python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # usage example # python ./convertInput.py -t $data_name -b $batch_size -d $data_dir -l $seq_len -s $spiece_model_file -o $data_file -u 0 from os.path import join from absl import flags import os import sys import getopt import csv import collections import numpy as np import json import random from copy import copy from collections import defaultdict as dd import numpy as np import six import unicodedata import sentencepiece as spm SEG_ID_A = 0 SEG_ID_B = 1 SEG_ID_CLS = 2 SEG_ID_SEP = 3 SEG_ID_PAD = 4 special_symbols = { "<unk>": 0, "<s>": 1, "</s>": 2, "<cls>": 3, "<sep>": 4, "<pad>": 5, "<mask>": 6, "<eod>": 7, "<eop>": 8, } SEP_ID = special_symbols["<sep>"] CLS_ID = special_symbols["<cls>"] SPIECE_UNDERLINE = '▁' class PaddingInputExample(object): """Fake example so the num input examples is a multiple of the batch size. When running eval/predict on the TPU, we need to pad the number of examples to be a multiple of the batch size, because the TPU requires a fixed batch size. The alternative is to drop the last batch, which is bad because it means the entire output data won't be generated. We use this class instead of `None` because treating `None` as padding battches could cause silent errors. """ class InputExample(object): """A single training/test example for simple sequence classification.""" def __init__(self, guid, text_a, text_b=None, label=None): """Constructs a InputExample. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label """ DataProcessor Classes """ class DataProcessor(object): """Base class for data converters for sequence classification data sets.""" def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_test_examples(self, data_dir): """Gets a collection of `InputExample`s for prediction.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with open(input_file, "r") as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: if len(line) == 0: continue lines.append(line) return lines class GLUEProcessor(DataProcessor): def __init__(self): self.train_file = "train.tsv" self.dev_file = "dev.tsv" self.test_file = "test.tsv" self.label_column = None self.text_a_column = None self.text_b_column = None self.contains_header = True self.test_text_a_column = None self.test_text_b_column = None self.test_contains_header = True def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, self.train_file)), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, self.dev_file)), "dev") def get_test_examples(self, data_dir): """See base class.""" if self.test_text_a_column is None: self.test_text_a_column = self.text_a_column if self.test_text_b_column is None: self.test_text_b_column = self.text_b_column return self._create_examples( self._read_tsv(os.path.join(data_dir, self.test_file)), "test") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0 and self.contains_header and set_type != "test": continue if i == 0 and self.test_contains_header and set_type == "test": continue guid = "%s-%s" % (set_type, i) a_column = (self.text_a_column if set_type != "test" else self.test_text_a_column) b_column = (self.text_b_column if set_type != "test" else self.test_text_b_column) # there are some incomplete lines in QNLI if len(line) <= a_column: tf.logging.warning('Incomplete line, ignored.') continue text_a = line[a_column] if b_column is not None: if len(line) <= b_column: tf.logging.warning('Incomplete line, ignored.') continue text_b = line[b_column] else: text_b = None if set_type == "test": label = self.get_labels()[0] else: if len(line) <= self.label_column: tf.logging.warning('Incomplete line, ignored.') continue label = line[self.label_column] examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class Yelp5Processor(DataProcessor): def get_train_examples(self, data_dir): return self._create_examples(os.path.join(data_dir, "train.csv")) def get_dev_examples(self, data_dir): return self._create_examples(os.path.join(data_dir, "test.csv")) def get_labels(self): """See base class.""" return ["1", "2", "3", "4", "5"] def _create_examples(self, input_file): """Creates examples for the training and dev sets.""" examples = [] with tf.gfile.Open(input_file) as f: reader = csv.reader(f) for i, line in enumerate(reader): label = line[0] text_a = line[1].replace('""', '"').replace('\\"', '"') examples.append( InputExample(guid=str(i), text_a=text_a, text_b=None, label=label)) return examples class ImdbProcessor(DataProcessor): def get_labels(self): return ["neg", "pos"] def get_train_examples(self, data_dir): return self._create_examples(os.path.join(data_dir, "train")) def get_dev_examples(self, data_dir): return self._create_examples(os.path.join(data_dir, "test")) def _create_examples(self, data_dir): examples = [] for label in ["neg", "pos"]: cur_dir = os.path.join(data_dir, label) for filename in tf.gfile.ListDirectory(cur_dir): if not filename.endswith("txt"): continue path = os.path.join(cur_dir, filename) with tf.gfile.Open(path) as f: text = f.read().strip().replace("<br />", " ") examples.append(InputExample( guid="unused_id", text_a=text, text_b=None, label=label)) return examples class MnliMatchedProcessor(GLUEProcessor): def __init__(self): super(MnliMatchedProcessor, self).__init__() self.dev_file = "dev_matched.tsv" self.test_file = "test_matched.tsv" self.label_column = -1 self.text_a_column = 8 self.text_b_column = 9 def get_labels(self): return ["contradiction", "entailment", "neutral"] class MnliMismatchedProcessor(MnliMatchedProcessor): def __init__(self): super(MnliMismatchedProcessor, self).__init__() self.dev_file = "dev_mismatched.tsv" self.test_file = "test_mismatched.tsv" class StsbProcessor(GLUEProcessor): def __init__(self): super(StsbProcessor, self).__init__() self.label_column = 9 self.text_a_column = 7 self.text_b_column = 8 def get_labels(self): return [0.0] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0 and self.contains_header and set_type != "test": continue if i == 0 and self.test_contains_header and set_type == "test": continue guid = "%s-%s" % (set_type, i) a_column = (self.text_a_column if set_type != "test" else self.test_text_a_column) b_column = (self.text_b_column if set_type != "test" else self.test_text_b_column) # there are some incomplete lines in QNLI if len(line) <= a_column: tf.logging.warning('Incomplete line, ignored.') continue text_a = line[a_column] if b_column is not None: if len(line) <= b_column: tf.logging.warning('Incomplete line, ignored.') continue text_b = line[b_column] else: text_b = None if set_type == "test": label = self.get_labels()[0] else: if len(line) <= self.label_column: tf.logging.warning('Incomplete line, ignored.') continue label = float(line[self.label_column]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples # Tokenize def preprocess_text(inputs, lower=False, remove_space=True, keep_accents=False): if remove_space: outputs = ' '.join(inputs.strip().split()) else: outputs = inputs outputs = outputs.replace("``", '"').replace("''", '"') if six.PY2 and isinstance(outputs, str): outputs = outputs.decode('utf-8') if not keep_accents: outputs = unicodedata.normalize('NFKD', outputs) outputs = ''.join([c for c in outputs if not unicodedata.combining(c)]) if lower: outputs = outputs.lower() return outputs def encode_pieces(sp_model, text, return_unicode=True, sample=False): # return_unicode is used only for py2 # note(zhiliny): in some systems, sentencepiece only accepts str for py2 if six.PY2 and isinstance(text, unicode): text = text.encode('utf-8') if not sample: pieces = sp_model.EncodeAsPieces(text) else: pieces = sp_model.SampleEncodeAsPieces(text, 64, 0.1) new_pieces = [] for piece in pieces: if len(piece) > 1 and piece[-1] == ',' and piece[-2].isdigit(): cur_pieces = sp_model.EncodeAsPieces( piece[:-1].replace(SPIECE_UNDERLINE, '')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: cur_pieces = cur_pieces[1:] else: cur_pieces[0] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(cur_pieces) else: new_pieces.append(piece) # note(zhiliny): convert back to unicode for py2 if six.PY2 and return_unicode: ret_pieces = [] for piece in new_pieces: if isinstance(piece, str): piece = piece.decode('utf-8') ret_pieces.append(piece) new_pieces = ret_pieces return new_pieces def encode_ids(sp_model, text, sample=False): pieces = encode_pieces(sp_model, text, return_unicode=False, sample=sample) ids = [sp_model.PieceToId(piece) for piece in pieces] return ids # Convert functions class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_mask, segment_ids, label_id, is_real_example=True): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_id = label_id self.is_real_example = is_real_example def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" # This is a simple heuristic which will always truncate the longer sequence # one token at a time. This makes more sense than truncating an equal percent # of tokens from each, since if one sequence is very short then each token # that's truncated likely contains more information than a longer sequence. while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() def convert_single_example(ex_index, example, label_list, max_seq_length, tokenize_fn): """Converts a single `InputExample` into a single `InputFeatures`.""" if isinstance(example, PaddingInputExample): return InputFeatures( input_ids=[0] * max_seq_length, input_mask=[1] * max_seq_length, segment_ids=[0] * max_seq_length, label_id=0, is_real_example=False) if label_list is not None: label_map = {} for (i, label) in enumerate(label_list): label_map[label] = i tokens_a = tokenize_fn(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenize_fn(example.text_b) if tokens_b: # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for two [SEP] & one [CLS] with "- 3" _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) else: # Account for one [SEP] & one [CLS] with "- 2" if len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[:max_seq_length - 2] tokens = [] segment_ids = [] for token in tokens_a: tokens.append(token) segment_ids.append(SEG_ID_A) tokens.append(SEP_ID) segment_ids.append(SEG_ID_A) if tokens_b: for token in tokens_b: tokens.append(token) segment_ids.append(SEG_ID_B) tokens.append(SEP_ID) segment_ids.append(SEG_ID_B) tokens.append(CLS_ID) segment_ids.append(SEG_ID_CLS) input_ids = tokens # The mask has 0 for real tokens and 1 for padding tokens. Only real # tokens are attended to. input_mask = [0] * len(input_ids) # Zero-pad up to the sequence length. if len(input_ids) < max_seq_length: delta_len = max_seq_length - len(input_ids) input_ids = [0] * delta_len + input_ids input_mask = [1] * delta_len + input_mask segment_ids = [SEG_ID_PAD] * delta_len + segment_ids assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length if label_list is not None: label_id = label_map[example.label] else: label_id = example.label feature = InputFeatures( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id) return feature def file_based_convert_examples_to_npz( examples, label_list, max_seq_length, tokenize_fn, output_file, num_passes=1): """Convert a set of `InputExample`s to a NPZ file.""" if num_passes > 1: examples *= num_passes data = {} arr_input_ids = [] arr_input_mask = [] arr_segment_ids = [] arr_label_ids = [] for (ex_index, example) in enumerate(examples): feature = convert_single_example(ex_index, example, label_list, max_seq_length, tokenize_fn) arr_input_ids.append(feature.input_ids) arr_input_mask.append(feature.input_mask) arr_segment_ids.append(feature.segment_ids) arr_label_ids.append(feature.label_id) # if ex_index % 100 == 0: # print("Writing example {} of {} with {} {} {} {}".format(ex_index,len(examples),feature.input_ids, # feature.input_mask, feature.segment_ids, feature.label_id)) data["input_ids:0"] = np.array(arr_input_ids, dtype=np.int32) data["input_mask:0"] = np.array(arr_input_mask, dtype=np.float32) data["segment_ids:0"] = np.array(arr_segment_ids, dtype=np.int32) data["label_ids:0"] = np.array(arr_label_ids, dtype=np.int32) print("Save Input to file {}".format(output_file)) np.savez(output_file, **data) def usage(): print(" -t task_name") print(" -b batch_size") print(" -d data_dir") print(" -r is_regression") print(" -l max_seq_length") print(" -s spiece_model_file") print(" -o output_file") print(" -u uncased") print("Example: python convertInput.py -t sts-b -b 8 -d ../../../Data/glue_data/STS-B -r 1 -l 128 -s ../../../Data/xlnet_cased_L-12_H-768_A-12/spiece.model -o ./data.npz -u 0 ") if __name__ == "__main__": # Input parameters task_name = "sts-b" batch_size = 8 data_dir = "../../../Data/glue_data/STS-B/" is_regression = True max_seq_length = 128 spiece_model_file = "../../../Data/xlnet_cased_L-12_H-768_A-12/spiece.model" output_file = "./data.npz" uncased = False # Set perameter opts, args = getopt.getopt(sys.argv[1:], "ht:b:d:r:l:s:o:u:") for op, value in opts: if op == "-t": task_name = value elif op == "-b": batch_size = int(value) elif op == "-d": data_dir = value elif op == "-r": is_regression = bool(value) elif op == "-l": max_seq_length = int(value) elif op == "-s": spiece_model_file = value elif op == "-o": output_file = value elif op == "-u": uncased = bool(value) elif op == "-h": usage() sys.exit() # Set processor processors = { "mnli_matched": MnliMatchedProcessor, "mnli_mismatched": MnliMismatchedProcessor, 'sts-b': StsbProcessor, 'imdb': ImdbProcessor, "yelp5": Yelp5Processor } processor = processors[task_name]() label_list = processor.get_labels() if not is_regression else None # Acquire examples eval_examples = processor.get_test_examples(data_dir) while len(eval_examples) % batch_size != 0: eval_examples.append(PaddingInputExample()) # Convert examples to numpy sp = spm.SentencePieceProcessor() sp.Load(spiece_model_file) def tokenize_fn(text): text = preprocess_text(text, lower=uncased) return encode_ids(sp, text) file_based_convert_examples_to_npz(eval_examples, label_list, max_seq_length, tokenize_fn, output_file) #np.save('extra.npy', extra.transpose((1, 0, 2)))
FasterTransformer-main
examples/tensorflow/xlnet/convertInput.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import tensorflow as tf def gelu(x): """Gaussian Error Linear Unit. This is a smoother version of the RELU. Original paper: https://arxiv.org/abs/1606.08415 Args: x: float Tensor to perform activation. Returns: `x` with the GELU activation applied. """ cdf = 0.5 * (1.0 + tf.tanh( (np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3))))) return x * cdf def embedding_lookup(x, n_token, d_embed, initializer, use_tpu=True, scope='embedding', reuse=None, dtype=tf.float32): """TPU and GPU embedding_lookup function.""" with tf.variable_scope(scope, reuse=reuse): lookup_table = tf.get_variable('lookup_table', [n_token, d_embed], dtype=dtype, initializer=initializer) if use_tpu: one_hot_idx = tf.one_hot(x, n_token, dtype=dtype) if one_hot_idx.shape.ndims == 2: return tf.einsum('in,nd->id', one_hot_idx, lookup_table), lookup_table else: return tf.einsum('ibn,nd->ibd', one_hot_idx, lookup_table), lookup_table else: return tf.nn.embedding_lookup(lookup_table, x), lookup_table def positional_embedding(pos_seq, inv_freq, bsz=None): sinusoid_inp = tf.einsum('i,d->id', pos_seq, inv_freq) pos_emb = tf.concat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], -1) pos_emb = pos_emb[:, None, :] if bsz is not None: pos_emb = tf.tile(pos_emb, [1, bsz, 1]) return pos_emb def positionwise_ffn(inp, d_model, d_inner, dropout, kernel_initializer, activation_type='relu', scope='ff', is_training=True, reuse=None): """Position-wise Feed-forward Network.""" if activation_type == 'relu': activation = tf.nn.relu elif activation_type == 'gelu': activation = gelu else: raise ValueError('Unsupported activation type {}'.format(activation_type)) output = inp inter_res_1 = [] with tf.variable_scope(scope, reuse=reuse): output = tf.layers.dense(output, d_inner, activation=activation, kernel_initializer=kernel_initializer, name='layer_1') inter_res_1.append(output) output = tf.layers.dropout(output, dropout, training=is_training, name='drop_1') output = tf.layers.dense(output, d_model, kernel_initializer=kernel_initializer, name='layer_2') output = tf.layers.dropout(output, dropout, training=is_training, name='drop_2') output = tf.contrib.layers.layer_norm(output + inp, begin_norm_axis=-1, scope='LayerNorm') return output, inter_res_1 def head_projection(h, d_model, n_head, d_head, kernel_initializer, name): """Project hidden states to a specific head with a 4D-shape.""" proj_weight = tf.get_variable('{}/kernel'.format(name), [d_model, n_head, d_head], dtype=h.dtype, initializer=kernel_initializer) head = tf.einsum('ibh,hnd->ibnd', h, proj_weight) return head def post_attention(h, attn_vec, d_model, n_head, d_head, dropout, is_training, kernel_initializer, residual=True): """Post-attention processing.""" # post-attention projection (back to `d_model`) proj_o = tf.get_variable('o/kernel', [d_model, n_head, d_head], dtype=h.dtype, initializer=kernel_initializer) attn_out = tf.einsum('ibnd,hnd->ibh', attn_vec, proj_o) attn_out = tf.layers.dropout(attn_out, dropout, training=is_training) if residual: output = tf.contrib.layers.layer_norm(attn_out + h, begin_norm_axis=-1, scope='LayerNorm') else: output = tf.contrib.layers.layer_norm(attn_out, begin_norm_axis=-1, scope='LayerNorm') return output def abs_attn_core(q_head, k_head, v_head, attn_mask, dropatt, is_training, scale): """Core absolute positional attention operations.""" attn_score = tf.einsum('ibnd,jbnd->ijbn', q_head, k_head) attn_score *= scale if attn_mask is not None: attn_score = attn_score - 1e30 * attn_mask # attention probability attn_prob = tf.nn.softmax(attn_score, 1) attn_prob = tf.layers.dropout(attn_prob, dropatt, training=is_training) # attention output attn_vec = tf.einsum('ijbn,jbnd->ibnd', attn_prob, v_head) return attn_vec def rel_attn_core(q_head, k_head_h, v_head_h, k_head_r, seg_embed, seg_mat, r_w_bias, r_r_bias, r_s_bias, attn_mask, dropatt, is_training, scale): """Core relative positional attention operations.""" # content based attention score ac = tf.einsum('ibnd,jbnd->ijbn', q_head + r_w_bias, k_head_h) # position based attention score bd = tf.einsum('ibnd,jbnd->ijbn', q_head + r_r_bias, k_head_r) bd = rel_shift(bd, klen=tf.shape(ac)[1]) # segment based attention score if seg_mat is None: ef = 0 else: ef = tf.einsum('ibnd,snd->ibns', q_head + r_s_bias, seg_embed) ef = tf.einsum('ijbs,ibns->ijbn', seg_mat, ef) # merge attention scores and perform masking attn_score = (ac + bd + ef) * scale if attn_mask is not None: if attn_score.dtype==tf.float16: attn_score = attn_score - 1e4 * attn_mask else: attn_score = attn_score - 1e30 * attn_mask # attention probability attn_prob = tf.nn.softmax(attn_score, 1) attn_prob = tf.layers.dropout(attn_prob, dropatt, training=is_training) # attention output attn_vec = tf.einsum('ijbn,jbnd->ibnd', attn_prob, v_head_h) return attn_vec def rel_shift(x, klen=-1): """perform relative shift to form the relative attention score.""" x_size = tf.shape(x) x = tf.reshape(x, [x_size[1], x_size[0], x_size[2], x_size[3]]) x = tf.slice(x, [1, 0, 0, 0], [-1, -1, -1, -1]) x = tf.reshape(x, [x_size[0], x_size[1] - 1, x_size[2], x_size[3]]) x = tf.slice(x, [0, 0, 0, 0], [-1, klen, -1, -1]) return x def _create_mask(qlen, mlen, dtype, same_length=False): """create causal attention mask.""" attn_mask = tf.ones([qlen, qlen], dtype=dtype) mask_u = tf.matrix_band_part(attn_mask, 0, -1) mask_dia = tf.matrix_band_part(attn_mask, 0, 0) attn_mask_pad = tf.zeros([qlen, mlen], dtype=dtype) ret = tf.concat([attn_mask_pad, mask_u - mask_dia], 1) if same_length: mask_l = tf.matrix_band_part(attn_mask, -1, 0) ret = tf.concat([ret[:, :qlen] + mask_l - mask_dia, ret[:, qlen:]], 1) return ret def _cache_mem(curr_out, prev_mem, mem_len, reuse_len=None): """cache hidden states into memory.""" if mem_len is None or mem_len == 0: return None else: if reuse_len is not None and reuse_len > 0: curr_out = curr_out[:reuse_len] if prev_mem is None: new_mem = curr_out[-mem_len:] else: new_mem = tf.concat([prev_mem, curr_out], 0)[-mem_len:] return tf.stop_gradient(new_mem) def relative_positional_encoding(qlen, klen, d_model, clamp_len, attn_type, bi_data, bsz=None, dtype=None): """create relative positional encoding.""" freq_seq = tf.range(0, d_model, 2.0) if dtype is not None and dtype != tf.float32: freq_seq = tf.cast(freq_seq, dtype=dtype) inv_freq = 1 / (10000 ** (freq_seq / d_model)) if attn_type == 'bi': # beg, end = klen - 1, -qlen beg, end = klen, -qlen elif attn_type == 'uni': # beg, end = klen - 1, -1 beg, end = klen, -1 else: raise ValueError('Unknown `attn_type` {}.'.format(attn_type)) if bi_data: fwd_pos_seq = tf.range(beg, end, -1.0) bwd_pos_seq = tf.range(-beg, -end, 1.0) if dtype is not None and dtype != tf.float32: fwd_pos_seq = tf.cast(fwd_pos_seq, dtype=dtype) bwd_pos_seq = tf.cast(bwd_pos_seq, dtype=dtype) if clamp_len > 0: fwd_pos_seq = tf.clip_by_value(fwd_pos_seq, -clamp_len, clamp_len) bwd_pos_seq = tf.clip_by_value(bwd_pos_seq, -clamp_len, clamp_len) if bsz is not None: # With bi_data, the batch size should be divisible by 2. assert bsz % 2 == 0 fwd_pos_emb = positional_embedding(fwd_pos_seq, inv_freq, bsz // 2) bwd_pos_emb = positional_embedding(bwd_pos_seq, inv_freq, bsz // 2) else: fwd_pos_emb = positional_embedding(fwd_pos_seq, inv_freq) bwd_pos_emb = positional_embedding(bwd_pos_seq, inv_freq) pos_emb = tf.concat([fwd_pos_emb, bwd_pos_emb], axis=1) else: fwd_pos_seq = tf.range(beg, end, -1.0) if dtype is not None and dtype != tf.float32: fwd_pos_seq = tf.cast(fwd_pos_seq, dtype=dtype) if clamp_len > 0: fwd_pos_seq = tf.clip_by_value(fwd_pos_seq, -clamp_len, clamp_len) pos_emb = positional_embedding(fwd_pos_seq, inv_freq, bsz) return pos_emb def multihead_attn(q, k, v, attn_mask, d_model, n_head, d_head, dropout, dropatt, is_training, kernel_initializer, residual=True, scope='abs_attn', reuse=None): """Standard multi-head attention with absolute positional embedding.""" scale = 1 / (d_head ** 0.5) with tf.variable_scope(scope, reuse=reuse): # attention heads q_head = head_projection(q, d_model, n_head, d_head, kernel_initializer, 'q') k_head = head_projection(k, d_model, n_head, d_head, kernel_initializer, 'k') v_head = head_projection(v, d_model, n_head, d_head, kernel_initializer, 'v') # attention vector attn_vec = abs_attn_core(q_head, k_head, v_head, attn_mask, dropatt, is_training, scale) # post processing output = post_attention(v, attn_vec, d_model, n_head, d_head, dropout, is_training, kernel_initializer, residual) return output def rel_multihead_attn(h, r, r_w_bias, r_r_bias, seg_mat, r_s_bias, seg_embed, attn_mask, mems, d_model, n_head, d_head, dropout, dropatt, is_training, kernel_initializer, scope='rel_attn', reuse=None): """Multi-head attention with relative positional encoding.""" inter = [] scale = 1 / (d_head ** 0.5) with tf.variable_scope(scope, reuse=reuse): if mems is not None and mems.shape.ndims > 1: cat = tf.concat([mems, h], 0) else: cat = h # content heads q_head_h = head_projection(h, d_model, n_head, d_head, kernel_initializer, 'q') k_head_h = head_projection(cat, d_model, n_head, d_head, kernel_initializer, 'k') v_head_h = head_projection(cat, d_model, n_head, d_head, kernel_initializer, 'v') inter.append(q_head_h) inter.append(k_head_h) inter.append(v_head_h) # positional heads k_head_r = head_projection(r, d_model, n_head, d_head, kernel_initializer, 'r') inter.append(k_head_r) # core attention ops attn_vec = rel_attn_core(q_head_h, k_head_h, v_head_h, k_head_r, seg_embed, seg_mat, r_w_bias, r_r_bias, r_s_bias, attn_mask, dropatt, is_training, scale) inter.append(attn_vec) # post processing output = post_attention(h, attn_vec, d_model, n_head, d_head, dropout, is_training, kernel_initializer) inter.append(output) return output, inter def two_stream_rel_attn(h, g, r, mems, r_w_bias, r_r_bias, seg_mat, r_s_bias, seg_embed, attn_mask_h, attn_mask_g, target_mapping, d_model, n_head, d_head, dropout, dropatt, is_training, kernel_initializer, scope='rel_attn'): """Two-stream attention with relative positional encoding.""" scale = 1 / (d_head ** 0.5) with tf.variable_scope(scope, reuse=False): # content based attention score if mems is not None and mems.shape.ndims > 1: cat = tf.concat([mems, h], 0) else: cat = h # content-based key head k_head_h = head_projection(cat, d_model, n_head, d_head, kernel_initializer, 'k') # content-based value head v_head_h = head_projection(cat, d_model, n_head, d_head, kernel_initializer, 'v') # position-based key head k_head_r = head_projection(r, d_model, n_head, d_head, kernel_initializer, 'r') # h-stream # content-stream query head q_head_h = head_projection(h, d_model, n_head, d_head, kernel_initializer, 'q') # core attention ops attn_vec_h = rel_attn_core(q_head_h, k_head_h, v_head_h, k_head_r, seg_embed, seg_mat, r_w_bias, r_r_bias, r_s_bias, attn_mask_h, dropatt, is_training, scale) # post processing output_h = post_attention(h, attn_vec_h, d_model, n_head, d_head, dropout, is_training, kernel_initializer) with tf.variable_scope(scope, reuse=True): # g-stream # query-stream query head q_head_g = head_projection( g, d_model, n_head, d_head, kernel_initializer, 'q') # core attention ops if target_mapping is not None: q_head_g = tf.einsum('mbnd,mlb->lbnd', q_head_g, target_mapping) attn_vec_g = rel_attn_core(q_head_g, k_head_h, v_head_h, k_head_r, seg_embed, seg_mat, r_w_bias, r_r_bias, r_s_bias, attn_mask_g, dropatt, is_training, scale) attn_vec_g = tf.einsum('lbnd,mlb->mbnd', attn_vec_g, target_mapping) else: attn_vec_g = rel_attn_core(q_head_g, k_head_h, v_head_h, k_head_r, seg_embed, seg_mat, r_w_bias, r_r_bias, r_s_bias, attn_mask_g, dropatt, is_training, scale) # post processing output_g = post_attention(g, attn_vec_g, d_model, n_head, d_head, dropout, is_training, kernel_initializer) return output_h, output_g def transformer_xl(inp_k, n_token, n_layer, d_model, n_head, d_head, d_inner, dropout, dropatt, attn_type, bi_data, initializer, is_training, mem_len=None, inp_q=None, mems=None, same_length=False, clamp_len=-1, untie_r=False, use_tpu=True, input_mask=None, perm_mask=None, seg_id=None, reuse_len=None, ff_activation='relu', target_mapping=None, data_type="fp32", scope='transformer', **kwargs): """ Defines a Transformer-XL computation graph with additional support for XLNet. Args: inp_k: int32 Tensor in shape [len, bsz], the input token IDs. seg_id: int32 Tensor in shape [len, bsz], the input segment IDs. input_mask: float32 Tensor in shape [len, bsz], the input mask. 0 for real tokens and 1 for padding. mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory from previous batches. The length of the list equals n_layer. If None, no memory is used. perm_mask: float32 Tensor in shape [len, len, bsz]. If perm_mask[i, j, k] = 0, i attend to j in batch k; if perm_mask[i, j, k] = 1, i does not attend to j in batch k. If None, each position attends to all the others. target_mapping: float32 Tensor in shape [num_predict, len, bsz]. If target_mapping[i, j, k] = 1, the i-th predict in batch k is on the j-th token. Only used during pretraining for partial prediction. Set to None during finetuning. inp_q: float32 Tensor in shape [len, bsz]. 1 for tokens with losses and 0 for tokens without losses. Only used during pretraining for two-stream attention. Set to None during finetuning. n_layer: int, the number of layers. d_model: int, the hidden size. n_head: int, the number of attention heads. d_head: int, the dimension size of each attention head. d_inner: int, the hidden size in feed-forward layers. ff_activation: str, "relu" or "gelu". untie_r: bool, whether to untie the biases in attention. n_token: int, the vocab size. is_training: bool, whether in training mode. use_tpu: bool, whether TPUs are used. use_float16: bool, use float16 instead of float32. dropout: float, dropout rate. dropatt: float, dropout rate on attention probabilities. init: str, the initialization scheme, either "normal" or "uniform". init_range: float, initialize the parameters with a uniform distribution in [-init_range, init_range]. Only effective when init="uniform". init_std: float, initialize the parameters with a normal distribution with mean 0 and stddev init_std. Only effective when init="normal". mem_len: int, the number of tokens to cache. reuse_len: int, the number of tokens in the current batch to be cached and reused in the future. bi_data: bool, whether to use bidirectional input pipeline. Usually set to True during pretraining and False during finetuning. clamp_len: int, clamp all relative distances larger than clamp_len. -1 means no clamping. same_length: bool, whether to use the same attention length for each token. summary_type: str, "last", "first", "mean", or "attn". The method to pool the input to get a vector representation. initializer: A tf initializer. scope: scope name for the computation graph. """ tf.logging.info('memory input {}'.format(mems)) tf_float = tf.float32 if data_type == "fp16": tf_float = tf.float16 elif data_type == "bf16": tf_float = tf.bfloat16 tf.logging.info('Use float type {}'.format(tf_float)) new_mems = [] with tf.variable_scope(scope): if untie_r: r_w_bias = tf.get_variable('r_w_bias', [n_layer, n_head, d_head], dtype=tf_float, initializer=initializer) r_r_bias = tf.get_variable('r_r_bias', [n_layer, n_head, d_head], dtype=tf_float, initializer=initializer) else: r_w_bias = tf.get_variable('r_w_bias', [n_head, d_head], dtype=tf_float, initializer=initializer) r_r_bias = tf.get_variable('r_r_bias', [n_head, d_head], dtype=tf_float, initializer=initializer) bsz = tf.shape(inp_k)[1] qlen = tf.shape(inp_k)[0] mlen = tf.shape(mems[0])[0] if mems is not None else 0 klen = mlen + qlen # Attention mask # causal attention mask if attn_type == 'uni': attn_mask = _create_mask(qlen, mlen, tf_float, same_length) attn_mask = attn_mask[:, :, None, None] elif attn_type == 'bi': attn_mask = None else: raise ValueError('Unsupported attention type: {}'.format(attn_type)) # data mask: input mask & perm mask if input_mask is not None and perm_mask is not None: data_mask = input_mask[None] + perm_mask elif input_mask is not None and perm_mask is None: data_mask = input_mask[None] elif input_mask is None and perm_mask is not None: data_mask = perm_mask else: data_mask = None if data_mask is not None: data_mask = tf.cast(data_mask, dtype=tf_float) # all mems can be attended to mems_mask = tf.zeros([tf.shape(data_mask)[0], mlen, bsz], dtype=tf_float) data_mask = tf.concat([mems_mask, data_mask], 1) if attn_mask is None: attn_mask = data_mask[:, :, :, None] else: attn_mask += data_mask[:, :, :, None] if attn_mask is not None: attn_mask = tf.cast(attn_mask > 0, dtype=tf_float) if attn_mask is not None: non_tgt_mask = -tf.eye(qlen, dtype=tf_float) non_tgt_mask = tf.concat([tf.zeros([qlen, mlen], dtype=tf_float), non_tgt_mask], axis=-1) non_tgt_mask = tf.cast((attn_mask + non_tgt_mask[:, :, None, None]) > 0, dtype=tf_float) else: non_tgt_mask = None # Word embedding word_emb_k, lookup_table = embedding_lookup( x=inp_k, n_token=n_token, d_embed=d_model, initializer=initializer, use_tpu=use_tpu, dtype=tf_float, scope='word_embedding') if inp_q is not None: with tf.variable_scope('mask_emb'): mask_emb = tf.get_variable('mask_emb', [1, 1, d_model], dtype=tf_float) if target_mapping is not None: word_emb_q = tf.tile(mask_emb, [tf.shape(target_mapping)[0], bsz, 1]) else: inp_q_ext = inp_q[:, :, None] word_emb_q = inp_q_ext * mask_emb + (1 - inp_q_ext) * word_emb_k output_h = tf.layers.dropout(word_emb_k, dropout, training=is_training) if inp_q is not None: output_g = tf.layers.dropout(word_emb_q, dropout, training=is_training) # Segment embedding if seg_id is not None: if untie_r: r_s_bias = tf.get_variable('r_s_bias', [n_layer, n_head, d_head], dtype=tf_float, initializer=initializer) else: # default case (tie) r_s_bias = tf.get_variable('r_s_bias', [n_head, d_head], dtype=tf_float, initializer=initializer) seg_embed = tf.get_variable('seg_embed', [n_layer, 2, n_head, d_head], dtype=tf_float, initializer=initializer) # Convert `seg_id` to one-hot `seg_mat` mem_pad = tf.zeros([mlen, bsz], dtype=tf.int32) cat_ids = tf.concat([mem_pad, seg_id], 0) # `1` indicates not in the same segment [qlen x klen x bsz] seg_mat0 = tf.cast( tf.logical_not(tf.equal(seg_id[:, None], cat_ids[None, :])), tf.int32) seg_mat = tf.one_hot(seg_mat0, 2, dtype=tf_float) else: seg_mat = None # Positional encoding pos_emb = relative_positional_encoding( qlen, klen, d_model, clamp_len, attn_type, bi_data, bsz=bsz, dtype=tf_float) pos_emb = tf.layers.dropout(pos_emb, dropout, training=is_training) # Attention layers if mems is None: mems = [None] * n_layer print(non_tgt_mask, output_h, seg_mat, pos_emb) # arr_output=[non_tgt_mask,output_h,seg_mat,pos_emb] record_output = [non_tgt_mask, output_h, seg_mat, pos_emb] for i in range(n_layer): # cache new mems new_mems.append(_cache_mem(output_h, mems[i], mem_len, reuse_len)) # segment bias if seg_id is None: r_s_bias_i = None seg_embed_i = None else: r_s_bias_i = r_s_bias if not untie_r else r_s_bias[i] seg_embed_i = seg_embed[i] with tf.variable_scope('layer_{}'.format(i)): if inp_q is not None: output_h, output_g = two_stream_rel_attn( h=output_h, g=output_g, r=pos_emb, r_w_bias=r_w_bias if not untie_r else r_w_bias[i], r_r_bias=r_r_bias if not untie_r else r_r_bias[i], seg_mat=seg_mat, r_s_bias=r_s_bias_i, seg_embed=seg_embed_i, attn_mask_h=non_tgt_mask, attn_mask_g=attn_mask, mems=mems[i], target_mapping=target_mapping, d_model=d_model, n_head=n_head, d_head=d_head, dropout=dropout, dropatt=dropatt, is_training=is_training, kernel_initializer=initializer) reuse = True else: reuse = False output_h, inter_res_0 = rel_multihead_attn( h=output_h, r=pos_emb, r_w_bias=r_w_bias if not untie_r else r_w_bias[i], r_r_bias=r_r_bias if not untie_r else r_r_bias[i], seg_mat=seg_mat, r_s_bias=r_s_bias_i, seg_embed=seg_embed_i, attn_mask=non_tgt_mask, mems=mems[i], d_model=d_model, n_head=n_head, d_head=d_head, dropout=dropout, dropatt=dropatt, is_training=is_training, kernel_initializer=initializer, reuse=reuse) record_output = record_output + inter_res_0 if inp_q is not None: output_g, _ = positionwise_ffn( inp=output_g, d_model=d_model, d_inner=d_inner, dropout=dropout, kernel_initializer=initializer, activation_type=ff_activation, is_training=is_training) output_h, inter_res_1 = positionwise_ffn( inp=output_h, d_model=d_model, d_inner=d_inner, dropout=dropout, kernel_initializer=initializer, activation_type=ff_activation, is_training=is_training, reuse=reuse) record_output = record_output + inter_res_1 record_output.append(output_h) if inp_q is not None: output = tf.layers.dropout(output_g, dropout, training=is_training) else: output = tf.layers.dropout(output_h, dropout, training=is_training) return output, record_output def lm_loss(hidden, target, n_token, d_model, initializer, lookup_table=None, tie_weight=False, bi_data=True, use_tpu=False): """doc.""" with tf.variable_scope('lm_loss'): if tie_weight: assert lookup_table is not None, \ 'lookup_table cannot be None for tie_weight' softmax_w = lookup_table else: softmax_w = tf.get_variable('weight', [n_token, d_model], dtype=hidden.dtype, initializer=initializer) softmax_b = tf.get_variable('bias', [n_token], dtype=hidden.dtype, initializer=tf.zeros_initializer()) logits = tf.einsum('ibd,nd->ibn', hidden, softmax_w) + softmax_b if use_tpu: one_hot_target = tf.one_hot(target, n_token, dtype=logits.dtype) loss = -tf.reduce_sum(tf.nn.log_softmax(logits) * one_hot_target, -1) else: loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target, logits=logits) return loss def summarize_sequence(summary_type, hidden, d_model, n_head, d_head, dropout, dropatt, input_mask, is_training, initializer, scope=None, reuse=None, use_proj=True): """ Different classification tasks may not may not share the same parameters to summarize the sequence features. If shared, one can keep the `scope` to the default value `None`. Otherwise, one should specify a different `scope` for each task. """ with tf.variable_scope(scope, 'sequnece_summary', reuse=reuse): if summary_type == 'last': summary = hidden[-1] elif summary_type == 'first': summary = hidden[0] elif summary_type == 'mean': summary = tf.reduce_mean(hidden, axis=0) elif summary_type == 'attn': bsz = tf.shape(hidden)[1] summary_bias = tf.get_variable('summary_bias', [d_model], dtype=hidden.dtype, initializer=initializer) summary_bias = tf.tile(summary_bias[None, None], [1, bsz, 1]) if input_mask is not None: input_mask = input_mask[None, :, :, None] summary = multihead_attn(summary_bias, hidden, hidden, input_mask, d_model, n_head, d_head, dropout, dropatt, is_training, initializer, residual=False) summary = summary[0] else: raise ValueError('Unsupported summary type {}'.format(summary_type)) # use another projection as in BERT if use_proj: summary = tf.layers.dense( summary, d_model, activation=tf.tanh, kernel_initializer=initializer, name='summary') # dropout summary = tf.layers.dropout( summary, dropout, training=is_training, name='dropout') return summary def classification_loss(hidden, labels, n_class, initializer, scope, reuse=None, return_logits=False): """ Different classification tasks should use different scope names to ensure different dense layers (parameters) are used to produce the logits. An exception will be in transfer learning, where one hopes to transfer the classification weights. """ with tf.variable_scope(scope, reuse=reuse): logits = tf.layers.dense( hidden, n_class, kernel_initializer=initializer, name='logit') one_hot_target = tf.one_hot(labels, n_class, dtype=hidden.dtype) loss = -tf.reduce_sum(tf.nn.log_softmax(logits) * one_hot_target, -1) if return_logits: return loss, logits return loss def regression_loss(hidden, labels, initializer, scope, reuse=None, return_logits=False): with tf.variable_scope(scope, reuse=reuse): logits = tf.layers.dense( hidden, 1, kernel_initializer=initializer, name='logit') logits = tf.squeeze(logits, axis=-1) loss = tf.square(logits - labels) if return_logits: return loss, logits return loss
FasterTransformer-main
examples/tensorflow/xlnet/modeling.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # usage example # python ./convertModel.py -i $ckpt_file -o $model_file import getopt import sys import numpy as np import tensorflow as tf import absl.logging as _logging # pylint: disable=unused-import from absl import flags import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' def usage(): print(" -o output_file") print(" -i ckpt_dir") print("Example: python convertModel.py -i xlnet_cased_L-12_H-768_A-12/xlnet_model.ckpt -o ./model.npz ") if __name__ == "__main__": m = {} ckpt_dir = "../../../Data/xlnet_cased_L-12_H-768_A-12/xlnet_model.ckpt" output_file = "./model.npz" # Set perameter opts, args = getopt.getopt(sys.argv[1:], "hi:o:") for op, value in opts: if op == "-i": ckpt_dir = value if op == "-o": output_file = value if op == "-h": usage() sys.exit() saver = tf.train.import_meta_graph('{}.meta'.format(ckpt_dir)) with tf.Session() as sess: saver.restore(sess, ckpt_dir) all_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) idx = 0 for var in all_vars: m[var.name] = sess.run(var) print(str(idx) + " " + str(var.name) + " " + str(var.shape)) # print(m[var.name].flatten()[:10]) idx += 1 np.savez(output_file, **m)
FasterTransformer-main
examples/tensorflow/xlnet/convertModel.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import logging import pathlib import tarfile import typing import torch import yaml from .utils import cpu_map_location, gpu_map_location LOGGER = logging.getLogger(__name__) def unpack_nemo_ckpt( nemo_archive_path: typing.Union[str, pathlib.Path], out_dir_path: typing.Union[str, pathlib.Path], ): nemo_archive_path = pathlib.Path(nemo_archive_path) if not nemo_archive_path.exists(): raise FileNotFoundError(f"{nemo_archive_path} does not exist") for tar_mode in ["r:", "r:gz"]: try: with tarfile.open(nemo_archive_path, mode=tar_mode) as tar_file: import os def is_within_directory(directory, target): abs_directory = os.path.abspath(directory) abs_target = os.path.abspath(target) prefix = os.path.commonprefix([abs_directory, abs_target]) return prefix == abs_directory def safe_extract(tar, path=".", members=None, *, numeric_owner=False): for member in tar.getmembers(): member_path = os.path.join(path, member.name) if not is_within_directory(path, member_path): raise Exception("Attempted Path Traversal in Tar File") tar.extractall(path, members, numeric_owner=numeric_owner) safe_extract(tar_file, path=out_dir_path) return out_dir_path except tarfile.ReadError: pass raise RuntimeError(f"Could not unpack {nemo_archive_path}") def extract_layers_with_prefix(model_, prefix): length_to_trim = len(prefix) model_state = model_.get("state_dict", model_) return {key[length_to_trim:]: model_state[key] for key in model_state.keys() if prefix in key} class UnpackedNemoCheckpointDir: def __init__(self, checkpoints_dir: typing.Union[str, pathlib.Path], load_checkpoints_to_cpu: bool = False): self._checkpoints_dir = pathlib.Path(checkpoints_dir) self._load_checkpoints_to_cpu = load_checkpoints_to_cpu @property @functools.lru_cache def model_config(self): model_config = None model_config_filename = "model_config.yaml" model_configs_paths = list(self._checkpoints_dir.rglob(model_config_filename)) if model_configs_paths: if len(model_configs_paths) > 1: raise RuntimeError( f"There are more than single {model_config_filename} " f"in {self._checkpoints_dir}: {', '.join(map(lambda p: p.as_posix(), model_configs_paths))}" ) model_config_path = model_configs_paths[0] LOGGER.debug("Loading model config from %s", model_config_path) with model_config_path.open("r") as model_config_file: model_config = yaml.load(model_config_file, Loader=yaml.SafeLoader) else: LOGGER.debug("Searching model config in checkpoints") # try to obtain from checkpoint checkpoint_name = self.checkpoint_name checkpoints_paths = sorted(self._checkpoints_dir.rglob(checkpoint_name)) if checkpoints_paths: # assume that parallel ranks 0 checkpoint should have model config embedded checkpoint_path = checkpoints_paths[0] map_location_fn = cpu_map_location if self._load_checkpoints_to_cpu else gpu_map_location model_00 = torch.load(checkpoint_path, map_location=map_location_fn) if "hyper_parameters" in model_00 and "cfg" in model_00["hyper_parameters"]: model_config = model_00["hyper_parameters"]["cfg"] LOGGER.debug("Loaded model config from checkpoint %s", checkpoint_path) else: LOGGER.debug("Could not find model config in checkpoint %s", checkpoint_path) del model_00 if model_config is None: LOGGER.warning("Could not find checkpoint with NeMo model config in %s", self._checkpoints_dir) LOGGER.debug("Loaded model config %s", model_config) return model_config @property def checkpoints_dir(self): return self._checkpoints_dir def get_checkpoints_paths(self, tensor_model_parallel_size=1, pipeline_model_parallel_size=1): """ Injects tensor/pipeline model parallel ranks into the filepath. Does nothing if not using model parallelism. """ checkpoint_path_without_rank = self.checkpoints_dir / self.checkpoint_name def _inject_parallel_ranks(tp_rank, pp_rank): if tensor_model_parallel_size > 1 or pipeline_model_parallel_size > 1: if pipeline_model_parallel_size is None or pipeline_model_parallel_size == 1: checkpoint_path = ( checkpoint_path_without_rank.parent / f"mp_rank_{tp_rank:02d}" / checkpoint_path_without_rank.name ) else: checkpoint_path = ( checkpoint_path_without_rank.parent / f"tp_rank_{tp_rank:02d}_pp_rank_{pp_rank:03d}" / checkpoint_path_without_rank.name ) return checkpoint_path else: return checkpoint_path_without_rank return [ [ _inject_parallel_ranks(tp_rank=tp_rank, pp_rank=pp_rank) for pp_rank in range(pipeline_model_parallel_size) ] for tp_rank in range(tensor_model_parallel_size) ] @property @functools.lru_cache def checkpoint_name(self): patterns = [ "model_weights.ckpt", # older megatron checkpoints "*last.ckpt", # newer format of checkpoints ] for pattern in patterns: model_files = sorted(list(self._checkpoints_dir.rglob(pattern))) if model_files: return model_files[0].name raise ValueError(f"Could not find checkpoint files in {self._checkpoints_dir}") @functools.lru_cache def get_tokenizer_file_path(self, tokenizer_key, file_key, default_filename_pattern): model_config = self.model_config file_property = None if tokenizer_key in model_config and file_key in model_config[tokenizer_key]: file_property = model_config[tokenizer_key][file_key] elif file_key in model_config: file_property = model_config[file_key] LOGGER.debug("model_config[%s][%s]=%s", tokenizer_key, file_key, file_property) if file_property and file_property.startswith("nemo:"): filename = file_property.split("nemo:")[1] filename_pattern = f"*{filename}" elif file_property and file_property.startswith("/artifacts/"): filename = pathlib.Path(file_property).name filename_pattern = f"*{filename}" elif file_property is None or file_property == "None": filename_pattern = None else: filename_pattern = default_filename_pattern LOGGER.warning( f"Tokenizer file from config: {tokenizer_key}.{file_key}={file_property} " f"looks like unsupported path. Pattern {filename_pattern} will be used." ) file_path = None if filename_pattern is not None: files_paths = list(self._checkpoints_dir.glob(filename_pattern)) if files_paths: assert len(files_paths) == 1 file_path = files_paths[0] return file_path
FasterTransformer-main
examples/pytorch/nemo.py
FasterTransformer-main
examples/pytorch/__init__.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. def add_special_tokens_to_tokenizer(tokenizer): # Need to add cls, sep, mask tokens to the tokenizer if they don't exist. # If cls, sep and mask are not attributes of the tokenizer, add it. if not hasattr(tokenizer, 'cls_token'): tokenizer.add_special_tokens({'cls_token': '<cls>'}) if not hasattr(tokenizer.tokenizer, 'sep_id'): tokenizer.add_special_tokens({'sep_token': '<sep>'}) if not hasattr(tokenizer.tokenizer, 'mask_id'): tokenizer.add_special_tokens({'mask_token': '<mask>'}) # bos, eos, pad and unk may be present in the provided spm .model file, if they are, use it. if not hasattr(tokenizer, 'pad_token'): if hasattr(tokenizer.tokenizer, 'pad_id') and tokenizer.tokenizer.pad_id() > 0: tokenizer.pad_token = tokenizer.tokenizer.id_to_piece(tokenizer.tokenizer.pad_id()) else: tokenizer.add_special_tokens({'pad_token': '<pad>'}) else: tokenizer.add_special_tokens({'pad_token': '<pad>'}) if not hasattr(tokenizer, 'bos_token'): if hasattr(tokenizer.tokenizer, 'bos_id') and tokenizer.tokenizer.bos_id() > 0: tokenizer.bos_token = tokenizer.tokenizer.id_to_piece(tokenizer.tokenizer.bos_id()) else: tokenizer.add_special_tokens({'bos_token': '<bos>'}) else: tokenizer.add_special_tokens({'bos_token': '<s>'}) if not hasattr(tokenizer, 'eos_token'): if hasattr(tokenizer.tokenizer, 'eos_id') and tokenizer.tokenizer.eos_id() > 0: tokenizer.eos_token = tokenizer.tokenizer.id_to_piece(tokenizer.tokenizer.eos_id()) else: tokenizer.add_special_tokens({'eos_token': '<eos>'}) else: tokenizer.add_special_tokens({'eos_token': '</s>'})
FasterTransformer-main
examples/pytorch/tokenizer.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch import typing def print_memory_usage(info=""): t = torch.cuda.get_device_properties(0).total_memory / 1024 ** 2 r = torch.cuda.memory_reserved(0) / 1024 ** 2 a = torch.cuda.memory_allocated(0) / 1024 ** 2 f = r - a # free inside reserved print(f"[INFO][{info}] total_memory: {t}, reversed: {r}, allocated: {a}") def torch2np(tensor: torch.Tensor, np_data_type: typing.Optional[np.dtype] = None): tensor = tensor.cpu() if tensor.dtype == torch.bfloat16: tensor = tensor.to(torch.float32) data = tensor.numpy() if np_data_type is not None: data = data.astype(np_data_type) return data def safe_transpose(tensor): if tensor.dim() <= 1: return tensor if tensor.dim() == 2: return tensor.T raise ValueError("Tensor has more than 2 dimensions, unable to safely transpose.") WEIGHT2DTYPE = { "fp32": np.float32, "fp16": np.float16, } def cpu_map_location(storage, loc): return storage.cpu() def gpu_map_location(storage, loc): if loc.startswith("cuda"): training_gpu_idx = int(loc.split(":")[1]) inference_gpu_idx = training_gpu_idx % torch.cuda.device_count() return storage.cuda(inference_gpu_idx) elif loc.startswith("cpu"): return storage.cpu() else: raise NotImplementedError(f"Not handled {loc}")
FasterTransformer-main
examples/pytorch/utils.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import argparse import re import numpy as np import torch ACTIVATION_AMAX_NUM = 72 INT8O_KERNEL_NUM = 5 INT8O_GEMM_NUM = 7 TRT_FUSED_MHA_AMAX_NUM = 3 SCALE_RESERVE_NUM = 8 def extract_amaxlist(init_dict, depths, version=1, ths_path='../../../build/lib/libth_transformer.so', verbose=True): # print("Quantizing checkpoint ...") torch.classes.load_library(ths_path) weight_quantize = torch.ops.fastertransformer.swin_weight_quantize layer_num = len(depths) amaxTotalNum = ACTIVATION_AMAX_NUM + INT8O_KERNEL_NUM + INT8O_GEMM_NUM + 1 + TRT_FUSED_MHA_AMAX_NUM + SCALE_RESERVE_NUM kernel_name_list = ["attn.qkv", "attn.proj", "mlp.fc1", "mlp.fc2"] amax_name_list = ["attn.qkv._input_quantizer", "attn.qkv._aftergemm_quantizer", "attn.proj._input_quantizer", "attn.proj._aftergemm_quantizer", "attn.matmul_q_input_quantizer", "attn.matmul_k_input_quantizer", "attn.matmul_v_input_quantizer", "attn.matmul_a_input_quantizer", "attn.softmax_input_quantizer", "mlp.fc1._input_quantizer", "mlp.fc1._aftergemm_quantizer", "mlp.fc2._input_quantizer", "mlp.fc2._aftergemm_quantizer", "add1_residual_input_quantizer" if version == 1 else "attn.mha_q_input_quantizer", "add2_residual_input_quantizer" if version == 1 else "attn.mha_k_input_quantizer" ] int8O_gemm_weight_amax_list = [0 for i in range(INT8O_GEMM_NUM)] int8O_gemm_weight_list = ["attn.qkv", "attn.proj", "mlp.fc1", "mlp.fc2", "attn.matmul_k_input_quantizer" if version == 1 else "attn.mha_k_input_quantizer", "attn.matmul_v_input_quantizer"] int8O_gemm_input_amax_list = [0 for i in range(INT8O_GEMM_NUM)] int8O_gemm_input_list = ["attn.qkv._input_quantizer", "attn.proj._input_quantizer", "mlp.fc1._input_quantizer", "mlp.fc2._input_quantizer", "attn.matmul_q_input_quantizer" if version == 1 else "attn.mha_q_input_quantizer", "attn.matmul_a_input_quantizer"] int8O_gemm_output_amax_list = [0 for i in range(INT8O_GEMM_NUM)] int8O_gemm_output_list = ["attn.qkv._aftergemm_quantizer", "attn.proj._aftergemm_quantizer", "mlp.fc1._aftergemm_quantizer", "mlp.fc2._aftergemm_quantizer", "attn.softmax_input_quantizer", "attn.proj._input_quantizer"] downsample_input = "downsample.reduction._input_quantizer" downsample_weight = "downsample.reduction._weight_quantizer" downsample_out = "downsample.reduction._aftergemm_quantizer" for i in range(layer_num): for depth in range(depths[i]): amaxList = np.zeros([amaxTotalNum]).astype(np.float32) amax_id = 0 for amax_name in amax_name_list: quant_max = init_dict["layers.{}.blocks.{}.{}._amax".format(i, depth, amax_name)].item() amax = abs(quant_max)#round(abs(quant_max)*factor)/factor if amax_name in int8O_gemm_input_list: int8O_gemm_input_amax_list[int8O_gemm_input_list.index(amax_name)] = amax if amax_name in int8O_gemm_output_list: int8O_gemm_output_amax_list[int8O_gemm_output_list.index(amax_name)] = amax if amax_name in int8O_gemm_weight_list: int8O_gemm_weight_amax_list[int8O_gemm_weight_list.index(amax_name)] = amax amaxList[amax_id] = amax amax_id += 1 amaxList[amax_id] = amax/127.0 amax_id += 1 amaxList[amax_id] = amax/127.0/127.0 amax_id += 1 amaxList[amax_id] = 127.0/amax amax_id += 1 if verbose: print(i, amax_name) print('quant_max:', quant_max) print('amax:', amax) if i != layer_num - 1: amax = init_dict["layers.{}.{}._amax".format(i, downsample_input)].item() amaxList[amax_id] = amax amax_id += 1 amaxList[amax_id] = amax/127.0 amax_id += 1 amaxList[amax_id] = amax/127.0/127.0 amax_id += 1 amaxList[amax_id] = 127.0/amax amax_id += 1 amax = init_dict["layers.{}.{}._amax".format(i, downsample_out)].item() amaxList[amax_id] = amax amax_id += 1 amaxList[amax_id] = amax/127.0 amax_id += 1 amaxList[amax_id] = amax/127.0/127.0 amax_id += 1 amaxList[amax_id] = 127.0/amax amax_id += 1 else: amax_id += 8 if verbose: print("done process layer_{} block_{} activation amax".format(i, depth)) #kernel amax starts from ACTIVATION_AMAX_NUM assert amax_id == 68 amax_id = ACTIVATION_AMAX_NUM for kernel_id, kernel_name in enumerate(kernel_name_list): kernel = init_dict["layers.{}.blocks.{}.{}.weight".format(i, depth, kernel_name)].transpose(-1, -2).contiguous() quant_max2 = init_dict["layers.{}.blocks.{}.{}._weight_quantizer._amax".format(i, depth, kernel_name)] amax2 = abs(quant_max2) # if (amax2.dim() == 0): # quant_max_processed = torch.full((kernel.size(1),), amax2.item(), dtype=amax2.dtype, device=amax2.device) # else: # quant_max_processed = amax2.view(-1) kernel_processed = weight_quantize(kernel.half(), amax2.cuda()) init_dict["layers.{}.blocks.{}.{}.weight".format(i, depth, kernel_name)] = kernel_processed if kernel_name in int8O_gemm_weight_list: int8O_gemm_weight_amax_list[int8O_gemm_weight_list.index(kernel_name)] = amax2.item() amaxList[amax_id] = amax2 amax_id += 1 if verbose: print(i, kernel_id, kernel_name) print('kernel:', kernel) print('quant_max2:', quant_max2) # print('quant_max_processed_:', quant_max_processed) if i != layer_num - 1: amaxList[amax_id] = init_dict["layers.{}.downsample.reduction._weight_quantizer._amax".format(i)].item() amax_id += 1 assert amax_id == ACTIVATION_AMAX_NUM + INT8O_KERNEL_NUM #for int8O gemm deQuant for j in range(INT8O_GEMM_NUM - 1): amaxList[amax_id] = (int8O_gemm_input_amax_list[j]*int8O_gemm_weight_amax_list[j])/(127.0*int8O_gemm_output_amax_list[j]) if verbose: print('layernum:', i, 'j:', j, ' gemm_int8IO_scale:',amaxList[amax_id]) print(int8O_gemm_input_amax_list[j], int8O_gemm_weight_amax_list[j], int8O_gemm_output_amax_list[j]) amax_id += 1 if i != layer_num - 1: patchMerge_i = init_dict["layers.{}.{}._amax".format(i, downsample_input)].item() patchMerge_w = init_dict["layers.{}.{}._amax".format(i, downsample_weight)].item() patchMerge_o = init_dict["layers.{}.{}._amax".format(i, downsample_out)].item() amaxList[amax_id] = (patchMerge_i * patchMerge_w) / (127 * patchMerge_o) amax_id += 1 assert amax_id == ACTIVATION_AMAX_NUM + INT8O_KERNEL_NUM + INT8O_GEMM_NUM amax_id += 1 #for trt fused MHA amax #### QKV_addBias_amax # amaxList[amax_id] = np.maximum(np.maximum(amaxList[16],amaxList[20]), amaxList[24]) # amax_id += 1 # #### softmax amax # amaxList[amax_id] = amaxList[28] # amax_id += 1 # #### bmm2 amax # amaxList[amax_id] = amaxList[8] # amax_id += 1 # qkvMax = np.maximum(np.maximum(amaxList[16],amaxList[20]), amaxList[24]) if version == 2: amaxList[amax_id] = amaxList[52] * amaxList[56] / (127.0 * 127.0) else: amaxList[amax_id] = amaxList[16] * amaxList[20] / (127.0 * 127.0) amax_id += 1 amaxList[amax_id] = 127.0 / amaxList[28] amax_id += 1 amaxList[amax_id] = amaxList[24] * amaxList[28] / (127.0 * amaxList[8]) amax_id += 1 init_dict["layers.{}.blocks.{}.amaxList".format(i, depth)] = torch.tensor(amaxList, dtype=torch.float32) if verbose: print("done process layer_{} block_{} kernel weight".format(i, depth)) if i != layer_num - 1: kernel = init_dict["layers.{}.downsample.reduction.weight".format(i)] quant_max2 = init_dict["layers.{}.downsample.reduction._weight_quantizer._amax".format(i)] amax2 = abs(quant_max2) kernel = kernel.transpose(-1, -2).contiguous() kernel_processed = weight_quantize(kernel.half(), amax2.cuda()) init_dict["layers.{}.downsample.reduction.weight".format(i)] = kernel_processed # print("Quantizing checkpoint done.") return init_dict if __name__ == '__main__': weights = torch.load('Swin-Transformer-Quantization/calib-checkpoint/swinv2_tiny_patch4_window8_256_calib.pth') extract_amaxlist(weights, [2, 2, 6, 2], version=2, verbose=True)
FasterTransformer-main
examples/pytorch/swin/checkpoint_quantization.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import argparse import datetime import numpy as np import torch import torch.backends.cudnn as cudnn import torch.distributed as dist from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy from timm.utils import accuracy, AverageMeter from tqdm import tqdm import sys sys.path.insert(0, "./Swin-Transformer-Quantization") from SwinTransformer.config import get_config from models import build_model from data import build_val_loader from SwinTransformer.utils import load_checkpoint, save_checkpoint, get_grad_norm, auto_resume_helper, reduce_tensor from SwinTransformerINT8Weight import SwinTransformerINT8Weight import quant_utils test_time = 100 warmup_time = 10 def parse_option(): parser = argparse.ArgumentParser('Swin Transformer training and evaluation script', add_help=False) parser.add_argument('--cfg', type=str, required=True, metavar="FILE", help='path to config file', ) parser.add_argument( "--opts", help="Modify config options by adding 'KEY VALUE' pairs. ", default=None, nargs='+', ) # easy config modification parser.add_argument('--version', type=int, default=1, help='version of swin', choices=[1, 2]) parser.add_argument('--disable_amp', type=bool, default=True, help='disable amp', ) parser.add_argument('--fused_window_process', type=bool, default=False, help='whether use fused window process', ) parser.add_argument('--th-path', type=str, help='path to pytorch library') parser.add_argument('--batch-size', type=int, default=32, help="batch size for single GPU") parser.add_argument('--data-path', type=str, help='path to dataset') parser.add_argument('--zip', action='store_true', help='use zipped dataset instead of folder dataset') parser.add_argument('--cache-mode', type=str, default='part', choices=['no', 'full', 'part'], help='no: no cache, ' 'full: cache all data, ' 'part: sharding the dataset into nonoverlapping pieces and only cache one piece') parser.add_argument('--pretrained', help='pretrained weight from checkpoint, could be imagenet22k pretrained weight') parser.add_argument('--resume', required=True, help='resume from checkpoint') parser.add_argument('--accumulation-steps', type=int, help="gradient accumulation steps") parser.add_argument('--use-checkpoint', action='store_true', help="whether to use gradient checkpointing to save memory") parser.add_argument('--amp-opt-level', type=str, default='O0', choices=['O0', 'O1', 'O2'], help='mixed precision opt level, if O0, no amp is used') parser.add_argument('--output', default='output', type=str, metavar='PATH', help='root of output folder, the full path is <output>/<model_name>/<tag> (default: output)') parser.add_argument('--tag', help='tag of experiment') parser.add_argument('--profile', action='store_true', help='Perform profiling only, with some random data') parser.add_argument('--eval', action='store_true', help='Perform evaluation only') parser.add_argument('--throughput', action='store_true', help='Test throughput only') parser.add_argument('--calib', action='store_true', help='Perform calibration only') parser.add_argument('--train', action='store_true', help='Perform training only') parser.add_argument('--int8-mode', type=int, help='int8 mode', choices=[1, 2]) parser.add_argument('--num-calib-batch', type=int, default=4, help='Number of batches for calibration. 0 will disable calibration.') # distributed training parser.add_argument("--local_rank", type=int, default=0, help='local rank for DistributedDataParallel') quant_utils.add_arguments(parser) args, unparsed = parser.parse_known_args() args = quant_utils.set_args(args) quant_utils.set_default_quantizers(args) config = get_config(args) return args, config def main(args, config): model = build_model(config) model.cuda() checkpoint = torch.load(config.MODEL.RESUME, map_location='cpu') msg = model.load_state_dict(checkpoint['model'] if 'model' in checkpoint.keys() else checkpoint, strict=False) print(msg) del checkpoint if args.profile: quant_utils.configure_model(model, args, calib=False) validate_with_random_data(config, args, model) elif args.eval: dataset_val, data_loader_val = build_val_loader(config) quant_utils.configure_model(model, args, calib=False) acc1, acc5, loss = validate(config, args, data_loader_val, model) print(f"Accuracy of resumed network on the {len(dataset_val)} test images: {acc1:.1f}%") @torch.no_grad() def validate(config, args, data_loader, model): criterion = torch.nn.CrossEntropyLoss() model.eval() batch_time = AverageMeter() loss_meter = AverageMeter() acc1_meter = AverageMeter() acc5_meter = AverageMeter() if args.version == 1: depths = config.MODEL.SWIN.DEPTHS num_heads = config.MODEL.SWIN.NUM_HEADS window_size = config.MODEL.SWIN.WINDOW_SIZE patch_size = config.MODEL.SWIN.PATCH_SIZE in_chans = config.MODEL.SWIN.IN_CHANS embed_dim = config.MODEL.SWIN.EMBED_DIM ape = config.MODEL.SWIN.APE patch_norm = config.MODEL.SWIN.PATCH_NORM mlp_ratio = config.MODEL.SWIN.MLP_RATIO qkv_bias = config.MODEL.SWIN.QKV_BIAS if config.MODEL.SWIN.QK_SCALE is not None: qk_scale = config.MODEL.SWIN.QK_SCALE else: qk_scale = 1.0 elif args.version == 2: depths = config.MODEL.SWINV2.DEPTHS num_heads = config.MODEL.SWINV2.NUM_HEADS window_size = config.MODEL.SWINV2.WINDOW_SIZE patch_size = config.MODEL.SWINV2.PATCH_SIZE in_chans = config.MODEL.SWINV2.IN_CHANS embed_dim = config.MODEL.SWINV2.EMBED_DIM ape = config.MODEL.SWINV2.APE patch_norm = config.MODEL.SWINV2.PATCH_NORM mlp_ratio = config.MODEL.SWINV2.MLP_RATIO qkv_bias = config.MODEL.SWINV2.QKV_BIAS qk_scale = 1.0 int8_mode = args.int8_mode version = args.version th_path = args.th_path depths_tensor = torch.tensor(depths, dtype=torch.int) num_heads_tensor = torch.tensor(num_heads, dtype=torch.int) layer_num = len(depths) max_batch = config.DATA.BATCH_SIZE img_size = config.DATA.IMG_SIZE sw_weights = SwinTransformerINT8Weight(layer_num, window_size, depths, num_heads, th_path, model.state_dict(), version=version) torch.classes.load_library(th_path) try: swin_transformer = torch.classes.SwinTransformerINT8.Class(sw_weights.weights, int8_mode, depths_tensor, num_heads_tensor, max_batch, img_size, patch_size, in_chans, embed_dim, window_size, ape, patch_norm, layer_num, mlp_ratio, qkv_bias, qk_scale, version) except: # legacy ths for 20.03 image swin_transformer = torch.classes.SwinTransformerINT8Class(sw_weights.weights, int8_mode, depths_tensor, num_heads_tensor, max_batch, img_size, patch_size, in_chans, embed_dim, window_size, ape, patch_norm, layer_num, mlp_ratio, qkv_bias, qk_scale, version) end = time.time() for idx, (images, target) in enumerate(data_loader): images_half = images.half() images_half = images_half.cuda(non_blocking=True) images = images.cuda(non_blocking=True) target = target.cuda(non_blocking=True) # compute output swin_tansformer_output = swin_transformer.forward(images_half) output = model.head(swin_tansformer_output.float()) # measure accuracy and record loss loss = criterion(output, target) acc1, acc5 = accuracy(output, target, topk=(1, 5)) loss_meter.update(loss.item(), target.size(0)) acc1_meter.update(acc1.item(), target.size(0)) acc5_meter.update(acc5.item(), target.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if idx % config.PRINT_FREQ == 0: memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0) print( f'Test: [{idx}/{len(data_loader)}]\t' f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' f'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t' f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t' f'Acc@5 {acc5_meter.val:.3f} ({acc5_meter.avg:.3f})\t' f'Mem {memory_used:.0f}MB') print(f' * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}') return acc1_meter.avg, acc5_meter.avg, loss_meter.avg @torch.no_grad() def run_swintransformernv_op(config, args, model, images, use_fp16): if args.version == 1: depths = config.MODEL.SWIN.DEPTHS num_heads = config.MODEL.SWIN.NUM_HEADS window_size = config.MODEL.SWIN.WINDOW_SIZE patch_size = config.MODEL.SWIN.PATCH_SIZE in_chans = config.MODEL.SWIN.IN_CHANS embed_dim = config.MODEL.SWIN.EMBED_DIM ape = config.MODEL.SWIN.APE patch_norm = config.MODEL.SWIN.PATCH_NORM mlp_ratio = config.MODEL.SWIN.MLP_RATIO qkv_bias = config.MODEL.SWIN.QKV_BIAS if config.MODEL.SWIN.QK_SCALE is not None: qk_scale = config.MODEL.SWIN.QK_SCALE else: qk_scale = 1.0 elif args.version == 2: depths = config.MODEL.SWINV2.DEPTHS num_heads = config.MODEL.SWINV2.NUM_HEADS window_size = config.MODEL.SWINV2.WINDOW_SIZE patch_size = config.MODEL.SWINV2.PATCH_SIZE in_chans = config.MODEL.SWINV2.IN_CHANS embed_dim = config.MODEL.SWINV2.EMBED_DIM ape = config.MODEL.SWINV2.APE patch_norm = config.MODEL.SWINV2.PATCH_NORM mlp_ratio = config.MODEL.SWINV2.MLP_RATIO qkv_bias = config.MODEL.SWINV2.QKV_BIAS qk_scale = 1.0 int8_mode = args.int8_mode version = args.version th_path = args.th_path depths_tensor = torch.tensor(depths, dtype=torch.int) num_heads_tensor = torch.tensor(num_heads, dtype=torch.int) layer_num = len(depths) max_batch = config.DATA.BATCH_SIZE img_size = config.DATA.IMG_SIZE print('window_size', window_size, img_size) torch.classes.load_library(th_path) sw_weights = SwinTransformerINT8Weight(layer_num, window_size, depths, num_heads, th_path, model.state_dict(), version=version) ##run pytorch op try: swin_transformer = torch.classes.SwinTransformerINT8.Class(sw_weights.weights, int8_mode, depths_tensor, num_heads_tensor, max_batch, img_size, patch_size, in_chans, embed_dim, window_size, ape, patch_norm, layer_num, mlp_ratio, qkv_bias, qk_scale, version) except: # legacy ths for 20.03 image swin_transformer = torch.classes.SwinTransformerINT8Class(sw_weights.weights, int8_mode, depths_tensor, num_heads_tensor, max_batch, img_size, patch_size, in_chans, embed_dim, window_size, ape, patch_norm, layer_num, mlp_ratio, qkv_bias, qk_scale, version) # warm up for i in range(warmup_time): op_embedding = swin_transformer.forward(images) op_output = model.head(op_embedding.float()) torch.cuda.synchronize() op_begin = time.time() for i in range(test_time): op_embedding = swin_transformer.forward(images) torch.cuda.synchronize() op_end = time.time() op_output = op_output.cpu().numpy() if use_fp16: print("INT8 op time : ", (op_end - op_begin)/test_time*1000.0, "ms") else: print("INT8 op time : ", (op_end - op_begin)/test_time*1000.0, "ms") return op_output @torch.no_grad() def validate_with_random_data(config, args, model): model.eval() max_batch = config.DATA.BATCH_SIZE img_size = config.DATA.IMG_SIZE in_chans = config.MODEL.SWIN.IN_CHANS image = np.random.rand(1, in_chans, img_size, img_size) images = np.repeat(image, max_batch, axis=0) print(images.shape) images_half = torch.tensor(images, dtype=torch.half) images_float = torch.tensor(images, dtype=torch.float) images_half = images_half.cuda(non_blocking=True) images_float = images_float.cuda(non_blocking=True) test_time = 100 warmup_time = 10 INT8_op_output = run_swintransformernv_op(config, args, model, images_half, True) INT8_torch_output = model(images_float) INT8_torch_output = INT8_torch_output.cpu().numpy() diff = abs(INT8_torch_output - INT8_op_output) assert diff.mean() < 0.1, "[ERROR] SWIN INT8 Op TEST FAIL !" print("INT8_torch_output vs INT8_op_output , avg diff : ", diff.mean((1)), "max diff : ", diff.max((1))) if __name__ == '__main__': args, config = parse_option() seed = config.SEED torch.manual_seed(seed) np.random.seed(seed) cudnn.benchmark = True main(args, config)
FasterTransformer-main
examples/pytorch/swin/infer_swintransformer_int8_op.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import argparse import datetime import numpy as np import torch import torch.backends.cudnn as cudnn import torch.distributed as dist import sys sys.path.insert(0, "./Swin-Transformer-Quantization/SwinTransformer") from config import get_config from models import build_model from SwinTransformerWeightTransposeQKVWeight import SwinTransformerWeightTransposeQKVWeight #from torch._C import _nvtx test_time = 100 warmup_time = 10 def parse_option(): parser = argparse.ArgumentParser('Swin Transformer evaluation script', add_help=False) parser.add_argument( "--opts", help="Modify config options by adding 'KEY VALUE' pairs. ", default=None, nargs='+', ) parser.add_argument('--version', type=int, default=1, help='version of swin', ) parser.add_argument('--disable_amp', type=bool, default=True, help='disable amp', ) parser.add_argument('--fused_window_process', type=bool, default=False, help='whether use fused window process', ) parser.add_argument('--cfg', type=str, required=True, metavar="FILE", help='path to config file', ) parser.add_argument('--data-path', type=str, help='path to dataset') parser.add_argument('--zip', action='store_true', help='use zipped dataset instead of folder dataset') parser.add_argument('--cache-mode', type=str, default='part', choices=['no', 'full', 'part'], help='no: no cache, ' 'full: cache all data, ' 'part: sharding the dataset into nonoverlapping pieces and only cache one piece') parser.add_argument('--pretrained', help='pretrained weight from checkpoint, could be imagenet22k pretrained weight') # easy config modification parser.add_argument('--th-path', type=str, help='path to pytorch library') parser.add_argument('--batch-size', type=int, default=32, help="batch size for single GPU") parser.add_argument('--resume', help='resume from checkpoint') parser.add_argument('--accumulation-steps', type=int, help="gradient accumulation steps") parser.add_argument('--use-checkpoint', action='store_true', help="whether to use gradient checkpointing to save memory") parser.add_argument('--amp-opt-level', type=str, default='O1', choices=['O0', 'O1', 'O2'], help='mixed precision opt level, if O0, no amp is used') parser.add_argument('--output', default='output', type=str, metavar='PATH', help='root of output folder, the full path is <output>/<model_name>/<tag> (default: output)') parser.add_argument('--tag', help='tag of experiment') parser.add_argument('--eval', action='store_true', help='Perform evaluation only') parser.add_argument('--throughput', action='store_true', help='Test throughput only') # distributed training parser.add_argument("--local_rank", type=int, default=0, help='local rank for DistributedDataParallel') args, unparsed = parser.parse_known_args() config = get_config(args) return args, config def main(args, config): model = build_model(config) model.cuda() checkpoint = torch.load(config.MODEL.RESUME, map_location='cpu') model.load_state_dict(checkpoint['model'] if 'model' in checkpoint.keys() else checkpoint, strict=False) validate_with_random_data(args, config, model) @torch.no_grad() def run_swintransformernv_op(args, config, model, images, data_type): if args.version == 1: depths = config.MODEL.SWIN.DEPTHS num_heads = config.MODEL.SWIN.NUM_HEADS window_size = config.MODEL.SWIN.WINDOW_SIZE patch_size = config.MODEL.SWIN.PATCH_SIZE in_chans = config.MODEL.SWIN.IN_CHANS embed_dim = config.MODEL.SWIN.EMBED_DIM ape = config.MODEL.SWIN.APE patch_norm = config.MODEL.SWIN.PATCH_NORM mlp_ratio = config.MODEL.SWIN.MLP_RATIO qkv_bias = config.MODEL.SWIN.QKV_BIAS if config.MODEL.SWIN.QK_SCALE is not None: qk_scale = config.MODEL.SWIN.QK_SCALE else: qk_scale = 1.0 elif args.version == 2: depths = config.MODEL.SWINV2.DEPTHS num_heads = config.MODEL.SWINV2.NUM_HEADS window_size = config.MODEL.SWINV2.WINDOW_SIZE patch_size = config.MODEL.SWINV2.PATCH_SIZE in_chans = config.MODEL.SWINV2.IN_CHANS embed_dim = config.MODEL.SWINV2.EMBED_DIM ape = config.MODEL.SWINV2.APE patch_norm = config.MODEL.SWINV2.PATCH_NORM mlp_ratio = config.MODEL.SWINV2.MLP_RATIO qkv_bias = config.MODEL.SWINV2.QKV_BIAS qk_scale = 1.0 version = args.version th_path = args.th_path depths_tensor = torch.tensor(depths, dtype=torch.int) num_heads_tensor = torch.tensor(num_heads, dtype=torch.int) layer_num = len(depths) max_batch = config.DATA.BATCH_SIZE img_size = config.DATA.IMG_SIZE torch.classes.load_library(th_path) sw_weights = SwinTransformerWeightTransposeQKVWeight(layer_num, window_size, depths, num_heads, th_path, model.state_dict(), version) if data_type == 'fp16': sw_weights.to_half() model.half() elif data_type == 'bf16': sw_weights.to_bfloat16() model.bfloat16() elif data_type == 'fp32': sw_weights.to_float32() model.float() sw_weights.to_cuda() ##run pytorch op try: swin_transformer = torch.classes.SwinTransformer.Class(sw_weights.weights, depths_tensor, num_heads_tensor, max_batch, img_size, patch_size, in_chans, embed_dim, window_size, ape, patch_norm, layer_num, mlp_ratio, qkv_bias, qk_scale, version) except: # legacy ths for 20.03 image swin_transformer = torch.classes.SwinTransformerClass(sw_weights.weights, depths_tensor, num_heads_tensor, max_batch, img_size, patch_size, in_chans, embed_dim, window_size, ape, patch_norm, layer_num, mlp_ratio, qkv_bias, qk_scale, version) # warm up for i in range(warmup_time): op_embedding = swin_transformer.forward(images) op_output = model.head(op_embedding) torch.cuda.synchronize() op_begin = time.time() #_nvtx.rangePushA("op") for i in range(test_time): op_embedding = swin_transformer.forward(images) op_output = model.head(op_embedding) #_nvtx.rangePop() torch.cuda.synchronize() op_end = time.time() op_output = op_output.float().cpu().numpy() if data_type == 'fp16': print("FP16 op time : ", (op_end - op_begin)/test_time*1000.0, "ms") elif data_type == 'bf16': print("BF16 op time : ", (op_end - op_begin)/test_time*1000.0, "ms") else: print("FP32 op time : ", (op_end - op_begin)/test_time*1000.0, "ms") return op_output @torch.no_grad() def run_torch(model, images, mark): # warm up for i in range(warmup_time): output = model(images) torch.cuda.synchronize() torch_start = time.time() #_nvtx.rangePushA("torch") for i in range(test_time): torch_output = model(images) #_nvtx.rangePop() torch.cuda.synchronize() torch_end = time.time() torch_output = torch_output.float().cpu().numpy() # Numpy doesn't support BF16 print(mark + " time : ", (torch_end - torch_start)/test_time*1000.0, "ms") return torch_output @torch.no_grad() def validate_with_random_data(args, config, model): model.eval() max_batch = config.DATA.BATCH_SIZE img_size = config.DATA.IMG_SIZE if args.version == 1: in_chans = config.MODEL.SWIN.IN_CHANS elif args.version == 2: in_chans = config.MODEL.SWINV2.IN_CHANS image = np.random.rand(1, in_chans, img_size, img_size) images = np.repeat(image, max_batch, axis=0) images_half = torch.tensor(images, dtype=torch.half) images_bfloat16 = torch.tensor(images, dtype=torch.bfloat16) images_float = torch.tensor(images, dtype=torch.float) images_half = images_half.cuda(non_blocking=True) images_bfloat16 = images_bfloat16.cuda(non_blocking=True) images_float = images_float.cuda(non_blocking=True) ##run original swin-transformer # run pytorch op FP32_op_output = run_swintransformernv_op(args, config, model, images_float, 'fp32') traced_module_float = torch.jit.trace(model, images_float) FP32_torch_traced_output = run_torch(traced_module_float, images_float, "FP32 torch trace") FP32_torch_output = run_torch(model, images_float, "FP32 torch") FP16_op_output = run_swintransformernv_op(args, config, model, images_half, 'fp16') traced_module_half = torch.jit.trace(model.half(), images_half) FP16_torch_traced_output = run_torch(traced_module_half, images_half, "FP16 torch trace") FP16_torch_output = run_torch(model, images_half, "FP16 torch") diff = abs(FP32_torch_traced_output - FP32_op_output) assert diff.mean() < 0.01, "[ERROR] SWIN FP32 Op TEST FAIL !" print("FP32_torch_traced_output vs FP32_op_output , avg diff : ", diff.mean(), "max diff : ", diff.max()) diff = abs(FP16_torch_traced_output - FP16_op_output) assert diff.mean() < 0.01, "[ERROR] SWIN FP16 Op TEST FAIL !" print("FP16_torch_traced_output vs FP16_op_output , avg diff : ", diff.mean(), "max diff : ", diff.max()) if __name__ == '__main__': args, config = parse_option() # seed = config.SEED + int(time.time()) seed = config.SEED torch.manual_seed(seed) np.random.seed(seed) cudnn.benchmark = True main(args, config)
FasterTransformer-main
examples/pytorch/swin/infer_swintransformer_op.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import math import numpy as np class SwinTransformerWeightTransposeQKVWeight(object): def __init__(self, layer_num, window_size, depths, num_heads, ths_path, weights=None, version=1): """weights need be a state_dict of swin transformer model""" block_weight_suffixes = ['attn.proj.weight', 'attn.proj.bias', 'mlp.fc1.weight', 'mlp.fc1.bias', 'mlp.fc2.weight', 'mlp.fc2.bias', 'norm1.weight', 'norm1.bias', 'norm2.weight', 'norm2.bias'] layer_weight_suffixes = ['downsample.norm.weight', 'downsample.norm.bias', 'downsample.reduction.weight'] sw_weight_suffixes = ['patch_embed.proj.weight', 'patch_embed.proj.bias', 'patch_embed.norm.weight', 'patch_embed.norm.bias', 'norm.weight', 'norm.bias'] self.layer_num = layer_num self.depths = depths self.weights = [] torch.classes.load_library(ths_path) gen_relative_pos_bias = torch.ops.fastertransformer.gen_relative_pos_bias transform_trt_mask = torch.ops.fastertransformer.transform_trt_mask if weights is None: print("[ERROR][SwinTransformerWeights::__init__] weights should not be empty!") exit(-1) else: self._generated_weights = False #calculate size_per_head qkv_weight_name = "layers.0.blocks.0.attn.qkv.weight" shape = weights[qkv_weight_name].shape #in case we flatten this weight if len(shape) == 1: dim = int(math.sqrt(shape[0]/3)) weights[qkv_weight_name] = weights[qkv_weight_name].reshape([3*dim, dim]) shape = weights[qkv_weight_name].shape size_per_head = int(shape[0]/3/num_heads[0]) #loop over layers for layer_idx in range(layer_num): ##loop over blocks for block_idx in range(depths[layer_idx]): #transpose qkv weight [3*head*size, k] --> [k, head*3*size] qkv_weight_name = "layers.{}.blocks.{}.attn.qkv.weight".format(layer_idx, block_idx) if qkv_weight_name in weights: shape = weights[qkv_weight_name].shape #in case we flatten this weight if len(shape) == 1: dim = int(math.sqrt(shape[0]/3)) weights[qkv_weight_name] = weights[qkv_weight_name].reshape([3*dim, dim]) shape = weights[qkv_weight_name].shape weights[qkv_weight_name] = weights[qkv_weight_name].reshape([3, num_heads[layer_idx], int(shape[0]/3/num_heads[layer_idx]), -1]).permute(3, 1, 0, 2).reshape(shape[1], -1) self.weights.append(weights[qkv_weight_name]) else: print("[ERROR][SwinTransformerWeights::__init__] missing weight {}.".format(qkv_weight_name)) exit(-1) #transpose qkv bias [3*head*size] --> [head*3*size] if version == 1: qkv_bias_name = "layers.{}.blocks.{}.attn.qkv.bias".format(layer_idx, block_idx) if qkv_bias_name in weights: shape = weights[qkv_bias_name].shape weights[qkv_bias_name] = weights[qkv_bias_name].reshape([3, num_heads[layer_idx], int(shape[0]/3/num_heads[layer_idx])]).permute(1, 0, 2).reshape(-1) self.weights.append(weights[qkv_bias_name]) else: print("[ERROR][SwinTransformerWeights::__init__] missing weight {}.".format(qkv_bias_name)) exit(-1) elif version == 2: q_bias_name = "layers.{}.blocks.{}.attn.q_bias".format(layer_idx, block_idx) v_bias_name = "layers.{}.blocks.{}.attn.v_bias".format(layer_idx, block_idx) if q_bias_name in weights and v_bias_name in weights: qkv_weights = torch.cat((weights[q_bias_name], torch.zeros_like(weights[v_bias_name], requires_grad=False), weights[v_bias_name])) qkv_weights = qkv_weights.reshape([3, num_heads[layer_idx], int(shape[0]/3/num_heads[layer_idx])]).permute(1, 0, 2).reshape(-1) self.weights.append(qkv_weights) else: print("[ERROR][SwinTransformerWeights::__init__] missing weight {} or {}.".format(q_bias_name, v_bias_name)) exit(-1) ###block_weight_suffixes for block_weight_suffix in block_weight_suffixes: weight_name = 'layers.{}.blocks.{}.{}'.format(layer_idx, block_idx, block_weight_suffix) if weight_name in weights: self.weights.append(weights[weight_name]) else: print("[ERROR][SwinTransformerWeights::__init__] missing weight {}.".format(weight_name)) exit(-1) ###get relative position bias ###Notice : for some model, like (img_size, window_size) = (224, 16), ###the window_size_in_use of last layer may changes. if version == 1: index_name = 'layers.{}.blocks.{}.attn.relative_position_index'.format(layer_idx, block_idx) table_name = 'layers.{}.blocks.{}.attn.relative_position_bias_table'.format(layer_idx, block_idx) if index_name in weights and table_name in weights: window_size_in_use = int(math.sqrt(weights[index_name].shape[0])) relative_position_bias = gen_relative_pos_bias(weights[table_name], weights[index_name], window_size_in_use, num_heads[layer_idx], weights[table_name], weights[table_name], weights[table_name], version) self.weights.append(relative_position_bias) if relative_position_bias.shape[1] <= 256 and size_per_head == 32: trt_relative_position_bias = transform_trt_mask(relative_position_bias.half(), relative_position_bias.shape[0], relative_position_bias.shape[1], False) self.weights.append(trt_relative_position_bias.half()) else: self.weights.append(torch.Tensor()) else: print("[ERROR][SwinTransformerWeights::__init__] missing weight {} or {}.".format(index_name, table_name)) exit(-1) elif version == 2: index_name = 'layers.{}.blocks.{}.attn.relative_position_index'.format(layer_idx, block_idx) table_name = 'layers.{}.blocks.{}.attn.relative_coords_table'.format(layer_idx, block_idx) cpb_mlp_weight1_name = 'layers.{}.blocks.{}.attn.cpb_mlp.0.weight'.format(layer_idx, block_idx) cpb_mlp_bias1_name = 'layers.{}.blocks.{}.attn.cpb_mlp.0.bias'.format(layer_idx, block_idx) cpb_mlp_weight2_name = 'layers.{}.blocks.{}.attn.cpb_mlp.2.weight'.format(layer_idx, block_idx) if index_name in weights and table_name in weights and cpb_mlp_weight1_name in weights and cpb_mlp_bias1_name in weights and cpb_mlp_weight2_name in weights: window_size_in_use = int(math.sqrt(weights[index_name].shape[0])) relative_position_bias = gen_relative_pos_bias(weights[table_name], weights[index_name], window_size_in_use, num_heads[layer_idx], weights[cpb_mlp_weight1_name], weights[cpb_mlp_bias1_name], weights[cpb_mlp_weight2_name], version) self.weights.append(relative_position_bias) if relative_position_bias.shape[1] <= 256 and size_per_head == 32: trt_relative_position_bias = transform_trt_mask(relative_position_bias.half(), relative_position_bias.shape[0], relative_position_bias.shape[1], False) self.weights.append(trt_relative_position_bias.half()) else: self.weights.append(torch.Tensor()) else: print("[ERROR][SwinTransformerWeights::__init__] missing weight {} or {} or {} or {} or {}.".format(index_name, table_name, cpb_mlp_weight1_name, cpb_mlp_bias1_name, cpb_mlp_weight2_name)) exit(-1) print('relative_position_bias', self.weights[-2].shape,'=>', self.weights[-1].shape) ##process attn.logit_scale for version 2 if version == 2: logit_scale_name = 'layers.{}.blocks.{}.attn.logit_scale'.format(layer_idx, block_idx) if logit_scale_name in weights: self.weights.append(torch.clamp(weights[logit_scale_name], max=torch.log(torch.tensor(1. / 0.01))).exp()) else: print("[ERROR][SwinTransformerWeights::__init__] missing weight {}.".format(logit_scale_name)) exit(-1) ##deal with layer weights ###loop over layer_weight_suffixes for layer_weight_suffix in layer_weight_suffixes: weight_name = 'layers.{}.{}'.format(layer_idx, layer_weight_suffix) if weight_name in weights: self.weights.append(weights[weight_name]) else: ####the last layer has not dowmsample weight if layer_idx == layer_num - 1: self.weights.append(torch.Tensor()) else: print("[ERROR][SwinTransformerWeights::__init__] missing weight {}.".format(weight_name)) exit(-1) ###get attn_mask (same for each layer, some layer may not has one) attn_mask_name = 'layers.{}.blocks.1.attn_mask'.format(layer_idx) if attn_mask_name in weights: self.weights.append(weights[attn_mask_name]) if weights[attn_mask_name].shape[1] <= 256 and size_per_head == 32: trt_attn_mask = transform_trt_mask(weights[attn_mask_name].half(), weights[attn_mask_name].shape[0], weights[attn_mask_name].shape[1], False) self.weights.append(trt_attn_mask.half()) else: self.weights.append(torch.Tensor()) else: self.weights.append(torch.Tensor()) self.weights.append(torch.Tensor()) print('attn_mask', self.weights[-2].shape, '=>', self.weights[-1].shape) #deal with sw weights for sw_weight_suffix in sw_weight_suffixes: weight_name = '{}'.format(sw_weight_suffix) if weight_name in weights: self.weights.append(weights[weight_name]) else: print("[ERROR][SwinTransformerWeights::__init__] missing weight {}.".format(weight_name)) exit(-1) def to_cuda(self): for idx, v in enumerate(self.weights): self.weights[idx] = v.cuda() def to_float32(self): for idx, v in enumerate(self.weights): self.weights[idx] = v.float() def to_half(self): for idx, v in enumerate(self.weights): self.weights[idx] = v.half() def to_bfloat16(self): for idx, v in enumerate(self.weights): self.weights[idx] = v.bfloat16()
FasterTransformer-main
examples/pytorch/swin/SwinTransformerWeightTransposeQKVWeight.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import math from checkpoint_quantization import extract_amaxlist class SwinTransformerINT8Weight(object): def __init__(self, layer_num, window_size, depths, num_heads, ths_path, weights=None, version=1): """weights need be a state_dict of swin transformer model""" block_weight_suffixes = ['attn.proj.weight', 'attn.proj.bias', 'mlp.fc1.weight', 'mlp.fc1.bias', 'mlp.fc2.weight', 'mlp.fc2.bias', 'norm1.weight', 'norm1.bias', 'norm2.weight', 'norm2.bias', 'amaxList', 'h_amaxList'] layer_weight_suffixes = ['downsample.norm.weight', 'downsample.norm.bias', 'downsample.reduction.weight'] sw_weight_suffixes = ['patch_embed.proj.weight', 'patch_embed.proj.bias', 'patch_embed.norm.weight', 'patch_embed.norm.bias', 'norm.weight', 'norm.bias'] self.layer_num = layer_num self.depths = depths self.weights = [] torch.classes.load_library(ths_path) gen_relative_pos_bias = torch.ops.fastertransformer.gen_relative_pos_bias transform_trt_mask = torch.ops.fastertransformer.transform_trt_mask if weights is None: print("[ERROR][SwinTransformerWeights::__init__] weights should not be empty!") exit(-1) if 'layers.0.blocks.0.attn.qkv._input_quantizer._amax' not in weights.keys(): raise RuntimeError("There is no quantization node in the checkpoint, cannot be quantized to int8.") for k, v in weights.items(): if k.endswith('_amax'): weights[k] = v.cpu() elif k.endswith('relative_position_index'): weights[k] = v else: weights[k] = v.half() # exit(0) weights = extract_amaxlist(weights, depths, version=version, ths_path=ths_path, verbose=False) h_scale_list = {} for k, v in weights.items(): if "amaxList" in k: k_h = k.replace("amaxList", "h_amaxList") h_scale_list[k_h] = v weights[k] = v.cuda() for k, v in h_scale_list.items(): weights[k] = v #calculate size_per_head qkv_weight_name = "layers.0.blocks.0.attn.qkv.weight" shape = weights[qkv_weight_name].shape #in case we flatten this weight if len(shape) == 1: dim = int(math.sqrt(shape[0]/3)) weights[qkv_weight_name] = weights[qkv_weight_name].reshape([3*dim, dim]) shape = weights[qkv_weight_name].shape size_per_head = int(shape[0]/3/num_heads[0]) #loop over layers for layer_idx in range(layer_num): ##loop over blocks for block_idx in range(depths[layer_idx]): # deal with attn.qkv.weight qkv_weight_name = "layers.{}.blocks.{}.attn.qkv.weight".format(layer_idx, block_idx) if qkv_weight_name in weights: self.weights.append(weights[qkv_weight_name]) else: print("[ERROR][SwinTransformerWeights::__init__] missing weight {}.".format(qkv_weight_name)) exit(-1) # deal with attn.qkv.bias if version == 1: qkv_bias_name = "layers.{}.blocks.{}.attn.qkv.bias".format(layer_idx, block_idx) if qkv_bias_name in weights: self.weights.append(weights[qkv_bias_name]) else: print("[ERROR][SwinTransformerWeights::__init__] missing weight {}.".format(qkv_bias_name)) exit(-1) elif version == 2: q_bias_name = "layers.{}.blocks.{}.attn.q_bias".format(layer_idx, block_idx) v_bias_name = "layers.{}.blocks.{}.attn.v_bias".format(layer_idx, block_idx) if q_bias_name in weights and v_bias_name in weights: qkv_weights = torch.cat((weights[q_bias_name], torch.zeros_like(weights[v_bias_name], requires_grad=False), weights[v_bias_name])) self.weights.append(qkv_weights) else: print("[ERROR][SwinTransformerWeights::__init__] missing weight {} or {}.".format(q_bias_name, v_bias_name)) exit(-1) ###block_weight_suffixes for block_weight_suffix in block_weight_suffixes: weight_name = 'layers.{}.blocks.{}.{}'.format(layer_idx, block_idx, block_weight_suffix) if weight_name in weights: self.weights.append(weights[weight_name]) else: print("[ERROR][SwinTransformerWeights::__init__] missing weight {}.".format(weight_name)) exit(-1) ###get relative position bias ###Notice : for some model, like (img_size, window_size) = (224, 16), ###the window_size_in_use of last layer may changes. if version == 1: index_name = 'layers.{}.blocks.{}.attn.relative_position_index'.format(layer_idx, block_idx) table_name = 'layers.{}.blocks.{}.attn.relative_position_bias_table'.format(layer_idx, block_idx) if index_name in weights and table_name in weights: window_size_in_use = int(math.sqrt(weights[index_name].shape[0])) relative_position_bias = gen_relative_pos_bias(weights[table_name], weights[index_name], window_size_in_use, num_heads[layer_idx], weights[table_name], weights[table_name], weights[table_name], version) self.weights.append(relative_position_bias.half()) if relative_position_bias.shape[1] <= 256 and size_per_head == 32: trt_relative_position_bias = transform_trt_mask(relative_position_bias.half(), relative_position_bias.shape[0], relative_position_bias.shape[1], True) self.weights.append(trt_relative_position_bias.half()) else: self.weights.append(torch.HalfTensor()) else: print("[ERROR][SwinTransformerWeights::__init__] missing weight {} or {}.".format(index_name, table_name)) exit(-1) elif version == 2: index_name = 'layers.{}.blocks.{}.attn.relative_position_index'.format(layer_idx, block_idx) table_name = 'layers.{}.blocks.{}.attn.relative_coords_table'.format(layer_idx, block_idx) cpb_mlp_weight1_name = 'layers.{}.blocks.{}.attn.cpb_mlp.0.weight'.format(layer_idx, block_idx) cpb_mlp_bias1_name = 'layers.{}.blocks.{}.attn.cpb_mlp.0.bias'.format(layer_idx, block_idx) cpb_mlp_weight2_name = 'layers.{}.blocks.{}.attn.cpb_mlp.2.weight'.format(layer_idx, block_idx) if index_name in weights and table_name in weights and cpb_mlp_weight1_name in weights and cpb_mlp_bias1_name in weights and cpb_mlp_weight2_name in weights: window_size_in_use = int(math.sqrt(weights[index_name].shape[0])) relative_position_bias = gen_relative_pos_bias(weights[table_name], weights[index_name], window_size_in_use, num_heads[layer_idx], weights[cpb_mlp_weight1_name], weights[cpb_mlp_bias1_name], weights[cpb_mlp_weight2_name], version) self.weights.append(relative_position_bias) if relative_position_bias.shape[1] <= 256 and size_per_head == 32: trt_relative_position_bias = transform_trt_mask(relative_position_bias.half(), relative_position_bias.shape[0], relative_position_bias.shape[1], True) self.weights.append(trt_relative_position_bias.half()) else: self.weights.append(torch.HalfTensor()) else: print("[ERROR][SwinTransformerWeights::__init__] missing weight {} or {} or {} or {} or {}.".format(index_name, table_name, cpb_mlp_weight1_name, cpb_mlp_bias1_name, cpb_mlp_weight2_name)) exit(-1) print('relative_position_bias', self.weights[-2].shape, '=>', self.weights[-1].shape) ##process attn.logit_scale for version 2 if version == 2: logit_scale_name = 'layers.{}.blocks.{}.attn.logit_scale'.format(layer_idx, block_idx) if logit_scale_name in weights: self.weights.append(torch.clamp(weights[logit_scale_name], max=torch.log(torch.tensor(1. / 0.01))).exp()) else: print("[ERROR][SwinTransformerWeights::__init__] missing weight {}.".format(logit_scale_name)) exit(-1) ##deal with layer weights ###loop over layer_weight_suffixes for layer_weight_suffix in layer_weight_suffixes: weight_name = 'layers.{}.{}'.format(layer_idx, layer_weight_suffix) if weight_name in weights: self.weights.append(weights[weight_name]) else: ####the last layer do not have downsample weight if layer_idx == layer_num - 1: self.weights.append(torch.Tensor()) else: print("[ERROR][SwinTransformerWeights::__init__] missing weight {}.".format(weight_name)) exit(-1) ###get attn_mask (same for each layer, some layer may not has one) attn_mask_name = 'layers.{}.blocks.1.attn_mask'.format(layer_idx) if attn_mask_name in weights: self.weights.append(weights[attn_mask_name].half()) if weights[attn_mask_name].shape[1] <= 256 and size_per_head == 32: trt_attn_mask = transform_trt_mask(weights[attn_mask_name].cuda().half(), weights[attn_mask_name].shape[0], weights[attn_mask_name].shape[1], True) self.weights.append(trt_attn_mask.half()) else: self.weights.append(torch.HalfTensor()) else: self.weights.append(torch.HalfTensor()) self.weights.append(torch.HalfTensor()) print('attn_mask', self.weights[-2].shape, '=>', self.weights[-1].shape) #deal with sw weights for sw_weight_suffix in sw_weight_suffixes: weight_name = sw_weight_suffix if weight_name in weights: self.weights.append(weights[weight_name]) else: print("[ERROR][SwinTransformerWeights::__init__] missing weight {}.".format(weight_name)) exit(-1) def to_half(self): if self.int8: return for idx, v in enumerate(self.weights): self.weights[idx] = v.half()
FasterTransformer-main
examples/pytorch/swin/SwinTransformerINT8Weight.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import argparse import datetime import numpy as np import torch import torch.backends.cudnn as cudnn import torch.distributed as dist from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy from timm.utils import accuracy, AverageMeter from tqdm import tqdm from torch._C import _nvtx import sys sys.path.insert(0, "./Swin-Transformer-Quantization") # from config_modified_int8 import get_config from SwinTransformer.config import get_config from SwinTransformer.models import build_model from data import build_val_loader from SwinTransformer.optimizer import build_optimizer from SwinTransformer.logger import create_logger from SwinTransformer.utils import load_checkpoint, save_checkpoint, get_grad_norm, auto_resume_helper, reduce_tensor from SwinTransformerWeightTransposeQKVWeight import SwinTransformerWeightTransposeQKVWeight def saveToTxt(x, name, clean=False): if clean : with open("tmp2/"+name, 'w+') as fout: xx = x.reshape([-1]) for i in xx: fout.write("{}\n".format(i)) else: with open("tmp2/"+name, 'a+') as fout: shape = x.shape fout.write("{}\n".format(len(shape))) fout.write(" ".join([str(s) for s in shape])+"\n") xx = x.reshape([-1]) for i in xx: fout.write("{}\n".format(i)) try: # noinspection PyUnresolvedReferences from apex import amp except ImportError: amp = None def parse_option(): parser = argparse.ArgumentParser('Swin Transformer training and evaluation script', add_help=False) parser.add_argument('--cfg', type=str, required=True, metavar="FILE", help='path to config file', ) parser.add_argument( "--opts", help="Modify config options by adding 'KEY VALUE' pairs. ", default=None, nargs='+', ) # easy config modification parser.add_argument('--version', type=int, default=1, help='version of swin', ) parser.add_argument('--disable_amp', type=bool, default=True, help='disable amp', ) parser.add_argument('--fused_window_process', type=bool, default=False, help='whether use fused window process', ) parser.add_argument('--th-path', type=str, help='path to pytorch library') parser.add_argument('--batch-size', type=int, default=32, help="batch size for single GPU") parser.add_argument('--data-path', type=str, help='path to dataset') parser.add_argument('--zip', action='store_true', help='use zipped dataset instead of folder dataset') parser.add_argument('--cache-mode', type=str, default='part', choices=['no', 'full', 'part'], help='no: no cache, ' 'full: cache all data, ' 'part: sharding the dataset into nonoverlapping pieces and only cache one piece') parser.add_argument('--pretrained', help='pretrained weight from checkpoint, could be imagenet22k pretrained weight') parser.add_argument('--resume', help='resume from checkpoint') parser.add_argument('--accumulation-steps', type=int, help="gradient accumulation steps") parser.add_argument('--use-checkpoint', action='store_true', help="whether to use gradient checkpointing to save memory") parser.add_argument('--amp-opt-level', type=str, default='O0', choices=['O0', 'O1', 'O2'], help='mixed precision opt level, if O0, no amp is used') parser.add_argument('--output', default='output', type=str, metavar='PATH', help='root of output folder, the full path is <output>/<model_name>/<tag> (default: output)') parser.add_argument('--tag', help='tag of experiment') parser.add_argument('--profile', action='store_true', help='Perform profiling only, with some random data') parser.add_argument('--eval', action='store_true', help='Perform evaluation only') parser.add_argument('--throughput', action='store_true', help='Test throughput only') parser.add_argument('--calib', action='store_true', help='Perform calibration only') parser.add_argument('--train', action='store_true', help='Perform training only') parser.add_argument('--int8-mode', type=int, help='int8 mode', choices=[1, 2]) parser.add_argument('--fp16', action='store_true', help='Using FP16 precision instead of FP32') parser.add_argument('--num-calib-batch', type=int, default=4, help='Number of batches for calibration. 0 will disable calibration.') # distributed training parser.add_argument("--local_rank", type=int, default=0, help='local rank for DistributedDataParallel') args, unparsed = parser.parse_known_args() config = get_config(args) return args, config def main(args, config): logger.info(f"Creating model:{config.MODEL.TYPE}/{config.MODEL.NAME}") model = build_model(config) model.cuda() optimizer = build_optimizer(config, model) n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) logger.info(f"number of params: {n_parameters}") if hasattr(model, 'flops'): flops = model.flops() logger.info(f"number of GFLOPs: {flops / 1e9}") lr_scheduler = None if config.MODEL.RESUME: # max_accuracy = load_checkpoint(config, model, optimizer, lr_scheduler, logger) checkpoint = torch.load(config.MODEL.RESUME, map_location='cpu') msg = model.load_state_dict(checkpoint['model'] if 'model' in checkpoint.keys() else checkpoint, strict=False) logger.info(msg) del checkpoint dataset_val, data_loader_val = build_val_loader(config) acc1, acc5, loss = validate(config, args, data_loader_val, model) logger.info(f"Accuracy of resumed network on the {len(dataset_val)} test images: {acc1:.1f}%") return @torch.no_grad() def validate(config, args, data_loader, model): criterion = torch.nn.CrossEntropyLoss() model.eval() batch_time = AverageMeter() loss_meter = AverageMeter() acc1_meter = AverageMeter() acc5_meter = AverageMeter() if args.version == 1: depths = config.MODEL.SWIN.DEPTHS num_heads = config.MODEL.SWIN.NUM_HEADS window_size = config.MODEL.SWIN.WINDOW_SIZE patch_size = config.MODEL.SWIN.PATCH_SIZE in_chans = config.MODEL.SWIN.IN_CHANS embed_dim = config.MODEL.SWIN.EMBED_DIM ape = config.MODEL.SWIN.APE patch_norm = config.MODEL.SWIN.PATCH_NORM mlp_ratio = config.MODEL.SWIN.MLP_RATIO qkv_bias = config.MODEL.SWIN.QKV_BIAS if config.MODEL.SWIN.QK_SCALE is not None: qk_scale = config.MODEL.SWIN.QK_SCALE else: qk_scale = 1.0 elif args.version == 2: depths = config.MODEL.SWINV2.DEPTHS num_heads = config.MODEL.SWINV2.NUM_HEADS window_size = config.MODEL.SWINV2.WINDOW_SIZE patch_size = config.MODEL.SWINV2.PATCH_SIZE in_chans = config.MODEL.SWINV2.IN_CHANS embed_dim = config.MODEL.SWINV2.EMBED_DIM ape = config.MODEL.SWINV2.APE patch_norm = config.MODEL.SWINV2.PATCH_NORM mlp_ratio = config.MODEL.SWINV2.MLP_RATIO qkv_bias = config.MODEL.SWINV2.QKV_BIAS qk_scale = 1.0 version = args.version th_path = args.th_path depths_tensor = torch.tensor(depths, dtype=torch.int) num_heads_tensor = torch.tensor(num_heads, dtype=torch.int) layer_num = len(depths) max_batch = config.DATA.BATCH_SIZE img_size = config.DATA.IMG_SIZE torch.classes.load_library(th_path) sw_weights = SwinTransformerWeightTransposeQKVWeight(layer_num, window_size, depths, num_heads, th_path, model.state_dict(), version) if args.fp16: model.half() sw_weights.to_half() else: sw_weights.to_float32() sw_weights.to_cuda() ##run pytorch op try: swin_transformer = torch.classes.SwinTransformer.Class(sw_weights.weights, depths_tensor, num_heads_tensor, max_batch, img_size, patch_size, in_chans, embed_dim, window_size, ape, patch_norm, layer_num, mlp_ratio, qkv_bias, qk_scale, version) except: # legacy ths for 20.03 image swin_transformer = torch.classes.SwinTransformerClass(sw_weights.weights, depths_tensor, num_heads_tensor, max_batch, img_size, patch_size, in_chans, embed_dim, window_size, ape, patch_norm, layer_num, mlp_ratio, qkv_bias, qk_scale, version) end = time.time() for idx, (images, target) in enumerate(data_loader): if args.fp16: images = images.half() images = images.cuda(non_blocking=True) target = target.cuda(non_blocking=True) # compute output # output_th = model(images) swin_tansformer_output = swin_transformer.forward(images) output = model.head(swin_tansformer_output) # diff = output - output_th # print(diff.mean(), diff.max(), diff.min()) # measure accuracy and record loss loss = criterion(output, target) acc1, acc5 = accuracy(output, target, topk=(1, 5)) loss_meter.update(loss.item(), target.size(0)) acc1_meter.update(acc1.item(), target.size(0)) acc5_meter.update(acc5.item(), target.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if idx % config.PRINT_FREQ == 0: memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0) logger.info( f'Test: [{idx}/{len(data_loader)}]\t' f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' f'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t' f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t' f'Acc@5 {acc5_meter.val:.3f} ({acc5_meter.avg:.3f})\t' f'Mem {memory_used:.0f}MB') logger.info(f' * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}') return acc1_meter.avg, acc5_meter.avg, loss_meter.avg if __name__ == '__main__': args, config = parse_option() if config.AMP_OPT_LEVEL != "O0": assert amp is not None, "amp not installed!" if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: rank = int(os.environ["RANK"]) world_size = int(os.environ['WORLD_SIZE']) print(f"RANK and WORLD_SIZE in environ: {rank}/{world_size}") else: rank = -1 world_size = -1 seed = config.SEED torch.manual_seed(seed) np.random.seed(seed) cudnn.benchmark = True # linear scale the learning rate according to total batch size, may not be optimal linear_scaled_lr = config.TRAIN.BASE_LR * config.DATA.BATCH_SIZE / 512.0 linear_scaled_warmup_lr = config.TRAIN.WARMUP_LR * config.DATA.BATCH_SIZE / 512.0 linear_scaled_min_lr = config.TRAIN.MIN_LR * config.DATA.BATCH_SIZE / 512.0 # gradient accumulation also need to scale the learning rate if config.TRAIN.ACCUMULATION_STEPS > 1: linear_scaled_lr = linear_scaled_lr * config.TRAIN.ACCUMULATION_STEPS linear_scaled_warmup_lr = linear_scaled_warmup_lr * config.TRAIN.ACCUMULATION_STEPS linear_scaled_min_lr = linear_scaled_min_lr * config.TRAIN.ACCUMULATION_STEPS config.defrost() config.TRAIN.BASE_LR = linear_scaled_lr config.TRAIN.WARMUP_LR = linear_scaled_warmup_lr config.TRAIN.MIN_LR = linear_scaled_min_lr config.freeze() os.makedirs(config.OUTPUT, exist_ok=True) logger = create_logger(output_dir=config.OUTPUT, dist_rank=0, name=f"{config.MODEL.NAME}") # if dist.get_rank() == 0: path = os.path.join(config.OUTPUT, "config.json") with open(path, "w") as f: f.write(config.dump()) logger.info(f"Full config saved to {path}") main(args, config)
FasterTransformer-main
examples/pytorch/swin/infer_swintransformer_acc.py
from SwinTransformer.config import get_config
FasterTransformer-main
examples/pytorch/swin/Swin-Transformer-Quantization/__init__.py
# coding=utf-8 # Copyright (c) 2019-2022 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper functions for training models with pytorch-quantization""" import pickle import re import time import numpy as np import torch import random import pytorch_quantization as quantization import pytorch_quantization.nn as quant_nn from pytorch_quantization.tensor_quant import QuantDescriptor from pytorch_quantization import calib class Logger: def info(self, s): print("INFO:", s) def warn(self, s): print("WARN:", s) logger = Logger() name_width = 50 # max width of layer names qname_width = name_width + 20 # max width of quantizer names def add_arguments(parser): """Add arguments to parser for functions defined in quant_trainer.""" group = parser.add_argument_group('quant_trainer arguments') group.add_argument('--wprec', type=int, default=8, help='weight precision') group.add_argument('--aprec', type=int, default=8, help='activation precision') group.add_argument('--quant-per-tensor', action='store_true', help='per tensor weight scaling') group.add_argument('--quant-disable', action='store_true', help='disable all quantizers') group.add_argument('--quant-disable-keyword', type=str, nargs='+', help='disable quantizers by keyword') group.add_argument('--calibrator', default='percentile', help='which quantization range calibrator to use') group.add_argument('--percentile', default=99.99, type=float, help='percentile for PercentileCalibrator') group.add_argument('--fuse-qkv', action='store_true', help='use the same scale factor for qkv') group.add_argument('--narrow-range', action='store_true', help='use [-127, 127] range for activations rather than [-128, 127]') group.add_argument('--quant-mode', type=str, default="ft2", help='predefined quantization mode, choices: ["ft1", "ft2", "ft3", "trt"](Deprecated)') def set_args(args): args.wprec = 8 args.aprec = 8 args.quant_per_tensor = True args.quant_disable = False args.quant_disable_keyword = ['final_input', 'layernorm_input', 'softmax_input', 'local_input', 'residual_input'] if args.int8_mode == 2: args.quant_disable_keyword.append('[2n]._aftergemm') args.fuse_qkv = True args.narrow_range = False return args def set_default_quantizers(args): """Set default quantizers before creating the model.""" if args.calibrator == 'max': calib_method = 'max' elif args.calibrator == 'percentile': if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator') calib_method = 'histogram' elif args.calibrator == 'mse': calib_method = 'histogram' elif args.calibrator == 'entropy': calib_method = 'histogram' else: raise ValueError(F'Invalid calibrator {args.calibrator}') input_desc = QuantDescriptor(num_bits=args.aprec, calib_method=calib_method, narrow_range=args.narrow_range, ) weight_desc = QuantDescriptor(num_bits=args.wprec, axis=(None if args.quant_per_tensor else (0,)), ) quant_nn.QuantLinear.set_default_quant_desc_input(input_desc) quant_nn.QuantLinear.set_default_quant_desc_weight(weight_desc) def configure_model(model, args, calib=False): """Function called before the training loop.""" logger.info('Configuring Model for Quantization') logger.info(F'using quantization package {quantization.__file__}') if not calib: if args.quant_disable: set_quantizer_by_name(model, [''], _disabled=True) if args.quant_disable_keyword: set_quantizer_by_name(model, args.quant_disable_keyword, _disabled=True) if args.fuse_qkv: fuse_qkv(model, args) print('Configure calib={}'.format(str(calib))) def enable_calibration(model): """Enable calibration of all *_input_quantizer modules in model.""" logger.info("Enabling Calibration") for name, module in model.named_modules(): if name.endswith("_quantizer"): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"{name:{qname_width}}: {module}") def finish_calibration(model, args): """Disable calibration and load amax for all "*_input_quantizer modules in model.""" logger.info("Loading calibrated amax") for name, module in model.named_modules(): if name.endswith("_quantizer"): if module._calibrator is not None: if isinstance(module._calibrator, calib.MaxCalibrator): module.load_calib_amax() elif args.calibrator == "percentile": module.load_calib_amax("percentile", percentile=args.percentile) else: module.load_calib_amax(args.calibrator) module.enable_quant() module.disable_calib() else: module.enable() if args.fuse_qkv: fuse_qkv(model, args) model.cuda() print_quant_summary(model) def fuse_qkv(model, args): """Adjust quantization ranges to match an implementation where the QKV projections are implemented with a single GEMM. Force the weight and output scale factors to match by taking the max of (Q,K,V). """ def fuse3(qq, qk, qv): if not hasattr(qq, '_amax') or not hasattr(qk, '_amax') or not hasattr(qv, '_amax'): logger.warn('missing amax buffer, unable to fuse') return q = qq._amax.detach().item() k = qk._amax.detach().item() v = qv._amax.detach().item() amax = max(q, k, v) qq._amax.fill_(amax) qk._amax.fill_(amax) qv._amax.fill_(amax) logger.info(f' q={q:7.4f} k={k:7.4f} v={v:7.4f} -> {amax:7.4f}') for name, mod in model.named_modules(): if name.endswith('.attention.self'): logger.info(f'FUSE_QKV: {name:{name_width}}') fuse3(mod.matmul_q_input_quantizer, mod.matmul_k_input_quantizer, mod.matmul_v_input_quantizer) fuse3(mod.query._weight_quantizer, mod.key._weight_quantizer, mod.value._weight_quantizer) fuse3(mod.query._aftergemm_quantizer, mod.key._aftergemm_quantizer, mod.value._aftergemm_quantizer) def print_quant_summary(model): """Print summary of all quantizer modules in the model.""" counters = {'quantizers': 0, 'enabled_quantizers': 0, 'weights': 0, 'quant_weights': 0, 'sparse_weights': 0, 'params': 0, 'sparse_params': 0} for name, mod in model.named_modules(): if isinstance(mod, quantization.nn.TensorQuantizer): print(f'{name:80} {mod}') counters['quantizers'] += 1 if not mod._disabled: counters['enabled_quantizers'] += 1 for pname, param in mod.named_parameters(): if '.' in pname: continue counters['params'] += param.numel() weight_quantizer = getattr(mod, '_weight_quantizer', None) if pname == 'weight': counters['weights'] += param.numel() if weight_quantizer is not None and not weight_quantizer._disabled: counters['quant_weights'] += param.numel() counters['sparse_weights'] += param.eq(0).sum().item() counters['sparse_params'] += param.eq(0).sum().item() def print_fraction(a, b, counters, desc): va = counters[a] vb = counters[b] pct = va/vb * 100 if vb != 0 else float('NaN') print(f'{counters[a]:12}/{vb:12} ({pct:6.2f}%) {desc}') print_fraction('enabled_quantizers', 'quantizers', counters, 'TensorQuantizers enabled') print_fraction('quant_weights', 'weights', counters, 'Quantized weights') print_fraction('sparse_weights', 'weights', counters, 'Zero weights') print_fraction('weights', 'params', counters, 'Weight parameters') print('\n\n') def set_quantizer(name, mod, quantizer, k ,v): """Set attributes for mod.quantizer.""" quantizer_mod = getattr(mod, quantizer, None) if quantizer_mod is not None: assert hasattr(quantizer_mod, k) setattr(quantizer_mod, k, v) else: logger.warn(f'{name} has no {quantizer}') def set_quantizers(name, mod, which='both', **kwargs): """Set quantizer attributes for mod.""" s = f'Warning: changing {which} quantizers of {name:{qname_width}}' for k, v in kwargs.items(): s += (f' {k}={v}') if which in ['input', 'both']: set_quantizer(name, mod, '_input_quantizer', k, v) if which in ['weight', 'both']: set_quantizer(name, mod, '_weight_quantizer', k, v) def set_quantizer_by_name(model, names, **kwargs): """Set quantizer attributes for layers where name contains a substring in names.""" for name, mod in model.named_modules(): if hasattr(mod, '_input_quantizer') or hasattr(mod, '_weight_quantizer'): for n in names: if re.search(n, name): set_quantizers(name, mod, **kwargs) elif name.endswith('_quantizer'): for n in names: if re.search(n, name): s = f'Warning: changing {name:{name_width}}' for k, v in kwargs.items(): s += (f' {k}={v}') setattr(mod, k, v)
FasterTransformer-main
examples/pytorch/swin/Swin-Transformer-Quantization/quant_utils.py
# -------------------------------------------------------- # Swin Transformer # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ze Liu # -------------------------------------------------------- # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import argparse import datetime import json import numpy as np import torch import torch.backends.cudnn as cudnn import torch.distributed as dist from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy from timm.utils import accuracy, AverageMeter from tqdm import tqdm import quant_utils from SwinTransformer.config import get_config from models import build_model from data import build_loader from SwinTransformer.lr_scheduler import build_scheduler from SwinTransformer.optimizer import build_optimizer from SwinTransformer.logger import create_logger from SwinTransformer.utils import load_checkpoint, save_checkpoint, get_grad_norm, auto_resume_helper, reduce_tensor try: # noinspection PyUnresolvedReferences from apex import amp except ImportError: amp = None CONFIG_NAME = 'bert_config.json' WEIGHTS_NAME = 'pytorch_model.bin' class Knowledge_Distillation_Loss(torch.nn.Module): def __init__(self, scale, T = 3): super(Knowledge_Distillation_Loss, self).__init__() self.KLdiv = torch.nn.KLDivLoss() self.T = T self.scale = scale def get_knowledge_distillation_loss(self, output_student, output_teacher): loss_kl = self.KLdiv(torch.nn.functional.log_softmax(output_student / self.T, dim=1), torch.nn.functional.softmax(output_teacher / self.T, dim=1)) loss = loss_kl return self.scale * loss def parse_option(): parser = argparse.ArgumentParser('Swin Transformer training and evaluation script', add_help=False) parser.add_argument('--cfg', type=str, required=True, metavar="FILE", help='path to config file', ) parser.add_argument( "--opts", help="Modify config options by adding 'KEY VALUE' pairs. ", default=None, nargs='+', ) # easy config modification parser.add_argument('--batch-size', type=int, help="batch size for single GPU") parser.add_argument('--data-path', type=str, help='path to dataset') parser.add_argument('--zip', action='store_true', help='use zipped dataset instead of folder dataset') parser.add_argument('--cache-mode', type=str, default='part', choices=['no', 'full', 'part'], help='no: no cache, ' 'full: cache all data, ' 'part: sharding the dataset into nonoverlapping pieces and only cache one piece') parser.add_argument('--pretrained', help='pretrained weight from checkpoint, could be imagenet22k pretrained weight') parser.add_argument('--resume', help='resume from checkpoint') parser.add_argument('--accumulation-steps', type=int, help="gradient accumulation steps") parser.add_argument('--use-checkpoint', action='store_true', help="whether to use gradient checkpointing to save memory") parser.add_argument('--disable_amp', action='store_true', help='Disable pytorch amp') parser.add_argument('--amp-opt-level', type=str, choices=['O0', 'O1', 'O2'], help='mixed precision opt level, if O0, no amp is used (deprecated!)') parser.add_argument('--output', default='output', type=str, metavar='PATH', help='root of output folder, the full path is <output>/<model_name>/<tag> (default: output)') parser.add_argument('--tag', help='tag of experiment') parser.add_argument('--eval', action='store_true', help='Perform evaluation only') parser.add_argument('--throughput', action='store_true', help='Test throughput only') parser.add_argument("--engine", type=str, help="The directory of swin tensorrt engine.") # Calibration parser.add_argument('--calib', action='store_true', help='Perform calibration only') parser.add_argument('--train', action='store_true', help='Perform training only') parser.add_argument('--int8-mode', type=int, required=True, help='int8 mode', choices=[1, 2]) parser.add_argument('--num-calib-batch', type=int, default=4, help='Number of batches for calibration. 0 will disable calibration.') parser.add_argument('--calib-batchsz', type=int, default=8, help='Batch size when doing calibration') parser.add_argument('--calib-output-path', type=str, help='Output directory to save calibrated model') # distributed training parser.add_argument("--local_rank", type=int, required=True, help='local rank for DistributedDataParallel') parser.add_argument("--num-epochs", type=int, default=10, help="Number of epochs to run QAT fintuning.") parser.add_argument("--qat-lr", type=float, default=5e-7, help="learning rate for QAT.") parser.add_argument("--distill", action='store_true', help='Using distillation') parser.add_argument("--teacher", type=str, help='teacher model path') parser.add_argument('--distillation_loss_scale', type=float, default=10000., help="scale applied to distillation component of loss") # for acceleration parser.add_argument('--fused_window_process', action='store_true', help='Fused window shift & window partition, similar for reversed part.') quant_utils.add_arguments(parser) args, unparsed = parser.parse_known_args() args = quant_utils.set_args(args) quant_utils.set_default_quantizers(args) config = get_config(args) return args, config def main(config, args): dataset_train, dataset_val, data_loader_train, data_loader_val, mixup_fn = build_loader(config, args) logger.info(f"Creating model:{config.MODEL.TYPE}/{config.MODEL.NAME}") model = build_model(config) model.cuda() # PRINT the details of model (quantized, with TensorQuantizer inserted) # logger.info(str(model)) optimizer = build_optimizer(config, model) model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[config.LOCAL_RANK], broadcast_buffers=False) model_without_ddp = model.module n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) logger.info(f"number of params: {n_parameters}") if hasattr(model_without_ddp, 'flops'): flops = model_without_ddp.flops() logger.info(f"number of GFLOPs: {flops / 1e9}") lr_scheduler = build_scheduler(config, optimizer, len(data_loader_train)) if config.AUG.MIXUP > 0.: # smoothing is handled with mixup label transform criterion = SoftTargetCrossEntropy() elif config.MODEL.LABEL_SMOOTHING > 0.: criterion = LabelSmoothingCrossEntropy(smoothing=config.MODEL.LABEL_SMOOTHING) else: criterion = torch.nn.CrossEntropyLoss() max_accuracy = 0.0 if config.MODEL.RESUME: # max_accuracy = load_checkpoint(config, model_without_ddp, optimizer, lr_scheduler, logger) checkpoint = torch.load(config.MODEL.RESUME, map_location='cpu') msg = model_without_ddp.load_state_dict(checkpoint['model'] if 'model' in checkpoint.keys() else checkpoint, strict=False) logger.info(msg) del checkpoint if config.THROUGHPUT_MODE: throughput(data_loader_val, model, logger) return if args.calib: quant_utils.configure_model(model, args, calib=True) model.eval() quant_utils.enable_calibration(model) # Run forward passes on a sample of the training set for step, (samples, targets) in enumerate(tqdm(data_loader_train, desc='Calibration', total=args.num_calib_batch)): if step > args.num_calib_batch: break outputs = model(samples) quant_utils.finish_calibration(model, args) # Evaluate calibrated model quant_utils.configure_model(model, args, calib=False) # Save calibrated checkpoint model_to_save = model.module if hasattr(model, 'module') else model output_model_path = os.path.join(args.calib_output_path, '{}_calib.pth'.format(config.MODEL.NAME)) if not os.path.exists(args.calib_output_path): os.mkdir(args.calib_output_path) torch.save(model_to_save.state_dict(), output_model_path) print(f'Model is saved to {output_model_path}') acc1, acc5, loss = validate(config, data_loader_val, model) logger.info(f"Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%") if args.train: teacher = None distillation_loss = None if args.distill: teacher = build_model(config) print("Loading teacher model...") teacher_ckpt = torch.load(args.teacher, map_location="cpu") if "model" in teacher_ckpt: teacher.load_state_dict(teacher_ckpt["model"], strict=False) else: teacher.load_state_dict(teacher_ckpt, strict=False) distillation_loss = Knowledge_Distillation_Loss(scale=args.distillation_loss_scale).cuda() teacher.cuda() teacher.eval() quant_utils.set_quantizer_by_name(teacher, [''], _disabled=True) logger.info("Start training") quant_utils.configure_model(model, args, calib=False) start_time = time.time() for epoch in range(args.num_epochs): data_loader_train.sampler.set_epoch(epoch) train_one_epoch(config, model, criterion, data_loader_train, optimizer, epoch, mixup_fn, teacher, distillation_loss) if dist.get_rank() == 0 and (epoch % config.SAVE_FREQ == 0 or epoch == (config.TRAIN.EPOCHS - 1)): save_checkpoint(config, epoch, model_without_ddp, max_accuracy, optimizer, lr_scheduler, logger) acc1, acc5, loss = validate(config, data_loader_val, model) logger.info(f"Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%") max_accuracy = max(max_accuracy, acc1) logger.info(f'Max accuracy: {max_accuracy:.2f}%') total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) logger.info('Training time {}'.format(total_time_str)) if args.eval: quant_utils.configure_model(model, args, calib=False) if args.engine: acc1, acc5, loss = validate_trt(config, data_loader_val, model, args.engine) else: acc1, acc5, loss = validate(config, data_loader_val, model) logger.info(f"Accuracy of the network on the {len(dataset_val)} test images: {acc1:.1f}%") def train_one_epoch(config, model, criterion, data_loader_train, optimizer, epoch, mixup_fn, teacher, dis_loss): model.train() optimizer.zero_grad() max_accuracy = 0.0 num_steps = len(data_loader_train) batch_time = AverageMeter() loss_meter = AverageMeter() norm_meter = AverageMeter() start = time.time() end = time.time() for idx, (samples, targets) in enumerate(data_loader_train): samples = samples.cuda(non_blocking=True) targets = targets.cuda(non_blocking=True) if mixup_fn is not None: samples, targets = mixup_fn(samples, targets) outputs = model(samples) loss = criterion(outputs, targets) if teacher: with torch.no_grad(): teacher_outputs = teacher(samples) loss_t = dis_loss.get_knowledge_distillation_loss(outputs, teacher_outputs) loss = loss + loss_t optimizer.zero_grad() loss.backward() if config.TRAIN.CLIP_GRAD: grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), config.TRAIN.CLIP_GRAD) else: grad_norm = get_grad_norm(model.parameters()) optimizer.step() # lr_scheduler.step_update(epoch * num_steps + idx) torch.cuda.synchronize() loss_meter.update(loss.item(), targets.size(0)) norm_meter.update(grad_norm) batch_time.update(time.time() - end) end = time.time() if idx % config.PRINT_FREQ == 0: lr = optimizer.param_groups[0]['lr'] memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0) etas = batch_time.avg * (num_steps - idx) logger.info( f'Train: [{epoch}/{config.TRAIN.EPOCHS}][{idx}/{num_steps}]\t' f'eta {datetime.timedelta(seconds=int(etas))} lr {lr:.6f}\t' f'time {batch_time.val:.4f} ({batch_time.avg:.4f})\t' f'loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t' f'grad_norm {norm_meter.val:.4f} ({norm_meter.avg:.4f})\t' f'mem {memory_used:.0f}MB') epoch_time = time.time() - start logger.info(f"EPOCH {epoch} training takes {datetime.timedelta(seconds=int(epoch_time))}") @torch.no_grad() def validate(config, data_loader, model): criterion = torch.nn.CrossEntropyLoss() model.eval() batch_time = AverageMeter() loss_meter = AverageMeter() acc1_meter = AverageMeter() acc5_meter = AverageMeter() end = time.time() for idx, (images, target) in enumerate(data_loader): images = images.cuda(non_blocking=True) target = target.cuda(non_blocking=True) # compute output output = model(images) # measure accuracy and record loss loss = criterion(output, target) acc1, acc5 = accuracy(output, target, topk=(1, 5)) acc1 = reduce_tensor(acc1) acc5 = reduce_tensor(acc5) loss = reduce_tensor(loss) loss_meter.update(loss.item(), target.size(0)) acc1_meter.update(acc1.item(), target.size(0)) acc5_meter.update(acc5.item(), target.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if idx % config.PRINT_FREQ == 0: memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0) logger.info( f'Test: [{idx}/{len(data_loader)}]\t' f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' f'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t' f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t' f'Acc@5 {acc5_meter.val:.3f} ({acc5_meter.avg:.3f})\t' f'Mem {memory_used:.0f}MB') logger.info(f' * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}') return acc1_meter.avg, acc5_meter.avg, loss_meter.avg @torch.no_grad() def validate_trt(config, data_loader, model, engine): criterion = torch.nn.CrossEntropyLoss() model.eval() batch_time = AverageMeter() loss_meter = AverageMeter() acc1_meter = AverageMeter() acc5_meter = AverageMeter() end = time.time() import tensorrt as trt with open(engine, 'rb') as f, trt.Runtime(trt.Logger(trt.Logger.INFO)) as runtime,\ runtime.deserialize_cuda_engine(f.read()) as engine, engine.create_execution_context() as context: if engine is None: print('Engine is none') exit(-1) context.active_optimization_profile = 0 stream = 0 context.set_binding_shape(0, (config.DATA.BATCH_SIZE, 3, config.DATA.IMG_SIZE, config.DATA.IMG_SIZE)) output_shape = tuple(context.get_binding_shape(1)) print(output_shape) d_output = torch.empty(output_shape, dtype=torch.float32).cuda() for idx, (images, target) in enumerate(data_loader): images = images.half().cuda(non_blocking=True) target = target.cuda(non_blocking=True) # compute output # output = model(images) context.execute_async_v2([images.data_ptr()] + [d_output.data_ptr()], stream) torch.cuda.synchronize() with torch.no_grad(): output = model.module.head(d_output) # measure accuracy and record loss loss = criterion(output, target) acc1, acc5 = accuracy(output, target, topk=(1, 5)) acc1 = reduce_tensor(acc1) acc5 = reduce_tensor(acc5) loss = reduce_tensor(loss) loss_meter.update(loss.item(), target.size(0)) acc1_meter.update(acc1.item(), target.size(0)) acc5_meter.update(acc5.item(), target.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if idx % config.PRINT_FREQ == 0: memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0) logger.info( f'Test: [{idx}/{len(data_loader)}]\t' f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' f'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t' f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t' f'Acc@5 {acc5_meter.val:.3f} ({acc5_meter.avg:.3f})\t' f'Mem {memory_used:.0f}MB') logger.info(f' * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}') return acc1_meter.avg, acc5_meter.avg, loss_meter.avg @torch.no_grad() def throughput(data_loader, model, logger): model.eval() for idx, (images, _) in enumerate(data_loader): images = images.cuda(non_blocking=True) batch_size = images.shape[0] for i in range(50): model(images) torch.cuda.synchronize() logger.info(f"throughput averaged with 30 times") tic1 = time.time() for i in range(30): model(images) torch.cuda.synchronize() tic2 = time.time() logger.info(f"batch_size {batch_size} throughput {30 * batch_size / (tic2 - tic1)}") return if __name__ == '__main__': args, config = parse_option() if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: rank = int(os.environ["RANK"]) world_size = int(os.environ['WORLD_SIZE']) print(f"RANK and WORLD_SIZE in environ: {rank}/{world_size}") else: rank = -1 world_size = -1 torch.cuda.set_device(config.LOCAL_RANK) torch.distributed.init_process_group(backend='nccl', init_method='env://', world_size=world_size, rank=rank) torch.distributed.barrier() seed = config.SEED + dist.get_rank() torch.manual_seed(seed) np.random.seed(seed) cudnn.benchmark = True # linear scale the learning rate according to total batch size, may not be optimal linear_scaled_lr = config.TRAIN.BASE_LR * config.DATA.BATCH_SIZE * dist.get_world_size() / 512.0 linear_scaled_warmup_lr = args.qat_lr * config.DATA.BATCH_SIZE * dist.get_world_size() / 512.0 linear_scaled_min_lr = config.TRAIN.MIN_LR * config.DATA.BATCH_SIZE * dist.get_world_size() / 512.0 # gradient accumulation also need to scale the learning rate if config.TRAIN.ACCUMULATION_STEPS > 1: linear_scaled_lr = linear_scaled_lr * config.TRAIN.ACCUMULATION_STEPS linear_scaled_warmup_lr = linear_scaled_warmup_lr * config.TRAIN.ACCUMULATION_STEPS linear_scaled_min_lr = linear_scaled_min_lr * config.TRAIN.ACCUMULATION_STEPS config.defrost() config.TRAIN.BASE_LR = linear_scaled_lr config.TRAIN.WARMUP_LR = linear_scaled_warmup_lr config.TRAIN.EPOCHS = args.num_epochs config.TRAIN.MIN_LR = linear_scaled_min_lr config.freeze() os.makedirs(config.OUTPUT, exist_ok=True) logger = create_logger(output_dir=config.OUTPUT, dist_rank=dist.get_rank(), name=f"{config.MODEL.NAME}") if dist.get_rank() == 0: path = os.path.join(config.OUTPUT, "config.json") with open(path, "w") as f: f.write(config.dump()) logger.info(f"Full config saved to {path}") main(config, args)
FasterTransformer-main
examples/pytorch/swin/Swin-Transformer-Quantization/main.py
# -------------------------------------------------------- # Swin Transformer # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ze Liu # -------------------------------------------------------- # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch import numpy as np import torch.distributed as dist from torchvision import datasets, transforms from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.data import Mixup from timm.data import create_transform from SwinTransformer.data.samplers import SubsetRandomSampler from SwinTransformer.data.build import build_dataset def build_val_loader(config): config.freeze() dataset_val, _ = build_dataset(is_train=False, config=config) # print(f"local rank {config.LOCAL_RANK} / global rank {dist.get_rank()} successfully build val dataset") indices = np.arange(0, len(dataset_val), 1) sampler_val = SubsetRandomSampler(indices) data_loader_val = torch.utils.data.DataLoader( dataset_val, sampler=sampler_val, batch_size=config.DATA.BATCH_SIZE, shuffle=False, num_workers=config.DATA.NUM_WORKERS, pin_memory=config.DATA.PIN_MEMORY, drop_last=False ) return dataset_val, data_loader_val def build_loader(config, args): config.defrost() dataset_train, config.MODEL.NUM_CLASSES = build_dataset(is_train=True, config=config) config.freeze() print(f"local rank {config.LOCAL_RANK} / global rank {dist.get_rank()} successfully build train dataset") dataset_val, _ = build_dataset(is_train=False, config=config) print(f"local rank {config.LOCAL_RANK} / global rank {dist.get_rank()} successfully build val dataset") num_tasks = dist.get_world_size() global_rank = dist.get_rank() if config.DATA.ZIP_MODE and config.DATA.CACHE_MODE == 'part': indices = np.arange(dist.get_rank(), len(dataset_train), dist.get_world_size()) sampler_train = SubsetRandomSampler(indices) else: sampler_train = torch.utils.data.DistributedSampler( dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True ) indices = np.arange(dist.get_rank(), len(dataset_val), dist.get_world_size()) sampler_val = SubsetRandomSampler(indices) if args.calib: data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=args.calib_batchsz, num_workers=config.DATA.NUM_WORKERS, pin_memory=config.DATA.PIN_MEMORY, drop_last=True, ) else: data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=config.DATA.BATCH_SIZE, num_workers=config.DATA.NUM_WORKERS, pin_memory=config.DATA.PIN_MEMORY, drop_last=True, ) data_loader_val = torch.utils.data.DataLoader( dataset_val, sampler=sampler_val, batch_size=config.DATA.BATCH_SIZE, shuffle=False, num_workers=config.DATA.NUM_WORKERS, pin_memory=config.DATA.PIN_MEMORY, drop_last=False ) # setup mixup / cutmix mixup_fn = None mixup_active = config.AUG.MIXUP > 0 or config.AUG.CUTMIX > 0. or config.AUG.CUTMIX_MINMAX is not None if mixup_active: mixup_fn = Mixup( mixup_alpha=config.AUG.MIXUP, cutmix_alpha=config.AUG.CUTMIX, cutmix_minmax=config.AUG.CUTMIX_MINMAX, prob=config.AUG.MIXUP_PROB, switch_prob=config.AUG.MIXUP_SWITCH_PROB, mode=config.AUG.MIXUP_MODE, label_smoothing=config.MODEL.LABEL_SMOOTHING, num_classes=config.MODEL.NUM_CLASSES) return dataset_train, dataset_val, data_loader_train, data_loader_val, mixup_fn
FasterTransformer-main
