python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for initializers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from scipy import stats from tensorflow.contrib.distributions.python.ops import chi2 as chi2_lib from tensorflow.python.framework import constant_op from tensorflow.python.ops import math_ops from tensorflow.python.platform import test class Chi2Test(test.TestCase): def testChi2LogPDF(self): with self.cached_session(): batch_size = 6 df = constant_op.constant([2.0] * batch_size, dtype=np.float64) df_v = 2.0 x = np.array([2.5, 2.5, 4.0, 0.1, 1.0, 2.0], dtype=np.float64) chi2 = chi2_lib.Chi2(df=df) expected_log_pdf = stats.chi2.logpdf(x, df_v) log_pdf = chi2.log_prob(x) self.assertEqual(log_pdf.get_shape(), (6,)) self.assertAllClose(log_pdf.eval(), expected_log_pdf) pdf = chi2.prob(x) self.assertEqual(pdf.get_shape(), (6,)) self.assertAllClose(pdf.eval(), np.exp(expected_log_pdf)) def testChi2CDF(self): with self.cached_session(): batch_size = 6 df = constant_op.constant([2.0] * batch_size, dtype=np.float64) df_v = 2.0 x = np.array([2.5, 2.5, 4.0, 0.1, 1.0, 2.0], dtype=np.float64) chi2 = chi2_lib.Chi2(df=df) expected_cdf = stats.chi2.cdf(x, df_v) cdf = chi2.cdf(x) self.assertEqual(cdf.get_shape(), (6,)) self.assertAllClose(cdf.eval(), expected_cdf) def testChi2Mean(self): with self.cached_session(): df_v = np.array([1., 3, 5], dtype=np.float64) expected_mean = stats.chi2.mean(df_v) chi2 = chi2_lib.Chi2(df=df_v) self.assertEqual(chi2.mean().get_shape(), (3,)) self.assertAllClose(chi2.mean().eval(), expected_mean) def testChi2Variance(self): with self.cached_session(): df_v = np.array([1., 3, 5], np.float64) expected_variances = stats.chi2.var(df_v) chi2 = chi2_lib.Chi2(df=df_v) self.assertEqual(chi2.variance().get_shape(), (3,)) self.assertAllClose(chi2.variance().eval(), expected_variances) def testChi2Entropy(self): with self.cached_session(): df_v = np.array([1., 3, 5], dtype=np.float64) expected_entropy = stats.chi2.entropy(df_v) chi2 = chi2_lib.Chi2(df=df_v) self.assertEqual(chi2.entropy().get_shape(), (3,)) self.assertAllClose(chi2.entropy().eval(), expected_entropy) def testChi2WithAbsDf(self): with self.cached_session(): df_v = np.array([-1.3, -3.2, 5], dtype=np.float64) chi2 = chi2_lib.Chi2WithAbsDf(df=df_v) self.assertAllClose( math_ops.floor(math_ops.abs(df_v)).eval(), chi2.df.eval()) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/chi2_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for MultivariateStudentsT Distribution.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from scipy import linalg from scipy import special from tensorflow.contrib.distributions.python.ops.vector_student_t import _VectorStudentT from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.platform import test class _FakeVectorStudentT(object): """Fake scipy implementation for Multivariate Student's t-distribution. Technically we don't need to test the `Vector Student's t-distribution` since its composed of only unit-tested parts. However this _FakeVectorStudentT serves as something like an end-to-end test of the `TransformedDistribution + Affine` API. Other `Vector*` implementations need only test new code. That we don't need to test every Vector* distribution is good because there aren't SciPy analogs and reimplementing everything in NumPy sort of defeats the point of having the `TransformedDistribution + Affine` API. """ def __init__(self, df, loc, scale_tril): self._df = np.asarray(df) self._loc = np.asarray(loc) self._scale_tril = np.asarray(scale_tril) def log_prob(self, x): def _compute(df, loc, scale_tril, x): k = scale_tril.shape[-1] ildj = np.sum(np.log(np.abs(np.diag(scale_tril))), axis=-1) logz = ildj + k * (0.5 * np.log(df) + 0.5 * np.log(np.pi) + special.gammaln(0.5 * df) - special.gammaln(0.5 * (df + 1.))) y = linalg.solve_triangular(scale_tril, np.matrix(x - loc).T, lower=True, overwrite_b=True) logs = -0.5 * (df + 1.) * np.sum(np.log1p(y**2. / df), axis=-2) return logs - logz if not self._df.shape: return _compute(self._df, self._loc, self._scale_tril, x) return np.concatenate([ [_compute(self._df[i], self._loc[i], self._scale_tril[i], x[:, i, :])] for i in range(len(self._df))]).T def prob(self, x): return np.exp(self.log_prob(x)) class VectorStudentTTest(test.TestCase): def setUp(self): self._rng = np.random.RandomState(42) def testProbStaticScalar(self): with self.cached_session(): # Scalar batch_shape. df = np.asarray(3., dtype=np.float32) # Scalar batch_shape. loc = np.asarray([1], dtype=np.float32) scale_diag = np.asarray([2.], dtype=np.float32) scale_tril = np.diag(scale_diag) expected_mst = _FakeVectorStudentT( df=df, loc=loc, scale_tril=scale_tril) actual_mst = _VectorStudentT(df=df, loc=loc, scale_diag=scale_diag, validate_args=True) x = 2. * self._rng.rand(4, 1).astype(np.float32) - 1. self.assertAllClose(expected_mst.log_prob(x), actual_mst.log_prob(x).eval(), rtol=0., atol=1e-5) self.assertAllClose(expected_mst.prob(x), actual_mst.prob(x).eval(), rtol=0., atol=1e-5) def testProbStatic(self): # Non-scalar batch_shape. df = np.asarray([1., 2, 3], dtype=np.float32) # Non-scalar batch_shape. loc = np.asarray([[0., 0, 0], [1, 2, 3], [1, 0, 1]], dtype=np.float32) scale_diag = np.asarray([[1., 2, 3], [2, 3, 4], [4, 5, 6]], dtype=np.float32) scale_tril = np.concatenate([[np.diag(scale_diag[i])] for i in range(len(scale_diag))]) x = 2. * self._rng.rand(4, 3, 3).astype(np.float32) - 1. expected_mst = _FakeVectorStudentT( df=df, loc=loc, scale_tril=scale_tril) with self.cached_session(): actual_mst = _VectorStudentT(df=df, loc=loc, scale_diag=scale_diag, validate_args=True) self.assertAllClose(expected_mst.log_prob(x), actual_mst.log_prob(x).eval(), rtol=0., atol=1e-5) self.assertAllClose(expected_mst.prob(x), actual_mst.prob(x).eval(), rtol=0., atol=1e-5) def testProbDynamic(self): # Non-scalar batch_shape. df = np.asarray([1., 2, 3], dtype=np.float32) # Non-scalar batch_shape. loc = np.asarray([[0., 0, 0], [1, 2, 3], [1, 0, 1]], dtype=np.float32) scale_diag = np.asarray([[1., 2, 3], [2, 3, 4], [4, 5, 6]], dtype=np.float32) scale_tril = np.concatenate([[np.diag(scale_diag[i])] for i in range(len(scale_diag))]) x = 2. * self._rng.rand(4, 3, 3).astype(np.float32) - 1. expected_mst = _FakeVectorStudentT( df=df, loc=loc, scale_tril=scale_tril) with self.cached_session(): df_pl = array_ops.placeholder(dtypes.float32, name="df") loc_pl = array_ops.placeholder(dtypes.float32, name="loc") scale_diag_pl = array_ops.placeholder(dtypes.float32, name="scale_diag") feed_dict = {df_pl: df, loc_pl: loc, scale_diag_pl: scale_diag} actual_mst = _VectorStudentT(df=df, loc=loc, scale_diag=scale_diag, validate_args=True) self.assertAllClose(expected_mst.log_prob(x), actual_mst.log_prob(x).eval(feed_dict=feed_dict), rtol=0., atol=1e-5) self.assertAllClose(expected_mst.prob(x), actual_mst.prob(x).eval(feed_dict=feed_dict), rtol=0., atol=1e-5) def testProbScalarBaseDistributionNonScalarTransform(self): # Scalar batch_shape. df = np.asarray(2., dtype=np.float32) # Non-scalar batch_shape. loc = np.asarray([[0., 0, 0], [1, 2, 3], [1, 0, 1]], dtype=np.float32) scale_diag = np.asarray([[1., 2, 3], [2, 3, 4], [4, 5, 6]], dtype=np.float32) scale_tril = np.concatenate([[np.diag(scale_diag[i])] for i in range(len(scale_diag))]) x = 2. * self._rng.rand(4, 3, 3).astype(np.float32) - 1. expected_mst = _FakeVectorStudentT( df=np.tile(df, reps=len(scale_diag)), loc=loc, scale_tril=scale_tril) with self.cached_session(): actual_mst = _VectorStudentT(df=df, loc=loc, scale_diag=scale_diag, validate_args=True) self.assertAllClose(expected_mst.log_prob(x), actual_mst.log_prob(x).eval(), rtol=0., atol=1e-5) self.assertAllClose(expected_mst.prob(x), actual_mst.prob(x).eval(), rtol=0., atol=1e-5) def testProbScalarBaseDistributionNonScalarTransformDynamic(self): # Scalar batch_shape. df = np.asarray(2., dtype=np.float32) # Non-scalar batch_shape. loc = np.asarray([[0., 0, 0], [1, 2, 3], [1, 0, 1]], dtype=np.float32) scale_diag = np.asarray([[1., 2, 3], [2, 3, 4], [4, 5, 6]], dtype=np.float32) scale_tril = np.concatenate([[np.diag(scale_diag[i])] for i in range(len(scale_diag))]) x = 2. * self._rng.rand(4, 3, 3).astype(np.float32) - 1. expected_mst = _FakeVectorStudentT( df=np.tile(df, reps=len(scale_diag)), loc=loc, scale_tril=scale_tril) with self.cached_session(): df_pl = array_ops.placeholder(dtypes.float32, name="df") loc_pl = array_ops.placeholder(dtypes.float32, name="loc") scale_diag_pl = array_ops.placeholder(dtypes.float32, name="scale_diag") feed_dict = {df_pl: df, loc_pl: loc, scale_diag_pl: scale_diag} actual_mst = _VectorStudentT(df=df, loc=loc, scale_diag=scale_diag, validate_args=True) self.assertAllClose(expected_mst.log_prob(x), actual_mst.log_prob(x).eval(feed_dict=feed_dict), rtol=0., atol=1e-5) self.assertAllClose(expected_mst.prob(x), actual_mst.prob(x).eval(feed_dict=feed_dict), rtol=0., atol=1e-5) def testProbNonScalarBaseDistributionScalarTransform(self): # Non-scalar batch_shape. df = np.asarray([1., 2., 3.], dtype=np.float32) # Scalar batch_shape. loc = np.asarray([1, 2, 3], dtype=np.float32) scale_diag = np.asarray([2, 3, 4], dtype=np.float32) scale_tril = np.diag(scale_diag) x = 2. * self._rng.rand(4, 3, 3).astype(np.float32) - 1. expected_mst = _FakeVectorStudentT( df=df, loc=np.tile(loc[array_ops.newaxis, :], reps=[len(df), 1]), scale_tril=np.tile(scale_tril[array_ops.newaxis, :, :], reps=[len(df), 1, 1])) with self.cached_session(): actual_mst = _VectorStudentT(df=df, loc=loc, scale_diag=scale_diag, validate_args=True) self.assertAllClose(expected_mst.log_prob(x), actual_mst.log_prob(x).eval(), rtol=0., atol=1e-5) self.assertAllClose(expected_mst.prob(x), actual_mst.prob(x).eval(), rtol=0., atol=1e-5) def testProbNonScalarBaseDistributionScalarTransformDynamic(self): # Non-scalar batch_shape. df = np.asarray([1., 2., 3.], dtype=np.float32) # Scalar batch_shape. loc = np.asarray([1, 2, 3], dtype=np.float32) scale_diag = np.asarray([2, 3, 4], dtype=np.float32) scale_tril = np.diag(scale_diag) x = 2. * self._rng.rand(4, 3, 3).astype(np.float32) - 1. expected_mst = _FakeVectorStudentT( df=df, loc=np.tile(loc[array_ops.newaxis, :], reps=[len(df), 1]), scale_tril=np.tile(scale_tril[array_ops.newaxis, :, :], reps=[len(df), 1, 1])) with self.cached_session(): df_pl = array_ops.placeholder(dtypes.float32, name="df") loc_pl = array_ops.placeholder(dtypes.float32, name="loc") scale_diag_pl = array_ops.placeholder(dtypes.float32, name="scale_diag") feed_dict = {df_pl: df, loc_pl: loc, scale_diag_pl: scale_diag} actual_mst = _VectorStudentT(df=df, loc=loc, scale_diag=scale_diag, validate_args=True) self.assertAllClose(expected_mst.log_prob(x), actual_mst.log_prob(x).eval(feed_dict=feed_dict), rtol=0., atol=1e-5) self.assertAllClose(expected_mst.prob(x), actual_mst.prob(x).eval(feed_dict=feed_dict), rtol=0., atol=1e-5) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/vector_student_t_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for PoissonLogNormalQuadratureCompoundTest.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.distributions.python.ops import poisson_lognormal from tensorflow.contrib.distributions.python.ops import test_util from tensorflow.python.ops import array_ops from tensorflow.python.platform import test class _PoissonLogNormalQuadratureCompoundTest( test_util.DiscreteScalarDistributionTestHelpers): """Tests the PoissonLogNormalQuadratureCompoundTest distribution.""" def testSampleProbConsistent(self): with self.cached_session() as sess: pln = poisson_lognormal.PoissonLogNormalQuadratureCompound( loc=array_ops.placeholder_with_default( -2., shape=[] if self.static_shape else None), scale=array_ops.placeholder_with_default( 1.1, shape=[] if self.static_shape else None), quadrature_size=10, validate_args=True) self.run_test_sample_consistent_log_prob( sess.run, pln, batch_size=1, rtol=0.1) def testMeanVariance(self): with self.cached_session() as sess: pln = poisson_lognormal.PoissonLogNormalQuadratureCompound( loc=array_ops.placeholder_with_default( 0., shape=[] if self.static_shape else None), scale=array_ops.placeholder_with_default( 1., shape=[] if self.static_shape else None), quadrature_size=10, validate_args=True) self.run_test_sample_consistent_mean_variance( sess.run, pln, rtol=0.02) def testSampleProbConsistentBroadcastScalar(self): with self.cached_session() as sess: pln = poisson_lognormal.PoissonLogNormalQuadratureCompound( loc=array_ops.placeholder_with_default( [0., -0.5], shape=[2] if self.static_shape else None), scale=array_ops.placeholder_with_default( 1., shape=[] if self.static_shape else None), quadrature_size=10, validate_args=True) self.run_test_sample_consistent_log_prob( sess.run, pln, batch_size=2, rtol=0.1, atol=0.01) def testMeanVarianceBroadcastScalar(self): with self.cached_session() as sess: pln = poisson_lognormal.PoissonLogNormalQuadratureCompound( loc=array_ops.placeholder_with_default( [0., -0.5], shape=[2] if self.static_shape else None), scale=array_ops.placeholder_with_default( 1., shape=[] if self.static_shape else None), quadrature_size=10, validate_args=True) self.run_test_sample_consistent_mean_variance( sess.run, pln, rtol=0.1, atol=0.01) def testSampleProbConsistentBroadcastBoth(self): with self.cached_session() as sess: pln = poisson_lognormal.PoissonLogNormalQuadratureCompound( loc=array_ops.placeholder_with_default( [[0.], [-0.5]], shape=[2, 1] if self.static_shape else None), scale=array_ops.placeholder_with_default( [[1., 0.9]], shape=[1, 2] if self.static_shape else None), quadrature_size=10, validate_args=True) self.run_test_sample_consistent_log_prob( sess.run, pln, batch_size=4, rtol=0.1, atol=0.08) def testMeanVarianceBroadcastBoth(self): with self.cached_session() as sess: pln = poisson_lognormal.PoissonLogNormalQuadratureCompound( loc=array_ops.placeholder_with_default( [[0.], [-0.5]], shape=[2, 1] if self.static_shape else None), scale=array_ops.placeholder_with_default( [[1., 0.9]], shape=[1, 2] if self.static_shape else None), quadrature_size=10, validate_args=True) self.run_test_sample_consistent_mean_variance( sess.run, pln, rtol=0.1, atol=0.01) class PoissonLogNormalQuadratureCompoundStaticShapeTest( _PoissonLogNormalQuadratureCompoundTest, test.TestCase): @property def static_shape(self): return True class PoissonLogNormalQuadratureCompoundDynamicShapeTest( _PoissonLogNormalQuadratureCompoundTest, test.TestCase): @property def static_shape(self): return False if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/poisson_lognormal_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for MultivariateNormal.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib import distributions from tensorflow.python.ops import math_ops from tensorflow.python.platform import test from tensorflow.python.platform import tf_logging as logging ds = distributions class MultivariateNormalDiagPlusLowRankTest(test.TestCase): """Well tested because this is a simple override of the base class.""" def setUp(self): self._rng = np.random.RandomState(42) def testDiagBroadcastBothBatchAndEvent(self): # batch_shape: [3], event_shape: [2] diag = np.array([[1., 2], [3, 4], [5, 6]]) # batch_shape: [1], event_shape: [] identity_multiplier = np.array([5.]) with self.cached_session(): dist = ds.MultivariateNormalDiagPlusLowRank( scale_diag=diag, scale_identity_multiplier=identity_multiplier, validate_args=True) self.assertAllClose( np.array([[[1. + 5, 0], [0, 2 + 5]], [[3 + 5, 0], [0, 4 + 5]], [[5 + 5, 0], [0, 6 + 5]]]), dist.scale.to_dense().eval()) def testDiagBroadcastBothBatchAndEvent2(self): # This test differs from `testDiagBroadcastBothBatchAndEvent` in that it # broadcasts batch_shape's from both the `scale_diag` and # `scale_identity_multiplier` args. # batch_shape: [3], event_shape: [2] diag = np.array([[1., 2], [3, 4], [5, 6]]) # batch_shape: [3, 1], event_shape: [] identity_multiplier = np.array([[5.], [4], [3]]) with self.cached_session(): dist = ds.MultivariateNormalDiagPlusLowRank( scale_diag=diag, scale_identity_multiplier=identity_multiplier, validate_args=True) self.assertAllEqual( [3, 3, 2, 2], dist.scale.to_dense().get_shape()) def testDiagBroadcastOnlyEvent(self): # batch_shape: [3], event_shape: [2] diag = np.array([[1., 2], [3, 4], [5, 6]]) # batch_shape: [3], event_shape: [] identity_multiplier = np.array([5., 4, 3]) with self.cached_session(): dist = ds.MultivariateNormalDiagPlusLowRank( scale_diag=diag, scale_identity_multiplier=identity_multiplier, validate_args=True) self.assertAllClose( np.array([[[1. + 5, 0], [0, 2 + 5]], [[3 + 4, 0], [0, 4 + 4]], [[5 + 3, 0], [0, 6 + 3]]]), # shape: [3, 2, 2] dist.scale.to_dense().eval()) def testDiagBroadcastMultiplierAndLoc(self): # batch_shape: [], event_shape: [3] loc = np.array([1., 0, -1]) # batch_shape: [3], event_shape: [] identity_multiplier = np.array([5., 4, 3]) with self.cached_session(): dist = ds.MultivariateNormalDiagPlusLowRank( loc=loc, scale_identity_multiplier=identity_multiplier, validate_args=True) self.assertAllClose( np.array([[[5, 0, 0], [0, 5, 0], [0, 0, 5]], [[4, 0, 0], [0, 4, 0], [0, 0, 4]], [[3, 0, 0], [0, 3, 0], [0, 0, 3]]]), dist.scale.to_dense().eval()) def testMean(self): mu = [-1.0, 1.0] diag_large = [1.0, 5.0] v = [[2.0], [3.0]] diag_small = [3.0] with self.cached_session(): dist = ds.MultivariateNormalDiagPlusLowRank( loc=mu, scale_diag=diag_large, scale_perturb_factor=v, scale_perturb_diag=diag_small, validate_args=True) self.assertAllEqual(mu, dist.mean().eval()) def testSample(self): # TODO(jvdillon): This test should be the basis of a new test fixture which # is applied to every distribution. When we make this fixture, we'll also # separate the analytical- and sample-based tests as well as for each # function tested. For now, we group things so we can recycle one batch of # samples (thus saving resources). mu = np.array([-1., 1, 0.5], dtype=np.float32) diag_large = np.array([1., 0.5, 0.75], dtype=np.float32) diag_small = np.array([-1.1, 1.2], dtype=np.float32) v = np.array([[0.7, 0.8], [0.9, 1], [0.5, 0.6]], dtype=np.float32) # shape: [k, r] = [3, 2] true_mean = mu true_scale = np.diag(diag_large) + np.matmul(np.matmul( v, np.diag(diag_small)), v.T) true_covariance = np.matmul(true_scale, true_scale.T) true_variance = np.diag(true_covariance) true_stddev = np.sqrt(true_variance) with self.cached_session() as sess: dist = ds.MultivariateNormalDiagPlusLowRank( loc=mu, scale_diag=diag_large, scale_perturb_factor=v, scale_perturb_diag=diag_small, validate_args=True) # The following distributions will test the KL divergence calculation. mvn_identity = ds.MultivariateNormalDiag( loc=np.array([1., 2, 