X_avoid: Tensor, inequality_constraints: List[Tuple[Tensor, Tensor, float]], ): # generate all 1D perturbations npts = sum([len(c) for c in discrete_choices]) X_loc = x.repeat(npts, 1) j = 0 for i, c in enumerate(discrete_choices): X_loc[j : j + len(c), i] = c j += len(c) # remove invalid and infeasible points (also remove x) X_loc = _filter_invalid(X=X_loc, X_avoid=torch.cat((X_avoid, x))) X_loc = _filter_infeasible(X=X_loc, inequality_constraints=inequality_constraints) return X_loc def _filter_infeasible( X: Tensor, inequality_constraints: List[Tuple[Tensor, Tensor, float]] ): """Remove all points from `X` that don't satisfy the constraints.""" is_feasible = torch.ones(X.shape[0], dtype=torch.bool, device=X.device) for (inds, weights, bound) in inequality_constraints: is_feasible &= (X[..., inds] * weights).sum(dim=-1) >= bound return X[is_feasible] def _filter_invalid(X: Tensor, X_avoid: Tensor): """Remove all occurences of `X_avoid` from `X`.""" return X[~(X == X_avoid.unsqueeze(-2)).all(dim=-1).any(dim=-2)] def _gen_batch_initial_conditions_local_search( discrete_choices: List[Tensor], raw_samples: int, X_avoid: Tensor, inequality_constraints: List[Tuple[Tensor, Tensor, float]], min_points: int, max_tries: int = 100, ): """Generate initial conditions for local search.""" tkwargs = {"device": discrete_choices[0].device, "dtype": discrete_choices[0].dtype} dim = len(discrete_choices) X = torch.zeros(0, dim, **tkwargs) for _ in range(max_tries): X_new = torch.zeros(raw_samples, dim, **tkwargs) for i, c in enumerate(discrete_choices): X_new[:, i] = c[ torch.randint(low=0, high=len(c), size=(raw_samples,), device=c.device) ] X = torch.unique(torch.cat((X, X_new)), dim=0) X = _filter_invalid(X=X, X_avoid=X_avoid) X = _filter_infeasible(X=X, inequality_constraints=inequality_constraints) if len(X) >= min_points: return X raise RuntimeError(f"Failed to generate at least {min_points} initial conditions") def optimize_acqf_discrete_local_search( acq_function: AcquisitionFunction, discrete_choices: List[Tensor], q: int, num_restarts: int = 20, raw_samples: int = 4096, inequality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, X_avoid: Optional[Tensor] = None, batch_initial_conditions: Optional[Tensor] = None, max_batch_size: int = 2048, unique: bool = True, **kwargs: Any, ) -> Tuple[Tensor, Tensor]: r"""Optimize acquisition function over a lattice. This is useful when d is large and enumeration of the search space isn't possible. For q > 1 this function always performs sequential greedy optimization (with proper conditioning on generated candidates). NOTE: While this method supports arbitrary lattices, it has only been thoroughly tested for {0, 1}^d. Consider it to be in alpha stage for the more general case. Args: acq_function: An AcquisitionFunction discrete_choices: A list of possible discrete choices for each dimension. Each element in the list is expected to be a torch tensor. q: The number of candidates. num_restarts: Number of starting points for multistart acquisition function optimization. raw_samples: Number of samples for initialization. This is required if `batch_initial_conditions` is not specified. inequality_constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) >= rhs` X_avoid: An `n x d` tensor of candidates that we aren't allowed to pick. batch_initial_conditions: A tensor of size `n x 1 x d` to specify the initial conditions. Set this if you do not want to use default initialization strategy. max_batch_size: The maximum number of choices to evaluate in batch. A large limit can cause excessive memory usage if the model has a large training set. unique: If True return unique choices, o/w choices may be repeated (only relevant if `q > 1`). Returns: A two-element tuple containing - a `q x d`-dim tensor of generated candidates. - an associated acquisition value. """ candidate_list = [] base_X_pending = acq_function.X_pending if q > 1 else None base_X_avoid = X_avoid tkwargs = {"device": discrete_choices[0].device, "dtype": discrete_choices[0].dtype} dim = len(discrete_choices) if X_avoid is None: X_avoid = torch.zeros(0, dim, **tkwargs) inequality_constraints = inequality_constraints or [] for i in range(q): # generate some starting points if i == 0 and batch_initial_conditions is not None: X0 = _filter_invalid(X=batch_initial_conditions.squeeze(1), X_avoid=X_avoid) X0 = _filter_infeasible( X=X0, inequality_constraints=inequality_constraints ).unsqueeze(1) else: X_init = _gen_batch_initial_conditions_local_search( discrete_choices=discrete_choices, raw_samples=raw_samples, X_avoid=X_avoid, inequality_constraints=inequality_constraints, min_points=num_restarts, ) # pick the best starting points with torch.no_grad(): acqvals_init = _split_batch_eval_acqf( acq_function=acq_function, X=X_init.unsqueeze(1), max_batch_size=max_batch_size, ).unsqueeze(-1) X0 = X_init[acqvals_init.topk(k=num_restarts, largest=True, dim=0).indices] # optimize from the best starting points best_xs = torch.zeros(len(X0), dim, **tkwargs) best_acqvals = torch.zeros(len(X0), 1, **tkwargs) for j, x in enumerate(X0): curr_x, curr_acqval = x.clone(), acq_function(x.unsqueeze(1)) while True: # this generates all feasible neighbors that are one bit away X_loc = _generate_neighbors( x=curr_x, discrete_choices=discrete_choices, X_avoid=X_avoid, inequality_constraints=inequality_constraints, ) # there may not be any neighbors if len(X_loc) == 0: break with torch.no_grad(): acqval_loc = acq_function(X_loc.unsqueeze(1)) # break if no neighbor is better than the current point (local optimum) if acqval_loc.max() <= curr_acqval: break best_ind = acqval_loc.argmax().item() curr_x, curr_acqval = X_loc[best_ind].unsqueeze(0), acqval_loc[best_ind] best_xs[j, :], best_acqvals[j] = curr_x, curr_acqval # pick the best best_idx = best_acqvals.argmax() candidate_list.append(best_xs[best_idx].unsqueeze(0)) # set pending points candidates = torch.cat(candidate_list, dim=-2) if q > 1: acq_function.set_X_pending( torch.cat([base_X_pending, candidates], dim=-2) if base_X_pending is not None else candidates ) # Update points to avoid if unique is True if unique: X_avoid = ( torch.cat([base_X_avoid, candidates], dim=-2) if base_X_avoid is not None else candidates ) # Reset acq_func to original X_pending state if q > 1: acq_function.set_X_pending(base_X_pending) with torch.no_grad(): acq_value = acq_function(candidates) # compute joint acquisition value return candidates, acq_value
bo_pr-main
discrete_mixed_bo/optimize.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Utilities for running experiments.""" from collections import OrderedDict from copy import deepcopy from itertools import product from math import log from typing import Callable, Dict, List, Optional, Tuple, Union import torch from botorch.acquisition.acquisition import AcquisitionFunction from botorch.acquisition.analytic import ( ConstrainedExpectedImprovement, ExpectedImprovement, PosteriorMean, UpperConfidenceBound, ) from botorch.acquisition.multi_objective.analytic import ExpectedHypervolumeImprovement from botorch.acquisition.multi_objective.monte_carlo import ( qExpectedHypervolumeImprovement, ) from botorch.acquisition.objective import ScalarizedPosteriorTransform from botorch.models import FixedNoiseGP, ModelListGP, SingleTaskGP from botorch.models.gpytorch import GPyTorchModel from botorch.models.model import Model from botorch.models.transforms.input import ChainedInputTransform, Normalize from botorch.models.transforms.outcome import Standardize from botorch.test_functions.base import ConstrainedBaseTestProblem from botorch.test_functions.multi_objective import DTLZ2 from botorch.test_functions.synthetic import Ackley, Hartmann, Rosenbrock from botorch.utils.multi_objective.box_decompositions.non_dominated import ( FastNondominatedPartitioning, ) from botorch.utils.sampling import draw_sobol_samples from botorch.utils.transforms import normalize, unnormalize from gpytorch.constraints import GreaterThan, Interval from gpytorch.likelihoods import GaussianLikelihood from gpytorch.mlls import SumMarginalLogLikelihood from gpytorch.mlls.exact_marginal_log_likelihood import ExactMarginalLogLikelihood from gpytorch.priors import GammaPrior from scipy.stats.mstats import winsorize as scipy_winsorize from statsmodels.distributions.empirical_distribution import ECDF from torch import Tensor from torch.nn.functional import one_hot from discrete_mixed_bo.input import ( LatentCategoricalEmbedding, LatentCategoricalSpec, OneHotToNumeric, Round, ) from discrete_mixed_bo.kernels import get_kernel from discrete_mixed_bo.model_utils import apply_normal_copula_transform from discrete_mixed_bo.probabilistic_reparameterization import ( AnalyticProbabilisticReparameterization, MCProbabilisticReparameterization, ) from discrete_mixed_bo.problems.base import ( DiscreteTestProblem, DiscretizedBotorchTestProblem, ) from discrete_mixed_bo.problems.binary import LABS, Contamination from discrete_mixed_bo.problems.cco.cco import CCO from discrete_mixed_bo.problems.chemistry import Chemistry from discrete_mixed_bo.problems.coco_mixed_integer import Sphere from discrete_mixed_bo.problems.environmental import Environmental from discrete_mixed_bo.problems.nashpobench2 import NASHPOBenchII from discrete_mixed_bo.problems.oil_sorbent import OilSorbent, OilSorbentMixed from discrete_mixed_bo.problems.pest import PestControl from discrete_mixed_bo.problems.re_problems import PressureVessel from discrete_mixed_bo.problems.svm import SVMFeatureSelection from discrete_mixed_bo.problems.welded_beam import WeldedBeam from discrete_mixed_bo.problems.xgboost_hp import XGBoostHyperparameter from discrete_mixed_bo.rffs import get_gp_sample_w_transforms def eval_problem(X: Tensor, base_function: DiscreteTestProblem) -> Tensor: is_constrained = isinstance(base_function, ConstrainedBaseTestProblem) X_numeric = torch.zeros( *X.shape[:-1], base_function.bounds.shape[-1], dtype=X.dtype, device=X.device, ) X_numeric[..., base_function.integer_indices] = X[ ..., base_function.integer_indices ] X_numeric[..., base_function.cont_indices] = X[..., base_function.cont_indices] start_idx = None # X is one-hot encoded # transform from one-hot space to numeric space for i, cardinality in base_function.categorical_features.items(): if start_idx is None: start_idx = i end_idx = start_idx + cardinality X_numeric[..., i] = ( X[..., start_idx:end_idx].argmax(dim=-1).to(dtype=X_numeric.dtype) ) start_idx = end_idx # normalize from integers to unit cube if len(base_function.categorical_features) > 0: X_numeric[..., base_function.categorical_indices] = normalize( X_numeric[..., base_function.categorical_indices], base_function.categorical_bounds, ) X_numeric = unnormalize(X_numeric, base_function.bounds) Y = base_function(X_numeric) if Y.ndim == X_numeric.ndim - 1: Y = Y.unsqueeze(-1) if is_constrained: # here, non-negative Y_con implies feasibility Y_con = base_function.evaluate_slack(X_numeric) Y = torch.cat([Y, Y_con], dim=-1) return Y def get_exact_rounding_func( bounds: Tensor, integer_indices: Optional[List[int]] = None, categorical_features: Optional[Dict[int, int]] = None, initialization: bool = False, return_numeric: bool = False, use_ste: bool = False, ) -> ChainedInputTransform: """Get an exact rounding function. The rounding function will take inputs from the unit cube,unnormalize them to the raw search space, round the inputs, and normalize them back to the unit cube. Categoricals are assumed to be one-hot encoded. Args: bounds: The raw search space bounds. integer_indices: The indices of the integer parameters categorical_features: A dictionary mapping indices to cardinalities for the categorical features. initialization: A boolean indication whether this exact rounding function is for initialization. return_numeric: a boolean indicating whether to return numeric or one-hot encoded categoricals use_ste: whether to use straight-through gradient estimation """ if initialization: # this gives the extremes the same probability as the # interior values init_bounds = bounds.clone() init_bounds[0, integer_indices] -= 0.4999 init_bounds[1, integer_indices] += 0.4999 else: init_bounds = bounds tfs = OrderedDict() if integer_indices is not None and len(integer_indices) > 0: # unnormalize to integer space tfs["unnormalize_tf"] = Normalize( d=bounds.shape[1], bounds=init_bounds, indices=integer_indices, transform_on_train=False, transform_on_eval=True, transform_on_fantasize=False, reverse=True, ) # round tfs["round"] = Round( approximate=False, transform_on_train=False, transform_on_fantasize=False, # TODO: generalize integer_indices=integer_indices, categorical_features=categorical_features, use_ste=use_ste, ) if integer_indices is not None and len(integer_indices) > 0: # renormalize to unit cube tfs["normalize_tf"] = Normalize( d=bounds.shape[1], bounds=bounds, indices=integer_indices, transform_on_train=False, transform_on_eval=True, transform_on_fantasize=False, reverse=False, ) if return_numeric: tfs["one_hot_to_numeric"] = OneHotToNumeric( categorical_features=categorical_features, transform_on_train=False, transform_on_eval=True, transform_on_fantasize=False, use_ste=use_ste, ) tf = ChainedInputTransform(**tfs) tf.to(dtype=bounds.dtype, device=bounds.device) tf.eval() return tf def generate_initial_data( n: int, base_function: DiscreteTestProblem, bounds: Tensor, tkwargs: dict, init_exact_rounding_func: ChainedInputTransform, ) -> Tuple[Tensor, Tensor]: r""" Generates the initial data for the experiments. Args: n: Number of training points. base_function: The base problem. bounds: The bounds to generate the training points from. `2 x d`-dim tensor. tkwargs: Arguments for tensors, dtype and device. init_exact_rounding_func: The exact rounding function for initialization. Returns: The train_X and train_Y. `n x d` and `n x m`. """ raw_x = draw_sobol_samples(bounds=bounds, n=n, q=1).squeeze(-2).to(**tkwargs) train_x = init_exact_rounding_func(raw_x) train_obj = eval_problem(train_x, base_function=base_function) return train_x, train_obj def apply_winsorize( y: Tensor, winsorization_level: float, maximize: bool = True ) -> Tensor: if maximize: winsorize_limits = (winsorization_level, None) else: winsorize_limits = (None, winsorization_level) return torch.from_numpy(scipy_winsorize(y.cpu().numpy(), winsorize_limits)).to(y) def initialize_model( train_x: Tensor, train_y: Tensor, binary_dims: List[int], categorical_features: Optional[List[int]] = None, use_model_list: bool = False, use_fixed_noise: bool = True, kernel_type: str = "mixed", copula: bool = False, winsorize: bool = False, latent_emb_dim: Optional[int] = None, use_ard_binary: bool = False, function_name: Optional[str] = None, ) -> Tuple[ Union[ExactMarginalLogLikelihood, SumMarginalLogLikelihood], Union[FixedNoiseGP, SingleTaskGP, ModelListGP], Optional[List[ECDF]], ]: r"""Constructs the model and its MLL. TODO: add better kernel selection for binary inputs. Args: train_x: An `n x d`-dim tensor of training inputs. train_y: An `n x m`-dim tensor of training outcomes. use_model_list: If True, returns a ModelListGP with models for each outcome. use_fixed_noise: If True, assumes noise-free outcomes and uses FixedNoiseGP. Returns: The MLL and the model. Note: the model is not trained! """ base_model_class = FixedNoiseGP if use_fixed_noise else SingleTaskGP # define models for objective and constraint if copula: train_y, ecdfs = apply_normal_copula_transform(train_y) else: ecdfs = None if winsorize: train_y = apply_winsorize(train_y, winsorization_level=0.2) if use_fixed_noise: train_Yvar = torch.full_like(train_y, 1e-7) * train_y.std(dim=0).pow(2) if kernel_type in ("mixed_categorical", "mixed_latent"): # map one-hot categoricals to numeric representation input_transform = OneHotToNumeric(categorical_features=categorical_features) input_transform.eval() train_x = input_transform(train_x) if categorical_features is None or kernel_type == "mixed_latent": categorical_dims = [] else: categorical_dims = list(categorical_features.keys()) categorical_transformed_features = categorical_features model_kwargs = [] for i in range(train_y.shape[-1]): transformed_x = train_x if kernel_type == "mixed_latent": categorical_transformed_features = {} specs = [] start = None for idx, card in categorical_features.items(): if start is None: start = idx spec = LatentCategoricalSpec( idx=idx, num_categories=card, latent_dim=latent_emb_dim if latent_emb_dim is not None else (1 if card <= 3 else 2), ) categorical_transformed_features[start] = spec.latent_dim start = start + spec.latent_dim specs.append(spec) input_transform = LatentCategoricalEmbedding( specs, dim=train_x.shape[-1], ).to(train_x) with torch.no_grad(): transformed_x = input_transform(train_x) cat_start = train_x.shape[-1] - len(categorical_features) categorical_dims = list(range(cat_start, transformed_x.shape[-1])) else: input_transform = None model_kwargs.append( { "train_X": train_x, "train_Y": train_y[..., i : i + 1], "covar_module": get_kernel( kernel_type=kernel_type, dim=transformed_x.shape[-1], binary_dims=binary_dims, categorical_transformed_features=categorical_transformed_features, train_X=train_x, train_Y=train_y, function_name=function_name, use_ard_binary=use_ard_binary, ), "input_transform": input_transform, } ) if use_fixed_noise: model_kwargs[i]["train_Yvar"] = train_Yvar[..., i : i + 1] else: model_kwargs[i]["likelihood"] = GaussianLikelihood( noise_prior=GammaPrior(0.9, 10.0), noise_constraint=Interval(1e-7, 1e-3), ) models = [base_model_class(**model_kwargs[i]) for i in range(train_y.shape[-1])] if len(models) > 1: model = ModelListGP(*models) mll = SumMarginalLogLikelihood(model.likelihood, model) else: model = models[0] mll = ExactMarginalLogLikelihood(model.likelihood, model) return mll, model, ecdfs def get_EI( model: Model, train_Y: Tensor, num_constraints: int, standardize_tf: Standardize, posterior_transform: Optional[ScalarizedPosteriorTransform] = None, ) -> ExpectedImprovement: if posterior_transform is not None: obj = posterior_transform.evaluate(train_Y) else: obj = train_Y[..., 0] if num_constraints > 0: constraints = {} slacks = torch.zeros( num_constraints, dtype=train_Y.dtype, device=train_Y.device ) for i in range(1, num_constraints + 1): slack = ( (0.0 - standardize_tf.means[0, i]) / standardize_tf.stdvs[0, i] ).item() slacks[i - 1] = slack constraints[i] = (slack, None) feas = (train_Y[..., 1:] >= slacks).all(dim=-1) if feas.any(): best_f = obj[feas].max() else: # take worst point best_f = obj.min() if posterior_transform is not None: raise NotImplementedError return ConstrainedExpectedImprovement( model=model, best_f=best_f, objective_index=0, constraints=constraints, ) return ExpectedImprovement( model, best_f=obj.max(), posterior_transform=posterior_transform ) def get_EHVI( model: Model, train_Y: Tensor, ref_point: Tensor ) -> ExpectedHypervolumeImprovement: bd = FastNondominatedPartitioning(ref_point=ref_point, Y=train_Y) return ExpectedHypervolumeImprovement( model=model, ref_point=ref_point.tolist(), partitioning=bd, ) def get_qEHVI( model: Model, train_Y: Tensor, ref_point: Tensor ) -> qExpectedHypervolumeImprovement: bd = FastNondominatedPartitioning(ref_point=ref_point, Y=train_Y) return qExpectedHypervolumeImprovement( model=model, ref_point=ref_point.tolist(), partitioning=bd, ) def get_acqf( label: str, mc_samples: int, model: GPyTorchModel, X_baseline: Tensor, train_Y: Tensor, iteration: int, tkwargs: dict, num_constraints: int, base_function: DiscreteTestProblem, exact_rounding_func: ChainedInputTransform, standardize_tf: Standardize, batch_size: int = 1, **kwargs, ) -> Union[AcquisitionFunction, List[AcquisitionFunction]]: r"""Combines a few of the above utils to construct the acqf.""" if base_function.is_moo: ref_point = standardize_tf(base_function.ref_point.unsqueeze(0))[0].squeeze(0) is_constrained = isinstance(base_function, ConstrainedBaseTestProblem) if is_constrained and label[-2:] != "ei": raise NotImplementedError("Only EI is currently supported with constraints.") num_constraints = base_function.num_constraints if is_constrained else 0 if base_function.objective_weights is not None: posterior_transform = ScalarizedPosteriorTransform( weights=base_function.objective_weights ) else: posterior_transform = None if label[-3:] == "ucb": beta = 0.2 * X_baseline.shape[-1] * log(2 * iteration) if ("exact_round" in label) or ("enumerate" in label): if isinstance(model, ModelListGP): models = model.models for m in model.models: if hasattr(m, "input_transform"): m.input_transform = ChainedInputTransform( round=deepcopy(exact_rounding_func), orig=m.input_transform ) else: m.input_transform = deepcopy(exact_rounding_func) else: if hasattr(model, "input_transform"): model.input_transform = ChainedInputTransform( round=exact_rounding_func, orig=model.input_transform ) else: model.input_transform = exact_rounding_func if batch_size == 1: if label[-2:] == "ei": acq_func = get_EI( model=model, train_Y=train_Y, num_constraints=num_constraints, posterior_transform=posterior_transform, standardize_tf=standardize_tf, ) elif label[-3:] == "ucb": acq_func = UpperConfidenceBound( model=model, beta=beta, posterior_transform=posterior_transform, ) elif label[-2:] == "ts" or label[-7:] == "nehvi-1": model = get_gp_sample_w_transforms( model=model, num_outputs=model.num_outputs, n_samples=1, num_rff_features=kwargs.get("num_rff_features", 512), ) if label[-2:] == "ts": acq_func = PosteriorMean( model=model, posterior_transform=posterior_transform, ) if label[-7:] == "nehvi-1": with torch.no_grad(): preds = model.posterior(X_baseline).mean acq_func = get_qEHVI( model=model, train_Y=preds, ref_point=ref_point, ) elif label[-4:] == "ehvi": acq_func = get_EHVI( model=model, train_Y=train_Y, ref_point=ref_point, ) else: raise NotImplementedError if "pr" in label: if kwargs.get("pr_use_analytic", False): acq_func = AnalyticProbabilisticReparameterization( acq_function=acq_func, dtype=train_Y.dtype, device=train_Y.device, integer_indices=base_function.integer_indices.cpu().tolist(), integer_bounds=base_function.integer_bounds, categorical_features=base_function.categorical_features, dim=X_baseline.shape[-1], apply_numeric=kwargs.get("apply_numeric", False), tau=kwargs.get("pr_tau", 0.1), ) else: acq_func = MCProbabilisticReparameterization( acq_function=acq_func, integer_indices=base_function.integer_indices.cpu().tolist(), integer_bounds=base_function.integer_bounds, categorical_features=base_function.categorical_features, dim=X_baseline.shape[-1], batch_limit=kwargs.get("pr_batch_limit", 32), mc_samples=kwargs.get("pr_mc_samples", 1024), apply_numeric=kwargs.get("apply_numeric", False), tau=kwargs.get("pr_tau", 0.1), grad_estimator=kwargs.get("pr_grad_estimator", "reinforce"), ) return acq_func def get_problem(name: str, dim: Optional[int] = None, **kwargs) -> DiscreteTestProblem: r"""Initialize the test function.""" if name == "discrete_hartmann": dim = 6 integer_bounds = torch.zeros(2, 4) integer_bounds[1, :2] = 2 # 3 values integer_bounds[1, 2:4] = 9 # 10 values hartmann = Hartmann(dim=dim, negate=True) return DiscretizedBotorchTestProblem( problem=hartmann, integer_indices=list(range(4)), integer_bounds=integer_bounds, ) elif name == "discrete_hartmann2": dim = 6 integer_bounds = torch.zeros(2, 4) integer_bounds[1, :2] = 3 # 3 values integer_bounds[1, 2:4] = 19 # 10 values hartmann = Hartmann(dim=dim, negate=True) return DiscretizedBotorchTestProblem( problem=hartmann, integer_indices=list(range(2, 6)), integer_bounds=integer_bounds, ) elif name == "categorical_hartmann": dim = 6 categorical_bounds = torch.zeros(2, 2) categorical_bounds[1, :2] = 2 # 3 values hartmann = Hartmann(dim=dim, negate=True) return DiscretizedBotorchTestProblem( problem=hartmann, categorical_indices=list(range(4, 6)), categorical_bounds=categorical_bounds, ) elif name == "discrete_ackley": dim = 20 integer_bounds = torch.zeros(2, dim - 5) integer_bounds[1, :5] = 2 # 3 values integer_bounds[1, 5:10] = 4 # 5 values integer_bounds[1, 10:15] = 9 # 10 values ackley = Ackley(dim=dim, negate=True) return DiscretizedBotorchTestProblem( problem=ackley, integer_indices=list(range(dim - 5)), integer_bounds=integer_bounds, ) elif name == "ackley13": dim = 13 ackley = Ackley(dim=dim, negate=True) ackley.bounds[0, :-3] = 0 ackley.bounds[1] = 1 ackley.bounds[0, -3:] = -1 integer_bounds = torch.zeros(2, dim - 3) integer_bounds[1] = 1 # 2 values return DiscretizedBotorchTestProblem( problem=ackley, integer_indices=list(range(dim - 3)), integer_bounds=integer_bounds, ) elif name == "integer_ackley13": dim = 13 ackley = Ackley(dim=dim, negate=True) ackley.bounds[0, :-3] = 0 ackley.bounds[1] = 1 ackley.bounds[0, -3:] = -1 integer_bounds = torch.zeros(2, dim - 3) integer_bounds[1, :5] = 2 # 3 values integer_bounds[1, dim - 8 :] = 4 # 5 values return DiscretizedBotorchTestProblem( problem=ackley, integer_indices=list(range(dim - 3)), integer_bounds=integer_bounds, ) elif name == "contamination": assert dim is not None return Contamination(dim=dim, negate=True) elif name == "labs": assert dim is not None return LABS(dim=dim, negate=True) elif name == "svm": data = kwargs.get("data") assert data is not None assert dim is not None return SVMFeatureSelection( data=data, dim=dim, negate=True, ) elif name == "discrete_oil": return OilSorbent(negate=True) elif name == "mixed_oil": return OilSorbentMixed(negate=True) elif name == "cco": return CCO( data=kwargs.get("data"), negate=True, scalarize=kwargs.get("scalarize", False), n_int_values=kwargs.get("n_int_values", 6), ) elif name == "discrete_dtlz2": dim = 6 integer_bounds = torch.zeros(2, 4) integer_bounds[1, :1] = 10 # 100 values integer_bounds[1, 1:4] = 4 # 5 values dtlz2 = DTLZ2(dim=dim, negate=True) return DiscretizedBotorchTestProblem( problem=dtlz2, integer_indices=list(range(4)), integer_bounds=integer_bounds, ) elif name == "environmental": return Environmental(negate=True) elif name == "mixed_int_f1": integer_bounds = torch.zeros(2, 8) integer_bounds[1, :2] = 1 integer_bounds[1, 2:4] = 2 integer_bounds[1, 4:6] = 4 integer_bounds[1, 6:] = 6 return DiscretizedBotorchTestProblem( problem=Sphere(negate=True, dim=16), integer_indices=list(range(8)), integer_bounds=integer_bounds, ) elif name == "mixed_int_f3": integer_bounds = torch.zeros(2, 16) integer_bounds[1, :4] = 1 integer_bounds[1, 4:8] = 3 integer_bounds[1, 8:12] = 7 integer_bounds[1, 12:16] = 15 return DiscretizedBotorchTestProblem( problem=Sphere(negate=True, dim=20), integer_indices=list(range(16)), integer_bounds=integer_bounds, ) elif name == "nashpobench2": data = kwargs.get("data") assert data is not None return NASHPOBenchII( data=data, negate=True, num_objectives=kwargs.get("num_objectives", 1), use_12_epoch_result=kwargs.get("use_12_epoch_result", False), use_log=kwargs.get("use_log", False), ) elif name == "pressure_vessel": return PressureVessel(negate=True) elif name == "rosenbrock10": rosen = Rosenbrock(dim=10, negate=True) integer_bounds = torch.zeros(2, 6) integer_bounds[1, :] = 2 # 3 values return DiscretizedBotorchTestProblem( problem=rosen, integer_indices=list(range(4, 10)), integer_bounds=integer_bounds, ) elif name == "rosenbrock10_scaled": rosen = Rosenbrock(dim=10, negate=True) rosen.bounds[0, :6] = -2.1 rosen.bounds[1, :6] = 2.3 rosen.bounds[0, 6:] = -2 rosen.bounds[1, 6:] = 2 integer_bounds = torch.zeros(2, 6) integer_bounds[1, :] = 3 # 4 values return DiscretizedBotorchTestProblem( problem=rosen, integer_indices=list(range(6)), integer_bounds=integer_bounds, ) elif name == "pest": return PestControl( dim=kwargs.get("dim", 25), n_choice=kwargs.get("n_choice", 5), negate=True ) elif name == "xgb": return XGBoostHyperparameter( task=kwargs.get("task", "mnist"), negate=True, data=kwargs.get("data"), ) elif name == "chemistry": return Chemistry( negate=True, data=kwargs.get("data"), ) elif name == "welded_beam": return WeldedBeam( negate=True, continuous=kwargs.get("continuous", False), ) else: raise ValueError(f"Unknown function name: {name}!") def generate_discrete_options( base_function: DiscreteTestProblem, return_tensor: bool = False, ) -> Union[List[Dict[int, float]], Tensor]: categorical_features = base_function.categorical_features discrete_indices = torch.cat( [base_function.integer_indices, base_function.categorical_indices], dim=0 ) cardinalities = ( ( base_function.bounds[1, discrete_indices] - base_function.bounds[0, discrete_indices] + 1 ) .long() .tolist() ) discrete_indices_list = discrete_indices.tolist() discrete_options = torch.tensor( list(product(*[range(c) for c in cardinalities])), dtype=torch.long, ) # normalize to unit cube discrete_options = normalize( discrete_options, base_function.bounds[:, discrete_indices].cpu() ) if len(base_function.categorical_features) > 0: # unnormalize categoricals cat_indices = base_function.categorical_indices.cpu() - len( base_function.cont_indices ) # shift by number of continuous indices discrete_options[..., cat_indices] = unnormalize( discrete_options[..., cat_indices], base_function.categorical_bounds.cpu(), ) indices = base_function.integer_indices.tolist() # now one-hot encode the categoricals if categorical_features is not None: one_hot_categoricals = [ one_hot(discrete_options[:, i].long(), num_classes=cardinalities[i]) for i in range( base_function.integer_indices.shape[0], discrete_options.shape[1] ) ] discrete_options = torch.cat( [ discrete_options[:, : base_function.integer_indices.shape[0]], *one_hot_categoricals, ], dim=-1, ) # get a list of the starting and ending indices of each categorical feature in one-hot space start_idx = None for i in sorted(categorical_features.keys()): if start_idx is None: start_idx = i end_idx = start_idx + categorical_features[i] categ_indices = list(range(start_idx, end_idx)) indices.extend(categ_indices) start_idx = end_idx # create a list of dictionaries of mapping indices to values # the list has a dictionary for each discrete configuration if return_tensor: return discrete_options.to(base_function.bounds) return [dict(zip(indices, xi)) for xi in discrete_options.tolist()]
bo_pr-main
discrete_mixed_bo/experiment_utils.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" A wrapper classes around AquisitionFunctions to modify inputs and outputs. """ from __future__ import annotations from botorch.acquisition.acquisition import AcquisitionFunction from botorch.models.model import Model from torch import Tensor from torch.nn import Module class AcquisitionFunctionWrapper(AcquisitionFunction): r"""Abstract acquisition wrapper.""" def __init__(self, acq_function: AcquisitionFunction) -> None: Module.__init__(self) self.acq_function = acq_function @property def X_baseline(self) -> Optional[Tensor]: return self.acq_function.X_baseline @property def model(self) -> Model: return self.acq_function.model class IntegratedAcquisitionFunction(AcquisitionFunction): r"""Integrate acquisition function wrapper. This can be used for integrating over batch dimensions. For example, this can be used to integrate over hyperparameter samples from a fully bayesian (MCMC) model. """ def __init__( self, acq_function: AcquisitionFunction, marginalize_dim: int = -1 ) -> None: super().__init__(acq_function=acq_function) self._marginalize_dim = marginalize_dim def forward(self, X: Tensor) -> Tensor: r"""Evaluate the acquisition function and integrate over marginalize_dim. Args: X: A `(b) x q x d`-dim Tensor of `(b)` t-batches with `q` `d`-dim design points each. Returns: A `(b)`-dim Tensor of acquisition function values at the given design points `X`. """ return self.acq_function(X=X).mean(dim=self._marginalize_dim)
bo_pr-main