examples/pytorch/swin/Swin-Transformer-Quantization/data.py
# -------------------------------------------------------- # Swin Transformer # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ze Liu # -------------------------------------------------------- from .swin_transformer import SwinTransformer from .swin_transformer_v2 import SwinTransformerV2 def build_model(config): model_type = config.MODEL.TYPE if model_type == 'swin': model = SwinTransformer(img_size=config.DATA.IMG_SIZE, patch_size=config.MODEL.SWIN.PATCH_SIZE, in_chans=config.MODEL.SWIN.IN_CHANS, num_classes=config.MODEL.NUM_CLASSES, embed_dim=config.MODEL.SWIN.EMBED_DIM, depths=config.MODEL.SWIN.DEPTHS, num_heads=config.MODEL.SWIN.NUM_HEADS, window_size=config.MODEL.SWIN.WINDOW_SIZE, mlp_ratio=config.MODEL.SWIN.MLP_RATIO, qkv_bias=config.MODEL.SWIN.QKV_BIAS, qk_scale=config.MODEL.SWIN.QK_SCALE, drop_rate=config.MODEL.DROP_RATE, drop_path_rate=config.MODEL.DROP_PATH_RATE, ape=config.MODEL.SWIN.APE, patch_norm=config.MODEL.SWIN.PATCH_NORM, use_checkpoint=config.TRAIN.USE_CHECKPOINT, fused_window_process=config.FUSED_WINDOW_PROCESS) elif model_type == 'swinv2': model = SwinTransformerV2(img_size=config.DATA.IMG_SIZE, patch_size=config.MODEL.SWINV2.PATCH_SIZE, in_chans=config.MODEL.SWINV2.IN_CHANS, num_classes=config.MODEL.NUM_CLASSES, embed_dim=config.MODEL.SWINV2.EMBED_DIM, depths=config.MODEL.SWINV2.DEPTHS, num_heads=config.MODEL.SWINV2.NUM_HEADS, window_size=config.MODEL.SWINV2.WINDOW_SIZE, mlp_ratio=config.MODEL.SWINV2.MLP_RATIO, qkv_bias=config.MODEL.SWINV2.QKV_BIAS, drop_rate=config.MODEL.DROP_RATE, drop_path_rate=config.MODEL.DROP_PATH_RATE, ape=config.MODEL.SWINV2.APE, patch_norm=config.MODEL.SWINV2.PATCH_NORM, use_checkpoint=config.TRAIN.USE_CHECKPOINT, pretrained_window_sizes=config.MODEL.SWINV2.PRETRAINED_WINDOW_SIZES) else: raise NotImplementedError(f"Unknown model: {model_type}") return model
FasterTransformer-main
examples/pytorch/swin/Swin-Transformer-Quantization/models/build.py
from .build import build_model
FasterTransformer-main
examples/pytorch/swin/Swin-Transformer-Quantization/models/__init__.py
# -------------------------------------------------------- # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn from torch.nn.parameter import Parameter import torch.nn.init as init import torch.nn.functional as F import sys import math from pytorch_quantization.nn import QuantLinear, TensorQuantizer def gelu(x): return x * 0.5 * (1.0 + torch.erf(x / 1.41421)) #used only for triton inference def bias_gelu(bias, y): x = bias + y return x * 0.5 * (1.0 + torch.erf(x / 1.41421)) # used specifically for training since torch.nn.functional.gelu breaks ONNX export def bias_gelu_training(bias, y): x = bias + y return torch.nn.functional.gelu(x) # Breaks ONNX export def bias_tanh(bias, y): x = bias + y return torch.tanh(x) def swish(x): return x * torch.sigmoid(x) def bias_noact(bias, y): return bias + y #torch.nn.functional.gelu(x) # Breaks ONNX export ACT2FN = {"gelu": gelu, "bias_gelu": bias_gelu, "bias_tanh": bias_tanh, "relu": torch.nn.functional.relu, "swish": swish, "bias_noact": bias_noact} class QuantizedConv2d(nn.Module): r"""Conv2d with INT8 quantization """ __constants__ = ['bias'] def __init__(self, in_channel, out_channel, kernel_size, stride, bias=True): super(QuantizedConv2d, self).__init__() self.in_channel = in_channel self.out_channel = out_channel self.kernel_size = kernel_size self.stride = stride self.weight = Parameter(torch.Tensor(out_channel, in_channel, *kernel_size)) if bias: self.bias = Parameter(torch.Tensor(out_channel, 1, 1)) else: self.register_parameter('bias', None) self._input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self._weight_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_weight) self._aftergemm_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.reset_parameters() def reset_parameters(self): init.kaiming_normal_(self.weight, a=math.sqrt(5)) if self.bias is not None: fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight) bound = 1 / math.sqrt(fan_in) init.uniform_(self.bias, -bound, bound) def forward(self, input): input = self._input_quantizer(input) weight = self._weight_quantizer(self.weight) output = self._aftergemm_quantizer(F.conv2d(input, weight, bias=None, stride=self.stride)) if self.bias is None: return output else: return self.bias + output class LinearActivation(nn.Module): r"""Fused Linear and Activation Module. """ __constants__ = ['bias'] def __init__(self, in_features, out_features, act='gelu', bias=True, do_quant=True): super(LinearActivation, self).__init__() self.in_features = in_features self.out_features = out_features self.act_fn = nn.Identity() self.biased_act_fn = None if isinstance(act, str) or (sys.version_info[0] == 2 and isinstance(act, unicode)): if bias and not 'bias' in act: act = 'bias_' + act self.biased_act_fn = ACT2FN[act] else: self.act_fn = ACT2FN[act] else: self.act_fn = act self.weight = Parameter(torch.Tensor(out_features, in_features)) if bias: self.bias = Parameter(torch.Tensor(out_features)) else: self.register_parameter('bias', None) self.do_quant = do_quant if do_quant: self._input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self._weight_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_weight) self._aftergemm_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.reset_parameters() def reset_parameters(self): init.kaiming_normal_(self.weight, a=math.sqrt(5)) if self.bias is not None: fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight) bound = 1 / math.sqrt(fan_in) init.uniform_(self.bias, -bound, bound) def forward(self, input): if self.do_quant: input = self._input_quantizer(input) weight = self._weight_quantizer(self.weight) else: weight = self.weight if not self.bias is None: if self.do_quant: return self.biased_act_fn(self.bias, self._aftergemm_quantizer(F.linear(input, weight, None))) else: return self.biased_act_fn(self.bias, F.linear(input, weight, None)) else: if self.do_quant: return self.act_fn(self._aftergemm_quantizer(F.linear(input, weight, None))) else: return self.act_fn(F.linear(input, weight, None)) def extra_repr(self) -> str: return 'in_features={}, out_features={}, bias={}'.format( self.in_features, self.out_features, self.bias is not None )
FasterTransformer-main
examples/pytorch/swin/Swin-Transformer-Quantization/models/linear_activation.py
# -------------------------------------------------------- # Swin Transformer V2 # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ze Liu # -------------------------------------------------------- # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from .linear_activation import LinearActivation from timm.models.layers import DropPath, to_2tuple, trunc_normal_ import numpy as np QUANT = True if QUANT: from pytorch_quantization.nn import QuantLinear, TensorQuantizer class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = LinearActivation(in_features, hidden_features, act='noact') self.act = act_layer() self.fc2 = LinearActivation(hidden_features, out_features, act='noact') self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def window_partition(x, window_size): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows def window_reverse(windows, window_size, H, W): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ B = int(windows.shape[0] / (H * W / window_size / window_size)) x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x class WindowAttention(nn.Module): r""" Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: dim (int): Number of input channels. window_size (tuple[int]): The height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 pretrained_window_size (tuple[int]): The height and width of the window in pre-training. """ def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0., pretrained_window_size=[0, 0]): super().__init__() self.dim = dim self.window_size = window_size # Wh, Ww self.pretrained_window_size = pretrained_window_size self.num_heads = num_heads self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True) # mlp to generate continuous relative position bias self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True), nn.ReLU(inplace=True), nn.Linear(512, num_heads, bias=False)) # get relative_coords_table relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32) relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32) relative_coords_table = torch.stack( torch.meshgrid([relative_coords_h, relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2 if pretrained_window_size[0] > 0: relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1) relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1) else: relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1) relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1) relative_coords_table *= 8 # normalize to -8, 8 relative_coords_table = torch.sign(relative_coords_table) * torch.log2( torch.abs(relative_coords_table) + 1.0) / np.log2(8) self.register_buffer("relative_coords_table", relative_coords_table) # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww self.register_buffer("relative_position_index", relative_position_index) self.qkv = LinearActivation(dim, dim * 3, act=nn.Identity(), bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(dim)) self.v_bias = nn.Parameter(torch.zeros(dim)) else: self.q_bias = None self.v_bias = None self.attn_drop = nn.Dropout(attn_drop) self.proj = LinearActivation(dim, dim, act='noact') self.proj_drop = nn.Dropout(proj_drop) self.softmax = nn.Softmax(dim=-1) if QUANT: self.matmul_q_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.matmul_k_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.matmul_v_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.matmul_a_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.softmax_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.mha_q_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.mha_k_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) def forward(self, x, mask=None): """ Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None """ B_, N, C = x.shape qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) qkv = self.qkv(x) + qkv_bias qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) # cosine attention if QUANT: q = self.matmul_q_input_quantizer(q) k = self.matmul_k_input_quantizer(k) logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01))).exp() q = F.normalize(q, dim=-1) * logit_scale k = F.normalize(k, dim=-1).transpose(-2, -1) # attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)) if QUANT: q = self.mha_q_input_quantizer(q) k = self.mha_k_input_quantizer(k) attn = q @ k if QUANT: attn = self.softmax_input_quantizer(attn) # attn = attn * logit_scale relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads) relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww relative_position_bias = 16 * torch.sigmoid(relative_position_bias) attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nW = mask.shape[0] attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) if QUANT: attn = self.matmul_a_input_quantizer(attn) v = self.matmul_v_input_quantizer(v) x = (attn @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) x = self.proj_drop(x) return x def extra_repr(self) -> str: return f'dim={self.dim}, window_size={self.window_size}, ' \ f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}' def flops(self, N): # calculate flops for 1 window with token length of N flops = 0 # qkv = self.qkv(x) flops += N * self.dim * 3 * self.dim # attn = (q @ k.transpose(-2, -1)) flops += self.num_heads * N * (self.dim // self.num_heads) * N # x = (attn @ v) flops += self.num_heads * N * N * (self.dim // self.num_heads) # x = self.proj(x) flops += N * self.dim * self.dim return flops class SwinTransformerBlock(nn.Module): r""" Swin Transformer Block. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm pretrained_window_size (int): Window size in pre-training. """ def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, pretrained_window_size=0): super().__init__() self.dim = dim self.input_resolution = input_resolution self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio if min(self.input_resolution) <= self.window_size: # if window size is larger than input resolution, we don't partition windows self.shift_size = 0 self.window_size = min(self.input_resolution) assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" self.norm1 = norm_layer(dim) self.attn = WindowAttention( dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, pretrained_window_size=to_2tuple(pretrained_window_size)) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if self.shift_size > 0: # calculate attention mask for SW-MSA H, W = self.input_resolution img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 h_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) w_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) cnt = 0 for h in h_slices: for w in w_slices: img_mask[:, h, w, :] = cnt cnt += 1 mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 mask_windows = mask_windows.view(-1, self.window_size * self.window_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) else: attn_mask = None self.register_buffer("attn_mask", attn_mask) if QUANT: self.layernorm_input1_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.add1_local_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.add1_residual_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.layernorm_input2_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.add2_local_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.add2_residual_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) def forward(self, x): H, W = self.input_resolution B, L, C = x.shape assert L == H * W, "input feature has wrong size" shortcut = x x = x.view(B, H, W, C) # cyclic shift if self.shift_size > 0: shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) else: shifted_x = x # partition windows x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C # W-MSA/SW-MSA attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C # merge windows attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C # reverse cyclic shift if self.shift_size > 0: x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: x = shifted_x x = x.view(B, H * W, C) if QUANT: add1_local = self.drop_path(self.add1_local_input_quantizer(self.norm1(self.layernorm_input1_quantizer(x)))) add1_residual = self.add1_residual_input_quantizer(shortcut) x = add1_local + add1_residual add2_local = self.drop_path(self.add2_local_input_quantizer(self.norm2(self.layernorm_input2_quantizer(self.mlp(x))))) add2_residual = self.add2_residual_input_quantizer(x) x = add2_local + add2_residual return x x = shortcut + self.drop_path(self.norm1(x)) # FFN x = x + self.drop_path(self.norm2(self.mlp(x))) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" def flops(self): flops = 0 H, W = self.input_resolution # norm1 flops += self.dim * H * W # W-MSA/SW-MSA nW = H * W / self.window_size / self.window_size flops += nW * self.attn.flops(self.window_size * self.window_size) # mlp flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio # norm2 flops += self.dim * H * W return flops class PatchMerging(nn.Module): r""" Patch Merging Layer. Args: input_resolution (tuple[int]): Resolution of input feature. dim (int): Number of input channels. norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = LinearActivation(4 * dim, 2 * dim, act=nn.Identity(), bias=False) self.norm = norm_layer(2 * dim) def forward(self, x): """ x: B, H*W, C """ H, W = self.input_resolution B, L, C = x.shape assert L == H * W, "input feature has wrong size" assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." x = x.view(B, H, W, C) x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C x = self.reduction(x) x = self.norm(x) return x def extra_repr(self) -> str: return f"input_resolution={self.input_resolution}, dim={self.dim}" def flops(self): H, W = self.input_resolution flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim flops += H * W * self.dim // 2 return flops class BasicLayer(nn.Module): """ A basic Swin Transformer layer for one stage. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. pretrained_window_size (int): Local window size in pre-training. """ def __init__(self, dim, input_resolution, depth, num_heads, window_size, mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, pretrained_window_size=0): super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList([ SwinTransformerBlock(dim=dim, input_resolution=input_resolution, num_heads=num_heads, window_size=window_size, shift_size=0 if (i % 2 == 0) else window_size // 2, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer, pretrained_window_size=pretrained_window_size) for i in range(depth)]) # patch merging layer if downsample is not None: self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) else: self.downsample = None def forward(self, x): for blk in self.blocks: if self.use_checkpoint: x = checkpoint.checkpoint(blk, x) else: x = blk(x) if self.downsample is not None: x = self.downsample(x) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" def flops(self): flops = 0 for blk in self.blocks: flops += blk.flops() if self.downsample is not None: flops += self.downsample.flops() return flops def _init_respostnorm(self): for blk in self.blocks: nn.init.constant_(blk.norm1.bias, 0) nn.init.constant_(blk.norm1.weight, 0) nn.init.constant_(blk.norm2.bias, 0) nn.init.constant_(blk.norm2.weight, 0) class PatchEmbed(nn.Module): r""" Image to Patch Embedding Args: img_size (int): Image size. Default: 224. patch_size (int): Patch token size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None """ def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] self.img_size = img_size self.patch_size = patch_size self.patches_resolution = patches_resolution self.num_patches = patches_resolution[0] * patches_resolution[1] self.in_chans = in_chans self.embed_dim = embed_dim self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): B, C, H, W = x.shape # FIXME look at relaxing size constraints assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C if self.norm is not None: x = self.norm(x) return x def flops(self): Ho, Wo = self.patches_resolution flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) if self.norm is not None: flops += Ho * Wo * self.embed_dim return flops class SwinTransformerV2(nn.Module): r""" Swin Transformer A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - https://arxiv.org/pdf/2103.14030 Args: img_size (int | tuple(int)): Input image size. Default 224 patch_size (int | tuple(int)): Patch size. Default: 4 in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 embed_dim (int): Patch embedding dimension. Default: 96 depths (tuple(int)): Depth of each Swin Transformer layer. num_heads (tuple(int)): Number of attention heads in different layers. window_size (int): Window size. Default: 7 mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True drop_rate (float): Dropout rate. Default: 0 attn_drop_rate (float): Attention dropout rate. Default: 0 drop_path_rate (float): Stochastic depth rate. Default: 0.1 norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. ape (bool): If True, add absolute position embedding to the patch embedding. Default: False patch_norm (bool): If True, add normalization after patch embedding. Default: True use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False pretrained_window_sizes (tuple(int)): Pretrained window sizes of each layer. """ def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False, pretrained_window_sizes=[0, 0, 0, 0], **kwargs): super().__init__() self.num_classes = num_classes self.num_layers = len(depths) self.embed_dim = embed_dim self.ape = ape self.patch_norm = patch_norm self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) self.mlp_ratio = mlp_ratio # split image into non-overlapping patches self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None) num_patches = self.patch_embed.num_patches patches_resolution = self.patch_embed.patches_resolution self.patches_resolution = patches_resolution # absolute position embedding if self.ape: self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) trunc_normal_(self.absolute_pos_embed, std=.02) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule # build layers self.layers = nn.ModuleList() for i_layer in range(self.num_layers): layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer), input_resolution=(patches_resolution[0] // (2 ** i_layer), patches_resolution[1] // (2 ** i_layer)), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=self.mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], norm_layer=norm_layer, downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint, pretrained_window_size=pretrained_window_sizes[i_layer]) self.layers.append(layer) self.norm = norm_layer(self.num_features) self.avgpool = nn.AdaptiveAvgPool1d(1) self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) for bly in self.layers: bly._init_respostnorm() def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'absolute_pos_embed'} @torch.jit.ignore def no_weight_decay_keywords(self): return {"cpb_mlp", "logit_scale", 'relative_position_bias_table'} def forward_features(self, x): x = self.patch_embed(x) if self.ape: x = x + self.absolute_pos_embed x = self.pos_drop(x) for layer in self.layers: x = layer(x) x = self.norm(x) # B L C x = self.avgpool(x.transpose(1, 2)) # B C 1 x = torch.flatten(x, 1) return x def forward(self, x): x = self.forward_features(x) x = self.head(x) return x def flops(self): flops = 0 flops += self.patch_embed.flops() for i, layer in enumerate(self.layers): flops += layer.flops() flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers) flops += self.num_features * self.num_classes return flops
FasterTransformer-main
examples/pytorch/swin/Swin-Transformer-Quantization/models/swin_transformer_v2.py
# -------------------------------------------------------- # Swin Transformer # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ze Liu # -------------------------------------------------------- # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from numpy import short import torch import torch.nn as nn import torch.utils.checkpoint as checkpoint from .linear_activation import LinearActivation, QuantizedConv2d from timm.models.layers import DropPath, to_2tuple, trunc_normal_ QUANT = True if QUANT: from pytorch_quantization.nn import QuantLinear, TensorQuantizer class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = LinearActivation(in_features, hidden_features, act='noact') self.act = act_layer() self.fc2 = LinearActivation(hidden_features, out_features, act='noact') self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def window_partition(x, window_size): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows def window_reverse(windows, window_size, H, W): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ B = int(windows.shape[0] / (H * W / window_size / window_size)) x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x class WindowAttention(nn.Module): r""" Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: dim (int): Number of input channels. window_size (tuple[int]): The height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 """ def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.dim = dim self.window_size = window_size # Wh, Ww self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 # define a parameter table of relative position bias self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww self.register_buffer("relative_position_index", relative_position_index) self.qkv = LinearActivation(dim, dim * 3, act='noact') self.attn_drop = nn.Dropout(attn_drop) self.proj = LinearActivation(dim, dim, act='noact') self.proj_drop = nn.Dropout(proj_drop) trunc_normal_(self.relative_position_bias_table, std=.02) self.softmax = nn.Softmax(dim=-1) if QUANT: self.matmul_q_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.matmul_k_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.matmul_v_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.matmul_a_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.softmax_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) def forward(self, x, mask=None): """ Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None """ B_, N, C = x.shape qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) # Take the dot product between "query" and "key" to get the raw attention score if QUANT: attn = torch.matmul(self.matmul_q_input_quantizer(q), self.matmul_k_input_quantizer(k.transpose(-2, -1))) attn = self.scale * self.softmax_input_quantizer(attn) else: attn = self.scale * torch.matmul(q, k.transpose(-2, -1)) relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nW = mask.shape[0] attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) if QUANT: context_layer = torch.matmul(self.matmul_a_input_quantizer(attn), self.matmul_v_input_quantizer(v)) else: context_layer = torch.matmul(attn, v) x = context_layer.transpose(1, 2).reshape(B_, N, C) x = self.proj(x) x = self.proj_drop(x) return x def extra_repr(self) -> str: return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}' def flops(self, N): # calculate flops for 1 window with token length of N flops = 0 # qkv = self.qkv(x) flops += N * self.dim * 3 * self.dim # attn = (q @ k.transpose(-2, -1)) flops += self.num_heads * N * (self.dim // self.num_heads) * N # x = (attn @ v) flops += self.num_heads * N * N * (self.dim // self.num_heads) # x = self.proj(x) flops += N * self.dim * self.dim return flops class SwinTransformerBlock(nn.Module): r""" Swin Transformer Block. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.dim = dim self.input_resolution = input_resolution self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio if min(self.input_resolution) <= self.window_size: # if window size is larger than input resolution, we don't partition windows self.shift_size = 0 self.window_size = min(self.input_resolution) assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" self.norm1 = norm_layer(dim) self.attn = WindowAttention( dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if self.shift_size > 0: # calculate attention mask for SW-MSA H, W = self.input_resolution img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 h_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) w_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) cnt = 0 for h in h_slices: for w in w_slices: img_mask[:, h, w, :] = cnt cnt += 1 mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 mask_windows = mask_windows.view(-1, self.window_size * self.window_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) else: attn_mask = None self.register_buffer("attn_mask", attn_mask) if QUANT: self.layernorm_input1_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.add1_local_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.add1_residual_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.layernorm_input2_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.add2_local_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.add2_residual_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) def forward(self, x): H, W = self.input_resolution B, L, C = x.shape assert L == H * W, "input feature has wrong size" shortcut = x if QUANT: x = self.norm1(self.layernorm_input1_quantizer(x)) else: x = self.norm1(x) x = x.view(B, H, W, C) # cyclic shift if self.shift_size > 0: shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) else: shifted_x = x # partition windows x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C # W-MSA/SW-MSA attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C # merge windows attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C # reverse cyclic shift if self.shift_size > 0: x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: x = shifted_x x = x.view(B, H * W, C) # FFN if QUANT: add1_local = self.add1_local_input_quantizer(self.drop_path(x)) add1_residual = self.add1_residual_input_quantizer(shortcut) x = add1_local + add1_residual # Save output of Part 1 as residual shortcut2 = x # Part 2 ## LayerNorm2 x = self.norm2(self.layernorm_input2_quantizer(x)) ## 2-layer MLP x = self.drop_path(self.mlp(x)) ## Add residual add2_local = self.add2_local_input_quantizer(x) add2_residual = self.add2_residual_input_quantizer(shortcut2) x = add2_local + add2_residual else: x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" def flops(self): flops = 0 H, W = self.input_resolution # norm1 flops += self.dim * H * W # W-MSA/SW-MSA nW = H * W / self.window_size / self.window_size flops += nW * self.attn.flops(self.window_size * self.window_size) # mlp flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio # norm2 flops += self.dim * H * W return flops class PatchMerging(nn.Module): r""" Patch Merging Layer. Args: input_resolution (tuple[int]): Resolution of input feature. dim (int): Number of input channels. norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = LinearActivation(4 * dim, 2 * dim, act=nn.Identity(), bias=False, do_quant=True) self.norm = norm_layer(4 * dim) def forward(self, x): """ x: B, H*W, C """ H, W = self.input_resolution B, L, C = x.shape assert L == H * W, "input feature has wrong size" assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." x = x.view(B, H, W, C) x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C x = self.norm(x) x = self.reduction(x) return x def extra_repr(self) -> str: return f"input_resolution={self.input_resolution}, dim={self.dim}" def flops(self): H, W = self.input_resolution flops = H * W * self.dim flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim return flops class BasicLayer(nn.Module): """ A basic Swin Transformer layer for one stage. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. """ def __init__(self, dim, input_resolution, depth, num_heads, window_size, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False): super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList([ SwinTransformerBlock(dim=dim, input_resolution=input_resolution, num_heads=num_heads, window_size=window_size, shift_size=0 if (i % 2 == 0) else window_size // 2, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer) for i in range(depth)]) # patch merging layer if downsample is not None: self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) else: self.downsample = None def forward(self, x): for blk in self.blocks: if self.use_checkpoint: x = checkpoint.checkpoint(blk, x) else: x = blk(x) if self.downsample is not None: x = self.downsample(x) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" def flops(self): flops = 0 for blk in self.blocks: flops += blk.flops() if self.downsample is not None: flops += self.downsample.flops() return flops class PatchEmbed(nn.Module): r""" Image to Patch Embedding Args: img_size (int): Image size. Default: 224. patch_size (int): Patch token size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None """ def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None, do_quant=False): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] self.img_size = img_size self.patch_size = patch_size self.patches_resolution = patches_resolution self.num_patches = patches_resolution[0] * patches_resolution[1] self.in_chans = in_chans self.embed_dim = embed_dim if QUANT and do_quant: self.proj = QuantizedConv2d(in_chans, embed_dim, patch_size, patch_size, bias=True) else: self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): B, C, H, W = x.shape # FIXME look at relaxing size constraints assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C if self.norm is not None: x = self.norm(x) return x def flops(self): Ho, Wo = self.patches_resolution flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) if self.norm is not None: flops += Ho * Wo * self.embed_dim return flops class SwinTransformer(nn.Module): r""" Swin Transformer A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - https://arxiv.org/pdf/2103.14030 Args: img_size (int | tuple(int)): Input image size. Default 224 patch_size (int | tuple(int)): Patch size. Default: 4 in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 embed_dim (int): Patch embedding dimension. Default: 96 depths (tuple(int)): Depth of each Swin Transformer layer. num_heads (tuple(int)): Number of attention heads in different layers. window_size (int): Window size. Default: 7 mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None drop_rate (float): Dropout rate. Default: 0 attn_drop_rate (float): Attention dropout rate. Default: 0 drop_path_rate (float): Stochastic depth rate. Default: 0.1 norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. ape (bool): If True, add absolute position embedding to the patch embedding. Default: False patch_norm (bool): If True, add normalization after patch embedding. Default: True use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False """ def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False, **kwargs): super().__init__() self.num_classes = num_classes self.num_layers = len(depths) self.embed_dim = embed_dim self.ape = ape self.patch_norm = patch_norm self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) self.mlp_ratio = mlp_ratio # split image into non-overlapping patches self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None) num_patches = self.patch_embed.num_patches patches_resolution = self.patch_embed.patches_resolution self.patches_resolution = patches_resolution # absolute position embedding if self.ape: self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) trunc_normal_(self.absolute_pos_embed, std=.02) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule # build layers self.layers = nn.ModuleList() for i_layer in range(self.num_layers): layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer), input_resolution=(patches_resolution[0] // (2 ** i_layer), patches_resolution[1] // (2 ** i_layer)), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=self.mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], norm_layer=norm_layer, downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint) self.layers.append(layer) self.norm = norm_layer(self.num_features) self.avgpool = nn.AdaptiveAvgPool1d(1) self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'absolute_pos_embed'} @torch.jit.ignore def no_weight_decay_keywords(self): return {'relative_position_bias_table'} def forward_features(self, x): x = self.patch_embed(x) if self.ape: x = x + self.absolute_pos_embed x = self.pos_drop(x) for layer in self.layers: x = layer(x) x = self.norm(x) # B L C x = self.avgpool(x.transpose(1, 2)) # B C 1 x = torch.flatten(x, 1) return x def forward(self, x): x = self.forward_features(x) x = self.head(x) return x def flops(self): flops = 0 flops += self.patch_embed.flops() for i, layer in enumerate(self.layers): flops += layer.flops() flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers) flops += self.num_features * self.num_classes return flops
FasterTransformer-main
examples/pytorch/swin/Swin-Transformer-Quantization/models/swin_transformer.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import argparse import configparser import dataclasses import json import pathlib import time from typing import Dict, List import torch import tqdm import transformers from utils import bloom class TensorEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, torch.Tensor): return obj.tolist() return super().default(obj) class LambadaDataset(torch.utils.data.Dataset): """ LAMBADA dataset class. """ def __init__(self, path: str | pathlib.Path, tokenizer: transformers.PreTrainedTokenizerBase): self.tokenizer = tokenizer with open(path, 'r') as f: inputs, targets = zip(*[ json.loads(line)["text"] .strip('\n').rsplit(' ', 1) for line in f.readlines()]) # This whitespace preprocessing (additional space to the target) # is required. targets = [' ' + tgt for tgt in targets] self.encodings = self.tokenizer(list(inputs), targets, padding=True, return_token_type_ids=True, return_tensors='pt') def __len__(self): return len(self.encodings['input_ids']) def __getitem__(self, idx): return dict( input_ids=self.encodings['input_ids'][idx], attention_mask=self.encodings['attention_mask'][idx], token_type_ids=self.encodings['token_type_ids'][idx] ) @dataclasses.dataclass class Metric: acc: float @dataclasses.dataclass class RequestAndResult: prompt: str model_answer: str target: str input_ids: List[int] input_len: int output_len: int model_params: bloom.BloomParam infer_params: bloom.BloomInferParam output_ids: List[int] metrics: Metric def asdict(self): return dataclasses.asdict(self) class Timer: def __init__(self): self._start_times = {} self._total_elapsed_times = {} def start(self, tag='__default'): self._start_times[tag] = time.time() def stop(self, tag='__default'): elapsed_time = time.time() - self._start_times[tag] if tag not in self._total_elapsed_times: self._total_elapsed_times[tag] = 0 self._total_elapsed_times[tag] += elapsed_time return elapsed_time def elapsed_time_in_sec(self, tag='__default'): if tag not in self._total_elapsed_times: return None return self._total_elapsed_times[tag] def reset(self): self._start_times.clear() self._total_elapsed_times.clear() def get_args(): parser = argparse.ArgumentParser( 'Evaluation: LAMBADA Task', formatter_class=argparse.ArgumentDefaultsHelpFormatter) bloom.BloomParam.add_args_group(parser) bloom.BloomInferParam.add_args_group(parser) group = parser.add_argument_group('LAMBADA Task Parameters') group.add_argument( '--checkpoint-path', type=str, metavar='DIR', default=None, help='A directory of a converted pretrained checkpoint and model config ' 'If None, a model will inference by random weights.') group.add_argument( '--dataset-path', type=str, metavar='PATH', required=True, help="A file path to LAMBADA task dataset.") group.add_argument( '--output-path', type=str, metavar='PATH', default=None, help="Path to sample output file.") group.add_argument( "--tokenizer-path", type=str, metavar='DIR_OR_PATH', default=None, help='A file path of a pretrained tokenizer or a checkpoint directory ' 'of HF pretrained model.') group.add_argument( '--lib-path', type=str, metavar='PATH', default='./lib/libth_transformer.so', help='A FT library path to load `FasterTransformer.ParallelGptOp`') group.add_argument( '--test-hf', action='store_true', help='Run a huggingface model instead of an FT model. The checkpoint ' 'of the huggingface model is assumed to be at --tokenizer-path.') group.add_argument( '--acc-threshold', type=float, metavar='M', default=None, help='The minimum value of the expected accuracy of the LAMBADA ' 'evaluation for a test. If the achieved accuracy is less ' 'than given value, a value error will occurs.') group.add_argument( '--show-progress', action='store_true', help='Show evaluation progress') group.add_argument( '--inference-data-type', '--data-type', type=str, metavar='TYPE', default=None, choices=[None, 'fp32', 'fp16', 'bf16'], help='The data type to inference. If None, the data type follows the ' 'checkpoint data type.') group.add_argument( '--weights-data-type', type=str, metavar='TYPE', default=None, choices=[None, 'fp32', 'fp16'], help='The data type of FT checkpoint. If None, it will be retrieved ' 'from the config file in the checkpoint directory.') group.add_argument( '--int8_mode', type=int, default=0, choices=[0, 1], help='The level of quantization to perform.' ' 0: No quantization. All computation in data_type' ' 1: Quantize weights to int8, all compute occurs in fp16/bf16. Not supported when data_type is fp32') args = parser.parse_args() print('\n=================== Arguments ===================') for k, v in vars(args).items(): print(f' - {k.ljust(25, ".")}: {v}') print('=================================================') return args def get_model_and_tokenizer(args: argparse.Namespace): tokenizer_path = pathlib.Path(args.tokenizer_path) # HF requires left padding for a decoder-only model. padding_side = 'left' if args.test_hf else 'right' if tokenizer_path.is_dir(): # Load from the HF's pretrained model directory. tokenizer = transformers.BloomTokenizerFast.from_pretrained( args.tokenizer_path, padding_side=padding_side) else: # Directly load from a tokenizer json file. tokenizer = transformers.BloomTokenizerFast( tokenizer_file=tokenizer_path, padding_side=padding_side) # For open-ended generation, the pad token is sometimes replaced by the # eos token but the Bloom of HF requires as it is to correctly generate. if args.test_hf: # Load HF's pretrained model for testing. model = transformers.AutoModelForCausalLM.from_pretrained( args.tokenizer_path).cuda() return model, tokenizer checkpoint_path = pathlib.Path(args.checkpoint_path) config_path = checkpoint_path / 'config.ini' if config_path.exists(): # Read model params from config. cfg = configparser.ConfigParser() cfg.read(config_path) model_name = 'gpt' inference_data_type = args.inference_data_type if inference_data_type == None: inference_data_type = cfg.get(model_name, "weight_data_type") model_args = dict( head_num=cfg.getint(model_name, 'head_num'), size_per_head=cfg.getint(model_name, "size_per_head"), layer_num=cfg.getint(model_name, "num_layer"), tensor_para_size=cfg.getint(model_name, "tensor_para_size"), vocab_size=cfg.getint(model_name, "vocab_size"), start_id=cfg.getint(model_name, "start_id"), end_id=cfg.getint(model_name, "end_id"), weights_data_type=cfg.get(model_name, "weight_data_type"), layernorm_eps=cfg.getfloat(model_name, 'layernorm_eps'), inference_data_type=inference_data_type) else: inference_data_type = args.inference_data_type if inference_data_type == None: inference_data_type = args.weights_data_type model_args = dict(head_num=args.num_heads, size_per_head=args.size_per_head, vocab_size=args.vocab_size, start_id=args.start_id or tokenizer.bos_token_id, end_id=args.end_id or tokenizer.eos_token_id, layer_num=args.num_layers, tensor_para_size=args.tensor_para_size, weights_data_type=args.weights_data_type, inference_data_type=inference_data_type) # update common parameters model_args.update(dict( lib_path=args.lib_path, pipeline_para_size=args.pipeline_para_size, shared_contexts_ratio=args.shared_contexts_ratio, int8_mode=args.int8_mode )) print('[FT][INFO] Load BLOOM model') for k, v in model_args.items(): print(f' - {k.ljust(25, ".")}: {v}') # Check sanity and consistency between the model and tokenizer. checklist = ['head_num', 'size_per_head', 'vocab_size', 'layer_num', 'tensor_para_size', 'tensor_para_size', 'weights_data_type'] if None in [model_args[k] for k in checklist]: none_params = [p for p in checklist if model_args[p] is None] print(f'[FT][WARNING] Found None parameters {none_params}. They must ' f'be provided either by config file or CLI arguments.') if model_args['start_id'] != tokenizer.bos_token_id: print('[FT][WARNING] Given start_id is not matched with the bos token ' 'id of the pretrained tokenizer.') if model_args['end_id'] not in (tokenizer.pad_token_id, tokenizer.eos_token_id): print('[FT][WARNING] Given end_id is not matched with neither pad ' 'token id nor eos token id of the pretrained tokenizer.') model = bloom.Bloom(**model_args) if not model.load(ckpt_path=args.checkpoint_path): print('[FT][WARNING] Skip model loading since no checkpoints are found') return model, tokenizer def split_inputs_and_targets(entries: Dict[str, torch.LongTensor], pad_token_id: int, pad_to_left=False): input_ids = entries['input_ids'] attn_mask = entries['attention_mask'] token_type_ids = entries['token_type_ids'] # Split inputs and labels by token_type_ids. input_token_ids = [ ids[(mask == 1) & (type_ids == 0)] for ids, mask, type_ids in zip(input_ids, attn_mask, token_type_ids)] # FT allows int32 tensors. input_lengths = torch.tensor( [len(input_tokens) for input_tokens in input_token_ids]).int() max_length = input_lengths.max() input_token_ids = torch.stack([ torch.nn.functional.pad( token_ids, pad=[max_length - len(token_ids), 0] if pad_to_left else [0, max_length - len(token_ids)], mode='constant', value=pad_token_id ) for token_ids in input_token_ids]).int() target_token_ids = [ ids[(mask == 1) & (type_ids == 1)] for ids, mask, type_ids in zip(input_ids, attn_mask, token_type_ids)] return input_token_ids, input_lengths, target_token_ids @torch.no_grad() def main(): args = get_args() model, tokenizer = get_model_and_tokenizer(args) model.eval() dataset = LambadaDataset(args.dataset_path, tokenizer=tokenizer) data_loader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size) num_requests = 0 num_corrects = 0 results = {"output": {"lambada": []}, "results": {"lambada": {}}} timer = Timer() if args.show_progress: data_loader = tqdm.tqdm(data_loader) for entries in data_loader: input_token_ids, input_lengths, target_token_ids = \ split_inputs_and_targets(entries, tokenizer.pad_token_id, args.test_hf) batch_size = input_token_ids.shape[0] output_length = max([len(target) for target in target_token_ids]) params = bloom.BloomInferParam.from_args(args, batch_size) if args.test_hf: # Outputs (batch_size, seq_length) timer.start() outputs = model.generate(inputs=input_token_ids.cuda(), max_new_tokens=output_length, num_beams=args.beam_width, temperature=args.temperature, top_k=args.top_k, top_p=args.top_p, repetition_penalty=args.repetition_penalty, length_penalty=args.len_penalty) timer.stop() # output_token_ids: input/padding/output output_token_ids = outputs[:, input_token_ids.shape[1]:] output_token_ids = [ out[:len(tgt)].cpu() for out, tgt in zip(output_token_ids, target_token_ids)] else: param_dict = params.asdict() timer.start() outputs = model(start_ids=input_token_ids, start_lengths=input_lengths, output_len=output_length, **param_dict) timer.stop() if params.return_cum_log_probs or params.return_cum_log_probs > 0: outputs = outputs[0] # output_token_ids. # Slice the generated token ids of the 1st beam result. # output = input tokens + generated tokens. output_token_ids = [ out[0, length:length+len(tgt)].cpu() for out, length, tgt in zip(outputs, input_lengths, target_token_ids)] output_texts = tokenizer.batch_decode(output_token_ids) target_texts = tokenizer.batch_decode(target_token_ids) input_texts = tokenizer.batch_decode(input_token_ids) # Convert to output objects. for i in range(batch_size): out = output_token_ids[i] tgt = target_token_ids[i].cpu() is_correct = (tgt == out).all() num_corrects += int(is_correct) result = RequestAndResult( prompt=input_texts[i], model_answer=output_texts[i], target=target_texts[i], input_ids=input_token_ids[i].tolist(), input_len=input_lengths[i].item(), output_len=output_length, model_params=bloom.BloomParam.from_args(args), infer_params=params.slice_args(i), output_ids=out, metrics=Metric(acc=float(is_correct)) ) results['output']['lambada'].append(result.asdict()) num_requests += batch_size accuracy = num_corrects * 100 / num_requests # Reference: HF model's LAMBADA Accuracy for bloom-560m ~ 35.36% print(f'Accuracy: {accuracy:0.4f}% ({num_corrects}/{num_requests}) ' f'(elapsed time: {timer.elapsed_time_in_sec():.4f} sec)') # Dump prediction json results['results']['lambada']['acc'] = accuracy if args.output_path: output_path = pathlib.Path(args.output_path) output_path.parent.mkdir(parents=True, exist_ok=True) with output_path.open(mode='w') as f: json.dump(results, f, indent=2, cls=TensorEncoder) if args.acc_threshold is not None: assert accuracy >= args.acc_threshold, \ f'TEST FAIL the achieved accuracy ({accuracy:.2f}) is less ' \ f'than given threshold ({args.acc_threshold:.2f})' print('TEST PASS') if __name__ == "__main__": main()
FasterTransformer-main
examples/pytorch/gpt/bloom_lambada.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # Copyright (c) 2021, NAVER Corp. Authored by CLOVA. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from torch.nn.utils.rnn import pad_sequence import random import os import sys import argparse import configparser import timeit import torch import numpy as np dir_path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(dir_path + "/../../..") from examples.pytorch.gpt.utils.gpt_fp8 import GPTFp8 from examples.pytorch.gpt.utils.gpt import GPT, GPTWeights import examples.pytorch.gpt.utils.gpt_token_encoder as encoder from utils import word_list def main(): parser = argparse.ArgumentParser() parser.add_argument('--layer_num', type=int, default=24, help='number of layers') parser.add_argument('--output_len', type=int, default=32, help='output sequence length to generate.') parser.add_argument('--head_num', type=int, default=16, help='head number') parser.add_argument('--size_per_head', type=int, default=64, help='size per head') parser.add_argument('--vocab_size', type=int, default=50304, help='vocab size') parser.add_argument('--beam_width', type=int, default=1, help='beam width for beam search. Using sampling when beam width is 1.') parser.add_argument('--top_k', type=int, default=1, help='top k candidate num') parser.add_argument('--top_p', type=float, default=0., help='top p probability threshold') parser.add_argument('--temperature', type=float, default=1., help='temperature') parser.add_argument('--len_penalty', type=float, default=0., help='len_penalty') parser.add_argument('--beam_search_diversity_rate', type=float, default=0., help='beam_search_diversity_rate') parser.add_argument('--tensor_para_size', type=int, default=1, help='tensor parallel size') parser.add_argument('--pipeline_para_size', type=int, default=1, help='pipeline parallel size') parser.add_argument('--ckpt_path', type=str, default='../models/megatron-models/c-model/345m/1-gpu', help='path to the checkpoint file.') parser.add_argument('--lib_path', type=str, default='./lib/libth_transformer.so', help='path to the pyt_fastertransformer dynamic lib file.') parser.add_argument('--vocab_file', type=str, default="../models/gpt2-vocab.json", help='vocabulary file.') parser.add_argument('--merges_file', type=str, default="../models/gpt2-merges.txt", help='merges file.') parser.add_argument('--start_id', type=int, default=50256, help='start token id.') parser.add_argument('--end_id', type=int, default=50256, help='end token id.') parser.add_argument('--max_batch_size', type=int, default=8, help='max batch size.') parser.add_argument('--repetition_penalty', type=float, default=1., help='repetition penalty') parser.add_argument('--min_length', type=int, default=0, help='A minimum number of tokens to generate') parser.add_argument('--max_seq_len', type=int, default=1024, help='max sequence length for position embedding table.') parser.add_argument('--inference_data_type', '--data_type', type=str, choices=['fp32', 'fp16', 'bf16', 'fp8'], default='fp32') parser.add_argument('--time', action='store_true', help='whether or not to measure time elapsed.') parser.add_argument('--sample_input_file', type=str, default=None, help='path to sample input file. If not set, it runs with no context inputs.') parser.add_argument('--sample_output_file', type=str, default=None, help='path to sample output file.') parser.add_argument('--enable_random_seed', action='store_true', help='is enable the random seed.') parser.add_argument('--skip_end_tokens', dest='skip_end_tokens', action='store_true', help='Whether to remove or not end tokens in outputs.') parser.add_argument('--no_detokenize', dest='detokenize', action='store_false', help='Skip detokenizing output token ids.') parser.add_argument('--sparse', action='store_true', dest='sparse', help='Enable sparse matrix multiplication. (Need SM 8.0 or 8.6 and SPARSITY_SUPPORT=ON)') parser.add_argument('--use_jieba_tokenizer', action='store_true', help='use JiebaBPETokenizer as tokenizer.') parser.add_argument( '--weights_data_type', type=str, default="fp32", choices=["fp32", "fp16"], help='Data type of FT checkpoint weights', ) parser.add_argument('--return_cum_log_probs', type=int, default=0, choices=[0, 1, 2], help='Whether to compute the cumulative log probsbility of sentences.' ' 0: do not return the cumulative log probs ' ' 1: return the cumulative log probs of generated sequences' ' 2: return the cumulative log probs of sequences') parser.add_argument('--banned_words', type=str, default="", help='A comma separated list of tokens that should never be generated. Everything between the commas will' ' be tokenized and converted to token ids that will be banned.' ' Note that spaces before and after commas are included in tokenization.' ' An example highlighting this importance is that "the" and " the" are' ' two separate tokens some vocabularies.' ' Therefore, do ban a certain phrase, we would need to specify all tokens' ' in the vocabulary that include the phrase.' ' Example use: --banned_words "the, the,a,boy". This will ban the tokens "the", " the", "a" and "boy".' ' We can also use a pipe "|" to ban different tokens for different sentences in a batch.' ' Example: --banned_words "the, the|a,boy" will ban the tokens "the" and " the" in output sentence 1 and' ' ban the tokens "a" and "boy" in output sentence 2. When using this mode, we must specify a set of tokens to ban' ' for each sentence in the batch.', ) args = parser.parse_args() ckpt_config = configparser.ConfigParser() ckpt_config_path = os.path.join(args.ckpt_path, 'config.ini') if os.path.isfile(ckpt_config_path): ckpt_config.read(ckpt_config_path) if 'gpt' in ckpt_config.keys(): for args_key, config_key, func in [ ('layer_num', 'num_layer', ckpt_config.getint), ('max_seq_len', 'max_pos_seq_len', ckpt_config.getint), ('weights_data_type', 'weight_data_type', ckpt_config.get), ]: if config_key in ckpt_config['gpt'].keys(): prev_val = args.__dict__[args_key] args.__dict__[args_key] = func('gpt', config_key) print('Loading {} from config.ini, previous: {}, current: {}'.format( args_key, prev_val, args.__dict__[args_key])) else: print('Not loading {} from config.ini'.format(args_key)) for key in ['head_num', 'size_per_head', 'tensor_para_size']: if key in args.__dict__: prev_val = args.__dict__[key] args.__dict__[key] = ckpt_config.getint('gpt', key) print('Loading {} from config.ini, previous: {}, current: {}'.format( key, prev_val, args.__dict__[key])) else: print('Not loading {} from config.ini'.format(key)) if 'structure' in ckpt_config.keys(): gpt_with_moe = ckpt_config.getboolean('structure', 'gpt_with_moe') expert_num = ckpt_config.getint('structure', 'expert_num') moe_layer_index_str = ckpt_config.get('structure', 'moe_layers') if len(moe_layer_index_str) <= 2: moe_layer_index = [] else: moe_layer_index = [int(n) for n in moe_layer_index_str[1:-1].replace(' ', '').split(',')] moe_k = 1 else: gpt_with_moe = False expert_num = 0 moe_layer_index = [] moe_k = 0 layer_num = args.layer_num output_len = args.output_len head_num = args.head_num size_per_head = args.size_per_head vocab_size = args.vocab_size beam_width = args.beam_width top_k = args.top_k top_p = args.top_p temperature = args.temperature len_penalty = args.len_penalty beam_search_diversity_rate = args.beam_search_diversity_rate tensor_para_size = args.tensor_para_size pipeline_para_size = args.pipeline_para_size start_id = args.start_id end_id = args.end_id max_batch_size = args.max_batch_size max_seq_len = args.max_seq_len repetition_penalty = args.repetition_penalty min_length = args.min_length return_cum_log_probs = args.return_cum_log_probs return_output_length = return_cum_log_probs > 0 print("\n=============== Arguments ===============") for arg in vars(args): print("{}: {}".format(arg, getattr(args, arg))) print("=========================================\n") if args.use_jieba_tokenizer: from examples.pytorch.gpt.utils.tokenizer import JiebaBPETokenizer enc = JiebaBPETokenizer(args.vocab_file) else: enc = encoder.get_encoder(args.vocab_file, args.merges_file) bad_words_list=None if args.banned_words: batch_banned_words = args.banned_words.split("|") banned_words = [[banned_words_for_batch] for banned_words_for_batch in batch_banned_words] bad_words_list = torch.tensor(word_list.to_word_list_format(banned_words, enc)).to("cuda") # Inputs contexts = [] if args.sample_input_file: # conditional case with open(args.sample_input_file, "r") as f: contexts = f.read().splitlines() batch_size = min(len(contexts), max_batch_size) contexts = contexts[:batch_size] start_ids = [torch.IntTensor(enc.encode(c)) for c in contexts] else: # unconditional case batch_size = max_batch_size contexts = ['<|endoftext|>'] * batch_size start_ids = [torch.IntTensor([end_id])] * batch_size print("[INFO] batch size: {}".format(batch_size)) start_lengths = [len(ids) for ids in start_ids] start_ids = pad_sequence(start_ids, batch_first=True, padding_value=end_id) start_lengths = torch.IntTensor(start_lengths) if args.enable_random_seed == True: random_seed_tensor = torch.randint(0, 10000, size=[batch_size], dtype=torch.int64) else: random_seed_tensor = torch.zeros([batch_size], dtype=torch.int64) # Prepare model. if args.inference_data_type == 'fp8': gpt = GPTFp8(head_num, size_per_head, vocab_size, start_id, end_id, layer_num, max_seq_len, tensor_para_size, pipeline_para_size, lib_path=args.lib_path, ckpt_path=args.ckpt_path, weights_data_type=args.weights_data_type) else: gpt = GPT(head_num, size_per_head, vocab_size, start_id, end_id, layer_num, max_seq_len, tensor_para_size, pipeline_para_size, lib_path=args.lib_path, inference_data_type=args.inference_data_type, weights_data_type=args.weights_data_type, gpt_with_moe=gpt_with_moe, expert_num=expert_num, moe_k=moe_k, moe_layer_index=moe_layer_index) if not gpt.load(ckpt_path=args.ckpt_path): print("[WARNING] Checkpoint file not found. Model loading is skipped.") if args.sparse: gpt.sparse() with torch.no_grad(): # Generate tokens. tokens_batch = gpt( start_ids=start_ids, start_lengths=start_lengths, output_len=output_len, beam_width=beam_width, top_k=top_k * torch.ones(size=[batch_size], dtype=torch.int32), top_p=top_p * torch.ones(size=[batch_size], dtype=torch.float32), beam_search_diversity_rate=beam_search_diversity_rate * torch.ones(size=[batch_size], dtype=torch.float32), temperature=temperature * torch.ones(size=[batch_size], dtype=torch.float32), len_penalty=len_penalty * torch.ones(size=[batch_size], dtype=torch.float32), repetition_penalty=repetition_penalty * torch.ones(size=[batch_size], dtype=torch.float32), min_length=min_length * torch.ones(size=[batch_size], dtype=torch.int32), random_seed=random_seed_tensor, bad_words_list=bad_words_list, return_output_length=return_output_length, return_cum_log_probs=return_cum_log_probs) if return_cum_log_probs > 0: tokens_batch, _, cum_log_probs = tokens_batch print('[INFO] Log probs of sentences:', cum_log_probs) # only a thread (rank 0) gets the output, while the others are supposed to return None. if tokens_batch is not None: outputs = [] tokens_batch = tokens_batch.cpu().numpy() for i, (context, tokens) in enumerate(zip(contexts, tokens_batch)): for beam_id in range(beam_width): token = tokens[beam_id][start_lengths[i]:] # exclude context input from the output if args.skip_end_tokens: print('skip eos', len(tokens[beam_id]), start_lengths[i], len(token), len(token[token != end_id])) token = token[token != end_id] output = enc.decode(token) if args.detokenize else ' '.join(str(t) for t in token.tolist()) outputs.append(output) print(f"[INFO] batch {i}, beam {beam_id}: \n[Context]\n{context}\n\n[Output]\n{output}\n") if args.sample_output_file: with open(args.sample_output_file, "w+") as f: outputs = [o.replace("\n", "\\n") for o in outputs] f.writelines("\n".join(outputs)) # Measure inference time. if args.time: iterations = 10 # warmup for i in range(iterations): tokens_batch = gpt( start_ids=start_ids, start_lengths=start_lengths, output_len=output_len, beam_width=beam_width, top_k=top_k * torch.ones(size=[batch_size], dtype=torch.int32), top_p=top_p * torch.ones(size=[batch_size], dtype=torch.float32), beam_search_diversity_rate=beam_search_diversity_rate * torch.ones(size=[batch_size], dtype=torch.float32), temperature=temperature * torch.ones(size=[batch_size], dtype=torch.float32), len_penalty=len_penalty * torch.ones(size=[batch_size], dtype=torch.float32), repetition_penalty=repetition_penalty * torch.ones(size=[batch_size], dtype=torch.float32), min_length=min_length * torch.ones(size=[batch_size], dtype=torch.int32), random_seed=random_seed_tensor, bad_words_list=bad_words_list, return_output_length=return_output_length, return_cum_log_probs=return_cum_log_probs) batch_num = 0 token_num = 0 time = timeit.default_timer() for i in range(iterations): tokens_batch = gpt( start_ids=start_ids, start_lengths=start_lengths, output_len=output_len, beam_width=beam_width, top_k=top_k * torch.ones(size=[batch_size], dtype=torch.int32), top_p=top_p * torch.ones(size=[batch_size], dtype=torch.float32), beam_search_diversity_rate=beam_search_diversity_rate * torch.ones(size=[batch_size], dtype=torch.float32), temperature=temperature * torch.ones(size=[batch_size], dtype=torch.float32), len_penalty=len_penalty * torch.ones(size=[batch_size], dtype=torch.float32), repetition_penalty=repetition_penalty * torch.ones(size=[batch_size], dtype=torch.float32), min_length=min_length * torch.ones(size=[batch_size], dtype=torch.int32), random_seed=random_seed_tensor, bad_words_list=bad_words_list, return_output_length=return_output_length, return_cum_log_probs=return_cum_log_probs) batch_num += 1 for j, tokens in enumerate(tokens_batch): token_num += tokens.shape[-1] - start_lengths[j] time_elapsed = timeit.default_timer() - time throughput = token_num / time_elapsed print(f"[INFO] FT-GPT generates {batch_num} batches, taking {time_elapsed:0.3f} secs " f"to generate {token_num} tokens, {throughput:0.3f} tokens/sec.") if __name__ == '__main__': main()
FasterTransformer-main
examples/pytorch/gpt/gpt_example.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import argparse import numpy as np import os import sys import torch import torch.distributed as dist from datetime import datetime from datasets import load_dataset, load_metric from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig from tqdm import tqdm from utils import gpt_decoder dir_path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(dir_path + "/../../..") from examples.pytorch.gpt.utils.parallel_gpt import ParallelGPT def main(): parser = argparse.ArgumentParser() parser.add_argument('--ft_model_location', type=str, default='/models/GPT/HF/gpt2-xl/c-models') parser.add_argument('--hf_model_name', type=str, default='facebook/opt-350m') parser.add_argument('--summarize', action='store_true') parser.add_argument('--test_hf', action='store_true') parser.add_argument('--data_type', type=str, choices=['fp32', 'fp16', 'bf16'], default='fp32') parser.add_argument("--cache_path", type=str, default="/workdir/datasets/ccdv/") parser.add_argument("--max_ite", type=int, default=20) parser.add_argument('--lib_path', type=str, default='./lib/libth_transformer.so', help='path to the pyt_fastertransformer dynamic lib file.') parser.add_argument('--tensor_para_size', type=int, default=1, help='tensor parallel size') parser.add_argument('--pipeline_para_size', type=int, default=1, help='pipeline parallel size') parser.add_argument( '--weights_data_type', type=str, default="fp32", choices=["fp32", "fp16"], help='Data type of FT checkpoint weights', ) parser.add_argument( '--int8_mode', type=int, default=0, choices=[0, 1], help='The level of quantization to perform.' ' 0: No quantization. All computation in data_type' ' 1: Quantize weights to int8, all compute occurs in fp16/bf16. Not supported when data_type is fp32') parser.add_argument( '--use_gpt_decoder_ops', action='store_true', help='Use separate decoder FT operators instead of end-to-end model op.') parser.add_argument( '--use_fp32_to_compute_logit', action='store_true', help='Use FP32 data type for computing logit values when using gpt decoder ops. ' 'FT end-to-end GPT op always uses FP32 data type when computing logit.') parser.add_argument( '--rougeLsum_threshold', type=float, default=None, help='Threshold of FT rougeLsum score') parser.add_argument( '--verbose', action='store_true', help='Print all summary result.') args = parser.parse_args() np.random.seed(1) # rouge score use sampling to compute the score try: dist.init_process_group(backend='mpi') except: print("[INFO] WARNING: Have initialized the process group") rank = dist.get_rank() summarize = args.summarize test_hf = args.test_hf ft_model_location = args.ft_model_location hf_model_name = args.hf_model_name tokenizer = AutoTokenizer.from_pretrained(hf_model_name) tokenizer.pad_token = tokenizer.eos_token dataset_cnn = load_dataset("ccdv/cnn_dailymail", '3.0.0', cache_dir=args.cache_path) hf_config = vars(AutoConfig.from_pretrained(hf_model_name)) head_num = hf_config['num_attention_heads'] layer_num = hf_config['num_hidden_layers'] start_id = hf_config['bos_token_id'] end_id = hf_config['eos_token_id'] size_per_head = hf_config['hidden_size'] // head_num # opt specific params: some are fixed layernorm_eps = 1e-5 layernorm_type = 'pre_layernorm' if hf_config['do_layer_norm_before'] else 'post_layernorm' activation_type = 'Relu' if hf_config['activation_function'] == 'relu' else 'Gelu' # https://github.com/huggingface/transformers/blob/main/src/transformers/models/opt/modeling_opt.py#L498 # has post decoder layernorm when layernorm_type is pre layernorm has_post_decoder_layernorm = layernorm_type == 'pre_layernorm' if summarize: top_k = 2 output_len = 100 else: top_k = 1 output_len = 256 top_p = 0.0 temperature = 1 max_seq_len = hf_config['max_position_embeddings'] max_batch_size = 1 repetition_penalty = 1 random_seed = 0 vocab_size = hf_config['vocab_size'] tensor_para_size = args.tensor_para_size pipeline_para_size = args.pipeline_para_size lib_path = args.lib_path ckpt_path = os.path.join(ft_model_location, f'{tensor_para_size}-gpu') print(f"top_k: {top_k}") print(f"top_p: {top_p}") print(f"int8_mode: {args.int8_mode}") print(f"temperature: {temperature}") print(f"max_seq_len: {max_seq_len}") print(f"max_batch_size: {max_batch_size}") print(f"repetition_penalty: {repetition_penalty}") print(f"vocab_size: {vocab_size}") print(f"tensor_para_size: {tensor_para_size}") print(f"pipeline_para_size: {pipeline_para_size}") print(f"lib_path: {lib_path}") print(f"ckpt_path: {ckpt_path}") print(f"hf_config: {hf_config}") infer_decode_args = dict( beam_width=1, top_k=top_k * torch.ones(max_batch_size, dtype=torch.int32), top_p=top_p * torch.ones(max_batch_size, dtype=torch.float32), temperature=temperature * torch.ones(max_batch_size, dtype=torch.float32), repetition_penalty=repetition_penalty * torch.ones(max_batch_size, dtype=torch.float32), random_seed=random_seed * torch.ones(max_batch_size, dtype=torch.int64) ) if not args.use_gpt_decoder_ops: gpt = ParallelGPT(head_num, size_per_head, vocab_size, start_id, end_id, layer_num, max_seq_len, tensor_para_size, pipeline_para_size, lib_path, inference_data_type=args.data_type, layernorm_eps=layernorm_eps, layernorm_type=layernorm_type, activation_type=activation_type, has_post_decoder_layernorm=has_post_decoder_layernorm, int8_mode=args.int8_mode, weights_data_type=args.weights_data_type) if not gpt.load(ckpt_path=ckpt_path): print("[WARNING] Checkpoint file not found. Model loading is skipped.") else: gpt = gpt_decoder.Gpt( num_heads=head_num, size_per_head=size_per_head, num_layers=layer_num, vocab_size=vocab_size, start_id=start_id, end_id=end_id, tensor_para_size=tensor_para_size, pipeline_para_size=pipeline_para_size, lib_path=lib_path, max_seq_len=max_seq_len, layernorm_eps=layernorm_eps, layernorm_type=layernorm_type, activation_type=activation_type, has_post_decoder_layernorm=has_post_decoder_layernorm, int8_mode=args.int8_mode, inference_data_type=args.data_type, weights_data_type=args.weights_data_type, use_fp32_to_compute_logit=args.use_fp32_to_compute_logit) gpt.load(ckpt_path, args.data_type) if (test_hf and summarize) or not summarize: model = AutoModelForCausalLM.from_pretrained(hf_model_name) model.cuda() if args.data_type == 'fp16': model.half() elif args.data_type == 'bf16': model.bfloat16() def summarize_ft_e2e(datapoint): if summarize: line = datapoint['article'] + ' TL;DR: ' else: line = datapoint['article'] line = line.strip() line = line.replace(" n't", "n't") line_encoded = tokenizer.encode(line, return_tensors='pt') if summarize: line_encoded = line_encoded[:, -923:] else: line_encoded = line_encoded[:, -768:] line_encoded = line_encoded.type(torch.int32) with torch.no_grad(): output, ft_output_len = gpt(line_encoded, torch.IntTensor([len(line_encoded[0])]), output_len, return_output_length=True, **infer_decode_args) tokens = output[0][0][len(line_encoded[0]):ft_output_len[0]].cpu().numpy() output_lines = tokenizer.decode(output[0][0][len(line_encoded[0]):ft_output_len[0]]) output_lines = ".".join(output_lines.split('.')[:4]) + "." return output_lines, tokens def summarize_ft_sep(datapoint): if summarize: line = datapoint['article'] + ' TL;DR: ' else: line = datapoint['article'] line = line.strip() line = line.replace(" n't", "n't") line_encoded = tokenizer.encode(line, return_tensors='pt') if summarize: line_encoded = line_encoded[:, -923:] else: line_encoded = line_encoded[:, -768:] line_encoded = line_encoded.type(torch.int32).to(gpt.device) input_lengths = torch.tensor([len(line_encoded[0])], dtype=torch.int32, device=gpt.device) with torch.no_grad(): output_dict = gpt.generate(input_token_ids=line_encoded, input_lengths=input_lengths, gen_length=output_len, eos_token_id=tokenizer.eos_token_id, return_output_length=True, **infer_decode_args) output_token_ids = output_dict['output_token_ids'] output_lengths = output_dict['output_lengths'] tokens = output_token_ids[0, 0, input_lengths[0]:output_lengths[0]] output_lines = tokenizer.decode(tokens) output_lines = ".".join(output_lines.split('.')[:4]) + "." return output_lines, tokens.cpu().numpy() summarize_ft = summarize_ft_e2e if not args.use_gpt_decoder_ops else summarize_ft_sep def summarize_hf(datapoint): if summarize: line = datapoint['article'] + ' TL;DR: ' else: line = datapoint['article'] line = line.strip() line = line.replace(" n't", "n't") line_encoded = tokenizer.encode(line, return_tensors='pt') if summarize: line_encoded = line_encoded[:, -923:] else: line_encoded = line_encoded[:, -768:] # line_encoded = line_encoded.to(device_hf) line_encoded = line_encoded.cuda() with torch.no_grad(): output = model.generate(line_encoded, max_length=len(line_encoded[0]) + output_len, top_k=top_k, temperature=temperature, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id) tokens = output[0][len(line_encoded[0]):].cpu().numpy() output_lines = tokenizer.decode(output[0][len(line_encoded[0]):]) output_lines = ".".join(output_lines.split('.')[:4]) + "." return output_lines, tokens if summarize: datapoint = dataset_cnn['test'][0] summary, _ = summarize_ft(datapoint) print('---------------------------------------------------------') print('FT Generated : ') print(' Article : ', datapoint['article']) print('\n Highlights : ', datapoint['highlights']) print('\n Summary : ', summary) print('---------------------------------------------------------') if test_hf: summary, _ = summarize_hf(datapoint) print('---------------------------------------------------------') print('HF Generated : ') print(' Article : ', datapoint['article']) print('\n Highlights : ', datapoint['highlights']) print('\n Summary : ', summary) print('---------------------------------------------------------') if summarize: metric_ft = load_metric("rouge") metric_hf = load_metric("rouge") else: tokens = [] ft_time = 0.0 hf_time = 0.0 for data_point_idx in tqdm(range(1, 11490, int(11490 / args.max_ite))): try: datapoint = dataset_cnn['test'][data_point_idx] start_time = datetime.now() summary_ft, tokens_ft = summarize_ft(datapoint) stop_time = datetime.now() ft_time += (stop_time - start_time).total_seconds() if (test_hf and summarize) or not summarize: start_time = datetime.now() summary_hf, tokens_hf = summarize_hf(datapoint) stop_time = datetime.now() hf_time += (stop_time - start_time).total_seconds() if rank == 0: if summarize: metric_ft.add_batch(predictions=[summary_ft], references=[datapoint['highlights']]) if test_hf: metric_hf.add_batch(predictions=[summary_hf], references=[datapoint['highlights']]) else: tokens.append((tokens_ft, tokens_hf)) if args.verbose: print('-' * 100) print('FT Summary:', summary_ft) if test_hf: print('HF Summary:', summary_hf) except: print('Error with datapoint : ', data_point_idx) def compute_exact_match(tokens, n_tokens=[1, 10, 25, 50, 100, 150, 200, 250]): em_metrics = [] for t in n_tokens: errors = 0 total = 0 for ft_tokens, hf_tokens in tokens: if len(ft_tokens) > t and len(hf_tokens) > t: total = total + 1 if not np.array_equal(ft_tokens[:t], hf_tokens[:t]): errors = errors + 1 if total > 0: print(f"{t}-token exact match acc: {100*(1-errors/total):.2f}") em_metrics.append(1 - errors / total) else: em_metrics.append(np.nan) return em_metrics if rank == 0: if summarize: computed_metrics_ft = metric_ft.compute() if test_hf: computed_metrics_hf = metric_hf.compute() print(f'Hugging Face (total latency: {hf_time} sec)') for key in computed_metrics_hf.keys(): print(f'{key} : {computed_metrics_hf[key].mid[2]*100}') print(f'Faster Transformers (total latency: {ft_time} sec)') for key in computed_metrics_ft.keys(): print(f'{key} : {computed_metrics_ft[key].mid[2]*100}') if args.rougeLsum_threshold is not None: assert computed_metrics_ft["rougeLsum"].mid[2]*100 >= args.rougeLsum_threshold, "[INFO] TEST FAIL !" print(f"[INFO] TEST PASS !") else: em_metrics = compute_exact_match(tokens) if __name__ == '__main__': main()
FasterTransformer-main
examples/pytorch/gpt/opt_summarization.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import configparser import dataclasses import json import pathlib import typing import numpy as np import torch import transformers from utils.gpt import GptInitModelParameters, GptRuntimeModelParameters from utils.parallel_gpt import ParallelGPT class TensorEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, torch.Tensor): return obj.tolist() return super().default(obj) class LambadaDataset(torch.utils.data.Dataset): def __init__(self, path, tokenizer, seq_len): self.seq_len = seq_len self.tokenizer = tokenizer with open(path, "r") as f: texts = [json.loads(line)["text"] for line in f.readlines()] # this whitespace preprocessing (additional space and stripping) is required labels = [" " + text.split()[-1] for text in texts] inputs = [text[: text.rfind(label)].strip() for text, label in zip(texts, labels)] self.encodings = self.tokenizer( inputs, labels, padding="max_length", max_length=self.seq_len, return_token_type_ids=True, return_tensors="pt", ) def __len__(self): return self.encodings["input_ids"].shape[0] def __getitem__(self, idx): return { "input_ids": self.encodings["input_ids"][idx], "attention_mask": self.encodings["attention_mask"][idx], "token_type_ids": self.encodings["token_type_ids"][idx], } @dataclasses.dataclass class Metric: acc: float @dataclasses.dataclass class RequestAndResult: prompt: str model_answer: str target: str input_ids: typing.List[int] input_len: int output_len: int init_model_parameters: GptInitModelParameters runtime_model_parameters: GptRuntimeModelParameters output_ids: typing.List[int] metrics: Metric def _read_config_ini(args, checkpoint_path): config_reader = configparser.ConfigParser() config_ini_files_in_checkpoint_dir = list(checkpoint_path.rglob("config.ini")) if args.config_ini_path is None and not config_ini_files_in_checkpoint_dir: raise RuntimeError( f"Missing config.ini file in {checkpoint_path}. Use --config-ini-path to point config.ini to load" ) config_ini_path = pathlib.Path(args.config_ini_path or config_ini_files_in_checkpoint_dir[0]) if not config_ini_path.is_file(): raise FileNotFoundError(f"Missing {config_ini_path}") else: config_reader.read(config_ini_path.as_posix()) return config_reader def _get_model(args, config_reader): init_parameters = GptInitModelParameters.from_args(args, config_reader) print("\n=============== GPT params ===============") for key, value in dataclasses.asdict(init_parameters).items(): print(f"{key}: {value}") print(f"lib_path: {args.lib_path}") print("========================================") gpt_params = init_parameters.gpt_init_kwargs() gpt = ParallelGPT(**gpt_params, lib_path=args.lib_path) if not gpt.load(ckpt_path=args.checkpoint_path): print("[WARNING] Checkpoint file not found. Model loading is skipped.") if init_parameters.sparse: gpt.sparse() gpt.eval() return gpt def main(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--checkpoint-path", type=str, required=True, help="Path to FasterTransformer checkpoint dir") parser.add_argument("--lib-path", type=str, required=True, help="Path of FasterTransformer PyTorch GPT op library") parser.add_argument( "--config-ini-path", type=str, help="Path to config.ini file. If not provided <checkpoint_path>/config.ini will be used.", ) parser.add_argument("--lambada-path", type=str, help="LAMBADA task data path") parser.add_argument("--output-path", type=str, help="Path to sample output file.") parser.add_argument("--batch-size", type=int, default=1, help="Batch size") GptInitModelParameters.update_argparser(parser) GptRuntimeModelParameters.update_argparser(parser) args = parser.parse_args() print("\n============== Arguments ===============") for key, value in vars(args).items(): print(f"{key}: {value}") print("========================================") checkpoint_path = pathlib.Path(args.checkpoint_path) config_reader = _read_config_ini(args, checkpoint_path) gpt = _get_model(args, config_reader) vocab_path = checkpoint_path / "vocab.json" merges_path = checkpoint_path / "merges.txt" max_seq_len = config_reader.getint("ft_instance_hyperparameter", "max_seq_len") tokenizer = transformers.GPT2TokenizerFast(vocab_path.as_posix(), merges_path.as_posix()) tokenizer.add_special_tokens({"pad_token": tokenizer.eos_token}) if args.lambada_path: dataset = LambadaDataset(args.lambada_path, tokenizer=tokenizer, seq_len=max_seq_len) else: from datasets import load_dataset dataset = load_dataset("lambada", split="validation") data_loader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size) runtime_parameters = GptRuntimeModelParameters.from_args(args, config_reader) inference_parameters_dict = dataclasses.asdict(runtime_parameters) print("\n=========== Inference params ===========") for key, value in inference_parameters_dict.items(): print(f"{key}: {value}") print("========================================") beam_idx = 0 # use only 1st beam result requested_num = 0 correct_num = 0 results = {"output": {"lambada": []}, "results": {"lambada": {}}} with torch.no_grad(): for entries in data_loader: inputs_tokens_batch = [ input_ids[(attention_mask == 1) & (token_type_ids == 0)] for input_ids, attention_mask, token_type_ids in zip( entries["input_ids"], entries["attention_mask"], entries["token_type_ids"] ) ] labels_tokens_batch = [ input_ids[(attention_mask == 1) & (token_type_ids == 1)] for input_ids, attention_mask, token_type_ids in zip( entries["input_ids"], entries["attention_mask"], entries["token_type_ids"] ) ] inputs_tokens_batch_padded = [ torch.nn.functional.pad( input_tokens, pad=[0, (max_seq_len - input_tokens.shape[0])], mode="constant", value=tokenizer.pad_token_id, ) for input_tokens in inputs_tokens_batch ] input_tokens_lengths = [input_tokens.shape[0] for input_tokens in inputs_tokens_batch] # max is required due to scalar is used for output_seq_len input expected_tokens_lengths = max([label_tokens.shape[0] for label_tokens in labels_tokens_batch]) start_ids = torch.stack(inputs_tokens_batch_padded) # shape=(batch_size, max_seq_len) runtime_parameters = GptRuntimeModelParameters.from_args(args, config_reader, start_ids.shape[0]) inference_parameters_dict = dataclasses.asdict(runtime_parameters) start_ids = start_ids.to(torch.int32) result_all_tokens_batch = gpt( start_ids, torch.IntTensor(input_tokens_lengths), expected_tokens_lengths, **inference_parameters_dict, ) results_idxes = [ torch.nonzero(token_type_ids, as_tuple=True)[0] for token_type_ids in entries["token_type_ids"] ] results_tokens_batch = [ result_tokens_ids[beam_idx][result_idxes].cpu() for result_tokens_ids, result_idxes in zip(result_all_tokens_batch, results_idxes) ] labels_tokens_batch = [tokens.cpu() for tokens in labels_tokens_batch] results_tokens_batch = [tokens.cpu() for tokens in results_tokens_batch] result_text_batch = tokenizer.batch_decode(results_tokens_batch) input_text_batch = tokenizer.batch_decode(inputs_tokens_batch) label_text_batch = tokenizer.batch_decode(labels_tokens_batch) for idx in range(len(inputs_tokens_batch)): is_correct_answer = torch.all(labels_tokens_batch[idx] == results_tokens_batch[idx]) correct_num += int(is_correct_answer) result = RequestAndResult( prompt=input_text_batch[idx], model_answer=result_text_batch[idx], target=label_text_batch[idx], input_ids=list(map(int, inputs_tokens_batch[idx])), input_len=int(input_tokens_lengths[idx]), output_len=expected_tokens_lengths, init_model_parameters=GptInitModelParameters.from_args(args, config_reader), runtime_model_parameters=runtime_parameters.slice_args(idx), output_ids=list(map(int, result_all_tokens_batch[idx][beam_idx])), metrics=Metric(acc=float(is_correct_answer)), ) results["output"]["lambada"].append(dataclasses.asdict(result)) requested_num += len(inputs_tokens_batch) accuracy = correct_num * 100 / requested_num print(f"[INFO] accuracy: {accuracy:0.4f}% (total : {requested_num})") # Dump prediction json results["results"]["lambada"]["acc"] = accuracy if args.output_path: output_json_path = pathlib.Path(args.output_path) output_json_path.parent.mkdir(parents=True, exist_ok=True) with output_json_path.open(mode="w") as json_file: json.dump(results, json_file, indent=2, cls=TensorEncoder) print(f"[INFO] Detailed test results saved to {output_json_path}") if __name__ == "__main__": main()
FasterTransformer-main
examples/pytorch/gpt/lambada_task_example.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # Copyright (c) 2021, NAVER Corp. Authored by CLOVA. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import configparser import os import sys import timeit import torch from torch.nn.utils.rnn import pad_sequence dir_path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(os.path.join(dir_path, "../../..")) import examples.pytorch.gpt.utils.gpt_token_encoder as encoder from examples.pytorch.gpt.utils import comm from examples.pytorch.gpt.utils import gpt_decoder from examples.pytorch.gpt.utils.parallel_gpt import ParallelGPT from utils import word_list @torch.no_grad() def main(): parser = argparse.ArgumentParser() parser.add_argument('--layer_num', type=int, default=24, help='number of layers') parser.add_argument('--input_len', type=int, default=1, help='input sequence length to generate.') parser.add_argument('--output_len', type=int, default=32, help='output sequence length to generate.') parser.add_argument('--head_num', type=int, default=16, help='head number') parser.add_argument('--size_per_head', type=int, default=64, help='size per head') parser.add_argument('--vocab_size', type=int, default=50304, help='vocab size') parser.add_argument('--beam_width', type=int, default=1, help='beam width for beam search. Using sampling when beam width is 1.') parser.add_argument('--top_k', type=int, default=1, help='top k candidate num') parser.add_argument('--top_p', type=float, default=0., help='top p probability threshold') parser.add_argument('--temperature', type=float, default=1., help='temperature') parser.add_argument('--len_penalty', type=float, default=0., help='len_penalty') parser.add_argument('--beam_search_diversity_rate', type=float, default=0., help='beam_search_diversity_rate') parser.add_argument('--tensor_para_size', type=int, default=1, help='tensor parallel size') parser.add_argument('--pipeline_para_size', type=int, default=1, help='pipeline parallel size') parser.add_argument('--ckpt_path', type=str, default='../models/megatron-models/c-model/345m/1-gpu', help='path to the checkpoint file.') parser.add_argument('--lib_path', type=str, default='./lib/libth_transformer.so', help='path to the pyt_fastertransformer dynamic lib file.') parser.add_argument('--vocab_file', type=str, default="../models/gpt2-vocab.json", help='vocabulary file.') parser.add_argument('--merges_file', type=str, default="../models/gpt2-merges.txt", help='merges file.') parser.add_argument('--start_id', type=int, default=50256, help='start token id.') parser.add_argument('--end_id', type=int, default=50256, help='end token id.') parser.add_argument('--max_batch_size', type=int, default=8, help='max batch size.') parser.add_argument('--repetition_penalty', type=float, default=1., help='repetition penalty') parser.add_argument('--presence_penalty', type=float, default=0., help='presence penalty. Similar to repetition, but addive rather than multiplicative.') parser.add_argument('--min_length', type=int, default=0, help='A minimum number of tokens to generate') parser.add_argument('--max_seq_len', type=int, default=1024, help='max sequence length for position embedding table.') parser.add_argument('--inference_data_type', '--data_type', type=str, choices=['fp32', 'fp16', 'bf16'], default='fp32') parser.add_argument('--time', action='store_true', help='whether or not to measure time elapsed.') parser.add_argument('--sample_input_file', type=str, default=None, help='path to sample input file. If not set, it runs with no context inputs.') parser.add_argument('--sample_output_file', type=str, default=None, help='path to sample output file.') parser.add_argument('--enable_random_seed', action='store_true', help='is use the random seed for sentences in a batch.') parser.add_argument('--skip_end_tokens', dest='skip_end_tokens', action='store_true', help='Whether to remove or not end tokens in outputs.') parser.add_argument('--no_detokenize', dest='detokenize', action='store_false', help='Skip detokenizing output token ids.') parser.add_argument('--use_jieba_tokenizer', action='store_true', help='use JiebaBPETokenizer as tokenizer.') parser.add_argument('--int8_mode', type=int, default=0, choices=[0, 1], help='The level of quantization to perform.' ' 0: No quantization. All computation in data_type' ' 1: Quantize weights to int8, all compute occurs in fp16/bf16. Not supported when data_type is fp32') parser.add_argument( '--weights_data_type', type=str, default="fp32", choices=["fp32", "fp16"], help='Data type of FT checkpoint weights', ) parser.add_argument('--return_cum_log_probs', type=int, default=0, choices=[0, 1, 2], help='Whether to compute the cumulative log probsbility of sentences.' ' 0: do not return the cumulative log probs ' ' 1: return the cumulative log probs of generated sequences' ' 2: return the cumulative log probs of sequences') parser.add_argument('--shared_contexts_ratio', type=float, default=1.0, help='Triggers the shared context optimization when' 'compact_size <= shared_contexts_ratio * batch_size' 'A value of 0.0 deactivate the optimization') parser.add_argument('--banned_words', type=str, default="", help='A comma separated list of tokens that should never be generated. Everything between the commas will' ' be tokenized and converted to token ids that will be banned.' ' Note that spaces before and after commas are included in tokenization.' ' An example highlighting this importance is that "the" and " the" are' ' two separate tokens some vocabularies.' ' Therefore, do ban a certain phrase, we would need to specify all tokens' ' in the vocabulary that include the phrase.' ' Example use: --banned_words "the, the,a,boy". This will ban the tokens "the", " the", "a" and "boy".' ' We can also use a pipe "|" to ban different tokens for different sentences in a batch.' ' Example: --banned_words "the, the|a,boy" will ban the tokens "the" and " the" in output sentence 1 and' ' ban the tokens "a" and "boy" in output sentence 2. When using this mode, we must specify a set of tokens to ban' ' for each sentence in the batch.', ) parser.add_argument('--use_gpt_decoder_ops', action='store_true', help='Use separate decoder FT operators instead of end-to-end model op.') args = parser.parse_args() ckpt_config = configparser.ConfigParser() ckpt_config_path = os.path.join(args.ckpt_path, 'config.ini') if os.path.isfile(ckpt_config_path): ckpt_config.read(ckpt_config_path) if 'gpt' in ckpt_config.keys(): for args_key, config_key, func in [ ('layer_num', 'num_layer', ckpt_config.getint), ('max_seq_len', 'max_pos_seq_len', ckpt_config.getint), ('weights_data_type', 'weight_data_type', ckpt_config.get), ]: if config_key in ckpt_config['gpt'].keys(): prev_val = args.__dict__[args_key] args.__dict__[args_key] = func('gpt', config_key) print('Loading {} from config.ini, previous: {}, current: {}'.format( args_key, prev_val, args.__dict__[args_key])) else: print('Not loading {} from config.ini'.format(args_key)) for key in ['head_num', 'size_per_head', 'tensor_para_size']: if key in args.__dict__: prev_val = args.__dict__[key] args.__dict__[key] = ckpt_config.getint('gpt', key) print('Loading {} from config.ini, previous: {}, current: {}'.format( key, prev_val, args.__dict__[key])) else: print('Not loading {} from config.ini'.format(key)) if 'structure' in ckpt_config.keys(): gpt_with_moe = ckpt_config.getboolean('structure', 'gpt_with_moe') expert_num = ckpt_config.getint('structure', 'expert_num') moe_layer_index_str = ckpt_config.get('structure', 'moe_layers') if len(moe_layer_index_str) <= 2: moe_layer_index = [] else: moe_layer_index = [int(n) for n in moe_layer_index_str[1:-1].replace(' ', '').split(',')] moe_k = 1 else: gpt_with_moe = False expert_num = 0 moe_layer_index = [] moe_k = 0 layer_num = args.layer_num output_len = args.output_len head_num = args.head_num size_per_head = args.size_per_head vocab_size = args.vocab_size beam_width = args.beam_width top_k = args.top_k top_p = args.top_p temperature = args.temperature len_penalty = args.len_penalty beam_search_diversity_rate = args.beam_search_diversity_rate tensor_para_size = args.tensor_para_size pipeline_para_size = args.pipeline_para_size start_id = args.start_id end_id = args.end_id max_batch_size = args.max_batch_size max_seq_len = args.max_seq_len repetition_penalty = args.repetition_penalty presence_penalty = args.presence_penalty min_length = args.min_length weights_data_type = args.weights_data_type return_cum_log_probs = args.return_cum_log_probs return_output_length = return_cum_log_probs > 0 shared_contexts_ratio = args.shared_contexts_ratio print('\n=================== Arguments ===================') for k, v in vars(args).items(): print(f'{k.ljust(30, ".")}: {v}') print('=================================================\n') if args.use_jieba_tokenizer: from examples.pytorch.gpt.utils.tokenizer import JiebaBPETokenizer enc = JiebaBPETokenizer(args.vocab_file) else: enc = encoder.get_encoder(args.vocab_file, args.merges_file) torch.manual_seed(0) comm.initialize_model_parallel(args.tensor_para_size, args.pipeline_para_size) rank = comm.get_rank() device = comm.get_device() # Inputs contexts = [] if args.sample_input_file: # conditional case with open(args.sample_input_file, "r") as f: contexts = f.read().splitlines() batch_size = min(len(contexts), max_batch_size) contexts = contexts[:batch_size] start_ids = [torch.tensor(enc.encode(c), dtype=torch.int32, device=device) for c in contexts] else: # unconditional case batch_size = max_batch_size contexts = ['<|endoftext|>'] * batch_size start_ids = [torch.IntTensor([end_id for _ in range(args.input_len)])] * batch_size start_lengths = [len(ids) for ids in start_ids] start_ids = pad_sequence(start_ids, batch_first=True, padding_value=end_id) start_lengths = torch.IntTensor(start_lengths) # Prepare model. if not args.use_gpt_decoder_ops: gpt = ParallelGPT(head_num, size_per_head, vocab_size, start_id, end_id, layer_num, max_seq_len, tensor_para_size, pipeline_para_size, lib_path=args.lib_path, inference_data_type=args.inference_data_type, int8_mode=args.int8_mode, weights_data_type=weights_data_type, shared_contexts_ratio=shared_contexts_ratio, gpt_with_moe=gpt_with_moe, expert_num=expert_num, moe_k=moe_k, moe_layer_index=moe_layer_index) if not gpt.load(ckpt_path=args.ckpt_path): print("[WARNING] Checkpoint file not found. Model loading is skipped.") else: assert moe_layer_index == [] gpt = gpt_decoder.Gpt( num_heads=head_num, size_per_head=size_per_head, num_layers=layer_num, vocab_size=vocab_size, start_id=start_id, end_id=end_id, tensor_para_size=tensor_para_size, pipeline_para_size=pipeline_para_size, lib_path = args.lib_path, max_seq_len=max_seq_len, int8_mode=args.int8_mode, weights_data_type=args.weights_data_type) gpt.load(args.ckpt_path, args.inference_data_type) if args.enable_random_seed: random_seed_tensor = torch.randint(0, 10000, size=[batch_size], dtype=torch.int64) else: random_seed_tensor = torch.zeros([batch_size], dtype=torch.int64) bad_words_list=None if args.banned_words: batch_banned_words = args.banned_words.split("|") banned_words = [[banned_words_for_batch] for banned_words_for_batch in batch_banned_words] bad_words_list = torch.tensor(word_list.to_word_list_format(banned_words, enc)).to("cuda") repetition_penalty_vec = None if repetition_penalty == 1. else repetition_penalty * torch.ones(batch_size, dtype=torch.float32) presence_penalty_vec = None if presence_penalty == 0. else presence_penalty * torch.ones(batch_size, dtype=torch.float32) infer_decode_args = dict( beam_width=beam_width, top_k=top_k * torch.ones(batch_size, dtype=torch.int32), top_p=top_p * torch.ones(batch_size, dtype=torch.float32), temperature=temperature * torch.ones(batch_size, dtype=torch.float32), repetition_penalty=repetition_penalty_vec, presence_penalty=presence_penalty_vec, beam_search_diversity_rate=beam_search_diversity_rate * torch.ones(batch_size, dtype=torch.float32), len_penalty=len_penalty * torch.ones(size=[batch_size], dtype=torch.float32), bad_words_list=bad_words_list, min_length=min_length * torch.ones(size=[batch_size], dtype=torch.int32), random_seed=random_seed_tensor ) if not args.use_gpt_decoder_ops: def gpt_generate_fn(): tokens_batch = gpt(start_ids, start_lengths, output_len, return_output_length=return_output_length, return_cum_log_probs=return_cum_log_probs, **infer_decode_args) return tokens_batch else: def gpt_generate_fn(): output_dict = gpt.generate(input_token_ids=start_ids, input_lengths=start_lengths, gen_length=output_len, eos_token_id=end_id, return_output_length=return_output_length, return_log_probs=return_cum_log_probs, **infer_decode_args) return output_dict # Generate tokens. gen_outputs = gpt_generate_fn() if rank == 0: if not args.use_gpt_decoder_ops: if return_cum_log_probs > 0: tokens_batch, _, cum_log_probs = gen_outputs else: tokens_batch, cum_log_probs = gen_outputs, None else: tokens_batch = gen_outputs['output_token_ids'] cum_log_probs = gen_outputs['cum_log_probs'] if return_cum_log_probs > 0 else None if cum_log_probs is not None: print('[INFO] Log probs of sentences:', cum_log_probs) outputs = [] tokens_batch = tokens_batch.cpu().numpy() for i, (context, tokens) in enumerate(zip(contexts, tokens_batch)): for beam_id in range(beam_width): token = tokens[beam_id][start_lengths[i]:] # exclude context input from the output if args.skip_end_tokens: token = token[token != end_id] output = enc.decode(token) if args.detokenize else ' '.join(str(t) for t in token.tolist()) outputs.append(output) print(f'[INFO] batch {i}, beam {beam_id}:\n[Context]\n{context}\n\n[Output]\n{output}\n') if args.sample_output_file: with open(args.sample_output_file, "w+") as f: outputs = [o.replace("\n", "\\n") for o in outputs] f.writelines("\n".join(outputs)) # Measure inference time. if args.time: iterations = 10 for _ in range(iterations): gpt_generate_fn() time = timeit.default_timer() for _ in range(iterations): gpt_generate_fn() time_elapsed = timeit.default_timer() - time print(f'[INFO] GPT time costs: {time_elapsed * 1000 / iterations:.2f} ms') if __name__ == '__main__': main()
FasterTransformer-main
examples/pytorch/gpt/multi_gpu_gpt_example.py
# Modify from https://github.com/NVIDIA/Megatron-LM/blob/main/tasks/zeroshot_gpt/evaluate.py # coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """GPT zero-shot evaluation.""" import math import torch import os import sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))) dir_path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(dir_path + "/../../..") sys.path.append(dir_path + "/../../../3rdparty/Megatron-LM") from megatron import get_args from megatron.initialize import initialize_megatron from megatron import get_args from megatron import print_rank_0, is_last_rank from megatron import get_tokenizer from megatron import mpu from megatron.model import GPTModel from megatron.utils import get_ltor_masks_and_position_ids, unwrap_model from megatron.p2p_communication import recv_forward from tasks.finetune_utils import build_data_loader from tasks.zeroshot_gpt.datasets import build_dataset # These are needed to unwrap the model, would be nice to put these in megatron.utils if possible? from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP from megatron.model import DistributedDataParallel as LocalDDP from megatron.model import Float16Module from examples.pytorch.gpt.utils.gpt import GPT def get_tasks_args(parser): """Provide extra arguments required for tasks.""" group = parser.add_argument_group(title='tasks') group.add_argument('--task', type=str, required=True, help='Task name.') group.add_argument('--epochs', type=int, default=None, help='Number of finetunning epochs. Zero results in ' 'evaluation only.') group.add_argument('--pretrained-checkpoint', type=str, default=None, help='Pretrained checkpoint used for finetunning.') group.add_argument('--keep-last', action='store_true', help='Keep the last batch (maybe incomplete) in' 'the data loader') group.add_argument('--train-data', nargs='+', default=None, help='Whitespace separated paths or corpora names ' 'for training.') group.add_argument('--valid-data', nargs='*', default=None, help='path(s) to the validation data.') group.add_argument('--overlapping-eval', type=int, default=32, help='Sliding window for overlapping evaluation.') group.add_argument('--strict-lambada', action='store_true', help='Use more difficult formulation of lambada.') # Retriever args group.add_argument('--qa-data-dev', type=str, default=None, help='Path to the QA dataset dev file.') group.add_argument('--qa-data-test', type=str, default=None, help='Path to the QA dataset test file.') # Faiss arguments for retriever group.add_argument('--faiss-use-gpu', action='store_true', help='Whether create the FaissMIPSIndex on GPU') group.add_argument('--faiss-match', type=str, default='string', \ choices=['regex', 'string'], help="Answer matching '\ 'logic type") group.add_argument('--faiss-topk-retrievals', type=int, default=100, help='Number of blocks to use as top-k during retrieval') # finetune for retriever group.add_argument('--eval-micro-batch-size', type=int, default=None, help='Eval Batch size per model instance (local batch ' 'size). Global batch size is local batch size ' 'times data parallel size.') group.add_argument('--train-with-neg', action='store_true', help='Whether to use negative examples during model ' 'training') group.add_argument('--train-hard-neg', type=int, default=0, help='Number of hard negative examples to use during ' 'training') # parameters for Av.rank validation method # Following options/arguments have been taken directly from DPR codebase group.add_argument('--val-av-rank-hard-neg', type=int, default=30, help='Av.rank validation: how many hard negatives to' ' take from each question pool') group.add_argument('--val-av-rank-other-neg', type=int, default=30, help='Av.rank validation: how many other negatives to' ' take from each question pool') group.add_argument('--ckpt-path', type=str, required=True, help='c model checkpoint path for FasterTransformer.') group.add_argument('--lib-path', type=str, required=True, help='library path of FT op.') group.add_argument('--beam_width', type=int, required=True, help='beam width for beam search.') group.add_argument('--top_k', type=int, required=True, help='top k for sampling.') group.add_argument('--top_p', type=float, required=True, help='top p for sampling.') group.add_argument( '--weights_data_type', type=str, default="fp32", choices=["fp32", "fp16"], help='Data type of FT checkpoint weights', ) return parser def get_model_provider(eval_metric): """Based on evaluation metric set the parallel-output flag and return the model provider.""" def model_provider(pre_process=True, post_process=True): """Build the model.""" if eval_metric == 'loss': parallel_output = True elif eval_metric == 'accuracy': parallel_output = False else: raise NotImplementedError('output type for {} evaluation metric ' 'is not supported.'.format(eval_metric)) print_rank_0('building GPT model ...') model = GPTModel(num_tokentypes=0, parallel_output=parallel_output, pre_process=pre_process, post_process=post_process) return model return model_provider def process_batch(batch): """Process batch and produce inputs for the model.""" args = get_args() tokenizer = get_tokenizer() loss_mask = batch['pad_mask'].long().cuda().contiguous().byte() tokens_ = batch['text'].long().cuda().contiguous() labels = tokens_[:, 1:].contiguous() tokens = tokens_[:, :-1].contiguous() # Get the masks and position ids. attention_mask, _, position_ids = get_ltor_masks_and_position_ids( tokens, tokenizer.eod, args.reset_position_ids, args.reset_attention_mask, args.eod_mask_loss) return tokens, labels, attention_mask, position_ids, loss_mask def forward_step(batch, model, eval_metric, args): """Forward step.""" # Get the batch. tokens, labels, attention_mask, position_ids, loss_mask = process_batch( batch) # Tell the model what our actual batch size will be args = get_args() args.micro_batch_size = len(labels) input_tensor = recv_forward() # Forward pass through the model. unwrapped_model = unwrap_model( model, (torchDDP, LocalDDP, Float16Module)) unwrapped_model.set_input_tensor(input_tensor) start_lengths = torch.sum(tokens != model.end_id, axis=1).contiguous().int() input_len = torch.max(start_lengths).contiguous().int() output = [] random_seed_tensor = 0 * torch.ones([max_batch_size], dtype=torch.int64) for i in range(input_len): tmp_length = torch.ones(args.micro_batch_size) * (i + 1) tmp_length = tmp_length.cuda().int() tmp_start_lengths = torch.min(tmp_length, start_lengths).contiguous() input_ids = tokens[:,:(i + 1)].contiguous().int() output_id = model(input_ids, tmp_start_lengths, 1, args.top_k * torch.ones(size=[max_batch_size], dtype=torch.int32), args.top_p * torch.ones(size=[max_batch_size], dtype=torch.float32), 0.0 * torch.ones(size=[max_batch_size], dtype=torch.float32), 1.0 * torch.ones(size=[max_batch_size], dtype=torch.float32), 1.0 * torch.ones(size=[max_batch_size], dtype=torch.float32), 1.0 * torch.ones(size=[max_batch_size], dtype=torch.float32), random_seed_tensor) output.append(output_id[:,0,-1].reshape([-1, 1])) output = torch.cat((output), 1) padding = torch.ones(output.shape[0], labels.shape[1] - output.shape[1]).cuda().int() outputs = torch.cat((output, padding), 1) if mpu.is_pipeline_last_stage(): # For loss, return the unreduced loss. if eval_metric == 'loss': losses = mpu.vocab_parallel_cross_entropy( output.contiguous().float(), labels.contiguous()) loss = torch.sum( losses.view(-1) * loss_mask.contiguous().view(-1).float()) return loss # For accuracy, return the number of correctly predicted samples. if eval_metric == 'accuracy': correct = (outputs == labels).float() correct[(1 - loss_mask).bool()] = 1 correct = correct.prod(-1) return correct.sum() raise NotImplementedError('forward method for evaluation metric {} ' 'is not implemented.'.format(eval_metric)) return None def evaluate(data_loader, model, eval_metric, args): """Evaluation.""" args = get_args() # Turn on evaluation mode which disables dropout. model.eval() total_output = 0.0 with torch.no_grad(): # For all the batches in the dataset. for iteration, batch in enumerate(data_loader): if iteration % args.log_interval == 0: print_rank_0('> working on iteration: {}'.format(iteration)) # Forward evaluation. output = forward_step(batch, model, eval_metric, args) # Reduce across processes. if mpu.is_pipeline_last_stage(): torch.distributed.all_reduce(output, group=mpu.get_data_parallel_group()) total_output += output return total_output def evaluate_and_print_results(task, data_loader, model, eval_metric, args): """Evaluate and print results on screen.""" # Evaluate and get results. output = evaluate(data_loader, model, eval_metric, args) string = ' validation results on {} | '.format(task) if is_last_rank(): if eval_metric == 'loss': num_tokenized_tokens = data_loader.dataset.num_tokenized_tokens num_original_tokens = data_loader.dataset.num_original_tokens val_loss = output / (num_tokenized_tokens - 1) ppl = math.exp(min(20, val_loss)) token_ratio = (num_tokenized_tokens - 1) / (num_original_tokens - 1) adjusted_ppl = math.exp(min(20, val_loss * token_ratio)) string += 'avg loss: {:.4E} | '.format(val_loss) string += 'ppl: {:.4E} | '.format(ppl) string += 'adjusted ppl: {:.4E} | '.format(adjusted_ppl) string += 'token ratio: {} |'.format(token_ratio) elif eval_metric == 'accuracy': num_examples = len(data_loader.dataset) acc = output / num_examples string += 'number correct: {:.4E} | '.format(output) string += 'total examples: {:.4E} | '.format(num_examples) string += 'avg accuracy: {:.4E}'.format(acc) else: raise NotImplementedError('evaluation method for {} metric is not ' 'implemented yet.'.format(eval_metric)) length = len(string) + 1 print('-' * length) print(string) print('-' * length) def main(): """Main program.""" args = get_args() if args.num_layers_per_virtual_pipeline_stage is not None: print("Interleaved pipeline schedule is not yet supported for text generation.") exit() if args.task == 'LAMBADA': eval_metric = 'accuracy' elif args.task == 'WIKITEXT103': eval_metric = 'loss' else: raise NotImplementedError('{} task is not implemented.'.format( args.task)) tokenzier = get_tokenizer() # Set up model and load checkpoint. model = GPT(args.num_attention_heads, (int)(args.hidden_size / args.num_attention_heads), args.padded_vocab_size, tokenzier.eod, tokenzier.eod, args.num_layers, args.seq_length, 1, 1, "lib/libth_transformer.so", weights_data_type=args.weights_data_type) if not model.load(ckpt_path=args.ckpt_path): print("[ERROR] Checkpoint file not found at {}.".format(args.ckpt_path)) exit(-1) if args.fp16: assert not args.bf16 model.half() if args.bf16: assert not args.fp16 model.bfloat16() # Data stuff. dataset = build_dataset(args.task) dataloader = build_data_loader(dataset, args.micro_batch_size, args.num_workers, drop_last=False) # Run evaluation. evaluate_and_print_results(args.task, dataloader, model, eval_metric, args) print_rank_0('done :-)') if __name__ == '__main__': initialize_megatron(extra_args_provider=get_tasks_args) args = get_args() if args.num_layers_per_virtual_pipeline_stage is not None: print("Interleaved pipeline schedule is not yet supported for downstream tasks.") exit() main()
FasterTransformer-main
examples/pytorch/gpt/evaluate_zeroshot_gpt.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import configparser import json import os import numpy as np import sys import torch from datasets import load_dataset, load_metric from tqdm import tqdm from transformers import GPT2Tokenizer, GPT2LMHeadModel from utils import comm from utils import gpt_decoder from utils import profiler from utils.parallel_gpt import ParallelGPT from utils.gpt_fp8 import GPTFp8 def main(): parser = argparse.ArgumentParser() parser.add_argument('--ft_model_location', type=str, default='/models/GPT/HF/gpt2-xl/c-models') parser.add_argument('--hf_model_location', type=str, default='/models/GPT/HF/gpt2-xl/') parser.add_argument('--summarize', action='store_true') parser.add_argument('--test_hf', action='store_true') parser.add_argument('--data_type', type=str, choices=['fp32', 'fp16', 'bf16', 'fp8'], default='fp32') parser.add_argument("--cache_path", type=str, default="/workdir/datasets/ccdv/") parser.add_argument("--max_ite", type=int, default=20) parser.add_argument("--ft_use_hf_config", action="store_true", help="use the hyper-parameters from the hf model") parser.add_argument('--lib_path', type=str, default='./lib/libth_transformer.so', help='path to the pyt_fastertransformer dynamic lib file.') parser.add_argument('--tensor_para_size', type=int, default=1, help='tensor parallel size') parser.add_argument('--pipeline_para_size', type=int, default=1, help='pipeline parallel size') parser.add_argument( '--weights_data_type', type=str, default='fp32', choices=['fp32', 'fp16'], help='Data type of FT checkpoint weights') parser.add_argument( '--int8_mode', type=int, default=0, choices=[0, 1], help='The level of quantization to perform.' ' 0: No quantization. All computation in data_type' ' 1: Quantize weights to int8, all compute occurs in fp16/bf16. Not supported when data_type is fp32') parser.add_argument( '--use_gpt_decoder_ops', action='store_true', help='Use separate decoder FT operators instead of end-to-end model op.') parser.add_argument( '--use_fp32_to_compute_logit', action='store_true', help='Use FP32 data type for computing logit values when using gpt decoder ops. ' 'FT end-to-end GPT op always uses FP32 data type when computing logit.') parser.add_argument( '--rougeLsum_threshold', type=float, default=None, help='Threshold of FT rougeLsum score') parser.add_argument( '--verbose', action='store_true', help='Print all summary result.') args = parser.parse_args() np.random.seed(0) # rouge score use sampling to compute the score comm.initialize_model_parallel(args.tensor_para_size, args.pipeline_para_size) rank = comm.get_rank() summarize = args.summarize test_hf = args.test_hf ft_model_location = args.ft_model_location hf_model_location = args.hf_model_location tokenizer = GPT2Tokenizer.from_pretrained('gpt2') tokenizer.pad_token = tokenizer.eos_token dataset_cnn = load_dataset("ccdv/cnn_dailymail", '3.0.0', cache_dir=args.cache_path) hf_config = json.load(open(os.path.join(hf_model_location, 'config.json'), 'r')) ft_config = None head_num = hf_config['n_head'] layer_num = hf_config['n_layer'] start_id = hf_config['bos_token_id'] end_id = hf_config['eos_token_id'] size_per_head = hf_config['n_embd'] // head_num if not args.ft_use_hf_config: ft_config = configparser.ConfigParser() assert ft_config.read(os.path.join(ft_model_location, '1-gpu/config.ini')) != [], "[ERROR] fail to read the config.ini of model" head_num = ft_config.getint('gpt', 'head_num') layer_num = ft_config.getint('gpt', 'num_layer') start_id = ft_config.getint('gpt', 'start_id') # TODO: get this from the tokenizer end_id = ft_config.getint('gpt', 'end_id') # TODO: get this from the tokenizer size_per_head = ft_config.getint('gpt', 'size_per_head') if summarize: top_k = 2 output_len = 100 else: top_k = 1 output_len = 256 if args.data_type == "fp8": top_k = 1 top_p = 0.0 random_seed = 5 temperature = 1 max_seq_len = hf_config['n_ctx'] if args.ft_use_hf_config else ft_config.getint('gpt', 'max_pos_seq_len') max_batch_size = 1 repetition_penalty = 1 vocab_size = 50257 if not args.ft_use_hf_config and ft_config.has_option('gpt', 'vocab_size'): vocab_size = ft_config.getint('gpt', 'vocab_size', fallback=vocab_size) tensor_para_size = args.tensor_para_size pipeline_para_size = args.pipeline_para_size lib_path = args.lib_path ckpt_path = os.path.join(ft_model_location, f'{tensor_para_size}-gpu') print(f"top_k: {top_k}") print(f"top_p: {top_p}") print(f"int8_mode: {args.int8_mode}") print(f"random_seed: {random_seed}") print(f"temperature: {temperature}") print(f"max_seq_len: {max_seq_len}") print(f"max_batch_size: {max_batch_size}") print(f"repetition_penalty: {repetition_penalty}") print(f"vocab_size: {vocab_size}") print(f"tensor_para_size: {tensor_para_size}") print(f"pipeline_para_size: {pipeline_para_size}") print(f"lib_path: {lib_path}") print(f"ckpt_path: {ckpt_path}") print(f"hf_config: {hf_config}") infer_decode_args = dict( beam_width=1, top_k=top_k * torch.ones(max_batch_size, dtype=torch.int32), top_p=top_p * torch.ones(max_batch_size, dtype=torch.float32), temperature=temperature * torch.ones(max_batch_size, dtype=torch.float32), repetition_penalty=repetition_penalty * torch.ones(max_batch_size, dtype=torch.float32), random_seed=random_seed * torch.ones(max_batch_size, dtype=torch.int64) ) random_seed_tensor = random_seed * torch.ones([max_batch_size], dtype=torch.int64) if args.data_type == 'fp8': gpt = GPTFp8(head_num, size_per_head, vocab_size, start_id, end_id, layer_num, max_seq_len, tensor_para_size, pipeline_para_size, lib_path=lib_path, ckpt_path=ckpt_path, int8_mode=0, weights_data_type=args.weights_data_type) else: if not args.use_gpt_decoder_ops: gpt = ParallelGPT(head_num, size_per_head, vocab_size, start_id, end_id, layer_num, max_seq_len, tensor_para_size, pipeline_para_size, lib_path=lib_path, inference_data_type=args.data_type, int8_mode=args.int8_mode, weights_data_type=args.weights_data_type) if not gpt.load(ckpt_path=ckpt_path): print("[WARNING] Checkpoint file not found. Model loading is skipped.") else: gpt = gpt_decoder.Gpt( num_heads=head_num, size_per_head=size_per_head, num_layers=layer_num, vocab_size=vocab_size, start_id=start_id, end_id=end_id, tensor_para_size=tensor_para_size, pipeline_para_size=pipeline_para_size, lib_path=lib_path, max_seq_len=max_seq_len, int8_mode = args.int8_mode, inference_data_type=args.data_type, weights_data_type=args.weights_data_type, use_fp32_to_compute_logit=args.use_fp32_to_compute_logit) gpt.load(ckpt_path, args.data_type) if (test_hf and summarize) or not summarize: model = GPT2LMHeadModel.from_pretrained(hf_model_location) model.cuda() if args.data_type == 'fp16': model.half() elif args.data_type == 'bf16': model.bfloat16() def summarize_ft_e2e(datapoint): if summarize: line = datapoint['article'] + ' TL;DR: ' else: line = datapoint['article'] line = line.strip() line = line.replace(" n't", "n't") line_encoded = tokenizer.encode(line, return_tensors='pt') if summarize: line_encoded = line_encoded[:, -923:] else: line_encoded = line_encoded[:, -768:] line_encoded = line_encoded.type(torch.int32) with torch.no_grad(): output, ft_output_len = gpt(line_encoded, torch.IntTensor([len(line_encoded[0])]), output_len, return_output_length=True, **infer_decode_args) tokens = output[0][0][len(line_encoded[0]):ft_output_len[0]].cpu().numpy() output_lines = tokenizer.decode(output[0][0][len(line_encoded[0]):ft_output_len[0]]) output_lines = ".".join(output_lines.split('.')[:4]) + "." return output_lines, tokens def summarize_ft_sep(datapoint): if summarize: line = datapoint['article'] + ' TL;DR: ' else: line = datapoint['article'] line = line.strip() line = line.replace(" n't", "n't") line_encoded = tokenizer.encode(line, return_tensors='pt') if summarize: line_encoded = line_encoded[:, -923:] else: line_encoded = line_encoded[:, -768:] line_encoded = line_encoded.type(torch.int32).to(gpt.device) input_lengths = torch.tensor([len(line_encoded[0])], dtype=torch.int32, device=gpt.device) with torch.no_grad(): output_dict = gpt.generate(input_token_ids=line_encoded, input_lengths=input_lengths, gen_length=output_len, eos_token_id=tokenizer.eos_token_id, return_output_length=True, **infer_decode_args) output_token_ids = output_dict['output_token_ids'] output_lengths = output_dict['output_lengths'] tokens = output_token_ids[0, 0, input_lengths[0]:output_lengths[0]] output_lines = tokenizer.decode(tokens) output_lines = ".".join(output_lines.split('.')[:4]) + "." return output_lines, tokens.cpu().numpy() summarize_ft = summarize_ft_e2e if not args.use_gpt_decoder_ops else summarize_ft_sep def summarize_hf(datapoint): if summarize: line = datapoint['article'] + ' TL;DR: ' else: line = datapoint['article'] line = line.strip() line = line.replace(" n't", "n't") line_encoded = tokenizer.encode(line, return_tensors='pt') if summarize: line_encoded = line_encoded[:, -923:] else: line_encoded = line_encoded[:, -768:] line_encoded = line_encoded.cuda() with torch.no_grad(): output = model.generate(line_encoded, max_length=len(line_encoded[0]) + output_len, top_k=top_k, temperature=temperature, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id) tokens = output[0][len(line_encoded[0]):].cpu().numpy() output_lines = tokenizer.decode(output[0][len(line_encoded[0]):]) output_lines = ".".join(output_lines.split('.')[:4]) + "." return output_lines, tokens if summarize: datapoint = dataset_cnn['test'][0] summary, _ = summarize_ft(datapoint) print('---------------------------------------------------------') print('FT Generated : ') print(' Article : ', datapoint['article']) print('\n Highlights : ', datapoint['highlights']) print('\n Summary : ', summary) print('---------------------------------------------------------') if test_hf: summary, _ = summarize_hf(datapoint) print('---------------------------------------------------------') print('HF Generated : ') print(' Article : ', datapoint['article']) print('\n Highlights : ', datapoint['highlights']) print('\n Summary : ', summary) print('---------------------------------------------------------') if summarize: metric_ft = load_metric("rouge") metric_hf = load_metric("rouge") else: tokens = [] for data_point_idx in tqdm(range(1, 11490, int(11490 / args.max_ite))): try: datapoint = dataset_cnn['test'][data_point_idx] profiler.start('ft') summary_ft, tokens_ft = summarize_ft(datapoint) profiler.stop('ft') if (test_hf and summarize) or not summarize: profiler.start('hf') summary_hf, tokens_hf = summarize_hf(datapoint) profiler.stop('hf') if rank == 0: if summarize: metric_ft.add_batch(predictions=[summary_ft], references=[datapoint['highlights']]) if test_hf: metric_hf.add_batch(predictions=[summary_hf], references=[datapoint['highlights']]) else: assert test_hf tokens.append((tokens_ft, tokens_hf)) if args.verbose: print('-' * 100) print('FT Summary:', summary_ft) if test_hf: print('HF Summary:', summary_hf) except: print('Error with datapoint : ', data_point_idx) def compute_exact_match(tokens, n_tokens=[1, 10, 25, 50, 100, 150, 200, 250]): em_metrics = [] for t in n_tokens: errors = 0 total = 0 for ft_tokens, hf_tokens in tokens: if len(ft_tokens) > t and len(hf_tokens) > t: total = total + 1 if not np.array_equal(ft_tokens[:t], hf_tokens[:t]): errors = errors + 1 if total > 0: print(f"{t}-token exact match acc: {100*(1-errors/total):.2f}") em_metrics.append(1 - errors / total) else: em_metrics.append(np.nan) return em_metrics if rank == 0: if summarize: computed_metrics_ft = metric_ft.compute() if test_hf: computed_metrics_hf = metric_hf.compute() print(f'Hugging Face (total latency: {profiler.elapsed_time_in_sec("hf")} sec)') for key in computed_metrics_hf.keys(): print(f'{key} : {computed_metrics_hf[key].mid[2]*100}') print(f'Faster Transformers (total latency: {profiler.elapsed_time_in_sec("ft")} sec)') for key in computed_metrics_ft.keys(): print(f'{key} : {computed_metrics_ft[key].mid[2]*100}') if args.rougeLsum_threshold is not None: assert computed_metrics_ft["rougeLsum"].mid[2]*100 >= args.rougeLsum_threshold, "[INFO] TEST FAIL !" print(f"[INFO] TEST PASS !") else: em_metrics = compute_exact_match(tokens) if args.verbose: profiler.summary() if __name__ == '__main__': main()
FasterTransformer-main
examples/pytorch/gpt/gpt_summarization.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import os dir_path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(dir_path + "/../../../..") from examples.tensorflow.gpt.utils import gpt_token_encoder as encoder import fire import numpy as np def convert_token( vocab_file="../models/gpt2-vocab.json", bpe_file="../models/gpt2-merges.txt", out_file="out", max_input_length=-1, text_out_file=None, ): enc = encoder.get_encoder(vocab_file, bpe_file) tokens_batch = np.loadtxt(out_file, dtype=np.int32) end_id = 50256 outputs = [] if(tokens_batch.ndim == 1): tokens_batch = tokens_batch.reshape([1, -1]) for batch_num, tokens in enumerate(tokens_batch): if max_input_length > -1: end_index = np.where(tokens[max_input_length:] == end_id)[0] else: end_index = [] end_pos = len(tokens) if len(end_index) > 0: end_pos = end_index[0] print(f"[INFO] batch {batch_num}: \n[input]{enc.decode(tokens[:16])}\n[output]{enc.decode(tokens[16:end_pos])}") outputs.append(enc.decode(tokens[:end_pos])) if text_out_file != None: with open(text_out_file, "w+") as f: f.writelines("\n".join(outputs)) # return tokens_batch if __name__ == "__main__": fire.Fire(convert_token)
FasterTransformer-main
examples/pytorch/gpt/utils/gpt_token_converter.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.distributed as dist def get_world_size(): return dist.get_world_size() if dist.is_initialized() else 1 def get_rank(): return dist.get_rank() if dist.is_initialized() else 0 def get_device_count(): return torch.cuda.device_count() def get_device(): return torch.cuda.current_device() class ModelParallelGroup: def __init__(self, tensor_para_size: int, pipeline_para_size: int): self.check_parallel_size_validity(tensor_para_size, pipeline_para_size) rank = get_rank() device = rank % get_device_count() torch.cuda.set_device(device) # tp: tensor parallel, pp: pipeline parallel. self.tp_size = tensor_para_size self.tp_rank = rank % self.tp_size self.pp_size = pipeline_para_size self.pp_rank = rank // self.tp_size @staticmethod def check_parallel_size_validity(tensor_para_size, pipeline_para_size): world_size = get_world_size() if world_size != tensor_para_size * pipeline_para_size: raise ValueError( f'[ERROR] Invalid tensor/pipeline parallel configuration. ' f'world_size({world_size}) != tensor_para_size({tensor_para_size})' f' * pipeline_para_size({pipeline_para_size})') @property def is_pipeline_first(self): return self.pp_rank == 0 @property def is_pipeline_last(self): return self.pp_rank == self.pp_size - 1 _model_para_group = None def is_model_parallel_initailized(): return _model_para_group is not None def initialize_model_parallel(tensor_para_size: int, pipeline_para_size: int, backend=dist.Backend.MPI): if tensor_para_size == 1 and pipeline_para_size == 1: return assert torch.cuda.is_available() assert not is_model_parallel_initailized(), \ f'parallel group has been already initialized.' print('Initializing tensor and pipeline parallel...') dist.init_process_group(backend=backend) global _model_para_group _model_para_group = ModelParallelGroup(tensor_para_size, pipeline_para_size) def get_tensor_para_rank(): if _model_para_group is None: return 0 return _model_para_group.tp_rank def get_tensor_para_size(): if _model_para_group is None: return 1 return _model_para_group.tp_size def get_pipeline_para_rank(): if _model_para_group is None: return 0 return _model_para_group.pp_rank def get_pipeline_para_size(): if _model_para_group is None: return 1 return _model_para_group.pp_size def is_pipeline_group_first(): return _model_para_group is None or _model_para_group.is_pipeline_first def is_pipeline_group_last(): return _model_para_group is None or _model_para_group.is_pipeline_last def destroy(): dist.destroy_process_group()
FasterTransformer-main