0.25], dtype=np.float32), validate_args=True) mvn_scaled = ds.MultivariateNormalDiag( loc=mvn_identity.loc, scale_identity_multiplier=2.2, validate_args=True) mvn_diag = ds.MultivariateNormalDiag( loc=mvn_identity.loc, scale_diag=np.array([0.5, 1.5, 1.], dtype=np.float32), validate_args=True) mvn_chol = ds.MultivariateNormalTriL( loc=np.array([1., 2, -1], dtype=np.float32), scale_tril=np.array([[6., 0, 0], [2, 5, 0], [1, 3, 4]], dtype=np.float32) / 10., validate_args=True) scale = dist.scale.to_dense() n = int(30e3) samps = dist.sample(n, seed=0) sample_mean = math_ops.reduce_mean(samps, 0) x = samps - sample_mean sample_covariance = math_ops.matmul(x, x, transpose_a=True) / n sample_kl_identity = math_ops.reduce_mean( dist.log_prob(samps) - mvn_identity.log_prob(samps), 0) analytical_kl_identity = ds.kl_divergence(dist, mvn_identity) sample_kl_scaled = math_ops.reduce_mean( dist.log_prob(samps) - mvn_scaled.log_prob(samps), 0) analytical_kl_scaled = ds.kl_divergence(dist, mvn_scaled) sample_kl_diag = math_ops.reduce_mean( dist.log_prob(samps) - mvn_diag.log_prob(samps), 0) analytical_kl_diag = ds.kl_divergence(dist, mvn_diag) sample_kl_chol = math_ops.reduce_mean( dist.log_prob(samps) - mvn_chol.log_prob(samps), 0) analytical_kl_chol = ds.kl_divergence(dist, mvn_chol) n = int(10e3) baseline = ds.MultivariateNormalDiag( loc=np.array([-1., 0.25, 1.25], dtype=np.float32), scale_diag=np.array([1.5, 0.5, 1.], dtype=np.float32), validate_args=True) samps = baseline.sample(n, seed=0) sample_kl_identity_diag_baseline = math_ops.reduce_mean( baseline.log_prob(samps) - mvn_identity.log_prob(samps), 0) analytical_kl_identity_diag_baseline = ds.kl_divergence( baseline, mvn_identity) sample_kl_scaled_diag_baseline = math_ops.reduce_mean( baseline.log_prob(samps) - mvn_scaled.log_prob(samps), 0) analytical_kl_scaled_diag_baseline = ds.kl_divergence( baseline, mvn_scaled) sample_kl_diag_diag_baseline = math_ops.reduce_mean( baseline.log_prob(samps) - mvn_diag.log_prob(samps), 0) analytical_kl_diag_diag_baseline = ds.kl_divergence(baseline, mvn_diag) sample_kl_chol_diag_baseline = math_ops.reduce_mean( baseline.log_prob(samps) - mvn_chol.log_prob(samps), 0) analytical_kl_chol_diag_baseline = ds.kl_divergence(baseline, mvn_chol) [ sample_mean_, analytical_mean_, sample_covariance_, analytical_covariance_, analytical_variance_, analytical_stddev_, scale_, sample_kl_identity_, analytical_kl_identity_, sample_kl_scaled_, analytical_kl_scaled_, sample_kl_diag_, analytical_kl_diag_, sample_kl_chol_, analytical_kl_chol_, sample_kl_identity_diag_baseline_, analytical_kl_identity_diag_baseline_, sample_kl_scaled_diag_baseline_, analytical_kl_scaled_diag_baseline_, sample_kl_diag_diag_baseline_, analytical_kl_diag_diag_baseline_, sample_kl_chol_diag_baseline_, analytical_kl_chol_diag_baseline_, ] = sess.run([ sample_mean, dist.mean(), sample_covariance, dist.covariance(), dist.variance(), dist.stddev(), scale, sample_kl_identity, analytical_kl_identity, sample_kl_scaled, analytical_kl_scaled, sample_kl_diag, analytical_kl_diag, sample_kl_chol, analytical_kl_chol, sample_kl_identity_diag_baseline, analytical_kl_identity_diag_baseline, sample_kl_scaled_diag_baseline, analytical_kl_scaled_diag_baseline, sample_kl_diag_diag_baseline, analytical_kl_diag_diag_baseline, sample_kl_chol_diag_baseline, analytical_kl_chol_diag_baseline, ]) sample_variance_ = np.diag(sample_covariance_) sample_stddev_ = np.sqrt(sample_variance_) logging.vlog(2, "true_mean:\n{} ".format(true_mean)) logging.vlog(2, "sample_mean:\n{}".format(sample_mean_)) logging.vlog(2, "analytical_mean:\n{}".format(analytical_mean_)) logging.vlog(2, "true_covariance:\n{}".format(true_covariance)) logging.vlog(2, "sample_covariance:\n{}".format(sample_covariance_)) logging.vlog(2, "analytical_covariance:\n{}".format( analytical_covariance_)) logging.vlog(2, "true_variance:\n{}".format(true_variance)) logging.vlog(2, "sample_variance:\n{}".format(sample_variance_)) logging.vlog(2, "analytical_variance:\n{}".format(analytical_variance_)) logging.vlog(2, "true_stddev:\n{}".format(true_stddev)) logging.vlog(2, "sample_stddev:\n{}".format(sample_stddev_)) logging.vlog(2, "analytical_stddev:\n{}".format(analytical_stddev_)) logging.vlog(2, "true_scale:\n{}".format(true_scale)) logging.vlog(2, "scale:\n{}".format(scale_)) logging.vlog(2, "kl_identity: analytical:{} sample:{}".format( analytical_kl_identity_, sample_kl_identity_)) logging.vlog(2, "kl_scaled: analytical:{} sample:{}".format( analytical_kl_scaled_, sample_kl_scaled_)) logging.vlog(2, "kl_diag: analytical:{} sample:{}".format( analytical_kl_diag_, sample_kl_diag_)) logging.vlog(2, "kl_chol: analytical:{} sample:{}".format( analytical_kl_chol_, sample_kl_chol_)) logging.vlog( 2, "kl_identity_diag_baseline: analytical:{} sample:{}".format( analytical_kl_identity_diag_baseline_, sample_kl_identity_diag_baseline_)) logging.vlog( 2, "kl_scaled_diag_baseline: analytical:{} sample:{}".format( analytical_kl_scaled_diag_baseline_, sample_kl_scaled_diag_baseline_)) logging.vlog(2, "kl_diag_diag_baseline: analytical:{} sample:{}".format( analytical_kl_diag_diag_baseline_, sample_kl_diag_diag_baseline_)) logging.vlog(2, "kl_chol_diag_baseline: analytical:{} sample:{}".format( analytical_kl_chol_diag_baseline_, sample_kl_chol_diag_baseline_)) self.assertAllClose(true_mean, sample_mean_, atol=0., rtol=0.02) self.assertAllClose(true_mean, analytical_mean_, atol=0., rtol=1e-6) self.assertAllClose(true_covariance, sample_covariance_, atol=0., rtol=0.02) self.assertAllClose(true_covariance, analytical_covariance_, atol=0., rtol=1e-6) self.assertAllClose(true_variance, sample_variance_, atol=0., rtol=0.02) self.assertAllClose(true_variance, analytical_variance_, atol=0., rtol=1e-6) self.assertAllClose(true_stddev, sample_stddev_, atol=0., rtol=0.02) self.assertAllClose(true_stddev, analytical_stddev_, atol=0., rtol=1e-6) self.assertAllClose(true_scale, scale_, atol=0., rtol=1e-6) self.assertAllClose(sample_kl_identity_, analytical_kl_identity_, atol=0., rtol=0.02) self.assertAllClose(sample_kl_scaled_, analytical_kl_scaled_, atol=0., rtol=0.02) self.assertAllClose(sample_kl_diag_, analytical_kl_diag_, atol=0., rtol=0.02) self.assertAllClose(sample_kl_chol_, analytical_kl_chol_, atol=0., rtol=0.02) self.assertAllClose( sample_kl_identity_diag_baseline_, analytical_kl_identity_diag_baseline_, atol=0., rtol=0.02) self.assertAllClose( sample_kl_scaled_diag_baseline_, analytical_kl_scaled_diag_baseline_, atol=0., rtol=0.02) self.assertAllClose( sample_kl_diag_diag_baseline_, analytical_kl_diag_diag_baseline_, atol=0., rtol=0.04) self.assertAllClose( sample_kl_chol_diag_baseline_, analytical_kl_chol_diag_baseline_, atol=0., rtol=0.02) def testImplicitLargeDiag(self): mu = np.array([[1., 2, 3], [11, 22, 33]]) # shape: [b, k] = [2, 3] u = np.array([[[1., 2], [3, 4], [5, 6]], [[0.5, 0.75], [1, 0.25], [1.5, 1.25]]]) # shape: [b, k, r] = [2, 3, 2] m = np.array([[0.1, 0.2], [0.4, 0.5]]) # shape: [b, r] = [2, 2] scale = np.stack([ np.eye(3) + np.matmul(np.matmul(u[0], np.diag(m[0])), np.transpose(u[0])), np.eye(3) + np.matmul(np.matmul(u[1], np.diag(m[1])), np.transpose(u[1])), ]) cov = np.stack([np.matmul(scale[0], scale[0].T), np.matmul(scale[1], scale[1].T)]) logging.vlog(2, "expected_cov:\n{}".format(cov)) with self.cached_session(): mvn = ds.MultivariateNormalDiagPlusLowRank( loc=mu, scale_perturb_factor=u, scale_perturb_diag=m) self.assertAllClose(cov, mvn.covariance().eval(), atol=0., rtol=1e-6) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/mvn_diag_plus_low_rank_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for BatchReshape.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import batch_reshape as batch_reshape_lib from tensorflow.contrib.distributions.python.ops import mvn_diag as mvn_lib from tensorflow.contrib.distributions.python.ops import poisson as poisson_lib from tensorflow.contrib.distributions.python.ops import wishart as wishart_lib from tensorflow.python.framework import constant_op from tensorflow.python.ops import array_ops from tensorflow.python.ops.distributions import normal as normal_lib from tensorflow.python.platform import test class _BatchReshapeTest(object): def make_wishart(self, dims, new_batch_shape, old_batch_shape): new_batch_shape_ph = ( constant_op.constant(np.int32(new_batch_shape)) if self.is_static_shape else array_ops.placeholder_with_default( np.int32(new_batch_shape), shape=None)) scale = self.dtype([ [[1., 0.5], [0.5, 1.]], [[0.5, 0.25], [0.25, 0.75]], ]) scale = np.reshape(np.concatenate([scale, scale], axis=0), old_batch_shape + [dims, dims]) scale_ph = array_ops.placeholder_with_default( scale, shape=scale.shape if self.is_static_shape else None) wishart = wishart_lib.WishartFull(df=5, scale=scale_ph) reshape_wishart = batch_reshape_lib.BatchReshape( distribution=wishart, batch_shape=new_batch_shape_ph, validate_args=True) return wishart, reshape_wishart def test_matrix_variate_sample_and_log_prob(self): dims = 2 new_batch_shape = [4] old_batch_shape = [2, 2] wishart, reshape_wishart = self.make_wishart( dims, new_batch_shape, old_batch_shape) batch_shape = reshape_wishart.batch_shape_tensor() event_shape = reshape_wishart.event_shape_tensor() expected_sample_shape = [3, 1] + new_batch_shape + [dims, dims] x = wishart.sample([3, 1], seed=42) expected_sample = array_ops.reshape(x, expected_sample_shape) actual_sample = reshape_wishart.sample([3, 1], seed=42) expected_log_prob_shape = [3, 1] + new_batch_shape expected_log_prob = array_ops.reshape( wishart.log_prob(x), expected_log_prob_shape) actual_log_prob = reshape_wishart.log_prob(expected_sample) with self.cached_session() as sess: [ batch_shape_, event_shape_, expected_sample_, actual_sample_, expected_log_prob_, actual_log_prob_, ] = sess.run([ batch_shape, event_shape, expected_sample, actual_sample, expected_log_prob, actual_log_prob, ]) self.assertAllEqual(new_batch_shape, batch_shape_) self.assertAllEqual([dims, dims], event_shape_) self.assertAllClose(expected_sample_, actual_sample_, atol=0., rtol=1e-6) self.assertAllClose(expected_log_prob_, actual_log_prob_, atol=0., rtol=1e-6) if not self.is_static_shape: return self.assertAllEqual(new_batch_shape, reshape_wishart.batch_shape) self.assertAllEqual([dims, dims], reshape_wishart.event_shape) self.assertAllEqual(expected_sample_shape, actual_sample.shape) self.assertAllEqual(expected_log_prob_shape, actual_log_prob.shape) def test_matrix_variate_stats(self): dims = 2 new_batch_shape = [4] old_batch_shape = [2, 2] wishart, reshape_wishart = self.make_wishart( dims, new_batch_shape, old_batch_shape) expected_scalar_stat_shape = new_batch_shape expected_matrix_stat_shape = new_batch_shape + [dims, dims] expected_entropy = array_ops.reshape( wishart.entropy(), expected_scalar_stat_shape) actual_entropy = reshape_wishart.entropy() expected_mean = array_ops.reshape( wishart.mean(), expected_matrix_stat_shape) actual_mean = reshape_wishart.mean() expected_mode = array_ops.reshape( wishart.mode(), expected_matrix_stat_shape) actual_mode = reshape_wishart.mode() expected_stddev = array_ops.reshape( wishart.stddev(), expected_matrix_stat_shape) actual_stddev = reshape_wishart.stddev() expected_variance = array_ops.reshape( wishart.variance(), expected_matrix_stat_shape) actual_variance = reshape_wishart.variance() with self.cached_session() as sess: [ expected_entropy_, actual_entropy_, expected_mean_, actual_mean_, expected_mode_, actual_mode_, expected_stddev_, actual_stddev_, expected_variance_, actual_variance_, ] = sess.run([ expected_entropy, actual_entropy, expected_mean, actual_mean, expected_mode, actual_mode, expected_stddev, actual_stddev, expected_variance, actual_variance, ]) self.assertAllClose(expected_entropy_, actual_entropy_, atol=0., rtol=1e-6) self.assertAllClose(expected_mean_, actual_mean_, atol=0., rtol=1e-6) self.assertAllClose(expected_mode_, actual_mode_, atol=0., rtol=1e-6) self.assertAllClose(expected_stddev_, actual_stddev_, atol=0., rtol=1e-6) self.assertAllClose(expected_variance_, actual_variance_, atol=0., rtol=1e-6) if not self.is_static_shape: return self.assertAllEqual(expected_scalar_stat_shape, actual_entropy.shape) self.assertAllEqual(expected_matrix_stat_shape, actual_mean.shape) self.assertAllEqual(expected_matrix_stat_shape, actual_mode.shape) self.assertAllEqual(expected_matrix_stat_shape, actual_stddev.shape) self.assertAllEqual(expected_matrix_stat_shape, actual_variance.shape) def make_normal(self, new_batch_shape, old_batch_shape): new_batch_shape_ph = ( constant_op.constant(np.int32(new_batch_shape)) if self.is_static_shape else array_ops.placeholder_with_default( np.int32(new_batch_shape), shape=None)) scale = self.dtype(0.5 + np.arange( np.prod(old_batch_shape)).reshape(old_batch_shape)) scale_ph = array_ops.placeholder_with_default( scale, shape=scale.shape if self.is_static_shape else None) normal = normal_lib.Normal(loc=self.dtype(0), scale=scale_ph) reshape_normal = batch_reshape_lib.BatchReshape( distribution=normal, batch_shape=new_batch_shape_ph, validate_args=True) return normal, reshape_normal def test_scalar_variate_sample_and_log_prob(self): new_batch_shape = [2, 2] old_batch_shape = [4] normal, reshape_normal = self.make_normal( new_batch_shape, old_batch_shape) batch_shape = reshape_normal.batch_shape_tensor() event_shape = reshape_normal.event_shape_tensor() expected_sample_shape = new_batch_shape x = normal.sample(seed=52) expected_sample = array_ops.reshape(x, expected_sample_shape) actual_sample = reshape_normal.sample(seed=52) expected_log_prob_shape = new_batch_shape expected_log_prob = array_ops.reshape( normal.log_prob(x), expected_log_prob_shape) actual_log_prob = reshape_normal.log_prob(expected_sample) with self.cached_session() as sess: [ batch_shape_, event_shape_, expected_sample_, actual_sample_, expected_log_prob_, actual_log_prob_, ] = sess.run([ batch_shape, event_shape, expected_sample, actual_sample, expected_log_prob, actual_log_prob, ]) self.assertAllEqual(new_batch_shape, batch_shape_) self.assertAllEqual([], event_shape_) self.assertAllClose(expected_sample_, actual_sample_, atol=0., rtol=1e-6) self.assertAllClose(expected_log_prob_, actual_log_prob_, atol=0., rtol=1e-6) if not self.is_static_shape: return self.assertAllEqual(new_batch_shape, reshape_normal.batch_shape) self.assertAllEqual([], reshape_normal.event_shape) self.assertAllEqual(expected_sample_shape, actual_sample.shape) self.assertAllEqual(expected_log_prob_shape, actual_log_prob.shape) def test_scalar_variate_stats(self): new_batch_shape = [2, 2] old_batch_shape = [4] normal, reshape_normal = self.make_normal(new_batch_shape, old_batch_shape) expected_scalar_stat_shape = new_batch_shape expected_entropy = array_ops.reshape( normal.entropy(), expected_scalar_stat_shape) actual_entropy = reshape_normal.entropy() expected_mean = array_ops.reshape( normal.mean(), expected_scalar_stat_shape) actual_mean = reshape_normal.mean() expected_mode = array_ops.reshape( normal.mode(), expected_scalar_stat_shape) actual_mode = reshape_normal.mode() expected_stddev = array_ops.reshape( normal.stddev(), expected_scalar_stat_shape) actual_stddev = reshape_normal.stddev() expected_variance = array_ops.reshape( normal.variance(), expected_scalar_stat_shape) actual_variance = reshape_normal.variance() with self.cached_session() as sess: [ expected_entropy_, actual_entropy_, expected_mean_, actual_mean_, expected_mode_, actual_mode_, expected_stddev_, actual_stddev_, expected_variance_, actual_variance_, ] = sess.run([ expected_entropy, actual_entropy, expected_mean, actual_mean, expected_mode, actual_mode, expected_stddev, actual_stddev, expected_variance, actual_variance, ]) self.assertAllClose(expected_entropy_, actual_entropy_, atol=0., rtol=1e-6) self.assertAllClose(expected_mean_, actual_mean_, atol=0., rtol=1e-6) self.assertAllClose(expected_mode_, actual_mode_, atol=0., rtol=1e-6) self.assertAllClose(expected_stddev_, actual_stddev_, atol=0., rtol=1e-6) self.assertAllClose(expected_variance_, actual_variance_, atol=0., rtol=1e-6) if not self.is_static_shape: return self.assertAllEqual(expected_scalar_stat_shape, actual_entropy.shape) self.assertAllEqual(expected_scalar_stat_shape, actual_mean.shape) self.assertAllEqual(expected_scalar_stat_shape, actual_mode.shape) self.assertAllEqual(expected_scalar_stat_shape, actual_stddev.shape) self.assertAllEqual(expected_scalar_stat_shape, actual_variance.shape) def make_mvn(self, dims, new_batch_shape, old_batch_shape): new_batch_shape_ph = ( constant_op.constant(np.int32(new_batch_shape)) if self.is_static_shape else array_ops.placeholder_with_default( np.int32(new_batch_shape), shape=None)) scale = np.ones(old_batch_shape + [dims], self.dtype) scale_ph = array_ops.placeholder_with_default( scale, shape=scale.shape if self.is_static_shape else None) mvn = mvn_lib.MultivariateNormalDiag(scale_diag=scale_ph) reshape_mvn = batch_reshape_lib.BatchReshape( distribution=mvn, batch_shape=new_batch_shape_ph, validate_args=True) return mvn, reshape_mvn def test_vector_variate_sample_and_log_prob(self): dims = 3 new_batch_shape = [2, 1] old_batch_shape = [2] mvn, reshape_mvn = self.make_mvn( dims, new_batch_shape, old_batch_shape) batch_shape = reshape_mvn.batch_shape_tensor() event_shape = reshape_mvn.event_shape_tensor() expected_sample_shape = [3] + new_batch_shape + [dims] x = mvn.sample(3, seed=62) expected_sample = array_ops.reshape(x, expected_sample_shape) actual_sample = reshape_mvn.sample(3, seed=62) expected_log_prob_shape = [3] + new_batch_shape expected_log_prob = array_ops.reshape( mvn.log_prob(x), expected_log_prob_shape) actual_log_prob = reshape_mvn.log_prob(expected_sample) with self.cached_session() as sess: [ batch_shape_, event_shape_, expected_sample_, actual_sample_, expected_log_prob_, actual_log_prob_, ] = sess.run([ batch_shape, event_shape, expected_sample, actual_sample, expected_log_prob, actual_log_prob, ]) self.assertAllEqual(new_batch_shape, batch_shape_) self.assertAllEqual([dims], event_shape_) self.assertAllClose(expected_sample_, actual_sample_, atol=0., rtol=1e-6) self.assertAllClose(expected_log_prob_, actual_log_prob_, atol=0., rtol=1e-6) if not self.is_static_shape: return self.assertAllEqual(new_batch_shape, reshape_mvn.batch_shape) self.assertAllEqual([dims], reshape_mvn.event_shape) self.assertAllEqual(expected_sample_shape, actual_sample.shape) self.assertAllEqual(expected_log_prob_shape, actual_log_prob.shape) def test_vector_variate_stats(self): dims = 3 new_batch_shape = [2, 1] old_batch_shape = [2] mvn, reshape_mvn = self.make_mvn( dims, new_batch_shape, old_batch_shape) expected_scalar_stat_shape = new_batch_shape expected_entropy = array_ops.reshape( mvn.entropy(), expected_scalar_stat_shape) actual_entropy = reshape_mvn.entropy() expected_vector_stat_shape = new_batch_shape + [dims] expected_mean = array_ops.reshape( mvn.mean(), expected_vector_stat_shape) actual_mean = reshape_mvn.mean() expected_mode = array_ops.reshape( mvn.mode(), expected_vector_stat_shape) actual_mode = reshape_mvn.mode() expected_stddev = array_ops.reshape( mvn.stddev(), expected_vector_stat_shape) actual_stddev = reshape_mvn.stddev() expected_variance = array_ops.reshape( mvn.variance(), expected_vector_stat_shape) actual_variance = reshape_mvn.variance() expected_matrix_stat_shape = new_batch_shape + [dims, dims] expected_covariance = array_ops.reshape( mvn.covariance(), expected_matrix_stat_shape) actual_covariance = reshape_mvn.covariance() with self.cached_session() as sess: [ expected_entropy_, actual_entropy_, expected_mean_, actual_mean_, expected_mode_, actual_mode_, expected_stddev_, actual_stddev_, expected_variance_, actual_variance_, expected_covariance_, actual_covariance_, ] = sess.run([ expected_entropy, actual_entropy, expected_mean, actual_mean, expected_mode, actual_mode, expected_stddev, actual_stddev, expected_variance, actual_variance, expected_covariance, actual_covariance, ]) self.assertAllClose(expected_entropy_, actual_entropy_, atol=0., rtol=1e-6) self.assertAllClose(expected_mean_, actual_mean_, atol=0., rtol=1e-6) self.assertAllClose(expected_mode_, actual_mode_, atol=0., rtol=1e-6) self.assertAllClose(expected_stddev_, actual_stddev_, atol=0., rtol=1e-6) self.assertAllClose(expected_variance_, actual_variance_, atol=0., rtol=1e-6) self.assertAllClose(expected_covariance_, actual_covariance_, atol=0., rtol=1e-6) if not self.is_static_shape: return self.assertAllEqual(expected_scalar_stat_shape, actual_entropy.shape) self.assertAllEqual(expected_vector_stat_shape, actual_mean.shape) self.assertAllEqual(expected_vector_stat_shape, actual_mode.shape) self.assertAllEqual(expected_vector_stat_shape, actual_stddev.shape) self.assertAllEqual(expected_vector_stat_shape, actual_variance.shape) self.assertAllEqual(expected_matrix_stat_shape, actual_covariance.shape) def test_bad_reshape_size(self): dims = 2 new_batch_shape = [2, 3] old_batch_shape = [2] # 2 != 2*3 new_batch_shape_ph = ( constant_op.constant(np.int32(new_batch_shape)) if self.is_static_shape else array_ops.placeholder_with_default( np.int32(new_batch_shape), shape=None)) scale = np.ones(old_batch_shape + [dims], self.dtype) scale_ph = array_ops.placeholder_with_default( scale, shape=scale.shape if self.is_static_shape else None) mvn = mvn_lib.MultivariateNormalDiag(scale_diag=scale_ph) if self.is_static_shape: with self.assertRaisesRegexp( ValueError, (r"`batch_shape` size \(6\) must match " r"`distribution\.batch_shape` size \(2\)")): batch_reshape_lib.BatchReshape( distribution=mvn, batch_shape=new_batch_shape_ph, validate_args=True) else: with self.cached_session(): with self.assertRaisesOpError(r"Shape sizes do not match."): batch_reshape_lib.BatchReshape( distribution=mvn, batch_shape=new_batch_shape_ph, validate_args=True).sample().eval() def test_non_positive_shape(self): dims = 2 old_batch_shape = [4] if self.is_static_shape: # Unknown first dimension does not trigger size check. Note that # any dimension < 0 is treated statically as unknown. new_batch_shape = [-1, 0] else: new_batch_shape = [-2, -2] # -2 * -2 = 4, same size as the old shape. new_batch_shape_ph = ( constant_op.constant(np.int32(new_batch_shape)) if self.is_static_shape else array_ops.placeholder_with_default( np.int32(new_batch_shape), shape=None)) scale = np.ones(old_batch_shape + [dims], self.dtype) scale_ph = array_ops.placeholder_with_default( scale, shape=scale.shape if self.is_static_shape else None) mvn = mvn_lib.MultivariateNormalDiag(scale_diag=scale_ph) if self.is_static_shape: with self.assertRaisesRegexp(ValueError, r".*must be >=-1.*"): batch_reshape_lib.BatchReshape( distribution=mvn, batch_shape=new_batch_shape_ph, validate_args=True) else: with self.cached_session(): with self.assertRaisesOpError(r".*must be >=-1.*"): batch_reshape_lib.BatchReshape( distribution=mvn, batch_shape=new_batch_shape_ph, validate_args=True).sample().eval() def test_non_vector_shape(self): dims = 2 new_batch_shape = 2 old_batch_shape = [2] new_batch_shape_ph = ( constant_op.constant(np.int32(new_batch_shape)) if self.is_static_shape else array_ops.placeholder_with_default( np.int32(new_batch_shape), shape=None)) scale = np.ones(old_batch_shape + [dims], self.dtype) scale_ph = array_ops.placeholder_with_default( scale, shape=scale.shape if self.is_static_shape else None) mvn = mvn_lib.MultivariateNormalDiag(scale_diag=scale_ph) if self.is_static_shape: with self.assertRaisesRegexp(ValueError, r".*must be a vector.*"): batch_reshape_lib.BatchReshape( distribution=mvn, batch_shape=new_batch_shape_ph, validate_args=True) else: with self.cached_session(): with self.assertRaisesOpError(r".*must be a vector.*"): batch_reshape_lib.BatchReshape( distribution=mvn, batch_shape=new_batch_shape_ph, validate_args=True).sample().eval() def test_broadcasting_explicitly_unsupported(self): old_batch_shape = [4] new_batch_shape = [1, 4, 1] rate_ = self.dtype([1, 10, 2, 20]) rate = array_ops.placeholder_with_default( rate_, shape=old_batch_shape if self.is_static_shape else None) poisson_4 = poisson_lib.Poisson(rate) new_batch_shape_ph = ( constant_op.constant(np.int32(new_batch_shape)) if self.is_static_shape else array_ops.placeholder_with_default( np.int32(new_batch_shape), shape=None)) poisson_141_reshaped = batch_reshape_lib.BatchReshape( poisson_4, new_batch_shape_ph, validate_args=True) x_4 = self.dtype([2, 12, 3, 23]) x_114 = self.dtype([2, 12, 3, 23]).reshape(1, 1, 4) if self.is_static_shape: with self.assertRaisesRegexp(NotImplementedError, "too few batch and event dims"): poisson_141_reshaped.log_prob(x_4) with self.assertRaisesRegexp(NotImplementedError, "unexpected batch and event shape"): poisson_141_reshaped.log_prob(x_114) return with self.assertRaisesOpError("too few batch and event dims"): with self.cached_session(): poisson_141_reshaped.log_prob(x_4).eval() with self.assertRaisesOpError("unexpected batch and event shape"): with self.cached_session(): poisson_141_reshaped.log_prob(x_114).eval() class BatchReshapeStaticTest(_BatchReshapeTest, test.TestCase): dtype = np.float32 is_static_shape = True class BatchReshapeDynamicTest(_BatchReshapeTest, test.TestCase): dtype = np.float64 is_static_shape = False if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/batch_reshape_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the SeedStream class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.distributions.python.ops import seed_stream from tensorflow.python.platform import test class SeedStreamTest(test.TestCase): def assertAllUnique(self, items): self.assertEqual(len(items), len(set(items))) def testNonRepetition(self): # The probability of repetitions in a short stream from a correct # PRNG is negligible; this test catches bugs that prevent state # updates. strm = seed_stream.SeedStream(seed=4, salt="salt") output = [strm() for _ in range(50)] self.assertEqual(sorted(output), sorted(list(set(output)))) def testReproducibility(self): strm1 = seed_stream.SeedStream(seed=4, salt="salt") strm2 = seed_stream.SeedStream(seed=4, salt="salt") strm3 = seed_stream.SeedStream(seed=4, salt="salt") outputs = [strm1() for _ in range(50)] self.assertEqual(outputs, [strm2() for _ in range(50)]) self.assertEqual(outputs, [strm3() for _ in range(50)]) def testSeededDistinctness(self): strm1 = seed_stream.SeedStream(seed=4, salt="salt") strm2 = seed_stream.SeedStream(seed=5, salt="salt") self.assertAllUnique( [strm1() for _ in range(50)] + [strm2() for _ in range(50)]) def testSaltedDistinctness(self): strm1 = seed_stream.SeedStream(seed=4, salt="salt") strm2 = seed_stream.SeedStream(seed=4, salt="another salt") self.assertAllUnique( [strm1() for _ in range(50)] + [strm2() for _ in range(50)]) def testNestingRobustness(self): # SeedStreams started from generated seeds should not collide with # the master or with each other, even if the salts are the same. strm1 = seed_stream.SeedStream(seed=4, salt="salt") strm2 = seed_stream.SeedStream(strm1(), salt="salt") strm3 = seed_stream.SeedStream(strm1(), salt="salt") outputs = [strm1() for _ in range(50)] self.assertAllUnique( outputs + [strm2() for _ in range(50)] + [strm3() for _ in range(50)]) def testInitFromOtherSeedStream(self): strm1 = seed_stream.SeedStream(seed=4, salt="salt") strm2 = seed_stream.SeedStream(strm1, salt="salt") strm3 = seed_stream.SeedStream(strm1, salt="another salt") out1 = [strm1() for _ in range(50)] out2 = [strm2() for _ in range(50)] out3 = [strm3() for _ in range(50)] self.assertAllEqual(out1, out2) self.assertAllUnique(out1 + out3) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/seed_stream_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Cauchy.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import importlib import numpy as np from tensorflow.contrib.distributions.python.ops import cauchy as cauchy_lib from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.platform import tf_logging def try_import(name): # pylint: disable=invalid-name module = None try: module = importlib.import_module(name) except ImportError as e: tf_logging.warning("Could not import %s: %s" % (name, str(e))) return module stats = try_import("scipy.stats") class CauchyTest(test.TestCase): def setUp(self): self._rng = np.random.RandomState(123) def assertAllFinite(self, tensor): is_finite = np.isfinite(tensor.eval()) all_true = np.ones_like(is_finite, dtype=np.bool) self.assertAllEqual(all_true, is_finite) def _testParamShapes(self, sample_shape, expected): with self.cached_session(): param_shapes = cauchy_lib.Cauchy.param_shapes(sample_shape) loc_shape, scale_shape = param_shapes["loc"], param_shapes["scale"] self.assertAllEqual(expected, loc_shape.eval()) self.assertAllEqual(expected, scale_shape.eval()) loc = array_ops.zeros(loc_shape) scale = array_ops.ones(scale_shape) self.assertAllEqual(expected, array_ops.shape( cauchy_lib.Cauchy(loc, scale).sample()).eval()) def _testParamStaticShapes(self, sample_shape, expected): param_shapes = cauchy_lib.Cauchy.param_static_shapes(sample_shape) loc_shape, scale_shape = param_shapes["loc"], param_shapes["scale"] self.assertEqual(expected, loc_shape) self.assertEqual(expected, scale_shape) def testParamShapes(self): sample_shape = [10, 3, 4] self._testParamShapes(sample_shape, sample_shape) self._testParamShapes(constant_op.constant(sample_shape), sample_shape) def testParamStaticShapes(self): sample_shape = [10, 3, 4] self._testParamStaticShapes(sample_shape, sample_shape) self._testParamStaticShapes( tensor_shape.TensorShape(sample_shape), sample_shape) def testCauchyLogPDF(self): with self.cached_session(): batch_size = 6 loc = constant_op.constant([3.0] * batch_size) scale = constant_op.constant([np.sqrt(10.0)] * batch_size) x = np.array([-2.5, 2.5, 4.0, 0.0, -1.0, 2.0], dtype=np.float32) cauchy = cauchy_lib.Cauchy(loc=loc, scale=scale) log_pdf = cauchy.log_prob(x) self.assertAllEqual(cauchy.batch_shape_tensor().eval(), log_pdf.shape) self.assertAllEqual(cauchy.batch_shape_tensor().eval(), log_pdf.eval().shape) self.assertAllEqual(cauchy.batch_shape, log_pdf.shape) self.assertAllEqual(cauchy.batch_shape, log_pdf.eval().shape) pdf = cauchy.prob(x) self.assertAllEqual(cauchy.batch_shape_tensor().eval(), pdf.shape) self.assertAllEqual(cauchy.batch_shape_tensor().eval(), pdf.eval().shape) self.assertAllEqual(cauchy.batch_shape, pdf.shape) self.assertAllEqual(cauchy.batch_shape, pdf.eval().shape) if not stats: return expected_log_pdf = stats.cauchy(loc.eval(), scale.eval()).logpdf(x) self.assertAllClose(expected_log_pdf, log_pdf.eval()) self.assertAllClose(np.exp(expected_log_pdf), pdf.eval()) def testCauchyLogPDFMultidimensional(self): with self.cached_session(): batch_size = 6 loc = constant_op.constant([[3.0, -3.0]] * batch_size) scale = constant_op.constant( [[np.sqrt(10.0), np.sqrt(15.0)]] * batch_size) x = np.array([[-2.5, 2.5, 4.0, 0.0, -1.0, 2.0]], dtype=np.float32).T cauchy = cauchy_lib.Cauchy(loc=loc, scale=scale) log_pdf = cauchy.log_prob(x) log_pdf_values = log_pdf.eval() self.assertEqual(log_pdf.shape, (6, 2)) self.assertAllEqual(cauchy.batch_shape_tensor().eval(), log_pdf.shape) self.assertAllEqual(cauchy.batch_shape_tensor().eval(), log_pdf.eval().shape) self.assertAllEqual(cauchy.batch_shape, log_pdf.shape) self.assertAllEqual(cauchy.batch_shape, log_pdf.eval().shape) pdf = cauchy.prob(x) pdf_values = pdf.eval() self.assertEqual(pdf.shape, (6, 2)) self.assertAllEqual(cauchy.batch_shape_tensor().eval(), pdf.shape) self.assertAllEqual(cauchy.batch_shape_tensor().eval(), pdf_values.shape) self.assertAllEqual(cauchy.batch_shape, pdf.shape) self.assertAllEqual(cauchy.batch_shape, pdf_values.shape) if not stats: return expected_log_pdf = stats.cauchy(loc.eval(), scale.eval()).logpdf(x) self.assertAllClose(expected_log_pdf, log_pdf_values) self.assertAllClose(np.exp(expected_log_pdf), pdf_values) def testCauchyCDF(self): with self.cached_session(): batch_size = 50 loc = self._rng.randn(batch_size) scale = self._rng.rand(batch_size) + 1.0 x = np.linspace(-8.0, 8.0, batch_size).astype(np.float64) cauchy = cauchy_lib.Cauchy(loc=loc, scale=scale) cdf = cauchy.cdf(x) self.assertAllEqual(cauchy.batch_shape_tensor().eval(), cdf.shape) self.assertAllEqual(cauchy.batch_shape_tensor().eval(), cdf.eval().shape) self.assertAllEqual(cauchy.batch_shape, cdf.shape) self.assertAllEqual(cauchy.batch_shape, cdf.eval().shape) if not stats: return expected_cdf = stats.cauchy(loc, scale).cdf(x) self.assertAllClose(expected_cdf, cdf.eval(), atol=0) def testCauchySurvivalFunction(self): with self.cached_session(): batch_size = 50 loc = self._rng.randn(batch_size) scale = self._rng.rand(batch_size) + 1.0 x = np.linspace(-8.0, 8.0, batch_size).astype(np.float64) cauchy = cauchy_lib.Cauchy(loc=loc, scale=scale) sf = cauchy.survival_function(x) self.assertAllEqual(cauchy.batch_shape_tensor().eval(), sf.shape) self.assertAllEqual(cauchy.batch_shape_tensor().eval(), sf.eval().shape) self.assertAllEqual(cauchy.batch_shape, sf.shape) self.assertAllEqual(cauchy.batch_shape, sf.eval().shape) if not stats: return expected_sf = stats.cauchy(loc, scale).sf(x) self.assertAllClose(expected_sf, sf.eval(), atol=0) def testCauchyLogCDF(self): with self.cached_session(): batch_size = 50 loc = self._rng.randn(batch_size) scale = self._rng.rand(batch_size) + 1.0 x = np.linspace(-100.0, 10.0, batch_size).astype(np.float64) cauchy = cauchy_lib.Cauchy(loc=loc, scale=scale) cdf = cauchy.log_cdf(x) self.assertAllEqual(cauchy.batch_shape_tensor().eval(), cdf.shape) self.assertAllEqual(cauchy.batch_shape_tensor().eval(), cdf.eval().shape) self.assertAllEqual(cauchy.batch_shape, cdf.shape) self.assertAllEqual(cauchy.batch_shape, cdf.eval().shape) if not stats: return expected_cdf = stats.cauchy(loc, scale).logcdf(x) self.assertAllClose(expected_cdf, cdf.eval(), atol=0, rtol=1e-5) def testFiniteGradientAtDifficultPoints(self): for dtype in [np.float32, np.float64]: g = ops.Graph() with g.as_default(): loc = variables.Variable(dtype(0.0)) scale = variables.Variable(dtype(1.0)) dist = cauchy_lib.Cauchy(loc=loc, scale=scale) x = np.array([-100., -20., -5., 0., 5., 20., 100.]).astype(dtype) for func in [ dist.cdf, dist.log_cdf, dist.survival_function, dist.log_survival_function, dist.log_prob, dist.prob ]: value = func(x) grads = gradients_impl.gradients(value, [loc, scale]) with self.session(graph=g): variables.global_variables_initializer().run() self.assertAllFinite(value) self.assertAllFinite(grads[0]) self.assertAllFinite(grads[1]) def testCauchyLogSurvivalFunction(self): with self.cached_session(): batch_size = 50 loc = self._rng.randn(batch_size) scale = self._rng.rand(batch_size) + 1.0 x = np.linspace(-10.0, 100.0, batch_size).astype(np.float64) cauchy = cauchy_lib.Cauchy(loc=loc, scale=scale) sf = cauchy.log_survival_function(x) self.assertAllEqual(cauchy.batch_shape_tensor().eval(), sf.shape) self.assertAllEqual(cauchy.batch_shape_tensor().eval(), sf.eval().shape) self.assertAllEqual(cauchy.batch_shape, sf.shape) self.assertAllEqual(cauchy.batch_shape, sf.eval().shape) if not stats: return expected_sf = stats.cauchy(loc, scale).logsf(x) self.assertAllClose(expected_sf, sf.eval(), atol=0, rtol=1e-5) def testCauchyEntropy(self): with self.cached_session(): loc = np.array([1.0, 1.0, 1.0]) scale = np.array([[1.0, 2.0, 3.0]]) cauchy = cauchy_lib.Cauchy(loc=loc, scale=scale) entropy = cauchy.entropy() self.assertAllEqual(cauchy.batch_shape_tensor().eval(), entropy.shape) self.assertAllEqual(cauchy.batch_shape_tensor().eval(), entropy.eval().shape) self.assertAllEqual(cauchy.batch_shape, entropy.shape) self.assertAllEqual(cauchy.batch_shape, entropy.eval().shape) if not stats: return expected_entropy = stats.cauchy(loc, scale[0]).entropy().reshape((1, 3)) self.assertAllClose(expected_entropy, entropy.eval()) def testCauchyMode(self): with self.cached_session(): # Mu will be broadcast to [7, 7, 7]. loc = [7.] scale = [11., 12., 13.] cauchy = cauchy_lib.Cauchy(loc=loc, scale=scale) self.assertAllEqual((3,), cauchy.mode().shape) self.assertAllEqual([7., 7, 7], cauchy.mode().eval()) def testCauchyMean(self): with self.cached_session(): loc = [1., 2., 3.] scale = [7.] cauchy = cauchy_lib.Cauchy(loc=loc, scale=scale) self.assertAllEqual((3,), cauchy.mean().shape) self.assertAllEqual([np.nan] * 3, cauchy.mean().eval()) def testCauchyNanMean(self): with self.cached_session(): loc = [1., 2., 3.] scale = [7.] cauchy = cauchy_lib.Cauchy(loc=loc, scale=scale, allow_nan_stats=False) with self.assertRaises(ValueError): cauchy.mean().eval() def testCauchyQuantile(self): with self.cached_session(): batch_size = 50 loc = self._rng.randn(batch_size) scale = self._rng.rand(batch_size) + 1.0 p = np.linspace(0.000001, 0.999999, batch_size).astype(np.float64) cauchy = cauchy_lib.Cauchy(loc=loc, scale=scale) x = cauchy.quantile(p) self.assertAllEqual(cauchy.batch_shape_tensor().eval(), x.shape) self.assertAllEqual(cauchy.batch_shape_tensor().eval(), x.eval().shape) self.assertAllEqual(cauchy.batch_shape, x.shape) self.assertAllEqual(cauchy.batch_shape, x.eval().shape) if not stats: return expected_x = stats.cauchy(loc, scale).ppf(p) self.assertAllClose(expected_x, x.eval(), atol=0.) def testCauchyVariance(self): with self.cached_session(): # scale will be broadcast to [7, 7, 7] loc = [1., 2., 3.] scale = [7.] cauchy = cauchy_lib.Cauchy(loc=loc, scale=scale) self.assertAllEqual((3,), cauchy.variance().shape) self.assertAllEqual([np.nan] * 3, cauchy.variance().eval()) def testCauchyNanVariance(self): with self.cached_session(): # scale will be broadcast to [7, 7, 7] loc = [1., 2., 3.] scale = [7.] cauchy = cauchy_lib.Cauchy(loc=loc, scale=scale, allow_nan_stats=False) with self.assertRaises(ValueError): cauchy.variance().eval() def testCauchyStandardDeviation(self): with self.cached_session(): # scale will be broadcast to [7, 7, 7] loc = [1., 2., 3.] scale = [7.] cauchy = cauchy_lib.Cauchy(loc=loc, scale=scale) self.assertAllEqual((3,), cauchy.stddev().shape) self.assertAllEqual([np.nan] * 3, cauchy.stddev().eval()) def testCauchyNanStandardDeviation(self): with self.cached_session(): # scale will be broadcast to [7, 7, 7] loc = [1., 2., 3.] scale = [7.] cauchy = cauchy_lib.Cauchy(loc=loc, scale=scale, allow_nan_stats=False) with self.assertRaises(ValueError): cauchy.stddev().eval() def testCauchySample(self): with self.cached_session(): loc = constant_op.constant(3.0) scale = constant_op.constant(1.0) loc_v = 3.0 n = constant_op.constant(100000) cauchy = cauchy_lib.Cauchy(loc=loc, scale=scale) samples = cauchy.sample(n) sample_values = samples.eval() self.assertEqual(sample_values.shape, (100000,)) self.assertAllClose(np.median(sample_values), loc_v, atol=1e-1) expected_shape = tensor_shape.TensorShape([n.eval()]).concatenate( tensor_shape.TensorShape(cauchy.batch_shape_tensor().eval())) self.assertAllEqual(expected_shape, samples.shape) self.assertAllEqual(expected_shape, sample_values.shape) expected_shape = ( tensor_shape.TensorShape([n.eval()]).concatenate(cauchy.batch_shape)) self.assertAllEqual(expected_shape, samples.shape) self.assertAllEqual(expected_shape, sample_values.shape) def testCauchySampleMultiDimensional(self): with self.cached_session(): batch_size = 2 loc = constant_op.constant([[3.0, -3.0]] * batch_size) scale = constant_op.constant([[0.5, 1.0]] * batch_size) loc_v = [3.0, -3.0] n = constant_op.constant(100000) cauchy = cauchy_lib.Cauchy(loc=loc, scale=scale) samples = cauchy.sample(n) sample_values = samples.eval() self.assertEqual(samples.shape, (100000, batch_size, 2)) self.assertAllClose( np.median(sample_values[:, 0, 0]), loc_v[0], atol=1e-1) self.assertAllClose( np.median(sample_values[:, 0, 1]), loc_v[1], atol=1e-1) expected_shape = tensor_shape.TensorShape([n.eval()]).concatenate( tensor_shape.TensorShape(cauchy.batch_shape_tensor().eval())) self.assertAllEqual(expected_shape, samples.shape) self.assertAllEqual(expected_shape, sample_values.shape) expected_shape = ( tensor_shape.TensorShape([n.eval()]).concatenate(cauchy.batch_shape)) self.assertAllEqual(expected_shape, samples.shape) self.assertAllEqual(expected_shape, sample_values.shape) def testCauchyNegativeLocFails(self): with self.cached_session(): with self.assertRaisesWithPredicateMatch(errors.InvalidArgumentError, "Condition x > 0 did not hold"): _ = cauchy_lib.Cauchy(loc=[1.], scale=[-5.], validate_args=True) # Error detected statically; no need for _.mode().eval() def testCauchyShape(self): with self.cached_session(): loc = constant_op.constant([-3.0] * 5) scale = constant_op.constant(11.0) cauchy = cauchy_lib.Cauchy(loc=loc, scale=scale) self.assertEqual(cauchy.batch_shape_tensor().eval(), [5]) self.assertEqual(cauchy.batch_shape, tensor_shape.TensorShape([5])) self.assertAllEqual(cauchy.event_shape_tensor().eval(), []) self.assertEqual(cauchy.event_shape, tensor_shape.TensorShape([])) def testCauchyShapeWithPlaceholders(self): loc = array_ops.placeholder(dtype=dtypes.float32) scale = array_ops.placeholder(dtype=dtypes.float32) cauchy = cauchy_lib.Cauchy(loc=loc, scale=scale) with self.cached_session() as sess: # get_batch_shape should return an "<unknown>" tensor. self.assertEqual(cauchy.batch_shape, tensor_shape.TensorShape(None)) self.assertEqual(cauchy.event_shape, ()) self.assertAllEqual(cauchy.event_shape_tensor().eval(), []) self.assertAllEqual( sess.run( cauchy.batch_shape_tensor(), feed_dict={ loc: 5.0, scale: [1.0, 2.0] }), [2]) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/cauchy_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for MultivariateNormal.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from scipy import stats from tensorflow.contrib import distributions from tensorflow.contrib.distributions.python.ops import bijectors from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.platform import test ds = distributions class MultivariateNormalDiagTest(test.TestCase): """Well tested because this is a simple override of the base class.""" def setUp(self): self._rng = np.random.RandomState(42) def testScalarParams(self): mu = -1. diag = -5. with self.cached_session(): with self.assertRaisesRegexp(ValueError, "at least 1 dimension"): ds.MultivariateNormalDiag(mu, diag) def testVectorParams(self): mu = [-1.] diag = [-5.] with self.cached_session(): dist = ds.MultivariateNormalDiag(mu, diag, validate_args=True) self.assertAllEqual([3, 1], dist.sample(3).get_shape()) def testDistWithBatchShapeOneThenTransformedThroughSoftplus(self): # This complex combination of events resulted in a loss of static shape # information when tensor_util.constant_value(self._needs_rotation) was # being used incorrectly (resulting in always rotating). # Batch shape = [1], event shape = [3] mu = array_ops.zeros((1, 3)) diag = array_ops.ones((1, 3)) with self.cached_session(): base_dist = ds.MultivariateNormalDiag(mu, diag, validate_args=True) dist = ds.TransformedDistribution( base_dist, validate_args=True, bijector=bijectors.Softplus()) samps = dist.sample(5) # Shape [5, 1, 3]. self.assertAllEqual([5, 1], dist.log_prob(samps).get_shape()) def testMean(self): mu = [-1., 1] diag = [1., -5] with self.cached_session(): dist = ds.MultivariateNormalDiag(mu, diag, validate_args=True) self.assertAllEqual(mu, dist.mean().eval()) def testMeanWithBroadcastLoc(self): mu = [-1.] diag = [1., -5] with self.cached_session(): dist = ds.MultivariateNormalDiag(mu, diag, validate_args=True) self.assertAllEqual([-1., -1.], dist.mean().eval()) def testEntropy(self): mu = [-1., 1] diag = [-1., 5] diag_mat = np.diag(diag) scipy_mvn = stats.multivariate_normal(mean=mu, cov=diag_mat**2) with self.cached_session(): dist = ds.MultivariateNormalDiag(mu, diag, validate_args=True) self.assertAllClose(scipy_mvn.entropy(), dist.entropy().eval(), atol=1e-4) def testSample(self): mu = [-1., 1] diag = [1., -2] with self.cached_session(): dist = ds.MultivariateNormalDiag(mu, diag, validate_args=True) samps = dist.sample(int(1e3), seed=0).eval() cov_mat = array_ops.matrix_diag(diag).eval()**2 self.assertAllClose(mu, samps.mean(axis=0), atol=0., rtol=0.05) self.assertAllClose(cov_mat, np.cov(samps.T), atol=0.05, rtol=0.05) def testSingularScaleRaises(self): mu = [-1., 1] diag = [1., 0] with self.cached_session(): dist = ds.MultivariateNormalDiag(mu, diag, validate_args=True) with self.assertRaisesOpError("Singular"): dist.sample().eval() def testSampleWithBroadcastScale(self): # mu corresponds to a 2-batch of 3-variate normals mu = np.zeros([2, 3]) # diag corresponds to no batches of 3-variate normals diag = np.ones([3]) with self.cached_session(): dist = ds.MultivariateNormalDiag(mu, diag, validate_args=True) mean = dist.mean() self.assertAllEqual([2, 3], mean.get_shape()) self.assertAllClose(mu, mean.eval()) n = int(1e3) samps = dist.sample(n, seed=0).eval() cov_mat = array_ops.matrix_diag(diag).eval()**2 sample_cov = np.matmul( samps.transpose([1, 2, 0]), samps.transpose([1, 0, 2])) / n self.assertAllClose(mu, samps.mean(axis=0), atol=0.10, rtol=0.05) self.assertAllClose([cov_mat, cov_mat], sample_cov, atol=0.10, rtol=0.05) def testCovariance(self): with self.cached_session(): mvn = ds.MultivariateNormalDiag( loc=array_ops.zeros([2, 3], dtype=dtypes.float32)) self.assertAllClose( np.diag(np.ones([3], dtype=np.float32)), mvn.covariance().eval()) mvn = ds.MultivariateNormalDiag( loc=array_ops.zeros([3], dtype=dtypes.float32), scale_identity_multiplier=[3., 2.]) self.assertAllEqual([2], mvn.batch_shape) self.assertAllEqual([3], mvn.event_shape) self.assertAllClose( np.array([[[3., 0, 0], [0, 3, 0], [0, 0, 3]], [[2, 0, 0], [0, 2, 0], [0, 0, 2]]])**2., mvn.covariance().eval()) mvn = ds.MultivariateNormalDiag( loc=array_ops.zeros([3], dtype=dtypes.float32), scale_diag=[[3., 2, 1], [4, 5, 6]]) self.assertAllEqual([2], mvn.batch_shape) self.assertAllEqual([3], mvn.event_shape) self.assertAllClose( np.array([[[3., 0, 0], [0, 2, 0], [0, 0, 1]], [[4, 0, 0], [0, 5, 0], [0, 0, 6]]])**2., mvn.covariance().eval()) def testVariance(self): with self.cached_session(): mvn = ds.MultivariateNormalDiag( loc=array_ops.zeros([2, 3], dtype=dtypes.float32)) self.assertAllClose(np.ones([3], dtype=np.float32), mvn.variance().eval()) mvn = ds.MultivariateNormalDiag( loc=array_ops.zeros([3], dtype=dtypes.float32), scale_identity_multiplier=[3., 2.]) self.assertAllClose( np.array([[3., 3, 3], [2, 2, 2]])**2., mvn.variance().eval()) mvn = ds.MultivariateNormalDiag( loc=array_ops.zeros([3], dtype=dtypes.float32), scale_diag=[[3., 2, 1], [4, 5, 6]]) self.assertAllClose( np.array([[3., 2, 1], [4, 5, 6]])**2., mvn.variance().eval()) def testStddev(self): with self.cached_session(): mvn = ds.MultivariateNormalDiag( loc=array_ops.zeros([2, 3], dtype=dtypes.float32)) self.assertAllClose(np.ones([3], dtype=np.float32), mvn.stddev().eval()) mvn = ds.MultivariateNormalDiag( loc=array_ops.zeros([3], dtype=dtypes.float32), scale_identity_multiplier=[3., 2.]) self.assertAllClose( np.array([[3., 3, 3], [2, 2, 2]]), mvn.stddev().eval()) mvn = ds.MultivariateNormalDiag( loc=array_ops.zeros([3], dtype=dtypes.float32), scale_diag=[[3., 2, 1], [4, 5, 6]]) self.assertAllClose( np.array([[3., 2, 1], [4, 5, 6]]), mvn.stddev().eval()) def testMultivariateNormalDiagWithSoftplusScale(self): mu = [-1.0, 1.0] diag = [-1.0, -2.0] with self.cached_session(): dist = ds.MultivariateNormalDiagWithSoftplusScale( mu, diag, validate_args=True) samps = dist.sample(1000, seed=0).eval() cov_mat = array_ops.matrix_diag(nn_ops.softplus(diag)).eval()**2 self.assertAllClose(mu, samps.mean(axis=0), atol=0.1) self.assertAllClose(cov_mat, np.cov(samps.T), atol=0.1) def testMultivariateNormalDiagNegLogLikelihood(self): num_draws = 50 dims = 3 with self.cached_session() as sess: x_pl = array_ops.placeholder( dtype=dtypes.float32, shape=[None, dims], name="x") mu_var = variable_scope.get_variable( name="mu", shape=[dims], dtype=dtypes.float32, initializer=init_ops.constant_initializer(1.)) sess.run([variables.global_variables_initializer()]) mvn = ds.MultivariateNormalDiag( loc=mu_var, scale_diag=array_ops.ones(shape=[dims], dtype=dtypes.float32)) # Typically you'd use `mvn.log_prob(x_pl)` which is always at least as # numerically stable as `tf.math.log(mvn.prob(x_pl))`. However in this # test we're testing a bug specific to `prob` and not `log_prob`; # http://stackoverflow.com/q/45109305. (The underlying issue was not # related to `Distributions` but that `reduce_prod` didn't correctly # handle negative indexes.) neg_log_likelihood = -math_ops.reduce_sum(math_ops.log(mvn.prob(x_pl))) grad_neg_log_likelihood = gradients_impl.gradients( neg_log_likelihood, variables.trainable_variables()) x = np.zeros([num_draws, dims], dtype=np.float32) grad_neg_log_likelihood_ = sess.run( grad_neg_log_likelihood, feed_dict={x_pl: x}) self.assertEqual(1, len(grad_neg_log_likelihood_)) self.assertAllClose( grad_neg_log_likelihood_[0], np.tile(num_draws, dims), rtol=1e-6, atol=0.) def testDynamicBatchShape(self): mvn = ds.MultivariateNormalDiag( loc=array_ops.placeholder(dtypes.float32, shape=[None, None, 2]), scale_diag=array_ops.placeholder(dtypes.float32, shape=[None, None, 2])) self.assertListEqual(mvn.batch_shape.as_list(), [None, None]) self.assertListEqual(mvn.event_shape.as_list(), [2]) def testDynamicEventShape(self): mvn = ds.MultivariateNormalDiag( loc=array_ops.placeholder(dtypes.float32, shape=[2, 3, None]), scale_diag=array_ops.placeholder(dtypes.float32, shape=[2, 3, None])) self.assertListEqual(mvn.batch_shape.as_list(), [2, 3]) self.assertListEqual(mvn.event_shape.as_list(), [None]) def testKLDivIdenticalGradientDefined(self): dims = 3 with self.cached_session() as sess: loc = array_ops.zeros([dims], dtype=dtypes.float32) mvn = ds.MultivariateNormalDiag( loc=loc, scale_diag=np.ones([dims], dtype=np.float32)) g = gradients_impl.gradients(ds.kl_divergence(mvn, mvn), loc) g_ = sess.run(g) self.assertAllEqual(np.ones_like(g_, dtype=np.bool), np.isfinite(g_)) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/mvn_diag_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import autoregressive as autoregressive_lib from tensorflow.contrib.distributions.python.ops import independent as independent_lib from tensorflow.contrib.distributions.python.ops import test_util from tensorflow.contrib.distributions.python.ops.bijectors.affine import Affine from tensorflow.contrib.distributions.python.ops.bijectors.masked_autoregressive import MaskedAutoregressiveFlow from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.distributions import normal as normal_lib from tensorflow.python.ops.distributions import transformed_distribution as transformed_distribution_lib from tensorflow.python.ops.distributions import util as distribution_util from tensorflow.python.platform import test class AutogressiveTest(test_util.VectorDistributionTestHelpers, test.TestCase): """Tests the Autoregressive distribution.""" def setUp(self): self._rng = np.random.RandomState(42) def _random_scale_tril(self, event_size): n = np.int32(event_size * (event_size + 1) // 2) p = 2. * self._rng.random_sample(n).astype(np.float32) - 1. return distribution_util.fill_triangular(0.25 * p) def _normal_fn(self, affine_bijector): def _fn(samples): scale = math_ops.exp(affine_bijector.forward(samples)) return independent_lib.Independent( normal_lib.Normal(loc=0., scale=scale, validate_args=True), reinterpreted_batch_ndims=1) return _fn def testSampleAndLogProbConsistency(self): batch_shape = [] event_size = 2 with self.cached_session() as sess: batch_event_shape = np.concatenate([batch_shape, [event_size]], axis=0) sample0 = array_ops.zeros(batch_event_shape) affine = Affine(scale_tril=self._random_scale_tril(event_size)) ar = autoregressive_lib.Autoregressive( self._normal_fn(affine), sample0, validate_args=True) self.run_test_sample_consistent_log_prob( sess.run, ar, radius=1., center=0., rtol=0.01) def testCompareToBijector(self): """Demonstrates equivalence between TD, Bijector approach and AR dist.""" sample_shape = np.int32([4, 5]) batch_shape = np.int32([]) event_size = np.int32(2) with self.cached_session() as sess: batch_event_shape = np.concatenate([batch_shape, [event_size]], axis=0) sample0 = array_ops.zeros(batch_event_shape) affine = Affine(scale_tril=self._random_scale_tril(event_size)) ar = autoregressive_lib.Autoregressive( self._normal_fn(affine), sample0, validate_args=True) ar_flow = MaskedAutoregressiveFlow( is_constant_jacobian=True, shift_and_log_scale_fn=lambda x: [None, affine.forward(x)], validate_args=True) td = transformed_distribution_lib.TransformedDistribution( distribution=normal_lib.Normal(loc=0., scale=1.), bijector=ar_flow, event_shape=[event_size], batch_shape=batch_shape, validate_args=True) x_shape = np.concatenate( [sample_shape, batch_shape, [event_size]], axis=0) x = 2. * self._rng.random_sample(x_shape).astype(np.float32) - 1. td_log_prob_, ar_log_prob_ = sess.run([td.log_prob(x), ar.log_prob(x)]) self.assertAllClose(td_log_prob_, ar_log_prob_, atol=0., rtol=1e-6) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/autoregressive_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for utility functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import numpy as np from tensorflow.contrib.distributions.python.ops import distribution_util from tensorflow.contrib.distributions.python.ops import mixture from tensorflow.contrib.distributions.python.ops import mixture_same_family from tensorflow.contrib.distributions.python.ops import mvn_diag from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops.distributions import categorical from tensorflow.python.ops.distributions import normal from tensorflow.python.ops.linalg import linear_operator_diag import tensorflow.python.ops.nn_grad # pylint: disable=unused-import from tensorflow.python.platform import test def _powerset(x): s = list(x) return itertools.chain.from_iterable( itertools.combinations(s, r) for r in range(len(s) + 1)) def _matrix_diag(d): """Batch version of np.diag.""" orig_shape = d.shape d = np.reshape(d, (int(np.prod(d.shape[:-1])), d.shape[-1])) diag_list = [] for i in range(d.shape[0]): diag_list.append(np.diag(d[i, ...])) return np.reshape(diag_list, orig_shape + (d.shape[-1],)) def _make_tril_scale( loc=None, scale_tril=None, scale_diag=None, scale_identity_multiplier=None, shape_hint=None): if scale_tril is not None: scale_tril = np.tril(scale_tril) if scale_diag is not None: scale_tril += _matrix_diag(np.array(scale_diag, dtype=np.float32)) if scale_identity_multiplier is not None: scale_tril += ( scale_identity_multiplier * _matrix_diag(np.ones( [scale_tril.shape[-1]], dtype=np.float32))) return scale_tril return _make_diag_scale( loc, scale_diag, scale_identity_multiplier, shape_hint) def _make_diag_scale( loc=None, scale_diag=None, scale_identity_multiplier=None, shape_hint=None): if scale_diag is not None: scale_diag = np.asarray(scale_diag) if scale_identity_multiplier is not None: scale_diag += scale_identity_multiplier return _matrix_diag(scale_diag) if loc is None and shape_hint is None: return None if shape_hint is None: shape_hint = loc.shape[-1] if scale_identity_multiplier is None: scale_identity_multiplier = 1. return scale_identity_multiplier * np.diag(np.ones(shape_hint)) class MakeTrilScaleTest(test.TestCase): def _testLegalInputs( self, loc=None, shape_hint=None, scale_params=None): for args in _powerset(scale_params.items()): with self.cached_session(): args = dict(args) scale_args = dict({ "loc": loc, "shape_hint": shape_hint}, **args) expected_scale = _make_tril_scale(**scale_args) if expected_scale is None: # Not enough shape information was specified. with self.assertRaisesRegexp(ValueError, ("is specified.")): scale = distribution_util.make_tril_scale(**scale_args) scale.to_dense().eval() else: scale = distribution_util.make_tril_scale(**scale_args) self.assertAllClose(expected_scale, scale.to_dense().eval()) def testLegalInputs(self): self._testLegalInputs( loc=np.array([-1., -1.], dtype=np.float32), shape_hint=2, scale_params={ "scale_identity_multiplier": 2., "scale_diag": [2., 3.], "scale_tril": [[1., 0.], [-3., 3.]], }) def testLegalInputsMultidimensional(self): self._testLegalInputs( loc=np.array([[[-1., -1., 2.], [-2., -3., 4.]]], dtype=np.float32), shape_hint=3, scale_params={ "scale_identity_multiplier": 2., "scale_diag": [[[2., 3., 4.], [3., 4., 5.]]], "scale_tril": [[[[1., 0., 0.], [-3., 3., 0.], [1., -2., 1.]], [[2., 1., 0.], [-4., 7., 0.], [1., -1., 1.]]]] }) def testZeroTriU(self): with self.cached_session(): scale = distribution_util.make_tril_scale(scale_tril=[[1., 1], [1., 1.]]) self.assertAllClose([[1., 0], [1., 1.]], scale.to_dense().eval()) def testValidateArgs(self): with self.cached_session(): with self.assertRaisesOpError("diagonal part must be non-zero"): scale = distribution_util.make_tril_scale( scale_tril=[[0., 1], [1., 1.]], validate_args=True) scale.to_dense().eval() def testAssertPositive(self): with self.cached_session(): with self.assertRaisesOpError("diagonal part must be positive"): scale = distribution_util.make_tril_scale( scale_tril=[[-1., 1], [1., 1.]], validate_args=True, assert_positive=True) scale.to_dense().eval() class MakeDiagScaleTest(test.TestCase): def _testLegalInputs( self, loc=None, shape_hint=None, scale_params=None): for args in _powerset(scale_params.items()): with self.cached_session(): args = dict(args) scale_args = dict({ "loc": loc, "shape_hint": shape_hint}, **args) expected_scale = _make_diag_scale(**scale_args) if expected_scale is None: # Not enough shape information was specified. with self.assertRaisesRegexp(ValueError, ("is specified.")): scale = distribution_util.make_diag_scale(**scale_args) scale.to_dense().eval() else: scale = distribution_util.make_diag_scale(**scale_args) self.assertAllClose(expected_scale, scale.to_dense().eval()) def testLegalInputs(self): self._testLegalInputs( loc=np.array([-1., -1.], dtype=np.float32), shape_hint=2, scale_params={ "scale_identity_multiplier": 2., "scale_diag": [2., 3.] }) def testLegalInputsMultidimensional(self): self._testLegalInputs( loc=np.array([[[-1., -1., 2.], [-2., -3., 4.]]], dtype=np.float32), shape_hint=3, scale_params={ "scale_identity_multiplier": 2., "scale_diag": [[[2., 3., 4.], [3., 4., 5.]]] }) def testValidateArgs(self): with self.cached_session(): with self.assertRaisesOpError("diagonal part must be non-zero"): scale = distribution_util.make_diag_scale( scale_diag=[[0., 1], [1., 1.]], validate_args=True) scale.to_dense().eval() def testAssertPositive(self): with self.cached_session(): with self.assertRaisesOpError("diagonal part must be positive"): scale = distribution_util.make_diag_scale( scale_diag=[[-1., 1], [1., 1.]], validate_args=True, assert_positive=True) scale.to_dense().eval() class ShapesFromLocAndScaleTest(test.TestCase): def test_static_loc_static_scale_non_matching_event_size_raises(self): loc = constant_op.constant(np.zeros((2, 4))) scale = linear_operator_diag.LinearOperatorDiag(np.ones((5, 1, 3))) with self.assertRaisesRegexp(ValueError, "could not be broadcast"): distribution_util.shapes_from_loc_and_scale(loc, scale) def test_static_loc_static_scale(self): loc = constant_op.constant(np.zeros((2, 3))) scale = linear_operator_diag.LinearOperatorDiag(np.ones((5, 1, 3))) batch_shape, event_shape = distribution_util.shapes_from_loc_and_scale( loc, scale) self.assertEqual(tensor_shape.TensorShape([5, 2]), batch_shape) self.assertEqual(tensor_shape.TensorShape([3]), event_shape) def test_static_loc_dynamic_scale(self): loc = constant_op.constant(np.zeros((2, 3))) diag = array_ops.placeholder(dtypes.float64) scale = linear_operator_diag.LinearOperatorDiag(diag) with self.cached_session() as sess: batch_shape, event_shape = sess.run( distribution_util.shapes_from_loc_and_scale(loc, scale), feed_dict={diag: np.ones((5, 1, 3))}) self.assertAllEqual([5, 2], batch_shape) self.assertAllEqual([3], event_shape) def test_dynamic_loc_static_scale(self): loc = array_ops.placeholder(dtypes.float64) diag = constant_op.constant(np.ones((5, 2, 3))) scale = linear_operator_diag.LinearOperatorDiag(diag) with self.cached_session(): batch_shape, event_shape = distribution_util.shapes_from_loc_and_scale( loc, scale) # batch_shape depends on both args, and so is dynamic. Since loc did not # have static shape, we inferred event shape entirely from scale, and this # is available statically. self.assertAllEqual( [5, 2], batch_shape.eval(feed_dict={loc: np.zeros((2, 3))})) self.assertAllEqual([3], event_shape) def test_dynamic_loc_dynamic_scale(self): loc = array_ops.placeholder(dtypes.float64) diag = array_ops.placeholder(dtypes.float64) scale = linear_operator_diag.LinearOperatorDiag(diag) with self.cached_session() as sess: batch_shape, event_shape = sess.run( distribution_util.shapes_from_loc_and_scale(loc, scale), feed_dict={diag: np.ones((5, 2, 3)), loc: np.zeros((2, 3))}) self.assertAllEqual([5, 2], batch_shape) self.assertAllEqual([3], event_shape) def test_none_loc_static_scale(self): loc = None scale = linear_operator_diag.LinearOperatorDiag(np.ones((5, 1, 3))) batch_shape, event_shape = distribution_util.shapes_from_loc_and_scale( loc, scale) self.assertEqual(tensor_shape.TensorShape([5, 1]), batch_shape) self.assertEqual(tensor_shape.TensorShape([3]), event_shape) def test_none_loc_dynamic_scale(self): loc = None diag = array_ops.placeholder(dtypes.float64) scale = linear_operator_diag.LinearOperatorDiag(diag) with self.cached_session() as sess: batch_shape, event_shape = sess.run( distribution_util.shapes_from_loc_and_scale(loc, scale), feed_dict={diag: np.ones((5, 1, 3))}) self.assertAllEqual([5, 1], batch_shape) self.assertAllEqual([3], event_shape) class GetBroadcastShapeTest(test.TestCase): def test_all_static_shapes_work(self): x = array_ops.ones((2, 1, 3)) y = array_ops.ones((1, 5, 3)) z = array_ops.ones(()) self.assertAllEqual([2, 5, 3], distribution_util.get_broadcast_shape(x, y, z)) def test_with_some_dynamic_shapes_works(self): x = array_ops.ones((2, 1, 3)) y = array_ops.placeholder(x.dtype) z = array_ops.ones(()) with self.cached_session() as sess: bcast_shape = sess.run( distribution_util.get_broadcast_shape(x, y, z), feed_dict={y: np.ones((1, 5, 3)).astype(np.float32)}) self.assertAllEqual([2, 5, 3], bcast_shape) class TridiagTest(test.TestCase): def testWorksCorrectlyNoBatches(self): with self.cached_session(): self.assertAllEqual( [[4., 8., 0., 0.], [1., 5., 9., 0.], [0., 2., 6., 10.], [0., 0., 3, 7.]], distribution_util.tridiag( [1., 2., 3.], [4., 5., 6., 7.], [8., 9., 10.]).eval()) def testWorksCorrectlyBatches(self): with self.cached_session(): self.assertAllClose( [[[4., 8., 0., 0.], [1., 5., 9., 0.], [0., 2., 6., 10.], [0., 0., 3, 7.]], [[0.7, 0.1, 0.0, 0.0], [0.8, 0.6, 0.2, 0.0], [0.0, 0.9, 0.5, 0.3], [0.0, 0.0, 1.0, 0.4]]], distribution_util.tridiag( [[1., 2., 3.], [0.8, 0.9, 1.]], [[4., 5., 6., 7.], [0.7, 0.6, 0.5, 0.4]], [[8., 9., 10.], [0.1, 0.2, 0.3]]).eval(), rtol=1e-5, atol=0.) def testHandlesNone(self): with self.cached_session(): self.assertAllClose( [[[4., 0., 0., 0.], [0., 5., 0., 0.], [0., 0., 6., 0.], [0., 0., 0, 7.]], [[0.7, 0.0, 0.0, 0.0], [0.0, 0.6, 0.0, 0.0], [0.0, 0.0, 0.5, 0.0], [0.0, 0.0, 0.0, 0.4]]], distribution_util.tridiag( diag=[[4., 5., 6., 7.], [0.7, 0.6, 0.5, 0.4]]).eval(), rtol=1e-5, atol=0.) class MixtureStddevTest(test.TestCase): def test_mixture_dev(self): mixture_weights = np.array([ [1.0/3, 1.0/3, 1.0/3], [0.750, 0.250, 0.000] ]) component_means = np.array([ [1.0, 1.0, 1.0], [-5, 0, 1.25] ]) component_devs = np.array([ [1.0, 1.0, 1.0], [0.01, 2.0, 0.1] ]) # The first case should trivially have a standard deviation of 1.0 because # all components are identical and have that standard deviation. # The second case was computed by hand. expected_devs = np.array([ 1.0, 2.3848637277 ]) weights_tf = array_ops.constant(mixture_weights) means_tf = array_ops.constant(component_means) sigmas_tf = array_ops.constant(component_devs) mix_dev = distribution_util.mixture_stddev(weights_tf, means_tf, sigmas_tf) with self.cached_session() as sess: actual_devs = sess.run(mix_dev) self.assertAllClose(actual_devs, expected_devs) class PadMixtureDimensionsTest(test.TestCase): def test_pad_mixture_dimensions_mixture(self): with self.cached_session() as sess: gm = mixture.Mixture( cat=categorical.Categorical(probs=[[0.3, 0.7]]), components=[ normal.Normal(loc=[-1.0], scale=[1.0]), normal.Normal(loc=[1.0], scale=[0.5]) ]) x = array_ops.constant([[1.0, 2.0], [3.0, 4.0]]) x_pad = distribution_util.pad_mixture_dimensions( x, gm, gm.cat, gm.event_shape.ndims) x_out, x_pad_out = sess.run([x, x_pad]) self.assertAllEqual(x_pad_out.shape, [2, 2]) self.assertAllEqual(x_out.reshape([-1]), x_pad_out.reshape([-1])) def test_pad_mixture_dimensions_mixture_same_family(self): with self.cached_session() as sess: gm = mixture_same_family.MixtureSameFamily( mixture_distribution=categorical.Categorical(probs=[0.3, 0.7]), components_distribution=mvn_diag.MultivariateNormalDiag( loc=[[-1., 1], [1, -1]], scale_identity_multiplier=[1.0, 0.5])) x = array_ops.constant([[1.0, 2.0], [3.0, 4.0]]) x_pad = distribution_util.pad_mixture_dimensions( x, gm, gm.mixture_distribution, gm.event_shape.ndims) x_out, x_pad_out = sess.run([x, x_pad]) self.assertAllEqual(x_pad_out.shape, [2, 2, 1]) self.assertAllEqual(x_out.reshape([-1]), x_pad_out.reshape([-1])) class _PadTest(object): def testNegAxisCorrectness(self): x_ = np.float32([[1., 2, 3], [4, 5, 6]]) value_ = np.float32(0.25) count_ = np.int32(2) with self.cached_session() as sess: x = array_ops.placeholder_with_default( x_, shape=x_.shape if self.is_static_shape else None) value = (constant_op.constant(value_) if self.is_static_shape else array_ops.placeholder_with_default(value_, shape=None)) count = (constant_op.constant(count_) if self.is_static_shape else array_ops.placeholder_with_default(count_, shape=None)) x0_front = distribution_util.pad( x, axis=-2, value=value, count=count, front=True) x0_back = distribution_util.pad( x, axis=-2, count=count, back=True) x0_both = distribution_util.pad( x, axis=-2, value=value, front=True, back=True) if self.is_static_shape: self.assertAllEqual([4, 3], x0_front.shape) self.assertAllEqual([4, 3], x0_back.shape) self.assertAllEqual([4, 3], x0_both.shape) [x0_front_, x0_back_, x0_both_] = sess.run([ x0_front, x0_back, x0_both]) self.assertAllClose( np.float32([[value_]*3, [value_]*3, [1, 2, 3], [4, 5, 6]]), x0_front_, atol=0., rtol=1e-6) self.assertAllClose( np.float32([[1, 2, 3], [4, 5, 6], [0.]*3, [0.]*3]), x0_back_, atol=0., rtol=1e-6) self.assertAllClose( np.float32([[value_]*3, [1, 2, 3], [4, 5, 6], [value_]*3]), x0_both_, atol=0., rtol=1e-6) def testPosAxisCorrectness(self): x_ = np.float32([[1., 2, 3], [4, 5, 6]]) value_ = np.float32(0.25) count_ = np.int32(2) with self.cached_session() as sess: x = array_ops.placeholder_with_default( x_, shape=x_.shape if self.is_static_shape else None) value = (constant_op.constant(value_) if self.is_static_shape else array_ops.placeholder_with_default(value_, shape=None)) count = (constant_op.constant(count_) if self.is_static_shape else array_ops.placeholder_with_default(count_, shape=None)) x1_front = distribution_util.pad( x, axis=1, value=value, count=count, front=True) x1_back = distribution_util.pad( x, axis=1, count=count, back=True) x1_both = distribution_util.pad( x, axis=1, value=value, front=True, back=True) if self.is_static_shape: self.assertAllEqual([2, 5], x1_front.shape) self.assertAllEqual([2, 5], x1_back.shape) self.assertAllEqual([2, 5], x1_both.shape) [x1_front_, x1_back_, x1_both_] = sess.run([ x1_front, x1_back, x1_both]) self.assertAllClose( np.float32([[value_]*2 + [1, 2, 3], [value_]*2 + [4, 5, 6]]), x1_front_, atol=0., rtol=1e-6) self.assertAllClose( np.float32([[1, 2, 3] + [0.]*2, [4, 5, 6] + [0.]*2]), x1_back_, atol=0., rtol=1e-6) self.assertAllClose( np.float32([[value_, 1, 2, 3, value_], [value_, 4, 5, 6, value_]]), x1_both_, atol=0., rtol=1e-6) class PadStaticTest(_PadTest, test.TestCase): @property def is_static_shape(self): return True class PadDynamicTest(_PadTest, test.TestCase): @property def is_static_shape(self): return False @test_util.run_all_in_graph_and_eager_modes class TestMoveDimension(test.TestCase): def test_move_dimension_static_shape(self): x = random_ops.random_normal(shape=[200, 30, 4, 1, 6]) x_perm = distribution_util.move_dimension(x, 1, 1) self.assertAllEqual(x_perm.shape.as_list(), [200, 30, 4, 1, 6]) x_perm = distribution_util.move_dimension(x, 0, 3) self.assertAllEqual(x_perm.shape.as_list(), [30, 4, 1, 200, 6]) x_perm = distribution_util.move_dimension(x, 0, -2) self.assertAllEqual(x_perm.shape.as_list(), [30, 4, 1, 200, 6]) x_perm = distribution_util.move_dimension(x, 4, 2) self.assertAllEqual(x_perm.shape.as_list(), [200, 30, 6, 4, 1]) def test_move_dimension_dynamic_shape(self): x_ = random_ops.random_normal(shape=[200, 30, 4, 1, 6]) x = array_ops.placeholder_with_default(input=x_, shape=None) x_perm = distribution_util.move_dimension(x, 1, 1) self.assertAllEqual(self.evaluate(array_ops.shape(x_perm)), [200, 30, 4, 1, 6]) x_perm = distribution_util.move_dimension(x, 0, 3) self.assertAllEqual(self.evaluate(array_ops.shape(x_perm)), [30, 4, 1, 200, 6]) x_perm = distribution_util.move_dimension(x, 0, -2) self.assertAllEqual(self.evaluate(array_ops.shape(x_perm)), [30, 4, 1, 200, 6]) x_perm = distribution_util.move_dimension(x, 4, 2) self.assertAllEqual(self.evaluate(array_ops.shape(x_perm)), [200, 30, 6, 4, 1]) x_perm = distribution_util.move_dimension(x, -1, 2) self.assertAllEqual(self.evaluate(array_ops.shape(x_perm)), [200, 30, 6, 4, 1]) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/distribution_util_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for VectorExponentialLinearOperator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib import distributions from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.platform import test ds = distributions class VectorExponentialDiagTest(test.TestCase): """Well tested because this is a simple override of the base class.""" def setUp(self): self._rng = np.random.RandomState(42) def testScalarParams(self): mu = -1. diag = -5. with self.cached_session(): with self.assertRaisesRegexp(ValueError, "at least 1 dimension"): ds.VectorExponentialDiag(mu, diag) def testVectorParams(self): mu = [-1.] diag = [-5.] with self.cached_session(): dist = ds.VectorExponentialDiag(mu, diag, validate_args=True) self.assertAllEqual([3, 1], dist.sample(3).get_shape()) def testMean(self): mu = [-1., 1] diag = [1., -5] with self.cached_session(): dist = ds.VectorExponentialDiag(mu, diag, validate_args=True) self.assertAllEqual([-1. + 1., 1. - 5.], dist.mean().eval()) def testMode(self): mu = [-1.] diag = [1., -5] with self.cached_session(): dist = ds.VectorExponentialDiag(mu, diag, validate_args=True) self.assertAllEqual([-1., -1.], dist.mode().eval()) def testMeanWithBroadcastLoc(self): mu = [-1.] diag = [1., -5] with self.cached_session(): dist = ds.VectorExponentialDiag(mu, diag, validate_args=True) self.assertAllEqual([-1. + 1, -1. - 5], dist.mean().eval()) def testSample(self): mu = [-2., 1] diag = [1., -2] with self.cached_session(): dist = ds.VectorExponentialDiag(mu, diag, validate_args=True) samps = dist.sample(int(1e4), seed=0).eval() cov_mat = array_ops.matrix_diag(diag).eval()**2 self.assertAllClose([-2 + 1, 1. - 2], samps.mean(axis=0), atol=0., rtol=0.05) self.assertAllClose(cov_mat, np.cov(samps.T), atol=0.05, rtol=0.05) def testSingularScaleRaises(self): mu = [-1., 1] diag = [1., 0] with self.cached_session(): dist = ds.VectorExponentialDiag(mu, diag, validate_args=True) with self.assertRaisesOpError("Singular"): dist.sample().eval() def testSampleWithBroadcastScale(self): # mu corresponds to a 2-batch of 3-variate normals mu = np.zeros([2, 3]) # diag corresponds to no batches of 3-variate normals diag = np.ones([3]) with self.cached_session(): dist = ds.VectorExponentialDiag(mu, diag, validate_args=True) mean = dist.mean() self.assertAllEqual([2, 3], mean.get_shape()) self.assertAllClose(mu + diag, mean.eval()) n = int(1e4) samps = dist.sample(n, seed=0).eval() samps_centered = samps - samps.mean(axis=0) cov_mat = array_ops.matrix_diag(diag).eval()**2 sample_cov = np.matmul(samps_centered.transpose([1, 2, 0]), samps_centered.transpose([1, 0, 2])) / n self.assertAllClose(mu + diag, samps.mean(axis=0), atol=0.10, rtol=0.05) self.assertAllClose([cov_mat, cov_mat], sample_cov, atol=0.10, rtol=0.05) def testCovariance(self): with self.cached_session(): vex = ds.VectorExponentialDiag( loc=array_ops.ones([2, 3], dtype=dtypes.float32)) self.assertAllClose( np.diag(np.ones([3], dtype=np.float32)), vex.covariance().eval()) vex = ds.VectorExponentialDiag( loc=array_ops.ones([3], dtype=dtypes.float32), scale_identity_multiplier=[3., 2.]) self.assertAllEqual([2], vex.batch_shape) self.assertAllEqual([3], vex.event_shape) self.assertAllClose( np.array([[[3., 0, 0], [0, 3, 0], [0, 0, 3]], [[2, 0, 0], [0, 2, 0], [0, 0, 2]]])**2., vex.covariance().eval()) vex = ds.VectorExponentialDiag( loc=array_ops.ones([3], dtype=dtypes.float32), scale_diag=[[3., 2, 1], [4, 5, 6]]) self.assertAllEqual([2], vex.batch_shape) self.assertAllEqual([3], vex.event_shape) self.assertAllClose( np.array([[[3., 0, 0], [0, 2, 0], [0, 0, 1]], [[4, 0, 0], [0, 5, 0], [0, 0, 6]]])**2., vex.covariance().eval()) def testVariance(self): with self.cached_session(): vex = ds.VectorExponentialDiag( loc=array_ops.zeros([2, 3], dtype=dtypes.float32)) self.assertAllClose( np.ones([3], dtype=np.float32), vex.variance().eval()) vex = ds.VectorExponentialDiag( loc=array_ops.ones([3], dtype=dtypes.float32), scale_identity_multiplier=[3., 2.]) self.assertAllClose( np.array([[3., 3, 3], [2., 2, 2]])**2., vex.variance().eval()) vex = ds.VectorExponentialDiag( loc=array_ops.ones([3], dtype=dtypes.float32), scale_diag=[[3., 2, 1], [4., 5, 6]]) self.assertAllClose( np.array([[3., 2, 1], [4., 5, 6]])**2., vex.variance().eval()) def testStddev(self): with self.cached_session(): vex = ds.VectorExponentialDiag( loc=array_ops.zeros([2, 3], dtype=dtypes.float32)) self.assertAllClose( np.ones([3], dtype=np.float32), vex.stddev().eval()) vex = ds.VectorExponentialDiag( loc=array_ops.zeros([3], dtype=dtypes.float32), scale_identity_multiplier=[3., 2.]) self.assertAllClose( np.array([[3., 3, 3], [2., 2, 2]]), vex.stddev().eval()) vex = ds.VectorExponentialDiag( loc=array_ops.zeros([3], dtype=dtypes.float32), scale_diag=[[3., 2, 1], [4, 5, 6]]) self.assertAllClose( np.array([[3., 2, 1], [4., 5, 6]]), vex.stddev().eval()) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/vector_exponential_diag_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for