discrete_mixed_bo/wrapper.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Candidate generation utilities. This is a copy of botorch.gen.py that uses finite differences when specified. """ from __future__ import annotations import warnings from functools import partial from typing import Any, Callable, Dict, List, NoReturn, Optional, Tuple, Type, Union import numpy as np import torch from botorch.acquisition import AcquisitionFunction from botorch.generation.utils import _remove_fixed_features_from_optimization from botorch.optim.parameter_constraints import ( NLC_TOL, _arrayify, make_scipy_bounds, make_scipy_linear_constraints, make_scipy_nonlinear_inequality_constraints, ) from botorch.optim.stopping import ExpMAStoppingCriterion from botorch.optim.utils import _filter_kwargs, columnwise_clamp, fix_features from scipy.optimize import minimize from torch import Tensor def gen_candidates_scipy( initial_conditions: Tensor, acquisition_function: AcquisitionFunction, lower_bounds: Optional[Union[float, Tensor]] = None, upper_bounds: Optional[Union[float, Tensor]] = None, inequality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, equality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, nonlinear_inequality_constraints: Optional[List[Callable]] = None, options: Optional[Dict[str, Any]] = None, fixed_features: Optional[Dict[int, Optional[float]]] = None, ) -> Tuple[Tensor, Tensor]: r"""Generate a set of candidates using `scipy.optimize.minimize`. Optimizes an acquisition function starting from a set of initial candidates using `scipy.optimize.minimize` via a numpy converter. Args: initial_conditions: Starting points for optimization. acquisition_function: Acquisition function to be used. lower_bounds: Minimum values for each column of initial_conditions. upper_bounds: Maximum values for each column of initial_conditions. inequality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) >= rhs`. equality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) = rhs`. nonlinear_inequality_constraints: A list of callables with that represent non-linear inequality constraints of the form `callable(x) >= 0`. Each callable is expected to take a `(num_restarts) x q x d`-dim tensor as an input and return a `(num_restarts) x q`-dim tensor with the constraint values. The constraints will later be passed to SLSQP. options: Options used to control the optimization including "method" and "maxiter". Select method for `scipy.minimize` using the "method" key. By default uses L-BFGS-B for box-constrained problems and SLSQP if inequality or equality constraints are present. fixed_features: This is a dictionary of feature indices to values, where all generated candidates will have features fixed to these values. If the dictionary value is None, then that feature will just be fixed to the clamped value and not optimized. Assumes values to be compatible with lower_bounds and upper_bounds! Returns: 2-element tuple containing - The set of generated candidates. - The acquisition value for each t-batch. Example: >>> qEI = qExpectedImprovement(model, best_f=0.2) >>> bounds = torch.tensor([[0., 0.], [1., 2.]]) >>> Xinit = gen_batch_initial_conditions( >>> qEI, bounds, q=3, num_restarts=25, raw_samples=500 >>> ) >>> batch_candidates, batch_acq_values = gen_candidates_scipy( initial_conditions=Xinit, acquisition_function=qEI, lower_bounds=bounds[0], upper_bounds=bounds[1], ) """ options = options or {} # if there are fixed features we may optimize over a domain of lower dimension reduced_domain = False if fixed_features: # TODO: We can support fixed features, see Max's comment on D33551393. We can # consider adding this at a later point. if nonlinear_inequality_constraints: raise NotImplementedError( "Fixed features are not supported when non-linear inequality " "constraints are given." ) # if there are no constraints things are straightforward if not (inequality_constraints or equality_constraints): reduced_domain = True # if there are we need to make sure features are fixed to specific values else: reduced_domain = None not in fixed_features.values() if reduced_domain: _no_fixed_features = _remove_fixed_features_from_optimization( fixed_features=fixed_features, acquisition_function=acquisition_function, initial_conditions=initial_conditions, lower_bounds=lower_bounds, upper_bounds=upper_bounds, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, ) # call the routine with no fixed_features clamped_candidates, batch_acquisition = gen_candidates_scipy( initial_conditions=_no_fixed_features.initial_conditions, acquisition_function=_no_fixed_features.acquisition_function, lower_bounds=_no_fixed_features.lower_bounds, upper_bounds=_no_fixed_features.upper_bounds, inequality_constraints=_no_fixed_features.inequality_constraints, equality_constraints=_no_fixed_features.equality_constraints, options=options, fixed_features=None, ) clamped_candidates = _no_fixed_features.acquisition_function._construct_X_full( clamped_candidates ) return clamped_candidates, batch_acquisition clamped_candidates = columnwise_clamp( X=initial_conditions, lower=lower_bounds, upper=upper_bounds ) shapeX = clamped_candidates.shape x0 = clamped_candidates.view(-1) bounds = make_scipy_bounds( X=initial_conditions, lower_bounds=lower_bounds, upper_bounds=upper_bounds ) constraints = make_scipy_linear_constraints( shapeX=clamped_candidates.shape, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, ) with_grad = options.get("with_grad", True) if with_grad: def f_np_wrapper(x: np.ndarray, f: Callable): """Given a torch callable, compute value + grad given a numpy array.""" if np.isnan(x).any(): raise RuntimeError( f"{np.isnan(x).sum()} elements of the {x.size} element array " f"`x` are NaN." ) X = ( torch.from_numpy(x) .to(initial_conditions) .view(shapeX) .contiguous() .requires_grad_(True) ) X_fix = fix_features(X, fixed_features=fixed_features) loss = f(X_fix).sum() # compute gradient w.r.t. the inputs (does not accumulate in leaves) gradf = _arrayify(torch.autograd.grad(loss, X)[0].contiguous().view(-1)) if np.isnan(gradf).any(): msg = ( f"{np.isnan(gradf).sum()} elements of the {x.size} element " "gradient array `gradf` are NaN. This often indicates numerical issues." ) if initial_conditions.dtype != torch.double: msg += " Consider using `dtype=torch.double`." raise RuntimeError(msg) fval = loss.item() return fval, gradf else: def f_np_wrapper(x: np.ndarray, f: Callable): X = torch.from_numpy(x).to(initial_conditions).view(shapeX).contiguous() with torch.no_grad(): X_fix = fix_features(X=X, fixed_features=fixed_features) loss = f(X_fix).sum() fval = loss.item() return fval if nonlinear_inequality_constraints: # Make sure `batch_limit` is 1 for now. if not (len(shapeX) == 3 and shapeX[:2] == torch.Size([1, 1])): raise ValueError( "`batch_limit` must be 1 when non-linear inequality constraints " "are given." ) constraints += make_scipy_nonlinear_inequality_constraints( nonlinear_inequality_constraints=nonlinear_inequality_constraints, f_np_wrapper=f_np_wrapper, x0=x0, ) x0 = _arrayify(x0) def f(x): return -acquisition_function(x) res = minimize( fun=f_np_wrapper, args=(f,), x0=x0, method=options.get("method", "SLSQP" if constraints else "L-BFGS-B"), jac=with_grad, bounds=bounds, constraints=constraints, callback=options.get("callback", None), options={ k: v for k, v in options.items() if k not in [ "method", "callback", "with_grad", "sample_around_best_sigma", "sample_around_best_subset_sigma", ] }, ) candidates = fix_features( X=torch.from_numpy(res.x).to(initial_conditions).reshape(shapeX), fixed_features=fixed_features, ) # SLSQP sometimes fails in the line search or may just fail to find a feasible # candidate in which case we just return the starting point. This happens rarely, # so it shouldn't be an issue given enough restarts. if nonlinear_inequality_constraints and any( nlc(candidates.view(-1)) < NLC_TOL for nlc in nonlinear_inequality_constraints ): candidates = torch.from_numpy(x0).to(candidates).reshape(shapeX) warnings.warn( "SLSQP failed to converge to a solution the satisfies the non-linear " "constraints. Returning the feasible starting point." ) clamped_candidates = columnwise_clamp( X=candidates, lower=lower_bounds, upper=upper_bounds, raise_on_violation=True ) with torch.no_grad(): batch_acquisition = acquisition_function(clamped_candidates) return clamped_candidates, batch_acquisition def gen_candidates_torch( initial_conditions: Tensor, acquisition_function: AcquisitionFunction, lower_bounds: Optional[Union[float, Tensor]] = None, upper_bounds: Optional[Union[float, Tensor]] = None, options: Optional[Dict[str, Union[float, str]]] = None, callback: Optional[Callable[[int, Tensor, Tensor], NoReturn]] = None, fixed_features: Optional[Dict[int, Optional[float]]] = None, optimizer=torch.optim.Adam, ) -> Tuple[Tensor, Tensor]: options = options or {} # if there are fixed features we may optimize over a domain of lower dimension if fixed_features: subproblem = _remove_fixed_features_from_optimization( fixed_features=fixed_features, acquisition_function=acquisition_function, initial_conditions=initial_conditions, lower_bounds=lower_bounds, upper_bounds=upper_bounds, inequality_constraints=None, equality_constraints=None, ) # call the routine with no fixed_features clamped_candidates, batch_acquisition = gen_candidates_torch( initial_conditions=subproblem.initial_conditions, acquisition_function=subproblem.acquisition_function, lower_bounds=subproblem.lower_bounds, upper_bounds=subproblem.upper_bounds, optimizer=optimizer, options=options, callback=callback, fixed_features=None, ) clamped_candidates = subproblem.acquisition_function._construct_X_full( clamped_candidates ) return clamped_candidates, batch_acquisition _clamp = partial(columnwise_clamp, lower=lower_bounds, upper=upper_bounds) clamped_candidates = _clamp(initial_conditions).requires_grad_(True) lr = options.get("lr", 0.025) _optimizer = optimizer(params=[clamped_candidates], lr=lr) i = 0 stop = False if options.get("rel_tol") is None: # turn off exponential stopping options["rel_tol"] = float("-inf") stopping_criterion = ExpMAStoppingCriterion( **_filter_kwargs(ExpMAStoppingCriterion, **options) ) decay = options.get("decay", False) if callback is None: callback = options.get("callback") while not stop: i += 1 with torch.no_grad(): X = _clamp(clamped_candidates).requires_grad_(True) loss = -acquisition_function(X).sum() grad = torch.autograd.grad(loss, X)[0] if callback: callback(i, loss, grad, X) def assign_grad(): _optimizer.zero_grad() clamped_candidates.grad = grad return loss _optimizer.step(assign_grad) if decay: _optimizer = optimizer(params=[clamped_candidates], lr=lr / i**0.7) stop = stopping_criterion.evaluate(fvals=loss.detach()) clamped_candidates = clamped_candidates.detach() clamped_candidates = _clamp(clamped_candidates) with torch.no_grad(): batch_acquisition = acquisition_function(clamped_candidates) return clamped_candidates, batch_acquisition def get_best_candidates(batch_candidates: Tensor, batch_values: Tensor) -> Tensor: r"""Extract best (q-batch) candidate from batch of candidates Args: batch_candidates: A `b x q x d` tensor of `b` q-batch candidates, or a `b x d` tensor of `b` single-point candidates. batch_values: A tensor with `b` elements containing the value of the respective candidate (higher is better). Returns: A tensor of size `q x d` (if q-batch mode) or `d` from batch_candidates with the highest associated value. Example: >>> qEI = qExpectedImprovement(model, best_f=0.2) >>> bounds = torch.tensor([[0., 0.], [1., 2.]]) >>> Xinit = gen_batch_initial_conditions( >>> qEI, bounds, q=3, num_restarts=25, raw_samples=500 >>> ) >>> batch_candidates, batch_acq_values = gen_candidates_scipy( initial_conditions=Xinit, acquisition_function=qEI, lower_bounds=bounds[0], upper_bounds=bounds[1], ) >>> best_candidates = get_best_candidates(batch_candidates, batch_acq_values) """ best = torch.argmax(batch_values.view(-1), dim=0) return batch_candidates[best]
bo_pr-main
discrete_mixed_bo/gen.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Utilities for random fourier features. """ import torch from botorch.models import ModelListGP, MultiTaskGP from botorch.models.converter import batched_to_model_list from botorch.models.deterministic import DeterministicModel, GenericDeterministicModel from botorch.models.model import Model from botorch.utils.gp_sampling import ( RandomFourierFeatures, get_deterministic_model, get_deterministic_model_multi_samples, get_weights_posterior, ) def get_gp_samples( model: Model, num_outputs: int, n_samples: int, num_rff_features: int = 512, ) -> GenericDeterministicModel: r"""Sample functions from GP posterior using RFFs. The returned `GenericDeterministicModel` effectively wraps `num_outputs` models, each of which has a batch shape of `n_samples`. Refer `get_deterministic_model_multi_samples` for more details. Args: model: The model. num_outputs: The number of outputs. n_samples: The number of functions to be sampled IID. num_rff_features: The number of random Fourier features. Returns: A batched `GenericDeterministicModel` that batch evaluates `n_samples` sampled functions. """ if num_outputs > 1: if not isinstance(model, ModelListGP): models = batched_to_model_list(model).models else: models = model.models else: models = [model] if isinstance(models[0], MultiTaskGP): raise NotImplementedError weights = [] bases = [] for m in range(num_outputs): train_X = models[m].train_inputs[0] train_targets = models[m].train_targets # get random fourier features # sample_shape controls the number of iid functions. basis = RandomFourierFeatures( kernel=models[m].covar_module, input_dim=train_X.shape[-1], num_rff_features=num_rff_features, sample_shape=torch.Size([n_samples] if n_samples > 1 else []), ) bases.append(basis) # TODO: when batched kernels are supported in RandomFourierFeatures, # the following code can be uncommented. # if train_X.ndim > 2: # batch_shape_train_X = train_X.shape[:-2] # dataset_shape = train_X.shape[-2:] # train_X = train_X.unsqueeze(-3).expand( # *batch_shape_train_X, n_samples, *dataset_shape # ) # train_targets = train_targets.unsqueeze(-2).expand( # *batch_shape_train_X, n_samples, dataset_shape[0] # ) phi_X = basis(train_X) # Sample weights from bayesian linear model # 1. When inputs are not batched, train_X.shape == (n, d) # weights.sample().shape == (n_samples, num_rff_features) # 2. When inputs are batched, train_X.shape == (batch_shape_input, n, d) # This is expanded to (batch_shape_input, n_samples, n, d) # to maintain compatibility with RFF forward semantics # weights.sample().shape == (batch_shape_input, n_samples, num_rff_features) mvn = get_weights_posterior( X=phi_X, y=train_targets, sigma_sq=models[m].likelihood.noise.mean().item(), ) weights.append(mvn.sample()) # TODO: Ideally support RFFs for multi-outputs instead of having to # generate a basis for each output serially. if n_samples > 1: return get_deterministic_model_multi_samples( weights=weights, bases=bases, ) return get_deterministic_model( weights=weights, bases=bases, ) def get_gp_sample_w_transforms( model: Model, num_outputs: int, n_samples: int, num_rff_features: int = 512, ) -> DeterministicModel: intf = None octf = None if hasattr(model, "input_transform"): intf = model.input_transform if hasattr(model, "outcome_transform"): octf = model.outcome_transform model.outcome_transform = None base_gp_samples = get_gp_samples( model=model, num_outputs=num_outputs, n_samples=n_samples, num_rff_features=num_rff_features, ) if intf is not None: base_gp_samples.input_transform = intf model.input_transform = intf if octf is not None: base_gp_samples.outcome_transform = octf model.outcome_transform = octf return base_gp_samples
bo_pr-main
discrete_mixed_bo/rffs.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Straight Through Estimators. """ import torch from torch import Tensor from torch.autograd import Function from torch.nn import Module from torch.nn.functional import one_hot class RoundSTE(Function): r"""Apply a rounding function and use a ST gradient estimator.""" @staticmethod def forward( ctx, input: Tensor, ): return input.round() @staticmethod def backward(ctx, grad_output): return grad_output class OneHotArgmaxSTE(Function): r"""Apply a discretization (argmax) to a one-hot encoded categorical, return a one-hot encoded categorical, and use a STE gradient estimator.""" @staticmethod def forward( ctx, input: Tensor, num_categories: int, ): return one_hot(input.argmax(dim=-1), num_classes=num_categories) @staticmethod def backward(ctx, grad_output): return grad_output class OneHotToNumericSTE(Function): r"""Apply an argmax function and use a STE gradient estimator.""" @staticmethod def forward( ctx, input: Tensor, ): return input.argmax(dim=-1) @staticmethod def backward(ctx, grad_output): return grad_output
bo_pr-main
discrete_mixed_bo/ste.py
#!/usr/bin/env python3 # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
bo_pr-main
discrete_mixed_bo/__init__.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Run one replication. """ import gc from time import time from typing import Callable, Dict, List, Optional import nevergrad as ng import numpy as np import torch from botorch.acquisition.utils import is_nonnegative from botorch.fit import fit_gpytorch_model from botorch.models.transforms.outcome import Standardize from botorch.optim.optimize import optimize_acqf_discrete from botorch.test_functions.base import ( ConstrainedBaseTestProblem, MultiObjectiveTestProblem, ) from botorch.utils.multi_objective.box_decompositions.dominated import ( DominatedPartitioning, ) from botorch.utils.sampling import draw_sobol_samples from botorch.utils.transforms import normalize, unnormalize from torch import Tensor from discrete_mixed_bo.experiment_utils import ( eval_problem, generate_discrete_options, generate_initial_data, get_acqf, get_exact_rounding_func, get_problem, initialize_model, ) from discrete_mixed_bo.input import OneHotToNumeric from discrete_mixed_bo.model_utils import apply_normal_copula_transform from discrete_mixed_bo.optimize import optimize_acqf, optimize_acqf_mixed from discrete_mixed_bo.probabilistic_reparameterization import ( AbstractProbabilisticReparameterization, ) from discrete_mixed_bo.trust_region import TurboState, update_state supported_labels = [ "sobol", "cont_optim__round_after__ei", "pr__ei", "exact_round__fin_diff__ei", "exact_round__ste__ei", "enumerate__ei", "cont_optim__round_after__ts", "pr__ts", "exact_round__fin_diff__ts", "exact_round__ste__ts", "enumerate__ts", "cont_optim__round_after__ucb", "pr__ucb", "exact_round__fin_diff__ucb", "exact_round__ste__ucb", "enumerate__ucb", "cont_optim__round_after__ehvi", "pr__ehvi", "exact_round__fin_diff__ehvi", "exact_round__ste__ehvi", "enumerate__ehvi", "cont_optim__round_after__nehvi-1", "pr__nehvi-1", "exact_round__fin_diff__nehvi-1", "exact_round__ste__nehvi-1", "enumerate__nehvi-1", "nevergrad_portfolio", ] def run_one_replication( seed: int, label: str, iterations: int, function_name: str, batch_size: int, mc_samples: int, n_initial_points: Optional[int] = None, optimization_kwargs: Optional[dict] = None, dim: Optional[int] = None, acqf_kwargs: Optional[dict] = None, model_kwargs: Optional[dict] = None, save_frequency: Optional[int] = None, dtype: torch.dtype = torch.double, device: Optional[torch.device] = None, save_callback: Optional[Callable[[Tensor], None]] = None, problem_kwargs: Optional[Dict[str, np.ndarray]] = None, use_trust_region: bool = False, acqf_optim_seed: Optional[int] = None, X_init: Optional[Tensor] = None, Y_init: Optional[Tensor] = None, ) -> None: r"""Run the BO loop for given number of iterations. Supports restarting of prematurely killed experiments. Args: seed: The experiment seed. label: The label / algorithm to use. iterations: Number of iterations of the BO loop to perform. n_initial_points: Number of initial evaluations to use. function_name: The name of the test function to use. batch_size: The q-batch size, i.e., number of parallel function evaluations. mc_samples: Number of MC samples used for MC acquisition functions (e.g., NEI). optimization_kwargs: Arguments passed to `optimize_acqf`. Includes `num_restarts` and `raw_samples` and other optional arguments. model_kwargs: Arguments for `initialize_model`. The default behavior is to use a ModelListGP consisting of noise-free FixedNoiseGP models. save_frequency: How often to save the output. dtype: The tensor dtype to use. device: The device to use. save_callback: method to save results to file acqf_optim_seed: a seed for AF optimization. """ assert label in supported_labels, "Label not supported!" torch.manual_seed(seed) np.random.seed(seed) if device is None: device = torch.device("cuda" if torch.cuda.is_available() else "cpu") tkwargs = {"dtype": dtype, "device": device} model_kwargs = model_kwargs or {} acqf_kwargs = acqf_kwargs or {} problem_kwargs = problem_kwargs or {} optimization_kwargs = optimization_kwargs or {} # TODO: use model list when there are constraints # or multiple objectives base_function = get_problem(name=function_name, dim=dim, **problem_kwargs) base_function.to(**tkwargs) binary_dims = base_function.integer_indices binary_mask = base_function.integer_bounds[1] - base_function.integer_bounds[0] == 1 if binary_mask.any(): binary_dims = ( base_function.integer_indices.clone() .detach() .to(dtype=torch.int32)[binary_mask] .cpu() .tolist() ) else: binary_dims = [] is_constrained = isinstance(base_function, ConstrainedBaseTestProblem) num_constraints = base_function.num_constraints if is_constrained else 0 is_moo = base_function.is_moo model_kwargs.setdefault("use_model_list", is_moo or is_constrained) kernel_type = model_kwargs.get("kernel_type") if "cont_optim__round_after" in label: if kernel_type in ( "mixed_categorical", "mixed_latent", ): # cannot use a continuous relaxation + gradient optimization with mixed categorical model_kwargs["kernel_type"] = "mixed" elif "__ste__" in label: acqf_kwargs["use_ste"] = True if kernel_type in ("mixed_categorical", "mixed_latent"): acqf_kwargs["apply_numeric"] = True # set default optimization parameters optimization_kwargs.setdefault("num_restarts", 20) optimization_kwargs.setdefault("raw_samples", 1024) options = optimization_kwargs.get("options") if options is None: options = {} optimization_kwargs["options"] = options options.setdefault("batch_limit", 5) options.setdefault("init_batch_limit", 32) options.setdefault("maxiter", 200) if "pr" in label: # set pr defaults acqf_kwargs.setdefault("pr_mc_samples", 128) # use moving average baseline in reinforce gradient estimator acqf_kwargs.setdefault("pr_grad_estimator", "reinforce_ma") # use stochastic optimization acqf_kwargs.setdefault("pr_resample", True) optimization_kwargs.setdefault("stochastic", True) if "__fin_diff__" in label: options["with_grad"] = False if options.get("sample_around_best", False): sigma = torch.full((base_function.dim,), 1e-3, **tkwargs) sigma[base_function.integer_indices] = 0.5 / ( base_function.integer_bounds[1] - base_function.integer_bounds[0] ) options["sample_around_best_sigma"] = sigma options["sample_around_best_subset_sigma"] = sigma exact_rounding_func = get_exact_rounding_func( bounds=base_function.one_hot_bounds, integer_indices=base_function.integer_indices.tolist(), categorical_features=base_function.categorical_features, initialization=False, ) init_exact_rounding_func = get_exact_rounding_func( bounds=base_function.one_hot_bounds, integer_indices=base_function.integer_indices.tolist(), categorical_features=base_function.categorical_features, initialization=True, ) standard_bounds = torch.ones(2, base_function.effective_dim, **tkwargs) standard_bounds[0] = 0 # Get the initial data. if n_initial_points is None: n_initial_points = min(20, 2 * base_function.effective_dim) if X_init is None: X, Y = generate_initial_data( n=n_initial_points, base_function=base_function, bounds=standard_bounds, tkwargs=tkwargs, init_exact_rounding_func=init_exact_rounding_func, ) else: # use provided initial data assert Y_init is not None assert X_init.shape[-1] == base_function.effective_dim X = X_init.to(**tkwargs) Y = Y_init.to(**tkwargs) standardize_tf = Standardize(m=Y.shape[-1]) stdized_Y, _ = standardize_tf(Y) standardize_tf.eval() max_af_values = [] # Set some counters to keep track of things. start_time = time() existing_iterations = 0 wall_time = torch.zeros(iterations, dtype=dtype) if is_moo: bd = DominatedPartitioning(ref_point=base_function.ref_point, Y=Y) # Abusing this variable name. This is HV. best_objs = bd.compute_hypervolume().view(-1).cpu() elif is_constrained: # compute feasibility feas = (Y[..., 1:] >= 0).all(dim=-1) if feas.any(): best_objs = Y[feas, 0].max().view(-1).cpu() else: best_objs = torch.tensor([float("-inf")], dtype=Y.dtype) else: if base_function.objective_weights is not None: obj = Y @ base_function.objective_weights else: obj = Y best_objs = obj.max().view(-1).cpu() if use_trust_region: assert not is_moo trbo_state = TurboState( dim=base_function.effective_dim, batch_size=batch_size, is_constrained=is_constrained, ) # setup nevergrad_portfolio if label == "nevergrad_portfolio": params = [] for i in base_function.cont_indices: params.append( ng.p.Scalar( lower=base_function.bounds[0, i].item(), upper=base_function.bounds[1, i].item(), ) ) for i in base_function.integer_indices: params.append( ng.p.TransitionChoice( list( range( int(base_function.bounds[0, i].item()), int(base_function.bounds[1, i].item()) + 1, ) ) ) ) for i in base_function.categorical_indices: params.append( ng.p.Choice( list( range( int(base_function.bounds[0, i].item()), int(base_function.bounds[1, i].item()) + 1, ) ) ) ) params = ng.p.Instrumentation(*params) ohe_to_numeric = OneHotToNumeric( categorical_features=base_function.categorical_features, transform_on_train=True, ) X_numeric = ohe_to_numeric(X) if len(base_function.categorical_features) > 0: X_numeric[..., base_function.categorical_indices] = normalize( X_numeric[..., base_function.categorical_indices], base_function.categorical_bounds, ) X_numeric = unnormalize(X_numeric, base_function.bounds) params.value = (tuple(X_numeric[-1].tolist()), {}) optimizer = ng.optimizers.PortfolioDiscreteOnePlusOne( parametrization=params, budget=iterations + X.shape[0], num_workers=1, ) optimizer.ask() # clear initial value for xi, yi in zip(X_numeric.cpu().numpy(), Y.cpu().numpy()): xi = optimizer.parametrization.spawn_child( new_value=(tuple(xi.tolist()), {}) ) optimizer.tell(xi, -yi.item()) # whether to sample discrete candidates from the resulting distribution or use the MLE sample_candidates = acqf_kwargs.get("sample_candidates", True) # BO loop for as many iterations as needed. all_loss_trajs = [] all_xs_trajs = [] all_true_af_trajs = [] one_hot_to_numeric = None for i in range(existing_iterations, iterations): loss_traj = [] xs_traj = [] true_af_traj = [] print( f"Starting label {label}, seed {seed}, iteration {i}, " f"time: {time()-start_time}, current best obj: {best_objs[-1]}." ) # Fit the model. mll, model, ecdfs = initialize_model( train_x=X, train_y=stdized_Y, binary_dims=binary_dims, categorical_features=base_function.categorical_features, function_name=function_name, **model_kwargs, ) fit_gpytorch_model(mll) if label == "sobol": raw_candidates = ( draw_sobol_samples( bounds=standard_bounds, n=1, q=batch_size, ) .squeeze(0) .to(**tkwargs) ) candidates = init_exact_rounding_func(raw_candidates) elif label == "nevergrad_portfolio": X_numeric = ohe_to_numeric(X[-1:]) if len(base_function.categorical_features) > 0: X_numeric[..., base_function.categorical_indices] = normalize( X_numeric[..., base_function.categorical_indices], base_function.categorical_bounds, ) X_numeric = unnormalize(X_numeric, base_function.bounds) xi = optimizer.parametrization.spawn_child( new_value=(tuple(X_numeric.view(-1).tolist()), {}) ) optimizer.tell(xi, -Y[-1].item()) candidates_numeric = torch.tensor( optimizer.ask().value[0], dtype=X.dtype, device=X.device ).view(1, -1) candidates = normalize(candidates_numeric, base_function.bounds) if len(base_function.categorical_features) > 0: candidates[..., base_function.categorical_indices] = unnormalize( candidates[..., base_function.categorical_indices], base_function.categorical_bounds, ) candidates = ohe_to_numeric.untransform(candidates) else: # Construct the acqf. acqf_exact_rounding_func = get_exact_rounding_func( bounds=base_function.one_hot_bounds, integer_indices=base_function.integer_indices.tolist(), categorical_features=base_function.categorical_features, initialization=False, return_numeric=acqf_kwargs.get("apply_numeric", False), use_ste=acqf_kwargs.get("use_ste", False), ) acq_func = get_acqf( label=label, mc_samples=mc_samples, model=model, X_baseline=X, num_constraints=num_constraints, iteration=i + 1, tkwargs=tkwargs, base_function=base_function, batch_size=batch_size, exact_rounding_func=acqf_exact_rounding_func, train_Y=stdized_Y, standardize_tf=standardize_tf, **acqf_kwargs, ) true_acq_func = acq_func if isinstance(acq_func, AbstractProbabilisticReparameterization): # PR itself maps one-hot to numeric # (not the model) # so we need to do so here ourselves if acq_func.one_hot_to_numeric is not None: one_hot_to_numeric = acq_func.one_hot_to_numeric if "pr" in label: options["nonnegative"] = is_nonnegative(acq_func.acq_function) if use_trust_region: scaled_length = trbo_state.length * ( standard_bounds[1] - standard_bounds[0] ) if is_constrained: feas = (Y[..., 1:] >= 0).all(dim=-1) if feas.any(): merit = Y[:, 0].clone() merit[~feas] = -float("inf") x_center = X[merit.argmax()] else: violation = torch.clamp_max(Y[..., 1:], 0.0).abs().sum(dim=-1) x_center = X[violation.argmin()] else: x_center = X[Y.argmax()].clone() bounds = torch.stack( (x_center - scaled_length, x_center + scaled_length) ) # Clamp bounds bounds[0] = torch.maximum(bounds[0], standard_bounds[0]) bounds[1] = torch.minimum(bounds[1], standard_bounds[1]) # Reset binary dimenions bounds[0, binary_dims] = 0 bounds[1, binary_dims] = 1 # Reset categorical_dims if len(base_function.categorical_features) > 0: start = base_function.categorical_indices.min().item() bounds[0, start:] = 0 bounds[1, start:] = 1 else: bounds = standard_bounds # Optimize the acqf. torch.cuda.empty_cache() if "enumerate" in label: # enumerate the discrete options and optimize the continuous # parameters for each discrete option, if there are any # construct a list of dictionaries mapping indices in one-hot space # to parameter values. discrete_options = generate_discrete_options( base_function=base_function, return_tensor=base_function.cont_indices.shape[0] == 0, ) if base_function.cont_indices.shape[0] > 0: # optimize mixed candidates, _ = optimize_acqf_mixed( acq_function=acq_func, bounds=bounds, q=batch_size, fixed_features_list=discrete_options, **optimization_kwargs, ) else: # optimize discrete candidates, _ = optimize_acqf_discrete( acq_function=acq_func, q=batch_size, choices=discrete_options, **optimization_kwargs, ) else: if acqf_optim_seed is not None: torch.manual_seed(acqf_optim_seed) if isinstance(acq_func, AbstractProbabilisticReparameterization): true_acq_func = acq_func.acq_function if ( optimization_kwargs.get("stochastic", False) and acqf_optim_seed is not None ): def callback(i, loss, grad, X): # this is a sum over batches X = X.detach().clone() xs_traj.append(X.cpu()) with torch.no_grad(): X_rounded = exact_rounding_func(X) if one_hot_to_numeric is not None: X_rounded = acq_func.one_hot_to_numeric(X_rounded) true_af_traj.append(true_acq_func(X_rounded).cpu()) loss_traj.append(acq_func(X).cpu()) optimization_kwargs["options"]["callback"] = callback raw_candidates, _ = optimize_acqf( acq_function=acq_func, bounds=bounds, q=batch_size, **optimization_kwargs, # return candidates for all random restarts return_best_only=False, ) if ( isinstance(acq_func, AbstractProbabilisticReparameterization) and sample_candidates ): with torch.no_grad(): candidates = acq_func.sample_candidates(raw_candidates) else: # use maximum likelihood candidates for PR # and round candidates for other methods candidates = exact_rounding_func(raw_candidates) # compute acquisition values of rounded candidates # and select best across restarts if one_hot_to_numeric is not None: candidates_numeric = acq_func.one_hot_to_numeric(candidates) else: candidates_numeric = candidates with torch.no_grad(): # TODO: support q-batches here if batch_size > 1: raise NotImplementedError max_af = true_acq_func(candidates_numeric).max(dim=0) best_idx = max_af.indices.item() max_af_values.append(max_af.values.item()) if candidates.ndim > 2: # select best across restarts candidates = candidates[best_idx] torch.cuda.empty_cache() # free memory del acq_func, mll, model gc.collect() # Get the new observations and update the data. new_y = eval_problem(candidates, base_function=base_function) if use_trust_region: old_length = trbo_state.length trbo_state = update_state(state=trbo_state, Y_next=new_y) if trbo_state.length != old_length: print( f"TR length changed from {old_length:.3f} to {trbo_state.length:3f}" ) if trbo_state.restart_triggered: print("Restarting trust region") trbo_state = TurboState( dim=base_function.effective_dim, batch_size=batch_size, is_constrained=is_constrained, ) X = torch.cat([X, candidates], dim=0) Y = torch.cat([Y, new_y], dim=0) standardize_tf.train() stdized_Y, _ = standardize_tf(Y) standardize_tf.eval() wall_time[i] = time() - start_time all_xs_trajs.append(xs_traj) all_loss_trajs.append(loss_traj) all_true_af_trajs.append(true_af_traj) # TODO: add support for constraints by applying feasibility if is_moo: bd = DominatedPartitioning(ref_point=base_function.ref_point, Y=Y) # Abusing this variable name. This is HV. best_obj = bd.compute_hypervolume() elif is_constrained: # compute feasibility feas = (Y[..., 1:] >= 0).all(dim=-1) if feas.any(): best_obj = Y[feas, 0].max() else: best_obj = torch.tensor([float("-inf")], dtype=Y.dtype, device=Y.device) else: if base_function.objective_weights is not None: obj = Y @ base_function.objective_weights else: obj = Y best_obj = obj.max().view(-1).cpu() best_objs = torch.cat([best_objs, best_obj.view(-1).cpu()], dim=0) # Periodically save the output. if save_frequency is not None and iterations % save_frequency == 0: output_dict = { "label": label, "X": X.cpu(), "Y": Y.cpu(), "wall_time": wall_time[: i + 1], "best_objs": best_objs, "max_af_values": max_af_values, } save_callback(output_dict) # Save the final output output_dict = { "label": label, "X": X.cpu(), "Y": Y.cpu(), "wall_time": wall_time, "best_objs": best_objs, "max_af_values": max_af_values, "all_loss_trajs": all_loss_trajs, "all_xs_trajs": all_xs_trajs, "all_true_af_trajs": all_true_af_trajs, } save_callback(output_dict)
bo_pr-main