examples/pytorch/gpt/utils/comm.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import configparser import datetime import json import multiprocessing import pathlib import re import shutil import sys import numpy as np import torch # pytype: disable=import-error # verify if root package is in PYTHONPATH __root_package_path__ = pathlib.Path(__file__).parent.parent.parent.parent.parent.absolute().as_posix() if __root_package_path__ not in sys.path: print( f"[ERROR] add project root directory to your PYTHONPATH with " f"'export PYTHONPATH={__root_package_path__}:${{PYTHONPATH}}'" ) from examples.pytorch.gpt.utils.gpt import DEFAULT_START_TAG, DEFAULT_END_TAG, OPENAI_GPT2_START_ID, OPENAI_GPT2_END_ID from examples.pytorch.utils import torch2np, safe_transpose, cpu_map_location, gpu_map_location, WEIGHT2DTYPE def _inject_model_parallel_rank( filepath, tensor_model_parallel_size=1, pipeline_model_parallel_size=1, tensor_model_parallel_rank=0, pipeline_model_parallel_rank=0, ): """ Injects tensor/pipeline model parallel ranks into the filepath. Does nothing if not using model parallelism. """ filepath = pathlib.Path(filepath) if tensor_model_parallel_size > 1 or pipeline_model_parallel_size > 1: # filepath needs to be updated to include mp_rank if pipeline_model_parallel_size is None or pipeline_model_parallel_size == 1: filepath = filepath.parent / f"mp_rank_{tensor_model_parallel_rank:02d}" / filepath.name else: filepath = ( filepath.parent / f"mp_rank_{tensor_model_parallel_rank:02d}_{pipeline_model_parallel_rank:03d}" / filepath.name ) if not filepath.exists(): filepath = ( filepath.parent / f"tp_rank_{tensor_model_parallel_rank:02d}_pp_rank_{pipeline_model_parallel_rank:03d}" / filepath.name ) return filepath else: if filepath.exists(): return filepath else: return filepath.parent / "mp_rank_00" / filepath.name def _create_model_training_args_for_checkpoint_version_0(args, model_00): model_training_args = argparse.Namespace() if args.head_num is None or args.trained_tensor_parallel_size is None: raise ValueError( "Provided checkpoint have missing training args. " "Thus it is required to provide -head_num and -trained_tensor_parallel_size CLI arguments" ) model_training_args.num_attention_heads = args.head_num model_training_args.tensor_model_parallel_size = args.trained_tensor_parallel_size # megatron ckpt_ver=0 only supports pipeline_parallel_size = 1 model_training_args.pipeline_model_parallel_size = 1 model_training_args.max_position_embeddings = \ model_00["model"]["language_model"]["embedding"]["position_embeddings"]["weight"].shape[0] model_training_args.hidden_size = \ model_00["model"]["language_model"]["embedding"]["position_embeddings"]["weight"].shape[1] model_training_args.ffn_hidden_size = 4 * model_training_args.hidden_size def get_layer_num_from_weights(model_keys): layer_num = 1 for key in model_keys: if re.search(r'\d+', key) is not None: layer_num = max(int(re.search(r'\d+', key).group()), layer_num) return layer_num + 1 model_training_args.num_layers = \ get_layer_num_from_weights(model_00["model"]["language_model"]['transformer'].keys()) model_training_args.layernorm_epsilon = 1e-6 return model_training_args # This tool is used to support the new megatron model trained by pipeline parallel + tensor parallel def merge_and_convert_process(i, pipeline_para_rank, saved_dir, factor, key, model_training_args, transformer_model_list, ckpt_ver, np_weight_data_type): saved_dir = pathlib.Path(saved_dir) if key.find("layers.") != -1: layer_index = (int)(key[7 : key.find(".", 7)]) saved_key = key.replace( "layers.%d." % layer_index, "layers.%d." % (layer_index + pipeline_para_rank * model_training_args.num_layers // model_training_args.pipeline_model_parallel_size)) if saved_key.find("self_attention") != -1: saved_key = saved_key.replace("self_attention", "attention") if saved_key.find("adaptor1") != -1: saved_key = saved_key.replace("adaptor1", "after_attention_adapter") if saved_key.find("adaptor2") != -1: saved_key = saved_key.replace("adaptor2", "after_ffn_adapter") else: saved_key = key major_device = transformer_model_list[0][key].device if ( key.find("input_layernorm.weight") != -1 or key.find("input_layernorm.bias") != -1 or key.find("attention.dense.bias") != -1 or key.find("post_attention_layernorm.weight") != -1 or key.find("post_attention_layernorm.bias") != -1 or key.find("mlp.dense_4h_to_h.bias") != -1 or key.find("adaptor1.dense_4h_to_h.bias") != -1 or key.find("adaptor2.dense_4h_to_h.bias") != -1 or key.find("final_layernorm.weight") != -1 or key.find("final_layernorm.bias") != -1 or key.find("self_attention.query_key_value.fp_linear.fi") != -1 or key.find("self_attention.query_key_value.fp_linear.fw") != -1 or key.find("self_attention.query_key_value.fp_linear.fo") != -1 or key.find("self_attention.dense.fp_linear.fi") != -1 or key.find("self_attention.dense.fp_linear.fw") != -1 or key.find("self_attention.dense.fp_linear.fo") != -1 or key.find("mlp.dense_h_to_4h.fp_linear.fi") != -1 or key.find("mlp.dense_h_to_4h.fp_linear.fw") != -1 or key.find("mlp.dense_h_to_4h.fp_linear.fo") != -1 or key.find("mlp.dense_4h_to_h.fp_linear.fi") != -1 or key.find("mlp.dense_4h_to_h.fp_linear.fw") != -1 or key.find("mlp.dense_4h_to_h.fp_linear.fo") != -1): # shared weights, only need to convert the weights of rank 0 if i == 0: saved_path = saved_dir / f"model.{saved_key}.bin" val = safe_transpose(transformer_model_list[0][key]) val = torch2np(val, np_weight_data_type) val = np.squeeze(val) val.tofile(saved_path) elif (key.find("attention.dense.weight") != -1 or key.find("mlp.dense_4h_to_h.weight") != -1 or key.find("adaptor1.dense_4h_to_h.weight") != -1 or key.find("adaptor2.dense_4h_to_h.weight") != -1): vals = [ safe_transpose(transformer_model_list[k][key]).float().to(major_device) for k in range(factor) ] val = torch.cat(vals, dim=0) val = torch2np(val, np_weight_data_type) saved_path = saved_dir / f"model.{saved_key}.{i:d}.bin" val.tofile(saved_path) elif (key.find("mlp.dense_h_to_4h.weight") != -1 or key.find("adaptor1.dense_h_to_4h.weight") != -1 or key.find("adaptor2.dense_h_to_4h.weight") != -1 or key.find("mlp.dense_h_to_4h.bias") != -1 or key.find("adaptor1.dense_h_to_4h.bias") != -1 or key.find("adaptor2.dense_h_to_4h.bias") != -1): vals = [ safe_transpose(transformer_model_list[k][key]).float().to(major_device) for k in range(factor) ] val = torch.cat(vals, dim=-1) val = torch2np(val, np_weight_data_type) saved_path = saved_dir / f"model.{saved_key}.{i:d}.bin" val.tofile(saved_path) elif key.find("attention.query_key_value.bias") != -1: vals = [] for k in range(factor): val = safe_transpose(transformer_model_list[k][key]).float() local_dim = int(val.shape[-1] / 3) if ckpt_ver == 3: num_splits = 3 head_num = model_training_args.num_attention_heads // model_training_args.tensor_model_parallel_size size_per_head = local_dim // head_num val = val.reshape(head_num, num_splits, size_per_head) val = val.permute(1, 0, 2) val = val.reshape(3, local_dim) vals.append(val.to(major_device)) val = torch.cat(vals, dim=-1) val = torch2np(val, np_weight_data_type) saved_path = saved_dir / f"model.{saved_key}.{i:d}.bin" val.tofile(saved_path) elif key.find("attention.query_key_value.weight") != -1: vals = [] for k in range(factor): val = safe_transpose(transformer_model_list[k][key]).float() hidden_dim = val.shape[0] local_dim = int(val.shape[-1] / 3) if ckpt_ver == 3: num_splits = 3 head_num = model_training_args.num_attention_heads size_per_head = hidden_dim // head_num head_num = head_num // model_training_args.tensor_model_parallel_size val = val.reshape(hidden_dim, head_num, num_splits, size_per_head) val = val.permute(0, 2, 1, 3) val = val.reshape(hidden_dim, 3, local_dim) vals.append(val.to(major_device)) val = torch.cat(vals, dim=-1) val = torch2np(val, np_weight_data_type) saved_path = saved_dir / f"model.{saved_key}.{i:d}.bin" val.tofile(saved_path) elif (key.find("self_attention.query_key_value.fp_linear.di") != -1 or key.find("self_attention.query_key_value.fp_linear.dw") != -1 or key.find("self_attention.query_key_value.fp_linear.do") != -1 or key.find("self_attention.dense.fp_linear.di") != -1 or key.find("self_attention.dense.fp_linear.dw") != -1 or key.find("self_attention.dense.fp_linear.do") != -1 or key.find("mlp.dense_h_to_4h.fp_linear.di") != -1 or key.find("mlp.dense_h_to_4h.fp_linear.dw") != -1 or key.find("mlp.dense_h_to_4h.fp_linear.do") != -1 or key.find("mlp.dense_4h_to_h.fp_linear.di") != -1 or key.find("mlp.dense_4h_to_h.fp_linear.dw") != -1 or key.find("mlp.dense_4h_to_h.fp_linear.do") != -1 or key.find("_amax") != -1): pass else: print(f"[ERROR] cannot find key '{key}'") def split_and_convert_process(i, pipeline_para_rank, saved_dir, factor, key, model_training_args, transformer_model_list, ckpt_ver, np_weight_data_type): val = safe_transpose(transformer_model_list[0][key]) val = torch2np(val, np_weight_data_type) if key.find("layers.") != -1: layer_index = (int)(key[7 : key.find(".", 7)]) saved_key = key.replace( "layers.%d." % layer_index, "layers.%d." % (layer_index + pipeline_para_rank * model_training_args.num_layers // model_training_args.pipeline_model_parallel_size)) if saved_key.find("self_attention") != -1: saved_key = saved_key.replace("self_attention", "attention") if saved_key.find("adaptor1") != -1: saved_key = saved_key.replace("adaptor1", "after_attention_adapter") if saved_key.find("adaptor2") != -1: saved_key = saved_key.replace("adaptor2", "after_ffn_adapter") else: saved_key = key if ( key.find("input_layernorm.weight") != -1 or key.find("input_layernorm.bias") != -1 or key.find("attention.dense.bias") != -1 or key.find("post_attention_layernorm.weight") != -1 or key.find("post_attention_layernorm.bias") != -1 or key.find("mlp.dense_4h_to_h.bias") != -1 or key.find("adaptor1.dense_4h_to_h.bias") != -1 or key.find("adaptor2.dense_4h_to_h.bias") != -1 or key.find("final_layernorm.weight") != -1 or key.find("final_layernorm.bias") != -1 or key.find("self_attention.query_key_value.fp_linear.fi") != -1 or key.find("self_attention.query_key_value.fp_linear.fw") != -1 or key.find("self_attention.query_key_value.fp_linear.fo") != -1 or key.find("self_attention.dense.fp_linear.fi") != -1 or key.find("self_attention.dense.fp_linear.fw") != -1 or key.find("self_attention.dense.fp_linear.fo") != -1 or key.find("mlp.dense_h_to_4h.fp_linear.fi") != -1 or key.find("mlp.dense_h_to_4h.fp_linear.fw") != -1 or key.find("mlp.dense_h_to_4h.fp_linear.fo") != -1 or key.find("mlp.dense_4h_to_h.fp_linear.fi") != -1 or key.find("mlp.dense_4h_to_h.fp_linear.fw") != -1 or key.find("mlp.dense_4h_to_h.fp_linear.fo") != -1): # shared weights, only need to convert the weights of rank 0 if i == 0: saved_path = saved_dir / f"model.{saved_key}.bin" val.tofile(saved_path.as_posix()) elif (key.find("attention.dense.weight") != -1 or key.find("mlp.dense_4h_to_h.weight") != -1 or key.find("adaptor1.dense_4h_to_h.weight") != -1 or key.find("adaptor2.dense_4h_to_h.weight") != -1): split_vals = np.split(val, factor, axis=0) for j in range(factor): saved_path = saved_dir / f"model.{saved_key}.{i * factor + j:d}.bin" split_vals[j].tofile(saved_path.as_posix()) elif (key.find("mlp.dense_h_to_4h.weight") != -1 or key.find("adaptor1.dense_h_to_4h.weight") != -1 or key.find("adaptor2.dense_h_to_4h.weight") != -1 or key.find("mlp.dense_h_to_4h.bias") != -1 or key.find("adaptor1.dense_h_to_4h.bias") != -1 or key.find("adaptor2.dense_h_to_4h.bias") != -1): split_vals = np.split(val, factor, axis=-1) for j in range(factor): saved_path = saved_dir / f"model.{saved_key}.{i * factor + j:d}.bin" split_vals[j].tofile(saved_path.as_posix()) elif key.find("attention.query_key_value.bias") != -1: local_dim = int(val.shape[-1] / 3) if ckpt_ver == 3: num_splits = 3 head_num = model_training_args.num_attention_heads // model_training_args.tensor_model_parallel_size size_per_head = local_dim // head_num val = val.reshape(head_num, num_splits, size_per_head) val = val.transpose(1, 0, 2) val = val.reshape(3, local_dim) split_vals = np.split(val, factor, axis=-1) for j in range(factor): saved_path = saved_dir / f"model.{saved_key}.{i * factor + j:d}.bin" split_vals[j].tofile(saved_path.as_posix()) elif key.find("attention.query_key_value.weight") != -1: hidden_dim = val.shape[0] local_dim = int(val.shape[-1] / 3) if ckpt_ver == 3: num_splits = 3 head_num = model_training_args.num_attention_heads size_per_head = hidden_dim // head_num head_num = head_num // model_training_args.tensor_model_parallel_size val = val.reshape(hidden_dim, head_num, num_splits, size_per_head) val = val.transpose(0, 2, 1, 3) val = val.reshape(hidden_dim, 3, local_dim) split_vals = np.split(val, factor, axis=-1) for j in range(factor): saved_path = saved_dir / f"model.{saved_key}.{i * factor + j:d}.bin" split_vals[j].tofile(saved_path.as_posix()) elif (key.find("self_attention.query_key_value.fp_linear.di") != -1 or key.find("self_attention.query_key_value.fp_linear.dw") != -1 or key.find("self_attention.query_key_value.fp_linear.do") != -1 or key.find("self_attention.dense.fp_linear.di") != -1 or key.find("self_attention.dense.fp_linear.dw") != -1 or key.find("self_attention.dense.fp_linear.do") != -1 or key.find("mlp.dense_h_to_4h.fp_linear.di") != -1 or key.find("mlp.dense_h_to_4h.fp_linear.dw") != -1 or key.find("mlp.dense_h_to_4h.fp_linear.do") != -1 or key.find("mlp.dense_4h_to_h.fp_linear.di") != -1 or key.find("mlp.dense_4h_to_h.fp_linear.dw") != -1 or key.find("mlp.dense_4h_to_h.fp_linear.do") != -1 or key.find("_amax") != -1): pass else: print(f"[ERROR] cannot find key '{key}'") def _get_checkpoint_name(checkpoint_dir): checkpoint_dir = pathlib.Path(checkpoint_dir) patterns = [ "model_optim_rng.pt", # older megatron checkpoints "*last.ckpt", # newer format of checkpoints ] for pattern in patterns: model_files = sorted(list(checkpoint_dir.rglob(pattern))) if model_files: return model_files[0].name raise ValueError(f"Could not find checkpoint files in {checkpoint_dir}") def convert_checkpoint(args): saved_dir = pathlib.Path(args.saved_dir) / f"{args.infer_gpu_num:d}-gpu" if saved_dir.exists(): print(f"[ERROR] Remove {saved_dir} target directory before running conversion") sys.exit(1) saved_dir.mkdir(parents=True) if args.vocab_path: shutil.copy(args.vocab_path, (saved_dir / "vocab.json").as_posix()) if args.merges_path: shutil.copy(args.merges_path, (saved_dir / "merges.txt").as_posix()) load_checkpoints_to_cpu = bool(args.load_checkpoints_to_cpu) map_location_fn = cpu_map_location if load_checkpoints_to_cpu else gpu_map_location checkpoints_dir = pathlib.Path(args.in_file) checkpoint_name = _get_checkpoint_name(checkpoints_dir) # load position_embedding from rank 0 checkpoints_paths = sorted(checkpoints_dir.rglob(checkpoint_name)) if not checkpoints_paths: print(f"[ERROR] Cannot find checkpoint in {checkpoints_dir}.") exit(1) model_00 = torch.load(checkpoints_paths[0].as_posix(), map_location=map_location_fn) if "hyper_parameters" in list(model_00.keys()): print("Use nemo_ckpt_converter.py script for conversion of this checkpoint") exit(1) elif "args" in list(model_00.keys()): checkpoint_version = model_00["checkpoint_version"] model_training_args = model_00["args"] megatron_gpt_key = "encoder" else: checkpoint_version = 0 model_training_args = _create_model_training_args_for_checkpoint_version_0(args, model_00) megatron_gpt_key = "transformer" with (saved_dir / "args.txt").open("w") as training_args_file: for k, v in vars(model_training_args).items(): training_args_file.write(f"{k}:{v}\n") np_weight_data_type = WEIGHT2DTYPE[args.weight_data_type] val = model_00["model"]["language_model"]["embedding"]["position_embeddings"]["weight"] val = torch2np(val, np_weight_data_type) val.tofile((saved_dir / "model.wpe.bin").as_posix()) # not weight, do not need to transpose del model_00 w_e_list = [] training_tensor_para_size = model_training_args.tensor_model_parallel_size training_pipeline_para_size = model_training_args.pipeline_model_parallel_size inference_tensor_para_size = args.infer_gpu_num model_weights_paths = [ [ _inject_model_parallel_rank( checkpoints_dir / checkpoint_name, tensor_model_parallel_size=training_tensor_para_size, pipeline_model_parallel_size=training_pipeline_para_size, tensor_model_parallel_rank=tp_rank, pipeline_model_parallel_rank=pp_rank, ) for pp_rank in range(training_pipeline_para_size) ] for tp_rank in range(training_tensor_para_size) ] if training_tensor_para_size > inference_tensor_para_size: assert training_tensor_para_size % inference_tensor_para_size == 0 is_merge_ckpt = True factor = int(training_tensor_para_size / inference_tensor_para_size) else: assert inference_tensor_para_size % training_tensor_para_size == 0 is_merge_ckpt = False factor = int(inference_tensor_para_size / training_tensor_para_size) main_loop = min(training_tensor_para_size, inference_tensor_para_size) vocab_size_list = [0 for i in range(main_loop)] # quantization max ranges quant_max_ranges = dict() torch.multiprocessing.set_start_method("spawn") torch.multiprocessing.set_sharing_strategy("file_system") pool = multiprocessing.Pool(args.processes) has_adapters = False for i in range(main_loop): for j in range(training_pipeline_para_size): transformer_models = [] if is_merge_ckpt: for k in range(factor): m = torch.load(model_weights_paths[i * factor + k][j].as_posix(), map_location=map_location_fn) if not has_adapters: has_adapters = any("adaptor" in key for key in m['model']['language_model'][megatron_gpt_key].keys()) weights_dict = m["model"]["language_model"][megatron_gpt_key] for name, weight in weights_dict.items(): if "_amax" in name: # fuse qkv scale if "matmul_q_input_quantizer" in name: name = name.replace("_q_", "_qkv_") if "matmul_k_input_quantizer" in name: name = name.replace("_k_", "_qkv_") if "matmul_v_input_quantizer" in name: name = name.replace("_v_", "_qkv_") if name in quant_max_ranges: quant_max_ranges[name] = torch.max(torch.max(torch.abs(weight)),quant_max_ranges[name]) else: quant_max_ranges[name] = torch.max(torch.abs(weight)) transformer_models.append(m["model"]["language_model"][megatron_gpt_key]) if j == 0: vocab_size_list[i] = m["model"]["language_model"]["embedding"]["word_embeddings"]["weight"].shape[0] w_e_list.append(torch2np(m["model"]["language_model"]["embedding"]["word_embeddings"]["weight"], np_weight_data_type)) else: m = torch.load(model_weights_paths[i][j].as_posix(), map_location=map_location_fn) if not has_adapters: has_adapters = any("adaptor" in key for key in m['model']['language_model'][megatron_gpt_key].keys()) if j == 0: vocab_size_list[i] = m["model"]["language_model"]["embedding"]["word_embeddings"]["weight"].shape[0] w_e_list.append(torch2np( m["model"]["language_model"]["embedding"]["word_embeddings"]["weight"], np_weight_data_type )) weights_dict = m["model"]["language_model"][megatron_gpt_key] for name, weight in weights_dict.items(): if "_amax" in name: # fuse qkv scale if "matmul_q_input_quantizer" in name: name = name.replace("_q_", "_qkv_") if "matmul_k_input_quantizer" in name: name = name.replace("_k_", "_qkv_") if "matmul_v_input_quantizer" in name: name = name.replace("_v_", "_qkv_") if name in quant_max_ranges: quant_max_ranges[name] = torch.max(torch.max(torch.abs(weight)),quant_max_ranges[name]) else: quant_max_ranges[name] = torch.max(torch.abs(weight)) transformer_models.append(m["model"]["language_model"][megatron_gpt_key]) pool.starmap( merge_and_convert_process if is_merge_ckpt else split_and_convert_process, [ ( i, j, saved_dir, factor, k, model_training_args, transformer_models, checkpoint_version, np_weight_data_type, ) for (k, v) in transformer_models[0].items() ], ) pool.close() pool.join() torch.cuda.synchronize() # calculate quant scales for fp8 for key, val in quant_max_ranges.items(): key = key.replace("self_attention", "attention") if "attention.query_key_value._input_quantizer._amax" in key: saved_key = key.replace("_input_quantizer._amax", "fp_linear.fi") saved_path = saved_dir / f"model.{saved_key}.bin" if "attention.query_key_value._weight_quantizer._amax" in key: saved_key = key.replace("_weight_quantizer._amax", "fp_linear.fw") saved_path = saved_dir / f"model.{saved_key}.bin" if "attention.matmul_qkv_input_quantizer._amax" in key: saved_key = key.replace("matmul_qkv_input_quantizer._amax", "query_key_value.fp_linear.fo") saved_path = saved_dir / f"model.{saved_key}.bin" if "attention.matmul_a_input_quantizer._amax" in key: saved_key = key.replace("attention.matmul_a_input_quantizer._amax", "attention.softmax.fo") saved_path = saved_dir / f"model.{saved_key}.bin" if "attention.dense._input_quantizer._amax" in key: saved_key = key.replace("_input_quantizer._amax", "fp_linear.fi") saved_path = saved_dir / f"model.{saved_key}.bin" if "attention.dense._weight_quantizer._amax" in key: saved_key = key.replace("_weight_quantizer._amax", "fp_linear.fw") saved_path = saved_dir / f"model.{saved_key}.bin" if "add_local_input_quantizers.0._amax" in key: saved_key = key.replace("add_local_input_quantizers.0._amax", "attention.dense.fp_linear.fo") saved_path = saved_dir / f"model.{saved_key}.bin" if "mlp.dense_h_to_4h._input_quantizer._amax" in key: saved_key = key.replace("_input_quantizer._amax", "fp_linear.fi") saved_path = saved_dir / f"model.{saved_key}.bin" if "mlp.dense_h_to_4h._weight_quantizer._amax" in key: saved_key = key.replace("_weight_quantizer._amax", "fp_linear.fw") saved_path = saved_dir / f"model.{saved_key}.bin" if "mlp.dense_4h_to_h._input_quantizer._amax" in key: saved_key = key.replace("_input_quantizer._amax", "fp_linear.fi") saved_path = saved_dir / f"model.{saved_key}.bin" if "mlp.dense_4h_to_h._weight_quantizer._amax" in key: saved_key = key.replace("_weight_quantizer._amax", "fp_linear.fw") saved_path = saved_dir / f"model.{saved_key}.bin" if "add_local_input_quantizers.2._amax" in key: saved_key = key.replace("add_local_input_quantizers.2._amax", "mlp.dense_4h_to_h.fp_linear.fo") saved_path = saved_dir / f"model.{saved_key}.bin" val = (np.array(np.array(480.0, dtype=np.float32) / torch2np(val, np_weight_data_type))).astype(np.float32) if "attention.query_key_value.fp_linear.fw" in saved_key: print(saved_key, val) val.tofile(saved_path.as_posix()) np.concatenate(w_e_list, axis=0).tofile((saved_dir / "model.wte.bin").as_posix()) # save vocab_size full_vocab_size = sum(vocab_size_list) if not hasattr(model_training_args, "padded_vocab_size"): model_training_args.padded_vocab_size = full_vocab_size # Configuration for the model (load by triton backends) config = configparser.ConfigParser() config["gpt"] = {} if args.vocab_path: vocab_path = pathlib.Path(args.vocab_path) with vocab_path.open("r") as vocab_file: vocab = json.load(vocab_file) start_id, end_id = vocab[DEFAULT_START_TAG], vocab[DEFAULT_END_TAG] else: # hard coded values from english gpt_vocab.json file start_id, end_id = str(OPENAI_GPT2_START_ID), str(OPENAI_GPT2_END_ID) try: config["gpt"]["model_name"] = "gpt" config["gpt"]["head_num"] = str(model_training_args.num_attention_heads) config["gpt"]["size_per_head"] = str(model_training_args.hidden_size // model_training_args.num_attention_heads) config["gpt"]["inter_size"] = str(model_training_args.ffn_hidden_size) config["gpt"]["num_layer"] = str(model_training_args.num_layers) config["gpt"]["max_pos_seq_len"] = str(model_training_args.max_position_embeddings) config["gpt"]["vocab_size"] = str(model_training_args.padded_vocab_size) config["gpt"]["has_adapters"] = str(has_adapters) config['gpt']['adapter_inter_size'] = str(model_training_args.project_size) if has_adapters else str(0) config["gpt"]["layernorm_eps"] = str(model_training_args.layernorm_epsilon) config["gpt"]["start_id"] = str(start_id) config["gpt"]["end_id"] = str(end_id) config["gpt"]["weight_data_type"] = args.weight_data_type config["gpt"]["tensor_para_size"] = str(args.infer_gpu_num) with open((saved_dir / f"config.ini").as_posix(), 'w') as configfile: config.write(configfile) except Exception as e: print(f"Fail to save the config in config.ini: {e}") def main(): parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) parser.add_argument("--saved-dir", "-saved_dir", "-o", help="folder name of output files", required=True) parser.add_argument( "--in-file", "-in_file", "-i", help="file name of input checkpoint file", required=True ) parser.add_argument( "--infer-gpu-num", "-infer_gpu_num", "-i_g", type=int, help="How many gpus for inference", required=True ) # -h_n and -t_g are needed when megatron_ckpt_version = 0, for example the public megatron 345M gpt model parser.add_argument( "--head-num", "-head_num", "-h_n", type=int, help="The number of heads, only needed when weight doesn't contain structure hyperparameters" ) parser.add_argument( "--trained-tensor-parallel-size", "-trained_tensor_parallel_size", "-t_g", type=int, help="the tensor parallel size for training" ) parser.add_argument( "--processes", "-processes", "-p", type=int, default=16, help="How many processes to spawn for conversion", ) parser.add_argument( "--weight-data-type", "-weight_data_type", choices=["fp32", "fp16"], default="fp32", help="" ) parser.add_argument( "--load-checkpoints-to-cpu", "-load_checkpoints_to_cpu", "-cpu", type=int, choices=[0, 1], default=1, help="Whether to load model weights to CPU", ) parser.add_argument( "--vocab-path", type=str, help="Path to vocabulary file to embed in FasterTransformer checkpoint", required=False, ) parser.add_argument( "--merges-path", type=str, help="Path to merges file to embed in FasterTransformer checkpoint", required=False ) args = parser.parse_args() print("\n=============== Argument ===============") for key in vars(args): print(f"{key}: {vars(args)[key]}") print("========================================") start_time = datetime.datetime.now() convert_checkpoint(args) run_time = datetime.datetime.now() - start_time print(f"[INFO] Spent {run_time} (h:m:s) to convert the model") if __name__ == "__main__": main()
FasterTransformer-main
examples/pytorch/gpt/utils/megatron_fp8_ckpt_convert.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' Important: You should try converting models with `huggingface_gpt_convert.py` first before running this file. This file is intended for converting old versions of Japanese GPT models from https://huggingface.co/rinna. ''' import argparse import configparser import multiprocessing import numpy as np from pathlib import Path import torch import os import sys from transformers import GPT2LMHeadModel # transformers-4.10.0-py3 dir_path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(dir_path + "/../../../..") sys.path.append(dir_path) def get_weight_data_type(data_type): if data_type == "fp32": return np.float32 elif data_type == "fp16": return np.float16 else: assert False, f"Invalid weight data type {data_type}" def split_and_convert_process(i, saved_dir, factor, key, args, val): if key.find("input_layernorm.weight") != -1 or key.find("input_layernorm.bias") != -1 or \ key.find("attention.dense.bias") != -1 or key.find("post_attention_layernorm.weight") != -1 or \ key.find("post_attention_layernorm.bias") != -1 or key.find("mlp.dense_4h_to_h.bias") != -1 or \ key.find("final_layernorm.weight") != -1 or key.find("final_layernorm.bias") != -1: # shared weights, only need to convert the weights of rank 0 if i == 0: saved_path = saved_dir + "/model." + key + ".bin" val.tofile(saved_path) elif key.find("attention.dense.weight") != -1 or key.find("mlp.dense_4h_to_h.weight") != -1: split_vals = np.split(val, factor, axis=0) for j in range(factor): saved_path = saved_dir + "/model." + key + ".%d.bin" % (i * factor + j) split_vals[j].tofile(saved_path) elif key.find("mlp.dense_h_to_4h.weight") != -1 or key.find("mlp.dense_h_to_4h.bias") != -1: split_vals = np.split(val, factor, axis=-1) for j in range(factor): saved_path = saved_dir + "/model." + key + ".%d.bin" % (i * factor + j) split_vals[j].tofile(saved_path) elif key.find("attention.query_key_value.bias") != -1: local_dim = (int)(val.shape[-1] / 3) val = val.reshape(3, local_dim) split_vals = np.split(val, factor, axis=-1) for j in range(factor): saved_path = saved_dir + "/model." + key + ".%d.bin" % (i * factor + j) split_vals[j].tofile(saved_path) elif key.find("attention.query_key_value.weight") != -1: hidden_dim = val.shape[0] local_dim = (int)(val.shape[-1] / 3) val = val.reshape(hidden_dim, 3, local_dim) split_vals = np.split(val, factor, axis=-1) for j in range(factor): saved_path = saved_dir + "/model." + key + ".%d.bin" % (i * factor + j) split_vals[j].tofile(saved_path) else: print("[ERROR] cannot find key '{}'".format(key)) def split_and_convert(args): saved_dir = args.saved_dir + "/%d-gpu/" % args.infer_gpu_num if(os.path.exists(saved_dir) == False): os.makedirs(saved_dir) ckpt_name = args.in_file t_gpu_num = args.trained_gpu_num i_gpu_num = args.infer_gpu_num assert(i_gpu_num % t_gpu_num == 0) factor = (int)(i_gpu_num / t_gpu_num) # load position_embedding from rank 0 # model = torch.load(ckpt_name) torch_device = 'cuda' if torch.cuda.is_available() else 'cpu' model = GPT2LMHeadModel.from_pretrained(args.in_file).to(torch_device) hf_config = vars(model.config) config = configparser.ConfigParser() config["gpt"] = {} config["gpt"]["model_name"] = "gpt" if hf_config["_name_or_path"] == '' else hf_config["_name_or_path"] config["gpt"]["head_num"] = str(hf_config["n_head"]) n_embd = hf_config["n_embd"] config["gpt"]["size_per_head"] = str(n_embd // hf_config["n_head"]) config["gpt"]["inter_size"] = str(n_embd * 4) config['gpt']['max_pos_seq_len'] = str(hf_config['n_positions']) config["gpt"]["num_layer"] = str(hf_config["n_layer"]) config["gpt"]["vocab_size"] = str(hf_config["vocab_size"]) config["gpt"]["start_id"] = str(hf_config["bos_token_id"]) config["gpt"]["end_id"] = str(hf_config["eos_token_id"]) config['gpt']['weight_data_type'] = args.weight_data_type config["gpt"]["tensor_para_size"] = str(args.infer_gpu_num) with open(saved_dir + "/config.ini", 'w') as configfile: config.write(configfile) np_weight_data_type = get_weight_data_type(args.weight_data_type) huggingface_model_name_pattern = [ "ln_1.bias", "ln_1.weight", "attn.c_attn.bias", "attn.c_attn.weight", "attn.c_proj.bias", "attn.c_proj.weight", "ln_2.bias", "ln_2.weight", "mlp.c_fc.bias", "mlp.c_fc.weight", "mlp.c_proj.bias", "mlp.c_proj.weight", ] ft_model_name_pattern = [ "input_layernorm.bias", "input_layernorm.weight", "attention.query_key_value.bias", "attention.query_key_value.weight", "attention.dense.bias", "attention.dense.weight", "post_attention_layernorm.bias", "post_attention_layernorm.weight", "mlp.dense_h_to_4h.bias", "mlp.dense_h_to_4h.weight", "mlp.dense_4h_to_h.bias", "mlp.dense_4h_to_h.weight", ] torch.multiprocessing.set_start_method("spawn") torch.multiprocessing.set_sharing_strategy("file_system") pool = multiprocessing.Pool(args.processes) for name, param in model.state_dict().items(): if name.find("weight") == -1 and name.find("bias") == -1: continue print(name) if name == 'transformer.wpe.weight': param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.wpe.bin") elif name == 'transformer.wte.weight': param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.wte.bin") elif name == 'transformer.ln_f.bias': param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.final_layernorm.bias.bin") elif name == 'transformer.ln_f.weight': param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.final_layernorm.weight.bin") elif name == 'lm_head.weight': param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.lm_head.weight.bin") else: for i in range(len(huggingface_model_name_pattern)): if name.find(huggingface_model_name_pattern[i]) != -1: new_name = name.replace("transformer.h.", "layers.").replace(huggingface_model_name_pattern[i], ft_model_name_pattern[i]) pool.starmap(split_and_convert_process, [(0, saved_dir, factor, new_name, args, param.detach().cpu().numpy().astype(np_weight_data_type))], ) pool.close() pool.join() if __name__ == "__main__": parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('-saved_dir', '-o', type=str, help='file name of output file', required=True) parser.add_argument('-in_file', '-i', type=str, help='file name of input checkpoint file', required=True) parser.add_argument('-trained_gpu_num', '-t_g', type=int, help='How many gpus for inference', default=1) parser.add_argument('-infer_gpu_num', '-i_g', type=int, help='How many gpus for inference', required=True) parser.add_argument("-processes", "-p", type=int, help="How many processes to spawn for conversion (default: 4)", default=4) parser.add_argument("-weight_data_type", type=str, default="fp32", choices=["fp32", "fp16"]) args = parser.parse_args() print("\n=============== Argument ===============") for key in vars(args): print("{}: {}".format(key, vars(args)[key])) print("========================================") split_and_convert(args)
FasterTransformer-main
examples/pytorch/gpt/utils/huggingface_jp_gpt_convert.py
#!/usr/bin/env python3 # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import configparser import pathlib def main(): parser = argparse.ArgumentParser( description="Script updating GPT config.ini hyper-parameters and requests parameters" ) # config.ini path parser.add_argument("--config-ini-path", required=True, help="Path to config.ini file to be updated") # FT hyperparameters parser.add_argument("--model-dir", type=str, required=True, help="Model path prefix") parser.add_argument("--tensor-para-size", type=int, required=True, help="tensor parallelism size") parser.add_argument("--pipeline-para-size", type=int, required=True, help="layer parallelism size") parser.add_argument("--max-batch-size", type=int, default=8, help="batch size") parser.add_argument("--max-seq-len", type=int, default=256, help="max sequence length") parser.add_argument("--beam-width", type=int, default=1, help="beam width for beam search") parser.add_argument("--data-type", type=str, default="fp32", help="data type", choices=["fp32", "fp16", "bf16"]) parser.add_argument( "--sampling-top-k", type=int, default=1, help="Candidate (k) value of top k sampling in decoding", ) parser.add_argument( "--sampling-top-p", type=float, default=0.0, help="Probability (p) value of top p sampling in decoding", ) parser.add_argument("--temperature", type=float, default=1.0, help="temperature of penalty") parser.add_argument("--repetition-penalty", type=float, default=1.0, help="repetition_penalty") parser.add_argument("--len-penalty", type=float, default=0.0, help="len_penalty") parser.add_argument("--beam-search-diversity-rate", type=float, default=0.0, help="beam_search_diversity_rate") # request parser.add_argument("--request-batch-size", type=int, default=8, help="batch size") parser.add_argument("--request-output-len", type=int, default=32, help="output length") parser.add_argument("--model-name", type=str, default="gpt", help="model-name for testing") args = parser.parse_args() config_path = pathlib.Path(args.config_ini_path) config = configparser.ConfigParser() config.read(config_path) config["ft_instance_hyperparameter"] = { "max_batch_size": args.max_batch_size, "max_seq_len": args.max_seq_len, "beam_width": args.beam_width, "top_k": args.sampling_top_k, "top_p": args.sampling_top_p, "temperature": args.temperature, "tensor_para_size": args.tensor_para_size, "pipeline_para_size": args.pipeline_para_size, "data_type": args.data_type, "sparse": 0, "int8_mode": 0, "enable_custom_all_reduce": 0, "model_name": args.model_name, "model_dir": args.model_dir, "repetition_penalty": args.repetition_penalty, "len_penalty": args.len_penalty, "beam_search_diversity_rate": args.beam_search_diversity_rate, } config["request"] = { "request_batch_size": args.request_batch_size, "request_output_len": args.request_output_len, "return_log_probs": "false", "context_log_probs": "false", "beam_width": args.beam_width, "top_k": args.sampling_top_k, "top_p": args.sampling_top_p, "temperature": args.temperature, "repetition_penalty": args.repetition_penalty, "len_penalty": args.len_penalty, "beam_search_diversity_rate": args.beam_search_diversity_rate, } with config_path.open("w") as config_file: config.write(config_file) if __name__ == "__main__": main()
FasterTransformer-main
examples/pytorch/gpt/utils/update_gpt_config.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' Convert huggingface GPT model. Use https://huggingface.co/gpt2 as demo. ''' import argparse import configparser import multiprocessing import numpy as np from pathlib import Path import torch import os import sys from transformers import GPT2Model # transformers-4.10.0-py3 dir_path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(dir_path + "/../../../..") sys.path.append(dir_path) def get_weight_data_type(data_type): if data_type == "fp32": return np.float32 elif data_type == "fp16": return np.float16 else: assert False, f"Invalid weight data type {data_type}" def split_and_convert_process(i, saved_dir,factor,key,args, val): if key.find("input_layernorm.weight") != -1 or key.find("input_layernorm.bias") != -1 or \ key.find("attention.dense.bias") != -1 or key.find("post_attention_layernorm.weight") != -1 or \ key.find("post_attention_layernorm.bias") != -1 or key.find("mlp.dense_4h_to_h.bias") != -1 or \ key.find("final_layernorm.weight") != -1 or key.find("final_layernorm.bias") != -1: # shared weights, only need to convert the weights of rank 0 if i == 0: saved_path = saved_dir + "/model." + key + ".bin" val.tofile(saved_path) elif key.find("attention.dense.weight") != -1 or key.find("mlp.dense_4h_to_h.weight") != -1: split_vals = np.split(val, factor, axis=0) for j in range(factor): saved_path = saved_dir + "/model." + key + ".%d.bin" % (i * factor + j) split_vals[j].tofile(saved_path) elif key.find("mlp.dense_h_to_4h.weight") != -1 or key.find("mlp.dense_h_to_4h.bias") != -1: split_vals = np.split(val, factor, axis=-1) for j in range(factor): saved_path = saved_dir + "/model." + key + ".%d.bin" % (i * factor + j) split_vals[j].tofile(saved_path) elif key.find("attention.query_key_value.bias") != -1: local_dim = (int)(val.shape[-1] / 3) val = val.reshape(3, local_dim) split_vals = np.split(val, factor, axis=-1) for j in range(factor): saved_path = saved_dir + "/model." + key + ".%d.bin" % (i * factor + j) split_vals[j].tofile(saved_path) elif key.find("attention.query_key_value.weight") != -1: hidden_dim = val.shape[0] local_dim = (int)(val.shape[-1] / 3) val = val.reshape(hidden_dim, 3, local_dim) split_vals = np.split(val, factor, axis=-1) for j in range(factor): saved_path = saved_dir + "/model." + key + ".%d.bin" % (i * factor + j) split_vals[j].tofile(saved_path) else: print("[ERROR] cannot find key '{}'".format(key)) def split_and_convert(args): saved_dir = args.saved_dir + "/%d-gpu/" % args.infer_gpu_num if(os.path.exists(saved_dir) == False): os.makedirs(saved_dir) ckpt_name = args.in_file t_gpu_num = args.trained_gpu_num i_gpu_num = args.infer_gpu_num assert(i_gpu_num % t_gpu_num == 0) factor = (int)(i_gpu_num / t_gpu_num) # load position_embedding from rank 0 torch_device = 'cuda' if torch.cuda.is_available() else 'cpu' model = GPT2Model.from_pretrained(args.in_file).to(torch_device) hf_config = vars(model.config) # NOTE: save parameters to config files (loaded by triton backends) config = configparser.ConfigParser() config["gpt"] = {} try: config["gpt"]["model_name"] = "gpt" if hf_config["_name_or_path"] == '' else hf_config["_name_or_path"] config["gpt"]["head_num"] = str(hf_config["n_head"]) n_embd = hf_config["n_embd"] config["gpt"]["size_per_head"] = str(n_embd // hf_config["n_head"]) config["gpt"]["inter_size"] = str(n_embd * 4) config['gpt']['max_pos_seq_len'] = str(hf_config['n_positions']) config["gpt"]["num_layer"] = str(hf_config["n_layer"]) config["gpt"]["vocab_size"] = str(hf_config["vocab_size"]) config["gpt"]["start_id"] = str(hf_config["bos_token_id"]) config["gpt"]["end_id"] = str(hf_config["eos_token_id"]) config['gpt']['weight_data_type'] = args.weight_data_type config["gpt"]["tensor_para_size"] = str(args.infer_gpu_num) with open(saved_dir + "/config.ini", 'w') as configfile: config.write(configfile) except: print(f"Fail to save the config in config.ini.") np_weight_data_type = get_weight_data_type(args.weight_data_type) huggingface_model_name_pattern = [ "ln_1.bias", "ln_1.weight", "attn.c_attn.bias", "attn.c_attn.weight", "attn.c_proj.bias", "attn.c_proj.weight", "ln_2.bias", "ln_2.weight", "mlp.c_fc.bias", "mlp.c_fc.weight", "mlp.c_proj.bias", "mlp.c_proj.weight", ] ft_model_name_pattern = [ "input_layernorm.bias", "input_layernorm.weight", "attention.query_key_value.bias", "attention.query_key_value.weight", "attention.dense.bias", "attention.dense.weight", "post_attention_layernorm.bias", "post_attention_layernorm.weight", "mlp.dense_h_to_4h.bias", "mlp.dense_h_to_4h.weight", "mlp.dense_4h_to_h.bias", "mlp.dense_4h_to_h.weight", ] pool = multiprocessing.Pool(args.processes) for name, param in model.named_parameters(): if name.find("weight") == -1 and name.find("bias") == -1: continue if name == 'wpe.weight': param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.wpe.bin") elif name == 'wte.weight': param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.wte.bin") elif name == 'ln_f.bias': param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.final_layernorm.bias.bin") elif name == 'ln_f.weight': param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.final_layernorm.weight.bin") elif name == 'lm_head.weight': param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.lm_head.weight.bin") else: for i in range(len(huggingface_model_name_pattern)): if name.find(huggingface_model_name_pattern[i]) != -1: new_name = name.replace("h.", "layers.").replace(huggingface_model_name_pattern[i], ft_model_name_pattern[i]) pool.starmap(split_and_convert_process, [(0, saved_dir, factor, new_name, args, param.detach().cpu().numpy().astype(np_weight_data_type))], ) pool.close() pool.join() if __name__ == "__main__": parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('-saved_dir', '-o', type=str, help='file name of output file', required=True) parser.add_argument('-in_file', '-i', type=str, help='file name of input checkpoint file', required=True) parser.add_argument('-trained_gpu_num', '-t_g', type=int, help='How many gpus for inference', default=1) parser.add_argument('-infer_gpu_num', '-i_g', type=int, help='How many gpus for inference', required=True) parser.add_argument("-processes", "-p", type=int, help="How many processes to spawn for conversion (default: 4)", default=4) parser.add_argument("-weight_data_type", type=str, default="fp32", choices=["fp32", "fp16"]) args = parser.parse_args() print("\n=============== Argument ===============") for key in vars(args): print("{}: {}".format(key, vars(args)[key])) print("========================================") torch.multiprocessing.set_start_method("spawn") torch.multiprocessing.set_sharing_strategy("file_system") split_and_convert(args)
FasterTransformer-main
examples/pytorch/gpt/utils/huggingface_gpt_convert.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import configparser import random if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-max_batch_size', '--max_batch_size', type=int, required=True, metavar='NUMBER', help='batch size') parser.add_argument('-max_input_length', '--max_input_length', type=int, required=True, metavar='NUMBER', help='max input length') parser.add_argument('--destination', type=str, default="../examples/cpp/multi_gpu_gpt/start_ids.csv", metavar='STRING', help='Configuration save file. Default is "../examples/cpp/multi_gpu_gpt/start_ids.csv".') args = parser.parse_args() args_dict = vars(args) batch_size = args_dict["max_batch_size"] max_input_length = args_dict["max_input_length"] path = f"../examples/cpp/multi_gpu_gpt/start_ids.csv" with open(args_dict["destination"], 'w') as f: ids = "" for i in range(batch_size): for j in range(max_input_length): if j == 0: ids = f"{ids}{random.randint(1, 100)}" else: ids = f"{ids}, {random.randint(1, 100)}" ids = f"{ids}\n" f.write(ids)
FasterTransformer-main
examples/pytorch/gpt/utils/generate_start_ids.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv import numpy as np import os import sys dir_path = os.path.dirname(os.path.realpath(__file__)) base_path = dir_path + "/../../../.." sys.path.append(base_path) from examples.pytorch.gpt.utils import gpt_token_encoder as encoder def get_tokenizer(vocab_file=None, bpe_file=None): vocab_file = vocab_file if vocab_file is not None else base_path + "/models/gpt2-vocab.json" bpe_file = bpe_file if bpe_file is not None else base_path + "/models/gpt2-merges.txt" tokenizer = encoder.get_encoder(vocab_file, bpe_file) return tokenizer def to_word_list_format(word_dict, tokenizer=None): tokenizer = get_tokenizer() if tokenizer is None else tokenizer flat_ids = [] offsets = [] for word_dict_item in word_dict: item_flat_ids = [] item_offsets = [] words = list(csv.reader(word_dict_item))[0] for word in words: ids = tokenizer.encode(word) if len(ids) == 0: continue item_flat_ids += ids item_offsets.append(len(ids)) flat_ids.append(np.array(item_flat_ids)) offsets.append(np.cumsum(np.array(item_offsets))) pad_to = max(1, max(len(ids) for ids in flat_ids)) for i, (ids, offs) in enumerate(zip(flat_ids, offsets)): flat_ids[i] = np.pad(ids, (0, pad_to - len(ids)), constant_values=0) offsets[i] = np.pad(offs, (0, pad_to - len(offs)), constant_values=-1) result = np.array([flat_ids, offsets], dtype="int32").transpose((1, 0, 2)) if result.shape[0] == 1: result = result.squeeze(0) return np.ascontiguousarray(result) def save_word_list(filename, word_list): with open(filename, "w") as f: writer = csv.writer(f) for word_list_item in word_list: writer.writerow(word_list_item[0].tolist()) writer.writerow(word_list_item[1].tolist()) def load_word_list(filename): with open(filename, "r") as f: reader = csv.reader(f) data = list(reader) data = np.array(data, dtype=np.int32) batch_size_x2, list_len = data.shape return data.reshape((batch_size_x2 // 2, 2, list_len)) def test_csv_read_write(): filename = sys.argv[1] test_words = [["one,two,three, one, two, three, one two three"], ["four"]] word_list = to_word_list_format(test_words) save_word_list(filename, word_list) read_word_list = load_word_list(filename) assert np.all(word_list == read_word_list) if __name__ == "__main__": test_csv_read_write()
FasterTransformer-main
examples/pytorch/gpt/utils/word_list.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import argparse import dataclasses import json import os import pathlib import typing import torch import torch.nn as nn import numpy as np import torch.distributed as dist class GPTFp8Weights(object): def __init__(self, head_num, size_per_head, layer_num, vocab_size, max_seq_len, tensor_para_size, pipeline_para_size, has_post_decoder_layernorm=True, int8_mode=0, fp8_mode=0, weights_data_type=typing.Union[str, np.float32]): assert(head_num % tensor_para_size == 0) if int8_mode != 0: self.weight_transpose_calibrate_quantize = torch.ops.fastertransformer.weight_transpose_calibrate_quantize self.head_num = head_num self.size_per_head = size_per_head self.layer_num = layer_num self.vocab_size = vocab_size self.max_seq_len = max_seq_len self.tensor_para_size = tensor_para_size self.pipeline_para_size = pipeline_para_size self.layers_per_device = layer_num // pipeline_para_size self.has_post_decoder_layernorm = has_post_decoder_layernorm local_head_num = head_num // tensor_para_size global_head_num = head_num local_hidden_units = local_head_num * size_per_head global_hidden_units = global_head_num * size_per_head local_inter_size = local_hidden_units * 4 self.local_head_num = local_head_num self.global_head_num = global_head_num self.local_hidden_units = local_hidden_units self.global_hidden_units = global_hidden_units self.local_inter_size = local_inter_size self.int8_mode = int8_mode if isinstance(weights_data_type, str): try: weights_data_type = { "fp16": np.float16, "fp32": np.float32, "float16": np.float16, "float32": np.float32, }[weights_data_type] except KeyError: raise ValueError(f"Don't know how to interpret weights_data_type: {weights_data_type}") assert weights_data_type in [np.float32, np.float16] self.weights_data_type = weights_data_type self.w = [] self.int8_w = [] self.scale = [] # Transformer blocks self.w.extend([torch.zeros(global_hidden_units)] * layer_num) # self_layernorm_gamma self.w.extend([torch.zeros(global_hidden_units)] * layer_num) # self_layernorm_beta self.w.extend([torch.zeros(global_hidden_units, local_hidden_units * 3)] * layer_num) # self_kernel self.w.extend([torch.zeros(local_hidden_units * 3)] * layer_num) # self_bias self.w.extend([torch.zeros(local_hidden_units, global_hidden_units)] * layer_num) # self_output_kernel self.w.extend([torch.zeros(global_hidden_units)] * layer_num) # self_output_bias self.w.extend([torch.zeros(global_hidden_units)] * layer_num) # ffn_layernorm_gamma self.w.extend([torch.zeros(global_hidden_units)] * layer_num) # ffn_layernorm_beta self.w.extend([torch.zeros(global_hidden_units, local_inter_size)] * layer_num) # ffn_kernel1 self.w.extend([torch.zeros(local_inter_size)] * layer_num) # ffn_bias1 self.w.extend([torch.zeros(local_inter_size, global_hidden_units)] * layer_num) # ffn_kernel2 self.w.extend([torch.zeros(global_hidden_units)] * layer_num) # ffn_bias2 # After Transformer blocks if self.has_post_decoder_layernorm: self.w.append(torch.zeros(global_hidden_units)) # layernorm_gamma self.w.append(torch.zeros(global_hidden_units)) # layernorm_beta self.w.append(torch.zeros(max_seq_len, global_hidden_units)) # position_encoding_table self.w.append(torch.zeros(vocab_size, global_hidden_units)) # embedding_table self.w.append(torch.zeros(vocab_size, global_hidden_units)) # embedding_kernel # Initialization self._map(lambda w: torch.nn.init.normal_(w, mean=0., std=1.)) if (self.int8_mode != 0): self.int8_w.extend([torch.zeros(global_hidden_units, local_hidden_units * 3, dtype=torch.int8)] * layer_num) # self_int8_kernel self.scale.extend([torch.zeros(local_hidden_units * 3, dtype=torch.float)] * layer_num) # self_scale self.int8_w.extend([torch.zeros(local_hidden_units, global_hidden_units, dtype=torch.int8)] * layer_num) # self_output_int8_kernel self.scale.extend([torch.zeros(global_hidden_units, dtype=torch.float)] * layer_num) # self_output_scale self.int8_w.extend([torch.zeros(global_hidden_units, local_inter_size, dtype=torch.int8)] * layer_num) # ffn_int8_kernel1 self.scale.extend([torch.zeros(local_inter_size, dtype=torch.float)] * layer_num) # ffn_scale1 self.int8_w.extend([torch.zeros(local_inter_size, global_hidden_units, dtype=torch.int8)] * layer_num) # ffn_int8_kernel2 self.scale.extend([torch.zeros(global_hidden_units, dtype=torch.float)] * layer_num) # ffn_scale2 def __getitem__(self, idx): return self.w[idx] def __setitem__(self, idx, val): self.w[idx] = val def __len__(self): return len(self.w) def _map(self, func): for i in range(len(self.w)): if isinstance(self.w[i], list): for j in range(len(self.w[i])): self.w[i][j] = func(self.w[i][j]) else: self.w[i] = func(self.w[i]) def _map_int8(self, func): for i in range(len(self.int8_w)): if isinstance(self.int8_w[i], list): for j in range(len(self.int8_w[i])): self.int8_w[i][j] = func(self.int8_w[i][j]) else: self.int8_w[i] = func(self.int8_w[i]) for i in range(len(self.scale)): if isinstance(self.scale[i], list): for j in range(len(self.scale[i])): self.scale[i][j] = func(self.scale[i][j]) else: self.scale[i] = func(self.scale[i]) def load(self, ckpt_path, tensor_para_rank, pipeline_para_rank): if not os.path.exists(ckpt_path): return False w = [] # Load def is_load(i): return i >= self.layers_per_device * \ pipeline_para_rank and i < self.layers_per_device * (pipeline_para_rank + 1) w.extend([torch.from_numpy(np.fromfile(ckpt_path + "/model.layers.{}.input_layernorm.weight.bin".format(i), dtype=self.weights_data_type)) if is_load(i) else torch.empty(0) for i in range(self.layer_num)]) w.extend([torch.from_numpy(np.fromfile(ckpt_path + "/model.layers.{}.input_layernorm.bias.bin".format(i), dtype=self.weights_data_type)) if is_load(i) else torch.empty(0) for i in range(self.layer_num)]) w.extend([torch.from_numpy(np.fromfile(ckpt_path + "/model.layers.{}.attention.query_key_value.weight.{}.bin".format(i, tensor_para_rank), dtype=self.weights_data_type)) if is_load(i) else torch.empty(0) for i in range(self.layer_num)]) w.extend([torch.from_numpy(np.fromfile(ckpt_path + "/model.layers.{}.attention.query_key_value.bias.{}.bin".format(i, tensor_para_rank), dtype=self.weights_data_type)) if is_load(i) else torch.empty(0) for i in range(self.layer_num)]) w.extend([torch.from_numpy(np.fromfile(ckpt_path + "/model.layers.{}.attention.dense.weight.{}.bin".format(i, tensor_para_rank), dtype=self.weights_data_type)) if is_load(i) else torch.empty(0) for i in range(self.layer_num)]) w.extend([torch.from_numpy(np.fromfile(ckpt_path + "/model.layers.{}.attention.dense.bias.bin".format(i), dtype=self.weights_data_type)) if is_load(i) else torch.empty(0) for i in range(self.layer_num)]) w.extend([torch.from_numpy(np.fromfile(ckpt_path + "/model.layers.{}.post_attention_layernorm.weight.bin".format(i), dtype=self.weights_data_type)) if is_load(i) else torch.empty(0) for i in range(self.layer_num)]) w.extend([torch.from_numpy(np.fromfile(ckpt_path + "/model.layers.{}.post_attention_layernorm.bias.bin".format(i), dtype=self.weights_data_type)) if is_load(i) else torch.empty(0) for i in range(self.layer_num)]) w.extend([torch.from_numpy(np.fromfile(ckpt_path + "/model.layers.{}.mlp.dense_h_to_4h.weight.{}.bin".format(i, tensor_para_rank), dtype=self.weights_data_type)) if is_load(i) else torch.empty(0) for i in range(self.layer_num)]) w.extend([torch.from_numpy(np.fromfile(ckpt_path + "/model.layers.{}.mlp.dense_h_to_4h.bias.{}.bin".format(i, tensor_para_rank), dtype=self.weights_data_type)) if is_load(i) else torch.empty(0) for i in range(self.layer_num)]) w.extend([torch.from_numpy(np.fromfile(ckpt_path + "/model.layers.{}.mlp.dense_4h_to_h.weight.{}.bin".format(i, tensor_para_rank), dtype=self.weights_data_type)) if is_load(i) else torch.empty(0) for i in range(self.layer_num)]) w.extend([torch.from_numpy(np.fromfile(ckpt_path + "/model.layers.{}.mlp.dense_4h_to_h.bias.bin".format(i), dtype=self.weights_data_type)) if is_load(i) else torch.empty(0) for i in range(self.layer_num)]) if self.has_post_decoder_layernorm: w.append(torch.from_numpy(np.fromfile(ckpt_path + "/model.final_layernorm.weight.bin", dtype=self.weights_data_type))) w.append(torch.from_numpy(np.fromfile(ckpt_path + "/model.final_layernorm.bias.bin", dtype=self.weights_data_type))) wpe = torch.from_numpy(np.fromfile(ckpt_path + "/model.wpe.bin", dtype=self.weights_data_type) ).reshape(-1, self.global_hidden_units) assert self.max_seq_len <= wpe.size(0), ( f"max_seq_len ({self.max_seq_len} must not exceed " f"the value of maximum sequence length during training ({wpe.size(0)})." ) w.append(wpe) w.append(torch.from_numpy(np.fromfile(ckpt_path + "/model.wte.bin", dtype=self.weights_data_type))) if os.path.isfile(ckpt_path + "/model.lm_head.weight.bin"): w.append(torch.from_numpy(np.fromfile(ckpt_path + "/model.lm_head.weight.bin", dtype=self.weights_data_type))) else: w.append(torch.from_numpy(np.fromfile(ckpt_path + "/model.wte.bin", dtype=self.weights_data_type))) # Reshape try: for i in range(len(w)): if w[i].nelement() > 0: self.w[i] = w[i].reshape(self.w[i].shape) except RuntimeError: raise RuntimeError( f"head_num, size_per_head, vocab_size, and max_seq_len must be the same as the ones during training " f"(idx: {i} expected shape: {self.w[i].shape} got shape: {w[i].shape})." ) #transpose calibrate quantize the kernel layer_num = self.layer_num if self.int8_mode != 0: for i in range(layer_num): self.int8_w[i + 0*layer_num], self.scale[i + 0*layer_num] = self.weight_transpose_calibrate_quantize(self.w[2*layer_num + i]) self.int8_w[i + 1*layer_num], self.scale[i + 1*layer_num] = self.weight_transpose_calibrate_quantize(self.w[4*layer_num + i]) self.int8_w[i + 2*layer_num], self.scale[i + 2*layer_num] = self.weight_transpose_calibrate_quantize(self.w[8*layer_num + i]) self.int8_w[i + 3*layer_num], self.scale[i + 3*layer_num] = self.weight_transpose_calibrate_quantize(self.w[10*layer_num + i]) return True class GPTFp8(nn.Module): def __init__(self, head_num, size_per_head, vocab_size, start_id, end_id, layer_num, max_seq_len, tensor_para_size, pipeline_para_size, lib_path, ckpt_path, layernorm_eps = 1e-6, layernorm_type = "pre_layernorm", # gpt_variant_params activation_type = "Gelu", has_post_decoder_layernorm = True, # gpt variant params int8_mode = 0, fp8_mode = 1, weights_data_type: np.dtype = np.float32): super().__init__() self.head_num = head_num self.size_per_head = size_per_head self.vocab_size = vocab_size self.max_seq_len = max_seq_len self.start_id = start_id self.end_id = end_id self.layer_num = layer_num # gpt_variant_params self.layernorm_eps = layernorm_eps self.layernorm_type = layernorm_type self.activation_type = activation_type self.has_post_decoder_layernorm = has_post_decoder_layernorm # multi-gpu params self.tensor_para_size = tensor_para_size self.pipeline_para_size = pipeline_para_size self.use_sparse_gemm = False self.int8_mode = int8_mode self.fp8_mode = fp8_mode self.weights_data_type = weights_data_type self.ckpt_path = ckpt_path assert torch.cuda.is_available(), "CUDA is required for this model." assert head_num % tensor_para_size == 0, "head_num must be a multiple of tensor_para_size." assert layer_num % pipeline_para_size == 0, "layer_num must be a multiple of pipeline_para_size." # Load the C++ model into Pytorch model. torch.classes.load_library(os.path.abspath(lib_path)) # Prepare for tensor/pipeline parallel try: dist.init_process_group(backend='mpi') except: print("[INFO] WARNING: Have initialize the process group") self.rank = dist.get_rank() self.device_count = torch.cuda.device_count() self.device = self.rank % self.device_count torch.cuda.set_device(self.device) world_size = dist.get_world_size() assert world_size == tensor_para_size * pipeline_para_size, "tensor_para_size * pipeline_para_size must be equal to world_size." self.tensor_para_rank = self.rank % self.tensor_para_size self.pipeline_para_rank = self.rank // self.tensor_para_size self.model = torch.classes.FasterTransformer.GptFp8Op(self.head_num, self.size_per_head, 4 * self.head_num * self.size_per_head, self.layer_num, self.vocab_size, self.max_seq_len, self.start_id, self.end_id, self.tensor_para_size, self.pipeline_para_size, self.layernorm_eps, self.layernorm_type, self.activation_type, self.ckpt_path, self.has_post_decoder_layernorm, []) def forward(self, start_ids, start_lengths, output_len, beam_width=1, top_k=1, top_p=0.0, beam_search_diversity_rate=0.0, temperature=1.0, len_penalty=1.0, repetition_penalty=1.0, random_seed=0, return_output_length=False, return_cum_log_probs=0): input_len = start_ids.size(1) assert input_len > 0, "input len must be larger than zero. For an unconditional case, use start_id as the first token." # Inputs to device start_ids = start_ids.cuda(self.device) start_lengths = start_lengths.cuda(self.device) # outputs: output_ids, output_lengths, output_cum_log_probs (optional) outputs = self.model.forward(start_ids, start_lengths, output_len, beam_width, # optional, can be None top_k, # optional, can be None top_p, # optional, can be None beam_search_diversity_rate, # optional, can be None temperature, # optional, can be None len_penalty, # optional, can be None repetition_penalty, # optional, can be None random_seed, # optional, can be None return_cum_log_probs) # optional, can be None if return_cum_log_probs == 0: output_ids, output_lengths = outputs else: output_ids, output_lengths, output_cum_log_probs = outputs if return_output_length: if return_cum_log_probs > 0: return output_ids, output_lengths, output_cum_log_probs else: return output_ids, output_lengths else: return output_ids def set_input_tensor(self, input_tensor): """Set input tensor to be used instead of forward()'s input. When doing pipeline parallelism the input from the previous stage comes from communication, not from the input, so the model's forward_step_func won't have it. This function is thus used by internal code to bypass the input provided by the forward_step_func""" self.input_tensor = input_tensor @dataclasses.dataclass class GptInitModelParameters: head_num: int size_per_head: int layer_num: int max_seq_len: int tensor_para_size: int vocab_size: int start_id: int end_id: int pipeline_para_size: int weights_data_type: str data_type: str int8_mode: int sparse: int def gpt_init_kwargs(self): do_not_include = ["data_type", "sparse"] return {k: v for k, v in dataclasses.asdict(self).items() if k not in do_not_include} @classmethod def from_args(cls, args, config_reader): model_name = args.model_name return cls( head_num=config_reader.getint(model_name, "head_num"), size_per_head=config_reader.getint(model_name, "size_per_head"), layer_num=config_reader.getint(model_name, "num_layer"), max_seq_len=config_reader.getint(model_name, "max_pos_seq_len"), tensor_para_size=config_reader.getint(model_name, "tensor_para_size"), vocab_size=config_reader.getint(model_name, "vocab_size"), start_id=config_reader.getint(model_name, "start_id"), end_id=config_reader.getint(model_name, "end_id"), weights_data_type=config_reader.get(model_name, "weight_data_type"), pipeline_para_size=( args.pipeline_para_size or config_reader.getint("ft_instance_hyperparameter", "pipeline_para_size") ), int8_mode=( args.int8_mode if args.int8_mode is not None else config_reader.getint("ft_instance_hyperparameter", "int8_mode") ), data_type=(args.data_type or config_reader.get("ft_instance_hyperparameter", "data_type")), sparse=int(args.sparse or False), ) @classmethod def update_argparser(cls, parser): parser.add_argument("--model-name", type=str, default="gpt", help="Model name from config.ini file") parser.add_argument("--pipeline-para-size", type=int, help="size of pipeline parallelism") parser.add_argument("--data-type", type=str, help="data type", choices=["fp32", "bf16", "fp16"]) parser.add_argument( "--sparse", type=int, choices=[0, 1], help="Set sparse matrix multiplication. (Need SM 8.0 or 8.6 and SPARSITY_SUPPORT=ON)", ) parser.add_argument("--int8-mode", type=int, choices=[0, 1], help="Set int8 mode") @dataclasses.dataclass class GptRuntimeModelParameters: beam_width: int top_k: int top_p: float beam_search_diversity_rate: float temperature: float len_penalty: float repetition_penalty: float def gpt_forward_kwargs(self): return dataclasses.asdict(self) @classmethod def from_args(cls, args, config_reader): return cls( beam_width=args.beam_width or config_reader.getint("ft_instance_hyperparameter", "beam_width"), top_k=args.sampling_top_k or config_reader.getint("ft_instance_hyperparameter", "top_k"), top_p=args.sampling_top_p or config_reader.getfloat("ft_instance_hyperparameter", "top_p"), beam_search_diversity_rate=( args.beam_search_diversity_rate or config_reader.getfloat("ft_instance_hyperparameter", "beam_search_diversity_rate") ), temperature=args.temperature or config_reader.getfloat("ft_instance_hyperparameter", "temperature"), len_penalty=args.len_penalty or config_reader.getfloat("ft_instance_hyperparameter", "len_penalty"), repetition_penalty=( args.repetition_penalty or config_reader.getfloat("ft_instance_hyperparameter", "repetition_penalty") ), ) @classmethod def update_argparser(cls, parser): parser.add_argument("--beam-width", type=int, help="beam width") parser.add_argument("--sampling-top-k", type=int, help="Candidate (k) value of top k sampling in decoding") parser.add_argument("--sampling-top-p", type=float, help="Probability (p) value of top p sampling in decoding.") parser.add_argument("--temperature", type=float, help="temperature") parser.add_argument("--len-penalty", type=float, help="len_penalty") parser.add_argument("--repetition-penalty", type=float, help="repetition penalty") parser.add_argument("--beam-search-diversity-rate", type=float, help="beam_search_diversity_rate") DEFAULT_START_TAG = "<|endoftext|>" DEFAULT_END_TAG = "<|endoftext|>" OPENAI_GPT2_START_ID = 50256 OPENAI_GPT2_END_ID = 50256 @dataclasses.dataclass class GptModelConfig: model_name: str tensor_para_size: int head_num: int size_per_head: int inter_size: int num_layer: int max_pos_seq_len: int weight_data_type: str vocab_size: int start_id: int end_id: int @classmethod def from_nemo_package( cls, *, args: argparse.Namespace, nemo_model_config: typing.Dict[str, typing.Any], vocab_path: typing.Optional[pathlib.Path] = None, vocab_size: int, ): if vocab_path: vocab_path = pathlib.Path(vocab_path) with vocab_path.open("r") as vocab_file: vocab = json.load(vocab_file) start_id, end_id = vocab[DEFAULT_START_TAG], vocab[DEFAULT_END_TAG] else: start_id, end_id = OPENAI_GPT2_START_ID, OPENAI_GPT2_END_ID return cls( model_name="gpt", tensor_para_size=args.infer_gpu_num, head_num=nemo_model_config["num_attention_heads"], size_per_head=nemo_model_config["hidden_size"] // nemo_model_config["num_attention_heads"], inter_size=nemo_model_config["ffn_hidden_size"], num_layer=nemo_model_config["num_layers"], max_pos_seq_len=nemo_model_config["max_position_embeddings"], weight_data_type=args.weight_data_type, vocab_size=vocab_size, start_id=start_id, end_id=end_id, )
FasterTransformer-main
examples/pytorch/gpt/utils/gpt_fp8.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import configparser def generate_gpt_config(args): config = configparser.ConfigParser() config["ft_instance_hyperparameter"] = { "max_batch_size": "{}".format(args['max_batch_size']), "max_seq_len": "{}".format(args['max_seq_len']), "beam_width": "{}".format(args['beam_width']), "top_k": "{}".format(args['sampling_topk']), "top_p": "{}".format(args['sampling_topp']), "temperature": "{}".format(args['temperature']), "tensor_para_size": "{}".format(args['tensor_para_size']), "pipeline_para_size": "{}".format(args['pipeline_para_size']), "data_type": "{}".format(args['data_type']), "sparse": "0", "int8_mode": "{}".format(args["int8_mode"]), "enable_custom_all_reduce": "0", "model_name": "tmp_model", "model_dir": "{}".format(args['model_dir']), "repetition_penalty": "{}".format(args['repetition_penalty']), "len_penalty": "{}".format(args['len_penalty']), "beam_search_diversity_rate": "{}".format(args['beam_search_diversity_rate']), } config["request"] = { "request_batch_size": "{}".format(args['request_batch_size']), "request_output_len": "{}".format(args['request_output_len']), "return_log_probs": "false", "context_log_probs": "false", "remove_padding": "true", "context_embeddings": "true" } config["tmp_model"] = { "head_num": "{}".format(args['head_number']), "size_per_head": "{}".format(args['size_per_head']), "inter_size": "{}".format(args['inter_size']), "vocab_size": "{}".format(args['vocab_size']), "decoder_layers": "{}".format(args['num_layer']), "start_id": "{}".format(args['start_id']), "end_id": "{}".format(args['end_id']), } if args['model_variant'] is not None: config["tmp_model"]["model_variant"] = args["model_variant"] with open(args['destination'], 'w') as configfile: config.write(configfile) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-max_batch_size', '--max_batch_size', type=int, default=8, metavar='NUMBER', help='batch size (default: 8)') parser.add_argument('-max_seq_len', '--max_seq_len', type=int, default=256, metavar='NUMBER', help='max sequence length (default: 256)') parser.add_argument('-beam_width', '--beam_width', type=int, default=1, metavar='NUMBER', help='beam width for beam search (default: 1)') parser.add_argument('-n', '--head_number', type=int, default=32, metavar='NUMBER', help='head number (default: 32)') parser.add_argument('-size', '--size_per_head', type=int, default=128, metavar='NUMBER', help='size per head (default: 128)') parser.add_argument('-inter_size', '--inter_size', type=int, default=16384, metavar='NUMBER', help='inter size for ffn (default: 16384)') parser.add_argument('-l', '--num_layer', type=int, default=12, metavar='NUMBER', help='number of layers (default: 12)') parser.add_argument('-v', '--vocab_size', type=int, default=50257, metavar='BOOL', help='vocabulary size. (default: 50257).') parser.add_argument('-d', '--data_type', type=str, default="fp32", metavar='STRING', help='data type (default: fp32)', choices=['fp32', 'fp16', 'bf16']) parser.add_argument('-topk', '--sampling_topk', type=int, default=1, metavar='NUMBER', help='Candidate (k) value of top k sampling in decoding. Default is 1.') parser.add_argument('-topp', '--sampling_topp', type=float, default=0.0, metavar='NUMBER', help='Probability (p) value of top p sampling in decoding. Default is 0.0.') parser.add_argument('-tensor_para_size', '--tensor_para_size', type=int, default=1, metavar='NUMBER', help='tensor parallelism size. Default is 1.') parser.add_argument('-pipeline_para_size', '--pipeline_para_size', type=int, default=1, metavar='NUMBER', help='layer parallelism size. Default is 1.') parser.add_argument('--model_dir', type=str, default="./models/", metavar='STRING', help='Model path prfix. Default is "./models".') parser.add_argument('-temperature', '--temperature', type=float, default=1.0, metavar='NUMBER', help='temperature of penalty. Default is 1.0.') parser.add_argument('-request_batch_size', '--request_batch_size', type=int, default=8, metavar='NUMBER', help='batch size (default: 8)') parser.add_argument('-request_output_len', '--request_output_len', type=int, default=32, metavar='NUMBER', help='output length (default: 32)') parser.add_argument('-start_id', '--start_id', type=int, default=50256, metavar='NUMBER', help='start id (default: 50256)') parser.add_argument('-end_id', '--end_id', type=int, default=50256, metavar='NUMBER', help='end id (default: 50256)') parser.add_argument('-repetition_penalty', '--repetition_penalty', type=float, default=1.0, metavar='NUMBER', help='repetition_penalty (default: 1.0)') parser.add_argument('-len_penalty', '--len_penalty', type=float, default=0.0, metavar='NUMBER', help='len_penalty (default: 0.0)') parser.add_argument('-beam_search_diversity_rate', '--beam_search_diversity_rate', type=float, default=0.0, metavar='NUMBER', help='beam_search_diversity_rate (default: 0.0)') parser.add_argument('-memory_len', '--memory_len', type=int, default=None, metavar='NUMBER', help='Memory length (how many time steps to keep in memory) (default: None)') parser.add_argument('-model_variant', '--model_variant', type=str, default=None, metavar='STRING', help='Model variant (needed for OPT models) (default: None)') parser.add_argument('--destination', type=str, default=".tmp.config.ini", metavar='STRING', help='Configuration save file. Default is ".tmp.config.ini".') parser.add_argument('--int8_mode', type=int, default=0, choices=[0, 1, 2], help='The level of quantization to perform.' ' 0: No quantization. All computation in data_type' ' 1: Quantize weights to int8, all compute occurs in fp16/bf16. Not supported for when data_type is fp32' ' 2: Data path is mostly w8a8') args = parser.parse_args() generate_gpt_config(vars(args))
FasterTransformer-main
examples/pytorch/gpt/utils/generate_gpt_config.py
import os import sys import numpy as np import torch # Example # python tools/checkpoint_util.py --model-type GPT --loader megatron --saver fastertransformer \ # --input /home/scratch.bhsueh_sw/megatron_new_ckpt/357m-pipeline-2-tensor-2/ --output ./tmp --target-tensor-parallel-size 2 def add_arguments(parser): group = parser.add_argument_group(title='FasterTransformer saver') group.add_argument('--megatron-path', type=str, default=".", help='Base directory of Megatron repository') group.add_argument('--target-tensor-parallel-size', type=int, help='Target tensor model parallel size') def save_checkpoint(queue, args): sys.path.insert(0, args.megatron_path) from megatron.global_vars import set_global_variables, get_args md = queue.get() os.environ["WORLD_SIZE"] = f'{args.target_tensor_parallel_size}' # We want all arguments to come from us sys.argv = ['script.py', '--num-layers', str(md.num_layers), '--hidden-size', str(md.hidden_size), '--seq-length', str(md.seq_length), '--num-attention-heads', str(md.num_attention_heads), '--max-position-embeddings', str(md.max_position_embeddings), '--tokenizer-type', str(md.tokenizer_type), '--tensor-model-parallel-size', str(args.target_tensor_parallel_size), '--no-masked-softmax-fusion', '--no-bias-gelu-fusion', '--no-bias-dropout-fusion', '--use-cpu-initialization', '--micro-batch-size', '1', '--no-load-optim', '--no-load-rng', '--no-save-optim', '--no-save-rng', '--no-initialization', '--save-interval', '1', '--save', args.output ] set_global_variables() # margs = megatron args margs = get_args() # Embeddings #----------- pos_embed = queue.get() full_word_embed = queue.get() # Tell Megatron what our full size is margs.padded_vocab_size = full_word_embed.shape[0] if margs.padded_vocab_size % args.target_tensor_parallel_size != 0: print("source vocab size is not evenly divisble by target tensor parallel size") exit(1) if(os.path.exists(args.output) == False): os.makedirs(args.output) with open(args.output + "/args.txt", "w") as outfile: outfile.write("{}\n".format(md)) pos_embed.cpu().numpy().astype(np.float32).tofile(args.output + "/model.wpe.bin") full_word_embed.cpu().numpy().astype(np.float32).tofile(args.output + "/model.wte.bin") # Transformer layers #------------------- for layer in range(md.num_layers): # get full tensors input_layernorm_weight = queue.get().T input_layernorm_bias = queue.get().T full_qkv_weight = queue.get().T full_qkv_bias = queue.get().T full_dense_weight = queue.get().T dense_bias = queue.get().T post_layernorm_weight = queue.get().T post_layernorm_bias = queue.get().T full_mlp_l0_weight = queue.get().T full_mlp_l0_bias = queue.get().T full_mlp_l1_weight = queue.get().T mlp_l1_bias = queue.get().T # Assume the version of checkpoint is 3 ckpt_ver = 3 if ckpt_ver == 3: num_splits = 3 size_per_head = (int)(md.hidden_size / md.num_attention_heads) full_qkv_weight = full_qkv_weight.reshape(md.hidden_size, md.num_attention_heads ,num_splits, size_per_head) full_qkv_weight = full_qkv_weight.permute(0, 2, 1, 3) full_qkv_weight = full_qkv_weight.reshape(md.hidden_size, num_splits, md.hidden_size) full_qkv_bias = full_qkv_bias.reshape(md.num_attention_heads ,num_splits, size_per_head) full_qkv_bias = full_qkv_bias.permute(1, 0, 2) full_qkv_bias = full_qkv_bias.reshape(num_splits, md.hidden_size) # Split up the parallel tensors out_qkv_weight = torch.chunk(full_qkv_weight, args.target_tensor_parallel_size, dim=-1) out_qkv_bias = torch.chunk(full_qkv_bias, args.target_tensor_parallel_size, dim=-1) out_dense_weight = torch.chunk(full_dense_weight, args.target_tensor_parallel_size, dim=0) out_mlp_l0_weight = torch.chunk(full_mlp_l0_weight, args.target_tensor_parallel_size, dim=-1) out_mlp_l0_bias = torch.chunk(full_mlp_l0_bias, args.target_tensor_parallel_size, dim=-1) out_mlp_l1_weight = torch.chunk(full_mlp_l1_weight, args.target_tensor_parallel_size, dim=0) # Save model input_layernorm_weight.cpu().numpy().astype(np.float32).tofile(args.output + "/model.layers.{}.input_layernorm.weight.bin".format(layer)) input_layernorm_bias.cpu().numpy().astype(np.float32).tofile(args.output + "/model.layers.{}.input_layernorm.bias.bin".format(layer)) post_layernorm_weight.cpu().numpy().astype(np.float32).tofile(args.output + "/model.layers.{}.post_attention_layernorm.weight.bin".format(layer)) post_layernorm_bias.cpu().numpy().astype(np.float32).tofile(args.output + "/model.layers.{}.post_attention_layernorm.bias.bin".format(layer)) dense_bias.cpu().numpy().astype(np.float32).tofile(args.output + "/model.layers.{}.attention.dense.bias.bin".format(layer)) mlp_l1_bias.cpu().numpy().astype(np.float32).tofile(args.output + "/model.layers.{}.mlp.dense_4h_to_h.bias.bin".format(layer)) for tp_rank in range(args.target_tensor_parallel_size): out_qkv_weight[tp_rank].cpu().numpy().astype(np.float32).tofile(args.output + "/model.layers.{}.attention.query_key_value.weight.{}.bin".format(layer, tp_rank)) out_qkv_bias[tp_rank].cpu().numpy().astype(np.float32).tofile(args.output + "/model.layers.{}.attention.query_key_value.bias.{}.bin".format(layer, tp_rank)) out_dense_weight[tp_rank].cpu().numpy().astype(np.float32).tofile(args.output + "/model.layers.{}.attention.dense.weight.{}.bin".format(layer, tp_rank)) out_mlp_l0_weight[tp_rank].cpu().numpy().astype(np.float32).tofile(args.output + "/model.layers.{}.mlp.dense_h_to_4h.weight.{}.bin".format(layer, tp_rank)) out_mlp_l0_bias[tp_rank].cpu().numpy().astype(np.float32).tofile(args.output + "/model.layers.{}.mlp.dense_h_to_4h.bias.{}.bin".format(layer, tp_rank)) out_mlp_l1_weight[tp_rank].cpu().numpy().astype(np.float32).tofile(args.output + "/model.layers.{}.mlp.dense_4h_to_h.weight.{}.bin".format(layer, tp_rank)) final_layernorm_weight = queue.get().T final_layernorm_bias = queue.get().T final_layernorm_weight.cpu().numpy().astype(np.float32).tofile(args.output + "/model.final_layernorm.weight.bin") final_layernorm_bias.cpu().numpy().astype(np.float32).tofile(args.output + "/model.final_layernorm.bias.bin") del final_layernorm_weight del final_layernorm_bias print("Done!")
FasterTransformer-main
examples/pytorch/gpt/utils/checkpoint_saver_fastertransformer.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import configparser import dataclasses import datetime import logging import multiprocessing import os import pathlib import shutil import sys import tempfile import typing import numpy as np import torch # pytype: disable=import-error import yaml # verify if root package is in PYTHONPATH __root_package_path__ = pathlib.Path(__file__).parent.parent.parent.parent.parent.absolute().as_posix() if __root_package_path__ not in sys.path: print( f"[ERROR] add project root directory to your PYTHONPATH with " f"'export PYTHONPATH={__root_package_path__}:${{PYTHONPATH}}'" ) from examples.pytorch.gpt.utils.gpt import GptModelConfig from examples.pytorch.nemo import ( UnpackedNemoCheckpointDir, unpack_nemo_ckpt, extract_layers_with_prefix, ) from examples.pytorch.utils import ( torch2np, safe_transpose, cpu_map_location, gpu_map_location, WEIGHT2DTYPE, ) LOGGER = logging.getLogger(__name__) # This tool is used to support the new NeMo megatron model trained by pipeline parallel + tensor parallel def merge_and_convert_process( tp_rank: int, pp_rank: int, saved_dir: typing.Union[str, pathlib.Path], factor: int, key: str, nemo_model_config: typing.Dict[str, typing.Any], transformer_model_list: typing.List, np_weight_data_type, args: argparse.Namespace, ): # Config params num_layers = nemo_model_config["num_layers"] num_attention_heads = nemo_model_config["num_attention_heads"] tensor_model_parallel_size = nemo_model_config.get("tensor_model_parallel_size", 1) pipeline_model_parallel_size = nemo_model_config.get("pipeline_model_parallel_size", 1) if key.find("layers.") != -1: layer_index = int(key[7 : key.find(".", 7)]) saved_key = key.replace( "layers.%d." % layer_index, "layers.%d." % (layer_index + pp_rank * num_layers // pipeline_model_parallel_size), ) if saved_key.find("self_attention") != -1: saved_key = saved_key.replace("self_attention", "attention") else: saved_key = key if ( key.find("input_layernorm.weight") != -1 or key.find("input_layernorm.bias") != -1 or key.find("attention.dense.bias") != -1 or key.find("post_attention_layernorm.weight") != -1 or key.find("post_attention_layernorm.bias") != -1 or key.find("mlp.dense_4h_to_h.bias") != -1 or key.find("final_layernorm.weight") != -1 or key.find("final_layernorm.bias") != -1 ): # shared weights, only need to convert the weights of rank 0 if tp_rank == 0: val = safe_transpose(transformer_model_list[0][key]) val = torch2np(val, np_weight_data_type) saved_path = saved_dir / f"model.{saved_key}.bin" np.squeeze(val).tofile(saved_path) elif key.find("attention.dense.weight") != -1 or key.find("mlp.dense_4h_to_h.weight") != -1: vals = [] for k in range(factor): val = safe_transpose(transformer_model_list[k][key]) val = torch2np(val, np_weight_data_type) vals.append(val) saved_path = saved_dir / f"model.{saved_key}.{tp_rank:d}.bin" np.concatenate(vals, axis=0).tofile(saved_path) elif key.find("mlp.dense_h_to_4h.weight") != -1 or key.find("mlp.dense_h_to_4h.bias") != -1: vals = [] for k in range(factor): val = safe_transpose(transformer_model_list[k][key]) val = torch2np(val, np_weight_data_type) vals.append(val) saved_path = saved_dir / f"model.{saved_key}.{tp_rank:d}.bin" np.concatenate(vals, axis=-1).tofile(saved_path) elif key.find("attention.query_key_value.bias") != -1: vals = [] for k in range(factor): val = safe_transpose(transformer_model_list[k][key]) val = torch2np(val, np_weight_data_type) local_dim = int(val.shape[-1] / 3) num_splits = 3 head_num = num_attention_heads // tensor_model_parallel_size size_per_head = local_dim // head_num val = val.reshape(head_num, num_splits, size_per_head) val = val.transpose(1, 0, 2) val = val.reshape(3, local_dim) vals.append(val) saved_path = saved_dir / f"model.{saved_key}.{tp_rank:d}.bin" np.concatenate(vals, axis=-1).tofile(saved_path) elif key.find("attention.query_key_value.weight") != -1: vals = [] for k in range(factor): val = safe_transpose(transformer_model_list[k][key]) val = torch2np(val, np_weight_data_type) hidden_dim = val.shape[0] local_dim = int(val.shape[-1] / 3) num_splits = 3 head_num = num_attention_heads // tensor_model_parallel_size size_per_head = local_dim // head_num val = val.reshape(hidden_dim, head_num, num_splits, size_per_head) val = val.transpose(0, 2, 1, 3) val = val.reshape(hidden_dim, 3, local_dim) vals.append(val) saved_path = saved_dir / f"model.{saved_key}.{tp_rank:d}.bin" if args.fused_qkv == 1: np.concatenate(vals, axis=-1).tofile(saved_path) elif args.fused_qkv == 0: np.concatenate(vals, axis=-1).transpose(1, 0, 2).tofile(saved_path) else: LOGGER.error("cannot find key '%s'", key) def split_and_convert_process( tp_rank: int, pp_rank: int, saved_dir: typing.Union[str, pathlib.Path], factor: int, key: str, nemo_model_config: typing.Dict[str, typing.Any], transformer_model_list: typing.List, np_weight_data_type, args: argparse.Namespace, ): # Config params num_layers = nemo_model_config["num_layers"] num_attention_heads = nemo_model_config["num_attention_heads"] tensor_model_parallel_size = nemo_model_config.get("tensor_model_parallel_size", 1) pipeline_model_parallel_size = nemo_model_config.get("pipeline_model_parallel_size", 1) # Handle model[key] weights transformer_model = transformer_model_list[0] val = safe_transpose(transformer_model[key]) val = torch2np(val, np_weight_data_type) if key.find("layers.") != -1: layer_index = (int)(key[7 : key.find(".", 7)]) saved_key = key.replace( "layers.%d." % layer_index, "layers.%d." % (layer_index + pp_rank * num_layers // pipeline_model_parallel_size), ) if saved_key.find("self_attention") != -1: saved_key = saved_key.replace("self_attention", "attention") else: saved_key = key if ( key.find("input_layernorm.weight") != -1 or key.find("input_layernorm.bias") != -1 or key.find("attention.dense.bias") != -1 or key.find("post_attention_layernorm.weight") != -1 or key.find("post_attention_layernorm.bias") != -1 or key.find("mlp.dense_4h_to_h.bias") != -1 or key.find("final_layernorm.weight") != -1 or key.find("final_layernorm.bias") != -1 ): # shared weights, only need to convert the weights of rank 0 if tp_rank == 0: saved_path = saved_dir / f"model.{saved_key}.bin" val.tofile(saved_path) elif key.find("attention.dense.weight") != -1 or key.find("mlp.dense_4h_to_h.weight") != -1: split_vals = np.split(val, factor, axis=0) for j in range(factor): saved_path = saved_dir / f"model.{saved_key}.{tp_rank * factor + j:d}.bin" split_vals[j].tofile(saved_path) elif key.find("mlp.dense_h_to_4h.weight") != -1 or key.find("mlp.dense_h_to_4h.bias") != -1: split_vals = np.split(val, factor, axis=-1) for j in range(factor): saved_path = saved_dir / f"model.{saved_key}.{tp_rank * factor + j:d}.bin" split_vals[j].tofile(saved_path) elif key.find("attention.query_key_value.bias") != -1: local_dim = int(val.shape[-1] / 3) num_splits = 3 head_num = num_attention_heads // tensor_model_parallel_size size_per_head = local_dim // head_num val = val.reshape(head_num, num_splits, size_per_head) val = val.transpose(1, 0, 2) val = val.reshape(3, local_dim) split_vals = np.split(val, factor, axis=-1) for j in range(factor): saved_path = saved_dir / f"model.{saved_key}.{tp_rank * factor + j:d}.bin" split_vals[j].tofile(saved_path) elif key.find("attention.query_key_value.weight") != -1: hidden_dim = val.shape[0] local_dim = int(val.shape[-1] / 3) num_splits = 3 head_num = num_attention_heads size_per_head = hidden_dim // head_num head_num = head_num // tensor_model_parallel_size val = val.reshape(hidden_dim, head_num, num_splits, size_per_head) val = val.transpose(0, 2, 1, 3) val = val.reshape(hidden_dim, 3, local_dim) split_vals = np.split(val, factor, axis=-1) for j in range(factor): saved_path = saved_dir / f"model.{saved_key}.{tp_rank * factor + j:d}.bin" split_vals[j].tofile(saved_path) else: LOGGER.error("cannot find key '%s'", key) def convert_checkpoint(unpacked_checkpoints_dir: UnpackedNemoCheckpointDir, args): nemo_model_config = unpacked_checkpoints_dir.model_config checkpoints_paths = unpacked_checkpoints_dir.get_checkpoints_paths( nemo_model_config.get("tensor_model_parallel_size", 1), nemo_model_config.get("pipeline_model_parallel_size", 1), ) # if checkpoints files could be found - start preparing output dir saved_dir = _prepare_saved_dir(args) map_location_fn = cpu_map_location if bool(args.load_checkpoints_to_cpu) else gpu_map_location np_weight_data_type = WEIGHT2DTYPE[args.weight_data_type] # load position_embedding from rank 0 model_00 = torch.load(checkpoints_paths[0][0], map_location=map_location_fn) val = model_00.get("state_dict", model_00)["model.language_model.embedding.position_embeddings.weight"] # not weight, do not need to transpose val = torch2np(val, np_weight_data_type) val.tofile(saved_dir / "model.wpe.bin") del model_00 w_e_list = [] training_tensor_para_size = nemo_model_config.get("tensor_model_parallel_size", 1) training_pipeline_para_size = nemo_model_config.get("pipeline_model_parallel_size", 1) inference_tensor_para_size = args.infer_gpu_num if training_tensor_para_size > inference_tensor_para_size: assert training_tensor_para_size % inference_tensor_para_size == 0 is_merge_ckpt = True factor = int(training_tensor_para_size / inference_tensor_para_size) else: assert inference_tensor_para_size % training_tensor_para_size == 0 is_merge_ckpt = False factor = int(inference_tensor_para_size / training_tensor_para_size) main_loop = min(training_tensor_para_size, inference_tensor_para_size) torch.multiprocessing.set_start_method("spawn") torch.multiprocessing.set_sharing_strategy("file_system") pool = multiprocessing.Pool(args.processes) for i in range(main_loop): for j in range(training_pipeline_para_size): transformer_models = [] if is_merge_ckpt: for k in range(factor): rank_weights = checkpoints_paths[i * factor + k][j] model = torch.load(rank_weights, map_location=map_location_fn) if j == 0: val = model.get("state_dict", model)["model.language_model.embedding.word_embeddings.weight"] val = torch2np(val, np_weight_data_type) w_e_list.append(val) layers = extract_layers_with_prefix(model, "model.language_model.encoder.") transformer_models.append(layers) else: rank_weights = checkpoints_paths[i][j] model = torch.load(rank_weights, map_location=map_location_fn) if j == 0: val = model.get("state_dict", model)["model.language_model.embedding.word_embeddings.weight"] val = torch2np(val, np_weight_data_type) w_e_list.append(val) layers = extract_layers_with_prefix(model, "model.language_model.encoder.") transformer_models.append(layers) pool.starmap( merge_and_convert_process if is_merge_ckpt else split_and_convert_process, [ ( i, # tp_rank j, # pp_rank saved_dir, factor, key, nemo_model_config, transformer_models, np_weight_data_type, args, ) for key in transformer_models[0] ], ) pool.close() pool.join() val = np.concatenate(w_e_list, axis=0) val.tofile(saved_dir / "model.wte.bin") vocab_size = val.shape[0] tokenizer_config = nemo_model_config["tokenizer"] tokenizer_config = _update_tokenizer_config(tokenizer_config, unpacked_checkpoints_dir) if args.tokenizer_model_path: LOGGER.debug("Use tokenizer model passed from CLI: %s", args.tokenizer_model_path) tokenizer_config["model"] = args.tokenizer_model_path if args.vocab_path: LOGGER.debug("Use tokenizer vocab passed from CLI: %s", args.vocab_path) tokenizer_config["vocab_file"] = args.vocab_path if args.merges_path: LOGGER.debug("Use tokenizer merge passed from CLI: %s", args.merges_path) tokenizer_config["merge_file"] = args.merges_path _copy_tokenizer_file_if_defined("model", tokenizer_config["model"], saved_dir) _copy_tokenizer_file_if_defined("vocab_file", tokenizer_config["vocab_file"], saved_dir) _copy_tokenizer_file_if_defined("merge_file", tokenizer_config["merge_file"], saved_dir) bos_id, eos_id = _get_special_tokens_ids(tokenizer_config) gpt_model_config = GptModelConfig.from_nemo_package( args=args, nemo_model_config=nemo_model_config, vocab_size=vocab_size, bos_id=bos_id, eos_id=eos_id, ) # Configuration for the model (load by triton backends) config = configparser.ConfigParser() config["gpt"] = {k: str(v) for k, v in dataclasses.asdict(gpt_model_config).items()} try: config_path = saved_dir / "config.ini" with config_path.open("w") as config_file: config.write(config_file) except Exception as e: LOGGER.error("Fail to save the config; %s", e) def _prepare_saved_dir(args): saved_dir = pathlib.Path(args.saved_dir) if args.fused_qkv == 1: saved_dir = saved_dir / f"{args.infer_gpu_num:d}-gpu/" else: saved_dir = saved_dir / f"unfusedQKV-{args.infer_gpu_num:d}-gpu" if saved_dir.exists(): LOGGER.error(f"Remove %s target directory before running conversion", saved_dir) sys.exit(1) saved_dir.mkdir(parents=True) return saved_dir def prompt_convert(args, prompt_config, prompt_weights): prompt_templates = prompt_config["task_templates"] # model config save dir config_saved_dir = _prepare_saved_dir(args) # Configuration for the model (load by triton backends) config_path = config_saved_dir / "config.ini" config = configparser.ConfigParser() with config_path.open("r") as config_file: config.read_file(config_file) num_tasks = len(prompt_templates) prompt_learning_type = 3 # p_prompt_tuning prompt_learning_start_id = 50257 # hard code here config["gpt"]["num_tasks"] = str(num_tasks) config["gpt"]["prompt_learning_start_id"] = str(prompt_learning_start_id) config["gpt"]["prompt_learning_type"] = str(prompt_learning_type) for task_name_id, prompt_task in enumerate(prompt_templates): prompt_task_name = prompt_task["taskname"] prompt_length = int(prompt_task["total_virtual_tokens"]) config[f"task_{task_name_id:d}"] = {} config[f"task_{task_name_id:d}"]["task_name"] = prompt_task_name config[f"task_{task_name_id:d}"]["prompt_length"] = str(prompt_length) prompt_task_weights = prompt_weights["prompt_table"][ f"prompt_table.{prompt_task_name}.prompt_embeddings.weight" ] # put converted prompts weights to the model weights saved dir prompt_task_weights_output_path = config_saved_dir / f"model.prompt_table.{prompt_task_name}.weight.bin" val = torch2np(prompt_task_weights) val.tofile(prompt_task_weights_output_path) with config_path.open("w") as config_file: config.write(config_file) LOGGER.info(">>>>>>>>>>>>>>>> model saved config") LOGGER.info(config_path.read_text()) def _update_tokenizer_config(tokenizer_config: typing.Dict, unpacked_checkpoints_dir): def _update_config_entry(key, file_pattern): old_file_path = tokenizer_config[key] if old_file_path: LOGGER.debug("tokenizer %s %s type %s", key, old_file_path, type(old_file_path)) old_file_path = pathlib.Path(old_file_path) new_file_path = unpacked_checkpoints_dir.get_tokenizer_file_path("tokenizer", key, file_pattern) if new_file_path: LOGGER.debug("Update tokenizer %s %s -> %s", key, old_file_path, new_file_path) tokenizer_config[key] = new_file_path.as_posix() elif not old_file_path.exists(): LOGGER.warning("Because tokenizer %s %s does not exists - set it as None", key, old_file_path) tokenizer_config[key] = None _update_config_entry("model", "*.model") _update_config_entry("vocab_file", "*vocab*") _update_config_entry("merge_file", "*merge*.txt") return tokenizer_config def _copy_tokenizer_file_if_defined(key_name, tokenizer_file_path, saved_dir): if tokenizer_file_path: tokenizer_file_path = pathlib.Path(tokenizer_file_path) if tokenizer_file_path.exists(): tokenizer_basename = { "model": "tokenizer", "vocab_file": "vocab", "merge_file": "merges", }[key_name] dst_path = saved_dir / f"{tokenizer_basename}{tokenizer_file_path.suffix}" LOGGER.debug("Copy of %s %s file as %s", tokenizer_file_path, key_name, dst_path) shutil.copy(tokenizer_file_path.as_posix(), dst_path.as_posix()) else: LOGGER.debug("%s %s file does not exists", tokenizer_file_path, key_name) def _get_special_tokens_ids(tokenizer_config: typing.Dict): from nemo.collections.nlp.modules.common.tokenizer_utils import get_nmt_tokenizer from examples.pytorch.tokenizer import add_special_tokens_to_tokenizer logging.getLogger("git.cmd").setLevel(logging.INFO) logging.getLogger("h5py._conv").setLevel(logging.INFO) logging.getLogger("matplotlib").setLevel(logging.INFO) logging.getLogger("matplotlib.font_manager").setLevel(logging.INFO) logging.getLogger("matplotlib.pyplot").setLevel(logging.INFO) tokenizer = get_nmt_tokenizer( library=tokenizer_config["library"], model_name=tokenizer_config["type"], tokenizer_model=tokenizer_config["model"], vocab_file=tokenizer_config["vocab_file"], merges_file=tokenizer_config["merge_file"], legacy=True, ) if tokenizer_config["library"] == "sentencepiece": add_special_tokens_to_tokenizer(tokenizer) bos_id = tokenizer.bos_id eos_id = tokenizer.eos_id LOGGER.debug("for %s obtained tokenizer tokens ids bos_id=%d eos_id=%d", tokenizer_config, bos_id, eos_id) return bos_id, eos_id def main(): parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) parser.add_argument( "--saved-dir", "-saved_dir", "-o", help="folder name of output files", required=True, ) parser.add_argument( "--in-file", "-in_file", "-i", help="file name of .nemo checkpoint file", required=True, ) parser.add_argument( "--prompt-in-file", "-prompt_in_file", "-p_i", help="file name of .nemo prompt checkpoint file", ) parser.add_argument( "--prompt-saved-dir", "-prompt_saved_dir", "-p_o", help="folder name of prompt checkpoint output files", ) parser.add_argument( "--infer-gpu-num", "-infer_gpu_num", "-i_g", type=int, help="How many gpus for inference", required=True, ) parser.add_argument( "--fused-qkv", "-fused_qkv", type=int, choices=[0, 1], default=1, help="Fuse the qkv weights or not", ) parser.add_argument( "--processes", "-processes", "-p", type=int, default=16, help="How many processes to spawn for conversion", ) parser.add_argument( "--weight-data-type", "-weight_data_type", choices=["fp32", "fp16"], default="fp32", help="Data type of results weights", ) parser.add_argument( "--load-checkpoints-to-cpu", "-load_checkpoints_to_cpu", "-cpu", type=int, choices=[0, 1], default=1, help="Whether to load model weights to CPU", ) parser.add_argument( "--vocab-path", help="Path to vocabulary file to embed in FasterTransformer checkpoint", required=False, ) parser.add_argument( "--merges-path", help="Path to merges file to embed in FasterTransformer checkpoint", required=False, ) parser.add_argument( "--tokenizer-model-path", help="Path to tokenizer model file to embed in FasterTransformer checkpoint", required=False, ) parser.add_argument("--verbose", action="store_true", help="Provide verbose messages") args = parser.parse_args() log_format = "%(asctime)s %(name)s [%(levelname)s] %(message)s" logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO, format=log_format) print("\n=============== Argument ===============") for key in vars(args): print(f"{key}: {vars(args)[key]}") print("========================================") input_path = pathlib.Path(args.in_file) if not input_path.exists(): LOGGER.error("%s does not exists", input_path) sys.exit(1) with tempfile.TemporaryDirectory() as temp_dir: temp_dir = pathlib.Path(temp_dir) # unpack if needed if input_path.is_file(): checkpoint_dir_path = temp_dir / "unpacked" start_time = datetime.datetime.now() unpacked_checkpoint_dir = UnpackedNemoCheckpointDir( unpack_nemo_ckpt(args.in_file, checkpoint_dir_path), load_checkpoints_to_cpu=bool(args.load_checkpoints_to_cpu), ) LOGGER.info("Spent %s (h:m:s) to unpack NeMo archive", datetime.datetime.now() - start_time) else: unpacked_checkpoint_dir = UnpackedNemoCheckpointDir( input_path, load_checkpoints_to_cpu=bool(args.load_checkpoints_to_cpu) ) start_time = datetime.datetime.now() convert_checkpoint(unpacked_checkpoint_dir, args) LOGGER.info("Spent %s (h:m:s) to convert the model", datetime.datetime.now() - start_time) map_location_fn = cpu_map_location if bool(args.load_checkpoints_to_cpu) else gpu_map_location # prompt checkpoint converting if args.prompt_in_file is not None: start_time = datetime.datetime.now() assert args.prompt_saved_dir is not None unpack_nemo_ckpt(args.prompt_in_file, args.prompt_saved_dir) LOGGER.info("Spent %s (h:m:s) to unpack NeMo prompt archive", datetime.datetime.now() - start_time) model_config_yaml = "model_config.yaml" model_weights_ckpt = "model_weights.ckpt" prompt_config_file = open(os.path.join(args.prompt_saved_dir, model_config_yaml), "r") prompt_config = yaml.full_load(prompt_config_file) LOGGER.info(prompt_config) start_time = datetime.datetime.now() prompt_weights = torch.load( os.path.join(args.prompt_saved_dir, model_weights_ckpt), map_location=map_location_fn, ) prompt_convert(args, prompt_config, prompt_weights) LOGGER.info(f"Spent %s (h:m:s) to unpack convert prompt model", datetime.datetime.now() - start_time) if __name__ == "__main__": main()
FasterTransformer-main
examples/pytorch/gpt/utils/nemo_ckpt_convert.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List from tokenizers import Tokenizer class JiebaBPETokenizer: """SentencePiece BPE tokenizer with Jieba integration""" def __init__(self, tokenizer_json_file): self.name = 'Jieba BPE Tokenizer' self.tokenizer = Tokenizer.from_file(tokenizer_json_file) self.eod_id = self.tokenizer.token_to_id('<|endoftext|>') try: import jieba import logging jieba.setLogLevel(logging.INFO) except ImportError: raise ImportError( 'You need to install jieba to use JiebaTokenizer. ' 'See https://pypi.org/project/rjieba/ for installation.') self.jieba = jieba self.new_line = self.vocab['\n'] self.sep_token = self.vocab['<sep>'] @property def vocab_size(self): return self.tokenizer.get_vocab_size(with_added_tokens=True) @property def vocab(self): return self.tokenizer.get_vocab(with_added_tokens=True) @property def inv_vocab(self): vocab = self.vocab inv_vocab = dict() for key, val in vocab.items(): inv_vocab[val] = key return inv_vocab def encode(self, text: str, is_code: bool = False) -> List[int]: """ """ if not is_code: seg_list = [x for x in self.jieba.cut(text)] return self.tokenizer.encode( seg_list, is_pretokenized=True, add_special_tokens=True).ids else: return self.tokenizer.encode( text, is_pretokenized=False, add_special_tokens=True).ids def decode(self, token_ids): text = self.tokenizer.decode(token_ids, skip_special_tokens=True) return text @property def eod(self): return self.eod_id
FasterTransformer-main
examples/pytorch/gpt/utils/tokenizer.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import configparser import datetime import json import multiprocessing import pathlib import re import shutil import sys import numpy as np import torch # pytype: disable=import-error # verify if root package is in PYTHONPATH __root_package_path__ = pathlib.Path(__file__).parent.parent.parent.parent.parent.absolute().as_posix() if __root_package_path__ not in sys.path: print( f"[ERROR] add project root directory to your PYTHONPATH with " f"'export PYTHONPATH={__root_package_path__}:${{PYTHONPATH}}'" ) from examples.pytorch.gpt.utils.gpt import DEFAULT_START_TAG, DEFAULT_END_TAG, OPENAI_GPT2_START_ID, OPENAI_GPT2_END_ID from examples.pytorch.utils import torch2np, safe_transpose, cpu_map_location, gpu_map_location, WEIGHT2DTYPE def _inject_model_parallel_rank( filepath, tensor_model_parallel_size=1, pipeline_model_parallel_size=1, tensor_model_parallel_rank=0, pipeline_model_parallel_rank=0, ): """ Injects tensor/pipeline model parallel ranks into the filepath. Does nothing if not using model parallelism. """ filepath = pathlib.Path(filepath) if tensor_model_parallel_size > 1 or pipeline_model_parallel_size > 1: # filepath needs to be updated to include mp_rank if pipeline_model_parallel_size is None or pipeline_model_parallel_size == 1: filepath = filepath.parent / f"mp_rank_{tensor_model_parallel_rank:02d}" / filepath.name else: filepath = ( filepath.parent / f"mp_rank_{tensor_model_parallel_rank:02d}_{pipeline_model_parallel_rank:03d}" / filepath.name ) if not filepath.exists(): filepath = ( filepath.parent / f"tp_rank_{tensor_model_parallel_rank:02d}_pp_rank_{pipeline_model_parallel_rank:03d}" / filepath.name ) return filepath else: if filepath.exists(): return filepath else: return filepath.parent / "mp_rank_00" / filepath.name def _create_model_training_args_for_checkpoint_version_0(args, model_00): model_training_args = argparse.Namespace() if args.head_num is None or args.trained_tensor_parallel_size is None: raise ValueError( "Provided checkpoint have missing training args. " "Thus it is required to provide -head_num and -trained_tensor_parallel_size CLI arguments" ) model_training_args.num_attention_heads = args.head_num model_training_args.tensor_model_parallel_size = args.trained_tensor_parallel_size # megatron ckpt_ver=0 only supports pipeline_parallel_size = 1 model_training_args.pipeline_model_parallel_size = 1 model_training_args.max_position_embeddings = \ model_00["model"]["language_model"]["embedding"]["position_embeddings"]["weight"].shape[0] model_training_args.hidden_size = \ model_00["model"]["language_model"]["embedding"]["position_embeddings"]["weight"].shape[1] model_training_args.ffn_hidden_size = 4 * model_training_args.hidden_size def get_layer_num_from_weights(model_keys): layer_num = 1 for key in model_keys: if re.search(r'\d+', key) is not None: layer_num = max(int(re.search(r'\d+', key).group()), layer_num) return layer_num + 1 model_training_args.num_layers = \ get_layer_num_from_weights(model_00["model"]["language_model"]['transformer'].keys()) model_training_args.layernorm_epsilon = 1e-6 return model_training_args # This tool is used to support the new megatron model trained by pipeline parallel + tensor parallel def merge_and_convert_process(i, pipeline_para_rank, saved_dir, factor, key, model_training_args, transformer_model_list, ckpt_ver, np_weight_data_type): saved_dir = pathlib.Path(saved_dir) if key.find("layers.") != -1: layer_index = (int)(key[7 : key.find(".", 7)]) saved_key = key.replace( "layers.%d." % layer_index, "layers.%d." % (layer_index + pipeline_para_rank * model_training_args.num_layers // model_training_args.pipeline_model_parallel_size)) if saved_key.find("self_attention") != -1: saved_key = saved_key.replace("self_attention", "attention") if saved_key.find("adaptor1") != -1: saved_key = saved_key.replace("adaptor1", "after_attention_adapter") if saved_key.find("adaptor2") != -1: saved_key = saved_key.replace("adaptor2", "after_ffn_adapter") else: saved_key = key major_device = transformer_model_list[0][key].device if ( key.find("input_layernorm.weight") != -1 or key.find("input_layernorm.bias") != -1 or key.find("attention.dense.bias") != -1 or key.find("post_attention_layernorm.weight") != -1 or key.find("post_attention_layernorm.bias") != -1 or key.find("mlp.dense_4h_to_h.bias") != -1 or key.find("adaptor1.dense_4h_to_h.bias") != -1 or key.find("adaptor2.dense_4h_to_h.bias") != -1 or key.find("final_layernorm.weight") != -1 or key.find("final_layernorm.bias") != -1): # shared weights, only need to convert the weights of rank 0 if i == 0: saved_path = saved_dir / f"model.{saved_key}.bin" val = safe_transpose(transformer_model_list[0][key]) val = torch2np(val, np_weight_data_type) val = np.squeeze(val) val.tofile(saved_path) elif (key.find("attention.dense.weight") != -1 or key.find("mlp.dense_4h_to_h.weight") != -1 or key.find("adaptor1.dense_4h_to_h.weight") != -1 or key.find("adaptor2.dense_4h_to_h.weight") != -1): vals = [ safe_transpose(transformer_model_list[k][key]).float().to(major_device) for k in range(factor) ] val = torch.cat(vals, dim=0) val = torch2np(val, np_weight_data_type) saved_path = saved_dir / f"model.{saved_key}.{i:d}.bin" val.tofile(saved_path) elif (key.find("mlp.dense_h_to_4h.weight") != -1 or key.find("adaptor1.dense_h_to_4h.weight") != -1 or key.find("adaptor2.dense_h_to_4h.weight") != -1 or key.find("mlp.dense_h_to_4h.bias") != -1 or key.find("adaptor1.dense_h_to_4h.bias") != -1 or key.find("adaptor2.dense_h_to_4h.bias") != -1): vals = [ safe_transpose(transformer_model_list[k][key]).float().to(major_device) for k in range(factor) ] val = torch.cat(vals, dim=-1) val = torch2np(val, np_weight_data_type) saved_path = saved_dir / f"model.{saved_key}.{i:d}.bin" val.tofile(saved_path) elif key.find("attention.query_key_value.bias") != -1: vals = [] for k in range(factor): val = safe_transpose(transformer_model_list[k][key]).float() local_dim = int(val.shape[-1] / 3) if ckpt_ver == 3: num_splits = 3 head_num = model_training_args.num_attention_heads // model_training_args.tensor_model_parallel_size size_per_head = local_dim // head_num val = val.reshape(head_num, num_splits, size_per_head) val = val.permute(1, 0, 2) val = val.reshape(3, local_dim) vals.append(val.to(major_device)) val = torch.cat(vals, dim=-1) val = torch2np(val, np_weight_data_type) saved_path = saved_dir / f"model.{saved_key}.{i:d}.bin" val.tofile(saved_path) elif key.find("attention.query_key_value.weight") != -1: vals = [] for k in range(factor): val = safe_transpose(transformer_model_list[k][key]).float() hidden_dim = val.shape[0] local_dim = int(val.shape[-1] / 3) if ckpt_ver == 3: num_splits = 3 head_num = model_training_args.num_attention_heads size_per_head = hidden_dim // head_num head_num = head_num // model_training_args.tensor_model_parallel_size val = val.reshape(hidden_dim, head_num, num_splits, size_per_head) val = val.permute(0, 2, 1, 3) val = val.reshape(hidden_dim, 3, local_dim) vals.append(val.to(major_device)) val = torch.cat(vals, dim=-1) val = torch2np(val, np_weight_data_type) saved_path = saved_dir / f"model.{saved_key}.{i:d}.bin" val.tofile(saved_path) else: print(f"[ERROR] cannot find key '{key}'") def split_and_convert_process(i, pipeline_para_rank, saved_dir, factor, key, model_training_args, transformer_model_list, ckpt_ver, np_weight_data_type): val = safe_transpose(transformer_model_list[0][key]) val = torch2np(val, np_weight_data_type) if key.find("layers.") != -1: layer_index = (int)(key[7 : key.find(".", 7)]) saved_key = key.replace( "layers.%d." % layer_index, "layers.%d." % (layer_index + pipeline_para_rank * model_training_args.num_layers // model_training_args.pipeline_model_parallel_size)) if saved_key.find("self_attention") != -1: saved_key = saved_key.replace("self_attention", "attention") if saved_key.find("adaptor1") != -1: saved_key = saved_key.replace("adaptor1", "after_attention_adapter") if saved_key.find("adaptor2") != -1: saved_key = saved_key.replace("adaptor2", "after_ffn_adapter") else: saved_key = key if ( key.find("input_layernorm.weight") != -1 or key.find("input_layernorm.bias") != -1 or key.find("attention.dense.bias") != -1 or key.find("post_attention_layernorm.weight") != -1 or key.find("post_attention_layernorm.bias") != -1 or key.find("mlp.dense_4h_to_h.bias") != -1 or key.find("adaptor1.dense_4h_to_h.bias") != -1 or key.find("adaptor2.dense_4h_to_h.bias") != -1 or key.find("final_layernorm.weight") != -1 or key.find("final_layernorm.bias") != -1 ): # shared weights, only need to convert the weights of rank 0 if i == 0: saved_path = saved_dir / f"model.{saved_key}.bin" val.tofile(saved_path.as_posix()) elif (key.find("attention.dense.weight") != -1 or key.find("mlp.dense_4h_to_h.weight") != -1 or key.find("adaptor1.dense_4h_to_h.weight") != -1 or key.find("adaptor2.dense_4h_to_h.weight") != -1): split_vals = np.split(val, factor, axis=0) for j in range(factor): saved_path = saved_dir / f"model.{saved_key}.{i * factor + j:d}.bin" split_vals[j].tofile(saved_path.as_posix()) elif (key.find("mlp.dense_h_to_4h.weight") != -1 or key.find("adaptor1.dense_h_to_4h.weight") != -1 or key.find("adaptor2.dense_h_to_4h.weight") != -1 or key.find("mlp.dense_h_to_4h.bias") != -1 or key.find("adaptor1.dense_h_to_4h.bias") != -1 or key.find("adaptor2.dense_h_to_4h.bias") != -1): split_vals = np.split(val, factor, axis=-1) for j in range(factor): saved_path = saved_dir / f"model.{saved_key}.{i * factor + j:d}.bin" split_vals[j].tofile(saved_path.as_posix()) elif key.find("attention.query_key_value.bias") != -1: local_dim = int(val.shape[-1] / 3) if ckpt_ver == 3: num_splits = 3 head_num = model_training_args.num_attention_heads // model_training_args.tensor_model_parallel_size size_per_head = local_dim // head_num val = val.reshape(head_num, num_splits, size_per_head) val = val.transpose(1, 0, 2) val = val.reshape(3, local_dim) split_vals = np.split(val, factor, axis=-1) for j in range(factor): saved_path = saved_dir / f"model.{saved_key}.{i * factor + j:d}.bin" split_vals[j].tofile(saved_path.as_posix()) elif key.find("attention.query_key_value.weight") != -1: hidden_dim = val.shape[0] local_dim = int(val.shape[-1] / 3) if ckpt_ver == 3: num_splits = 3 head_num = model_training_args.num_attention_heads size_per_head = hidden_dim // head_num head_num = head_num // model_training_args.tensor_model_parallel_size val = val.reshape(hidden_dim, head_num, num_splits, size_per_head) val = val.transpose(0, 2, 1, 3) val = val.reshape(hidden_dim, 3, local_dim) split_vals = np.split(val, factor, axis=-1) for j in range(factor): saved_path = saved_dir / f"model.{saved_key}.{i * factor + j:d}.bin" split_vals[j].tofile(saved_path.as_posix()) else: print(f"[ERROR] cannot find key '{key}'") def _get_checkpoint_name(checkpoint_dir): checkpoint_dir = pathlib.Path(checkpoint_dir) patterns = [ "model_optim_rng.pt", # older megatron checkpoints "*last.ckpt", # newer format of checkpoints ] for pattern in patterns: model_files = sorted(list(checkpoint_dir.rglob(pattern))) if model_files: return model_files[0].name raise ValueError(f"Could not find checkpoint files in {checkpoint_dir}") def convert_checkpoint(args): saved_dir = pathlib.Path(args.saved_dir) / f"{args.infer_gpu_num:d}-gpu" if saved_dir.exists(): print(f"[ERROR] Remove {saved_dir} target directory before running conversion") sys.exit(1) saved_dir.mkdir(parents=True) if args.vocab_path: shutil.copy(args.vocab_path, (saved_dir / "vocab.json").as_posix()) if args.merges_path: shutil.copy(args.merges_path, (saved_dir / "merges.txt").as_posix()) load_checkpoints_to_cpu = bool(args.load_checkpoints_to_cpu) map_location_fn = cpu_map_location if load_checkpoints_to_cpu else gpu_map_location checkpoints_dir = pathlib.Path(args.in_file) checkpoint_name = _get_checkpoint_name(checkpoints_dir) # load position_embedding from rank 0 checkpoints_paths = sorted(checkpoints_dir.rglob(checkpoint_name)) if not checkpoints_paths: print(f"[ERROR] Cannot find checkpoint in {checkpoints_dir}.") exit(1) model_00 = torch.load(checkpoints_paths[0].as_posix(), map_location=map_location_fn) if "hyper_parameters" in list(model_00.keys()): print("Use nemo_ckpt_converter.py script for conversion of this checkpoint") exit(1) elif "args" in list(model_00.keys()): checkpoint_version = model_00["checkpoint_version"] model_training_args = model_00["args"] megatron_gpt_key = "encoder" else: checkpoint_version = 0 model_training_args = _create_model_training_args_for_checkpoint_version_0(args, model_00) megatron_gpt_key = "transformer" with (saved_dir / "args.txt").open("w") as training_args_file: for k, v in vars(model_training_args).items(): training_args_file.write(f"{k}:{v}\n") np_weight_data_type = WEIGHT2DTYPE[args.weight_data_type] val = model_00["model"]["language_model"]["embedding"]["position_embeddings"]["weight"] val = torch2np(val, np_weight_data_type) val.tofile((saved_dir / "model.wpe.bin").as_posix()) # not weight, do not need to transpose del model_00 w_e_list = [] training_tensor_para_size = model_training_args.tensor_model_parallel_size training_pipeline_para_size = model_training_args.pipeline_model_parallel_size inference_tensor_para_size = args.infer_gpu_num model_weights_paths = [ [ _inject_model_parallel_rank( checkpoints_dir / checkpoint_name, tensor_model_parallel_size=training_tensor_para_size, pipeline_model_parallel_size=training_pipeline_para_size, tensor_model_parallel_rank=tp_rank, pipeline_model_parallel_rank=pp_rank, ) for pp_rank in range(training_pipeline_para_size) ] for tp_rank in range(training_tensor_para_size) ] if training_tensor_para_size > inference_tensor_para_size: assert training_tensor_para_size % inference_tensor_para_size == 0 is_merge_ckpt = True factor = int(training_tensor_para_size / inference_tensor_para_size) else: assert inference_tensor_para_size % training_tensor_para_size == 0 is_merge_ckpt = False factor = int(inference_tensor_para_size / training_tensor_para_size) main_loop = min(training_tensor_para_size, inference_tensor_para_size) vocab_size_list = [0 for i in range(main_loop)] torch.multiprocessing.set_start_method("spawn") torch.multiprocessing.set_sharing_strategy("file_system") pool = multiprocessing.Pool(args.processes) has_adapters = False for i in range(main_loop): for j in range(training_pipeline_para_size): transformer_models = [] if is_merge_ckpt: for k in range(factor): m = torch.load(model_weights_paths[i * factor + k][j].as_posix(), map_location=map_location_fn) if not has_adapters: has_adapters = any("adaptor" in key for key in m['model']['language_model'][megatron_gpt_key].keys()) transformer_models.append(m["model"]["language_model"][megatron_gpt_key]) if j == 0: vocab_size_list[i] = m["model"]["language_model"]["embedding"]["word_embeddings"]["weight"].shape[0] w_e_list.append(torch2np(m["model"]["language_model"]["embedding"]["word_embeddings"]["weight"], np_weight_data_type)) else: m = torch.load(model_weights_paths[i][j].as_posix(), map_location=map_location_fn) if not has_adapters: has_adapters = any("adaptor" in key for key in m['model']['language_model'][megatron_gpt_key].keys()) if j == 0: vocab_size_list[i] = m["model"]["language_model"]["embedding"]["word_embeddings"]["weight"].shape[0] w_e_list.append(torch2np( m["model"]["language_model"]["embedding"]["word_embeddings"]["weight"], np_weight_data_type )) transformer_models.append(m["model"]["language_model"][megatron_gpt_key]) pool.starmap( merge_and_convert_process if is_merge_ckpt else split_and_convert_process, [ ( i, j, saved_dir, factor, k, model_training_args, transformer_models, checkpoint_version, np_weight_data_type, ) for (k, v) in transformer_models[0].items() ], ) pool.close() pool.join() torch.cuda.synchronize() np.concatenate(w_e_list, axis=0).tofile((saved_dir / "model.wte.bin").as_posix()) # save vocab_size full_vocab_size = sum(vocab_size_list) if not hasattr(model_training_args, "padded_vocab_size"): model_training_args.padded_vocab_size = full_vocab_size # Configuration for the model (load by triton backends) config = configparser.ConfigParser() config["gpt"] = {} if args.vocab_path: vocab_path = pathlib.Path(args.vocab_path) with vocab_path.open("r") as vocab_file: vocab = json.load(vocab_file) start_id, end_id = vocab[DEFAULT_START_TAG], vocab[DEFAULT_END_TAG] else: # hard coded values from english gpt_vocab.json file start_id, end_id = str(OPENAI_GPT2_START_ID), str(OPENAI_GPT2_END_ID) try: config["gpt"]["model_name"] = "gpt" config["gpt"]["head_num"] = str(model_training_args.num_attention_heads) config["gpt"]["size_per_head"] = str(model_training_args.hidden_size // model_training_args.num_attention_heads) config["gpt"]["inter_size"] = str(model_training_args.ffn_hidden_size) config["gpt"]["num_layer"] = str(model_training_args.num_layers) config["gpt"]["max_pos_seq_len"] = str(model_training_args.max_position_embeddings) config["gpt"]["vocab_size"] = str(model_training_args.padded_vocab_size) config["gpt"]["has_adapters"] = str(has_adapters) config['gpt']['adapter_inter_size'] = str(model_training_args.project_size) if has_adapters else str(0) config["gpt"]["layernorm_eps"] = str(model_training_args.layernorm_epsilon) config["gpt"]["start_id"] = str(start_id) config["gpt"]["end_id"] = str(end_id) config["gpt"]["weight_data_type"] = args.weight_data_type config["gpt"]["tensor_para_size"] = str(args.infer_gpu_num) with open((saved_dir / f"config.ini").as_posix(), 'w') as configfile: config.write(configfile) except Exception as e: print(f"Fail to save the config in config.ini: {e}") def main(): parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) parser.add_argument("--saved-dir", "-saved_dir", "-o", help="folder name of output files", required=True) parser.add_argument( "--in-file", "-in_file", "-i", help="file name of input checkpoint file", required=True ) parser.add_argument( "--infer-gpu-num", "-infer_gpu_num", "-i_g", type=int, help="How many gpus for inference", required=True ) # -h_n and -t_g are needed when megatron_ckpt_version = 0, for example the public megatron 345M gpt model parser.add_argument( "--head-num", "-head_num", "-h_n", type=int, help="The number of heads, only needed when weight doesn't contain structure hyperparameters" ) parser.add_argument( "--trained-tensor-parallel-size", "-trained_tensor_parallel_size", "-t_g", type=int, help="the tensor parallel size for training" ) parser.add_argument( "--processes", "-processes", "-p", type=int, default=16, help="How many processes to spawn for conversion", ) parser.add_argument( "--weight-data-type", "-weight_data_type", choices=["fp32", "fp16"], default="fp32", help="" ) parser.add_argument( "--load-checkpoints-to-cpu", "-load_checkpoints_to_cpu", "-cpu", type=int, choices=[0, 1], default=1, help="Whether to load model weights to CPU", ) parser.add_argument( "--vocab-path", type=str, help="Path to vocabulary file to embed in FasterTransformer checkpoint", required=False, ) parser.add_argument( "--merges-path", type=str, help="Path to merges file to embed in FasterTransformer checkpoint", required=False ) args = parser.parse_args() print("\n=============== Argument ===============") for key in vars(args): print(f"{key}: {vars(args)[key]}") print("========================================") start_time = datetime.datetime.now() convert_checkpoint(args) run_time = datetime.datetime.now() - start_time print(f"[INFO] Spent {run_time} (h:m:s) to convert the model") if __name__ == "__main__": main()
FasterTransformer-main
examples/pytorch/gpt/utils/megatron_ckpt_convert.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' Convert huggingface Meta OPT model. Use https://huggingface.co/facebook/opt-125m as demo. ''' import argparse import configparser import multiprocessing import numpy as np import os import sys import torch from datetime import datetime from pathlib import Path from tqdm import tqdm from transformers import OPTForCausalLM, AutoModelForCausalLM, AutoTokenizer # transformers-4.20.0.dev0 from transformers.models.opt.modeling_opt import OPTAttention, OPTDecoderLayer dir_path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(dir_path + "/../../../..") sys.path.append(dir_path) def get_weight_data_type(data_type): if data_type == "fp32": return np.float32 elif data_type == "fp16": return np.float16 else: assert False, f"Invalid weight data type {data_type}" def quantize(mat, act_range): # qkv proj weight quantization if mat.ndim == 3 and mat.shape[1] == 3: # get max_q, max_k, max_v mat_max = np.abs(mat).clip(1e-8, None).max(axis=(0,2))[None, :, None] else: mat_max = np.abs(mat).clip(1e-8, None).max() act_scale_in = 127. / np.array(act_range[0]) weight_scales = 127. / mat_max act_scale_post = 127. / np.array(act_range[1]) mat_quant = (mat * weight_scales).round().astype(np.int8) return mat_quant, weight_scales, act_scale_in, act_scale_post def split_and_convert_process(i, saved_dir, factor, key, args, val, capture_dict, old_name, dtype): def save_val(val, key, tp_num=None): path = saved_dir + "/model." + key if tp_num is not None: path += "." + str(tp_num) path += ".bin" val.tofile(path) quantized_out = args.act_scale is not None if "input_layernorm.weight" in key or "input_layernorm.bias" in key or \ "attention.dense.bias" in key or "post_attention_layernorm.weight" in key or \ "post_attention_layernorm.bias" in key or "mlp.dense_4h_to_h.bias" in key or \ "final_layernorm.weight" in key or "final_layernorm.bias" in key: # shared weights, only need to convert the weights of rank 0 if i == 0: save_val(val, key) elif "attention.dense.weight" in key or "mlp.dense_4h_to_h.weight" in key: if quantized_out: val_q, weight_scales, act_scale_pre, act_scale_post = quantize(val, capture_dict[old_name]) save_val(act_scale_pre.astype(dtype), key.replace("weight", "scale")) scale_inter = (act_scale_post / (act_scale_pre * weight_scales)).astype(dtype) save_val(scale_inter, key.replace("weight", "scale_inter")) save_val((1. / act_scale_post).astype(dtype), key.replace("weight", "scale_out")) split_vals_q = np.split(val_q, factor, axis=0) for j in range(factor): save_val(split_vals_q[j], key + ".int8", i * factor + j) split_vals = np.split(val, factor, axis=0) for j in range(factor): save_val(split_vals[j], key, i * factor + j) elif "mlp.dense_h_to_4h.weight" in key or "mlp.dense_h_to_4h.bias" in key: if quantized_out and "weight" in key: val_q, weight_scales, act_scale_pre, act_scale_post = quantize(val, capture_dict[old_name]) save_val(act_scale_pre.astype(dtype), key.replace("weight", "scale")) scale_inter = (act_scale_post / (act_scale_pre * weight_scales)).astype(dtype) save_val(scale_inter, key.replace("weight", "scale_inter")) save_val((1. / act_scale_post).astype(dtype), key.replace("weight", "scale_out")) split_vals_q = np.split(val_q, factor, axis=-1) for j in range(factor): save_val(split_vals_q[j], key + ".int8", i * factor + j) split_vals = np.split(val, factor, axis=-1) for j in range(factor): save_val(split_vals[j], key, i * factor + j) elif "attention.query_key_value.bias" in key: local_dim = (int)(val.shape[-1] / 3) val = val.reshape(3, local_dim) split_vals = np.split(val, factor, axis=-1) for j in range(factor): save_val(split_vals[j], key, i * factor + j) elif "attention.query_key_value.weight" in key: hidden_dim = val.shape[0] local_dim = (int)(val.shape[-1] / 3) val = val.reshape(hidden_dim, 3, local_dim) if quantized_out: val_q, weight_scales, act_scale_pre, act_scale_post = quantize(val, capture_dict[old_name]) weight_scales = weight_scales[0] * np.ones((3, local_dim // factor)) save_val(act_scale_pre.astype(dtype), key.replace("weight", "scale")) scale_inter = (act_scale_post[:, None] / (act_scale_pre[:, None] * weight_scales)).astype(dtype) save_val(scale_inter, key.replace("weight", "scale_inter")) save_val((1. / act_scale_post).astype(dtype), key.replace("weight", "scale_out")) split_vals_q = np.split(val_q, factor, axis=-1) for j in range(factor): save_val(split_vals_q[j], key + ".int8", i * factor + j) split_vals = np.split(val, factor, axis=-1) for j in range(factor): save_val(split_vals[j], key, i * factor + j) else: print("[ERROR] cannot find key '{}'".format(key)) def fuse_qkv_weight(q, k, v): if isinstance(q, float): qkv = torch.tensor((q, k, v)) else: qkv = torch.cat([q, k, v], dim=-1) return qkv def split_and_convert(args): saved_dir = args.saved_dir + "/%d-gpu/" % args.infer_gpu_num if(os.path.exists(saved_dir) == False): os.makedirs(saved_dir) ckpt_name = args.in_file t_gpu_num = args.trained_gpu_num i_gpu_num = args.infer_gpu_num assert(i_gpu_num % t_gpu_num == 0) save_int8 = args.act_scale is not None factor = (int)(i_gpu_num / t_gpu_num) # load position_embedding from rank 0 model = AutoModelForCausalLM.from_pretrained(args.in_file, device_map="auto") capture_dict = None if args.act_scale is not None: capture_dict = {} for key, values in torch.load(args.act_scale).items(): capture_dict[key + ".weight"] = (values["input"], values["output"]) hf_config = vars(model.config) num_layers = hf_config["num_hidden_layers"] layer_names = [name for name, param in model.named_parameters()] # NOTE: save parameters to config files (loaded by triton backends) config = configparser.ConfigParser() config["gpt"] = {} has_post_decoder_layernorm = "model.decoder.final_layer_norm.bias" in layer_names try: config["gpt"]["model_name"] = "opt" if hf_config["_name_or_path"] == '' else hf_config["_name_or_path"] config["gpt"]["head_num"] = str(hf_config["num_attention_heads"]) n_embd = hf_config["hidden_size"] config["gpt"]["size_per_head"] = str(n_embd // hf_config["num_attention_heads"]) config["gpt"]["inter_size"] = str(hf_config["ffn_dim"]) config['gpt']['max_pos_seq_len'] = str(hf_config['max_position_embeddings']) config["gpt"]["num_layer"] = str(hf_config["num_hidden_layers"]) config["gpt"]["layernorm_eps"] = "1e-5"; config["gpt"]["layernorm_type"] = "pre_layernorm" if hf_config["do_layer_norm_before"] else "post_layernorm" config["gpt"]["activation_type"] = "Relu" config["gpt"]["has_post_decoder_layernorm"] = "1" if has_post_decoder_layernorm else "0" config["gpt"]["vocab_size"] = str(hf_config["vocab_size"]) config["gpt"]["start_id"] = str(hf_config["bos_token_id"]) config["gpt"]["end_id"] = str(hf_config["eos_token_id"]) config['gpt']['weight_data_type'] = args.weight_data_type config['gpt']['int8'] = str(save_int8) # really useful? with open(saved_dir + "/config.ini", 'w') as configfile: config.write(configfile) except: print(f"Fail to save the config in config.ini.") np_weight_data_type = get_weight_data_type(args.weight_data_type) huggingface_model_name_pattern = [ "self_attn_layer_norm.bias", "self_attn_layer_norm.weight", "self_attn.qkv_proj.bias", "self_attn.qkv_proj.weight", "self_attn.out_proj.bias", "self_attn.out_proj.weight", "final_layer_norm.bias", "final_layer_norm.weight", "fc1.bias", "fc1.weight", "fc2.bias", "fc2.weight", ] ft_model_name_pattern = [ "input_layernorm.bias", "input_layernorm.weight", "attention.query_key_value.bias", "attention.query_key_value.weight", "attention.dense.bias", "attention.dense.weight", "post_attention_layernorm.bias", "post_attention_layernorm.weight", "mlp.dense_h_to_4h.bias", "mlp.dense_h_to_4h.weight", "mlp.dense_4h_to_h.bias", "mlp.dense_4h_to_h.weight", ] model_named_parameters_iter = model.named_parameters() model_named_parameters = dict() for name, param in model_named_parameters_iter: if "embed" in name: model_named_parameters[name] = param elif "project_in" in name: model_named_parameters[name] = param.permute(1, 0) elif "project_out" in name: model_named_parameters[name] = param else: model_named_parameters[name] = param.permute(1, 0) if len(param.shape) == 2 else param for l in range(num_layers): prefix = f'model.decoder.layers.{l}.self_attn.' q_weight = model_named_parameters[prefix + 'q_proj.weight'] k_weight = model_named_parameters[prefix + 'k_proj.weight'] v_weight = model_named_parameters[prefix + 'v_proj.weight'] q_bias = model_named_parameters[prefix + 'q_proj.bias'] k_bias = model_named_parameters[prefix + 'k_proj.bias'] v_bias = model_named_parameters[prefix + 'v_proj.bias'] qkv_weight = fuse_qkv_weight(q_weight, k_weight, v_weight) qkv_bias = fuse_qkv_weight(q_bias, k_bias, v_bias) if save_int8: qkv_scales = (capture_dict[prefix + 'q_proj.weight'], capture_dict[prefix + 'k_proj.weight'], capture_dict[prefix + 'v_proj.weight']) capture_dict[prefix + 'qkv_proj.weight'] = (fuse_qkv_weight(qkv_scales[0][0], qkv_scales[1][0], qkv_scales[2][0]), fuse_qkv_weight(qkv_scales[0][1], qkv_scales[1][1], qkv_scales[2][1])) model_named_parameters[prefix + 'qkv_proj.weight'] = qkv_weight model_named_parameters[prefix + 'qkv_proj.bias'] = qkv_bias pool = multiprocessing.Pool(args.processes) padding_offset = 2 for name, param in model_named_parameters.items(): if name == 'model.decoder.embed_positions.weight': param[padding_offset:,...].detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.wpe.bin") elif name == 'model.decoder.embed_tokens.weight': if 'model.decoder.project_in.weight' in model_named_parameters.keys(): project_in = model_named_parameters['model.decoder.project_in.weight'] project_out = model_named_parameters['model.decoder.project_out.weight'] torch.matmul(param, project_in).detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.wte.bin") torch.matmul(param, project_out).detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.lm_head.weight.bin") else: param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.wte.bin") param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.lm_head.weight.bin") elif name == 'model.decoder.final_layer_norm.weight': param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.final_layernorm.weight.bin") elif name == 'model.decoder.final_layer_norm.bias': param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.final_layernorm.bias.bin") elif "project_in" in name or "project_out" in name: continue else: starmap_args = [] for i in range(len(huggingface_model_name_pattern)): if huggingface_model_name_pattern[i] in name: new_name = name.replace("model.decoder.layers.", "layers.").replace(huggingface_model_name_pattern[i], ft_model_name_pattern[i]) starmap_args.append((0, saved_dir, factor, new_name, args, param.detach().cpu().numpy().astype(np_weight_data_type), capture_dict, name, np_weight_data_type)) pool.starmap_async(split_and_convert_process, starmap_args) pool.close() pool.join() if __name__ == "__main__": torch.multiprocessing.set_start_method("spawn") torch.multiprocessing.set_sharing_strategy("file_system") parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('-saved_dir', '-o', type=str, help='file name of output file', required=True) parser.add_argument('-in_file', '-i', type=str, help='file name of input checkpoint file', required=True) parser.add_argument('-trained_gpu_num', '-t_g', type=int, help='How many gpus for inference', default=1) parser.add_argument('-infer_gpu_num', '-i_g', type=int, help='How many gpus for inference', required=True) parser.add_argument("-processes", "-p", type=int, help="How many processes to spawn for conversion (default: 4)", default=4) parser.add_argument("-weight_data_type", type=str, default="fp32", choices=["fp32", "fp16"]) parser.add_argument("-act_scale", default=None, help="path to activation scalings for int8 conversion") args = parser.parse_args() print("\n=============== Argument ===============") for key in vars(args): print(f"{key}: {vars(args)[key]}") print("========================================") start_time = datetime.now() split_and_convert(args) stop_time = datetime.now() run_time = (stop_time - start_time) print(f"[INFO] Spend {run_time} (h:m:s) to convert the model")
FasterTransformer-main
examples/pytorch/gpt/utils/huggingface_opt_convert.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Convert HuggingFace pretrained checkpoint into FT format. """ import argparse import configparser import logging import multiprocessing import os import re import time from pathlib import Path from typing import Dict, List, Optional, Union import numpy as np import torch import torch.nn from transformers import AutoModel, BloomConfig, PretrainedConfig PathLike = Union[str, Path] DATATYPE_MAP = dict( fp32=torch.float32, fp16=torch.float16 ) _args = None logger = logging.getLogger() # get the root logger. def set_logger(verbose=False): logging.basicConfig( # do not print logging level to make it print-like. format='%(message)s', level=logging.DEBUG if verbose else logging.INFO) def get_args(): global _args if _args is not None: return _args parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument( '-i', '--input-dir', type=str, metavar='DIR', required=True, help='A checkpoint directory of a huggingface pretrained model.') parser.add_argument( '-o', '--output-dir', type=str, metavar='DIR', required=True, help='A directory where converted binary files for FT will be saved.') parser.add_argument( '-tp', '--tensor-para-size', type=int, metavar='N', default=1, help='The tensor parallel size for inference.') parser.add_argument( '-dt', '--data-type', type=str, metavar='STR', default='fp32', choices=list(DATATYPE_MAP), help='A data type of converted weights.') parser.add_argument( '-p', '--processes', type=int, metavar='N', default=1, help='The number of parallel processes to use for conversion.') parser.add_argument( '-v', '--verbose', action='store_true', help='Enable verbose logging') parser.add_argument( '-s', '--by-shard', action='store_true', help='Process shard by shard, enable when converting big model like bloom 175B') _args = parser.parse_args() set_logger(_args.verbose) logger.info('\n======================= Arguments =======================') for k, v in vars(_args).items(): logger.info(f' - {k.ljust(20, ".")}: {v}') logger.info('=========================================================') return _args parameter_prefix_map = { r'^h.': 'layers.', } # pattern and replacement map. parameter_rename_map = { # CasualLM weights 'word_embeddings.weight': 'wte', 'word_embeddings_layernorm.weight': 'pre_decoder_layernorm.weight', 'word_embeddings_layernorm.bias': 'pre_decoder_layernorm.bias', 'ln_f.weight': 'final_layernorm.weight', 'ln_f.bias': 'final_layernorm.bias', # Layer weights 'self_attention.dense.weight': 'attention.dense.weight', 'self_attention.dense.bias': 'attention.dense.bias', 'self_attention.query_key_value.weight': 'attention.query_key_value.weight', 'self_attention.query_key_value.bias': 'attention.query_key_value.bias', } parameter_to_split = [ # tuple of (name, index to split) ('attention.query_key_value.weight', -1), ('attention.query_key_value.bias', -1), ('attention.dense.weight', 0), ('mlp.dense_h_to_4h.weight', -1), ('mlp.dense_h_to_4h.bias', -1), ('mlp.dense_4h_to_h.weight', 0) ] def safe_transpose(param: torch.nn.Parameter): return param.T if len(param.shape) == 2 else param def convert_parameter_name(name: str): # A parameter in BloomForCausalLM has an additional prefix 'transformer.'. if name.startswith('transformer.'): name = name[len('transformer.'):] # Regularize the weight prefix. for pattern, rename in parameter_prefix_map.items(): if re.match(pattern, name): name = re.sub(pattern, rename, name) break # Rename weight names. name_suffix = re.sub(r'layers.\d+.', '', name) if name_suffix in parameter_rename_map: name = name.replace(name_suffix, parameter_rename_map[name_suffix]) # An GPT weight of FT has a prefix "model.". return 'model.' + name def is_split_param(name: str): for phrase, _ in parameter_to_split: if phrase in name: return True return False def axis_to_split(name: str): for phrase, axis in parameter_to_split: if phrase in name: return axis raise ValueError(f'Got a unexpected parameter name to split {name}') # Exception handling. def reorder_qkv_weight_or_bias(model_config: PretrainedConfig, name: str, param: torch.nn.Parameter): """ Reorder the qkv weight to use at FT. Note that the shape of the fused QKV weights in HF is different from the shape that FT requires. HF: (hidden_size, num_heads x 3 x head_dim) FT: (hidden_size, 3 x num_heads x head_dim) This is unlike to the other models in HF e.g. GPT where they have the same shape with FT, i.e., (hidden_size, 3 x num_heads x head_dim). Also, to split across attention heads in tensor parallel, we reshape the qkv weight: (hidden, 3, num_heads x head_dim). bias : (3, num_heads x head_dim). # Args. model_config: PretrainedConfig, a model configuration. name: str, a parameter name. param: torch.nn.Parameter, a fused QKV weight or bias. of shape (..., num_heads * 3 * head_dim). # Returns. torch.nn.Parameter, a reordered fused QKV weight of size (..., 3, num_heads * head_dim). """ if 'query_key_value' not in name: # Nothing to do for the non-eligible parameters. return param num_heads = model_config.n_head head_dim = model_config.hidden_size // model_config.n_head # (..., 3 x hidden) view as (..., num_heads, 3, head_dim) param = param.view(-1, num_heads, 3, head_dim) # permute to (..., 3, num_heads, head_dim) param = param.permute(0, 2, 1, 3) # final shape: weight=(hidden, 3, hidden) or bias=(3, hidden) if 'query_key_value.bias' in name: return param.reshape(3, num_heads * head_dim) return param.reshape(-1, 3, num_heads * head_dim) def handle_exceptions(model_config: PretrainedConfig, param_name: str, param: torch.nn.Parameter): if 'query_key_value' in param_name: param = reorder_qkv_weight_or_bias(model_config, param_name, param) elif 'wte' in param_name: # The input word embedding shouldn't be transposed. param = param.T return param def convert_and_save_parameter(param_name: str, param, tensor_para_size: Optional[int], save_dir: PathLike): """ Convert and save to FT parameter Split a param into tensor_para_size if needed, and save each split param at {save_dir}/{param_name}.bin or {save_dir}/{param_name}.{tp_idx}.bin in case of a split param. # Args. model_config: PretrainedConfig, a model configuration. name: str, parameter name. param: torch.nn.Parameter, a model parameter to convert. tensor_para_size: int, tensor parallel size. save_dir: str or Path, a base directory of binary files. """ save_dir = Path(save_dir) if not is_split_param(param_name): save_path = save_dir / f'{param_name}.bin' param.tofile(save_path) logger.debug( f' - {param_name.ljust(48, ".")}: shape {str(param.shape):16s} ' f'| saved at {str(save_path)}') return axis = axis_to_split(param_name) split_params = np.split(param, tensor_para_size, axis=axis) for tp_idx, split_param in zip(range(tensor_para_size), split_params): save_path = save_dir / f'{param_name}.{tp_idx}.bin' split_param.tofile(save_path) logger.debug( f' - {param_name.ljust(48, ".")}: shape {str(split_param.shape):16s} s ' f'| saved at {str(save_path)} ({tp_idx}/{tensor_para_size})') def save_bloom_config(model_config: BloomConfig, save_dir: PathLike): """ Save Bloom model configuration. Args: model_config: HF pretrained model configuration. save_dir: a directory to save the config file. """ args = get_args() save_dir = Path(save_dir) save_dir.parent.mkdir(exist_ok=True, parents=True) config = configparser.ConfigParser() # FT's layernorm type string. if model_config.apply_residual_connection_post_layernorm: model_variant = 'bloom-post' layernorm_type = 'post_layernorm' else: model_variant = 'bloom-pre' layernorm_type = 'pre_layernorm' # We use the section name `gpt` since FT runs BLOOM model through the GPT # module, which requires the section name `gpt` to retrieve the weight # data type. config['gpt'] = dict( model_name=model_config.name_or_path, num_layer=model_config.n_layer, head_num=model_config.n_head, # inter_size is fixed in bloom model by 4 * hidden_size and a model # config does not include the intermediate dimension of FFN. inter_size=4 * model_config.hidden_size, size_per_head=model_config.hidden_size // model_config.n_head, vocab_size=model_config.vocab_size, tensor_para_size=args.tensor_para_size, weight_data_type=args.data_type, # GPT variant params model_variant=model_variant, layernorm_eps=model_config.layer_norm_epsilon, layernorm_type=layernorm_type, activation_type='Gelu', has_positional_encoding=False, has_pre_decoder_layernorm=True, has_post_decoder_layernorm=True, use_attention_linear_bias=True, # Special token ids. start_id=model_config.bos_token_id, end_id=model_config.eos_token_id, ) with (save_dir / 'config.ini').open('w') as f: config.write(f, space_around_delimiters=False) def load_state_dict(file_path: Path, dtype: torch.dtype) -> Dict[str, torch.Tensor]: """ Load weights from model file `safetensors` or `pytorch binary` is supported # Args. file_path: model file path, ends with .bin or .safetensors. dtype: torch.dtype, data type. # Returns. Dict[str, torch.Tensor] """ state_dict = {} if file_path.suffix == ".safetensors": # load from safetensors file from safetensors import safe_open with safe_open(file_path, framework="pt", device="cpu") as f: for k in f.keys(): state_dict[k] = f.get_tensor(k).type(dtype) else: # load from pytorch bin file state_dict = torch.load(file_path, map_location="cpu") for k in state_dict: state_dict[k] = state_dict[k].type(dtype) return state_dict def get_model_files(model_name: str) -> List[Path]: """ List all model files that you want to load and convert # Args. model_name: name(like `bigscience/bloom`) or local directory of the model # Returns. List[Path] model file paths """ import glob from huggingface_hub import try_to_load_from_cache model_dir = model_name # get the local model directory try: config_file = "config.json" # will fall back to HUGGINGFACE_HUB_CACHE config_path = try_to_load_from_cache( model_name, config_file, cache_dir=os.getenv("TRANSFORMERS_CACHE") ) if config_path is not None: # treat the model name as an huggingface model path model_dir = os.path.dirname(config_path) except: # treat the model name as an explicit model path pass model_files = glob.glob(model_dir + "/*.bin") try: from safetensors import safe_open as _ st_files = glob.glob(model_dir + "/*.safetensors") if st_files: model_files = st_files logger.info("loading from safetensors format") except ImportError: logger.info("loading from pytorch bin format") if not model_files: raise FileNotFoundError('model files not found') logger.info(f"model file num: {len(model_files)}") return [Path(i) for i in model_files] def process_by_model_param(model_id: str, dtype: torch.dtype, tp_size: int, save_dir: Path, nproc: int): """ Process conversion parameter by parameter. """ # init bloom config model_config = BloomConfig.from_pretrained(model_id) # list all model files model_files = get_model_files(model_id) # save bloom config to output dir save_bloom_config(model_config, save_dir) if nproc > 1: pool = multiprocessing.Pool(nproc) star_args = [] for model_file in model_files: state_dict = load_state_dict(model_file, dtype) for name in state_dict: param = state_dict[name] # Preprocess param_name = convert_parameter_name(name) param = safe_transpose(param) param = handle_exceptions(model_config, param_name, param) star_args.append((param_name, param.detach().cpu().numpy(), tp_size, save_dir)) pool.starmap_async(convert_and_save_parameter, star_args) pool.close() pool.join() else: for model_file in model_files: state_dict = load_state_dict(model_file, dtype) for name in state_dict: param = state_dict[name] # Preprocess param_name = convert_parameter_name(name) param = safe_transpose(param) param = handle_exceptions(model_config, param_name, param) convert_and_save_parameter(param_name, param.detach().cpu().numpy(), tp_size, save_dir) def _process_by_model_shard(model_config, model_file, dtype: torch.dtype, tp_size: int, save_dir: Path): state_dict = load_state_dict(model_file, dtype) for name in state_dict: param = state_dict[name] # Preprocess param_name = convert_parameter_name(name) param = safe_transpose(param) param = handle_exceptions(model_config, param_name, param) convert_and_save_parameter(param_name, param.detach().cpu().numpy(), tp_size, save_dir) def process_by_model_shard(model_id: str, dtype: torch.dtype, tp_size: int, save_dir: Path, nproc: int): """ Process conversion shard by shard. Benchmarks @ 64C(Intel Xeon 6326 2.90GH) x 756G: | model | format | by-shard | nproc | elapsed(s) | mem | |------------|------------------|----------|-------|------------|------| | bloom-175b | safetensors x 72 | NO | 8 | 1516.66 | 350G | | bloom-175b | safetensors x 72 | YES | 8 | 1165.03 | 50G | | bloom-175b | safetensors x 72 | YES | 24 | 494.81 | 150G | """ # init bloom config model_config = BloomConfig.from_pretrained(model_id) # list all model files model_files = get_model_files(model_id) # save bloom config to output dir save_bloom_config(model_config, save_dir) if nproc > 1: pool = multiprocessing.Pool(nproc) star_args = [] for model_file in model_files: star_args.append((model_config, model_file, dtype, tp_size, save_dir)) pool.starmap_async(_process_by_model_shard, star_args) pool.close() pool.join() else: for model_file in model_files: _process_by_model_shard(model_config, model_file, dtype, tp_size, save_dir) def main(): start_time = time.time() args = get_args() tp_size = args.tensor_para_size dtype = DATATYPE_MAP[args.data_type] save_dir = Path(args.output_dir) / f'{tp_size}-gpu' save_dir.mkdir(exist_ok=True, parents=True) if args.by_shard: process_by_model_shard(args.input_dir, dtype, tp_size, save_dir, args.processes) else: process_by_model_param(args.input_dir, dtype, tp_size, save_dir, args.processes) elapsed_time = time.time() - start_time logger.info(f'Checkpoint conversion (HF >> FT) has done ' f'(elapsed time: {elapsed_time:.2f} sec)') if __name__ == '__main__': main()