VectorLaplaceLinearOperator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib import distributions from tensorflow.contrib.distributions.python.ops import bijectors from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.platform import test ds = distributions class VectorLaplaceDiagTest(test.TestCase): """Well tested because this is a simple override of the base class.""" def setUp(self): self._rng = np.random.RandomState(42) def testScalarParams(self): mu = -1. diag = -5. with self.cached_session(): with self.assertRaisesRegexp(ValueError, "at least 1 dimension"): ds.VectorLaplaceDiag(mu, diag) def testVectorParams(self): mu = [-1.] diag = [-5.] with self.cached_session(): dist = ds.VectorLaplaceDiag(mu, diag, validate_args=True) self.assertAllEqual([3, 1], dist.sample(3).get_shape()) def testDistWithBatchShapeOneThenTransformedThroughSoftplus(self): # This complex combination of events resulted in a loss of static shape # information when tensor_util.constant_value(self._needs_rotation) was # being used incorrectly (resulting in always rotating). # Batch shape = [1], event shape = [3] mu = array_ops.zeros((1, 3)) diag = array_ops.ones((1, 3)) with self.cached_session(): base_dist = ds.VectorLaplaceDiag(mu, diag, validate_args=True) dist = ds.TransformedDistribution( base_dist, validate_args=True, bijector=bijectors.Softplus()) samps = dist.sample(5) # Shape [5, 1, 3]. self.assertAllEqual([5, 1], dist.log_prob(samps).get_shape()) def testMean(self): mu = [-1., 1] diag = [1., -5] with self.cached_session(): dist = ds.VectorLaplaceDiag(mu, diag, validate_args=True) self.assertAllEqual(mu, dist.mean().eval()) def testMeanWithBroadcastLoc(self): mu = [-1.] diag = [1., -5] with self.cached_session(): dist = ds.VectorLaplaceDiag(mu, diag, validate_args=True) self.assertAllEqual([-1., -1.], dist.mean().eval()) def testSample(self): mu = [-1., 1] diag = [1., -2] with self.cached_session(): dist = ds.VectorLaplaceDiag(mu, diag, validate_args=True) samps = dist.sample(int(1e4), seed=0).eval() cov_mat = 2. * array_ops.matrix_diag(diag).eval()**2 self.assertAllClose(mu, samps.mean(axis=0), atol=0., rtol=0.05) self.assertAllClose(cov_mat, np.cov(samps.T), atol=0.05, rtol=0.05) def testSingularScaleRaises(self): mu = [-1., 1] diag = [1., 0] with self.cached_session(): dist = ds.VectorLaplaceDiag(mu, diag, validate_args=True) with self.assertRaisesOpError("Singular"): dist.sample().eval() def testSampleWithBroadcastScale(self): # mu corresponds to a 2-batch of 3-variate normals mu = np.zeros([2, 3]) # diag corresponds to no batches of 3-variate normals diag = np.ones([3]) with self.cached_session(): dist = ds.VectorLaplaceDiag(mu, diag, validate_args=True) mean = dist.mean() self.assertAllEqual([2, 3], mean.get_shape()) self.assertAllClose(mu, mean.eval()) n = int(1e4) samps = dist.sample(n, seed=0).eval() cov_mat = 2. * array_ops.matrix_diag(diag).eval()**2 sample_cov = np.matmul(samps.transpose([1, 2, 0]), samps.transpose([1, 0, 2])) / n self.assertAllClose(mu, samps.mean(axis=0), atol=0.10, rtol=0.05) self.assertAllClose([cov_mat, cov_mat], sample_cov, atol=0.10, rtol=0.05) def testCovariance(self): with self.cached_session(): vla = ds.VectorLaplaceDiag( loc=array_ops.zeros([2, 3], dtype=dtypes.float32)) self.assertAllClose( 2. * np.diag(np.ones([3], dtype=np.float32)), vla.covariance().eval()) vla = ds.VectorLaplaceDiag( loc=array_ops.zeros([3], dtype=dtypes.float32), scale_identity_multiplier=[3., 2.]) self.assertAllEqual([2], vla.batch_shape) self.assertAllEqual([3], vla.event_shape) self.assertAllClose( 2. * np.array([[[3., 0, 0], [0, 3, 0], [0, 0, 3]], [[2, 0, 0], [0, 2, 0], [0, 0, 2]]])**2., vla.covariance().eval()) vla = ds.VectorLaplaceDiag( loc=array_ops.zeros([3], dtype=dtypes.float32), scale_diag=[[3., 2, 1], [4, 5, 6]]) self.assertAllEqual([2], vla.batch_shape) self.assertAllEqual([3], vla.event_shape) self.assertAllClose( 2. * np.array([[[3., 0, 0], [0, 2, 0], [0, 0, 1]], [[4, 0, 0], [0, 5, 0], [0, 0, 6]]])**2., vla.covariance().eval()) def testVariance(self): with self.cached_session(): vla = ds.VectorLaplaceDiag( loc=array_ops.zeros([2, 3], dtype=dtypes.float32)) self.assertAllClose( 2. * np.ones([3], dtype=np.float32), vla.variance().eval()) vla = ds.VectorLaplaceDiag( loc=array_ops.zeros([3], dtype=dtypes.float32), scale_identity_multiplier=[3., 2.]) self.assertAllClose( 2. * np.array([[3., 3, 3], [2, 2, 2]])**2., vla.variance().eval()) vla = ds.VectorLaplaceDiag( loc=array_ops.zeros([3], dtype=dtypes.float32), scale_diag=[[3., 2, 1], [4, 5, 6]]) self.assertAllClose( 2. * np.array([[3., 2, 1], [4, 5, 6]])**2., vla.variance().eval()) def testStddev(self): with self.cached_session(): vla = ds.VectorLaplaceDiag( loc=array_ops.zeros([2, 3], dtype=dtypes.float32)) self.assertAllClose( np.sqrt(2) * np.ones([3], dtype=np.float32), vla.stddev().eval()) vla = ds.VectorLaplaceDiag( loc=array_ops.zeros([3], dtype=dtypes.float32), scale_identity_multiplier=[3., 2.]) self.assertAllClose( np.sqrt(2) * np.array([[3., 3, 3], [2, 2, 2]]), vla.stddev().eval()) vla = ds.VectorLaplaceDiag( loc=array_ops.zeros([3], dtype=dtypes.float32), scale_diag=[[3., 2, 1], [4, 5, 6]]) self.assertAllClose( np.sqrt(2) * np.array([[3., 2, 1], [4, 5, 6]]), vla.stddev().eval()) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/vector_laplace_diag_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from scipy import stats from tensorflow.contrib import distributions as distributions_lib from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import math_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test distributions = distributions_lib rng = np.random.RandomState(123) class QuantizedDistributionTest(test.TestCase): def _assert_all_finite(self, array): self.assertTrue(np.isfinite(array).all()) def testQuantizationOfUniformWithCutoffsHavingNoEffect(self): with self.cached_session() as sess: # The Quantized uniform with cutoffs == None divides the real line into: # R = ...(-1, 0](0, 1](1, 2](2, 3](3, 4]... # j = ... 0 1 2 3 4 ... # Since this uniform (below) is supported on [0, 3], # it places 1/3 of its mass in the intervals j = 1, 2, 3. # Adding a cutoff at y = 0 changes the picture to # R = ...(-inf, 0](0, 1](1, 2](2, 3](3, 4]... # j = ... 0 1 2 3 4 ... # So the QUniform still places 1/3 of its mass in the intervals # j = 1, 2, 3. # Adding a cutoff at y = 3 changes the picture to # R = ...(-1, 0](0, 1](1, 2](2, inf) # j = ... 0 1 2 3 # and the QUniform still places 1/3 of its mass in the intervals # j = 1, 2, 3. for lcut, ucut in [(None, None), (0.0, None), (None, 3.0), (0.0, 3.0), (-10., 10.)]: qdist = distributions.QuantizedDistribution( distribution=distributions.Uniform(low=0.0, high=3.0), low=lcut, high=ucut) # pmf pmf_n1, pmf_0, pmf_1, pmf_2, pmf_3, pmf_4, pmf_5 = sess.run( qdist.prob([-1., 0., 1., 2., 3., 4., 5.])) # uniform had no mass below -1. self.assertAllClose(0., pmf_n1) # uniform had no mass below 0. self.assertAllClose(0., pmf_0) # uniform put 1/3 of its mass in each of (0, 1], (1, 2], (2, 3], # which are the intervals j = 1, 2, 3. self.assertAllClose(1 / 3, pmf_1) self.assertAllClose(1 / 3, pmf_2) self.assertAllClose(1 / 3, pmf_3) # uniform had no mass in (3, 4] or (4, 5], which are j = 4, 5. self.assertAllClose(0 / 3, pmf_4) self.assertAllClose(0 / 3, pmf_5) # cdf cdf_n1, cdf_0, cdf_1, cdf_2, cdf_2p5, cdf_3, cdf_4, cdf_5 = sess.run( qdist.cdf([-1., 0., 1., 2., 2.5, 3., 4., 5.])) self.assertAllClose(0., cdf_n1) self.assertAllClose(0., cdf_0) self.assertAllClose(1 / 3, cdf_1) self.assertAllClose(2 / 3, cdf_2) # Note fractional values allowed for cdfs of discrete distributions. # And adding 0.5 makes no difference because the quantized dist has # mass only on the integers, never in between. self.assertAllClose(2 / 3, cdf_2p5) self.assertAllClose(3 / 3, cdf_3) self.assertAllClose(3 / 3, cdf_4) self.assertAllClose(3 / 3, cdf_5) def testQuantizationOfUniformWithCutoffsInTheMiddle(self): with self.cached_session() as sess: # The uniform is supported on [-3, 3] # Consider partitions the real line in intervals # ...(-3, -2](-2, -1](-1, 0](0, 1](1, 2](2, 3] ... # Before cutoffs, the uniform puts a mass of 1/6 in each interval written # above. Because of cutoffs, the qdist considers intervals and indices # ...(-infty, -1](-1, 0](0, infty) ... # -1 0 1 qdist = distributions.QuantizedDistribution( distribution=distributions.Uniform(low=-3., high=3.), low=-1.0, high=1.0) # pmf cdf_n3, cdf_n2, cdf_n1, cdf_0, cdf_0p5, cdf_1, cdf_10 = sess.run( qdist.cdf([-3., -2., -1., 0., 0.5, 1.0, 10.0])) # Uniform had no mass on (-4, -3] or (-3, -2] self.assertAllClose(0., cdf_n3) self.assertAllClose(0., cdf_n2) # Uniform had 1/6 of its mass in each of (-3, -2], and (-2, -1], which # were collapsed into (-infty, -1], which is now the "-1" interval. self.assertAllClose(1 / 3, cdf_n1) # The j=0 interval contained mass from (-3, 0], which is 1/2 of the # uniform's mass. self.assertAllClose(1 / 2, cdf_0) # Adding 0.5 makes no difference because the quantized dist has mass on # the integers, not in between them. self.assertAllClose(1 / 2, cdf_0p5) # After applying the cutoff, all mass was either in the interval # (0, infty), or below. (0, infty) is the interval indexed by j=1, # so pmf(1) should equal 1. self.assertAllClose(1., cdf_1) # Since no mass of qdist is above 1, # pmf(10) = P[Y <= 10] = P[Y <= 1] = pmf(1). self.assertAllClose(1., cdf_10) def testQuantizationOfBatchOfUniforms(self): batch_shape = (5, 5) with self.cached_session(): # The uniforms are supported on [0, 10]. The qdist considers the # intervals # ... (0, 1](1, 2]...(9, 10]... # with the intervals displayed above each holding 1 / 10 of the mass. # The qdist will be defined with no cutoffs, uniform = distributions.Uniform( low=array_ops.zeros(batch_shape, dtype=dtypes.float32), high=10 * array_ops.ones(batch_shape, dtype=dtypes.float32)) qdist = distributions.QuantizedDistribution( distribution=uniform, low=None, high=None) # x is random integers in {-3,...,12}. x = rng.randint(-3, 13, size=batch_shape).astype(np.float32) # pmf # qdist.prob(j) = 1 / 10 for j in {1,...,10}, and 0 otherwise, expected_pmf = (1 / 10) * np.ones(batch_shape) expected_pmf[x < 1] = 0. expected_pmf[x > 10] = 0. self.assertAllClose(expected_pmf, qdist.prob(x).eval()) # cdf # qdist.cdf(j) # = 0 for j < 1 # = j / 10, for j in {1,...,10}, # = 1, for j > 10. expected_cdf = x.copy() / 10 expected_cdf[x < 1] = 0. expected_cdf[x > 10] = 1. self.assertAllClose(expected_cdf, qdist.cdf(x).eval()) def testSamplingFromBatchOfNormals(self): batch_shape = (2,) with self.cached_session(): normal = distributions.Normal( loc=array_ops.zeros( batch_shape, dtype=dtypes.float32), scale=array_ops.ones( batch_shape, dtype=dtypes.float32)) qdist = distributions.QuantizedDistribution( distribution=normal, low=0., high=None) samps = qdist.sample(5000, seed=42) samps_v = samps.eval() # With low = 0, the interval j=0 is (-infty, 0], which holds 1/2 # of the mass of the normals. # rtol chosen to be 2x as large as necessary to pass. self.assertAllClose([0.5, 0.5], (samps_v == 0).mean(axis=0), rtol=0.03) # The interval j=1 is (0, 1], which is from the mean to one standard # deviation out. This should contain 0.6827 / 2 of the mass. self.assertAllClose( [0.6827 / 2, 0.6827 / 2], (samps_v == 1).mean(axis=0), rtol=0.03) def testSamplesAgreeWithCdfForSamplesOverLargeRange(self): # Consider the cdf for distribution X, F(x). # If U ~ Uniform[0, 1], then Y := F^{-1}(U) is distributed like X since # P[Y <= y] = P[F^{-1}(U) <= y] = P[U <= F(y)] = F(y). # If F is a bijection, we also have Z = F(X) is Uniform. # # Make an exponential with large mean (= 100). This ensures we will get # quantized values over a large range. This large range allows us to # pretend that the cdf F is a bijection, and hence F(X) is uniform. # Note that F cannot be bijection since it is constant between the # integers. Hence, F(X) (see below) will not be uniform exactly. with self.cached_session(): qdist = distributions.QuantizedDistribution( distribution=distributions.Exponential(rate=0.01)) # X ~ QuantizedExponential x = qdist.sample(10000, seed=42) # Z = F(X), should be Uniform. z = qdist.cdf(x) # Compare the CDF of Z to that of a Uniform. # dist = maximum distance between P[Z <= a] and P[U <= a]. # We ignore pvalue, since of course this distribution is not exactly, and # with so many sample points we would get a false fail. dist, _ = stats.kstest(z.eval(), "uniform") # Since the distribution take values (approximately) in [0, 100], the # cdf should have jumps (approximately) every 1/100 of the way up. # Assert that the jumps are not more than 2/100. self.assertLess(dist, 0.02) def testSamplesAgreeWithPdfForSamplesOverSmallRange(self): # Testing that samples and pdf agree for a small range is important because # it makes sure the bin edges are consistent. # Make an exponential with mean 5. with self.cached_session(): qdist = distributions.QuantizedDistribution( distribution=distributions.Exponential(rate=0.2)) # Standard error should be less than 1 / (2 * sqrt(n_samples)) n_samples = 10000 stddev_err_bound = 1 / (2 * np.sqrt(n_samples)) samps = qdist.sample((n_samples,), seed=42).eval() # The smallest value the samples can take on is 1, which corresponds to # the interval (0, 1]. Recall we use ceiling in the sampling definition. self.assertLess(0.5, samps.min()) x_vals = np.arange(1, 11).astype(np.float32) pmf_vals = qdist.prob(x_vals).eval() for ii in range(10): self.assertAllClose( pmf_vals[ii], (samps == x_vals[ii]).mean(), atol=stddev_err_bound) def testNormalCdfAndSurvivalFunction(self): # At integer values, the result should be the same as the standard normal. batch_shape = (3, 3) mu = rng.randn(*batch_shape) sigma = rng.rand(*batch_shape) + 1.0 with self.cached_session(): qdist = distributions.QuantizedDistribution( distribution=distributions.Normal( loc=mu, scale=sigma)) sp_normal = stats.norm(mu, sigma) x = rng.randint(-5, 5, size=batch_shape).astype(np.float64) self.assertAllClose(sp_normal.cdf(x), qdist.cdf(x).eval()) self.assertAllClose(sp_normal.sf(x), qdist.survival_function(x).eval()) def testNormalLogCdfAndLogSurvivalFunction(self): # At integer values, the result should be the same as the standard normal. batch_shape = (3, 3) mu = rng.randn(*batch_shape) sigma = rng.rand(*batch_shape) + 1.0 with self.cached_session(): qdist = distributions.QuantizedDistribution( distribution=distributions.Normal( loc=mu, scale=sigma)) sp_normal = stats.norm(mu, sigma) x = rng.randint(-10, 10, size=batch_shape).astype(np.float64) self.assertAllClose(sp_normal.logcdf(x), qdist.log_cdf(x).eval()) self.assertAllClose( sp_normal.logsf(x), qdist.log_survival_function(x).eval()) def testNormalProbWithCutoffs(self): # At integer values, the result should be the same as the standard normal. with self.cached_session(): qdist = distributions.QuantizedDistribution( distribution=distributions.Normal(loc=0., scale=1.), low=-2., high=2.) sm_normal = stats.norm(0., 1.) # These cutoffs create partitions of the real line, and indices: # (-inf, -2](-2, -1](-1, 0](0, 1](1, inf) # -2 -1 0 1 2 # Test interval (-inf, -2], <--> index -2. self.assertAllClose(sm_normal.cdf(-2), qdist.prob(-2.).eval(), atol=0) # Test interval (-2, -1], <--> index -1. self.assertAllClose( sm_normal.cdf(-1) - sm_normal.cdf(-2), qdist.prob(-1.).eval(), atol=0) # Test interval (-1, 0], <--> index 0. self.assertAllClose( sm_normal.cdf(0) - sm_normal.cdf(-1), qdist.prob(0.).eval(), atol=0) # Test interval (1, inf), <--> index 2. self.assertAllClose(1. - sm_normal.cdf(1), qdist.prob(2.).eval(), atol=0) def testNormalLogProbWithCutoffs(self): # At integer values, the result should be the same as the standard normal. with self.cached_session(): qdist = distributions.QuantizedDistribution( distribution=distributions.Normal(loc=0., scale=1.), low=-2., high=2.) sm_normal = stats.norm(0., 1.) # These cutoffs create partitions of the real line, and indices: # (-inf, -2](-2, -1](-1, 0](0, 1](1, inf) # -2 -1 0 1 2 # Test interval (-inf, -2], <--> index -2. self.assertAllClose( np.log(sm_normal.cdf(-2)), qdist.log_prob(-2.).eval(), atol=0) # Test interval (-2, -1], <--> index -1. self.assertAllClose( np.log(sm_normal.cdf(-1) - sm_normal.cdf(-2)), qdist.log_prob(-1.).eval(), atol=0) # Test interval (-1, 0], <--> index 0. self.assertAllClose( np.log(sm_normal.cdf(0) - sm_normal.cdf(-1)), qdist.log_prob(0.).eval(), atol=0) # Test interval (1, inf), <--> index 2. self.assertAllClose( np.log(1. - sm_normal.cdf(1)), qdist.log_prob(2.).eval(), atol=0) def testLogProbAndGradGivesFiniteResults(self): for dtype in [np.float32, np.float64]: g = ops.Graph() with g.as_default(): mu = variables.Variable(0., name="mu", dtype=dtype) sigma = variables.Variable(1., name="sigma", dtype=dtype) qdist = distributions.QuantizedDistribution( distribution=distributions.Normal( loc=mu, scale=sigma)) x = np.arange(-100, 100, 2).astype(dtype) proba = qdist.log_prob(x) grads = gradients_impl.gradients(proba, [mu, sigma]) with self.session(graph=g): variables.global_variables_initializer().run() self._assert_all_finite(proba.eval()) self._assert_all_finite(grads[0].eval()) self._assert_all_finite(grads[1].eval()) def testProbAndGradGivesFiniteResultsForCommonEvents(self): with self.cached_session(): mu = variables.Variable(0.0, name="mu") sigma = variables.Variable(1.0, name="sigma") qdist = distributions.QuantizedDistribution( distribution=distributions.Normal( loc=mu, scale=sigma)) x = math_ops.ceil(4 * rng.rand(100).astype(np.float32) - 2) variables.global_variables_initializer().run() proba = qdist.prob(x) self._assert_all_finite(proba.eval()) grads = gradients_impl.gradients(proba, [mu, sigma]) self._assert_all_finite(grads[0].eval()) self._assert_all_finite(grads[1].eval()) def testLowerCutoffMustBeBelowUpperCutoffOrWeRaise(self): with self.cached_session(): with self.assertRaisesWithPredicateMatch(errors.InvalidArgumentError, "must be strictly less"): _ = distributions.QuantizedDistribution( distribution=distributions.Normal(loc=0., scale=1.), low=1., # not strictly less than high. high=1., validate_args=True) # Error detected statically; no need for _.sample().eval() def testCutoffsMustBeIntegerValuedIfValidateArgsTrue(self): with self.cached_session(): low = array_ops.placeholder(dtypes.float32) qdist = distributions.QuantizedDistribution( distribution=distributions.Normal(loc=0., scale=1.), low=low, high=10., validate_args=True) self.assertTrue(qdist.validate_args) # Default is True. with self.assertRaisesOpError("has non-integer components"): qdist.sample().eval(feed_dict={low: 