discrete_mixed_bo/run_one_replication.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" A copy of botorch.optim.initializers that support vector-valued sigma for the sample_around_best heuristic. References .. [Regis] R. G. Regis, C. A. Shoemaker. Combining radial basis function surrogates and dynamic coordinate search in high-dimensional expensive black-box optimization, Engineering Optimization, 2013. """ from __future__ import annotations import warnings from math import ceil from typing import Dict, List, Optional, Tuple, Union import torch from botorch import settings from botorch.acquisition.acquisition import AcquisitionFunction from botorch.acquisition.knowledge_gradient import ( _get_value_function, qKnowledgeGradient, ) from botorch.acquisition.utils import is_nonnegative from botorch.exceptions.errors import BotorchTensorDimensionError from botorch.exceptions.warnings import ( BadInitialCandidatesWarning, BotorchWarning, SamplingWarning, ) from botorch.models.model import Model from botorch.optim.utils import fix_features, get_X_baseline from botorch.utils.multi_objective.pareto import is_non_dominated from botorch.utils.sampling import ( batched_multinomial, draw_sobol_samples, get_polytope_samples, manual_seed, ) from botorch.utils.transforms import normalize, standardize, unnormalize from torch import Tensor from torch.distributions import Normal from torch.quasirandom import SobolEngine def gen_batch_initial_conditions( acq_function: AcquisitionFunction, bounds: Tensor, q: int, num_restarts: int, raw_samples: int, fixed_features: Optional[Dict[int, float]] = None, options: Optional[Dict[str, Union[bool, float, int]]] = None, inequality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, equality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, ) -> Tensor: r"""Generate a batch of initial conditions for random-restart optimziation. TODO: Support t-batches of initial conditions. Args: acq_function: The acquisition function to be optimized. bounds: A `2 x d` tensor of lower and upper bounds for each column of `X`. q: The number of candidates to consider. num_restarts: The number of starting points for multistart acquisition function optimization. raw_samples: The number of raw samples to consider in the initialization heuristic. Note: if `sample_around_best` is True (the default is False), then `2 * raw_samples` samples are used. fixed_features: A map `{feature_index: value}` for features that should be fixed to a particular value during generation. options: Options for initial condition generation. For valid options see `initialize_q_batch` and `initialize_q_batch_nonneg`. If `options` contains a `nonnegative=True` entry, then `acq_function` is assumed to be non-negative (useful when using custom acquisition functions). In addition, an "init_batch_limit" option can be passed to specify the batch limit for the initialization. This is useful for avoiding memory limits when computing the batch posterior over raw samples. inequality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) >= rhs`. equality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) = rhs`. Returns: A `num_restarts x q x d` tensor of initial conditions. Example: >>> qEI = qExpectedImprovement(model, best_f=0.2) >>> bounds = torch.tensor([[0.], [1.]]) >>> Xinit = gen_batch_initial_conditions( >>> qEI, bounds, q=3, num_restarts=25, raw_samples=500 >>> ) """ options = options or {} seed: Optional[int] = options.get("seed") batch_limit: Optional[int] = options.get( "init_batch_limit", options.get("batch_limit") ) batch_initial_arms: Tensor factor, max_factor = 1, 5 init_kwargs = {} device = bounds.device bounds_cpu = bounds.cpu() if "eta" in options: init_kwargs["eta"] = options.get("eta") if options.get("nonnegative") or is_nonnegative(acq_function): init_func = initialize_q_batch_nonneg if "alpha" in options: init_kwargs["alpha"] = options.get("alpha") else: init_func = initialize_q_batch q = 1 if q is None else q # the dimension the samples are drawn from effective_dim = bounds.shape[-1] * q if effective_dim > SobolEngine.MAXDIM and settings.debug.on(): warnings.warn( f"Sample dimension q*d={effective_dim} exceeding Sobol max dimension " f"({SobolEngine.MAXDIM}). Using iid samples instead.", SamplingWarning, ) while factor < max_factor: with warnings.catch_warnings(record=True) as ws: n = raw_samples * factor if inequality_constraints is None and equality_constraints is None: if effective_dim <= SobolEngine.MAXDIM: X_rnd = draw_sobol_samples(bounds=bounds_cpu, n=n, q=q, seed=seed) else: with manual_seed(seed): # load on cpu X_rnd_nlzd = torch.rand( n, q, bounds_cpu.shape[-1], dtype=bounds.dtype ) X_rnd = bounds_cpu[0] + (bounds_cpu[1] - bounds_cpu[0]) * X_rnd_nlzd else: X_rnd = ( get_polytope_samples( n=n * q, bounds=bounds, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, seed=seed, n_burnin=options.get("n_burnin", 10000), thinning=options.get("thinning", 32), ) .view(n, q, -1) .cpu() ) # sample points around best if options.get("sample_around_best", False): X_best_rnd = sample_points_around_best( acq_function=acq_function, n_discrete_points=n * q, sigma=options.get("sample_around_best_sigma", 1e-3), bounds=bounds, subset_sigma=options.get("sample_around_best_subset_sigma", 1e-1), prob_perturb=options.get("sample_around_best_prob_perturb"), ) if X_best_rnd is not None: X_rnd = torch.cat( [ X_rnd, X_best_rnd.view(n, q, bounds.shape[-1]).cpu(), ], dim=0, ) X_rnd = fix_features(X_rnd, fixed_features=fixed_features) with torch.no_grad(): if batch_limit is None: batch_limit = X_rnd.shape[0] Y_rnd_list = [] start_idx = 0 while start_idx < X_rnd.shape[0]: end_idx = min(start_idx + batch_limit, X_rnd.shape[0]) Y_rnd_curr = acq_function( X_rnd[start_idx:end_idx].to(device=device) ).cpu() Y_rnd_list.append(Y_rnd_curr) start_idx += batch_limit Y_rnd = torch.cat(Y_rnd_list) batch_initial_conditions = init_func( X=X_rnd, Y=Y_rnd, n=num_restarts, **init_kwargs ).to(device=device) if not any(issubclass(w.category, BadInitialCandidatesWarning) for w in ws): return batch_initial_conditions if factor < max_factor: factor += 1 if seed is not None: seed += 1 # make sure to sample different X_rnd warnings.warn( "Unable to find non-zero acquisition function values - initial conditions " "are being selected randomly.", BadInitialCandidatesWarning, ) return batch_initial_conditions def gen_one_shot_kg_initial_conditions( acq_function: qKnowledgeGradient, bounds: Tensor, q: int, num_restarts: int, raw_samples: int, fixed_features: Optional[Dict[int, float]] = None, options: Optional[Dict[str, Union[bool, float, int]]] = None, inequality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, equality_constraints: Optional[List[Tuple[Tensor, Tensor, float]]] = None, ) -> Optional[Tensor]: r"""Generate a batch of smart initializations for qKnowledgeGradient. This function generates initial conditions for optimizing one-shot KG using the maximizer of the posterior objective. Intutively, the maximizer of the fantasized posterior will often be close to a maximizer of the current posterior. This function uses that fact to generate the initital conditions for the fantasy points. Specifically, a fraction of `1 - frac_random` (see options) is generated by sampling from the set of maximizers of the posterior objective (obtained via random restart optimization) according to a softmax transformation of their respective values. This means that this initialization strategy internally solves an acquisition function maximization problem. The remaining `frac_random` fantasy points as well as all `q` candidate points are chosen according to the standard initialization strategy in `gen_batch_initial_conditions`. Args: acq_function: The qKnowledgeGradient instance to be optimized. bounds: A `2 x d` tensor of lower and upper bounds for each column of task features. q: The number of candidates to consider. num_restarts: The number of starting points for multistart acquisition function optimization. raw_samples: The number of raw samples to consider in the initialization heuristic. fixed_features: A map `{feature_index: value}` for features that should be fixed to a particular value during generation. options: Options for initial condition generation. These contain all settings for the standard heuristic initialization from `gen_batch_initial_conditions`. In addition, they contain `frac_random` (the fraction of fully random fantasy points), `num_inner_restarts` and `raw_inner_samples` (the number of random restarts and raw samples for solving the posterior objective maximization problem, respectively) and `eta` (temperature parameter for sampling heuristic from posterior objective maximizers). inequality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) >= rhs`. equality constraints: A list of tuples (indices, coefficients, rhs), with each tuple encoding an inequality constraint of the form `\sum_i (X[indices[i]] * coefficients[i]) = rhs`. Returns: A `num_restarts x q' x d` tensor that can be used as initial conditions for `optimize_acqf()`. Here `q' = q + num_fantasies` is the total number of points (candidate points plus fantasy points). Example: >>> qKG = qKnowledgeGradient(model, num_fantasies=64) >>> bounds = torch.tensor([[0., 0.], [1., 1.]]) >>> Xinit = gen_one_shot_kg_initial_conditions( >>> qKG, bounds, q=3, num_restarts=10, raw_samples=512, >>> options={"frac_random": 0.25}, >>> ) """ options = options or {} frac_random: float = options.get("frac_random", 0.1) if not 0 < frac_random < 1: raise ValueError( f"frac_random must take on values in (0,1). Value: {frac_random}" ) q_aug = acq_function.get_augmented_q_batch_size(q=q) # TODO: Avoid unnecessary computation by not generating all candidates ics = gen_batch_initial_conditions( acq_function=acq_function, bounds=bounds, q=q_aug, num_restarts=num_restarts, raw_samples=raw_samples, fixed_features=fixed_features, options=options, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, ) # compute maximizer of the value function value_function = _get_value_function( model=acq_function.model, objective=acq_function.objective, sampler=acq_function.inner_sampler, project=getattr(acq_function, "project", None), ) from botorch.optim.optimize import optimize_acqf fantasy_cands, fantasy_vals = optimize_acqf( acq_function=value_function, bounds=bounds, q=1, num_restarts=options.get("num_inner_restarts", 20), raw_samples=options.get("raw_inner_samples", 1024), fixed_features=fixed_features, return_best_only=False, inequality_constraints=inequality_constraints, equality_constraints=equality_constraints, ) # sampling from the optimizers n_value = int((1 - frac_random) * (q_aug - q)) # number of non-random ICs eta = options.get("eta", 2.0) weights = torch.exp(eta * standardize(fantasy_vals)) idx = torch.multinomial(weights, num_restarts * n_value, replacement=True) # set the respective initial conditions to the sampled optimizers ics[..., -n_value:, :] = fantasy_cands[idx, 0].view(num_restarts, n_value, -1) return ics def gen_value_function_initial_conditions( acq_function: AcquisitionFunction, bounds: Tensor, num_restarts: int, raw_samples: int, current_model: Model, fixed_features: Optional[Dict[int, float]] = None, options: Optional[Dict[str, Union[bool, float, int]]] = None, ) -> Tensor: r"""Generate a batch of smart initializations for optimizing the value function of qKnowledgeGradient. This function generates initial conditions for optimizing the inner problem of KG, i.e. its value function, using the maximizer of the posterior objective. Intutively, the maximizer of the fantasized posterior will often be close to a maximizer of the current posterior. This function uses that fact to generate the initital conditions for the fantasy points. Specifically, a fraction of `1 - frac_random` (see options) of raw samples is generated by sampling from the set of maximizers of the posterior objective (obtained via random restart optimization) according to a softmax transformation of their respective values. This means that this initialization strategy internally solves an acquisition function maximization problem. The remaining raw samples are generated using `draw_sobol_samples`. All raw samples are then evaluated, and the initial conditions are selected according to the standard initialization strategy in 'initialize_q_batch' individually for each inner problem. Args: acq_function: The value function instance to be optimized. bounds: A `2 x d` tensor of lower and upper bounds for each column of task features. num_restarts: The number of starting points for multistart acquisition function optimization. raw_samples: The number of raw samples to consider in the initialization heuristic. current_model: The model of the KG acquisition function that was used to generate the fantasy model of the value function. fixed_features: A map `{feature_index: value}` for features that should be fixed to a particular value during generation. options: Options for initial condition generation. These contain all settings for the standard heuristic initialization from `gen_batch_initial_conditions`. In addition, they contain `frac_random` (the fraction of fully random fantasy points), `num_inner_restarts` and `raw_inner_samples` (the number of random restarts and raw samples for solving the posterior objective maximization problem, respectively) and `eta` (temperature parameter for sampling heuristic from posterior objective maximizers). Returns: A `num_restarts x batch_shape x q x d` tensor that can be used as initial conditions for `optimize_acqf()`. Here `batch_shape` is the batch shape of value function model. Example: >>> fant_X = torch.rand(5, 1, 2) >>> fantasy_model = model.fantasize(fant_X, SobolQMCNormalSampler(16)) >>> value_function = PosteriorMean(fantasy_model) >>> bounds = torch.tensor([[0., 0.], [1., 1.]]) >>> Xinit = gen_value_function_initial_conditions( >>> value_function, bounds, num_restarts=10, raw_samples=512, >>> options={"frac_random": 0.25}, >>> ) """ options = options or {} seed: Optional[int] = options.get("seed") frac_random: float = options.get("frac_random", 0.6) if not 0 < frac_random < 1: raise ValueError( f"frac_random must take on values in (0,1). Value: {frac_random}" ) # compute maximizer of the current value function value_function = _get_value_function( model=current_model, objective=getattr(acq_function, "objective", None), posterior_transform=acq_function.posterior_transform, sampler=getattr(acq_function, "sampler", None), project=getattr(acq_function, "project", None), ) from botorch.optim.optimize import optimize_acqf fantasy_cands, fantasy_vals = optimize_acqf( acq_function=value_function, bounds=bounds, q=1, num_restarts=options.get("num_inner_restarts", 20), raw_samples=options.get("raw_inner_samples", 1024), fixed_features=fixed_features, return_best_only=False, options={ k: v for k, v in options.items() if k not in ("frac_random", "num_inner_restarts", "raw_inner_samples", "eta") }, ) batch_shape = acq_function.model.batch_shape # sampling from the optimizers n_value = int((1 - frac_random) * raw_samples) # number of non-random ICs if n_value > 0: eta = options.get("eta", 2.0) weights = torch.exp(eta * standardize(fantasy_vals)) idx = batched_multinomial( weights=weights.expand(*batch_shape, -1), num_samples=n_value, replacement=True, ).permute(-1, *range(len(batch_shape))) resampled = fantasy_cands[idx] else: resampled = torch.empty( 0, *batch_shape, 1, bounds.shape[-1], dtype=fantasy_cands.dtype, device=fantasy_cands.device, ) # add qMC samples randomized = draw_sobol_samples( bounds=bounds, n=raw_samples - n_value, q=1, batch_shape=batch_shape, seed=seed ).to(resampled) # full set of raw samples X_rnd = torch.cat([resampled, randomized], dim=0) X_rnd = fix_features(X_rnd, fixed_features=fixed_features) # evaluate the raw samples with torch.no_grad(): Y_rnd = acq_function(X_rnd) # select the restart points using the heuristic return initialize_q_batch( X=X_rnd, Y=Y_rnd, n=num_restarts, eta=options.get("eta", 2.0) ) def initialize_q_batch(X: Tensor, Y: Tensor, n: int, eta: float = 1.0) -> Tensor: r"""Heuristic for selecting initial conditions for candidate generation. This heuristic selects points from `X` (without replacement) with probability proportional to `exp(eta * Z)`, where `Z = (Y - mean(Y)) / std(Y)` and `eta` is a temperature parameter. When using an acquisiton function that is non-negative and possibly zero over large areas of the feature space (e.g. qEI), you should use `initialize_q_batch_nonneg` instead. Args: X: A `b x batch_shape x q x d` tensor of `b` - `batch_shape` samples of `q`-batches from a d`-dim feature space. Typically, these are generated using qMC sampling. Y: A tensor of `b x batch_shape` outcomes associated with the samples. Typically, this is the value of the batch acquisition function to be maximized. n: The number of initial condition to be generated. Must be less than `b`. eta: Temperature parameter for weighting samples. Returns: A `n x batch_shape x q x d` tensor of `n` - `batch_shape` `q`-batch initial conditions, where each batch of `n x q x d` samples is selected independently. Example: >>> # To get `n=10` starting points of q-batch size `q=3` >>> # for model with `d=6`: >>> qUCB = qUpperConfidenceBound(model, beta=0.1) >>> Xrnd = torch.rand(500, 3, 6) >>> Xinit = initialize_q_batch(Xrnd, qUCB(Xrnd), 10) """ n_samples = X.shape[0] batch_shape = X.shape[1:-2] or torch.Size() if n > n_samples: raise RuntimeError( f"n ({n}) cannot be larger than the number of " f"provided samples ({n_samples})" ) elif n == n_samples: return X Ystd = Y.std(dim=0) if torch.any(Ystd == 0): warnings.warn( "All acquisition values for raw samples points are the same for " "at least one batch. Choosing initial conditions at random.", BadInitialCandidatesWarning, ) return X[torch.randperm(n=n_samples, device=X.device)][:n] max_val, max_idx = torch.max(Y, dim=0) Z = (Y - Y.mean(dim=0)) / Ystd etaZ = eta * Z weights = torch.exp(etaZ) while torch.isinf(weights).any(): etaZ *= 0.5 weights = torch.exp(etaZ) if batch_shape == torch.Size(): idcs = torch.multinomial(weights, n) else: idcs = batched_multinomial( weights=weights.permute(*range(1, len(batch_shape) + 1), 0), num_samples=n ).permute(-1, *range(len(batch_shape))) # make sure we get the maximum if max_idx not in idcs: idcs[-1] = max_idx if batch_shape == torch.Size(): return X[idcs] else: return X.gather( dim=0, index=idcs.view(*idcs.shape, 1, 1).expand(n, *X.shape[1:]) ) def initialize_q_batch_nonneg( X: Tensor, Y: Tensor, n: int, eta: float = 1.0, alpha: float = 1e-4 ) -> Tensor: r"""Heuristic for selecting initial conditions for non-neg. acquisition functions. This function is similar to `initialize_q_batch`, but designed specifically for acquisition functions that are non-negative and possibly zero over large areas of the feature space (e.g. qEI). All samples for which `Y < alpha * max(Y)` will be ignored (assuming that `Y` contains at least one positive value). Args: X: A `b x q x d` tensor of `b` samples of `q`-batches from a `d`-dim. feature space. Typically, these are generated using qMC. Y: A tensor of `b` outcomes associated with the samples. Typically, this is the value of the batch acquisition function to be maximized. n: The number of initial condition to be generated. Must be less than `b`. eta: Temperature parameter for weighting samples. alpha: The threshold (as a fraction of the maximum observed value) under which to ignore samples. All input samples for which `Y < alpha * max(Y)` will be ignored. Returns: A `n x q x d` tensor of `n` `q`-batch initial conditions. Example: >>> # To get `n=10` starting points of q-batch size `q=3` >>> # for model with `d=6`: >>> qEI = qExpectedImprovement(model, best_f=0.2) >>> Xrnd = torch.rand(500, 3, 6) >>> Xinit = initialize_q_batch(Xrnd, qEI(Xrnd), 10) """ n_samples = X.shape[0] if n > n_samples: raise RuntimeError("n cannot be larger than the number of provided samples") elif n == n_samples: return X max_val, max_idx = torch.max(Y, dim=0) if torch.any(max_val <= 0): warnings.warn( "All acquisition values for raw sampled points are nonpositive, so " "initial conditions are being selected randomly.", BadInitialCandidatesWarning, ) return X[torch.randperm(n=n_samples, device=X.device)][:n] # make sure there are at least `n` points with positive acquisition values pos = Y > 0 num_pos = pos.sum().item() if num_pos < n: # select all positive points and then fill remaining quota with randomly # selected points remaining_indices = (~pos).nonzero(as_tuple=False).view(-1) rand_indices = torch.randperm(remaining_indices.shape[0], device=Y.device) sampled_remaining_indices = remaining_indices[rand_indices[: n - num_pos]] pos[sampled_remaining_indices] = 1 return X[pos] # select points within alpha of max_val, iteratively decreasing alpha by a # factor of 10 as necessary alpha_pos = Y >= alpha * max_val while alpha_pos.sum() < n: alpha = 0.1 * alpha alpha_pos = Y >= alpha * max_val alpha_pos_idcs = torch.arange(len(Y), device=Y.device)[alpha_pos] weights = torch.exp(eta * (Y[alpha_pos] / max_val - 1)) idcs = alpha_pos_idcs[torch.multinomial(weights, n)] if max_idx not in idcs: idcs[-1] = max_idx return X[idcs] def sample_points_around_best( acq_function: AcquisitionFunction, n_discrete_points: int, sigma: Tensor, bounds: Tensor, best_pct: float = 5.0, subset_sigma: float = 1e-1, prob_perturb: Optional[float] = None, ) -> Optional[Tensor]: r"""Find best points and sample nearby points. Args: acq_function: The acquisition function. n_discrete_points: The number of points to sample. sigma: A `(d)`-dim tensor containing the standard deviation of the additive gaussian noise for perturbing the best points. bounds: A `2 x d`-dim tensor containing the bounds. best_pct: The percentage of best points to perturb. subset_sigma: A `(d)`-dim tensor containing the standard deviation of the additive gaussian noise for perturbing the best points. prob_perturb: The probability of perturbing each dimension. Returns: An optional `n_discrete_points x d`-dim tensor containing the sampled points. This is None if no baseline points are found. """ X = get_X_baseline(acq_function=acq_function) if X is None: return with torch.no_grad(): try: posterior = acq_function.model.posterior(X) except AttributeError: warnings.warn( "Failed to sample around previous best points.", BotorchWarning, ) return mean = posterior.mean while mean.ndim > 2: # take average over batch dims mean = mean.mean(dim=0) try: f_pred = acq_function.objective(mean) # Some acquisition functions do not have an objective # and for some acquisition functions the objective is None except (AttributeError, TypeError): f_pred = mean if hasattr(acq_function, "maximize"): # make sure that the optimiztaion direction is set properly if not acq_function.maximize: f_pred = -f_pred try: # handle constraints for EHVI-based acquisition functions constraints = acq_function.constraints if constraints is not None: neg_violation = -torch.stack( [c(mean).clamp_min(0.0) for c in constraints], dim=-1 ).sum(dim=-1) feas = neg_violation == 0 if feas.any(): f_pred[~feas] = float("-inf") else: # set objective equal to negative violation f_pred = neg_violation except AttributeError: pass if f_pred.ndim == mean.ndim and f_pred.shape[-1] > 1: # multi-objective # find pareto set is_pareto = is_non_dominated(f_pred) best_X = X[is_pareto] else: if f_pred.shape[-1] == 1: f_pred = f_pred.squeeze(-1) n_best = max(1, round(X.shape[0] * best_pct / 100)) # the view() is to ensure that best_idcs is not a scalar tensor best_idcs = torch.topk(f_pred, n_best).indices.view(-1) best_X = X[best_idcs] n_trunc_normal_points = ( n_discrete_points // 2 if best_X.shape[-1] > 20 else n_discrete_points ) perturbed_X = sample_truncated_normal_perturbations( X=best_X, n_discrete_points=n_trunc_normal_points, sigma=sigma, bounds=bounds, ) if best_X.shape[-1] > 20 or prob_perturb is not None: perturbed_subset_dims_X = sample_perturbed_subset_dims( X=best_X, bounds=bounds, # ensure that we return n_discrete_points n_discrete_points=n_discrete_points - n_trunc_normal_points, sigma=sigma, prob_perturb=prob_perturb, ) perturbed_X = torch.cat([perturbed_X, perturbed_subset_dims_X], dim=0) # shuffle points perm = torch.randperm(perturbed_X.shape[0], device=X.device) perturbed_X = perturbed_X[perm] return perturbed_X def sample_truncated_normal_perturbations( X: Tensor, n_discrete_points: int, sigma: Tensor, bounds: Tensor, qmc: bool = True, ) -> Tensor: r"""Sample points around `X`. Sample perturbed points around `X` such that the added perturbations are sampled from N(0, sigma^2 I) and truncated to be within [0,1]^d. Args: X: A `n x d`-dim tensor starting points. n_discrete_points: The number of points to sample. sigma: A `(d)`-dim tensor containing the standard deviation of the additive gaussian noise for perturbing the best points. bounds: A `2 x d`-dim tensor containing the bounds. qmc: A boolean indicating whether to use qmc. Returns: A `n_discrete_points x d`-dim tensor containing the sampled points. """ X = normalize(X, bounds=bounds) d = X.shape[1] # sample points from N(X_center, sigma^2 I), truncated to be within # [0, 1]^d. if X.shape[0] > 1: rand_indices = torch.randint(X.shape[0], (n_discrete_points,), device=X.device) X = X[rand_indices] if qmc: std_bounds = torch.zeros(2, d, dtype=X.dtype, device=X.device) std_bounds[1] = 1 u = draw_sobol_samples(bounds=std_bounds, n=n_discrete_points, q=1).squeeze(1) else: u = torch.rand((n_discrete_points, d), dtype=X.dtype, device=X.device) # compute bounds to sample from a = -X b = 1 - X # compute z-score of bounds alpha = a / sigma beta = b / sigma normal = Normal(0, 1) cdf_alpha = normal.cdf(alpha) # use inverse transform perturbation = normal.icdf(cdf_alpha + u * (normal.cdf(beta) - cdf_alpha)) * sigma # add perturbation and clip points that are still outside perturbed_X = (X + perturbation).clamp(0.0, 1.0) return unnormalize(perturbed_X, bounds=bounds) def sample_perturbed_subset_dims( X: Tensor, bounds: Tensor, n_discrete_points: int, sigma: Union[Tensor, float] = 1e-1, qmc: bool = True, prob_perturb: Optional[float] = None, ) -> Tensor: r"""Sample around `X` by perturbing a subset of the dimensions. By default, dimensions are perturbed with probability equal to `min(20 / d, 1)`. As shown in [Regis]_, perturbing a small number of dimensions can be beneificial. The perturbations are sampled from N(0, sigma^2 I) and truncated to be within [0,1]^d. Args: X: A `n x d`-dim tensor starting points. `X` must be normalized to be within `[0, 1]^d`. bounds: The bounds to sample perturbed values from n_discrete_points: The number of points to sample. sigma: The standard deviation of the additive gaussian noise for perturbing the points. qmc: A boolean indicating whether to use qmc. prob_perturb: The probability of perturbing each dimension. If omitted, defaults to `min(20 / d, 1)`. Returns: A `n_discrete_points x d`-dim tensor containing the sampled points. """ if bounds.ndim != 2: raise BotorchTensorDimensionError("bounds must be a `2 x d`-dim tensor.") elif X.ndim != 2: raise BotorchTensorDimensionError("X must be a `n x d`-dim tensor.") d = bounds.shape[-1] if prob_perturb is None: # Only perturb a subset of the features prob_perturb = min(20.0 / d, 1.0) if X.shape[0] == 1: X_cand = X.repeat(n_discrete_points, 1) else: rand_indices = torch.randint(X.shape[0], (n_discrete_points,), device=X.device) X_cand = X[rand_indices] pert = sample_truncated_normal_perturbations( X=X_cand, n_discrete_points=n_discrete_points, sigma=sigma, bounds=bounds, qmc=qmc, ) # find cases where we are not perturbing any dimensions mask = ( torch.rand( n_discrete_points, d, dtype=bounds.dtype, device=bounds.device, ) <= prob_perturb ) ind = (~mask).all(dim=-1).nonzero() # perturb `n_perturb` of the dimensions n_perturb = ceil(d * prob_perturb) perturb_mask = torch.zeros(d, dtype=mask.dtype, device=mask.device) perturb_mask[:n_perturb].fill_(1) # TODO: use batched `torch.randperm` when available: # https://github.com/pytorch/pytorch/issues/42502 for idx in ind: mask[idx] = perturb_mask[torch.randperm(d, device=bounds.device)] # Create candidate points X_cand[mask] = pert[mask] return X_cand
bo_pr-main
discrete_mixed_bo/initializers.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from abc import abstractmethod from dataclasses import dataclass from typing import Callable, Dict, List, Optional import torch from botorch.models.transforms.input import InputTransform from botorch.utils.sampling import ( draw_sobol_normal_samples, draw_sobol_samples, sample_simplex, ) from botorch.utils.transforms import normalize_indices from gpytorch.constraints import GreaterThan, Interval from gpytorch.module import Module as GPyTorchModule from gpytorch.priors import NormalPrior from torch import Tensor, nn from torch.distributions import Categorical from torch.nn import Module from torch.nn.functional import one_hot from discrete_mixed_bo.ste import OneHotArgmaxSTE, OneHotToNumericSTE, RoundSTE class OneHotToNumeric(InputTransform, Module): r"""Transformation that maps categorical parameters from one-hot representation to numeric representation. This assumes that the categoricals are the trailing dimensions """ def __init__( self, categorical_features: Optional[Dict[int, int]] = None, transform_on_train: bool = False, transform_on_eval: bool = True, transform_on_fantasize: bool = False, use_ste: bool = False, ) -> None: super().__init__() self.transform_on_train = transform_on_train self.transform_on_eval = transform_on_eval self.transform_on_fantasize = transform_on_fantasize self.categorical_starts = [] self.categorical_ends = [] self.categorical_features = ( None if ((categorical_features is None) or (len(categorical_features) == 0)) else categorical_features ) if self.categorical_features is not None: start_idx = None for i in sorted(categorical_features.keys()): if start_idx is None: start_idx = i self.categorical_starts.append(start_idx) end_idx = start_idx + categorical_features[i] self.categorical_ends.append(end_idx) start_idx = end_idx self.numeric_dim = min(self.categorical_starts) + len(categorical_features) self.use_ste = use_ste def transform(self, X: Tensor) -> Tensor: r"""Round the inputs. Args: X: A `batch_shape x n x d`-dim tensor of inputs. Returns: A `batch_shape x n x d`-dim tensor of rounded inputs. """ if self.categorical_features is not None: X_numeric = X[..., : self.numeric_dim].clone() idx = self.categorical_starts[0] for start, end in zip(self.categorical_starts, self.categorical_ends): if self.use_ste: X_numeric[..., idx] = OneHotToNumericSTE.apply(X[..., start:end]) else: X_numeric[..., idx] = X[..., start:end].argmax(dim=-1) idx += 1 return X_numeric return X def untransform(self, X: Tensor) -> Tensor: r"""Un-transform the inputs to a model. Un-transforms of the individual transforms are applied in reverse sequence. Args: X: A `batch_shape x n x d`-dim tensor of transformed inputs. Returns: A `batch_shape x n x d`-dim tensor of un-transformed inputs. """ if X.requires_grad: raise NotImplementedError if self.categorical_features is not None: one_hot_categoricals = [ one_hot(X[..., idx].long(), num_classes=cardinality) for idx, cardinality in sorted( self.categorical_features.items(), key=lambda x: x[0] ) ] X = torch.cat( [ X[..., : min(self.categorical_features.keys())], *one_hot_categoricals, ], dim=-1, ) return X class Round(InputTransform, Module): r"""A rounding transformation for integer inputs. This will typically be used in conjunction with normalization as follows: In eval() mode (i.e. after training), the inputs pass would typically be normalized to the unit cube (e.g. during candidate optimization). 1. These are unnormalized back to the raw input space. 2. The integers are rounded. 3. All values are normalized to the unit cube. In train() mode, the inputs can either (a) be normalized to the unit cube or (b) provided using their raw values. In the case of (a) transform_on_train should be set to True, so that the normalized inputs are unnormalized before rounding. In the case of (b) transform_on_train should be set to False, so that the raw inputs are rounded and then normalized to the unit cube. This transformation uses differentiable approximate rounding by default. The rounding function is approximated with a piece-wise function where each piece is a hyperbolic tangent function. Example: >>> unnormalize_tf = Normalize( >>> d=d, >>> bounds=bounds, >>> transform_on_eval=True, >>> transform_on_train=True, >>> reverse=True, >>> ) >>> round_tf = Round(integer_indices) >>> normalize_tf = Normalize(d=d, bounds=bounds) >>> tf = ChainedInputTransform( >>> tf1=unnormalize_tf, tf2=round_tf, tf3=normalize_tf >>> ) """ def __init__( self, integer_indices: Optional[List[int]] = None, categorical_features: Optional[Dict[int, int]] = None, transform_on_train: bool = True, transform_on_eval: bool = True, transform_on_fantasize: bool = True, approximate: bool = True, tau: float = 1e-3, use_ste: bool = False, ) -> None: r"""Initialize transform. Args: indices: The indices of the integer inputs. transform_on_train: A boolean indicating whether to apply the transforms in train() mode. Default: True. transform_on_eval: A boolean indicating whether to apply the transform in eval() mode. Default: True. transform_on_fantasize: A boolean indicating whether to apply the transform when called from within a `fantasize` call. Default: True. approximate: A boolean indicating whether approximate or exact rounding should be used. Default: approximate. tau: The temperature parameter for approximate rounding. use_ste: use straight-through gradient estimator """ super().__init__() self.transform_on_train = transform_on_train self.transform_on_eval = transform_on_eval self.transform_on_fantasize = transform_on_fantasize integer_indices = integer_indices or [] self.register_buffer( "integer_indices", torch.tensor(integer_indices, dtype=torch.long) ) self.categorical_starts = [] self.categorical_ends = [] if categorical_features is not None: start_idx = None for i in sorted(categorical_features.keys()): if start_idx is None: start_idx = i self.categorical_starts.append(start_idx) end_idx = start_idx + categorical_features[i] self.categorical_ends.append(end_idx) start_idx = end_idx self.approximate = approximate self.tau = tau self.use_ste = use_ste def transform(self, X: Tensor) -> Tensor: r"""Round the inputs. Args: X: A `batch_shape x n x d`-dim tensor of inputs. Returns: A `batch_shape x n x d`-dim tensor of rounded inputs. """ X_rounded = X.clone() # round integers X_int = X_rounded[..., self.integer_indices] if self.approximate: X_int = approximate_round(X_int, tau=self.tau) elif self.use_ste: X_int = RoundSTE.apply(X_int) else: X_int = X_int.round() X_rounded[..., self.integer_indices] = X_int # discrete categoricals to the category with the largest value # in the continuous relaxation of the one-hot encoding for start, end in zip(self.categorical_starts, self.categorical_ends): cardinality = end - start if self.approximate: raise NotImplementedError elif self.use_ste: X_rounded[..., start:end] = OneHotArgmaxSTE.apply( X[..., start:end], cardinality, ) else: X_rounded[..., start:end] = one_hot( X[..., start:end].argmax(dim=-1), num_classes=cardinality ) return X_rounded class AnalyticProbabilisticReparameterizationInputTransform(InputTransform, Module): r"""Probabilistic reparameterization input transform. This will typically be used in conjunction with normalization as follows: In eval() mode (i.e. after training), the inputs pass would typically be normalized to the unit cube (e.g. during candidate optimization). 1. These are unnormalized back to the raw input space. 2. The discrete values are created. 3. All values are normalized to the unitcube. Example: >>> unnormalize_tf = Normalize( >>> d=d, >>> bounds=bounds, >>> transform_on_eval=True, >>> transform_on_train=True, >>> reverse=True, >>> ) >>> pr = ProbabilisticReparameterizationInputTransform(integer_indices) >>> normalize_tf = Normalize(d=d, bounds=bounds) >>> tf = ChainedInputTransform( >>> tf1=unnormalize_tf, tf2=pr, tf3=normalize_tf >>> ) """ def __init__( self, dim: int, integer_indices: Optional[List[int]] = None, integer_bounds: Optional[Tensor] = None, categorical_features: Optional[Dict[int, int]] = None, transform_on_train: bool = False, transform_on_eval: bool = True, transform_on_fantasize: bool = True, tau: float = 0.1, ) -> None: r"""Initialize transform. Args: integer_indices: The indices of the integer inputs. categorical_features: The indices and cardinality of each categorical feature. The features are assumed to be one-hot encoded. TODO: generalize to support alternative representations. transform_on_train: A boolean indicating whether to apply the transforms in train() mode. Default: True. transform_on_eval: A boolean indicating whether to apply the transform in eval() mode. Default: True. transform_on_fantasize: A boolean indicating whether to apply the transform when called from within a `fantasize` call. Default: True. mc_samples: The number of MC samples. resample: A boolean indicating whether to resample base samples at each forward pass. flip: A boolean indicating whether round based on u < p or 1 - p < u. tau: The temperature parameter. """ super().