FasterTransformer-main
examples/pytorch/gpt/utils/huggingface_bloom_convert.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from abc import abstractmethod from pathlib import Path from typing import List, Literal, Optional, Union import os import numpy as np import torch from . import comm from . import profiler from .gpt import GptInitModelParameters PathLike = Union[str, Path] def to_numpy_dtype(maybe_str_dtype: Union[str, np.dtype]): assert isinstance(maybe_str_dtype, (str, np.dtype)) if isinstance(maybe_str_dtype, str): try: dtype = { 'fp16': np.float16, 'float16': np.float16, 'fp32': np.float32, 'float32': np.float32, }[maybe_str_dtype] except KeyError: raise ValueError(f'Cannot convert to numpy data type, got {maybe_str_dtype}') else: dtype = maybe_str_dtype return dtype def to_torch_dtype(maybe_str_dtype: Union[str, torch.dtype]): if isinstance(maybe_str_dtype, torch.dtype): dtype = maybe_str_dtype else: try: dtype = { "bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32, "bfloat16": torch.bfloat16, "float16": torch.float16, "float32": torch.float32, }[maybe_str_dtype] except KeyError: raise ValueError(f"Cannot convert to torch data type, got {maybe_str_dtype}") return dtype def load_weight_from_bin(checkpoint_path: PathLike, shape: List[int], weight_dtype: Union[str, np.dtype]): """ Load a weight from a bin file. # Args. checkpoint_path: str or Path, a checkpoint file path of an FT's layer weight. shape: list of int, the shape of weight tensor. weight_dtype: str or np.dtype, the data type of the stored weight. """ weight_dtype = to_numpy_dtype(weight_dtype) return torch.from_numpy(np.fromfile(checkpoint_path, dtype=weight_dtype)) LayernormType = Literal['pre_layernorm', 'post_layernorm'] class GptLayerWeights: def __init__(self, num_heads: int, size_per_head: int, inter_size: int, num_layers: int, tensor_para_size: int = 1, pipeline_para_size: int = 1, has_adapters: bool = False, adapter_inter_size: int = 0, int8_mode: int = 0): assert num_heads % tensor_para_size == 0, \ f'num_heads ({num_heads}) is not multiple of tensor para size ({tensor_para_size})' self.num_heads = num_heads self.size_per_head = size_per_head self.hidden_units = num_heads * size_per_head self.num_layers = num_layers self.tensor_para_size = tensor_para_size self.tensor_para_rank = comm.get_tensor_para_rank() self.pipeline_para_size = pipeline_para_size self.pipeline_para_rank = comm.get_pipeline_para_rank() self.has_adapters = has_adapters self.adapter_inter_size = adapter_inter_size self.local_num_layers = num_layers // pipeline_para_size self.local_num_heads = num_heads // tensor_para_size self.local_hidden_units = self.local_num_heads * size_per_head self.local_inter_size = inter_size // tensor_para_size self.local_adapter_inter_size = self.adapter_inter_size // tensor_para_size self.weight_transpose_calibrate_quantize = None assert int8_mode in [0, 1], "Invalid int8 mode for GPT. Must be 0 or 1" self.int8_mode = int8_mode if self.int8_mode == 1: quant = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix self.weight_transpose_calibrate_quantize = lambda x : quant(x, torch.int8) self.weights = None self.int8_weights = None self.int8_scales = None self.expected_weight_shapes = list() # pylint:disable=line-too-long # Transformer blocks self.expected_weight_shapes.extend([(self.hidden_units,)] * self.local_num_layers) # input layernorm weight self.expected_weight_shapes.extend([(self.hidden_units,)] * self.local_num_layers) # input layernorm bias self.expected_weight_shapes.extend([(self.hidden_units, self.local_hidden_units * 3)] * self.local_num_layers) # attention qkv weight self.expected_weight_shapes.extend([(self.local_hidden_units * 3,)] * self.local_num_layers) # attention qkv bias self.expected_weight_shapes.extend([(self.local_hidden_units, self.hidden_units)] * self.local_num_layers) # attention dense weight self.expected_weight_shapes.extend([(self.hidden_units,)] * self.local_num_layers) # attention dense bias self.expected_weight_shapes.extend([(self.hidden_units,)] * self.local_num_layers) # post attention layernorm weight self.expected_weight_shapes.extend([(self.hidden_units,)] * self.local_num_layers) # post attention layernorm bias self.expected_weight_shapes.extend([(self.hidden_units, self.local_inter_size)] * self.local_num_layers) # ffn_kernel1 self.expected_weight_shapes.extend([(self.local_inter_size,)] * self.local_num_layers) # ffn_bias1 self.expected_weight_shapes.extend([(self.local_inter_size, self.hidden_units)] * self.local_num_layers) # ffn_kernel2 self.expected_weight_shapes.extend([(self.hidden_units,)] * self.local_num_layers) # ffn_bias2 # Adapters if self.has_adapters: self.expected_weight_shapes.extend([(self.hidden_units, self.local_adapter_inter_size)] * self.local_num_layers) # adaptor1_kernel1 self.expected_weight_shapes.extend([(self.local_adapter_inter_size,)] * self.local_num_layers) # adaptor1_bias1 self.expected_weight_shapes.extend([(self.local_adapter_inter_size, self.hidden_units)] * self.local_num_layers) # adaptor1_kernel2 self.expected_weight_shapes.extend([(self.hidden_units,)] * self.local_num_layers) # adaptor1_bias2 self.expected_weight_shapes.extend([(self.hidden_units, self.local_adapter_inter_size)] * self.local_num_layers) # adaptor2_kernel1 self.expected_weight_shapes.extend([(self.local_adapter_inter_size,)] * self.local_num_layers) # adaptor2_bias1 self.expected_weight_shapes.extend([(self.local_adapter_inter_size, self.hidden_units)] * self.local_num_layers) # adaptor2_kernel2 self.expected_weight_shapes.extend([(self.hidden_units,)] * self.local_num_layers) # adaptor2_bias2 # pylint:enable=line-too-long @classmethod def from_config(cls, config: GptInitModelParameters): return cls(num_heads=config.head_num, size_per_head=config.size_per_head, inter_size=4 * config.head_num * config.size_per_head, num_layers=config.layer_num, tensor_para_size=config.tensor_para_size, pipeline_para_size=config.pipeline_para_size, has_adapters=config.has_adapters, adapter_inter_size=config.adapter_inter_size, int8_mode=config.int8_mode) @property def dtype(self): return self.weights[0].dtype @property def device(self): return self.weights[0].device def _map(self, func): for i in range(len(self.weights)): if isinstance(self.weights[i], list): for j in range(len(self.weights[i])): self.weights[i][j] = func(self.weights[i][j]) else: self.weights[i] = func(self.weights[i]) def _map_int8(self, func): for i in range(len(self.int8_weights)): if isinstance(self.int8_weights[i], list): for j in range(len(self.int8_weights[i])): self.int8_weights[i][j] = func(self.int8_weights[i][j]) else: self.int8_weights[i] = func(self.int8_weights[i]) for i in range(len(self.int8_scales)): if isinstance(self.int8_scales[i], list): for j in range(len(self.int8_scales[i])): self.int8_scales[i][j] = func(self.int8_scales[i][j]) else: self.int8_scales[i] = func(self.int8_scales[i]) def float(self): if self.dtype == torch.float32: return self._map(lambda x: x.float()) def half(self): if self.dtype == torch.float16: return self._map(lambda x: x.half()) if self.int8_mode == 1: self._map_int8(lambda w: w.half()) def bfloat16(self): if self.dtype == torch.bfloat16: return self._map(lambda x: x.bfloat16()) if self.int8_mode == 1: self._map_int8(lambda w: w.bfloat16()) def cuda(self, device=None): self._map(lambda x: x.cuda(device)) if self.int8_mode == 1: self._map_int8(lambda x: x.cuda(device)) def to(self, device=None): self._map(lambda x: x.to(device)) if self.int8_mode == 1: self._map_int8(lambda x: x.to(device)) def is_valid_pp_group(self, layer, pp_rank): return layer // self.layers_per_device == pp_rank def load(self, checkpoint_path: PathLike, compute_dtype: torch.dtype, weight_dtype: Optional[Union[str, np.dtype]] = None, device: Optional[Union[int, str, torch.device]] = None): """ Load checkpoint weights. # Args. checkpoint_path: str or Path, a checkpoint directory where FT checkpoint files locate. weight_dtype: str or np.dtype, the data type of stored weights. """ checkpoint_path = Path(checkpoint_path) if not checkpoint_path.exists(): raise FileNotFoundError(f"Could not find checkpoint {str(checkpoint_path)}") weight_dtype = to_numpy_dtype(weight_dtype) print(f'Load weights from {str(checkpoint_path)} (data type: {weight_dtype}') self.weights = list() self.int8_weights = list() self.int8_scales = list() torch.cuda.empty_cache() def _load_from_file(fname): quant_sub_names = ["attention.query_key_value.weight", "attention.dense.weight", \ "dense_h_to_4h.weight", "dense_4h_to_h.weight"] _weight = torch.from_numpy(np.fromfile(checkpoint_path / fname, dtype=weight_dtype)) _weight = _weight.to(compute_dtype) weight_index = len(self.weights) expected_shape = self.expected_weight_shapes[weight_index] try: if _weight.nelement() > 0: _weight = _weight.reshape(expected_shape) except: raise ValueError( f"num_heads, size_per_head, vocab_size, and max_seq_len must be the same " f"as the ones during training (weight: {fname} expected shape: {expected_shape}, " f"got shape: {_weight.shape}).") should_quantize = any(sub_name in fname for sub_name in quant_sub_names) if self.int8_mode != 0 and should_quantize: calibrate = self.weight_transpose_calibrate_quantize int8_weight, int8_scales = calibrate(_weight) #int8 weights should appear in same order as FP weights. # Move to device and add to the int8 list. dummy_weight = torch.empty(0, dtype=compute_dtype) if device is not None: int8_weight = int8_weight.to(device) int8_scales = int8_scales.to(device) dummy_weight = dummy_weight.to(device) self.int8_weights.append(int8_weight) self.int8_scales.append(int8_scales) self.weights.append(dummy_weight) else: if device is not None: _weight = _weight.to(device) self.weights.append(_weight) # Load # pylint:disable=line-too-long layer_offset = self.local_num_layers * self.pipeline_para_rank [_load_from_file(f'model.layers.{layer_offset + i}.input_layernorm.weight.bin') for i in range(self.local_num_layers)] [_load_from_file(f'model.layers.{layer_offset + i}.input_layernorm.bias.bin') for i in range(self.local_num_layers)] [_load_from_file(f'model.layers.{layer_offset + i}.attention.query_key_value.weight.{self.tensor_para_rank}.bin') for i in range(self.local_num_layers)] [_load_from_file(f'model.layers.{layer_offset + i}.attention.query_key_value.bias.{self.tensor_para_rank}.bin') for i in range(self.local_num_layers)] [_load_from_file(f'model.layers.{layer_offset + i}.attention.dense.weight.{self.tensor_para_rank}.bin') for i in range(self.local_num_layers)] [_load_from_file(f'model.layers.{layer_offset + i}.attention.dense.bias.bin') for i in range(self.local_num_layers)] [_load_from_file(f'model.layers.{layer_offset + i}.post_attention_layernorm.weight.bin') for i in range(self.local_num_layers)] [_load_from_file(f'model.layers.{layer_offset + i}.post_attention_layernorm.bias.bin') for i in range(self.local_num_layers)] [_load_from_file(f'model.layers.{layer_offset + i}.mlp.dense_h_to_4h.weight.{self.tensor_para_rank}.bin') for i in range(self.local_num_layers)] [_load_from_file(f'model.layers.{layer_offset + i}.mlp.dense_h_to_4h.bias.{self.tensor_para_rank}.bin') for i in range(self.local_num_layers)] [_load_from_file(f'model.layers.{layer_offset + i}.mlp.dense_4h_to_h.weight.{self.tensor_para_rank}.bin') for i in range(self.local_num_layers)] [_load_from_file(f'model.layers.{layer_offset + i}.mlp.dense_4h_to_h.bias.bin') for i in range(self.local_num_layers)] if self.has_adapters: [_load_from_file(f'model.layers.{layer_offset + i}.after_attention_adapter.dense_h_to_4h.weight.{self.tensor_para_rank}.bin') for i in range(self.local_num_layers)] [_load_from_file(f'model.layers.{layer_offset + i}.after_attention_adapter.dense_h_to_4h.bias.{self.tensor_para_rank}.bin') for i in range(self.local_num_layers)] [_load_from_file(f'model.layers.{layer_offset + i}.after_attention_adapter.dense_4h_to_h.weight.{self.tensor_para_rank}.bin') for i in range(self.local_num_layers)] [_load_from_file(f'model.layers.{layer_offset + i}.after_attention_adapter.dense_4h_to_h.bias.bin') for i in range(self.local_num_layers)] [_load_from_file(f'model.layers.{layer_offset + i}.after_ffn_adapter.dense_h_to_4h.weight.{self.tensor_para_rank}.bin') for i in range(self.local_num_layers)] [_load_from_file(f'model.layers.{layer_offset + i}.after_ffn_adapter.dense_h_to_4h.bias.{self.tensor_para_rank}.bin') for i in range(self.local_num_layers)] [_load_from_file(f'model.layers.{layer_offset + i}.after_ffn_adapter.dense_4h_to_h.weight.{self.tensor_para_rank}.bin') for i in range(self.local_num_layers)] [_load_from_file(f'model.layers.{layer_offset + i}.after_ffn_adapter.dense_4h_to_h.bias.bin') for i in range(self.local_num_layers)] assert len(self.weights) == len(self.expected_weight_shapes), "Incorrect number of weights loaded" class FtModuleBase: def __init__(self): self.weight = None @classmethod @abstractmethod def from_config(cls, config: GptInitModelParameters, **kwargs): raise NotImplementedError @abstractmethod def _initialize_model(self, force_init=False): raise NotImplementedError @abstractmethod def forward(self, *args, **kwargs): raise NotImplementedError def set_weight(self, weight: GptLayerWeights): old_weight_dtype = self.weight.dtype if self.weight is not None else None self.weight = weight if old_weight_dtype is None or old_weight_dtype != self.weight.dtype: self._initialize_model(force_init=True) @property def dtype(self): assert self.weight is not None return self.weight.dtype @property def device(self): assert self.weight is not None return self.weight.device def cuda(self, device=None): assert torch.cuda.is_available() self.weight.cuda(device) return self def to(self, device=None): self.weight.to(device) return self def float(self): self.weight.float() self._initialize_model(force_init=True) return self def half(self): self.weight.half() self._initialize_model(force_init=True) return self def bfloat16(self): self.weight.bfloat16() self._initialize_model(force_init=True) return self class GptContextDecoder(FtModuleBase): def __init__(self, num_heads: int, size_per_head: int, inter_size: int, num_layers: int, tensor_para_size: int = 1, pipeline_para_size: int = 1, remove_padding: bool = True, shared_contexts_ratio: float = 1.0, layernorm_eps: float = 1e-6, layernorm_type: LayernormType = 'pre_layernorm', activation_type: str = 'gelu', has_adapters: bool = False, adapter_inter_size: int = 0, int8_mode: int = 0): super().__init__() self.num_heads = num_heads self.size_per_head = size_per_head self.hidden_size = self.num_heads * self.size_per_head self.inter_size = inter_size self.num_layers = num_layers self.tensor_para_size = tensor_para_size self.pipeline_para_size = pipeline_para_size self.remove_padding = remove_padding self.shared_contexts_ratio = shared_contexts_ratio self.layernorm_eps = layernorm_eps self.layernorm_type = layernorm_type self.activation_type = activation_type self.has_adapters = has_adapters self.adapter_inter_size = adapter_inter_size assert int8_mode in [0, 1] self.int8_mode = int8_mode self.ft_op = None self.weight = None def __repr__(self): args_dict = dict( num_heads=self.num_heads, size_per_head=self.size_per_head, hidden_size=self.hidden_size, inter_size=self.inter_size, num_layers=self.num_layers, tensor_para_size=self.tensor_para_size, pipeline_para_size=self.pipeline_para_size, remove_padding=self.remove_padding, shared_contexts_ratio=self.shared_contexts_ratio, layernorm_eps=self.layernorm_eps, layernorm_type=self.layernorm_type, activation_type=self.activation_type, has_adapters=self.has_adapters, adapter_inter_size=self.adapter_inter_size, int8_mode=self.int8_mode, ) args_str = ',\n '.join([f'{k}: {v}' for k, v in args_dict.items()]) return f'{self.__class__.__name__}[\n{ args_str}\n]' @classmethod def from_config(cls, config: GptInitModelParameters, **kwargs): return cls(num_heads=config.head_num, size_per_head=config.size_per_head, inter_size=4 * config.head_num * config.size_per_head, num_layers=config.layer_num, tensor_para_size=config.tensor_para_size, pipeline_para_size=config.pipeline_para_size, remove_padding=kwargs.get('remove_padding', True), shared_contexts_ratio=kwargs.get('shared_contexts_ratio', 1.0), layernorm_eps=config.layernorm_eps, layernorm_type=config.layernorm_type, activation_type=config.activation_type, has_adapters=config.has_adapters, adapter_inter_size=config.adapter_inter_size, int8_mode=config.int8_mode) def _initialize_model(self, force_init=False): if self.weight is None: self.weight = GptLayerWeights( num_heads=self.num_heads, size_per_head=self.size_per_head, inter_size=self.inter_size, num_layers=self.num_layers, tensor_para_size=self.tensor_para_size, pipeline_para_size=self.pipeline_para_size, has_adapters=self.has_adapters, adapter_inter_size=self.adapter_inter_size, int8_mode=self.int8_mode) if not force_init and self.ft_op is not None: return if self.ft_op is not None: del self.ft_op self.ft_op = torch.classes.FasterTransformer.ParallelGptContextDecoderOp( self.num_heads, self.size_per_head, self.inter_size, self.num_layers, self.tensor_para_size, self.pipeline_para_size, self.layernorm_eps, self.layernorm_type, self.activation_type, self.has_adapters, self.adapter_inter_size, self.int8_mode, self.weight.weights, self.weight.int8_weights, self.weight.int8_scales, self.remove_padding) def forward(self, input_embeds: torch.Tensor, attention_mask: torch.Tensor, input_lengths: torch.IntTensor, memory_length: Optional[int] = None, compact_index: Optional[torch.IntTensor] = None, batch_to_compact_index: Optional[torch.IntTensor] = None, linear_bias_slopes: Optional[torch.Tensor] = None): """ # Args. input_embeds: Tensor, (batch * beam, max_input_length, hidden_dim), input hidden states. attention_mask: Tensor, (batch * beam, max_input_length, max_input_length), input attention mask. input_lengths: (batch * beam,), input sequence lengths. memory_length: int, the length of memory to keep key/cache values. compact_index: IntTensor, (compact_batch_size,) The index of input sequences of a compact batch. If None, the FT op doesn't apply the shared context feature and as result the inference time may increase. batch_to_compact_index: IntTensor, (batch * beam,) The index map from the original input batch to the compact batch. This must be provided if compact_index is not None. linear_bias_slopes: (num_heads,) The slope per head of linear attention bias - ALiBi. If None, a base self attention will be performed. # Returns hidden_states: Tensor, (batch * beam, max_input_length, hidden_dim), decoder outputs. key_cache: Tensor, (num_layers, batch * beam, local_num_heads, size_per_head / x, memory_length, x), key cache of attention of inputs. x = 16 / sizeof(T), memory_length = max_input_length or max_input_length + gen_length value_cache: Tensor, (num_layers, batch * beam, local_num_heads, memory_length, hidden_dim) value cache of attention last_token_hidden_states: Tensor, (batch * beam, hidden_dim) hidden states of the last input token. """ self._initialize_model() # outputs: output hidden states decoder_ouptut, key_cache, value_cache, last_token_hidden_states = self.ft_op.forward( input_embeds, attention_mask, input_lengths, memory_length, compact_index, batch_to_compact_index, linear_bias_slopes) return decoder_ouptut, key_cache, value_cache, last_token_hidden_states class GptDecoder(FtModuleBase): def __init__(self, num_heads: int, size_per_head: int, inter_size: int, num_layers: int, tensor_para_size: int = 1, pipeline_para_size: int = 1, layernorm_eps: float = 1e-6, layernorm_type: LayernormType = 'pre_layernorm', activation_type: str = 'gelu', has_adapters: bool = False, adapter_inter_size: int = 0, int8_mode: int = 0): super().__init__() self.num_heads = num_heads self.size_per_head = size_per_head self.hidden_size = self.num_heads * self.size_per_head self.inter_size = inter_size self.num_layers = num_layers self.tensor_para_size = tensor_para_size self.pipeline_para_size = pipeline_para_size self.layernorm_eps = layernorm_eps self.layernorm_type = layernorm_type self.activation_type = activation_type self.has_adapters = has_adapters self.adapter_inter_size = adapter_inter_size self.int8_mode = int8_mode self.ft_op = None self.weight = None def __repr__(self): args_dict = dict( num_heads=self.num_heads, size_per_head=self.size_per_head, hidden_size=self.hidden_size, inter_size=self.inter_size, num_layers=self.num_layers, tensor_para_size=self.tensor_para_size, pipeline_para_size=self.pipeline_para_size, layernorm_eps=self.layernorm_eps, layernorm_type=self.layernorm_type, activation_type=self.activation_type, has_adapters=self.has_adapters, adapter_inter_size=self.adapter_inter_size, int8_mode=self.int8_mode, ) args_str = ',\n '.join([f'{k}: {v}' for k, v in args_dict.items()]) return f'{self.__class__.__name__}[\n {args_str}\n]' @classmethod def from_config(cls, config: GptInitModelParameters, **kwargs): hidden_dim = config.head_num * config.size_per_head return cls(num_heads=config.head_num, size_per_head=config.size_per_head, inter_size=4 * hidden_dim, num_layers=config.layer_num, tensor_para_size=config.tensor_para_size, pipeline_para_size=config.pipeline_para_size, layernorm_eps=config.layernorm_eps, layernorm_type=config.layernorm_type, activation_type=config.activation_type, has_adapters=config.has_adapters, adapter_inter_size=config.adapter_inter_size, int8_mode=config.int8_mode) def _initialize_model(self, force_init=False): if self.weight is None: self.weight = GptLayerWeights( num_heads=self.num_heads, size_per_head=self.size_per_head, inter_size=self.inter_size, num_layers=self.num_layers, tensor_para_size=self.tensor_para_size, pipeline_para_size=self.pipeline_para_size, has_adapters=self.has_adapters, adapter_inter_size=self.adapter_inter_size, int8_mode=self.int8_mode) if not force_init and self.ft_op is not None: return if self.ft_op is not None: del self.ft_op self.ft_op = torch.classes.FasterTransformer.ParallelGptDecoderOp( self.num_heads, self.size_per_head, self.inter_size, self.num_layers, self.tensor_para_size, self.pipeline_para_size, self.layernorm_eps, self.layernorm_type, self.activation_type, self.has_adapters, self.adapter_inter_size, self.weight.int8_mode, self.weight.weights, self.weight.int8_weights, self.weight.int8_scales) def forward(self, max_input_length: int, step: int, ite: int, input_embeds: torch.Tensor, sequence_lengths: torch.IntTensor, key_cache: torch.Tensor, value_cache: torch.Tensor, finished: torch.BoolTensor, total_padding_tokens: torch.IntTensor, masked_tokens: torch.BoolTensor, cache_indirection: Optional[torch.IntTensor] = None, linear_bias_slopes: Optional[torch.Tensor] = None): """ # Args. max_input_length: int, maximum input context length. step: int, the current step index. ite: int, local batch iteration. input_embeds: Tensor, (local_batch * beam, hidden_dim), input hidden state to decoder. sequence_lengths: IntTensor, (local_batch * beam,), the current sequence lengths. key_cache: Tensor, key cache buffer. value_cache: Tensor, value cache buffer. finished: BoolTensor, (local_batch * beam,), whether to finish sentence generation. total_padding_tokens IntTensor, (local_batch * beam,), the number of padded tokens. masked_tokens: BoolTensor, (local_batch * beam, memory_length), a mask tensor that indicates padded tokens. cache_indirection: IntTensor, (local_batch * beam,), cache of beam positions if needed if beam > 1. linear_bias_slopes Tensor, (num_heads,) slopes head of linear position bias (ALiBi) (optional). # Returns IntTensor, (batch * beam,) output token ids. """ self._initialize_model() outputs = self.ft_op.forward(max_input_length, step, ite, input_embeds, sequence_lengths, finished, total_padding_tokens, masked_tokens, key_cache, value_cache, cache_indirection, linear_bias_slopes) return outputs[0] class Gpt: def __init__(self, num_heads: int, size_per_head: int, num_layers: int, vocab_size: int, start_id: int, end_id: int, lib_path: PathLike, tensor_para_size: int = 1, pipeline_para_size: int = 1, remove_padding: bool = True, shared_contexts_ratio: float = 1.0, layernorm_eps: float = 1e-6, layernorm_type: LayernormType = 'pre_layernorm', activation_type: str = 'gelu', has_positional_encoding: bool = True, max_seq_len: int = 0, has_pre_decoder_layernorm: bool = False, has_post_decoder_layernorm: bool = True, has_adapters: bool = False, adapter_inter_size: int = 0, int8_mode: int = 0, inference_data_type: Optional[str] = None, weights_data_type: str = 'fp32', use_fp32_to_compute_logit: bool = False, **kwargs): super().__init__() inference_data_type = inference_data_type or weights_data_type self.config = GptInitModelParameters( head_num=num_heads, size_per_head=size_per_head, layer_num=num_layers, max_seq_len=max_seq_len, tensor_para_size=tensor_para_size, vocab_size=vocab_size, start_id=start_id, end_id=end_id, pipeline_para_size=pipeline_para_size, data_type=inference_data_type, weights_data_type=weights_data_type, layernorm_eps=layernorm_eps, layernorm_type=layernorm_type, activation_type=activation_type, has_positional_encoding=has_positional_encoding, has_pre_decoder_layernorm=has_pre_decoder_layernorm, has_post_decoder_layernorm=has_post_decoder_layernorm, has_adapters=has_adapters, adapter_inter_size=adapter_inter_size, int8_mode=int8_mode, sparse=kwargs.get('sparse', False) ) self.use_fp32_to_compute_logit = use_fp32_to_compute_logit self.weight = None self.shared_contexts_ratio = shared_contexts_ratio torch.classes.load_library(os.path.abspath(lib_path)) # Embeddings to encode or decode tokens. hidden_dim = num_heads * size_per_head # Pad vocab size for FT. local_vocab_size = math.ceil(self.config.vocab_size / self.config.tensor_para_size) if self.config.data_type == 'fp16': local_vocab_size = math.ceil(local_vocab_size / 8) * 8 self.vocab_size_padded = local_vocab_size * self.config.tensor_para_size self.vocab_size = self.config.vocab_size self.decode_op = torch.classes.FasterTransformer.DynamicDecodeOp( self.vocab_size, self.vocab_size_padded, self.config.tensor_para_size, self.config.pipeline_para_size, torch.float) self._parameters = {} def register_param(name, p): self._parameters[name] = p setattr(self, name, p) register_param( 'context_decoder', GptContextDecoder.from_config( self.config, remove_padding=remove_padding, shared_contexts_ratio=shared_contexts_ratio, **kwargs)) register_param('decoder', GptDecoder.from_config(self.config, **kwargs)) compute_dtype = to_torch_dtype(inference_data_type) if comm.is_pipeline_group_first(): register_param( 'word_embedding', torch.nn.Embedding(self.vocab_size_padded, hidden_dim, dtype=compute_dtype)) self._mask_padded_vocab_weights(self.word_embedding.weight) if self.config.has_positional_encoding: register_param( 'position_encoding', torch.nn.Embedding(self.config.max_seq_len, hidden_dim, dtype=compute_dtype)) else: self.position_encoding = None if self.config.has_pre_decoder_layernorm: register_param( 'pre_decoder_layernorm', torch.nn.LayerNorm(hidden_dim, eps=layernorm_eps, dtype=compute_dtype)) else: self.pre_decoder_layernorm = None if comm.is_pipeline_group_last(): if has_post_decoder_layernorm: register_param( 'post_decoder_layernorm', torch.nn.LayerNorm(hidden_dim, eps=layernorm_eps, dtype=compute_dtype)) else: self.post_decoder_layernorm = None self.lm_head_ctype = compute_dtype if not self.use_fp32_to_compute_logit else torch.float32 register_param( 'lm_head', torch.nn.Linear(hidden_dim, self.vocab_size_padded, bias=False, dtype=self.lm_head_ctype)) self._mask_padded_vocab_weights(self.lm_head.weight) @classmethod def from_config(cls, config: GptInitModelParameters, **kwargs): return cls( num_heads=config.head_num, size_per_head=config.size_per_head, num_layers=config.layer_num, max_seq_len=config.max_seq_len, tensor_para_size=config.tensor_para_size, vocab_size=config.vocab_size, start_id=config.start_id, end_id=config.end_id, pipeline_para_size=config.pipeline_para_size, inference_data_type=config.data_type, weights_data_type=config.weights_data_type, layernorm_eps=config.layernorm_eps, layernorm_type=config.layernorm_type, activation_type=config.activation_type, has_positional_encoding=config.has_positional_encoding, has_pre_decoder_layernorm=config.has_pre_decoder_layernorm, has_post_decoder_layernorm=config.has_post_decoder_layernorm, has_adapters=config.has_adapters, adapter_inter_size=config.adapter_inter_size, int8_mode=config.int8_mode, **kwargs ) def load(self, checkpoint_path: PathLike, inference_data_type: Optional[Union[str, torch.dtype]] = None, config: Optional[GptInitModelParameters] = None, device: Optional[Union[str, int, torch.device]] = None): checkpoint_path = Path(checkpoint_path) device = device or comm.get_device() config = config or self.config compute_dtype = to_torch_dtype(inference_data_type or self.dtype) self.weight = GptLayerWeights.from_config(config) self.weight.load(checkpoint_path, compute_dtype, config.weights_data_type, device) self.context_decoder.set_weight(self.weight) self.decoder.set_weight(self.weight) weight_dtype = to_numpy_dtype(config.weights_data_type) def _safe_load_from_bin(param: torch.nn.Parameter, fname): if (checkpoint_path / fname).exists(): # np_w is 1-D array since a bin file doesn't have shape info. w_ = np.fromfile(checkpoint_path / fname, dtype=weight_dtype) param.data = torch.from_numpy(w_).reshape(param.data.shape).to(compute_dtype) else: raise FileNotFoundError(f'Faile to load {fname}') def _safe_load_lm_head_from_bin(param, fname, ctype): if (checkpoint_path / fname).exists(): shape = (self.vocab_size, self.config.head_num * self.config.size_per_head) # np_w is 1-D array since a bin file doesn't have shape info. w_ = np.fromfile(checkpoint_path / fname, dtype=weight_dtype) param.data = param.data.to(ctype) param.data[:self.vocab_size, :] = torch.from_numpy(w_).reshape(shape).to(ctype) else: print(f'Faile to load {fname}') torch.nn.init.normal_(param).to(compute_dtype) self._mask_padded_vocab_weights(param) # pylint:disable=line-too-long if comm.is_pipeline_group_first(): _safe_load_lm_head_from_bin(self.word_embedding.weight, 'model.wte.bin', compute_dtype) self._mask_padded_vocab_weights(self.word_embedding.weight) if self.position_encoding is not None: _safe_load_from_bin(self.position_encoding.weight, 'model.wpe.bin') if self.pre_decoder_layernorm is not None: _safe_load_from_bin(self.pre_decoder_layernorm.weight, 'model.pre_decoder_layernorm.weight.bin') _safe_load_from_bin(self.pre_decoder_layernorm.bias, 'model.pre_decoder_layernorm.bias.bin') if comm.is_pipeline_group_last(): if self.post_decoder_layernorm is not None: _safe_load_from_bin(self.post_decoder_layernorm.weight, 'model.final_layernorm.weight.bin') _safe_load_from_bin(self.post_decoder_layernorm.bias, 'model.final_layernorm.bias.bin') if (checkpoint_path / 'model.lm_head.weight.bin').exists(): _safe_load_lm_head_from_bin(self.lm_head.weight, 'model.lm_head.weight.bin', self.lm_head_ctype) else: if self.use_fp32_to_compute_logit: _safe_load_lm_head_from_bin(self.lm_head.weight, 'model.wte.bin', torch.float32) else: # In this branch we can share the pre and post decoder embeddings, but ONLY pipeline size is 1. # When pipeline size > 1, these two weights will end up on different GPUs, so we must load the # post decoder weight again (else case). if comm.get_pipeline_para_size() == 1: self.lm_head.weight = self.word_embedding.weight else: _safe_load_lm_head_from_bin(self.lm_head.weight, 'model.wte.bin', compute_dtype) self.to(device) @property def dtype(self): assert self.weight is not None return self.weight.dtype @property def device(self): assert self.weight is not None return self.weight.device def cuda(self, device=None): assert torch.cuda.is_available() for name, param in self._parameters.items(): setattr(self, name, param.cuda(device)) return self def to(self, device=None): for name, param in self._parameters.items(): setattr(self, name, param.to(device)) return self def float(self): for name, param in self._parameters.items(): setattr(self, name, param.float()) return self def half(self): for name, param in self._parameters.items(): setattr(self, name, param.half()) return self def bfloat16(self): for name, param in self._parameters.items(): setattr(self, name, param.bfloat16()) return self def _mask_padded_vocab_weights(self, weight: torch.Tensor): assert self.vocab_size_padded >= self.vocab_size if self.vocab_size_padded > self.vocab_size: weight.data[self.vocab_size:, ...] = 0 def generate_pad_mask(self, input_lengths, memory_length, init_step=0): """ Generate a pad mask tensor. # Args. input_lengths: (batch_size * beam_width,), input lengths memory_length: the length of key/value cache memory. init_step: int, initial step. # Return masked_tokens: BoolTensor, (batch_size * beam_width, memory_length), True if init_step + input_length[i] <= j < init_step + max_input_length, where i is a batch-beam index and j is a time step modulo by memory_length. """ max_input_length = input_lengths.max() input_lengths = input_lengths.unsqueeze(1) shift = init_step % memory_length step_indices = torch.arange( init_step, init_step + memory_length, device=input_lengths.device) step_indices = step_indices.roll(shift).unsqueeze(0).tile(input_lengths.shape[0], 1) masked_tokens = torch.logical_and( step_indices >= input_lengths, step_indices < init_step + max_input_length) return masked_tokens def get_local_batch_size(self, batch_size): """ Get a local batch size by the same way that FT Gpt does. """ local_batch_size = batch_size pp_size = self.decoder.pipeline_para_size if pp_size > 1: if local_batch_size % pp_size == 0: local_batch_size //= pp_size while local_batch_size > 1024 and local_batch_size % 2 == 0: local_batch_size //= 2 return local_batch_size @torch.no_grad() def generate(self, input_token_ids: torch.IntTensor, input_lengths: torch.IntTensor, gen_length: int, eos_token_id: Optional[int] = None, local_batch_size: Optional[int] = None, beam_width: int = 1, top_k: Optional[torch.IntTensor] = None, top_p: Optional[torch.FloatTensor] = None, top_p_decay: Optional[torch.FloatTensor] = None, top_p_min: Optional[torch.FloatTensor] = None, top_p_reset_ids: Optional[torch.IntTensor] = None, temperature: Optional[torch.FloatTensor] = None, repetition_penalty: Optional[torch.FloatTensor] = None, presence_penalty: Optional[torch.FloatTensor] = None, min_length: Optional[torch.IntTensor] = None, len_penalty: Optional[torch.FloatTensor] = None, beam_search_diversity_rate: Optional[torch.FloatTensor] = None, stop_words_list: Optional[torch.IntTensor] = None, bad_words_list: Optional[torch.IntTensor] = None, sequence_limit_lengths: Optional[torch.IntTensor] = None, random_seed: Optional[torch.LongTensor] = None, memory_length: Optional[int] = None, return_output_length: bool = False, return_log_probs: bool = False): """ # Args. input_token_ids: IntTensor, (batch_size, max_input_length), input hidden state to decoder. input_lengths: IntTensor, (batch_size), the lengths of input context sequences. gen_length: int, the number of tokens to generate. local_batch_size: int, optional, a batch size of local iteration. (disabled) eos_token_id: int, eos token id. beam_width: int, number of beams for beam search. If 1, sampling decode will be used. top_k: IntTensor, (batch_size,) top-k sampling. The number of most probable tokens to keep for sampling per sentence in a batcch. top_p: FloatTensor, (batch_size,), top-p sampling. The cumulative probability of to filter the set of most probable tokens. top_p_decay: FloatTensor, (batch_size,) The decay of top-p value for top_p sampling. top_p_min: FloatTensor, (batch_size,) The minimum top p values in top-p decaying. top_p_reset_ids: IntTensor, (batch_size,) reset ids for resetting top_p values for top p sampling temperature: FloatTensor, (batch_size,), The temperature value for smoothing the logit distribution. repetition_penalty: FloatTensor, (batch_size,), The repetition penalty. presence_penalty: FloatTensor, (batch_size,), The presence penalty, which is exclusive with repetition_penalty. Only one of repetition and presence penalties is allowed. min_length: IntTensor, (batch_size,), Minimum length for each sentences. EOS is masked if length is below min. len_penalty: FloatTensor, (batch_size,) The exponent of the length penalty of beam scores. beam_search_diversity_rate: FloatTensor, (batch_size,), The diversity rate of beam search. stop_words_list: IntTensor, (batch_size, 2, stop_words_length) When FT generates words in this list, it will stop the generation. An extension of stop id. bad_words_list IntTensor, (batch_size, 2, bad_words_length) The words in the list will never be sampled. sequence_limit_lengths: IntTensor, (batch_size,), The maximum length of a generated sequence. memory_length: int, the length of cache memory. If None, it will be max_input_length + gen_length. # Returns IntTensor, (batch_size, beam_width, max_seq_length) output token ids. """ assert self.weight is not None, 'Please call load() first to initialize weights.' input_token_ids = input_token_ids.type(torch.int32).to(self.device) input_lengths = input_lengths.type(torch.int32).to(self.device) batch_size = len(input_token_ids) max_input_length = input_token_ids.shape[-1] max_seq_length = max_input_length + gen_length memory_length = memory_length or max_seq_length # TODO: Enable local batch later. We currently disable local batching due to # an input mismatch issue of FT's decode_op: FT's decode_op requires logits # of shape (batch_size, ...) but we have logits of shape (local_batch_size, ...) # After fixing FT's side, we will enable local batch. # local_batch_size = local_batch_size or self.get_local_batch_size(batch_size) # num_local_batches, last_chunk = divmod(batch_size, local_batch_size) # if last_chunk > 0: # num_local_batches += 1 assert local_batch_size is None or local_batch_size == batch_size local_batch_size = batch_size num_local_batches = 1 device = self.device eos_token_id = eos_token_id if eos_token_id is not None else self.config.end_id assert eos_token_id is not None, 'eos_token-id must be specified in generation.' eos_token_ids = eos_token_id * torch.ones(batch_size, dtype=torch.int32, device=device) assert repetition_penalty is None or presence_penalty is None,\ 'Found ambiguous parameters repetition_penalty and presence_penalty '\ 'which are mutually exclusive. Please provide one of repetition_penalty '\ 'and presence_penalty.' # Setup decoder_op prior to calling the forward function. self.decode_op.setup(batch_size, beam_width, top_k, top_p, temperature, repetition_penalty, presence_penalty, min_length, len_penalty, beam_search_diversity_rate, random_seed, top_p_decay, top_p_min, top_p_reset_ids) # Prepare input and output arguments. if beam_width > 1: # Tiling for beam search. input_token_ids = input_token_ids.repeat(1, beam_width).view(batch_size * beam_width, -1) input_lengths = input_lengths.view(-1, 1).repeat(1, beam_width).view(-1) if sequence_limit_lengths is not None: sequence_limit_lengths = sequence_limit_lengths.view(-1, 1).repeat(1, beam_width).view(-1) # src/tgt cache indirections. cache_indirection = torch.zeros( (2, batch_size, beam_width, memory_length), dtype=torch.int32, device=device) parent_ids = torch.zeros(max_seq_length, batch_size * beam_width, dtype=torch.int32, device=device) else: cache_indirection = None src_cache_indirection = None tgt_cache_indirection = None parent_ids = None pad_lengths = max_input_length - input_lengths # Since tril() doesn't support bf16 dtype, we create of bool type and then cast it to dtype. attention_mask = torch.ones( (max_input_length, max_input_length), dtype=torch.bool, device=device)\ .tril().unsqueeze(0).tile(input_token_ids.shape[0], 1, 1).to(self.dtype) for b, input_length in enumerate(input_lengths): attention_mask[b, input_length:, ...] = 0 masked_tokens = self.generate_pad_mask(input_lengths, memory_length) finished = torch.zeros_like(input_lengths).bool() sequence_lengths = (max_input_length - 1) * torch.ones_like(input_lengths) if return_log_probs or beam_width > 1: cum_log_probs = torch.zeros(batch_size * beam_width, device=device) output_log_probs = torch.zeros((gen_length, batch_size * beam_width), device=device) else: cum_log_probs = None output_log_probs = None # Contiguous buffer for each decode_op step, it will be transposed tensor for the final output. output_token_ids = torch.zeros( (max_seq_length, batch_size * beam_width), dtype=torch.int32, device=device) output_token_ids[:max_input_length, ...] = input_token_ids.T if comm.is_pipeline_group_first(): # Prepare input tensors of decoder. input_embeds = self.word_embedding(input_token_ids) if self.position_encoding is not None: position_ids = torch.arange(0, max_input_length, dtype=torch.int, device=device) position_ids = position_ids.unsqueeze(0).view(-1, max_input_length) input_embeds += self.position_encoding(position_ids) if self.pre_decoder_layernorm is not None: input_embeds = self.pre_decoder_layernorm(input_embeds) else: # Dummy input_embeds input_embeds = torch.empty( size=(batch_size * beam_width, max_input_length, self.context_decoder.hidden_size), dtype=self.context_decoder.dtype, device=device) use_shared_contexts = (self.shared_contexts_ratio > 0.) and (max_input_length >= 1) and (batch_size > 1) batch_to_compact, compact_to_batch = None, None if use_shared_contexts: find_context_duplications = torch.ops.fastertransformer.find_context_duplications batch_to_compact, compact_to_batch = find_context_duplications(input_token_ids) use_shared_contexts = compact_to_batch.shape[0] <= self.shared_contexts_ratio * batch_size if not use_shared_contexts: batch_to_compact, compact_to_batch = None , None profiler.start('ft-context-decoder') _, k_cache, v_cache, last_token_hidden_states = self.context_decoder.forward( input_embeds=input_embeds, attention_mask=attention_mask, input_lengths=input_lengths, memory_length=memory_length, batch_to_compact_index=batch_to_compact, compact_index=compact_to_batch) profiler.stop('ft-context-decoder') for step in range(max_input_length, max_seq_length): src_indir_idx = (step - max_input_length) % 2 tgt_indir_idx = 1 - src_indir_idx is_generation_done = torch.tensor([True], dtype=torch.bool, device=device) for ite in range(num_local_batches): # The indices of the current local batch-beam. bbidx = range( ite * local_batch_size * beam_width, min((ite + 1) * local_batch_size * beam_width, batch_size * beam_width)) if cache_indirection is not None: bidx = range(ite * local_batch_size, min((ite + 1) * local_batch_size, batch_size)) src_cache_indirection = cache_indirection[src_indir_idx, bidx, ...] tgt_cache_indirection = cache_indirection[tgt_indir_idx, bidx, ...] if step == max_input_length: hidden_states = last_token_hidden_states[bbidx, ...] else: if comm.is_pipeline_group_first(): input_embeds = self.word_embedding(output_token_ids[step - 1, bbidx]) if self.position_encoding is not None: position_ids = (step - 1) * torch.ones_like(pad_lengths[bbidx]) input_embeds += self.position_encoding(position_ids) if self.pre_decoder_layernorm is not None: input_embeds = self.pre_decoder_layernorm(input_embeds) else: # Dummy input_imbeds input_embeds = torch.empty( size=(len(bbidx), self.decoder.hidden_size), dtype=self.decoder.dtype, device=device) profiler.start('ft-decoder') hidden_states = self.decoder.forward( max_input_length=max_input_length, step=step, ite=ite, input_embeds=input_embeds, sequence_lengths=sequence_lengths[bbidx], key_cache=k_cache, value_cache=v_cache, finished=finished[bbidx], total_padding_tokens=pad_lengths[bbidx], cache_indirection=src_cache_indirection, masked_tokens=masked_tokens[bbidx, ...]) profiler.stop('ft-decoder') if comm.is_pipeline_group_last(): if self.post_decoder_layernorm is not None: hidden_states = self.post_decoder_layernorm(hidden_states) # We use logits of fp32 type to avoid overflow issue. if self.use_fp32_to_compute_logit: # The FT GPT op internally uses FP32 compute type for matrix multiplication. # This will produce the same result with the end-to-end FT's GPT op. logits = torch.nn.functional.linear(hidden_states.float(), self.lm_head.weight) else: logits = self.lm_head(hidden_states).float() profiler.start('ft-decode') should_stop = self.decode_op.forward( logits.view(batch_size, beam_width, -1), step, max_input_length, ite, local_batch_size, eos_token_ids, top_k, top_p, temperature, repetition_penalty, presence_penalty, min_length, len_penalty, beam_search_diversity_rate, top_p_decay, top_p_min, top_p_reset_ids, None, input_lengths, sequence_limit_lengths, stop_words_list, bad_words_list, src_cache_indirection, output_token_ids.view(-1, batch_size, beam_width), finished, sequence_lengths, cum_log_probs, output_log_probs, parent_ids, tgt_cache_indirection) profiler.stop('ft-decode') is_generation_done &= should_stop # Broadcast from the last pipeline node if needed. profiler.start('ft-bcast') tensors_to_bcast = [output_token_ids[step, ...], finished, sequence_lengths, is_generation_done] if beam_width > 1: tensors_to_bcast.append(tgt_cache_indirection) self.decode_op.broadcast_from_last_pipeline(tensors_to_bcast) profiler.stop('ft-bcast') if is_generation_done or finished.all(): break # Transpose (L, batch, beam) -> (batch, beam, L) output_token_ids = output_token_ids.view(-1, batch_size, beam_width).permute(1, 2, 0) # Increase sequence_length by 1 because the sequence length of time step t is t - 1. sequence_lengths += 1 # Outputs output_dict = dict(output_token_ids=output_token_ids) if return_output_length: output_dict['output_lengths'] = sequence_lengths if return_log_probs: output_dict['cum_log_probs'] = cum_log_probs output_dict['output_log_probs'] = output_log_probs return output_dict
FasterTransformer-main
examples/pytorch/gpt/utils/gpt_decoder.py
import time class Timer: def __init__(self): self._start_times = {} self._total_elapsed_times = {} def start(self, tag): self._start_times[tag] = time.time() def stop(self, tag): elapsed_time = time.time() - self._start_times[tag] if tag not in self._total_elapsed_times: self._total_elapsed_times[tag] = 0 self._total_elapsed_times[tag] += elapsed_time return elapsed_time def elapsed_time_in_sec(self, tag): if tag not in self._total_elapsed_times: return None return self._total_elapsed_times[tag] def reset(self): self._start_times.clear() self._total_elapsed_times.clear() def summary(self): print('Profile Results') for tag, elapsed_time in self._total_elapsed_times.items(): print(f' - {tag.ljust(30, ".")}: {elapsed_time:.6f} (sec)') _default_timer = Timer() def start(tag): _default_timer.start(tag) def stop(tag): _default_timer.stop(tag) def elapsed_time_in_sec(tag): return _default_timer.elapsed_time_in_sec(tag) def reset(): _default_timer.reset() def summary(): _default_timer.summary()
FasterTransformer-main
examples/pytorch/gpt/utils/profiler.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from .gpt import GPT class ParallelGPT(GPT): def cuda(self): self.weights._map(lambda w: w.cuda(self.device)) if self.int8_mode != 0: self.weights._map_int8(lambda w: w.cuda(self.device)) if self.build_model: del self.model self.build_model = False self.model = torch.classes.FasterTransformer.ParallelGptOp( self.head_num, self.size_per_head, self.inter_size, self.layer_num, self.expert_num, self.moe_k, self.moe_layer_index, self.vocab_size, self.start_id, self.end_id, self.tensor_para_size, self.pipeline_para_size, self.int8_mode, # GPT variant parameters self.layernorm_eps, self.layernorm_type, self.activation_type, self.has_positional_encoding, self.has_pre_decoder_layernorm, self.has_post_decoder_layernorm, self.has_adapters, self.adapter_inter_size, self.use_attention_linear_bias, self.weights.w, self.weights.int8_w, self.weights.scale, self.shared_contexts_ratio) self.build_model = True
FasterTransformer-main
examples/pytorch/gpt/utils/parallel_gpt.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import configparser import datetime import json import pathlib import shutil import sys import os import numpy as np import torch # pytype: disable=import-error # verify if root package is in PYTHONPATH __root_package_path__ = pathlib.Path(__file__).parent.parent.parent.parent.parent.absolute().as_posix() if __root_package_path__ not in sys.path: print( f"[ERROR] add project root directory to your PYTHONPATH with " f"'export PYTHONPATH={__root_package_path__}:${{PYTHONPATH}}'" ) from examples.pytorch.gpt.utils.gpt import DEFAULT_START_TAG, DEFAULT_END_TAG, OPENAI_GPT2_START_ID, OPENAI_GPT2_END_ID from examples.pytorch.utils import torch2np, safe_transpose, cpu_map_location, gpu_map_location, WEIGHT2DTYPE def save_dense_split(model_states_list, factor_dense, model_key, megatron_gpt_key, np_weight_data_type, saved_dir, ckpt_ver, model_training_args): training_pipeline_para_dense_size = len(model_states_list[0]) step_layer_pp = model_training_args.num_layers // training_pipeline_para_dense_size model_list = [ [ model_states[model_key]["language_model"][megatron_gpt_key] for model_states in sub_model_states_list ] for sub_model_states_list in model_states_list ] has_adapters = any("adaptor" in key for key in model_list[0][0].keys()) moe_layers = [] for idx_tp, sub_model_list in enumerate(model_list): save_offset = idx_tp * factor_dense for idx_pp, model in enumerate(sub_model_list): for key, val in model.items(): val = safe_transpose(val) val = torch2np(val, np_weight_data_type) saved_key = key if key.find("layers.") != -1: key_split = key.split('.') layer_index = (int)(key_split[1]) + idx_pp * step_layer_pp saved_key = '.'.join(key_split[:1] + [str(layer_index)] + key_split[2:]) if saved_key.find("self_attention") != -1: saved_key = saved_key.replace("self_attention", "attention") if saved_key.find("adaptor1") != -1: saved_key = saved_key.replace("adaptor1", "after_attention_adapter") if saved_key.find("adaptor2") != -1: saved_key = saved_key.replace("adaptor2", "after_ffn_adapter") if ( key.find("input_layernorm.weight") != -1 or key.find("input_layernorm.bias") != -1 or key.find("attention.dense.bias") != -1 or key.find("post_attention_layernorm.weight") != -1 or key.find("post_attention_layernorm.bias") != -1 or key.find("mlp.dense_4h_to_h.bias") != -1 or key.find("adaptor1.dense_4h_to_h.bias") != -1 or key.find("adaptor2.dense_4h_to_h.bias") != -1 or key.find("final_layernorm.weight") != -1 or key.find("final_layernorm.bias") != -1 ): # shared weights, only need to convert the weights of rank 0 if idx_tp == 0: saved_path = saved_dir / f"model.{saved_key}.bin" val.tofile(saved_path.as_posix()) elif (key.find("attention.dense.weight") != -1 or key.find("mlp.dense_4h_to_h.weight") != -1 or key.find("adaptor1.dense_4h_to_h.weight") != -1 or key.find("adaptor2.dense_4h_to_h.weight") != -1): split_vals = np.split(val, factor_dense, axis=0) for j in range(factor_dense): saved_path = saved_dir / f"model.{saved_key}.{save_offset + j:d}.bin" split_vals[j].tofile(saved_path.as_posix()) elif (key.find("mlp.dense_h_to_4h.weight") != -1 or key.find("adaptor1.dense_h_to_4h.weight") != -1 or key.find("adaptor2.dense_h_to_4h.weight") != -1 or key.find("mlp.dense_h_to_4h.bias") != -1 or key.find("adaptor1.dense_h_to_4h.bias") != -1 or key.find("adaptor2.dense_h_to_4h.bias") != -1): split_vals = np.split(val, factor_dense, axis=-1) for j in range(factor_dense): saved_path = saved_dir / f"model.{saved_key}.{save_offset + j:d}.bin" split_vals[j].tofile(saved_path.as_posix()) elif key.find("attention.query_key_value.bias") != -1: local_dim = int(val.shape[-1] / 3) if ckpt_ver == 3: num_splits = 3 head_num = model_training_args.num_attention_heads // model_training_args.tensor_model_parallel_size size_per_head = local_dim // head_num val = val.reshape(head_num, num_splits, size_per_head) val = val.transpose(1, 0, 2) val = val.reshape(3, local_dim) split_vals = np.split(val, factor_dense, axis=-1) for j in range(factor_dense): saved_path = saved_dir / f"model.{saved_key}.{save_offset + j:d}.bin" split_vals[j].tofile(saved_path.as_posix()) elif key.find("attention.query_key_value.weight") != -1: hidden_dim = val.shape[0] assert val.shape[-1] % 3 == 0 local_dim = val.shape[-1] // 3 if ckpt_ver == 3: num_splits = 3 head_num = model_training_args.num_attention_heads assert hidden_dim % head_num == 0 size_per_head = hidden_dim // head_num assert head_num % model_training_args.tensor_model_parallel_size == 0 head_num = head_num // model_training_args.tensor_model_parallel_size val = val.reshape(hidden_dim, head_num, num_splits, size_per_head) val = val.transpose(0, 2, 1, 3) val = val.reshape(hidden_dim, 3, local_dim) split_vals = np.split(val, factor_dense, axis=-1) for j in range(factor_dense): saved_path = saved_dir / f"model.{saved_key}.{save_offset + j:d}.bin" split_vals[j].tofile(saved_path.as_posix()) elif key.find('experts') == -1: if key.find('deepspeed_moe.gate') != -1 or key.find('megatron_moe.gate') != -1: layer_index = (int)(key.split('.')[1]) + idx_pp * step_layer_pp if idx_tp == 0: moe_layers.append(layer_index) prefix = key.replace('deepspeed_moe', 'moe').replace('megatron_moe', 'moe') if key.find('layernorm') != -1 or key.find('gate') != -1 or key.find("attention.dense.bias") != -1 \ or key.find("dense_4h_to_h.bias") != -1: if idx_tp == 0: file_name = os.path.join(saved_dir, "model." + prefix + ".bin") saved_path = file_name # print(f"Saving '{prefix}' to '{file_name}'") # print(f"Shape: '{val.shape}'") val.tofile(file_name) else: val_tensor_para = [] print(key, val.shape) if key.find("attention.dense.weight") != -1 or key.find("dense_4h_to_h.weight") != -1 \ or key.find("dense_h_to_4h.bias") != -1: val_tensor_para = np.split(val, factor_dense, axis=0) elif key.find("dense_h_to_4h.weight") != -1: val_tensor_para = np.split(val, factor_dense, axis=1) else: print(f"[ERROR] cannot find experts key '{key}'") sys.exit(1) for j in range(factor_dense): file_name = os.path.join(saved_dir, "model." + prefix + "." + str(save_offset + j) + ".bin") saved_path = file_name # print(f"Saving '{j}' '{prefix}' to '{file_name}'") val_to_save = val_tensor_para[j] # print(f"Shape: '{val_to_save.shape}'") val_to_save.tofile(file_name) else: print(f"[ERROR] cannot find key '{key}'") sys.exit(1) print('{} {} {} {}'.format(idx_tp, idx_pp, key, saved_path)) print(val.shape) return moe_layers, has_adapters def save_dense_concat(model_states_list, inference_tensor_para_size, factor_dense, model_key, megatron_gpt_key, np_weight_data_type, saved_dir, ckpt_ver, model_training_args): def convert_val(x): x = safe_transpose(x) x = torch2np(x, np_weight_data_type) return x training_pipeline_para_dense_size = len(model_states_list[0]) step_layer_pp = model_training_args.num_layers // training_pipeline_para_dense_size model_list = [ [ model_states[model_key]["language_model"][megatron_gpt_key] for model_states in sub_model_states_list ] for sub_model_states_list in model_states_list ] has_adapters = any("adaptor" in key for key in model_list[0][0].keys()) moe_layers = [] for idx_tp in range(inference_tensor_para_size): load_offset = idx_tp * factor_dense for idx_pp in range(training_pipeline_para_dense_size): for key in model_list[0][0]: saved_key = key if key.find("layers.") != -1: key_split = key.split('.') layer_index = (int)(key_split[1]) + idx_pp * step_layer_pp saved_key = '.'.join(key_split[:1] + [str(layer_index)] + key_split[2:]) if saved_key.find("self_attention") != -1: saved_key = saved_key.replace("self_attention", "attention") if saved_key.find("adaptor1") != -1: saved_key = saved_key.replace("adaptor1", "after_attention_adapter") if saved_key.find("adaptor2") != -1: saved_key = saved_key.replace("adaptor2", "after_ffn_adapter") if ( key.find("input_layernorm.weight") != -1 or key.find("input_layernorm.bias") != -1 or key.find("attention.dense.bias") != -1 or key.find("post_attention_layernorm.weight") != -1 or key.find("post_attention_layernorm.bias") != -1 or key.find("mlp.dense_4h_to_h.bias") != -1 or key.find("adaptor1.dense_4h_to_h.bias") != -1 or key.find("adaptor2.dense_4h_to_h.bias") != -1 or key.find("final_layernorm.weight") != -1 or key.find("final_layernorm.bias") != -1 ): # shared weights, only need to convert the weights of rank 0 if idx_tp == 0: concat_val = convert_val(model_list[0][idx_pp][key]) saved_path = saved_dir / f"model.{saved_key}.bin" concat_val.tofile(saved_path.as_posix()) elif (key.find("attention.dense.weight") != -1 or key.find("mlp.dense_4h_to_h.weight") != -1 or key.find("adaptor1.dense_4h_to_h.weight") != -1 or key.find("adaptor2.dense_4h_to_h.weight") != -1): val_list = [convert_val(model_list[load_offset + j][idx_pp][key]) for j in range(factor_dense)] concat_val = np.concatenate(val_list, axis=0) saved_path = saved_dir / f"model.{saved_key}.{idx_tp:d}.bin" concat_val.tofile(saved_path.as_posix()) elif (key.find("mlp.dense_h_to_4h.weight") != -1 or key.find("adaptor1.dense_h_to_4h.weight") != -1 or key.find("adaptor2.dense_h_to_4h.weight") != -1 or key.find("mlp.dense_h_to_4h.bias") != -1 or key.find("adaptor1.dense_h_to_4h.bias") != -1 or key.find("adaptor2.dense_h_to_4h.bias") != -1): val_list = [convert_val(model_list[load_offset + j][idx_pp][key]) for j in range(factor_dense)] concat_val = np.concatenate(val_list, axis=-1) saved_path = saved_dir / f"model.{saved_key}.{idx_tp:d}.bin" concat_val.tofile(saved_path.as_posix()) elif key.find("attention.query_key_value.bias") != -1: val_list = [] for j in range(factor_dense): val = convert_val(model_list[load_offset + j][idx_pp][key]) assert val.shape[-1] % 3 == 0 local_dim = val.shape[-1] // 3 if ckpt_ver == 3: num_splits = 3 num_attention_heads = model_training_args.num_attention_heads tensor_model_parallel_size = model_training_args.tensor_model_parallel_size assert num_attention_heads % tensor_model_parallel_size == 0 head_num = num_attention_heads // tensor_model_parallel_size assert local_dim % head_num == 0 size_per_head = local_dim // head_num val = val.reshape(head_num, num_splits, size_per_head) val = val.transpose(1, 0, 2) val = val.reshape(3, local_dim) val_list.append(val) concat_val = np.concatenate(val_list, axis=-1) saved_path = saved_dir / f"model.{saved_key}.{idx_tp:d}.bin" concat_val.tofile(saved_path.as_posix()) elif key.find("attention.query_key_value.weight") != -1: val_list = [] for j in range(factor_dense): val = convert_val(model_list[load_offset + j][idx_pp][key]) hidden_dim = val.shape[0] local_dim = int(val.shape[-1] / 3) if ckpt_ver == 3: num_splits = 3 head_num = model_training_args.num_attention_heads size_per_head = hidden_dim // head_num head_num = head_num // model_training_args.tensor_model_parallel_size val = val.reshape(hidden_dim, head_num, num_splits, size_per_head) val = val.transpose(0, 2, 1, 3) val = val.reshape(hidden_dim, 3, local_dim) val_list.append(val) concat_val = np.concatenate(val_list, axis=-1) saved_path = saved_dir / f"model.{saved_key}.{idx_tp:d}.bin" concat_val.tofile(saved_path.as_posix()) elif key.find('experts') == -1: if key.find('deepspeed_moe.gate') != -1 or key.find('megatron_moe.gate') != -1: layer_index = (int)(key.split('.')[1]) + idx_pp * step_layer_pp if idx_tp == 0: moe_layers.append(layer_index) prefix = key.replace('deepspeed_moe', 'moe').replace('megatron_moe', 'moe') if key.find('layernorm') != -1 or key.find('gate') != -1 or key.find("attention.dense.bias") != -1 or key.find("dense_4h_to_h.bias") != -1: if idx_tp == 0: concat_val = convert_val(model_list[0][idx_pp][key]) file_name = os.path.join(saved_dir, "model." + prefix + ".bin") saved_path = file_name # print(f"Saving '{prefix}' to '{file_name}'") # print(f"Shape: '{val.shape}'") concat_val.tofile(file_name) else: if key.find("attention.dense.weight") != -1 or key.find("dense_4h_to_h.weight") != -1 or key.find("dense_h_to_4h.bias") != -1: concat_axis = 0 elif key.find("dense_h_to_4h.weight") != -1: concat_axis = 1 else: print(f"[ERROR] cannot find experts key '{key}'") sys.exit(1) val_list = [] for j in range(factor_dense): val = convert_val(model_list[load_offset + j][idx_pp][key]) val_list.append(val) concat_val = np.concatenate(val_list, axis=concat_axis) file_name = os.path.join(saved_dir, "model." + prefix + "." + str(idx_tp) + ".bin") saved_path = file_name concat_val.tofile(file_name) else: print(f"[ERROR] cannot find key '{key}'") sys.exit(1) print('{} {} {} {}'.format(idx_tp, idx_pp, key, saved_path)) print(concat_val.shape) return moe_layers, has_adapters def save_experts_split(moe_layers, num_experts, training_tensor_para_dense_size, training_tensor_para_expert_size, factor_expert, args, map_location_fn, is_deepspeed, np_weight_data_type, saved_dir, training_pipeline_para_expert_size): def get_file_name(idx_moe, idx_expert, idx_rank): if training_tensor_para_expert_size > 1: assert len(moe_layers) % training_pipeline_para_expert_size == 0 step_layer_pp = len(moe_layers) // training_pipeline_para_expert_size file_name = 'layer_{}_expert_{}_mp_rank_{:02}_{:03}_model_states.pt'.format( idx_moe % step_layer_pp, idx_expert, idx_rank, idx_moe // step_layer_pp) else: file_name = 'layer_{}_expert_{}_mp_rank_{:02}_model_states.pt'.format(idx_moe, idx_expert, idx_rank) return file_name assert training_tensor_para_expert_size == 1 or training_tensor_para_expert_size == training_tensor_para_dense_size # Saving experts weight print(f"The number of moe layers is '{len(moe_layers)}'") for idx_tp in range(training_tensor_para_expert_size): save_offset = idx_tp * factor_expert for n, idx_layer in enumerate(moe_layers): fc1_weight = [] fc1_bias = [] fc2_weight = [] fc2_bias = [] prefix = None for e in range(num_experts): if training_tensor_para_expert_size == training_tensor_para_dense_size: file_name = get_file_name(n, e, idx_tp) file_path = os.path.join(args.input_dir, file_name) else: for idx_rank in range(training_tensor_para_dense_size): file_name = get_file_name(n, e, idx_rank) file_path = os.path.join(args.input_dir, file_name) if os.path.exists(file_path): break else: raise FileNotFoundError expert_dict = torch.load(file_path, map_location=map_location_fn) for k, v in expert_dict.items(): if k.find('dense_h_to_4h.weight') != -1: if prefix is None: prefix = k fc1_weight.append(v) elif k.find('dense_h_to_4h.bias') != -1: fc1_bias.append(v) elif k.find('dense_4h_to_h.weight') != -1: fc2_weight.append(v) elif k.find('dense_4h_to_h.bias') != -1: fc2_bias.append(v) else: print(f"[ERROR] cannot find expert_dict key '{k}'") sys.exit(1) if is_deepspeed: prefix_list = ['model'] + prefix.split('.')[2:5] + ['moe', 'experts'] else: prefix_list = ['model'] + prefix.split('.')[4:7] + ['moe', 'experts'] prefix = '.'.join(prefix_list) + '.' prefix_split = prefix.split('.') prefix_split[1] = 'layers' prefix_split[3] = 'mlp' prefix = '.'.join(prefix_split[:2] + [str(idx_layer)] + prefix_split[3:]) stacked_fc1_weight = torch.stack(fc1_weight, 0).transpose(-1, -2).contiguous() # val = stacked_fc1_weight.float().cpu().numpy() # (num_experts, d_model, d_ff) val = torch2np(stacked_fc1_weight, np_weight_data_type) val_tensor_para = np.split(val, factor_expert, axis=2) for i in range(factor_expert): file_name = os.path.join(saved_dir, prefix + "dense_h_to_4h.weight." + str(save_offset + i) + ".bin") print(f"Saving '{i}' '{prefix}' to '{file_name}'") val_to_save = val_tensor_para[i] print(f"Shape: '{val_to_save.shape}'") val_to_save.tofile(file_name) stacked_fc1_bias = torch.stack(fc1_bias, 0).contiguous() # val = stacked_fc1_bias.float().cpu().numpy() # (num_experts, d_ff) val = torch2np(stacked_fc1_bias, np_weight_data_type) val_tensor_para = np.split(val, factor_expert, axis=1) for i in range(factor_expert): file_name = os.path.join(saved_dir, prefix + "dense_h_to_4h.bias." + str(save_offset + i) + ".bin") print(f"Saving '{i}' '{prefix}' to '{file_name}'") val_to_save = val_tensor_para[i] print(f"Shape: '{val_to_save.shape}'") val_to_save.tofile(file_name) stacked_fc2_weight = torch.stack(fc2_weight, 0).transpose(-1, -2).contiguous() # val = stacked_fc2_weight.float().cpu().numpy() # (num_experts, d_ff, d_model) val = torch2np(stacked_fc2_weight, np_weight_data_type) val_tensor_para = np.split(val, factor_expert, axis=1) for i in range(factor_expert): file_name = os.path.join(saved_dir, prefix + "dense_4h_to_h.weight." + str(save_offset + i) + ".bin") print(f"Saving '{i}' '{prefix}' to '{file_name}'") val_to_save = val_tensor_para[i] print(f"Shape: '{val_to_save.shape}'") val_to_save.tofile(file_name) if idx_tp == 0: stacked_fc2_bias = torch.stack(fc2_bias, 0) # val = stacked_fc2_bias.float().cpu().numpy() val = torch2np(stacked_fc2_bias, np_weight_data_type) file_name = os.path.join(saved_dir, prefix + "dense_4h_to_h.bias.bin") print(f"Saving '{i}' '{prefix}' to '{file_name}'") print(f"Shape: '{val.shape}'") val.tofile(file_name) return def convert_checkpoint(args): saved_dir = pathlib.Path(args.saved_dir) / f"{args.infer_gpu_num:d}-gpu" if saved_dir.exists(): shutil.rmtree(saved_dir) saved_dir.mkdir(parents=True) if args.vocab_path: shutil.copy(args.vocab_path, (saved_dir / "vocab.json").as_posix()) if args.merges_path: shutil.copy(args.merges_path, (saved_dir / "merges.txt").as_posix()) load_checkpoints_to_cpu = bool(args.load_checkpoints_to_cpu) map_location_fn = cpu_map_location if load_checkpoints_to_cpu else gpu_map_location config_model_states_list = [ # Pattern 1 { 'pattern': 'mp_rank_{:02}/model_states.pt', 'use_dense_pp': False, 'is_deepspeed': True, }, { 'pattern': 'mp_rank_{:02}_{:03}/model_states.pt', 'use_dense_pp': True, 'is_deepspeed': True, }, { 'pattern': 'tp_rank_{:02}_pp_rank_{:03}/model_states.pt', 'use_dense_pp': True, 'is_deepspeed': True, }, # Pattern 2 { 'pattern': 'mp_rank_{:02}_model_states.pt', 'use_dense_pp': False, 'is_deepspeed': True, }, { 'pattern': 'mp_rank_{:02}_{:03}_model_states.pt', 'use_dense_pp': True, 'is_deepspeed': True, }, { 'pattern': 'tp_rank_{:02}_pp_rank_{:03}_model_states.pt', 'use_dense_pp': True, 'is_deepspeed': True, }, # Pattern 3 { 'pattern': 'mp_rank_{:02}/model_rng.pt', 'use_dense_pp': False, 'is_deepspeed': False, }, { 'pattern': 'mp_rank_{:02}_{:03}/model_rng.pt', 'use_dense_pp': True, 'is_deepspeed': False, }, { 'pattern': 'tp_rank_{:02}_pp_rank_{:03}/model_rng.pt', 'use_dense_pp': True, 'is_deepspeed': False, }, ] for config_model_states in config_model_states_list: pattern = config_model_states['pattern'] use_dense_pp = config_model_states['use_dense_pp'] is_deepspeed = config_model_states['is_deepspeed'] if use_dense_pp: path_model_states = os.path.join(args.input_dir, pattern.format(0, 0)) else: path_model_states = os.path.join(args.input_dir, pattern.format(0)) if os.path.exists(path_model_states): break else: raise FileNotFoundError("'path_model_states' not found") model_states_00 = torch.load(path_model_states, map_location=map_location_fn) for model_key in ['model', 'module']: if model_key in model_states_00: break else: raise KeyError("'model_key' not found") ckpt_ver = model_states_00["checkpoint_version"] assert ckpt_ver == 3 megatron_gpt_key = "encoder" model_training_args = model_states_00["args"] training_tensor_para_dense_size = model_training_args.tensor_model_parallel_size training_tensor_para_expert_size = 1 training_pipeline_para_dense_size = model_training_args.pipeline_model_parallel_size training_pipeline_para_expert_size = 1 inference_tensor_para_size = args.infer_gpu_num assert use_dense_pp == (training_pipeline_para_dense_size > 1) assert model_training_args.num_layers % training_pipeline_para_dense_size == 0 assert model_training_args.num_layers % training_pipeline_para_expert_size == 0 if use_dense_pp: model_states_list = [ [ torch.load(os.path.join(args.input_dir, pattern.format(idx_tp, idx_pp)), map_location=map_location_fn) for idx_pp in range(training_pipeline_para_dense_size) ] for idx_tp in range(training_tensor_para_dense_size) ] else: model_states_list = [ [torch.load(os.path.join(args.input_dir, pattern.format(idx_tp)), map_location=map_location_fn)] for idx_tp in range(training_tensor_para_dense_size) ] with (saved_dir / "args.txt").open("w") as training_args_file: for k, v in vars(model_training_args).items(): training_args_file.write(f"{k}:{v}\n") np_weight_data_type = WEIGHT2DTYPE[args.weight_data_type] val = model_states_00[model_key]["language_model"]["embedding"]["position_embeddings"]["weight"] val = torch2np(val, np_weight_data_type) val.tofile((saved_dir / "model.wpe.bin").as_posix()) # not weight, do not need to transpose val_list = [ torch2np(sub_model_states_list[0][model_key]["language_model"]["embedding"]["word_embeddings"]["weight"], np_weight_data_type) for sub_model_states_list in model_states_list ] val = np.concatenate(val_list, axis=0) vocab_size = val.shape[0] val.tofile((saved_dir / "model.wte.bin").as_posix()) # save vocab_size if not hasattr(model_training_args, "padded_vocab_size"): model_training_args.padded_vocab_size = vocab_size structure_config = { "gpt_with_moe": 0, "expert_num": 0, "moe_layers": [], } model_training_args_vars = vars(model_training_args) num_experts = 0 if 'num_experts' in model_training_args_vars.keys(): num_experts = model_training_args_vars['num_experts'][0] if num_experts != 0: structure_config["gpt_with_moe"] = 1 structure_config['expert_num'] = num_experts if inference_tensor_para_size >= training_tensor_para_dense_size: assert inference_tensor_para_size % training_tensor_para_dense_size == 0 factor_dense = inference_tensor_para_size // training_tensor_para_dense_size moe_layers, has_adapters = save_dense_split(model_states_list, factor_dense, model_key, megatron_gpt_key, np_weight_data_type, saved_dir, ckpt_ver, model_training_args) else: assert training_tensor_para_dense_size % inference_tensor_para_size == 0 factor_dense = training_tensor_para_dense_size // inference_tensor_para_size moe_layers, has_adapters = save_dense_concat(model_states_list, inference_tensor_para_size, factor_dense, model_key, megatron_gpt_key, np_weight_data_type, saved_dir, ckpt_ver, model_training_args) if inference_tensor_para_size >= training_tensor_para_expert_size: assert inference_tensor_para_size % training_tensor_para_expert_size == 0 factor_expert = inference_tensor_para_size // training_tensor_para_expert_size save_experts_split(moe_layers, num_experts, training_tensor_para_dense_size, training_tensor_para_expert_size, factor_expert, args, map_location_fn, is_deepspeed, np_weight_data_type, saved_dir, training_pipeline_para_expert_size) else: raise NotImplementedError torch.cuda.synchronize() structure_config['moe_layers'] = moe_layers # Configuration for the model (load by triton backends) config = configparser.ConfigParser() config["gpt"] = {} if args.vocab_path: vocab_path = pathlib.Path(args.vocab_path) with vocab_path.open("r") as vocab_file: vocab = json.load(vocab_file) start_id, end_id = vocab[DEFAULT_START_TAG], vocab[DEFAULT_END_TAG] else: # hard coded values from english gpt_vocab.json file start_id, end_id = str(OPENAI_GPT2_START_ID), str(OPENAI_GPT2_END_ID) try: config["gpt"]["model_name"] = "gpt" config["gpt"]["head_num"] = str(model_training_args.num_attention_heads) config["gpt"]["size_per_head"] = str(model_training_args.hidden_size // model_training_args.num_attention_heads) config["gpt"]["inter_size"] = str(model_training_args.ffn_hidden_size) config["gpt"]["num_layer"] = str(model_training_args.num_layers) config["gpt"]["max_pos_seq_len"] = str(model_training_args.max_position_embeddings) config["gpt"]["vocab_size"] = str(model_training_args.padded_vocab_size) config["gpt"]["has_adapters"] = str(has_adapters) config['gpt']['adapter_inter_size'] = str(model_training_args.project_size) if has_adapters else str(0) config["gpt"]["layernorm_eps"] = str(model_training_args.layernorm_epsilon) config["gpt"]["start_id"] = str(start_id) config["gpt"]["end_id"] = str(end_id) config["gpt"]["weight_data_type"] = args.weight_data_type config["gpt"]["tensor_para_size"] = str(args.infer_gpu_num) config["structure"] = structure_config with open((saved_dir / f"config.ini").as_posix(), 'w') as configfile: config.write(configfile) except Exception as e: print(f"Fail to save the config in config.ini: {e}") def main(): parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) parser.add_argument("--input-dir", "-input_dir", "-i", help="folder name of checkpoint files", required=True) parser.add_argument("--saved-dir", "-saved_dir", "-o", help="folder name of output files", required=True) parser.add_argument( "--infer-gpu-num", "-infer_gpu_num", "-i_g", type=int, help="How many gpus for inference", required=True ) parser.add_argument( "--weight-data-type", "-weight_data_type", choices=["fp32", "fp16"], default="fp16", help="" ) parser.add_argument( "--load-checkpoints-to-cpu", "-load_checkpoints_to_cpu", "-cpu", type=int, choices=[0, 1], default=1, help="Whether to load model weights to CPU", ) parser.add_argument( "--vocab-path", type=str, help="Path to vocabulary file to embed in FasterTransformer checkpoint", required=False, ) parser.add_argument( "--merges-path", type=str, help="Path to merges file to embed in FasterTransformer checkpoint", required=False ) args = parser.parse_args() print("\n=============== Argument ===============") for key in vars(args): print(f"{key}: {vars(args)[key]}") print("========================================") start_time = datetime.datetime.now() convert_checkpoint(args) run_time = datetime.datetime.now() - start_time print(f"[INFO] Spent {run_time} (h:m:s) to convert the model") if __name__ == "__main__": main()
FasterTransformer-main
examples/pytorch/gpt/utils/megatron_gpt_moe_ckpt_convert.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import dataclasses import os import pathlib import typing import numpy as np import torch import torch.distributed as dist import torch.nn as nn str_type_map = {"fp32": torch.float32, "fp16": torch.float16, "bf16": torch.bfloat16} class GPTWeights: def __init__(self, head_num, size_per_head, layer_num, vocab_size, max_seq_len, tensor_para_size, pipeline_para_size, weights_data_type: typing.Union[str, np.dtype], inference_data_type: str, has_adapters: bool = False, adapter_inter_size: int = 0, gpt_with_moe: bool = False, has_positional_encoding: bool = True, has_pre_decoder_layernorm: bool = False, has_post_decoder_layernorm: bool = True, int8_mode: int = 0, inter_size: int = 0): assert(head_num % tensor_para_size == 0) if int8_mode == 1: torch_infer_dtype = str_type_map[inference_data_type] assert torch_infer_dtype == torch.float16 or torch_infer_dtype == torch.bfloat16, "Weight only quant only supported for infer type fp16 or bf16." quant = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix self.weight_transpose_calibrate_quantize = lambda x: quant(x, torch.int8) else: assert int8_mode == 0, "Invalid int8 mode for GPT. Must be 0 or 1" self.head_num = head_num self.size_per_head = size_per_head self.layer_num = layer_num self.vocab_size = vocab_size self.max_seq_len = max_seq_len self.tensor_para_size = tensor_para_size self.pipeline_para_size = pipeline_para_size self.layers_per_device = layer_num // pipeline_para_size self.has_adapters = has_adapters self.adapter_inter_size = adapter_inter_size self.gpt_with_moe = gpt_with_moe self.has_positional_encoding = has_positional_encoding self.has_pre_decoder_layernorm = has_pre_decoder_layernorm self.has_post_decoder_layernorm = has_post_decoder_layernorm local_head_num = head_num // tensor_para_size global_head_num = head_num local_hidden_units = local_head_num * size_per_head global_hidden_units = global_head_num * size_per_head local_inter_size = local_hidden_units * 4 if inter_size != 0: assert inter_size % tensor_para_size == 0, f"inter_size({inter_size}) \% tensor_para_size({tensor_para_size}) must be 0" local_inter_size = inter_size // tensor_para_size local_adapter_inter_size = self.adapter_inter_size // tensor_para_size self.local_head_num = local_head_num self.global_head_num = global_head_num self.local_hidden_units = local_hidden_units self.global_hidden_units = global_hidden_units self.local_inter_size = local_inter_size self.int8_mode = int8_mode self.share_embed = False if isinstance(weights_data_type, str): try: weights_data_type = { "fp16": np.float16, "fp32": np.float32, "float16": np.float16, "float32": np.float32, }[weights_data_type] except KeyError: raise ValueError(f"Don't know how to interpret weights_data_type: {weights_data_type}") assert weights_data_type in [np.float32, np.float16] self.weights_data_type = weights_data_type self.inference_data_type = inference_data_type self.w = [] self.int8_w = [] self.scale = [] # Transformer blocks self.w.extend([torch.zeros(global_hidden_units, dtype=str_type_map[ self.inference_data_type])] * layer_num) # self_layernorm_gamma self.w.extend([torch.zeros(global_hidden_units, dtype=str_type_map[ self.inference_data_type])] * layer_num) # self_layernorm_beta self.w.extend([torch.zeros(global_hidden_units, local_hidden_units * 3, dtype=str_type_map[self.inference_data_type])] * layer_num) # self_kernel self.w.extend([torch.zeros(local_hidden_units * 3, dtype=str_type_map[self.inference_data_type])] * layer_num) # self_bias self.w.extend([torch.zeros(local_hidden_units, global_hidden_units, dtype=str_type_map[ self.inference_data_type])] * layer_num) # self_output_kernel self.w.extend([torch.zeros(global_hidden_units, dtype=str_type_map[ self.inference_data_type])] * layer_num) # self_output_bias self.w.extend([torch.zeros(global_hidden_units, dtype=str_type_map[ self.inference_data_type])] * layer_num) # ffn_layernorm_gamma self.w.extend([torch.zeros(global_hidden_units, dtype=str_type_map[ self.inference_data_type])] * layer_num) # ffn_layernorm_beta self.w.extend([torch.zeros(global_hidden_units, local_inter_size, dtype=str_type_map[self.inference_data_type])] * layer_num) # ffn_kernel1 self.w.extend([torch.zeros(local_inter_size, dtype=str_type_map[ self.inference_data_type])] * layer_num) # ffn_bias1 self.w.extend([torch.zeros(local_inter_size, global_hidden_units, dtype=str_type_map[self.inference_data_type])] * layer_num) # ffn_kernel2 self.w.extend([torch.zeros(global_hidden_units, dtype=str_type_map[ self.inference_data_type])] * layer_num) # ffn_bias2 optional_adapter_offset = 0 # After Transformer blocks if self.has_pre_decoder_layernorm: self.w.append(torch.zeros(global_hidden_units, dtype=str_type_map[ self.inference_data_type])) # embedding layernorm gamma self.w.append(torch.zeros(global_hidden_units, dtype=str_type_map[ self.inference_data_type])) # embedding layernorm beta optional_adapter_offset += 2 if self.has_post_decoder_layernorm: self.w.append(torch.zeros(global_hidden_units, dtype=str_type_map[ self.inference_data_type])) # final layernorm gamma self.w.append(torch.zeros(global_hidden_units, dtype=str_type_map[ self.inference_data_type])) # final layernorm beta optional_adapter_offset += 2 if self.has_positional_encoding: self.w.append(torch.zeros(max_seq_len, global_hidden_units, dtype=str_type_map[ self.inference_data_type])) # position_encoding_table optional_adapter_offset += 1 self.pre_embed_idx = len(self.w) self.w.append(torch.zeros(vocab_size, global_hidden_units, dtype=str_type_map[self.inference_data_type])) # embedding_table self.post_embed_idx = len(self.w) self.w.append(torch.zeros(vocab_size, global_hidden_units, dtype=str_type_map[ self.inference_data_type])) # post embedding_kernel self.adapter_offset = 2 + optional_adapter_offset self.w.extend([torch.empty(0, dtype=str_type_map[self.inference_data_type])] * layer_num) # gating_weight self.adapter_offset += layer_num # adapters if self.has_adapters: self.w.extend([torch.zeros(global_hidden_units, local_adapter_inter_size, dtype=str_type_map[self.inference_data_type])] * layer_num) # adaptor1_kernel1 self.w.extend([torch.zeros(local_adapter_inter_size, dtype=str_type_map[ self.inference_data_type])] * layer_num) # adaptor1_bias1 self.w.extend([torch.zeros(local_adapter_inter_size, global_hidden_units, dtype=str_type_map[self.inference_data_type])] * layer_num) # adaptor1_kernel2 self.w.extend([torch.zeros(global_hidden_units, dtype=str_type_map[ self.inference_data_type])] * layer_num) # adaptor1_bias2 self.w.extend([torch.zeros(global_hidden_units, local_adapter_inter_size, dtype=str_type_map[self.inference_data_type])] * layer_num) # adaptor2_kernel1 self.w.extend([torch.zeros(local_adapter_inter_size, dtype=str_type_map[ self.inference_data_type])] * layer_num) # adaptor2_bias1 self.w.extend([torch.zeros(local_adapter_inter_size, global_hidden_units, dtype=str_type_map[self.inference_data_type])] * layer_num) # adaptor2_kernel2 self.w.extend([torch.zeros(global_hidden_units, dtype=str_type_map[ self.inference_data_type])] * layer_num) # adaptor2_bias2 # Initialization self._map(lambda w: torch.nn.init.normal_(w, mean=0., std=1.)) if (self.int8_mode != 0): self.int8_w.extend([torch.zeros(global_hidden_units, local_hidden_units * 3, dtype=torch.int8)] * layer_num) # self_int8_kernel self.scale.extend([torch.zeros(local_hidden_units * 3, dtype=torch.float)] * layer_num) # self_scale self.int8_w.extend([torch.zeros(local_hidden_units, global_hidden_units, dtype=torch.int8)] * layer_num) # self_output_int8_kernel self.scale.extend([torch.zeros(global_hidden_units, dtype=torch.float)] * layer_num) # self_output_scale self.int8_w.extend([torch.zeros(global_hidden_units, local_inter_size, dtype=torch.int8)] * layer_num) # ffn_int8_kernel1 self.scale.extend([torch.zeros(local_inter_size, dtype=torch.float)] * layer_num) # ffn_scale1 self.int8_w.extend([torch.zeros(local_inter_size, global_hidden_units, dtype=torch.int8)] * layer_num) # ffn_int8_kernel2 self.scale.extend([torch.zeros(global_hidden_units, dtype=torch.float)] * layer_num) # ffn_scale2 if self.has_adapters: self.int8_w.extend([torch.zeros(global_hidden_units, local_adapter_inter_size, dtype=torch.int8)] * layer_num) # adaptor1_int8_kernel1 self.scale.extend([torch.zeros(local_adapter_inter_size, dtype=torch.float)] * layer_num) # adaptor1_scale1 self.int8_w.extend([torch.zeros(local_adapter_inter_size, global_hidden_units, dtype=torch.int8)] * layer_num) # adaptor1_int8_kernel2 self.scale.extend([torch.zeros(global_hidden_units, dtype=torch.float)] * layer_num) # adaptor1_scale2 self.int8_w.extend([torch.zeros(global_hidden_units, local_adapter_inter_size, dtype=torch.int8)] * layer_num) # adaptor2_int8_kernel1 self.scale.extend([torch.zeros(local_adapter_inter_size, dtype=torch.float)] * layer_num) # adaptor2_scale1 self.int8_w.extend([torch.zeros(local_adapter_inter_size, global_hidden_units, dtype=torch.int8)] * layer_num) # adaptor2_int8_kernel2 self.scale.extend([torch.zeros(global_hidden_units, dtype=torch.float)] * layer_num) # adaptor2_scale2 def __getitem__(self, idx): return self.w[idx] def __setitem__(self, idx, val): self.w[idx] = val def __len__(self): return len(self.w) def _map(self, func): assert(self.pre_embed_idx < self.post_embed_idx, "Pre decoder embedding index should be lower than post decoder embedding index.") for i in range(len(self.w)): if isinstance(self.w[i], list): for j in range(len(self.w[i])): self.w[i][j] = func(self.w[i][j]) else: if self.share_embed and i == self.post_embed_idx: # If sharing the pre and post embedding, any mapping to # the pre decoder weight will give the same output to the # post decoder weight, so we just copy here. self.w[self.post_embed_idx] = self.w[self.pre_embed_idx] else: self.w[i] = func(self.w[i]) def _map_int8(self, func): for i in range(len(self.int8_w)): if isinstance(self.int8_w[i], list): for j in range(len(self.int8_w[i])): self.int8_w[i][j] = func(self.int8_w[i][j]) else: self.int8_w[i] = func(self.int8_w[i]) for i in range(len(self.scale)): if isinstance(self.scale[i], list): for j in range(len(self.scale[i])): self.scale[i][j] = func(self.scale[i][j]) else: self.scale[i] = func(self.scale[i]) def _map_int8_scales(self, func): for i in range(len(self.scale)): if isinstance(self.scale[i], list): for j in range(len(self.scale[i])): self.scale[i][j] = func(self.scale[i][j]) else: self.scale[i] = func(self.scale[i]) def load(self, ckpt_path, tp_rank, pipeline_para_rank): if not os.path.exists(ckpt_path): raise FileNotFoundError(f"Failed to find {ckpt_path}") w = [] type_map = {np.float32: torch.float32, np.float16: torch.float16} # Load def is_load(i): return i >= self.layers_per_device * \ pipeline_para_rank and i < self.layers_per_device * (pipeline_para_rank + 1) def load_to_torch(file_path: str, is_load: bool): if is_load: return torch.from_numpy(np.fromfile(file_path, dtype=self.weights_data_type)).to(str_type_map[self.inference_data_type]) else: return torch.empty(0).to(str_type_map[self.inference_data_type]) w.extend([load_to_torch(f"{ckpt_path}/model.layers.{i}.input_layernorm.weight.bin", is_load(i)) for i in range(self.layer_num)]) w.extend([load_to_torch(f"{ckpt_path}/model.layers.{i}.input_layernorm.bias.bin", is_load(i)) for i in range(self.layer_num)]) w.extend([load_to_torch( f"{ckpt_path}/model.layers.{i}.attention.query_key_value.weight.{tp_rank}.bin", is_load(i)) for i in range(self.layer_num)]) w.extend([load_to_torch( f"{ckpt_path}/model.layers.{i}.attention.query_key_value.bias.{tp_rank}.bin", is_load(i)) for i in range(self.layer_num)]) w.extend([load_to_torch(f"{ckpt_path}/model.layers.{i}.attention.dense.weight.{tp_rank}.bin", is_load(i)) for i in range(self.layer_num)]) w.extend([load_to_torch(f"{ckpt_path}/model.layers.{i}.attention.dense.bias.bin", is_load(i)) for i in range(self.layer_num)]) w.extend([load_to_torch(f"{ckpt_path}/model.layers.{i}.post_attention_layernorm.weight.bin", is_load(i)) for i in range(self.layer_num)]) w.extend([load_to_torch(f"{ckpt_path}/model.layers.{i}.post_attention_layernorm.bias.bin", is_load(i)) for i in range(self.layer_num)]) w.extend([load_to_torch( f"{ckpt_path}/model.layers.{i}.mlp.dense_h_to_4h.weight.{tp_rank}.bin" \ if os.path.isfile(f"{ckpt_path}/model.layers.{i}.mlp.dense_h_to_4h.weight.{tp_rank}.bin") \ else f"{ckpt_path}/model.layers.{i}.mlp.moe.experts.dense_h_to_4h.weight.{tp_rank}.bin", is_load(i)) for i in range(self.layer_num)]) w.extend([load_to_torch( f"{ckpt_path}/model.layers.{i}.mlp.dense_h_to_4h.bias.{tp_rank}.bin" \ if os.path.isfile(f"{ckpt_path}/model.layers.{i}.mlp.dense_h_to_4h.bias.{tp_rank}.bin") \ else f"{ckpt_path}/model.layers.{i}.mlp.moe.experts.dense_h_to_4h.bias.{tp_rank}.bin", is_load(i)) for i in range(self.layer_num)]) w.extend([load_to_torch( f"{ckpt_path}/model.layers.{i}.mlp.dense_4h_to_h.weight.{tp_rank}.bin" \ if os.path.isfile(f"{ckpt_path}/model.layers.{i}.mlp.dense_4h_to_h.weight.{tp_rank}.bin") \ else f"{ckpt_path}/model.layers.{i}.mlp.moe.experts.dense_4h_to_h.weight.{tp_rank}.bin", is_load(i)) for i in range(self.layer_num)]) w.extend([load_to_torch( f"{ckpt_path}/model.layers.{i}.mlp.dense_4h_to_h.bias.bin" \ if os.path.isfile(f"{ckpt_path}/model.layers.{i}.mlp.dense_4h_to_h.bias.bin") \ else f"{ckpt_path}/model.layers.{i}.mlp.moe.experts.dense_4h_to_h.bias.bin", is_load(i)) for i in range(self.layer_num)]) if self.has_pre_decoder_layernorm: w.append(load_to_torch(f"{ckpt_path}/model.pre_decoder_layernorm.weight.bin", True)) w.append(load_to_torch(f"{ckpt_path}/model.pre_decoder_layernorm.bias.bin", True)) if self.has_post_decoder_layernorm: w.append(load_to_torch(f"{ckpt_path}/model.final_layernorm.weight.bin", True)) w.append(load_to_torch(f"{ckpt_path}/model.final_layernorm.bias.bin", True)) if self.has_positional_encoding: wpe = load_to_torch(f"{ckpt_path}/model.wpe.bin", True).reshape(-1, self.global_hidden_units) assert self.max_seq_len <= wpe.size(0), ( f"max_seq_len ({self.max_seq_len} must not exceed " f"the value of maximum sequence length during training ({wpe.size(0)})." ) w.append(wpe) w.append(load_to_torch(f"{ckpt_path}/model.wte.bin", True)) if os.path.isfile(f"{ckpt_path}/model.lm_head.weight.bin"): self.share_embed = False w.append(load_to_torch(f"{ckpt_path}/model.lm_head.weight.bin", True)) else: self.share_embed = True w.append(torch.empty(0).to(str_type_map[self.inference_data_type])) gate_list = [] for i in range(self.layer_num): if (os.path.isfile(f"{ckpt_path}/model.layers.{i}.mlp.moe.gate.wg.weight.bin")): gate_list.append(load_to_torch(f"{ckpt_path}/model.layers.{i}.mlp.moe.gate.wg.weight.bin", True)) else: gate_list.append(load_to_torch(f"{ckpt_path}/model.layers.{i}.mlp.moe.gate.wg.weight.bin", False)) w.extend(gate_list) if self.has_adapters: w.extend([load_to_torch( f"{ckpt_path}/model.layers.{i}.after_attention_adapter.dense_h_to_4h.weight.{tp_rank}.bin" \ if os.path.isfile(f"{ckpt_path}/model.layers.{i}.after_attention_adapter.dense_h_to_4h.weight.{tp_rank}.bin") \ else f"{ckpt_path}/model.layers.{i}.after_attention_adapter.moe.experts.dense_h_to_4h.weight.{tp_rank}.bin", is_load(i)) for i in range(self.layer_num)]) w.extend([load_to_torch( f"{ckpt_path}/model.layers.{i}.after_attention_adapter.dense_h_to_4h.bias.{tp_rank}.bin" \ if os.path.isfile(f"{ckpt_path}/model.layers.{i}.after_attention_adapter.dense_h_to_4h.bias.{tp_rank}.bin") \ else f"{ckpt_path}/model.layers.{i}.after_attention_adapter.moe.experts.dense_h_to_4h.bias.{tp_rank}.bin", is_load(i)) for i in range(self.layer_num)]) w.extend([load_to_torch( f"{ckpt_path}/model.layers.{i}.after_attention_adapter.dense_4h_to_h.weight.{tp_rank}.bin" \ if os.path.isfile(f"{ckpt_path}/model.layers.{i}.after_attention_adapter.dense_4h_to_h.weight.{tp_rank}.bin") \ else f"{ckpt_path}/model.layers.{i}.after_attention_adapter.moe.experts.dense_4h_to_h.weight.{tp_rank}.bin", is_load(i)) for i in range(self.layer_num)]) w.extend([load_to_torch( f"{ckpt_path}/model.layers.{i}.after_attention_adapter.dense_4h_to_h.bias.bin" \ if os.path.isfile(f"{ckpt_path}/model.layers.{i}.after_attention_adapter.dense_4h_to_h.bias.bin") \ else f"{ckpt_path}/model.layers.{i}.after_attention_adapter.moe.experts.dense_4h_to_h.bias.bin", is_load(i)) for i in range(self.layer_num)]) w.extend([load_to_torch( f"{ckpt_path}/model.layers.{i}.after_ffn_adapter.dense_h_to_4h.weight.{tp_rank}.bin" \ if os.path.isfile(f"{ckpt_path}/model.layers.{i}.after_ffn_adapter.dense_h_to_4h.weight.{tp_rank}.bin") \ else f"{ckpt_path}/model.layers.{i}.after_ffn_adapter.moe.experts.dense_h_to_4h.weight.{tp_rank}.bin", is_load(i)) for i in range(self.layer_num)]) w.extend([load_to_torch( f"{ckpt_path}/model.layers.{i}.after_ffn_adapter.dense_h_to_4h.bias.{tp_rank}.bin" \ if os.path.isfile(f"{ckpt_path}/model.layers.{i}.after_ffn_adapter.dense_h_to_4h.bias.{tp_rank}.bin") \ else f"{ckpt_path}/model.layers.{i}.after_ffn_adapter.moe.experts.dense_h_to_4h.bias.{tp_rank}.bin", is_load(i)) for i in range(self.layer_num)]) w.extend([load_to_torch( f"{ckpt_path}/model.layers.{i}.after_ffn_adapter.dense_4h_to_h.weight.{tp_rank}.bin" \ if os.path.isfile(f"{ckpt_path}/model.layers.{i}.after_ffn_adapter.dense_4h_to_h.weight.{tp_rank}.bin") \ else f"{ckpt_path}/model.layers.{i}.after_ffn_adapter.moe.experts.dense_4h_to_h.weight.{tp_rank}.bin", is_load(i)) for i in range(self.layer_num)]) w.extend([load_to_torch( f"{ckpt_path}/model.layers.{i}.after_ffn_adapter.dense_4h_to_h.bias.bin" \ if os.path.isfile(f"{ckpt_path}/model.layers.{i}.after_ffn_adapter.dense_4h_to_h.bias.bin") \ else f"{ckpt_path}/model.layers.{i}.after_ffn_adapter.moe.experts.dense_4h_to_h.bias.bin", is_load(i)) for i in range(self.layer_num)]) assert len(self.w) == len(w) # Reshape try: for i in range(len(w)): if w[i].nelement() == self.w[i].nelement(): self.w[i] = w[i].reshape(self.w[i].shape) else: self.w[i] = w[i] except RuntimeError: raise RuntimeError( f"head_num, size_per_head, vocab_size, and max_seq_len must be the same as the ones during training " f"(idx: {i} expected shape: {self.w[i].shape} got shape: {w[i].shape})." ) # transpose calibrate quantize the kernel layer_num = self.layer_num if self.int8_mode != 0: for i in range(layer_num): self.int8_w[i + 0 * layer_num], self.scale[i + 0 * layer_num] = self.weight_transpose_calibrate_quantize(self.w[2 * layer_num + i]) self.int8_w[i + 1 * layer_num], self.scale[i + 1 * layer_num] = self.weight_transpose_calibrate_quantize(self.w[4 * layer_num + i]) self.int8_w[i + 2 * layer_num], self.scale[i + 2 * layer_num] = self.weight_transpose_calibrate_quantize(self.w[8 * layer_num + i]) self.int8_w[i + 3 * layer_num], self.scale[i + 3 * layer_num] = self.weight_transpose_calibrate_quantize(self.w[10 * layer_num + i]) # We clear the original weights since they are no longer needed if self.int8_mode == 1: self.w[2 * layer_num + i] = torch.empty(0).to(str_type_map[self.inference_data_type]) self.w[4 * layer_num + i] = torch.empty(0).to(str_type_map[self.inference_data_type]) self.w[8 * layer_num + i] = torch.empty(0).to(str_type_map[self.inference_data_type]) self.w[10 * layer_num + i] = torch.empty(0).to(str_type_map[self.inference_data_type]) if self.has_adapters: self.int8_w[i + 4 * layer_num], self.scale[i + 4 * layer_num] = self.weight_transpose_calibrate_quantize( self.w[12 * layer_num + i + self.adapter_offset]) self.int8_w[i + 5 * layer_num], self.scale[i + 5 * layer_num] = self.weight_transpose_calibrate_quantize( self.w[14 * layer_num + i + self.adapter_offset]) self.int8_w[i + 6 * layer_num], self.scale[i + 6 * layer_num] = self.weight_transpose_calibrate_quantize( self.w[16 * layer_num + i + self.adapter_offset]) self.int8_w[i + 7 * layer_num], self.scale[i + 7 * layer_num] = self.weight_transpose_calibrate_quantize( self.w[18 * layer_num + i + self.adapter_offset]) # Similar to above: if self.int8_mode == 1: self.w[12 * layer_num + i + self.adapter_offset] = torch.empty(0).to(str_type_map[self.inference_data_type]) self.w[14 * layer_num + i + self.adapter_offset] = torch.empty(0).to(str_type_map[self.inference_data_type]) self.w[16 * layer_num + i + self.adapter_offset] = torch.empty(0).to(str_type_map[self.inference_data_type]) self.w[18 * layer_num + i + self.adapter_offset] = torch.empty(0).to(str_type_map[self.inference_data_type]) return True class GPT(nn.Module): def __init__(self, head_num, size_per_head, vocab_size, start_id, end_id, layer_num, max_seq_len: int, tensor_para_size: int, pipeline_para_size: int, lib_path: typing.Union[str, pathlib.Path], inference_data_type: str, inter_size: int = 0, # gpt_variant_params layernorm_eps: float = 1e-6, layernorm_type: typing.Literal['pre_layernorm', 'post_layernorm'] = "pre_layernorm", activation_type: str = "Gelu", gpt_with_moe: bool = False, expert_num: int = 0, moe_k: int = 0, moe_layer_index: typing.List = [], has_positional_encoding: bool = True, has_pre_decoder_layernorm: bool = False, has_post_decoder_layernorm: bool = True, has_adapters: bool = False, adapter_inter_size: int = 0, use_attention_linear_bias: bool = False, int8_mode: int = 0, weights_data_type: typing.Union[str, np.dtype] = np.float32, shared_contexts_ratio: float = 1.0): super().__init__() self.head_num = head_num self.size_per_head = size_per_head self.vocab_size = vocab_size self.start_id = start_id self.end_id = end_id self.layer_num = layer_num self.inter_size = inter_size if inter_size != 0 else 4 * self.head_num * self.size_per_head # gpt_variant_params self.layernorm_eps = layernorm_eps self.layernorm_type = layernorm_type self.activation_type = activation_type self.gpt_with_moe = gpt_with_moe self.expert_num = expert_num self.moe_k = moe_k self.moe_layer_index = moe_layer_index self.has_positional_encoding = has_positional_encoding self.has_pre_decoder_layernorm = has_pre_decoder_layernorm self.has_post_decoder_layernorm = has_post_decoder_layernorm self.has_adapters = has_adapters self.adapter_inter_size = adapter_inter_size self.use_attention_linear_bias = use_attention_linear_bias # multi-gpu params self.tensor_para_size = tensor_para_size self.pipeline_para_size = pipeline_para_size self.use_sparse_gemm = False self.build_model = False self.int8_mode = int8_mode self.weights_data_type = weights_data_type self.shared_contexts_ratio = shared_contexts_ratio assert torch.cuda.is_available(), "CUDA is required for this model." assert head_num % tensor_para_size == 0, "head_num must be a multiple of tensor_para_size." assert layer_num % pipeline_para_size == 0, "layer_num must be a multiple of pipeline_para_size." # Load the C++ model into Pytorch model. torch.classes.load_library(os.path.abspath(lib_path)) # Prepare weights self.weights = GPTWeights(head_num, size_per_head, layer_num, vocab_size, max_seq_len, tensor_para_size, pipeline_para_size, weights_data_type=weights_data_type, inference_data_type=inference_data_type, gpt_with_moe=self.gpt_with_moe, has_positional_encoding=self.has_positional_encoding, has_pre_decoder_layernorm=self.has_pre_decoder_layernorm, has_post_decoder_layernorm=self.has_post_decoder_layernorm, has_adapters=self.has_adapters, adapter_inter_size=self.adapter_inter_size, int8_mode=int8_mode, inter_size=inter_size) # Prepare for tensor/pipeline parallel try: dist.init_process_group(backend='mpi') except: print("[INFO] WARNING: Have initialized the process group") self.rank = dist.get_rank() self.device_count = torch.cuda.device_count() self.device = self.rank % self.device_count torch.cuda.set_device(self.device) world_size = dist.get_world_size() assert world_size == tensor_para_size * pipeline_para_size, "tensor_para_size * pipeline_para_size must be equal to world_size." self.tensor_para_rank = self.rank % self.tensor_para_size self.pipeline_para_rank = self.rank // self.tensor_para_size def load(self, ckpt_path): is_load = self.weights.load(ckpt_path, tp_rank=self.tensor_para_rank, pipeline_para_rank=self.pipeline_para_rank) self.cuda() torch.cuda.empty_cache() # clean cache for model weight preprocessing return is_load def sparse(self): if not self.use_sparse_gemm: self.use_sparse_gemm = True def cuda(self): self.weights._map(lambda w: w.cuda(self.device)) if self.int8_mode != 0: self.weights._map_int8(lambda w: w.cuda(self.device)) if self.build_model: del self.model self.build_model = False self.model = torch.classes.FasterTransformer.GptOp( self.head_num, self.size_per_head, self.inter_size, self.layer_num, self.expert_num, self.moe_k, self.moe_layer_index, self.vocab_size, self.start_id, self.end_id, self.use_sparse_gemm, # gpt_variant_params self.layernorm_eps, self.layernorm_type, self.activation_type, self.has_positional_encoding, self.has_pre_decoder_layernorm, self.has_post_decoder_layernorm, self.has_adapters, self.adapter_inter_size, self.use_attention_linear_bias, self.weights.w) self.build_model = True def forward(self, start_ids: torch.IntTensor, start_lengths: torch.IntTensor, output_len: int, beam_width: int = 1, top_k: typing.Optional[torch.IntTensor] = None, top_p: typing.Optional[torch.FloatTensor] = None, beam_search_diversity_rate: typing.Optional[torch.FloatTensor] = None, temperature: typing.Optional[torch.FloatTensor] = None, len_penalty: typing.Optional[torch.FloatTensor] = None, repetition_penalty: typing.Optional[torch.FloatTensor] = None, presence_penalty: typing.Optional[torch.FloatTensor] = None, min_length: typing.Optional[torch.IntTensor] = None, random_seed: typing.Optional[torch.LongTensor] = None, bad_words_list: typing.Optional[torch.IntTensor] = None, return_output_length: bool = False, return_cum_log_probs: int = 0): if not self.build_model: # for the cases we don't load model self.cuda() torch.cuda.empty_cache() # clean cache for model weight preprocessing input_len = start_ids.size(1) assert input_len > 0, "input len must be larger than zero. For an unconditional case, use start_id as the first token." # Inputs to device start_ids = start_ids.cuda(self.device) start_lengths = start_lengths.cuda(self.device) # outputs: output_ids, output_lengths, output_cum_log_probs (optional) outputs = self.model.forward(start_ids, start_lengths, output_len, beam_width, # optional, can be None top_k, # optional, can be None top_p, # optional, can be None beam_search_diversity_rate, # optional, can be None temperature, # optional, can be None len_penalty, # optional, can be None repetition_penalty, # optional, can be None presence_penalty, # optional, can be None min_length, # optional, can be None random_seed, # optional, can be None bad_words_list, # optional, can be None return_cum_log_probs) # optional, can be None if return_cum_log_probs == 0: output_ids, output_lengths = outputs else: output_ids, output_lengths, output_cum_log_probs = outputs if return_output_length: if return_cum_log_probs > 0: return output_ids, output_lengths, output_cum_log_probs else: return output_ids, output_lengths else: return output_ids def set_input_tensor(self, input_tensor): """Set input tensor to be used instead of forward()'s input. When doing pipeline parallelism the input from the previous stage comes from communication, not from the input, so the model's forward_step_func won't have it. This function is thus used by internal code to bypass the input provided by the forward_step_func""" self.input_tensor = input_tensor @dataclasses.dataclass class GptInitModelParameters: head_num: int size_per_head: int layer_num: int max_seq_len: int tensor_para_size: int vocab_size: int start_id: int end_id: int pipeline_para_size: int weights_data_type: str has_adapters: bool adapter_inter_size: int data_type: str int8_mode: int sparse: int # GPT variant params. layernorm_eps: float = 1e-6 layernorm_type: typing.Literal['pre_layernorm', 'post_layernorm'] = 'pre_layernorm' activation_type: str = 'gelu' has_positional_encoding: bool = True has_pre_decoder_layernorm: bool = False has_post_decoder_layernorm: bool = True use_attention_linear_bias: bool = False inter_size: int = 0 PREDEFINED_MODELS: typing.ClassVar[dict] = { 'default': dict(), 'opt-pre': dict(layernorm_eps=1e-5, layernorm_type='pre_layernorm', activation_type='relu', has_post_decoder_layernorm=True), 'opt-pre': dict(layernorm_eps=1e-5, layernorm_type='post_layernorm', activation_type='relu', has_post_decoder_layernorm=False), 'bloom': dict(layernorm_eps=1e-5, layernorm_type='pre_layernorm', activation_type='gelu', has_positional_encoding=False, has_pre_decoder_layernorm=True, has_post_decoder_layernorm=True, use_attention_linear_bias=True) } def gpt_init_kwargs(self): do_not_include = ["sparse", "data_type"] args = {k: v for k, v in dataclasses.asdict(self).items() if k not in do_not_include} args["inference_data_type"] = dataclasses.asdict(self)["data_type"] return args @classmethod def from_args(cls, args, config_reader): model_name = args.model_name head_num = config_reader.getint(model_name, "head_num") size_per_head = config_reader.getint(model_name, "size_per_head") param = cls( head_num=head_num, size_per_head=size_per_head, layer_num=config_reader.getint(model_name, "num_layer"), # There is no limitation on the length when no positional encoding, # setting by a large enough integer. max_seq_len=config_reader.getint(model_name, "max_pos_seq_len", fallback=int(1e7)), tensor_para_size=config_reader.getint(model_name, "tensor_para_size"), vocab_size=config_reader.getint(model_name, "vocab_size"), start_id=config_reader.getint(model_name, "start_id"), end_id=config_reader.getint(model_name, "end_id"), weights_data_type=config_reader.get(model_name, "weight_data_type"), has_adapters=config_reader.getboolean(model_name, "has_adapters", fallback=False), adapter_inter_size=config_reader.getint(model_name, "adapter_inter_size", fallback=0), pipeline_para_size=( args.pipeline_para_size or config_reader.getint("ft_instance_hyperparameter", "pipeline_para_size", fallback=1) ), int8_mode=( args.int8_mode if args.int8_mode is not None else config_reader.getint("ft_instance_hyperparameter", "int8_mode", fallback=0) ), data_type=( args.data_type or config_reader.get("ft_instance_hyperparameter", "data_type", fallback=config_reader.get(model_name, "weight_data_type")) ), sparse=int(getattr(args, 'sparse', False)), inter_size=config_reader.getint(model_name, "inter_size", fallback=4*head_num*size_per_head) ) if config_reader.has_option(model_name, 'model_variant'): model_type = config_reader.get(model_name, 'model_variant') model_params = cls.PREDEFINED_MODELS[model_type] param.update(model_params) return param def update(self, update_params: dict): for k, v in update_params: setattr(self, k, v) return self def asdict(self): return dataclasses.asdict(self) @classmethod def update_argparser(cls, parser): parser.add_argument("--model-name", type=str, default="gpt", help="Model name from config.ini file") parser.add_argument("--pipeline-para-size", type=int, help="size of pipeline parallelism") parser.add_argument("--data-type", type=str, help="data type", choices=["fp32", "bf16", "fp16"]) parser.add_argument( "--sparse", action='store_true', help="Enable sparse matrix multiplication. (Need SM 8.0 or 8.6 and SPARSITY_SUPPORT=ON)") parser.add_argument("--int8-mode", type=int, choices=[0, 1], help="Set int8 mode") @dataclasses.dataclass class GptRuntimeModelParameters: beam_width: int top_k: torch.Tensor top_p: torch.Tensor beam_search_diversity_rate: torch.Tensor temperature: torch.Tensor len_penalty: torch.Tensor repetition_penalty: torch.Tensor def gpt_forward_kwargs(self): return dataclasses.asdict(self) @classmethod def from_args(cls, args, config_reader, batch_size=None): bs = args.batch_size if batch_size is not None: bs = batch_size return cls( beam_width=args.beam_width or config_reader.getint("ft_instance_hyperparameter", "beam_width", fallback=1), top_k=(args.sampling_top_k or config_reader.getint("ft_instance_hyperparameter", "top_k", fallback=1)) * torch.ones(size=[bs], dtype=torch.int32), top_p=(args.sampling_top_p or config_reader.getfloat("ft_instance_hyperparameter", "top_p", fallback=0.0)) * torch.ones(size=[bs], dtype=torch.float32), beam_search_diversity_rate=( args.beam_search_diversity_rate or config_reader.getfloat("ft_instance_hyperparameter", "beam_search_diversity_rate", fallback=0.0) ) * torch.ones(size=[bs], dtype=torch.float32), temperature=(args.temperature or config_reader.getfloat("ft_instance_hyperparameter", "temperature", fallback=1.0)) * torch.ones(size=[bs], dtype=torch.float32), len_penalty=(args.len_penalty or config_reader.getfloat("ft_instance_hyperparameter", "len_penalty", fallback=0.0)) * torch.ones(size=[bs], dtype=torch.float32), repetition_penalty=( args.repetition_penalty or config_reader.getfloat("ft_instance_hyperparameter", "repetition_penalty", fallback=1.0) ) * torch.ones(size=[bs], dtype=torch.float32), ) def slice_args(self, idx): return GptRuntimeModelParameters( beam_width=self.beam_width, top_k=self.top_k[idx], top_p=self.top_p[idx], beam_search_diversity_rate=self.beam_search_diversity_rate[idx], temperature=self.temperature[idx], len_penalty=self.len_penalty[idx], repetition_penalty=self.repetition_penalty[idx], ) @classmethod def update_argparser(cls, parser): parser.add_argument("--beam-width", type=int, help="beam width") parser.add_argument("--sampling-top-k", type=int, help="Candidate (k) value of top k sampling in decoding") parser.add_argument("--sampling-top-p", type=float, help="Probability (p) value of top p sampling in decoding.") parser.add_argument("--temperature", type=float, help="temperature") parser.add_argument("--len-penalty", type=float, help="len_penalty") parser.add_argument("--repetition-penalty", type=float, help="repetition penalty") parser.add_argument("--beam-search-diversity-rate", type=float, help="beam_search_diversity_rate") DEFAULT_START_TAG = "<|endoftext|>" DEFAULT_END_TAG = "<|endoftext|>" OPENAI_GPT2_START_ID = 50256 OPENAI_GPT2_END_ID = 50256 @dataclasses.dataclass class GptModelConfig: model_name: str tensor_para_size: int head_num: int size_per_head: int inter_size: int num_layer: int max_pos_seq_len: int weight_data_type: str vocab_size: int start_id: int end_id: int @classmethod def from_nemo_package( cls, *, args: argparse.Namespace, nemo_model_config: typing.Dict[str, typing.Any], bos_id: int, eos_id: int, vocab_size: int, ): return cls( model_name="gpt", tensor_para_size=args.infer_gpu_num, head_num=nemo_model_config["num_attention_heads"], size_per_head=nemo_model_config["hidden_size"] // nemo_model_config["num_attention_heads"], inter_size=nemo_model_config["ffn_hidden_size"], num_layer=nemo_model_config["num_layers"], max_pos_seq_len=nemo_model_config["max_position_embeddings"], weight_data_type=args.weight_data_type, vocab_size=vocab_size, start_id=bos_id, end_id=eos_id, )
FasterTransformer-main
examples/pytorch/gpt/utils/gpt.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import argparse import dataclasses from pathlib import Path from typing import Optional import numpy as np import torch from . import gpt from . import parallel_gpt class BloomWeight(gpt.GPTWeights): def __init__(self, head_num, size_per_head, layer_num, vocab_size, tensor_para_size, pipeline_para_size, weights_data_type, inference_data_type, int8_mode=0): super().__init__( head_num, size_per_head, layer_num, vocab_size, 0, tensor_para_size, pipeline_para_size, weights_data_type, inference_data_type, has_adapters=False, adapter_inter_size=0, has_positional_encoding=False, has_pre_decoder_layernorm=True, has_post_decoder_layernorm=True, int8_mode=int8_mode) @dataclasses.dataclass class BloomParam: num_heads: int size_per_head: int inter_size: int num_layers: int vocab_size: int start_id: Optional[int] = None end_id: Optional[int] = None tensor_para_size: int = 1 pipeline_para_size: int = 1 remove_padding: bool = True shared_contexts_ratio: float = 1.0 def __post_init__(self): if not 0.0 <= self.shared_contexts_ratio <= 1.0: raise ValueError( f'Got an invalid value of shared_context_ratio ' f'{self.shared_contexts_ratio} - range: [0.0, 1.0]') @classmethod def from_args(cls, args: argparse.Namespace): return cls(num_heads=args.num_heads, size_per_head=args.size_per_head, inter_size=args.inter_size, num_layers=args.num_layers, vocab_size=args.vocab_size, start_id=args.start_id, end_id=args.end_id, tensor_para_size=args.tensor_para_size, pipeline_para_size=args.pipeline_para_size, shared_contexts_ratio=args.shared_contexts_ratio) @staticmethod def add_args_group(parser: argparse.ArgumentParser): group = parser.add_argument_group('Bloom Model Configuration') group.add_argument( '--num-heads', type=int, metavar='N', default=None, help='The number of attention heads.') group.add_argument( '--size-per-head', type=int, metavar='N', default=None, help='The dimension of an attention head.') group.add_argument( '--inter-size', type=int, metavar='N', default=None, help='The intermediate dimension of the MLP block. If None, ' 'it will be 4 * num_heads * size_per_head as default.') group.add_argument( '--num-layers', type=int, metavar='N', default=None, help='The number of bloom layers.') group.add_argument( '--vocab-size', type=int, metavar='N', default=None, help='The vocabulary size.') group.add_argument( '-tp', '--tensor-para-size', type=int, metavar='N', default=1, help='The size of tensor parallelism.') group.add_argument( '-pp', '--pipeline-para-size', type=int, metavar='N', default=1, help='The size of pipeline parallelism.') group.add_argument( '--no-remove-padding', action='store_false', dest='remove_padding', help='Disable the optimization feature that skips padded tokens' ' during context computation.') group.add_argument( '--shared-contexts-ratio', type=float, metavar='M', default=1.0, help='The threshold of the duplication ratio to apply the context' ' sharing. If less than shared_context_ratio * batch_size ' 'sentences are duplicated among inputs of size batch_size, ' 'the model shares those inputs during context computation.') def asdict(self): return dataclasses.asdict(self) @dataclasses.dataclass class BloomInferParam: beam_width: int = 1 top_k: torch.IntTensor = 1 top_p: torch.FloatTensor = 1.0 beam_search_diversity_rate: torch.FloatTensor = 0.0 temperature: torch.FloatTensor = 1.0 len_penalty: torch.FloatTensor = 0.0 repetition_penalty: torch.FloatTensor = 1.0 random_seed: torch.LongTensor = None return_output_length: bool = True return_cum_log_probs: bool = False @classmethod def from_args(cls, args: argparse.Namespace, batch_size: Optional[int] = None): batch_size = batch_size or args.batch_size random_seed = args.random_seed if random_seed is None: random_seed = torch.randint(int(1e5), size=(batch_size,)).long() else: # Periodically padding to make the tensor of size (batch_size,) pad_length = batch_size - len(random_seed) random_seed = np.pad(args.random_seed, (0, pad_length), mode='wrap') random_seed = torch.tensor(random_seed).long() ones = torch.ones(batch_size, dtype=torch.float32) return cls( beam_width=args.beam_width, top_k=args.top_k * ones.int(), top_p=args.top_p * ones, beam_search_diversity_rate=args.beam_search_diversity_rate * ones, temperature=args.temperature * ones, len_penalty=args.len_penalty * ones, repetition_penalty=args.repetition_penalty * ones, random_seed=random_seed, return_output_length=args.return_cum_log_probs > 0, return_cum_log_probs=args.return_cum_log_probs) def slice_args(self, idx): safe_slice = lambda x: x[idx] if x.numel() > 1 else x return __class__( beam_width=self.beam_width, top_k=safe_slice(self.top_k), top_p=safe_slice(self.top_p), beam_search_diversity_rate=safe_slice( self.beam_search_diversity_rate), temperature=safe_slice(self.temperature), len_penalty=safe_slice(self.len_penalty), repetition_penalty=safe_slice(self.repetition_penalty)) @staticmethod def add_args_group(parser: argparse.ArgumentParser): group = parser.add_argument_group('Bloom Inference Parameters') group.add_argument( '--batch-size', type=int, metavar='N', default=8, help='Inference batch size.') group.add_argument( '--output-length', type=int, metavar='N', default=32, help='The number of output tokens to generate.') group.add_argument( '--beam-width', type=int, metavar='N', default=1, help='The beam width for beam search. When beam_width=1, ' 'a sampling method will be used to generate a token.') group.add_argument( '--top-k', type=int, metavar='N', default=1, help='Top-k sampling. The number of most probable tokens to keep ' 'for sampling.') group.add_argument( '--top-p', type=float, metavar='M', default=1., help='Top-p sampling. The cumulative probability of to filter the ' 'set of most probable tokens. If 1, it is equivalent to the ' 'ancestral sampling.') group.add_argument( '--temperature', type=float, metavar='M', default=1., help='The temperature value for smoothing the logit distribution.') group.add_argument( '--len-penalty', type=float, metavar='M', default=0., help='The exponent of the length penalty of beam scores.') group.add_argument( '--beam-search-diversity-rate', type=float, metavar='M', default=0., help='The diversity rate of beam search.') group.add_argument( '--start-id', type=int, metavar='N', default=0, help='The index of the start token.') group.add_argument( '--end-id', type=int, metavar='N', default=2, help='The index of the end token. FT will use the eos token to ' 'pad a sequence while Bloom requires the pad token to get ' 'correct results. According to the pretrained model, we set ' 'the eos token by the pad token id 3 instead of the eos ' 'token id 2.') group.add_argument( '--repetition-penalty', type=float, default=1., help='The repetition penalty.') group.add_argument( '--random-seed', type=int, metavar='N', nargs='+', default=None, help='Random seed values. If multiple values are provided, they ' 'will be assigned to each sentence in a batch. Otherwise, ' 'if providing a single value, all sentence share the same ' 'random seed.') group.add_argument( '--return-cum-log-probs', type=int, default=0, choices=[0, 1, 2], help='Whether to compute the cumulative log probability of the ' 'context sentences.\n' ' 0: do not return the cumulative log probs\n' ' 1: return the cumulative log probs of generated sequences\n' ' 2: return the cumulative log probs of sequences') def asdict(self): return dataclasses.asdict(self) class Bloom(parallel_gpt.ParallelGPT): def __init__(self, head_num, size_per_head, vocab_size, start_id, end_id, layer_num, tensor_para_size: int, pipeline_para_size: int, lib_path: str | Path, inference_data_type: str, weights_data_type: str | np.dtype = np.float32, layernorm_eps: float = 1e-5, shared_contexts_ratio: float = 1.0, int8_mode: int = 0): super().__init__( head_num, size_per_head, vocab_size, start_id, end_id, layer_num, 0, tensor_para_size, pipeline_para_size, lib_path=lib_path, inference_data_type=inference_data_type, layernorm_eps=layernorm_eps, # gpt_variant_params layernorm_type="pre_layernorm", activation_type="Gelu", has_positional_encoding=False, has_pre_decoder_layernorm=True, has_post_decoder_layernorm=True, has_adapters=False, adapter_inter_size=0, use_attention_linear_bias=True, int8_mode=int8_mode, weights_data_type=weights_data_type, shared_contexts_ratio=shared_contexts_ratio) def set_input_tensor(self, input_tensor: Optional[torch.Tensor]): """Set input tensor to be used instead of forward()'s input. When doing pipeline parallelism the input from the previous stage comes from communication, not from the input, so the model's forward_step_func won't have it. This function is thus used by internal code to bypass the input provided by the forward_step_func """ self.input_tensor = input_tensor
FasterTransformer-main
examples/pytorch/gpt/utils/bloom.py
"""Byte pair encoding utilities""" # Modified MIT License # Software Copyright (c) 2019 OpenAI # We don’t claim ownership of the content you create with GPT-2, so it is yours to do with as you please. # We only ask that you use GPT-2 responsibly and clearly indicate your content was created using GPT-2. # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and # associated documentation files (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # The above copyright notice and this permission notice need not be included # with content created by the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE # OR OTHER DEALINGS IN THE SOFTWARE. # Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # #     http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import json import regex as re from functools import lru_cache @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class Encoder: def __init__(self, encoder, bpe_merges, errors='replace'): self.encoder = encoder self.decoder = {v:k for k,v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v:k for k, v in self.byte_encoder.items()} self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} # Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word)-1 and word[i+1] == second: new_word.append(first+second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens): text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors) return text def get_encoder(vocab_file, bpe_file): with open(vocab_file, 'r') as f: encoder = json.load(f) with open(bpe_file, 'r', encoding="utf-8") as f: bpe_data = f.read() bpe_merges = [tuple(merge_str.split()) for merge_str in bpe_data.split('\n')[1:-1]] return Encoder( encoder=encoder, bpe_merges=bpe_merges, )
FasterTransformer-main
examples/pytorch/gpt/utils/gpt_token_encoder.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import argparse import timeit import torch import torch.cuda.nvtx as nvtx import time import sys import numpy as np import random from onmt.utils.misc import sequence_mask dir_path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(dir_path + "/../../..") from examples.pytorch.encoder.utils.ft_encoder import EncoderWeights from examples.pytorch.encoder.utils.ft_encoder import CustomEncoder from examples.pytorch.encoder.utils.ft_encoder import ONMTEncoder def main(): parser = argparse.ArgumentParser() parser.add_argument('batch_size', type=int, help='batch size') parser.add_argument('layer_num', type=int, help='number of layers') parser.add_argument('seq_len', type=int, help='sequence length') parser.add_argument('head_num', type=int, help='head number') parser.add_argument('head_size', type=int, help='size per head') parser.add_argument('--data_type', type=str, choices=['fp32', 'fp16', 'bf16'], default='fp32') parser.add_argument('--time', action='store_true', help='test the time or not.') parser.add_argument('--avg_seq_len', type=int, default=-1, metavar='NUMBER', help='average sequence length (default: -1)') parser.add_argument('--remove_padding', action='store_true', help='Remove the padding of sentences of encoder.') parser.add_argument('--allow_gemm_test', action='store_true', help='Whether allow gemm test inside FT.') parser.add_argument('--ths_path', type=str, default='./lib/libth_transformer.so', help='path of the pyt_fastertransformer dynamic lib file') args = parser.parse_args() encoder_example(vars(args)) def encoder_example(args): torch.manual_seed(0) random.seed(0) np.random.seed(0) batch_size = args['batch_size'] seq_len = args['seq_len'] layer_num = args['layer_num'] head_num = args['head_num'] head_size = args['head_size'] hidden_dim = head_num * head_size print("\n=============== Argument ===============") for key in args: print("{}: {}".format(key, args[key])) print("========================================\n") inp = torch.empty(batch_size, seq_len, hidden_dim).cuda() torch.nn.init.normal_(inp, -0.02, 0.02) mem_seq_lens = torch.randint(1, seq_len+1, (batch_size,), dtype=torch.int32).cuda() if args['remove_padding']: if args['avg_seq_len'] > 0: mem_seq_lens = torch.ones((batch_size,)) * args['avg_seq_len'] mem_seq_lens = mem_seq_lens.to(torch.int32).cuda() elif args['avg_seq_len'] == -1: mem_seq_lens = torch.ones((batch_size,)) * seq_len / 2 mem_seq_lens = mem_seq_lens.to(torch.int32).cuda() else: raise ValueError("wrong avg_seq_len") mask = ~sequence_mask(mem_seq_lens, seq_len).unsqueeze(1) if args['data_type'] == 'fp16': inp = inp.half() weights = EncoderWeights(layer_num, hidden_dim) onmt_encoder = ONMTEncoder(layer_num, hidden_dim, head_num, 4 * hidden_dim, weights) onmt_encoder.cuda() if args['data_type'] == 'fp16': onmt_encoder.half() onmt_encoder.eval() onmt_encoder = torch.jit.trace(onmt_encoder, (inp, mask)) if args['data_type'] == 'fp16': weights.to_half() weights.to_cuda() custom_encoder = CustomEncoder(layer_num, head_num, head_size, weights, remove_padding=False, allow_gemm_test=args['allow_gemm_test'], path=args['ths_path']) custom_encoder = torch.jit.script(custom_encoder) eff_custom_encoder = CustomEncoder(layer_num, head_num, head_size, weights, remove_padding=True, allow_gemm_test=args['allow_gemm_test'], path=args['ths_path']) eff_custom_encoder = torch.jit.script(eff_custom_encoder) with torch.no_grad(): output_mask = sequence_mask(mem_seq_lens, args['seq_len']).to(mask.dtype).unsqueeze(-1) onmt_output = onmt_encoder(inp, mask) * output_mask print(onmt_output) print(onmt_output.size()) ft_output = custom_encoder(inp, mem_seq_lens) * output_mask print(ft_output) print(ft_output.size()) eff_ft_output = eff_custom_encoder(inp, mem_seq_lens) * output_mask print(eff_ft_output) print(eff_ft_output.size()) FT_diff = torch.abs(onmt_output - ft_output) print('FT Mean diff: {}'.format(torch.mean(FT_diff))) print('FT Max diff: {}'.format(torch.max(FT_diff))) print('FT Min diff: {}'.format(torch.min(FT_diff))) EFF_diff = torch.abs(onmt_output - eff_ft_output) print('EFF-FT Mean diff: {}'.format(torch.mean(EFF_diff))) print('EFF-FT Max diff: {}'.format(torch.max(EFF_diff))) print('EFF-FT Min diff: {}'.format(torch.min(EFF_diff))) if args['time']: iterations = 100 for i in range(iterations): output = onmt_encoder(inp, mask) t10 = timeit.default_timer() # nvtx.range_push("hf") for i in range(iterations): # nvtx.range_push("hf"+str(i)) output = onmt_encoder(inp, mask) # nvtx.range_pop() # nvtx.range_pop() t1 = timeit.default_timer() - t10 # time.sleep(60) for i in range(iterations): output = custom_encoder(inp, mem_seq_lens) t20 = timeit.default_timer() # nvtx.range_push("ext") for i in range(iterations): # nvtx.range_push("ext"+str(i)) output = custom_encoder(inp, mem_seq_lens) # nvtx.range_pop() # nvtx.range_pop() t2 = timeit.default_timer() - t20 # time.sleep(60) for i in range(iterations): output = eff_custom_encoder(inp, mem_seq_lens) t30 = timeit.default_timer() # nvtx.range_push("eff_ext") for i in range(iterations): # nvtx.range_push("eff_ext"+str(i)) output = eff_custom_encoder(inp, mem_seq_lens) # nvtx.range_pop() # nvtx.range_pop() t3 = timeit.default_timer() - t30 # time.sleep(60) print("[INFO] ONMTEnocder time costs: {:.2f} ms".format(t1*1000/iterations)) print("[INFO] FasterTransformer time costs: {:.2f} ms".format(t2*1000/iterations)) print("[INFO] EFF-FasterTransformer time costs: {:.2f} ms".format(t3*1000/iterations)) return max(torch.mean(FT_diff), torch.mean(EFF_diff)) if __name__ == '__main__': main()
FasterTransformer-main