1.5}) def testCutoffsCanBeFloatValuedIfValidateArgsFalse(self): with self.cached_session(): qdist = distributions.QuantizedDistribution( distribution=distributions.Normal( loc=0., scale=1., validate_args=False), low=1.5, high=10.11) self.assertFalse(qdist.validate_args) # Default is True. # Should not raise qdist.sample().eval() def testDtypeAndShapeInheritedFromBaseDist(self): batch_shape = (2, 3) with self.cached_session(): qdist = distributions.QuantizedDistribution( distribution=distributions.Normal( loc=array_ops.zeros(batch_shape), scale=array_ops.zeros(batch_shape)), low=1.0, high=10.0) self.assertEqual(batch_shape, qdist.batch_shape) self.assertAllEqual(batch_shape, qdist.batch_shape_tensor().eval()) self.assertEqual((), qdist.event_shape) self.assertAllEqual((), qdist.event_shape_tensor().eval()) samps = qdist.sample(10, seed=42) self.assertEqual((10,) + batch_shape, samps.get_shape()) self.assertAllEqual((10,) + batch_shape, samps.eval().shape) y = rng.randint(0, 5, size=batch_shape).astype(np.float32) self.assertEqual(batch_shape, qdist.prob(y).get_shape()) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/quantized_distribution_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Sample Stats Ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import sample_stats from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import spectral_ops_test_util from tensorflow.python.platform import test rng = np.random.RandomState(0) class _AutoCorrelationTest(object): @property def use_static_shape(self): raise NotImplementedError("Subclass failed to implement `use_static_shape`") @property def dtype(self): raise NotImplementedError("Subclass failed to implement `dtype`.") def test_constant_sequence_axis_0_max_lags_none_center_false(self): x_ = np.array([[0., 0., 0.], [1., 1., 1.]]).astype(self.dtype) x_ph = array_ops.placeholder_with_default( input=x_, shape=x_.shape if self.use_static_shape else None) with spectral_ops_test_util.fft_kernel_label_map(): with self.cached_session() as sess: # Setting normalize = True means we divide by zero. auto_corr = sample_stats.auto_correlation( x_ph, axis=1, center=False, normalize=False) if self.use_static_shape: self.assertEqual((2, 3), auto_corr.shape) auto_corr_ = sess.run(auto_corr) self.assertAllClose( [[0., 0., 0.], [1., 1., 1.]], auto_corr_) def test_constant_sequence_axis_0_max_lags_none_center_true(self): x_ = np.array([[0., 0., 0.], [1., 1., 1.]]).astype(self.dtype) x_ph = array_ops.placeholder_with_default( input=x_, shape=x_.shape if self.use_static_shape else None) with spectral_ops_test_util.fft_kernel_label_map(): with self.cached_session() as sess: # Setting normalize = True means we divide by zero. auto_corr = sample_stats.auto_correlation( x_ph, axis=1, normalize=False, center=True) if self.use_static_shape: self.assertEqual((2, 3), auto_corr.shape) auto_corr_ = sess.run(auto_corr) self.assertAllClose( [[0., 0., 0.], [0., 0., 0.]], auto_corr_) def check_results_versus_brute_force( self, x, axis, max_lags, center, normalize): """Compute auto-correlation by brute force, then compare to tf result.""" # Brute for auto-corr -- avoiding fft and transpositions. axis_len = x.shape[axis] if max_lags is None: max_lags = axis_len - 1 else: max_lags = min(axis_len - 1, max_lags) auto_corr_at_lag = [] if center: x -= x.mean(axis=axis, keepdims=True) for m in range(max_lags + 1): auto_corr_at_lag.append(( np.take(x, indices=range(0, axis_len - m), axis=axis) * np.conj(np.take(x, indices=range(m, axis_len), axis=axis)) ).mean(axis=axis, keepdims=True)) rxx = np.concatenate(auto_corr_at_lag, axis=axis) if normalize: rxx /= np.take(rxx, [0], axis=axis) x_ph = array_ops.placeholder_with_default( x, shape=x.shape if self.use_static_shape else None) with spectral_ops_test_util.fft_kernel_label_map(): with self.cached_session(): auto_corr = sample_stats.auto_correlation( x_ph, axis=axis, max_lags=max_lags, center=center, normalize=normalize) if self.use_static_shape: output_shape = list(x.shape) output_shape[axis] = max_lags + 1 self.assertAllEqual(output_shape, auto_corr.shape) self.assertAllClose(rxx, auto_corr.eval(), rtol=1e-5, atol=1e-5) def test_axis_n1_center_false_max_lags_none(self): x = rng.randn(2, 3, 4).astype(self.dtype) if self.dtype in [np.complex64]: x = 1j * rng.randn(2, 3, 4).astype(self.dtype) self.check_results_versus_brute_force( x, axis=-1, max_lags=None, center=False, normalize=False) def test_axis_n2_center_false_max_lags_none(self): x = rng.randn(3, 4, 5).astype(self.dtype) if self.dtype in [np.complex64]: x = 1j * rng.randn(3, 4, 5).astype(self.dtype) self.check_results_versus_brute_force( x, axis=-2, max_lags=None, center=False, normalize=False) def test_axis_n1_center_false_max_lags_none_normalize_true(self): x = rng.randn(2, 3, 4).astype(self.dtype) if self.dtype in [np.complex64]: x = 1j * rng.randn(2, 3, 4).astype(self.dtype) self.check_results_versus_brute_force( x, axis=-1, max_lags=None, center=False, normalize=True) def test_axis_n2_center_false_max_lags_none_normalize_true(self): x = rng.randn(3, 4, 5).astype(self.dtype) if self.dtype in [np.complex64]: x = 1j * rng.randn(3, 4, 5).astype(self.dtype) self.check_results_versus_brute_force( x, axis=-2, max_lags=None, center=False, normalize=True) def test_axis_0_center_true_max_lags_none(self): x = rng.randn(3, 4, 5).astype(self.dtype) if self.dtype in [np.complex64]: x = 1j * rng.randn(3, 4, 5).astype(self.dtype) self.check_results_versus_brute_force( x, axis=0, max_lags=None, center=True, normalize=False) def test_axis_2_center_true_max_lags_1(self): x = rng.randn(3, 4, 5).astype(self.dtype) if self.dtype in [np.complex64]: x = 1j * rng.randn(3, 4, 5).astype(self.dtype) self.check_results_versus_brute_force( x, axis=2, max_lags=1, center=True, normalize=False) def test_axis_2_center_true_max_lags_100(self): # There are less than 100 elements in axis 2, so expect we get back an array # the same size as x, despite having asked for 100 lags. x = rng.randn(3, 4, 5).astype(self.dtype) if self.dtype in [np.complex64]: x = 1j * rng.randn(3, 4, 5).astype(self.dtype) self.check_results_versus_brute_force( x, axis=2, max_lags=100, center=True, normalize=False) def test_long_orthonormal_sequence_has_corr_length_0(self): l = 10000 x = rng.randn(l).astype(self.dtype) x_ph = array_ops.placeholder_with_default( x, shape=(l,) if self.use_static_shape else None) with spectral_ops_test_util.fft_kernel_label_map(): with self.cached_session(): rxx = sample_stats.auto_correlation( x_ph, max_lags=l // 2, center=True, normalize=False) if self.use_static_shape: self.assertAllEqual((l // 2 + 1,), rxx.shape) rxx_ = rxx.eval() # OSS CPU FFT has some accuracy issues is not the most accurate. # So this tolerance is a bit bad. self.assertAllClose(1., rxx_[0], rtol=0.05) # The maximal error in the rest of the sequence is not great. self.assertAllClose(np.zeros(l // 2), rxx_[1:], atol=0.1) # The mean error in the rest is ok, actually 0.008 when I tested it. self.assertLess(np.abs(rxx_[1:]).mean(), 0.02) def test_step_function_sequence(self): # x jumps to new random value every 10 steps. So correlation length = 10. x = (rng.randint(-10, 10, size=(1000, 1)) * np.ones((1, 10))).ravel().astype(self.dtype) x_ph = array_ops.placeholder_with_default( x, shape=(1000 * 10,) if self.use_static_shape else None) with spectral_ops_test_util.fft_kernel_label_map(): with self.cached_session(): rxx = sample_stats.auto_correlation( x_ph, max_lags=1000 * 10 // 2, center=True, normalize=False) if self.use_static_shape: self.assertAllEqual((1000 * 10 // 2 + 1,), rxx.shape) rxx_ = rxx.eval() rxx_ /= rxx_[0] # Expect positive correlation for the first 10 lags, then significantly # smaller negative. self.assertGreater(rxx_[:10].min(), 0) self.assertGreater(rxx_[9], 5 * rxx_[10:20].mean()) # RXX should be decreasing for the first 10 lags. diff = np.diff(rxx_) self.assertLess(diff[:10].max(), 0) def test_normalization(self): l = 10000 x = 3 * rng.randn(l).astype(self.dtype) x_ph = array_ops.placeholder_with_default( x, shape=(l,) if self.use_static_shape else None) with spectral_ops_test_util.fft_kernel_label_map(): with self.cached_session(): rxx = sample_stats.auto_correlation( x_ph, max_lags=l // 2, center=True, normalize=True) if self.use_static_shape: self.assertAllEqual((l // 2 + 1,), rxx.shape) rxx_ = rxx.eval() # Note that RXX[0] = 1, despite the fact that E[X^2] = 9, and this is # due to normalize=True. # OSS CPU FFT has some accuracy issues is not the most accurate. # So this tolerance is a bit bad. self.assertAllClose(1., rxx_[0], rtol=0.05) # The maximal error in the rest of the sequence is not great. self.assertAllClose(np.zeros(l // 2), rxx_[1:], atol=0.1) # The mean error in the rest is ok, actually 0.008 when I tested it. self.assertLess(np.abs(rxx_[1:]).mean(), 0.02) class AutoCorrelationTestStaticShapeFloat32(test.TestCase, _AutoCorrelationTest): @property def dtype(self): return np.float32 @property def use_static_shape(self): return True class AutoCorrelationTestStaticShapeComplex64(test.TestCase, _AutoCorrelationTest): @property def dtype(self): return np.complex64 @property def use_static_shape(self): return True class AutoCorrelationTestDynamicShapeFloat32(test.TestCase, _AutoCorrelationTest): @property def dtype(self): return np.float32 @property def use_static_shape(self): return False class PercentileTestWithLowerInterpolation(test.TestCase): _interpolation = "lower" def test_one_dim_odd_input(self): x = [1., 5., 3., 2., 4.] for q in [0, 10, 25, 49.9, 50, 50.01, 90, 95, 100]: expected_percentile = np.percentile( x, q=q, interpolation=self._interpolation, axis=0) with self.cached_session(): pct = sample_stats.percentile( x, q=q, interpolation=self._interpolation, axis=[0]) self.assertAllEqual((), pct.get_shape()) self.assertAllClose(expected_percentile, pct.eval()) def test_one_dim_even_input(self): x = [1., 5., 3., 2., 4., 5.] for q in [0, 10, 25, 49.9, 50, 50.01, 90, 95, 100]: expected_percentile = np.percentile( x, q=q, interpolation=self._interpolation) with self.cached_session(): pct = sample_stats.percentile(x, q=q, interpolation=self._interpolation) self.assertAllEqual((), pct.get_shape()) self.assertAllClose(expected_percentile, pct.eval()) def test_two_dim_odd_input_axis_0(self): x = np.array([[-1., 50., -3.5, 2., -1], [0., 0., 3., 2., 4.]]).T for q in [0, 10, 25, 49.9, 50, 50.01, 90, 95, 100]: expected_percentile = np.percentile( x, q=q, interpolation=self._interpolation, axis=0) with self.cached_session(): # Get dim 1 with negative and positive indices. pct_neg_index = sample_stats.percentile( x, q=q, interpolation=self._interpolation, axis=[0]) pct_pos_index = sample_stats.percentile( x, q=q, interpolation=self._interpolation, axis=[0]) self.assertAllEqual((2,), pct_neg_index.get_shape()) self.assertAllEqual((2,), pct_pos_index.get_shape()) self.assertAllClose(expected_percentile, pct_neg_index.eval()) self.assertAllClose(expected_percentile, pct_pos_index.eval()) def test_two_dim_even_axis_0(self): x = np.array([[1., 2., 4., 50.], [1., 2., -4., 5.]]).T for q in [0, 10, 25, 49.9, 50, 50.01, 90, 95, 100]: expected_percentile = np.percentile( x, q=q, interpolation=self._interpolation, axis=0) with self.cached_session(): pct = sample_stats.percentile( x, q=q, interpolation=self._interpolation, axis=[0]) self.assertAllEqual((2,), pct.get_shape()) self.assertAllClose(expected_percentile, pct.eval()) def test_two_dim_even_input_and_keep_dims_true(self): x = np.array([[1., 2., 4., 50.], [1., 2., -4., 5.]]).T for q in [0, 10, 25, 49.9, 50, 50.01, 90, 95, 100]: expected_percentile = np.percentile( x, q=q, interpolation=self._interpolation, keepdims=True, axis=0) with self.cached_session(): pct = sample_stats.percentile( x, q=q, interpolation=self._interpolation, keep_dims=True, axis=[0]) self.assertAllEqual((1, 2), pct.get_shape()) self.assertAllClose(expected_percentile, pct.eval()) def test_four_dimensional_input(self): x = rng.rand(2, 3, 4, 5) for axis in [None, 0, 1, -2, (0,), (-1,), (-1, 1), (3, 1), (-3, 0)]: expected_percentile = np.percentile( x, q=0.77, interpolation=self._interpolation, axis=axis) with self.cached_session(): pct = sample_stats.percentile( x, q=0.77, interpolation=self._interpolation, axis=axis) self.assertAllEqual(expected_percentile.shape, pct.get_shape()) self.assertAllClose(expected_percentile, pct.eval()) def test_four_dimensional_input_and_keepdims(self): x = rng.rand(2, 3, 4, 5) for axis in [None, 0, 1, -2, (0,), (-1,), (-1, 1), (3, 1), (-3, 0)]: expected_percentile = np.percentile( x, q=0.77, interpolation=self._interpolation, axis=axis, keepdims=True) with self.cached_session(): pct = sample_stats.percentile( x, q=0.77, interpolation=self._interpolation, axis=axis, keep_dims=True) self.assertAllEqual(expected_percentile.shape, pct.get_shape()) self.assertAllClose(expected_percentile, pct.eval()) def test_four_dimensional_input_x_static_ndims_but_dynamic_sizes(self): x = rng.rand(2, 3, 4, 5) x_ph = array_ops.placeholder(dtypes.float64, shape=[None, None, None, None]) for axis in [None, 0, 1, -2, (0,), (-1,), (-1, 1), (3, 1), (-3, 0)]: expected_percentile = np.percentile( x, q=0.77, interpolation=self._interpolation, axis=axis) with self.cached_session(): pct = sample_stats.percentile( x_ph, q=0.77, interpolation=self._interpolation, axis=axis) self.assertAllClose(expected_percentile, pct.eval(feed_dict={x_ph: x})) def test_four_dimensional_input_and_keepdims_x_static_ndims_dynamic_sz(self): x = rng.rand(2, 3, 4, 5) x_ph = array_ops.placeholder(dtypes.float64, shape=[None, None, None, None]) for axis in [None, 0, 1, -2, (0,), (-1,), (-1, 1), (3, 1), (-3, 0)]: expected_percentile = np.percentile( x, q=0.77, interpolation=self._interpolation, axis=axis, keepdims=True) with self.cached_session(): pct = sample_stats.percentile( x_ph, q=0.77, interpolation=self._interpolation, axis=axis, keep_dims=True) self.assertAllClose(expected_percentile, pct.eval(feed_dict={x_ph: x})) def test_with_integer_dtype(self): x = [1, 5, 3, 2, 4] for q in [0, 10, 25, 49.9, 50, 50.01, 90, 95, 100]: expected_percentile = np.percentile( x, q=q, interpolation=self._interpolation) with self.cached_session(): pct = sample_stats.percentile(x, q=q, interpolation=self._interpolation) self.assertEqual(dtypes.int32, pct.dtype) self.assertAllEqual((), pct.get_shape()) self.assertAllClose(expected_percentile, pct.eval()) class PercentileTestWithHigherInterpolation( PercentileTestWithLowerInterpolation): _interpolation = "higher" class PercentileTestWithNearestInterpolation(test.TestCase): """Test separately because np.round and tf.round make different choices.""" _interpolation = "nearest" def test_one_dim_odd_input(self): x = [1., 5., 3., 2., 4.] for q in [0, 10.1, 25.1, 49.9, 50.1, 50.01, 89, 100]: expected_percentile = np.percentile( x, q=q, interpolation=self._interpolation) with self.cached_session(): pct = sample_stats.percentile(x, q=q, interpolation=self._interpolation) self.assertAllEqual((), pct.get_shape()) self.assertAllClose(expected_percentile, pct.eval()) def test_one_dim_even_input(self): x = [1., 5., 3., 2., 4., 5.] for q in [0, 10.1, 25.1, 49.9, 50.1, 50.01, 89, 100]: expected_percentile = np.percentile( x, q=q, interpolation=self._interpolation) with self.cached_session(): pct = sample_stats.percentile(x, q=q, interpolation=self._interpolation) self.assertAllEqual((), pct.get_shape()) self.assertAllClose(expected_percentile, pct.eval()) def test_invalid_interpolation_raises(self): x = [1., 5., 3., 2., 4.] with self.assertRaisesRegexp(ValueError, "interpolation"): sample_stats.percentile(x, q=0.5, interpolation="bad") def test_vector_q_raises_static(self): x = [1., 5., 3., 2., 4.] with self.assertRaisesRegexp(ValueError, "Expected.*ndims"): sample_stats.percentile(x, q=[0.5]) def test_vector_q_raises_dynamic(self): x = [1., 5., 3., 2., 4.] q_ph = array_ops.placeholder(dtypes.float32) pct = sample_stats.percentile(x, q=q_ph, validate_args=True) with self.cached_session(): with self.assertRaisesOpError("rank"): pct.eval(feed_dict={q_ph: [0.5]}) def test_finds_max_of_long_array(self): # d - 1 == d in float32 and d = 3e7. # So this test only passes if we use double for the percentile indices. # If float is used, it fails with InvalidArgumentError about an index out of # bounds. x = math_ops.linspace(0., 3e7, num=int(3e7)) with self.cached_session(): minval = sample_stats.percentile(x, q=0, validate_args=True) self.assertAllEqual(0, minval.eval()) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/sample_stats_test.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Mixture distribution.