__init__() if integer_indices is None and categorical_features is None: raise ValueError( "integer_indices and/or categorical_features must be provided." ) self.transform_on_train = transform_on_train self.transform_on_eval = transform_on_eval self.transform_on_fantasize = transform_on_fantasize discrete_indices = [] if integer_indices is not None and len(integer_indices) > 0: assert integer_bounds is not None self.register_buffer( "integer_indices", torch.tensor(integer_indices, dtype=torch.long) ) self.register_buffer("integer_bounds", integer_bounds) discrete_indices += integer_indices else: self.integer_indices = None self.categorical_features = categorical_features categorical_starts = [] categorical_ends = [] if self.categorical_features is not None: start = None for i, n_categories in categorical_features.items(): if start is None: start = i end = start + n_categories categorical_starts.append(start) categorical_ends.append(end) discrete_indices += list(range(start, end)) start = end self.register_buffer( "discrete_indices", torch.tensor(discrete_indices, dtype=torch.long) ) self.register_buffer( "categorical_starts", torch.tensor(categorical_starts, dtype=torch.long) ) self.register_buffer( "categorical_ends", torch.tensor(categorical_ends, dtype=torch.long) ) self.tau = tau # create cartesian product of discrete options discrete_options = [] # add zeros for continuous params to simplify code for i in range(dim - len(discrete_indices)): discrete_options.append( torch.zeros( 1, dtype=torch.long, ) ) if integer_bounds is not None: for i in range(integer_bounds.shape[-1]): discrete_options.append( torch.arange( integer_bounds[0, i], integer_bounds[1, i] + 1, dtype=torch.long ) ) if categorical_features is not None: for cardinality in categorical_features.values(): discrete_options.append(torch.arange(cardinality, dtype=torch.long)) # categoricals are in numeric representation all_discrete_options = torch.cartesian_prod(*discrete_options) # one-hot encode the categoricals if categorical_features is not None and len(categorical_features) > 0: X_categ = torch.empty( *all_discrete_options.shape[:-1], sum(categorical_features.values()) ) i = 0 for idx, cardinality in categorical_features.items(): X_categ[..., i : i + cardinality] = one_hot( all_discrete_options[..., idx], num_classes=cardinality, ).to(X_categ) i = i + cardinality all_discrete_options = torch.cat( [all_discrete_options[..., : -len(categorical_features)], X_categ], dim=-1, ) self.register_buffer("all_discrete_options", all_discrete_options) def get_rounding_prob(self, X: Tensor) -> Tensor: # todo consolidate this the MCProbabilisticReparameterizationInputTransform X_prob = X.detach().clone() if self.integer_indices is not None: # compute probabilities for integers X_int = X_prob[..., self.integer_indices] X_int_abs = X_int.abs() offset = X_int_abs.floor() if self.tau is not None: X_prob[..., self.integer_indices] = torch.sigmoid( (X_int_abs - offset - 0.5) / self.tau ) else: X_prob[..., self.integer_indices] = X_int_abs - offset # compute probabilities for categoricals for start, end in zip(self.categorical_starts, self.categorical_ends): X_categ = X_prob[..., start:end] if self.tau is not None: X_prob[..., start:end] = torch.softmax( (X_categ - 0.5) / self.tau, dim=-1 ) else: X_prob[..., start:end] = X_categ / X_categ.sum(dim=-1) return X_prob[..., self.discrete_indices] def get_probs(self, X: Tensor) -> Tensor: """ Args: X: a `batch_shape x n x d`-dim tensor Returns: A `batch_shape x n_discrete x n`-dim tensors of probabilities of each discrete config under X. """ # note this method should be differentiable X_prob = torch.ones( *X.shape[:-2], self.all_discrete_options.shape[0], X.shape[-2], dtype=X.dtype, device=X.device, ) # n_discrete x batch_shape x n x d all_discrete_options = self.all_discrete_options.view( *([1] * (X.ndim - 2)), self.all_discrete_options.shape[0], *X.shape[-2:] ).expand(*X.shape[:-2], self.all_discrete_options.shape[0], *X.shape[-2:]) X = X.unsqueeze(-3) if self.integer_indices is not None: # compute probabilities for integers X_int = X[..., self.integer_indices] X_int_abs = X_int.abs() offset = X_int_abs.floor() # note we don't actually need the sigmoid here X_prob_int = torch.sigmoid((X_int_abs - offset - 0.5) / self.tau) # X_prob_int = X_int_abs - offset for int_idx, idx in enumerate(self.integer_indices): offset_i = offset[..., int_idx] all_discrete_i = all_discrete_options[..., idx] diff = (offset_i + 1) - all_discrete_i round_up_mask = diff == 0 round_down_mask = diff == 1 neither_mask = ~(round_up_mask | round_down_mask) prob = X_prob_int[..., int_idx].expand(round_up_mask.shape) # need to be careful with in-place ops here for autograd X_prob[round_up_mask] = X_prob[round_up_mask] * prob[round_up_mask] X_prob[round_down_mask] = X_prob[round_down_mask] * ( 1 - prob[round_down_mask] ) X_prob[neither_mask] = X_prob[neither_mask] * 0 # compute probabilities for categoricals for start, end in zip(self.categorical_starts, self.categorical_ends): X_categ = X[..., start:end] X_prob_c = torch.softmax((X_categ - 0.5) / self.tau, dim=-1).expand( *X_categ.shape[:-3], all_discrete_options.shape[-3], *X_categ.shape[-2:] ) for i in range(X_prob_c.shape[-1]): mask = all_discrete_options[..., start + i] == 1 X_prob[mask] = X_prob[mask] * X_prob_c[..., i][mask] return X_prob def transform(self, X: Tensor) -> Tensor: r"""Round the inputs. This is not sample-path differentiable. Args: X: A `batch_shape x 1 x n x d`-dim tensor of inputs. Returns: A `batch_shape x n_discrete x n x d`-dim tensor of rounded inputs. """ n_discrete = self.discrete_indices.shape[0] all_discrete_options = self.all_discrete_options.view( *([1] * (X.ndim - 3)), self.all_discrete_options.shape[0], *X.shape[-2:] ).expand(*X.shape[:-3], self.all_discrete_options.shape[0], *X.shape[-2:]) if X.shape[-1] > n_discrete: X = X.expand( *X.shape[:-3], self.all_discrete_options.shape[0], *X.shape[-2:] ) return torch.cat( [X[..., :-n_discrete], all_discrete_options[..., -n_discrete:]], dim=-1 ) return self.all_discrete_options def equals(self, other: InputTransform) -> bool: r"""Check if another input transform is equivalent. Args: other: Another input transform. Returns: A boolean indicating if the other transform is equivalent. """ # TODO: update this return super().equals(other=other) and torch.equal( self.integer_indices, other.integer_indices ) class MCProbabilisticReparameterizationInputTransform(InputTransform, Module): r"""Probabilistic reparameterization for ordinal and binary variables. This will typically be used in conjunction with normalization as follows: In eval() mode (i.e. after training), the inputs pass would typically be normalized to the unit cube (e.g. during candidate optimization). 1. These are unnormalized back to the raw input space. 2. The discrete ordinal valeus are sampled. 3. All values are normalized to the unitcube. Example: >>> unnormalize_tf = Normalize( >>> d=d, >>> bounds=bounds, >>> transform_on_eval=True, >>> transform_on_train=True, >>> reverse=True, >>> ) >>> pr = OrdinalProbabilisticReparameterization(integer_indices) >>> normalize_tf = Normalize(d=d, bounds=bounds) >>> tf = ChainedInputTransform( >>> tf1=unnormalize_tf, tf2=pr, tf3=normalize_tf >>> ) """ def __init__( self, integer_indices: Optional[List[int]] = None, integer_bounds: Optional[Tensor] = None, categorical_features: Optional[Dict[int, int]] = None, transform_on_train: bool = False, transform_on_eval: bool = True, transform_on_fantasize: bool = True, mc_samples: int = 128, resample: bool = False, flip: bool = False, tau: float = 0.1, ) -> None: r"""Initialize transform. Args: integer_indices: The indices of the integer inputs. categorical_features: The indices and cardinality of each categorical feature. The features are assumed to be one-hot encoded. TODO: generalize to support alternative representations. transform_on_train: A boolean indicating whether to apply the transforms in train() mode. Default: True. transform_on_eval: A boolean indicating whether to apply the transform in eval() mode. Default: True. transform_on_fantasize: A boolean indicating whether to apply the transform when called from within a `fantasize` call. Default: True. mc_samples: The number of MC samples. resample: A boolean indicating whether to resample base samples at each forward pass. flip: A boolean indicating whether round based on u < p or 1 - p < u. tau: The temperature parameter. """ super().__init__() if integer_indices is None and categorical_features is None: raise ValueError( "integer_indices and/or categorical_features must be provided." ) self.transform_on_train = transform_on_train self.transform_on_eval = transform_on_eval self.transform_on_fantasize = transform_on_fantasize discrete_indices = [] if integer_indices is not None and len(integer_indices) > 0: self.register_buffer( "integer_indices", torch.tensor(integer_indices, dtype=torch.long) ) discrete_indices += integer_indices else: self.integer_indices = None self.categorical_features = categorical_features categorical_starts = [] categorical_ends = [] if self.categorical_features is not None: start = None for i, n_categories in categorical_features.items(): if start is None: start = i end = start + n_categories categorical_starts.append(start) categorical_ends.append(end) discrete_indices += list(range(start, end)) start = end self.register_buffer( "discrete_indices", torch.tensor(discrete_indices, dtype=torch.long) ) self.register_buffer( "categorical_starts", torch.tensor(categorical_starts, dtype=torch.long) ) self.register_buffer( "categorical_ends", torch.tensor(categorical_ends, dtype=torch.long) ) if integer_indices is None: self.register_buffer("integer_bounds", torch.tensor([], dtype=torch.long)) else: self.register_buffer("integer_bounds", integer_bounds) self.mc_samples = mc_samples self.resample = resample self.flip = flip self.tau = tau def get_rounding_prob(self, X: Tensor) -> Tensor: X_prob = X.detach().clone() if self.integer_indices is not None: # compute probabilities for integers X_int = X_prob[..., self.integer_indices] X_int_abs = X_int.abs() offset = X_int_abs.floor() if self.tau is not None: X_prob[..., self.integer_indices] = torch.sigmoid( (X_int_abs - offset - 0.5) / self.tau ) else: X_prob[..., self.integer_indices] = X_int_abs - offset # compute probabilities for categoricals for start, end in zip(self.categorical_starts, self.categorical_ends): X_categ = X_prob[..., start:end] if self.tau is not None: X_prob[..., start:end] = torch.softmax( (X_categ - 0.5) / self.tau, dim=-1 ) else: X_prob[..., start:end] = X_categ / X_categ.sum(dim=-1) return X_prob[..., self.discrete_indices] def transform(self, X: Tensor) -> Tensor: r"""Round the inputs. This is not sample-path differentiable. Args: X: A `batch_shape x n x d`-dim tensor of inputs. Returns: A `batch_shape x n x d`-dim tensor of rounded inputs. """ X_expanded = X.expand(*X.shape[:-3], self.mc_samples, *X.shape[-2:]).clone() X_prob = self.get_rounding_prob(X=X) if self.integer_indices is not None: X_int = X[..., self.integer_indices].detach() assert X.ndim > 1 if X.ndim == 2: X.unsqueeze(-1) if ( not hasattr(self, "base_samples") or self.base_samples.shape[-2:] != X_int.shape[-2:] or self.resample ): # construct sobol base samples bounds = torch.zeros( 2, X_int.shape[-1], dtype=X_int.dtype, device=X_int.device ) bounds[1] = 1 self.register_buffer( "base_samples", draw_sobol_samples( bounds=bounds, n=self.mc_samples, q=X_int.shape[-2], seed=torch.randint(0, 100000, (1,)).item(), ), ) X_int_abs = X_int.abs() # perform exact rounding is_negative = X_int < 0 offset = X_int_abs.floor() prob = X_prob[..., : self.integer_indices.shape[0]] if self.flip: rounding_component = (1 - prob < self.base_samples).to( dtype=X.dtype, ) else: rounding_component = (prob >= self.base_samples).to( dtype=X.dtype, ) X_abs_rounded = offset + rounding_component X_int_new = (-1) ** is_negative.to(offset) * X_abs_rounded # clamp to bounds X_expanded[..., self.integer_indices] = torch.minimum( torch.maximum(X_int_new, self.integer_bounds[0]), self.integer_bounds[1] ) # sample for categoricals if self.categorical_features is not None and len(self.categorical_features) > 0: if ( not hasattr(self, "base_samples_categorical") or self.base_samples_categorical.shape[-2] != X.shape[-2] or self.resample ): bounds = torch.zeros( 2, len(self.categorical_features), dtype=X.dtype, device=X.device ) bounds[1] = 1 self.register_buffer( "base_samples_categorical", draw_sobol_samples( bounds=bounds, n=self.mc_samples, q=X.shape[-2], seed=torch.randint(0, 100000, (1,)).item(), ), ) # sample from multinomial as argmin_c [sample_c * exp(-x_c)] sample_d_start_idx = 0 X_categ_prob = X_prob if self.integer_indices is not None: n_ints = self.integer_indices.shape[0] if n_ints > 0: X_categ_prob = X_prob[..., n_ints:] for i, (idx, cardinality) in enumerate(self.categorical_features.items()): sample_d_end_idx = sample_d_start_idx + cardinality start = self.categorical_starts[i] end = self.categorical_ends[i] cum_prob = X_categ_prob[ ..., sample_d_start_idx:sample_d_end_idx ].cumsum(dim=-1) categories = ( ( (cum_prob > self.base_samples_categorical[..., i : i + 1]) .long() .cumsum(dim=-1) == 1 ) .long() .argmax(dim=-1) ) # one-hot encode X_expanded[..., start:end] = one_hot( categories, num_classes=cardinality ).to(X) sample_d_start_idx = sample_d_end_idx return X_expanded def equals(self, other: InputTransform) -> bool: r"""Check if another input transform is equivalent. Args: other: Another input transform. Returns: A boolean indicating if the other transform is equivalent. """ return ( super().equals(other=other) and (self.resample == other.resample) and torch.equal(self.base_samples, other.base_samples) and (self.flip == other.flip) and torch.equal(self.integer_indices, other.integer_indices) ) @dataclass class CategoricalSpec: idx: int num_categories: int @dataclass class LatentCategoricalSpec(CategoricalSpec): latent_dim: int class EmbeddingTransform(InputTransform): r"""Abstract base class for Embedding-based transforms""" _emb_dim: int _transformed_dim: int dim: int categ_idcs: Tensor non_categ_mask: Tensor def transform(self, X: Tensor) -> Tensor: r"""Transform categorical variables using embedding.""" X_emb = torch.empty( X.shape[:-1] + torch.Size([self._emb_dim]), dtype=X.dtype, device=X.device ) start_idx = 0 for idx in self.categ_idcs.tolist(): emb_table = self.get_emb_table(idx) emb_dim = emb_table.shape[-1] end_idx = start_idx + emb_dim emb = emb_table.index_select(dim=0, index=X[..., idx].reshape(-1).long()) X_emb[..., start_idx:end_idx] = emb.view( X_emb.shape[:-1] + torch.Size([emb_dim]) ) start_idx = end_idx return torch.cat([X[..., self.non_categ_mask], X_emb], dim=-1) @abstractmethod def get_emb_table(self, idx: int) -> Tensor: r"""Get the embedding table for the specified categorical feature. Args: idx: The index of the categorical feature Returns: A `num_categories x emb_dim`-dim tensor containing the embeddings for each category. """ pass def transform_bounds(self, bounds: Tensor) -> Tensor: r"""Update bounds based on embedding transform. Args: bounds: A `2 x d`-dim tensor of lower and upper bounds Returns: A x `2 x d_cont + d_emb`-dim tensor of lower and upper bounds """ d_cont = self.dim - self.categ_idcs.shape[0] tf_bounds = torch.zeros( 2, d_cont + self._emb_dim, dtype=bounds.dtype, device=bounds.device ) tf_bounds[:, :d_cont] = bounds[:, self.non_categ_mask] tf_bounds[1, d_cont:] = 1 return tf_bounds class LatentCategoricalEmbedding(EmbeddingTransform, GPyTorchModule): r"""Latent embeddings for categorical variables. Note: this current uses the same latent embeddings across batched. This means that a batched multi-output model will use the same latent embeddings for all outputs. """ def __init__( self, categorical_specs: List[LatentCategoricalSpec], dim: int, transform_on_train: bool = True, transform_on_eval: bool = True, transform_on_preprocess: bool = False, transform_on_fantasize: bool = False, eps: float = 1e-7, ) -> None: r"""Initialize input transform. Args: categorical_specs: A list of LatentCategoricalSpec objects. dim: the total dimension of the inputs. transform_on_eval: A boolean indicating whether to apply the transform in eval() mode. Default: False """ GPyTorchModule.__init__(self) self._eps = eps self.dim = dim self.transform_on_train = transform_on_train self.transform_on_eval = transform_on_eval self.transform_on_preprocess = transform_on_preprocess self.transform_on_fantasize = transform_on_fantasize self._emb_dim = 0 categ_idcs = [] # TODO: replace with ParameterDict when supported in GPyTorch for c in categorical_specs: nlzd_idx = normalize_indices([c.idx], dim)[0] categ_idcs.append(nlzd_idx) init_emb_table = draw_sobol_normal_samples( n=c.num_categories, d=c.latent_dim ).squeeze(0) self.register_parameter( f"raw_latent_emb_tables_{nlzd_idx}", nn.Parameter(init_emb_table), ) def raw_latent_emb_table_setter(m, v, idx=nlzd_idx): m.initialize(f"raw_latent_emb_tables_{idx}", value=v) def raw_latent_emb_table_getter(m, idx=nlzd_idx): return getattr(m, f"raw_latent_emb_tables_{idx}") self._emb_dim += c.latent_dim self.register_buffer("categ_idcs", torch.tensor(categ_idcs, dtype=torch.long)) non_categ_mask = torch.ones(dim, dtype=bool) non_categ_mask[self.categ_idcs] = 0 self.register_buffer("non_categ_mask", non_categ_mask) def get_emb_table(self, idx: int) -> Tensor: r"""Get the embedding table for the specified categorical feature. Args: idx: The index of the categorical feature Returns: A `num_categories x latent_dim`-dim tensor containing the embeddings for each category. """ # This technique is recommended in https://arxiv.org/abs/2003.03300 raw_emb_table = getattr(self, f"raw_latent_emb_tables_{idx}") with torch.no_grad(): raw_emb_table[0] = 0 # force one embedding to be the origin if raw_emb_table.shape[1] > 1 and raw_emb_table.shape[0] > 1: raw_emb_table[ 1, 0 ] = 0 # force one embedding to be on the x-axis if the embedding has two dimensions return raw_emb_table def untransform( self, X: Tensor, dist_func: Optional[Callable[[Tensor, Tensor, int], Tensor]] = None, ) -> Tensor: r"""Untransform X to represent categoricals as integers. The transformation assigns the category to be the index corresponding to the closest embedding. Note: this is not differentiable. Args: X: A `batch_shape x n x d_cont + d_latent`-dim tensor of transformed valiues dist_func: A broadcastable distance function mapping a two input tensors with shapes `batch_shape x n x 1 x d_latent` and `n_categories x d_latent` and an integer starting index to to a `batch_shape x n x n_categories`-dim tensor of distances. The default is L2 distance. Returns: The untransformed tensor. """ new_X = torch.empty( X.shape[:-1] + torch.Size([self.dim]), dtype=X.dtype, device=X.device ) num_non_categ_features = X.shape[-1] - self._emb_dim new_X[..., self.non_categ_mask] = X[..., :num_non_categ_features] start_idx = self.dim - self.categ_idcs.shape[0] for idx in self.categ_idcs.tolist(): emb_table = self.get_emb_table(idx) emb_dim = emb_table.shape[-1] end_idx = start_idx + emb_dim x = X[..., start_idx:end_idx].unsqueeze(-2) x_emb = emb_table.unsqueeze(-3) if dist_func is not None: dist = dist_func(x, x_emb, start_idx) else: dist = torch.norm(x - x_emb, dim=-1) int_categories = dist.argmin(dim=-1).to(dtype=X.dtype) new_X[..., idx] = int_categories start_idx = end_idx return new_X
bo_pr-main
discrete_mixed_bo/input.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, List, Optional import numpy as np import torch from botorch.models.kernels import CategoricalKernel from gpytorch.constraints import GreaterThan, Interval from gpytorch.kernels import Kernel, MaternKernel, RBFKernel, ScaleKernel from gpytorch.priors.torch_priors import GammaPrior, LogNormalPrior from torch import Tensor def get_kernel( kernel_type: str, dim: int, binary_dims: List[int], categorical_transformed_features: Dict[int, int], train_X: Tensor, train_Y: Tensor, function_name: Optional[str] = None, use_ard_binary: bool = False, ) -> Optional[Kernel]: """Helper function for kernel construction.""" # ard kernel for continuous features if kernel_type == "mixed_categorical": categorical_dims = list(categorical_transformed_features.keys()) else: if len(categorical_transformed_features) > 0: start = min(categorical_transformed_features.keys()) categorical_dims = list(range(start, dim)) else: categorical_dims = [] if "mixed" in kernel_type: cont_dims = list(set(list(range(dim))) - set(binary_dims)) if ("latent" in kernel_type) or ("categorical" in kernel_type): cont_dims = list(set(cont_dims) - set(categorical_dims)) kernels = [] # ard kernel for continuous features if len(cont_dims) > 0: kernels.append( MaternKernel( nu=2.5, ard_num_dims=len(cont_dims), active_dims=cont_dims, lengthscale_constraint=Interval(0.1, 20.0), ) ) # isotropic kernel for binary features if len(binary_dims) > 0: kernels.append( MaternKernel( nu=2.5, ard_num_dims=len(binary_dims) if use_ard_binary else None, active_dims=binary_dims, lengthscale_constraint=Interval(0.1, 20.0), ) ) if kernel_type == "mixed_categorical": if len(categorical_dims) > 0: kernels.append( CategoricalKernel( ard_num_dims=len(categorical_dims), active_dims=categorical_dims, lengthscale_constraint=Interval(1e-3, 20.0), ) ) elif kernel_type == "mixed_latent": for start, latent_dim in categorical_transformed_features.items(): kernels.append( MaternKernel( # Use a isotropic kernel -- # one kernel for each set of latent embeddings ard_num_dims=None, active_dims=list(range(start, start + latent_dim)), lengthscale_constraint=Interval(1e-3, 20.0), ) ) prod_kernel = kernels[0] for k in kernels[1:]: prod_kernel *= k if kernel_type != "mixed_categorical": return ScaleKernel(prod_kernel) sum_kernel = kernels[0] for k in kernels[1:]: prod_kernel *= k sum_kernel += k return ScaleKernel(prod_kernel) + ScaleKernel(sum_kernel) elif kernel_type == "botorch_default": return None elif kernel_type == "ard_combo": return CombinatorialCovarModule(ard_num_dims=dim) elif kernel_type == "iso_combo": return CombinatorialCovarModule(ard_num_dims=None) raise ValueError(f"{kernel_type} is not supported.") class CombinatorialCovarModule(Kernel): r"""This kernel is suitable for a {0, 1}^d domain and used for combo design.""" def __init__(self, ard_num_dims=None, **kwargs): super().__init__(**kwargs) use_ard = ard_num_dims is not None and ard_num_dims > 1 lengthscale_constraint = Interval(0.1, 20.0) if use_ard else None lengthscale_prior = GammaPrior(2.0, 1.0) if use_ard else None base_kernel = MaternKernel( nu=2.5, ard_num_dims=ard_num_dims, lengthscale_constraint=lengthscale_constraint, lengthscale_prior=lengthscale_prior, active_dims=kwargs.get("active_dims"), ) covar_module = ScaleKernel( base_kernel=base_kernel, outputscale_prior=LogNormalPrior(9.0, 3.0), # Flexible prior outputscale_constraint=Interval(1e-3, 1e3), ) self._covar_module = covar_module def forward(self, x1, x2, diag=False, **params): return self._covar_module.forward(x1, x2, diag=diag, **params)
bo_pr-main
discrete_mixed_bo/kernels.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Trust Region Utilities. """ import math from dataclasses import dataclass import torch @dataclass class TurboState: dim: int batch_size: int is_constrained: bool length: float = 0.8 length_min: float = 0.5**7 length_max: float = 1.6 failure_counter: int = 0 failure_tolerance: int = float("nan") # Note: Post-initialized success_counter: int = 0 success_tolerance: int = 10 best_value: float = -float("inf") # Goal is maximization constraint_violation = float("inf") restart_triggered: bool = False def __post_init__(self): self.failure_tolerance = math.ceil( max([4.0 / self.batch_size, float(self.dim) / self.batch_size]) ) def update_state(state, Y_next): if not state.is_constrained: better_than_current = Y_next.max() > state.best_value + 1e-3 * math.fabs( state.best_value ) state.best_value = max(state.best_value, Y_next.max().item()) else: feas = (Y_next[..., 1:] >= 0).all(dim=-1) if feas.any() and state.constraint_violation == 0: # (1) Both are feasible new_best = Y_next[feas, 0].max() better_than_current = new_best > state.best_value + 1e-3 * math.fabs( state.best_value ) state.best_value = max(state.best_value, Y_next[feas, 0].max().item()) elif feas.any() and state.constraint_violation > 0: # (2) New is feasible better_than_current = True state.best_value = Y_next[feas, 0].max().item() state.constraint_violation = 0.0 elif not feas.any() and state.constraint_violation > 0: # (3) None are feasible violation = torch.clamp_max(Y_next[..., 1:], 0.0).abs().sum(dim=-1) better_than_current = ( violation.min() < state.constraint_violation - 1e-3 * math.fabs(state.constraint_violation) ) state.constraint_violation = min( state.constraint_violation, violation.min().item() ) else: # All of these count as failures better_than_current = False if better_than_current: state.success_counter += 1 state.failure_counter = 0 else: state.success_counter = 0 state.failure_counter += 1 if state.success_counter == state.success_tolerance: # Expand trust region state.length = min(2.0 * state.length, state.length_max) state.success_counter = 0 elif state.failure_counter == state.failure_tolerance: # Shrink trust region state.length /= 2.0 state.failure_counter = 0 if state.length < state.length_min: state.restart_triggered = True return state
bo_pr-main
discrete_mixed_bo/trust_region.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" Probabilistic Reparameterization (with gradients) using Monte Carlo estimators. """ from abc import ABC, abstractmethod from collections import OrderedDict from contextlib import ExitStack from typing import Dict, List, Optional import torch from botorch.acquisition.acquisition import AcquisitionFunction from botorch.models.transforms.input import ( ChainedInputTransform, InputTransform, Normalize, ) from torch import Tensor from torch.autograd import Function from torch.nn import Module from torch.nn.functional import one_hot from discrete_mixed_bo.input import ( AnalyticProbabilisticReparameterizationInputTransform, MCProbabilisticReparameterizationInputTransform, OneHotToNumeric, ) from discrete_mixed_bo.wrapper import AcquisitionFunctionWrapper def get_probabilistic_reparameterization_input_transform( dim: int, integer_indices: List[int], integer_bounds: Tensor, categorical_features: Optional[Dict[int, int]] = None, use_analytic: bool = False, mc_samples: int = 1024, resample: bool = False, flip: bool = False, tau: float = 0.1, ) -> ChainedInputTransform: bounds = torch.zeros( 2, dim, dtype=integer_bounds.dtype, device=integer_bounds.device ) bounds[1] = 1 bounds[:, integer_indices] = integer_bounds tfs = OrderedDict() if integer_indices is not None and len(integer_indices) > 0: # unnormalize to integer space tfs["unnormalize"] = Normalize( d=dim, bounds=bounds, indices=integer_indices, transform_on_train=False, transform_on_eval=True, transform_on_fantasize=False, reverse=True, ) # round if use_analytic: tfs["round"] = AnalyticProbabilisticReparameterizationInputTransform( dim=dim, integer_indices=integer_indices, integer_bounds=integer_bounds, categorical_features=categorical_features, tau=tau, ) else: tfs["round"] = MCProbabilisticReparameterizationInputTransform( integer_indices=integer_indices, integer_bounds=integer_bounds, categorical_features=categorical_features, resample=resample, mc_samples=mc_samples, flip=flip, tau=tau, ) if integer_indices is not None and len(integer_indices) > 0: # normalize to unit cube tfs["normalize"] = Normalize( d=dim, bounds=bounds, indices=integer_indices, transform_on_train=False, transform_on_eval=True, transform_on_fantasize=False, reverse=False, ) tf = ChainedInputTransform(**tfs) tf.eval() return tf class AbstractProbabilisticReparameterization(AcquisitionFunctionWrapper, ABC): """Acquisition Function Wrapper that leverages probabilistic reparameterization.""" def __init__( self, acq_function: AcquisitionFunction, dim: int, integer_indices: Optional[List[int]] = None, integer_bounds: Optional[Tensor] = None, categorical_features: Optional[Dict[int, int]] = None, batch_limit: Optional[int] = None, apply_numeric: bool = False, **kwargs ) -> None: if categorical_features is None and ( integer_indices is None or integer_bounds is None ): raise NotImplementedError( "categorical_features or integer indices and integer_bounds must be provided." ) super().__init__(acq_function=acq_function) self.batch_limit = batch_limit if apply_numeric: self.one_hot_to_numeric = OneHotToNumeric( categorical_features=categorical_features, transform_on_train=False, transform_on_eval=True, transform_on_fantasize=False, ) self.one_hot_to_numeric.eval() else: self.one_hot_to_numeric = None discrete_indices = [] if integer_indices is not None: self.register_buffer( "integer_indices", torch.tensor( integer_indices, dtype=torch.long, device=integer_bounds.device ), ) self.register_buffer("integer_bounds", integer_bounds) discrete_indices.extend(integer_indices) else: self.register_buffer( "integer_indices", torch.tensor([], dtype=torch.long, device=integer_bounds.device), ) self.register_buffer( "integer_bounds", torch.tensor( [], dtype=integer_bounds.dtype, device=integer_bounds.device ), ) if categorical_features is not None and len(categorical_features) > 0: categorical_indices = list(range(min(categorical_features.keys()), dim)) discrete_indices.extend(categorical_indices) self.register_buffer( "categorical_indices", torch.tensor( categorical_indices, dtype=torch.long, device=integer_bounds.device, ), ) self.categorical_features = categorical_features else: self.register_buffer( "categorical_indices", torch.tensor( [], dtype=torch.long, device=integer_bounds.device, ), ) self.register_buffer( "cont_indices", torch.tensor( sorted(list(set(range(dim)) - set(discrete_indices))), dtype=torch.long, device=integer_bounds.device, ), ) self.model = acq_function.model # for sample_around_best heuristic # moving average baseline self.register_buffer( "ma_counter", torch.zeros(1, dtype=torch.double, device=integer_bounds.device), ) self.register_buffer( "ma_hidden", torch.zeros(1, dtype=torch.double, device=integer_bounds.device), ) self.register_buffer( "ma_baseline", torch.zeros(1, dtype=torch.double, device=integer_bounds.device), ) def sample_candidates(self, X: Tensor) -> Tensor: if "unnormalize" in self.input_transform: unnormalized_X = self.input_transform["unnormalize"](X) else: unnormalized_X = X.clone() prob = self.input_transform["round"].get_rounding_prob(X=unnormalized_X) discrete_idx = 0 for i in self.integer_indices: p = prob[..., discrete_idx] rounding_component = torch.distributions.Bernoulli(probs=p).sample() unnormalized_X[..., i] = unnormalized_X[..., i].floor() + rounding_component discrete_idx += 1 unnormalized_X[..., self.integer_indices] = torch.minimum( torch.maximum( unnormalized_X[..., self.integer_indices], self.integer_bounds[0] ), self.integer_bounds[1], ) # this is the starting index for the categoricals in unnormalized_X raw_idx = self.cont_indices.shape[0] + discrete_idx if self.categorical_indices.shape[0] > 0: for i, cardinality in self.categorical_features.items(): discrete_end = discrete_idx + cardinality p = prob[..., discrete_idx:discrete_end] z = one_hot( torch.distributions.Categorical(probs=p).sample(), num_classes=cardinality, ) raw_end = raw_idx + cardinality unnormalized_X[..., raw_idx:raw_end] = z discrete_idx = discrete_end raw_idx = raw_end # normalize X if "normalize" in self.input_transform: return self.input_transform["normalize"](unnormalized_X) return unnormalized_X @abstractmethod def forward(self, X: Tensor) -> Tensor: """Compute PR.""" pass class AnalyticProbabilisticReparameterization(AbstractProbabilisticReparameterization): """Acquisition Function Wrapper that leverages analytic probabilistic reparameterization. Note: this is only reasonable from a computation perspective for relatively small numbers of discrete options (probably less than a few thousand). """ def __init__( self, acq_function: AcquisitionFunction, dim: int, dtype: torch.dtype, device: torch.device, integer_indices: Optional[List[int]] = None, integer_bounds: Optional[Tensor] = None, categorical_features: Optional[Dict[int, int]] = None, batch_limit: Optional[int] = None, apply_numeric: bool = False, tau: float = 0.1, ) -> None: super().__init__( acq_function=acq_function, dim=dim, integer_indices=integer_indices, integer_bounds=integer_bounds, categorical_features=categorical_features, batch_limit=batch_limit, apply_numeric=apply_numeric, ) # create input transform # need to compute cross product of discrete options and weights self.input_transform = get_probabilistic_reparameterization_input_transform( dim=dim, use_analytic=True, integer_indices=integer_indices, integer_bounds=integer_bounds, categorical_features=categorical_features, tau=tau, ) self.input_transform.to(dtype=dtype, device=device) if self.batch_limit is None: self.batch_limit = self.input_transform["round"].all_discrete_options.shape[ 0 ] def forward(self, X: Tensor) -> Tensor: """Evaluate PR.""" X_discrete_all = self.input_transform(X.unsqueeze(-3)) acq_values_list = [] start_idx = 0 if self.one_hot_to_numeric is not None: X_discrete_all = self.one_hot_to_numeric(X_discrete_all) if X.shape[-2] != 1: raise NotImplementedError # save the probabilities if "unnormalize" in self.input_transform: unnormalized_X = self.input_transform["unnormalize"](X) else: unnormalized_X = X # this is batch_shape x n_discrete (after squeezing) probs = self.input_transform["round"].get_probs(X=unnormalized_X).squeeze(-1) # TODO: filter discrete configs with zero probability # this requires padding because there may be a different number in each batch. Each batch bucket needs at least # nonzero_prob.sum(dim=-1).max() elements to avoid ragged tensors # nonzero_prob = probs > 0 # try: # X_discrete_all = X_discrete_all[nonzero_prob].view(*X_discrete_all.shape[:-3], -1, *X_discrete_all.shape[-2:]) # except RuntimeError: # import pdb # pdb.set_trace() # probs = probs[nonzero_prob].view(*probs.shape[:-1], -1) while start_idx < X_discrete_all.shape[-3]: end_idx = min(start_idx + self.batch_limit, X_discrete_all.shape[-3]) acq_values = self.acq_function(X_discrete_all[..., start_idx:end_idx, :, :]) acq_values_list.append(acq_values) start_idx += self.batch_limit # this is batch_shape x n_discrete acq_values = torch.cat(acq_values_list, dim=-1) # now weight the acquisition values by probabilities return (acq_values * probs).sum(dim=-1) class MCProbabilisticReparameterization(AbstractProbabilisticReparameterization): """Acquisition Function Wrapper that leverages MC-based probabilistic reparameterization.""" def __init__( self, acq_function: AcquisitionFunction, dim: int, integer_indices: Optional[List[int]] = None, integer_bounds: Optional[Tensor] = None, categorical_features: Optional[Dict[int, int]] = None, batch_limit: Optional[int] = None, apply_numeric: bool = False, mc_samples: int = 1024, grad_estimator: str = "reinforce", tau: float = 0.1, ) -> None: super().