examples/pytorch/encoder/encoder_example.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import sys import torch import torch.nn as nn from onmt.encoders.transformer import TransformerEncoderLayer class EncoderWeights(object): def __init__(self, layer_num, hidden_dim, weights=None): """weights need be a state_dict of bert model""" self.layer_num = layer_num self.hidden_dim = hidden_dim self.weights = {} if weights is None: self.weights['encoder.layer_norm.weight'] = torch.zeros(hidden_dim) self.weights['encoder.layer_norm.bias'] = torch.zeros(hidden_dim) # self.weights['encoder.embeddings.make_embedding.emb_luts.0.weight'] # self.weights['encoder.embeddings.make_embedding.pe.pe'] for i in range(layer_num): pre = 'encoder.transformer.' + str(i) + '.' self.weights[pre + 'layer_norm.weight'] = torch.zeros(hidden_dim) self.weights[pre + 'layer_norm.bias'] = torch.zeros(hidden_dim) self.weights[pre + 'self_attn.linear_query.weight'] = torch.zeros(hidden_dim, hidden_dim) self.weights[pre + 'self_attn.linear_query.bias'] = torch.zeros(hidden_dim) self.weights[pre + 'self_attn.linear_keys.weight'] = torch.zeros(hidden_dim, hidden_dim) self.weights[pre + 'self_attn.linear_keys.bias'] = torch.zeros(hidden_dim) self.weights[pre + 'self_attn.linear_values.weight'] = torch.zeros(hidden_dim, hidden_dim) self.weights[pre + 'self_attn.linear_values.bias'] = torch.zeros(hidden_dim) self.weights[pre + 'self_attn.final_linear.weight'] = torch.zeros(hidden_dim, hidden_dim) self.weights[pre + 'self_attn.final_linear.bias'] = torch.zeros(hidden_dim) self.weights[pre + 'feed_forward.layer_norm.weight'] = torch.zeros(hidden_dim) self.weights[pre + 'feed_forward.layer_norm.bias'] = torch.zeros(hidden_dim) self.weights[pre + 'feed_forward.w_1.weight'] = torch.zeros(4 * hidden_dim, hidden_dim) self.weights[pre + 'feed_forward.w_1.bias'] = torch.zeros(4 * hidden_dim) self.weights[pre + 'feed_forward.w_2.weight'] = torch.zeros(hidden_dim, 4 * hidden_dim) self.weights[pre + 'feed_forward.w_2.bias'] = torch.zeros(hidden_dim) for k, v in self.weights.items(): self.weights[k] = torch.nn.init.uniform_(v, -1, 1) else: self.weights = weights def listed_weights(self): ret = [] ret.append(torch.stack([self.weights['encoder.transformer.' + str(layer_idx) + '.' + 'layer_norm.weight'] for layer_idx in range(self.layer_num)], 0).contiguous()) ret.append(torch.stack([self.weights['encoder.transformer.' + str(layer_idx) + '.' + 'layer_norm.bias'] for layer_idx in range(self.layer_num)], 0).contiguous()) ret.append(torch.stack([self.weights['encoder.transformer.' + str(layer_idx) + '.' + 'self_attn.linear_query.weight'].transpose(-1, -2) for layer_idx in range(self.layer_num)], 0).contiguous()) ret.append(torch.stack([self.weights['encoder.transformer.' + str(layer_idx) + '.' + 'self_attn.linear_query.bias'] for layer_idx in range(self.layer_num)], 0).contiguous()) ret.append(torch.stack([self.weights['encoder.transformer.' + str(layer_idx) + '.' + 'self_attn.linear_keys.weight'].transpose(-1, -2) for layer_idx in range(self.layer_num)], 0).contiguous()) ret.append(torch.stack([self.weights['encoder.transformer.' + str(layer_idx) + '.' + 'self_attn.linear_keys.bias'] for layer_idx in range(self.layer_num)], 0).contiguous()) ret.append(torch.stack([self.weights['encoder.transformer.' + str(layer_idx) + '.' + 'self_attn.linear_values.weight'].transpose(-1, -2) for layer_idx in range(self.layer_num)], 0).contiguous()) ret.append(torch.stack([self.weights['encoder.transformer.' + str(layer_idx) + '.' + 'self_attn.linear_values.bias'] for layer_idx in range(self.layer_num)], 0).contiguous()) ret.append(torch.stack([self.weights['encoder.transformer.' + str(layer_idx) + '.' + 'self_attn.final_linear.weight'].transpose(-1, -2) for layer_idx in range(self.layer_num)], 0).contiguous()) ret.append(torch.stack([self.weights['encoder.transformer.' + str(layer_idx) + '.' + 'self_attn.final_linear.bias'] for layer_idx in range(self.layer_num)], 0).contiguous()) ret.append(torch.stack([self.weights['encoder.transformer.' + str(layer_idx) + '.' + 'feed_forward.layer_norm.weight'] for layer_idx in range(self.layer_num)], 0).contiguous()) ret.append(torch.stack([self.weights['encoder.transformer.' + str(layer_idx) + '.' + 'feed_forward.layer_norm.bias'] for layer_idx in range(self.layer_num)], 0).contiguous()) ret.append(torch.stack([self.weights['encoder.transformer.' + str(layer_idx) + '.' + 'feed_forward.w_1.weight'].transpose(-1, -2) for layer_idx in range(self.layer_num)], 0).contiguous()) ret.append(torch.stack([self.weights['encoder.transformer.' + str(layer_idx) + '.' + 'feed_forward.w_1.bias'] for layer_idx in range(self.layer_num)], 0).contiguous()) ret.append(torch.stack([self.weights['encoder.transformer.' + str(layer_idx) + '.' + 'feed_forward.w_2.weight'].transpose(-1, -2) for layer_idx in range(self.layer_num)], 0).contiguous()) ret.append(torch.stack([self.weights['encoder.transformer.' + str(layer_idx) + '.' + 'feed_forward.w_2.bias'] for layer_idx in range(self.layer_num)], 0).contiguous()) ret.append(self.weights['encoder.layer_norm.weight'].contiguous()) ret.append(self.weights['encoder.layer_norm.bias'].contiguous()) return ret def to_cuda(self): for k, v in self.weights.items(): self.weights[k] = v.cuda() def to_half(self): for k, v in self.weights.items(): self.weights[k] = v.half() def to_bfloat16(self): for k, v in self.weights.items(): self.weights[k] = v.bfloat16() class CustomEncoder(torch.nn.Module): def __init__(self, layer_num, head_num, head_size, weights, remove_padding=False, allow_gemm_test=False, path='./lib/libth_transformer.so', embedding=None): super().__init__() self.layer_num = layer_num self.remove_padding = remove_padding self.embedding = embedding torch.classes.load_library(path) weights_ = weights.listed_weights() assert len(weights_) == 18 try: self.encoders = torch.classes.FasterTransformer.Encoder( *weights_, head_num, head_size, 4 * head_num * head_size, remove_padding, layer_num, allow_gemm_test, False, 1.0) except: # legacy ths for 20.03 image self.encoders = torch.classes.FasterTransformerEncoder( *weights_, head_num, head_size, 4 * head_num * head_size, remove_padding, layer_num, allow_gemm_test, False, 1.0) def forward(self, inputs, lengths): if self.embedding is not None: emb = self.embedding(inputs) inputs = emb.transpose(0, 1).contiguous() hidden_states = self.encoders.forward(inputs, lengths) if self.embedding is not None: return emb, hidden_states.transpose(0, 1).contiguous(), lengths else: return hidden_states class ONMTEncoder(torch.nn.Module): def __init__(self, num_layers, d_model, heads, d_ff, weights): super(ONMTEncoder, self).__init__() self.transformer = nn.ModuleList( [TransformerEncoderLayer( d_model, heads, d_ff, 0.0, 0.0, max_relative_positions=0) for i in range(num_layers)]) self.layer_norm = nn.LayerNorm(d_model, eps=1e-6) self.layer_norm.weight.data = weights.weights['encoder.layer_norm.weight'] self.layer_norm.bias.data = weights.weights['encoder.layer_norm.bias'] w = {} for k, v in weights.weights.items(): if k.startswith('encoder.transformer'): w[k[20:]] = v self.transformer.load_state_dict(w) def forward(self, src, mask): out = src for layer in self.transformer: out = layer(out, mask) out = self.layer_norm(out) return out
FasterTransformer-main
examples/pytorch/encoder/utils/ft_encoder.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # Copyright (c) 2021, NAVER Corp. Authored by CLOVA. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from torch.nn.utils.rnn import pad_sequence import random import os import sys import argparse import configparser import timeit import torch import torch.distributed as dist import numpy as np from transformers import AutoTokenizer dir_path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(dir_path + "/../../..") from examples.pytorch.gptneox.utils.gptneox import GptNeoX def main(): parser = argparse.ArgumentParser() parser.add_argument('--output_len', type=int, default=32, help='output sequence length to generate.') parser.add_argument('--beam_width', type=int, default=1, help='beam width for beam search. Using sampling when beam width is 1.') parser.add_argument('--top_k', type=int, default=1, help='top k candidate num') parser.add_argument('--top_p', type=float, default=0., help='top p probability threshold') parser.add_argument('--temperature', type=float, default=1., help='temperature') parser.add_argument('--len_penalty', type=float, default=0., help='len_penalty') parser.add_argument('--beam_search_diversity_rate', type=float, default=0., help='beam_search_diversity_rate') parser.add_argument('--tensor_para_size', type=int, default=1, help='tensor parallel size') parser.add_argument('--pipeline_para_size', type=int, default=1, help='pipeline parallel size') parser.add_argument('--ckpt_path', type=str, default='../models/gptneox/c-model/NeoX-1.3B/1-gpu', help='path to the checkpoint file.') parser.add_argument('--tokenizer_path', type=str, default='../models/gptneox/model/NeoX-1.3B', help='directory where the tokenizer file is located.') parser.add_argument('--lib_path', type=str, default='./lib/libth_transformer.so', help='path to the pyt_fastertransformer dynamic lib file.') parser.add_argument('--sample_input_file', type=str, help='path to the sample input file.') parser.add_argument('--max_batch_size', type=int, default=8, help='max batch size.') parser.add_argument('--repetition_penalty', type=float, default=1., help='repetition penalty') parser.add_argument('--max_seq_len', type=int, default=1024, help='max sequence length for position embedding table.') parser.add_argument('--inference_data_type', '--data_type', type=str, choices=['fp32', 'fp16'], default='fp16') parser.add_argument('--time', action='store_true', help='whether or not to measure time elapsed.') parser.add_argument('--enable_random_seed', action='store_true', help='is enable the random seed.') args = parser.parse_args() config = configparser.ConfigParser() config.read(os.path.join(args.ckpt_path, "config.ini")) head_num = int(config.get('gptneox', 'head_num')) size_per_head = int(config.get('gptneox', 'size_per_head')) vocab_size = int(config.get('gptneox', 'vocab_size')) layer_num = int(config.get('gptneox', 'num_layer')) rotary_embedding = int(config.get('gptneox', 'rotary_embedding')) start_id = int(config.get('gptneox', 'start_id')) end_id = int(config.get('gptneox', 'end_id')) use_gptj_residual = (config.get('gptneox', 'use_gptj_residual') == "1") weight_data_type = config.get('gptneox', 'weight_data_type') ckpt_path = args.ckpt_path tokenizer_path = args.tokenizer_path lib_path = args.lib_path output_len = args.output_len beam_width = args.beam_width top_k = args.top_k top_p = args.top_p temperature = args.temperature len_penalty = args.len_penalty beam_search_diversity_rate = args.beam_search_diversity_rate tensor_para_size = args.tensor_para_size pipeline_para_size = args.pipeline_para_size max_batch_size = args.max_batch_size max_seq_len = args.max_seq_len repetition_penalty = args.repetition_penalty inference_data_type = args.inference_data_type print("\n=============== Arguments ===============") for arg in vars(args): print("{}: {}".format(arg, getattr(args, arg))) print("=========================================\n") if tensor_para_size * pipeline_para_size > 1: dist.init_process_group(backend=dist.Backend.MPI) rank = dist.get_rank() if dist.is_initialized() else 0 device_count = dist.get_world_size() if dist.is_initialized() else 1 device = rank % device_count torch.cuda.set_device(device) device = torch.cuda.current_device() # sentencepiece needed tokenizer = AutoTokenizer.from_pretrained(tokenizer_path) # Inputs contexts = [] if args.sample_input_file: # conditional case with open(args.sample_input_file, "r") as f: contexts = f.read().splitlines() batch_size = min(len(contexts), max_batch_size) contexts = contexts[:batch_size] start_ids = [torch.tensor(tokenizer.encode(c), dtype=torch.int32, device=device) for c in contexts] else: # unconditional case batch_size = max_batch_size contexts = ['<|endoftext|>'] * batch_size start_ids = [torch.IntTensor([end_id])] * batch_size print("[INFO] batch size: {}".format(batch_size)) start_lengths = [len(ids) for ids in start_ids] start_ids = pad_sequence(start_ids, batch_first=True, padding_value=end_id) start_lengths = torch.IntTensor(start_lengths) if args.enable_random_seed == True: random_seed_tensor = torch.randint(0, 10000, size=[batch_size], dtype=torch.int64) else: random_seed_tensor = torch.zeros([batch_size], dtype=torch.int64) # Prepare model. gpt = GptNeoX(head_num, size_per_head, vocab_size, rotary_embedding, start_id, end_id, layer_num, max_seq_len, tensor_para_size, pipeline_para_size, use_gptj_residual, lib_path, inference_data_type=inference_data_type, weights_data_type=weight_data_type) if not gpt.load(ckpt_path=ckpt_path): print("[WARNING] Checkpoint file not found. Model loading is skipped.") with torch.no_grad(): tokens_batch = gpt( start_ids=start_ids, start_lengths=start_lengths, output_len=output_len, beam_width=beam_width, top_k=top_k * torch.ones(size=[batch_size], dtype=torch.int32), top_p=top_p * torch.ones(size=[batch_size], dtype=torch.float32), beam_search_diversity_rate=beam_search_diversity_rate * torch.ones(size=[batch_size], dtype=torch.float32), temperature=temperature * torch.ones(size=[batch_size], dtype=torch.float32), len_penalty=len_penalty * torch.ones(size=[batch_size], dtype=torch.float32), repetition_penalty=repetition_penalty * torch.ones(size=[batch_size], dtype=torch.float32), random_seed=random_seed_tensor, return_output_length=False, return_cum_log_probs=0) if tokens_batch is not None and rank == 0: tokens_batch = tokens_batch.cpu().numpy() for i, (context, tokens) in enumerate(zip(contexts, tokens_batch)): for beam_id in range(beam_width): token = tokens[beam_id][start_lengths[i]:] # exclude context input from the output output = tokenizer.decode(token) print(f'[INFO] batch {i}, beam {beam_id}:\n[Context]\n{context}\n\n[Output]\n{output}\n') # Measure inference time. if args.time: iterations = 10 # warmup for i in range(iterations): tokens_batch = gpt( start_ids=start_ids, start_lengths=start_lengths, output_len=output_len, beam_width=beam_width, top_k=top_k * torch.ones(size=[batch_size], dtype=torch.int32), top_p=top_p * torch.ones(size=[batch_size], dtype=torch.float32), beam_search_diversity_rate=beam_search_diversity_rate * torch.ones(size=[batch_size], dtype=torch.float32), temperature=temperature * torch.ones(size=[batch_size], dtype=torch.float32), len_penalty=len_penalty * torch.ones(size=[batch_size], dtype=torch.float32), repetition_penalty=repetition_penalty * torch.ones(size=[batch_size], dtype=torch.float32), random_seed=random_seed_tensor, return_output_length=False, return_cum_log_probs=0) batch_num = 0 token_num = 0 time = timeit.default_timer() for i in range(iterations): tokens_batch = gpt( start_ids=start_ids, start_lengths=start_lengths, output_len=output_len, beam_width=beam_width, top_k=top_k * torch.ones(size=[batch_size], dtype=torch.int32), top_p=top_p * torch.ones(size=[batch_size], dtype=torch.float32), beam_search_diversity_rate=beam_search_diversity_rate * torch.ones(size=[batch_size], dtype=torch.float32), temperature=temperature * torch.ones(size=[batch_size], dtype=torch.float32), len_penalty=len_penalty * torch.ones(size=[batch_size], dtype=torch.float32), repetition_penalty=repetition_penalty * torch.ones(size=[batch_size], dtype=torch.float32), random_seed=random_seed_tensor, return_output_length=False, return_cum_log_probs=0) batch_num += 1 for j, tokens in enumerate(tokens_batch): token_num += tokens.shape[-1] - start_lengths[j] time_elapsed = timeit.default_timer() - time throughput = token_num / time_elapsed print(f"[INFO] FT-GPT generates {batch_num} batches, taking {time_elapsed:0.3f} secs " f"to generate {token_num} tokens, {throughput:0.3f} tokens/sec.") if __name__ == '__main__': main()
FasterTransformer-main
examples/pytorch/gptneox/gptneox_example.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import configparser import multiprocessing import numpy as np from pathlib import Path import torch import os import sys from transformers import GPTNeoXForCausalLM # 4.21.1 def get_weight_data_type(data_type): if data_type == "fp32": return np.float32 elif data_type == "fp16": return np.float16 else: assert False, f"Invalid weight data type {data_type}" def prefix_prompt_convert(args, config, weight_data_type): saved_dir = args.saved_dir + "/%d-gpu/" % args.infer_gpu_num prompt_in_file_list = args.prompt_in_file_list.split(',') task_list = [] for idx, prompt_in_file in enumerate(prompt_in_file_list): weights=torch.load(prompt_in_file) task_name = prompt_in_file.split("/")[-1].split(".")[-3] total_size = weights.nelement() n_layers = config['n_layer'] n_head = config['n_head'] size_per_head = config['n_embd'] // n_head prefix_prompt_len = total_size // (2 * n_layers * n_head * size_per_head) task_list.append((task_name, prefix_prompt_len)) # GPT NeoX weights=weights.view(prefix_prompt_len,n_layers,2,n_head,size_per_head) ## prefix_seq_len, num_layers, 2, num_heads, size_per_head # weights=weights.view(prefix_prompt_len,28,2,16,256) ## prefix_seq_len, num_layers, 2, num_heads, size_per_head weights=weights.permute(1,2,3,0,4) ## num_layers, 2, num_heads, perfix_seq_len, size_per_head local_head_num = n_head // args.infer_gpu_num weights_split = torch.split(weights, local_head_num, dim=2) for i in range(args.infer_gpu_num): output_file_path = saved_dir + "/model.prefix_prompt." + task_name + ".weight." + str(i) + ".bin" weights_split[i].detach().cpu().numpy().astype(weight_data_type).tofile(output_file_path) return task_list def split_and_convert_process(i, saved_dir,factor,key,args,config,val): if key.find("input_layernorm.weight") != -1 or key.find("input_layernorm.bias") != -1 or \ key.find("attention.dense.bias") != -1 or key.find("post_attention_layernorm.weight") != -1 or \ key.find("post_attention_layernorm.bias") != -1 or key.find("mlp.dense_4h_to_h.bias") != -1 or \ key.find("final_layernorm.weight") != -1 or key.find("final_layernorm.bias") != -1: # shared weights, only need to convert the weights of rank 0 if i == 0: saved_path = saved_dir + "/model." + key + ".bin" val.tofile(saved_path) elif key.find("attention.dense.weight") != -1 or key.find("mlp.dense_4h_to_h.weight") != -1: split_vals = np.split(val, factor, axis=0) for j in range(factor): saved_path = saved_dir + "/model." + key + ".%d.bin" % (i * factor + j) split_vals[j].tofile(saved_path) elif key.find("mlp.dense_h_to_4h.weight") != -1 or key.find("mlp.dense_h_to_4h.bias") != -1: split_vals = np.split(val, factor, axis=-1) for j in range(factor): saved_path = saved_dir + "/model." + key + ".%d.bin" % (i * factor + j) split_vals[j].tofile(saved_path) elif key.find("attention.query_key_value.bias") != -1: local_dim = (int)(val.shape[-1] / 3) n_head = config['n_head'] val = val.reshape(n_head, 3, local_dim // n_head) val = np.transpose(val, [1, 0, 2]).reshape(3, local_dim) split_vals = np.split(val, factor, axis=-1) for j in range(factor): saved_path = saved_dir + "/model." + key + ".%d.bin" % (i * factor + j) split_vals[j].tofile(saved_path) elif key.find("attention.query_key_value.weight") != -1: hidden_dim = val.shape[0] local_dim = (int)(val.shape[-1] / 3) n_head = config['n_head'] # Note that the HF qkv weight are stored as [hidden_size, num_heads, 3, head_hidden] # FT needs the shape of [hidden_size, 3, num_heads, head_hidden] val = val.reshape(hidden_dim, n_head, 3, local_dim // n_head) val = np.transpose(val, [0, 2, 1, 3]).reshape(hidden_dim, 3, local_dim) # print(np.mean(np.abs(val[:, 0, :]))) split_vals = np.split(val, factor, axis=-1) for j in range(factor): saved_path = saved_dir + "/model." + key + ".%d.bin" % (i * factor + j) split_vals[j].tofile(saved_path) else: print("[ERROR] cannot find key '{}'".format(key)) def split_and_convert(args): saved_dir = args.saved_dir + "/%d-gpu/" % args.infer_gpu_num if(os.path.exists(saved_dir) == False): os.makedirs(saved_dir) ckpt_name = args.in_file t_gpu_num = args.trained_gpu_num i_gpu_num = args.infer_gpu_num assert(i_gpu_num % t_gpu_num == 0) factor = (int)(i_gpu_num / t_gpu_num) # load position_embedding from rank 0 # model = torch.load(ckpt_name) model = GPTNeoXForCausalLM.from_pretrained(args.in_file) hf_config = vars(model.config) if "gpt_j_residual" not in hf_config: hf_config["gpt_j_residual"] = 0 np_weight_data_type = get_weight_data_type(args.weight_data_type) task_list = [] if args.prompt_in_file_list is not None: task_list = prefix_prompt_convert(args, hf_config, np_weight_data_type) try: model_name = args.model_name config = configparser.ConfigParser() config['gptneox'] = {} config['gptneox']['model_name'] = model_name config['gptneox']["head_num"] = str(hf_config["n_head"]) n_embd = hf_config["n_embd"] config['gptneox']["size_per_head"] = str(n_embd // hf_config["n_head"]) config['gptneox']["inter_size"] = str(n_embd * 4) config['gptneox']["num_layer"] = str(hf_config["n_layer"]) rotary_dim = n_embd // hf_config["n_head"] if hf_config["rotary_dim"] is None else hf_config["rotary_dim"] config['gptneox']["rotary_embedding"] = str(rotary_dim) config['gptneox']["vocab_size"] = str(hf_config["vocab_size"]) config['gptneox']["start_id"] = str(hf_config["bos_token_id"]) config['gptneox']["end_id"] = str(hf_config["eos_token_id"]) config['gptneox']['use_gptj_residual'] = str(int(hf_config['gpt_j_residual'])) config['gptneox']["weight_data_type"] = args.weight_data_type if len(task_list) > 0: config['gptneox']['num_tasks'] = str(len(task_list)) config['gptneox']['prompt_learning_type'] = str(2) for idx, (task_name, prompt_length) in enumerate(task_list): config[f'task_{idx}'] = {} config[f'task_{idx}']['task_name'] = task_name config[f'task_{idx}']['prompt_length'] = str(prompt_length) with open((Path(saved_dir) / f"config.ini").as_posix(), 'w') as configfile: config.write(configfile) except: print(f"Fail to save the config in config.ini.") huggingface_model_name_pattern = [ "ln_1.bias", "ln_1.weight", "attn.qkv_proj.bias", "attn.qkv_proj.weight", "attn.out_proj.bias", "attn.out_proj.weight", "ln_2.bias", "ln_2.weight", "mlp.fc_in.bias", "mlp.fc_in.weight", "mlp.fc_out.bias", "mlp.fc_out.weight", ] ft_model_name_pattern = [ "input_layernorm.bias", "input_layernorm.weight", "attention.query_key_value.bias", "attention.query_key_value.weight", "attention.dense.bias", "attention.dense.weight", "post_attention_layernorm.bias", "post_attention_layernorm.weight", "mlp.dense_h_to_4h.bias", "mlp.dense_h_to_4h.weight", "mlp.dense_4h_to_h.bias", "mlp.dense_4h_to_h.weight", ] torch.multiprocessing.set_start_method("spawn") pool = multiprocessing.Pool(args.processes) for name, param in model.named_parameters(): if name.find("weight") == -1 and name.find("bias") == -1: continue print(name) if name == 'transformer.wpe.weight': param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.wpe.bin") elif name == 'transformer.wte.weight': param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.wte.bin") elif name == 'transformer.ln_f.bias': param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.final_layernorm.bias.bin") elif name == 'transformer.ln_f.weight': param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.final_layernorm.weight.bin") elif name == 'lm_head.weight': param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.lm_head.weight.bin") elif name == 'lm_head.bias': param.detach().cpu().numpy().astype(np_weight_data_type).tofile(saved_dir + "model.lm_head.bias.bin") else: for i in range(len(huggingface_model_name_pattern)): if name.find(huggingface_model_name_pattern[i]) != -1: new_name = name.replace("transformer.h.", "layers.").replace(huggingface_model_name_pattern[i], ft_model_name_pattern[i]) pool.starmap(split_and_convert_process, [(0, saved_dir, factor, new_name, args, vars(model.config), param.detach().cpu().numpy().astype(np_weight_data_type).T)], ) pool.close() pool.join() # Post-process biases if use_gptj_residual is True if hf_config['gpt_j_residual']: for layer_idx in range(hf_config["n_layer"]): attn_bias = np.fromfile(saved_dir + f"/model.layers.{layer_idx}.attention.dense.bias.bin", dtype=np.float32) mlp_bias = np.fromfile(saved_dir + f"/model.layers.{layer_idx}.mlp.dense_4h_to_h.bias.bin", dtype=np.float32) (attn_bias + mlp_bias).tofile(saved_dir + f"/model.layers.{layer_idx}.mlp.attention.bias.sum.bin") if __name__ == "__main__": parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('-saved_dir', '-o', type=str, help='file name of output file', required=True) parser.add_argument('-in_file', '-i', type=str, help='file name of input checkpoint file', required=True) parser.add_argument('-prompt_in_file_list','-p_i_list', type=str, help='list of the prompt weight file path,' 'separate by (,). e.g. -prompt_in_file_list prefix_prompt.task0.weight,prefix_prompt.task1.weight') parser.add_argument('-trained_gpu_num', '-t_g', type=int, help='How many gpus for inference', default=1) parser.add_argument('-infer_gpu_num', '-i_g', type=int, help='How many gpus for inference', required=True) parser.add_argument("-processes", "-p", type=int, help="How many processes to spawn for conversion (default: 4)", default=4) parser.add_argument("-weight_data_type", type=str, default="fp32", choices=["fp32", "fp16"]) parser.add_argument('-model_name', '-m_n', type=str, help='model name', required=True) args = parser.parse_args() print("\n=============== Argument ===============") for key in vars(args): print("{}: {}".format(key, vars(args)[key])) print("========================================") split_and_convert(args)
FasterTransformer-main
examples/pytorch/gptneox/utils/huggingface_jp_gptneox_convert.py
#! /usr/bin/env python3 # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from tokenizers import Tokenizer from typing import List, Union class HFTokenizer: def __init__(self, vocab_file): self.tokenizer = Tokenizer.from_file(vocab_file) def tokenize(self, text: str): return self.tokenizer.encode(text).ids def tokenize_batch(self, text_batch: Union[List[str], str]): return self.tokenizer.encode_batch(text_batch) def detokenize(self, token_ids): return self.tokenizer.decode(token_ids) def handle_args(): parser = ArgumentParser() parser.add_argument("in_file") parser.add_argument("--out-file") parser.add_argument("--tokenizer", default="../models/20B_tokenizer.json") parser.add_argument("--action", choices=["tokenize", "detokenize", "auto"], default="auto") return parser.parse_args() def main(in_file, tokenizer, out_file, action): tokenizer = HFTokenizer(tokenizer) with open(in_file) as f: lines = f.read().split('\n') in_lines = None do = None if action != "tokenize": if in_lines is None: try: in_lines = [[int(tok) for tok in line.split(' ') if tok] for line in lines if line] do = "detokenize" except ValueError: pass if in_lines is None: try: in_lines = [[int(tok) for tok in line.split(', ') if tok] for line in lines if line] do = "detokenize" except ValueError: pass if action != "detokenize": if in_lines is None: try: in_lines = [line for line in lines if line] do = "tokenize" except ValueError: pass if do is not None: if do == "detokenize": output = [tokenizer.detokenize(token_list) for token_list in in_lines] else: output = [tokenizer.tokenize(line) for line in in_lines] output = [",".join(str(tok) for tok in tok_seq) for tok_seq in output] if args.out_file: with open(out_file, "w") as f: f.write("\n".join(output)) else: print("\n---\n".join(output)) if __name__ == "__main__": args = handle_args() main(args.in_file, args.tokenizer, args.out_file, args.action)
FasterTransformer-main
examples/pytorch/gptneox/utils/hftokenizer.py
#! /usr/bin/env python3 # Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import multiprocessing import numpy as np import torch # pytype: disable=import-error import yaml from dataclasses import dataclass, field from datetime import datetime from pathlib import Path from tqdm import tqdm from typing import List ''' GPT-NeoX 20B model Download by wget --cut-dirs=5 -nH -r --no-parent --reject "index.html*" https://mystic.the-eye.eu/public/AI/models/GPT-NeoX-20B/slim_weights/ -P 20B_checkpoints layer_00-model_00-model_states.pt word_embeddings.weight: embedding table, split by tensor parallelism layer_02-model_00-model_states.pt ~ layer_45-model_01-model_states.pt: input_layernorm.weight input_layernorm.bias attention.query_key_value.weight attention.query_key_value.bias attention.rotary_emb.inv_freq attention.dense.weight attention.dense.bias post_attention_layernorm.weight post_attention_layernorm.bias mlp.dense_h_to_4h.weight mlp.dense_h_to_4h.bias mlp.dense_4h_to_h.weight mlp.dense_4h_to_h.bias layer_47-model_00-model_states.pt: finally layernorm. model_00 and model_01 have same weights. Using one of them is enough. layer_48-model_00-model_states.pt final_linear.weight. It should be the logit gemm weight. mp_rank_xx_model_states.pt: some training states, useless in inference ''' weights_skip_tensor_split = ["input_layernorm.bias", "input_layernorm.weight", "attention.dense.bias", "mlp.dense_4h_to_h.bias", "post_attention_layernorm.bias", "post_attention_layernorm.weight"] def write_config_file(save_dir): file_template = """ [gptneox] model_name=gptneox_20B head_num=64 size_per_head=96 vocab_size=50432 num_layer=44 rotary_embedding=24 start_id=0 end_id=2 inter_size=24576 use_gptj_residual=1 weight_data_type=fp32 """ with open(Path(save_dir) / "config.ini", "w") as f: f.write(file_template) @dataclass class KeyHandler: outname: str gather: str = "" scatter: str = "copy" reshape: List = field(default_factory=lambda: []) transpose: List = field(default_factory=lambda: []) def on_cpu(storage, loc): return storage.cpu() def handle_layer(chkpt_dir, in_filename, key_mapping, save_dir, in_range, out_range, whole_range=None): def read_layers(filename, range): if range is not None: filename = [filename.format(i) for i in range] else: filename = [filename] return [torch.load(chkpt_dir / fn, map_location=on_cpu) for fn in filename] layers = read_layers(in_filename, in_range) layer_keys = set(layers[0].keys()) for key, value in key_mapping.items(): key_templ, gather, scatter = value.outname, value.gather, value.scatter reshape, transpose = value.reshape, value.transpose layer_keys.remove(key) if key_templ == "": continue # Preprocess tensors tensors = [np.array(layer[key], dtype=np.float32) for layer in layers] if reshape: tensors = [ten.reshape(reshape) for ten in tensors] if transpose: tensors = [ten.transpose(transpose) for ten in tensors] # Gather tensors if len(tensors) == 1: gather_tensor = tensors[0] else: if "join" in gather: axis = int(gather.partition("_")[2]) gather_tensor = np.concatenate(tensors, axis=axis) elif gather == "mean": gather_tensor = np.sum(tensors, axis=0) / len(tensors) elif gather == "sum": gather_tensor = np.sum(tensors, axis=0) else: raise NotImplementedError(f"Gather strategy {gather} is not supported") # Scatter tensors if len(out_range) == 1: scatter_tensors = [gather_tensor] else: if scatter == "copy": scatter_tensors = [gather_tensor for i in out_range] elif "split" in scatter: axis = int(scatter.partition("_")[2]) if gather_tensor.shape[axis] % len(out_range) != 0: raise ValueError(f"{key} cannot be divided in {len(out_range)} along axis {axis}") scatter_tensors = np.split(gather_tensor, len(out_range), axis=axis) elif scatter == "divide": scatter_tensors = [gather_tensor / len(out_range) for i in out_range] else: raise NotImplementedError(f"Scatter strategy {scatter} is not supported") for tensor, idx in zip(scatter_tensors, out_range): output_name = key_templ.format(idx) for weight_name in weights_skip_tensor_split: if weight_name in output_name: output_name = output_name.split('.') del output_name[-1] output_name = '.'.join(output_name) tensor.tofile(save_dir / ("model." + output_name + ".bin")) if len(layer_keys) > 0: print("[Warning] Remaining keys:", layer_keys) def convert_checkpoint(args): base_dir = Path(args.checkpoint_dir) with open(base_dir / "latest") as f: chkpt_dir = f.readline().rstrip() chkpt_dir = base_dir / chkpt_dir with open(base_dir / "configs/20B.yml") as f: model_args = yaml.safe_load(f) hidden_dim = model_args["hidden-size"] n_layers = model_args["num-layers"] n_heads = model_args["num-attention-heads"] hidden_per_head = hidden_dim // n_heads tp_source = model_args["model-parallel-size"] tp_target = args.tensor_parallelism print(f"Converting from {tp_source} to {tp_target} GPUs") save_dir = Path(args.save_dir) / f"{tp_target:d}-gpu" save_dir.mkdir(parents=True, exist_ok=True) handle_layer_args = [] handle_layer_args.append(( chkpt_dir, "layer_00-model_{:02d}-model_states.pt", {"word_embeddings.weight": KeyHandler("wte", "join_0")}, save_dir, range(tp_source), [0], )) handle_layer_args.append(( chkpt_dir, "layer_47-model_{:02d}-model_states.pt", { "norm.weight": KeyHandler("final_layernorm.weight", "mean"), "norm.bias": KeyHandler("final_layernorm.bias", "mean"), }, save_dir, range(tp_source), [0], )) handle_layer_args.append(( chkpt_dir, "layer_48-model_{:02d}-model_states.pt", { "final_linear.weight": KeyHandler("lm_head.weight", "join_0"), }, save_dir, range(tp_source), [0], )) gcd = np.gcd(tp_source, tp_target) print(f"Strategy: group {tp_source//gcd} source gpu(s) into {tp_target//gcd} out gpu(s).\n") in_indices = np.split(np.arange(tp_source), gcd) out_indices = np.split(np.arange(tp_target), gcd) for layer_id in range(model_args["num-layers"]): for in_idx, out_idx in zip(in_indices, out_indices): def make_fn_out(fn): return f"layers.{layer_id}." + fn + ".{:d}" handle_layer_args.append(( chkpt_dir, f"layer_{layer_id+2:02d}" + "-model_{:02d}-model_states.pt", { "attention.rotary_emb.inv_freq": KeyHandler(""), "attention.dense.weight": KeyHandler( make_fn_out("attention.dense.weight"), "join_0", "split_0", transpose=[1, 0]), "attention.dense.bias": KeyHandler( make_fn_out("attention.dense.bias"), "sum", "divide"), "attention.query_key_value.weight": KeyHandler( make_fn_out("attention.query_key_value.weight"), "join_2", "split_2", reshape=[n_heads // tp_source, 3, hidden_per_head, hidden_dim], transpose=[3, 1, 0, 2]), "attention.query_key_value.bias": KeyHandler( make_fn_out("attention.query_key_value.bias"), "join_1", "split_1", reshape=[n_heads // tp_source, 3, hidden_per_head], transpose=[1, 0, 2]), "input_layernorm.weight": KeyHandler( make_fn_out("input_layernorm.weight"), "mean"), "input_layernorm.bias": KeyHandler( make_fn_out("input_layernorm.bias"), "mean"), "mlp.dense_4h_to_h.weight": KeyHandler( make_fn_out("mlp.dense_4h_to_h.weight"), "join_0", "split_0", transpose=[1, 0]), "mlp.dense_4h_to_h.bias": KeyHandler( make_fn_out("mlp.dense_4h_to_h.bias"), "sum", "divide"), "mlp.dense_h_to_4h.weight": KeyHandler( make_fn_out("mlp.dense_h_to_4h.weight"), "join_1", "split_1", transpose=[1, 0]), "mlp.dense_h_to_4h.bias": KeyHandler( make_fn_out("mlp.dense_h_to_4h.bias"), "join_0", "split_0"), "post_attention_layernorm.weight": KeyHandler( make_fn_out("post_attention_layernorm.weight"), "mean"), "post_attention_layernorm.bias": KeyHandler( make_fn_out("post_attention_layernorm.bias"), "mean"), }, save_dir, in_idx, out_idx, )) torch.multiprocessing.set_start_method("spawn") with multiprocessing.Pool(args.jobs) as pool: pool.starmap(handle_layer, handle_layer_args) # Post-process biases and lm_head (TODO: remove this) for layer_idx in range(model_args["num-layers"]): attn_bias = np.fromfile(save_dir / f"model.layers.{layer_idx}.attention.dense.bias.bin", dtype=np.float32) mlp_bias = np.fromfile(save_dir / f"model.layers.{layer_idx}.mlp.dense_4h_to_h.bias.bin", dtype=np.float32) (attn_bias + mlp_bias).tofile(save_dir / f"model.layers.{layer_idx}.mlp.attention.bias.sum.bin") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("checkpoint_dir", metavar="checkpoint-dir", help="directory where resides the source model. Must contain a \"latest\" file.") parser.add_argument("save_dir", metavar="save-dir", help="where to store the FT model") parser.add_argument("--tensor-parallelism", "-t", type=int, default=1, help="level of tensor parallelism used for inference") parser.add_argument("--jobs", "-j", type=int, default=None, help="how many processes to spawn for conversion (default: cpu_count)") args = parser.parse_args() start_time = datetime.now() convert_checkpoint(args) write_config_file(args.save_dir + f"/{args.tensor_parallelism}-gpu") stop_time = datetime.now() run_time = (stop_time - start_time) print("[INFO] Spend {} (h:m:s) to convert the model".format(run_time))
FasterTransformer-main
examples/pytorch/gptneox/utils/eleutherai_gpt_neox_convert.py
import argparse import configparser import multiprocessing import os import shutil from pathlib import Path import numpy as np import torch from transformers import GPTNeoXForCausalLM def get_weight_data_type(data_type): if data_type == "fp32": return np.float32 elif data_type == "fp16": return np.float16 else: assert False, f"Invalid weight data type {data_type}" def split_and_convert_process(saved_dir, factor, key, args, config, val): if ( key.find("input_layernorm.weight") != -1 or key.find("input_layernorm.bias") != -1 or key.find("post_attention_layernorm.weight") != -1 or key.find("post_attention_layernorm.bias") != -1 or key.find("final_layernorm.weight") != -1 or key.find("final_layernorm.bias") != -1 ): saved_path = saved_dir + f"/model.{key}.bin" val.tofile(saved_path) elif ( key.find("attention.dense.bias") != -1 or key.find("mlp.dense_4h_to_h.bias") != -1 ): saved_path = saved_dir + f"/model.{key}.bin" val = (val / factor) if factor > 1 else val val.tofile(saved_path) else: if ( key.find("attention.dense.weight") != -1 or key.find("mlp.dense_4h_to_h.weight") != -1 ): split_vals = np.split(val, factor, axis=0) elif ( key.find("mlp.dense_h_to_4h.weight") != -1 or key.find("mlp.dense_h_to_4h.bias") != -1 ): split_vals = np.split(val, factor, axis=-1) elif key.find("attention.query_key_value.bias") != -1: local_dim = (int)(val.shape[-1] / 3) n_head = config["num_attention_heads"] val = val.reshape(n_head, 3, local_dim // n_head) val = np.transpose(val, [1, 0, 2]).reshape(3, local_dim) split_vals = np.split(val, factor, axis=-1) elif key.find("attention.query_key_value.weight") != -1: hidden_dim = val.shape[0] local_dim = (int)(val.shape[-1] / 3) n_head = config["num_attention_heads"] # Note that the HF qkv weight are stored as [hidden_size, num_heads, 3, head_hidden] # FT needs the shape of [hidden_size, 3, num_heads, head_hidden] val = val.reshape(hidden_dim, n_head, 3, local_dim // n_head) val = np.transpose(val, [0, 2, 1, 3]).reshape(hidden_dim, 3, local_dim) # print(np.mean(np.abs(val[:, 0, :]))) split_vals = np.split(val, factor, axis=-1) else: print("[ERROR] cannot find key '{}'".format(key)) return for j in range(factor): saved_path = saved_dir + f"/model.{key}.{j}.bin" split_vals[j].tofile(saved_path) def split_and_convert(args): saved_dir = args.saved_dir + "/%d-gpu/" % args.infer_gpu_num if os.path.exists(saved_dir) == False: os.makedirs(saved_dir) factor = args.infer_gpu_num # load position_embedding from rank 0 # model = torch.load(ckpt_name) model = GPTNeoXForCausalLM.from_pretrained(args.in_file) hf_config = vars(model.config) np_weight_data_type = get_weight_data_type(args.weight_data_type) try: model_name = args.model_name n_heads = hf_config["num_attention_heads"] head_size = hf_config["hidden_size"] // n_heads rotary_dim = int(head_size * hf_config["rotary_pct"]) use_gptj_residual = int(hf_config["use_parallel_residual"]) config = configparser.ConfigParser() config["gptneox"] = {} config["gptneox"]["model_name"] = model_name config["gptneox"]["head_num"] = str(n_heads) config["gptneox"]["size_per_head"] = str(head_size) config["gptneox"]["inter_size"] = str(hf_config["intermediate_size"]) config["gptneox"]["num_layer"] = str(hf_config["num_hidden_layers"]) config["gptneox"]["rotary_embedding"] = str(rotary_dim) config["gptneox"]["vocab_size"] = str(hf_config["vocab_size"]) config["gptneox"]["start_id"] = str(hf_config["bos_token_id"]) config["gptneox"]["end_id"] = str(hf_config["eos_token_id"]) config["gptneox"]["use_gptj_residual"] = str(use_gptj_residual) config["gptneox"]["weight_data_type"] = args.weight_data_type with open((Path(saved_dir) / f"config.ini").as_posix(), "w") as configfile: config.write(configfile) except Exception as e: print(f"Fail to save the config in config.ini.", e) ft_model_name_pattern = [ "input_layernorm.bias", "input_layernorm.weight", "attention.query_key_value.bias", "attention.query_key_value.weight", "attention.dense.bias", "attention.dense.weight", "post_attention_layernorm.bias", "post_attention_layernorm.weight", "mlp.dense_h_to_4h.bias", "mlp.dense_h_to_4h.weight", "mlp.dense_4h_to_h.bias", "mlp.dense_4h_to_h.weight", ] huggingface_model_file_list = [__fn for __fn in os.listdir(args.in_file) if __fn.endswith(".bin")] if len(huggingface_model_file_list) > 1: multiprocessing_context = multiprocessing.get_context() pool_fn = multiprocessing_context.Pool else: torch.multiprocessing.set_start_method("spawn") pool_fn = multiprocessing.Pool pool = pool_fn(args.processes) for name, param in model.named_parameters(): array = param.detach().cpu().numpy().astype(np_weight_data_type) # print("input shape", name, array.shape) if name.find("weight") == -1 and name.find("bias") == -1: print("skipped", name) continue elif name == "gpt_neox.embed_in.weight": array.tofile(saved_dir + "model.wte.bin") elif name == "gpt_neox.final_layer_norm.bias": array.tofile(saved_dir + "model.final_layernorm.bias.bin") elif name == "gpt_neox.final_layer_norm.weight": array.tofile(saved_dir + "model.final_layernorm.weight.bin") elif name == "embed_out.weight": array.tofile(saved_dir + "model.lm_head.weight.bin") else: processed = False for i in range(len(ft_model_name_pattern)): if name.find(ft_model_name_pattern[i]) != -1: new_name = name.replace("gpt_neox.", "") pool.starmap( split_and_convert_process, [ ( saved_dir, factor, new_name, args, vars(model.config), array.T, ) ], ) processed = True break if not processed: print("Unused layer", name) pool.close() pool.join() # Post-process biases if use_gptj_residual is True if use_gptj_residual: for layer_idx in range(hf_config["num_hidden_layers"]): attn_bias = np.fromfile( saved_dir + f"/model.layers.{layer_idx}.attention.dense.bias.bin", dtype=np_weight_data_type, ) mlp_bias = np.fromfile( saved_dir + f"/model.layers.{layer_idx}.mlp.dense_4h_to_h.bias.bin", dtype=np_weight_data_type, ) (attn_bias + mlp_bias).astype(np_weight_data_type).tofile( saved_dir + f"/model.layers.{layer_idx}.mlp.attention.bias.sum.bin" ) if __name__ == "__main__": parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) parser.add_argument( "-saved_dir", "-o", type=str, help="file name of output file", required=True ) parser.add_argument( "-in_file", "-i", type=str, help="file name of input checkpoint file", required=True, ) parser.add_argument( "-infer_gpu_num", "-i_g", type=int, help="How many gpus for inference", required=True, ) parser.add_argument( "-processes", "-p", type=int, help="How many processes to spawn for conversion (default: 4)", default=4, ) parser.add_argument( "-weight_data_type", type=str, default="fp32", choices=["fp32", "fp16"] ) parser.add_argument( "-model_name", "-m_n", type=str, help="model name", required=True ) args = parser.parse_args() print("\n=============== Argument ===============") for key in vars(args): print("{}: {}".format(key, vars(args)[key])) print("========================================") __dir = os.path.join(args.saved_dir, "%d-gpu" % args.infer_gpu_num) assert not os.path.exists(__dir), "target path has exist, please remove %s first." % __dir split_and_convert(args)
FasterTransformer-main
examples/pytorch/gptneox/utils/huggingface_gptneox_convert.py
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import inspect import argparse import dataclasses import json import os import pathlib import typing import torch import torch.nn as nn import numpy as np import torch.distributed as dist str_type_map = {"fp32": torch.float32, "fp16": torch.float16} class GptNeoXWeights(object): def __init__(self, head_num, size_per_head, layer_num, vocab_size, max_seq_len, tensor_para_size, pipeline_para_size, use_gptj_residual, inference_data_type: str = "fp16", weights_data_type: np.dtype = np.float32): assert(head_num % tensor_para_size == 0) self.head_num = head_num self.size_per_head = size_per_head self.layer_num = layer_num self.vocab_size = vocab_size self.max_seq_len = max_seq_len self.tensor_para_size = tensor_para_size self.pipeline_para_size = pipeline_para_size self.layers_per_device = layer_num // pipeline_para_size self.use_gptj_residual = use_gptj_residual local_head_num = head_num // tensor_para_size global_head_num = head_num local_hidden_units = local_head_num * size_per_head global_hidden_units = global_head_num * size_per_head local_inter_size = local_hidden_units * 4 self.local_head_num = local_head_num self.global_head_num = global_head_num self.local_hidden_units = local_hidden_units self.global_hidden_units = global_hidden_units self.local_inter_size = local_inter_size if isinstance(weights_data_type, str): try: weights_data_type = { "fp16": np.float16, "fp32": np.float32, "float16": np.float16, "float32": np.float32, }[weights_data_type] except KeyError: raise ValueError(f"Don't know how to interpret weights_data_type: {weights_data_type}") assert weights_data_type in [np.float32, np.float16] self.weights_data_type = weights_data_type self.inference_data_type = str_type_map[inference_data_type] self.w = [] # Transformer blocks self.w.extend([torch.zeros(global_hidden_units, dtype=self.inference_data_type)] * layer_num) # pre_layernorm_weights.beta self.w.extend([torch.zeros(global_hidden_units, dtype=self.inference_data_type)] * layer_num) # pre_layernorm_weights.gamma self.w.extend([torch.zeros(global_hidden_units, local_hidden_units * 3, dtype=self.inference_data_type)] * layer_num) # self_attention_weights.query_weight.kernel self.w.extend([torch.zeros(local_hidden_units * 3, dtype=self.inference_data_type)] * layer_num) # self_attention_weights.query_weight.bias self.w.extend([torch.zeros(local_hidden_units, global_hidden_units, dtype=self.inference_data_type)] * layer_num) # self_attention_weights.attention_output_weight.kernel self.w.extend([torch.zeros(global_hidden_units, dtype=self.inference_data_type) if not use_gptj_residual else torch.empty(0)] * layer_num) # self_attention_weights.attention_output_weight.bias self.w.extend([torch.zeros(global_hidden_units, local_inter_size, dtype=self.inference_data_type)] * layer_num) # ffn_weights.intermediate_weight.kernel self.w.extend([torch.zeros(local_inter_size, dtype=self.inference_data_type)] * layer_num) # ffn_weights.intermediate_weight.bias self.w.extend([torch.zeros(local_inter_size, global_hidden_units, dtype=self.inference_data_type)] * layer_num) # ffn_weights.output_weight.kernel self.w.extend([torch.zeros(global_hidden_units, dtype=self.inference_data_type)] * layer_num) # ffn_weights.output_weight.bias self.w.extend([torch.zeros(global_hidden_units, dtype=self.inference_data_type)] * layer_num) # post_attention_layernorm_weights.beta self.w.extend([torch.zeros(global_hidden_units, dtype=self.inference_data_type)] * layer_num) # post_attention_layernorm_weights.gamma # After Transformer blocks self.w.append(torch.zeros(vocab_size, global_hidden_units, dtype=self.inference_data_type)) # pre_decoder_embedding_table self.w.append(torch.zeros(global_hidden_units, dtype=self.inference_data_type)) # post_decoder_layernorm.beta self.w.append(torch.zeros(global_hidden_units, dtype=self.inference_data_type)) # post_decoder_layernorm.gamma self.w.append(torch.zeros(vocab_size, global_hidden_units, dtype=self.inference_data_type)) # post_decoder_embedding.kernel # Initialization self._map(lambda w: torch.nn.init.normal_(w, mean=0., std=0.01)) def __getitem__(self, idx): return self.w[idx] def __setitem__(self, idx, val): self.w[idx] = val def __len__(self): return len(self.w) def _map(self, func): for i in range(len(self.w)): if isinstance(self.w[i], list): for j in range(len(self.w[i])): self.w[i][j] = func(self.w[i][j]) else: self.w[i] = func(self.w[i]) def load(self, ckpt_path, tensor_para_rank, pipeline_para_rank): if not os.path.exists(ckpt_path): return False w = [] type_map = {np.float32: torch.float32, np.float16: torch.float16} # Load def is_load(i): return i >= self.layers_per_device * pipeline_para_rank and i < self.layers_per_device * (pipeline_para_rank + 1) file_names = ["input_layernorm.bias", "input_layernorm.weight", "attention.query_key_value.weight.%d" % tensor_para_rank, "attention.query_key_value.bias.%d" % tensor_para_rank, "attention.dense.weight.%d" % tensor_para_rank, "attention.dense.bias" if not self.use_gptj_residual else None, "mlp.dense_h_to_4h.weight.%d" % tensor_para_rank, "mlp.dense_h_to_4h.bias.%d" % tensor_para_rank, "mlp.dense_4h_to_h.weight.%d" % tensor_para_rank, "mlp.attention.bias.sum" if self.use_gptj_residual else "mlp.dense_4h_to_h.bias", "post_attention_layernorm.bias", "post_attention_layernorm.weight"] for file_name in file_names: for i in range(self.layer_num): if file_name is not None and is_load(i): w.append(torch.from_numpy(np.fromfile( "%s/model.layers.%d.%s.bin" % (ckpt_path, i, file_name), dtype=self.weights_data_type)).to(self.inference_data_type)) else: w.append(torch.empty(0).to(self.inference_data_type)) w.append(torch.from_numpy(np.fromfile(ckpt_path + "/model.wte.bin", dtype=self.weights_data_type)).to(self.inference_data_type)) w.append(torch.from_numpy(np.fromfile(ckpt_path + "/model.final_layernorm.weight.bin", dtype=self.weights_data_type)).to(self.inference_data_type)) w.append(torch.from_numpy(np.fromfile(ckpt_path + "/model.final_layernorm.bias.bin", dtype=self.weights_data_type)).to(self.inference_data_type)) w.append(torch.from_numpy(np.fromfile(ckpt_path + "/model.lm_head.weight.bin", dtype=self.weights_data_type)).to(self.inference_data_type)) try: for i in range(len(w)): if w[i].nelement() > 0: self.w[i] = w[i].reshape(self.w[i].shape) else: self.w[i] = w[i] except RuntimeError: raise RuntimeError( f"head_num, size_per_head, vocab_size, and max_seq_len must be the same as the ones during training " f"(idx: {i} expected shape: {self.w[i].shape} got shape: {w[i].shape})." ) return True class GptNeoX(nn.Module): def __init__(self, head_num, size_per_head, vocab_size, rotary_embedding_dim, start_id, end_id, layer_num, max_seq_len, tensor_para_size, pipeline_para_size, use_gptj_residual, lib_path, inference_data_type: str = "fp16", weights_data_type: np.dtype = np.float32): super().__init__() self.head_num = head_num self.size_per_head = size_per_head self.inter_size = 4 * self.head_num * self.size_per_head self.vocab_size = vocab_size self.rotary_embedding_dim = rotary_embedding_dim self.start_id = start_id self.end_id = end_id self.max_seq_len = max_seq_len self.layer_num = layer_num self.use_gptj_residual = use_gptj_residual self.tensor_para_size = tensor_para_size self.pipeline_para_size = pipeline_para_size self.build_model = False self.weights_data_type = weights_data_type self.inference_data_type = inference_data_type assert torch.cuda.is_available(), "CUDA is required for this model." assert head_num % tensor_para_size == 0, "head_num must be a multiple of tensor_para_size." assert layer_num % pipeline_para_size == 0, "layer_num must be a multiple of pipeline_para_size." # Load the C++ model into Pytorch model. torch.classes.load_library(os.path.abspath(lib_path)) # Prepare weights self.weights = GptNeoXWeights(head_num, size_per_head, layer_num, vocab_size, max_seq_len, tensor_para_size, pipeline_para_size, use_gptj_residual, weights_data_type=weights_data_type, inference_data_type=inference_data_type) # Prepare for tensor/pipeline parallel try: dist.init_process_group(backend='mpi') except: print("[INFO] WARNING: Have initialized the process group") self.rank = dist.get_rank() self.device_count = torch.cuda.device_count() self.device = self.rank % self.device_count torch.cuda.set_device(self.device) world_size = dist.get_world_size() # print(tensor_para_size * pipeline_para_size) assert world_size == tensor_para_size * pipeline_para_size, "tensor_para_size * pipeline_para_size must be equal to world_size." self.tensor_para_rank = self.rank % self.tensor_para_size self.pipeline_para_rank = self.rank // self.tensor_para_size # Create and copy model to the device. # self.cuda() def load(self, ckpt_path): is_load = self.weights.load(ckpt_path, tensor_para_rank=self.tensor_para_rank, pipeline_para_rank=self.pipeline_para_rank) self.cuda() return is_load def half(self): self.weights._map(lambda w: w.half()) self.cuda() def cuda(self): self.weights._map(lambda w: w.cuda(self.device)) if self.build_model: del self.model self.build_model = False self.model = torch.classes.FasterTransformer.GptNeoXOp(self.head_num, self.size_per_head, self.inter_size, self.layer_num, self.vocab_size, self.rotary_embedding_dim, self.start_id, self.end_id, self.tensor_para_size, self.pipeline_para_size, self.max_seq_len, self.use_gptj_residual, self.weights.w) self.build_model = True def forward(self, start_ids: torch.Tensor, start_lengths: torch.Tensor, output_len, beam_width = 1, top_k: torch.Tensor = None, top_p: torch.Tensor = None, beam_search_diversity_rate: torch.Tensor = None, temperature: torch.Tensor = None, len_penalty: torch.Tensor = None, repetition_penalty: torch.Tensor = None, random_seed: torch.Tensor = None, return_output_length = False, return_cum_log_probs=0): if not self.build_model: self.cuda() input_len = start_ids.size(1) assert input_len > 0, "input len must be larger than zero. For an unconditional case, use start_id as the first token." # Inputs to device input_ids = start_ids.cuda(self.device) input_lengths = start_lengths.cuda(self.device) # outputs: output_ids, output_lengths, output_cum_log_probs (optional) outputs = self.model.forward(input_ids, input_lengths, output_len, beam_width, # optional, can be None top_k, # optional, can be None top_p, # optional, can be None beam_search_diversity_rate, # optional, can be None temperature, # optional, can be None len_penalty, # optional, can be None repetition_penalty, # optional, can be None random_seed, # optional, can be None return_cum_log_probs) # optional, can be None if return_cum_log_probs == 0: output_ids, output_lengths = outputs else: output_ids, output_lengths, output_cum_log_probs = outputs if return_output_length: if return_cum_log_probs > 0: return output_ids, output_lengths, output_cum_log_probs else: return output_ids, output_lengths else: return output_ids def set_input_tensor(self, input_tensor): """Set input tensor to be used instead of forward()'s input. When doing pipeline parallelism the input from the previous stage comes from communication, not from the input, so the model's forward_step_func won't have it. This function is thus used by internal code to bypass the input provided by the forward_step_func""" self.input_tensor = input_tensor
FasterTransformer-main
examples/pytorch/gptneox/utils/gptneox.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import argparse import numpy as np import os import random import sys import timeit import torch from onmt.utils.misc import sequence_mask dir_path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(dir_path + "/../../..") from examples.pytorch.decoder.utils.decoder import ONMTDecoder, init_op_cache, init_onmt_cache from examples.pytorch.decoder.utils.ft_decoder import FTDecoder, FtDecoderWeights from examples.pytorch.decoding.utils.decoding import DecodingWeights def main(): parser = argparse.ArgumentParser() parser.add_argument('batch_size', type=int, help='batch size') parser.add_argument('layer_num', type=int, help='number of layers') parser.add_argument('seq_len', type=int, help='sequence length') parser.add_argument('head_num', type=int, help='head number') parser.add_argument('head_size', type=int, help='size per head') parser.add_argument('--step', type=int, default=0, help='decoding step number') parser.add_argument('--decoder_ths_path', type=str, default='./lib/libth_transformer.so', help='path of the pyt_fastertransformer dynamic lib file') parser.add_argument('--time', action='store_true', help='test the time or not.') parser.add_argument('--ths_path', type=str, default='./lib/libth_transformer.so', help='path of the pyt_fastertransformer dynamic lib file') parser.add_argument('-d', '--data_type', type=str, default="fp32", metavar='STRING', help='data type (default: fp32)', choices=['fp32', 'fp16', 'bf16']) args = parser.parse_args() hidden_dim = args.head_num * args.head_size if args.step <= 0: step = args.seq_len else: step = args.step print("\n=============== Argument ===============") print('batch_size: ' + str(args.batch_size)) print('layer_num: ' + str(args.layer_num)) print('seq_len: ' + str(args.seq_len)) print('head_num: ' + str(args.head_num)) print('head_size: ' + str(args.head_size)) print('hidden_dim: ' + str(hidden_dim)) print('step: ' + str(step)) print('data_type: ' + str(args.data_type)) print('test_time: ' + str(args.time)) print("========================================\n") np.random.seed(1) torch.manual_seed(0) random.seed(0) inp = torch.empty(args.batch_size, 1, hidden_dim).cuda() mem = torch.empty(args.batch_size, args.seq_len, hidden_dim).cuda() # We assume mem_hidden_dim = hidden_dim torch.nn.init.uniform_(inp, -0.5, 0.5) torch.nn.init.uniform_(mem, -0.5, 0.5) if args.data_type == 'fp16': inp = inp.half() mem = mem.half() mem_seq_lens = torch.randint(1, args.seq_len+1, (args.batch_size,), dtype=torch.int32).cuda() src_pad_mask = ~sequence_mask(mem_seq_lens, args.seq_len).unsqueeze(1) weights = DecodingWeights(args.layer_num, hidden_dim, 30000) ft_weights = FtDecoderWeights(args.layer_num, hidden_dim, weights.w) onmt_decoder = ONMTDecoder(args.layer_num, args.head_num, args.head_size, weights) onmt_decoder.cuda() if args.data_type == 'fp16': onmt_decoder.half() onmt_decoder.eval() ft_weights.to_cuda() weights.to_cuda() if args.data_type == 'fp16': weights.to_half() ft_weights.to_half() elif args.data_type == 'bf16': weights.to_bfloat16() ft_weights.to_bfloat16() custom_decoder = FTDecoder(args.head_num, args.head_size, hidden_dim, args.layer_num, ft_weights, args) with torch.no_grad(): self_cache, mem_cache = init_op_cache(args.layer_num, args.batch_size, 1, args.seq_len, \ args.seq_len, args.head_num, args.head_size, hidden_dim, args.data_type == 'fp16') cache = init_onmt_cache(args.layer_num, mem) output1 = inp output2 = inp for i in range(step): output1 = onmt_decoder(output1, mem, src_pad_mask, cache, i) output2, self_cache, mem_cache = custom_decoder(output2, mem, mem_seq_lens, self_cache, mem_cache, torch.ones(args.batch_size, dtype=torch.int32).cuda() * i, i) epsilon = 1e-6 if args.data_type == 'fp16': epsilon = 1e-3 diff = torch.abs((output1 - output2) / (output1 + epsilon)) print('step: {} Mean relative diff: {} Max relative diff: {} Min relative diff: {}'.format( i, torch.mean(diff), torch.max(diff), torch.min(diff))) output2 = output1 if args.time: iterations = 10 for i in range(iterations): cache = init_onmt_cache(args.layer_num, mem) output1 = inp for i in range(step): output1 = onmt_decoder(output1, mem, src_pad_mask, cache, 0) t10 = timeit.default_timer() for i in range(iterations): cache = init_onmt_cache(args.layer_num, mem) output1 = inp for i in range(step): output1 = onmt_decoder(output1, mem, src_pad_mask, cache, 0) t1 = timeit.default_timer() - t10 for i in range(iterations): self_cache, mem_cache = init_op_cache(args.layer_num, args.batch_size, 1, args.seq_len, \ args.seq_len, args.head_num, args.head_size, hidden_dim, args.data_type == 'fp16') output2 = inp for i in range(step): output2, self_cache, mem_cache = custom_decoder(output2, mem, mem_seq_lens, self_cache, mem_cache, torch.ones(args.batch_size, dtype=torch.int32).cuda() * i, i) t20 = timeit.default_timer() for i in range(iterations): self_cache, mem_cache = init_op_cache(args.layer_num, args.batch_size, 1, args.seq_len, \ args.seq_len, args.head_num, args.head_size, hidden_dim, args.data_type == 'fp16') output2 = inp for i in range(step): output2, self_cache, mem_cache = custom_decoder(output2, mem, mem_seq_lens, self_cache, mem_cache, torch.ones(args.batch_size, dtype=torch.int32).cuda() * i, i) t2 = timeit.default_timer() - t20 print("[INFO] ONMTDecoder time costs: {:.2f} ms".format(t1*1000/iterations)) print("[INFO] FTDecoder time costs: {:.2f} ms".format(t2*1000/iterations)) if __name__ == '__main__': main()
FasterTransformer-main
examples/pytorch/decoder/decoder_example.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import torch import torch.nn as nn USE_CACHE_BATCH_MAJOR_ATTENTION = True def get_op_cache_config(size_per_head, is_fp16): x = 8 if is_fp16 else 4 use_batch_major_op_cache = True if USE_CACHE_BATCH_MAJOR_ATTENTION == True and \ size_per_head % x == 0 \ else False x = x if use_batch_major_op_cache else 1 return use_batch_major_op_cache, x class FtDecoderWeights(object): def __init__(self, layer_num, hidden_dim, onmtcheckpoint, max_step_for_pe=2048): self.max_step_for_pe = max_step_for_pe self.hidden_dim = hidden_dim self.w = [] prefix = 'decoder.transformer_layers.' self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.layer_norm_1.weight'] for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.layer_norm_1.bias'] for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [torch.stack([onmtcheckpoint['model'][prefix + str(i) + '.self_attn.linear_query.weight'].transpose(-1, -2), onmtcheckpoint['model'][prefix + str(i) + '.self_attn.linear_keys.weight'].transpose(-1, -2), onmtcheckpoint['model'][prefix + str(i) + '.self_attn.linear_values.weight'].transpose(-1, -2)], -2) for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [torch.stack([onmtcheckpoint['model'][prefix + str(i) + '.self_attn.linear_query.bias'], onmtcheckpoint['model'][prefix + str(i) + '.self_attn.linear_keys.bias'], onmtcheckpoint['model'][prefix + str(i) + '.self_attn.linear_values.bias']], -2) for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.self_attn.final_linear.weight'].transpose(-1, -2) for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.self_attn.final_linear.bias'] for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.layer_norm_2.weight'] for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.layer_norm_2.bias'] for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.context_attn.linear_query.weight'].transpose(-1, -2) for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.context_attn.linear_keys.weight'].transpose(-1, -2) for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.context_attn.linear_values.weight'].transpose(-1, -2) for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.context_attn.linear_query.bias'] for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.context_attn.linear_keys.bias'] for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.context_attn.linear_values.bias'] for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.context_attn.final_linear.weight'].transpose(-1, -2) for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.context_attn.final_linear.bias'] for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.feed_forward.layer_norm.weight'] for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.feed_forward.layer_norm.bias'] for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.feed_forward.w_1.weight'].transpose(-1, -2) for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.feed_forward.w_1.bias'] for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.feed_forward.w_2.weight'].transpose(-1, -2) for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.feed_forward.w_2.bias'] for i in range(layer_num)], 0).contiguous()) def to_cuda(self): for i in range(len(self.w)): self.w[i] = self.w[i].cuda() def to_half(self): for i in range(len(self.w)): self.w[i] = self.w[i].half() def to_bfloat16(self): for i in range(len(self.w)): self.w[i] = self.w[i].bfloat16() class FTDecoder(nn.Module): def __init__(self, head_num, head_size, mem_hidden_dim, layer_num, weights, args): super().__init__() self.args = args self.is_fp16 = True if self.args.data_type == 'fp16' else False self.layer_num = layer_num self.use_batch_major_op_cache, self.op_cache_dim_x = get_op_cache_config(head_size, self.is_fp16) torch.classes.load_library(args.decoder_ths_path) try: self.dec_layer = torch.classes.FasterTransformer.Decoder(*weights.w, head_num, head_size, head_num * head_size * 4, layer_num, mem_hidden_dim) except: # legacy ths for 20.03 image self.dec_layer = torch.classes.FasterTransformerDecoder(*weights.w, head_num, head_size, head_num * head_size * 4, layer_num, mem_hidden_dim) def forward(self, inputs, memory, memory_seq_lens, self_cache, mem_cache, sequence_lengths, step): dtype = torch.half if self.is_fp16 else torch.float32 inputs_shape = inputs.shape inputs = inputs.reshape([-1, inputs.shape[-1]]) output, self_key_cache, self_val_cache, mem_key_cache, mem_val_cache = \ self.dec_layer.forward(step, inputs, memory, memory_seq_lens, sequence_lengths, self_cache[0], self_cache[1], mem_cache[0], mem_cache[1]) output = output.reshape(inputs_shape) return output, [self_key_cache, self_val_cache], [mem_key_cache, mem_val_cache] class ArgHelper(object): def __init__(self, model_type=None, data_type=None, ths_path=None): self.model_type = model_type self.data_type = data_type self.ths_path = ths_path
FasterTransformer-main
examples/pytorch/decoder/utils/ft_decoder.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import torch from onmt.decoders.transformer import TransformerDecoderLayer USE_CACHE_BATCH_MAJOR_ATTENTION = True def get_op_cache_config(size_per_head, is_fp16): x = 8 if is_fp16 else 4 use_batch_major_op_cache = True if USE_CACHE_BATCH_MAJOR_ATTENTION == True and \ size_per_head % x == 0 \ else False x = x if use_batch_major_op_cache else 1 return use_batch_major_op_cache, x def init_op_cache(layer_num, batch_size, beam_width, max_seq_len, \ decoding_max_seq_len, head_num, size_per_head, hidden_dim, is_fp16): use_batch_major_op_cache, x = get_op_cache_config(size_per_head, is_fp16) dtype = torch.half if is_fp16 else torch.float32 if use_batch_major_op_cache == True: self_cache = [ torch.zeros(layer_num, batch_size * beam_width, head_num, size_per_head // x, decoding_max_seq_len, x, dtype=dtype, device='cuda'), torch.zeros(layer_num, batch_size * beam_width, head_num, decoding_max_seq_len, size_per_head, dtype=dtype, device='cuda') ] else: self_cache = [ torch.zeros(layer_num, 0, batch_size * beam_width, hidden_dim, dtype=dtype, device='cuda'), torch.zeros(layer_num, 0, batch_size * beam_width, hidden_dim, dtype=dtype, device='cuda') ] # always use old format for cross attention for now mem_cache = torch.zeros(2, layer_num, batch_size * beam_width, max_seq_len, hidden_dim, dtype=dtype, device='cuda') return self_cache, mem_cache def init_onmt_cache(layer_num, memory_bank): cache = {} for i in range(layer_num): layer_cache = {"memory_keys": None, "memory_values": None} layer_cache["self_keys"] = None layer_cache["self_values"] = None cache[i] = layer_cache return cache class ONMTDecoder(torch.nn.Module): def __init__(self, layer_num, head_num, head_size, weights): super().__init__() self.layer_num = layer_num self.hidden_dim = head_num * head_size self.decoders = torch.nn.ModuleList() for i in range(layer_num): self.decoders.append(TransformerDecoderLayer(self.hidden_dim, head_num, 4 * self.hidden_dim, 0, 0)) for i in range(layer_num): prefix = 'decoder.transformer_layers.' + str(i) self.decoders[i].layer_norm_1.weight.data = weights.w['model'][prefix + '.layer_norm_1.weight'] self.decoders[i].layer_norm_1.bias.data = weights.w['model'][prefix + '.layer_norm_1.bias'] self.decoders[i].self_attn.linear_query.weight.data = weights.w['model'][prefix + '.self_attn.linear_query.weight'] self.decoders[i].self_attn.linear_keys.weight.data = weights.w['model'][prefix + '.self_attn.linear_keys.weight'] self.decoders[i].self_attn.linear_values.weight.data = weights.w['model'][prefix + '.self_attn.linear_values.weight'] self.decoders[i].self_attn.linear_query.bias.data = weights.w['model'][prefix + '.self_attn.linear_query.bias'] self.decoders[i].self_attn.linear_keys.bias.data = weights.w['model'][prefix + '.self_attn.linear_keys.bias'] self.decoders[i].self_attn.linear_values.bias.data = weights.w['model'][prefix + '.self_attn.linear_values.bias'] self.decoders[i].self_attn.final_linear.weight.data = weights.w['model'][prefix + '.self_attn.final_linear.weight'] self.decoders[i].self_attn.final_linear.bias.data = weights.w['model'][prefix + '.self_attn.final_linear.bias'] self.decoders[i].layer_norm_2.weight.data = weights.w['model'][prefix + '.layer_norm_2.weight'] self.decoders[i].layer_norm_2.bias.data = weights.w['model'][prefix + '.layer_norm_2.bias'] self.decoders[i].context_attn.linear_query.weight.data = weights.w['model'][prefix + '.context_attn.linear_query.weight'] self.decoders[i].context_attn.linear_keys.weight.data = weights.w['model'][prefix + '.context_attn.linear_keys.weight'] self.decoders[i].context_attn.linear_values.weight.data = weights.w['model'][prefix + '.context_attn.linear_values.weight'] self.decoders[i].context_attn.linear_query.bias.data = weights.w['model'][prefix + '.context_attn.linear_query.bias'] self.decoders[i].context_attn.linear_keys.bias.data = weights.w['model'][prefix + '.context_attn.linear_keys.bias'] self.decoders[i].context_attn.linear_values.bias.data = weights.w['model'][prefix + '.context_attn.linear_values.bias'] self.decoders[i].context_attn.final_linear.weight.data = weights.w['model'][prefix + '.context_attn.final_linear.weight'] self.decoders[i].context_attn.final_linear.bias.data = weights.w['model'][prefix + '.context_attn.final_linear.bias'] self.decoders[i].feed_forward.layer_norm.weight.data = weights.w['model'][prefix + '.feed_forward.layer_norm.weight'] self.decoders[i].feed_forward.layer_norm.bias.data = weights.w['model'][prefix + '.feed_forward.layer_norm.bias'] self.decoders[i].feed_forward.w_1.weight.data = weights.w['model'][prefix + '.feed_forward.w_1.weight'] self.decoders[i].feed_forward.w_1.bias.data = weights.w['model'][prefix + '.feed_forward.w_1.bias'] self.decoders[i].feed_forward.w_2.weight.data = weights.w['model'][prefix + '.feed_forward.w_2.weight'] self.decoders[i].feed_forward.w_2.bias.data = weights.w['model'][prefix + '.feed_forward.w_2.bias'] def forward(self, inputs, memory, src_pad_msk, cache, step): output = inputs for i in range(self.layer_num): output, _, _ = self.decoders[i](output, memory, src_pad_msk, None, cache[i], step) return output
FasterTransformer-main
examples/pytorch/decoder/utils/decoder.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import configparser import os import sys import math import logging from datetime import datetime import numpy as np import torch import torch.distributed as dist import csv # dir_path = os.path.dirname(os.path.realpath(__file__)) # sys.path.append(dir_path + "/../../../3rdparty/transformers/src/") from transformers import PreTrainedTokenizerFast from transformers import T5ForConditionalGeneration, T5Tokenizer # transformers-4.10.0-py3 dir_path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(dir_path + "/../../..") from examples.pytorch.t5.utils.ft_encoder import FTT5EncoderWeight, FTT5Encoder from examples.pytorch.t5.utils.ft_decoding import FTT5DecodingWeight, FTT5Decoding, FTT5 from examples.pytorch.decoding.utils.recover_bpe import recover_bpe LOGGER = logging.getLogger(__name__) gemm_data_type_mapping = {"fp32":0, "fp16":1, "bf16":2} def to_word_list_format(word_dict, tokenizer): flat_ids = [] offsets = [] for word_dict_item in word_dict: item_flat_ids = [] item_offsets = [] words = list(csv.reader(word_dict_item))[0] for word in words: ids = tokenizer.encode(word, add_special_tokens=False) if len(ids) == 0: continue item_flat_ids += ids item_offsets.append(len(ids)) flat_ids.append(np.array(item_flat_ids)) offsets.append(np.cumsum(np.array(item_offsets))) pad_to = max(1, max(len(ids) for ids in flat_ids)) for i, (ids, offs) in enumerate(zip(flat_ids, offsets)): flat_ids[i] = np.pad(ids, (0, pad_to - len(ids)), constant_values=0) offsets[i] = np.pad(offs, (0, pad_to - len(offs)), constant_values=-1) return np.array([flat_ids, offsets], dtype="int32").transpose((1, 0, 2)) def bleu_score(pred, ref): from sacrebleu import corpus_bleu bleu = corpus_bleu(pred, [ref], force=True) LOGGER.info(" bleu score: {:6.2f}".format(bleu.score)) LOGGER.info(" bleu counts: {}".format(bleu.counts)) LOGGER.info(" bleu totals: {}".format(bleu.totals)) LOGGER.info(" bleu precisions: {}".format(bleu.precisions)) LOGGER.info(" bleu sys_len: {}; ref_len: {}".format(bleu.sys_len, bleu.ref_len)) return bleu class TranslationResult(object): def __init__(self, name, frame_work): self.name = name self.frame_work = frame_work # FT or HF self.file_name = name + ".txt" self.token_list = [] self.batch_ids_list = [] self.batch_seq_len_list = [] self.batch_num = 0 self.execution_time = 0.0 # seconds self.sentence_num = 0 self.token_num = 0 self.bleu_score = None def translate(args_dict): torch.set_printoptions(precision=6) batch_size = args_dict['batch_size'] beam_size = args_dict['beam_width'] max_seq_len = args_dict['max_seq_len'] source_file = args_dict["source"] tgt_file = args_dict["target"] time_args = args_dict["test_time"] beam_search_diversity_rate = args_dict['beam_search_diversity_rate'] topk = args_dict['sampling_topk'] topp = args_dict['sampling_topp'] tensor_para_size = args_dict['tensor_para_size'] pipeline_para_size = args_dict['pipeline_para_size'] max_ite = args_dict['max_iteration'] repetition_penalty = args_dict["repetition_penalty"] temperature = args_dict["temperature"] len_penalty = args_dict["len_penalty"] ## huggingface without bias and use relative position embedding ## relative position embedding -> 0, absolute position embedding -> 1 t5_with_bias = False use_gated_activation = False t5_with_moe = False position_embedding_type = 0 weight_data_type = np.float32 ## only huggingface model path supported model_path = args_dict['model_path'] if args_dict['model_path'] != None else args_dict['model'] ckpt_path = args_dict['ckpt_path'] model_type = args_dict['model_type'] load_data_type = args_dict['load_data_type'] ## read checkpoint config if exists ckpt_config = configparser.ConfigParser() activation_type = "relu" if (model_type in ["Megatron", "Megatron-DeepSpeed"]): ckpt_config_path = os.path.join(ckpt_path, 'config.ini') if os.path.isfile(ckpt_config_path): ckpt_config.read(ckpt_config_path) ## update structure config t5_with_bias = ckpt_config.getboolean('structure', 't5_with_bias') position_embedding_type = 0 if ckpt_config.get('structure', 'position_embedding_type') == 'relative' else 1 use_gated_activation = ckpt_config.getboolean('structure', 'use_gated_activation') weight_data_type = {"fp16": np.float16, "fp32": np.float32}[ckpt_config.get("encoder", "weight_data_type")] activation_type = "gated-gelu" if use_gated_activation else "gelu" # change to gelu, which is default setting of Megatron T5 t5_with_moe= ckpt_config.getint('structure', 't5_with_moe') == 1 moe_layers_in_encoder = [] moe_layers_in_decoder = [] if (ckpt_config.get('structure', 'moe_layers_in_encoder') != '[]'): moe_layers_in_encoder = [int(n) for n in ckpt_config.get('structure', 'moe_layers_in_encoder')[1:-1].replace(" ", "").split(',')] if (ckpt_config.get('structure', 'moe_layers_in_decoder') != '[]'): moe_layers_in_decoder = [int(n) for n in ckpt_config.get('structure', 'moe_layers_in_encoder')[1:-1].replace(" ", "").split(',')] else: raise Exception("config file does exist with the ckpt !") if model_type in ["Megatron", "Megatron-DeepSpeed"] and args_dict['ckpt_path'] == None: raise Exception("Megatron T5 model needs to specify checkpoint path !") LOGGER.info("\n=============== Argument ===============") for key in args_dict: LOGGER.info("{}: {}".format(key, args_dict[key])) LOGGER.info("========================================") lib_path = args_dict['lib_path'] t5_model = T5ForConditionalGeneration.from_pretrained(model_path) if dist.is_mpi_available(): try: dist.init_process_group(backend='mpi') rank = dist.get_rank() except: rank = dist.get_rank() else: rank = 0 if time_args.find("0") != -1 or time_args.find("2") != -1: t5_model = t5_model.to(rank) if args_dict['data_type'] == 'fp16': t5_model = t5_model.half() elif args_dict['data_type'] == 'bf16': t5_model = t5_model ## bfloat inference not supported yet ## TODO: modidy Megatron T5 Converter ## TODO: add megatron t5 tokenizer tokenizer = T5Tokenizer.from_pretrained(model_path) try: fast_tokenizer = PreTrainedTokenizerFast.from_pretrained(model_path) except: fast_tokenizer = T5Tokenizer.from_pretrained(model_path) encoder_config = t5_model.encoder.config decoder_config = t5_model.decoder.config encoder_config.update({"num_experts": 0}) decoder_config.update({"num_experts": 0}) encoder_config.update({"moe_layer_index": []}) decoder_config.update({"moe_layer_index": []}) if model_type != "Megatron": activation_type = encoder_config.feed_forward_proj if activation_type == "gated-gelu" or activation_type == "gated-relu": use_gated_activation = True # https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py#L1660 # if tie_word_embeddings == True, scale the decoder output by sequence_output = sequence_output * (self.model_dim**-0.5) tie_word_embeddings = decoder_config.tie_word_embeddings q_scaling = 1.0 / (math.sqrt(encoder_config.d_kv)) if model_type in ["Megatron", "Megatron-DeepSpeed"]: ## update configs when using Megatron model structure q_scaling = 1.0 encoder_ckpt_config = ckpt_config['encoder'] decoder_ckpt_config = ckpt_config['decoder'] encoder_config.d_model = ckpt_config.getint('encoder', 'd_model') encoder_config.vocab_size = ckpt_config.getint('encoder', 'vocab_size') encoder_config.num_heads = ckpt_config.getint('encoder', 'num_heads') encoder_config.d_kv = ckpt_config.getint('encoder', 'd_kv') encoder_config.d_ff = ckpt_config.getint('encoder', 'd_ff') encoder_config.num_layers = ckpt_config.getint('encoder', 'num_layers') encoder_config.relative_attention_num_buckets = ckpt_config.getint('encoder', 'relative_attention_num_buckets_or_max_pos_seq_len') if model_type == "Megatron-DeepSpeed": encoder_config.num_experts = ckpt_config.getint('encoder', 'num_experts') encoder_config.moe_layer_index = moe_layers_in_encoder decoder_config.d_model = ckpt_config.getint('decoder', 'd_model') decoder_config.vocab_size = ckpt_config.getint('decoder', 'vocab_size') decoder_config.num_heads = ckpt_config.getint('decoder', 'num_heads') decoder_config.d_kv = ckpt_config.getint('decoder', 'd_kv') decoder_config.d_ff = ckpt_config.getint('decoder', 'd_ff') decoder_config.num_layers = ckpt_config.getint('decoder', 'num_layers') decoder_config.relative_attention_num_buckets = ckpt_config.getint('decoder', 'relative_attention_num_buckets_or_max_pos_seq_len') if model_type == "Megatron-DeepSpeed": decoder_config.num_experts = ckpt_config.getint('decoder', 'num_experts') decoder_config.moe_layer_index = moe_layers_in_decoder decoder_config.decoder_start_token_id = ckpt_config.getint('decoder', 'decoder_start_token_id') decoder_config.eos_token_id = ckpt_config.getint('decoder', 'eos_token_id') LOGGER.debug(f"{model_type} encoder_config: {encoder_config}") LOGGER.debug(f"{model_type} decoder_config: {decoder_config}") if os.path.isfile("gemm_config.in") and rank == 0: cmd = f"rm gemm_config.in" LOGGER.info(f"Run {cmd}") os.system(cmd) translation_result_list = [] if (t5_with_moe == 1) and (time_args.find('0') != -1 or time_args.find('2') != -1): raise Exception("HF models doesn't support MoE inference") if time_args.find("0") != -1: translation_result_list.append(TranslationResult("hf-beamsearch-warmup", "HF")) translation_result_list.append(TranslationResult("hf-beamsearch", "HF")) if time_args.find("1") != -1: translation_result_list.append(TranslationResult("ft-beamsearch-warmup", "FT")) translation_result_list.append(TranslationResult("ft-beamsearch", "FT")) if rank == 0: data_type = gemm_data_type_mapping[args_dict['data_type']] cmd = f"./bin/t5_gemm {math.ceil(batch_size / pipeline_para_size)} {beam_size} {max_seq_len} " \ f"{encoder_config.d_model} {encoder_config.num_heads} {encoder_config.d_kv} {encoder_config.d_ff} " \ f"{decoder_config.d_model} {decoder_config.num_heads} {decoder_config.d_kv} {decoder_config.d_ff} " \ f"{decoder_config.vocab_size} {data_type} {tensor_para_size} 0 > .tmp_gemm.log" LOGGER.info(f"Run gemm test: {cmd}") os.system(cmd) if time_args.find("2") != -1: translation_result_list.append(TranslationResult("hf-sampling-warmup", "HF")) translation_result_list.append(TranslationResult("hf-sampling", "HF")) if time_args.find("3") != -1: translation_result_list.append(TranslationResult("ft-sampling-warmup", "FT")) translation_result_list.append(TranslationResult("ft-sampling", "FT")) if rank == 0: data_type = gemm_data_type_mapping[args_dict['data_type']] cmd = f"./bin/t5_gemm {math.ceil(batch_size / pipeline_para_size)} {1} {max_seq_len} " \ f"{encoder_config.d_model} {encoder_config.num_heads} {encoder_config.d_kv} {encoder_config.d_ff} " \ f"{decoder_config.d_model} {decoder_config.num_heads} {decoder_config.d_kv} {decoder_config.d_ff} " \ f"{decoder_config.vocab_size} {data_type} {tensor_para_size} 1 > .tmp_gemm.log" LOGGER.info(f"Run gemm test: {cmd}") os.system(cmd) if time_args.find("1") != -1 or time_args.find("3") != -1: ft_encoder_weight = FTT5EncoderWeight( encoder_config, tensor_para_size, pipeline_para_size, t5_with_bias=t5_with_bias, use_gated_activation=use_gated_activation, t5_with_moe=t5_with_moe, position_embedding_type=position_embedding_type, weight_data_type=weight_data_type, ) ft_decoding_weight = FTT5DecodingWeight( decoder_config, tensor_para_size, pipeline_para_size, t5_with_bias=t5_with_bias, use_gated_activation=use_gated_activation, t5_with_moe=t5_with_moe, position_embedding_type=position_embedding_type, weight_data_type=weight_data_type, ) if args_dict["ckpt_path"] is not None: ft_encoder_weight.load_from_bin(args_dict["ckpt_path"], model_type, load_data_type) ft_decoding_weight.load_from_bin(args_dict["ckpt_path"], model_type, load_data_type) else: ft_encoder_weight.load_from_model(t5_model) ft_decoding_weight.load_from_model(t5_model) if args_dict['data_type'] == 'fp16': if load_data_type != 'fp16': t5_model = t5_model.half() ft_encoder_weight.to_half() ft_decoding_weight.to_half() elif args_dict['data_type'] == 'bf16': t5_model = t5_model ## bfloat inference not supported yet ft_encoder_weight.to_bfloat16() ft_decoding_weight.to_bfloat16() remove_padding = True if batch_size > 32 else False ft_encoder = FTT5Encoder(ft_encoder_weight.w, lib_path, encoder_config.num_heads, encoder_config.d_kv, encoder_config.d_ff, encoder_config.d_model, remove_padding, encoder_config.num_layers, encoder_config.relative_attention_num_buckets, encoder_config.num_experts, encoder_config.moe_layer_index, 128, False, q_scaling, tensor_para_size, pipeline_para_size, t5_with_bias, position_embedding_type, moe_k=0, activation_type=activation_type,) ft_decoding = FTT5Decoding(ft_decoding_weight.w, lib_path, decoder_config.num_heads, decoder_config.d_kv, decoder_config.d_ff, encoder_config.d_model, decoder_config.d_model, decoder_config.num_layers, decoder_config.decoder_start_token_id, decoder_config.eos_token_id, decoder_config.vocab_size, q_scaling, decoder_config.relative_attention_num_buckets, decoder_config.num_experts, decoder_config.moe_layer_index, max_distance=128, tensor_para_size=tensor_para_size, pipeline_para_size=pipeline_para_size, t5_with_bias=t5_with_bias, position_embedding_type=position_embedding_type, moe_k=0, activation_type=activation_type, tie_word_embeddings=tie_word_embeddings,) ft_t5 = FTT5(ft_encoder, ft_decoding) with open(source_file, 'r') as f: src_text = recover_bpe(f.readlines()) src_text = ["translate English to German: " + line.strip() for line in src_text] with open(tgt_file, 'r') as f: tgt_text = recover_bpe(f.readlines()) for i in range(len(translation_result_list)): sys.stdout.flush() prev = 0 start_time = datetime.now() while prev < len(src_text): input_texts = src_text[prev:prev+batch_size] prev += batch_size input_token = tokenizer(input_texts, return_tensors='pt', padding=True) # An example to prevent generating "Chef" # bad_words_text = np.array([["Chef"]]* len(input_texts), dtype=object) # bad_words_list = to_word_list_format(bad_words_text, tokenizer) # bad_words_list = torch.Tensor(bad_words_list).to(torch.int32).to("cuda").contiguous() bad_words_list = None # An example to stop generation when the model generate "Chef" # stop_words_text = np.array([["Chef"]] * len(input_texts), dtype=object) # stop_words_list = to_word_list_format(stop_words_text, tokenizer) # stop_words_list = torch.Tensor(stop_words_list).to(torch.int32).to("cuda").contiguous() stop_words_list = None if translation_result_list[i].frame_work == "HF": if translation_result_list[i].name.find("beamsearch") != -1: hf_outputs = t5_model.generate(input_token.input_ids.to("cuda"), max_length=max_seq_len, early_stopping=True, num_beams=beam_size) elif translation_result_list[i].name.find("sampling") != -1: hf_outputs = t5_model.generate(input_token.input_ids.to("cuda"), max_length=max_seq_len, early_stopping=True, do_sample=True, top_k=topk if topk > 0 else None, top_p=topp if topp > 0.0 else None) translation_result_list[i].batch_ids_list.append(hf_outputs) translation_result_list[i].batch_seq_len_list.append(np.ones(len(input_texts)) * max_seq_len) elif translation_result_list[i].frame_work == "FT": tmp_beam_size = beam_size if translation_result_list[i].name.find("sampling") != -1: tmp_beam_size = 1 ft_decoding_outputs, ft_decoding_seq_lens = ft_t5(input_token, None, tmp_beam_size, max_seq_len, topk, topp, beam_search_diversity_rate=beam_search_diversity_rate, is_return_output_log_probs=args_dict["return_output_log_probs"], is_return_cum_log_probs=args_dict["return_cum_log_probs"], repetition_penalty=repetition_penalty, temperature=temperature, len_penalty=len_penalty, bad_words_list=bad_words_list, stop_words_list=stop_words_list,) translation_result_list[i].batch_ids_list.append(ft_decoding_outputs) translation_result_list[i].batch_seq_len_list.append(ft_decoding_seq_lens) translation_result_list[i].sentence_num += len(input_token) translation_result_list[i].batch_num += 1 if translation_result_list[i].name.find("warmup") != -1 and \ (translation_result_list[i].batch_num > 10 or translation_result_list[i].sentence_num > 300): break if translation_result_list[i].batch_num >= max_ite: break stop_time = datetime.now() translation_result_list[i].execution_time = (stop_time - start_time).total_seconds() if translation_result_list[i].name.find("warmup") != -1: continue for batch_token, batch_seq_len in zip(translation_result_list[i].batch_ids_list, translation_result_list[i].batch_seq_len_list): for j in range(len(batch_token)): if translation_result_list[i].frame_work == "HF": translation_result_list[i].token_list.append(fast_tokenizer.decode(batch_token[j][1:], skip_special_tokens=True)) translation_result_list[i].token_num += sum(batch_token[j][:] != 0) elif translation_result_list[i].frame_work == "FT": translation_result_list[i].token_list.append(fast_tokenizer.decode(batch_token[j][0][:batch_seq_len[j][0]], skip_special_tokens=True)) translation_result_list[i].token_num += batch_seq_len[j][0] if rank == 0: translation_result_list[i].bleu_score = bleu_score(translation_result_list[i].token_list, tgt_text[:len(translation_result_list[i].token_list)]) with open(translation_result_list[i].name + ".txt", 'w') as f: for line in translation_result_list[i].token_list: f.write(line) if rank == 0: for t in translation_result_list: if t.name.find("warmup") != -1: continue LOGGER.info(f"{t.name} translates {t.batch_num} batches taking {t.execution_time:.2f} sec to translate " f"{t.token_num} tokens, BLEU score: {t.bleu_score.score:.2f}, {(t.token_num / t.execution_time):.0f} tokens/sec." f" ({t.bleu_score.sys_len} words, {(t.bleu_score.sys_len / t.execution_time):.0f} words/sec)") if t.name == "ft-beamsearch" and args_dict["ft_beamsearch_BLEU_threshold"] != None: assert t.bleu_score.score >= args_dict["ft_beamsearch_BLEU_threshold"], f"[ERROR] {t.name} test fail !" LOGGER.info(f"{t.name} PASS !") if t.name == "ft-sampling" and args_dict["ft_sampling_BLEU_threshold"] != None: assert t.bleu_score.score >= args_dict["ft_sampling_BLEU_threshold"], f"[ERROR] {t.name} test fail !" LOGGER.info(f"{t.name} PASS !") if __name__ == "__main__": parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-batch', '--batch_size', type=int, default=1, metavar='NUMBER', help='batch size (default: 1)') parser.add_argument('-beam', '--beam_width', type=int, default=4, metavar='NUMBER', help='beam width (default: 4)') parser.add_argument('-s', '--max_seq_len', type=int, default=200, metavar='NUMBER', help='max sequence length (default: 200)') parser.add_argument("--source", default="../examples/pytorch/decoding/utils/translation/test.en", help="Path to the source file.") parser.add_argument("--target", default="../examples/pytorch/decoding/utils/translation/test.de", help="Path to the target file.") parser.add_argument('-time', '--test_time', type=str, default='', metavar='STRING', help=''' Test the time of which one (default: '' (not test anyone) ); '': not test anyone '0': test hf_beamsearch '1': test ft_beamsearch '2': test hf_sampling '3': test ft_sampling 'e.g., if you want to test tf_beamsearch and ft_sampling, then you need to use -time '03' ''') parser.add_argument('-diversity_rate', '--beam_search_diversity_rate', type=float, default=0.0, metavar='NUMBER', help='deviersity rate of beam search. default is 0. When diversity rate = 0, it is equivalent to the naive beam search.') parser.add_argument('-repeat_penalty', '--repetition_penalty', type=float, default=1.0, metavar='NUMBER', help='Repetition penalty for generating tokens. Default is 1.0.') parser.add_argument('-temperature', '--temperature', type=float, default=1.0, metavar='NUMBER', help='Temperature penalty for generating tokens. Default is 1.0.') parser.add_argument('-len_penalty', '--len_penalty', type=float, default=0.0, metavar='NUMBER', help='Length penalty for generating tokens. Default is 0.0.') parser.add_argument('-topk', '--sampling_topk', type=int, default=1, metavar='NUMBER', help='Candidate (k) value of top k sampling in decoding. Default is 1.') parser.add_argument('-topp', '--sampling_topp', type=float, default=0.0, metavar='NUMBER', help='Probability (p) value of top p sampling in decoding. Default is 0.0. ') parser.add_argument('-d', '--data_type', type=str, default="fp32", metavar='STRING', help='data type for inference (default: fp32)', choices=['fp32', 'fp16', 'bf16']) parser.add_argument('-ld', '--load_data_type', type=str, default="fp32", metavar='STRING', help='data type for loading weights (default: fp32)', choices=['fp32', 'fp16']) parser.add_argument('-lib_path', '--lib_path', type=str, default="lib/libth_transformer.so", metavar='STRING', help='the path of FasterTransformer pytorch t5 op library.') parser.add_argument('-model_path', '--model_path', type=str, default=None, metavar='STRING', help='T5 model path.') parser.add_argument('-model', '--model', type=str, default="t5-small", metavar='STRING', help='T5 model size. Only used when --model_path=None') parser.add_argument('-tensor_para_size', '--tensor_para_size', type=int, default=1, metavar='NUMBER', help='size of tensor parallelism (default: 1)') parser.add_argument('-pipeline_para_size', '--pipeline_para_size', type=int, default=1, metavar='NUMBER', help='size of pipeline parallelism (default: 1)') # assume checkpoint config is also in the same path parser.add_argument('--ckpt_path', type=str, help='path to the checkpoint file.') parser.add_argument('-max_ite', '--max_iteration', type=int, default=100000, metavar='NUMBER', help='Maximum iteraiton for translation, default is 100000 (as large as possible to run all test set).') parser.add_argument('--model_type', type=str, default="Huggingface", choices=["Huggingface", "Megatron", "Megatron-DeepSpeed"], help='Megatron T5 uses bias and supports both absulte and relative positional embedding;' 'Huggingface T4 adopts the paper\'s implementation and has no bias') parser.add_argument('--return_output_log_probs', action='store_true', help='Return the log probability of generated tokens.') parser.add_argument('--return_cum_log_probs', action='store_true', help='Return the cumulative log probability of generated tokens.') parser.add_argument('--ft_beamsearch_BLEU_threshold', type=float, help='Threshold of FT beam search BLEU score') parser.add_argument('--ft_sampling_BLEU_threshold', type=float, help='Threshold of FT beam search BLEU score') parser.add_argument("--verbose", action="store_true", help="Provide verbose messages") args = parser.parse_args() log_format = "%(asctime)s %(name)s [%(levelname)s] %(message)s" logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO, format=log_format) translate(vars(args))
FasterTransformer-main
examples/pytorch/t5/translate_example.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import configparser import dataclasses import json import os import pathlib import time import numpy as np import torch import torch.distributed as dist from tqdm import tqdm from omegaconf.omegaconf import OmegaConf from nemo.collections.nlp.data.glue_benchmark.glue_benchmark_dataset import ( TextToTextGLUEDataset, TextToTextXNLIDataset, ) from nemo.collections.nlp.modules.common.tokenizer_utils import get_nmt_tokenizer from nemo.collections.common.metrics.classification_accuracy import ExactStringPerCategoryMatchMetric from examples.pytorch.t5.utils.ft_encoder import FTT5EncoderWeight, FTT5Encoder from examples.pytorch.t5.utils.ft_decoding import FTT5DecodingWeight, FTT5Decoding, FTT5 from examples.pytorch.tokenizer import add_special_tokens_to_tokenizer def _build_dataset(data_cfg, tokenizer): if data_cfg.task_name == 'xnli': dataset = TextToTextXNLIDataset( data_cfg.file_path, task_name=data_cfg.task_name, tokenizer=tokenizer, max_seq_length=data_cfg.max_seq_length, lang_list=data_cfg.eval_languages, ) else: dataset = TextToTextGLUEDataset( data_cfg.file_path, task_name=data_cfg.task_name, tokenizer=tokenizer, max_seq_length=data_cfg.max_seq_length, ) return dataset @dataclasses.dataclass class Metric: acc: float @dataclasses.dataclass class RequestAndResult: model_answer: str target: str lang: str metrics: Metric def preds_and_labels_to_text(tokenizer, preds, labels): preds = preds.cpu().numpy().tolist() labels = labels.cpu().numpy().tolist() # preds = [pred[0] for pred in preds] preds_text, labels_text = [], [] for _, (pred, label) in enumerate(zip(preds, labels)): if tokenizer.eos_id in pred: idx = pred.index(tokenizer.eos_id) pred = pred[:idx] # Legacy sentencepiece detokenization still preserves special tokens which messes up exact string match. if hasattr(tokenizer, 'special_token_to_id'): pred = [id for id in pred if id not in tokenizer.special_token_to_id.values()] label = [id for id in label if id not in tokenizer.special_token_to_id.values()] pred = tokenizer.ids_to_text(pred) label = tokenizer.ids_to_text(label) preds_text.append(pred) labels_text.append(label) return preds_text, labels_text def accuracy_score(pred, ref): assert len(pred) == len(ref) total = len(pred) correct = 0 for p, r in zip(pred, ref): if p in r: correct += 1 # else: # print(f"[pred]: {p} [label]: {r}") print(f"[total_acc] {correct / total}") return correct / total class InputToken: def __init__(self, input_ids, attention_mask): self.input_ids = input_ids self.attention_mask = attention_mask class EncoderDecoderConfig: def __init__(self, d_model, vocab_size, num_heads, d_kv, d_ff, num_layers, relative_attention_num_buckets_or_max_pos_seq_len, decoder_start_token_id=0, decoder_end_token_id=1): self.d_model = d_model self.vocab_size = vocab_size self.num_heads = num_heads self.d_kv = d_kv self.d_ff = d_ff self.num_layers = num_layers self.relative_attention_num_buckets = relative_attention_num_buckets_or_max_pos_seq_len self.decoder_start_token_id = decoder_start_token_id self.decoder_end_token_id = decoder_end_token_id data_type_mapping = {"fp32": 0, "fp16": 1, "bf16": 2} def xnli_task(args_dict): torch.set_printoptions(precision=6) batch_size = args_dict['batch_size'] beam_size = args_dict['beam_width'] max_output_len = args_dict['max_output_len'] beam_search_diversity_rate = args_dict['beam_search_diversity_rate'] topk = args_dict['sampling_topk'] topp = args_dict['sampling_topp'] tensor_para_size = args_dict['tensor_para_size'] pipeline_para_size = args_dict['pipeline_para_size'] if args_dict['ckpt_path'] is None: raise Exception("Megatron T5 model needs to specify checkpoint path !") if dist.is_mpi_available(): try: dist.init_process_group(backend='mpi') rank = dist.get_rank() except: rank = dist.get_rank() else: rank = 0 assert dist.get_world_size() == tensor_para_size * pipeline_para_size ckpt_path = args_dict['ckpt_path'] ## read checkpoint config if exists ckpt_config = configparser.ConfigParser() if args_dict['ckpt_path'] is None: raise Exception("Megatron T5 model needs to specify checkpoint path !") tokenizer_model_path = os.path.join(ckpt_path, "tokenizer.model") ckpt_config_path = os.path.join(ckpt_path, 'config.ini') if os.path.isfile(ckpt_config_path): ckpt_config.read(ckpt_config_path) ## update structure config t5_with_bias = ckpt_config.getboolean('structure', 't5_with_bias') ## megatron with bias and use absolute position embedding ## relative position embedding -> 0, absolute position embedding -> 1 position_embedding_type = 0 if ckpt_config.get('structure', 'position_embedding_type') == 'relative' else 1 use_gated_activation = ckpt_config.getboolean('structure', 'use_gated_activation') weight_data_type = {"fp16": np.float16, "fp32": np.float32}[ckpt_config.get("encoder", "weight_data_type")] activation_type = ckpt_config.get('encoder', 'feed_forward_proj') assert ckpt_config.getint("encoder", "tensor_para_size") == tensor_para_size else: raise Exception("config file does exist with the ckpt !") if rank == 0: print("\n=============== Argument ===============") for key in args_dict: print("{}: {}".format(key, args_dict[key])) print("========================================") lib_path = args_dict['lib_path'] #xnli tokenizer_mt5 = get_nmt_tokenizer( library='sentencepiece', model_name=None, tokenizer_model=tokenizer_model_path, vocab_file=None, merges_file=None, legacy=True, ) add_special_tokens_to_tokenizer(tokenizer_mt5) assert tokenizer_mt5.bos_id == ckpt_config.getint("decoder", "decoder_start_token_id") assert tokenizer_mt5.eos_id == ckpt_config.getint("decoder", "eos_token_id") token_params = { tokenizer_mt5.bos_token: tokenizer_mt5.bos_id, tokenizer_mt5.eos_token: tokenizer_mt5.eos_id, tokenizer_mt5.pad_token: tokenizer_mt5.pad_id, } print(f"tokenizer special tokens: {token_params}") xnli_cfg = OmegaConf.create({ "file_path": args_dict['data_path'], "task_name": "xnli", "max_seq_length": 512, "eval_languages": ['en', 'es', 'de', 'fr'] }) xnli_dataset = _build_dataset(xnli_cfg, tokenizer_mt5) data_loader = torch.utils.data.DataLoader( xnli_dataset, collate_fn=xnli_dataset.collate_fn, batch_size=batch_size, num_workers=1, pin_memory=False, drop_last=True) q_scaling = 1.0 encoder_config = EncoderDecoderConfig(ckpt_config.getint('encoder', 'd_model'), ckpt_config.getint('encoder', 'vocab_size'), ckpt_config.getint('encoder', 'num_heads'), ckpt_config.getint('encoder', 'd_kv'), ckpt_config.getint('encoder', 'd_ff'), ckpt_config.getint('encoder', 'num_layers'), ckpt_config.getint('encoder', 'relative_attention_num_buckets_or_max_pos_seq_len') ) decoder_config = EncoderDecoderConfig(ckpt_config.getint('decoder', 'd_model'), ckpt_config.getint('decoder', 'vocab_size'), ckpt_config.getint('decoder', 'num_heads'), ckpt_config.getint('decoder', 'd_kv'), ckpt_config.getint('decoder', 'd_ff'), ckpt_config.getint('decoder', 'num_layers'), ckpt_config.getint('decoder', 'relative_attention_num_buckets_or_max_pos_seq_len'), tokenizer_mt5.bos_id, tokenizer_mt5.eos_id ) ## run gemm test if os.path.isfile("gemm_config.in") and rank == 0: cmd = f"rm gemm_config.in" print(f"Run {cmd}") os.system(cmd) if rank == 0: data_type = data_type_mapping[args_dict['data_type']] cmd = f"./bin/t5_gemm {batch_size // pipeline_para_size} {beam_size} {128} " \ f"{encoder_config.d_model} {encoder_config.num_heads} {encoder_config.d_kv} {encoder_config.d_ff} " \ f"{decoder_config.d_model} {decoder_config.num_heads} {decoder_config.d_kv} {decoder_config.d_ff} " \ f"{decoder_config.vocab_size} {data_type} {tensor_para_size} 1 > .tmp_gemm.log" print(f"Run gemm test: {cmd}") os.system(cmd) dist.barrier() ft_encoder_weight = FTT5EncoderWeight( encoder_config, tensor_para_size, pipeline_para_size, t5_with_bias=t5_with_bias, use_gated_activation=use_gated_activation, position_embedding_type=position_embedding_type, weight_data_type=weight_data_type, ) ft_decoding_weight = FTT5DecodingWeight( decoder_config, tensor_para_size, pipeline_para_size, t5_with_bias=t5_with_bias, use_gated_activation=use_gated_activation, position_embedding_type=position_embedding_type, weight_data_type=weight_data_type, ) ft_encoder_weight.load_from_bin(args_dict["ckpt_path"], "Megatron") ft_decoding_weight.load_from_bin(args_dict["ckpt_path"], "Megatron") if args_dict['data_type'] == 'fp16': ft_encoder_weight.to_half() ft_decoding_weight.to_half() elif args_dict['data_type'] == 'fp32': ft_encoder_weight.to_single() ft_decoding_weight.to_single() elif args_dict['data_type'] == 'bf16': ft_encoder_weight.to_bfloat16() ft_decoding_weight.to_bfloat16() remove_padding = True if batch_size > 32 else False ft_encoder = FTT5Encoder(ft_encoder_weight.w, lib_path, encoder_config.num_heads, encoder_config.d_kv, encoder_config.d_ff, encoder_config.d_model, remove_padding, encoder_config.num_layers, encoder_config.relative_attention_num_buckets, 0, # num_experts [], # moe_layer_index 128, False, q_scaling, tensor_para_size, pipeline_para_size, t5_with_bias, position_embedding_type, 0, activation_type) ft_decoding = FTT5Decoding(ft_decoding_weight.w, lib_path, decoder_config.num_heads, decoder_config.d_kv, decoder_config.d_ff, encoder_config.d_model, decoder_config.d_model, decoder_config.num_layers, decoder_config.decoder_start_token_id, decoder_config.decoder_end_token_id, decoder_config.vocab_size, q_scaling, decoder_config.relative_attention_num_buckets, 0, # num_experts [], # moe_layer_index max_distance=128, tensor_para_size=tensor_para_size, pipeline_para_size=pipeline_para_size, t5_with_bias=t5_with_bias, moe_k=0, activation_type=activation_type, position_embedding_type=position_embedding_type) ft_t5 = FTT5(ft_encoder, ft_decoding) #metric languages = ['de','en','es','fr'] acc_metric = ExactStringPerCategoryMatchMetric(languages) preds_list = [] labels_list = [] results_list = [] start = time.time() for idx, batch in tqdm(enumerate(data_loader)): input_token = InputToken(batch['text_enc'], batch['enc_mask']) ft_decoding_outputs, ft_decoding_seq_lens = ft_t5(input_token, None, beam_size, max_output_len, topk, topp, beam_search_diversity_rate=beam_search_diversity_rate, is_return_output_log_probs=args_dict["return_output_log_probs"], is_return_cum_log_probs=args_dict["return_cum_log_probs"]) ft_decoding_outputs = ft_decoding_outputs.squeeze() preds, labels = preds_and_labels_to_text(tokenizer_mt5, torch.IntTensor(ft_decoding_outputs), batch['labels']) langs = batch['lang'] for _, (pred, label, lang) in enumerate(zip(preds, labels, langs)): _ = acc_metric(pred, label, lang) labels_list += labels preds_list += preds results_list.extend([ RequestAndResult( model_answer=pred, target=label, lang=lang, metrics=Metric(acc=(pred == label)) ) for lang, pred, label in zip(langs, preds, labels) ]) end = time.time() lang_accuracy = acc_metric.compute() if rank == 0: print(f"\n[Elapsed Time]: {end - start} seconds") # each language for lang in languages: print(f'[{lang}_acc]', lang_accuracy[lang].item()) # total accuracy accuracy = accuracy_score(preds_list, labels_list) output_path = args_dict.get("output_path") if output_path is not None and rank == 0: output_path = pathlib.Path(output_path) output_path.parent.mkdir(parents=True, exist_ok=True) with output_path.open("w") as output_file: results = { "results": { "xnli": { "acc": accuracy } }, "output": { "xnli": [ dataclasses.asdict(r) for r in results_list ] } } json.dump(results, output_file) if __name__ == "__main__": parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-batch', '--batch_size', type=int, default=1, metavar='NUMBER', help='batch size (default: 1)') parser.add_argument('-beam', '--beam_width', type=int, default=4, metavar='NUMBER', help='beam width (default: 4)') parser.add_argument('-s', '--max_output_len', type=int, default=10, metavar='NUMBER', help='max output length (default: 10)') parser.add_argument('-diversity_rate', '--beam_search_diversity_rate', type=float, default=0.0, metavar='NUMBER', help='deviersity rate of beam search. default is 0. When diversity rate = 0, it is equivalent to the naive beam search.') parser.add_argument('-topk', '--sampling_topk', type=int, default=1, metavar='NUMBER', help='Candidate (k) value of top k sampling in decoding. Default is 1.') parser.add_argument('-topp', '--sampling_topp', type=float, default=0.0, metavar='NUMBER', help='Probability (p) value of top p sampling in decoding. Default is 0.0. ') parser.add_argument('-d', '--data_type', type=str, default="fp32", metavar='STRING', help='data type (default: fp32)', choices=['fp32', 'fp16', 'bf16']) parser.add_argument('-lib_path', '--lib_path', type=str, default="/workspace/FasterTransformer/build/lib/libth_transformer.so", metavar='STRING', help='the path of FasterTransformer pytorch t5 op library.') parser.add_argument('-data_path', '--data_path', type=str, required=True, help="the xnli task data path") parser.add_argument('-tensor_para_size', '--tensor_para_size', type=int, default=1, metavar='NUMBER', help='size of tensor parallelism (default: 1)') parser.add_argument('-pipeline_para_size', '--pipeline_para_size', type=int, default=1, metavar='NUMBER', help='size of pipeline parallelism (default: 1)') # assume checkpoint config is also in the same path parser.add_argument('--ckpt_path', type=str, help='path to the checkpoint file.') parser.add_argument('--output_path', help='path to results file with calculated metrics.') parser.add_argument('--return_output_log_probs', action='store_true', help='Return the log probability of generated tokens.') parser.add_argument('--return_cum_log_probs', action='store_true', help='Return the cumulative log probability of generated tokens.') args = parser.parse_args() xnli_task(vars(args))
FasterTransformer-main
examples/pytorch/t5/xnli_task_example.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ perf_benchmark.py Unlike translate_example.py, this script focuses on benchmarking the performance of the FasterTransformers T5 implementation such that it can be compared with other frameworks apples-to-apples. The changes include: - Use random input data and disable accuracy checking. - Use fixed input/output sequence lengths and disable early_stopping. - Add better controls on the number of warm-ups and the number of iterations to run the inference for. """ import argparse import configparser import os import sys import math from datetime import datetime import numpy as np import torch import torch.distributed as dist # dir_path = os.path.dirname(os.path.realpath(__file__)) # sys.path.append(dir_path + "/../../../3rdparty/transformers/src/") from transformers import T5ForConditionalGeneration # transformers-4.10.0-py3 dir_path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(dir_path + "/../../..") from examples.pytorch.t5.utils.ft_encoder import FTT5EncoderWeight, FTT5Encoder from examples.pytorch.t5.utils.ft_decoding import FTT5DecodingWeight, FTT5Decoding, FTT5 class TranslationResult(object): def __init__(self, name, frame_work): self.name = name self.frame_work = frame_work # FT or HF self.file_name = name + ".txt" self.token_list = [] self.batch_ids_list = [] self.batch_seq_len_list = [] self.batch_num = 0 self.execution_time = 0.0 # seconds self.token_num = 0 class InputTokens(object): def __init__(self, batch_size, input_seq_len, bos_token, eos_token, vocab_size): # Set the last token of each sequence to eos and replace the bos/eos tokens in the middle of the sequences to # some other tokens. normal_token_list = list(range(vocab_size)) if bos_token in normal_token_list: normal_token_list.remove(bos_token) if eos_token in normal_token_list: normal_token_list.remove(eos_token) self.input_ids = torch.randint(0, len(normal_token_list), (batch_size, input_seq_len)) for batch_idx in range(batch_size): for token_idx in range(input_seq_len): if token_idx == input_seq_len - 1: self.input_ids[batch_idx][token_idx] = eos_token else: self.input_ids[batch_idx][token_idx] = normal_token_list[self.input_ids[batch_idx][token_idx]] # Set attention masks to all ones. self.attention_mask = torch.ones((batch_size, input_seq_len), dtype=torch.int64) def translate(args_dict): torch.set_printoptions(precision=6) batch_size = args_dict['batch_size'] beam_size = args_dict['beam_width'] output_seq_len = args_dict['seq_len'] input_seq_len = args_dict['input_seq_len'] if args_dict['input_seq_len'] > 0 else output_seq_len time_args = args_dict["test_time"] beam_search_diversity_rate = args_dict['beam_search_diversity_rate'] topk = args_dict['sampling_topk'] topp = args_dict['sampling_topp'] tensor_para_size = args_dict['tensor_para_size'] pipeline_para_size = args_dict['pipeline_para_size'] warmup_iterations = args_dict['warmup_iterations'] infer_iterations = args_dict['iterations'] infer_duration = args_dict['duration'] seed = args_dict['seed'] skip_gemm = args_dict['skip_gemm'] torch.manual_seed(seed) ## huggingface without bias and use relative position embedding ## relative position embedding -> 0, absolute position embedding -> 1 t5_with_bias = False use_gated_activation = False t5_with_moe = False position_embedding_type = 0 weight_data_type = np.float32 ## only huggingface model path supported model_path = args_dict['model_path'] if args_dict['model_path'] != None else args_dict['model'] ckpt_path = args_dict['ckpt_path'] model_type = args_dict['model_type'] ## read checkpoint config if exists ckpt_config = configparser.ConfigParser() activation_type = "relu" if (model_type in ["Megatron", "Megatron-DeepSpeed"]): ckpt_config_path = os.path.join(ckpt_path, 'config.ini') if os.path.isfile(ckpt_config_path): ckpt_config.read(ckpt_config_path) ## update structure config t5_with_bias = ckpt_config.getboolean('structure', 't5_with_bias') position_embedding_type = 0 if ckpt_config.get('structure', 'position_embedding_type') == 'relative' else 1 use_gated_activation = ckpt_config.getboolean('structure', 'use_gated_activation') t5_with_moe= ckpt_config.getint('structure', 't5_with_moe') == 1 weight_data_type = {"fp16": np.float16, "fp32": np.float32}[ckpt_config.get("encoder", "weight_data_type")] activation_type = "gated-gelu" if use_gated_activation else "gelu" # change to gelu, which is default setting of Megatron T5 moe_layers_in_encoder = [] moe_layers_in_decoder = [] if (ckpt_config.get('structure', 'moe_layers_in_encoder') != '[]'): moe_layers_in_encoder = [int(n) for n in ckpt_config.get('structure', 'moe_layers_in_encoder')[1:-1].replace(" ", "").split(',')] if (ckpt_config.get('structure', 'moe_layers_in_decoder') != '[]'): moe_layers_in_decoder = [int(n) for n in ckpt_config.get('structure', 'moe_layers_in_encoder')[1:-1].replace(" ", "").split(',')] else: raise Exception("config file does exist with the ckpt !") if model_type == "Megatron" and args_dict['ckpt_path'] == None: raise Exception("Megatron T5 model needs to specify checkpoint path !") print("\n=============== Argument ===============") for key in args_dict: print("{}: {}".format(key, args_dict[key])) print("========================================") lib_path = args_dict['lib_path'] t5_model = T5ForConditionalGeneration.from_pretrained(model_path) if dist.is_mpi_available(): try: dist.init_process_group(backend='mpi') rank = dist.get_rank() except: rank = dist.get_rank() else: rank = 0 if time_args.find("0") != -1 or time_args.find("2") != -1: t5_model = t5_model.to(rank) if args_dict['data_type'] == 'fp16': t5_model = t5_model.half() encoder_config = t5_model.encoder.config decoder_config = t5_model.decoder.config encoder_config.update({"num_experts": 0}) decoder_config.update({"num_experts": 0}) encoder_config.update({"moe_layer_index": []}) decoder_config.update({"moe_layer_index": []}) q_scaling = 1.0 / (math.sqrt(encoder_config.d_kv)) if (model_type in ["Megatron", "Megatron-DeepSpeed"]): ## update configs when using Megatron model structure q_scaling = 1.0 encoder_config.d_model = ckpt_config.getint('encoder', 'd_model') encoder_config.vocab_size = ckpt_config.getint('encoder', 'vocab_size') encoder_config.num_heads = ckpt_config.getint('encoder', 'num_heads') encoder_config.d_kv = ckpt_config.getint('encoder', 'd_kv') encoder_config.d_ff = ckpt_config.getint('encoder', 'd_ff') encoder_config.num_layers = ckpt_config.getint('encoder', 'num_layers') encoder_config.relative_attention_num_buckets = ckpt_config.getint('encoder', 'relative_attention_num_buckets_or_max_pos_seq_len') if model_type == "Megatron-DeepSpeed": encoder_config.num_experts = ckpt_config.getint('encoder', 'num_experts') encoder_config.moe_layer_index = moe_layers_in_encoder decoder_config.d_model = ckpt_config.getint('decoder', 'd_model') decoder_config.vocab_size = ckpt_config.getint('decoder', 'vocab_size') decoder_config.num_heads = ckpt_config.getint('decoder', 'num_heads') decoder_config.d_kv = ckpt_config.getint('decoder', 'd_kv') decoder_config.d_ff = ckpt_config.getint('decoder', 'd_ff') decoder_config.num_layers = ckpt_config.getint('decoder', 'num_layers') decoder_config.relative_attention_num_buckets = ckpt_config.getint('decoder', 'relative_attention_num_buckets_or_max_pos_seq_len') if model_type == "Megatron-DeepSpeed": decoder_config.num_experts = ckpt_config.getint('decoder', 'num_experts') decoder_config.moe_layer_index = moe_layers_in_decoder decoder_config.decoder_start_token_id = ckpt_config.getint('decoder', 'decoder_start_token_id') decoder_config.eos_token_id = ckpt_config.getint('decoder', 'eos_token_id') print(f"{model_type} encoder_config: {encoder_config}") print(f"{model_type} decoder_config: {decoder_config}") if os.path.isfile("gemm_config.in") and rank == 0: cmd = f"rm gemm_config.in" print(f"Run {cmd}") os.system(cmd) translation_result_list = [] if time_args.find("0") != -1: translation_result_list.append(TranslationResult("hf-beamsearch-warmup", "HF")) translation_result_list.append(TranslationResult("hf-beamsearch", "HF")) if time_args.find("1") != -1: translation_result_list.append(TranslationResult("ft-beamsearch-warmup", "FT")) translation_result_list.append(TranslationResult("ft-beamsearch", "FT")) if rank == 0 and not skip_gemm: is_fp16 = 1 if args_dict['data_type'] == 'fp16' else 0 cmd = f"./bin/t5_gemm {math.ceil(batch_size / pipeline_para_size)} {beam_size} {128} " \ f"{encoder_config.d_model} {encoder_config.num_heads} {encoder_config.d_kv} {encoder_config.d_ff} " \ f"{decoder_config.d_model} {decoder_config.num_heads} {decoder_config.d_kv} {decoder_config.d_ff} " \ f"{decoder_config.vocab_size} {is_fp16} {tensor_para_size} 1 > .tmp_gemm.log" print(f"Run gemm test: {cmd}") os.system(cmd) if time_args.find("2") != -1: translation_result_list.append(TranslationResult("hf-sampling-warmup", "HF")) translation_result_list.append(TranslationResult("hf-sampling", "HF")) if time_args.find("3") != -1: translation_result_list.append(TranslationResult("ft-sampling-warmup", "FT")) translation_result_list.append(TranslationResult("ft-sampling", "FT")) if rank == 0 and not skip_gemm: is_fp16 = 1 if args_dict['data_type'] == 'fp16' else 0 cmd = f"./bin/t5_gemm {math.ceil(batch_size / pipeline_para_size)} {1} {128} " \ f"{encoder_config.d_model} {encoder_config.num_heads} {encoder_config.d_kv} {encoder_config.d_ff} " \ f"{decoder_config.d_model} {decoder_config.num_heads} {decoder_config.d_kv} {decoder_config.d_ff} " \ f"{decoder_config.vocab_size} {is_fp16} {tensor_para_size} 1 1 > .tmp_gemm.log" print(f"Run gemm test: {cmd}") os.system(cmd) if time_args.find("1") != -1 or time_args.find("3") != -1: ft_encoder_weight = FTT5EncoderWeight( encoder_config, tensor_para_size, pipeline_para_size, t5_with_bias=t5_with_bias, use_gated_activation=use_gated_activation, t5_with_moe=t5_with_moe, position_embedding_type=position_embedding_type, weight_data_type=weight_data_type ) ft_decoding_weight = FTT5DecodingWeight( decoder_config, tensor_para_size, pipeline_para_size, t5_with_bias=t5_with_bias, use_gated_activation=use_gated_activation, t5_with_moe=t5_with_moe, position_embedding_type=position_embedding_type, weight_data_type=weight_data_type, ) if args_dict["ckpt_path"] is not None: ft_encoder_weight.load_from_bin(args_dict["ckpt_path"], model_type=model_type) ft_decoding_weight.load_from_bin(args_dict["ckpt_path"], model_type=model_type) else: ft_encoder_weight.load_from_model(t5_model) ft_decoding_weight.load_from_model(t5_model) if args_dict['data_type'] == 'fp16': t5_model = t5_model.half() ft_encoder_weight.to_half() ft_decoding_weight.to_half() # This script assumes fixed sequence length, so using remove_padding will not benefit. remove_padding = False ft_encoder = FTT5Encoder(ft_encoder_weight.w, lib_path, encoder_config.num_heads, encoder_config.d_kv, encoder_config.d_ff, encoder_config.d_model, remove_padding, encoder_config.num_layers, encoder_config.relative_attention_num_buckets, encoder_config.num_experts, encoder_config.moe_layer_index, 128, False, q_scaling, tensor_para_size, pipeline_para_size, t5_with_bias, position_embedding_type, 0, activation_type) ft_decoding = FTT5Decoding(ft_decoding_weight.w, lib_path, decoder_config.num_heads, decoder_config.d_kv, decoder_config.d_ff, encoder_config.d_model, decoder_config.d_model, decoder_config.num_layers, decoder_config.decoder_start_token_id, # Set eos token id to -1 to effectively disable early stopping. # decoder_config.eos_token_id, -1, decoder_config.vocab_size, q_scaling, decoder_config.relative_attention_num_buckets, decoder_config.num_experts, decoder_config.moe_layer_index, max_distance=128, tensor_para_size=tensor_para_size, pipeline_para_size=pipeline_para_size, t5_with_bias=t5_with_bias, moe_k=0, activation_type=activation_type, position_embedding_type = position_embedding_type) ft_t5 = FTT5(ft_encoder, ft_decoding) input_token = InputTokens(batch_size, input_seq_len, decoder_config.decoder_start_token_id, decoder_config.eos_token_id, decoder_config.vocab_size) for i in range(len(translation_result_list)): sys.stdout.flush() is_warmup = (translation_result_list[i].name.find("warmup") != -1) min_duration = infer_duration if not is_warmup else 0 min_iterations = infer_iterations if not is_warmup else warmup_iterations iter_idx = 0 start_time = datetime.now() while iter_idx < min_iterations or (datetime.now() - start_time).total_seconds() < min_duration: iter_idx += 1 if translation_result_list[i].frame_work == "HF": if translation_result_list[i].name.find("beamsearch") != -1: hf_outputs = t5_model.generate(input_token.input_ids.to("cuda"), min_length=output_seq_len + 1, max_length=output_seq_len + 1, # "+1" because HF counts <bos> as well. early_stopping=False, num_beams=beam_size) elif translation_result_list[i].name.find("sampling") != -1: hf_outputs = t5_model.generate(input_token.input_ids.to("cuda"), min_length=output_seq_len + 1, max_length=output_seq_len + 1, # "+1" because HF counts <bos> as well. early_stopping=False, do_sample=True, top_k=topk if topk > 0 else None, top_p=topp if topp > 0.0 else None) translation_result_list[i].batch_ids_list.append(hf_outputs) translation_result_list[i].batch_seq_len_list.append(np.ones(input_seq_len) * output_seq_len) elif translation_result_list[i].frame_work == "FT": tmp_beam_size = beam_size if translation_result_list[i].name.find("sampling") != -1: tmp_beam_size = 1 ft_decoding_outputs, ft_decoding_seq_lens = ft_t5(input_token, None, tmp_beam_size, output_seq_len, topk, topp, beam_search_diversity_rate=beam_search_diversity_rate) translation_result_list[i].batch_ids_list.append(ft_decoding_outputs) translation_result_list[i].batch_seq_len_list.append(ft_decoding_seq_lens) translation_result_list[i].batch_num += 1 stop_time = datetime.now() translation_result_list[i].execution_time = (stop_time - start_time).total_seconds() if translation_result_list[i].name.find("warmup") != -1: continue for batch_token, batch_seq_len in zip(translation_result_list[i].batch_ids_list, translation_result_list[i].batch_seq_len_list): for j in range(len(batch_token)): if translation_result_list[i].frame_work == "HF": translation_result_list[i].token_list.append(batch_token[j][1:]) translation_result_list[i].token_num += sum(batch_token[j][1:] != 0) elif translation_result_list[i].frame_work == "FT": translation_result_list[i].token_list.append(batch_token[j][0][:batch_seq_len[j][0]]) translation_result_list[i].token_num += batch_seq_len[j][0] if rank == 0: for t in translation_result_list: if t.name.find("warmup") != -1: continue print(f"[INFO] {t.name} translates {t.batch_num} batches taking {t.execution_time:.2f} sec to translate " f"{t.token_num} tokens ({(t.execution_time / t.batch_num * 1000):.4f} ms per batch), " f"{(t.token_num / t.execution_time):.0f} tokens/sec.") if __name__ == "__main__": parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-batch', '--batch_size', type=int, default=1, metavar='NUMBER', help='batch size (default: 1)') parser.add_argument('-beam', '--beam_width', type=int, default=4, metavar='NUMBER', help='beam width (default: 4)') parser.add_argument('-s', '--seq_len', type=int, default=256, metavar='NUMBER', help='fixed output sequence length, excluding bos but including eos (default: 256)') parser.add_argument('-inseq', '--input_seq_len', type=int, default=0, metavar='NUMBER', help='fixed input sequence length, including eos (default: same as fixed output sequence length)') parser.add_argument('-time', '--test_time', type=str, default='', metavar='STRING', help=''' Test the time of which one (default: '' (not test anyone) ); '': not test anyone '0': test hf_beamsearch '1': test ft_beamsearch '2': test hf_sampling '3': test ft_sampling 'e.g., if you want to test tf_beamsearch and ft_sampling, then you need to use -time '03' ''') parser.add_argument('-diversity_rate', '--beam_search_diversity_rate', type=float, default=0.0, metavar='NUMBER', help='deviersity rate of beam search. default is 0. When diversity rate = 0, it is equivalent to the naive beam search.') parser.add_argument('-topk', '--sampling_topk', type=int, default=1, metavar='NUMBER', help='Candidate (k) value of top k sampling in decoding. Default is 1.') parser.add_argument('-topp', '--sampling_topp', type=float, default=0.0, metavar='NUMBER', help='Probability (p) value of top p sampling in decoding. Default is 0.0. ') parser.add_argument('-d', '--data_type', type=str, default="fp32", metavar='STRING', help='data type for inference (default: fp32)', choices=['fp32', 'fp16']) parser.add_argument('-ld', '--load_data_type', type=str, default="fp32", metavar='STRING', help='data type for loading weights (default: fp32)', choices=['fp32', 'fp16']) parser.add_argument('-lib_path', '--lib_path', type=str, default="lib/libth_transformer.so", metavar='STRING', help='the path of FasterTransformer pytorch t5 op library.') parser.add_argument('-model_path', '--model_path', type=str, default=None, metavar='STRING', help='T5 model path.') parser.add_argument('-model', '--model', type=str, default="t5-small", metavar='STRING', help='T5 model size. Only used when --model_path=None', choices=["t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b"]) parser.add_argument('-tensor_para_size', '--tensor_para_size', type=int, default=1, metavar='NUMBER', help='size of tensor parallelism (default: 1)') parser.add_argument('-pipeline_para_size', '--pipeline_para_size', type=int, default=1, metavar='NUMBER', help='size of pipeline parallelism (default: 1)') # assume checkpoint config is also in the same path parser.add_argument('--ckpt_path', type=str, help='path to the checkpoint file.') parser.add_argument('--model_type', type=str, default="Huggingface", choices=["Huggingface", "Megatron", "Megatron-DeepSpeed"], help='Megatron T5 uses bias and supports both absulte and relative positional embedding;' 'Huggingface T4 adopts the paper\'s implementation and has no bias') # flags for performance benchmarking parser.add_argument('-warmup_iter', '--warmup_iterations', type=int, default=1, metavar='NUMBER', help='Number of warm-up iterations for each implementation.') parser.add_argument('-iter', '--iterations', type=int, default=10, metavar='NUMBER', help='Minimal number of inference iterations for each implementation.') parser.add_argument('-duration', '--duration', type=int, default=3, metavar='NUMBER', help='Minimal duration in seconds for inference iterations for each implementation.') parser.add_argument('-seed', '--seed', type=int, default=0, metavar='NUMBER', help='Random seed used to generate random input values.') parser.add_argument('-skip_gemm', '--skip_gemm', action="store_true", help='Skip the gemm autotuning by not calling the ./bin/t5_gemm binary.') args = parser.parse_args() translate(vars(args))
FasterTransformer-main