__init__( acq_function=acq_function, dim=dim, integer_indices=integer_indices, integer_bounds=integer_bounds, categorical_features=categorical_features, batch_limit=batch_limit, apply_numeric=apply_numeric, ) if self.batch_limit is None: self.batch_limit = mc_samples self.grad_estimator = grad_estimator self._pr_acq_function = _MCProbabilisticReparameterization() # create input transform self.input_transform = get_probabilistic_reparameterization_input_transform( dim=dim, integer_indices=integer_indices, integer_bounds=integer_bounds, categorical_features=categorical_features, mc_samples=mc_samples, tau=tau, ) if grad_estimator in ("arm", "u2g"): self.input_transform_flip = ( get_mc_probabilistic_reparameterization_input_transform( dim=dim, integer_indices=integer_indices, integer_bounds=integer_bounds, categorical_features=categorical_features, mc_samples=mc_samples, flip=True, ) ) else: self.input_transform_flip = None def forward(self, X: Tensor) -> Tensor: """ In the forward pass we receive a Tensor containing the input and return a Tensor containing the output. ctx is a context object that can be used to stash information for backward computation. You can cache arbitrary objects for use in the backward pass using the ctx.save_for_backward method. """ return self._pr_acq_function.apply( X, self.acq_function, self.input_transform, self.input_transform_flip, self.batch_limit, self.integer_indices, self.cont_indices, self.categorical_indices, self.grad_estimator, self.one_hot_to_numeric, self.ma_counter, self.ma_hidden, ) class _MCProbabilisticReparameterization(Function): r"""Evaluate the acquisition function use a custom MC gradient estimator.""" @staticmethod def forward( ctx, input: Tensor, acq_function: AcquisitionFunction, input_tf: InputTransform, input_tf_flip: Optional[InputTransform], batch_limit: Optional[int], integer_indices: Tensor, cont_indices: Tensor, categorical_indices: Tensor, grad_estimator: str, one_hot_to_numeric: Optional[OneHotToNumeric], ma_counter: Optional[Tensor], ma_hidden: Optional[Tensor], ): """Evaluate the expectation of the acquisition function under probabilistic reparameterization. Compute this in chunks of size batch_limit to enable scaling to large numbers of samples from the proposal distribution. """ with ExitStack() as es: if ctx.needs_input_grad[0]: es.enter_context(torch.enable_grad()) if cont_indices.shape[0] > 0: # only require gradient for continuous parameters ctx.cont_input = input[..., cont_indices].detach().requires_grad_(True) cont_idx = 0 cols = [] for col in range(input.shape[-1]): # cont_indices is sorted in ascending order if ( cont_idx < cont_indices.shape[0] and col == cont_indices[cont_idx] ): cols.append(ctx.cont_input[..., cont_idx]) cont_idx += 1 else: cols.append(input[..., col]) input = torch.stack(cols, dim=-1) else: ctx.cont_input = None ctx.input = input ctx.integer_indices = integer_indices ctx.discrete_indices = input_tf["round"].discrete_indices ctx.cont_indices = cont_indices ctx.categorical_indices = categorical_indices ctx.ma_counter = ma_counter ctx.ma_hidden = ma_hidden tilde_x_samples = input_tf(input.unsqueeze(-3)) # save the rounding component rounding_component = tilde_x_samples.clone() if integer_indices.shape[0] > 0: input_integer_params = input[..., integer_indices].unsqueeze(-3) rounding_component[..., integer_indices] = ( (tilde_x_samples[..., integer_indices] - input_integer_params > 0) | (input_integer_params == 1) ).to(tilde_x_samples) if categorical_indices.shape[0] > 0: rounding_component[..., categorical_indices] = tilde_x_samples[ ..., categorical_indices ] ctx.rounding_component = rounding_component[..., ctx.discrete_indices] ctx.tau = input_tf["round"].tau if hasattr(input_tf["round"], "base_samples"): ctx.base_samples = input_tf["round"].base_samples.detach() # save the probabilities if "unnormalize" in input_tf: unnormalized_input = input_tf["unnormalize"](input) else: unnormalized_input = input # this is only for the integer parameters ctx.prob = input_tf["round"].get_rounding_prob(unnormalized_input) if categorical_indices.shape[0] > 0: ctx.base_samples_categorical = input_tf[ "round" ].base_samples_categorical.clone() # compute the acquisition function where inputs are rounded according to base_samples < prob ctx.tilde_x_samples = tilde_x_samples ctx.grad_estimator = grad_estimator acq_values_list = [] start_idx = 0 if one_hot_to_numeric is not None: tilde_x_samples = one_hot_to_numeric(tilde_x_samples) while start_idx < tilde_x_samples.shape[-3]: end_idx = min(start_idx + batch_limit, tilde_x_samples.shape[-3]) acq_values = acq_function(tilde_x_samples[..., start_idx:end_idx, :, :]) acq_values_list.append(acq_values) start_idx += batch_limit acq_values = torch.cat(acq_values_list, dim=-1) ctx.mean_acq_values = acq_values.mean( dim=-1 ) # average over samples from proposal distribution ctx.acq_values = acq_values # update moving average baseline ctx.ma_hidden = ma_hidden.clone() ctx.ma_counter = ctx.ma_counter.clone() # update in place decay = 0.7 ma_counter.add_(1) ma_hidden.sub_((ma_hidden - acq_values.detach().mean()) * (1 - decay)) if ctx.needs_input_grad[0]: if grad_estimator in ("arm", "u2g"): if input_tf["round"].categorical_starts.shape[0] > 0: raise NotImplementedError # use the same base samples in input_tf_flip if ( not hasattr(input_tf_flip, "base_samples") or input_tf_flip.base_samples.shape[-2] != input.shape[-2] ): input_tf_flip["round"].base_samples = ( input_tf["round"].base_samples.detach().clone() ) ctx.base_samples = input_tf_flip["round"].base_samples.detach() with torch.no_grad(): tilde_x_samples_flip = input_tf_flip(input.unsqueeze(-3)) # save the rounding component ctx.rounding_component_flip = ( tilde_x_samples_flip[..., integer_indices] - input[..., integer_indices].unsqueeze(-3) > 0 ).to(tilde_x_samples_flip) # compute the acquisition function where inputs are rounded according to base_samples > 1-prob # This is used for the ARM/U2G gradient estimators if one_hot_to_numeric is not None: tilde_x_samples_flip = one_hot_to_numeric( tilde_x_samples_flip ) acq_values_flip_list = [] start_idx = 0 while start_idx < tilde_x_samples_flip.shape[-3]: end_idx = min( start_idx + batch_limit, tilde_x_samples_flip.shape[-3] ) acq_values_flip = acq_function( tilde_x_samples_flip[..., start_idx:end_idx, :, :] ) acq_values_flip_list.append(acq_values_flip) start_idx += batch_limit acq_values_flip = torch.cat(acq_values_flip_list, dim=-1) ctx.mean_acq_values_flip = acq_values_flip.mean( dim=-1 ) # average over samples from proposal distribution ctx.acq_values_flip = acq_values_flip return ctx.mean_acq_values.detach() @staticmethod def backward(ctx, grad_output): """ Compute the gradient of the expectation of the acquisition function with respect to the parameters of the proposal distribution using Monte Carlo. """ # this is overwriting the entire gradient w.r.t. x' # x' has shape batch_shape x q x d if ctx.needs_input_grad[0]: acq_values = ctx.acq_values mean_acq_values = ctx.mean_acq_values tilde_x_samples = ctx.tilde_x_samples integer_indices = ctx.integer_indices cont_indices = ctx.cont_indices discrete_indices = ctx.discrete_indices rounding_component = ctx.rounding_component input = ctx.input # retrieve only the ordinal parameters expanded_acq_values = acq_values.view(*acq_values.shape, 1, 1).expand( acq_values.shape + rounding_component.shape[-2:] ) prob = ctx.prob.unsqueeze(-3) if ctx.grad_estimator in ("arm", "u2g"): rounding_component_flip = ctx.rounding_component_flip acq_values_flip = ctx.acq_values_flip mean_acq_values_flip = ctx.mean_acq_values_flip expanded_acq_values_flip = acq_values_flip.view( *acq_values_flip.shape, 1, 1 ).expand(acq_values_flip.shape + rounding_component_flip.shape[-2:]) if ctx.grad_estimator == "arm": sample_level = ( (expanded_acq_values_flip - expanded_acq_values) * (ctx.base_samples - 0.5) * torch.abs(rounding_component_flip - rounding_component) ) elif ctx.grad_estimator == "u2g": prob_abs = prob.clone() prob_abs[prob_abs < 0.5] = 1 - prob_abs[prob_abs < 0.5] sample_level = ( 0.5 * (expanded_acq_values_flip - expanded_acq_values) * prob_abs * (rounding_component_flip - rounding_component) ) elif ctx.grad_estimator == "reinforce": sample_level = expanded_acq_values * (rounding_component - prob) elif ctx.grad_estimator == "reinforce_ma": # use reinforce with the moving average baseline if ctx.ma_counter == 0: baseline = 0.0 else: decay = 0.7 baseline = ctx.ma_hidden / (1.0 - torch.pow(decay, ctx.ma_counter)) sample_level = (expanded_acq_values - baseline) * ( rounding_component - prob ) grads = (sample_level / ctx.tau).mean(dim=-3) new_grads = ( grad_output.view( *grad_output.shape, *[1 for _ in range(grads.ndim - grad_output.ndim)] ) .expand(*grad_output.shape, *input.shape[-2:]) .clone() ) # multiply upstream grad_output by new gradients new_grads[..., discrete_indices] *= grads # use autograd for gradients w.r.t. the continuous parameters if ctx.cont_input is not None: auto_grad = torch.autograd.grad( # note: this multiplies the gradient of mean_acq_values w.r.t to input # by grad_output mean_acq_values, ctx.cont_input, grad_outputs=grad_output, )[0] # overwrite grad_output since the previous step already applied the chain rule new_grads[..., cont_indices] = auto_grad return ( new_grads, None, None, None, None, None, None, None, None, None, None, None, ) return None, None, None, None, None, None, None, None, None, None, None, None
bo_pr-main
discrete_mixed_bo/probabilistic_reparameterization.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Problems with only binary variables. """ from typing import Optional import numpy as np import torch from torch import Tensor from discrete_mixed_bo.problems.base import DiscreteTestProblem # Code for the contamination problem is adapted from: # https://github.com/QUVA-Lab/COMBO/blob/master/COMBO/experiments/test_functions/binary_categorical.py. def generate_contamination_dynamics(dim, random_seed=None): n_stages = dim n_simulations = 100 init_alpha = 1.0 init_beta = 30.0 contam_alpha = 1.0 contam_beta = 17.0 / 3.0 restore_alpha = 1.0 restore_beta = 3.0 / 7.0 init_Z = np.random.RandomState(random_seed).beta( init_alpha, init_beta, size=(n_simulations,) ) lambdas = np.random.RandomState(random_seed).beta( contam_alpha, contam_beta, size=(n_stages, n_simulations) ) gammas = np.random.RandomState(random_seed).beta( restore_alpha, restore_beta, size=(n_stages, n_simulations) ) return init_Z, lambdas, gammas def _contamination(x, dim, cost, init_Z, lambdas, gammas, U, epsilon): assert x.size == dim rho = 1.0 n_simulations = 100 Z = np.zeros((x.size, n_simulations)) Z[0] = ( lambdas[0] * (1.0 - x[0]) * (1.0 - init_Z) + (1.0 - gammas[0] * x[0]) * init_Z ) for i in range( 1, dim, ): Z[i] = ( lambdas[i] * (1.0 - x[i]) * (1.0 - Z[i - 1]) + (1.0 - gammas[i] * x[i]) * Z[i - 1] ) below_threshold = Z < U constraints = np.mean(below_threshold, axis=1) - (1.0 - epsilon) return np.sum(x * cost - rho * constraints) class Contamination(DiscreteTestProblem): """ Contamination Control Problem. The search space consists of only binary variables. """ def __init__( self, dim: int, lamda: float = 0.0, noise_std: Optional[float] = None, negate: bool = False, random_seed: int = 0, ) -> None: self.dim = dim self._bounds = [(0.0, 1.0) for _ in range(dim)] super().__init__( noise_std=noise_std, negate=negate, integer_indices=list(range(dim)) ) self.lamda = lamda self.init_Z, self.lambdas, self.gammas = generate_contamination_dynamics( dim=dim, random_seed=random_seed ) def evaluate_true(self, X: Tensor) -> Tensor: res = torch.cat([self._evaluate_single(x) for x in X.view(-1, self.dim)], dim=0) return res.view(X.shape[:-1]) def _evaluate_single(self, x: Tensor) -> Tensor: assert x.dim() == 1 if x.dim() == 2: x = x.squeeze(0) evaluation = _contamination( x=(x.cpu() if x.is_cuda else x).numpy(), dim=self.dim, cost=np.ones(x.numel()), init_Z=self.init_Z, lambdas=self.lambdas, gammas=self.gammas, U=0.1, epsilon=0.05, ) evaluation += self.lamda * float(torch.sum(x)) return evaluation * x.new_ones((1,)).float() class LABS(DiscreteTestProblem): """ Low auto-correlation binary. This problem is adapted from: https://github.com/aryandeshwal/MerCBO/blob/main/MerCBO/experiments/test_functions/labs.py """ def __init__( self, dim: int, noise_std: Optional[float] = None, negate: bool = False, random_seed: int = 0, ) -> None: self.dim = dim self._bounds = [(0.0, 1.0) for _ in range(dim)] super().__init__( noise_std=noise_std, negate=negate, integer_indices=list(range(dim)) ) def evaluate_true(self, X: Tensor) -> Tensor: return torch.tensor( [self._evaluate_single(x) for x in X.view(-1, self.dim).cpu()], dtype=X.dtype, device=X.device, ).view(X.shape[:-1]) def _evaluate_single(self, x: Tensor) -> np.ndarray: assert x.dim() == 1 if x.dim() == 2: x = x.squeeze(0) x = x.numpy() N = x.shape[0] E = 0 for k in range(1, N): C_k = 0 for j in range(0, N - k - 1): C_k += (-1) ** (1 - x[j] * x[j + k]) E += C_k**2 return -1.0 * N / (2 * E)
bo_pr-main
discrete_mixed_bo/problems/binary.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import pickle import random import sys from itertools import product from logging import Logger from typing import Optional, Union import numpy as np import torch from botorch.test_functions.base import MultiObjectiveTestProblem from discrete_mixed_bo.problems.base import DiscreteTestProblem class NASHPOBench2API: def __init__( self, data: dict, seed: int = 0, logger: Optional[Logger] = None, verbose: bool = False, ): self.logger = logger self.verbose = verbose if logger is None: self.logger = logging.getLogger(__name__) handler = logging.StreamHandler() self.logger.addHandler(handler) self.logger.propagate = False self.bench12 = data["bench12"] self.cellinfo = data["cellinfo"] self.avgaccs200 = data["avgaccs200"] # set serach space self.cellcodes = sorted(list(set(self.cellinfo["hash"].keys()))) self.lrs = sorted(list(set(self.bench12["lr"].values()))) self.batch_sizes = sorted(list(set(self.bench12["batch_size"].values()))) self.seeds = sorted(list(set(self.bench12["seed"].values()))) self.epochs = [12, 200] # set objects for log self._init_logdata() # set seed if seed: self.set_seed(seed) else: self.seed = self.seeds[0] def _init_logdata(self): ## acc self.acc_trans = [] self.best_acc = -1 self.best_acc_trans = [] ## cost self.total_cost = 0.0 self.total_cost_trans = [] self.best_cost = None ## key self.key_trans = [] self.best_key = None self.best_key_trans = [] # set verbose if self.verbose: self.logger.setLevel(logging.DEBUG) else: self.logger.setLevel(logging.INFO) return def __len__(self): return len(self.cellcodes) * len(self.lrs) * len(self.batch_sizes) def __str__(self): return "NAS-HPO-Bench-II" def get_key_from_idx(self, idx: int): key = { "cellcode": self.cellcodes[ int(idx / (len(self.lrs) * len(self.batch_sizes))) ], "lr": self.lrs[int(idx / len(self.batch_sizes)) % len(self.lrs)], "batch_size": self.batch_sizes[idx % len(self.batch_sizes)], } return key def get_idx_from_key(self, key: dict): cellidx = self.cellcodes.index(key["cellcode"]) lridx = self.lrs.index(key["lr"]) batchidx = self.batch_sizes.index(key["batch_size"]) return ( cellidx * len(self.lrs) * len(self.batch_sizes) + lridx * len(self.batch_sizes) + batchidx ) def __getitem__( self, idx: int, ): key = self.get_key_from_idx(idx) return self.query_by_key(**key) def query_by_index( self, cell_idx: int, lr_idx: int, batch_size_idx: int, epoch: Union[int, str] = 12, iepoch: Optional[int] = None, seed: Optional[int] = None, ): cellcode = self.cellcodes[cell_idx] lr = self.lrs[lr_idx] batch_size = self.batch_sizes[batch_size_idx] if seed: self.set_seed(seed) return self.query_by_key(cellcode, lr, batch_size, epoch=epoch, iepoch=iepoch) def query_by_key( self, cellcode: str, lr: float, batch_size: int, epoch: Union[int, str] = 12, mode: str = "valid", iepoch: Optional[int] = None, seed: Optional[int] = None, enable_log: bool = True, ): # check if a key is valid self._check_key(cellcode, lr, batch_size, epoch) assert mode in ["train", "valid", "test"], ValueError( f"mode {mode} should be train, valid, or test" ) # iepoch if epoch != 12: assert iepoch is None, ValueError( f"iepoch is not available in epoch {epoch}" ) if iepoch == None: iepoch = epoch assert iepoch <= epoch, ValueError( f"iepoch {iepoch} is graeter than epoch {epoch}" ) # set seed if seed: self.set_seed(seed) # cellcode to hashvalue hashv = self._cellcode2hash(cellcode) # 12 epoch if epoch == 12: # acc bench = self.bench12 acc = bench[f"{mode}_acc_{iepoch-1}"][(hashv, lr, batch_size, self.seed)] # cost ## if iepoch == 12 (, the cost is pre-calculated) if iepoch == epoch: if mode == "train": cost = bench[f"total_train_time"][ (hashv, lr, batch_size, self.seed) ] elif mode == "valid": cost = bench[f"total_trainval_time"][ (hashv, lr, batch_size, self.seed) ] elif mode == "test": cost = ( bench[f"total_trainval_time"][ (hashv, lr, batch_size, self.seed) ] + bench[f"total_test_time"][(hashv, lr, batch_size, self.seed)] ) ## else (less than 12 epoch) else: if mode == "train": time_modes = ["train"] elif mode == "valid": time_modes = ["train", "valid"] elif mode == "test": time_modes = ["train", "valid", "test"] tmp = [ bench[f"{m}_time_{i}"][(hashv, lr, batch_size, self.seed)] for m, i in product(time_modes, range(iepoch)) ] cost = sum(tmp) key = {"cellcode": cellcode, "lr": lr, "batch_size": batch_size} if enable_log: self._write_log(acc, cost, key) return acc, cost # 200 epoch elif epoch == 200: # the expected value of test accuracy bench = self.avgaccs200 acc = bench["avg_acc"][(hashv, lr, batch_size)] return acc, None def _write_log( self, acc: float, cost: float, key: dict, ): if len(self.acc_trans) == 0: self.logger.debug( f' {"valid acc":<8} {"cost":<8} {"cellcode"} {"lr":<7} {"batch_size":<3}' ) self.logger.debug( f'{acc:>8.2f} % {cost:>8.2f} sec {key["cellcode"]} {key["lr"]:<7.5f} {key["batch_size"]:<3}' ) # current status self.acc_trans.append(acc) self.key_trans.append(key) self.total_cost += cost self.total_cost_trans.append(self.total_cost) # update the best status if self.best_key is None or self.best_acc < acc: self.best_acc, self.best_cost, self.best_key = acc, cost, key # current best status self.best_acc_trans.append(self.best_acc) self.best_key_trans.append(self.best_key) return def get_total_cost(self): return self.total_cost def get_results(self, epoch: Union[int, str] = "both", mode: str = "test"): # log self.logger.info("-" * 23 + " finished " + "-" * 23) self.logger.info("The best setting is") self.logger.info( f' {"valid acc":<8} {"cost":<8} {"cellcode"} {"lr":<7} {"batch_size":<3}' ) self.logger.info( f'{self.best_acc:>8.2f} % {self.best_cost:>8.2f} sec {self.best_key["cellcode"]} {self.best_key["lr"]:<7.5f} {self.best_key["batch_size"]:<3}' ) self.logger.info( f" in {len(self.key_trans)} trials ({self.total_cost:.2f} sec)" ) # get the test accuracies of the best-valid-acc model (finalaccs) if epoch == "both": epochs = [12, 200] else: epochs = [epoch] self.logger.info("-" * 56) self.final_accs = [] for e in epochs: final_acc, _ = self.query_by_key( **self.best_key, epoch=e, mode=mode, enable_log=False ) self.final_accs.append(final_acc) self.logger.info(f"{e}-epoch {mode} accuracy is {final_acc:.2f}%") self.logger.info("-" * 56) # return results nlist = [ "acc_trans", "key_trans", "best_acc_trans", "best_key_trans", "total_cost_trans", "final_accs", ] return {n: eval("self." + n, {"self": self}) for n in nlist} def reset_logdata(self, logger: Optional[Logger] = None, verbose: bool = None): if logger is not None: self.logger = logger if verbose is not None: self.verbose = verbose self._init_logdata() return def _cellcode2hash(self, cellcode: str): return self.cellinfo["hash"][cellcode] def get_random_key(self): cellcode = random.choice(self.cellcodes) lr = random.choice(self.lrs) batch_size = random.choice(self.batch_sizes) return {"cellcode": cellcode, "lr": lr, "batch_size": batch_size} def _check_key(self, cellcode: str, lr: float, batch_size: int, epoch: int): if cellcode not in self.cellcodes: raise ValueError(f"choose a cellcode {cellcode} from search space.") if lr not in self.lrs: raise ValueError(f"choose lr from {self.lrs}.") if batch_size not in self.batch_sizes: raise ValueError(f"choose batch size from {self.batch_sizes}.") if epoch not in self.epochs: raise ValueError(f"choose epoch from {self.epochs}.") return def get_search_space(self): return self.cellcodes, self.lrs, self.batch_sizes def set_seed(self, seed: int): if seed in self.seeds: self.seed = seed else: raise ValueError(f"choose a seed value from {self.seeds}.") # class NASHPOBenchII(MultiObjectiveTestProblem, DiscreteTestProblem): class NASHPOBenchII(DiscreteTestProblem): """ NAS-HPO-Bench-II dataset that jointly optimizes the architecture and hyperparameters on a simplified NAS-Bench-201 search space. """ _bounds = [(0, 3) for _ in range(6)] + [(0, 5), (0, 7)] # first 6: NAS dimensions -- specify the operators on the cell # final 2: batch sizes -- log-ordinal variables _ref_point = [ 0.0933, 0.0144, ] # <- found by running this python file as main using botorch heuristic in finding ref point # (see the main code block to see how this is determined) dim: int = 8 def __init__( self, data: dict, nb201_path: str = None, num_objectives: int = 2, noise_std: Optional[float] = None, negate: bool = True, use_12_epoch_result: bool = False, use_log: bool = False, ): """ Args: data_path: path to the stored NAS-HPO-Bench-II dataset nb201_path: Optional. Compulsory if num_objectives > 1. Path to stored NATS-Bench dataset num_objectives: 1 or 2. 1: only validation error is returned 2: (validation error, latency) --> both need to be minimized noise_std: negate: use_12_epoch_result: if True, return the 12-epoch result (otherwise return 200-epoch) """ super(NASHPOBenchII, self).__init__( negate=negate, noise_std=noise_std, categorical_indices=list(range(6)), integer_indices=[6, 7], ) assert num_objectives in [1, 2] if num_objectives > 1: raise NotImplementedError # assert nb201_path is not None, 'NB201 path is needed in multi-objective mode!' self.num_objectives = num_objectives self.use_12_epoch_result = use_12_epoch_result self.api = NASHPOBench2API(data=data) # self.nb201_api = nats_bench.create(nb201_path, 'tss', fast_mode=True, verbose=True) self.nb201_api = None # note this is specified by the NAS-HPO-Bench-II authors self.primitives = { 0: "nor_conv_3x3", 1: "avg_pool_3x3", 2: "skip_connect", 3: "none", } self.use_log = use_log def parse_input(self, x_array): """Parse an array input into a format understood by the NAS-HPO-Bench-II API""" assert x_array.shape[0] == self.dim x_array = x_array.int().detach().cpu().numpy() nas_code, bs_code, lr_code = x_array[:6], x_array[6], x_array[7] cellcode = f"{nas_code[0]}|{nas_code[1]}{nas_code[2]}|{nas_code[3]}{nas_code[4]}{nas_code[5]}" bs = int(2 ** (bs_code + 4)) # so 0 -> 16, 1 -> 32, ..., 5 -> 512 lr = float( 0.003125 * (2**lr_code) ) # so 0 -> 0.003125, 1 -> 0.00625, ..., 7 -> 0.4 return cellcode, bs, lr def get_nb201_code(self, x_array): """Get a NAS-Bench-201/NATS-Bench style code -- used to query the model parameters & FLOPS""" assert x_array.shape[0] == self.dim nas_code = x_array[:6] op_list = [self.primitives[i] for i in nas_code] arch_str = get_string_from_op_list(op_list) return arch_str def nashpo2nb201(self, nas_code): """Convert a NAS-HPO-Bench-II code back to NATSBench/NAS-Bench-201 code""" nas_code_splitted = nas_code.split("|") op_list = [] for node in nas_code_splitted: # e.g. ['1', '12', '123'] for prim in node: op_list.append(self.primitives[int(prim)]) arch_str = get_string_from_op_list(op_list) return arch_str def _evaluate_single(self, input: torch.Tensor): cellcode, bs, lr = self.parse_input(input) accs, costs = [], [] for seed in self.api.seeds: acc, cost = self.api.query_by_key( cellcode=cellcode, batch_size=bs, lr=lr, epoch=12 if self.use_12_epoch_result else 200, seed=seed, ) accs.append(acc) costs.append(cost) print(accs) acc = sum(accs) / len(accs) if costs[0] is not None: cost = sum(costs) / len(costs) err = (100.0 - acc) / 100.0 if self.num_objectives == 1: return torch.tensor(err, dtype=torch.float) else: # also query the model size nb201_str = self.get_nb201_code(input) arch_index = self.nb201_api.query_index_by_arch(nb201_str) cost_result = self.nb201_api.get_cost_info(arch_index, "cifar10") latency = cost_result["latency"] return torch.tensor([err, latency], dtype=torch.float).view(-1) def evaluate_true(self, X: torch.Tensor) -> torch.Tensor: res = ( torch.stack( [self._evaluate_single(x) for x in X.cpu().view(-1, self.dim)], ) .to(X) .view(*X.shape[:-1], self.num_objectives) ) if self.use_log: res = res.log() if self.num_objectives == 1: return res.squeeze(-1) return res
bo_pr-main
discrete_mixed_bo/problems/nashpobench2.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Problems mixed integer continuous search spaces. References .. [Hansen2019] N. Hansen, D. Brockhoff, O. Mersmann, T. Tusar, D. Tusar, O. A. ElHara, Phillipe R. Sampaio, A. Atamna, K. Varelas, U. Batu, D. M. Nguyen, F. Matzner, A. Auger. COmparing Continuous Optimizers: numbbo/COCO on Github. Zenodo, DOI:10.5281/zenodo.2594848, March 2019. This code leverages the COCO library (see [Hansen2019]_) and is adapted from https://github.com/aryandeshwal/HyBO/blob/master/experiments/test_functions/mixed_integer.py """ # import cocoex from typing import Optional # prepare mixed integer suite # suite_name = "bbob-mixint" # output_folder = "cocex-optimize-fmin" # suite = cocoex.Suite(suite_name, "", "") import numpy as np import torch from botorch.test_functions.synthetic import SyntheticTestFunction from botorch.utils.sampling import manual_seed from torch import Tensor from discrete_mixed_bo.problems.base import DiscreteTestProblem class BBOBTestFunction(SyntheticTestFunction): r"""Base class for BBOB functions. d-dimensional function (usually evaluated on the hypercube `[-5, 5]^d`). See for [Hansen2019]_ details. """ def __init__( self, dim: int = 2, noise_std: Optional[float] = None, negate: bool = False, seed: int = 0, ) -> None: self.dim = dim self._bounds = [(-5.0, 5.0) for _ in range(self.dim)] with manual_seed(seed): # sample x_opt uniformly in [-4, 4]^d self._optimizers = 8 * torch.rand(dim) - 4 # sample f_opt from a Cauchy distribution with median of 0 # and roughly 50% of the values between -100 and 100. Clamp # the value to be within -1000 and 1000. Round the value to # the nearest integer self._optimal_value = min( max( round(10000 * (torch.randn(1) / torch.randn(1)).item()) / 100, -1000.0, ), 1000.0, ) super().__init__(noise_std=noise_std, negate=negate) class Sphere(BBOBTestFunction): r"""Sphere function. d-dimensional function (usually evaluated on the hypercube `[-5, 5]^d`): f(x) = \sum_{i=1}^d (x_i - x_{i,opt})^2 + f_opt See for [Hansen2019]_ details. """ def evaluate_true(self, X: Tensor) -> Tensor: return (X - self.optimizers).pow(2).sum(dim=-1) + self._optimal_value # class MixedIntegerCOCO(DiscreteTestProblem): # """ # Mixed Integer Black box optimization using cocoex library # """ # def __init__(self, negate: bool = False,noise_std: Optional[float] = None, problem_id: Optional[str] = None) -> None: # self.problem_id = problem_id # self.problem = suite.get_problem(self.problem_id) # self.integer_indices = list(range(self.problem.number_of_integer_variables)) # self._bounds = list(zip(self.problem.lower_bounds, self.problem.upper_bounds)) # super().__init__(negate=negate, noise_std=noise_std) # def evaluate_true(self, X: Tensor) -> Tensor: # X_shape = X.shape # if X.dim() > 2: # X = X.view(-1, X.shape[-1]) # return torch.tensor([self.problem(xi) for xi in X.cpu().numpy()], dtype=X.dtype, device=X.device).view(X_shape[:-1])
bo_pr-main
discrete_mixed_bo/problems/coco_mixed_integer.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Problems with only binary variables. """ from collections import OrderedDict from typing import Optional import numpy as np import torch from torch import Tensor from discrete_mixed_bo.problems.base import DiscreteTestProblem def _pest_spread(curr_pest_frac, spread_rate, control_rate, apply_control): if apply_control: next_pest_frac = (1.0 - control_rate) * curr_pest_frac else: next_pest_frac = spread_rate * (1 - curr_pest_frac) + curr_pest_frac return next_pest_frac def _pest_control_score(x, seed=None): U = 0.1 n_stages = x.size n_simulations = 100 init_pest_frac_alpha = 1.0 init_pest_frac_beta = 30.0 spread_alpha = 1.0 spread_beta = 17.0 / 3.0 control_alpha = 1.0 control_price_max_discount = {1: 0.2, 2: 0.3, 3: 0.3, 4: 0.0} tolerance_develop_rate = {1: 1.0 / 7.0, 2: 2.5 / 7.0, 3: 2.0 / 7.0, 4: 0.5 / 7.0} control_price = {1: 1.0, 2: 0.8, 3: 0.7, 4: 0.5} # below two changes over stages according to x control_beta = {1: 2.0 / 7.0, 2: 3.0 / 7.0, 3: 3.0 / 7.0, 4: 5.0 / 7.0} payed_price_sum = 0 above_threshold = 0 if seed is not None: init_pest_frac = np.random.RandomState(seed).beta( init_pest_frac_alpha, init_pest_frac_beta, size=(n_simulations,) ) else: init_pest_frac = np.random.beta( init_pest_frac_alpha, init_pest_frac_beta, size=(n_simulations,) ) curr_pest_frac = init_pest_frac for i in range(n_stages): if seed is not None: spread_rate = np.random.RandomState(seed).beta( spread_alpha, spread_beta, size=(n_simulations,) ) else: spread_rate = np.random.beta( spread_alpha, spread_beta, size=(n_simulations,) ) do_control = x[i] > 0 if do_control: if seed is not None: control_rate = np.random.RandomState(seed).beta( control_alpha, control_beta[x[i]], size=(n_simulations,) ) else: control_rate = np.random.beta( control_alpha, control_beta[x[i]], size=(n_simulations,) ) next_pest_frac = _pest_spread( curr_pest_frac, spread_rate, control_rate, True ) # torelance has been developed for pesticide type 1 control_beta[x[i]] += tolerance_develop_rate[x[i]] / float(n_stages) # you will get discount payed_price = control_price[x[i]] * ( 1.0 - control_price_max_discount[x[i]] / float(n_stages) * float(np.sum(x == x[i])) ) else: next_pest_frac = _pest_spread(curr_pest_frac, spread_rate, 0, False) payed_price = 0 payed_price_sum += payed_price above_threshold += np.mean(curr_pest_frac > U) curr_pest_frac = next_pest_frac return payed_price_sum + above_threshold class PestControl(DiscreteTestProblem): """ Pest Control Problem. """ def __init__( self, dim: int = 25, n_choice: int = 5, noise_std: Optional[float] = None, negate: bool = False, ) -> None: self._bounds = [(0, n_choice - 1) for _ in range(dim)] self.dim = dim super().__init__( negate=negate, noise_std=noise_std, categorical_indices=list(range(self.dim)), ) self.seed = 0 def evaluate_true(self, X: Tensor) -> Tensor: return self.compute(X.cpu().view(-1, self.dim)).to(X).view(X.shape[:-1]) def compute(self, x): if not isinstance(x, torch.Tensor): x = torch.tensor(x) x = x.int() if x.dim() == 1: x = x.reshape(1, -1) res = torch.tensor([self._compute(x_) for x_ in x]) # # Add a small ammount of noise to prevent training instabilities # res += 1e-6 * torch.randn_like(res) return res def _compute(self, x): assert x.numel() == self.dim if x.dim() == 2: x = x.squeeze(0) evaluation = _pest_control_score( (x.cpu() if x.is_cuda else x).numpy(), seed=self.seed ) # evaluation = _pest_control_score((x.cpu() if x.is_cuda else x).numpy(), seed=None) res = float(evaluation) * x.new_ones((1,)).float() return res
bo_pr-main
discrete_mixed_bo/problems/pest.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Environmental model calibration problem from: https://github.com/aryandeshwal/HyBO/blob/master/experiments/test_functions/em_func.py """ from typing import Optional import numpy as np import torch from torch import Tensor from discrete_mixed_bo.problems.base import DiscreteTestProblem def c(s, t, M, D, L, tau) -> float: val = (M * np.exp(-(s**2) / 4 * D * t)) / np.sqrt(4 * np.pi * D * t) if t > tau: val += ( (t > tau) * M * np.exp(-((s - L) ** 2) / (4 * D * (t - tau))) ) / np.sqrt(4 * np.pi * D * (t - tau)) return val def objective(x: np.ndarray) -> float: tau = 30.01 + x[0] / 1000 M = 7 + ((x[1] + 1) * 6) / 2 D = 0.02 + ((x[2] + 1) * 0.10) / 2 L = 0.01 + ((x[3] + 1) * 2.99) / 2 val = 0.0 for s in [0, 1, 2.5]: for t in [15, 30, 45, 60]: val += ( c(s=s, t=t, M=10, D=0.07, L=1.505, tau=30.1525) - c(s=s, t=t, M=M, D=D, L=L, tau=tau) ) ** 2 return val class Environmental(DiscreteTestProblem): """ Environmental model function """ _bounds = [ (0, 284), (-1, 1), (-1, 1), (-1, 1), ] dim = 4 def __init__(self, noise_std: Optional[float] = None, negate: bool = False) -> None: super().__init__(noise_std=noise_std, negate=negate, integer_indices=[0]) def evaluate_true(self, X: Tensor) -> Tensor: return torch.tensor( [objective(x=x) for x in X.view(-1, self.dim).cpu().numpy()], dtype=X.dtype, device=X.device, ).view(X.shape[:-1])
bo_pr-main
discrete_mixed_bo/problems/environmental.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
bo_pr-main
discrete_mixed_bo/problems/__init__.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ 3-Objective Electrospun Oil Sorbent optimization problem References .. [Wang2020] B. Wang, J. Cai, C. Liu, J. Yang, X. Ding. Harnessing a Novel Machine-Learning-Assisted Evolutionary Algorithm to Co-optimize Three Characteristics of an Electrospun Oil Sorbent. ACS Applied Materials & Interfaces, 2020. """ from typing import List, Optional import numpy as np import torch from botorch.test_functions.base import MultiObjectiveTestProblem from botorch.utils.torch import BufferDict from torch import Tensor from discrete_mixed_bo.problems.base import DiscreteTestProblem class OilSorbent(DiscreteTestProblem, MultiObjectiveTestProblem): """All objectives should be minimized. The reference point comes from using the infer_reference_point method on the full discrete search space. """ # _max_hv = 1177461.0 # full discrete case _max_hv = 1279774.75 _discrete_values = { # "V1": [3 / 7, 4 / 6, 1, 6 / 4, 7 / 3], "V2": [0.7, 1, 1.4, 1.7, 2], "V3": [12, 15, 18, 21, 24], "V4": [0.12, 0.135, 0.15, 0.165, 0.18], # "V5": [0, 0.04, 0.08, 0.10, 0.20], "V6": [16, 20, 26, 28], "V7": [0.41, 0.6, 0.84, 1.32], } _bounds = [ (0, 1), # continuous (0, 4), # 5 ordinal values (0, 4), # 5 ordinal values (0, 4), # 5 ordinal values (0, 1), # continuous (0, 3), # 4 ordinal values (0, 3), # 4 ordinal values ] dim = 7 num_objectives = 3 # _ref_point = [-133.9736, -4.8289, 38.6565] # full discrete case _ref_point = [-125.3865, -57.8292, 43.2665] def __init__( self, noise_std: Optional[float] = None, negate: bool = False, integer_indices: Optional[List[int]] = None, ) -> None: if integer_indices is None: integer_indices = [1, 2, 3, 5, 6] MultiObjectiveTestProblem.__init__( self, noise_std=noise_std, negate=negate, ) self._setup(integer_indices=integer_indices) self.discrete_values = BufferDict() for k, v in self._discrete_values.items(): self.discrete_values[k] = torch.tensor(v, dtype=torch.float) self.discrete_values[k] /= self.discrete_values[k].max() def evaluate_true(self, X: Tensor) -> Tensor: X_split = list(torch.split(X, 1, -1)) # remap from integer space to proper space for i, V_i in enumerate(X_split): name = f"V{i+1}" if name in self.discrete_values: X_split[i] = self.discrete_values[name][V_i.view(-1).long()].view( V_i.shape ) V1, V2, V3, V4, V5, V6, V7 = X_split wca = ( -197.0928 - 78.3309 * V1 + 98.6355 * V2 + 300.0701 * V3 + 89.8360 * V4 + 208.2343 * V5 + 332.9341 * V6 + 135.6621 * V7 - 11.0715 * V1 * V2 + 201.8934 * V1 * V3 + 17.1270 * V1 * V4 + 2.5198 * V1 * V5 - 109.3922 * V1 * V6 + 30.1607 * V1 * V7 - 46.1790 * V2 * V3 + 19.2888 * V2 * V4 - 102.9493 * V2 * V5 - 19.1245 * V2 * V6 + 53.6297 * V2 * V7 - 73.0649 * V3 * V4 - 37.7181 * V3 * V5 - 219.1268 * V3 * V6 - 55.3704 * V3 * V7 + 3.8778 * V4 * V5 - 6.9252 * V4 * V6 - 105.1650 * V4 * V7 - 34.3181 * V5 * V6 - 36.3892 * V5 * V7 - 82.3222 * V6 * V7 - 16.7536 * V1.pow(2) - 45.6507 * V2.pow(2) - 91.4134 * V3.pow(2) - 76.8701 * V5.pow(2) ) q = ( -212.8531 + 245.7998 * V1 - 127.3395 * V2 + 305.8461 * V3 + 638.1605 * V4 + 301.2118 * V5 - 451.3796 * V6 - 115.5485 * V7 + 42.8351 * V1 * V2 + 262.3775 * V1 * V3 - 103.5274 * V1 * V4 - 196.1568 * V1 * V5 - 394.7975 * V1 * V6 - 176.3341 * V1 * V7 + 74.8291 * V2 * V3 + 4.1557 * V2 * V4 - 133.8683 * V2 * V5 + 65.8711 * V2 * V6 - 42.6911 * V2 * V7 - 323.9363 * V3 * V4 - 107.3983 * V3 * V5 - 323.2353 * V3 * V6 + 46.9172 * V3 * V7 - 144.4199 * V4 * V5 + 272.3729 * V4 * V6 + 49.0799 * V4 * V7 + 318.4706 * V5 * V6 - 236.2498 * V5 * V7 + 252.4848 * V6 * V7 - 286.0182 * V4.pow(2) + 393.5992 * V6.pow(2) ) sigma = ( 7.7696 + 15.4344 * V1 - 10.6190 * V2 - 17.9367 * V3 + 17.1385 * V4 + 2.5026 * V5 - 24.3010 * V6 + 10.6058 * V7 - 1.2041 * V1 * V2 - 37.2207 * V1 * V3 - 3.2265 * V1 * V4 + 7.3121 * V1 * V5 + 52.3994 * V1 * V6 + 9.7485 * V1 * V7 - 15.9371 * V2 * V3 - 1.1706 * V2 * V4 - 2.6297 * V2 * V5 + 7.0225 * V2 * V6 - 1.4938 * V2 * V7 + 30.2786 * V3 * V4 + 14.5061 * V3 * V5 + 48.5021 * V3 * V6 - 11.4857 * V3 * V7 - 3.1381 * V4 * V5 - 14.9747 * V4 * V6 + 4.5204 * V4 * V7 - 17.6907 * V5 * V6 - 19.2489 * V5 * V7 - 9.8219 * V6 * V7 - 18.7356 * V1.pow(2) + 12.1928 * V2.pow(2) - 17.5460 * V4.pow(2) + 5.4997 * V5.pow(2) - 26.2718 * V6.pow(2) ) return -torch.cat([wca, q, sigma], dim=-1) class OilSorbentMixed(DiscreteTestProblem, MultiObjectiveTestProblem): """All objectives should be minimized. The reference point comes from using the infer_reference_point method on the full discrete search space where the continuous parameters are discretized into 100 values. """ # _max_hv = 1177461.0 # full discrete case # _max_hv = 1279774.75 # approximate for continuous _discrete_values = { # "V1": [3 / 7, 4 / 6, 1, 6 / 4, 7 / 3], "V2": [0.7, 1, 1.4, 1.7, 2], "V3": [12, 15, 18, 21, 24], "V4": [0.12, 0.135, 0.15, 0.165, 0.18], # "V5": [0, 0.04, 0.08, 0.10, 0.20], "V6": [16, 20, 26, 28], "V7": [0.41, 0.6, 0.84, 1.32], } _bounds = [ (0, 1), # continuous (0, 4), # 5 ordinal values (0, 4), # 5 ordinal values (0, 4), # 5 ordinal values (0, 1), # continuous (0, 3), # 4 ordinal values (0, 3), # 4 ordinal values ] dim = 7 num_objectives = 3 # _ref_point = [-133.9736, -4.8289, 38.6565] # full discrete case _ref_point = [-125.3865, -57.8292, 43.2665] def __init__( self, noise_std: Optional[float] = None, negate: bool = False, integer_indices: Optional[List[int]] = None, ) -> None: if integer_indices is None: integer_indices = [1, 2, 3, 5, 6] # integer_indices = list(range(self.dim)) MultiObjectiveTestProblem.__init__( self, noise_std=noise_std, negate=negate, # integer_indices=integer_indices ) self._setup(integer_indices=integer_indices) self.discrete_values = BufferDict() for k, v in self._discrete_values.items(): self.discrete_values[k] = torch.tensor(v, dtype=torch.float) self.discrete_values[k] /= self.discrete_values[k].max() def evaluate_true(self, X: Tensor) -> Tensor: X_split = list(torch.split(X, 1, -1)) # remap from integer space to proper space for i, V_i in enumerate(X_split): name = f"V{i+1}" if name in self.discrete_values: X_split[i] = self.discrete_values[name][V_i.view(-1).long()].view( V_i.shape ) V1, V2, V3, V4, V5, V6, V7 = X_split wca = ( -197.0928 - 78.3309 * V1 + 98.6355 * V2 + 300.0701 * V3 + 89.8360 * V4 + 208.2343 * V5 + 332.9341 * V6 + 135.6621 * V7 - 11.0715 * V1 * V2 + 201.8934 * V1 * V3 + 17.1270 * V1 * V4 + 2.5198 * V1 * V5 - 109.3922 * V1 * V6 + 30.1607 * V1 * V7 - 46.1790 * V2 * V3 + 19.2888 * V2 * V4 - 102.9493 * V2 * V5 - 19.1245 * V2 * V6 + 53.6297 * V2 * V7 - 73.0649 * V3 * V4 - 37.7181 * V3 * V5 - 219.1268 * V3 * V6 - 55.3704 * V3 * V7 + 3.8778 * V4 * V5 - 6.9252 * V4 * V6 - 105.1650 * V4 * V7 - 34.3181 * V5 * V6 - 36.3892 * V5 * V7 - 82.3222 * V6 * V7 - 16.7536 * V1.pow(2) - 45.6507 * V2.pow(2) - 91.4134 * V3.pow(2) - 76.8701 * V5.pow(2) ) q = ( -212.8531 + 245.7998 * V1 - 127.3395 * V2 + 305.8461 * V3 + 638.1605 * V4 + 301.2118 * V5 - 451.3796 * V6 - 115.5485 * V7 + 42.8351 * V1 * V2 + 262.3775 * V1 * V3 - 103.5274 * V1 * V4 - 196.1568 * V1 * V5 - 394.7975 * V1 * V6 - 176.3341 * V1 * V7 + 74.8291 * V2 * V3 + 4.1557 * V2 * V4 - 133.8683 * V2 * V5 + 65.8711 * V2 * V6 - 42.6911 * V2 * V7 - 323.9363 * V3 * V4 - 107.3983 * V3 * V5 - 323.2353 * V3 * V6 + 46.9172 * V3 * V7 - 144.4199 * V4 * V5 + 272.3729 * V4 * V6 + 49.0799 * V4 * V7 + 318.4706 * V5 * V6 - 236.2498 * V5 * V7 + 252.4848 * V6 * V7 - 286.0182 * V4.pow(2) + 393.5992 * V6.pow(2) ) sigma = ( 7.7696 + 15.4344 * V1 - 10.6190 * V2 - 17.9367 * V3 + 17.1385 * V4 + 2.5026 * V5 - 24.3010 * V6 + 10.6058 * V7 - 1.2041 * V1 * V2 - 37.2207 * V1 * V3 - 3.2265 * V1 * V4 + 7.3121 * V1 * V5 + 52.3994 * V1 * V6 + 9.7485 * V1 * V7 - 15.9371 * V2 * V3 - 1.1706 * V2 * V4 - 2.6297 * V2 * V5 + 7.0225 * V2 * V6 - 1.4938 * V2 * V7 + 30.2786 * V3 * V4 + 14.5061 * V3 * V5 + 48.5021 * V3 * V6 - 11.4857 * V3 * V7 - 3.1381 * V4 * V5 - 14.9747 * V4 * V6 + 4.5204 * V4 * V7 - 17.6907 * V5 * V6 - 19.2489 * V5 * V7 - 9.8219 * V6 * V7 - 18.7356 * V1.pow(2) + 12.1928 * V2.pow(2) - 17.5460 * V4.pow(2) + 5.4997 * V5.pow(2) - 26.2718 * V6.pow(2) ) return -torch.cat([wca, q, sigma], dim=-1)
bo_pr-main
discrete_mixed_bo/problems/oil_sorbent.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Welded Beam problem from https://link.springer.com/content/pdf/10.1007/s00158-018-2182-1.pdf """ from copy import deepcopy from math import sqrt from typing import Optional, Tuple import numpy as np import torch from botorch.test_functions.base import ConstrainedBaseTestProblem from torch import Tensor from discrete_mixed_bo.problems.base import DiscreteTestProblem class WeldedBeam(DiscreteTestProblem, ConstrainedBaseTestProblem): dim = 6 _bounds = [ [0, 1], # binary, welding type [0, 3], # categorical, metal material [0.0625, 2], # cont/ordinal, thickness of the weld [0.1, 10], # cont/ordinal, length of the welded joint [2, 20], # cont/ordinal, width of the beam [0.0625, 2], # cont/ordinal, thickness of the beam ] num_constraints = 5 F = 6000 delta_max = 0.25 L = 14 material_params = { # C1, C2, sigma_d, E, G 0: (0.1047, 0.0481, 3e4, 3e7, 12e6), # steel 1: (0.0489, 0.0224, 8e3, 14e6, 6e6), # cast iron 2: (0.5235, 0.2405, 5e3, 1e7, 4e6), # aluminum 3: (0.5584, 0.2566, 8e3, 16e6, 1e7), # brass } # In the discrete setting, the optimal value is 1.9553 # in the continuous setting, the optimal value is def __init__( self, noise_std: Optional[float] = None, negate: bool = False, continuous: bool = False, ) -> None: integer_indices = [0] if not continuous: self._orig_cont_bounds_list = deepcopy(self._bounds) for i in range(2, 6): n_ordinal = int((self._bounds[i][1] - self._bounds[i][0]) / 0.0625) self._bounds[i][0] = 0 self._bounds[i][1] = n_ordinal - 1 integer_indices.append(i) super().__init__( negate=negate, noise_std=noise_std, integer_indices=integer_indices, categorical_indices=[1], ) self.continuous = continuous if not continuous: self.register_buffer( "_orig_cont_bounds_tensor", torch.tensor(self._orig_cont_bounds_list).t(), ) def _split_X( self, X: Tensor ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]: X_int = 0.0625 * X[..., 2:].round() + self._orig_cont_bounds_tensor[0, 2:] (X2, X3, X4, X5) = torch.split(X_int, 1, dim=-1) return X[..., 0], X[..., 1], X2, X3, X4, X5 def _evaluate_true(self, X): params = self._get_params(X=X) m = params["m"] C1, C2, sigma_d, E, G = self.material_params[int(m.item())] t = params["t"] l = params["l"] return (1 + C1) * (params["w"] * t + l) * params["h"].pow(2) + C2 * t * params[ "b" ] * (self.L + l) def _get_params(self, X): if not self.continuous: w, m, h, l, t, b = self._split_X(X=X) else: w, m, h, l, t, b = torch.split(X, 1, dim=-1) if w == 0: A = sqrt(2) * h * l J = A * ((h + t).pow(2) / 4 + l.pow(2) / 12) R = 0.5 * torch.sqrt(l.pow(2) + (h + t).pow(2)) elif w == 1: A = sqrt(2) * h * (t + l) J = sqrt(2) * h * l * ((h + t).pow(2) / 4 + l.pow(2) / 12) + sqrt( 2 ) * h * t * ((h + l).pow(2) / 4 + t.pow(2) / 12) R = 0.5 * torch.max( torch.sqrt(l.pow(2) + (h + t).pow(2)), torch.sqrt(t.pow(2) + (h + l).pow(2)), ) else: raise ValueError cos_theta = l / (2 * R) return { "w": w, "m": m, "h": h, "l": l, "t": t, "b": b, "A": A, "J": J, "R": R, "cos_theta": cos_theta, } def evaluate_true(self, X: Tensor) -> Tensor: return torch.stack([self._evaluate_true(x) for x in X.view(-1, 6)], dim=0).view( X.shape[:-1] ) def evaluate_slack_true(self, X: Tensor) -> Tensor: return torch.stack( [self._evaluate_slack_true(x) for x in X.view(-1, 6)], dim=0 ).view(*X.shape[:-1], self.num_constraints) def _evaluate_slack_true(self, X: Tensor) -> Tensor: params = self._get_params(X=X) w = params["w"] m = params["m"] h = params["h"] l = params["l"] t = params["t"] b = params["b"] A = params["A"] J = params["J"] R = params["R"] cos_theta = params["cos_theta"] C1, C2, sigma_d, E, G = self.material_params[int(m.item())] sigma = 6 * self.F * self.L / (t.pow(2) * b) delta = 4 * self.F * self.L**3 / (E * t.pow(3) * b) P_c = ( 4.013 * t * b.pow(3) * sqrt(E * G) / (6 * self.L**2) * (1 - t / (4 * self.L) * sqrt(E / G)) ) tau_prime = torch.sqrt(self.F / A) tau_double_prime = self.F * (self.L + 0.5 * l) * R / J tau = torch.sqrt( tau_prime.pow(2) + tau_double_prime.pow(2) + 2 * tau_prime * tau_double_prime * cos_theta ) g1 = 0.577 * sigma_d - tau g2 = sigma_d - sigma g3 = b - h g4 = P_c - self.F g5 = self.delta_max - delta # positive slack implies feasibility return torch.stack([g1, g2, g3, g4, g5], dim=-1)
bo_pr-main
discrete_mixed_bo/problems/welded_beam.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from math import exp, log from typing import Dict, Optional import numpy as np import pandas as pd import torch import xgboost from sklearn import datasets, metrics, model_selection from discrete_mixed_bo.problems.base import DiscreteTestProblem class XGBoostHyperparameter(DiscreteTestProblem): dim: int = 11 def __init__( self, task="mnist", split=0.3, seed=None, negate: bool = False, noise_std: Optional[float] = None, data: Optional[Dict[str, np.ndarray]] = None, ): """ The XGboost hyperparameter tuning task on MNIST classification Args: task: 'mnist' or 'boston' split: train-test split normalize: seed: negate: noise_std: We optimize the following hyperparameters, in the order presented below: Categoricals: 0. booster type -- cat (2 choices) -- gbtree, dart 1. grow policy -- cat (2 choices) -- depthwise, lossguide 2. training objective -- cat (2 choices) -- softmax, softprob, 3 choices for regression ['reg:linear', 'reg:gamma', 'reg:tweedie'] Integers: 3. max depth -- int -- [1, 10] 4. min_child_weight: -- uniform int -- [1,10] Floats: 5. log10-learning rate -- uniform float -- [-5, 0] 6. gamma -- uniform float -- [0, 10] 7. subsample -- log float -- [0.1, 1] 8. lambda (L2 regularization weight) -- log float -- [1e-3, 5] 9. alpha (L1 regularization weight) -- log float -- [1e-3, 5] 10. colsample_by_tree -- uniform float -- (0, 1] """ self.task = task self.split = split self.seed = seed if task == "airfoil": if data is not None: # data comes from https://archive.ics.uci.edu/ml/machine-learning-databases/00291/airfoil_self_noise.dat self.reg_or_clf = "reg" self.data = data if data is None: self.data, self.reg_or_clf = get_data_and_task_type(self.task) stratify = self.data["target"] if self.reg_or_clf == "clf" else None if self.reg_or_clf == "clf": self._bounds = [ (0, 1), (0, 1), (0, 1), (3, 15), (100, 500), (-5, -1), (0, 10), (log(0.1), log(1)), (log(1e-3), log(5)), (log(1e-3), log(5)), (0, 1), ] else: self._bounds = [ (0, 1), (0, 1), (0, 2), (1, 10), (1, 10), (-5, -1), (0, 10), (0.1, 1), (0, 5), (0, 5), (0.3, 1), ] super(XGBoostHyperparameter, self).__init__( negate=negate, noise_std=noise_std, categorical_indices=[2], integer_indices=[0, 1, 3, 4], ) ( self.train_x, self.test_x, self.train_y, self.test_y, ) = model_selection.train_test_split( self.data["data"], self.data["target"], test_size=self.split, stratify=stratify, random_state=self.seed, ) def _evaluate_single(self, x: torch.Tensor): model = self.create_model(x) model.fit(self.train_x, self.train_y) y_pred = model.predict(self.test_x) # 1-acc for minimization if self.reg_or_clf == "clf": score = 1 - metrics.accuracy_score(self.test_y, y_pred) elif self.reg_or_clf == "reg": score = metrics.mean_squared_error(self.test_y, y_pred) else: raise NotImplementedError return torch.tensor(score, dtype=torch.float) def _parse_input(self, x) -> dict: """Parse the input into a dictionary""" kwargs = {} x = x.detach().numpy() assert len(x) == self.dim args = [ "booster", "grow_policy", "objective", "max_depth", "min_child_weight", "learning_rate", "gamma", "subsample", "reg_lambda", "reg_alpha", "colsample_bytree", ] for i, val in enumerate(x): if args[i] == "booster": kwargs[args[i]] = ["gbtree", "dart"][int(val)] elif args[i] == "grow_policy": kwargs[args[i]] = ["depthwise", "lossguide"][int(val)] elif args[i] == "objective": if self.reg_or_clf == "clf": kwargs[args[i]] = ["multi:softmax", "multi:softprob"][int(val)] else: kwargs[args[i]] = ["reg:linear", "reg:gamma", "reg:tweedie"][ int(val) ] elif args[i] == "learning_rate": kwargs[args[i]] = float(10**val) elif args[i] in ("subsample", "reg_lambda", "reg_alpha"): kwargs[args[i]] = float(val) elif args[i] in ["max_depth", "min_child_weight", "n_estimators"]: kwargs[args[i]] = int(val) else: kwargs[args[i]] = float(val) # print(kwargs) return kwargs def create_model(self, x): xgboost_kwargs = self._parse_input(x) if self.reg_or_clf == "clf": model = xgboost.XGBClassifier( eval_metric="mlogloss", **xgboost_kwargs, seed=self.seed, n_jobs=10 ) else: model = xgboost.XGBRegressor(**xgboost_kwargs, seed=self.seed, n_jobs=10) return model def evaluate_true(self, X: torch.Tensor) -> torch.Tensor: res = ( torch.stack( [self._evaluate_single(x) for x in X.cpu().view(-1, self.dim)], ) .to(X) .view(*X.shape[:-1]) ) return res def get_data_and_task_type(task): if task == "boston": data = datasets.load_boston() reg_or_clf = "reg" # regression or classification elif task == "diabetes": data = datasets.load_diabetes() reg_or_clf = "reg" # regression or classification elif task == "airfoil": # data comes from https://archive.ics.uci.edu/ml/machine-learning-databases/00291/airfoil_self_noise.dat current_dir = os.path.dirname(os.path.abspath(__file__)) path = os.path.join(current_dir, "data", "airfoil_self_noise.dat") df = pd.read_csv(path, header=None, sep="\t") data = {"data": df.iloc[:, :5].values, "target": df.iloc[:, 5].values} reg_or_clf = "reg" elif task == "mnist": data = datasets.load_digits() reg_or_clf = "clf" else: raise NotImplementedError("Bad choice for task") return data, reg_or_clf
bo_pr-main
discrete_mixed_bo/problems/xgboost_hp.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from typing import Any, Dict, Optional, Tuple import gpytorch.settings as gpt_settings import numpy as np import torch from botorch.models.gp_regression_mixed import MixedSingleTaskGP from botorch.models.transforms.outcome import Standardize from botorch.utils.transforms import normalize from gpytorch.likelihoods.gaussian_likelihood import FixedNoiseGaussianLikelihood from torch import Tensor from discrete_mixed_bo.problems.base import DiscreteTestProblem class Chemistry(DiscreteTestProblem): def __init__( self, data: Optional[Dict[str, Any]] = None, noise_std: Optional[float] = None, negate: bool = False, ) -> None: if data is None: current_dir = os.path.dirname(os.path.abspath(__file__)) path = os.path.join(current_dir, "data", "chem_model_info") with open(path, "rb") as f: data = torch.load(f) self.dim = 5 bounds = data["bounds"] self._bounds = bounds.t().tolist() super().__init__( negate=negate, noise_std=noise_std, categorical_indices=list(range(3)) ) self.register_buffer("_model_bounds", bounds) # construct surrogate X_norm = normalize(data["X"], bounds=self._model_bounds) Y = data["Y"] train_Yvar = torch.full_like(Y, 1e-10) * Y.std().pow(2) # override the default min fixed noise level # this requires https://github.com/cornellius-gp/gpytorch/pull/2132 lb = float("-inf") with gpt_settings.min_fixed_noise( float_value=lb, double_value=lb, half_value=lb ): self.model = MixedSingleTaskGP( train_X=X_norm, train_Y=Y, cat_dims=list(range(3)), outcome_transform=Standardize(m=1), likelihood=FixedNoiseGaussianLikelihood(noise=train_Yvar.squeeze(-1)), ) self.model.load_state_dict(data["state_dict"]) def evaluate_true(self, X: Tensor) -> Tensor: X_norm = normalize(X, self._model_bounds) with torch.no_grad(): return -self.model.posterior(X_norm.unsqueeze(-2)).mean.view( X_norm.shape[:-1] )
bo_pr-main
discrete_mixed_bo/problems/chemistry.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from typing import Optional, Tuple import numpy as np import torch from sklearn.svm import SVR from torch import Tensor from xgboost import XGBRegressor from discrete_mixed_bo.problems.base import DiscreteTestProblem def process_uci_data( data: np.ndarray, n_features: int ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: # The slice dataset can be downloaded from: https://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis # Get the input data X = data[:, :-1] X -= X.min(axis=0) X = X[:, X.max(axis=0) > 1e-6] # Throw away constant dimensions X = X / (X.max(axis=0) - X.min(axis=0)) X = 2 * X - 1 assert X.min() == -1 and X.max() == 1 # Standardize targets y = data[:, -1] y = (y - y.mean()) / y.std() # Only keep 10,000 data points and n_features features shuffled_indices = np.random.RandomState(0).permutation(X.shape[0])[ :10000 ] # Use seed 0 X, y = X[shuffled_indices], y[shuffled_indices] # Use Xgboost to figure out feature importances and keep only the most important features xgb = XGBRegressor(max_depth=8, random_state=0).fit(X, y) inds = (-xgb.feature_importances_).argsort() X = X[:, inds[:n_features]] # Train/Test split on a subset of the data train_n = int(math.floor(0.50 * X.shape[0])) train_x, train_y = X[:train_n], y[:train_n] test_x, test_y = X[train_n:], y[train_n:] return train_x, train_y, test_x, test_y class SVMFeatureSelection(DiscreteTestProblem): def __init__( self, dim: int, data: np.ndarray, noise_std: Optional[float] = None, negate: bool = False, ) -> None: n_features = dim - 3 self.train_x, self.train_y, self.test_x, self.test_y = process_uci_data( data=data, n_features=n_features ) self.n_features = n_features self.dim = dim self._bounds = [(0.0, 1.0) for _ in range(self.dim)] super().__init__( negate=negate, noise_std=noise_std, integer_indices=list(range(n_features)) ) def evaluate_true(self, X: Tensor) -> Tensor: return torch.tensor( [self._evaluate_true(x.numpy()) for x in X.view(-1, self.dim).cpu()], dtype=X.dtype, device=X.device, ).view(X.shape[:-1]) def _evaluate_true(self, x: np.ndarray): assert x.shape == (self.dim,) assert (x >= self.bounds[0].cpu().numpy()).all() and ( x <= self.bounds[1].cpu().numpy() ).all() assert ( (x[: self.n_features] == 0) | (x[: self.n_features] == 1) ).all() # Features must be 0 or 1 inds_selected = np.where(x[: self.n_features] == 1)[0] if inds_selected.shape[0] == 0: # if no features, use the mean prediction pred = self.train_y.mean(axis=0) else: epsilon = 0.01 * 10 ** (2 * x[-3]) # Default = 0.1 C = 0.01 * 10 ** (4 * x[-2]) # Default = 1.0 gamma = ( (1 / self.n_features) * 0.1 * 10 ** (2 * x[-1]) ) # Default = 1.0 / self.n_features model = SVR(C=C, epsilon=epsilon, gamma=gamma) model.fit(self.train_x[:, inds_selected], self.train_y) pred = model.predict(self.test_x[:, inds_selected]) mse = ((pred - self.test_y) ** 2).mean(axis=0) return 1 * math.sqrt(mse) # Return RMSE
bo_pr-main
discrete_mixed_bo/problems/svm.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Problems with only binary variables. """ from math import pi from typing import Optional, Tuple import numpy as np import torch from botorch.test_functions.base import ConstrainedBaseTestProblem from torch import Tensor from discrete_mixed_bo.problems.base import DiscreteTestProblem class PressureVessel(DiscreteTestProblem, ConstrainedBaseTestProblem): dim = 4 _bounds = [ (1, 100), # integer (1, 100), # integer (10, 200), # continuous (10, 240), # continuous ] num_constraints = 3 def __init__( self, noise_std: Optional[float] = None, negate: bool = False, ) -> None: super().__init__( negate=negate, noise_std=noise_std, integer_indices=[0, 1], ) @staticmethod def _split_X(X: Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor]: X_int = 0.0625 * X[..., :2].round() x1 = X_int[..., 0] x2 = X_int[..., 1] x3 = X[..., 2] x4 = X[..., 3] return x1, x2, x3, x4 def evaluate_true(self, X): x1, x2, x3, x4 = self._split_X(X=X) return ( (0.6224 * x1 * x3 * x4) + (1.7781 * x2 * x3 * x3) + (3.1661 * x1 * x1 * x4) + (19.84 * x1 * x1 * x3) ) def evaluate_slack_true(self, X: Tensor) -> Tensor: # positive slack implies feasibility x1, x2, x3, x4 = self._split_X(X=X) g1 = x1 - (0.0193 * x3) g2 = x2 - (0.00954 * x3) g3 = pi * x3 * x3 * x4 + 4.0 / 3.0 * pi * x3 * x3 * x3 - 1296000 return torch.stack([g1, g2, g3], dim=-1)
bo_pr-main
discrete_mixed_bo/problems/re_problems.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import OrderedDict from typing import Dict, List, Optional import torch from botorch.test_functions.base import BaseTestProblem, MultiObjectiveTestProblem from botorch.utils.transforms import normalize, unnormalize from torch import Tensor from torch.nn import Module class DiscreteTestProblem(BaseTestProblem): def __init__( self, noise_std: Optional[float] = None, negate: bool = False, integer_indices: Optional[List[int]] = None, categorical_indices: Optional[List[int]] = None, ) -> None: super().__init__(negate=negate, noise_std=noise_std) self._setup( integer_indices=integer_indices, categorical_indices=categorical_indices ) def _setup( self, integer_indices: Optional[List[int]] = None, categorical_indices: Optional[List[int]] = None, ) -> None: dim = self.bounds.shape[-1] discrete_indices = [] if integer_indices is None: integer_indices = [] if categorical_indices is None: categorical_indices = [] self.register_buffer( "_orig_integer_indices", torch.tensor(integer_indices, dtype=torch.long) ) discrete_indices.extend(integer_indices) self.register_buffer( "_orig_categorical_indices", torch.tensor(sorted(categorical_indices), dtype=torch.long), ) discrete_indices.extend(categorical_indices) if len(discrete_indices) == 0: raise ValueError("Expected at least one discrete feature.") cont_indices = sorted(list(set(range(dim)) - set(discrete_indices))) self.register_buffer( "_orig_cont_indices", torch.tensor( cont_indices, dtype=torch.long, device=self.bounds.device, ), ) self.register_buffer("_orig_bounds", self.bounds.clone()) # remap inputs so that categorical features come after all of # the ordinal features remapper = torch.zeros( self.bounds.shape[-1], dtype=torch.long, device=self.bounds.device ) reverse_mapper = remapper.clone() for i, orig_idx in enumerate( cont_indices + integer_indices + categorical_indices ): remapper[i] = orig_idx reverse_mapper[orig_idx] = i self.register_buffer("_remapper", remapper) self.register_buffer("_reverse_mapper", reverse_mapper) self.bounds = self.bounds[:, remapper] self.register_buffer("cont_indices", reverse_mapper[cont_indices]) self.register_buffer("integer_indices", reverse_mapper[integer_indices]) self.register_buffer("categorical_indices", reverse_mapper[categorical_indices]) self.effective_dim = ( self.cont_indices.shape[0] + self.integer_indices.shape[0] + int(sum(self.categorical_features.values())) ) one_hot_bounds = torch.zeros( 2, self.effective_dim, dtype=self.bounds.dtype, device=self.bounds.device ) one_hot_bounds[1] = 1 one_hot_bounds[:, self.integer_indices] = self.integer_bounds one_hot_bounds[:, self.cont_indices] = self.cont_bounds self.register_buffer("one_hot_bounds", one_hot_bounds) def forward(self, X: Tensor, noise: bool = True) -> Tensor: r"""Evaluate the function on a set of points. Args: X: A `batch_shape x d`-dim tensor of point(s) at which to evaluate the function. noise: If `True`, add observation noise as specified by `noise_std`. Returns: A `batch_shape`-dim tensor of function evaluations. """ batch = X.ndimension() > 1 X = X if batch else X.unsqueeze(0) # remap to original space X = X[..., self._reverse_mapper] f = self.evaluate_true(X=X) if noise and self.noise_std is not None: f += self.noise_std * torch.randn_like(f) if self.negate: f = -f return f if batch else f.squeeze(0) def evaluate_slack(self, X: Tensor, noise: bool = True) -> Tensor: r"""Evaluate the constraint function on a set of points. Args: X: A `batch_shape x d`-dim tensor of point(s) at which to evaluate the function. noise: If `True`, add observation noise as specified by `noise_std`. Returns: A `batch_shape x n_constraints`-dim tensor of function evaluations. """ batch = X.ndimension() > 1 X = X if batch else X.unsqueeze(0) # remap to original space X = X[..., self._reverse_mapper] f = self.evaluate_slack_true(X=X) if noise and self.noise_std is not None: f += self.noise_std * torch.randn_like(f) return f if batch else f.squeeze(0) @property def integer_bounds(self) -> Optional[Tensor]: if self.integer_indices is not None: return self.bounds[:, self.integer_indices] return None @property def cont_bounds(self) -> Optional[Tensor]: if self.cont_indices is not None: return self.bounds[:, self.cont_indices] return None @property def categorical_bounds(self) -> Optional[Tensor]: if self.categorical_indices is not None: return self.bounds[:, self.categorical_indices] return None @property def categorical_features(self) -> Optional[Dict[int, int]]: # Return dictionary mapping indices to cardinalities if self.categorical_indices is not None: categ_bounds = self.categorical_bounds return OrderedDict( zip( self.categorical_indices.tolist(), (categ_bounds[1] - categ_bounds[0] + 1).long().tolist(), ) ) return None @property def objective_weights(self) -> Optional[Tensor]: return None @property def is_moo(self) -> bool: return isinstance(self, MultiObjectiveTestProblem) and ( self.objective_weights is None ) class DiscretizedBotorchTestProblem(DiscreteTestProblem): r"""Class for converting continuous botorch test problems into discrete or mixed problems. """ def __init__( self, problem: BaseTestProblem, integer_indices: Optional[List[int]] = None, integer_bounds: Optional[Tensor] = None, categorical_indices: Optional[List[int]] = None, categorical_bounds: Optional[Tensor] = None, ) -> None: Module.__init__(self) self.problem = problem self.dim = problem.dim self.register_buffer("bounds", problem.bounds.clone()) if integer_indices is not None: self.bounds[:, integer_indices] = integer_bounds if categorical_indices is not None: if (categorical_bounds[1] - categorical_bounds[0] < 2).any(): raise ValueError( "Binary categorical parameters should be specified as integer parameters, not categoricals." ) self.bounds[:, categorical_indices] = categorical_bounds self._setup( integer_indices=integer_indices, categorical_indices=categorical_indices ) def get_orig_X(self, X: Tensor) -> Tensor: # normalize from integer bounds to unit cube unit_X = normalize(X, self._orig_bounds) # unnormalize from unit cube to original problem bounds return unnormalize(unit_X, self.problem.bounds) def evaluate_true(self, X: Tensor) -> Tensor: r""" This assumes that only discrete X are passed. """ orig_X = self.get_orig_X(X=X) return self.problem.evaluate_true(orig_X) def evaluate_slack_true(self, X: Tensor) -> Tensor: r""" This assumes that only discrete X are passed. """ orig_X = self.get_orig_X(X=X) return self.problem.evaluate_slack_true(X) def forward(self, X: Tensor, noise: bool = True) -> Tensor: # remap to original indices X = X[..., self._reverse_mapper] # remap to original bounds orig_X = self.get_orig_X(X=X) return self.problem.forward(X=orig_X, noise=noise) @property def __class__(self): return self.problem.__class__ @property def ref_point(self) -> Tensor: return self.problem.ref_point @property def num_objectives(self) -> int: return self.problem.num_objectives @property def ref_num_constraints(self) -> int: return self.problem.num_constraints
bo_pr-main
discrete_mixed_bo/problems/base.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Tuple, Union import numpy as np """ Problem formulation for the RF Coverage and Capacity Optimization (CCO) problem. """ class CCORasterBlanketFormulation: """Generate combined reward, over all raster locations, from dual objectives of minimizing under coverage (holes) and over coverage (interference). RSRP: Reference Signal Receive Power Coverage holes: Z = h(x) = weak_coverage_threshold - RSRP_From_TargetCell(x), where x is the location. Over coverage: Y = g(x) = sum(RSRP_From_NeighborCells(x)) + over_coverage_threshold - RSRP_From_TargetCell(x), where RSRP_From_TargetCell > weak_coverage_threshold Suggested : weak_coverage_threshold = -90 dBm, over_coverage_threshold = 6 dBm Multi-criteria objective formulation: Objective 1: Min(Sum(f(Z))), f is the activation function Objective 2: Min(Sum(f(Y))), f is the activation function f may be sigmoid. Combined objective := lambda_weight * goal1 + (1 - lambda_weight) * goal2 Metrics: percentages of coverage holes and over coverage """ def __init__( self, lambda_weight: float, weak_coverage_threshold: float = -80, over_coverage_threshold: float = 6, ): self.lambda_weight = lambda_weight self.weak_coverage_threshold = weak_coverage_threshold self.over_coverage_threshold = over_coverage_threshold def get_objective_value( self, rsrp_map: np.ndarray, interference_map: np.ndarray ) -> float: """Get reward from all the locations in the map""" f_weak_coverage, g_over_coverage = self.get_reward_components( rsrp_map=rsrp_map, interference_map=interference_map ) # calculate the combining reward reward = ( self.lambda_weight * f_weak_coverage + (1 - self.lambda_weight) * g_over_coverage ) return reward def get_reward_components( self, rsrp_map: np.ndarray, interference_map: np.ndarray ) -> Tuple[float, float]: """Get individual reward components from all the locations in the map""" weak_coverage_area, over_coverage_area = self.get_weak_over_coverage_area( rsrp_map, interference_map, self.weak_coverage_threshold, self.over_coverage_threshold, ) f_weak_coverage = CCORasterBlanketFormulation.activation_function( self.weak_coverage_threshold - rsrp_map[weak_coverage_area] ).sum() g_over_coverage = CCORasterBlanketFormulation.activation_function( interference_map[over_coverage_area] + self.over_coverage_threshold - rsrp_map[over_coverage_area] ).sum() return f_weak_coverage, g_over_coverage def get_weak_over_coverage_area_percentages( self, rsrp_map: np.ndarray, interference_map: np.ndarray ) -> Tuple[float, float]: """Calculate the percentages of coverage hole and over coverage area""" size = rsrp_map.size weak_coverage_area, over_coverage_area = self.get_weak_over_coverage_area( rsrp_map, interference_map, self.weak_coverage_threshold, self.over_coverage_threshold, ) weak_coverage_percentage = weak_coverage_area.sum() / size over_coverage_percentage = over_coverage_area.sum() / size return weak_coverage_percentage, over_coverage_percentage @staticmethod def get_weak_over_coverage_area( rsrp_map: np.ndarray, interference_map: np.ndarray, weak_coverage_threshold: float, over_coverage_threshold: float, ) -> Tuple[np.ndarray, np.ndarray]: """Compute the weak coverage and over coverage areas as 2D boolean indicator matrices. """ weak_coverage_area = rsrp_map < weak_coverage_threshold over_coverage_area = (rsrp_map >= weak_coverage_threshold) & ( interference_map + over_coverage_threshold > rsrp_map ) return weak_coverage_area, over_coverage_area @staticmethod def activation_function(x: Union[float, np.ndarray]) -> Union[float, np.ndarray]: """Sigmoid Function""" return 1 / (1 + np.exp(-x))
bo_pr-main
discrete_mixed_bo/problems/cco/problem_formulation.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
bo_pr-main