examples/pytorch/t5/perf_benchmark.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import configparser import dataclasses import json import os import pathlib import time import numpy as np import torch import torch.distributed as dist import typing from tqdm import tqdm from omegaconf.omegaconf import OmegaConf, open_dict from nemo.collections.nlp.data.glue_benchmark.glue_benchmark_dataset import ( TextToTextGLUEDataset, TextToTextXNLIDataset, ) from nemo.collections.nlp.modules.common.tokenizer_utils import get_nmt_tokenizer from examples.pytorch.t5.utils.ft_encoder import FTT5EncoderWeight, FTT5Encoder from examples.pytorch.t5.utils.ft_decoding import FTT5DecodingWeight, FTT5Decoding, FTT5 def _build_dataset(data_cfg, tokenizer): if data_cfg.task_name == 'xnli': dataset = TextToTextXNLIDataset( data_cfg.file_path, task_name=data_cfg.task_name, tokenizer=tokenizer, max_seq_length=data_cfg.max_seq_length, lang_list=data_cfg.eval_languages, ) else: dataset = TextToTextGLUEDataset( data_cfg.file_path, task_name=data_cfg.task_name, tokenizer=tokenizer, max_seq_length=data_cfg.max_seq_length, ) return dataset def preds_and_labels_to_text(tokenizer, preds, labels): preds = preds.cpu().numpy().tolist() labels = labels.cpu().numpy().tolist() preds = [pred[0] for pred in preds] preds_text, labels_text = [], [] for _, (pred, label) in enumerate(zip(preds, labels)): if tokenizer.eos_id in pred: idx = pred.index(tokenizer.eos_id) pred = pred[:idx] # Legacy sentencepiece detokenization still preserves special tokens which messes up exact string match. if hasattr(tokenizer, 'special_token_to_id'): pred = [id for id in pred if id not in tokenizer.special_token_to_id.values()] label = [id for id in label if id not in tokenizer.special_token_to_id.values()] pred = tokenizer.ids_to_text(pred) label = tokenizer.ids_to_text(label) preds_text.append(pred) labels_text.append(label) return preds_text, labels_text def accuracy_score(pred, ref): assert len(pred) == len(ref) total = len(pred) correct = 0 for p, r in zip(pred, ref): if p == r: correct += 1 # else: # print(f"[pred]: {p} [label]: {r}") accuracy = correct / total print(f"[accuracy]: {accuracy}") return accuracy @dataclasses.dataclass class Metric: acc: float @dataclasses.dataclass class RequestAndResult: model_answer: str target: str metrics: Metric class InputToken: def __init__(self, input_ids, attention_mask): self.input_ids = input_ids self.attention_mask = attention_mask class EncoderDecoderConfig: def __init__(self, d_model, vocab_size, num_heads, d_kv, d_ff, num_layers, relative_attention_num_buckets_or_max_pos_seq_len, adapter_inter_size, adapter_norm_position, decoder_start_token_id=0, decoder_end_token_id=1): self.d_model = d_model self.vocab_size = vocab_size self.num_heads = num_heads self.d_kv = d_kv self.d_ff = d_ff self.num_layers = num_layers self.relative_attention_num_buckets = relative_attention_num_buckets_or_max_pos_seq_len self.adapter_inter_size = adapter_inter_size self.adapter_norm_position = adapter_norm_position self.decoder_start_token_id = decoder_start_token_id self.decoder_end_token_id = decoder_end_token_id data_type_mapping = {"fp32": 0, "fp16": 1, "bf16": 2} def mnli_task(args_dict): torch.set_printoptions(precision=6) batch_size = args_dict['batch_size'] beam_size = args_dict['beam_width'] max_output_len = args_dict['max_output_len'] beam_search_diversity_rate = args_dict['beam_search_diversity_rate'] topk = args_dict['sampling_topk'] topp = args_dict['sampling_topp'] tensor_para_size = args_dict['tensor_para_size'] pipeline_para_size = args_dict['pipeline_para_size'] if args_dict['ckpt_path'] is None: raise Exception("Megatron T5 model needs to specify checkpoint path !") if dist.is_mpi_available(): try: dist.init_process_group(backend='mpi') rank = dist.get_rank() except: rank = dist.get_rank() else: rank = 0 assert dist.get_world_size() == tensor_para_size * pipeline_para_size ckpt_path = pathlib.Path(args_dict['ckpt_path']) ## read checkpoint config if exists ckpt_config = configparser.ConfigParser() vocab_path = ckpt_path / "vocab.txt" ckpt_config_path = ckpt_path / "config.ini" if ckpt_config_path.is_file(): ckpt_config.read(ckpt_config_path) ## update structure config t5_with_bias = ckpt_config.getboolean('structure', 't5_with_bias') ## megatron with bias and use absolute position embedding ## relative position embedding -> 0, absolute position embedding -> 1 position_embedding_type = 0 if ckpt_config.get('structure', 'position_embedding_type') == 'relative' else 1 use_gated_activation = ckpt_config.getboolean('structure', 'use_gated_activation') weight_data_type = {"fp16": np.float16, "fp32": np.float32}[ckpt_config.get("encoder", "weight_data_type")] activation_type = ckpt_config.get('encoder', 'feed_forward_proj') assert ckpt_config.getint("encoder", "tensor_para_size") == tensor_para_size else: raise Exception("config file does exist with the ckpt !") if rank == 0: print("\n=============== Argument ===============") for key in args_dict: print("{}: {}".format(key, args_dict[key])) print("========================================") lib_path = args_dict['lib_path'] ## build tokenizer, dataset, dataloader tokenizer_t5 = get_nmt_tokenizer( library='megatron', model_name='BertWordPieceCase', tokenizer_model=None, vocab_file=vocab_path.as_posix(), merges_file=None, legacy=False, ) assert tokenizer_t5.bos_id == ckpt_config.getint("decoder", "decoder_start_token_id") assert tokenizer_t5.eos_id == ckpt_config.getint("decoder", "eos_token_id") token_params = { tokenizer_t5.bos_token: tokenizer_t5.bos_id, tokenizer_t5.eos_token: tokenizer_t5.eos_id, tokenizer_t5.pad_token: tokenizer_t5.pad_id, } print(f"tokenizer special tokens: {token_params}") mnli_cfg = OmegaConf.create({ "file_path": args_dict['data_path'], "task_name": "mnli", "max_seq_length": 512 }) mnli_dataset = _build_dataset(mnli_cfg, tokenizer_t5) data_loader = torch.utils.data.DataLoader( mnli_dataset, collate_fn=mnli_dataset.collate_fn, batch_size=batch_size, num_workers=8, pin_memory=True, drop_last=True) q_scaling = 1.0 encoder_config = EncoderDecoderConfig(ckpt_config.getint('encoder', 'd_model'), ckpt_config.getint('encoder', 'vocab_size'), ckpt_config.getint('encoder', 'num_heads'), ckpt_config.getint('encoder', 'd_kv'), ckpt_config.getint('encoder', 'd_ff'), ckpt_config.getint('encoder', 'num_layers'), ckpt_config.getint('encoder', 'relative_attention_num_buckets_or_max_pos_seq_len'), ckpt_config.getint('encoder', 'adapter_inter_size', fallback=0), ckpt_config.get('encoder', 'adapter_norm_position', fallback="pre") ) decoder_config = EncoderDecoderConfig(ckpt_config.getint('decoder', 'd_model'), ckpt_config.getint('decoder', 'vocab_size'), ckpt_config.getint('decoder', 'num_heads'), ckpt_config.getint('decoder', 'd_kv'), ckpt_config.getint('decoder', 'd_ff'), ckpt_config.getint('decoder', 'num_layers'), ckpt_config.getint('decoder', 'relative_attention_num_buckets_or_max_pos_seq_len'), ckpt_config.getint('decoder', 'adapter_inter_size', fallback=0), ckpt_config.get('decoder', 'adapter_norm_position', fallback="pre"), tokenizer_t5.bos_id, tokenizer_t5.eos_id ) ## run gemm test if os.path.isfile("gemm_config.in") and rank == 0: cmd = f"rm gemm_config.in" print(f"Run {cmd}") os.system(cmd) if rank == 0: data_type = data_type_mapping[args_dict['data_type']] cmd = f"./bin/t5_gemm {batch_size // pipeline_para_size} {beam_size} {128} " \ f"{encoder_config.d_model} {encoder_config.num_heads} {encoder_config.d_kv} {encoder_config.d_ff} " \ f"{decoder_config.d_model} {decoder_config.num_heads} {decoder_config.d_kv} {decoder_config.d_ff} " \ f"{decoder_config.vocab_size} {data_type} {tensor_para_size} 1 > .tmp_gemm.log" print(f"Run gemm test: {cmd}") os.system(cmd) dist.barrier() ft_encoder_weight = FTT5EncoderWeight( encoder_config, tensor_para_size, pipeline_para_size, t5_with_bias=t5_with_bias, use_gated_activation=use_gated_activation, position_embedding_type=position_embedding_type, weight_data_type=weight_data_type, ) ft_decoding_weight = FTT5DecodingWeight( decoder_config, tensor_para_size, pipeline_para_size, t5_with_bias=t5_with_bias, use_gated_activation=use_gated_activation, position_embedding_type=position_embedding_type, weight_data_type=weight_data_type, ) ft_encoder_weight.load_from_bin(ckpt_path.as_posix(), "Megatron") ft_decoding_weight.load_from_bin(ckpt_path.as_posix(), "Megatron") if args_dict['data_type'] == 'fp16': ft_encoder_weight.to_half() ft_decoding_weight.to_half() elif args_dict['data_type'] == 'fp32': ft_encoder_weight.to_single() ft_decoding_weight.to_single() elif args_dict['data_type'] == 'bf16': ft_encoder_weight.to_bfloat16() ft_decoding_weight.to_bfloat16() remove_padding = True if batch_size > 32 else False ft_encoder = FTT5Encoder(ft_encoder_weight.w, lib_path, encoder_config.num_heads, encoder_config.d_kv, encoder_config.d_ff, encoder_config.d_model, remove_padding, encoder_config.num_layers, encoder_config.relative_attention_num_buckets, 0, # num_experts [], # moe_layer_index 128, False, q_scaling, tensor_para_size, pipeline_para_size, t5_with_bias, position_embedding_type, 0, activation_type, adapter_inter_size=encoder_config.adapter_inter_size, adapter_norm_position=encoder_config.adapter_norm_position) ft_decoding = FTT5Decoding(ft_decoding_weight.w, lib_path, decoder_config.num_heads, decoder_config.d_kv, decoder_config.d_ff, encoder_config.d_model, decoder_config.d_model, decoder_config.num_layers, decoder_config.decoder_start_token_id, decoder_config.decoder_end_token_id, decoder_config.vocab_size, q_scaling, decoder_config.relative_attention_num_buckets, 0, # num_experts [], # moe_layer_index max_distance=128, tensor_para_size=tensor_para_size, pipeline_para_size=pipeline_para_size, moe_k=0, activation_type=activation_type, t5_with_bias=t5_with_bias, position_embedding_type=position_embedding_type, adapter_inter_size=decoder_config.adapter_inter_size, adapter_norm_position=decoder_config.adapter_norm_position) ft_t5 = FTT5(ft_encoder, ft_decoding) preds_list = [] labels_list = [] results_list = [] start = time.time() for idx, batch in tqdm(enumerate(data_loader)): input_token = InputToken(batch['text_enc'], batch['enc_mask']) ft_decoding_outputs, ft_decoding_seq_lens = ft_t5(input_token, None, beam_size, max_output_len, topk, topp, beam_search_diversity_rate=beam_search_diversity_rate, is_return_output_log_probs=args_dict["return_output_log_probs"], is_return_cum_log_probs=args_dict["return_cum_log_probs"]) preds, labels = preds_and_labels_to_text(tokenizer_t5, torch.IntTensor(ft_decoding_outputs), batch['labels']) labels_list += labels preds_list += preds results_list.extend([ RequestAndResult( model_answer=pred, target=label, metrics=Metric(acc=pred == label) ) for pred, label in zip(preds, labels) ]) end = time.time() if rank == 0: print(f"\n[Elapsed Time]: {end - start} seconds") accuracy = accuracy_score(preds_list, labels_list) output_path = args_dict.get("output_path") if output_path is not None and rank == 0: output_path = pathlib.Path(output_path) output_path.parent.mkdir(parents=True, exist_ok=True) with output_path.open("w") as output_file: results = { "results": { "mnli": { "acc": accuracy } }, "output": { "mnli": [ dataclasses.asdict(r) for r in results_list ] } } json.dump(results, output_file) if __name__ == "__main__": parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-batch', '--batch_size', type=int, default=1, metavar='NUMBER', help='batch size (default: 1)') parser.add_argument('-beam', '--beam_width', type=int, default=4, metavar='NUMBER', help='beam width (default: 4)') parser.add_argument('-s', '--max_output_len', type=int, default=10, metavar='NUMBER', help='max output length (default: 10)') parser.add_argument('-diversity_rate', '--beam_search_diversity_rate', type=float, default=0.0, metavar='NUMBER', help='deviersity rate of beam search. default is 0. When diversity rate = 0, it is equivalent to the naive beam search.') parser.add_argument('-topk', '--sampling_topk', type=int, default=1, metavar='NUMBER', help='Candidate (k) value of top k sampling in decoding. Default is 1.') parser.add_argument('-topp', '--sampling_topp', type=float, default=0.0, metavar='NUMBER', help='Probability (p) value of top p sampling in decoding. Default is 0.0. ') parser.add_argument('-d', '--data_type', type=str, default="fp32", metavar='STRING', help='data type (default: fp32)', choices=['fp32', 'fp16', 'bf16']) parser.add_argument('-lib_path', '--lib_path', type=str, default="/workspace/FasterTransformer/build/lib/libth_transformer.so", metavar='STRING', help='the path of FasterTransformer pytorch t5 op library.') parser.add_argument('-data_path', '--data_path', type=str, required=True, help="the MNLI task data path") parser.add_argument('-tensor_para_size', '--tensor_para_size', type=int, default=1, metavar='NUMBER', help='size of tensor parallelism (default: 1)') parser.add_argument('-pipeline_para_size', '--pipeline_para_size', type=int, default=1, metavar='NUMBER', help='size of pipeline parallelism (default: 1)') # assume checkpoint config is also in the same path parser.add_argument('--ckpt_path', type=str, help='path to the checkpoint file.') parser.add_argument('--output_path', help='path to results file with calculated metrics.') parser.add_argument('--return_output_log_probs', action='store_true', help='Return the log probability of generated tokens.') parser.add_argument('--return_cum_log_probs', action='store_true', help='Return the cumulative log probability of generated tokens.') args = parser.parse_args() mnli_task(vars(args))
FasterTransformer-main
examples/pytorch/t5/mnli_task_example.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' This example is used to verify the correctess on summarization task. So, we don't put benchmark testing in this example. ''' from __future__ import print_function import argparse import json import numpy as np import os import sys import torch import torch.distributed as dist from datasets import load_dataset, load_metric # dir_path = os.path.dirname(os.path.realpath(__file__)) # sys.path.append(dir_path + "/../../../3rdparty/transformers/src/") from transformers import T5ForConditionalGeneration, AutoTokenizer, T5Config from tqdm import tqdm import configparser import math import datetime dir_path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(dir_path + "/../../..") from examples.pytorch.t5.utils.ft_decoding import FTT5DecodingWeight, FTT5Decoding, FTT5 from examples.pytorch.t5.utils.ft_encoder import FTT5EncoderWeight, FTT5Encoder def main(): parser = argparse.ArgumentParser() parser.add_argument('--ft_model_location', type=str, default='/models/T5/HF/t5-base/c-models/') parser.add_argument('--hf_model_location', type=str, default='/models/T5/HF/t5-base/') parser.add_argument('--disable_summarize', action='store_true') parser.add_argument('--test_hf', action='store_true') parser.add_argument('--test_ft', action='store_true') parser.add_argument('--data_type', type=str, choices=['fp32', 'fp16', 'bf16'], default='fp32') parser.add_argument("--cache_path", type=str, default="/workdir/datasets/ccdv/") parser.add_argument("--max_ite", type=int, default=20) parser.add_argument("--max_seq_len", type=int, default=200) parser.add_argument("--ft_use_hf_config", action="store_true", help="use the hyper-parameters from the hf model") parser.add_argument('--lib_path', type=str, default='./lib/libth_transformer.so', help='path to the pyt_fastertransformer dynamic lib file.') parser.add_argument('--tensor_para_size', type=int, default=1, help='tensor parallel size') parser.add_argument('--pipeline_para_size', type=int, default=1, help='pipeline parallel size') parser.add_argument('--rougeLsum_threshold', type=float, help='Threshold of FT rougeLsum score') parser.add_argument("--top_k", type=int, default=1, help="top k for sampling") parser.add_argument("--top_p", type=float, default=0.0, help="top p for sampling") parser.add_argument("--beam_width", type=int, default=1, help="beam width for beam search") args = parser.parse_args() np.random.seed(0) # rouge score use sampling to compute the score if dist.is_mpi_available(): try: dist.init_process_group(backend='mpi') rank = dist.get_rank() except: rank = dist.get_rank() else: rank = 0 disable_summarize = args.disable_summarize test_hf = args.test_hf test_ft = args.test_ft tensor_para_size = args.tensor_para_size pipeline_para_size = args.pipeline_para_size ft_model_location = args.ft_model_location + f"/{tensor_para_size}-gpu/" hf_model_location = args.hf_model_location tokenizer = AutoTokenizer.from_pretrained(hf_model_location) tokenizer.pad_token = tokenizer.eos_token dataset_cnn = load_dataset("ccdv/cnn_dailymail", '3.0.0', cache_dir=args.cache_path) if rank == 0 and test_hf: start_time = datetime.datetime.now() if args.data_type == "fp32": model = T5ForConditionalGeneration.from_pretrained(hf_model_location, torch_dtype=torch.float32).cuda() elif args.data_type == "fp16": model = T5ForConditionalGeneration.from_pretrained(hf_model_location, torch_dtype=torch.float16).cuda() elif args.data_type == "bf16": model = T5ForConditionalGeneration.from_pretrained(hf_model_location, torch_dtype=torch.bfloat16).cuda() stop_time = datetime.datetime.now() print(f"[INFO] load HF model spend {(stop_time - start_time).total_seconds()} sec") if test_ft: ckpt_config = configparser.ConfigParser() ckpt_config_path = os.path.join(ft_model_location, 'config.ini') if os.path.isfile(ckpt_config_path): ckpt_config.read(ckpt_config_path) else: assert False, "[ERROR] This example only support loading model with FT format directly." weight_data_type = np.float32 weight_data_type = {"fp16": np.float16, "fp32": np.float32}[ckpt_config.get("encoder", "weight_data_type")] relative_attention_max_distance = 128 encoder_config = T5Config(vocab_size=ckpt_config.getint("encoder", "vocab_size"), d_model=ckpt_config.getint("encoder", "d_model"), d_kv=ckpt_config.getint("encoder", "d_kv"), d_ff=ckpt_config.getint("encoder", "d_ff"), num_layers=ckpt_config.getint("encoder", "num_layers"), num_decoder_layers=ckpt_config.getint("encoder", "num_decoder_layers"), num_heads=ckpt_config.getint("encoder", "num_heads"), relative_attention_num_buckets=ckpt_config.getint( "encoder", "relative_attention_num_buckets_or_max_pos_seq_len"), feed_forward_proj=ckpt_config.get("encoder", "feed_forward_proj"), pad_token_id=ckpt_config.getint("encoder", "pad_token_id"), eos_token_id=ckpt_config.getint("encoder", "eos_token_id"), is_gated_act=ckpt_config.getboolean("encoder", "is_gated_act", fallback=0), ) decoder_config = T5Config(vocab_size=ckpt_config.getint("decoder", "vocab_size"), d_model=ckpt_config.getint("decoder", "d_model"), d_kv=ckpt_config.getint("decoder", "d_kv"), d_ff=ckpt_config.getint("decoder", "d_ff"), num_layers=ckpt_config.getint("decoder", "num_layers"), num_decoder_layers=ckpt_config.getint("decoder", "num_decoder_layers"), num_heads=ckpt_config.getint("decoder", "num_heads"), relative_attention_num_buckets=ckpt_config.getint( "decoder", "relative_attention_num_buckets_or_max_pos_seq_len"), feed_forward_proj=ckpt_config.get("decoder", "feed_forward_proj"), pad_token_id=ckpt_config.getint("decoder", "pad_token_id"), eos_token_id=ckpt_config.getint("decoder", "eos_token_id"), decoder_start_token_id=ckpt_config.getint("decoder", "decoder_start_token_id"), is_gated_act=ckpt_config.getboolean("decoder", "is_gated_act", fallback=0), ) assert decoder_config.feed_forward_proj == encoder_config.feed_forward_proj assert decoder_config.feed_forward_proj == encoder_config.feed_forward_proj t5_with_bias = ckpt_config.getboolean("structure", "t5_with_bias") use_gated_activation = encoder_config.is_gated_act position_embedding_type = 0 if ckpt_config.get('structure', 'position_embedding_type') == 'relative' else 1 activation_type = encoder_config.feed_forward_proj # https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py#L1660 # if tie_word_embeddings == True, scale the decoder output by sequence_output = sequence_output * (self.model_dim**-0.5) tie_word_embeddings = ckpt_config.getboolean("decoder", "tie_word_embeddings") ft_encoder_weight = FTT5EncoderWeight( encoder_config, tensor_para_size, pipeline_para_size, t5_with_bias=t5_with_bias, use_gated_activation=use_gated_activation, position_embedding_type=position_embedding_type, weight_data_type=weight_data_type ) ft_decoding_weight = FTT5DecodingWeight( decoder_config, tensor_para_size, pipeline_para_size, t5_with_bias=t5_with_bias, use_gated_activation=use_gated_activation, position_embedding_type=position_embedding_type, weight_data_type=weight_data_type, ) start_time = datetime.datetime.now() ft_encoder_weight.load_from_bin(ft_model_location, "Megatron") stop_time = datetime.datetime.now() print(f"[INFO] load FT encoder model spend {(stop_time - start_time).total_seconds()} sec") start_time = datetime.datetime.now() ft_decoding_weight.load_from_bin(ft_model_location, "Megatron") stop_time = datetime.datetime.now() print(f"[INFO] load FT decoding model spend {(stop_time - start_time).total_seconds()} sec") if args.data_type == "fp32": ft_encoder_weight.to_float() ft_decoding_weight.to_float() elif args.data_type == "fp16": ft_encoder_weight.to_half() ft_decoding_weight.to_half() elif args.data_type == "bf16": ft_encoder_weight.to_bfloat16() ft_decoding_weight.to_bfloat16() ft_encoder_weight.to_cuda() ft_decoding_weight.to_cuda() q_scaling = 1.0 / (math.sqrt(encoder_config.d_kv)) remove_padding = True ft_encoder = FTT5Encoder(ft_encoder_weight.w, args.lib_path, encoder_config.num_heads, encoder_config.d_kv, encoder_config.d_ff, encoder_config.d_model, remove_padding, encoder_config.num_layers, encoder_config.relative_attention_num_buckets, 0, # num_experts [], # moe_layer_index relative_attention_max_distance, False, q_scaling, tensor_para_size, pipeline_para_size, t5_with_bias, position_embedding_type, moe_k=0, activation_type=activation_type) ft_decoding = FTT5Decoding(ft_decoding_weight.w, args.lib_path, decoder_config.num_heads, decoder_config.d_kv, decoder_config.d_ff, encoder_config.d_model, decoder_config.d_model, decoder_config.num_layers, decoder_config.decoder_start_token_id, decoder_config.eos_token_id, decoder_config.vocab_size, q_scaling, decoder_config.relative_attention_num_buckets, 0, # num_experts [], # moe_layer_index max_distance=relative_attention_max_distance, tensor_para_size=tensor_para_size, pipeline_para_size=pipeline_para_size, t5_with_bias=t5_with_bias, position_embedding_type=position_embedding_type, moe_k=0, activation_type=activation_type, tie_word_embeddings=tie_word_embeddings) ft_t5 = FTT5(ft_encoder, ft_decoding) beam_width = args.beam_width top_k = args.top_k top_p = args.top_p def summarize_ft(datapoint): if not disable_summarize: line = "summarize: " + datapoint['article'] else: line = datapoint['article'] line = line.strip() line = line.replace(" n't", "n't") line_tokens = tokenizer(line, return_tensors='pt') with torch.no_grad(): output, ft_output_len = ft_t5(line_tokens, None, beam_width, args.max_seq_len, top_k, top_p, beam_search_diversity_rate=0.0, is_return_output_log_probs=False, len_penalty=1.0, is_return_cum_log_probs=False) tokens = [output[0][beam_idx][:ft_output_len[0][beam_idx]] for beam_idx in range(beam_width)] output_lines = [tokenizer.decode(output[0][beam_idx][:ft_output_len[0][beam_idx]], skip_special_tokens=True) for beam_idx in range(beam_width)] output_lines = [".".join(output_line.split('.')[:4]) + "." for output_line in output_lines] return output_lines, tokens def summarize_hf(datapoint): if not disable_summarize: line = "summarize: " + datapoint['article'] else: line = datapoint['article'] line = line.strip() line = line.replace(" n't", "n't") line_encoded = tokenizer.encode(line, return_tensors='pt') line_encoded = line_encoded.cuda() with torch.no_grad(): if beam_width > 1: output = model.generate(line_encoded, max_length=args.max_seq_len + 1, num_beams=beam_width, num_return_sequences=beam_width, early_stopping=True, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id) else: output = model.generate(line_encoded, max_length=args.max_seq_len + 1, do_sample=True, top_k=top_k if top_k > 0 else None, top_p=top_p if top_p > 0.0 else None, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id) tokens = [output[beam_idx].cpu().numpy() for beam_idx in range(beam_width)] output_lines = [tokenizer.decode(output[beam_idx], skip_special_tokens=True) for beam_idx in range(beam_width)] output_lines = [".".join(output_line.split('.')[:4]) + "." for output_line in output_lines] return output_lines, tokens if disable_summarize: tokens = [] else: metric_fts = [load_metric("rouge") for beam_idx in range(beam_width)] metric_hfs = [load_metric("rouge") for beam_idx in range(beam_width)] if not disable_summarize: datapoint = dataset_cnn['test'][0] if test_ft: summary_ft, _ = summarize_ft(datapoint) if rank == 0: print('---------------------------------------------------------') print('FT Generated : ') print(' Article : ', datapoint['article']) print('\n Highlights : ', datapoint['highlights']) print('\n Summary : ', summary_ft) print('---------------------------------------------------------') for i in range(beam_width): metric_fts[i].add_batch(predictions=[summary_ft[i]], references=[[datapoint['highlights']]]) if test_hf and rank == 0: summary_hf, _ = summarize_hf(datapoint) print('---------------------------------------------------------') print('HF Generated : ') print(' Article : ', datapoint['article']) print('\n Highlights : ', datapoint['highlights']) print('\n Summary : ', summary_hf) print('---------------------------------------------------------') for i in range(beam_width): metric_hfs[i].add_batch(predictions=[summary_hf[i]], references=[[datapoint['highlights']]]) ft_time = 0.0 hf_time = 0.0 for data_point_idx in tqdm(range(1, 11490, int(11490 / args.max_ite))): try: datapoint = dataset_cnn['test'][data_point_idx] start_time = datetime.datetime.now() if test_ft: summary_ft, tokens_ft = summarize_ft(datapoint) stop_time = datetime.datetime.now() ft_time += (stop_time - start_time).total_seconds() if rank == 0 and ((test_hf and not disable_summarize) or disable_summarize): start_time = datetime.datetime.now() summary_hf, tokens_hf = summarize_hf(datapoint) stop_time = datetime.datetime.now() hf_time += (stop_time - start_time).total_seconds() if rank == 0: if not disable_summarize: if test_ft: for i in range(beam_width): metric_fts[i].add_batch(predictions=[summary_ft[i]], references=[[datapoint['highlights']]]) if test_hf: for i in range(beam_width): metric_hfs[i].add_batch(predictions=[summary_hf[i]], references=[[datapoint['highlights']]]) else: tokens.append((tokens_ft, tokens_hf)) except Exception as e: print(f'Error with datapoint: {data_point_idx} with error {e}') def compute_exact_match(tokens, n_tokens=[1, 10, 25, 50, 100, 150, 200, 250]): em_metrics = [] for t in n_tokens: errors = 0 total = 0 for ft_tokens, hf_tokens in tokens: if len(ft_tokens) > t and len(hf_tokens) > t: total = total + 1 if not np.array_equal(ft_tokens[:t], hf_tokens[:t]): errors = errors + 1 if total > 0: print(f"{t}-token exact match acc: {100*(1-errors/total):.2f}") em_metrics.append(1 - errors / total) else: em_metrics.append(np.nan) return em_metrics if rank == 0: if not disable_summarize: if test_ft: computed_metrics_fts = [metric_ft.compute() for metric_ft in metric_fts] if test_hf: computed_metrics_hfs = [metric_hf.compute() for metric_hf in metric_hfs] print(f'Hugging Face (total latency: {hf_time} sec)') for i in range(beam_width): computed_metrics_hf = computed_metrics_hfs[i] print(f"beam_id: {i}") for key in computed_metrics_hf.keys(): print(f'{key} : {computed_metrics_hf[key].mid[2]*100}') print() if test_ft: print(f'Faster Transformers (total latency: {ft_time} sec)') for i in range(beam_width): computed_metrics_ft = computed_metrics_fts[i] print(f"beam_id: {i}") for key in computed_metrics_ft.keys(): print(f'{key} : {computed_metrics_ft[key].mid[2]*100}') print() if args.rougeLsum_threshold != None: assert computed_metrics_fts[0]["rougeLsum"].mid[2] * \ 100 >= args.rougeLsum_threshold, "[INFO] TEST FAIL !" print(f"[INFO] TEST PASS !") else: em_metrics = compute_exact_match(tokens) if __name__ == '__main__': main()
FasterTransformer-main
examples/pytorch/t5/summarization.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import configparser from datetime import datetime import multiprocessing import shutil from pathlib import Path import numpy as np import torch # pytype: disable=import-error import sys sys.path.append("/workdir/megatron-lm") shared_mapping = { "wte":"shared.weight", "wte_T":"shared.weight_T", "ape":"shared.ape", "encoder_rpe":"block.0.layer.0.SelfAttention.relative_attention_bias", "decoder_rpe":"block.0.layer.0.SelfAttention.relative_attention_bias" } encoder_mapping = { "input_layernorm":"layer.0.layer_norm", "self_attention.query_key_value":["layer.0.SelfAttention.q", "layer.0.SelfAttention.k", "layer.0.SelfAttention.v"], "self_attention.dense":"layer.0.SelfAttention.o", "post_attention_layernorm":"layer.1.layer_norm", "mlp.dense_h_to_4h":"layer.1.DenseReluDense.wi", "mlp.dense_4h_to_h":"layer.1.DenseReluDense.wo", "final_layernorm":"final_layer_norm" } decoder_mapping = { "input_layernorm":"layer.0.layer_norm", "self_attention.query_key_value":["layer.0.SelfAttention.qkv"], "self_attention.dense":"layer.0.SelfAttention.o", "post_attention_layernorm":"layer.1.layer_norm", "inter_attention.query":["layer.1.EncDecAttention.q"], "inter_attention.key_value":["layer.1.EncDecAttention.k","layer.1.EncDecAttention.v"], "inter_attention.dense":"layer.1.EncDecAttention.o", "post_inter_attention_layernorm":"layer.2.layer_norm", "mlp.dense_h_to_4h":"layer.2.DenseReluDense.wi", "mlp.dense_4h_to_h":"layer.2.DenseReluDense.wo", "final_layernorm":"final_layer_norm" } megatron_HF_name_mapping = { "shared":shared_mapping, "encoder":encoder_mapping, "decoder":decoder_mapping } encoder_config_mapping = { "num_attention_heads":"num_heads", "kv_channels":"d_kv", "hidden_size":"d_model", "ffn_hidden_size":"d_ff", "num_layers":"num_layers", "padded_vocab_size":"vocab_size", "max_position_embeddings":"relative_attention_num_buckets_or_max_pos_seq_len", "relative_position_num_buckets":"relative_attention_num_buckets_or_max_pos_seq_len" } decoder_config_mapping = { "num_attention_heads":"num_heads", "kv_channels":"d_kv", "hidden_size":"d_model", "ffn_hidden_size":"d_ff", "num_layers":"num_layers", "padded_vocab_size":"vocab_size", "max_position_embeddings":"relative_attention_num_buckets_or_max_pos_seq_len", "relative_position_num_buckets":"relative_attention_num_buckets_or_max_pos_seq_len" } decoder_new_config = { "decoder_start_token_id":30522, ## need to adjust "eos_token_id":30523 ## need to adjust } model_new_config = {"structure":{"t5_with_bias": "true", "use_gated_activation": "false", "position_embedding_type": "absolute"}} def get_weight_data_type(data_type): if data_type == "fp32": return np.float32 elif data_type == "fp16": return np.float16 else: assert False, f"Invalid weight data type {data_type}" def convert_megatron_to_HF_naming_style_single(saved_key, name_mapping): saved_key = saved_key.replace("layers","block") mapping_key = saved_key.rsplit(sep=".", maxsplit=1)[0] mapping_key_no_num = mapping_key[mapping_key.find(".", 6) + 1 :] block_num = mapping_key[: mapping_key.find(".", 6) + 1] weight_or_bias = saved_key.rsplit(sep=".", maxsplit=1)[1] saved_key = block_num + name_mapping[mapping_key_no_num] + "." + weight_or_bias return saved_key def convert_megatron_to_HF_naming_style_multiple(saved_key, name_mapping): saved_key = saved_key.replace("layers","block") mapping_key = saved_key.rsplit(sep=".", maxsplit=1)[0] mapping_key_no_num = mapping_key[mapping_key.find(".", 6) + 1 :] mapping_vals_no_num = name_mapping[mapping_key_no_num] block_num = mapping_key[: mapping_key.find(".", 6) + 1] weight_or_bias = saved_key.rsplit(sep=".", maxsplit=1)[1] saved_keys = [block_num + val + "." + weight_or_bias for val in mapping_vals_no_num] return saved_keys def _gpu_map_location(storage, loc): if loc.startswith("cuda"): training_gpu_idx = int(loc.split(":")[1]) inference_gpu_idx = training_gpu_idx % torch.cuda.device_count() return storage.cuda(inference_gpu_idx) elif loc.startswith("cpu"): return storage.cpu() else: raise NotImplementedError(f"Not handled {loc}") # This tool is used to support the new megatron model trained by pipeline parallel + tensor parallel def merge_and_convert_process(model_type, i, pipeline_para_rank, saved_dir, factor, key, model_args, transformer_model_list, ckpt_ver, np_weight_data_type): prefix = model_type name_mapping = megatron_HF_name_mapping[model_type] saved_dir = Path(saved_dir) if key.find("layers.") != -1: layer_index = (int)(key[7 : key.find(".", 7)]) saved_key = key.replace( "layers.%d." % layer_index, "layers.%d." % (layer_index + pipeline_para_rank * model_args.num_layers // model_args.pipeline_model_parallel_size)) else: saved_key = key major_device = transformer_model_list[0][key].device if ( key.find("input_layernorm.weight") != -1 or key.find("input_layernorm.bias") != -1 or key.find("self_attention.dense.bias") != -1 or key.find("inter_attention.dense.bias") != -1 or key.find("post_attention_layernorm.weight") != -1 or key.find("post_inter_attention_layernorm.weight") != -1 or key.find("post_attention_layernorm.bias") != -1 or key.find("post_inter_attention_layernorm.bias") != -1 or key.find("mlp.dense_4h_to_h.bias") != -1 or key.find("final_layernorm.weight") != -1 or key.find("final_layernorm.bias") != -1): # shared weights, only need to convert the weights of rank 0 if i == 0: val = transformer_model_list[0][key].T.float().cpu().numpy() saved_key = convert_megatron_to_HF_naming_style_single(saved_key, name_mapping) saved_path = saved_dir / f"{prefix}.{saved_key}.bin" np.squeeze(val).astype(np_weight_data_type).tofile(saved_path) elif (key.find("self_attention.dense.weight") != -1 or key.find("inter_attention.dense.weight") != -1 or key.find("mlp.dense_4h_to_h.weight") != -1): vals = [] for k in range(factor): vals.append(transformer_model_list[k][key].T.float().to(major_device)) saved_key = convert_megatron_to_HF_naming_style_single(saved_key, name_mapping) torch.cat(vals, dim=0).cpu().numpy().astype(np_weight_data_type).tofile(saved_path) elif key.find("mlp.dense_h_to_4h.weight") != -1 or key.find("mlp.dense_h_to_4h.bias") != -1: vals = [] for k in range(factor): vals.append(transformer_model_list[k][key].T.float().to(major_device)) saved_key = convert_megatron_to_HF_naming_style_single(saved_key, name_mapping) saved_path = saved_dir / f"{prefix}.{saved_key}.{i:d}.bin" torch.cat(vals, dim=-1).cpu().numpy().astype(np_weight_data_type).tofile(saved_path) elif (key.find("self_attention.query_key_value.bias") != -1 or key.find("inter_attention.query.bias") != -1 or key.find("inter_attention.key_value.bias") != -1): num_splits = 3 if key.find("inter_attention.key_value.bias") != -1: num_splits = 2 if key.find("inter_attention.query.bias") != -1: num_splits = 1 vals = [] for k in range(factor): val = transformer_model_list[k][key].T.float() local_dim = int(val.shape[-1] / num_splits) if ckpt_ver == 3: head_num = model_args.num_attention_heads // model_args.tensor_model_parallel_size size_per_head = model_args.kv_channels val = val.reshape(head_num, num_splits, size_per_head) val = val.permute(1, 0, 2) val = val.reshape(num_splits, local_dim) vals.append(val.to(major_device)) saved_vals = torch.cat(vals, dim=-1) saved_keys = convert_megatron_to_HF_naming_style_multiple(saved_key, name_mapping) if len(saved_keys) == 1: saved_path = saved_dir / f"{prefix}.{saved_keys[0]}.{i:d}.bin" saved_vals.cpu().numpy().astype(np_weight_data_type).tofile(saved_path) return for index in range(len(saved_keys)): saved_path = saved_dir / f"{prefix}.{saved_keys[index]}.{i:d}.bin" saved_vals[index,...].cpu().numpy().astype(np_weight_data_type).tofile(saved_path) elif (key.find("self_attention.query_key_value.weight") != -1 or key.find("inter_attention.query.weight") != -1 or key.find("inter_attention.key_value.weight") != -1): num_splits = 3 if key.find("inter_attention.key_value.weight") != -1: num_splits = 2 if key.find("inter_attention.query.weight") != -1: num_splits = 1 vals = [] for k in range(factor): val = transformer_model_list[k][key].T.float() hidden_dim = val.shape[0] local_dim = int(val.shape[-1] / num_splits) if ckpt_ver == 3: head_num = model_args.num_attention_heads size_per_head = model_args.kv_channels head_num = head_num // model_args.tensor_model_parallel_size val = val.reshape(hidden_dim, head_num, num_splits, size_per_head) val = val.permute(0, 2, 1, 3) val = val.reshape(hidden_dim, num_splits, local_dim) vals.append(val.to(major_device)) saved_vals = torch.cat(vals, dim=-1) saved_keys = convert_megatron_to_HF_naming_style_multiple(saved_key, name_mapping) if len(saved_keys) == 1: saved_path = saved_dir / f"{prefix}.{saved_keys[0]}.{i:d}.bin" saved_vals.cpu().numpy().astype(np_weight_data_type).tofile(saved_path) return for index in range(len(saved_keys)): saved_path = saved_dir / f"{prefix}.{saved_keys[index]}.{i:d}.bin" saved_vals[:, index, ...].cpu().numpy().astype(np_weight_data_type).tofile(saved_path) else: print(f"[ERROR] cannot find key '{key}'") def split_and_convert_process(model_type, i, pipeline_para_rank, saved_dir, factor, key, model_args, transformer_model_list, ckpt_ver, np_weight_data_type): prefix = model_type name_mapping = megatron_HF_name_mapping[model_type] val = transformer_model_list[0][key].T.float().cpu().numpy().astype(np_weight_data_type) del transformer_model_list[0][key] if key.find("layers.") != -1: layer_index = (int)(key[7 : key.find(".", 7)]) saved_key = key.replace( "layers.%d." % layer_index, "layers.%d." % (layer_index + pipeline_para_rank * model_args.num_layers // model_args.pipeline_model_parallel_size)) else: saved_key = key if ( key.find("input_layernorm.weight") != -1 or key.find("input_layernorm.bias") != -1 or key.find("self_attention.dense.bias") != -1 or key.find("inter_attention.dense.bias") != -1 or key.find("post_attention_layernorm.weight") != -1 or key.find("post_inter_attention_layernorm.weight") != -1 or key.find("post_attention_layernorm.bias") != -1 or key.find("post_inter_attention_layernorm.bias") != -1 or key.find("mlp.dense_4h_to_h.bias") != -1 or key.find("final_layernorm.weight") != -1 or key.find("final_layernorm.bias") != -1): # shared weights, only need to convert the weights of rank 0 if i == 0: saved_key = convert_megatron_to_HF_naming_style_single(saved_key, name_mapping) saved_path = saved_dir / f"{prefix}.{saved_key}.bin" val.tofile(saved_path.as_posix()) elif (key.find("self_attention.dense.weight") != -1 or key.find("inter_attention.dense.weight") != -1 or key.find("mlp.dense_4h_to_h.weight") != -1): split_vals = np.split(val, factor, axis=0) saved_key = convert_megatron_to_HF_naming_style_single(saved_key, name_mapping) for j in range(factor): saved_path = saved_dir / f"{prefix}.{saved_key}.{i * factor + j:d}.bin" split_vals[j].tofile(saved_path.as_posix()) elif key.find("mlp.dense_h_to_4h.weight") != -1 or key.find("mlp.dense_h_to_4h.bias") != -1: split_vals = np.split(val, factor, axis=-1) saved_key = convert_megatron_to_HF_naming_style_single(saved_key, name_mapping) for j in range(factor): saved_path = saved_dir / f"{prefix}.{saved_key}.{i * factor + j:d}.bin" split_vals[j].tofile(saved_path.as_posix()) elif (key.find("self_attention.query_key_value.bias") != -1 or key.find("inter_attention.query.bias") != -1 or key.find("inter_attention.key_value.bias") != -1): num_splits = 3 if key.find("inter_attention.key_value.bias") != -1: num_splits = 2 if key.find("inter_attention.query.bias") != -1: num_splits = 1 local_dim = int(val.shape[-1] / num_splits) if ckpt_ver == 3: head_num = model_args.num_attention_heads // model_args.tensor_model_parallel_size size_per_head = model_args.kv_channels val = val.reshape(head_num, num_splits, size_per_head) val = val.transpose(1, 0, 2) val = val.reshape(num_splits, local_dim) split_vals = np.split(val, factor, axis=-1) saved_keys = convert_megatron_to_HF_naming_style_multiple(saved_key, name_mapping) for j in range(factor): if len(saved_keys) == 1: saved_path = saved_dir / f"{prefix}.{saved_keys[0]}.{i * factor + j:d}.bin" split_vals[j].tofile(saved_path.as_posix()) continue for index in range(len(saved_keys)): saved_path = saved_dir / f"{prefix}.{saved_keys[index]}.{i * factor + j:d}.bin" split_vals[j][index, ...].tofile(saved_path.as_posix()) elif (key.find("self_attention.query_key_value.weight") != -1 or key.find("inter_attention.query.weight") != -1 or key.find("inter_attention.key_value.weight") != -1): num_splits = 3 if key.find("inter_attention.key_value.weight") != -1: num_splits = 2 if key.find("inter_attention.query.weight") != -1: num_splits = 1 hidden_dim = val.shape[0] local_dim = int(val.shape[-1] / num_splits) if ckpt_ver == 3: head_num = model_args.num_attention_heads size_per_head = model_args.kv_channels head_num = head_num // model_args.tensor_model_parallel_size val = val.reshape(hidden_dim, head_num, num_splits, size_per_head) val = val.transpose(0, 2, 1, 3) val = val.reshape(hidden_dim, num_splits, local_dim) split_vals = np.split(val, factor, axis=-1) saved_keys = convert_megatron_to_HF_naming_style_multiple(saved_key, name_mapping) for j in range(factor): if len(saved_keys) == 1: saved_path = saved_dir / f"{prefix}.{saved_keys[0]}.{i * factor + j:d}.bin" split_vals[j].tofile(saved_path.as_posix()) continue for index in range(len(saved_keys)): saved_path = saved_dir / f"{prefix}.{saved_keys[index]}.{i * factor + j:d}.bin" split_vals[j][:, index, ...].tofile(saved_path.as_posix()) else: print(f"[ERROR] cannot find key '{key}'") def convert_checkpoint(args): saved_dir = Path(args.saved_dir) / f"{args.infer_gpu_num:d}-gpu" saved_dir.mkdir(parents=True, exist_ok=True) if args.vocab_path: shutil.copy(args.vocab_path, (saved_dir / "vocab.json").as_posix()) if args.merges_path: shutil.copy(args.merges_path, (saved_dir / "merges.txt").as_posix()) prefix = Path(args.in_file) ckpt_name = "model_optim_rng.pt" # load position_embedding from rank 0 if (prefix / "mp_rank_00").is_dir(): model_00 = torch.load((prefix / "mp_rank_00" / ckpt_name).as_posix(), map_location=_gpu_map_location) elif (prefix / "mp_rank_00_000").is_dir(): model_00 = torch.load((prefix / "mp_rank_00_000" / ckpt_name).as_posix(), map_location=_gpu_map_location) else: print(f"[ERROR] Cannot find checkpoint in {prefix}.") exit(1) model_args = model_00["args"] # update model structure config if not hasattr(model_args, 'position_embedding_type') or model_args.position_embedding_type == "absolute": model_new_config["structure"]["position_embedding_type"] = "absolute" config = configparser.ConfigParser() config["encoder"] = {} config["decoder"] = {} for key, val in vars(model_args).items(): if key in encoder_config_mapping.keys(): config["encoder"][encoder_config_mapping[key]] = f"{val}" if key in decoder_config_mapping.keys(): config["decoder"][decoder_config_mapping[key]] = f"{val}" for key, val in decoder_new_config.items(): config["decoder"][key] = f"{val}" for key, val in model_new_config.items(): config[key] = {} for val_key, val_val in val.items(): config[key][val_key] = f"{val_val}" ## add weight data type np_weight_data_type = get_weight_data_type(args.weight_data_type) config['encoder']['weight_data_type'] = args.weight_data_type config['decoder']['weight_data_type'] = args.weight_data_type # add model name config["encoder"]["_name_or_path"] = args.model_name config["decoder"]["_name_or_path"] = args.model_name # add weight data type config["encoder"]["weight_data_type"] = args.weight_data_type config["decoder"]["weight_data_type"] = args.weight_data_type np_weight_data_type = get_weight_data_type(args.weight_data_type) with open((saved_dir / f"config.ini").as_posix(), 'w') as configfile: config.write(configfile) if "position_embeddings" in model_00["model"]["language_model"]["embedding"].keys(): model_00["model"]["language_model"]["embedding"]["position_embeddings"]["weight"] \ .float().cpu().numpy().astype(np_weight_data_type) \ .tofile((saved_dir / "shared.ape.bin").as_posix()) # inference factor calculation t_gpu_num = model_args.tensor_model_parallel_size i_gpu_num = args.infer_gpu_num if t_gpu_num > i_gpu_num: assert t_gpu_num % i_gpu_num == 0 is_merge_ckpt = True factor = int(t_gpu_num / i_gpu_num) else: assert i_gpu_num % t_gpu_num == 0 is_merge_ckpt = False factor = int(i_gpu_num / t_gpu_num) main_loop = min(t_gpu_num, i_gpu_num) # split rpe into tensor parallel ranks if "encoder_relative_position_embedding" in model_00["model"]["language_model"].keys(): encoder_relative_position_embedding = model_00["model"]["language_model"]["encoder_relative_position_embedding"]["weight"] \ .T.float().cpu().numpy().astype(np_weight_data_type) encoder_relative_position_embedding_split = np.split(encoder_relative_position_embedding, i_gpu_num, axis=0) for i in range(i_gpu_num): saved_path = saved_dir / f"encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight.{i}.bin" encoder_relative_position_embedding_split[i].tofile(saved_path.as_posix()) del encoder_relative_position_embedding, encoder_relative_position_embedding_split if "decoder_relative_position_embedding" in model_00["model"]["language_model"].keys(): decoder_relative_position_embedding = model_00["model"]["language_model"]["decoder_relative_position_embedding"]["weight"] \ .T.float().cpu().numpy().astype(np_weight_data_type) decoder_relative_position_embedding_split = np.split(decoder_relative_position_embedding, i_gpu_num, axis=0) for i in range(i_gpu_num): saved_path = saved_dir / f"decoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight.{i}.bin" decoder_relative_position_embedding_split[i].tofile(saved_path.as_posix()) del decoder_relative_position_embedding, decoder_relative_position_embedding_split del model_00 w_e_list = [] torch.multiprocessing.set_start_method("spawn") torch.multiprocessing.set_sharing_strategy("file_system") pool = multiprocessing.Pool(args.processes) for i in range(main_loop): for j in range(model_args.pipeline_model_parallel_size): if model_args.pipeline_model_parallel_size == 1: layer_rank_num = "" else: layer_rank_num = f"_{j:03d}" encoder_models = [] decoder_models = [] if is_merge_ckpt == True: for k in range(factor): m = torch.load((prefix / f"mp_rank_{i * factor + k:02d}{layer_rank_num}" / ckpt_name).as_posix(), map_location=_gpu_map_location) encoder_models.append(m["model"]["language_model"]["encoder"]) decoder_models.append(m["model"]["language_model"]["decoder"]) if j == 0: w_e_list.append(m["model"]["language_model"]["embedding"]["word_embeddings"]["weight"].float().cpu().numpy().astype(np_weight_data_type)) else: m = torch.load((prefix / f"mp_rank_{i:02d}{layer_rank_num}" / ckpt_name).as_posix(), map_location=_gpu_map_location) if j == 0: w_e_list.append( m["model"]["language_model"]["embedding"]["word_embeddings"]["weight"] .float() .cpu() .numpy() .astype(np_weight_data_type) ) encoder_models.append(m["model"]["language_model"]["encoder"]) decoder_models.append(m["model"]["language_model"]["decoder"]) pool.starmap( merge_and_convert_process if is_merge_ckpt == True else split_and_convert_process, [ ( "encoder", i, j, saved_dir, factor, k, model_args, encoder_models, m["checkpoint_version"], np_weight_data_type ) for k in encoder_models[0].keys() ], ) pool.starmap( merge_and_convert_process if is_merge_ckpt == True else split_and_convert_process, [ ( "decoder", i, j, saved_dir, factor, k, model_args, decoder_models, m["checkpoint_version"], np_weight_data_type ) for k in decoder_models[0].keys() ], ) pool.close() pool.join() np.concatenate(w_e_list, axis=0).tofile((saved_dir / "shared.weight_T.bin").as_posix()) m["model"]["lm_head"]["bias"].float().cpu().numpy().tofile((saved_dir / "shared.bias.bin").as_posix()) if __name__ == "__main__": parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) parser.add_argument("-saved_dir", "-o", type=str, help="file name of output file", required=True) parser.add_argument("-in_file", "-i", type=str, help="file name of input checkpoint file", required=True) parser.add_argument("-infer_gpu_num", "-i_g", type=int, help="How many gpus for inference", required=True) parser.add_argument("-processes", "-p", type=int, help="How many processes to spawn for conversion (default: 64)", default=64) parser.add_argument("-weight_data_type", type=str, default="fp32", choices=["fp32", "fp16"]) parser.add_argument("-model_name", "-m", type=str, help="model name", required=True) parser.add_argument( "--vocab-path", type=str, help="Path to vocabulary file to embed in FasterTransformer checkpoint", required=False, ) parser.add_argument( "--merges-path", type=str, help="Path to merges file to embed in FasterTransformer checkpoint", required=False ) args = parser.parse_args() print("\n=============== Argument ===============") for key in vars(args): print(f"{key}: {vars(args)[key]}") print("========================================") start_time = datetime.now() convert_checkpoint(args) stop_time = datetime.now() run_time = (stop_time - start_time) print("[INFO] Spend {} (h:m:s) to convert the model".format(run_time))
FasterTransformer-main
examples/pytorch/t5/utils/megatron_t5_ckpt_convert.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from tracemalloc import start import torch import torch.nn as nn import torch.distributed as dist import numpy as np import os class FTT5EncoderWeight(object): def __init__( self, config, tensor_para_size, pipeline_para_size, *, t5_with_bias=False, use_gated_activation=False, t5_with_moe=False, position_embedding_type=0, weight_data_type ): self.num_layer = config.num_layers self.config = config self.tensor_para_size = tensor_para_size self.pipeline_para_size = pipeline_para_size self.t5_with_bias = t5_with_bias self.use_gated_activation = use_gated_activation self.real_weights_num = 23 # assume all weights are allocated self.t5_with_moe = t5_with_moe self.position_embedding_type = position_embedding_type self.weight_data_type = weight_data_type self.adapter_inter_size = config.adapter_inter_size if hasattr(config, "adapter_inter_size") else 0 self.w = [] self.use_mpi = dist.is_mpi_available() if self.use_mpi: try: dist.init_process_group(backend='mpi') except: print("[INFO] WARNING: Exception occurred in dist.init_process_group(backend = 'mpi'). Maybe the process group has been initialized somewhere else.") else: print("[INFO] MPI is not available in this PyTorch build.") assert tensor_para_size == 1, "[FATAL] MPI is required for tensor_para_size > 1." assert pipeline_para_size == 1, "[FATAL] MPI is required for pipeline_para_size > 1." self.rank = dist.get_rank() if self.use_mpi else 0 self.device_count = torch.cuda.device_count() self.device = self.rank % self.device_count torch.cuda.set_device(self.device) world_size = dist.get_world_size() if self.use_mpi else 1 assert world_size == tensor_para_size * \ pipeline_para_size, "[ERROR] world_size != tensor_para_size * pipeline_para_size" self.tensor_para_rank = self.rank % self.tensor_para_size self.pipeline_para_rank = self.rank // self.tensor_para_size def load_from_model(self, model): # assume this only applies to huggingface models start_layer = self.pipeline_para_rank * self.num_layer // self.pipeline_para_size end_layer = (self.pipeline_para_rank + 1) * self.num_layer // self.pipeline_para_size np_weight_dtype = self.weight_data_type torch_weight_dtype = {np.float32: torch.float32, np.float16: torch.float16}[np_weight_dtype] encoder_weight_dict = {} for name, param in model.named_parameters(): if param.dim() == 2: param_t = param.transpose(1, 0) elif param.dim() == 1: param_t = param else: assert False, f"The dimension of param {name} should be 2" if name.find("encoder.block") != -1 or name.find("encoder.final_layer_norm.weight") != -1: encoder_weight_dict[name] = param_t t = torch.stack([encoder_weight_dict["encoder.block.{}.layer.0.layer_norm.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([encoder_weight_dict["encoder.block.{}.layer.0.SelfAttention.q.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous()) t = torch.stack([encoder_weight_dict["encoder.block.{}.layer.0.SelfAttention.k.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous()) t = torch.stack([encoder_weight_dict["encoder.block.{}.layer.0.SelfAttention.v.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous()) t = torch.stack([encoder_weight_dict["encoder.block.{}.layer.0.SelfAttention.o.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t.split(t.shape[1] // self.tensor_para_size, dim=1)[self.tensor_para_rank].contiguous()) t = torch.stack([encoder_weight_dict["encoder.block.{}.layer.1.layer_norm.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) if self.use_gated_activation: t = torch.stack([encoder_weight_dict["encoder.block.{}.layer.1.DenseReluDense.wi_0.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous()) t = torch.stack([encoder_weight_dict["encoder.block.{}.layer.1.DenseReluDense.wi_1.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous()) else: t = torch.stack([encoder_weight_dict["encoder.block.{}.layer.1.DenseReluDense.wi.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous()) # add empty wi2 self.w.append(torch.empty((1, 1), dtype=torch_weight_dtype).contiguous().cuda()) t = torch.stack([encoder_weight_dict["encoder.block.{}.layer.1.DenseReluDense.wo.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t.split(t.shape[1] // self.tensor_para_size, dim=1)[self.tensor_para_rank].contiguous()) t = encoder_weight_dict["encoder.final_layer_norm.weight"].contiguous().cuda() self.w.append(t) t = encoder_weight_dict["encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight"].contiguous().cuda() self.w.append(t.split(t.shape[0] // self.tensor_para_size, dim=0)[self.tensor_para_rank].contiguous()) t = model.get_input_embeddings().weight.contiguous().cuda() self.w.append(t) #TODO: pass None Type to Torch Op for i in range(19): self.w.append(torch.empty((1,1), dtype=torch_weight_dtype).contiguous().cuda()) def load_from_bin(self, ckpt_path, model_type): # assume this only applies to megatron models and megatron-deepspedd models start_layer = self.pipeline_para_rank * self.num_layer // self.pipeline_para_size end_layer = (self.pipeline_para_rank + 1) * self.num_layer // self.pipeline_para_size np_weight_dtype = self.weight_data_type torch_weight_dtype = {np.float32: torch.float32, np.float16: torch.float16}[np_weight_dtype] # load by binary files if model_type == "Megatron": t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.block.{i}.layer.0.layer_norm.weight.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.block.{i}.layer.0.SelfAttention.q.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.block.{i}.layer.0.SelfAttention.k.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.block.{i}.layer.0.SelfAttention.v.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.block.{i}.layer.0.SelfAttention.o.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.block.{i}.layer.1.layer_norm.weight.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.block.{i}.layer.1.DenseReluDense.wi.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) if self.use_gated_activation: t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.block.{i}.layer.1.DenseReluDense.wi2.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) else: self.w.append(torch.empty((1,1), dtype=torch_weight_dtype).contiguous().cuda()) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.block.{i}.layer.1.DenseReluDense.wo.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.final_layer_norm.weight.bin", dtype=np_weight_dtype)).contiguous().cuda() self.w.append(t) t = None if (self.position_embedding_type == 0): t = torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)).contiguous().cuda() else: t = torch.from_numpy(np.fromfile(f"{ckpt_path}/shared.ape.bin", dtype=np_weight_dtype)).contiguous().cuda() self.w.append(t) t = torch.from_numpy(np.fromfile(f"{ckpt_path}/shared.weight_T.bin", dtype=np_weight_dtype).reshape([self.config.d_model, self.config.vocab_size])).contiguous().cuda() self.w.append(t) # add 10 additional bias if it is t5 megatron structure if self.t5_with_bias: t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.block.{i}.layer.0.layer_norm.bias.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.block.{i}.layer.0.SelfAttention.q.bias.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.block.{i}.layer.0.SelfAttention.k.bias.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.block.{i}.layer.0.SelfAttention.v.bias.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.block.{i}.layer.0.SelfAttention.o.bias.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.block.{i}.layer.1.layer_norm.bias.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.block.{i}.layer.1.DenseReluDense.wi.bias.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) if self.use_gated_activation: t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.block.{i}.layer.1.DenseReluDense.wi2.bias.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) else: self.w.append(torch.empty((1,1), dtype=torch_weight_dtype).contiguous().cuda()) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.block.{i}.layer.1.DenseReluDense.wo.bias.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.final_layer_norm.bias.bin", dtype=np_weight_dtype)).contiguous().cuda() self.w.append(t) else: #TODO: pass None Type to Torch Op for i in range(10): self.w.append(torch.empty((1,1), dtype=torch_weight_dtype).contiguous().cuda()) # add empty moe gate weight self.w.append(torch.empty((1,1), dtype=torch_weight_dtype).contiguous().cuda()) if self.adapter_inter_size > 0: ckpt_path_block = f"{ckpt_path}/encoder.block" for adapter in ["after_attention_adapter", "after_ffn_adapter"]: for in_out in ["wi", "wo"]: t = torch.stack([torch.from_numpy(np.fromfile( f"{ckpt_path_block}.{i}.{adapter}.DenseSiluDense.{in_out}.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) for weight_bias in ["weight", "bias"]: t = torch.stack([torch.from_numpy(np.fromfile( f"{ckpt_path_block}.{i}.{adapter}.layer_norm.{weight_bias}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) else: for i in range(8): self.w.append(torch.empty((1, 1), dtype=torch_weight_dtype).contiguous().cuda()) else: # Megatron-DeepSpeed, no tensor parallelism currently #TODO: add tensor parallelism in the conversion script t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.layers.{i}.input_layernorm.weight.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.layers.{i}.attention.query.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.layers.{i}.attention.key.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.layers.{i}.attention.value.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.layers.{i}.attention.dense.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.layers.{i}.post_attention_layernorm.weight.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) # =========== process normal and moe dense layer ================= t_list = [] for i in range(start_layer, end_layer): if (os.path.isfile(f"{ckpt_path}/encoder.layers.{i}.mlp.dense_h_to_4h.weight.{self.tensor_para_rank}.bin")): t_list.append(torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.layers.{i}.mlp.dense_h_to_4h.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype))) else: t_list.append(torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.layers.{i}.mlp.deepspeed_moe.experts.deepspeed_experts.dense_h_to_4h.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype))) self.w.append(torch.cat(t_list, 0).contiguous().cuda()) # ================================================================ # We don't have use_gated_activation in Megatron-DeepSpeed currently, so here weight placeholder is always empty # If we have it in the future, the binary file name should be modified according to the actual name. if self.use_gated_activation: t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.block.{i}.layer.1.DenseReluDense.wi2.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) else: self.w.append(torch.empty((1,1), dtype=torch_weight_dtype).contiguous().cuda()) # =========== process normal and moe dense layer ================= t_list = [] for i in range(start_layer, end_layer): if (os.path.isfile(f"{ckpt_path}/encoder.layers.{i}.mlp.dense_4h_to_h.weight.{self.tensor_para_rank}.bin")): t_list.append(torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.layers.{i}.mlp.dense_4h_to_h.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype))) else: t_list.append(torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.layers.{i}.mlp.deepspeed_moe.experts.deepspeed_experts.dense_4h_to_h.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype))) self.w.append(torch.cat(t_list, 0).contiguous().cuda()) # ================================================================ t = torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.final_layernorm.weight.bin", dtype=np_weight_dtype)).contiguous().cuda() self.w.append(t) # assume absolute position t = torch.from_numpy(np.fromfile(f"{ckpt_path}/position_embeddings.weight.bin", dtype=np_weight_dtype)).contiguous().cuda() self.w.append(t) t = torch.from_numpy(np.fromfile(f"{ckpt_path}/word_embeddings.weight.bin", dtype=np_weight_dtype)).contiguous().cuda() self.w.append(t) if self.t5_with_bias: t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.layers.{i}.input_layernorm.bias.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.layers.{i}.attention.query.bias.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.layers.{i}.attention.key.bias.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.layers.{i}.attention.value.bias.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.layers.{i}.attention.dense.bias.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.layers.{i}.post_attention_layernorm.bias.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) # =========== process normal and moe dense layer ================= t_list = [] for i in range(start_layer, end_layer): if (os.path.isfile(f"{ckpt_path}/encoder.layers.{i}.mlp.dense_h_to_4h.bias.{self.tensor_para_rank}.bin")): t_list.append(torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.layers.{i}.mlp.dense_h_to_4h.bias.{self.tensor_para_rank}.bin", dtype=np_weight_dtype))) else: t_list.append(torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.layers.{i}.mlp.deepspeed_moe.experts.deepspeed_experts.dense_h_to_4h.bias.{self.tensor_para_rank}.bin", dtype=np_weight_dtype))) self.w.append(torch.cat(t_list, 0).contiguous().cuda()) # ================================================================ # We don't have use_gated_activation in Megatron-DeepSpeed currently, so here weight placeholder is always empty # If we have it in the future, the binary file name should be modified according to the actual name. if self.use_gated_activation: t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.block.{i}.layer.1.DenseReluDense.wi2.bias.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) else: self.w.append(torch.empty((1,1), dtype=torch_weight_dtype).contiguous().cuda()) # =========== process normal and moe dense layer ================= t_list = [] for i in range(start_layer, end_layer): if (os.path.isfile(f"{ckpt_path}/encoder.layers.{i}.mlp.dense_4h_to_h.bias.bin")): t_list.append(torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.layers.{i}.mlp.dense_4h_to_h.bias.bin", dtype=np_weight_dtype))) else: t_list.append(torch.zeros_like(torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.layers.{i}.mlp.deepspeed_moe.experts.deepspeed_experts.dense_4h_to_h.bias.bin", dtype=np_weight_dtype)))) self.w.append(torch.cat(t_list, 0).contiguous().cuda()) # ================================================================ t = torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.final_layernorm.bias.bin", dtype=np_weight_dtype)).contiguous().cuda() self.w.append(t) else: for i in range(10): self.w.append(torch.empty((1,1), dtype=torch_weight_dtype).contiguous().cuda()) if self.t5_with_moe: gate_list = [] for i in range(start_layer, end_layer): if (os.path.isfile(f"{ckpt_path}/encoder.layers.{i}.mlp.deepspeed_moe.gate.wg.weight.bin")): gate_list.append(torch.from_numpy(np.fromfile(f"{ckpt_path}/encoder.layers.{i}.mlp.deepspeed_moe.gate.wg.weight.bin", dtype=np_weight_dtype))) self.w.append(torch.stack(gate_list, 0).contiguous().cuda()) else: self.w.append(torch.empty((1,1), dtype=torch_weight_dtype).contiguous().cuda()) # adapters are not supported in Megatron-DeepSpeed currently, so here weight placeholder is always empty for i in range(8): self.w.append(torch.empty((1, 1), dtype=torch_weight_dtype).contiguous().cuda()) def to_cuda(self): for i in range(self.real_weights_num): self.w[i] = self.w[i].cuda() def to_float(self): for i in range(self.real_weights_num): self.w[i] = self.w[i].float() def to_half(self): for i in range(self.real_weights_num): self.w[i] = self.w[i].half() def to_single(self): for i in range(self.real_weights_num): self.w[i] = self.w[i].float() def to_bfloat16(self): for i in range(self.real_weights_num): self.w[i] = self.w[i].bfloat16() class FTT5Encoder(nn.Module): def __init__(self, encoder_weight_list, lib_path, head_num, head_size, inter_size, d_model, is_remove_padding, num_layer, num_bucket=32, num_expert=0, moe_layer_index=[], max_distance=128, sparse=False, q_scaling=1.0, tensor_para_size=1, pipeline_para_size=1, t5_with_bias=False, position_embedding_type=0, moe_k=0, activation_type="relu", adapter_inter_size=0, adapter_norm_position="pre"): super().__init__() self.use_mpi = dist.is_mpi_available() if self.use_mpi: try: dist.init_process_group(backend='mpi') except: print("[INFO] WARNING: Exception occurred in dist.init_process_group(backend = 'mpi'). Maybe the process group has been initialized somewhere else.") else: print("[INFO] MPI is not available in this PyTorch build.") assert tensor_para_size == 1, "[FATAL] MPI is required for tensor_para_size > 1." assert pipeline_para_size == 1, "[FATAL] MPI is required for pipeline_para_size > 1." torch.classes.load_library(lib_path) try: self.encoder = torch.classes.FasterTransformer.T5Encoder(*encoder_weight_list, moe_layer_index, head_num, head_size, inter_size, d_model, is_remove_padding, num_layer, num_bucket, num_expert, max_distance, sparse, q_scaling, tensor_para_size, pipeline_para_size, t5_with_bias, position_embedding_type, moe_k, activation_type, adapter_inter_size, adapter_norm_position) except: self.encoder = torch.classes.FasterTransformerT5Encoder(*encoder_weight_list, moe_layer_index, head_num, head_size, inter_size, d_model, is_remove_padding, num_layer, num_bucket, num_expert, max_distance, sparse, q_scaling, tensor_para_size, pipeline_para_size, t5_with_bias, position_embedding_type, moe_k, activation_type, adapter_inter_size, adapter_norm_position) def forward(self, input, seq_len, inputs_embeds=None): output = self.encoder.forward(input, seq_len, inputs_embeds) return output
FasterTransformer-main
examples/pytorch/t5/utils/ft_encoder.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import concurrent.futures import configparser import datetime import logging import os import pathlib import shutil import sys import tempfile import typing import numpy as np import torch # pytype: disable=import-error import yaml # verify if root package is in PYTHONPATH __root_package_path__ = pathlib.Path(__file__).parent.parent.parent.parent.parent.absolute().as_posix() if __root_package_path__ not in sys.path: print( f"[ERROR] add project root directory to your PYTHONPATH with " f"'export PYTHONPATH={__root_package_path__}:${{PYTHONPATH}}'" ) from collections import defaultdict from examples.pytorch.nemo import unpack_nemo_ckpt, UnpackedNemoCheckpointDir, extract_layers_with_prefix from examples.pytorch.utils import gpu_map_location, WEIGHT2DTYPE, torch2np, cpu_map_location, safe_transpose from functools import partial from multiprocessing import Pool LOGGER = logging.getLogger(__name__) def merge_adapters(models): model_fused = {} for key in models[0].keys(): model_fused[key] = {} model_fused[key]["scalers"] = torch.cat([models[i][key]["scalers"] for i in range(len(models))]) return model_fused def convert_checkpoint(unpacked_checkpoints_dir: UnpackedNemoCheckpointDir, args: argparse.Namespace): nemo_model_config = unpacked_checkpoints_dir.model_config infer_tp = args.infer_gpu_num saved_dir = pathlib.Path(args.saved_dir) / f"{infer_tp:d}-gpu" saved_config_file = saved_dir / "config.ini" if not saved_dir.is_dir(): LOGGER.error("No models found at " + str(saved_dir) + ". Run Nemo converter on base model first") sys.exit(1) if not saved_config_file.is_file(): LOGGER.error("No model config at " + str(saved_config_file) + ". Run Nemo converter on base model first") sys.exit(1) saved_config = configparser.ConfigParser() with open(saved_config_file) as f: saved_config.read_file(f) if ("structure" in saved_config and saved_config["structure"].get("ia3_adapted", "False") == "True"): LOGGER.error("Model is already ia3-adapted. Refusing to go further") sys.exit(1) if ("structure" in saved_config and int(saved_config["structure"].get("ia3_num_tasks", "0")) > 0 and args.in_place): LOGGER.error("Model already has ia3 weights. Refusing to adapt it in-place.") sys.exit(1) train_tp = nemo_model_config.get("tensor_model_parallel_size", 1) train_pp = nemo_model_config.get("pipeline_model_parallel_size", 1) checkpoint_paths = unpacked_checkpoints_dir.get_checkpoints_paths(train_tp, train_pp) checkpoint_paths_T = [[checkpoint_paths[i][j] for i in range(train_tp)] for j in range(train_pp)] if "encoder" in saved_config and "weight_data_type" in saved_config["encoder"]: weight_dt = WEIGHT2DTYPE[saved_config["encoder"]["weight_data_type"]] elif "decoder" in saved_config and "weight_data_type" in saved_config["decoder"]: weight_dt = WEIGHT2DTYPE[saved_config["decoder"]["weight_data_type"]] else: LOGGER.info("Could not find existing model data type. Using fp32") weight_dt = np.float32 for ckpt_tp in checkpoint_paths_T: model = merge_adapters([torch.load(ckpt, map_location=cpu_map_location) for ckpt in ckpt_tp]) if args.in_place: grouped_layers = defaultdict(list) for layer_name, layer in model.items(): target_file = str(saved_dir / corresponding_ft_name(layer_name)) grouped_layers[target_file].append((layer_name, layer)) args_list = grouped_layers.items() else: args_list = list(model.items()) with Pool() as p: call_fn = multiply_weights if args.in_place else add_ia3_task call_fn = partial(call_fn, saved_dir, saved_config, weight_dt, infer_tp) ret = p.starmap(call_fn, args_list) if args.in_place: saved_config["structure"]["ia3_adapted"] = "True" else: ia3_num_tasks = int(saved_config["structure"].get("ia3_num_tasks", "0")) + 1 saved_config["structure"]["ia3_num_tasks"] = str(ia3_num_tasks) LOGGER.info("Model now has {} IA3 task(s)".format(ia3_num_tasks)) with open(saved_config_file, "w") as f: saved_config.write(f) def add_ia3_task(saved_dir, saved_config, weight_dt, infer_tp, layer_name, layer): ia3_weights_tp = np.array(layer["scalers"], dtype=weight_dt) for tp, ia3_weights in zip(range(infer_tp), np.split(ia3_weights_tp, infer_tp)): ia3_name = corresponding_ft_name(layer_name, ia3_name=True).format(tp=tp) enc_dec = "encoder" if "encoder" in ia3_name else "decoder" ia3_filename = saved_dir / ia3_name if ia3_filename.is_file(): previous_weights = np.fromfile(ia3_filename, dtype=weight_dt) if "DenseReluDense" in ia3_name: hidden_dim = int(saved_config[enc_dec]["d_ff"]) else: hidden_dim = int(saved_config[enc_dec]["d_model"]) previous_weights = previous_weights.reshape((-1, hidden_dim)) ia3_weights = np.concatenate((previous_weights, ia3_weights[None, :])) ia3_weights.tofile(ia3_filename) def corresponding_ft_name(ia3_weight, ia3_name=False): ia3_suffix = ".ia3" if ia3_name else "" name = "" is_decoder = "decoder" in ia3_weight if is_decoder: name += "decoder." else: name += "encoder." layer_id = ia3_weight.split(".")[-1].split(":")[0] name += "block." + layer_id + ".layer." if "mlp_infused_adapter" in ia3_weight: name += ("2" if is_decoder else "1") + ".DenseReluDense" name += (ia3_suffix if ia3_name else ".wo") + ".weight.{tp}.bin" else: is_cross_attention = "inter" in ia3_weight rank = "1" if is_cross_attention else "0" base_layer = "EncDecAttention" if is_cross_attention else "SelfAttention" features = "k" if "key" in ia3_weight else "v" features = "qkv" if (is_decoder and not is_cross_attention and not ia3_name) else features features += ia3_suffix name += ".".join((rank, base_layer, features)) + ".weight.{tp}.bin" return name def reshape(config, name, array): enc_dec = "encoder" if "encoder" in name else "decoder" if "DenseReluDense" in name: dims = int(config[enc_dec]["d_ff"]), int(config[enc_dec]["d_model"]) elif enc_dec == "decoder" and "SelfAttention.qkv" in name: dims = (3, int(config[enc_dec]["d_model"]), int(config[enc_dec]["d_model"])) elif "SelfAttention" in name or "EncDecAttention" in name: dims = int(config[enc_dec]["d_model"]), int(config[enc_dec]["d_model"]) return array.reshape(dims) def multiply_weights(saved_dir, saved_config, weight_dt, infer_tp, weight_file, layers): for tp in range(infer_tp): weight_file = weight_file.format(tp=tp) weights = reshape(saved_config, weight_file, np.fromfile(weight_file, dtype=weight_dt)) if len(layers) == 1: ia3_weights = np.split(np.array(layers[0][1]['scalers'], dtype=weight_dt), infer_tp)[tp] if "DenseReluDense" in weight_file: ia3_weights = ia3_weights[:, None] # column-wise broadcast else: ia3_weights = ia3_weights[None, :] # row-wise broadcast else: if "key_infused_adapter" in layers[0][0]: key, value = layers[0][1], layers[1][1] else: key, value = layers[1][1], layers[0][1] key, value = np.array(key['scalers'], dtype=weight_dt), np.array(value['scalers'], dtype=weight_dt) key, value = np.split(key, infer_tp)[tp], np.split(value, infer_tp)[tp] query = np.ones_like(key) ia3_weights = np.stack((query, key, value))[:, None, :] ia3_adapted = weights * ia3_weights ia3_adapted.tofile(weight_file) def main(): """ Enhance your model IA3 features. The converter has two modes: - Out-of-place: use dedicated IA3 weight files to apply the converters at run-time (default). This allows using multiple IA3 tasks with a single base model. Running this script multiple times with the same output directory and different IA3 tasks will stack IA3 adapters. - In-place: pre-process existing model by multiplying weights with IA3 adapters. With this scheme, only one fine-tuned task is supported. """ parser = argparse.ArgumentParser(description=main.__doc__) parser.add_argument( "--in-place", dest="in_place", action="store_true", help="multiply model weights directly" ) parser.add_argument( "--saved-dir", "-o", dest="saved_dir", help="folder name of output files", required=True, ) parser.add_argument( "--in-file", "-i", dest="in_file", help="file name of .nemo IA3 checkpoint file", required=True, ) parser.add_argument( "--clean-tasks", "-c", dest="clean_tasks", action="store_true", help="in Out-of-place mode, clean previous IA3_tasks" ) parser.add_argument( "--infer-gpu-num", "-i_g", dest="infer_gpu_num", type=int, help="how many gpus for inference", required=True, ) parser.add_argument("--verbose", "-v", action="store_true", help="increase verbosity") args = parser.parse_args() log_format = "%(asctime)s %(name)s [%(levelname)s] %(message)s" logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO, format=log_format) print("\n=============== Argument ===============") for key in vars(args): print(f"{key}: {vars(args)[key]}") print("========================================") input_path = pathlib.Path(args.in_file) if not input_path.exists(): LOGGER.error("%s does not exists", input_path) sys.exit(1) with tempfile.TemporaryDirectory() as temp_dir: temp_dir = pathlib.Path(temp_dir) # unpack if needed if input_path.is_file(): checkpoint_dir_path = temp_dir / "unpacked" start_time = datetime.datetime.now() unpacked_checkpoint_dir = UnpackedNemoCheckpointDir( unpack_nemo_ckpt(args.in_file, checkpoint_dir_path), load_checkpoints_to_cpu=True, ) LOGGER.info("Spent %s (h:m:s) to unpack NeMo archive", datetime.datetime.now() - start_time) else: unpacked_checkpoint_dir = UnpackedNemoCheckpointDir( input_path, load_checkpoints_to_cpu=True, ) LOGGER.debug("Unpacked NeMo checkpoint contains:") for file_path in unpacked_checkpoint_dir.checkpoints_dir.rglob("*"): LOGGER.debug(" %s", file_path) start_time = datetime.datetime.now() convert_checkpoint(unpacked_checkpoint_dir, args) LOGGER.info("Spent %s (h:m:s) to convert the model", datetime.datetime.now() - start_time) if __name__ == "__main__": main()
FasterTransformer-main
examples/pytorch/t5/utils/nemo_t5_ia3.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import torch.distributed as dist import numpy as np import os class FTT5DecodingWeight(object): def __init__( self, config, tensor_para_size, pipeline_para_size, *, t5_with_bias=False, use_gated_activation=False, t5_with_moe=False, position_embedding_type=0, weight_data_type ): self.config = config self.num_layer = config.num_layers self.tensor_para_size = tensor_para_size self.pipeline_para_size = pipeline_para_size self.t5_with_bias = t5_with_bias self.use_gated_activation = use_gated_activation self.t5_with_moe = t5_with_moe self.position_embedding_type = position_embedding_type self.real_weights_num = 31 # assume all weights are allocated and converted to specific data type self.weight_data_type = weight_data_type self.adapter_inter_size = config.adapter_inter_size if hasattr(config, "adapter_inter_size") else 0 self.w = [] self.use_mpi = dist.is_mpi_available() if self.use_mpi: try: dist.init_process_group(backend='mpi') except: print("[INFO] WARNING: Exception occurred in dist.init_process_group(backend = 'mpi'). Maybe the process group has been initialized somewhere else.") else: print("[INFO] MPI is not available in this PyTorch build.") assert tensor_para_size == 1, "[FATAL] MPI is required for tensor_para_size > 1." assert pipeline_para_size == 1, "[FATAL] MPI is required for pipeline_para_size > 1." self.rank = dist.get_rank() if self.use_mpi else 0 self.device_count = torch.cuda.device_count() self.device = self.rank % self.device_count torch.cuda.set_device(self.device) world_size = dist.get_world_size() if self.use_mpi else 1 assert world_size == tensor_para_size * \ pipeline_para_size, "[ERROR] world_size != tensor_para_size * pipeline_para_size" self.tensor_para_rank = self.rank % self.tensor_para_size self.pipeline_para_rank = self.rank // self.tensor_para_size def load_from_model(self, model): start_layer = self.pipeline_para_rank * self.num_layer // self.pipeline_para_size end_layer = (self.pipeline_para_rank + 1) * self.num_layer // self.pipeline_para_size np_weight_dtype = self.weight_data_type torch_weight_dtype = {np.float32: torch.float32, np.float16: torch.float16}[np_weight_dtype] weight_dict = {} qkv_tmp = [] for name, param in model.state_dict().items(): if param.dim() == 2: param_t = param.transpose(1, 0) elif param.dim() == 1: param_t = param else: assert False, f"The dimension of param {name} should be 2" if name.find("decoder.block") != -1: if name.find(".SelfAttention.q.weight") != -1 or name.find(".SelfAttention.k.weight") != -1 or name.find(".SelfAttention.v.weight") != -1: qkv_tmp.append(param_t) if len(qkv_tmp) == 3: qkv = torch.cat(qkv_tmp, dim=-1) weight_dict[name.replace("v.weight", "qkv.weight")] = qkv qkv_tmp = [] else: weight_dict[name] = param_t elif name.find("decoder") != -1: weight_dict[name] = param_t else: weight_dict[name] = param_t # load by torch model directly t = torch.stack([weight_dict["decoder.block.{}.layer.0.layer_norm.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([weight_dict["decoder.block.{}.layer.0.SelfAttention.qkv.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() t = t.reshape([t.shape[0], t.shape[1], 3, t.shape[2] // 3]) t = t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous() self.w.append(t) t = torch.stack([weight_dict["decoder.block.{}.layer.0.SelfAttention.o.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() t = t.split(t.shape[1] // self.tensor_para_size, dim=1)[self.tensor_para_rank].contiguous() self.w.append(t) t = torch.stack([weight_dict["decoder.block.{}.layer.1.layer_norm.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([weight_dict["decoder.block.{}.layer.1.EncDecAttention.q.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() t = t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous() self.w.append(t) t = torch.stack([weight_dict["decoder.block.{}.layer.1.EncDecAttention.k.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() t = t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous() self.w.append(t) t = torch.stack([weight_dict["decoder.block.{}.layer.1.EncDecAttention.v.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() t = t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous() self.w.append(t) t = torch.stack([weight_dict["decoder.block.{}.layer.1.EncDecAttention.o.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() t = t.split(t.shape[1] // self.tensor_para_size, dim=1)[self.tensor_para_rank].contiguous() self.w.append(t) t = torch.stack([weight_dict["decoder.block.{}.layer.2.layer_norm.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) if self.use_gated_activation: t = torch.stack([weight_dict["decoder.block.{}.layer.2.DenseReluDense.wi_0.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() t = t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous() self.w.append(t) t = torch.stack([weight_dict["decoder.block.{}.layer.2.DenseReluDense.wi_1.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() t = t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous() self.w.append(t) else: t = torch.stack([weight_dict["decoder.block.{}.layer.2.DenseReluDense.wi.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() t = t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous() self.w.append(t) ## empty wi2 weight self.w.append(torch.empty((1, 1), dtype=torch_weight_dtype).contiguous().cuda()) t = torch.stack([weight_dict["decoder.block.{}.layer.2.DenseReluDense.wo.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() t = t.split(t.shape[1] // self.tensor_para_size, dim=1)[self.tensor_para_rank].contiguous() self.w.append(t) t = weight_dict["decoder.final_layer_norm.weight"].contiguous().cuda() self.w.append(t) t = weight_dict["shared.weight"].transpose(1, 0).contiguous().cuda() self.w.append(t) t = weight_dict["lm_head.weight"].transpose(1, 0).contiguous().cuda() # Transpose back to [vocab, hidden] self.w.append(t) t = weight_dict["decoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight"].contiguous().cuda() t = t.split(t.shape[0] // self.tensor_para_size, dim=0)[self.tensor_para_rank].contiguous() self.w.append(t) #TODO: pass None Type to Torch Op for i in range(23): self.w.append(torch.empty((1,1), dtype=torch_weight_dtype).contiguous().cuda()) def load_from_bin(self, ckpt_path, model_type): start_layer = self.pipeline_para_rank * self.num_layer // self.pipeline_para_size end_layer = (self.pipeline_para_rank + 1) * self.num_layer // self.pipeline_para_size np_weight_dtype = self.weight_data_type torch_weight_dtype = {np.float32: torch.float32, np.float16: torch.float16}[np_weight_dtype] # load by binary files if model_type == "Megatron": t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.block.{i}.layer.0.layer_norm.weight.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.block.{i}.layer.0.SelfAttention.qkv.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.block.{i}.layer.0.SelfAttention.o.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.block.{i}.layer.1.layer_norm.weight.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.block.{i}.layer.1.EncDecAttention.q.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.block.{i}.layer.1.EncDecAttention.k.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.block.{i}.layer.1.EncDecAttention.v.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.block.{i}.layer.1.EncDecAttention.o.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.block.{i}.layer.2.layer_norm.weight.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.block.{i}.layer.2.DenseReluDense.wi.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) if self.use_gated_activation: t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.block.{i}.layer.2.DenseReluDense.wi2.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) else: self.w.append(torch.empty((1,1), dtype=torch_weight_dtype).contiguous().cuda()) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.block.{i}.layer.2.DenseReluDense.wo.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.final_layer_norm.weight.bin", dtype=np_weight_dtype)).contiguous().cuda() self.w.append(t) t = torch.from_numpy(np.fromfile(f"{ckpt_path}/shared.weight_T.bin", dtype=np_weight_dtype).reshape([self.config.d_model, self.config.vocab_size])).contiguous().cuda() self.w.append(t) t = torch.from_numpy(np.fromfile(f"{ckpt_path}/lm_head.weight.bin", dtype=np_weight_dtype).reshape( [self.config.d_model, self.config.vocab_size])).contiguous().cuda() self.w.append(t) t = None if (self.position_embedding_type == 0): t = torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)).contiguous().cuda() else: t = torch.from_numpy(np.fromfile(f"{ckpt_path}/shared.ape.bin", dtype=np_weight_dtype)).contiguous().cuda() self.w.append(t) # add 14 additional bias if it is t5 megatron structure if self.t5_with_bias: t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.block.{i}.layer.0.layer_norm.bias.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.block.{i}.layer.0.SelfAttention.qkv.bias.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.block.{i}.layer.0.SelfAttention.o.bias.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.block.{i}.layer.1.layer_norm.bias.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.block.{i}.layer.1.EncDecAttention.q.bias.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.block.{i}.layer.1.EncDecAttention.k.bias.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.block.{i}.layer.1.EncDecAttention.v.bias.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.block.{i}.layer.1.EncDecAttention.o.bias.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.block.{i}.layer.2.layer_norm.bias.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.block.{i}.layer.2.DenseReluDense.wi.bias.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) if self.use_gated_activation: t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.block.{i}.layer.2.DenseReluDense.wi2.bias.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) else: self.w.append(torch.empty((1,1), dtype=torch_weight_dtype).contiguous().cuda()) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.block.{i}.layer.2.DenseReluDense.wo.bias.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.final_layer_norm.bias.bin", dtype=np_weight_dtype)).contiguous().cuda() self.w.append(t) t = torch.from_numpy(np.fromfile(f"{ckpt_path}/shared.bias.bin", dtype=np_weight_dtype)).contiguous().cuda() self.w.append(t) else: #TODO: pass None Type to Torch Op for i in range(14): self.w.append(torch.empty((1,1), dtype=torch_weight_dtype).contiguous().cuda()) # add empty moe gate weight self.w.append(torch.empty((1,1), dtype=torch_weight_dtype).contiguous().cuda()) if self.adapter_inter_size > 0: ckpt_path_block = f"{ckpt_path}/decoder.block" for adapter in ["after_attention_adapter", "after_ffn_adapter"]: for in_out in ["wi", "wo"]: t = torch.stack([torch.from_numpy(np.fromfile( f"{ckpt_path_block}.{i}.{adapter}.DenseSiluDense.{in_out}.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) for weight_bias in ["weight", "bias"]: t = torch.stack([torch.from_numpy(np.fromfile( f"{ckpt_path_block}.{i}.{adapter}.layer_norm.{weight_bias}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) else: for i in range(8): self.w.append(torch.empty((1, 1), dtype=torch_weight_dtype).contiguous().cuda()) else: # Megatron-DeepSpeed, no tensor parallelism currently #TODO: add tensor parallelism in the conversion script t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.layers.{i}.input_layernorm.weight.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.layers.{i}.attention.query_key_value.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.layers.{i}.attention.dense.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.layers.{i}.post_attention_layernorm.weight.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.layers.{i}.inter_attention.query.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.layers.{i}.inter_attention.key.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.layers.{i}.inter_attention.value.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.layers.{i}.inter_attention.dense.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.layers.{i}.post_inter_attention_layernorm.weight.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) # =========== process normal and moe dense layer ================= t_list = [] for i in range(start_layer, end_layer): if (os.path.isfile(f"{ckpt_path}/decoder.layers.{i}.mlp.dense_h_to_4h.weight.{self.tensor_para_rank}.bin")): t_list.append(torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.layers.{i}.mlp.dense_h_to_4h.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype))) else: t_list.append(torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.layers.{i}.mlp.deepspeed_moe.experts.deepspeed_experts.dense_h_to_4h.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype))) self.w.append(torch.cat(t_list, 0).contiguous().cuda()) # ================================================================ # We don't have use_gated_activation in Megatron-DeepSpeed currently, so here weight placeholder is always empty # If we have it in the future, the binary file name should be modified according to the actual name. if self.use_gated_activation: t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.block.{i}.layer.2.DenseReluDense.wi2.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) else: self.w.append(torch.empty((1,1), dtype=torch_weight_dtype).contiguous().cuda()) # =========== process normal and moe dense layer ================= t_list = [] for i in range(start_layer, end_layer): if (os.path.isfile(f"{ckpt_path}/decoder.layers.{i}.mlp.dense_4h_to_h.weight.{self.tensor_para_rank}.bin")): t_list.append(torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.layers.{i}.mlp.dense_4h_to_h.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype))) else: t_list.append(torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.layers.{i}.mlp.deepspeed_moe.experts.deepspeed_experts.dense_4h_to_h.weight.{self.tensor_para_rank}.bin", dtype=np_weight_dtype))) self.w.append(torch.cat(t_list, 0).contiguous().cuda()) # ================================================================ t = torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.final_layernorm.weight.bin", dtype=np_weight_dtype)).contiguous().cuda() self.w.append(t) t = torch.from_numpy(np.fromfile(f"{ckpt_path}/word_embeddings.weight.bin", dtype=np_weight_dtype)).contiguous().cuda() self.w.append(t) # lm_head weight t = torch.from_numpy(np.fromfile(f"{ckpt_path}/word_embeddings.weight.bin", dtype=np_weight_dtype)).contiguous().cuda() self.w.append(t) # assume absolute position t = torch.from_numpy(np.fromfile(f"{ckpt_path}/position_embeddings.weight.bin", dtype=np_weight_dtype)).contiguous().cuda() self.w.append(t) if self.t5_with_bias: t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.layers.{i}.input_layernorm.bias.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.layers.{i}.attention.query_key_value.bias.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.layers.{i}.attention.dense.bias.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.layers.{i}.post_attention_layernorm.bias.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.layers.{i}.inter_attention.query.bias.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.layers.{i}.inter_attention.key.bias.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.layers.{i}.inter_attention.value.bias.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.layers.{i}.inter_attention.dense.bias.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.layers.{i}.post_inter_attention_layernorm.bias.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) # =========== process normal and moe dense layer ================= t_list = [] for i in range(start_layer, end_layer): if (os.path.isfile(f"{ckpt_path}/decoder.layers.{i}.mlp.dense_h_to_4h.bias.{self.tensor_para_rank}.bin")): t_list.append(torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.layers.{i}.mlp.dense_h_to_4h.bias.{self.tensor_para_rank}.bin", dtype=np_weight_dtype))) else: t_list.append(torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.layers.{i}.mlp.deepspeed_moe.experts.deepspeed_experts.dense_h_to_4h.bias.{self.tensor_para_rank}.bin", dtype=np_weight_dtype))) self.w.append(torch.cat(t_list, 0).contiguous().cuda()) # ================================================================ # We don't have use_gated_activation in Megatron-DeepSpeed currently, so here weight placeholder is always empty # If we have it in the future, the binary file name should be modified according to the actual name. if self.use_gated_activation: t = torch.stack([torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.block.{i}.layer.2.DenseReluDense.wi2.bias.{self.tensor_para_rank}.bin", dtype=np_weight_dtype)) for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) else: self.w.append(torch.empty((1,1), dtype=torch_weight_dtype).contiguous().cuda()) # =========== process normal and moe dense layer ================= t_list = [] for i in range(start_layer, end_layer): if (os.path.isfile(f"{ckpt_path}/decoder.layers.{i}.mlp.dense_4h_to_h.bias.bin")): t_list.append(torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.layers.{i}.mlp.dense_4h_to_h.bias.bin", dtype=np_weight_dtype))) else: t_list.append(torch.zeros_like(torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.layers.{i}.mlp.deepspeed_moe.experts.deepspeed_experts.dense_4h_to_h.bias.bin", dtype=np_weight_dtype)))) self.w.append(torch.cat(t_list, 0).contiguous().cuda()) # ================================================================ t = torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.final_layernorm.bias.bin", dtype=np_weight_dtype)).contiguous().cuda() self.w.append(t) t = torch.from_numpy(np.fromfile(f"{ckpt_path}/shared.bias.bin", dtype=np_weight_dtype)).contiguous().cuda() self.w.append(t) else: for i in range(14): self.w.append(torch.empty((1,1), dtype=torch_weight_dtype).contiguous().cuda()) if self.t5_with_moe: gate_list = [] for i in range(start_layer, end_layer): if (os.path.isfile(f"{ckpt_path}/decoder.layers.{i}.mlp.deepspeed_moe.gate.wg.weight.bin")): gate_list.append(torch.from_numpy(np.fromfile(f"{ckpt_path}/decoder.layers.{i}.mlp.deepspeed_moe.gate.wg.weight.bin", dtype=np_weight_dtype))) self.w.append(torch.stack(gate_list, 0).contiguous().cuda()) else: self.w.append(torch.empty((1,1), dtype=torch_weight_dtype).contiguous().cuda()) # adapters are not supported in Megatron-DeepSpeed currently, so here weight placeholder is always empty for i in range(8): self.w.append(torch.empty((1, 1), dtype=torch_weight_dtype).contiguous().cuda()) def to_cuda(self): for i in range(self.real_weights_num): self.w[i] = self.w[i].cuda() def to_float(self): for i in range(self.real_weights_num): self.w[i] = self.w[i].float() def to_half(self): for i in range(self.real_weights_num): self.w[i] = self.w[i].half() def to_single(self): for i in range(self.real_weights_num): self.w[i] = self.w[i].float() def to_bfloat16(self): for i in range(self.real_weights_num): self.w[i] = self.w[i].bfloat16() class FTT5Decoding(nn.Module): def __init__(self, decoding_weight_list, lib_path, head_num, head_size, inter_size, mem_d_model, d_model, num_layer, start_id, end_id, vocab_size, q_scaling=1.0, num_bucket=32, num_expert=0, moe_layer_index=[], max_distance=128, tensor_para_size=1, pipeline_para_size=1, t5_with_bias=False, position_embedding_type=0, moe_k=0, activation_type="relu", tie_word_embeddings=True, adapter_inter_size=0, adapter_norm_position="pre"): super().__init__() self.use_mpi = dist.is_mpi_available() if self.use_mpi: try: dist.init_process_group(backend='mpi') except: print("[INFO] WARNING: Exception occurred in dist.init_process_group(backend = 'mpi'). Maybe the process group has been initialized somewhere else.") else: print("[INFO] MPI is not available in this PyTorch build.") assert tensor_para_size == 1, "[FATAL] MPI is required for tensor_para_size > 1." assert pipeline_para_size == 1, "[FATAL] MPI is required for pipeline_para_size > 1." torch.classes.load_library(lib_path) try: self.decoding = torch.classes.FasterTransformer.T5Decoding(head_num, head_size, inter_size, mem_d_model, d_model, num_layer, vocab_size, num_bucket, num_expert, max_distance, q_scaling, start_id, end_id, tensor_para_size, pipeline_para_size, t5_with_bias, position_embedding_type, moe_k, activation_type, tie_word_embeddings, adapter_inter_size, adapter_norm_position, moe_layer_index, *decoding_weight_list) except: self.decoding = torch.classes.FasterTransformerT5Decoding(head_num, head_size, inter_size, mem_d_model, d_model, num_layer, vocab_size, num_bucket, num_expert, max_distance, q_scaling, start_id, end_id, tensor_para_size, pipeline_para_size, t5_with_bias, position_embedding_type, moe_k, activation_type, tie_word_embeddings, adapter_inter_size, adapter_norm_position, moe_layer_index, *decoding_weight_list) def forward(self, beam_width, max_seq_len, top_k, top_p, beam_search_diversity_rate, temperature, len_penalty, repetition_penalty, presence_penalty, min_length, random_seed, mem_hidden_states, mem_seq_len, is_return_output_log_probs, is_return_cum_log_probs, is_return_cross_attentions=False, bad_words_list=None, stop_words_list=None): # TODO (bhsueh) Not found an method to put a None Type into op forward function # So, the top_k and top_p must be some values now. results = self.decoding.forward(beam_width, max_seq_len, top_k, top_p, beam_search_diversity_rate, temperature, len_penalty, repetition_penalty, presence_penalty, min_length, random_seed, mem_hidden_states, mem_seq_len, is_return_output_log_probs, is_return_cum_log_probs, is_return_cross_attentions, bad_words_list, stop_words_list) return results class FTT5(nn.Module): def __init__(self, encoder, decoding): super().__init__() self.encoder = encoder self.decoding = decoding def forward(self, input_token, inputs_embeds, beam_size, max_seq_len, top_k, top_p, beam_search_diversity_rate = 0.0, temperature=1.0, len_penalty=0.0, repetition_penalty=None, presence_penalty=None, min_length=0, random_seed=0, is_return_output_log_probs=False, is_return_cum_log_probs=False, is_return_cross_attentions=False, bad_words_list=None, stop_words_list=None): input_ids = input_token.input_ids.to("cuda").type(torch.int32) mem_seq_len = 0 if hasattr(input_token, "attention_mask"): mem_seq_len = torch.sum(input_token.attention_mask, dim=1).type(torch.int32).to("cuda") else: mem_seq_len = input_token.seq_len.type(torch.int32).to("cuda") ft_encoder_outputs = self.encoder.forward(input_ids, mem_seq_len, inputs_embeds) results = self.decoding.forward(beam_size, # optional, can be None max_seq_len, top_k, # optional, can be None top_p, # optional, can be None beam_search_diversity_rate, # optional, can be None temperature, # optional, can be None len_penalty, # optional, can be None repetition_penalty, # optional, can be None presence_penalty, # optional, can be None min_length, # optional, can be None random_seed, # optional, can be None ft_encoder_outputs, mem_seq_len, is_return_output_log_probs, # optional, can be None is_return_cum_log_probs, # optional, can be None is_return_cross_attentions, # optional, can be None bad_words_list, # optional, can be None stop_words_list, # optional, can be None ) ft_decoding_outputs = results.pop(0).reshape([-1, beam_size, max_seq_len]) ft_decoding_seq_lens = results.pop(0).reshape([-1, beam_size]) if is_return_output_log_probs: ft_output_log_probs = results.pop(0) if is_return_cum_log_probs: ft_cum_log_probs = results.pop(0) if is_return_cross_attentions: ft_cross_attentions = results.pop(0) return ft_decoding_outputs.cpu().numpy(), ft_decoding_seq_lens.cpu().numpy(), ft_cross_attentions.cpu().numpy() return ft_decoding_outputs.cpu().numpy(), ft_decoding_seq_lens.cpu().numpy()
FasterTransformer-main
examples/pytorch/t5/utils/ft_decoding.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import configparser import multiprocessing from datetime import datetime import logging from pathlib import Path import sys import os dir_path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(dir_path + "/../../../../3rdparty/transformers/src/") from transformers import T5ForConditionalGeneration, T5EncoderModel import numpy as np import torch # pytype: disable=import-error LOGGER = logging.getLogger(__name__) rename_mapping = {"relative_attention_num_buckets": "relative_attention_num_buckets_or_max_pos_seq_len"} new_configs = { "structure": {"t5_with_bias": "false", "use_gated_activation": "false", "position_embedding_type": "relative"}} def get_weight_data_type(data_type): if data_type == "fp32": return np.float32 elif data_type == "fp16": return np.float16 else: assert False, f"Invalid weight data type {data_type}" def fuse_decoder_qkv(model, factor, saved_dir, np_weight_data_type): model_dict = {} for name, param in model.named_parameters(): if name.find("decoder") != -1 and name.find("SelfAttention") != -1: model_dict[name] = param for i in range(model.decoder.config.num_layers): shape = model_dict[f"decoder.block.{i}.layer.0.SelfAttention.q.weight"].T.shape qkv = torch.cat([model_dict[f"decoder.block.{i}.layer.0.SelfAttention.q.weight"].T, model_dict[f"decoder.block.{i}.layer.0.SelfAttention.k.weight"].T, model_dict[f"decoder.block.{i}.layer.0.SelfAttention.v.weight"].T], dim=-1) qkv = qkv.reshape([shape[0], 3, shape[1]]) qkv = qkv.cpu().detach().numpy().astype(np_weight_data_type) split_vals = np.split(qkv, factor, axis=-1) for j in range(factor): saved_path = saved_dir / f"decoder.block.{i}.layer.0.SelfAttention.qkv.weight.{j}.bin" split_vals[j].tofile(saved_path.as_posix()) def split_and_convert_process(key, val, factor, saved_dir): if val.ndim == 2: val = val.transpose(1, 0) saved_key = key LOGGER.debug(f"key: {key}, val.shape: {val.shape}") if key.find("shared.weight") != -1: # shared weights, only need to convert the weights of rank 0 saved_path = saved_dir / f"{saved_key}.bin" val.tofile(saved_path.as_posix()) saved_path = saved_dir / f"{saved_key}_T.bin" val.T.tofile(saved_path.as_posix()) elif key.find("lm_head.weight") != -1: # lm_head weights, only need to convert the weights of rank 0 val = val.transpose(1, 0) # For lm_head, we use TN gemm to compute, so we don't need to transpose saved_path = saved_dir / f"{saved_key}.bin" val.tofile(saved_path.as_posix()) elif key.find("layer_norm.weight") != -1: # shared weights, only need to convert the weights of rank 0 saved_path = saved_dir / f"{saved_key}.bin" val.tofile(saved_path.as_posix()) elif ( key.find("SelfAttention.o.weight") != -1 or key.find("EncDecAttention.o.weight") != -1 or key.find("DenseReluDense.wo.weight") != -1 ): split_vals = np.split(val, factor, axis=0) for j in range(factor): saved_path = saved_dir / f"{saved_key}.{j:d}.bin" split_vals[j].tofile(saved_path.as_posix()) elif ( key.find("DenseReluDense.wi.weight") != -1 or (key.find("encoder") != -1 and ( key.find("SelfAttention.q.weight") != -1 or key.find("SelfAttention.k.weight") != -1 or key.find("SelfAttention.v.weight") != -1 ) ) or key.find("EncDecAttention.q.weight") != -1 or key.find("EncDecAttention.k.weight") != -1 or key.find("EncDecAttention.v.weight") != -1 ): split_vals = np.split(val, factor, axis=-1) for j in range(factor): saved_path = saved_dir / f"{saved_key}.{j:d}.bin" split_vals[j].tofile(saved_path.as_posix()) elif ( key.find("DenseReluDense.wi_0.weight") != -1 or key.find("DenseReluDense.wi_1.weight") != -1 ): # For gated activation. if key.find("DenseReluDense.wi_0.weight") != -1: saved_key = key.replace("wi_0", "wi") elif key.find("DenseReluDense.wi_1.weight") != -1: saved_key = key.replace("wi_1", "wi2") split_vals = np.split(val, factor, axis=-1) for j in range(factor): saved_path = saved_dir / f"{saved_key}.{j:d}.bin" split_vals[j].tofile(saved_path.as_posix()) elif key.find("relative_attention_bias") != -1: split_vals = np.split(val, factor, axis=0) for j in range(factor): saved_path = saved_dir / f"{saved_key}.{j:d}.bin" split_vals[j].tofile(saved_path.as_posix()) elif ( key.find("decoder") != -1 and ( key.find("SelfAttention.q.weight") != -1 or key.find("SelfAttention.k.weight") != -1 or key.find("SelfAttention.v.weight") != -1 ) ): pass elif key.find("encoder.embed_tokens.weight") != -1 or \ key.find("decoder.embed_tokens.weight") != -1: LOGGER.warning(f"Not save {key}, using shared.weight directly.") else: LOGGER.warning(f"cannot find key '{key}' with shape {val.shape}") def convert_checkpoint(args): saved_dir = Path(args.saved_dir) / f"{args.inference_tensor_para_size:d}-gpu" saved_dir.mkdir(parents=True, exist_ok=True) if args.encoder_only: t5_model = T5EncoderModel.from_pretrained(args.in_file) else: t5_model = T5ForConditionalGeneration.from_pretrained(args.in_file) config = configparser.ConfigParser() if t5_model.encoder.config.feed_forward_proj.find("gated") != -1: new_configs["structure"]["use_gated_activation"] = "1" config["encoder"] = {} for key, val in t5_model.encoder.config.to_dict().items(): config["encoder"][key] = f"{val}" config["encoder"]["weight_data_type"] = args.weight_data_type config["decoder"] = {} if not args.encoder_only: for key, val in t5_model.decoder.config.to_dict().items(): config["decoder"][key] = f"{val}" config["decoder"]["weight_data_type"] = args.weight_data_type for key, val in rename_mapping.items(): config['encoder'][val] = config['encoder'].pop(key) if not args.encoder_only: config['decoder'][val] = config['decoder'].pop(key) for key, val in new_configs.items(): config[key] = {} for val_key, val_val in val.items(): config[key][val_key] = val_val with open((saved_dir / f"config.ini").as_posix(), 'w') as configfile: config.write(configfile) np_weight_data_type = get_weight_data_type(args.weight_data_type) i_gpu_num = args.inference_tensor_para_size pool = multiprocessing.Pool(args.processes) pool.starmap_async(split_and_convert_process, [(name, param.cpu().detach().numpy().astype(np_weight_data_type), i_gpu_num, saved_dir) for name, param in t5_model.state_dict().items()]) pool.close() pool.join() if not args.encoder_only: fuse_decoder_qkv(t5_model, i_gpu_num, saved_dir, np_weight_data_type) if __name__ == "__main__": parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) parser.add_argument("-saved_dir", "-o", type=str, help="file name of output file", required=True) parser.add_argument("-in_file", "-i", type=str, help="file name of input checkpoint file", required=True) parser.add_argument("-inference_tensor_para_size", "-i_g", type=int, help="How many gpus for inference", required=True) parser.add_argument("-processes", "-p", type=int, help="How many processes to spawn for conversion (default: 4)", default=4) parser.add_argument("-weight_data_type", type=str, default="fp32", choices=["fp32", "fp16"]) parser.add_argument("--encoder_only", "-e", action="store_true") parser.add_argument("--verbose", action="store_true", help="Provide verbose messages") args = parser.parse_args() log_format = "%(asctime)s %(name)s [%(levelname)s] %(message)s" logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO, format=log_format) LOGGER.info("\n=============== Argument ===============") for key in vars(args): LOGGER.info(f"{key}: {vars(args)[key]}") LOGGER.info("========================================") start_time = datetime.now() convert_checkpoint(args) stop_time = datetime.now() run_time = (stop_time - start_time) LOGGER.info("Spend {} (h:m:s) to convert the model".format(run_time))
FasterTransformer-main
examples/pytorch/t5/utils/huggingface_t5_ckpt_convert.py
import configparser import torch import argparse import os import numpy as np device = torch.device('cpu') encoder_config_mapping = { "num_attention_heads":"num_heads", "kv_channels":"d_kv", "hidden_size":"d_model", "ffn_hidden_size":"d_ff", "num_layers":"num_layers", "num_experts":"num_experts", "padded_vocab_size":"vocab_size", "max_position_embeddings":"relative_attention_num_buckets_or_max_pos_seq_len", "relative_position_num_buckets":"relative_attention_num_buckets_or_max_pos_seq_len" } decoder_config_mapping = { "num_attention_heads":"num_heads", "kv_channels":"d_kv", "hidden_size":"d_model", "ffn_hidden_size":"d_ff", "num_layers":"num_layers", "num_experts":"num_experts", "padded_vocab_size":"vocab_size", "max_position_embeddings":"relative_attention_num_buckets_or_max_pos_seq_len", "relative_position_num_buckets":"relative_attention_num_buckets_or_max_pos_seq_len" } decoder_new_config = { "decoder_start_token_id":250104, ## need to adjust "eos_token_id":1 ## need to adjust } model_new_config = {"structure":{"t5_with_bias":1, "t5_with_moe":0, "moe_layers_in_encoder":[], "moe_layers_in_decoder":[], "use_gated_activation": 0, "position_embedding_type":0}} if __name__=='__main__': parser = argparse.ArgumentParser() parser.add_argument("--checkpoint_dir", type=str, help="path to the deepspeed-megratron checkpoint") parser.add_argument("--output_dir", type=str, help="path to the output directory to store binary files") parser.add_argument("--tensor_para_size", type=int, help="tensor parallelism size") parser.add_argument("--weight_data_type", type=str, default="fp32", choices=["fp32", "fp16"]) args = parser.parse_args() checkpoint_dir = args.checkpoint_dir output_dir = args.output_dir tensor_para_size = args.tensor_para_size print("=========================") print(f"checkpoint: '{checkpoint_dir}'") print(f"output: '{output_dir}'") print(f"tensor_para_size: '{tensor_para_size}'") print("=========================") if not os.path.isdir(checkpoint_dir): raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") if not os.path.isdir(output_dir): os.mkdir(output_dir) # for tencent t5 model which is trained under ZeRO2 files = [f for f in os.listdir(checkpoint_dir) if f.find('model_states') != -1] model_states_file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") #model_states_file = os.path.join(checkpoint_dir, "model_optim_rng.pt") model_states = torch.load(model_states_file, map_location=device) model_args = vars(model_states['args']) num_layers = model_args['num_layers'] num_experts = 0 if 'num_experts' in model_args.keys(): num_experts = model_args['num_experts'][0] # update model structure config if not hasattr(model_args, 'position_embedding_type') or model_args.position_embedding_type == "absolute": model_new_config["structure"]["position_embedding_type"] = 1 if num_experts != 0: model_new_config["structure"]["t5_with_moe"] = 1 model = model_states['module']['language_model'] embedding = model['embedding'] encoder = model['encoder'] decoder = model['decoder'] word_embeddings = embedding['word_embeddings'] position_embeddings = embedding['position_embeddings'] word_embeddings_weight = word_embeddings['weight'].float().detach().numpy() file_name = os.path.join(output_dir, "word_embeddings.weight.bin") print(f"Saving word_embeddings_weight to '{file_name}'") print(f"Shape: '{word_embeddings_weight.shape}'") word_embeddings_weight.tofile(file_name) position_embeddings_weight = position_embeddings['weight'].float().detach().numpy() file_name = os.path.join(output_dir, "position_embeddings.weight.bin") print(f"Saving position_embeddings_weight to '{file_name}'") print(f"Shape: '{position_embeddings_weight.shape}'") position_embeddings_weight.tofile(file_name) shared_bias = model_states['module']['lm_head']['bias'].float().detach().numpy() file_name = os.path.join(output_dir, "shared.bias.bin") print(f"Saving shared.bias to '{file_name}'") print(f"Shape: '{shared_bias.shape}'") shared_bias.tofile(file_name) moe_layers_num = 0 moe_layers_in_encoder = [] moe_layers_in_decoder = [] for k, v in encoder.items(): val = v.T.float().cpu().numpy().astype(np.float32) if k.find("attention.query_key_value.weight") != -1: num_splits = 3 hidden_dim = val.shape[0] local_dim = int(val.shape[-1] / num_splits) head_num = model_args['num_attention_heads'] size_per_head = model_args['kv_channels'] val = val.reshape(hidden_dim, head_num, num_splits, size_per_head) val = val.transpose(0, 2, 1, 3) val = val.reshape(hidden_dim, num_splits, local_dim) factor = 1 split_vals = np.split(val, factor, axis=-1) query = split_vals[0][:, 0, ...] key = split_vals[0][:, 1, ...] value = split_vals[0][:, 2, ...] prefix = k[:-22] + "query.weight" query_tensor_para = np.split(query, tensor_para_size, axis=1) for i in range(tensor_para_size): file_name = os.path.join(output_dir, "encoder." + prefix + "." + str(i) + ".bin") print(f"Saving '{i}' '{prefix}' to '{file_name}'") query_to_save = query_tensor_para[i] print(f"Shape: '{query_to_save.shape}'") query_to_save.tofile(file_name) prefix = k[:-22] + "key.weight" key_tensor_para = np.split(key, tensor_para_size, axis=1) for i in range(tensor_para_size): file_name = os.path.join(output_dir, "encoder." + prefix + "." + str(i) + ".bin") print(f"Saving '{i}' '{prefix}' to '{file_name}'") key_to_save = key_tensor_para[i] print(f"Shape: '{key_to_save.shape}'") key_to_save.tofile(file_name) prefix = k[:-22] + "value.weight" value_tensor_para = np.split(value, tensor_para_size, axis=1) for i in range(tensor_para_size): file_name = os.path.join(output_dir, "encoder." + prefix + "." + str(i) + ".bin") print(f"Saving '{i}' '{prefix}' to '{file_name}'") value_to_save = value_tensor_para[i] print(f"Shape: '{value_to_save.shape}'") value_to_save.tofile(file_name) elif k.find("attention.query_key_value.bias") != -1: num_splits = 3 local_dim = int(val.shape[-1] / num_splits) head_num = model_args['num_attention_heads'] size_per_head = model_args['kv_channels'] val = val.reshape(head_num, num_splits, size_per_head) val = val.transpose(1, 0, 2) val = val.reshape(num_splits, local_dim) factor = 1 split_vals = np.split(val, factor, axis=-1) q_bias = split_vals[0][0, ...] k_bias = split_vals[0][1, ...] v_bias = split_vals[0][2, ...] prefix = k[:-20] + "query.bias" q_bias_tensor_para = np.split(q_bias, tensor_para_size, axis=0) for i in range(tensor_para_size): file_name = os.path.join(output_dir, "encoder." + prefix + "." + str(i) + ".bin") print(f"Saving '{i}' '{prefix}' to '{file_name}'") q_bias_to_save = q_bias_tensor_para[i] print(f"Shape: '{q_bias_to_save.shape}'") q_bias_to_save.tofile(file_name) prefix = k[:-20] + "key.bias" k_bias_tensor_para = np.split(k_bias, tensor_para_size, axis=0) for i in range(tensor_para_size): file_name = os.path.join(output_dir, "encoder." + prefix + "." + str(i) + ".bin") print(f"Saving '{i}' '{prefix}' to '{file_name}'") k_bias_to_save = k_bias_tensor_para[i] print(f"Shape: '{k_bias_to_save.shape}'") k_bias_to_save.tofile(file_name) prefix = k[:-20] + "value.bias" v_bias_tensor_para = np.split(v_bias, tensor_para_size, axis=0) for i in range(tensor_para_size): file_name = os.path.join(output_dir, "encoder." + prefix + "." + str(i) + ".bin") print(f"Saving '{i}' '{prefix}' to '{file_name}'") v_bias_to_save = v_bias_tensor_para[i] print(f"Shape: '{v_bias_to_save.shape}'") v_bias_to_save.tofile(file_name) elif k.find('experts') == -1: if k.find('deepspeed_moe.gate') != -1: layer_id = int(k[7:k.find('.', 7)]) moe_layers_in_encoder.append(layer_id) moe_layers_num += 1 prefix = k if k.find('layernorm') != -1 or k.find('gate') != -1 or k.find("attention.dense.bias") != -1 or k.find("dense_4h_to_h.bias") != -1: file_name = os.path.join(output_dir, "encoder." + prefix + ".bin") print(f"Saving '{prefix}' to '{file_name}'") print(f"Shape: '{val.shape}'") val.tofile(file_name) else: val_tensor_para = [] if k.find("attention.dense.weight") != -1 or k.find("dense_4h_to_h.weight") != -1 or k.find("dense_h_to_4h.bias") != -1: val_tensor_para = np.split(val, tensor_para_size, axis=0) elif k.find("dense_h_to_4h.weight") != -1: val_tensor_para = np.split(val, tensor_para_size, axis=1) for i in range(tensor_para_size): file_name = os.path.join(output_dir, "encoder." + prefix + "." + str(i) + ".bin") print(f"Saving '{i}' '{prefix}' to '{file_name}'") val_to_save = val_tensor_para[i] print(f"Shape: '{val_to_save.shape}'") val_to_save.tofile(file_name) print('moe_layers_in_encoder: ', moe_layers_in_encoder) model_new_config["structure"]["moe_layers_in_encoder"] = moe_layers_in_encoder for k, v in decoder.items(): val = v.T.float().cpu().numpy().astype(np.float32) if (k.find("attention.query_key_value.weight") != -1 or k.find("inter_attention.key_value.weight") != -1 or k.find("inter_attention.query.weight") != -1): #(d_model * 3, d_model) num_splits = 3 if k.find("inter_attention.key_value.weight") != -1: num_splits = 2 if k.find("inter_attention.query.weight") != -1: num_splits = 1 hidden_dim = val.shape[0] local_dim = int(val.shape[-1] / num_splits) head_num = model_args['num_attention_heads'] size_per_head = model_args['kv_channels'] val = val.reshape(hidden_dim, head_num, num_splits, size_per_head) val = val.transpose(0, 2, 1, 3) val = val.reshape(hidden_dim, num_splits, local_dim) factor = 1 split_vals = np.split(val, factor, axis=-1) if k.find("attention.query_key_value.weight") != -1: query_key_value = split_vals[0] prefix = k query_key_value_tensor_para = np.split(query_key_value, tensor_para_size, axis=2) for i in range(tensor_para_size): file_name = os.path.join(output_dir, "decoder." + prefix + "." + str(i) + ".bin") print(f"Saving '{i}' '{prefix}' to '{file_name}'") query_key_value_to_save = query_key_value_tensor_para[i] print(f"Shape: '{query_key_value_to_save.shape}'") query_key_value_to_save.tofile(file_name) if k.find("inter_attention.key_value.weight") != -1: key = split_vals[0][:, 0, ...] value = split_vals[0][:, 1, ...] prefix = k[:-16] + "key.weight" key_tensor_para = np.split(key, tensor_para_size, axis=1) for i in range(tensor_para_size): file_name = os.path.join(output_dir, "decoder." + prefix + "." + str(i) + ".bin") print(f"Saving '{i}' '{prefix}' to '{file_name}'") key_to_save = key_tensor_para[i] print(f"Shape: '{key_to_save.shape}'") key_to_save.tofile(file_name) prefix = k[:-16] + "value.weight" value_tensor_para = np.split(value, tensor_para_size, axis=1) for i in range(tensor_para_size): file_name = os.path.join(output_dir, "decoder." + prefix + "." + str(i) + ".bin") print(f"Saving '{i}' '{prefix}' to '{file_name}'") value_to_save = value_tensor_para[i] print(f"Shape: '{value_to_save.shape}'") value_to_save.tofile(file_name) if k.find("inter_attention.query.weight") != -1: query = split_vals[0] prefix = k query_tensor_para = np.split(query, tensor_para_size, axis=2) for i in range(tensor_para_size): file_name = os.path.join(output_dir, "decoder." + prefix + "." + str(i) + ".bin") print(f"Saving '{i}' '{prefix}' to '{file_name}'") query_to_save = query_tensor_para[i] print(f"Shape: '{query_to_save.shape}'") query_to_save.tofile(file_name) elif (k.find("attention.query_key_value.bias") != -1 or k.find("inter_attention.key_value.bias") != -1 or k.find("inter_attention.query.bias") != -1): num_splits = 3 if k.find("inter_attention.key_value.bias") != -1: num_splits = 2 if k.find("inter_attention.query.bias") != -1: num_splits = 1 local_dim = int(val.shape[-1] / num_splits) head_num = model_args['num_attention_heads'] size_per_head = model_args['kv_channels'] val = val.reshape(head_num, num_splits, size_per_head) val = val.transpose(1, 0, 2) val = val.reshape(num_splits, local_dim) factor = 1 split_vals = np.split(val, factor, axis=-1) if k.find("attention.query_key_value.bias") != -1: query_key_value_bias = split_vals[0] prefix = k query_key_value_bias_tensor_para = np.split(query_key_value_bias, tensor_para_size, axis=1) for i in range(tensor_para_size): file_name = os.path.join(output_dir, "decoder." + prefix + "." + str(i) + ".bin") print(f"Saving '{i}' '{prefix}' to '{file_name}'") query_key_value_bias_to_save = query_key_value_bias_tensor_para[i] print(f"Shape: '{query_key_value_bias_to_save.shape}'") query_key_value_bias_to_save.tofile(file_name) if k.find("inter_attention.key_value.bias") != -1: key_bias = split_vals[0][0, ...] value_bias = split_vals[0][1, ...] prefix = k[:-14] + "key.bias" key_bias_tensor_para = np.split(key_bias, tensor_para_size, axis=0) for i in range(tensor_para_size): file_name = os.path.join(output_dir, "decoder." + prefix + "." + str(i) + ".bin") print(f"Saving '{i}' '{prefix}' to '{file_name}'") key_bias_to_save = key_bias_tensor_para[i] print(f"Shape: '{key_bias_to_save.shape}'") key_bias_to_save.tofile(file_name) prefix = k[:-14] + "value.bias" value_bias_tensor_para = np.split(value_bias, tensor_para_size, axis=0) for i in range(tensor_para_size): file_name = os.path.join(output_dir, "decoder." + prefix + "." + str(i) + ".bin") print(f"Saving '{i}' '{prefix}' to '{file_name}'") value_bias_to_save = value_bias_tensor_para[i] print(f"Shape: '{value_bias_to_save.shape}'") value_bias_to_save.tofile(file_name) if k.find("inter_attention.query.bias") != -1: query_bias = split_vals[0] prefix = k query_bias_tensor_para = np.split(query_bias, tensor_para_size, axis=1) for i in range(tensor_para_size): file_name = os.path.join(output_dir, "decoder." + prefix + "." + str(i) + ".bin") print(f"Saving '{i}' '{prefix}' to '{file_name}'") query_bias_to_save = query_bias_tensor_para[i] print(f"Shape: '{query_bias_to_save.shape}'") query_bias_to_save.tofile(file_name) elif k.find('experts') == -1: if k.find('deepspeed_moe.gate') != -1: layer_id = int(k[7:k.find('.', 7)]) moe_layers_in_decoder.append(layer_id) moe_layers_num += 1 prefix = k if k.find('layernorm') != -1 or k.find('gate') != -1 or k.find("attention.dense.bias") != -1 or k.find("dense_4h_to_h.bias") != -1 or \ k.find("inter_attention.dense.bias") != -1: file_name = os.path.join(output_dir, "decoder." + prefix + ".bin") print(f"Saving '{prefix}' to '{file_name}'") print(f"Shape: '{val.shape}'") val.tofile(file_name) else: val_tensor_para = [] if k.find("attention.dense.weight") != -1 or k.find("dense_4h_to_h.weight") != -1 or k.find("dense_h_to_4h.bias") != -1: val_tensor_para = np.split(val, tensor_para_size, axis=0) elif k.find("dense_h_to_4h.weight") != -1: val_tensor_para = np.split(val, tensor_para_size, axis=1) for i in range(tensor_para_size): file_name = os.path.join(output_dir, "decoder." + prefix + "." + str(i) + ".bin") print(f"Saving '{i}' '{prefix}' to '{file_name}'") val_to_save = val_tensor_para[i] print(f"Shape: '{val_to_save.shape}'") val_to_save.tofile(file_name) print('moe_layers_in_decoder: ', moe_layers_in_decoder) model_new_config["structure"]["moe_layers_in_decoder"] = moe_layers_in_decoder # Saving experts weight print(f"The number of moe layers is '{moe_layers_num}'") for n in range(moe_layers_num): experts_in_layer = [] fc1_weight = [] fc1_bias = [] fc2_weight = [] fc2_bias = [] prefix = None for e in range(num_experts): file_name = f"layer_{n}_expert_{e}_mp_rank_00_model_states.pt" file_path = os.path.join(checkpoint_dir, file_name) expert_dict = torch.load(file_path, map_location=device) for k, v in expert_dict.items(): #val = v.T.float().cpu()#.numpy().astype(np.float32) if k.find('dense_h_to_4h.weight') != -1: if prefix is None: prefix = k[15:-22] fc1_weight.append(v) if k.find('dense_h_to_4h.bias') != -1: fc1_bias.append(v) if k.find('dense_4h_to_h.weight') != -1: fc2_weight.append(v) if k.find('dense_4h_to_h.bias') != -1: fc2_bias.append(v) stacked_fc1_weight = torch.stack(fc1_weight, 0).transpose(-1, -2).contiguous() val = stacked_fc1_weight.float().cpu().numpy() # (num_experts, d_model, d_ff) val_tensor_para = np.split(val, tensor_para_size, axis=2) for i in range(tensor_para_size): file_name = os.path.join(output_dir, prefix + "dense_h_to_4h.weight." + str(i) + ".bin") print(f"Saving '{i}' '{prefix}' to '{file_name}'") val_to_save = val_tensor_para[i] print(f"Shape: '{val_to_save.shape}'") val_to_save.tofile(file_name) stacked_fc1_bias = torch.stack(fc1_bias, 0).contiguous() val = stacked_fc1_bias.float().cpu().numpy() # (num_experts, d_ff) val_tensor_para = np.split(val, tensor_para_size, axis=1) for i in range(tensor_para_size): file_name = os.path.join(output_dir, prefix + "dense_h_to_4h.bias." + str(i) + ".bin") print(f"Saving '{i}' '{prefix}' to '{file_name}'") val_to_save = val_tensor_para[i] print(f"Shape: '{val_to_save.shape}'") val_to_save.tofile(file_name) stacked_fc2_weight = torch.stack(fc2_weight, 0).transpose(-1, -2).contiguous() val = stacked_fc2_weight.float().cpu().numpy() # (num_experts, d_ff, d_model) val_tensor_para = np.split(val, tensor_para_size, axis=1) for i in range(tensor_para_size): file_name = os.path.join(output_dir, prefix + "dense_4h_to_h.weight." + str(i) + ".bin") print(f"Saving '{i}' '{prefix}' to '{file_name}'") val_to_save = val_tensor_para[i] print(f"Shape: '{val_to_save.shape}'") val_to_save.tofile(file_name) stacked_fc2_bias = torch.stack(fc2_bias, 0) val = stacked_fc2_bias.float().cpu().numpy() file_name = os.path.join(output_dir, prefix + "dense_4h_to_h.bias.bin") print(f"Saving '{i}' '{prefix}' to '{file_name}'") print(f"Shape: '{val_to_save.shape}'") val.tofile(file_name) config = configparser.ConfigParser() config["encoder"] = {} config["decoder"] = {} config["encoder"]["weight_data_type"] = args.weight_data_type config["decoder"]["weight_data_type"] = args.weight_data_type for key, val in model_args.items(): if key in encoder_config_mapping.keys(): if key == 'num_experts' and type(val) is list: val = val[0] config["encoder"][encoder_config_mapping[key]] = f"{val}" if key in decoder_config_mapping.keys(): if key == 'num_experts' and type(val) is list: val = val[0] config["decoder"][decoder_config_mapping[key]] = f"{val}" for key, val in decoder_new_config.items(): config["decoder"][key] = f"{val}" for key, val in model_new_config.items(): config[key] = {} for val_key, val_val in val.items(): config[key][val_key] = f"{val_val}" config_save_path = os.path.join(output_dir, "config.ini") with open(config_save_path, 'w') as configfile: config.write(configfile)
FasterTransformer-main