discrete_mixed_bo/problems/cco/__init__.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import bisect import glob import logging import os import re from dataclasses import dataclass from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np # System Constants MIN_INTERFERENCE_POWER_WATT = 1e-24 class SimulatedRSRP: """Class that initializes RSRP and interference maps from disk. The data is provided in a particular format described below. Build this class from NPZ files. A single NPZ file consists of several lists and matrices: data['x'] - a list of x coordinates representing the x-axis of the map data['y'] - a list of y coordinates representing the y-axis of the map data['y'] - a fixed z coordinate of this map data['ptx'] - Transmit power of the sectors. data['Txnpwr'] - a 3D matix, which is the powermap of several sectors located in base station n data['Txnloc'] - The location of base station n A NPZ file is named as powermapDT{%d}.npz, where {%d} indicates the downtilt of all the base stations in this map. The API consists of the following methods: get_RSRP_and_interference_powermap: This method returns the RSRP powermap, interference powermap and connecting sectors map, given the configuration for each sector. get_RSRP_and_interference_for_location: This method returns the RSRP, interference power and connecting sector idx given a single location and the configuration. get_configuration_shape: This method returns the configuration shape. Each configuration is a 2-D Array with the shape [2, num_total_sectors]. Each column contains the downtilt and transmit power, respectively, for different sectors. get_configuration_range: This method will return the valid ranges for downtilts and transmit powers. Both are specified as a minimum and maximum value. get_locations_range: This method will return the range of the map. Two Coordinate objects will be returned: xy_min, xy_max Location(x,y) is the meters from the basestation center(0, 0). The valid location will be: xy_min.x <= location.x <= xy_max.y, xy_min.y <= location.y <= xy_max.y powermatrix path will be like: powermaps_path = "/mnt/shared/yuchenq/power_maps/*.npz" # Now we have downtilt from 0 to 10, 11 files Sample Code: min_Tx_power_dBm, max_Tx_power_dBm = 30, 50 simulated_rsrp = SimulatedRSRP.construct_from_npz_files(powermaps_path, (min_Tx_power_dBm, max_Tx_power_dBm)) # Get configuration range for downtilts and powers ( (min_downtilt, max_downtilt), (min_tx_power_dBm, max_tx_power_dBm), ) = self.simulated_rsrp.get_configuration_range() xy_min, xy_max = simulated_rsrp.get_locations_range() # Discretize power choices to integer values in range tx_power_choices = list(range(int(min_tx_power_dBm), int(max_tx_power_dBm + 1))) downtilts_choices = list(range(int(min_downtilt), int(max_downtilt + 1))) # Get the number of total sectors _, num_sectors = self.simulated_rsrp.get_configuration_shape() # Random configuration downtilts_for_sectors = np.random.choice(downtilts_choices, num_sectors) power_for_sectors = np.random.choice(tx_power_choices, num_sectors) configuration = (downtilts_for_sectors, power_for_sectors) # Get rsrp and interference powermap rsrp_powermap, interference_powermap, _ = simulated_rsrp.get_RSRP_and_interference_powermap(configurations) # Get rsrp and interference from location location = Coordinate(0, 0) rsrp, interference, _ = simulated_rsrp.get_RSRP_and_interference_for_location(location, configurations) """ @dataclass class Coordinate: __slots__ = "x", "y" x: float y: float @dataclass class Powermap: """Dataclass to store a powermap with the specific downtilt of all base stations. power_matrix: 3D matrix base_station_locations: base station locations xy_min: minimum x and y xy_max: maximum x and y fixed_z: z value num_sectors_per_base_station: number of sectors of a single base station """ power_matrix: np.ndarray base_station_locations: np.ndarray xy_min: "SimulatedRSRP.Coordinate" xy_max: "SimulatedRSRP.Coordinate" fixed_z: float num_sectors_per_base_station: List[int] @dataclass class Metadata: """Dataclass to store map metadata.""" xy_min: "SimulatedRSRP.Coordinate" xy_max: "SimulatedRSRP.Coordinate" fixed_z: float resolution: float num_sectors_per_base_station: List[int] def __init__( self, powermaps: Dict[int, Any], min_TX_power_dBm: float, max_TX_power_dBm: float, ): self.downtilts_maps = { float(i): SimulatedRSRP.build_single_powermap(powermaps[i]) for i in powermaps.keys() } # Get maps size, resolution and base stations distribution metadata = self.get_metadata(self.downtilts_maps) self.xy_min = metadata.xy_min self.xy_max = metadata.xy_max self.fixed_z = (metadata.fixed_z,) self.resolution = metadata.resolution self.num_sectors_per_base_station = metadata.num_sectors_per_base_station self.num_basestations = len(self.num_sectors_per_base_station) self.num_total_sectors = sum(self.num_sectors_per_base_station) self.min_TX_power_dBm = min_TX_power_dBm self.max_TX_power_dBm = max_TX_power_dBm self.downtilts_keys = np.asarray(list(self.downtilts_maps.keys())) self.downtilts_keys.sort() self.min_downtilt = self.downtilts_keys[0] self.max_downtilt = self.downtilts_keys[-1] def get_configuration_range( self, ) -> Tuple[Tuple[float, float], Tuple[float, float]]: """Return valid ranges of input configurations, later useful for `get_RSRP_and_interference_for_location`. This method returns the following 2-tuple: 1. 2-tuple specifying (min downtilt, max downtilt) range 2. 2-tuple specifying (min Tx power, max Tx power) range """ return ( (self.min_downtilt, self.max_downtilt), (self.min_TX_power_dBm, self.max_TX_power_dBm), ) def get_locations_range( self, ) -> Tuple["SimulatedRSRP.Coordinate", "SimulatedRSRP.Coordinate"]: """Return the range of x,y in the map.""" return self.xy_min, self.xy_max def get_configuration_shape(self) -> Tuple[int, int]: """Return the number of base stations and sectors. In tandem with `get_configuration_range`, this method is useful for constructing valid configuration inputs for the main API calls: 1. `get_RSRP_and_interference_for_location` 2. `get_RSRP_and_interference_powermap` """ return (self.num_basestations, self.num_total_sectors) def get_basestation_and_sector_idx( self, flattened_sector_idx: int ) -> Tuple[int, int]: """Given the flattened sector id, return the base station idx and its sector idx""" if flattened_sector_idx >= self.num_total_sectors or flattened_sector_idx < 0: raise ValueError("flattened_sector_id is out of range") base_station_idx = 0 sector_idx = 0 while ( sector_idx + self.num_sectors_per_base_station[base_station_idx] ) <= flattened_sector_idx: sector_idx += self.num_sectors_per_base_station[base_station_idx] base_station_idx += 1 return base_station_idx, flattened_sector_idx - sector_idx @staticmethod def watt_to_dBm(x: Union[float, np.ndarray]) -> float: return 10 * np.log10(x) + 30 @staticmethod def dBm_to_watt(x: Union[float, np.ndarray]) -> float: return 10 ** (x / 10.0 - 3) @staticmethod def get_nearest_discrete_downtilts( downtilts_keys: np.ndarray, downtilt: float ) -> Tuple[float, float]: """Return the nearest discrete downtilts for the given downtilt. downtilts_keys is the sorted numpy 1-D array, storing the discrete downtilts. Given downtilts, return the interpolation range: [lower_downtilt, upper_downtilt] If downtilts_keys only contains one downtilt, the interpolation will not be needed. Such situation will be checked before this method is called in the API. """ # Check the length if len(downtilts_keys) <= 1: raise ValueError("Can't do interpolation with only one discrete downtilt") # Check if downtilt is in the configiration range if downtilt > downtilts_keys[-1] or downtilt < downtilts_keys[0]: raise ValueError("Downtilt is out of the range") # Using bisect to find the nearest upper downtilt and lower downtilt indices upper_downtilt_idx = bisect.bisect( downtilts_keys, downtilt, hi=len(downtilts_keys) - 1 ) lower_downtilt_idx = upper_downtilt_idx - 1 upper_downtilt = downtilts_keys[upper_downtilt_idx] lower_downtilt = downtilts_keys[lower_downtilt_idx] return (lower_downtilt, upper_downtilt) @staticmethod def get_resolution_from_powermap( powermap: "SimulatedRSRP.Powermap", ) -> "SimulatedRSRP.Coordinate": """Return the reslution of a Powermap Object. If the length of one axis of the 2-D map is 1, the resolution for this axis will be set as 1 for easy calculation of x-y index. """ x_len, y_len, _ = powermap.power_matrix.shape resolution_x = ( 1 if x_len == 1 else (powermap.xy_max.x - powermap.xy_min.x) / (x_len - 1) ) resolution_y = ( 1 if y_len == 1 else (powermap.xy_max.y - powermap.xy_min.y) / (y_len - 1) ) return SimulatedRSRP.Coordinate(resolution_x, resolution_y) @staticmethod def get_xy_idx( resolution: "SimulatedRSRP.Coordinate", location: "SimulatedRSRP.Coordinate", xy_min: "SimulatedRSRP.Coordinate", ) -> Tuple[int, int]: """Return the x and y axis index, given the location and the resolution""" x_idx, y_idx = ( int((location.x - xy_min.x) // resolution.x), int((location.y - xy_min.y) // resolution.y), ) return (x_idx, y_idx) # Return RSRP of a single point def get_RSRP_and_interference_for_location( self, location: "SimulatedRSRP.Coordinate", configurations: Tuple[np.ndarray, np.ndarray], ) -> Tuple[float, float, int]: """Get RSRP and interference power, given the location and configuration. Configuration contains downtilts and transmit power for all the sectors. The first list in the configuration is for downtilts and the second is for transmit powers. The return values are RSRP, interference power and serving sector idx. """ # Check if the location is in the resonable range if not ( self.xy_min.x <= location.x <= self.xy_max.x and self.xy_min.y <= location.y <= self.xy_max.y ): raise ValueError("Current location is outside of the map!") # Check if the configurations format has the right shape try: assert len(configurations) == 2 assert ( len(configurations[0]) == len(configurations[1]) == self.num_total_sectors ) except AssertionError: logging.error("Configurations shape doesn't fit") # Create an array to store the received powers from all the sectors rx_powers_dBm = np.zeros(self.num_total_sectors, dtype=np.float32) # Calculate RSRP, Interference power, and serving sector idx for i in range(self.num_total_sectors): # Get configurations, which are transmit power and downtilt configured_downtilt = configurations[0][i] configured_transmit_power_dBm = configurations[1][i] # Check if the configurations are in the right range if not ( self.min_TX_power_dBm <= configured_transmit_power_dBm <= self.max_TX_power_dBm ): raise ValueError("Transmit Power is out of the range") # Get the resolution of the map, and calculate the idx of locations x_idx, y_idx = self.get_xy_idx(self.resolution, location, self.xy_min) # Get the received power from one sector received_power_dBm = ( self.get_power_for_downtilt_sector(configured_downtilt, i, x_idx, y_idx) + configured_transmit_power_dBm ) rx_powers_dBm[i] = received_power_dBm # Calculate RSRP and interference power # The maximum received power from all the sectors is # defined as the serving/attached cell RSRP. # The remaining received powers will be regarded as interference powers. rsrp_dBm, serving_sector_idx = np.max(rx_powers_dBm), np.argmax(rx_powers_dBm) interference_power_watt = sum( SimulatedRSRP.dBm_to_watt( rx_powers_dBm[np.arange(self.num_total_sectors) != serving_sector_idx] ) ) # Transfer to dbm interference_power_dBm = SimulatedRSRP.watt_to_dBm(interference_power_watt) return rsrp_dBm, interference_power_dBm, serving_sector_idx def get_RSRP_and_interference_powermap( self, configurations: Tuple[np.ndarray, np.ndarray] ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """Returns RSRP and interference power for all the locations in the map. `configurations` contains downtilts and transmit power for all the sectors. The first list in the configuration contains downtilts and the second contains transmit powers. Return 3 maps for: rsrp_powermap: RSRP power map interference_powermap: interference power map serving_sector_idx_map: conncecting sectors index map """ # Check if the configurations format has the right shape try: assert len(configurations) == 2 assert ( len(configurations[0]) == len(configurations[1]) == self.num_total_sectors ) except AssertionError: logging.error("Configurations shape doesn't fit") # Get downtilts and tx powers from configurations downtilts_for_sectors = configurations[0] tx_powers_for_sectors = configurations[1] # Check if the power configuration is right if ( max(tx_powers_for_sectors) > self.max_TX_power_dBm or min(tx_powers_for_sectors) < self.min_TX_power_dBm ): raise ValueError("Transmit Power is out of the range") # Construct power matrices files from the configutration power_matrices = np.stack( [ self.get_power_for_downtilt_sector(downtilt, flattened_sector_idx) + tx_powers_for_sectors[flattened_sector_idx] for flattened_sector_idx, downtilt in enumerate(downtilts_for_sectors) ], -1, ) # Get RSRP powermap and serving sector idx map rsrp_power_map_dBm = np.amax(power_matrices, -1) serving_sector_idx_map = np.argmax(power_matrices, -1) # 1. Convert power from dBm to watt # 2. Sum the powers in every location and substract RSRP to get interference power # 3. Set minimum threshold 1e-24 to avoid 0 watt power interference_power_map_watt = np.maximum( MIN_INTERFERENCE_POWER_WATT, np.sum(SimulatedRSRP.dBm_to_watt(power_matrices), -1) - SimulatedRSRP.dBm_to_watt(rsrp_power_map_dBm), ) # Get interference power map in dBm interference_power_map_dbm = SimulatedRSRP.watt_to_dBm( interference_power_map_watt ) return (rsrp_power_map_dBm, interference_power_map_dbm, serving_sector_idx_map) def get_power_for_downtilt_sector( self, downtilt: float, flattened_sector_idx: int, x_idx: Optional[int] = None, y_idx: Optional[int] = None, ) -> Union[np.ndarray, float]: """Return interpolated power matrix or scalar power in given location If the x_idx and y_idx are given, the scalar power for this location will be calculated. Otherwise it will return the power matrix for the entire map. """ # Check given x_idx and y_idx is_xy_given = x_idx is not None and y_idx is not None # Check if the interpolation is needed if downtilt in self.downtilts_maps: if is_xy_given: return self.downtilts_maps[downtilt].power_matrix[ x_idx, y_idx, flattened_sector_idx ] else: return self.downtilts_maps[downtilt].power_matrix[ :, :, flattened_sector_idx ] else: # Interpolation begin # 1. Find the nearest lower and upper downtilt lower_downtilt, upper_downtilt = self.get_nearest_discrete_downtilts( self.downtilts_keys, downtilt ) # 2. Get the power matrix or scalar power for lower and upper downtilts # Check if x_idx and y_idx are given, calculate the scalar power if is_xy_given: upper_downtilt_power = self.downtilts_maps[upper_downtilt].power_matrix[ x_idx, y_idx, flattened_sector_idx ] lower_downtilt_power = self.downtilts_maps[lower_downtilt].power_matrix[ x_idx, y_idx, flattened_sector_idx ] # Otherwise get the power matrix else: upper_downtilt_power = self.downtilts_maps[upper_downtilt].power_matrix[ :, :, flattened_sector_idx ] lower_downtilt_power = self.downtilts_maps[lower_downtilt].power_matrix[ :, :, flattened_sector_idx ] # 3. Linear interpolation downtilt_power = ( (upper_downtilt_power - lower_downtilt_power) / (upper_downtilt - lower_downtilt) ) * (downtilt - lower_downtilt) + lower_downtilt_power return downtilt_power @staticmethod def construct_from_npz_files( power_maps_path: str, power_range: Tuple[float, float] ) -> "SimulatedRSRP": """Construct power map data from multiple power maps (npz format). power_maps_path is filepath (local or mounted), e.g. "/mnt/shared/yuchenq/power_maps/*.npz". Power maps are loaded into the downtilts_maps dictionary, keyed on downtilts. npz files are generated from original JSON files. Here is the sample code: powermaps_dir = Path("/mnt/shared/yuchenq/power_maps") for fn in powermaps_dir.iterdir(): npfn = fn.name.replace(".json", ".npz") with open(fn, "r") as f: pmap = json.load(f) for k, vals in pmap.items(): pmap[k] = np.array(vals) np.savez_compressed(powermaps_dir.joinpath(npfn), **pmap) """ downtilts_maps = {} power_maps_path = glob.glob( os.path.abspath(os.path.expandvars(power_maps_path)) ) for file_path in power_maps_path: try: downtilt = float(re.search(r"DT\d+", file_path).group()[2:]) except AttributeError: logging.error("No downtilt parameter configuration find") raise if downtilt in downtilts_maps: logging.info("Duplicated downtilt %d files", downtilt) else: downtilts_maps[downtilt] = SimulatedRSRP.build_single_powermap( np.load(file_path) ) # Check if the map object has been successfully built if not downtilts_maps: logging.error("No power map files found!") raise # Construct the simulation object simulated_rsrp = SimulatedRSRP( downtilts_maps=downtilts_maps, min_TX_power_dBm=power_range[0], max_TX_power_dBm=power_range[1], ) return simulated_rsrp @staticmethod def build_single_powermap(npz_data: Dict[str, Any]) -> "SimulatedRSRP.Powermap": """Construct a single power map for the specific downtilt. The power_matrix will have the following dimensions: [x, y, num_total_sectors] The power_matrix contains the received powers assuming 0 dBm transmit power. """ x_coord = npz_data["x"] y_coord = npz_data["y"] z_coord = npz_data["z"] # Check the map if it is the uniform grid if not np.allclose( x_coord, np.linspace(x_coord[0], x_coord[-1], len(x_coord)) ) or not np.allclose( y_coord, np.linspace(y_coord[0], y_coord[-1], len(y_coord)) ): raise ValueError("xy 2D map must be uniform grid") # Transmit power, stored in Watt, converted to dBm TX_power_dBm = SimulatedRSRP.watt_to_dBm(npz_data["ptx"]) # Try to get the number of base stations from the file try: num_base_stations = int( re.search(r"\d+", list(npz_data.keys())[-1]).group() ) except ValueError: logging.error("Unable to determine the number of base stations") raise # Store recived powers from different locations rx_powers = [] # Store number of sectors in different base stations num_sectors_per_base_station = [] # Transmitter locations (transmitter, [x, y, z]) base_station_locations = np.zeros((num_base_stations, 3)) # Get the number of sectors of a single base station # The power map structure will be [x, y, num_total_sectors] for i in range(num_base_stations): label = "Tx{}".format(i + 1) num_sectors_per_base_station.append(len(npz_data[label + "pwr"][0][0])) rx_powers.append(npz_data[label + "pwr"] - TX_power_dBm) base_station_locations[i] = npz_data[label + "loc"] powermap = SimulatedRSRP.Powermap( power_matrix=np.concatenate(rx_powers, -1), base_station_locations=base_station_locations, xy_min=SimulatedRSRP.Coordinate(min(x_coord), min(y_coord)), xy_max=SimulatedRSRP.Coordinate(max(x_coord), max(y_coord)), fixed_z=z_coord, num_sectors_per_base_station=num_sectors_per_base_station, ) return powermap @staticmethod def get_metadata( downtilts_maps: Dict[float, "SimulatedRSRP.Powermap"] ) -> "SimulatedRSRP.Metadata": """Analyze the maps and get information about sizes, resolution, and number of total sectors. Return xy_min, xy_max, fixed_z, num_total sectors and a list of num_sectors of each basetation. """ xy_min = None xy_max = None fixed_z = None num_sectors_per_base_station = [] for powermap in downtilts_maps.values(): # We need guarantee all the maps in different files have the same range and resolutions if not xy_min: xy_min = powermap.xy_min xy_max = powermap.xy_max fixed_z = powermap.fixed_z resolution = SimulatedRSRP.get_resolution_from_powermap(powermap) else: try: assert xy_min == powermap.xy_min assert xy_max == powermap.xy_max assert resolution == SimulatedRSRP.get_resolution_from_powermap( powermap ) except AssertionError: logging.error("Powermaps' sizes or resolutions don't match!") raise # Check if the number of sectors math if not num_sectors_per_base_station: num_sectors_per_base_station = powermap.num_sectors_per_base_station else: try: assert ( num_sectors_per_base_station == powermap.num_sectors_per_base_station ) except AssertionError: logging.error( "Number of sectors for each base station doesn't match" ) raise metadata = SimulatedRSRP.Metadata( xy_min, xy_max, fixed_z, resolution, num_sectors_per_base_station ) return metadata
bo_pr-main
discrete_mixed_bo/problems/cco/simulated_rsrp.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Coverage and Capacity optimization for Cell networks. Code from: https://github.com/Ryandry1st/CCO-in-ORAN/tree/main/cco_standalone_icassp_2021 Paper: R. M. Dreifuerst, et al. Optimizing Coverage and Capacity in Cellular Networks using Machine Learning. IEEE ICASSP special session on Machine Learning in Networks, 2021. """ import os from typing import Any, Dict, Optional import numpy as np import torch from botorch.test_functions.base import MultiObjectiveTestProblem from torch import Tensor from discrete_mixed_bo.problems.base import DiscreteTestProblem from discrete_mixed_bo.problems.cco.problem_formulation import ( CCORasterBlanketFormulation, ) from discrete_mixed_bo.problems.cco.simulated_rsrp import SimulatedRSRP class CCO(DiscreteTestProblem, MultiObjectiveTestProblem): dim: int = 30 _ref_point = [0.35, 0.35] def __init__( self, data: Optional[Dict[int, Any]] = None, noise_std: Optional[float] = None, negate: bool = False, scalarize: bool = False, n_int_values: int = 6, ) -> None: """ This method requires a `data` object that is constructed as follows: ``` data = {} for i in range(11): data[i] = dict(np.load(f"powermaps/powermatrixDT{i}.npz")) ``` The npz files can be retrieved from: https://github.com/Ryandry1st/CCO-in-ORAN/tree/main/cco_standalone_icassp_2021/data/power_maps """ if n_int_values not in (6, 11): raise ValueError("Only 6 and 11 int values are supported") self._n_int_values = n_int_values self._bounds = [ (0.0, n_int_values - 1) for _ in range(15) ] + [ # downtilts (integers) (30.0, 50.0) for _ in range(15) # transmission power (floats) ] MultiObjectiveTestProblem.__init__( self, negate=negate, noise_std=noise_std, ) self._setup(integer_indices=list(range(15))) if data is None: current_dir = os.path.dirname(os.path.abspath(__file__)) path = os.path.join(current_dir, "..", "data", "powermaps") with open(path, "rb") as f: data = torch.load(f) self.simulated_rsrp = SimulatedRSRP( powermaps=data, min_TX_power_dBm=30, max_TX_power_dBm=50, ) self.problem_formulation = CCORasterBlanketFormulation(lambda_weight=0.9) _, num_sectors = self.simulated_rsrp.get_configuration_shape() downtilts_choices, ( min_Tx_power_dBm, max_Tx_power_dBm, ) = self.simulated_rsrp.get_configuration_range() xy_min, xy_max = self.simulated_rsrp.get_locations_range() self.scalarize = scalarize self.register_buffer("_objective_weights", torch.tensor([0.5, 0.5])) def _powermap_evaluation_fn(self, input: Tensor) -> Tensor: ( rsrp_powermap, interference_powermap, _, ) = self.simulated_rsrp.get_RSRP_and_interference_powermap(input.numpy()) # Compute aggregate metrics from the powermap # compute percentages, we want to minimize both of these ( f_weak_coverage_pct, g_over_coverage_pct, ) = self.problem_formulation.get_weak_over_coverage_area_percentages( rsrp_powermap, interference_powermap ) return torch.tensor( [f_weak_coverage_pct, g_over_coverage_pct], dtype=input.dtype, device=input.device, ) def evaluate_true(self, X: Tensor) -> Tensor: X = X.clone() if self._n_int_values == 6: X[..., :15] *= 2 Y = ( torch.stack( [ self._powermap_evaluation_fn(x) for x in X.view(-1, 2, self.dim // 2).cpu() ], ) .view(*X.shape[:-1], 2) .to(X) ) if self.scalarize: return Y @ self._objective_weights else: return Y @property def objective_weights(self) -> Optional[Tensor]: # if self.scalarize: # return self._objective_weights return None @property def is_moo(self) -> bool: return not self.scalarize
bo_pr-main
discrete_mixed_bo/problems/cco/cco.py
#!/usr/bin/env python3 # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
bo_pr-main
experiments/__init__.py
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. r""" The main script for running a single replication. """ import errno import json import os import sys from typing import Any, Dict import torch from discrete_mixed_bo.run_one_replication import run_one_replication def fetch_data(kwargs: Dict[str, Any]) -> None: # this modifies kwargs in place problem_kwargs = kwargs.get("problem_kwargs", {}) key = problem_kwargs.get("datapath") if key is not None: data = torch.load(key) problem_kwargs["data"] = data kwargs["problem_kwargs"] = problem_kwargs if __name__ == "__main__": current_dir = os.path.dirname(os.path.abspath(__file__)) exp_dir = os.path.join(current_dir, sys.argv[1]) config_path = os.path.join(exp_dir, "config.json") label = sys.argv[2] seed = int(float(sys.argv[3])) last_arg = sys.argv[4] if len(sys.argv) > 4 else None output_path = os.path.join(exp_dir, label, f"{str(seed).zfill(4)}_{label}.pt") if not os.path.exists(os.path.dirname(output_path)): try: os.makedirs(os.path.dirname(output_path)) except OSError as exc: # Guard against race condition if exc.errno != errno.EEXIST: raise with open(config_path, "r") as f: kwargs = json.load(f) save_callback = lambda data: torch.save(data, output_path) save_frequency = 5 fetch_data(kwargs=kwargs) run_one_replication( seed=seed, label=label, save_callback=save_callback, save_frequency=save_frequency, **kwargs, )
bo_pr-main
experiments/main.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. from configs import Config ########### running ########### # torchrun --nproc_per_node=8 main.py <config> def eval_yfcc15m_in1k_mocob16(): return Config( output_dir="yfcc15m_in1k_mocob16", eval=True, resume="checkpoint-best.pth", dataset="yfcc15m_tag", metadata="data/yfcc15m/yfcc15m_w_tag.pkl", root="data/yfcc15m", trainable_weight="head-all", batch_size=1024, max_bert_length=32, max_update=5000, weight_decay=0.2, head_weight_decay=1., eval_steps=500, curate=100, min_ratio=0.003, extra_prompt=True, aug_tag=True, nodes=1, ngpus=1, ) def yfcc15m_in1k_mocob16(): return Config( val_task="imagenet", dataset="yfcc15m_tag", metadata="data/yfcc15m/yfcc15m_w_tag.pkl", root="data/yfcc15m", trainable_weight="head-all", batch_size=1024, max_bert_length=32, max_update=5000, weight_decay=0.2, head_weight_decay=1., eval_steps=500, curate=100, min_ratio=0.003, extra_prompt=True, aug_tag=True, nodes=2, ngpus=8, ) def yfcc100m_in1k_mocob16(): return Config( val_task="imagenet", dataset="yfcc100m_tag", metadata="data/yfcc100m/yfcc100m_image_ids.pkl", root="/datasets01/yfcc100m/090517", trainable_weight="head-all", batch_size=1024, max_bert_length=32, max_update=5000, weight_decay=0.2, head_weight_decay=1., eval_steps=500, curate=100, thres=0.7, sublist=True, min_ratio=0.01, extra_prompt=True, aug_tag=True, nodes=2, ngpus=8, )
CiT-main
run_configs.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. import os import inspect from collections import OrderedDict class Config: dataset = "yfcc15m_tag" root = "data/yfcc15m" metadata = "data/yfcc15m/yfcc15m_w_tag.pkl" # data adaptation val_task = "imagenet" max_sample = None thres = 0.55 num_workers = 6 # model # model = "moco-bert" max_bert_length = 32 trainable_weight = "head-all" vision_backbone = "moco" vision_pretrained = "pretrained_models/moco_hf" text_backbone = "bert" text_pretrained = "princeton-nlp/unsup-simcse-bert-base-uncased" output_root = "runs" # training fp16 = True lr = 5e-4 warmup_div = 25 min_lr = 1e-5 weight_decay = 0.2 head_weight_decay = 1. device = "cuda" dist_eval = False accum_iter = 1 eval = False pin_mem = False resume = None clip_grad = None loss = "CiTCLIPLossGrad" curate = 0 # evaluate use_template = True patience = None eval_steps = 500 seed = 0 dist_on_itp = False log_dir = None def __init__(self, **kwargs): for key in kwargs: setattr(self, key, kwargs[key]) if not hasattr(self, "warmup_steps"): self.warmup_steps = int(self.max_update / self.warmup_div) # TODO move this to main? if not hasattr(self, "output_dir"): self.output_dir = inspect.stack()[1][3] self.output_dir = os.path.join(self.output_root, self.output_dir) print("config.output_dir =", self.output_dir) def add_cmd_args(self, cmd_args): for key, value in vars(cmd_args).items(): if not key.startswith("__") and value is not None: setattr(self, key, value) return self def __str__(self): return "\n".join([f"{k}={v}" for k, v in vars(self).items()]) def build_from_sweep_config(sweep_config): sweep_dict = OrderedDict() key_to_short = OrderedDict() key_to_card = OrderedDict() sweep_name = sweep_config.__name__ cards = 1 for key, value in vars(sweep_config).items(): if not key.startswith("__"): sweep_dict[key] = value[0] if isinstance(value, tuple) else value cards *= len(sweep_dict[key]) key_to_card[key] = len(sweep_dict[key]) key_to_short[key] = value[1] if isinstance(value, tuple) else "" all_update_dicts = [] for sweep_idx in range(cards): key_to_idx = OrderedDict() for key in key_to_card: key_to_idx[key] = sweep_idx % key_to_card[key] sweep_idx = sweep_idx // key_to_card[key] update_dict = OrderedDict() for key, idx in key_to_idx.items(): update_dict[key] = sweep_dict[key][idx] update_dict["output_dir"] = "_".join([value+str(update_dict[key]).replace("/", ".") for key, value in key_to_short.items()]) update_dict["output_dir"] = os.path.join(sweep_name, update_dict["output_dir"]) all_update_dicts.append(update_dict) assert len(all_update_dicts) == cards return all_update_dicts
CiT-main
configs.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. import torch from transformers import VisionTextDualEncoderModel class CiTCLIPVisionTextDualEncoderModel(VisionTextDualEncoderModel): '''a hf model wrapper to support forward with either or both image/text. note that HF impl. uses an artificial pooler that most pre-trained models (e.g., ViT) don't have. # LiT directly uses [CLS] token for both vision and language. text: https://github.com/google-research/vision_transformer/blob/16fc24d2734f34b0a7b16212a4386c41fe662cb4/vit_jax/models_lit.py#L62 vision: https://github.com/google-research/vision_transformer/blob/16fc24d2734f34b0a7b16212a4386c41fe662cb4/vit_jax/models_vit.py#L283 configs of LiT: https://github.com/google-research/vision_transformer/blob/16fc24d2734f34b0a7b16212a4386c41fe662cb4/vit_jax/configs/models.py#L319 ''' def forward( self, input_ids=None, pixel_values=None, attention_mask=None, position_ids=None, return_loss=None, token_type_ids=None, output_attentions=None, output_hidden_states=None, return_dict=None, skip_text_projection=False, split=1, **kwargs, ): image_embeds, text_embeds = None, None if pixel_values is not None: if split > 1: # TODO: test if can merge these two branch. vision_outputs = [] for splitted_pixel_values in torch.split(pixel_values, pixel_values.size(0) // split): vision_outputs.append( self.vision_model( pixel_values=splitted_pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, )[1] ) image_embeds = torch.cat(vision_outputs, dim=0) else: vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[1] # pooler_output image_embeds = self.visual_projection(image_embeds) if input_ids is not None: text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # SimCSE uses pooler as tanh as in HF. text_embeds = text_outputs[1] # pooler_output if not skip_text_projection: text_embeds = self.text_projection(text_embeds) # cosine similarity as logits logit_scale = self.logit_scale.exp() return {"text_embeds": text_embeds, "image_embeds": image_embeds, "logit_scale": logit_scale} def build_model(args): import os import hfmodels from transformers import AutoTokenizer os.environ["TOKENIZERS_PARALLELISM"] = "false" print(f"creating model: {args.vision_backbone}-{args.text_backbone}") model = CiTCLIPVisionTextDualEncoderModel.from_vision_text_pretrained( # VisionTextDualEncoderModel args.vision_pretrained, # we dump simclr/moco into HF format. args.text_pretrained, # all text models are in HF. # vision_model= ... your own model is not HF format. projection_dim=args.projection_dim if hasattr(args, "projection_dim") else 512 ) tokenizer = AutoTokenizer.from_pretrained(args.text_pretrained, use_fast=True) return model, tokenizer
CiT-main
models_citclip.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # A script to run multinode training with submitit. # -------------------------------------------------------- # Copyright (c) Meta Platforms, Inc. All Rights Reserved import argparse import os import uuid from pathlib import Path import submitit def parse_args(): parser = argparse.ArgumentParser("Submitit for adaptation") parser.add_argument("sweep", type=str, help="name of a sweep.") parser.add_argument("--ngpus", default=1, type=int, help="Number of gpus to request on each node") parser.add_argument("--nodes", default=1, type=int, help="Number of nodes to request") parser.add_argument("--resume", default=None, type=str, help="resume a checkpoint.") parser.add_argument("--timeout", default=4320, type=int, help="Duration of the job") parser.add_argument("--job_dir", default="", type=str, help="Job dir. Leave empty for automatic.") parser.add_argument("--partition", default="learnlab", type=str, help="Partition where to submit") parser.add_argument('--comment', default="", type=str, help="Comment to pass to scheduler") args = parser.parse_args() return args def get_shared_folder() -> Path: user = os.getenv("USER") if Path("/checkpoint/").is_dir(): p = Path(f"/checkpoint/{user}/adaclip") p.mkdir(exist_ok=True) return p raise RuntimeError("No shared folder available") def get_init_file(): # Init file must not exist, but it's parent dir must exist. os.makedirs(str(get_shared_folder()), exist_ok=True) init_file = get_shared_folder() / f"{uuid.uuid4().hex}_init" if init_file.exists(): os.remove(str(init_file)) return init_file class Trainer(object): def __init__(self, args): self.args = args self.args.config.dist_url = get_init_file().as_uri() def __call__(self): self._setup_gpu_args() import main main.main(self.args.config) def checkpoint(self): import os import submitit self.args.config.dist_url = get_init_file().as_uri() checkpoint_file = os.path.join(self.args.config.output_dir, "checkpoint-last.pth") if os.path.exists(checkpoint_file): self.args.config.resume = checkpoint_file print("Requeuing ", self.args) empty_trainer = type(self)(self.args) return submitit.helpers.DelayedSubmission(empty_trainer) def _setup_gpu_args(self): import submitit import os from pathlib import Path job_env = submitit.JobEnvironment() if self.args.ngpus >= 1: # self.args.config.seed += job_env.global_rank # assert 'SLURM_PROCID' in os.environ: self.args.config.local_rank = job_env.local_rank self.args.config.rank = job_env.global_rank self.args.config.world_size = job_env.num_tasks print(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}") def main(args): if args.job_dir == "": args.job_dir = get_shared_folder() assert args.job_dir != "" args.job_dir = Path(args.job_dir) / "%j" # Note that the folder will depend on the job_id, to easily track experiments executor = submitit.AutoExecutor(folder=args.job_dir, slurm_max_num_timeout=30) num_gpus_per_node = args.ngpus nodes = args.nodes timeout_min = args.timeout partition = args.partition kwargs = {} kwargs['slurm_constraint'] = 'volta32gb' if args.comment: kwargs['slurm_comment'] = args.comment executor.update_parameters( mem_gb= 160 * num_gpus_per_node, # if "yfcccc12m" not in args.config.output_dir else 120 * num_gpus_per_node, gpus_per_node=num_gpus_per_node, tasks_per_node=num_gpus_per_node, cpus_per_task=7, nodes=nodes, timeout_min=timeout_min, # Below are cluster dependent parameters slurm_partition=partition, slurm_signal_delay_s=120, **kwargs ) executor.update_parameters(name=os.path.basename(args.config.output_dir)) trainer = Trainer(args) job = executor.submit(trainer) print("Submitted job_id:", job.job_id, "@", str(args.job_dir).replace("%j", job.job_id)) def submit(): args = parse_args() import sweeps import run_configs import configs from copy import deepcopy if hasattr(sweeps, args.sweep): print(f"sweeping {args.sweep} in `sweeps.py`") sweep_config = getattr(sweeps, args.sweep) all_update_dicts = configs.build_from_sweep_config(sweep_config) for update_dict in all_update_dicts: _args = deepcopy(args) config = configs.Config(**update_dict) if args.resume is not None: config.resume = args.resume setattr(_args, "config", config) if hasattr(config, "ngpus"): _args.ngpus = config.ngpus if hasattr(config, "nodes"): _args.nodes = config.nodes _args.job_dir = config.output_dir main(_args) elif hasattr(run_configs, args.sweep): print(f"launch {args.sweep} in `run_configs.py`") config = getattr(run_configs, args.sweep)() _args = deepcopy(args) if args.resume is not None: config.resume = args.resume setattr(_args, "config", config) if hasattr(config, "ngpus"): _args.ngpus = config.ngpus if hasattr(config, "nodes"): _args.nodes = config.nodes _args.job_dir = config.output_dir main(_args) if __name__ == "__main__": submit()
CiT-main
submitit_citclip.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # DeiT: https://github.com/facebookresearch/deit # BEiT: https://github.com/microsoft/unilm/tree/master/beit # -------------------------------------------------------- # Copyright (c) Meta Platforms, Inc. All Rights Reserved import math import sys import json import torch import util.misc as misc import util.lr_sched as lr_sched from typing import Iterable from collections import defaultdict def to_device(samples, device, args): inputs = {} for key in samples: if key not in ["image_ids", "captions", "__key__"]: inputs[key] = samples[key].to(device, non_blocking=True) if key == "pixel_values" and inputs[key].dtype == torch.uint8: from main import get_mean_std # inmem data. normalize it. inputs[key] = inputs[key].to(torch.float32).div_(255.) # b, 3, 224, 224 mean, std = get_mean_std(args) mean = torch.as_tensor(mean, device=inputs[key].device)[None, :, None, None] std = torch.as_tensor(std, device=inputs[key].device)[None, :, None, None] inputs[key] = inputs[key].sub_(mean).div_(std) return inputs @torch.no_grad() def evaluate(args, model, val_transform, tokenizer): from clipeval import datasets, eval_zeroshot catalog, all_templates, all_labels = eval_zeroshot.load_metadata("clipeval") if args.val_task is None or args.val_task in ["mt", "imagenet21k", "imagenet1k"]: # infer val_task for multitasking. val_task = "imagenet" else: val_task = args.val_task metrics = {} for d in catalog: # assume multitask on CLIP suite by default and early stop if IN only. if not args.eval and d != val_task: # training only eval on val_task. continue if args.eval and args.val_task not in ["mt", "imagenet21k", "imagenet1k"] and d != val_task: continue val_dataset = datasets.get_downstream_dataset( catalog, d, is_train=False, transform=val_transform) templates = all_templates[d] labels = all_labels[d] if args.val_task not in ["mt", "imagenet21k", "imagenet1k"] and (hasattr(args, "extra_prompt") and args.extra_prompt) and d == "imagenet": # not eval MT in LiT setup. templates.extend(["A photo of a {}", "{}"]) # see LiT page 16. val_loader = torch.utils.data.DataLoader( val_dataset, batch_size=args.batch_size//2, shuffle=False, num_workers=args.num_workers, pin_memory=False, drop_last=False) if not args.use_template: templates = ["{}"] metric = eval_zeroshot.evaluate(d, val_loader, templates, labels, model, tokenizer, args.max_bert_length, False) metrics[d] = metric if args.eval: json_str = json.dumps({"task": d, "acc": metric}) misc.print_json(args.output_dir, json_str) return metrics if len(metrics) > 1 else metrics[val_task] # be compatible for ImageNet only evaluation. def append_dataset(dataset, batch, mask_selector, batch_size): if "pixel_values" in batch: assert batch["pixel_values"].dtype == torch.uint8 if mask_selector.sum().item() == 0: return assert len(dataset[-1]["image_ids"]) <= batch_size if len(dataset[-1]["image_ids"]) == batch_size: dataset.append(defaultdict(list)) batch_len = len(batch["image_ids"]) for key in batch: assert batch_len == len(batch[key]) for ix, selected in enumerate(mask_selector): if selected: dataset[-1][key].append(batch[key][ix]) while len(dataset[-1]["image_ids"]) >= batch_size: last_batch = dataset[-1] new_batch = {} for key in last_batch: value = last_batch[key] if len(value) >= batch_size: last_batch[key] = value[:batch_size] if torch.is_tensor(value[0]): last_batch[key] = torch.stack(last_batch[key]) if len(value) > batch_size: new_batch[key] = value[batch_size:] if new_batch: dataset.append(new_batch) else: return def train_one_epoch(model: torch.nn.Module, model_without_ddp, criterion: torch.nn.Module, tokenizer, data_loader: Iterable, data_loader_val: Iterable, val_transform, best_acc, optimizer: torch.optim.Optimizer, device: torch.device, epoch: int, step, loss_scaler, eff_batch_size, max_norm: float = 0, # mixup_fn: Optional[Mixup] = None, log_writer=None, args=None): model.train(True) metric_logger = misc.MetricLogger(delimiter=" ") metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}')) header = 'Epoch: [{}]'.format(epoch) print_freq = 20 accum_iter = args.accum_iter optimizer.zero_grad() # assuming data_loader is either a real dataloader or inmem as a list of batches? for data_iter_step, samples in enumerate(metric_logger.log_every(data_loader, print_freq, header, args.max_update)): if step[0] > args.max_update: break # we use a per iteration (instead of per epoch) lr scheduler if data_iter_step % accum_iter == 0: lr_sched.adjust_step_learning_rate(optimizer, step[0], args.lr, args.min_lr, args.warmup_steps, args.max_update) inputs = to_device(samples, device, args) with torch.cuda.amp.autocast(enabled=args.fp16): outputs = model(**inputs) loss = criterion(**outputs) loss_value = loss.item() if not math.isfinite(loss_value): print("Loss is {}, stopping training".format(loss_value)) sys.exit(1) loss /= accum_iter update_grad = (data_iter_step + 1) % accum_iter == 0 loss_scaler(loss, optimizer, clip_grad=max_norm, parameters=model.parameters(), create_graph=False, update_grad=update_grad) if update_grad: step[0] += 1 optimizer.zero_grad() torch.cuda.synchronize() metric_logger.update(loss=loss_value) min_lr = 10. max_lr = 0. for group in optimizer.param_groups: min_lr = min(min_lr, group["lr"]) max_lr = max(max_lr, group["lr"]) metric_logger.update(lr=max_lr) loss_value_reduce = misc.all_reduce_mean(loss_value) if log_writer is not None: log_writer.add_scalar('lr', max_lr, step[0]) log_writer.add_scalar('loss', loss_value_reduce, step[0]) if step[0] and step[0] % args.eval_steps == 0: metric = evaluate(args, model, val_transform, tokenizer) json_str = json.dumps({"step": step[0], "acc": metric, "seen": eff_batch_size * step[0]}) misc.print_json(args.output_dir, json_str) if log_writer is not None: log_writer.add_scalar('acc', metric, step[0]) if isinstance(data_loader, list) or (hasattr(data_loader, "dataset") and isinstance(data_loader.dataset, torch.utils.data.IterableDataset)): misc.save_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=0, epoch_name="last", best_acc=best_acc[0], step=step[0]) if metric > best_acc[0]: best_acc[0] = metric misc.save_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=step[0], epoch_name="best", best_acc=best_acc[0], step=step[0]) model.train(True) if step[0] and curate_condition(step[0], args): break # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) return {k: meter.global_avg for k, meter in metric_logger.meters.items()} def curate_condition(step, args): if args.curate and step % args.curate == 0: return True else: return False def curate_scheduler(step, args): return args.curate def max_sim(logits, thres): logits, idx = logits.max(dim=-1) return logits > thres, idx ratio = 1.0 thres = None def thres_scheduler(step, args): return args.thres def while_condition(example_ids, step, args): if hasattr(args, "inmem") and args.inmem: return len(example_ids) < curate_scheduler(step, args) or (len(example_ids) == curate_scheduler(step, args) and len(example_ids[-1]["image_ids"]) < args.batch_size) else: return len(example_ids) < (curate_scheduler(step, args) * args.batch_size) @torch.no_grad() def iterative_classcurate(step, device, producer_iter, model, tokenizer, args): model.eval() from clipeval import eval_zeroshot catalog, all_templates, all_labels = eval_zeroshot.load_metadata("clipeval") if args.val_task == "mt": labels = set() for d in catalog: for label in all_labels[d]: if isinstance(label, list): for _label in label: labels.add(_label) else: labels.add(label) labels = list(labels) elif args.val_task == "imagenet21k": labels = set() with open("clipeval/imagenet21k_wordnet_lemmas.txt", "r") as fr: for line in fr: labels.add(line.strip()) labels = list(labels) else: d = args.val_task # infer catalog_subsets labels = all_labels[d] templates = ["{}"] if not (hasattr(args, "templatefilter") and args.templatefilter) else all_templates[args.val_task] # no templates for now. labels_emb = [] with torch.cuda.amp.autocast(): labels_emb, _, _ = eval_zeroshot.build_text_features( templates, labels, model, tokenizer, args.max_bert_length, skip_text_projection=True) labels_emb = labels_emb.t().to(torch.float32) if hasattr(args, "sublist") and args.sublist: example_ids = [] else: example_ids = set() total_example = 0 global thres thres = thres_scheduler(step[0], args) while while_condition(example_ids, step[0], args): samples = next(producer_iter) image_ids = samples["image_ids"] total_example += len(image_ids) if hasattr(args, "skip_step") and step[0] < args.skip_step: mask_selector = torch.ones((len(image_ids),), dtype=torch.bool) else: inputs = to_device(samples, device, args) with torch.cuda.amp.autocast(): text_embeds = model(**inputs, skip_text_projection=False if hasattr(args, "project_emb") else True)["text_embeds"] text_embeds = text_embeds.to(torch.float32) text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True) logits = torch.matmul(text_embeds, labels_emb).cpu() mask_selector, class_idx = max_sim(logits, thres) batch_ratio = float(mask_selector.sum() / len(mask_selector)) if hasattr(args, "min_ratio") and batch_ratio < args.min_ratio: # use topr logic. max_logits, class_idx = logits.max(dim=-1) _, idx = max_logits.topk(dim=-1, k=int(args.min_ratio * logits.size(0))) mask_selector = torch.zeros_like(max_logits, dtype=torch.bool) mask_selector[idx] = True if mask_selector.sum() > 0: assert len(mask_selector.size()) == 1 and len(image_ids) == mask_selector.size(0) filtered_image_ids = [image_ids[_idx] for _idx in range(len(image_ids)) if mask_selector[_idx]] for image_id_field in filtered_image_ids: if hasattr(args, "sublist") and args.sublist: example_ids.append(image_id_field) else: example_ids.add(image_id_field) global ratio ratio = len(example_ids) / total_example misc.print_json(args.output_dir, json.dumps({"step": step[0], "ratio": ratio, "thres": thres})) model.train() return example_ids
CiT-main
engine.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. """ pre-configed sweeps. """ import json class alltask_5k_mr005: batch_size = [1536], "bsz" max_update = [5000], "s" refilter = [100], "refilter" prefilter = [0.45], "" min_ratio = [0.05], "r" sublist = [True], "" val_task = [d for d in json.load(open("clipeval/dataset_catalog.json")).keys()], "" aug_tag = [True], "" nodes = [1], "" ngpus = [1], ""
CiT-main
sweeps.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) Meta Platforms, Inc. All Rights Reserved import torch import torch.nn as nn import torch.nn.functional as F import torch.distributed as dist from util import misc class AllGather(torch.autograd.Function): @staticmethod def forward(ctx, tensor): output = [torch.empty_like(tensor) for _ in range(misc.get_world_size())] dist.all_gather(output, tensor) ctx.rank = misc.get_rank() ctx.batch_size = tensor.shape[0] return torch.cat(output, 0) @staticmethod def backward(ctx, grad_output): return ( grad_output[ ctx.batch_size * ctx.rank : ctx.batch_size * (ctx.rank + 1) ], None, ) class CiTCLIPLossGrad(nn.Module): def forward(self, image_embeds, text_embeds, logit_scale): # normalized features image_embeds = F.normalize(image_embeds, dim=-1, p=2) text_embeds = F.normalize(text_embeds, dim=-1, p=2) if misc.get_world_size() > 1: # gather features from all GPUs image_embeds = AllGather.apply(image_embeds) text_embeds = AllGather.apply(text_embeds) # cosine similarity as logits logits_per_image = logit_scale * image_embeds @ text_embeds.t() labels = torch.arange(logits_per_image.size(0), device=image_embeds.device) loss = F.cross_entropy(logits_per_image, labels) return loss class CLIPLossGrad(nn.Module): def forward(self, image_embeds, text_embeds, logit_scale): image_embeds = F.normalize(image_embeds, dim=-1, p=2) text_embeds = F.normalize(text_embeds, dim=-1, p=2) if misc.get_world_size() > 1: # gather features from all GPUs image_embeds = AllGather.apply(image_embeds) text_embeds = AllGather.apply(text_embeds) # cosine similarity as logits logits_per_image = logit_scale * image_embeds @ text_embeds.t() logits_per_text = logit_scale * text_embeds @ image_embeds.t() labels = torch.arange(logits_per_image.size(0), device=image_embeds.device) loss = (F.cross_entropy(logits_per_image, labels) + \ F.cross_entropy(logits_per_text, labels)) / 2. return loss
CiT-main
losses.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # DeiT: https://github.com/facebookresearch/deit # BEiT: https://github.com/microsoft/unilm/tree/master/beit # -------------------------------------------------------- # Copyright (c) Meta Platforms, Inc. All Rights Reserved import argparse import datetime import numpy as np import os import time import json from pathlib import Path import torch import torch.backends.cudnn as cudnn from collections import defaultdict import losses import util.misc as misc from util.misc import NativeScalerWithGradNormCount as NativeScaler from models_citclip import build_model from engine import train_one_epoch, evaluate, iterative_classcurate from weights import freeze_model def get_mean_std(args): if "augreg" in args.vision_backbone or "augreg" in args.vision_pretrained: mean = [0.5, 0.5, 0.5] std = [0.5, 0.5, 0.5] else: mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] return mean, std def get_val_transform(args): """moved from SLIP's eval_zeroshot.py""" import torchvision.transforms as transforms mean, std = get_mean_std(args) print(args.vision_backbone, "val_normalizer", mean, std) return transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), lambda x: x.convert('RGB'), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std) ]) def get_train_transform(args): import torchvision.transforms as transforms trans = [transforms.RandomResizedCrop(224, scale=(0.5, 1.0))] if hasattr(args, "inmem") and args.inmem: # use in-mem training / no dataloader for consumer dataset. from torchvision.transforms.functional import pil_to_tensor trans.append(pil_to_tensor) else: trans.append(transforms.ToTensor()) mean, std = get_mean_std(args) print(args.vision_backbone, "train_normalizer", mean, std) trans.append(transforms.Normalize(mean=mean, std=std)) return transforms.Compose(trans) def build_dataset(args, tokenizer): from clipeval import datasets train_transform = get_train_transform(args) train_task_example_ids = None if hasattr(args, "pcurate") or (args.val_task is not None and args.curate == 0): # no validation for full yfcc15m training (same as SLIP/CLIP). thres = args.pcurate if hasattr(args, "pcurate") else args.thres if args.dataset in ["yfcc15m_tag"]: task_meta = torch.load(f"data/CLIP/{args.dataset}/{args.val_task}_ub_{args.dataset}_simcse{thres}_{args.max_bert_length}.pt") if hasattr(args, "sublist") and args.sublist: train_task_example_ids = task_meta["example_ids"] else: train_task_example_ids = set(task_meta["example_ids"]) print("train_task_example_ids_key", len(train_task_example_ids)) else: task_meta = torch.load(f"data/CLIP/CLIP_eval/{args.val_task}_ub_{args.dataset}_simcse{thres}.pt") if hasattr(args, "sublist") and args.sublist: train_task_example_ids = task_meta["example_ids"] else: train_task_example_ids = set(task_meta["example_ids"]) print("train_task_example_ids", len(train_task_example_ids)) tar_files = None train_dataset = datasets.ImageCaptionDatasetCLIP( args, args.dataset, args.root, args.metadata, train_task_example_ids, train_transform, tokenizer, args.max_bert_length, max_sample=args.max_sample ) return train_dataset, None, train_transform, tar_files def producer_collator(batch_list): result = defaultdict(list) for item in batch_list: for key in item: if key not in ["__key__"]: result[key].append(item[key]) for key in result: if key not in ["image_ids", "__key__", "captions"]: result[key] = torch.stack(result[key]) return result def main(args): misc.init_distributed_mode(args) print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__)))) print("{}".format(args).replace(', ', ',\n')) device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + misc.get_rank() torch.manual_seed(seed) np.random.seed(seed) cudnn.benchmark = True model, tokenizer = build_model(args) model = freeze_model(model, args) model.to(device) dataset_train, dataset_val, train_transform, tar_files = build_dataset(args, tokenizer) val_transform = get_val_transform(args) num_tasks = misc.get_world_size() global_rank = misc.get_rank() sampler_train = torch.utils.data.DistributedSampler( dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True ) if not isinstance(dataset_train, torch.utils.data.IterableDataset) else None if args.dist_eval: if len(dataset_val) % num_tasks != 0: print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. ' 'This will slightly alter validation results as extra duplicate entries are added to achieve ' 'equal num of samples per-process.') sampler_val = torch.utils.data.DistributedSampler( dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=True) # shuffle=True to reduce monitor bias else: sampler_val = None if dataset_val is None else torch.utils.data.SequentialSampler(dataset_val) if global_rank == 0 and args.log_dir is not None and not args.eval: from torch.utils.tensorboard import SummaryWriter os.makedirs(args.log_dir, exist_ok=True) log_writer = SummaryWriter(log_dir=args.log_dir) else: log_writer = None model_without_ddp = model n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print("Model = %s" % str(model_without_ddp)) print('number of params (M): %.2f' % (n_parameters / 1.e6)) eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size() if args.lr is None: # only base_lr is specified args.lr = args.blr * eff_batch_size / 256 print("base lr: %.2e" % (args.lr * 256 / eff_batch_size)) print("actual lr: %.2e" % args.lr) print("accumulate grad iterations: %d" % args.accum_iter) print("effective batch size: %d" % eff_batch_size) if not isinstance(dataset_train, torch.utils.data.IterableDataset): print("len(dataset)", len(dataset_train)) else: print("cannot estimate len of torch.utils.data.IterableDataset.") if args.distributed: find_unused = False model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=find_unused) model_without_ddp = model.module # https://github.com/rwightman/pytorch-image-models/blob/fd360ac951a179474917f4b2d21db8669bf87f68/timm/models/vision_transformer.py#L407 no_weight_decay_list = {'pos_embed', 'cls_token', 'dist_token'} # THIS DOESN'T MATTER YET as we frozen all. head_weight_decay_list = {"visual_projection", "text_projection"} p_wd, p_no_wd = [], [] p_head_wd = [] # only apply 1-dim no decay for now. for n, p in model.named_parameters(): if not p.requires_grad: continue # frozen weights if p.ndim == 1 or n in no_weight_decay_list: p_no_wd.append(p) elif hasattr(args, "no_wd_emb") and isinstance(p, torch.nn.Embedding): p_no_wd.append(p) elif hasattr(args, "no_wd_ln") and isinstance(p, torch.nn.LayerNorm): p_no_wd.append(p) elif hasattr(args, "head_weight_decay") and [True for _part in head_weight_decay_list if _part in n]: p_head_wd.append(p) else: p_wd.append(p) param_groups = [{"params": p_wd, "weight_decay": args.weight_decay}, {"params": p_no_wd, "weight_decay": 0.}] if p_head_wd: param_groups.append({"params": p_head_wd, "weight_decay": args.head_weight_decay}) optimizer = torch.optim.AdamW(param_groups, lr=args.lr, eps=1e-8) loss_scaler = NativeScaler(args.fp16) start_epoch, best_acc, step = 0, [0.], [0] if args.resume: if args.resume.endswith(".pth"): # a pytorch checkpoint for resuming training. if args.resume.startswith("checkpoint"): args.resume = os.path.join(args.output_dir, args.resume) start_epoch, _, best_acc, step = misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler) best_acc, step = [best_acc], [step if step is not None else 0] if isinstance(dataset_train, torch.utils.data.IterableDataset): # random from step to avoid dupped train. dataset_train.start_shard_id = step[0] % dataset_train.num_shards print("resuming", args.resume, "from step", step[0], "with best_acc", best_acc[0]) else: print("assuming a huggingface transformer pretrained model (no optimizer states).") from models_citclip import CiTCLIPVisionTextDualEncoderModel metric = evaluate(args, model, val_transform, tokenizer) model = CiTCLIPVisionTextDualEncoderModel.from_pretrained(args.resume) if args.eval: metric = evaluate(args, model, val_transform, tokenizer) json_str = json.dumps({"step": step[0], "acc": metric, "seen": eff_batch_size * step[0]}) print(json_str) exit(0) criterion = getattr(losses, args.loss)().to(device) print("criterion = %s" % str(criterion)) if args.curate is not None and args.curate > 1: curate_batch_size = args.batch_size * 2 dataset_train.with_vision = True if hasattr(args, "inmem") and args.inmem else False data_loader_producer = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=curate_batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=True, collate_fn=producer_collator, persistent_workers=True ) def producer_fn(epoch): while True: data_loader_producer.sampler.set_epoch(epoch) for batch in data_loader_producer: yield batch epoch += 1 producer_iter = iter(producer_fn(start_epoch)) else: data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=True, ) data_loader_val = None if dataset_val is None else torch.utils.data.DataLoader( dataset_val, sampler=sampler_val, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=False ) import math if not isinstance(dataset_train, torch.utils.data.IterableDataset) and not args.curate: epochs = math.ceil(args.max_update / (len(dataset_train) // eff_batch_size)) print(f"Start training for {args.max_update} steps / {epochs} epochs") else: epochs = 1000000 # a big number to allow infinity run on iterativedataset. print(f"Start training for {args.max_update} steps on torch.utils.data.IterableDataset or curate dataset, the checkpoint is stateless.") start_time = time.time() for epoch in range(start_epoch, epochs): if step[0] >= args.max_update: break if args.curate is not None and (args.curate > 0 and step[0] % args.curate == 0): curate_cls = iterative_classcurate all_example_ids = curate_cls(step, device, producer_iter, model, tokenizer, args) print(len(all_example_ids), "after curate", args.curate * args.batch_size, "expected") if hasattr(args, "inmem") and args.inmem: data_loader_train = all_example_ids else: if hasattr(args, "sublist") and args.sublist: assert isinstance(all_example_ids, list) all_example_ids = all_example_ids[:args.curate * args.batch_size] else: all_example_ids = set(list(all_example_ids)[:args.curate * args.batch_size]) assert len(all_example_ids) == args.curate * args.batch_size from clipeval import datasets dataset_train = datasets.ImageCaptionDatasetCLIP(args, args.dataset, args.root, args.metadata, all_example_ids, train_transform, tokenizer, args.max_bert_length, max_sample=args.max_sample ) data_loader_train = torch.utils.data.DataLoader( dataset_train, shuffle=True, # just a local sampler. batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=True, ) if hasattr(data_loader_train, "sampler") and isinstance(data_loader_train.sampler, torch.utils.data.DistributedSampler): data_loader_train.sampler.set_epoch(epoch) train_stats = train_one_epoch( model, model_without_ddp, criterion, tokenizer, data_loader_train, data_loader_val, val_transform, best_acc, optimizer, device, epoch, step, loss_scaler, eff_batch_size, args.clip_grad, log_writer=log_writer, args=args ) if not isinstance(dataset_train, torch.utils.data.IterableDataset): misc.save_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch, epoch_name="last", best_acc=best_acc[0], step=step[0]) else: misc.save_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=0, epoch_name="last", best_acc=best_acc[0], step=step[0]) # if log_writer is not None: # log_writer.finish() args.resume = os.path.join(args.output_dir, "checkpoint-best.pth") if os.path.isfile(args.resume): misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler) metric = evaluate(args, model, val_transform, tokenizer) json_str = json.dumps({"step": step[0], "acc": metric, "seen": eff_batch_size * step[0]}) print(json_str) total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('Training time {}'.format(total_time_str)) def parse_args(): '''see configs.py or sweep.py (we only allow pre-defined config).''' parser = argparse.ArgumentParser(description='CiTCLIP', add_help=False) parser.add_argument('config_name', type=str, help='see configs.py') parser.add_argument('--world_size', default=1, type=int) parser.add_argument('--local_rank', default=-1, type=int) parser.add_argument('--dist_on_itp', action='store_true') parser.add_argument('--dist_url', default='env://') parser.add_argument('--resume', default=None, type=str) parser.add_argument('--eval', default=None, action='store_true') cmd_args = parser.parse_args() import run_configs config = getattr(run_configs, cmd_args.config_name)().add_cmd_args(cmd_args) return config if __name__ == '__main__': args = parse_args() if args.output_dir: Path(args.output_dir).mkdir(parents=True, exist_ok=True) main(args)
CiT-main
main.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. """ pre-configed trainable weights. """ pre_projection_weights = ['logit_scale', 'visual_projection.weight', 'text_projection.weight'] # TODO: unify layer selection for all models. pre_vision_trainable_weights = { "moco": { "head": ['moco.head'], "none": [], "all": ["[ALL]"] }, "augreg": { "none": [], "all": ["[ALL]"], }, "swag": { "none": [], "all": ["[ALL]"], } } pre_text_trainable_weights = { "bert": { "pool": ['pooler.dense.weight', 'pooler.dense.bias'], "all": ["[ALL]"] }, } def _freeze_model(model, trainable_weights): '''we assume pretrained model has unknown freezing status. all model must pass through this function. (e.g.,, MoCo teacher is freezed after pretraining. [ALL] indicates fully trainable. ''' for name, parameter in model.named_parameters(): for param in trainable_weights: if name.startswith(param) or param == "[ALL]": parameter.requires_grad = True break else: parameter.requires_grad = False trainable_parameters = [] for name, parameter in model.named_parameters(): if parameter.requires_grad: trainable_parameters.append(name) print(f"{model.__class__.__name__} trainable weights:", trainable_parameters) def freeze_model(model, args): assert "-" in args.trainable_weight, "trainable_weight needs format <vision_weight_config>-<text_weight_config>." vision_config, text_config = args.trainable_weight.split("-") vision_trainable_weights = pre_vision_trainable_weights[args.vision_backbone][vision_config] text_trainable_weights = pre_text_trainable_weights[args.text_backbone][text_config] _freeze_model(model, pre_projection_weights) _freeze_model(model.vision_model, vision_trainable_weights) _freeze_model(model.text_model, text_trainable_weights) return model
CiT-main
weights.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # DeiT: https://github.com/facebookresearch/deit # BEiT: https://github.com/microsoft/unilm/tree/master/beit # -------------------------------------------------------- # Copyright (c) Meta Platforms, Inc. All Rights Reserved import builtins import datetime import os import time from collections import defaultdict, deque from pathlib import Path import torch import torch.distributed as dist from torch._six import inf class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.4f} ({global_avg:.4f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, n=1): self.deque.append(value) self.count += n self.total += value * n def synchronize_between_processes(self): """ Warning: does not synchronize the deque! """ if not is_dist_avail_and_initialized(): return t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') dist.barrier() dist.all_reduce(t) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): return self.total / self.count @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format( median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value) class MetricLogger(object): def __init__(self, delimiter="\t"): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter def update(self, **kwargs): for k, v in kwargs.items(): if v is None: continue if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError("'{}' object has no attribute '{}'".format( type(self).__name__, attr)) def __str__(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append( "{}: {}".format(name, str(meter)) ) return self.delimiter.join(loss_str) def synchronize_between_processes(self): for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): self.meters[name] = meter def log_every(self, iterable, print_freq, header=None, max_update=None): i = 0 if not header: header = '' start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt='{avg:.4f}') data_time = SmoothedValue(fmt='{avg:.4f}') if hasattr(iterable, "dataset") and isinstance(iterable.dataset, torch.utils.data.IterableDataset): len_iter = max_update else: len_iter = len(iterable) space_fmt = ':' + str(len(str(len_iter))) + 'd' log_msg = [ header, '[{0' + space_fmt + '}/{1}]', 'eta: {eta}', '{meters}', 'time: {time}', 'data: {data}' ] if torch.cuda.is_available(): log_msg.append('max mem: {memory:.0f}') log_msg = self.delimiter.join(log_msg) MB = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0 or i == len_iter - 1: eta_seconds = iter_time.global_avg * (len_iter - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if torch.cuda.is_available(): print(log_msg.format( i, len_iter, eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB)) else: print(log_msg.format( i, len_iter, eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time))) i += 1 end = time.time() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('{} Total time: {} ({:.4f} s / it)'.format( header, total_time_str, total_time / len_iter)) def setup_for_distributed(is_master): """ This function disables printing when not in master process """ builtin_print = builtins.print def print(*args, **kwargs): force = kwargs.pop('force', False) force = force or (get_world_size() > 8) if is_master or force: now = datetime.datetime.now() builtin_print('[{}] '.format(now), end='') # print with time stamp builtin_print(*args, **kwargs) builtins.print = print def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_world_size(): if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 def save_on_master(*args, **kwargs): if is_main_process(): torch.save(*args, **kwargs) def init_distributed_mode(args): if args.dist_on_itp: args.rank = int(os.environ['OMPI_COMM_WORLD_RANK']) args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE']) args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK']) args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT']) os.environ['LOCAL_RANK'] = str(args.gpu) os.environ['RANK'] = str(args.rank) os.environ['WORLD_SIZE'] = str(args.world_size) # ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"] elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: args.rank = int(os.environ["RANK"]) args.world_size = int(os.environ['WORLD_SIZE']) args.gpu = int(os.environ['LOCAL_RANK']) elif 'SLURM_PROCID' in os.environ: args.rank = int(os.environ['SLURM_PROCID']) args.gpu = args.rank % torch.cuda.device_count() else: print('Not using distributed mode') setup_for_distributed(is_master=True) # hack args.distributed = False return args.distributed = True torch.cuda.set_device(args.gpu) args.dist_backend = 'nccl' print('| distributed init (rank {}): {}, gpu {}'.format( args.rank, args.dist_url, args.gpu), flush=True) torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) torch.distributed.barrier() setup_for_distributed(args.rank == 0) class NativeScalerWithGradNormCount: state_dict_key = "amp_scaler" def __init__(self, fp16=True): self._scaler = torch.cuda.amp.GradScaler(enabled=fp16) def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True): self._scaler.scale(loss).backward(create_graph=create_graph) if update_grad: if clip_grad is not None: assert parameters is not None self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) else: self._scaler.unscale_(optimizer) norm = get_grad_norm_(parameters) self._scaler.step(optimizer) self._scaler.update() else: norm = None return norm def state_dict(self): return self._scaler.state_dict() def load_state_dict(self, state_dict): self._scaler.load_state_dict(state_dict) def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor: if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = [p for p in parameters if p.grad is not None] norm_type = float(norm_type) if len(parameters) == 0: return torch.tensor(0.) device = parameters[0].grad.device if norm_type == inf: total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) else: total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type) return total_norm def save_model(args, epoch, epoch_name, model, model_without_ddp, optimizer, loss_scaler, best_val_loss=None, best_acc=None, step=None): output_dir = Path(args.output_dir) if loss_scaler is not None: checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % epoch_name)] for checkpoint_path in checkpoint_paths: to_save = { 'model': model_without_ddp.state_dict(), 'optimizer': optimizer.state_dict(), 'epoch': epoch, 'scaler': loss_scaler.state_dict(), 'args': args, 'best_val_loss': best_val_loss, 'best_acc': best_acc, 'step': step, } save_on_master(to_save, checkpoint_path) else: client_state = {'epoch': epoch, 'best_val_loss': best_val_loss, 'best_acc': best_acc, 'step': step} model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-%s" % epoch_name, client_state=client_state) def load_model(args, model_without_ddp, optimizer, loss_scaler): if args.resume: start_epoch, best_val_loss = None, None if args.resume.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.resume, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.resume, map_location='cpu') model_without_ddp.load_state_dict(checkpoint['model']) print("Resume checkpoint %s" % args.resume) if 'optimizer' in checkpoint and 'epoch' in checkpoint and not (hasattr(args, 'eval') and args.eval): optimizer.load_state_dict(checkpoint['optimizer']) start_epoch = checkpoint['epoch'] + 1 if 'scaler' in checkpoint: loss_scaler.load_state_dict(checkpoint['scaler']) print("With optim & sched!") best_val_loss = checkpoint['best_val_loss'] if 'best_val_loss' in checkpoint else None best_acc = checkpoint['best_acc'] if 'best_acc' in checkpoint else 0. if isinstance(best_acc, list): # TODO: be backward compatible; remove this line before release; best_acc = best_acc[0] step = checkpoint['step'] if 'step' in checkpoint else 0 return start_epoch, best_val_loss, best_acc, step def all_reduce_mean(x): world_size = get_world_size() if world_size > 1: x_reduce = torch.tensor(x).cuda() dist.all_reduce(x_reduce) x_reduce /= world_size return x_reduce.item() else: return x def print_json(output_dir, json_str, mode="a"): print(json_str) if output_dir and is_main_process(): with open(os.path.join(output_dir, "log.txt"), mode=mode, encoding="utf-8") as f: f.write(json_str + "\n")
CiT-main
util/misc.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) Meta Platforms, Inc. All Rights Reserved import math def adjust_step_learning_rate(optimizer, step, lr, min_lr, warmup_steps, max_update): """huxu: add supports for steps instead of epoch. Decay the learning rate with half-cycle cosine after warmup""" if step < warmup_steps: lr = lr * step / warmup_steps else: lr = min_lr + (lr - min_lr) * 0.5 * \ (1. + math.cos(math.pi * (step - warmup_steps) / (max_update - warmup_steps))) for param_group in optimizer.param_groups: if "lr_scale" in param_group: param_group["lr"] = lr * param_group["lr_scale"] else: param_group["lr"] = lr return lr def adjust_learning_rate(optimizer, epoch, args): """Decay the learning rate with half-cycle cosine after warmup""" if epoch < args.warmup_epochs: lr = args.lr * epoch / args.warmup_epochs else: lr = args.min_lr + (args.lr - args.min_lr) * 0.5 * \ (1. + math.cos(math.pi * (epoch - args.warmup_epochs) / (args.epochs - args.warmup_epochs))) for param_group in optimizer.param_groups: if "lr_scale" in param_group: param_group["lr"] = lr * param_group["lr_scale"] else: param_group["lr"] = lr return lr
CiT-main
util/lr_sched.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. import torch from transformers import ( PreTrainedModel, PretrainedConfig, AutoConfig, AutoModel, ) from transformers.modeling_outputs import BaseModelOutputWithPooling import timm assert timm.__version__ >= "0.4.12", "make sure timm uses augreg checkpoints." class AugRegConfig(PretrainedConfig): """ HF or older timm doesn't load augreg weights. """ model_type = "augreg" def __init__( self, config_name="vit_base_patch32_224_in21k", hidden_size=768, **kwargs ): super().__init__(**kwargs) self.config_name = config_name self.hidden_size = hidden_size AutoConfig.register("augreg", AugRegConfig) class AugRegModel(PreTrainedModel): config_class = AugRegConfig @classmethod def from_orig_pretrained(cls, config_name): augreg = timm.create_model(config_name, pretrained=True) config = AugRegConfig(config_name=config_name, hidden_size=augreg.embed_dim) model = AugRegModel(config) model.augreg = augreg return model @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): import os ckpt_path = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin") state_dict = torch.load(os.path.join(ckpt_path)) config = AutoConfig.from_pretrained(pretrained_model_name_or_path) model = AugRegModel(config) model.load_state_dict(state_dict, strict=True) return model def __init__(self, config): super().__init__(config) self.config = config self.augreg = timm.create_model(config.config_name, pretrained=False) self.post_init() def _init_weights(self, module): self.augreg._init_weights(module) def forward( self, pixel_values=None, # attention_mask=None, # head_mask=None, output_attentions=None, output_hidden_states=None, # interpolate_pos_encoding=None, return_dict=None ): # https://github.com/rwightman/pytorch-image-models/blob/e0c4eec4b66dc14ae96097c7b4a7ef2af45ba309/timm/models/vision_transformer.py#L358 # pre_logits is nn.Identity and token means from CLS [:, 0] sequence_output = self.augreg.forward_features(pixel_values) pooled_output = sequence_output if not return_dict: return (sequence_output, pooled_output) return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=None, # encoder_outputs.hidden_states, attentions=None, # encoder_outputs.attentions, ) AutoModel.register(AugRegConfig, AugRegModel) if __name__ == '__main__': # dump this model for AutoModel: `python -m hfmodels.augreg` models = ["vit_base_patch32_224_in21k", "vit_base_patch16_224_in21k", "vit_large_patch16_224_in21k"] for model in models: vision_model = AugRegModel.from_orig_pretrained(model) vision_model.save_pretrained(f"pretrained_models/{model}_augreg_hf")
CiT-main
hfmodels/augreg.py