examples/pytorch/t5/utils/megatron-deepspeed_t5_ckpt_convert.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import concurrent.futures import configparser import datetime import logging import os import pathlib import shutil import sys import tempfile import typing import numpy as np import torch # pytype: disable=import-error import yaml # verify if root package is in PYTHONPATH __root_package_path__ = pathlib.Path(__file__).parent.parent.parent.parent.parent.absolute().as_posix() if __root_package_path__ not in sys.path: print( f"[ERROR] add project root directory to your PYTHONPATH with " f"'export PYTHONPATH={__root_package_path__}:${{PYTHONPATH}}'" ) from examples.pytorch.nemo import unpack_nemo_ckpt, UnpackedNemoCheckpointDir, extract_layers_with_prefix from examples.pytorch.utils import gpu_map_location, WEIGHT2DTYPE, torch2np, cpu_map_location, safe_transpose LOGGER = logging.getLogger(__name__) shared_mapping = { "wte": "shared.weight", "wte_T": "shared.weight_T", "ape": "shared.ape", "encoder_rpe": "block.0.layer.0.SelfAttention.relative_attention_bias", "decoder_rpe": "block.0.layer.0.SelfAttention.relative_attention_bias", } common_mapping = { "input_layernorm": "layer.0.layer_norm", "self_attention.dense": "layer.0.SelfAttention.o", "post_attention_layernorm": "layer.1.layer_norm", "final_layernorm": "final_layer_norm", "adapter_1.layernorm": "after_attention_adapter.layer_norm", "adapter_1.mlp.dense_h_to_4h": "after_attention_adapter.DenseSiluDense.wi", "adapter_1.mlp.dense_4h_to_h": "after_attention_adapter.DenseSiluDense.wo", "adapter_2.layernorm": "after_ffn_adapter.layer_norm", "adapter_2.mlp.dense_h_to_4h": "after_ffn_adapter.DenseSiluDense.wi", "adapter_2.mlp.dense_4h_to_h": "after_ffn_adapter.DenseSiluDense.wo", } encoder_mapping = { **common_mapping, "self_attention.query_key_value": ["layer.0.SelfAttention.q", "layer.0.SelfAttention.k", "layer.0.SelfAttention.v"], "mlp.dense_h_to_4h": "layer.1.DenseReluDense.wi", "mlp.dense_h_to_4h_2": "layer.1.DenseReluDense.wi2", ## gated activation "mlp.dense_4h_to_h": "layer.1.DenseReluDense.wo", } decoder_mapping = { **common_mapping, "self_attention.query_key_value": ["layer.0.SelfAttention.qkv"], "inter_attention.query": ["layer.1.EncDecAttention.q"], "inter_attention.key_value": ["layer.1.EncDecAttention.k", "layer.1.EncDecAttention.v"], "inter_attention.dense": "layer.1.EncDecAttention.o", "post_inter_attention_layernorm": "layer.2.layer_norm", "mlp.dense_h_to_4h": "layer.2.DenseReluDense.wi", "mlp.dense_h_to_4h_2": "layer.2.DenseReluDense.wi2", "mlp.dense_4h_to_h": "layer.2.DenseReluDense.wo", } megatron_HF_name_mapping = {"shared": shared_mapping, "encoder": encoder_mapping, "decoder": decoder_mapping} encoder_config_mapping = { "num_attention_heads": "num_heads", "hidden_size": "d_model", "kv_channels": "d_kv", "ffn_hidden_size": "d_ff", "num_layers": "num_layers", "max_position_embeddings": "relative_attention_num_buckets_or_max_pos_seq_len", "relative_attention_num_buckets": "relative_attention_num_buckets_or_max_pos_seq_len", "activation": "feed_forward_proj", } decoder_config_mapping = { "num_attention_heads": "num_heads", "hidden_size": "d_model", "kv_channels": "d_kv", "ffn_hidden_size": "d_ff", "num_layers": "num_layers", "max_position_embeddings": "relative_attention_num_buckets_or_max_pos_seq_len", "relative_attention_num_buckets": "relative_attention_num_buckets_or_max_pos_seq_len", "activation": "feed_forward_proj", } def megatron2hf_name(saved_key, name_mapping): saved_key = saved_key.replace("layers", "block") split_last_dot = saved_key.rsplit(sep=".", maxsplit=1) mapping_key = split_last_dot[0] weight_or_bias = split_last_dot[1] split_idx = mapping_key.find(".", 6) + 1 mapping_key_no_num = mapping_key[split_idx:] block_num = mapping_key[: split_idx] mapping_vals_no_num = name_mapping[mapping_key_no_num] if not isinstance(mapping_vals_no_num, list): mapping_vals_no_num = [mapping_vals_no_num] saved_keys = [block_num + val + "." + weight_or_bias for val in mapping_vals_no_num] return saved_keys def prompt_convert(args, prompt_config, prompt_weights): prompt_templates = prompt_config["task_templates"] # model config save dir config_saved_dir = pathlib.Path(args.saved_dir) / f"{args.infer_gpu_num:d}-gpu" # Configuration for the model (load by triton backends) config_path = config_saved_dir / "config.ini" config = configparser.ConfigParser() with config_path.open("r") as config_file: config.read_file(config_file) num_tasks = len(prompt_templates) prompt_learning_type = 3 # p_prompt_tuning prompt_learning_start_id = config["encoder"]["vocab_size"] # hard code here config["encoder"]["num_tasks"] = str(num_tasks) config["encoder"]["prompt_learning_start_id"] = str(prompt_learning_start_id) config["encoder"]["prompt_learning_type"] = str(prompt_learning_type) for task_name_id, prompt_task in enumerate(prompt_templates): prompt_task_name = prompt_task["taskname"] prompt_length = int(prompt_task["total_virtual_tokens"]) config[f"task_{task_name_id:d}"] = {} config[f"task_{task_name_id:d}"]["task_name"] = prompt_task_name config[f"task_{task_name_id:d}"]["prompt_length"] = str(prompt_length) prompt_task_weights = prompt_weights["prompt_table"][ f"prompt_table.{prompt_task_name}.prompt_embeddings.weight" ] # put converted prompts weights to the model weights saved dir prompt_task_weights_output_path = config_saved_dir / f"model.prompt_table.{prompt_task_name}.weight.bin" val = torch2np(prompt_task_weights) val.tofile(prompt_task_weights_output_path) if prompt_config["data"]["decoder_starts_with_pad"]: config["decoder"]["decoder_start_token_id"] = config["decoder"]["pad_id"] with config_path.open("w") as config_file: config.write(config_file) LOGGER.info(">>>>>>>>>>>>>>>> model saved config") LOGGER.info(config_path.read_text()) # This tool is used to support the new megatron model trained by pipeline parallel + tensor parallel def merge_and_convert_process( model_type, tensor_para_rank, pipeline_para_rank, saved_dir, factor, key, nemo_model_config, models_list, np_weight_data_type, ): try: assert model_type == "encoder" or model_type == "decoder" model_config = nemo_model_config.get(model_type, None) num_layers = model_config["num_layers"] if model_config is not None else nemo_model_config["num_layers"] prefix = model_type pipeline_para_size = nemo_model_config["pipeline_model_parallel_size"] pipeline_model_parallel_split_rank = nemo_model_config.get("pipeline_model_parallel_split_rank", 0) major_device = models_list[0][key].device name_mapping = megatron_HF_name_mapping[model_type] saved_dir = pathlib.Path(saved_dir) if key.startswith("layers."): layer_index = int(key[7 : key.find(".", 7)]) encoder_num_pipeline_stages = pipeline_model_parallel_split_rank decoder_num_pipeline_stages = pipeline_para_size - pipeline_model_parallel_split_rank offset = 0 if model_type == "encoder" and pipeline_para_size > 1: offset = pipeline_para_rank * (num_layers // encoder_num_pipeline_stages) elif model_type == "decoder" and pipeline_para_size > 1: offset = (pipeline_para_rank - pipeline_model_parallel_split_rank) * ( num_layers // decoder_num_pipeline_stages ) saved_key = key.replace(f"layers.{layer_index}.", f"layers.{layer_index + offset}.") else: saved_key = key is_not_legacy = model_config is None or not model_config.get("megatron_legacy", False) if any(k in key for k in ( "input_layernorm.weight", "input_layernorm.bias", "self_attention.dense.bias", "inter_attention.dense.bias", "post_attention_layernorm.weight", "post_inter_attention_layernorm.weight", "post_attention_layernorm.bias", "post_inter_attention_layernorm.bias", "mlp.dense_4h_to_h.bias", "final_layernorm.weight", "final_layernorm.bias", "adapter_1.layernorm.weight", "adapter_1.layernorm.bias", "adapter_2.layernorm.weight", "adapter_2.layernorm.bias", )): # shared weights, only need to convert the weights of rank 0 if tensor_para_rank == 0: saved_keys = megatron2hf_name(saved_key, name_mapping) saved_path = saved_dir / f"{prefix}.{saved_keys[0]}.bin" val = safe_transpose(models_list[0][key]) val = torch2np(val, np_weight_data_type) val = np.squeeze(val) LOGGER.debug( "merge for pp_rank=%d tp_rank=%d only for tp_rank=0 src_key=%s filename=%s shape=%s dtype=%s", pipeline_para_rank, tensor_para_rank, key, saved_path.name, val.shape, val.dtype, ) val.tofile(saved_path) elif any(k in key for k in ( # split along the first dimension "self_attention.dense.weight", "inter_attention.dense.weight", "mlp.dense_4h_to_h.weight", # split along the last dimension "mlp.dense_h_to_4h.weight", "mlp.dense_h_to_4h.bias", "mlp.dense_h_to_4h_2.weight", "mlp.dense_h_to_4h_2.bias", )): axis = 0 if any(k in key for k in ( "self_attention.dense.weight", "inter_attention.dense.weight", "mlp.dense_4h_to_h.weight", )) else -1 vals = [] for k in range(factor): val = safe_transpose(models_list[k][key]) val = val.float().to(major_device) vals.append(val) saved_keys = megatron2hf_name(saved_key, name_mapping) saved_path = saved_dir / f"{prefix}.{saved_keys[0]}.{tensor_para_rank:d}.bin" val = torch.cat(vals, dim=axis) val = torch2np(val, np_weight_data_type) LOGGER.debug( "merge for pp_rank=%d tp_rank=%d factor=%d src_key=%s filename=%s shape=%s dtype=%s", pipeline_para_rank, tensor_para_rank, factor, key, saved_path.name, val.shape, val.dtype, ) val.tofile(saved_path) elif any(k in key for k in ( "self_attention.query_key_value.bias", "inter_attention.query.bias", "inter_attention.key_value.bias", )): num_splits = 3 if "inter_attention.key_value.bias" in key: num_splits = 2 if "inter_attention.query.bias" in key: num_splits = 1 vals = [] for k in range(factor): val = safe_transpose(models_list[k][key]) val = val.float() local_dim = int(val.shape[-1] / num_splits) if model_config is not None: head_num = model_config["num_attention_heads"] // nemo_model_config["tensor_model_parallel_size"] # t5 kv_channels may not be equal to hidden_size // head_num size_per_head = model_config["kv_channels"] else: head_num = nemo_model_config["num_attention_heads"] // nemo_model_config["tensor_model_parallel_size"] # t5 kv_channels may not be equal to hidden_size // head_num size_per_head = nemo_model_config["kv_channels"] if is_not_legacy: val = val.reshape(head_num, num_splits, size_per_head) val = val.permute(1, 0, 2) val = val.reshape(num_splits, local_dim) vals.append(val.to(major_device)) saved_vals = torch.cat(vals, dim=-1) saved_keys = megatron2hf_name(saved_key, name_mapping) if len(saved_keys) == 1: saved_path = saved_dir / f"{prefix}.{saved_keys[0]}.{tensor_para_rank:d}.bin" val = torch2np(saved_vals, np_weight_data_type) LOGGER.debug( "merge for pp_rank=%d tp_rank=%d factor=%d src_key=%s filename=%s shape=%s dtype=%s", pipeline_para_rank, tensor_para_rank, factor, key, saved_path.name, val.shape, val.dtype, ) val.tofile(saved_path) else: for index in range(len(saved_keys)): saved_path = saved_dir / f"{prefix}.{saved_keys[index]}.{tensor_para_rank:d}.bin" val = torch2np(saved_vals[index, ...], np_weight_data_type) LOGGER.debug( "merge for pp_rank=%d tp_rank=%d factor=%d src_key=%s filename=%s shape=%s dtype=%s", pipeline_para_rank, tensor_para_rank, factor, key, saved_path.name, val.shape, val.dtype, ) val.tofile(saved_path) elif any(k in key for k in ( "self_attention.query_key_value.weight", "inter_attention.query.weight", "inter_attention.key_value.weight", )): num_splits = 3 if "inter_attention.key_value.weight" in key: num_splits = 2 if "inter_attention.query.weight" in key: num_splits = 1 vals = [] for k in range(factor): val = safe_transpose(models_list[k][key]) val = val.float() hidden_dim = val.shape[0] local_dim = int(val.shape[-1] / num_splits) if model_config is not None: head_num = model_config["num_attention_heads"] # t5 kv_channels may not be equal to hidden_size // head_num size_per_head = model_config["kv_channels"] head_num = head_num // nemo_model_config["tensor_model_parallel_size"] else: head_num = nemo_model_config["num_attention_heads"] # t5 kv_channels may not be equal to hidden_size // head_num size_per_head = nemo_model_config["kv_channels"] head_num = head_num // nemo_model_config["tensor_model_parallel_size"] if is_not_legacy: # shape of self_attention.query_key_value.weight is [hidden_dim, head_num * 3 * size_per_head] # convert to [hidden_dim, 3, head_num, size_per_head] val = val.reshape(hidden_dim, head_num, num_splits, size_per_head) val = val.permute(0, 2, 1, 3) val = val.reshape(hidden_dim, num_splits, local_dim) vals.append(val.to(major_device)) saved_vals = torch.cat(vals, dim=-1) saved_keys = megatron2hf_name(saved_key, name_mapping) if len(saved_keys) == 1: saved_path = saved_dir / f"{prefix}.{saved_keys[0]}.{tensor_para_rank:d}.bin" val = torch2np(saved_vals, np_weight_data_type) LOGGER.debug( "merge for pp_rank=%d tp_rank=%d factor=%d src_key=%s filename=%s shape=%s dtype=%s", pipeline_para_rank, tensor_para_rank, factor, key, saved_path.name, val.shape, val.dtype, ) val.tofile(saved_path) else: for index in range(len(saved_keys)): saved_path = saved_dir / f"{prefix}.{saved_keys[index]}.{tensor_para_rank:d}.bin" val = torch2np(saved_vals[:, index, ...], np_weight_data_type) LOGGER.debug( "merge for pp_rank=%d tp_rank=%d factor=%d src_key=%s filename=%s shape=%s dtype=%s", pipeline_para_rank, tensor_para_rank, factor, key, saved_path.name, val.shape, val.dtype, ) val.tofile(saved_path) else: LOGGER.error(f"cannot find key '{key}'") except Exception as e: LOGGER.error(f"fail to convert {key} with error {e}.") def split_and_convert_process( model_type, tensor_para_rank, pipeline_para_rank, saved_dir, factor, key, nemo_model_config, models_list, np_weight_data_type, ): try: assert model_type == "encoder" or model_type == "decoder" model_config = nemo_model_config.get(model_type, None) num_layers = model_config["num_layers"] if model_config is not None else nemo_model_config["num_layers"] prefix = model_type pipeline_para_size = nemo_model_config["pipeline_model_parallel_size"] pipeline_model_parallel_split_rank = nemo_model_config.get("pipeline_model_parallel_split_rank", 0) name_mapping = megatron_HF_name_mapping[model_type] val = safe_transpose(models_list[0][key]) val = torch2np(val, np_weight_data_type) if key.startswith("layers."): layer_index = int(key[7 : key.find(".", 7)]) encoder_num_pipeline_stages = pipeline_model_parallel_split_rank decoder_num_pipeline_stages = pipeline_para_size - pipeline_model_parallel_split_rank offset = 0 if model_type == "encoder" and pipeline_para_size > 1: offset = pipeline_para_rank * (num_layers // encoder_num_pipeline_stages) elif model_type == "decoder" and pipeline_para_size > 1: offset = (pipeline_para_rank - pipeline_model_parallel_split_rank) * ( num_layers // decoder_num_pipeline_stages ) saved_key = key.replace(f"layers.{layer_index}.", f"layers.{layer_index + offset}.") else: saved_key = key is_not_legacy = model_config is None or not model_config.get("megatron_legacy", False) if any(k in key for k in ( "input_layernorm.weight", "input_layernorm.bias", "self_attention.dense.bias", "inter_attention.dense.bias", "post_attention_layernorm.weight", "post_inter_attention_layernorm.weight", "post_attention_layernorm.bias", "post_inter_attention_layernorm.bias", "mlp.dense_4h_to_h.bias", "final_layernorm.weight", "final_layernorm.bias", "adapter_1.layernorm.weight", "adapter_1.layernorm.bias", "adapter_2.layernorm.weight", "adapter_2.layernorm.bias", )): # shared weights, only need to convert the weights of rank 0 if tensor_para_rank == 0: saved_keys = megatron2hf_name(saved_key, name_mapping) saved_path = saved_dir / f"{prefix}.{saved_keys[0]}.bin" LOGGER.debug( "split for pp_rank=%d tp_rank=%d only for tp_rank=0 src_key=%s filename=%s " "shape=%s (same as original) dtype=%s", pipeline_para_rank, tensor_para_rank, key, saved_path.name, val.shape, val.dtype, ) val.tofile(saved_path) elif any(k in key for k in ( # split along the first dimension "self_attention.dense.weight", "inter_attention.dense.weight", "mlp.dense_4h_to_h.weight", # split along the last dimension "mlp.dense_h_to_4h.weight", "mlp.dense_h_to_4h.bias", "mlp.dense_h_to_4h_2.weight", "mlp.dense_h_to_4h_2.bias", )): axis = 0 if any(k in key for k in ( "self_attention.dense.weight", "inter_attention.dense.weight", "mlp.dense_4h_to_h.weight", )) else -1 split_vals = np.split(val, factor, axis=axis) saved_keys = megatron2hf_name(saved_key, name_mapping) for j in range(factor): saved_path = saved_dir / f"{prefix}.{saved_keys[0]}.{tensor_para_rank * factor + j:d}.bin" LOGGER.debug( "split for pp_rank=%d tp_rank=%d factor=%d src_key=%s filename=%s original_shape=%s shape=%s dtype=%s", pipeline_para_rank, tensor_para_rank, factor, key, saved_path.name, val.shape, split_vals[j].shape, split_vals[j].dtype, ) split_vals[j].tofile(saved_path) elif any(k in key for k in ( "self_attention.query_key_value.bias", "inter_attention.query.bias", "inter_attention.key_value.bias", )): num_splits = 3 if "inter_attention.key_value.bias" in key: num_splits = 2 if "inter_attention.query.bias" in key: num_splits = 1 local_dim = int(val.shape[-1] / num_splits) if model_config is not None: head_num = model_config["num_attention_heads"] // nemo_model_config["tensor_model_parallel_size"] # t5 kv_channels may not be equal to hidden_size // head_num size_per_head = model_config["kv_channels"] else: head_num = nemo_model_config["num_attention_heads"] // nemo_model_config["tensor_model_parallel_size"] # t5 kv_channels may not be equal to hidden_size // head_num size_per_head = nemo_model_config["kv_channels"] if is_not_legacy: val = val.reshape(head_num, num_splits, size_per_head) val = val.transpose(1, 0, 2) val = val.reshape(num_splits, local_dim) split_vals = np.split(val, factor, axis=-1) saved_keys = megatron2hf_name(saved_key, name_mapping) for j in range(factor): if len(saved_keys) == 1: saved_path = saved_dir / f"{prefix}.{saved_keys[0]}.{tensor_para_rank * factor + j:d}.bin" LOGGER.debug( "split for pp_rank=%d tp_rank=%d factor=%d src_key=%s filename=%s " "preprocessed_shape=%s shape=%s dtype=%s", pipeline_para_rank, tensor_para_rank, factor, key, saved_path.name, val.shape, split_vals[j].shape, split_vals[j].dtype, ) split_vals[j].tofile(saved_path) continue for index in range(len(saved_keys)): saved_path = saved_dir / f"{prefix}.{saved_keys[index]}.{tensor_para_rank * factor + j:d}.bin" split_val_idxed = split_vals[j][index, ...] LOGGER.debug( "split for pp_rank=%d tp_rank=%d factor=%d src_key=%s filename=%s " "preprocessed_shape=%s shape=%s dtype=%s", pipeline_para_rank, tensor_para_rank, factor, key, saved_path.name, val.shape, split_val_idxed.shape, split_val_idxed.dtype, ) split_val_idxed.tofile(saved_path) elif any(k in key for k in ( "self_attention.query_key_value.weight", "inter_attention.query.weight", "inter_attention.key_value.weight", )): num_splits = 3 if "inter_attention.key_value.weight" in key: num_splits = 2 if "inter_attention.query.weight" in key: num_splits = 1 hidden_dim = val.shape[0] local_dim = int(val.shape[-1] / num_splits) if model_config is not None: head_num = model_config["num_attention_heads"] # t5 kv_channels may not be equal to hidden_size // head_num size_per_head = model_config["kv_channels"] head_num = head_num // nemo_model_config["tensor_model_parallel_size"] else: head_num = nemo_model_config["num_attention_heads"] # t5 kv_channels may not be equal to hidden_size // head_num size_per_head = nemo_model_config["kv_channels"] head_num = head_num // nemo_model_config["tensor_model_parallel_size"] if is_not_legacy: # shape of self_attention.query_key_value.weight is [hidden_dim, head_num * 3 * size_per_head] # convert to [hidden_dim, 3, head_num, size_per_head] val = val.reshape(hidden_dim, head_num, num_splits, size_per_head) val = val.transpose(0, 2, 1, 3) val = val.reshape(hidden_dim, num_splits, local_dim) split_vals = np.split(val, factor, axis=-1) saved_keys = megatron2hf_name(saved_key, name_mapping) for j in range(factor): if len(saved_keys) == 1: saved_path = saved_dir / f"{prefix}.{saved_keys[0]}.{tensor_para_rank * factor + j:d}.bin" LOGGER.debug( "split for pp_rank=%d tp_rank=%d factor=%d src_key=%s filename=%s " "preprocessed_shape=%s shape=%s dtype=%s", pipeline_para_rank, tensor_para_rank, factor, key, saved_path.name, val.shape, split_vals[j].shape, split_vals[j].dtype, ) split_vals[j].tofile(saved_path) continue for index in range(len(saved_keys)): saved_path = saved_dir / f"{prefix}.{saved_keys[index]}.{tensor_para_rank * factor + j:d}.bin" split_val_idxed = split_vals[j][:, index, ...] LOGGER.debug( "split for pp_rank=%d tp_rank=%d factor=%d src_key=%s filename=%s " "preprocessed_shape=%s shape=%s dtype=%s", pipeline_para_rank, tensor_para_rank, factor, key, saved_path.name, val.shape, split_val_idxed.shape, split_val_idxed.dtype, ) split_val_idxed.tofile(saved_path) else: LOGGER.error(f"cannot find key '{key}'") except Exception as e: LOGGER.error(f"fail to convert {key} with error {e}.") def flatten_adapter(adapter: dict) -> dict: """Flatten adapter weights.""" adapter = adapter.get("state_dict", adapter) result = {} for key, val in adapter.items(): assert isinstance(key, str) assert isinstance(val, dict) pos_adapter = key.find(":adapter") assert pos_adapter != -1 prefix = key[:pos_adapter] suffix = key[pos_adapter + 1:] assert suffix.endswith("_1") or suffix.endswith("_2") key_prefix = f"{prefix}.{suffix}." name_mapping = { "module.0.bias": "layernorm.bias", "module.0.weight": "layernorm.weight", "module.1.weight": "mlp.dense_h_to_4h.weight", "module.3.weight": "mlp.dense_4h_to_h.weight", } result.update({key_prefix + name_mapping[k]: v for k, v in val.items()}) return result def convert_checkpoint(unpacked_checkpoints_dir: UnpackedNemoCheckpointDir, args: argparse.Namespace, unpacked_adapter_dir: typing.Optional[UnpackedNemoCheckpointDir] = None): nemo_model_config = unpacked_checkpoints_dir.model_config has_adapters = unpacked_adapter_dir is not None adapter_model_config = unpacked_adapter_dir.model_config if has_adapters else None if has_adapters: tuning_config = adapter_model_config['adapter_tuning'] # TODO: support type == 'parallel_adapter' assert tuning_config['type'] == 'linear_adapter' adapter_norm_position = tuning_config['norm_position'] # TODO: support norm_position == 'post' assert adapter_norm_position == 'pre' assert tuning_config['norm_type'] == 'mixedfusedlayernorm' adapter_inter_size = tuning_config["adapter_dim"] else: adapter_norm_position = None adapter_inter_size = None encoder_config = nemo_model_config.get("encoder", None) decoder_config = nemo_model_config.get("decoder", None) assert (encoder_config is None and decoder_config is None) or ( encoder_config is not None and decoder_config is not None) if encoder_config is not None: if encoder_config.get("kv_channels", None) is None: encoder_config["kv_channels"] = encoder_config["hidden_size"] // encoder_config["num_attention_heads"] if decoder_config.get("kv_channels", None) is None: decoder_config["kv_channels"] = decoder_config["hidden_size"] // decoder_config["num_attention_heads"] else: # shared config for encoder and decoder if nemo_model_config.get("kv_channels", None) is None: nemo_model_config["kv_channels"] = nemo_model_config["hidden_size"] // nemo_model_config[ "num_attention_heads"] inference_tensor_para_size = args.infer_gpu_num # if checkpoints files could be found - start preparing output dir saved_dir = pathlib.Path(args.saved_dir) / f"{inference_tensor_para_size:d}-gpu" if saved_dir.exists(): LOGGER.error("Remove %s target directory before running conversion", saved_dir) for file_path in saved_dir.rglob("*"): LOGGER.debug(" %s", file_path.relative_to(saved_dir)) sys.exit(1) saved_dir.mkdir(parents=True) training_tensor_para_size = nemo_model_config.get("tensor_model_parallel_size", 1) training_pipeline_para_size = nemo_model_config.get("pipeline_model_parallel_size", 1) checkpoints_paths = unpacked_checkpoints_dir.get_checkpoints_paths( training_tensor_para_size, training_pipeline_para_size, ) LOGGER.debug("Expecting checkpoints paths in:") for tp_rank_checkpoints_paths in checkpoints_paths: for checkpoint_path in tp_rank_checkpoints_paths: LOGGER.debug(" %s", checkpoint_path) if has_adapters: adapter_tensor_para_size = adapter_model_config.get("tensor_model_parallel_size", 1) assert adapter_tensor_para_size == training_tensor_para_size adapter_pipeline_para_size = adapter_model_config.get("pipeline_model_parallel_size", 1) assert adapter_pipeline_para_size == training_pipeline_para_size adapter_paths = unpacked_adapter_dir.get_checkpoints_paths( training_tensor_para_size, training_pipeline_para_size, ) LOGGER.debug("Expecting adapter checkpoints paths in:") for tp_rank_adapter_paths in adapter_paths: for adapter_path in tp_rank_adapter_paths: LOGGER.debug(" %s", adapter_path) else: adapter_paths = None map_location_fn = cpu_map_location if bool(args.load_checkpoints_to_cpu) else gpu_map_location np_weight_data_type = WEIGHT2DTYPE[args.weight_data_type] has_gated_activations = False for pipeline_rank in range(len(checkpoints_paths[0])): model_from_selected_pipeline = torch.load(checkpoints_paths[0][pipeline_rank], map_location=map_location_fn) model_from_selected_pipeline = model_from_selected_pipeline.get("state_dict", model_from_selected_pipeline) LOGGER.debug(f"Existent pipeline_rank={pipeline_rank} keys:") for key in model_from_selected_pipeline.keys(): LOGGER.debug(" %s", key) if adapter_paths is not None: adapter_from_selected_pipeline = torch.load(adapter_paths[0][pipeline_rank], map_location=map_location_fn) adapter_from_selected_pipeline = adapter_from_selected_pipeline.get("state_dict", adapter_from_selected_pipeline) LOGGER.debug(f"Existent adapter pipeline_rank={pipeline_rank} keys:") for key in adapter_from_selected_pipeline.keys(): LOGGER.debug(" %s", key) encoder_ape_key = "enc_dec_model.encoder_embedding.position_embeddings.weight" if encoder_ape_key in model_from_selected_pipeline.keys(): saved_path = saved_dir / "shared.ape.bin" # not weight, do not need to transpose val = model_from_selected_pipeline[encoder_ape_key] val = torch2np(val, np_weight_data_type) LOGGER.debug( "save for pp_rank=%d src_key=%s saved_keys=%s shape=%s dtype=%s", pipeline_rank, encoder_ape_key, saved_path.name, val.shape, val.dtype, ) val.tofile(saved_path) has_gated_activations |= any("mlp.dense_h_to_4h_2" in key for key in model_from_selected_pipeline.keys()) def _split(src_key, dst_filename_fn): if src_key in model_from_selected_pipeline.keys(): _val = model_from_selected_pipeline[src_key] _val = safe_transpose(_val) _val = torch2np(_val, np_weight_data_type) _val = np.split(_val, inference_tensor_para_size, axis=0) for tensor_idx in range(inference_tensor_para_size): saved_path = saved_dir / dst_filename_fn(tensor_idx) LOGGER.debug( "save for pp_rank=%d src_key=%s filename=%s shape=%s dtype=%s", pipeline_rank, src_key, saved_path.name, _val[tensor_idx].shape, _val[tensor_idx].dtype, ) _val[tensor_idx].tofile(saved_path) del _val # split rpe into tensor parallel ranks _split( "enc_dec_model.encoder_relative_position_embedding.relative_position_embedding.weight", lambda idx: f"encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight.{idx}.bin", ) _split( "enc_dec_model.decoder_relative_position_embedding.relative_position_embedding.weight", lambda idx: f"decoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight.{idx}.bin", ) del model_from_selected_pipeline if encoder_config is not None: nemo_position_embedding_type = encoder_config.get("position_embedding_type", "absolute") assert encoder_config.get("position_embedding_type", "absolute") == decoder_config.get("position_embedding_type", "absolute") else: nemo_position_embedding_type = nemo_model_config.get("position_embedding_type", "absolute") nemo_position_embedding_type = ( "absolute" if nemo_position_embedding_type == "learned_absolute" else nemo_position_embedding_type ) with_bias = nemo_model_config.get("tokens_head_bias", True) model_new_config = { "structure": { "t5_with_bias": str(with_bias), "position_embedding_type": nemo_position_embedding_type, "use_gated_activation": str(has_gated_activations), } } if training_tensor_para_size > inference_tensor_para_size: assert training_tensor_para_size % inference_tensor_para_size == 0 is_merge_ckpt = True factor = int(training_tensor_para_size / inference_tensor_para_size) else: assert inference_tensor_para_size % training_tensor_para_size == 0 is_merge_ckpt = False factor = int(inference_tensor_para_size / training_tensor_para_size) if encoder_config is not None: assert encoder_config["ffn_hidden_size"] % inference_tensor_para_size == 0 assert encoder_config["num_attention_heads"] % inference_tensor_para_size == 0 assert encoder_config["ffn_hidden_size"] == decoder_config["ffn_hidden_size"] assert encoder_config["num_attention_heads"] == decoder_config["num_attention_heads"] else: assert nemo_model_config["ffn_hidden_size"] % inference_tensor_para_size == 0 assert nemo_model_config["num_attention_heads"] % inference_tensor_para_size == 0 main_loop = min(training_tensor_para_size, inference_tensor_para_size) word_embedding_key = "enc_dec_model.encoder_embedding.word_embeddings.weight" w_e_list = [] lm_head_bias_key = "enc_dec_model.tokens_head.bias" lm_head_bias_list = [] lm_head_weight_key = "enc_dec_model.tokens_head.weight" lm_head_weight_list = [] def _extract_pp_weights(model, pp_idx: int): if pp_idx == 0: word_embedding_val = model[word_embedding_key] word_embedding_val = torch2np(word_embedding_val, np_weight_data_type) w_e_list.append(word_embedding_val) if pp_idx == training_pipeline_para_size - 1 and with_bias: lm_hb_val = model[lm_head_bias_key] lm_hb_val = torch2np(lm_hb_val, np_weight_data_type) lm_head_bias_list.append(lm_hb_val) if lm_head_weight_key in model: if pp_idx == training_pipeline_para_size - 1: lm_hw_val = model[lm_head_weight_key] lm_hw_val = torch2np(lm_hw_val, np_weight_data_type) lm_head_weight_list.append(lm_hw_val) else: if pp_idx == 0: lm_hw_val = model[word_embedding_key] lm_hw_val = torch2np(lm_hw_val, np_weight_data_type) lm_head_weight_list.append(lm_hw_val) torch.multiprocessing.set_start_method("spawn") torch.multiprocessing.set_sharing_strategy("file_system") with concurrent.futures.ProcessPoolExecutor(args.processes) as pool: for tp_idx in range(main_loop): for pp_idx in range(training_pipeline_para_size): encoder_models = [] decoder_models = [] def _append_to_models(model, adapter, rank_weights, is_merge: bool): prefix_encoder = "enc_dec_model.enc_dec_model.encoder.model." prefix_decoder = "enc_dec_model.enc_dec_model.decoder.model." encoder_models.append( extract_layers_with_prefix(model, prefix_encoder) ) decoder_models.append( extract_layers_with_prefix(model, prefix_decoder) ) if adapter is not None: encoder_models[-1].update(extract_layers_with_prefix(adapter, prefix_encoder)) decoder_models[-1].update(extract_layers_with_prefix(adapter, prefix_decoder)) operation = "merging" if is_merge else "copy/splitting" LOGGER.debug( "For pp_idx=%d tp_id=%d %s weights from %s extracted:", pp_idx, tp_idx, operation, rank_weights ) LOGGER.debug(" encoder layers") for name in encoder_models[-1]: LOGGER.debug(" %s", name) LOGGER.debug(" decoder layers") for name in decoder_models[-1]: LOGGER.debug(" %s", name) if is_merge_ckpt: for k in range(factor): rank_weights = checkpoints_paths[tp_idx * factor + k][pp_idx] model = torch.load(rank_weights, map_location=map_location_fn) model = model.get("state_dict", model) _extract_pp_weights(model, pp_idx) if adapter_paths is not None: adapter = flatten_adapter( torch.load(adapter_paths[tp_idx][pp_idx], map_location=map_location_fn)) else: adapter = None _append_to_models(model, adapter, rank_weights, is_merge_ckpt) else: rank_weights = checkpoints_paths[tp_idx][pp_idx] model = torch.load(rank_weights, map_location=map_location_fn) model = model.get("state_dict", model) _extract_pp_weights(model, pp_idx) if adapter_paths is not None: adapter = flatten_adapter( torch.load(adapter_paths[tp_idx][pp_idx], map_location=map_location_fn)) else: adapter = None _append_to_models(model, adapter, rank_weights, is_merge_ckpt) process_fn = merge_and_convert_process if is_merge_ckpt else split_and_convert_process for key in encoder_models[0]: pool.submit( process_fn, "encoder", tp_idx, # tp_rank pp_idx, # pp_rank saved_dir, factor, key, nemo_model_config, encoder_models, np_weight_data_type, ) for key in decoder_models[0]: pool.submit( process_fn, "decoder", tp_idx, # tp_rank pp_idx, # pp_rank saved_dir, factor, key, nemo_model_config, decoder_models, np_weight_data_type, ) w_e_saved_path = saved_dir / "shared.weight_T.bin" lm_head_weight_saved_path = saved_dir / "lm_head.weight.bin" lm_head_saved_path = saved_dir / "shared.bias.bin" w_e_val = np.concatenate(w_e_list, axis=0) lm_head_bias_val = np.concatenate(lm_head_bias_list, axis=0) if with_bias else None lm_head_weight_val = np.concatenate(lm_head_weight_list, axis=0) LOGGER.debug( "save for src_key=%s filename=%s shape=%s dtype=%s", word_embedding_key, w_e_saved_path.name, w_e_val.shape, w_e_val.dtype, ) if lm_head_bias_val is not None: LOGGER.debug( "save for src_key=%s filename=%s shape=%s dtype=%s", lm_head_bias_key, lm_head_saved_path.name, lm_head_bias_val.shape, lm_head_bias_val.dtype, ) LOGGER.debug( "save for src_key=%s filename=%s shape=%s dtype=%s", lm_head_weight_key, lm_head_saved_path.name, lm_head_weight_val.shape, lm_head_weight_val.dtype, ) w_e_val.tofile(w_e_saved_path) if lm_head_bias_val is not None: lm_head_bias_val.tofile(lm_head_saved_path) lm_head_weight_val.tofile(lm_head_weight_saved_path) vocab_size = w_e_val.shape[0] config = configparser.ConfigParser() if nemo_position_embedding_type == "absolute": encoder_config_mapping.pop("relative_attention_num_buckets", None) decoder_config_mapping.pop("relative_attention_num_buckets", None) elif nemo_position_embedding_type == "relative": encoder_config_mapping.pop("max_position_embeddings", None) decoder_config_mapping.pop("max_position_embeddings", None) else: LOGGER.error(f"nemo_position_embedding_type should be absolute or relative") # TODO adjust config for adapters if encoder_config is not None: merge_config = {} for key, val in nemo_model_config.items(): if key not in encoder_config: merge_config[key] = val for key, val in encoder_config.items(): merge_config[key] = val config["encoder"] = { **{ "_name_or_path": args.model_name, "model_type": "T5", "weight_data_type": args.weight_data_type, "tensor_para_size": str(inference_tensor_para_size), "vocab_size": str(vocab_size), }, **{ encoder_config_mapping[key]: str(val) for key, val in merge_config.items() if key in encoder_config_mapping }, } else: config["encoder"] = { **{ "_name_or_path": args.model_name, "model_type": "T5", "weight_data_type": args.weight_data_type, "tensor_para_size": str(inference_tensor_para_size), "vocab_size": str(vocab_size), }, **{ encoder_config_mapping[key]: str(val) for key, val in nemo_model_config.items() if key in encoder_config_mapping }, } tokenizer_config = nemo_model_config["tokenizer"] tokenizer_config = _update_tokenizer_config(tokenizer_config, unpacked_checkpoints_dir) if args.tokenizer_model_path: LOGGER.debug("Use tokenizer model passed from CLI: %s", args.tokenizer_model_path) tokenizer_config["model"] = args.tokenizer_model_path if args.vocab_path: LOGGER.debug("Use tokenizer vocab passed from CLI: %s", args.vocab_path) tokenizer_config["vocab_file"] = args.vocab_path if args.merges_path: LOGGER.debug("Use tokenizer merge passed from CLI: %s", args.merges_path) tokenizer_config["merge_file"] = args.merges_path _copy_tokenizer_file_if_defined("model", tokenizer_config["model"], saved_dir) _copy_tokenizer_file_if_defined("vocab_file", tokenizer_config["vocab_file"], saved_dir) _copy_tokenizer_file_if_defined("merge_file", tokenizer_config["merge_file"], saved_dir) bos_id, eos_id, pad_id = _get_special_tokens_ids(tokenizer_config) if decoder_config is not None: merge_config = {} for key, val in nemo_model_config.items(): if key not in decoder_config: merge_config[key] = val for key, val in decoder_config.items(): merge_config[key] = val config["decoder"] = { **{ "_name_or_path": args.model_name, "model_type": "T5", "weight_data_type": args.weight_data_type, "tensor_para_size": str(inference_tensor_para_size), "vocab_size": str(vocab_size), "decoder_start_token_id": str(bos_id), "eos_token_id": str(eos_id), "pad_id": str(pad_id), }, **{ decoder_config_mapping[key]: str(val) for key, val in merge_config.items() if key in decoder_config_mapping }, } else: config["decoder"] = { **{ "_name_or_path": args.model_name, "model_type": "T5", "weight_data_type": args.weight_data_type, "tensor_para_size": str(inference_tensor_para_size), "vocab_size": str(vocab_size), "decoder_start_token_id": str(bos_id), "eos_token_id": str(eos_id), "pad_id": str(pad_id), }, **{ decoder_config_mapping[key]: str(val) for key, val in nemo_model_config.items() if key in decoder_config_mapping }, } def _config_update_adapter(side: str): config_side = config[side] config_side['has_adapter'] = str(has_adapters) config_side['adapter_inter_size'] = str(adapter_inter_size) config_side['adapter_norm_position'] = adapter_norm_position if has_adapters: _config_update_adapter('encoder') _config_update_adapter('decoder') for section, section_dict in model_new_config.items(): config[section] = {k: str(v) for k, v in section_dict.items()} with (saved_dir / f"config.ini").open("w") as configfile: config.write(configfile) def _update_tokenizer_config(tokenizer_config: typing.Dict, unpacked_checkpoints_dir): def _update_config_entry(key, file_pattern): old_file_path = tokenizer_config[key] if old_file_path: LOGGER.debug("tokenizer %s %s type %s", key, old_file_path, type(old_file_path)) old_file_path = pathlib.Path(old_file_path) new_file_path = unpacked_checkpoints_dir.get_tokenizer_file_path("tokenizer", key, file_pattern) if new_file_path: LOGGER.debug("Update tokenizer %s %s -> %s", key, old_file_path, new_file_path) tokenizer_config[key] = new_file_path.as_posix() elif not old_file_path.exists(): LOGGER.warning("Because tokenizer %s %s does not exists - set it as None", key, old_file_path) tokenizer_config[key] = None _update_config_entry("model", "*.model") _update_config_entry("vocab_file", "*vocab*") _update_config_entry("merge_file", "*merge*.txt") return tokenizer_config def _copy_tokenizer_file_if_defined(key_name, tokenizer_file_path, saved_dir): if tokenizer_file_path: tokenizer_file_path = pathlib.Path(tokenizer_file_path) if tokenizer_file_path.exists(): tokenizer_basename = { "model": "tokenizer", "vocab_file": "vocab", "merge_file": "merges", }[key_name] dst_path = saved_dir / f"{tokenizer_basename}{tokenizer_file_path.suffix}" LOGGER.debug("Copy of %s %s file as %s", tokenizer_file_path, key_name, dst_path) shutil.copy(tokenizer_file_path.as_posix(), dst_path.as_posix()) else: LOGGER.debug("%s %s file does not exists", tokenizer_file_path, key_name) def _get_special_tokens_ids(tokenizer_config: typing.Dict): from nemo.collections.nlp.modules.common.tokenizer_utils import get_nmt_tokenizer from examples.pytorch.tokenizer import add_special_tokens_to_tokenizer logging.getLogger("git.cmd").setLevel(logging.INFO) logging.getLogger("h5py._conv").setLevel(logging.INFO) logging.getLogger("matplotlib").setLevel(logging.INFO) logging.getLogger("matplotlib.font_manager").setLevel(logging.INFO) logging.getLogger("matplotlib.pyplot").setLevel(logging.INFO) tokenizer = get_nmt_tokenizer( library=tokenizer_config["library"], model_name=tokenizer_config["type"], tokenizer_model=tokenizer_config["model"], vocab_file=tokenizer_config["vocab_file"], merges_file=tokenizer_config["merge_file"], legacy=True, ) if tokenizer_config["library"] == "sentencepiece": add_special_tokens_to_tokenizer(tokenizer) bos_id = tokenizer.bos_id eos_id = tokenizer.eos_id pad_id = tokenizer.pad_id LOGGER.debug("for %s obtained tokenizer tokens ids bos_id=%d eos_id=%d", tokenizer_config, bos_id, eos_id) return bos_id, eos_id, pad_id def main(): parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) parser.add_argument( "--saved-dir", "-saved_dir", "-o", help="folder name of output files", required=True, ) parser.add_argument( "--in-file", "-in_file", "-i", help="file name of .nemo checkpoint file or checkpoint dir", required=True, ) parser.add_argument( "--infer-gpu-num", "-infer_gpu_num", "-i_g", type=int, help="How many gpus for inference", required=True, ) parser.add_argument( "--processes", "-processes", "-p", type=int, default=64, help="How many processes to spawn for conversion", ) parser.add_argument( "--weight-data-type", "-weight_data_type", choices=["fp32", "fp16"], default="fp32", help="Data type of results weights", ) parser.add_argument( "--model-name", "-model_name", "-m", help="model name", required=True, ) parser.add_argument( "--vocab-path", help="Path to vocabulary file to embed in FasterTransformer checkpoint", required=False, ) parser.add_argument( "--merges-path", help="Path to merges file to embed in FasterTransformer checkpoint", required=False, ) parser.add_argument( "--tokenizer-model-path", help="Path to tokenizer model file to embed in FasterTransformer checkpoint", required=False, ) parser.add_argument( "--load-checkpoints-to-cpu", "-load_checkpoints_to_cpu", "-cpu", type=int, choices=[0, 1], default=1, help="Whether to load model weights to CPU", ) parser.add_argument( "--prompt-in-file", "-prompt_in_file", "-p_i", help="file name of .nemo prompt checkpoint file", ) parser.add_argument( "--prompt-saved-dir", "-prompt_saved_dir", "-p_o", help="folder name of prompt checkpoint output files", ) parser.add_argument( "--adapter-in-file", "-adapter_in_file", "-a_i", help="file name of .nemo adapter checkpoint file", ) parser.add_argument("--verbose", action="store_true", help="Provide verbose messages") args = parser.parse_args() log_format = "%(asctime)s %(name)s [%(levelname)s] %(message)s" logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO, format=log_format) print("\n=============== Argument ===============") for key in vars(args): print(f"{key}: {vars(args)[key]}") print("========================================") input_path = pathlib.Path(args.in_file) if not input_path.exists(): LOGGER.error("%s does not exists", input_path) sys.exit(1) adapter_input_path = pathlib.Path(args.adapter_in_file) if args.adapter_in_file else None if adapter_input_path and not adapter_input_path.exists(): LOGGER.error("%s does not exists", adapter_input_path) sys.exit(1) with tempfile.TemporaryDirectory() as temp_dir: temp_dir = pathlib.Path(temp_dir) # unpack if needed if input_path.is_file(): checkpoint_dir_path = temp_dir / "unpacked" start_time = datetime.datetime.now() unpacked_checkpoint_dir = UnpackedNemoCheckpointDir( unpack_nemo_ckpt(input_path, checkpoint_dir_path), load_checkpoints_to_cpu=bool(args.load_checkpoints_to_cpu), ) LOGGER.info("Spent %s (h:m:s) to unpack NeMo archive", datetime.datetime.now() - start_time) else: unpacked_checkpoint_dir = UnpackedNemoCheckpointDir( input_path, load_checkpoints_to_cpu=bool(args.load_checkpoints_to_cpu) ) LOGGER.debug("Unpacked NeMo checkpoint contains:") for file_path in unpacked_checkpoint_dir.checkpoints_dir.rglob("*"): LOGGER.debug(" %s", file_path) if adapter_input_path and adapter_input_path.is_file(): adapter_dir_path = temp_dir / "adapter" start_time = datetime.datetime.now() unpacked_adapter_dir = UnpackedNemoCheckpointDir( unpack_nemo_ckpt(adapter_input_path, adapter_dir_path), load_checkpoints_to_cpu=bool(args.load_checkpoints_to_cpu), ) LOGGER.info("Spent %s (h:m:s) to unpack NeMo adapter archive", datetime.datetime.now() - start_time) elif adapter_input_path: unpacked_adapter_dir = UnpackedNemoCheckpointDir( adapter_input_path, load_checkpoints_to_cpu=bool(args.load_checkpoints_to_cpu) ) else: unpacked_adapter_dir = None if unpacked_adapter_dir is not None: LOGGER.debug("Unpacked NeMo adapter checkpoint contains:") for file_path in unpacked_adapter_dir.checkpoints_dir.rglob("*"): LOGGER.debug(" %s", file_path) start_time = datetime.datetime.now() convert_checkpoint(unpacked_checkpoint_dir, args, unpacked_adapter_dir) LOGGER.info("Spent %s (h:m:s) to convert the model", datetime.datetime.now() - start_time) map_location_fn = cpu_map_location if bool(args.load_checkpoints_to_cpu) else gpu_map_location model_config_yaml = "model_config.yaml" model_weights_ckpt = "model_weights.ckpt" if args.prompt_in_file is not None: start_time = datetime.datetime.now() assert args.prompt_saved_dir is not None unpack_nemo_ckpt(args.prompt_in_file, args.prompt_saved_dir) LOGGER.info("Spent %s (h:m:s) to unpack NeMo prompt archive", datetime.datetime.now() - start_time) prompt_config_file = open(os.path.join(args.prompt_saved_dir, model_config_yaml), "r") prompt_config = yaml.full_load(prompt_config_file) LOGGER.info(prompt_config) start_time = datetime.datetime.now() prompt_weights = torch.load( os.path.join(args.prompt_saved_dir, model_weights_ckpt), map_location=map_location_fn, ) prompt_convert(args, prompt_config, prompt_weights) LOGGER.info(f"Spent %s (h:m:s) to unpack convert prompt model", datetime.datetime.now() - start_time) if __name__ == "__main__": main()
FasterTransformer-main
examples/pytorch/t5/utils/nemo_t5_ckpt_convert.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import argparse import codecs from onmt.translate import GNMTGlobalScorer import os import sys dir_path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(dir_path + "/../../..") from utils.translation_model import load_test_model from utils.translator import Translator import logging parser = argparse.ArgumentParser() parser.add_argument("--batch_size", type=int, default=1, help="batch size") parser.add_argument("--beam_size", type=int, default=4, help="beam size") parser.add_argument("--max_seq_len", type=int, default=100, help="max_seq_len") parser.add_argument("--model_type", type=str, help="decoding_ext, torch_decoding, torch_decoding_with_decoder_ext", choices=['decoding_ext', 'torch_decoding', 'torch_decoding_with_decoder_ext'], required=True) parser.add_argument('--data_type', type=str, choices=['fp32', 'fp16', 'bf16'], default='fp32') parser.add_argument('--model_path', type=str, default='./pytorch/translation/models/averaged-10-epoch.pt', help='path for model checkpoint') parser.add_argument('--decoding_ths_path', type=str, default='./lib/libth_transformer.so', help='path of the pyt_fastertransformer dynamic lib file') parser.add_argument('--decoder_ths_path', type=str, default='./lib/libth_transformer.so', help='path of the pyt_fastertransformer dynamic lib file') parser.add_argument('--encoder_ths_path', type=str, default='./lib/libth_transformer.so', help='path of the pyt_fastertransformer dynamic lib file') parser.add_argument('--input_file', type=str, default='../examples/tensorflow/decoding/utils/translation/test.en', help='input file path') parser.add_argument('--output_file', type=str, default='', help='output file path') parser.add_argument('-diversity_rate', '--beam_search_diversity_rate', type=float, default=0.0, metavar='NUMBER', help='deviersity rate of beam search. default is 0. When diversity rate = 0, it is equivalent to the naive beam search.') parser.add_argument('-topk', '--sampling_topk', type=int, default=1, metavar='NUMBER', help='Candidate (k) value of top k sampling in decoding. Default is 1.') parser.add_argument('-topp', '--sampling_topp', type=float, default=0.0, metavar='NUMBER', help='Probability (p) value of top p sampling in decoding. Default is 0.0. ') args = parser.parse_args() opt = argparse.Namespace(models=[args.model_path], fp32=False, data_type='text', output='/dev/null', report_align=False, report_time=True, random_sampling_topk=args.sampling_topk, random_sampling_temp=1.0, seed=829, beam_size=args.beam_size, min_length=0, max_length=args.max_seq_len, stepwise_penalty=False, length_penalty='none', ratio=-0.0, coverage_penalty='none', alpha=0.0, beta=-0.0, block_ngram_repeat=0, ignore_when_blocking=[], replace_unk=False, phrase_table='', verbose=True, dump_beam='', n_best=1, batch_type='sents', gpu=0) fields, model, model_opt = load_test_model(opt, args) scorer = GNMTGlobalScorer.from_opt(opt) out_file = codecs.open(opt.output, 'w+', 'utf-8') logger = logging.getLogger() translator = Translator.from_opt( model, fields, opt, model_opt, args, global_scorer=scorer, out_file=out_file, report_align=opt.report_align, report_score=False, logger=logger ) res = [] n = 1 with open(args.input_file, 'r') as f: lines = f.readlines() lines = [line.strip() for line in lines] translated = translator.translate(lines, batch_size=args.batch_size) for i in range(len(translated[1])): res.append(translated[1][i][0]) if args.output_file: with open(args.output_file, 'w') as f: for line in res: f.write(line + '\n')
FasterTransformer-main
examples/pytorch/decoding/translate_example.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import argparse import timeit import torch import random import numpy as np # import torch.cuda.nvtx as nvtx import os import sys dir_path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(dir_path + "/../../..") from examples.pytorch.decoding.utils.decoding import DecodingWeights, TorchDecoding, ArgHelper from examples.pytorch.decoding.utils.ft_decoding import FtDecodingWeights, CustomDecoding def main(): parser = argparse.ArgumentParser() parser.add_argument('batch_size', type=int, help='batch size') parser.add_argument('layer_num', type=int, help='number of layers') parser.add_argument('seq_len', type=int, help='sequence length') parser.add_argument('head_num', type=int, help='head number') parser.add_argument('head_size', type=int, help='size per head') parser.add_argument('-inter_size', '--inter_size', type=int, default=0, metavar='NUMBER', help='inter_size (default: 0)') parser.add_argument('-mem_hidden', '--memory_hidden_dim', type=int, default=512, metavar='NUMBER', help='memory hidden dim (default: 512)') parser.add_argument('beam_size', type=int, help='beam size') parser.add_argument('vocab_size', type=int, help='vocab size') parser.add_argument('--data_type', type=str, choices=['fp32', 'fp16', 'bf16'], default='fp32') parser.add_argument('--time', action='store_true', help='test the time or not.') parser.add_argument('--use_pretrained', action='store_true', help='use pretrained weights or not.') parser.add_argument('--decoding_ths_path', type=str, default='./lib/libth_transformer.so', help='path of the pyt_fastertransformer dynamic lib file') parser.add_argument('--decoder_ths_path', type=str, default='./lib/libth_transformer.so', help='path of the pyt_fastertransformer dynamic lib file') parser.add_argument('-diversity_rate', '--beam_search_diversity_rate', type=float, default=0.0, metavar='NUMBER', help='deviersity rate of beam search. default is 0. When diversity rate = 0, it is equivalent to the naive beam search.') parser.add_argument('-topk', '--sampling_topk', type=int, default=1, metavar='NUMBER', help='Candidate (k) value of top k sampling in decoding. Default is 1.') parser.add_argument('-topp', '--sampling_topp', type=float, default=0.0, metavar='NUMBER', help='Probability (p) value of top p sampling in decoding. Default is 0.0. ') args = parser.parse_args() torch.manual_seed(0) random.seed(0) np.random.seed(0) if args.use_pretrained: layer_num = 6 head_num = 8 head_size = 64 inter_size = head_num * head_size * 4 vocab_size = 31538 else: layer_num = args.layer_num head_num = args.head_num head_size = args.head_size inter_size = args.inter_size if inter_size == 0: inter_size = 4 * head_num * head_size vocab_size = args.vocab_size hidden_dim = head_num * head_size start_id = 2 end_id = 3 print("\n=============== Argument ===============") for key in vars(args): print("{}: {}".format(key, vars(args)[key])) print("========================================") decodingargs1 = ArgHelper('torch_decoding', args.data_type, os.path.abspath(args.decoder_ths_path), os.path.abspath(args.decoding_ths_path)) decodingargs2 = ArgHelper('torch_decoding_with_decoder_ext', args.data_type, os.path.abspath(args.decoder_ths_path), os.path.abspath(args.decoding_ths_path)) mem = torch.empty(args.batch_size, args.seq_len, args.memory_hidden_dim).cuda() torch.nn.init.uniform_(mem, -1, 1) if args.data_type == "fp16": mem = mem.half() elif args.data_type == "bf16": mem = mem.bloat16() mem_seq_lens = torch.randint(1, args.seq_len+1, (args.batch_size,), dtype=torch.int32).cuda() if args.use_pretrained: ckpt = torch.load('./pytorch/translation/models/averaged-10-epoch.pt') import re def fix_key(s): s = re.sub(r'(.*)\.layer_norm((_\d+)?)\.b_2', r'\1.layer_norm\2.bias', s) s = re.sub(r'(.*)\.layer_norm((_\d+)?)\.a_2', r'\1.layer_norm\2.weight', s) return s ckpt['model'] = {fix_key(k): v for k, v in ckpt['model'].items()} weights = DecodingWeights(layer_num, hidden_dim, vocab_size, ckpt) else: weights = DecodingWeights(layer_num, hidden_dim, vocab_size) ft_weights = FtDecodingWeights(layer_num, hidden_dim, weights.w) # TODO(bhsueh) Add decoder op torch_decoding = TorchDecoding(layer_num, head_num, head_size, vocab_size, start_id, end_id, weights, args=decodingargs1) torch_decoding_with_decoder_ext = TorchDecoding(layer_num, head_num, head_size, vocab_size, start_id, end_id, weights, args=decodingargs2) torch_decoding.cuda() torch_decoding_with_decoder_ext.cuda() if args.data_type == "fp16": torch_decoding.half() torch_decoding_with_decoder_ext.half() elif args.data_type == "bf16": torch_decoding.bloat16() torch_decoding_with_decoder_ext.bloat16() torch_decoding.eval() torch_decoding_with_decoder_ext.eval() ft_weights.to_cuda() if args.data_type == "fp16": ft_weights.to_half() elif args.data_type == "bf16": ft_weights.to_bfloat16() custom_decoding = CustomDecoding(head_num, head_size, inter_size, args.memory_hidden_dim, layer_num, vocab_size, start_id, end_id, args.beam_search_diversity_rate, args.sampling_topk, args.sampling_topp, 1.0, 1.0, 1.0, ft_weights, args=decodingargs1) with torch.no_grad(): output0, lens0 = torch_decoding(args.batch_size, args.beam_size, args.seq_len, mem, mem_seq_lens) print(output0) print(lens0) # return output1, lens1 = torch_decoding_with_decoder_ext(args.batch_size, args.beam_size, args.seq_len, mem, mem_seq_lens) print(output1) print(lens1) output2, lens2 = custom_decoding(args.batch_size, args.beam_size, args.seq_len, mem, mem_seq_lens) print(output2) print(lens2) diff = torch.abs((output0 - output1) / output0) print('FT Decoder Mean relative diff: {} Max relative diff: {} Min relative diff: {}'.format( torch.mean(diff), torch.max(diff), torch.min(diff))) diff = torch.abs((output0 - output2) / output0) print('FT Decoding Mean relative diff: {} Max relative diff: {} Min relative diff: {}'.format( torch.mean(diff), torch.max(diff), torch.min(diff))) if args.time: iterations = 10 for i in range(iterations): output, lens = torch_decoding(args.batch_size, args.beam_size, args.seq_len, mem, mem_seq_lens) t00 = timeit.default_timer() for i in range(iterations): output, lens = torch_decoding(args.batch_size, args.beam_size, args.seq_len, mem, mem_seq_lens) t0 = timeit.default_timer() - t00 # for i in range(iterations): # output, lens = torch_decoding_with_decoder_ext(args.batch_size, args.beam_size, args.seq_len, mem, mem_seq_lens) # t10 = timeit.default_timer() # for i in range(iterations): # output, lens = torch_decoding_with_decoder_ext(args.batch_size, args.beam_size, args.seq_len, mem, mem_seq_lens) # t1 = timeit.default_timer() - t10 for i in range(iterations): output2, lens2 = custom_decoding(args.batch_size, args.beam_size, args.seq_len, mem, mem_seq_lens) t20 = timeit.default_timer() for i in range(iterations): output2, lens2 = custom_decoding(args.batch_size, args.beam_size, args.seq_len, mem, mem_seq_lens) t2 = timeit.default_timer() - t20 print("[INFO] TorchDecoding time costs: {:.2f} ms".format(t0*1000/iterations)) # print("[INFO] TorchDecoding (with FTDecoder) time costs: {:.2f} ms".format(t1*1000/iterations)) print("[INFO] FTDecoding time costs: {:.2f} ms".format(t2*1000/iterations)) if __name__ == '__main__': main()
FasterTransformer-main
examples/pytorch/decoding/decoding_example.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from sacrebleu import corpus_bleu def bleu_score(pred_file, ref_file, bleu_score_threshold=None): with open(pred_file, "r") as pred_stream, open(ref_file, "r") as ref_stream: pred_stream_txt = pred_stream.readlines() ref_stream_txt = ref_stream.readlines() bleu = corpus_bleu(pred_stream_txt, [ref_stream_txt], force=True) print(" bleu score: {:6.2f}".format(bleu.score)) print(" bleu counts: {}".format(bleu.counts)) print(" bleu totals: {}".format(bleu.totals)) print(" bleu precisions: {}".format(bleu.precisions)) print(" bleu sys_len: {}; ref_len: {}".format(bleu.sys_len, bleu.ref_len)) if bleu_score_threshold != None: assert bleu.score >= bleu_score_threshold, "TEST FAIL !" print("[INFO] TEST PASS !") if __name__ == "__main__": parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--pred_file', type=str, metavar='NUMBER', help='The prediction files.', required=True) parser.add_argument('--ref_file', type=str, metavar='NUMBER', help='The reference files.', required=True) parser.add_argument('--bleu_score_threshold', type=float, metavar='NUMBER', help='The threshold of bleu score.') args = parser.parse_args() bleu_score(args.pred_file, args.ref_file, args.bleu_score_threshold)
FasterTransformer-main
examples/pytorch/decoding/utils/bleu_score.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
FasterTransformer-main
examples/pytorch/decoding/utils/__init__.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse def recover_bpe(src): dst = [] for line in src: line = line.strip().split() if line[-1] == '</s>': line.pop() if line[0][0] == '▁': s = line[0][1:] else: s = line[0] for w in line[1:]: if w[0] == '▁': s += ' ' + w[1:] else: s += w s += '\n' dst.append(s) return dst if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('infile', type=str) parser.add_argument('outfile', type=str) args = parser.parse_args() with open(args.infile, 'r') as infile: with open(args.outfile, 'w') as outfile: dst = recover_bpe(infile.readlines()) for line in dst: outfile.write(line)
FasterTransformer-main
examples/pytorch/decoding/utils/recover_bpe.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import sys import os import math import torch import torch.nn as nn import torch.cuda.nvtx as nvtx from onmt.modules import Embeddings, AverageAttention from onmt.decoders.decoder import DecoderBase from onmt.decoders.transformer import TransformerDecoderLayer from onmt.utils.misc import tile, sequence_mask import os import sys dir_path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(dir_path + "/../../../..") from examples.pytorch.decoder.utils.ft_decoder import FTDecoder, FtDecoderWeights USE_CACHE_BATCH_MAJOR_ATTENTION = True to_torch_type = {'fp32' : torch.float32, 'fp16' : torch.float16, 'bf16' : torch.bfloat16} def get_op_cache_config(size_per_head, is_fp32): x = 4 if is_fp32 else 8 use_batch_major_op_cache = True if USE_CACHE_BATCH_MAJOR_ATTENTION == True and \ size_per_head % x == 0 \ else False x = x if use_batch_major_op_cache else 1 return use_batch_major_op_cache, x class DecodingWeights(object): def __init__(self, layer_num, hidden_dim, vocab_size, onmtcheckpoint=None, max_step_for_pe=2048): self.hidden_dim = hidden_dim self.max_step_for_pe = max_step_for_pe # self.w = [] if onmtcheckpoint: self.w = {} for key in onmtcheckpoint: if key == 'model' or key == 'generator': self.w[key] = onmtcheckpoint[key] else: self.w = {} self.w['model'] = {} self.w['generator'] = {} for i in range(layer_num): prefix = 'decoder.transformer_layers.' + str(i) self.w['model'][prefix + '.layer_norm_1.weight'] = torch.zeros(hidden_dim) # self_layernorm_gamma self.w['model'][prefix + '.layer_norm_1.bias'] = torch.zeros(hidden_dim) # self_layernorm_beta self.w['model'][prefix + '.self_attn.linear_query.weight'] = torch.zeros(hidden_dim, hidden_dim) # self_kernel_q self.w['model'][prefix + '.self_attn.linear_keys.weight'] = torch.zeros(hidden_dim, hidden_dim) # self_kernel_k self.w['model'][prefix + '.self_attn.linear_values.weight'] = torch.zeros(hidden_dim, hidden_dim) # self_kernel_v self.w['model'][prefix + '.self_attn.linear_query.bias'] = torch.zeros(hidden_dim) # self_bias_q self.w['model'][prefix + '.self_attn.linear_keys.bias'] = torch.zeros(hidden_dim) # self_bias_k self.w['model'][prefix + '.self_attn.linear_values.bias'] = torch.zeros(hidden_dim) # self_bias_v self.w['model'][prefix + '.self_attn.final_linear.weight'] = torch.zeros(hidden_dim, hidden_dim) # self_output_kernel self.w['model'][prefix + '.self_attn.final_linear.bias'] = torch.zeros(hidden_dim) # self_output_bias self.w['model'][prefix + '.layer_norm_2.weight'] = torch.zeros(hidden_dim) # cross_layernorm_gamma self.w['model'][prefix + '.layer_norm_2.bias'] = torch.zeros(hidden_dim) # cross_layernorm_beta self.w['model'][prefix + '.context_attn.linear_query.weight'] = torch.zeros(hidden_dim, hidden_dim) # cross_kernel_q self.w['model'][prefix + '.context_attn.linear_keys.weight'] = torch.zeros(hidden_dim, hidden_dim) # cross_kernel_k self.w['model'][prefix + '.context_attn.linear_values.weight'] = torch.zeros(hidden_dim, hidden_dim) # cross_kernel_v self.w['model'][prefix + '.context_attn.linear_query.bias'] = torch.zeros(hidden_dim) # cross_bias_q self.w['model'][prefix + '.context_attn.linear_keys.bias'] = torch.zeros(hidden_dim) # cross_bias_k self.w['model'][prefix + '.context_attn.linear_values.bias'] = torch.zeros(hidden_dim) # cross_bias_v self.w['model'][prefix + '.context_attn.final_linear.weight'] = torch.zeros(hidden_dim, hidden_dim) # cross_output_kernel self.w['model'][prefix + '.context_attn.final_linear.bias'] = torch.zeros(hidden_dim) # cross_output_bias self.w['model'][prefix + '.feed_forward.layer_norm.weight'] = torch.zeros(hidden_dim) # ffn_layernorm_gamma self.w['model'][prefix + '.feed_forward.layer_norm.bias'] = torch.zeros(hidden_dim) # ffn_layernorm_beta self.w['model'][prefix + '.feed_forward.w_1.weight'] = torch.zeros(4 * hidden_dim, hidden_dim) # inter_kernel self.w['model'][prefix + '.feed_forward.w_1.bias'] = torch.zeros(4 * hidden_dim) # inter_bias self.w['model'][prefix + '.feed_forward.w_2.weight'] = torch.zeros(hidden_dim, 4 * hidden_dim) # output_kernel self.w['model'][prefix + '.feed_forward.w_2.bias'] = torch.zeros(hidden_dim) # output_bias self.w['model']['decoder.layer_norm.weight'] = torch.zeros(hidden_dim) # decoding_gamma self.w['model']['decoder.layer_norm.bias'] = torch.zeros(hidden_dim) # decoding_beta self.w['model']['decoder.embeddings.make_embedding.emb_luts.0.weight'] = torch.zeros(vocab_size, hidden_dim) # embedding_table self.w['generator']['0.weight'] = torch.zeros(vocab_size, hidden_dim) self.w['generator']['0.bias'] = torch.zeros(vocab_size) for key in self.w: if isinstance(self.w[key], dict): for next_key in self.w[key]: torch.nn.init.uniform_(self.w[key][next_key], -0.5, 0.5) else: torch.nn.init.uniform_(self.w[key], -0.5, 0.5) def to_cuda(self): for key in self.w: if isinstance(self.w[key], dict): for next_key in self.w[key]: self.w[key][next_key] = self.w[key][next_key].cuda() else: self.w[key] = self.w[key].cuda() def to_half(self): for key in self.w: if isinstance(self.w[key], dict): for next_key in self.w[key]: self.w[key][next_key] = self.w[key][next_key].half() else: self.w[key] = self.w[key].half() def to_bfloat16(self): for key in self.w: if isinstance(self.w[key], dict): for next_key in self.w[key]: self.w[key][next_key] = self.w[key][next_key].bfloat16() else: self.w[key] = self.w[key].bfloat16() def _get_position_encoding(self): pe = torch.zeros(self.max_step_for_pe, self.hidden_dim) position = torch.arange(0, self.max_step_for_pe).unsqueeze(1) div_term = torch.exp((torch.arange(0, self.hidden_dim, 2, dtype=torch.float) * -(math.log(10000.0) / self.hidden_dim))) pe[:, 0::2] = torch.sin(position.float() * div_term) pe[:, 1::2] = torch.cos(position.float() * div_term) return pe def gather_nd(params, indices): indices = indices.t().long() ndim = indices.size(0) idx = torch.zeros_like(indices[0]).long() m = 1 for i in range(ndim)[::-1]: idx += indices[i] * m m *= params.size(i) params = params.reshape((-1, *tuple(torch.tensor(params.size()[ndim:])))) return params[idx] def gather_tree(step_ids, parent_ids, max_sequence_lengths, end_token): beams = torch.empty_like(step_ids) beams.fill_(end_token) max_len = step_ids.size(0) batch_size = step_ids.size(1) beam_size = step_ids.size(-1) batch_beam = batch_size * beam_size for i in range(batch_beam): batch = i // beam_size beam = i % beam_size max_seq_len_b = min(max_len, max_sequence_lengths[batch]) if max_seq_len_b <= 0: continue beams[max_seq_len_b - 1, batch, beam] = step_ids[max_seq_len_b - 1, batch, beam] parent = parent_ids[max_seq_len_b - 1, batch, beam] for level in range(max_seq_len_b - 2, -1, -1): if parent < 0 or parent > beam_size: raise ValueError("wrong parent id") beams[level, batch, beam] = step_ids[level, batch, parent] parent = parent_ids[level, batch, parent] finished = False for time in range(max_seq_len_b): if finished: beams[time, batch, beam] = end_token elif beams[time, batch, beam] == end_token: finished = True return beams def finalize(beam_size, output_ids, parent_ids, out_seq_lens, end_id, max_seq_len=None, args=None): out_seq_lens = torch.reshape(out_seq_lens, (-1, beam_size)) max_lens = torch.max(out_seq_lens, 1)[0] if max_seq_len: shape = (max_seq_len, -1, beam_size) else: shape = (torch.max(max_lens), -1, beam_size) output_ids = torch.reshape(output_ids, shape) parent_ids = torch.reshape(parent_ids, shape) if output_ids.is_cuda: torch.classes.load_library("./lib/libth_transformer.so") batch_size = output_ids.shape[1] end_ids = end_id * torch.ones(batch_size, dtype=torch.int32, device=output_ids.device) ids = torch.ops.fastertransformer.gather_tree(output_ids.to(torch.int32), parent_ids.to(torch.int32), out_seq_lens.to(torch.int32), end_ids) else: ids = gather_tree(output_ids, parent_ids, max_lens, end_id) ids = torch.einsum('ijk->jki', ids) # batch_size, beam_size, max_seq_len lengths = torch.eq(ids, end_id) lengths = 1 - lengths.to(output_ids.dtype) lengths = torch.sum(lengths, -1) return ids, lengths class TransformerDecoder(DecoderBase): """The Transformer decoder from "Attention is All You Need". Args: num_layers (int): number of encoder layers. d_model (int): size of the model heads (int): number of heads d_ff (int): size of the inner FF layer copy_attn (bool): if using a separate copy attention self_attn_type (str): type of self-attention scaled-dot, average dropout (float): dropout in residual, self-attn(dot) and feed-forward attention_dropout (float): dropout in context_attn (and self-attn(avg)) embeddings (onmt.modules.Embeddings): embeddings to use, should have positional encodings max_relative_positions (int): Max distance between inputs in relative positions representations aan_useffn (bool): Turn on the FFN layer in the AAN decoder full_context_alignment (bool): whether enable an extra full context decoder forward for alignment alignment_layer (int): N° Layer to supervise with for alignment guiding alignment_heads (int): N. of cross attention heads to use for alignment guiding """ def __init__(self, num_layers, d_model, heads, head_size, d_ff, copy_attn, self_attn_type, dropout, attention_dropout, embeddings, max_relative_positions, aan_useffn, full_context_alignment, alignment_layer, alignment_heads, args): super(TransformerDecoder, self).__init__() self.args = args if not self.args.model_type: raise ValueError("no model_type is supplied.") self.embeddings = embeddings # relevant to custom cache config # self.use_batch_major_op_cache = False # self.op_cache_dim_x = 1 self.is_fp32 = True if self.args.data_type == 'fp32' else False self.use_batch_major_op_cache, self.op_cache_dim_x = get_op_cache_config(head_size, self.is_fp32) self.head_num = heads self.size_per_head = head_size # Decoder State self.state = {} self.transformer_layers = nn.ModuleList( [TransformerDecoderLayer(d_model, heads, d_ff, dropout, attention_dropout, self_attn_type=self_attn_type, max_relative_positions=max_relative_positions, aan_useffn=aan_useffn, full_context_alignment=full_context_alignment, alignment_heads=alignment_heads) for i in range(num_layers)]) # previously, there was a GlobalAttention module here for copy # attention. But it was never actually used -- the "copy" attention # just reuses the context attention. self._copy = copy_attn self.layer_norm = nn.LayerNorm(d_model, eps=1e-6) self.alignment_layer = alignment_layer @classmethod def from_opt(cls, opt, embeddings, args): """Alternate constructor.""" return cls( opt.dec_layers, opt.dec_rnn_size, opt.heads, opt.dec_rnn_size // opt.heads, opt.transformer_ff, opt.copy_attn, opt.self_attn_type, opt.dropout[0] if type(opt.dropout) is list else opt.dropout, opt.attention_dropout[0] if type(opt.attention_dropout) is list else opt.dropout, embeddings, opt.max_relative_positions, opt.aan_useffn, opt.full_context_alignment, opt.alignment_layer, alignment_heads=opt.alignment_heads, args=args) def init_state(self, src, memory_bank, enc_hidden): """Initialize decoder state.""" self.state["src"] = src self.state["cache"] = None def map_state(self, fn): def _recursive_map(struct, batch_dim=0, use_batch_major_op_cache=False): for k, v in struct.items(): if v is not None: if isinstance(v, dict): _recursive_map(v, batch_dim, use_batch_major_op_cache) else: if isinstance(v, list): # only custom cache is passed as a list, so we know its batch dim == 0 or 1 batch_dim_ = 0 if use_batch_major_op_cache else 1 struct[k] = [fn(vv, batch_dim_) for vv in struct[k]] else: struct[k] = fn(v, batch_dim) self.state["src"] = fn(self.state["src"], 1) if self.args.model_type == 'ori' or self.args.model_type == 'torch_decoding': if self.state["cache"] is not None: _recursive_map(self.state["cache"], 0) if self.args.model_type == 'decoder_ext' or self.args.model_type == 'torch_decoding_with_decoder_ext': if self.state["cache"] is not None: self.state["cache"]["self"][0] = fn(self.state["cache"]["self"][0], 1) self.state["cache"]["self"][1] = fn(self.state["cache"]["self"][1], 1) def detach_state(self): self.state["src"] = self.state["src"].detach() def forward(self, tgt, memory_bank, step=None, **kwargs): """Decode, possibly stepwise.""" decoding_max_seq_len = kwargs["decoding_max_seq_len"] if step == 0: self._init_cache(memory_bank, decoding_max_seq_len) tgt_words = tgt[:, :, 0].transpose(0, 1) emb = self.embeddings(tgt, step=step) assert emb.dim() == 3 # len x batch x embedding_dim output = emb.transpose(0, 1).contiguous() src_memory_bank = memory_bank.transpose(0, 1).contiguous() pad_idx = self.embeddings.word_padding_idx src_lens = kwargs["memory_lengths"] if self.args.model_type == 'ori' or self.args.model_type == 'torch_decoding': src_max_len = self.state["src"].shape[0] src_pad_mask = ~sequence_mask(src_lens, src_max_len).unsqueeze(1) tgt_pad_mask = tgt_words.data.eq(pad_idx).unsqueeze(1) # [B, 1, T_tgt] with_align = kwargs.pop('with_align', False) attn_aligns = [] for i, layer in enumerate(self.transformer_layers): layer_cache = self.state["cache"]["layer_{}".format(i)] \ if step is not None else None output, attn, attn_align = layer( output, src_memory_bank, src_pad_mask, tgt_pad_mask, layer_cache=layer_cache, step=step, with_align=with_align) if attn_align is not None: attn_aligns.append(attn_align) elif self.args.model_type == 'decoder_ext' or self.args.model_type == 'torch_decoding_with_decoder_ext': src_lens_ = src_lens.to(torch.int) output, self_cache_, mem_cache_ = self.transformer_layers[0](output, src_memory_bank, src_lens_, self.state["cache"]['self'], self.state["cache"]['mem'], kwargs['sequence_lengths'], step) self.state["cache"]['self'] = self_cache_ self.state["cache"]['mem'] = mem_cache_ output = self.layer_norm(output) dec_outs = output.transpose(0, 1).contiguous() attns = {} # attn = attn.transpose(0, 1).contiguous() # attns = {"std": attn} # if self._copy: # attns["copy"] = attn # if with_align: # attns["align"] = attn_aligns[self.alignment_layer] # `(B, Q, K)` # # attns["align"] = torch.stack(attn_aligns, 0).mean(0) # All avg # TODO change the way attns is returned dict => list or tuple (onnx) return dec_outs, attns def _init_cache(self, memory_bank, decoding_max_seq_len): self.state["cache"] = {} batch_size = memory_bank.size(1) depth = memory_bank.size(-1) if self.args.model_type == 'ori' or self.args.model_type == 'torch_decoding': for i, layer in enumerate(self.transformer_layers): layer_cache = {"memory_keys": None, "memory_values": None} if isinstance(layer.self_attn, AverageAttention): layer_cache["prev_g"] = torch.zeros((batch_size, 1, depth), device=memory_bank.device) else: layer_cache["self_keys"] = None layer_cache["self_values"] = None self.state["cache"]["layer_{}".format(i)] = layer_cache elif self.args.model_type == 'decoder_ext' or self.args.model_type == 'torch_decoding_with_decoder_ext': max_seq_len = memory_bank.size(0) dtype = to_torch_type[self.args.data_type] self.state['cache']['mem'] = [torch.zeros(self.transformer_layers[0].layer_num, batch_size, max_seq_len, depth, dtype=dtype, device='cuda'), torch.zeros(self.transformer_layers[0].layer_num, batch_size, max_seq_len, depth, dtype=dtype, device='cuda')] self.state['cache']['self'] = [ torch.zeros(self.transformer_layers[0].layer_num, batch_size, self.head_num, self.size_per_head // self.op_cache_dim_x, max_seq_len, self.op_cache_dim_x, dtype=dtype, device='cuda'), torch.zeros(self.transformer_layers[0].layer_num, batch_size, self.head_num, max_seq_len, self.size_per_head, dtype=dtype, device='cuda') ] def update_dropout(self, dropout, attention_dropout): self.embeddings.update_dropout(dropout) for layer in self.transformer_layers: layer.update_dropout(dropout, attention_dropout) class ArgHelper(object): def __init__(self, model_type=None, data_type=None, decoder_ths_path=None, decoding_ths_path=None): self.model_type = model_type self.data_type = data_type self.decoder_ths_path = decoder_ths_path self.decoding_ths_path = decoding_ths_path class TorchDecoding(nn.Module): def __init__(self, layer_num, head_num, head_size, vocab_size, start_id, end_id, weights, beam_search_diversity_rate=0.0, args=None): super().__init__() self.layer_num = layer_num self.hidden_dim = head_num * head_size self.start_id = start_id self.end_id = end_id self.vocab_size = vocab_size self.diversity_rate = beam_search_diversity_rate self.args = args emb = Embeddings(self.hidden_dim, vocab_size, 1, position_encoding=True) self.decoder = TransformerDecoder(layer_num, self.hidden_dim, head_num, head_size, 4*self.hidden_dim, False, 'scaled-dot', 0, 0, emb, 0, False, False, -3, 0, args) self.generator = nn.Linear(self.hidden_dim, vocab_size) self.logsoftmax = nn.LogSoftmax(dim=-1) if args.model_type == 'torch_decoding': for i in range(layer_num): prefix = 'decoder.transformer_layers.' + str(i) self.decoder.transformer_layers[i].layer_norm_1.weight.data = weights.w['model'][prefix + '.layer_norm_1.weight'] self.decoder.transformer_layers[i].layer_norm_1.bias.data = weights.w['model'][prefix + '.layer_norm_1.bias'] self.decoder.transformer_layers[i].self_attn.linear_query.weight.data = weights.w['model'][prefix + '.self_attn.linear_query.weight'] self.decoder.transformer_layers[i].self_attn.linear_keys.weight.data = weights.w['model'][prefix + '.self_attn.linear_keys.weight'] self.decoder.transformer_layers[i].self_attn.linear_values.weight.data = weights.w['model'][prefix + '.self_attn.linear_values.weight'] self.decoder.transformer_layers[i].self_attn.linear_query.bias.data = weights.w['model'][prefix + '.self_attn.linear_query.bias'] self.decoder.transformer_layers[i].self_attn.linear_keys.bias.data = weights.w['model'][prefix + '.self_attn.linear_keys.bias'] self.decoder.transformer_layers[i].self_attn.linear_values.bias.data = weights.w['model'][prefix + '.self_attn.linear_values.bias'] self.decoder.transformer_layers[i].self_attn.final_linear.weight.data = weights.w['model'][prefix + '.self_attn.final_linear.weight'] self.decoder.transformer_layers[i].self_attn.final_linear.bias.data = weights.w['model'][prefix + '.self_attn.final_linear.bias'] self.decoder.transformer_layers[i].layer_norm_2.weight.data = weights.w['model'][prefix + '.layer_norm_2.weight'] self.decoder.transformer_layers[i].layer_norm_2.bias.data = weights.w['model'][prefix + '.layer_norm_2.bias'] self.decoder.transformer_layers[i].context_attn.linear_query.weight.data = weights.w['model'][prefix + '.context_attn.linear_query.weight'] self.decoder.transformer_layers[i].context_attn.linear_keys.weight.data = weights.w['model'][prefix + '.context_attn.linear_keys.weight'] self.decoder.transformer_layers[i].context_attn.linear_values.weight.data = weights.w['model'][prefix + '.context_attn.linear_values.weight'] self.decoder.transformer_layers[i].context_attn.linear_query.bias.data = weights.w['model'][prefix + '.context_attn.linear_query.bias'] self.decoder.transformer_layers[i].context_attn.linear_keys.bias.data = weights.w['model'][prefix + '.context_attn.linear_keys.bias'] self.decoder.transformer_layers[i].context_attn.linear_values.bias.data = weights.w['model'][prefix + '.context_attn.linear_values.bias'] self.decoder.transformer_layers[i].context_attn.final_linear.weight.data = weights.w['model'][prefix + '.context_attn.final_linear.weight'] self.decoder.transformer_layers[i].context_attn.final_linear.bias.data = weights.w['model'][prefix + '.context_attn.final_linear.bias'] self.decoder.transformer_layers[i].feed_forward.layer_norm.weight.data = weights.w['model'][prefix + '.feed_forward.layer_norm.weight'] self.decoder.transformer_layers[i].feed_forward.layer_norm.bias.data = weights.w['model'][prefix + '.feed_forward.layer_norm.bias'] self.decoder.transformer_layers[i].feed_forward.w_1.weight.data = weights.w['model'][prefix + '.feed_forward.w_1.weight'] self.decoder.transformer_layers[i].feed_forward.w_1.bias.data = weights.w['model'][prefix + '.feed_forward.w_1.bias'] self.decoder.transformer_layers[i].feed_forward.w_2.weight.data = weights.w['model'][prefix + '.feed_forward.w_2.weight'] self.decoder.transformer_layers[i].feed_forward.w_2.bias.data = weights.w['model'][prefix + '.feed_forward.w_2.bias'] elif args.model_type == 'torch_decoding_with_decoder_ext': w = [] ft_decoder_weights = FtDecoderWeights(layer_num, self.hidden_dim, weights.w) ft_decoder_weights.to_cuda() if args.data_type == 'fp16': ft_decoder_weights.to_half() elif args.data_type == 'bf16': ft_decoder_weights.to_bfloat16() self.decoder.transformer_layers = nn.ModuleList( [FTDecoder(head_num, head_size, head_num * head_size, layer_num, ft_decoder_weights, args)]) else: raise ValueError('wrong model_type') self.decoder.layer_norm.weight.data = weights.w['model']['decoder.layer_norm.weight'] self.decoder.layer_norm.bias.data = weights.w['model']['decoder.layer_norm.bias'] self.decoder.embeddings.make_embedding.emb_luts[0].weight.data = weights.w['model']['decoder.embeddings.make_embedding.emb_luts.0.weight'] self.generator.weight.data = weights.w['generator']['0.weight'] self.generator.bias.data = weights.w['generator']['0.bias'] def forward(self, batch_size, beam_size, max_seq_len, memory, memory_seq_lens): # nvtx.range_push("torch_decoding") extended_memory = tile(memory, beam_size) batchxbeam = extended_memory.size(0) extended_memory = extended_memory.transpose(0, 1).contiguous() extended_memory_seq_lens = tile(memory_seq_lens, beam_size) start_ids = extended_memory_seq_lens.new_full((batchxbeam,), self.start_id, dtype=torch.int64) initial_log_probs = extended_memory.new_full((beam_size,), -float("inf"), dtype=torch.float32) initial_log_probs[0] = 0. initial_log_probs = initial_log_probs.repeat(batch_size) sequence_lengths = extended_memory_seq_lens.new_full((batchxbeam,), 0) finished = extended_memory_seq_lens.new_full((batchxbeam,), 0, dtype=torch.bool) dtype_info = torch.finfo(extended_memory.dtype) eos_max_prob = extended_memory.new_full((batchxbeam, self.vocab_size), dtype_info.min) eos_max_prob[:, self.end_id] = dtype_info.max self.decoder.init_state(extended_memory, extended_memory, None) word_ids = start_ids cum_log_probs = initial_log_probs for step in range(max_seq_len): if not torch.bitwise_not(finished).any(): break word_ids = word_ids.view(1, -1, 1) dec_out, dec_attn = self.decoder(word_ids, extended_memory, memory_lengths=extended_memory_seq_lens, step=step, decoding_max_seq_len=max_seq_len, sequence_lengths=sequence_lengths) logits = self.generator(dec_out.squeeze(0)) logits = torch.where(finished.view(-1, 1), eos_max_prob, logits).to(torch.float32) log_probs = self.logsoftmax(logits.to(torch.float32)) total_probs = log_probs + torch.unsqueeze(cum_log_probs, 1) total_probs = total_probs.view(-1, beam_size * self.vocab_size) # beamsearch # _, sample_ids = torch.topk(total_probs, beam_size) # sample_ids = sample_ids.view(-1) #diversesiblingsearch sibling_score = torch.arange(1, beam_size+1).to(total_probs.dtype).to(extended_memory.device) * self.diversity_rate # [beam_size] scores, ids = torch.topk(total_probs.view(-1, beam_size, self.vocab_size), beam_size) # [batch size, beam width, beam width] scores = scores + sibling_score # [batch size, beam width, beam width] scores = scores.view(-1, beam_size * beam_size) ids = ids + torch.unsqueeze(torch.unsqueeze(torch.arange(0, beam_size).to(extended_memory.device) * self.vocab_size, 0), -1) ids = ids.view(-1, beam_size * beam_size) _, final_ids = torch.topk(scores, beam_size) # [batch size, beam size] final_ids = final_ids.view(-1, 1) batch_index = torch.arange(0, batch_size).to(extended_memory.device).view(-1, 1).repeat(1, beam_size).view(-1, 1) index = torch.cat([batch_index, final_ids], 1) sample_ids = gather_nd(ids, index) word_ids = sample_ids % self.vocab_size # [batch_size * beam_size] beam_ids = sample_ids // self.vocab_size # [batch_size * beam_size] beam_indices = (torch.arange(batchxbeam).to(extended_memory.device) // beam_size) * beam_size + beam_ids sequence_lengths = torch.where(finished, sequence_lengths, sequence_lengths + 1) batch_pos = torch.arange(batchxbeam).to(extended_memory.device) // beam_size next_cum_log_probs = gather_nd(total_probs, torch.stack([batch_pos, sample_ids], -1)) # [batch_size * beam_size] finished = finished.index_select(0, beam_indices) sequence_lengths = sequence_lengths.index_select(0, beam_indices) self.decoder.map_state(lambda state, dim: state.index_select(dim, beam_indices)) if step == 0: parent_ids = beam_ids.view(1, -1) output_ids = word_ids.view(1, -1) else: parent_ids = torch.cat((parent_ids, beam_ids.view(1, -1))) output_ids = torch.cat((output_ids, word_ids.view(1, -1))) cum_log_probs = torch.where(finished, cum_log_probs, next_cum_log_probs) finished = torch.bitwise_or(finished, torch.eq(word_ids, self.end_id)) # nvtx.range_push("finalize") beams, lengths = finalize(beam_size, output_ids, parent_ids, sequence_lengths, self.end_id, args=self.args) # nvtx.range_pop() # nvtx.range_pop() return beams, lengths
FasterTransformer-main
examples/pytorch/decoding/utils/decoding.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import sys import os import math import torch import torch.nn as nn import torch.cuda.nvtx as nvtx from onmt.utils.misc import tile class FtDecodingWeights(object): def __init__(self, layer_num, hidden_dim, onmtcheckpoint, max_step_for_pe=2048): self.max_step_for_pe = max_step_for_pe self.hidden_dim = hidden_dim self.w = [] prefix = 'decoder.transformer_layers.' self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.layer_norm_1.weight'] for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.layer_norm_1.bias'] for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [torch.stack([onmtcheckpoint['model'][prefix + str(i) + '.self_attn.linear_query.weight'].transpose(-1, -2), onmtcheckpoint['model'][prefix + str(i) + '.self_attn.linear_keys.weight'].transpose(-1, -2), onmtcheckpoint['model'][prefix + str(i) + '.self_attn.linear_values.weight'].transpose(-1, -2)], -2) for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [torch.stack([onmtcheckpoint['model'][prefix + str(i) + '.self_attn.linear_query.bias'], onmtcheckpoint['model'][prefix + str(i) + '.self_attn.linear_keys.bias'], onmtcheckpoint['model'][prefix + str(i) + '.self_attn.linear_values.bias']], -2) for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.self_attn.final_linear.weight'].transpose(-1, -2) for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.self_attn.final_linear.bias'] for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.layer_norm_2.weight'] for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.layer_norm_2.bias'] for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.context_attn.linear_query.weight'].transpose(-1, -2) for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.context_attn.linear_keys.weight'].transpose(-1, -2) for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.context_attn.linear_values.weight'].transpose(-1, -2) for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.context_attn.linear_query.bias'] for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.context_attn.linear_keys.bias'] for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.context_attn.linear_values.bias'] for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.context_attn.final_linear.weight'].transpose(-1, -2) for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.context_attn.final_linear.bias'] for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.feed_forward.layer_norm.weight'] for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.feed_forward.layer_norm.bias'] for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.feed_forward.w_1.weight'].transpose(-1, -2) for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.feed_forward.w_1.bias'] for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.feed_forward.w_2.weight'].transpose(-1, -2) for i in range(layer_num)], 0).contiguous()) self.w.append(torch.stack( [onmtcheckpoint['model'][prefix + str(i) + '.feed_forward.w_2.bias'] for i in range(layer_num)], 0).contiguous()) self.w.append(onmtcheckpoint['model']['decoder.layer_norm.weight']) self.w.append(onmtcheckpoint['model']['decoder.layer_norm.bias']) self.w.append(onmtcheckpoint['model']['decoder.embeddings.make_embedding.emb_luts.0.weight']) self.w.append(self._get_position_encoding()) # pe_encoding self.w.append(onmtcheckpoint['generator']['0.weight'].transpose(-1, -2).contiguous()) self.w.append(onmtcheckpoint['generator']['0.bias']) def to_cuda(self): for i in range(len(self.w)): self.w[i] = self.w[i].cuda() def to_half(self): for i in range(len(self.w)): self.w[i] = self.w[i].half() def to_bfloat16(self): for i in range(len(self.w)): self.w[i] = self.w[i].bfloat16() def _get_position_encoding(self): pe = torch.zeros(self.max_step_for_pe, self.hidden_dim) position = torch.arange(0, self.max_step_for_pe).unsqueeze(1) div_term = torch.exp((torch.arange(0, self.hidden_dim, 2, dtype=torch.float) * -(math.log(10000.0) / self.hidden_dim))) pe[:, 0::2] = torch.sin(position.float() * div_term) pe[:, 1::2] = torch.cos(position.float() * div_term) return pe.cuda().contiguous() class CustomDecoding(nn.Module): def __init__(self, head_num, head_size, inter_size, mem_hidden_dim, layer_num, vocab_size, start_id, end_id, beam_search_diversity_rate, top_k, top_p, temperature, len_penalty, repetition_penalty, weights, args=None): super().__init__() self.end_id = end_id self.args = args torch.classes.load_library(os.path.abspath(args.decoding_ths_path)) try: self.decoding = torch.classes.FasterTransformer.Decoding(head_num, head_size, inter_size, mem_hidden_dim, layer_num, vocab_size, start_id, end_id, beam_search_diversity_rate, top_k, top_p, temperature, len_penalty, repetition_penalty, *weights.w) except: # legacy ths for 20.03 image self.decoding = torch.classes.FasterTransformerDecoding(head_num, head_size, inter_size, mem_hidden_dim, layer_num, vocab_size, start_id, end_id, beam_search_diversity_rate, top_k, top_p, temperature, len_penalty, repetition_penalty, *weights.w) self.is_clean_cache = False def forward(self, batch_size, beam_size, seq_len, memory, memory_seq_lens): if self.is_clean_cache == False: torch.cuda.empty_cache() self.is_clean_cache = True extended_memory = tile(memory, beam_size) extended_memory_seq_lens = tile(memory_seq_lens, beam_size) output_ids, parent_ids, out_seq_lens = self.decoding.forward(beam_size, seq_len, extended_memory, extended_memory_seq_lens) output_ids = output_ids.reshape([seq_len, memory.size(0), beam_size]) output_ids = output_ids.permute(1, 2, 0) return output_ids, out_seq_lens class ArgHelper(object): def __init__(self, model_type=None, data_type=None, ths_path=None): self.model_type = model_type self.data_type = data_type self.ths_path = ths_path
FasterTransformer-main
examples/pytorch/decoding/utils/ft_decoding.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import re import torch import torch.nn as nn from torch.nn.init import xavier_uniform_ import onmt.inputters as inputters import onmt.modules from onmt.encoders.transformer import TransformerEncoder from onmt.modules import Embeddings, VecEmbedding, CopyGenerator from onmt.modules.util_class import Cast from onmt.utils.misc import use_gpu from onmt.utils.parse import ArgumentParser from examples.pytorch.encoder.utils.ft_encoder import EncoderWeights, CustomEncoder from .decoding import FTDecoder, DecodingWeights, TorchDecoding, TransformerDecoder from .ft_decoding import FtDecodingWeights, CustomDecoding def build_embeddings(opt, text_field, for_encoder=True): """ Args: opt: the option in current environment. text_field(TextMultiField): word and feats field. for_encoder(bool): build Embeddings for encoder or decoder? """ emb_dim = opt.src_word_vec_size if for_encoder else opt.tgt_word_vec_size if opt.model_type == "vec" and for_encoder: return VecEmbedding( opt.feat_vec_size, emb_dim, position_encoding=opt.position_encoding, dropout=(opt.dropout[0] if type(opt.dropout) is list else opt.dropout), ) pad_indices = [f.vocab.stoi[f.pad_token] for _, f in text_field] word_padding_idx, feat_pad_indices = pad_indices[0], pad_indices[1:] num_embs = [len(f.vocab) for _, f in text_field] num_word_embeddings, num_feat_embeddings = num_embs[0], num_embs[1:] fix_word_vecs = opt.fix_word_vecs_enc if for_encoder \ else opt.fix_word_vecs_dec emb = Embeddings( word_vec_size=emb_dim, position_encoding=opt.position_encoding, feat_merge=opt.feat_merge, feat_vec_exponent=opt.feat_vec_exponent, feat_vec_size=opt.feat_vec_size, dropout=opt.dropout[0] if type(opt.dropout) is list else opt.dropout, word_padding_idx=word_padding_idx, feat_padding_idx=feat_pad_indices, word_vocab_size=num_word_embeddings, feat_vocab_sizes=num_feat_embeddings, sparse=opt.optim == "sparseadam", fix_word_vecs=fix_word_vecs ) return emb def load_test_model(opt, args): model_path = opt.models[0] checkpoint = torch.load(model_path, map_location=lambda storage, loc: storage) model_opt = ArgumentParser.ckpt_model_opts(checkpoint['opt']) ArgumentParser.update_model_opts(model_opt) ArgumentParser.validate_model_opts(model_opt) vocab = checkpoint['vocab'] if inputters.old_style_vocab(vocab): fields = inputters.load_old_vocab( vocab, opt.data_type, dynamic_dict=model_opt.copy_attn ) else: fields = vocab model = build_base_model(model_opt, fields, use_gpu(opt), args, checkpoint, opt.gpu) if args.data_type == 'fp32': model.float() elif args.data_type == 'fp16': model.half() elif args.data_type == 'bf16': model.bfloat16() else: raise ValueError('wrong data_type argument {}'.format(args.data_type)) model.eval() model.generator.eval() return fields, model, model_opt def build_base_model(model_opt, fields, gpu, args, checkpoint=None, gpu_id=None): """Build a model from opts. Args: model_opt: the option loaded from checkpoint. It's important that the opts have been updated and validated. See :class:`onmt.utils.parse.ArgumentParser`. fields (dict[str, torchtext.data.Field]): `Field` objects for the model. gpu (bool): whether to use gpu. checkpoint: the model generated by train phase, or a resumed snapshot model from a stopped training. gpu_id (int or NoneType): Which GPU to use. Returns: the NMTModel. """ # for back compat when attention_dropout was not defined try: model_opt.attention_dropout except AttributeError: model_opt.attention_dropout = model_opt.dropout # Build embeddings. if model_opt.model_type == "text" or model_opt.model_type == "vec": src_field = fields["src"] src_emb = build_embeddings(model_opt, src_field) else: src_emb = None # Build encoder. encoder = TransformerEncoder.from_opt(model_opt, src_emb) # Build decoder. tgt_field = fields["tgt"] tgt_emb = build_embeddings(model_opt, tgt_field, for_encoder=False) # Share the embedding matrix - preprocess with share_vocab required. if model_opt.share_embeddings: # src/tgt vocab should be the same if `-share_vocab` is specified. assert src_field.base_field.vocab == tgt_field.base_field.vocab, \ "preprocess with -share_vocab if you use share_embeddings" tgt_emb.word_lut.weight = src_emb.word_lut.weight decoder = TransformerDecoder.from_opt(model_opt, tgt_emb, args) # Build NMTModel(= encoder + decoder). if gpu and gpu_id is not None: device = torch.device("cuda", gpu_id) elif gpu and not gpu_id: device = torch.device("cuda") elif not gpu: device = torch.device("cpu") model = onmt.models.NMTModel(encoder, decoder) # Build Generator. if not model_opt.copy_attn: if model_opt.generator_function == "sparsemax": gen_func = onmt.modules.sparse_activations.LogSparsemax(dim=-1) else: gen_func = nn.LogSoftmax(dim=-1) generator = nn.Sequential( nn.Linear(model_opt.dec_rnn_size, len(fields["tgt"].base_field.vocab)), Cast(torch.float32), gen_func ) if model_opt.share_decoder_embeddings: generator[0].weight = decoder.embeddings.word_lut.weight else: tgt_base_field = fields["tgt"].base_field vocab_size = len(tgt_base_field.vocab) pad_idx = tgt_base_field.vocab.stoi[tgt_base_field.pad_token] generator = CopyGenerator(model_opt.dec_rnn_size, vocab_size, pad_idx) if model_opt.share_decoder_embeddings: generator.linear.weight = decoder.embeddings.word_lut.weight # Load the model states from checkpoint or initialize them. if checkpoint is not None: # This preserves backward-compat for models using customed layernorm def fix_key(s): s = re.sub(r'(.*)\.layer_norm((_\d+)?)\.b_2', r'\1.layer_norm\2.bias', s) s = re.sub(r'(.*)\.layer_norm((_\d+)?)\.a_2', r'\1.layer_norm\2.weight', s) return s checkpoint['model'] = {fix_key(k): v for k, v in checkpoint['model'].items()} # end of patch for backward compatibility model.load_state_dict(checkpoint['model'], strict=False) generator.load_state_dict(checkpoint['generator'], strict=False) if args.model_type != 'torch_decoding': encoder_weights = EncoderWeights(model_opt.enc_layers, model_opt.enc_rnn_size, checkpoint['model']) if args.data_type == 'fp16': encoder_weights.to_half() elif args.data_type == 'bf16': encoder_weights.to_bfloat16() encoder_weights.to_cuda() encoder = CustomEncoder(model_opt.enc_layers, model_opt.heads, model_opt.enc_rnn_size // model_opt.heads, encoder_weights, path=args.encoder_ths_path, embedding=model.encoder.embeddings) model.encoder = encoder if args.model_type == 'decoding_ext': vocab_size = len(fields["tgt"].base_field.vocab) bos_idx = fields["tgt"].base_field.vocab.stoi[fields["tgt"].base_field.init_token] eos_idx = fields["tgt"].base_field.vocab.stoi[fields["tgt"].base_field.eos_token] decoding_weights = DecodingWeights(model_opt.dec_layers, model_opt.dec_rnn_size, vocab_size, checkpoint) ft_decoding_weights = FtDecodingWeights(model_opt.dec_layers, model_opt.dec_rnn_size, decoding_weights.w) if args.data_type == 'fp16': ft_decoding_weights.to_half() elif args.data_type == 'bf16': ft_decoding_weights.to_bfloat16() ft_decoding_weights.to_cuda() model.decoder = CustomDecoding(model_opt.heads, model_opt.dec_rnn_size // model_opt.heads, model_opt.dec_rnn_size * 4, model_opt.dec_rnn_size, model_opt.dec_layers, vocab_size, bos_idx, eos_idx, args.beam_search_diversity_rate, args.sampling_topk, args.sampling_topp, 1.0, 1.0, 1.0, ft_decoding_weights, args=args) elif args.model_type == 'torch_decoding' or args.model_type == 'torch_decoding_with_decoder_ext': vocab_size = len(fields["tgt"].base_field.vocab) bos_idx = fields["tgt"].base_field.vocab.stoi[fields["tgt"].base_field.init_token] eos_idx = fields["tgt"].base_field.vocab.stoi[fields["tgt"].base_field.eos_token] decoding_weights = DecodingWeights(model_opt.dec_layers, model_opt.dec_rnn_size, vocab_size, checkpoint) decoding_weights.to_cuda() if args.data_type == 'fp16': decoding_weights.to_half() elif args.data_type == 'bf16': decoding_weights.to_bfloat16() model.decoder = TorchDecoding(model_opt.dec_layers, model_opt.heads, model_opt.dec_rnn_size // model_opt.heads, vocab_size, bos_idx, eos_idx, decoding_weights, args=args) else: raise ValueError("Wrong model_type argument, must be one of [decoding_ext, torch_decoding, torch_decoding_with_decoder_ext]") else: if model_opt.param_init != 0.0: for p in model.parameters(): p.data.uniform_(-model_opt.param_init, model_opt.param_init) for p in generator.parameters(): p.data.uniform_(-model_opt.param_init, model_opt.param_init) if model_opt.param_init_glorot: for p in model.parameters(): if p.dim() > 1: xavier_uniform_(p) for p in generator.parameters(): if p.dim() > 1: xavier_uniform_(p) if hasattr(model.encoder, 'embeddings'): model.encoder.embeddings.load_pretrained_vectors( model_opt.pre_word_vecs_enc) if hasattr(model.decoder, 'embeddings'): model.decoder.embeddings.load_pretrained_vectors( model_opt.pre_word_vecs_dec) model.generator = generator model.to(device) if model_opt.model_dtype == 'fp16' and model_opt.optim == 'fusedadam': model.half() elif model_opt.model_dtype == 'bf16' and model_opt.optim == 'fusedadam': model.bfloat16() return model
FasterTransformer-main
examples/pytorch/decoding/utils/translation_model.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import codecs import os import time import numpy as np from itertools import count, zip_longest import torch import onmt.model_builder import onmt.inputters as inputters import onmt.decoders.ensemble from onmt.translate.beam_search import BeamSearch from onmt.translate.greedy_search import GreedySearch from onmt.utils.misc import tile, set_random_seed, report_matrix from onmt.utils.alignment import extract_alignment, build_align_pharaoh from onmt.modules.copy_generator import collapse_copy_scores def max_tok_len(new, count, sofar): """ In token batching scheme, the number of sequences is limited such that the total number of src/tgt tokens (including padding) in a batch <= batch_size """ # Maintains the longest src and tgt length in the current batch global max_src_in_batch # this is a hack # Reset current longest length at a new batch (count=1) if count == 1: max_src_in_batch = 0 # max_tgt_in_batch = 0 # Src: [<bos> w1 ... wN <eos>] max_src_in_batch = max(max_src_in_batch, len(new.src[0]) + 2) # Tgt: [w1 ... wM <eos>] src_elements = count * max_src_in_batch return src_elements class Translator(object): """Translate a batch of sentences with a saved model. Args: model (onmt.modules.NMTModel): NMT model to use for translation fields (dict[str, torchtext.data.Field]): A dict mapping each side to its list of name-Field pairs. src_reader (onmt.inputters.DataReaderBase): Source reader. tgt_reader (onmt.inputters.TextDataReader): Target reader. gpu (int): GPU device. Set to negative for no GPU. n_best (int): How many beams to wait for. min_length (int): See :class:`onmt.translate.decode_strategy.DecodeStrategy`. max_length (int): See :class:`onmt.translate.decode_strategy.DecodeStrategy`. beam_size (int): Number of beams. random_sampling_topk (int): See :class:`onmt.translate.greedy_search.GreedySearch`. random_sampling_temp (int): See :class:`onmt.translate.greedy_search.GreedySearch`. stepwise_penalty (bool): Whether coverage penalty is applied every step or not. dump_beam (bool): Debugging option. block_ngram_repeat (int): See :class:`onmt.translate.decode_strategy.DecodeStrategy`. ignore_when_blocking (set or frozenset): See :class:`onmt.translate.decode_strategy.DecodeStrategy`. replace_unk (bool): Replace unknown token. data_type (str): Source data type. verbose (bool): Print/log every translation. report_time (bool): Print/log total time/frequency. copy_attn (bool): Use copy attention. global_scorer (onmt.translate.GNMTGlobalScorer): Translation scoring/reranking object. out_file (TextIO or codecs.StreamReaderWriter): Output file. report_score (bool) : Whether to report scores logger (logging.Logger or NoneType): Logger. """ def __init__( self, model, fields, src_reader, tgt_reader, model_type='torch_decoding', gpu=-1, n_best=1, min_length=0, max_length=100, ratio=0., beam_size=30, random_sampling_topk=1, random_sampling_temp=1, stepwise_penalty=None, dump_beam=False, block_ngram_repeat=0, ignore_when_blocking=frozenset(), replace_unk=False, phrase_table="", data_type="text", verbose=False, report_time=False, copy_attn=False, global_scorer=None, out_file=None, report_align=False, report_score=True, logger=None, seed=-1): self.model = model self.fields = fields tgt_field = dict(self.fields)["tgt"].base_field self._tgt_vocab = tgt_field.vocab self._tgt_eos_idx = self._tgt_vocab.stoi[tgt_field.eos_token] self._tgt_pad_idx = self._tgt_vocab.stoi[tgt_field.pad_token] self._tgt_bos_idx = self._tgt_vocab.stoi[tgt_field.init_token] self._tgt_unk_idx = self._tgt_vocab.stoi[tgt_field.unk_token] self._tgt_vocab_len = len(self._tgt_vocab) self.model_type = model_type self._gpu = gpu self._use_cuda = gpu > -1 self._dev = torch.device("cuda", self._gpu) \ if self._use_cuda else torch.device("cpu") self.n_best = n_best self.max_length = max_length self.beam_size = beam_size self.random_sampling_temp = random_sampling_temp self.sample_from_topk = random_sampling_topk self.min_length = min_length self.ratio = ratio self.stepwise_penalty = stepwise_penalty self.dump_beam = dump_beam self.block_ngram_repeat = block_ngram_repeat self.ignore_when_blocking = ignore_when_blocking self._exclusion_idxs = { self._tgt_vocab.stoi[t] for t in self.ignore_when_blocking} self.src_reader = src_reader self.tgt_reader = tgt_reader self.replace_unk = replace_unk if self.replace_unk and not self.model.decoder.attentional: raise ValueError( "replace_unk requires an attentional decoder.") self.phrase_table = phrase_table self.data_type = data_type self.verbose = verbose self.report_time = report_time self.copy_attn = copy_attn self.global_scorer = global_scorer if self.global_scorer.has_cov_pen and \ not self.model.decoder.attentional: raise ValueError( "Coverage penalty requires an attentional decoder.") self.out_file = out_file self.report_align = report_align self.report_score = report_score self.logger = logger self.use_filter_pred = False self._filter_pred = None set_random_seed(seed, self._use_cuda) @classmethod def from_opt( cls, model, fields, opt, model_opt, args, global_scorer=None, out_file=None, report_align=False, report_score=True, logger=None): """Alternate constructor. Args: model (onmt.modules.NMTModel): See :func:`__init__()`. fields (dict[str, torchtext.data.Field]): See :func:`__init__()`. opt (argparse.Namespace): Command line options model_opt (argparse.Namespace): Command line options saved with the model checkpoint. global_scorer (onmt.translate.GNMTGlobalScorer): See :func:`__init__()`.. out_file (TextIO or codecs.StreamReaderWriter): See :func:`__init__()`. report_align (bool) : See :func:`__init__()`. report_score (bool) : See :func:`__init__()`. logger (logging.Logger or NoneType): See :func:`__init__()`. """ src_reader = inputters.str2reader[opt.data_type].from_opt(opt) tgt_reader = inputters.str2reader["text"].from_opt(opt) return cls( model, fields, src_reader, tgt_reader, model_type=args.model_type, gpu=opt.gpu, n_best=opt.n_best, min_length=opt.min_length, max_length=opt.max_length, ratio=opt.ratio, beam_size=opt.beam_size, random_sampling_topk=opt.random_sampling_topk, random_sampling_temp=opt.random_sampling_temp, stepwise_penalty=opt.stepwise_penalty, dump_beam=opt.dump_beam, block_ngram_repeat=opt.block_ngram_repeat, ignore_when_blocking=set(opt.ignore_when_blocking), replace_unk=opt.replace_unk, phrase_table=opt.phrase_table, data_type=opt.data_type, verbose=opt.verbose, report_time=opt.report_time, copy_attn=model_opt.copy_attn, global_scorer=global_scorer, out_file=out_file, report_align=report_align, report_score=report_score, logger=logger, seed=opt.seed) def _log(self, msg): if self.logger: self.logger.info(msg) else: print(msg) def _gold_score(self, batch, memory_bank, src_lengths, src_vocabs, use_src_map, enc_states, batch_size, src): if "tgt" in batch.__dict__: gs = self._score_target( batch, memory_bank, src_lengths, src_vocabs, batch.src_map if use_src_map else None) self.model.decoder.init_state(src, memory_bank, enc_states) else: gs = [0] * batch_size return gs def translate( self, src, tgt=None, src_dir=None, batch_size=None, batch_type="sents", attn_debug=False, align_debug=False, phrase_table=""): """Translate content of ``src`` and get gold scores from ``tgt``. Args: src: See :func:`self.src_reader.read()`. tgt: See :func:`self.tgt_reader.read()`. src_dir: See :func:`self.src_reader.read()` (only relevant for certain types of data). batch_size (int): size of examples per mini-batch attn_debug (bool): enables the attention logging align_debug (bool): enables the word alignment logging Returns: (`list`, `list`) * all_scores is a list of `batch_size` lists of `n_best` scores * all_predictions is a list of `batch_size` lists of `n_best` predictions """ if batch_size is None: raise ValueError("batch_size must be set") src_data = {"reader": self.src_reader, "data": src, "dir": src_dir} tgt_data = {"reader": self.tgt_reader, "data": tgt, "dir": None} _readers, _data, _dir = inputters.Dataset.config( [('src', src_data), ('tgt', tgt_data)]) # corpus_id field is useless here if self.fields.get("corpus_id", None) is not None: self.fields.pop('corpus_id') data = inputters.Dataset( self.fields, readers=_readers, data=_data, dirs=_dir, sort_key=inputters.str2sortkey[self.data_type], filter_pred=self._filter_pred ) data_iter = inputters.OrderedIterator( dataset=data, device=self._dev, batch_size=batch_size, batch_size_fn=max_tok_len if batch_type == "tokens" else None, train=False, sort=False, sort_within_batch=True, shuffle=False ) xlation_builder = onmt.translate.TranslationBuilder( data, self.fields, self.n_best, self.replace_unk, tgt, self.phrase_table ) # Statistics counter = count(1) pred_score_total, pred_words_total = 0, 0 gold_score_total, gold_words_total = 0, 0 all_scores = [] all_predictions = [] start_time = time.time() for batch in data_iter: if self.model_type == 'decoding_ext' or self.model_type == 'torch_decoding' or self.model_type == 'torch_decoding_with_decoder_ext': batch_data = self.translate_batch_ftdecoding(batch, data.src_vocabs) else: batch_data = self.translate_batch( batch, data.src_vocabs, attn_debug ) batch_data["batch"].indices = batch_data["batch"].indices.cpu() batch_data["batch"].src = (batch_data["batch"].src[0].cpu(), batch_data["batch"].src[1].cpu()) if isinstance(batch_data["predictions"], torch.Tensor): batch_data["predictions"] = batch_data["predictions"].cpu() translations = xlation_builder.from_batch(batch_data) for trans in translations: all_scores += [trans.pred_scores[:self.n_best]] pred_score_total += trans.pred_scores[0] pred_words_total += len(trans.pred_sents[0]) if tgt is not None: gold_score_total += trans.gold_score gold_words_total += len(trans.gold_sent) + 1 n_best_preds = [" ".join(pred) for pred in trans.pred_sents[:self.n_best]] if self.report_align: align_pharaohs = [build_align_pharaoh(align) for align in trans.word_aligns[:self.n_best]] n_best_preds_align = [" ".join(align) for align in align_pharaohs] n_best_preds = [pred + " ||| " + align for pred, align in zip( n_best_preds, n_best_preds_align)] all_predictions += [n_best_preds] self.out_file.write('\n'.join(n_best_preds) + '\n') self.out_file.flush() if self.verbose: sent_number = next(counter) output = trans.log(sent_number) if self.logger: self.logger.info(output) else: os.write(1, output.encode('utf-8')) if attn_debug: preds = trans.pred_sents[0] preds.append('</s>') attns = trans.attns[0].tolist() if self.data_type == 'text': srcs = trans.src_raw else: srcs = [str(item) for item in range(len(attns[0]))] output = report_matrix(srcs, preds, attns) if self.logger: self.logger.info(output) else: os.write(1, output.encode('utf-8')) if align_debug: if trans.gold_sent is not None: tgts = trans.gold_sent else: tgts = trans.pred_sents[0] align = trans.word_aligns[0].tolist() if self.data_type == 'text': srcs = trans.src_raw else: srcs = [str(item) for item in range(len(align[0]))] output = report_matrix(srcs, tgts, align) if self.logger: self.logger.info(output) else: os.write(1, output.encode('utf-8')) end_time = time.time() if self.report_score: msg = self._report_score('PRED', pred_score_total, pred_words_total) self._log(msg) if tgt is not None: msg = self._report_score('GOLD', gold_score_total, gold_words_total) self._log(msg) if self.report_time: total_time = end_time - start_time print("Total translation time (s): %f" % total_time) print("Average translation time (s): %f" % ( total_time / len(all_predictions))) print("Tokens per second: %f" % ( pred_words_total / total_time)) if self.dump_beam: import json json.dump(self.translator.beam_accum, codecs.open(self.dump_beam, 'w', 'utf-8')) return all_scores, all_predictions def translate_batch(self, batch, src_vocabs, attn_debug): """Translate a batch of sentences.""" with torch.no_grad(): if self.beam_size == 1: decode_strategy = GreedySearch( pad=self._tgt_pad_idx, bos=self._tgt_bos_idx, eos=self._tgt_eos_idx, batch_size=batch.batch_size, min_length=self.min_length, max_length=self.max_length, block_ngram_repeat=self.block_ngram_repeat, exclusion_tokens=self._exclusion_idxs, return_attention=attn_debug or self.replace_unk, sampling_temp=self.random_sampling_temp, keep_topk=self.sample_from_topk) else: # TODO: support these blacklisted features assert not self.dump_beam decode_strategy = BeamSearch( self.beam_size, batch_size=batch.batch_size, pad=self._tgt_pad_idx, bos=self._tgt_bos_idx, eos=self._tgt_eos_idx, n_best=self.n_best, global_scorer=self.global_scorer, min_length=self.min_length, max_length=self.max_length, return_attention=attn_debug or self.replace_unk, block_ngram_repeat=self.block_ngram_repeat, exclusion_tokens=self._exclusion_idxs, stepwise_penalty=self.stepwise_penalty, ratio=self.ratio) return self._translate_batch_with_strategy(batch, src_vocabs, decode_strategy) def translate_batch_ftdecoding(self, batch, src_vocabs): with torch.no_grad(): use_src_map = self.copy_attn batch_size = batch.batch_size src, enc_states, memory_bank, src_lengths = self._run_encoder(batch) results = { "predictions": None, "scores": None, "attention": None, "batch": batch, "gold_score": self._gold_score( batch, memory_bank, src_lengths, src_vocabs, use_src_map, enc_states, batch_size, src)} src_lengths_ = src_lengths.to(torch.int32) memory_bank_ = memory_bank.transpose(0, 1).contiguous() output, lengths = self.model.decoder(batch_size, self.beam_size, self.max_length, memory_bank_, src_lengths_) results["scores"] = [(0,) for _ in range(batch_size)] results["predictions"] = output results["attention"] = [[None] * self.n_best for _ in range(batch_size)] results["alignment"] = [[] for _ in range(batch_size)] return results def _run_encoder(self, batch): src, src_lengths = batch.src if isinstance(batch.src, tuple) \ else (batch.src, None) enc_states, memory_bank, src_lengths = self.model.encoder( src, src_lengths.to(torch.int32)) if src_lengths is None: assert not isinstance(memory_bank, tuple), \ 'Ensemble decoding only supported for text data' src_lengths = torch.Tensor(batch.batch_size) \ .type_as(memory_bank) \ .long() \ .fill_(memory_bank.size(0)) return src, enc_states, memory_bank, src_lengths def _decode_and_generate( self, decoder_in, memory_bank, batch, src_vocabs, memory_lengths, src_map=None, step=None, batch_offset=None): if self.copy_attn: # Turn any copied words into UNKs. decoder_in = decoder_in.masked_fill( decoder_in.gt(self._tgt_vocab_len - 1), self._tgt_unk_idx ) # Decoder forward, takes [tgt_len, batch, nfeats] as input # and [src_len, batch, hidden] as memory_bank # in case of inference tgt_len = 1, batch = beam times batch_size # in case of Gold Scoring tgt_len = actual length, batch = 1 batch dec_out, dec_attn = self.model.decoder( decoder_in, memory_bank, memory_lengths=memory_lengths, step=step ) # Generator forward. if not self.copy_attn: if "std" in dec_attn: attn = dec_attn["std"] else: attn = None log_probs = self.model.generator(dec_out.squeeze(0)) # returns [(batch_size x beam_size) , vocab ] when 1 step # or [ tgt_len, batch_size, vocab ] when full sentence else: attn = dec_attn["copy"] scores = self.model.generator(dec_out.view(-1, dec_out.size(2)), attn.view(-1, attn.size(2)), src_map) # here we have scores [tgt_lenxbatch, vocab] or [beamxbatch, vocab] if batch_offset is None: scores = scores.view(-1, batch.batch_size, scores.size(-1)) scores = scores.transpose(0, 1).contiguous() else: scores = scores.view(-1, self.beam_size, scores.size(-1)) scores = collapse_copy_scores( scores, batch, self._tgt_vocab, src_vocabs, batch_dim=0, batch_offset=batch_offset ) scores = scores.view(decoder_in.size(0), -1, scores.size(-1)) log_probs = scores.squeeze(0).log() # returns [(batch_size x beam_size) , vocab ] when 1 step # or [ tgt_len, batch_size, vocab ] when full sentence return log_probs, attn def _translate_batch_with_strategy( self, batch, src_vocabs, decode_strategy): """Translate a batch of sentences step by step using cache. Args: batch: a batch of sentences, yield by data iterator. src_vocabs (list): list of torchtext.data.Vocab if can_copy. decode_strategy (DecodeStrategy): A decode strategy to use for generate translation step by step. Returns: results (dict): The translation results. """ # (0) Prep the components of the search. use_src_map = self.copy_attn parallel_paths = decode_strategy.parallel_paths # beam_size batch_size = batch.batch_size # (1) Run the encoder on the src. src, enc_states, memory_bank, src_lengths = self._run_encoder(batch) self.model.decoder.init_state(src, memory_bank, enc_states) results = { "predictions": None, "scores": None, "attention": None, "batch": batch, "gold_score": self._gold_score( batch, memory_bank, src_lengths, src_vocabs, use_src_map, enc_states, batch_size, src)} # (2) prep decode_strategy. Possibly repeat src objects. src_map = batch.src_map if use_src_map else None fn_map_state, memory_bank, memory_lengths, src_map = \ decode_strategy.initialize(memory_bank, src_lengths, src_map) if fn_map_state is not None: self.model.decoder.map_state(fn_map_state) # (3) Begin decoding step by step: for step in range(decode_strategy.max_length): decoder_input = decode_strategy.current_predictions.view(1, -1, 1) log_probs, attn = self._decode_and_generate( decoder_input, memory_bank, batch, src_vocabs, memory_lengths=memory_lengths, src_map=src_map, step=step, batch_offset=decode_strategy.batch_offset) decode_strategy.advance(log_probs, attn) any_finished = decode_strategy.is_finished.any() if any_finished: decode_strategy.update_finished() if decode_strategy.done: break select_indices = decode_strategy.select_indices if any_finished: # Reorder states. if isinstance(memory_bank, tuple): memory_bank = tuple(x.index_select(1, select_indices) for x in memory_bank) else: memory_bank = memory_bank.index_select(1, select_indices) memory_lengths = memory_lengths.index_select(0, select_indices) if src_map is not None: src_map = src_map.index_select(1, select_indices) if parallel_paths > 1 or any_finished: self.model.decoder.map_state( lambda state, dim: state.index_select(dim, select_indices)) results["scores"] = decode_strategy.scores results["predictions"] = decode_strategy.predictions results["attention"] = decode_strategy.attention results["alignment"] = [[] for _ in range(batch_size)] return results def _score_target(self, batch, memory_bank, src_lengths, src_vocabs, src_map): tgt = batch.tgt tgt_in = tgt[:-1] log_probs, attn = self._decode_and_generate( tgt_in, memory_bank, batch, src_vocabs, memory_lengths=src_lengths, src_map=src_map) log_probs[:, :, self._tgt_pad_idx] = 0 gold = tgt[1:] gold_scores = log_probs.gather(2, gold) gold_scores = gold_scores.sum(dim=0).view(-1) return gold_scores def _report_score(self, name, score_total, words_total): if words_total == 0: msg = "%s No words predicted" % (name,) else: avg_score = score_total / words_total ppl = np.exp(-score_total.item() / words_total) msg = ("%s AVG SCORE: %.4f, %s PPL: %.4f" % ( name, avg_score, name, ppl)) return msg
FasterTransformer-main
examples/pytorch/decoding/utils/translator.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import sys import math import logging from datetime import datetime import numpy as np import torch import torch.distributed as dist from transformers import BartForConditionalGeneration, BartTokenizer from transformers import MBartForConditionalGeneration, MBartTokenizer dir_path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(dir_path + "/../../..") from examples.pytorch.bart.utils.ft_encoder import FTBartEncoderWeight, FTBartEncoder from examples.pytorch.bart.utils.ft_decoding import FTBartDecodingWeight, FTBartDecoding, FTBart from examples.pytorch.decoding.utils.recover_bpe import recover_bpe LOGGER = logging.getLogger(__name__) gemm_data_type_mapping = {"fp32":0, "fp16":1, "bf16":2} def bleu_score(pred, ref): from sacrebleu import corpus_bleu bleu = corpus_bleu(pred, [ref], force=True) LOGGER.info(" bleu score: {:6.2f}".format(bleu.score)) LOGGER.info(" bleu counts: {}".format(bleu.counts)) LOGGER.info(" bleu totals: {}".format(bleu.totals)) LOGGER.info(" bleu precisions: {}".format(bleu.precisions)) LOGGER.info(" bleu sys_len: {}; ref_len: {}".format(bleu.sys_len, bleu.ref_len)) return bleu class TranslationResult(object): def __init__(self, name, frame_work): self.name = name self.frame_work = frame_work # FT or HF self.file_name = name + ".txt" self.token_list = [] self.batch_ids_list = [] self.batch_seq_len_list = [] self.batch_num = 0 self.execution_time = 0.0 # seconds self.sentence_num = 0 self.token_num = 0 self.bleu_score = None def translate(args_dict): torch.set_printoptions(precision=6) batch_size = args_dict['batch_size'] beam_size = args_dict['beam_width'] max_seq_len = args_dict['max_seq_len'] source_file = args_dict["source"] tgt_file = args_dict["target"] time_args = args_dict["test_time"] beam_search_diversity_rate = args_dict['beam_search_diversity_rate'] topk = args_dict['sampling_topk'] topp = args_dict['sampling_topp'] tensor_para_size = args_dict['tensor_para_size'] pipeline_para_size = args_dict['pipeline_para_size'] max_ite = args_dict['max_iteration'] # repetition_penalty = args_dict["repetition_penalty"] # temperature = args_dict["temperature"] # len_penalty = args_dict["len_penalty"] model_path = args_dict['model_path'] if args_dict['model_path'] != None else args_dict['model'] lib_path = args_dict['lib_path'] if dist.is_mpi_available(): try: dist.init_process_group(backend='mpi') rank = dist.get_rank() except: rank = dist.get_rank() else: rank = 0 if rank == 0: LOGGER.info("\n=============== Argument ===============") for key in args_dict: LOGGER.info("{}: {}".format(key, args_dict[key])) LOGGER.info("========================================") if 'mbart' not in model_path: hf_bart_model = BartForConditionalGeneration.from_pretrained(model_path) tokenizer = BartTokenizer.from_pretrained(model_path) layernorm_type = "post_layernorm" else: hf_bart_model = MBartForConditionalGeneration.from_pretrained(model_path) tokenizer = MBartTokenizer.from_pretrained(model_path) layernorm_type = "pre_layernorm" is_mbart = hf_bart_model.config.add_final_layer_norm hf_bart_model = hf_bart_model.eval().to('cuda') try: fast_tokenizer = PreTrainedTokenizerFast.from_pretrained(model_path) except: fast_tokenizer = tokenizer config = hf_bart_model.config activation_type = config.activation_function bart_with_bias = True use_gated_activation = False position_embedding_type = 1 # absolute positional embedding weight_data_type = np.float32 encoder_head_size = config.d_model // config.encoder_attention_heads decoder_head_size = config.d_model // config.decoder_attention_heads if time_args.find("0") != -1 or time_args.find("2") != -1: hf_bart_model = hf_bart_model.to(rank) if args_dict['inference_data_type'] == 'fp16': hf_bart_model = hf_bart_model.half() elif args_dict['inference_data_type'] == 'bf16': hf_bart_model = hf_bart_model ## bfloat inference not supported yet if rank == 0: LOGGER.debug(f"config: {config}") if os.path.isfile("gemm_config.in") and rank == 0: cmd = f"rm gemm_config.in" LOGGER.info(f"Run {cmd}") os.system(cmd) translation_result_list = [] if time_args.find("0") != -1: translation_result_list.append(TranslationResult("hf-beamsearch-warmup", "HF")) translation_result_list.append(TranslationResult("hf-beamsearch", "HF")) if time_args.find("1") != -1: translation_result_list.append(TranslationResult("ft-beamsearch-warmup", "FT")) translation_result_list.append(TranslationResult("ft-beamsearch", "FT")) if rank == 0 and not args_dict["skip_gemm_test"]: inference_data_type = gemm_data_type_mapping[args_dict['inference_data_type']] cmd = f"./bin/t5_gemm {math.ceil(batch_size / pipeline_para_size)} {beam_size} {max_seq_len} " \ f"{config.d_model} {config.encoder_attention_heads} {encoder_head_size} {config.encoder_ffn_dim} " \ f"{config.d_model} {config.decoder_attention_heads} {decoder_head_size} {config.decoder_ffn_dim} " \ f"{config.vocab_size} {inference_data_type} {tensor_para_size} 0 > .tmp_gemm.log" LOGGER.info(f"Run gemm test: {cmd}") os.system(cmd) if time_args.find("2") != -1: translation_result_list.append(TranslationResult("hf-sampling-warmup", "HF")) translation_result_list.append(TranslationResult("hf-sampling", "HF")) if time_args.find("3") != -1: translation_result_list.append(TranslationResult("ft-sampling-warmup", "FT")) translation_result_list.append(TranslationResult("ft-sampling", "FT")) if rank == 0 and not args_dict["skip_gemm_test"]: inference_data_type = gemm_data_type_mapping[args_dict['inference_data_type']] cmd = f"./bin/t5_gemm {math.ceil(batch_size / pipeline_para_size)} {1} {max_seq_len} " \ f"{config.d_model} {config.encoder_attention_heads} {encoder_head_size} {config.encoder_ffn_dim} " \ f"{config.d_model} {config.decoder_attention_heads} {decoder_head_size} {config.decoder_ffn_dim} " \ f"{config.vocab_size} {inference_data_type} {tensor_para_size} 1 > .tmp_gemm.log" LOGGER.info(f"Run gemm test: {cmd}") os.system(cmd) if time_args.find("1") != -1 or time_args.find("3") != -1: remove_padding = True if batch_size > 32 else False ft_encoder_weight = FTBartEncoderWeight( config, tensor_para_size, pipeline_para_size, bart_with_bias=bart_with_bias, mbart=is_mbart, use_gated_activation=use_gated_activation, position_embedding_type=position_embedding_type, weight_data_type=weight_data_type, ) ft_encoder_weight.load_from_model(hf_bart_model.float()) ft_decoding_weight = FTBartDecodingWeight( config, tensor_para_size, pipeline_para_size, bart_with_bias=bart_with_bias, mbart=is_mbart, use_gated_activation=use_gated_activation, position_embedding_type=position_embedding_type, weight_data_type=weight_data_type, ) ft_decoding_weight.load_from_model(hf_bart_model.float()) if args_dict['inference_data_type'] == "fp16": ft_encoder_weight.to_half() ft_decoding_weight.to_half() elif args_dict['inference_data_type'] == "bf16": ft_encoder_weight.to_bfloat16() ft_decoding_weight.to_bfloat16() ft_encoder = FTBartEncoder(ft_encoder_weight.w, lib_path, config.encoder_attention_heads, encoder_head_size, config.encoder_ffn_dim, config.d_model, remove_padding, config.encoder_layers, tensor_para_size=tensor_para_size, pipeline_para_size=pipeline_para_size, bart_with_bias=bart_with_bias, mbart=is_mbart, position_embedding_type=position_embedding_type, activation_type=activation_type, layernorm_type=layernorm_type) ft_decoding = FTBartDecoding(ft_decoding_weight.w, lib_path, config.decoder_attention_heads, decoder_head_size, config.decoder_ffn_dim, config.d_model, config.d_model, config.decoder_layers, config.decoder_start_token_id, config.eos_token_id, config.vocab_size, tensor_para_size=tensor_para_size, pipeline_para_size=pipeline_para_size, bart_with_bias=bart_with_bias, mbart=is_mbart, position_embedding_type=position_embedding_type, activation_type=activation_type, layernorm_type=layernorm_type) ft_bart = FTBart(ft_encoder, ft_decoding) with open(source_file, 'r') as f: src_text = recover_bpe(f.readlines()) src_text = ["translate English to German: " + line.strip() for line in src_text] with open(tgt_file, 'r') as f: tgt_text = recover_bpe(f.readlines()) for i in range(len(translation_result_list)): sys.stdout.flush() prev = 0 start_time = datetime.now() while prev < len(src_text): input_texts = src_text[prev:prev+batch_size] prev += batch_size input_token = tokenizer(input_texts, return_tensors='pt', padding=True) if translation_result_list[i].frame_work == "HF": if translation_result_list[i].name.find("beamsearch") != -1: hf_outputs = hf_bart_model.generate(input_token.input_ids.to("cuda"), max_length=max_seq_len, early_stopping=True, num_beams=beam_size) elif translation_result_list[i].name.find("sampling") != -1: hf_outputs = hf_bart_model.generate(input_token.input_ids.to("cuda"), max_length=max_seq_len, early_stopping=True, do_sample=True, top_k=topk if topk > 0 else None, top_p=topp if topp > 0.0 else None) translation_result_list[i].batch_ids_list.append(hf_outputs) translation_result_list[i].batch_seq_len_list.append(np.ones(len(input_texts)) * max_seq_len) elif translation_result_list[i].frame_work == "FT": tmp_beam_size = beam_size if translation_result_list[i].name.find("sampling") != -1: tmp_beam_size = 1 return_dict = ft_bart(input_token['input_ids'], input_token['attention_mask'], inputs_embeds=None, beam_size=tmp_beam_size, max_seq_len=max_seq_len, top_k=topk, top_p=topp, beam_search_diversity_rate=beam_search_diversity_rate, is_return_output_log_probs=args_dict["return_output_log_probs"], is_return_cum_log_probs=args_dict["return_cum_log_probs"],) ft_output_ids = return_dict['output_ids'] ft_sequence_length = return_dict['sequence_lengths'] translation_result_list[i].batch_ids_list.append(ft_output_ids) translation_result_list[i].batch_seq_len_list.append(ft_sequence_length) translation_result_list[i].sentence_num += len(input_token) translation_result_list[i].batch_num += 1 if translation_result_list[i].name.find("warmup") != -1 and \ (translation_result_list[i].batch_num > 10 or translation_result_list[i].sentence_num > 300): break if translation_result_list[i].batch_num >= max_ite: break stop_time = datetime.now() translation_result_list[i].execution_time = (stop_time - start_time).total_seconds() if translation_result_list[i].name.find("warmup") != -1: continue for batch_token, batch_seq_len in zip(translation_result_list[i].batch_ids_list, translation_result_list[i].batch_seq_len_list): for j in range(len(batch_token)): if translation_result_list[i].frame_work == "HF": translation_result_list[i].token_list.append(fast_tokenizer.decode(batch_token[j][1:], skip_special_tokens=True)) translation_result_list[i].token_num += sum(batch_token[j][:] != 0) elif translation_result_list[i].frame_work == "FT": translation_result_list[i].token_list.append(fast_tokenizer.decode(batch_token[j][0][:batch_seq_len[j][0]], skip_special_tokens=True)) translation_result_list[i].token_num += batch_seq_len[j][0] if rank == 0: translation_result_list[i].bleu_score = bleu_score(translation_result_list[i].token_list, tgt_text[:len(translation_result_list[i].token_list)]) with open(translation_result_list[i].name + ".txt", 'w') as f: for line in translation_result_list[i].token_list: f.write(line) if rank == 0: for t in translation_result_list: if t.name.find("warmup") != -1: continue LOGGER.info(f"{t.name} translates {t.batch_num} batches taking {t.execution_time:.2f} sec to translate " f"{t.token_num} tokens, BLEU score: {t.bleu_score.score:.2f}, {(t.token_num / t.execution_time):.0f} tokens/sec." f" ({t.bleu_score.sys_len} words, {(t.bleu_score.sys_len / t.execution_time):.0f} words/sec)") if t.name == "ft-beamsearch" and args_dict["ft_beamsearch_BLEU_threshold"] != None: print(t.bleu_score.score, args_dict["ft_beamsearch_BLEU_threshold"]) assert t.bleu_score.score >= args_dict["ft_beamsearch_BLEU_threshold"], f"[ERROR] {t.name} test fail !" LOGGER.info(f"{t.name} PASS !") if t.name == "ft-sampling" and args_dict["ft_sampling_BLEU_threshold"] != None: print(t.bleu_score.score, args_dict["ft_sampling_BLEU_threshold"]) assert t.bleu_score.score >= args_dict["ft_sampling_BLEU_threshold"], f"[ERROR] {t.name} test fail !" LOGGER.info(f"{t.name} PASS !") if __name__ == "__main__": parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-batch', '--batch_size', type=int, default=1, metavar='NUMBER', help='batch size (default: 1)') parser.add_argument('-beam', '--beam_width', type=int, default=4, metavar='NUMBER', help='beam width (default: 4)') parser.add_argument('-s', '--max_seq_len', type=int, default=200, metavar='NUMBER', help='max sequence length (default: 200)') parser.add_argument("--source", default="../examples/pytorch/decoding/utils/translation/test.en", help="Path to the source file.") parser.add_argument("--target", default="../examples/pytorch/decoding/utils/translation/test.de", help="Path to the target file.") parser.add_argument('-time', '--test_time', type=str, default='', metavar='STRING', help=''' Test the time of which one (default: '' (not test anyone) ); '': not test anyone '0': test hf_beamsearch '1': test ft_beamsearch '2': test hf_sampling '3': test ft_sampling 'e.g., if you want to test tf_beamsearch and ft_sampling, then you need to use -time '03' ''') parser.add_argument('-diversity_rate', '--beam_search_diversity_rate', type=float, default=0.0, metavar='NUMBER', help='deviersity rate of beam search. default is 0. When diversity rate = 0, it is equivalent to the naive beam search.') # parser.add_argument('-repeat_penalty', '--repetition_penalty', type=float, default=1.0, metavar='NUMBER', # help='Repetition penalty for generating tokens. Default is 1.0.') # parser.add_argument('-temperature', '--temperature', type=float, default=1.0, metavar='NUMBER', # help='Temperature penalty for generating tokens. Default is 1.0.') # parser.add_argument('-len_penalty', '--len_penalty', type=float, default=0.0, metavar='NUMBER', # help='Length penalty for generating tokens. Default is 0.0.') parser.add_argument('-topk', '--sampling_topk', type=int, default=1, metavar='NUMBER', help='Candidate (k) value of top k sampling in decoding. Default is 1.') parser.add_argument('-topp', '--sampling_topp', type=float, default=0.0, metavar='NUMBER', help='Probability (p) value of top p sampling in decoding. Default is 0.0. ') parser.add_argument('-d', '--inference_data_type', type=str, default="fp32", metavar='STRING', help='data type for inference (default: fp32)', choices=['fp32', 'fp16', 'bf16']) parser.add_argument('-lib_path', '--lib_path', type=str, default="lib/libth_transformer.so", metavar='STRING', help='the path of FasterTransformer pytorch bart op library.') parser.add_argument('-model_path', '--model_path', type=str, default=None, metavar='STRING', help='T5 model path.') parser.add_argument('-model', '--model', type=str, default="bart-base", metavar='STRING', help='T5 model size. Only used when --model_path=None') parser.add_argument('-tensor_para_size', '--tensor_para_size', type=int, default=1, metavar='NUMBER', help='size of tensor parallelism (default: 1)') parser.add_argument('-pipeline_para_size', '--pipeline_para_size', type=int, default=1, metavar='NUMBER', help='size of pipeline parallelism (default: 1)') parser.add_argument('-max_ite', '--max_iteration', type=int, default=100000, metavar='NUMBER', help='Maximum iteraiton for translation, default is 100000 (as large as possible to run all test set).') parser.add_argument('--return_output_log_probs', action='store_true', help='Return the log probability of generated tokens.') parser.add_argument('--return_cum_log_probs', action='store_true', help='Return the cumulative log probability of generated tokens.') parser.add_argument('--ft_beamsearch_BLEU_threshold', type=float, help='Threshold of FT beam search BLEU score') parser.add_argument('--ft_sampling_BLEU_threshold', type=float, help='Threshold of FT beam search BLEU score') parser.add_argument("--verbose", action="store_true", help="Provide verbose messages") parser.add_argument('--skip_gemm_test', action='store_true') args = parser.parse_args() log_format = "%(asctime)s %(name)s [%(levelname)s] %(message)s" logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO, format=log_format) translate(vars(args))
FasterTransformer-main
examples/pytorch/bart/translate_example.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import torch.distributed as dist import numpy as np class FTBartEncoderWeight(object): def __init__( self, config, tensor_para_size, pipeline_para_size, *, bart_with_bias=True, mbart=False, use_gated_activation=False, position_embedding_type=1, weight_data_type ): self.num_layer = config.encoder_layers self.config = config self.tensor_para_size = tensor_para_size self.pipeline_para_size = pipeline_para_size self.bart_with_bias = bart_with_bias self.mbart = mbart self.use_gated_activation = use_gated_activation self.real_weights_num = 24 # assume all weights are allocated self.position_embedding_type = position_embedding_type self.weight_data_type = weight_data_type self.w = [] self.use_mpi = dist.is_mpi_available() if self.use_mpi: try: dist.init_process_group(backend='mpi') except: print("[INFO] WARNING: Exception occurred in dist.init_process_group(backend = 'mpi'). Maybe the process group has been initialized somewhere else.") else: print("[INFO] MPI is not available in this PyTorch build.") assert tensor_para_size == 1, "[FATAL] MPI is required for tensor_para_size > 1." assert pipeline_para_size == 1, "[FATAL] MPI is required for pipeline_para_size > 1." self.rank = dist.get_rank() if self.use_mpi else 0 self.device_count = torch.cuda.device_count() self.device = self.rank % self.device_count torch.cuda.set_device(self.device) world_size = dist.get_world_size() if self.use_mpi else 1 assert world_size == tensor_para_size * \ pipeline_para_size, "[ERROR] world_size != tensor_para_size * pipeline_para_size" self.tensor_para_rank = self.rank % self.tensor_para_size self.pipeline_para_rank = self.rank // self.tensor_para_size def load_from_model(self, model): '''Only applies to HuggingFace models. Weight loading order: PyTorch tensor order should conform to src/fastertransformer/th_op/BartEncoderOp.h:FasterTransformerBartEncoder. For per-layer weights, the tensor is a stack of the weight across all layers. ''' start_layer = self.pipeline_para_rank * self.num_layer // self.pipeline_para_size end_layer = (self.pipeline_para_rank + 1) * self.num_layer // self.pipeline_para_size np_weight_dtype = self.weight_data_type torch_weight_dtype = {np.float32: torch.float32, np.float16: torch.float16}[np_weight_dtype] encoder_weight_dict = {} for name, param in model.named_parameters(): # HF BART/mBART model's weight names are prepended with "model.", remove for consistency name = name.replace("model.", "") if param.dim() == 2: param_t = param.transpose(1, 0) # PyTorch --> FT weight loading needs transpose elif param.dim() == 1: param_t = param else: assert False, f"The dimension of param {name} should be 1 or 2" if name.find("encoder.layers") != -1 or name.find("encoder.layernorm_embedding") != -1 or name.find("encoder.layer_norm") != -1: encoder_weight_dict[name] = param_t if name.find("encoder.embed_positions") != -1: encoder_weight_dict[name] = param # positional embedding table should NOT be transposed # [0] t = torch.stack([encoder_weight_dict["encoder.layers.{}.self_attn_layer_norm.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) # [1] t = torch.stack([encoder_weight_dict["encoder.layers.{}.self_attn.q_proj.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous()) # [2] t = torch.stack([encoder_weight_dict["encoder.layers.{}.self_attn.k_proj.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous()) # [3] t = torch.stack([encoder_weight_dict["encoder.layers.{}.self_attn.v_proj.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous()) # [4] t = torch.stack([encoder_weight_dict["encoder.layers.{}.self_attn.out_proj.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t.split(t.shape[1] // self.tensor_para_size, dim=1)[self.tensor_para_rank].contiguous()) # [5] t = torch.stack([encoder_weight_dict["encoder.layers.{}.final_layer_norm.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) # [6] t = torch.stack([encoder_weight_dict["encoder.layers.{}.fc1.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous()) # [7] add empty weight for gated activation for now (BART/mBART model by default don't use gated activation) self.w.append(torch.empty((1, 1), dtype=torch_weight_dtype).contiguous().cuda()) # [8] t = torch.stack([encoder_weight_dict["encoder.layers.{}.fc2.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t.split(t.shape[1] // self.tensor_para_size, dim=1)[self.tensor_para_rank].contiguous()) # [9] (1) positional embedding table should NOT be transposed, [max position embeddings, hidden size] (2) need to apply offset of 2 for absolute position embeddings in BART/mBART t = encoder_weight_dict["encoder.embed_positions.weight"][2:, :].contiguous().cuda() self.w.append(t) # [10] input embedding table should NOT be transposed, [vocab, hidden size]. Directly obtained from raw weight is untransposed t = model.get_input_embeddings().weight.contiguous().cuda() # input word embedding may be scaled (mBART), instead of customize this in FT, it's better to modify the embedding loading part in PyT embedding_scale = np.sqrt(model.config.d_model) if model.config.scale_embedding else 1.0 t = t * embedding_scale self.w.append(t) # [11] LayerNorm after embedding & before transformer block, special in BART/mBART t = encoder_weight_dict["encoder.layernorm_embedding.weight"].contiguous().cuda() self.w.append(t) # [12] LayerNorm after transformer block, special in mBART if self.mbart: t = encoder_weight_dict["encoder.layer_norm.weight"].contiguous().cuda() else: t = torch.empty((1, 1), dtype=torch_weight_dtype).contiguous().cuda() self.w.append(t) if self.bart_with_bias: # [13] t = torch.stack([encoder_weight_dict["encoder.layers.{}.self_attn_layer_norm.bias".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) # [14] t = torch.stack([encoder_weight_dict["encoder.layers.{}.self_attn.q_proj.bias".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() t = t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous() self.w.append(t) # [15] t = torch.stack([encoder_weight_dict["encoder.layers.{}.self_attn.k_proj.bias".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() t = t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous() self.w.append(t) # [16] t = torch.stack([encoder_weight_dict["encoder.layers.{}.self_attn.v_proj.bias".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() t = t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous() self.w.append(t) # [17] t = torch.stack([encoder_weight_dict["encoder.layers.{}.self_attn.out_proj.bias".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) # [18] t = torch.stack([encoder_weight_dict["encoder.layers.{}.final_layer_norm.bias".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) # [19] t = torch.stack([encoder_weight_dict["encoder.layers.{}.fc1.bias".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() t = t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous() self.w.append(t) # [20] add empty bias for gated activation for now (BART/mBART model by default don't use gated activation) self.w.append(torch.empty((1, 1), dtype=torch_weight_dtype).contiguous().cuda()) # [21] t = torch.stack([encoder_weight_dict["encoder.layers.{}.fc2.bias".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) # [22] t = encoder_weight_dict["encoder.layernorm_embedding.bias"].contiguous().cuda() self.w.append(t) # [23] LayerNorm after transformer block, special in mBART if self.mbart: t = encoder_weight_dict["encoder.layer_norm.bias"].contiguous().cuda() else: t = torch.empty((1, 1), dtype=torch_weight_dtype).contiguous().cuda() self.w.append(t) else: # TODO: pass None Type to Torch Op for i in range(11): self.w.append(torch.empty((1, 1), dtype=torch_weight_dtype).contiguous().cuda()) def to_cuda(self): for i in range(self.real_weights_num): self.w[i] = self.w[i].cuda() def to_float(self): for i in range(self.real_weights_num): self.w[i] = self.w[i].float() def to_half(self): for i in range(self.real_weights_num): self.w[i] = self.w[i].half() def to_single(self): for i in range(self.real_weights_num): self.w[i] = self.w[i].float() def to_bfloat16(self): for i in range(self.real_weights_num): self.w[i] = self.w[i].bfloat16() class FTBartEncoder(nn.Module): def __init__(self, encoder_weight_list, lib_path, head_num, head_size, inter_size, d_model, is_remove_padding, num_layer, num_bucket=32, max_distance=128, sparse=False, q_scaling=1.0, tensor_para_size=1, pipeline_para_size=1, bart_with_bias=True, mbart=False, position_embedding_type=1, activation_type="gelu", layernorm_type="post_layernorm"): super().__init__() self.use_mpi = dist.is_mpi_available() if self.use_mpi: try: dist.init_process_group(backend='mpi') except: print("[INFO] WARNING: Exception occurred in dist.init_process_group(backend = 'mpi'). Maybe the process group has been initialized somewhere else.") else: print("[INFO] MPI is not available in this PyTorch build.") assert tensor_para_size == 1, "[FATAL] MPI is required for tensor_para_size > 1." assert pipeline_para_size == 1, "[FATAL] MPI is required for pipeline_para_size > 1." torch.classes.load_library(lib_path) try: self.encoder = torch.classes.FasterTransformer.BartEncoder(*encoder_weight_list, head_num, head_size, inter_size, d_model, is_remove_padding, num_layer, num_bucket, max_distance, sparse, q_scaling, tensor_para_size, pipeline_para_size, bart_with_bias, mbart, position_embedding_type, activation_type, layernorm_type) except: self.encoder = torch.classes.FasterTransformerBartEncoder(*encoder_weight_list, head_num, head_size, inter_size, d_model, is_remove_padding, num_layer, num_bucket, max_distance, sparse, q_scaling, tensor_para_size, pipeline_para_size, bart_with_bias, mbart, position_embedding_type, activation_type, layernorm_type) def forward(self, input, seq_len, inputs_embeds=None): output = self.encoder.forward(input, seq_len, inputs_embeds) return output
FasterTransformer-main
examples/pytorch/bart/utils/ft_encoder.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import torch.distributed as dist import numpy as np class FTBartDecodingWeight(object): def __init__( self, config, tensor_para_size, pipeline_para_size, *, bart_with_bias=True, mbart=False, use_gated_activation=False, position_embedding_type=1, weight_data_type ): self.config = config self.num_layer = config.decoder_layers self.tensor_para_size = tensor_para_size self.pipeline_para_size = pipeline_para_size self.bart_with_bias = bart_with_bias self.mbart = mbart self.use_gated_activation = use_gated_activation self.position_embedding_type = position_embedding_type self.real_weights_num = 32 # assume all weights are allocated and converted to specific data type self.weight_data_type = weight_data_type self.w = [] self.use_mpi = dist.is_mpi_available() if self.use_mpi: try: dist.init_process_group(backend='mpi') except: print("[INFO] WARNING: Exception occurred in dist.init_process_group(backend = 'mpi'). Maybe the process group has been initialized somewhere else.") else: print("[INFO] MPI is not available in this PyTorch build.") assert tensor_para_size == 1, "[FATAL] MPI is required for tensor_para_size > 1." assert pipeline_para_size == 1, "[FATAL] MPI is required for pipeline_para_size > 1." self.rank = dist.get_rank() if self.use_mpi else 0 self.device_count = torch.cuda.device_count() self.device = self.rank % self.device_count torch.cuda.set_device(self.device) world_size = dist.get_world_size() if self.use_mpi else 1 assert world_size == tensor_para_size * \ pipeline_para_size, "[ERROR] world_size != tensor_para_size * pipeline_para_size" self.tensor_para_rank = self.rank % self.tensor_para_size self.pipeline_para_rank = self.rank // self.tensor_para_size def load_from_model(self, model): '''Only applies to HuggingFace models. Weight loading order: PyTorch tensor order should conform to src/fastertransformer/th_op/BartDecodingOp.h:FasterTransformerBartDecoding. For per-layer weights, the tensor is a stack of the weight across all layers. ''' start_layer = self.pipeline_para_rank * self.num_layer // self.pipeline_para_size end_layer = (self.pipeline_para_rank + 1) * self.num_layer // self.pipeline_para_size np_weight_dtype = self.weight_data_type torch_weight_dtype = {np.float32: torch.float32, np.float16: torch.float16}[np_weight_dtype] weight_dict = {} qkv_weight_tmp = ["q", "k", "v"] # must respect this order qkv_weight_len = 0 qkv_bias_tmp = ["q", "k", "v"] qkv_bias_len = 0 for name, param in model.state_dict().items(): name = name.replace("model.", "") if param.dim() == 2: param_t = param.transpose(1, 0) elif param.dim() == 1: param_t = param else: assert False, f"The dimension of param {name} should be 2" if name.find("decoder.layers") != -1: if name.find(".self_attn.q_proj.weight") != -1 or name.find(".self_attn.k_proj.weight") != -1 or name.find(".self_attn.v_proj.weight") != -1: qkv_weight_tmp[0 if "q_proj" in name else 1 if "k_proj" in name else 2] = param_t # qkv order in weight dict is not guaranteed qkv_weight_len += 1 if qkv_weight_len == 3: qkv_weight = torch.cat(qkv_weight_tmp, dim=-1) weight_dict[name.partition("self_attn")[0] + "self_attn.qkv_proj.weight"] = qkv_weight qkv_weight_tmp = ["q", "k", "v"] qkv_weight_len = 0 elif name.find(".self_attn.q_proj.bias") != -1 or name.find(".self_attn.k_proj.bias") != -1 or name.find(".self_attn.v_proj.bias") != -1: qkv_bias_tmp[0 if "q_proj" in name else 1 if "k_proj" in name else 2] = param_t # qkv order in weight dict is not guaranteed qkv_bias_len += 1 if qkv_bias_len == 3: qkv_bias = torch.cat(qkv_bias_tmp, dim=-1) weight_dict[name.partition("self_attn")[0] + "self_attn.qkv_proj.bias"] = qkv_bias qkv_bias_tmp = ["q", "k", "v"] qkv_bias_len = 0 else: weight_dict[name] = param_t elif name.find("decoder.layernorm_embedding") != -1 or name.find("decoder.layer_norm") != -1 or name.find("final_logits_bias") != -1 or name.find("lm_head") != -1: weight_dict[name] = param_t elif name.find("decoder.embed_positions") != -1: weight_dict[name] = param # load by torch model directly # [0] self-attention t = torch.stack([weight_dict["decoder.layers.{}.self_attn_layer_norm.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) # [1] QKV weight concatenated t = torch.stack([weight_dict["decoder.layers.{}.self_attn.qkv_proj.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() t = t.reshape([t.shape[0], t.shape[1], 3, t.shape[2] // 3]) t = t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous() self.w.append(t) # [2] t = torch.stack([weight_dict["decoder.layers.{}.self_attn.out_proj.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t.split(t.shape[1] // self.tensor_para_size, dim=1)[self.tensor_para_rank].contiguous()) # [3] cross-attention t = torch.stack([weight_dict["decoder.layers.{}.encoder_attn_layer_norm.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) # [4] t = torch.stack([weight_dict["decoder.layers.{}.encoder_attn.q_proj.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous()) # [5] t = torch.stack([weight_dict["decoder.layers.{}.encoder_attn.k_proj.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous()) # [6] t = torch.stack([weight_dict["decoder.layers.{}.encoder_attn.v_proj.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous()) # [7] t = torch.stack([weight_dict["decoder.layers.{}.encoder_attn.out_proj.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t.split(t.shape[1] // self.tensor_para_size, dim=1)[self.tensor_para_rank].contiguous()) # [8] t = torch.stack([weight_dict["decoder.layers.{}.final_layer_norm.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) # [9] t = torch.stack([weight_dict["decoder.layers.{}.fc1.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous()) # [10] add empty weight for gated activation for now (BART/mBART model by default don't use gated activation) self.w.append(torch.empty((1, 1), dtype=torch_weight_dtype).contiguous().cuda()) # [11] t = torch.stack([weight_dict["decoder.layers.{}.fc2.weight".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t.split(t.shape[1] // self.tensor_para_size, dim=1)[self.tensor_para_rank].contiguous()) # [12] (1) positional embedding table should NOT be transposed, [max position embeddings, hidden size] (2) need to apply offset of 2 for absolute position embeddings in BART/mBART t = weight_dict["decoder.embed_positions.weight"][2:, :].contiguous().cuda() self.w.append(t) # [13] input embedding table should NOT be transposed, [vocab, hidden size]. Directly obtained from raw weight is untransposed t = model.get_input_embeddings().weight.contiguous().cuda() # input word embedding may be scaled (mBART), instead of customize this in FT, it's better to modify the embedding loading part in PyT embedding_scale = np.sqrt(model.config.d_model) if model.config.scale_embedding else 1.0 t = t * embedding_scale self.w.append(t) # [14] output embedding table should NOT be transposed, [vocab, hidden size]. Directly obtained from raw weight is untransposed t = model.get_output_embeddings().weight.contiguous().cuda() # same as weight_dict["lm_head.weight"].transpose(1, 0).contiguous().cuda() self.w.append(t) # [15] LayerNorm after embedding & before transformer block, special in BART/mBART t = weight_dict["decoder.layernorm_embedding.weight"].contiguous().cuda() self.w.append(t) # [16] LayerNorm after transformer block, special in mBART if self.mbart: t = weight_dict["decoder.layer_norm.weight"].contiguous().cuda() else: t = torch.empty((1, 1), dtype=torch_weight_dtype).contiguous().cuda() self.w.append(t) if self.bart_with_bias: # [17] t = torch.stack([weight_dict["decoder.layers.{}.self_attn_layer_norm.bias".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) # [18] t = torch.stack([weight_dict["decoder.layers.{}.self_attn.qkv_proj.bias".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() t = t.reshape([t.shape[0], 3, t.shape[-1] // 3]) t = t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous() self.w.append(t) # [19] t = torch.stack([weight_dict["decoder.layers.{}.self_attn.out_proj.bias".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) # [20] t = torch.stack([weight_dict["decoder.layers.{}.encoder_attn_layer_norm.bias".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) # [21] t = torch.stack([weight_dict["decoder.layers.{}.encoder_attn.q_proj.bias".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() t = t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous() self.w.append(t) # [22] t = torch.stack([weight_dict["decoder.layers.{}.encoder_attn.k_proj.bias".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() t = t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous() self.w.append(t) # [23] t = torch.stack([weight_dict["decoder.layers.{}.encoder_attn.v_proj.bias".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() t = t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous() self.w.append(t) # [24] t = torch.stack([weight_dict["decoder.layers.{}.encoder_attn.out_proj.bias".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) # [25] t = torch.stack([weight_dict["decoder.layers.{}.final_layer_norm.bias".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) # [26] t = torch.stack([weight_dict["decoder.layers.{}.fc1.bias".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() t = t.split(t.shape[-1] // self.tensor_para_size, dim=-1)[self.tensor_para_rank].contiguous() self.w.append(t) # [27] add empty bias for gated activation for now (BART/mBART model by default don't use gated activation) t = torch.empty((1, 1), dtype=torch_weight_dtype).contiguous().cuda() self.w.append(t) # [28] t = torch.stack([weight_dict["decoder.layers.{}.fc2.bias".format(i)] for i in range(start_layer, end_layer)], 0).contiguous().cuda() self.w.append(t) # [29] t = weight_dict["decoder.layernorm_embedding.bias"].contiguous().cuda() self.w.append(t) # [30] if self.mbart: t = weight_dict["decoder.layer_norm.bias"].contiguous().cuda() else: t = torch.empty((1, 1), dtype=torch_weight_dtype).contiguous().cuda() self.w.append(t) # [31] embedding bias aka final_logits_bias (may not exist, keys to ignore) t = weight_dict.get("final_logits_bias", torch.zeros((1, self.config.vocab_size), dtype=torch_weight_dtype)).contiguous().cuda() self.w.append(t) else: # TODO: pass None Type to Torch Op for i in range(15): self.w.append(torch.empty((1, 1), dtype=torch_weight_dtype).contiguous().cuda()) def to_cuda(self): for i in range(self.real_weights_num): self.w[i] = self.w[i].cuda() def to_float(self): for i in range(self.real_weights_num): self.w[i] = self.w[i].float() def to_half(self): for i in range(self.real_weights_num): self.w[i] = self.w[i].half() def to_single(self): for i in range(self.real_weights_num): self.w[i] = self.w[i].float() def to_bfloat16(self): for i in range(self.real_weights_num): self.w[i] = self.w[i].bfloat16() class FTBartDecoding(nn.Module): def __init__(self, decoding_weight_list, lib_path, head_num, head_size, inter_size, mem_d_model, d_model, num_layer, start_id, end_id, vocab_size, q_scaling=1.0, num_bucket=32, max_distance=128, tensor_para_size=1, pipeline_para_size=1, bart_with_bias=True, mbart=False, position_embedding_type=1, activation_type="gelu", layernorm_type="post_layernorm"): super().__init__() self.use_mpi = dist.is_mpi_available() if self.use_mpi: try: dist.init_process_group(backend='mpi') except: print("[INFO] WARNING: Exception occurred in dist.init_process_group(backend = 'mpi'). Maybe the process group has been initialized somewhere else.") else: print("[INFO] MPI is not available in this PyTorch build.") assert tensor_para_size == 1, "[FATAL] MPI is required for tensor_para_size > 1." assert pipeline_para_size == 1, "[FATAL] MPI is required for pipeline_para_size > 1." torch.classes.load_library(lib_path) try: self.decoding = torch.classes.FasterTransformer.BartDecoding(head_num, head_size, inter_size, mem_d_model, d_model, num_layer, vocab_size, num_bucket, max_distance, q_scaling, start_id, end_id, tensor_para_size, pipeline_para_size, bart_with_bias, mbart, position_embedding_type, activation_type, layernorm_type, *decoding_weight_list) except: self.decoding = torch.classes.FasterTransformerBartDecoding(head_num, head_size, inter_size, mem_d_model, d_model, num_layer, vocab_size, num_bucket, max_distance, q_scaling, start_id, end_id, tensor_para_size, pipeline_para_size, bart_with_bias, mbart, position_embedding_type, activation_type, layernorm_type, *decoding_weight_list) def forward(self, beam_width, max_seq_len, top_k, top_p, beam_search_diversity_rate, temperature, len_penalty, repetition_penalty, random_seed, mem_hidden_states, mem_seq_len, is_return_output_log_probs, is_return_cum_log_probs, is_return_cross_attentions=False): # TODO (bhsueh) Not found an method to put a None Type into op forward function # So, the top_k and top_p must be some values now. results = self.decoding.forward(beam_width, max_seq_len, top_k, top_p, beam_search_diversity_rate, temperature, len_penalty, repetition_penalty, random_seed, mem_hidden_states, mem_seq_len, is_return_output_log_probs, is_return_cum_log_probs, is_return_cross_attentions) return results class FTBart(nn.Module): def __init__(self, encoder, decoding): super().__init__() self.encoder = encoder self.decoding = decoding def forward(self, input_ids, attention_mask, inputs_embeds, beam_size, max_seq_len, top_k, top_p, beam_search_diversity_rate, temperature=1.0, len_penalty=0.0, repetition_penalty=1.0, random_seed=0, is_return_output_log_probs=False, is_return_cum_log_probs=False, is_return_cross_attentions=False): input_ids = input_ids.to("cuda").type(torch.int32) mem_seq_len = torch.sum(attention_mask, dim=1).type(torch.int32).to("cuda") ft_encoder_outputs = self.encoder.forward(input_ids, mem_seq_len, inputs_embeds) results = self.decoding.forward(beam_size, # optional, can be None max_seq_len, top_k, # optional, can be None top_p, # optional, can be None beam_search_diversity_rate, # optional, can be None temperature, # optional, can be None len_penalty, # optional, can be None repetition_penalty, # optional, can be None random_seed, # optional, can be None is_return_output_log_probs, # optional, can be None is_return_cum_log_probs, # optional, can be None is_return_cross_attentions, # optional, can be None ft_encoder_outputs, mem_seq_len) return_dict = {} return_dict['output_ids'] = results.pop(0).reshape([-1, beam_size, max_seq_len]).cpu().numpy() return_dict['sequence_lengths'] = results.pop(0).reshape([-1, beam_size]).cpu().numpy() if is_return_output_log_probs: return_dict['output_log_probs'] = results.pop(0).cpu().numpy() if is_return_cum_log_probs: return_dict['cum_log_probs'] = results.pop(0).cpu().numpy() if is_return_cross_attentions: return_dict['cross_attentions'] = results.pop(0).cpu().numpy() return return_dict
FasterTransformer-main
examples/pytorch/bart/utils/ft_decoding.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import argparse import re import numpy as np import torch ACTIVATION_AMAX_NUM = 72 INT8O_GEMM_NUM = 8 TRT_FUSED_MHA_AMAX_NUM = 3 SCALE_RESERVE_NUM = 21 def checkpoint_quantization(init_dict, ths_path='../../../build/lib/libth_transformer.so', verbose=True): print("Quantizing checkpoint ...") torch.classes.load_library(ths_path) weight_quantize = torch.ops.fastertransformer.vit_weight_quantize def init_graph(): layer_num = 0 regex = re.compile('layer.\d+') amaxTotalNum = 0 for name, tensor_value in init_dict.items(): if "ffn.fc1" in name and amaxTotalNum == 0: amaxTotalNum = ACTIVATION_AMAX_NUM + 9 * tensor_value.size(1) + INT8O_GEMM_NUM + TRT_FUSED_MHA_AMAX_NUM + SCALE_RESERVE_NUM if verbose: print("amaxTotalNum", amaxTotalNum) print("Hidden size:", tensor_value.size(1)) tmp = regex.findall(name) if len(tmp) < 1: continue num_tmp = int(tmp[0].replace("layer.", "")) if layer_num < num_tmp: layer_num = num_tmp layer_num = layer_num + 1 #add new var for amax for i in range(layer_num): init_dict["transformer.encoder.layer.{}.amaxList".format(i)] = torch.zeros((amaxTotalNum,), dtype=torch.float32) return layer_num, amaxTotalNum layer_num, amaxTotalNum = init_graph() kernel_name_list = ["attn.query", "attn.key", "attn.value", "attn.out", "ffn.fc1", "ffn.fc2"] amax_name_list = ["attn.query._input_quantizer", "attn.query._aftergemm_quantizer", "attn.matmul_q_input_quantizer", "attn.key._aftergemm_quantizer", "attn.matmul_k_input_quantizer", "attn.value._aftergemm_quantizer", "attn.matmul_v_input_quantizer", "attn.softmax_input_quantizer", "attn.matmul_a_input_quantizer", "attn.out._input_quantizer", "attn.out._aftergemm_quantizer", "ffn.fc1._input_quantizer", "ffn.fc1._aftergemm_quantizer", "ffn.fc2._input_quantizer", "ffn.fc2._aftergemm_quantizer", "special_F2Bias_scale", ] int8O_gemm_weight_amax_list = [0 for i in range(INT8O_GEMM_NUM)] int8O_gemm_weight_list = ["attn.query", "attn.key", "attn.value", "attn.matmul_k_input_quantizer", "attn.matmul_v_input_quantizer", "attn.out", "ffn.fc1", "ffn.fc2"] int8O_gemm_input_amax_list = [0 for i in range(INT8O_GEMM_NUM)] int8O_gemm_input_list = ["attn.query._input_quantizer", "attn.key._input_quantizer", "attn.value._input_quantizer", "attn.matmul_q_input_quantizer", "attn.matmul_a_input_quantizer", "attn.out._input_quantizer", "ffn.fc1._input_quantizer", "ffn.fc2._input_quantizer"] int8O_gemm_output_amax_list = [0 for i in range(INT8O_GEMM_NUM)] int8O_gemm_output_list = ["attn.query._aftergemm_quantizer", "attn.key._aftergemm_quantizer", "attn.value._aftergemm_quantizer", "attn.softmax_input_quantizer", "attn.out._input_quantizer", "attn.out._aftergemm_quantizer", "ffn.fc1._aftergemm_quantizer", "ffn.fc2._aftergemm_quantizer"] same_value_tuple_list = [("attn.query._input_quantizer", "attn.key._input_quantizer", "attn.value._input_quantizer")] factor = 1000000.0 for i in range(layer_num): amaxList = np.zeros([amaxTotalNum]).astype(np.float32) amax_id = 0 # verify some quantizers have same value. input_quantizer is per-tensor quantization for same_value_tuple in same_value_tuple_list: tmp_v = init_dict["transformer.encoder.layer.{}.{}._amax".format(i, same_value_tuple[0])].numpy() for same_value_name in same_value_tuple: tmp_v_2 = init_dict["transformer.encoder.layer.{}.{}._amax".format(i, same_value_name)].numpy() assert(np.allclose(tmp_v, tmp_v_2)) for amax_name in amax_name_list: if amax_name == "special_F2Bias_scale": if i != layer_num - 1: quant_max = init_dict["transformer.encoder.layer.{}.{}._amax".format(i+1, amax_name_list[0])].item() amax = abs(quant_max) else: #not used, placeholder amax = 1.0 amaxList[amax_id] = amax amax_id += 1 amaxList[amax_id] = amax/127.0 amax_id += 1 amaxList[amax_id] = amax/127.0/127.0 amax_id += 1 amaxList[amax_id] = 127.0/amax amax_id += 1 continue quant_max = init_dict["transformer.encoder.layer.{}.{}._amax".format(i, amax_name)].item() amax = abs(quant_max)#round(abs(quant_max)*factor)/factor if amax_name in int8O_gemm_input_list: int8O_gemm_input_amax_list[int8O_gemm_input_list.index(amax_name)] = amax if amax_name == "attn.query._input_quantizer": int8O_gemm_input_amax_list[int8O_gemm_input_list.index("attn.key._input_quantizer")] = amax int8O_gemm_input_amax_list[int8O_gemm_input_list.index("attn.value._input_quantizer")] = amax if amax_name in int8O_gemm_output_list: int8O_gemm_output_amax_list[int8O_gemm_output_list.index(amax_name)] = amax if amax_name in int8O_gemm_weight_list: int8O_gemm_weight_amax_list[int8O_gemm_weight_list.index(amax_name)] = amax amaxList[amax_id] = amax amax_id += 1 amaxList[amax_id] = amax/127.0 amax_id += 1 amaxList[amax_id] = amax/127.0/127.0 amax_id += 1 amaxList[amax_id] = 127.0/amax amax_id += 1 if verbose: print(i, amax_name) print('quant_max:', quant_max) print('amax:', amax) if verbose: print("done process layer_{} activation amax".format(i)) #kernel amax starts from ACTIVATION_AMAX_NUM assert amax_id == 64 amax_id = ACTIVATION_AMAX_NUM for kernel_id, kernel_name in enumerate(kernel_name_list): kernel = init_dict["transformer.encoder.layer.{}.{}.weight".format(i, kernel_name)].transpose(-1, -2).contiguous() quant_max2 = init_dict["transformer.encoder.layer.{}.{}._weight_quantizer._amax".format(i, kernel_name)] amax2 = abs(quant_max2) if (amax2.dim() == 0): quant_max_processed = torch.full((kernel.size(1),), amax2.item(), dtype=amax2.dtype, device=amax2.device) else: quant_max_processed = amax2.view(-1) kernel_processed = weight_quantize(kernel.cuda(), quant_max_processed.cuda()) init_dict["transformer.encoder.layer.{}.{}.weight".format(i, kernel_name)] = kernel_processed if kernel_name in int8O_gemm_weight_list: int8O_gemm_weight_amax_list[int8O_gemm_weight_list.index(kernel_name)] = quant_max_processed[0] for e in quant_max_processed: amaxList[amax_id] = e amax_id += 1 # if verbose: # print(i, kernel_name) # print('kernel:', kernel) # print('quant_max2:', quant_max2) # print('quant_max_processed_:', quant_max_processed) #for int8O gemm deQuant for j in range(INT8O_GEMM_NUM): amaxList[amax_id] = (int8O_gemm_input_amax_list[j]*int8O_gemm_weight_amax_list[j])/(127.0*int8O_gemm_output_amax_list[j]) amax_id += 1 #for trt fused MHA amax #### QKV_addBias_amax amaxList[amax_id] = np.maximum(np.maximum(amaxList[8],amaxList[16]), amaxList[24]) amax_id += 1 #### softmax amax amaxList[amax_id] = amaxList[32] amax_id += 1 #### bmm2 amax amaxList[amax_id] = amaxList[36] amax_id += 1 init_dict["transformer.encoder.layer.{}.amaxList".format(i)] = torch.tensor(amaxList, dtype=torch.float32) if verbose: print("done process layer_{} kernel weight".format(i)) print("Quantizing checkpoint done.") return init_dict if __name__ == '__main__': model_dict = torch.load('checkpoint/ViT-B_16_calib.pth', map_location='cpu') checkpoint_quantization(model_dict, '../../../build/lib/libth_transformer.so', verbose=True)
FasterTransformer-main
examples/pytorch/vit/checkpoint_quantization.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import argparse import datetime import numpy as np import torch import torch.backends.cudnn as cudnn import torch.distributed as dist from timm.utils import accuracy, AverageMeter from VisionTransformerINT8WeightLoader import ViTINT8WeightLoader import sys sys.path.insert(0, "./ViT-quantization/ViT-pytorch") # from config import get_config # from models import build_model from models.modeling import CONFIGS sys.path.insert(0, "./ViT-quantization") from vit_int8 import VisionTransformerINT8 import quant_utils from config import get_config from data import build_val_loader test_time = 100 warmup_time = 10 def setup(args): # Prepare model config = CONFIGS[args.model_type] print(config) num_classes = 1000 if args.dataset == "ImageNet" else 100 model = VisionTransformerINT8(config, args.img_size, zero_head=False, num_classes=num_classes) model.load_state_dict(torch.load(args.calibrated_dir)) quant_utils.configure_model(model, args, calib=False) model.to(args.device) return config, model def parse_option(): parser = argparse.ArgumentParser('ViT evaluation script', add_help=False) parser.add_argument("--model_type", choices=["ViT-B_16", "ViT-B_32", "ViT-L_16", "ViT-L_32", "ViT-H_14"], default="ViT-B_16", help="Which variant to use.") parser.add_argument("--img_size", default=384, type=int, help="Resolution size") parser.add_argument("--dataset", choices=["ImageNet"], default="ImageNet", help="Which downstream task.") parser.add_argument("--pretrained_dir", type=str, default="checkpoint/ViT-B_16.npz", help="Where to search for pretrained ViT models.") parser.add_argument("--calibrated_dir", type=str, default="checkpoint/ViT-B_16_calib.pth", help="Where to search for calibrated ViT models.") parser.add_argument("--data-path", type=str, default="/workspace/imagenet", help="Root directory for datasets.") # easy config modification parser.add_argument('--th-path', type=str, help='path to pytorch library', required=True) parser.add_argument('--batch-size', type=int, default=32, help="batch size for single GPU") parser.add_argument('--int8-mode', type=int, choices=[1,2,3], default=2, help="Which int8 mode to use, choices=[1,2,3], default=2") parser.add_argument('--fp16_opt_level', type=str, default='O2', help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument("--local_rank", type=int, default=-1, help='local rank for DistributedDataParallel') parser.add_argument("--validate", action="store_true", help='If true, validate on ImageNet, else just profile') quant_utils.add_arguments(parser) args, unparsed = parser.parse_known_args() if args.quant_mode is not None: args = quant_utils.set_args(args) quant_utils.set_default_quantizers(args) config = get_config(args) if args.quant_mode == 'ft1': args.int8_mode = 1 elif args.quant_mode == 'ft2': args.int8_mode = 2 else: raise NotImplementedError("For ViT-INT8, we only support ft1/ft2 as quant_mode") return args, config def main(args, data_config): model_cfg, model = setup(args) if args.validate: validate(args, data_config, model_cfg, model) else: validate_with_random_data(args, model_cfg, model) @torch.no_grad() def validate(args, data_config, config, model): dataset, data_loader = build_val_loader(data_config) criterion = torch.nn.CrossEntropyLoss() model.eval() batch_time = AverageMeter() loss_meter = AverageMeter() acc1_meter = AverageMeter() acc5_meter = AverageMeter() th_path = args.th_path patch_size = config.patches.size[0] num_heads = config.transformer.num_heads layer_num = config.transformer.num_layers inter_size = config.transformer.mlp_dim embed_dim = config.hidden_size max_batch = args.batch_size img_size = args.img_size int8_mode = args.int8_mode with_cls_token = config.classifier == 'token' in_chans = 3 model.half() vit_weights = ViTINT8WeightLoader(layer_num, args.img_size, patch_size, model.state_dict()) vit_weights.to_int8(args.th_path) vit_weights.to_cuda() weights = vit_weights.listed_weights() torch.classes.load_library(th_path) try: vit = torch.classes.VisionTransformerINT8.Class(weights, max_batch, img_size, patch_size, in_chans, embed_dim, num_heads, inter_size, layer_num, int8_mode, with_cls_token ) except: # legacy ths for 20.03 image vit = torch.classes.VisionTransformerINT8Class(weights, max_batch, img_size, patch_size, in_chans, embed_dim, num_heads, inter_size, layer_num, int8_mode, with_cls_token ) end = time.time() for idx, (images, target) in enumerate(data_loader): images_half = torch.tensor(images, dtype=torch.half) images_half = images_half.cuda(non_blocking=True) images = images.cuda(non_blocking=True) target = target.cuda(non_blocking=True) # compute output op_tmp = vit.forward(images_half) # op_tmp,_ = model.transformer(images_half) output = model.head(op_tmp[:, 0]) # output_th, _ = model(images_half) # diff = abs(output - output_th).cpu().numpy() # print(diff.mean(), diff.max(), diff.min()) # measure accuracy and record loss loss = criterion(output, target) acc1, acc5 = accuracy(output, target, topk=(1, 5)) loss_meter.update(loss.item(), target.size(0)) acc1_meter.update(acc1.item(), target.size(0)) acc5_meter.update(acc5.item(), target.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if idx % data_config.PRINT_FREQ == 0: memory_used = torch.cuda.max_memory_allocated() / (1024.0 * 1024.0) print( f'Test: [{idx:4}/{len(data_loader)}]\t' f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' f'Loss {loss_meter.val:.4f} ({loss_meter.avg:.4f})\t' f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t' f'Acc@5 {acc5_meter.val:.3f} ({acc5_meter.avg:.3f})\t' f'Mem {memory_used:.0f}MB') print(f' * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}') return acc1_meter.avg, acc5_meter.avg, loss_meter.avg @torch.no_grad() def run_vitnv_op(args, config, model, images): th_path = args.th_path patch_size = config.patches.size[0] num_heads = config.transformer.num_heads layer_num = config.transformer.num_layers inter_size = config.transformer.mlp_dim embed_dim = config.hidden_size max_batch = args.batch_size img_size = args.img_size int8_mode = args.int8_mode with_cls_token = config.classifier == 'token' in_chans = 3 model.half() torch.classes.load_library(th_path) vit_weights = ViTINT8WeightLoader(layer_num, args.img_size, patch_size, model.state_dict(), config.classifier) vit_weights.to_int8(args.th_path) vit_weights.to_cuda() weights = vit_weights.listed_weights() ##run pytorch op try: vit = torch.classes.VisionTransformerINT8.Class(weights, max_batch, img_size, patch_size, in_chans, embed_dim, num_heads, inter_size, layer_num, int8_mode, with_cls_token ) except: # legacy ths for 20.03 image vit = torch.classes.VisionTransformerINT8Class(weights, max_batch, img_size, patch_size, in_chans, embed_dim, num_heads, inter_size, layer_num, int8_mode, with_cls_token ) # warm up for i in range(warmup_time): op_tmp = vit.forward(images) # op_output = model.head(op_tmp[:,0]) torch.cuda.synchronize() op_begin = time.time() #_nvtx.rangePushA("op") for i in range(test_time): op_tmp = vit.forward(images) op_output = model.head(op_tmp[:,0]) #_nvtx.rangePop() torch.cuda.synchronize() op_end = time.time() op_output = op_output.cpu().numpy() print("INT8 op time : ", (op_end - op_begin)/test_time*1000.0, "ms") return op_output @torch.no_grad() def run_torch(model, images, mark): # warm up # for i in range(warmup_time): # output = model(images) # torch.cuda.synchronize() # torch_start = time.time() #_nvtx.rangePushA("torch") # for i in range(test_time): torch_output = model(images) #_nvtx.rangePop() # torch.cuda.synchronize() # torch_end = time.time() torch_output = torch_output[0].cpu().numpy() # print(mark + " time : ", (torch_end - torch_start)/test_time*1000.0, "ms") return torch_output @torch.no_grad() def validate_with_random_data(args, model_cfg, model): model.eval() max_batch = args.batch_size img_size = args.img_size in_chans = 3 image = np.random.rand(1, in_chans, img_size, img_size) images = np.repeat(image, max_batch, axis=0) images_half = torch.tensor(images, dtype=torch.half).cuda(non_blocking=True) ##run original swin-transformer # traced_module_float = torch.jit.trace(model, images_float) # FP32_torch_traced_output = run_torch(traced_module_float, images_float, "FP32 torch trace") model.half() INT8_torch_output = run_torch(model, images_half, "INT8 torch") print(INT8_torch_output.shape) # run pytorch op INT8_op_output = run_vitnv_op(args, model_cfg, model, images_half) print(INT8_op_output.shape) # diff = abs(FP16_torch_traced_output - FP16_op_output) diff = abs(INT8_torch_output - INT8_op_output) print("INT8_torch_output vs INT8_op_output , avg diff : ", diff.mean((1)), "max diff : ", diff.max((1))) if __name__ == '__main__': args, data_config = parse_option() seed = args.seed #+ int(time.time()) torch.manual_seed(seed) np.random.seed(seed) cudnn.benchmark = True # Setup CUDA, GPU & distributed training if args.local_rank == -1: device = torch.device("cuda" if torch.cuda.is_available() else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl', timeout=datetime.timedelta(minutes=60)) args.n_gpu = 1 args.device = device main(args, data_config)
FasterTransformer-main
examples/pytorch/vit/infer_visiontransformer_int8_op.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import argparse import datetime import numpy as np import torch import torch.backends.cudnn as cudnn import torch.distributed as dist import sys sys.path.insert(0, "./ViT-quantization/ViT-pytorch") # from config import get_config # from models import build_model from models.modeling import VisionTransformer, CONFIGS from VisionTransformerWeightLoader import ViTWeightLoader #from torch._C import _nvtx test_time = 100 warmup_time = 10 def setup(args): # Prepare model config = CONFIGS[args.model_type] print(config) model = VisionTransformer(config, args.img_size, zero_head=False, num_classes=1000) model.load_from(np.load(args.pretrained_dir)) model.to(args.device) return config, model def parse_option(): parser = argparse.ArgumentParser('ViT evaluation script', add_help=False) parser.add_argument("--model_type", choices=["ViT-B_16", "ViT-B_32", "ViT-L_16", "ViT-L_32", "ViT-H_14"], default="ViT-B_16", help="Which variant to use.") parser.add_argument("--img_size", default=384, type=int, help="Resolution size") parser.add_argument("--pretrained_dir", type=str, default="checkpoint/ViT-B_16.npz", help="Where to search for pretrained ViT models.") # easy config modification parser.add_argument('--th-path', type=str, help='path to pytorch library', required=True) parser.add_argument('--batch-size', type=int, default=32, help="batch size for single GPU") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") args, unparsed = parser.parse_known_args() return args def main(args): config, model = setup(args) validate_with_random_data(args, config, model) @torch.no_grad() def run_vitnv_op(args, config, model, images, use_fp16): th_path = args.th_path patch_size = config.patches.size[0] num_heads = config.transformer.num_heads layer_num = config.transformer.num_layers inter_size = config.transformer.mlp_dim embed_dim = config.hidden_size max_batch = args.batch_size img_size = args.img_size with_cls_token = int(config.classifier == 'token') in_chans = 3 torch.classes.load_library(th_path) vit_weights = ViTWeightLoader(layer_num, args.img_size, patch_size, args.pretrained_dir, config.classifier) if use_fp16: vit_weights.to_half() model.half() vit_weights.to_cuda() ##run pytorch op try: vit = torch.classes.VisionTransformer.Class(vit_weights.weights, max_batch, img_size, patch_size, in_chans, embed_dim, num_heads, inter_size, layer_num, with_cls_token ) except: # legacy ths for 20.03 image vit = torch.classes.VisionTransformerClass(vit_weights.weights, max_batch, img_size, patch_size, in_chans, embed_dim, num_heads, inter_size, layer_num, with_cls_token ) # warm up for i in range(warmup_time): op_tmp = vit.forward(images) op_output = model.head(op_tmp[:,0]) torch.cuda.synchronize() op_begin = time.time() #_nvtx.rangePushA("op") for i in range(test_time): op_tmp = vit.forward(images) op_output = model.head(op_tmp[:,0]) #_nvtx.rangePop() torch.cuda.synchronize() op_end = time.time() op_output = op_output.cpu().numpy() if use_fp16: print("FP16 op time : ", (op_end - op_begin)/test_time*1000.0, "ms") else: print("FP32 op time : ", (op_end - op_begin)/test_time*1000.0, "ms") return op_output @torch.no_grad() def run_torch(model, images, mark): # warm up for i in range(warmup_time): output = model(images) torch.cuda.synchronize() torch_start = time.time() #_nvtx.rangePushA("torch") for i in range(test_time): torch_output = model(images) #_nvtx.rangePop() torch.cuda.synchronize() torch_end = time.time() torch_output = torch_output[0].cpu().numpy() print(mark + " time : ", (torch_end - torch_start)/test_time*1000.0, "ms") return torch_output @torch.no_grad() def validate_with_random_data(args, config, model): model.eval() max_batch = args.batch_size img_size = args.img_size in_chans = 3 image = np.random.rand(1, in_chans, img_size, img_size) images = np.repeat(image, max_batch, axis=0) images_half = torch.tensor(images, dtype=torch.half) images_float = torch.tensor(images, dtype=torch.float) images_half = images_half.cuda(non_blocking=True) images_float = images_float.cuda(non_blocking=True) # run pytorch op FP32_op_output = run_vitnv_op(args, config, model, images_float, False) # traced_module_float = torch.jit.trace(model, images_float) # FP32_torch_traced_output = run_torch(traced_module_float, images_float, "FP32 torch trace") FP32_torch_output = run_torch(model, images_float, "FP32 torch") FP16_op_output = run_vitnv_op(args, config, model, images_half, True) # traced_module_half = torch.jit.trace(model, images_half) # FP16_torch_traced_output = run_torch(traced_module_half, images_half, "FP16 torch trace") FP16_torch_output = run_torch(model, images_half, "FP16 torch") # diff = abs(FP32_torch_traced_output - FP32_op_output) diff = abs(FP32_torch_output - FP32_op_output) print("FP32_torch_traced_output vs FP32_op_output , avg diff : ", diff.mean(), "max diff : ", diff.max()) assert diff.mean() < 0.004, "[ERROR] VIT OP TEST FAIL !" # diff = abs(FP16_torch_traced_output - FP16_op_output) diff = abs(FP16_torch_output - FP16_op_output) print("FP16_torch_traced_output vs FP16_op_output , avg diff : ", diff.mean(), "max diff : ", diff.max()) assert diff.mean() < 0.005, "[ERROR] VIT OP TEST FAIL !" print("[INFO] VIT OP TEST PASS !") if __name__ == '__main__': args = parse_option() # seed = args.seed + int(time.time()) seed = args.seed torch.manual_seed(seed) np.random.seed(seed) cudnn.benchmark = True device = torch.device("cuda" if torch.cuda.is_available() else "cpu") args.n_gpu = torch.cuda.device_count() args.device = device main(args)
FasterTransformer-main
examples/pytorch/vit/infer_visiontransformer_op.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch as th import math import numpy as np import os from scipy import ndimage L_ROOT = 'Transformer/encoderblock_{}' ATT_Q = 'MultiHeadDotProductAttention_1/query' ATT_K = 'MultiHeadDotProductAttention_1/key' ATT_V = 'MultiHeadDotProductAttention_1/value' ATT_OUT = 'MultiHeadDotProductAttention_1/out' ATT_NORM = 'LayerNorm_0' FFN_NORM = 'LayerNorm_2' FFN_IN = 'MlpBlock_3/Dense_0' FFN_OUT = 'MlpBlock_3/Dense_1' def np2th(weights, is_conv=False): if is_conv: """ convert HWIO to OIHW.""" weights = weights.transpose([3, 2, 0, 1]) return th.from_numpy(weights).contiguous() class ViTWeightLoader(object): def __init__(self, layer_num, img_size, patch_size, weight_path=None, classifier='token'): """weights need be a state_dict of swin transformer model""" layer_weight_names = [ os.path.join(L_ROOT, ATT_NORM, 'scale' ), os.path.join(L_ROOT, ATT_NORM, 'bias' ), os.path.join(L_ROOT, ATT_Q, 'kernel' ), os.path.join(L_ROOT, ATT_Q, 'bias' ), os.path.join(L_ROOT, ATT_K, 'kernel' ), os.path.join(L_ROOT, ATT_K, 'bias' ), os.path.join(L_ROOT, ATT_V, 'kernel' ), os.path.join(L_ROOT, ATT_V, 'bias' ), os.path.join(L_ROOT, ATT_OUT, 'kernel' ), os.path.join(L_ROOT, ATT_OUT, 'bias' ), os.path.join(L_ROOT, FFN_NORM, 'scale' ), os.path.join(L_ROOT, FFN_NORM, 'bias' ), os.path.join(L_ROOT, FFN_IN, 'kernel' ), os.path.join(L_ROOT, FFN_IN, 'bias' ), os.path.join(L_ROOT, FFN_OUT, 'kernel' ), os.path.join(L_ROOT, FFN_OUT, 'bias' ) ] pre_layer_weight_names = [ 'embedding/kernel', 'embedding/bias', 'cls', 'Transformer/posembed_input/pos_embedding' ] post_layer_weight_names = [ 'Transformer/encoder_norm/scale', 'Transformer/encoder_norm/bias' ] self.layer_num = layer_num self.weights = [] if weight_path is None: print("[ERROR][SwinTransformerWeights::__init__] weights should not be empty!") exit(-1) else: self._generated_weights = False weight_dict = self.load_weights(weight_path) for name in pre_layer_weight_names: if name not in weight_dict.files: print("Unsupported weight file: Missing weights %s" % name) is_conv = name == 'embedding/kernel' if classifier != 'token' and name == 'cls': continue th_weight = np2th(weight_dict[name], is_conv) if name.split('/')[-1] == "pos_embedding": posemb_new_size = pow(img_size//patch_size, 2) + 1 if th_weight.size(1) != posemb_new_size: print("load_pretrained: resized variant: %s to %s" % (th_weight.size(1), posemb_new_size)) ntok_new = posemb_new_size if classifier == "token": posemb_tok, posemb_grid = th_weight[:, :1], th_weight[0, 1:] ntok_new -= 1 else: posemb_tok, posemb_grid = th_weight[:, :0], th_weight[0] gs_old = int(np.sqrt(len(posemb_grid))) gs_new = int(np.sqrt(ntok_new)) print('load_pretrained: grid-size from %s to %s' % (gs_old, gs_new)) posemb_grid = posemb_grid.reshape(gs_old, gs_old, -1) zoom = (gs_new / gs_old, gs_new / gs_old, 1) posemb_grid = ndimage.zoom(posemb_grid, zoom, order=1) posemb_grid = posemb_grid.reshape(1, gs_new * gs_new, -1) posemb = np.concatenate([posemb_tok, posemb_grid], axis=1) th_weight = np2th(posemb) self.weights.append(th_weight) #loop over layers for layer_idx in range(layer_num): for name in layer_weight_names: w_name = name.format(layer_idx) if w_name not in weight_dict.files: print("Unsupported weight file: Missing weights %s" % w_name) th_weight = np2th(weight_dict[w_name]) self.weights.append(th_weight) for name in post_layer_weight_names: if name not in weight_dict.files: print("Unsupported weight file: Missing weights %s" % name) th_weight = np2th(weight_dict[name]) self.weights.append(th_weight) def load_weights(self, weight_path:str): suffix = weight_path.split('.')[-1] if suffix != 'npz': print("Unsupported weight file: Unrecognized format %s " % suffix) exit(-1) return np.load(weight_path) def to_cuda(self): for idx, v in enumerate(self.weights): self.weights[idx] = v.cuda() def to_half(self): for idx, v in enumerate(self.weights): self.weights[idx] = v.half()
FasterTransformer-main
examples/pytorch/vit/VisionTransformerWeightLoader.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch as th import math import numpy as np import os from scipy import ndimage from checkpoint_quantization import checkpoint_quantization L_ROOT = 'Transformer/encoderblock_{}' ATT_Q = 'MultiHeadDotProductAttention_1/query' ATT_K = 'MultiHeadDotProductAttention_1/key' ATT_V = 'MultiHeadDotProductAttention_1/value' ATT_OUT = 'MultiHeadDotProductAttention_1/out' ATT_NORM = 'LayerNorm_0' FFN_NORM = 'LayerNorm_2' FFN_IN = 'MlpBlock_3/Dense_0' FFN_OUT = 'MlpBlock_3/Dense_1' def np2th(weights, is_conv=False): if is_conv: """ convert HWIO to OIHW.""" weights = weights.transpose([3, 2, 0, 1]) return th.from_numpy(weights).contiguous() class ViTINT8WeightLoader(object): def __init__(self, layer_num, img_size, patch_size, weight_dict=None, classifier='token'): """weights need be a pytorch state_dict of swin transformer model""" pre_layer_weight_names = [ 'transformer.embeddings.patch_embeddings.weight', 'transformer.embeddings.patch_embeddings.bias', 'transformer.embeddings.cls_token', 'transformer.embeddings.position_embeddings' ] self.layer_num = layer_num self.weights = [] self.int8 = False if weight_dict is None: print("[ERROR][SwinTransformerWeights::__init__] weights should not be empty!") exit(-1) self._generated_weights = False for name in pre_layer_weight_names: if name not in weight_dict.keys(): print("Unsupported weight file: Missing weights %s" % name) th_weight = weight_dict[name] if name.split('.')[-1] == "pos_embedding": posemb_new_size = pow(img_size//patch_size, 2) + 1 if th_weight.size(1) != posemb_new_size: print("load_pretrained: resized variant: %s to %s" % (th_weight.size(1), posemb_new_size)) ntok_new = posemb_new_size if classifier == "token": posemb_tok, posemb_grid = th_weight[:, :1], th_weight[0, 1:] ntok_new -= 1 else: posemb_tok, posemb_grid = th_weight[:, :0], th_weight[0] gs_old = int(np.sqrt(len(posemb_grid))) gs_new = int(np.sqrt(ntok_new)) print('load_pretrained: grid-size from %s to %s' % (gs_old, gs_new)) posemb_grid = posemb_grid.reshape(gs_old, gs_old, -1) zoom = (gs_new / gs_old, gs_new / gs_old, 1) posemb_grid = ndimage.zoom(posemb_grid, zoom, order=1) posemb_grid = posemb_grid.reshape(1, gs_new * gs_new, -1) posemb = np.concatenate([posemb_tok, posemb_grid], axis=1) th_weight = np2th(posemb) weight_dict[name] = th_weight self.weights = weight_dict # def load_weights(self, weight_path:str): # suffix = weight_path.split('.')[-1] # if suffix != 'pth': # print("Unsupported weight file: Unrecognized format %s " % suffix) # exit(-1) # return th.load(weight_path) def to_cuda(self): if not self.int8: for k, v in self.weights.items(): self.weights[k] = v.cuda() else: h_scale_list = {} for k, v in self.weights.items(): if "amaxList" in k: k_h = k.replace("amaxList", "h_amaxList") h_scale_list[k_h] = v self.weights[k] = v.cuda() for k, v in h_scale_list.items(): self.weights[k] = v def to_half(self): for k, v in self.weights.items(): self.weights[k] = v.half() def listed_weights(self): ret = [] for k, v in self.weights.items(): if k.split('.')[-1] == '_amax' or k.endswith('amaxList'): continue if k.split('.')[0] == 'head': continue ret.append(v) for i in range(self.layer_num): name = 'transformer.encoder.layer.{}.amaxList'.format(i) ret.append(self.weights[name]) name = 'transformer.encoder.layer.{}.h_amaxList'.format(i) ret.append(self.weights[name]) return ret def listed_weight_to_dict(self): ret = {} for k, v in self.weights.items(): if k.split('.')[-1] == '_amax' or k.endswith('amaxList'): continue if k.split('.')[0] == 'head': continue ret[k] = v for i in range(self.layer_num): name = 'transformer.encoder.layer.{}.amaxList'.format(i) ret[name] = self.weights[name] name = 'transformer.encoder.layer.{}.h_amaxList'.format(i) ret[name] = self.weights[name] return ret def to_int8(self, ths_path='../../../lib/libth_transformer.so'): if 'transformer.encoder.layer.0.attn.query._input_quantizer._amax' not in self.weights: raise RuntimeError("There is no quantization node in the checkpoint, cannot be quantized to int8.") if self.int8: return self.int8 = True for k, v in self.weights.items(): if k.endswith('bias') or k.endswith('norm.weight') or 'embeddings' in k: self.weights[k] = v.half() elif k.endswith('weight'): self.weights[k] = v.float().cuda() else: self.weights[k] = v.float().cpu() self.weights = checkpoint_quantization(self.weights, ths_path, verbose=False)
FasterTransformer-main
examples/pytorch/vit/VisionTransformerINT8WeightLoader.py
# -------------------------------------------------------- # Swin Transformer # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ze Liu # -------------------------------------------------------- # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import yaml from yacs.config import CfgNode as CN _C = CN() # Base config files _C.BASE = [''] # ----------------------------------------------------------------------------- # Data settings # ----------------------------------------------------------------------------- _C.DATA = CN() # Batch size for a single GPU, could be overwritten by command line argument _C.DATA.BATCH_SIZE = 128 # Path to dataset, could be overwritten by command line argument _C.DATA.DATA_PATH = '' # Dataset name _C.DATA.DATASET = 'imagenet' # Input image size _C.DATA.IMG_SIZE = 224 # Interpolation to resize image (random, bilinear, bicubic) _C.DATA.INTERPOLATION = 'bilinear' # Use zipped dataset instead of folder dataset # could be overwritten by command line argument _C.DATA.ZIP_MODE = False # Cache Data in Memory, could be overwritten by command line argument _C.DATA.CACHE_MODE = 'part' # Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU. _C.DATA.PIN_MEMORY = True # Number of data loading threads _C.DATA.NUM_WORKERS = 8 # ----------------------------------------------------------------------------- # Model settings # ----------------------------------------------------------------------------- _C.MODEL = CN() # Pretrained weight from checkpoint, could be imagenet22k pretrained weight # could be overwritten by command line argument _C.MODEL.PRETRAINED = '' # Checkpoint to resume, could be overwritten by command line argument _C.MODEL.RESUME = '' # Number of classes, overwritten in data preparation _C.MODEL.NUM_CLASSES = 1000 # Dropout rate _C.MODEL.DROP_RATE = 0.0 # Drop path rate _C.MODEL.DROP_PATH_RATE = 0.1 # Label Smoothing _C.MODEL.LABEL_SMOOTHING = 0.1 # ----------------------------------------------------------------------------- # Training settings # ----------------------------------------------------------------------------- _C.TRAIN = CN() _C.TRAIN.START_EPOCH = 0 _C.TRAIN.EPOCHS = 300 _C.TRAIN.WARMUP_EPOCHS = 20 _C.TRAIN.WEIGHT_DECAY = 0.05 _C.TRAIN.BASE_LR = 5e-4 _C.TRAIN.WARMUP_LR = 5e-7 _C.TRAIN.MIN_LR = 5e-6 # Clip gradient norm _C.TRAIN.CLIP_GRAD = 5.0 # Auto resume from latest checkpoint _C.TRAIN.AUTO_RESUME = True # Gradient accumulation steps # could be overwritten by command line argument _C.TRAIN.ACCUMULATION_STEPS = 0 # Whether to use gradient checkpointing to save memory # could be overwritten by command line argument _C.TRAIN.USE_CHECKPOINT = False # LR scheduler _C.TRAIN.LR_SCHEDULER = CN() _C.TRAIN.LR_SCHEDULER.NAME = 'cosine' # Epoch interval to decay LR, used in StepLRScheduler _C.TRAIN.LR_SCHEDULER.DECAY_EPOCHS = 30 # LR decay rate, used in StepLRScheduler _C.TRAIN.LR_SCHEDULER.DECAY_RATE = 0.1 # Optimizer _C.TRAIN.OPTIMIZER = CN() _C.TRAIN.OPTIMIZER.NAME = 'adamw' # Optimizer Epsilon _C.TRAIN.OPTIMIZER.EPS = 1e-8 # Optimizer Betas _C.TRAIN.OPTIMIZER.BETAS = (0.9, 0.999) # SGD momentum _C.TRAIN.OPTIMIZER.MOMENTUM = 0.9 # ----------------------------------------------------------------------------- # Augmentation settings # ----------------------------------------------------------------------------- _C.AUG = CN() # Color jitter factor _C.AUG.COLOR_JITTER = 0.4 # Use AutoAugment policy. "v0" or "original" _C.AUG.AUTO_AUGMENT = 'rand-m9-mstd0.5-inc1' # Random erase prob _C.AUG.REPROB = 0.25 # Random erase mode _C.AUG.REMODE = 'pixel' # Random erase count _C.AUG.RECOUNT = 1 # Mixup alpha, mixup enabled if > 0 _C.AUG.MIXUP = 0.8 # Cutmix alpha, cutmix enabled if > 0 _C.AUG.CUTMIX = 1.0 # Cutmix min/max ratio, overrides alpha and enables cutmix if set _C.AUG.CUTMIX_MINMAX = None # Probability of performing mixup or cutmix when either/both is enabled _C.AUG.MIXUP_PROB = 1.0 # Probability of switching to cutmix when both mixup and cutmix enabled _C.AUG.MIXUP_SWITCH_PROB = 0.5 # How to apply mixup/cutmix params. Per "batch", "pair", or "elem" _C.AUG.MIXUP_MODE = 'batch' # ----------------------------------------------------------------------------- # Testing settings # ----------------------------------------------------------------------------- _C.TEST = CN() # Whether to use center crop when testing _C.TEST.CROP = False # Whether to use SequentialSampler as validation sampler _C.TEST.SEQUENTIAL = True # ----------------------------------------------------------------------------- # Misc # ----------------------------------------------------------------------------- # Mixed precision opt level, if O0, no amp is used ('O0', 'O1', 'O2') # overwritten by command line argument _C.AMP_OPT_LEVEL = '' # Path to output folder, overwritten by command line argument _C.OUTPUT = '' # Tag of experiment, overwritten by command line argument _C.TAG = 'default' # Frequency to save checkpoint _C.SAVE_FREQ = 1 # Frequency to logging info _C.PRINT_FREQ = 10 # Fixed random seed _C.SEED = 0 # Perform evaluation only, overwritten by command line argument _C.EVAL_MODE = False # Test throughput only, overwritten by command line argument _C.THROUGHPUT_MODE = False # local rank for DistributedDataParallel, given by command line argument _C.LOCAL_RANK = 0 def _update_config_from_file(config, cfg_file): config.defrost() with open(cfg_file, 'r') as f: yaml_cfg = yaml.load(f, Loader=yaml.FullLoader) for cfg in yaml_cfg.setdefault('BASE', ['']): if cfg: _update_config_from_file( config, os.path.join(os.path.dirname(cfg_file), cfg) ) print('=> merge config from {}'.format(cfg_file)) config.merge_from_file(cfg_file) config.freeze() def update_config(config, args): config.defrost() # merge from specific arguments if args.batch_size: config.DATA.BATCH_SIZE = args.batch_size if args.data_path: config.DATA.DATA_PATH = args.data_path if args.pretrained_dir: config.MODEL.PRETRAINED = args.pretrained_dir if args.img_size: config.DATA.IMG_SIZE = args.img_size # if args.resume: # config.MODEL.RESUME = args.resume # if args.accumulation_steps: # config.TRAIN.ACCUMULATION_STEPS = args.accumulation_steps # if args.use_checkpoint: # config.TRAIN.USE_CHECKPOINT = True # if args.amp_opt_level: # config.AMP_OPT_LEVEL = args.amp_opt_level # if args.output: # config.OUTPUT = args.output # set local rank for distributed training config.LOCAL_RANK = args.local_rank # output folder # config.OUTPUT = os.path.join(config.OUTPUT, config.MODEL.NAME, config.TAG) config.freeze() def get_config(args): """Get a yacs CfgNode object with default values.""" # Return a clone so that the defaults will not be altered # This is for the "local variable" use pattern config = _C.clone() update_config(config, args) return config
FasterTransformer-main
examples/pytorch/vit/ViT-quantization/config.py
# coding=utf-8 # Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function from email.policy import strict import logging import argparse import os import random import numpy as np from datetime import timedelta import torch import torch.distributed as dist import tensorrt as trt import ctypes from tqdm import tqdm from apex import amp from apex.parallel import DistributedDataParallel as DDP import sys sys.path.insert(0, "./ViT-pytorch") from models.modeling import CONFIGS from utils.scheduler import WarmupLinearSchedule, WarmupCosineSchedule from utils.dist_util import get_world_size from data import build_loader from config import get_config import quant_utils from vit_int8 import VisionTransformerINT8 logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count class Knowledge_Distillation_Loss(torch.nn.Module): def __init__(self, scale, T = 3): super(Knowledge_Distillation_Loss, self).__init__() self.KLdiv = torch.nn.KLDivLoss() self.T = T self.scale = scale def get_knowledge_distillation_loss(self, output_student, output_teacher): loss_kl = self.KLdiv(torch.nn.functional.log_softmax(output_student / self.T, dim=1), torch.nn.functional.softmax(output_teacher / self.T, dim=1)) loss = loss_kl return self.scale * loss def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.reshape(1, -1).expand_as(pred)) return [correct[:k].reshape(-1).float().sum(0) * 100. / batch_size for k in topk] def simple_accuracy(preds, labels): return (preds == labels).mean() def save_model(args, model): model_to_save = model.module if hasattr(model, 'module') else model model_checkpoint = os.path.join(args.output_dir, "%s_checkpoint.bin" % args.name) torch.save(model_to_save.state_dict(), model_checkpoint) logger.info("Saved model checkpoint to %s", model_checkpoint) def setup(args): # Prepare model config = CONFIGS[args.model_type] num_classes = 10 if args.dataset == "cifar10" else 1000 model = VisionTransformerINT8(config, args.img_size, zero_head=False, num_classes=num_classes) model.load_from(np.load(args.pretrained_dir)) model.to(args.device) num_params = count_parameters(model) logger.info("{}".format(config)) logger.info("Training parameters %s", args) logger.info("Total Parameter: \t%2.1fM" % num_params) print(num_params) return args, model def count_parameters(model): params = sum(p.numel() for p in model.parameters() if p.requires_grad) return params/1000000 def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) @torch.no_grad() def valid(args, config, model, test_loader): # Validation! eval_losses = AverageMeter() acc1_meter = AverageMeter() acc5_meter = AverageMeter() logger.info("***** Running Validation *****") logger.info(" Num steps = %d", len(test_loader)) logger.info(" Batch size = %d", args.eval_batch_size) model.eval() all_preds, all_label = [], [] loss_fct = torch.nn.CrossEntropyLoss() for step, batch in enumerate(test_loader): batch = tuple(t.to(args.device) for t in batch) x, y = batch logits, _ = model(x) eval_loss = loss_fct(logits, y) acc1, acc5 = accuracy(logits, y, topk=(1, 5)) eval_losses.update(eval_loss.item(), y.size(0)) acc1_meter.update(acc1.item(), y.size(0)) acc5_meter.update(acc5.item(), y.size(0)) if step % config.PRINT_FREQ == 0: logger.info( f'Test: [{step}/{len(test_loader)}]\t' f'Loss {eval_losses.val:.4f} ({eval_losses.avg:.4f})\t' f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t' f'Acc@5 {acc5_meter.val:.3f} ({acc5_meter.avg:.3f})') logger.info(f' * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}') return acc1_meter.avg def calib(args, config, model): """ Calibrate the model """ if args.local_rank in [-1, 0]: os.makedirs(args.output_dir, exist_ok=True) dataset_train, dataset_val, train_loader, test_loader = build_loader(config, args) # Calibration quant_utils.configure_model(model, args, calib=True) model.eval() quant_utils.enable_calibration(model) # Run forward passes on a sample of the training set for step, (samples, targets) in enumerate(tqdm(train_loader, desc='Calibration', total=args.num_calib_batch)): if step > args.num_calib_batch: break samples = samples.to(args.device) outputs = model(samples) quant_utils.finish_calibration(model, args) # model.load_state_dict(torch.load('checkpoint/{}_{}_{}.pth'.format(args.model_type, args.quant_mode, args.percentile))) quant_utils.configure_model(model, args, calib=False) if args.local_rank in [-1, 0]: accuracy = valid(args, config, model, test_loader) logger.info("Test Accuracy: \t%f" %accuracy) output_model_path = os.path.join(args.calib_output_path, '{}_calib.pth'.format(args.model_type)) if not os.path.exists(args.calib_output_path): os.mkdir(args.calib_output_path) torch.save(model.state_dict(), output_model_path) logger.info(f'Model is saved to {output_model_path}') def validate_trt(args, config): num_classes = 1000 model_config = CONFIGS[args.model_type] model = VisionTransformerINT8(model_config, args.img_size, zero_head=False, num_classes=num_classes) model_ckpt = torch.load(args.pretrained_dir, map_location="cpu") model.load_state_dict(model_ckpt["model"] if "model" in model_ckpt else model_ckpt, strict=False) model.cuda() model.eval() quant_utils.configure_model(model, args, calib=False) dataset_train, dataset_val, train_loader, test_loader = build_loader(config, args) # Validation! eval_losses = AverageMeter() logger.info("***** Running Validation *****") logger.info(" Num steps = %d", len(test_loader)) logger.info(" Batch size = %d", args.eval_batch_size) # _, test_loader = get_loader(args) model.eval() all_preds, all_label = [], [] epoch_iterator = tqdm(test_loader, desc="Validating... (loss=X.X)", bar_format="{l_bar}{r_bar}", dynamic_ncols=True, disable=args.local_rank not in [-1, 0]) loss_fct = torch.nn.CrossEntropyLoss() print('Eval batchsize', args.eval_batch_size) # Import necessary plugins for BERT TensorRT plugin_path = "/workspace/FasterTransformer/build/lib/libvit_plugin.so" # handle = ctypes.CDLL(plugin_path, mode=ctypes.RTLD_GLOBAL) trtlogger = trt.Logger(trt.Logger.ERROR) trt.init_libnvinfer_plugins(trtlogger, '') ctypes.cdll.LoadLibrary(plugin_path) # if not handle: # raise RuntimeError("Fail to load plugin library: %s" % plugin_path) with open(args.engine, 'rb') as f, trt.Runtime(trt.Logger(trt.Logger.INFO)) as runtime,\ runtime.deserialize_cuda_engine(f.read()) as engine, engine.create_execution_context() as context: if engine == None: print('engine is None') context.active_optimization_profile = 0 stream = 0 #torch.cuda.Stream() context.set_binding_shape(0, (args.eval_batch_size, 3, args.img_size, args.img_size)) output_shape = tuple(context.get_binding_shape(1)) print(output_shape) d_output = torch.empty(output_shape, dtype=torch.float32).cuda() for idx, (images, target) in enumerate(epoch_iterator): images_half = torch.tensor(images, dtype=torch.half) images_half = images_half.cuda(non_blocking=True) images = images.cuda(non_blocking=True) target = target.cuda(non_blocking=True) # print(images.shape) context.execute_async_v2([images_half.data_ptr()] + [d_output.data_ptr()], stream) torch.cuda.synchronize() # torch_embed = model.transformer(images) # torch.save(images_half, 'images_half.pt') # torch.save(d_output, 'd_output2.pt') # torch.save(torch_embed, 'torch_embed.pt') # exit(0) with torch.no_grad(): logits = model.head(d_output.float()[:, 0]) # torch_pred, _ = model(images) # if step % 10 == 0: # diff = abs(torch_pred - logits) # print(diff.shape, diff.mean(1)) eval_loss = loss_fct(logits, target) eval_losses.update(eval_loss.item()) preds = torch.argmax(logits, dim=-1) if len(all_preds) == 0: all_preds.append(preds.detach().cpu().numpy()) all_label.append(target.detach().cpu().numpy()) else: all_preds[0] = np.append( all_preds[0], preds.detach().cpu().numpy(), axis=0 ) all_label[0] = np.append( all_label[0], target.detach().cpu().numpy(), axis=0 ) epoch_iterator.set_description("Validating... (loss=%2.5f)" % eval_losses.val) all_preds, all_label = all_preds[0], all_label[0] accuracy = simple_accuracy(all_preds, all_label) logger.info("\n") logger.info("Validation Results") logger.info("Valid Loss: %2.5f" % eval_losses.avg) logger.info("Valid Accuracy: %2.5f" % accuracy) return accuracy def train(args, config): num_classes = 1000 model_config = CONFIGS[args.model_type] model = VisionTransformerINT8(model_config, args.img_size, zero_head=False, num_classes=num_classes) model_ckpt = torch.load(args.pretrained_dir, map_location="cpu") model.load_state_dict(model_ckpt["model"] if "model" in model_ckpt else model_ckpt, strict=False) model.cuda() model.train() teacher = None dis_loss = None if args.distill: teacher = VisionTransformerINT8(model_config, args.img_size, zero_head=False, num_classes=num_classes) teacher.load_from(np.load(args.teacher)) dis_loss = Knowledge_Distillation_Loss(scale=args.distillation_loss_scale).cuda() teacher.cuda() teacher.eval() quant_utils.set_quantizer_by_name(teacher, [''], _disabled=True) """ Train the model """ if args.local_rank in [-1, 0]: os.makedirs(args.output_dir, exist_ok=True) args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps # Prepare dataset # train_loader, test_loader = get_loader(args) dataset_train, dataset_val, train_loader, test_loader = build_loader(config, args) # Prepare optimizer and scheduler optimizer = torch.optim.SGD(model.parameters(), lr=args.qat_lr, momentum=0.9, weight_decay=args.weight_decay) print('args.qat_lr: %.6f' % (args.qat_lr)) print('optimizer.lr: %.6f' % optimizer.state_dict()['param_groups'][0]['lr']) t_total = args.num_steps # if args.decay_type == "cosine": # scheduler = WarmupCosineSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total) # else: # scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total) print('查看optimizer.param_groups结构:') i_list=[i for i in optimizer.param_groups[0].keys()] print(i_list) if args.fp16: model, optimizer = amp.initialize(models=model, optimizers=optimizer, opt_level=args.fp16_opt_level) amp._amp_state.loss_scalers[0]._loss_scale = 2**20 # Distributed training if args.local_rank != -1: model = DDP(model, message_size=250000000, gradient_predivide_factor=get_world_size()) # Train! logger.info("***** Running training *****") logger.info(" Total optimization epochs = %d", args.num_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.train_batch_size) logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * ( torch.distributed.get_world_size() if args.local_rank != -1 else 1)) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) model.zero_grad() set_seed(args) # Added here for reproducibility (even between python 2 and 3) losses = AverageMeter() global_step, best_acc = 0, 0 quant_utils.configure_model(model, args, calib=False) for epoch_i in range(args.num_epochs): model.train() epoch_iterator = tqdm(train_loader, desc="Training (X / X Steps) (loss=X.X)", bar_format="{l_bar}{r_bar}", dynamic_ncols=True, disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): batch = tuple(t.to(args.device) for t in batch) x, y = batch outputs, loss = model(x, y) if teacher: with torch.no_grad(): teacher_outputs, _ = teacher(x) loss_t = dis_loss.get_knowledge_distillation_loss(outputs, teacher_outputs) loss = loss + loss_t if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() if (step + 1) % args.gradient_accumulation_steps == 0: losses.update(loss.item()*args.gradient_accumulation_steps) if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) # scheduler.step() optimizer.step() lr = optimizer.param_groups[0]['lr'] optimizer.zero_grad() global_step += 1 epoch_iterator.set_description( "EPOCH [%d/%d] (%d / %d Steps) (loss=%2.5f) (lr=%.7f)" % (epoch_i, args.num_epochs, global_step, len(epoch_iterator), losses.val, lr) ) if args.local_rank in [-1, 0]: accuracy = valid(args, config, model, test_loader) if best_acc < accuracy: save_model(args, model) best_acc = accuracy model.train() # if global_step % t_total == 0: # break losses.reset() # if global_step % t_total == 0: # break logger.info("Best Accuracy: \t%f" % best_acc) logger.info("End Training!") def parse_option(): parser = argparse.ArgumentParser() # Required parameters # easy config modification parser.add_argument('--batch-size', type=int, help="batch size for single GPU") parser.add_argument('--data-path', type=str, help='path to dataset') parser.add_argument('--pretrained', help='pretrained weight from checkpoint, could be imagenet22k pretrained weight') parser.add_argument('--resume', help='resume from checkpoint') parser.add_argument('--accumulation-steps', type=int, help="gradient accumulation steps") parser.add_argument('--use-checkpoint', action='store_true', help="whether to use gradient checkpointing to save memory") parser.add_argument('--amp-opt-level', type=str, default='O1', choices=['O0', 'O1', 'O2'], help='mixed precision opt level, if O0, no amp is used') parser.add_argument('--output', default='output', type=str, metavar='PATH', help='root of output folder, the full path is <output>/<model_name>/<tag> (default: output)') parser.add_argument('--tag', help='tag of experiment') parser.add_argument('--eval', action='store_true', help='Perform evaluation only') parser.add_argument('--calib', action='store_true', help='Perform calibration only') parser.add_argument('--train', action='store_true', help='Perform training only') parser.add_argument('--throughput', action='store_true', help='Test throughput only') parser.add_argument('--num-calib-batch', type=int, default=10, help='Number of batches for calibration. 0 will disable calibration.') parser.add_argument('--calib-batchsz', type=int, default=8, help='Batch size when doing calibration') parser.add_argument('--calib-output-path', type=str, default='calib-checkpoint', help='Output directory to save calibrated model') parser.add_argument("--num-epochs", type=int, default=10, help="Number of epochs to run QAT fintuning.") parser.add_argument("--qat-lr", type=float, default=1e-6, help="learning rate for QAT.") parser.add_argument("--distill", action='store_true', help='Using distillation') parser.add_argument("--teacher", type=str, help='teacher model path') parser.add_argument('--distillation_loss_scale', type=float, default=10000., help="scale applied to distillation component of loss") # distributed training # parser.add_argument("--local_rank", type=int, required=True, help='local rank for DistributedDataParallel') parser.add_argument("--name", required=True, help="Name of this run. Used for monitoring.") parser.add_argument("--dataset", choices=["cifar10", "cifar100"], default="cifar100", help="Which downstream task.") parser.add_argument("--model_type", choices=["ViT-B_16", "ViT-B_32", "ViT-L_16", "ViT-L_32", "ViT-H_14", "R50-ViT-B_16"], default="ViT-B_16", help="Which variant to use.") parser.add_argument("--pretrained_dir", type=str, default="checkpoint/ViT-B_16.npz", help="Where to search for pretrained ViT models.") parser.add_argument("--output_dir", default="output", type=str, help="The output directory where checkpoints will be written.") parser.add_argument("--engine", type=str, help="The directory of vit tensorrt engine.") parser.add_argument("--img_size", default=384, type=int, help="Resolution size") parser.add_argument("--train_batch_size", default=64, type=int, help="Total batch size for training.") parser.add_argument("--eval_batch_size", default=32, type=int, help="Total batch size for eval.") parser.add_argument("--eval_every", default=2000, type=int, help="Run prediction on validation set every so many steps." "Will always run one evaluation at the end of training.") parser.add_argument("--learning_rate", default=3e-2, type=float, help="The initial learning rate for SGD.") parser.add_argument("--weight_decay", default=0, type=float, help="Weight deay if we apply some.") parser.add_argument("--num_steps", default=10000, type=int, help="Total number of training epochs to perform.") parser.add_argument("--decay_type", choices=["cosine", "linear"], default="cosine", help="How to decay the learning rate.") parser.add_argument("--warmup_steps", default=500, type=int, help="Step of training to perform learning rate warmup for.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--fp16_opt_level', type=str, default='O2', help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument('--loss_scale', type=float, default=0, help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") quant_utils.add_arguments(parser) args, unparsed = parser.parse_known_args() if args.quant_mode is not None: args = quant_utils.set_args(args) quant_utils.set_default_quantizers(args) config = get_config(args) return args, config def main(): args, config = parse_option() # print(config.dump()) # Setup CUDA, GPU & distributed training if args.local_rank == -1: device = torch.device("cuda" if torch.cuda.is_available() else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl', timeout=timedelta(minutes=60)) args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" % (args.local_rank, args.device, args.n_gpu, bool(args.local_rank != -1), args.fp16)) # Set seed set_seed(args) if args.engine: validate_trt(args, config) # Calibration if args.calib: args, model = setup(args) calib(args, config, model) # Quantization-Aware Training if args.train: # args, model = setup(args) train(args, config) if __name__ == "__main__": main()
FasterTransformer-main
examples/pytorch/vit/ViT-quantization/eval_engine.py
# coding=utf-8 # Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import logging import math from os.path import join as pjoin import torch import torch.nn as nn import numpy as np from torch.nn import CrossEntropyLoss, Dropout, Softmax, Linear, Conv2d, LayerNorm from torch.nn.modules.utils import _pair import torch.nn.init as init import torch.nn.functional as F from scipy import ndimage import models.configs as configs from models.modeling_resnet import ResNetV2 logger = logging.getLogger(__name__) ATTENTION_Q = "MultiHeadDotProductAttention_1/query" ATTENTION_K = "MultiHeadDotProductAttention_1/key" ATTENTION_V = "MultiHeadDotProductAttention_1/value" ATTENTION_OUT = "MultiHeadDotProductAttention_1/out" FC_0 = "MlpBlock_3/Dense_0" FC_1 = "MlpBlock_3/Dense_1" ATTENTION_NORM = "LayerNorm_0" MLP_NORM = "LayerNorm_2" QUANT = True if QUANT: from pytorch_quantization.nn import QuantLinear, TensorQuantizer def np2th(weights, conv=False): """Possibly convert HWIO to OIHW.""" if conv: weights = weights.transpose([3, 2, 0, 1]) return torch.from_numpy(weights) def bias_gelu(bias, y): x = bias + y return x * 0.5 * (1.0 + torch.erf(x / 1.41421)) def bias_noact(bias, y): return bias + y def swish(x): return x * torch.sigmoid(x) ACT2FN = {"gelu": torch.nn.functional.gelu, "bias_gelu": bias_gelu, "relu": torch.nn.functional.relu, "swish": swish, "bias_noact": bias_noact} class LinearActivation(nn.Module): r"""Fused Linear and Activation Module. """ __constants__ = ['bias'] def __init__(self, in_features, out_features, act='noact', bias=True, do_quant=True): super(LinearActivation, self).__init__() self.in_features = in_features self.out_features = out_features self.act_fn = nn.Identity() self.biased_act_fn = None if isinstance(act, str) or (sys.version_info[0] == 2 and isinstance(act, unicode)): if bias and not 'bias' in act: act = 'bias_' + act self.biased_act_fn = ACT2FN[act] else: self.act_fn = ACT2FN[act] else: self.act_fn = act self.weight = nn.Parameter(torch.Tensor(out_features, in_features)) if bias: self.bias = nn.Parameter(torch.Tensor(out_features)) else: self.register_parameter('bias', None) self.do_quant = do_quant if QUANT and do_quant: self._input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self._weight_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_weight) self._aftergemm_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.reset_parameters() def reset_parameters(self): init.kaiming_normal_(self.weight, a=math.sqrt(5)) if self.bias is not None: fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight) bound = 1 / math.sqrt(fan_in) init.uniform_(self.bias, -bound, bound) def forward(self, input): if QUANT and self.do_quant: input = self._input_quantizer(input) weight = self._weight_quantizer(self.weight) else: weight = self.weight if not self.bias is None: if QUANT and self.do_quant: return self.biased_act_fn(self.bias, self._aftergemm_quantizer(F.linear(input, weight, None))) else: return self.biased_act_fn(self.bias, F.linear(input, weight, None)) else: if QUANT and self.do_quant: return self.act_fn(self._aftergemm_quantizer(F.linear(input, weight, None))) else: return self.act_fn(F.linear(input, weight, None)) def extra_repr(self) -> str: return 'in_features={}, out_features={}, bias={}'.format( self.in_features, self.out_features, self.bias is not None ) class Attention(nn.Module): def __init__(self, config, vis): super(Attention, self).__init__() self.vis = vis self.num_attention_heads = config.transformer["num_heads"] self.attention_head_size = int(config.hidden_size / self.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = LinearActivation(config.hidden_size, self.all_head_size) self.key = LinearActivation(config.hidden_size, self.all_head_size) self.value = LinearActivation(config.hidden_size, self.all_head_size) self.out = LinearActivation(config.hidden_size, config.hidden_size) self.attn_dropout = Dropout(config.transformer["attention_dropout_rate"]) self.proj_dropout = Dropout(config.transformer["attention_dropout_rate"]) self.softmax = Softmax(dim=-1) if QUANT: self.matmul_q_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.matmul_k_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.matmul_v_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.matmul_a_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.softmax_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) if QUANT: attention_scores = torch.matmul(self.matmul_q_input_quantizer(query_layer), self.matmul_k_input_quantizer(key_layer.transpose(-1, -2))) attention_scores = self.softmax_input_quantizer(attention_scores) else: attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) attention_probs = self.softmax(attention_scores) weights = attention_probs if self.vis else None attention_probs = self.attn_dropout(attention_probs) if QUANT: context_layer = torch.matmul(self.matmul_a_input_quantizer(attention_probs), self.matmul_v_input_quantizer(value_layer)) else: context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) attention_output = self.out(context_layer) attention_output = self.proj_dropout(attention_output) return attention_output, weights class Mlp(nn.Module): def __init__(self, config): super(Mlp, self).__init__() self.fc1 = LinearActivation(config.hidden_size, config.transformer["mlp_dim"], act='noact') self.fc2 = LinearActivation(config.transformer["mlp_dim"], config.hidden_size, act='noact') self.act_fn = ACT2FN["gelu"] self.dropout = Dropout(config.transformer["dropout_rate"]) self._init_weights() def _init_weights(self): nn.init.xavier_uniform_(self.fc1.weight) nn.init.xavier_uniform_(self.fc2.weight) nn.init.normal_(self.fc1.bias, std=1e-6) nn.init.normal_(self.fc2.bias, std=1e-6) def forward(self, x): x = self.fc1(x) x = self.act_fn(x) x = self.dropout(x) x = self.fc2(x) x = self.dropout(x) return x class Embeddings(nn.Module): """Construct the embeddings from patch, position embeddings. """ def __init__(self, config, img_size, in_channels=3): super(Embeddings, self).__init__() self.hybrid = None img_size = _pair(img_size) if config.patches.get("grid") is not None: grid_size = config.patches["grid"] patch_size = (img_size[0] // 16 // grid_size[0], img_size[1] // 16 // grid_size[1]) n_patches = (img_size[0] // 16) * (img_size[1] // 16) self.hybrid = True else: patch_size = _pair(config.patches["size"]) n_patches = (img_size[0] // patch_size[0]) * (img_size[1] // patch_size[1]) self.hybrid = False if self.hybrid: self.hybrid_model = ResNetV2(block_units=config.resnet.num_layers, width_factor=config.resnet.width_factor) in_channels = self.hybrid_model.width * 16 self.patch_embeddings = Conv2d(in_channels=in_channels, out_channels=config.hidden_size, kernel_size=patch_size, stride=patch_size) self.position_embeddings = nn.Parameter(torch.zeros(1, n_patches+1, config.hidden_size)) self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.dropout = Dropout(config.transformer["dropout_rate"]) def forward(self, x): B = x.shape[0] cls_tokens = self.cls_token.expand(B, -1, -1) if self.hybrid: x = self.hybrid_model(x) x = self.patch_embeddings(x) x = x.flatten(2) x = x.transpose(-1, -2) x = torch.cat((cls_tokens, x), dim=1) embeddings = x + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings class Block(nn.Module): def __init__(self, config, vis): super(Block, self).__init__() self.hidden_size = config.hidden_size self.attention_norm = LayerNorm(config.hidden_size, eps=1e-6) self.ffn_norm = LayerNorm(config.hidden_size, eps=1e-6) self.ffn = Mlp(config) self.attn = Attention(config, vis) if QUANT: self.layernorm_input1_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.add1_local_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.add1_residual_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.layernorm_input2_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.add2_local_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) self.add2_residual_input_quantizer = TensorQuantizer(QuantLinear.default_quant_desc_input) def forward(self, x): h = x if QUANT: x = self.attention_norm(self.layernorm_input1_quantizer(x)) else: x = self.attention_norm(x) x, weights = self.attn(x) if QUANT: x = self.add1_local_input_quantizer(x) + self.add1_residual_input_quantizer(h) else: x = x + h h = x if QUANT: x = self.ffn_norm(self.layernorm_input2_quantizer(x)) else: x = self.ffn_norm(x) x = self.ffn(x) # print('adding bias', x[0,0,:8]) if QUANT: x = self.add2_local_input_quantizer(x) + self.add2_residual_input_quantizer(h) else: x = x + h # print('residual:', h[0,0,:8]) # print('adding bias+res', x[0,0,:8]) return x, weights def load_from(self, weights, n_block): ROOT = f"Transformer/encoderblock_{n_block}" with torch.no_grad(): query_weight = np2th(weights[pjoin(ROOT, ATTENTION_Q, "kernel")]).view(self.hidden_size, self.hidden_size).t() key_weight = np2th(weights[pjoin(ROOT, ATTENTION_K, "kernel")]).view(self.hidden_size, self.hidden_size).t() value_weight = np2th(weights[pjoin(ROOT, ATTENTION_V, "kernel")]).view(self.hidden_size, self.hidden_size).t() out_weight = np2th(weights[pjoin(ROOT, ATTENTION_OUT, "kernel")]).view(self.hidden_size, self.hidden_size).t() query_bias = np2th(weights[pjoin(ROOT, ATTENTION_Q, "bias")]).view(-1) key_bias = np2th(weights[pjoin(ROOT, ATTENTION_K, "bias")]).view(-1) value_bias = np2th(weights[pjoin(ROOT, ATTENTION_V, "bias")]).view(-1) out_bias = np2th(weights[pjoin(ROOT, ATTENTION_OUT, "bias")]).view(-1) self.attn.query.weight.copy_(query_weight) self.attn.key.weight.copy_(key_weight) self.attn.value.weight.copy_(value_weight) self.attn.out.weight.copy_(out_weight) self.attn.query.bias.copy_(query_bias) self.attn.key.bias.copy_(key_bias) self.attn.value.bias.copy_(value_bias) self.attn.out.bias.copy_(out_bias) mlp_weight_0 = np2th(weights[pjoin(ROOT, FC_0, "kernel")]).t() mlp_weight_1 = np2th(weights[pjoin(ROOT, FC_1, "kernel")]).t() mlp_bias_0 = np2th(weights[pjoin(ROOT, FC_0, "bias")]).t() mlp_bias_1 = np2th(weights[pjoin(ROOT, FC_1, "bias")]).t() self.ffn.fc1.weight.copy_(mlp_weight_0) self.ffn.fc2.weight.copy_(mlp_weight_1) self.ffn.fc1.bias.copy_(mlp_bias_0) self.ffn.fc2.bias.copy_(mlp_bias_1) self.attention_norm.weight.copy_(np2th(weights[pjoin(ROOT, ATTENTION_NORM, "scale")])) self.attention_norm.bias.copy_(np2th(weights[pjoin(ROOT, ATTENTION_NORM, "bias")])) self.ffn_norm.weight.copy_(np2th(weights[pjoin(ROOT, MLP_NORM, "scale")])) self.ffn_norm.bias.copy_(np2th(weights[pjoin(ROOT, MLP_NORM, "bias")])) class Encoder(nn.Module): def __init__(self, config, vis): super(Encoder, self).__init__() self.vis = vis self.layer = nn.ModuleList() self.encoder_norm = LayerNorm(config.hidden_size, eps=1e-6) for _ in range(config.transformer["num_layers"]): layer = Block(config, vis) self.layer.append(copy.deepcopy(layer)) def forward(self, hidden_states): attn_weights = [] for idx, layer_block in enumerate(self.layer): hidden_states, weights = layer_block(hidden_states) if self.vis: attn_weights.append(weights) encoded = self.encoder_norm(hidden_states) return encoded, attn_weights class Transformer(nn.Module): def __init__(self, config, img_size, vis): super(Transformer, self).__init__() self.embeddings = Embeddings(config, img_size=img_size) self.encoder = Encoder(config, vis) def forward(self, input_ids): embedding_output = self.embeddings(input_ids) encoded, attn_weights = self.encoder(embedding_output) return encoded, attn_weights class VisionTransformerINT8(nn.Module): def __init__(self, config, img_size=224, num_classes=21843, zero_head=False, vis=False): super(VisionTransformerINT8, self).__init__() self.num_classes = num_classes self.zero_head = zero_head self.classifier = config.classifier self.transformer = Transformer(config, img_size, vis) self.head = Linear(config.hidden_size, num_classes) def forward(self, x, labels=None): x, attn_weights = self.transformer(x) logits = self.head(x[:, 0]) if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_classes), labels.view(-1)) return logits, loss else: return logits, attn_weights def load_from(self, weights): with torch.no_grad(): if self.zero_head: nn.init.zeros_(self.head.weight) nn.init.zeros_(self.head.bias) else: self.head.weight.copy_(np2th(weights["head/kernel"]).t()) self.head.bias.copy_(np2th(weights["head/bias"]).t()) self.transformer.embeddings.patch_embeddings.weight.copy_(np2th(weights["embedding/kernel"], conv=True)) self.transformer.embeddings.patch_embeddings.bias.copy_(np2th(weights["embedding/bias"])) self.transformer.embeddings.cls_token.copy_(np2th(weights["cls"])) self.transformer.encoder.encoder_norm.weight.copy_(np2th(weights["Transformer/encoder_norm/scale"])) self.transformer.encoder.encoder_norm.bias.copy_(np2th(weights["Transformer/encoder_norm/bias"])) posemb = np2th(weights["Transformer/posembed_input/pos_embedding"]) posemb_new = self.transformer.embeddings.position_embeddings if posemb.size() == posemb_new.size(): self.transformer.embeddings.position_embeddings.copy_(posemb) else: logger.info("load_pretrained: resized variant: %s to %s" % (posemb.size(), posemb_new.size())) ntok_new = posemb_new.size(1) if self.classifier == "token": posemb_tok, posemb_grid = posemb[:, :1], posemb[0, 1:] ntok_new -= 1 else: posemb_tok, posemb_grid = posemb[:, :0], posemb[0] gs_old = int(np.sqrt(len(posemb_grid))) gs_new = int(np.sqrt(ntok_new)) print('load_pretrained: grid-size from %s to %s' % (gs_old, gs_new)) posemb_grid = posemb_grid.reshape(gs_old, gs_old, -1) zoom = (gs_new / gs_old, gs_new / gs_old, 1) posemb_grid = ndimage.zoom(posemb_grid, zoom, order=1) posemb_grid = posemb_grid.reshape(1, gs_new * gs_new, -1) posemb = np.concatenate([posemb_tok, posemb_grid], axis=1) self.transformer.embeddings.position_embeddings.copy_(np2th(posemb)) for bname, block in self.transformer.encoder.named_children(): for uname, unit in block.named_children(): unit.load_from(weights, n_block=uname) if self.transformer.embeddings.hybrid: self.transformer.embeddings.hybrid_model.root.conv.weight.copy_(np2th(weights["conv_root/kernel"], conv=True)) gn_weight = np2th(weights["gn_root/scale"]).view(-1) gn_bias = np2th(weights["gn_root/bias"]).view(-1) self.transformer.embeddings.hybrid_model.root.gn.weight.copy_(gn_weight) self.transformer.embeddings.hybrid_model.root.gn.bias.copy_(gn_bias) for bname, block in self.transformer.embeddings.hybrid_model.body.named_children(): for uname, unit in block.named_children(): unit.load_from(weights, n_block=bname, n_unit=uname) CONFIGS = { 'ViT-B_16': configs.get_b16_config(), 'ViT-B_32': configs.get_b32_config(), 'ViT-L_16': configs.get_l16_config(), 'ViT-L_32': configs.get_l32_config(), 'ViT-H_14': configs.get_h14_config(), 'R50-ViT-B_16': configs.get_r50_b16_config(), 'testing': configs.get_testing(), }
FasterTransformer-main
examples/pytorch/vit/ViT-quantization/vit_int8.py
# coding=utf-8 # Copyright (c) 2019-2022 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper functions for training models with pytorch-quantization""" import pickle import re import time import numpy as np import torch import random import pytorch_quantization as quantization import pytorch_quantization.nn as quant_nn from pytorch_quantization.tensor_quant import QuantDescriptor from pytorch_quantization import calib class Logger: def info(self, s): print("INFO:", s) def warn(self, s): print("WARN:", s) logger = Logger() name_width = 50 # max width of layer names qname_width = name_width + 20 # max width of quantizer names def add_arguments(parser): """Add arguments to parser for functions defined in quant_trainer.""" group = parser.add_argument_group('quant_trainer arguments') group.add_argument('--wprec', type=int, default=8, help='weight precision') group.add_argument('--aprec', type=int, default=8, help='activation precision') group.add_argument('--quant-per-tensor', action='store_true', help='per tensor weight scaling') group.add_argument('--quant-disable', action='store_true', help='disable all quantizers') group.add_argument('--quant-disable-keyword', type=str, nargs='+', help='disable quantizers by keyword') group.add_argument('--calibrator', default='percentile', help='which quantization range calibrator to use') group.add_argument('--percentile', default=99.999, type=float, help='percentile for PercentileCalibrator') group.add_argument('--fuse-qkv', action='store_true', help='use the same scale factor for qkv') group.add_argument('--narrow-range', action='store_true', help='use [-127, 127] range for activations rather than [-128, 127]') group.add_argument('--quant-mode', type=str, default="ft2", help='predefined quantization mode, choices: ["ft1", "ft2", "ft3", "trt"]') def set_args(args): if args.quant_mode == 'ft1': args.wprec = 8 args.aprec = 8 args.quant_per_tensor = False args.quant_disable = False args.quant_disable_keyword = ['final_input', 'layernorm_input', 'softmax_input', 'residual_input', 'local_input', 'aftergemm'] args.fuse_qkv = False args.narrow_range = False elif args.quant_mode == 'ft2': args.wprec = 8 args.aprec = 8 args.quant_per_tensor = True args.quant_disable = False args.quant_disable_keyword = ['final_input', 'layernorm_input', 'residual_input', 'local_input'] args.fuse_qkv = True args.narrow_range = False elif args.quant_mode == 'ft3': args.wprec = 8 args.aprec = 8 args.quant_per_tensor = True args.quant_disable = False args.quant_disable_keyword = ['final_input', 'layernorm_input', 'local_input'] args.fuse_qkv = True args.narrow_range = False elif args.quant_mode == 'trt': # for demobert args.wprec = 8 args.aprec = 8 args.quant_per_tensor = True args.quant_disable = False args.quant_disable_keyword = ['layernorm_input', 'softmax_input', 'aftergemm'] args.fuse_qkv = True args.narrow_range = False else: raise ValueError("wrong argument value for 'quant_mode'") return args def set_default_quantizers(args): """Set default quantizers before creating the model.""" if args.calibrator == 'max': calib_method = 'max' elif args.calibrator == 'percentile': if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator') calib_method = 'histogram' elif args.calibrator == 'mse': calib_method = 'histogram' elif args.calibrator == 'entropy': calib_method = 'histogram' else: raise ValueError(F'Invalid calibrator {args.calibrator}') input_desc = QuantDescriptor(num_bits=args.aprec, calib_method=calib_method, narrow_range=args.narrow_range, ) weight_desc = QuantDescriptor(num_bits=args.wprec, axis=(None if args.quant_per_tensor else (0,)), ) quant_nn.QuantLinear.set_default_quant_desc_input(input_desc) quant_nn.QuantLinear.set_default_quant_desc_weight(weight_desc) def configure_model(model, args, calib=False): """Function called before the training loop.""" logger.info('Configuring Model for Quantization') logger.info(F'using quantization package {quantization.__file__}') if not calib: if args.quant_disable: set_quantizer_by_name(model, [''], _disabled=True) if args.quant_disable_keyword: set_quantizer_by_name(model, args.quant_disable_keyword, _disabled=True) if args.fuse_qkv: fuse_qkv(model, args) if args.local_rank in [-1, 0] and not calib: print_quant_summary(model) time.sleep(1) # prevent eval printing overlap def enable_calibration(model): """Enable calibration of all *_input_quantizer modules in model.""" logger.info("Enabling Calibration") for name, module in model.named_modules(): if name.endswith("_quantizer"): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"{name:{qname_width}}: {module}") def finish_calibration(model, args): """Disable calibration and load amax for all "*_input_quantizer modules in model.""" logger.info("Loading calibrated amax") for name, module in model.named_modules(): if name.endswith("_quantizer"): if module._calibrator is not None: if isinstance(module._calibrator, calib.MaxCalibrator): module.load_calib_amax() elif args.calibrator == "percentile": module.load_calib_amax("percentile", percentile=args.percentile) else: module.load_calib_amax(args.calibrator) module.enable_quant() module.disable_calib() else: module.enable() if args.fuse_qkv: fuse_qkv(model, args) model.cuda() print_quant_summary(model) def fuse_qkv(model, args): """Adjust quantization ranges to match an implementation where the QKV projections are implemented with a single GEMM. Force the weight and output scale factors to match by taking the max of (Q,K,V). """ def fuse3(qq, qk, qv): if not hasattr(qq, '_amax') or not hasattr(qk, '_amax') or not hasattr(qv, '_amax'): logger.warn('missing amax buffer, unable to fuse') return q = qq._amax.detach().item() k = qk._amax.detach().item() v = qv._amax.detach().item() amax = max(q, k, v) qq._amax.fill_(amax) qk._amax.fill_(amax) qv._amax.fill_(amax) logger.info(f' q={q:7.4f} k={k:7.4f} v={v:7.4f} -> {amax:7.4f}') for name, mod in model.named_modules(): if name.endswith('.attn'): logger.info(f'FUSE_QKV: {name:{name_width}}') fuse3(mod.matmul_q_input_quantizer, mod.matmul_k_input_quantizer, mod.matmul_v_input_quantizer) fuse3(mod.query._weight_quantizer, mod.key._weight_quantizer, mod.value._weight_quantizer) fuse3(mod.query._aftergemm_quantizer, mod.key._aftergemm_quantizer, mod.value._aftergemm_quantizer) def print_quant_summary(model): """Print summary of all quantizer modules in the model.""" counters = {'quantizers': 0, 'enabled_quantizers': 0, 'weights': 0, 'quant_weights': 0, 'sparse_weights': 0, 'params': 0, 'sparse_params': 0} for name, mod in model.named_modules(): if isinstance(mod, quantization.nn.TensorQuantizer): print(f'{name:80} {mod}') counters['quantizers'] += 1 if not mod._disabled: counters['enabled_quantizers'] += 1 for pname, param in mod.named_parameters(): if '.' in pname: continue counters['params'] += param.numel() # fullname = f'{name}.{pname}' # print(f'{fullname:80} {param.numel():12}') weight_quantizer = getattr(mod, '_weight_quantizer', None) if pname == 'weight': counters['weights'] += param.numel() if weight_quantizer is not None and not weight_quantizer._disabled: counters['quant_weights'] += param.numel() counters['sparse_weights'] += param.eq(0).sum().item() counters['sparse_params'] += param.eq(0).sum().item() def print_fraction(a, b, counters, desc): va = counters[a] vb = counters[b] pct = va/vb * 100 if vb != 0 else float('NaN') print(f'{counters[a]:12}/{vb:12} ({pct:6.2f}%) {desc}') print_fraction('enabled_quantizers', 'quantizers', counters, 'TensorQuantizers enabled') print_fraction('quant_weights', 'weights', counters, 'Quantized weights') print_fraction('sparse_weights', 'weights', counters, 'Zero weights') print_fraction('weights', 'params', counters, 'Weight parameters') print('\n\n') def set_quantizer(name, mod, quantizer, k ,v): """Set attributes for mod.quantizer.""" quantizer_mod = getattr(mod, quantizer, None) if quantizer_mod is not None: assert hasattr(quantizer_mod, k) setattr(quantizer_mod, k, v) else: logger.warn(f'{name} has no {quantizer}') def set_quantizers(name, mod, which='both', **kwargs): """Set quantizer attributes for mod.""" s = f'Warning: changing {which} quantizers of {name:{qname_width}}' for k, v in kwargs.items(): s += (f' {k}={v}') if which in ['input', 'both']: set_quantizer(name, mod, '_input_quantizer', k, v) if which in ['weight', 'both']: set_quantizer(name, mod, '_weight_quantizer', k, v) logger.info(s) def set_quantizer_by_name(model, names, **kwargs): """Set quantizer attributes for layers where name contains a substring in names.""" for name, mod in model.named_modules(): if hasattr(mod, '_input_quantizer') or hasattr(mod, '_weight_quantizer'): for n in names: if re.search(n, name): set_quantizers(name, mod, **kwargs) elif name.endswith('_quantizer'): for n in names: if re.search(n, name): s = f'Warning: changing {name:{name_width}}' for k, v in kwargs.items(): s += (f' {k}={v}') setattr(mod, k, v) logger.info(s)
FasterTransformer-main
examples/pytorch/vit/ViT-quantization/quant_utils.py
# coding=utf-8 # Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, division, print_function from email.policy import strict import logging import argparse import os import random import numpy as np from datetime import timedelta import torch import torch.distributed as dist from tqdm import tqdm from apex import amp from apex.parallel import DistributedDataParallel as DDP import sys sys.path.insert(0, "./ViT-pytorch") from models.modeling import CONFIGS from utils.scheduler import WarmupLinearSchedule, WarmupCosineSchedule from utils.dist_util import get_world_size from data import build_loader from config import get_config import quant_utils from vit_int8 import VisionTransformerINT8 logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count class Knowledge_Distillation_Loss(torch.nn.Module): def __init__(self, scale, T = 3): super(Knowledge_Distillation_Loss, self).__init__() self.KLdiv = torch.nn.KLDivLoss() self.T = T self.scale = scale def get_knowledge_distillation_loss(self, output_student, output_teacher): loss_kl = self.KLdiv(torch.nn.functional.log_softmax(output_student / self.T, dim=1), torch.nn.functional.softmax(output_teacher / self.T, dim=1)) loss = loss_kl return self.scale * loss def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.reshape(1, -1).expand_as(pred)) return [correct[:k].reshape(-1).float().sum(0) * 100. / batch_size for k in topk] def simple_accuracy(preds, labels): return (preds == labels).mean() def save_model(args, model): model_to_save = model.module if hasattr(model, 'module') else model model_checkpoint = os.path.join(args.output_dir, "%s_checkpoint.bin" % args.name) torch.save(model_to_save.state_dict(), model_checkpoint) logger.info("Saved model checkpoint to %s", model_checkpoint) def setup(args): # Prepare model config = CONFIGS[args.model_type] num_classes = 10 if args.dataset == "cifar10" else 1000 model = VisionTransformerINT8(config, args.img_size, zero_head=False, num_classes=num_classes) model.load_from(np.load(args.pretrained_dir)) model.to(args.device) num_params = count_parameters(model) logger.info("{}".format(config)) logger.info("Training parameters %s", args) logger.info("Total Parameter: \t%2.1fM" % num_params) print(num_params) return args, model def count_parameters(model): params = sum(p.numel() for p in model.parameters() if p.requires_grad) return params/1000000 def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) @torch.no_grad() def valid(args, config, model, test_loader): # Validation! eval_losses = AverageMeter() acc1_meter = AverageMeter() acc5_meter = AverageMeter() logger.info("***** Running Validation *****") logger.info(" Num steps = %d", len(test_loader)) logger.info(" Batch size = %d", args.eval_batch_size) model.eval() all_preds, all_label = [], [] loss_fct = torch.nn.CrossEntropyLoss() for step, batch in enumerate(test_loader): batch = tuple(t.to(args.device) for t in batch) x, y = batch logits, _ = model(x) eval_loss = loss_fct(logits, y) acc1, acc5 = accuracy(logits, y, topk=(1, 5)) eval_losses.update(eval_loss.item(), y.size(0)) acc1_meter.update(acc1.item(), y.size(0)) acc5_meter.update(acc5.item(), y.size(0)) if step % config.PRINT_FREQ == 0: logger.info( f'Test: [{step}/{len(test_loader)}]\t' f'Loss {eval_losses.val:.4f} ({eval_losses.avg:.4f})\t' f'Acc@1 {acc1_meter.val:.3f} ({acc1_meter.avg:.3f})\t' f'Acc@5 {acc5_meter.val:.3f} ({acc5_meter.avg:.3f})') logger.info(f' * Acc@1 {acc1_meter.avg:.3f} Acc@5 {acc5_meter.avg:.3f}') return acc1_meter.avg def calib(args, config, model): """ Calibrate the model """ if args.local_rank in [-1, 0]: os.makedirs(args.output_dir, exist_ok=True) dataset_train, dataset_val, train_loader, test_loader = build_loader(config, args) # Calibration quant_utils.configure_model(model, args, calib=True) model.eval() quant_utils.enable_calibration(model) # Run forward passes on a sample of the training set for step, (samples, targets) in enumerate(tqdm(train_loader, desc='Calibration', total=args.num_calib_batch)): if step > args.num_calib_batch: break samples = samples.to(args.device) outputs = model(samples) quant_utils.finish_calibration(model, args) # model.load_state_dict(torch.load('checkpoint/{}_{}_{}.pth'.format(args.model_type, args.quant_mode, args.percentile))) quant_utils.configure_model(model, args, calib=False) if args.local_rank in [-1, 0]: accuracy = valid(args, config, model, test_loader) logger.info("Test Accuracy: \t%f" %accuracy) output_model_path = os.path.join(args.calib_output_path, '{}_calib.pth'.format(args.model_type)) if not os.path.exists(args.calib_output_path): os.mkdir(args.calib_output_path) torch.save(model.state_dict(), output_model_path) logger.info(f'Model is saved to {output_model_path}') def train(args, config): num_classes = 1000 model_config = CONFIGS[args.model_type] model = VisionTransformerINT8(model_config, args.img_size, zero_head=False, num_classes=num_classes) model_ckpt = torch.load(args.pretrained_dir, map_location="cpu") model.load_state_dict(model_ckpt["model"] if "model" in model_ckpt else model_ckpt, strict=False) model.cuda() model.train() teacher = None dis_loss = None if args.distill: teacher = VisionTransformerINT8(model_config, args.img_size, zero_head=False, num_classes=num_classes) teacher.load_from(np.load(args.teacher)) dis_loss = Knowledge_Distillation_Loss(scale=args.distillation_loss_scale).cuda() teacher.cuda() teacher.eval() quant_utils.set_quantizer_by_name(teacher, [''], _disabled=True) """ Train the model """ if args.local_rank in [-1, 0]: os.makedirs(args.output_dir, exist_ok=True) args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps # Prepare dataset # train_loader, test_loader = get_loader(args) dataset_train, dataset_val, train_loader, test_loader = build_loader(config, args) # Prepare optimizer and scheduler optimizer = torch.optim.SGD(model.parameters(), lr=args.qat_lr, momentum=0.9, weight_decay=args.weight_decay) print('args.qat_lr: %.6f' % (args.qat_lr)) print('optimizer.lr: %.6f' % optimizer.state_dict()['param_groups'][0]['lr']) t_total = args.num_steps # if args.decay_type == "cosine": # scheduler = WarmupCosineSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total) # else: # scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total) print('查看optimizer.param_groups结构:') i_list=[i for i in optimizer.param_groups[0].keys()] print(i_list) if args.fp16: model, optimizer = amp.initialize(models=model, optimizers=optimizer, opt_level=args.fp16_opt_level) amp._amp_state.loss_scalers[0]._loss_scale = 2**20 # Distributed training if args.local_rank != -1: model = DDP(model, message_size=250000000, gradient_predivide_factor=get_world_size()) # Train! logger.info("***** Running training *****") logger.info(" Total optimization epochs = %d", args.num_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.train_batch_size) logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * ( torch.distributed.get_world_size() if args.local_rank != -1 else 1)) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) model.zero_grad() set_seed(args) # Added here for reproducibility (even between python 2 and 3) losses = AverageMeter() global_step, best_acc = 0, 0 quant_utils.configure_model(model, args, calib=False) for epoch_i in range(args.num_epochs): model.train() epoch_iterator = tqdm(train_loader, desc="Training (X / X Steps) (loss=X.X)", bar_format="{l_bar}{r_bar}", dynamic_ncols=True, disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): batch = tuple(t.to(args.device) for t in batch) x, y = batch outputs, loss = model(x, y) if teacher: with torch.no_grad(): teacher_outputs, _ = teacher(x) loss_t = dis_loss.get_knowledge_distillation_loss(outputs, teacher_outputs) loss = loss + loss_t if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() if (step + 1) % args.gradient_accumulation_steps == 0: losses.update(loss.item()*args.gradient_accumulation_steps) if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) # scheduler.step() optimizer.step() lr = optimizer.param_groups[0]['lr'] optimizer.zero_grad() global_step += 1 epoch_iterator.set_description( "EPOCH [%d/%d] (%d / %d Steps) (loss=%2.5f) (lr=%.7f)" % (epoch_i, args.num_epochs, global_step, len(epoch_iterator), losses.val, lr) ) if args.local_rank in [-1, 0]: accuracy = valid(args, config, model, test_loader) if best_acc < accuracy: save_model(args, model) best_acc = accuracy model.train() # if global_step % t_total == 0: # break losses.reset() # if global_step % t_total == 0: # break logger.info("Best Accuracy: \t%f" % best_acc) logger.info("End Training!") def parse_option(): parser = argparse.ArgumentParser() # Required parameters # easy config modification parser.add_argument('--batch-size', type=int, help="batch size for single GPU") parser.add_argument('--data-path', type=str, help='path to dataset') parser.add_argument('--pretrained', help='pretrained weight from checkpoint, could be imagenet22k pretrained weight') parser.add_argument('--resume', help='resume from checkpoint') parser.add_argument('--accumulation-steps', type=int, help="gradient accumulation steps") parser.add_argument('--use-checkpoint', action='store_true', help="whether to use gradient checkpointing to save memory") parser.add_argument('--amp-opt-level', type=str, default='O1', choices=['O0', 'O1', 'O2'], help='mixed precision opt level, if O0, no amp is used') parser.add_argument('--output', default='output', type=str, metavar='PATH', help='root of output folder, the full path is <output>/<model_name>/<tag> (default: output)') parser.add_argument('--tag', help='tag of experiment') parser.add_argument('--eval', action='store_true', help='Perform evaluation only') parser.add_argument('--calib', action='store_true', help='Perform calibration only') parser.add_argument('--train', action='store_true', help='Perform training only') parser.add_argument('--throughput', action='store_true', help='Test throughput only') parser.add_argument('--num-calib-batch', type=int, default=10, help='Number of batches for calibration. 0 will disable calibration.') parser.add_argument('--calib-batchsz', type=int, default=8, help='Batch size when doing calibration') parser.add_argument('--calib-output-path', type=str, default='calib-checkpoint', help='Output directory to save calibrated model') parser.add_argument("--num-epochs", type=int, default=10, help="Number of epochs to run QAT fintuning.") parser.add_argument("--qat-lr", type=float, default=1e-6, help="learning rate for QAT.") parser.add_argument("--distill", action='store_true', help='Using distillation') parser.add_argument("--teacher", type=str, help='teacher model path') parser.add_argument('--distillation_loss_scale', type=float, default=10000., help="scale applied to distillation component of loss") # distributed training # parser.add_argument("--local_rank", type=int, required=True, help='local rank for DistributedDataParallel') parser.add_argument("--name", required=True, help="Name of this run. Used for monitoring.") parser.add_argument("--dataset", choices=["cifar10", "cifar100"], default="cifar100", help="Which downstream task.") parser.add_argument("--model_type", choices=["ViT-B_16", "ViT-B_32", "ViT-L_16", "ViT-L_32", "ViT-H_14", "R50-ViT-B_16"], default="ViT-B_16", help="Which variant to use.") parser.add_argument("--pretrained_dir", type=str, default="checkpoint/ViT-B_16.npz", help="Where to search for pretrained ViT models.") parser.add_argument("--output_dir", default="output", type=str, help="The output directory where checkpoints will be written.") parser.add_argument("--img_size", default=384, type=int, help="Resolution size") parser.add_argument("--train_batch_size", default=64, type=int, help="Total batch size for training.") parser.add_argument("--eval_batch_size", default=64, type=int, help="Total batch size for eval.") parser.add_argument("--eval_every", default=2000, type=int, help="Run prediction on validation set every so many steps." "Will always run one evaluation at the end of training.") parser.add_argument("--learning_rate", default=3e-2, type=float, help="The initial learning rate for SGD.") parser.add_argument("--weight_decay", default=0, type=float, help="Weight deay if we apply some.") parser.add_argument("--num_steps", default=10000, type=int, help="Total number of training epochs to perform.") parser.add_argument("--decay_type", choices=["cosine", "linear"], default="cosine", help="How to decay the learning rate.") parser.add_argument("--warmup_steps", default=500, type=int, help="Step of training to perform learning rate warmup for.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--fp16_opt_level', type=str, default='O2', help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument('--loss_scale', type=float, default=0, help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") quant_utils.add_arguments(parser) args, unparsed = parser.parse_known_args() if args.quant_mode is not None: args = quant_utils.set_args(args) quant_utils.set_default_quantizers(args) config = get_config(args) return args, config def main(): args, config = parse_option() # print(config.dump()) # Setup CUDA, GPU & distributed training if args.local_rank == -1: device = torch.device("cuda" if torch.cuda.is_available() else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl', timeout=timedelta(minutes=60)) args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" % (args.local_rank, args.device, args.n_gpu, bool(args.local_rank != -1), args.fp16)) # Set seed set_seed(args) # Calibration if args.calib: args, model = setup(args) calib(args, config, model) # Quantization-Aware Training if args.train: # args, model = setup(args) train(args, config) if __name__ == "__main__": main()
FasterTransformer-main
examples/pytorch/vit/ViT-quantization/main.py
# -------------------------------------------------------- # Swin Transformer # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ze Liu # -------------------------------------------------------- # Copyright (c) 2021-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch import numpy as np import torch.distributed as dist from torchvision import datasets, transforms from timm.data import create_transform try: from torchvision.transforms import InterpolationMode def _pil_interp(method): if method == 'bicubic': return InterpolationMode.BICUBIC elif method == 'lanczos': return InterpolationMode.LANCZOS elif method == 'hamming': return InterpolationMode.HAMMING else: # default bilinear, do we want to allow nearest? return InterpolationMode.BILINEAR except: from timm.data.transforms import _pil_interp def build_val_loader(config): config.freeze() dataset_val, _ = build_dataset(is_train=False, config=config) # print(f"local rank {config.LOCAL_RANK} / global rank {dist.get_rank()} successfully build val dataset") indices = np.arange(0, len(dataset_val), 1) if config.TEST.SEQUENTIAL: sampler_val = torch.utils.data.SequentialSampler(dataset_val) else: sampler_val = torch.utils.data.distributed.DistributedSampler( dataset_val, shuffle=False ) data_loader_val = torch.utils.data.DataLoader( dataset_val, sampler=sampler_val, batch_size=config.DATA.BATCH_SIZE, shuffle=False, num_workers=config.DATA.NUM_WORKERS, pin_memory=config.DATA.PIN_MEMORY, drop_last=False ) return dataset_val, data_loader_val def build_loader(config, args): config.defrost() dataset_train, config.MODEL.NUM_CLASSES = build_dataset(is_train=True, config=config) config.freeze() # print(f"local rank {config.LOCAL_RANK} / global rank {dist.get_rank()} successfully build train dataset") dataset_val, _ = build_dataset(is_train=False, config=config) # print(f"local rank {config.LOCAL_RANK} / global rank {dist.get_rank()} successfully build val dataset") num_tasks = dist.get_world_size() global_rank = dist.get_rank() sampler_train = torch.utils.data.DistributedSampler( dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True ) if config.TEST.SEQUENTIAL: sampler_val = torch.utils.data.SequentialSampler(dataset_val) else: sampler_val = torch.utils.data.distributed.DistributedSampler( dataset_val, shuffle=False ) data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=args.calib_batchsz if args.calib else config.DATA.BATCH_SIZE, num_workers=config.DATA.NUM_WORKERS, pin_memory=config.DATA.PIN_MEMORY, drop_last=True, ) data_loader_val = torch.utils.data.DataLoader( dataset_val, sampler=sampler_val, batch_size=config.DATA.BATCH_SIZE, shuffle=False, num_workers=config.DATA.NUM_WORKERS, pin_memory=config.DATA.PIN_MEMORY, drop_last=True ) return dataset_train, dataset_val, data_loader_train, data_loader_val def build_dataset(is_train, config): transform = build_transform(is_train, config) if config.DATA.DATASET == 'imagenet': prefix = 'train' if is_train else 'val' root = os.path.join(config.DATA.DATA_PATH, prefix) dataset = datasets.ImageFolder(root, transform=transform) nb_classes = 1000 elif config.DATA.DATASET == 'imagenet22K': raise NotImplementedError("Imagenet-22K will come soon.") else: raise NotImplementedError("We only support ImageNet Now.") return dataset, nb_classes def build_transform(is_train, config): resize_im = config.DATA.IMG_SIZE > 32 if is_train: # this should always dispatch to transforms_imagenet_train transform = create_transform( input_size=config.DATA.IMG_SIZE, is_training=True, color_jitter=config.AUG.COLOR_JITTER if config.AUG.COLOR_JITTER > 0 else None, auto_augment=config.AUG.AUTO_AUGMENT if config.AUG.AUTO_AUGMENT != 'none' else None, re_prob=config.AUG.REPROB, re_mode=config.AUG.REMODE, re_count=config.AUG.RECOUNT, interpolation=config.DATA.INTERPOLATION, ) if not resize_im: # replace RandomResizedCropAndInterpolation with # RandomCrop transform.transforms[0] = transforms.RandomCrop(config.DATA.IMG_SIZE, padding=4) return transform t = [] if resize_im: if config.TEST.CROP: size = int((256 / 224) * config.DATA.IMG_SIZE) t.append( transforms.Resize(size, interpolation=_pil_interp(config.DATA.INTERPOLATION)), # to maintain same ratio w.r.t. 224 images ) t.append(transforms.CenterCrop(config.DATA.IMG_SIZE)) else: t.append( transforms.Resize((config.DATA.IMG_SIZE, config.DATA.IMG_SIZE), interpolation=_pil_interp(config.DATA.INTERPOLATION)) ) t.append(transforms.ToTensor()) t.append(transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))) return transforms.Compose(t)
FasterTransformer-main
examples/pytorch/vit/ViT-quantization/data.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import threading import os import argparse import timeit import torch import torch.distributed as dist import torch.cuda.nvtx as nvtx import time import sys import numpy as np import random dir_path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(dir_path + "/../../..") from examples.pytorch.utils import print_memory_usage from examples.pytorch.bert.utils.encoder import HuggingFaceEncoder from examples.pytorch.bert.utils.encoder import CustomEncoder from examples.pytorch.bert.utils.encoder import EncoderWeights def sequence_mask(lengths, max_len=None, is_2d=True): batch_size = lengths.numel() max_len = max_len or lengths.max() mask = (torch.arange(0, max_len, device=lengths.device) .type_as(lengths) .repeat(batch_size, 1) .lt(lengths.unsqueeze(1))) if is_2d: return mask else: mask = mask.view(-1, 1, 1, max_len) m2 = mask.transpose(2, 3) return mask * m2 def main(): parser = argparse.ArgumentParser() parser.add_argument('batch_size', type=int, help='batch size') parser.add_argument('layer_num', type=int, help='number of layers') parser.add_argument('seq_len', type=int, help='sequence length') parser.add_argument('head_num', type=int, help='head number') parser.add_argument('head_size', type=int, help='size per head') parser.add_argument('--data_type', type=str, choices=['fp32', 'fp16', 'bf16'], default='fp32') parser.add_argument('--int8_mode', type=int, default=0, metavar='NUMBER', help='int8 mode (default: 0)', choices=[0, 1, 2, 3]) parser.add_argument('--time', action='store_true', help='test the time or not.') parser.add_argument('--avg_seq_len', type=int, default=-1, metavar='NUMBER', help='average sequence length (default: -1)') parser.add_argument('--sparse', action='store_true', help='Whether use sparse feature (only support SM 8.0 and 8.6, and SPARSITY_SUPPORT need be ON).') parser.add_argument('--weight_path', type=str, default=None, help='path containing the pretrained weights') parser.add_argument('--ths_path', type=str, default='./lib/libth_transformer.so', help='path of the pyt_fastertransformer dynamic lib file') parser.add_argument('-thread_num', '--thread_num', type=int, default=1, metavar='int', help='Testing multithread if thread_num > 1.') parser.add_argument('-tensor_para_size', '--tensor_para_size', type=int, default=1, metavar='int', help='Size of tensor parallelism.') parser.add_argument('-pipeline_para_size', '--pipeline_para_size', type=int, default=1, metavar='int', help='Size of pipeline parallelism.') parser.add_argument('--error-threshold', type=float, help='Threshold of error') args = parser.parse_args() bert_example(vars(args)) def bert_example(args): torch.manual_seed(0) random.seed(0) np.random.seed(0) if dist.is_mpi_available(): try: dist.init_process_group(backend='mpi') rank = dist.get_rank() world_size = dist.get_world_size() except: rank = dist.get_rank() world_size = dist.get_world_size() else: rank = 0 batch_size = args['batch_size'] seq_len = args['seq_len'] if args['weight_path'] is not None: if 'large' in args['weight_path']: layer_num = 24 head_num = 16 head_size = 64 elif 'base' in args['weight_path']: layer_num = 12 head_num = 12 head_size = 64 else: layer_num = args['layer_num'] head_num = args['head_num'] head_size = args['head_size'] else: layer_num = args['layer_num'] head_num = args['head_num'] head_size = args['head_size'] hidden_dim = head_num * head_size if args['int8_mode'] == 1: per_channel = True elif args['int8_mode'] == 2 or args['int8_mode'] == 3: per_channel = False elif args['int8_mode'] != 0: raise ValueError("wrong int8_mode argument") if rank == 0: print("\n=============== Argument ===============") for key in args: print("{}: {}".format(key, args[key])) print("========================================\n") inp = torch.empty(batch_size, seq_len, hidden_dim).cuda() torch.nn.init.normal_(inp, -0.02, 0.02) if args['avg_seq_len'] > 0: mem_seq_lens = torch.ones((batch_size,)) * args['avg_seq_len'] mem_seq_lens = mem_seq_lens.to(torch.int32).cuda() elif args['avg_seq_len'] == -1: mem_seq_lens = torch.randint(1, seq_len + 1, (batch_size,), dtype=torch.int32).cuda() else: raise ValueError("wrong avg_seq_len") mask = sequence_mask(mem_seq_lens, args['seq_len'], False).to(torch.float) # mask = torch.randint(0, 2, (batch_size, seq_len, seq_len), dtype=torch.float32).cuda() if args['data_type'] == 'fp16' or args['int8_mode'] != 0: inp = inp.half() mask = mask.half() elif args['data_type'] == 'bf16': inp = inp.bfloat16() mask = mask.bfloat16() pretrained_weights = torch.load(args['weight_path']) if (args['weight_path'] is not None) else None weights = EncoderWeights(layer_num, hidden_dim, pretrained_weights, args['sparse']) ft_weights = EncoderWeights(layer_num, hidden_dim, weights.weights, args['sparse'], args["tensor_para_size"], args["pipeline_para_size"]) world_size = dist.get_world_size() if dist.is_mpi_available() else 1 assert world_size == args["tensor_para_size"] * \ args["pipeline_para_size"], f"[ERROR] world_size ({world_size}) != tensor_para_size ({args['tensor_para_size']}) * pipeline_para_size ({args['pipeline_para_size']})" ft_weights._generated_weights = True # for int8 handling if rank == 0: hf_encoder = HuggingFaceEncoder(layer_num, head_num, head_size, weights) hf_encoder.cuda() if args['data_type'] == 'fp16' or args['int8_mode'] != 0: hf_encoder.half() elif args['data_type'] == 'bf16': hf_encoder.bfloat16() hf_encoder.eval() hf_encoder = torch.jit.trace(hf_encoder, (inp, mask)) if args['int8_mode'] != 0: ft_weights.to_int8(args['sparse'], args['ths_path']) elif args['data_type'] == 'fp16': ft_weights.to_half() elif args['data_type'] == 'bf16': ft_weights.to_bfloat16() ft_weights.to_cuda() custom_encoder = CustomEncoder(layer_num, head_num, head_size, ft_weights, int8_mode=args['int8_mode'], remove_padding=False, sparse=args['sparse'], path=args['ths_path'], tensor_para_size=args["tensor_para_size"], pipeline_para_size=args["pipeline_para_size"]) custom_encoder = torch.jit.script(custom_encoder) eff_custom_encoder = CustomEncoder(layer_num, head_num, head_size, ft_weights, int8_mode=args['int8_mode'], remove_padding=True, sparse=args['sparse'], path=args['ths_path'], tensor_para_size=args["tensor_para_size"], pipeline_para_size=args["pipeline_para_size"]) eff_custom_encoder = torch.jit.script(eff_custom_encoder) with torch.no_grad(): output_mask = sequence_mask(mem_seq_lens, args['seq_len']).to(mask.dtype).unsqueeze(-1) if rank == 0: hf_output = hf_encoder(inp, mask)[0] * output_mask print(hf_output) print(hf_output.size()) ft_inp = inp.to(f"cuda:{rank}") ft_mask = mask.to(f"cuda:{rank}") ft_mem_seq_lens = mem_seq_lens.to(f"cuda:{rank}") ft_output_mask = output_mask.to(f"cuda:{rank}") ft_output = custom_encoder(ft_inp, ft_mask, ft_mem_seq_lens)[0] * ft_output_mask if rank == 0: print(ft_output) print(ft_output.size()) eff_ft_output = eff_custom_encoder(ft_inp, ft_mask, ft_mem_seq_lens)[0] * ft_output_mask if rank == 0: print(eff_ft_output) print(eff_ft_output.size()) if rank == 0: FT_diff = torch.abs(hf_output - ft_output).float() # Prevent error under bfloat16 print('FT Mean diff: {}'.format(torch.mean(FT_diff))) print('FT Max diff: {}'.format(torch.max(FT_diff))) print('FT Min diff: {}'.format(torch.min(FT_diff))) if rank == 0: EFF_diff = torch.abs(hf_output - eff_ft_output).float() # Prevent error under bfloat16 print('EFF-FT Mean diff: {}'.format(torch.mean(EFF_diff))) print('EFF-FT Max diff: {}'.format(torch.max(EFF_diff))) print('EFF-FT Min diff: {}'.format(torch.min(EFF_diff))) if args['time']: iterations = 100 if rank == 0: for i in range(iterations): output = hf_encoder(inp, mask) t10 = timeit.default_timer() # nvtx.range_push("hf") for i in range(iterations): # nvtx.range_push("hf"+str(i)) output = hf_encoder(inp, mask) # nvtx.range_pop() # nvtx.range_pop() t1 = timeit.default_timer() - t10 # time.sleep(60) for i in range(iterations): output = custom_encoder(ft_inp, ft_mask, ft_mem_seq_lens) t20 = timeit.default_timer() # nvtx.range_push("ext") for i in range(iterations): # nvtx.range_push("ext"+str(i)) output = custom_encoder(ft_inp, ft_mask, ft_mem_seq_lens) # nvtx.range_pop() # nvtx.range_pop() t2 = timeit.default_timer() - t20 # time.sleep(60) for i in range(iterations): output = eff_custom_encoder(ft_inp, ft_mask, ft_mem_seq_lens) t30 = timeit.default_timer() # nvtx.range_push("eff_ext") for i in range(iterations): # nvtx.range_push("eff_ext"+str(i)) output = eff_custom_encoder(ft_inp, ft_mask, ft_mem_seq_lens) # nvtx.range_pop() # nvtx.range_pop() t3 = timeit.default_timer() - t30 # time.sleep(60) if rank == 0: print("[INFO] HuggingFaceEnocder time costs: {:.2f} ms".format(t1 * 1000 / iterations)) print("[INFO] FasterTransformer time costs: {:.2f} ms".format(t2 * 1000 / iterations)) print("[INFO] EFF-FasterTransformer time costs: {:.2f} ms".format(t3 * 1000 / iterations)) if args['thread_num'] > 1: # Multi-threading demonstration assert world_size == 1, "[ERROR] multi thread does not support MGMN" thread_list = [] thread_num = args['thread_num'] iterations = 100 def run(): t40 = timeit.default_timer() for i in range(iterations): ft_output = custom_encoder(ft_inp, ft_mask, ft_mem_seq_lens)[0] * ft_output_mask t4 = timeit.default_timer() - t40 if rank == 0: diff = torch.abs(hf_output - ft_output) print('FT Mean diff: {}'.format(torch.mean(diff))) print('FT Max diff: {}'.format(torch.max(diff))) print('FT Min diff: {}'.format(torch.min(diff))) print("[INFO] batch_size {} max_seq_len {} {} layer FT-OP-time {:6.2f} ms with {} threads".format(batch_size, seq_len, layer_num, t4, thread_num)) for i in range(thread_num): thread_list.append(threading.Thread(target=run, name="RunFT")) for t in thread_list: t.start() for t in thread_list: t.join() torch.cuda.empty_cache() sys.stdout.flush() if rank == 0: if (args["error_threshold"] != None): assert max(torch.mean(FT_diff), torch.mean(EFF_diff)) < args["error_threshold"], "[ERROR] TEST FAIL!" print("[INFO] TEST PASS!") return max(torch.mean(FT_diff), torch.mean(EFF_diff)) else: return 0 if __name__ == '__main__': main()
FasterTransformer-main
examples/pytorch/bert/bert_example.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import os import random import timeit import numpy as np import torch from torch.utils.data import DataLoader, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( BertConfig, BertTokenizer, ) from utils.modeling_bert import BertForSequenceClassification from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes as output_modes from transformers import glue_processors as processors logger = logging.getLogger(__name__) def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def convert_type(tensor, data_type): if data_type == 'fp16': return tensor.half() elif data_type == 'fp32': return tensor.float() elif data_type == 'bf16': return tensor.bfloat16() def evaluate(args, model, tokenizer, prefix=""): # Loop to handle MNLI double evaluation (matched, mis-matched) eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,) eval_outputs_dirs = (args.output_dir, args.output_dir + "-MM") if args.task_name == "mnli" else (args.output_dir,) results = {} for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs): eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True) if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) # args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) args.eval_batch_size = 1 # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu eval #if args.n_gpu > 1 and not isinstance(model, torch.nn.DataParallel): # model = torch.nn.DataParallel(model) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) # eval_loss = 0.0 nb_eval_steps = 0 preds = None out_label_ids = None start_time = timeit.default_timer() for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = [batch[0], convert_type(batch[1], args.data_type), batch[2]] outputs = model(*inputs) # tmp_eval_loss, logits = outputs[:2] logits = outputs[0] # eval_loss += tmp_eval_loss.mean().item() nb_eval_steps += 1 if preds is None: preds = logits.detach().float().cpu().numpy() out_label_ids = batch[3].detach().float().cpu().numpy() else: preds = np.append(preds, logits.detach().float().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, batch[3].detach().float().cpu().numpy(), axis=0) evalTime = timeit.default_timer() - start_time logger.info(" Evaluation for " + eval_task + " done in total %f secs (%f sec per example)", evalTime, evalTime / len(eval_dataset)) # eval_loss = eval_loss / nb_eval_steps if args.output_mode == "classification": preds = np.argmax(preds, axis=1) elif args.output_mode == "regression": preds = np.squeeze(preds) result = compute_metrics(eval_task, preds, out_label_ids) results.update(result) output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt") with open(output_eval_file, "w") as writer: logger.info("***** Eval results {} *****".format(prefix)) for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) return results def load_and_cache_examples(args, task, tokenizer, evaluate=False): if args.local_rank not in [-1, 0] and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache processor = processors[task]() output_mode = output_modes[task] # Load data features from cache or dataset file cached_features_file = os.path.join( args.data_dir, "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train", list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length), str(task), ), ) if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features = torch.load(cached_features_file) else: logger.info("Creating features from dataset file at %s", args.data_dir) label_list = processor.get_labels() examples = ( processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir) ) features = convert_examples_to_features( examples, tokenizer, label_list=label_list, max_length=args.max_seq_length, output_mode=output_mode, pad_on_left=False, pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0], pad_token_segment_id=0, ) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save(features, cached_features_file) if args.local_rank == 0 and not evaluate: torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache # Convert to Tensors and build dataset all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) if output_mode == "classification": all_labels = torch.tensor([f.label for f in features], dtype=torch.long) elif output_mode == "regression": all_labels = torch.tensor([f.label for f in features], dtype=torch.float) dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels) return dataset def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the .tsv files (or other data files) for the task.", ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name", ) parser.add_argument( "--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(processors.keys()), ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) # Other parameters parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from s3", ) parser.add_argument( "--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model.", ) parser.add_argument( "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.", ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets", ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument("--model_type", type=str, help="ori, ths, thsext") parser.add_argument('--data_type', type=str, choices=['fp32', 'fp16', 'bf16'], default='fp32') parser.add_argument('--ths_path', type=str, default='./lib/libth_transformer.so', help='path of the pyt_fastertransformer dynamic lib file') parser.add_argument('--remove_padding', action='store_true', help='Remove the padding of sentences of encoder.') args = parser.parse_args() # Setup CUDA, GPU & distributed training if args.local_rank == -1: device = torch.device("cuda") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s", args.local_rank, device, args.n_gpu, ) # Set seed set_seed(args) # Prepare GLUE task args.task_name = args.task_name.lower() if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name]() args.output_mode = output_modes[args.task_name] label_list = processor.get_labels() num_labels = len(label_list) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab config = BertConfig.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name, cache_dir=args.cache_dir if args.cache_dir else None, ) tokenizer = BertTokenizer.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, ) if args.local_rank == 0: torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab logger.info("Parameters %s", args) # Evaluation results = {} if args.do_eval and args.local_rank in [-1, 0]: logger.info("Loading checkpoint %s for evaluation", args.model_name_or_path) checkpoints = [args.model_name_or_path] logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else "" use_ths = args.model_type.startswith('ths') model = BertForSequenceClassification.from_pretrained(checkpoint, torchscript=use_ths) model.to(args.device) if args.data_type == 'fp16': logger.info("Use fp16") model.half() elif args.data_type == 'bf16': logger.info("Use bf16") model.bfloat16() if args.model_type == 'thsext': logger.info("Use custom BERT encoder for TorchScript") from utils.encoder import EncoderWeights, CustomEncoder weights = EncoderWeights( model.config.num_hidden_layers, model.config.hidden_size, torch.load(os.path.join(checkpoint, 'pytorch_model.bin'), map_location='cpu')) weights.to_cuda() if args.data_type == 'fp16': weights.to_half() elif args.data_type == 'bf16': weights.to_bfloat16() enc = CustomEncoder(model.config.num_hidden_layers, model.config.num_attention_heads, model.config.hidden_size//model.config.num_attention_heads, weights, remove_padding=args.remove_padding, path=os.path.abspath(args.ths_path)) enc_ = torch.jit.script(enc) model.replace_encoder(enc_) if use_ths: logger.info("Use TorchScript mode") fake_input_id = torch.LongTensor(args.per_gpu_eval_batch_size, args.max_seq_length) fake_input_id.fill_(1) fake_input_id = fake_input_id.to(args.device) fake_mask = torch.ones(args.per_gpu_eval_batch_size, args.max_seq_length).to(args.device) fake_type_id = fake_input_id.clone().detach() if args.data_type == 'fp16': fake_mask = fake_mask.half() elif args.data_type == 'bf16': fake_mask = fake_mask.bfloat16() model.eval() with torch.no_grad(): model_ = torch.jit.trace(model, (fake_input_id, fake_mask, fake_type_id)) model = model_ result = evaluate(args, model, tokenizer, prefix=prefix) result = dict((k + "_{}".format(global_step), v) for k, v in result.items()) results.update(result) return results if __name__ == "__main__": main()
FasterTransformer-main
examples/pytorch/bert/run_glue.py