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import contextlib import numpy as np from scipy import stats from tensorflow.contrib import distributions from tensorflow.core.protobuf import config_pb2 from tensorflow.python.client import session from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.platform import tf_logging as logging ds = distributions def _swap_first_last_axes(array): rank = len(array.shape) transpose = [rank - 1] + list(range(0, rank - 1)) return array.transpose(transpose) def _mixture_stddev_np(pi_vector, mu_vector, sigma_vector): """Computes the standard deviation of a univariate mixture distribution. Acts upon `np.array`s (not `tf.Tensor`s). Args: pi_vector: A `np.array` of mixture weights. Shape `[batch, components]`. mu_vector: A `np.array` of means. Shape `[batch, components]` sigma_vector: A `np.array` of stddevs. Shape `[batch, components]`. Returns: A `np.array` containing the batch of standard deviations. """ pi_vector = np.expand_dims(pi_vector, axis=1) mean_wa = np.matmul(pi_vector, np.expand_dims(mu_vector, axis=2)) var_wa = np.matmul(pi_vector, np.expand_dims(sigma_vector**2, axis=2)) mid_term = np.matmul(pi_vector, np.expand_dims(mu_vector**2, axis=2)) mixture_variance = ( np.squeeze(var_wa) + np.squeeze(mid_term) - np.squeeze(mean_wa**2)) return np.sqrt(mixture_variance) @contextlib.contextmanager def _test_capture_mvndiag_sample_outputs(): """Use monkey-patching to capture the output of an MVNDiag _call_sample_n.""" data_container = [] true_mvndiag_call_sample_n = ( ds.MultivariateNormalDiag._call_sample_n) def _capturing_mvndiag_call_sample_n( self, sample_shape, seed, name, **kwargs): samples = true_mvndiag_call_sample_n( self, sample_shape, seed, name, **kwargs) data_container.append(samples) return samples ds.MultivariateNormalDiag._call_sample_n = ( _capturing_mvndiag_call_sample_n) yield data_container ds.MultivariateNormalDiag._call_sample_n = ( true_mvndiag_call_sample_n) @contextlib.contextmanager def _test_capture_normal_sample_outputs(): """Use monkey-patching to capture the output of an Normal _call_sample_n.""" data_container = [] true_normal_call_sample_n = ds.Normal._call_sample_n def _capturing_normal_call_sample_n(self, sample_shape, seed, name, **kwargs): samples = true_normal_call_sample_n( self, sample_shape, seed, name, **kwargs) data_container.append(samples) return samples ds.Normal._call_sample_n = _capturing_normal_call_sample_n yield data_container ds.Normal._call_sample_n = true_normal_call_sample_n def make_univariate_mixture(batch_shape, num_components, use_static_graph): batch_shape = ops.convert_to_tensor(batch_shape, dtypes.int32) logits = random_ops.random_uniform( array_ops.concat((batch_shape, [num_components]), axis=0), -1, 1, dtype=dtypes.float32) - 50. components = [ ds.Normal( loc=random_ops.random_normal(batch_shape), scale=10 * random_ops.random_uniform(batch_shape)) for _ in range(num_components) ] cat = ds.Categorical(logits, dtype=dtypes.int32) return ds.Mixture(cat, components, use_static_graph=use_static_graph) def make_multivariate_mixture(batch_shape, num_components, event_shape, use_static_graph, batch_shape_tensor=None): if batch_shape_tensor is None: batch_shape_tensor = batch_shape batch_shape_tensor = ops.convert_to_tensor(batch_shape_tensor, dtypes.int32) logits = random_ops.random_uniform( array_ops.concat((batch_shape_tensor, [num_components]), 0), -1, 1, dtype=dtypes.float32) - 50. logits.set_shape( tensor_shape.TensorShape(batch_shape).concatenate(num_components)) static_batch_and_event_shape = ( tensor_shape.TensorShape(batch_shape).concatenate(event_shape)) event_shape = ops.convert_to_tensor(event_shape, dtypes.int32) batch_and_event_shape = array_ops.concat((batch_shape_tensor, event_shape), 0) def create_component(): loc = random_ops.random_normal(batch_and_event_shape) scale_diag = 10 * random_ops.random_uniform(batch_and_event_shape) loc.set_shape(static_batch_and_event_shape) scale_diag.set_shape(static_batch_and_event_shape) return ds.MultivariateNormalDiag( loc=loc, scale_diag=scale_diag) components = [create_component() for _ in range(num_components)] cat = ds.Categorical(logits, dtype=dtypes.int32) return ds.Mixture(cat, components, use_static_graph=use_static_graph) class MixtureTest(test.TestCase): use_static_graph = False def testShapes(self): with self.cached_session(): for batch_shape in ([], [1], [2, 3, 4]): dist = make_univariate_mixture(batch_shape, num_components=10, use_static_graph=self.use_static_graph) self.assertAllEqual(batch_shape, dist.batch_shape) self.assertAllEqual(batch_shape, dist.batch_shape_tensor().eval()) self.assertAllEqual([], dist.event_shape) self.assertAllEqual([], dist.event_shape_tensor().eval()) for event_shape in ([1], [2]): dist = make_multivariate_mixture( batch_shape, num_components=10, event_shape=event_shape, use_static_graph=self.use_static_graph) self.assertAllEqual(batch_shape, dist.batch_shape) self.assertAllEqual(batch_shape, dist.batch_shape_tensor().eval()) self.assertAllEqual(event_shape, dist.event_shape) self.assertAllEqual(event_shape, dist.event_shape_tensor().eval()) def testBrokenShapesStatic(self): with self.assertRaisesWithPredicateMatch(ValueError, r"cat.num_classes != len"): ds.Mixture( ds.Categorical([0.1, 0.5]), # 2 classes [ds.Normal(loc=1.0, scale=2.0)], use_static_graph=self.use_static_graph) with self.assertRaisesWithPredicateMatch( ValueError, r"\(\) and \(2,\) are not compatible"): # The value error is raised because the batch shapes of the # Normals are not equal. One is a scalar, the other is a # vector of size (2,). ds.Mixture( ds.Categorical([-0.5, 0.5]), # scalar batch [ ds.Normal( loc=1.0, scale=2.0), # scalar dist ds.Normal( loc=[1.0, 1.0], scale=[2.0, 2.0]) ], use_static_graph=self.use_static_graph) with self.assertRaisesWithPredicateMatch(ValueError, r"Could not infer"): cat_logits = array_ops.placeholder(shape=[1, None], dtype=dtypes.float32) ds.Mixture( ds.Categorical(cat_logits), [ds.Normal( loc=[1.0], scale=[2.0])], use_static_graph=self.use_static_graph) def testBrokenShapesDynamic(self): with self.cached_session(): d0_param = array_ops.placeholder(dtype=dtypes.float32) d1_param = array_ops.placeholder(dtype=dtypes.float32) d = ds.Mixture( ds.Categorical([0.1, 0.2]), [ ds.Normal( loc=d0_param, scale=d0_param), ds.Normal( loc=d1_param, scale=d1_param) ], validate_args=True, use_static_graph=self.use_static_graph) if self.use_static_graph: error_string = r"Shapes of all inputs must match" else: error_string = r"batch shape must match" with self.assertRaisesOpError(error_string): d.sample().eval(feed_dict={d0_param: [2.0, 3.0], d1_param: [1.0]}) with self.assertRaisesOpError(error_string): d.sample().eval(feed_dict={d0_param: [2.0, 3.0], d1_param: 1.0}) def testBrokenTypes(self): with self.assertRaisesWithPredicateMatch(TypeError, "Categorical"): ds.Mixture(None, [], use_static_graph=self.use_static_graph) cat = ds.Categorical([0.3, 0.2]) # components must be a list of distributions with self.assertRaisesWithPredicateMatch( TypeError, "all .* must be Distribution instances"): ds.Mixture(cat, [None], use_static_graph=self.use_static_graph) with self.assertRaisesWithPredicateMatch(TypeError, "same dtype"): ds.Mixture( cat, [ ds.Normal(loc=[1.0], scale=[2.0]), ds.Normal(loc=[np.float16(1.0)], scale=[np.float16(2.0)]), ], use_static_graph=self.use_static_graph) with self.assertRaisesWithPredicateMatch(ValueError, "non-empty list"): ds.Mixture(ds.Categorical([0.3, 0.2]), None, use_static_graph=self.use_static_graph) # TODO(ebrevdo): once distribution Domains have been added, add a # test to ensure that the domains of the distributions in a # mixture are checked for equivalence. def testMeanUnivariate(self): with self.cached_session() as sess: for batch_shape in ((), (2,), (2, 3)): dist = make_univariate_mixture( batch_shape=batch_shape, num_components=2, use_static_graph=self.use_static_graph) mean = dist.mean() self.assertEqual(batch_shape, mean.get_shape()) cat_probs = nn_ops.softmax(dist.cat.logits) dist_means = [d.mean() for d in dist.components] mean_value, cat_probs_value, dist_means_value = sess.run( [mean, cat_probs, dist_means]) self.assertEqual(batch_shape, mean_value.shape) cat_probs_value = _swap_first_last_axes(cat_probs_value) true_mean = sum( [c_p * m for (c_p, m) in zip(cat_probs_value, dist_means_value)]) self.assertAllClose(true_mean, mean_value) def testMeanMultivariate(self): with self.cached_session() as sess: for batch_shape in ((), (2,), (2, 3)): dist = make_multivariate_mixture( batch_shape=batch_shape, num_components=2, event_shape=(4,), use_static_graph=self.use_static_graph) mean = dist.mean() self.assertEqual(batch_shape + (4,), mean.get_shape()) cat_probs = nn_ops.softmax(dist.cat.logits) dist_means = [d.mean() for d in dist.components] mean_value, cat_probs_value, dist_means_value = sess.run( [mean, cat_probs, dist_means]) self.assertEqual(batch_shape + (4,), mean_value.shape) cat_probs_value = _swap_first_last_axes(cat_probs_value) # Add a new innermost dimension for broadcasting to mvn vector shape cat_probs_value = [np.expand_dims(c_p, -1) for c_p in cat_probs_value] true_mean = sum( [c_p * m for (c_p, m) in zip(cat_probs_value, dist_means_value)]) self.assertAllClose(true_mean, mean_value) def testStddevShapeUnivariate(self): num_components = 2 # This is the same shape test which is done in 'testMeanUnivariate'. with self.cached_session() as sess: for batch_shape in ((), (2,), (2, 3)): dist = make_univariate_mixture( batch_shape=batch_shape, num_components=num_components, use_static_graph=self.use_static_graph) dev = dist.stddev() self.assertEqual(batch_shape, dev.get_shape()) cat_probs = nn_ops.softmax(dist.cat.logits) dist_devs = [d.stddev() for d in dist.components] dist_means = [d.mean() for d in dist.components] res = sess.run([dev, cat_probs, dist_devs, dist_means]) dev_value, cat_probs_values, dist_devs_values, dist_means_values = res # Manual computation of stddev. batch_shape_res = cat_probs_values.shape[:-1] event_shape_res = dist_devs_values[0].shape[len(batch_shape_res):] stacked_mean_res = np.stack(dist_means_values, -1) stacked_dev_res = np.stack(dist_devs_values, -1) # Broadcast cat probs over event dimensions. for _ in range(len(event_shape_res)): cat_probs_values = np.expand_dims(cat_probs_values, len(batch_shape)) cat_probs_values = cat_probs_values + np.zeros_like(stacked_dev_res) # pylint: disable=g-no-augmented-assignment # Perform stddev computation on a flattened batch. flat_batch_manual_dev = _mixture_stddev_np( np.reshape(cat_probs_values, [-1, num_components]), np.reshape(stacked_mean_res, [-1, num_components]), np.reshape(stacked_dev_res, [-1, num_components])) # Reshape to full shape. full_shape_res = list(batch_shape_res) + list(event_shape_res) manual_dev = np.reshape(flat_batch_manual_dev, full_shape_res) self.assertEqual(batch_shape, dev_value.shape) self.assertAllClose(manual_dev, dev_value) def testStddevShapeMultivariate(self): num_components = 2 # This is the same shape test which is done in 'testMeanMultivariate'. with self.cached_session() as sess: for batch_shape in ((), (2,), (2, 3)): dist = make_multivariate_mixture( batch_shape=batch_shape, num_components=num_components, event_shape=(4,), use_static_graph=self.use_static_graph) dev = dist.stddev() self.assertEqual(batch_shape + (4,), dev.get_shape()) cat_probs = nn_ops.softmax(dist.cat.logits) dist_devs = [d.stddev() for d in dist.components] dist_means = [d.mean() for d in dist.components] res = sess.run([dev, cat_probs, dist_devs, dist_means]) dev_value, cat_probs_values, dist_devs_values, dist_means_values = res # Manual computation of stddev. batch_shape_res = cat_probs_values.shape[:-1] event_shape_res = dist_devs_values[0].shape[len(batch_shape_res):] stacked_mean_res = np.stack(dist_means_values, -1) stacked_dev_res = np.stack(dist_devs_values, -1) # Broadcast cat probs over event dimensions. for _ in range(len(event_shape_res)): cat_probs_values = np.expand_dims(cat_probs_values, len(batch_shape)) cat_probs_values = cat_probs_values + np.zeros_like(stacked_dev_res) # pylint: disable=g-no-augmented-assignment # Perform stddev computation on a flattened batch. flat_batch_manual_dev = _mixture_stddev_np( np.reshape(cat_probs_values, [-1, num_components]), np.reshape(stacked_mean_res, [-1, num_components]), np.reshape(stacked_dev_res, [-1, num_components])) # Reshape to full shape. full_shape_res = list(batch_shape_res) + list(event_shape_res) manual_dev = np.reshape(flat_batch_manual_dev, full_shape_res) self.assertEqual(tuple(full_shape_res), dev_value.shape) self.assertAllClose(manual_dev, dev_value) def testSpecificStddevValue(self): cat_probs = np.array([0.5, 0.5]) component_means = np.array([-10, 0.1]) component_devs = np.array([0.05, 2.33]) ground_truth_stddev = 5.3120805 mixture_dist = ds.Mixture( cat=ds.Categorical(probs=cat_probs), components=[ ds.Normal(loc=component_means[0], scale=component_devs[0]), ds.Normal(loc=component_means[1], scale=component_devs[1]), ], use_static_graph=self.use_static_graph) mix_dev = mixture_dist.stddev() with self.cached_session() as sess: actual_stddev = sess.run(mix_dev) self.assertAllClose(actual_stddev, ground_truth_stddev) def testProbScalarUnivariate(self): with self.cached_session() as sess: dist = make_univariate_mixture(batch_shape=[], num_components=2, use_static_graph=self.use_static_graph) for x in [ np.array( [1.0, 2.0], dtype=np.float32), np.array( 1.0, dtype=np.float32), np.random.randn(3, 4).astype(np.float32) ]: p_x = dist.prob(x) self.assertEqual(x.shape, p_x.get_shape()) cat_probs = nn_ops.softmax([dist.cat.logits])[0] dist_probs = [d.prob(x) for d in dist.components] p_x_value, cat_probs_value, dist_probs_value = sess.run( [p_x, cat_probs, dist_probs]) self.assertEqual(x.shape, p_x_value.shape) total_prob = sum(c_p_value * d_p_value for (c_p_value, d_p_value ) in zip(cat_probs_value, dist_probs_value)) self.assertAllClose(total_prob, p_x_value) def testProbScalarMultivariate(self): with self.cached_session() as sess: dist = make_multivariate_mixture( batch_shape=[], num_components=2, event_shape=[3], use_static_graph=self.use_static_graph) for x in [ np.array( [[-1.0, 0.0, 1.0], [0.5, 1.0, -0.3]], dtype=np.float32), np.array( [-1.0, 0.0, 1.0], dtype=np.float32), np.random.randn(2, 2, 3).astype(np.float32) ]: p_x = dist.prob(x) self.assertEqual(x.shape[:-1], p_x.get_shape()) cat_probs = nn_ops.softmax([dist.cat.logits])[0] dist_probs = [d.prob(x) for d in dist.components] p_x_value, cat_probs_value, dist_probs_value = sess.run( [p_x, cat_probs, dist_probs]) self.assertEqual(x.shape[:-1], p_x_value.shape) total_prob = sum(c_p_value * d_p_value for (c_p_value, d_p_value ) in zip(cat_probs_value, dist_probs_value)) self.assertAllClose(total_prob, p_x_value) def testProbBatchUnivariate(self): with self.cached_session() as sess: dist = make_univariate_mixture(batch_shape=[2, 3], num_components=2, use_static_graph=self.use_static_graph) for x in [ np.random.randn(2, 3).astype(np.float32), np.random.randn(4, 2, 3).astype(np.float32) ]: p_x = dist.prob(x) self.assertEqual(x.shape, p_x.get_shape()) cat_probs = nn_ops.softmax(dist.cat.logits) dist_probs = [d.prob(x) for d in dist.components] p_x_value, cat_probs_value, dist_probs_value = sess.run( [p_x, cat_probs, dist_probs]) self.assertEqual(x.shape, p_x_value.shape) cat_probs_value = _swap_first_last_axes(cat_probs_value) total_prob = sum(c_p_value * d_p_value for (c_p_value, d_p_value ) in zip(cat_probs_value, dist_probs_value)) self.assertAllClose(total_prob, p_x_value) def testProbBatchMultivariate(self): with self.cached_session() as sess: dist = make_multivariate_mixture( batch_shape=[2, 3], num_components=2, event_shape=[4], use_static_graph=self.use_static_graph) for x in [ np.random.randn(2, 3, 4).astype(np.float32), np.random.randn(4, 2, 3, 4).astype(np.float32) ]: p_x = dist.prob(x) self.assertEqual(x.shape[:-1], p_x.get_shape()) cat_probs = nn_ops.softmax(dist.cat.logits) dist_probs = [d.prob(x) for d in dist.components] p_x_value, cat_probs_value, dist_probs_value = sess.run( [p_x, cat_probs, dist_probs]) self.assertEqual(x.shape[:-1], p_x_value.shape) cat_probs_value = _swap_first_last_axes(cat_probs_value) total_prob = sum(c_p_value * d_p_value for (c_p_value, d_p_value ) in zip(cat_probs_value, dist_probs_value)) self.assertAllClose(total_prob, p_x_value) def testSampleScalarBatchUnivariate(self): with self.cached_session() as sess: num_components = 3 batch_shape = [] dist = make_univariate_mixture( batch_shape=batch_shape, num_components=num_components, use_static_graph=self.use_static_graph) n = 4 with _test_capture_normal_sample_outputs() as component_samples: samples = dist.sample(n, seed=123) self.assertEqual(samples.dtype, dtypes.float32) self.assertEqual((4,), samples.get_shape()) cat_samples = dist.cat.sample(n, seed=123) sample_values, cat_sample_values, dist_sample_values = sess.run( [samples, cat_samples, component_samples]) self.assertEqual((4,), sample_values.shape) for c in range(num_components): which_c = np.where(cat_sample_values == c)[0] size_c = which_c.size # Scalar Batch univariate case: batch_size == 1, rank 1 if self.use_static_graph: which_dist_samples = dist_sample_values[c][which_c] else: which_dist_samples = dist_sample_values[c][:size_c] self.assertAllClose(which_dist_samples, sample_values[which_c]) # Test that sampling with the same seed twice gives the same results. def testSampleMultipleTimes(self): # 5 component mixture. logits = [-10.0, -5.0, 0.0, 5.0, 10.0] mus = [-5.0, 0.0, 5.0, 4.0, 20.0] sigmas = [0.1, 5.0, 3.0, 0.2, 4.0] with self.cached_session(): n = 100 random_seed.set_random_seed(654321) components = [ ds.Normal( loc=mu, scale=sigma) for mu, sigma in zip(mus, sigmas) ] cat = ds.Categorical( logits, dtype=dtypes.int32, name="cat1") dist1 = ds.Mixture(cat, components, name="mixture1", use_static_graph=self.use_static_graph) samples1 = dist1.sample(n, seed=123456).eval() random_seed.set_random_seed(654321) components2 = [ ds.Normal( loc=mu, scale=sigma) for mu, sigma in zip(mus, sigmas) ] cat2 = ds.Categorical( logits, dtype=dtypes.int32, name="cat2") dist2 = ds.Mixture(cat2, components2, name="mixture2", use_static_graph=self.use_static_graph) samples2 = dist2.sample(n, seed=123456).eval() self.assertAllClose(samples1, samples2) def testSampleScalarBatchMultivariate(self): with self.cached_session() as sess: num_components = 3 dist = make_multivariate_mixture( batch_shape=[], num_components=num_components, event_shape=[2], use_static_graph=self.use_static_graph) n = 4 with _test_capture_mvndiag_sample_outputs() as component_samples: samples = dist.sample(n, seed=123) self.assertEqual(samples.dtype, dtypes.float32) self.assertEqual((4, 2), samples.get_shape()) cat_samples = dist.cat.sample(n, seed=123) sample_values, cat_sample_values, dist_sample_values = sess.run( [samples, cat_samples, component_samples]) self.assertEqual((4, 2), sample_values.shape) for c in range(num_components): which_c = np.where(cat_sample_values == c)[0] size_c = which_c.size # Scalar Batch multivariate case: batch_size == 1, rank 2 if self.use_static_graph: which_dist_samples = dist_sample_values[c][which_c, :] else: which_dist_samples = dist_sample_values[c][:size_c, :] self.assertAllClose(which_dist_samples, sample_values[which_c, :]) def testSampleBatchUnivariate(self): with self.cached_session() as sess: num_components = 3 dist = make_univariate_mixture( batch_shape=[2, 3], num_components=num_components, use_static_graph=self.use_static_graph) n = 4 with _test_capture_normal_sample_outputs() as component_samples: samples = dist.sample(n, seed=123) self.assertEqual(samples.dtype, dtypes.float32) self.assertEqual((4, 2, 3), samples.get_shape()) cat_samples = dist.cat.sample(n, seed=123) sample_values, cat_sample_values, dist_sample_values = sess.run( [samples, cat_samples, component_samples]) self.assertEqual((4, 2, 3), sample_values.shape) for c in range(num_components): which_c_s, which_c_b0, which_c_b1 = np.where(cat_sample_values == c) size_c = which_c_s.size # Batch univariate case: batch_size == [2, 3], rank 3 if self.use_static_graph: which_dist_samples = dist_sample_values[c][which_c_s, which_c_b0, which_c_b1] else: which_dist_samples = dist_sample_values[c][range(size_c), which_c_b0, which_c_b1] self.assertAllClose(which_dist_samples, sample_values[which_c_s, which_c_b0, which_c_b1]) def _testSampleBatchMultivariate(self, fully_known_batch_shape): with self.cached_session() as sess: num_components = 3 if fully_known_batch_shape: batch_shape = [2, 3] batch_shape_tensor = [2, 3] else: batch_shape = [None, 3] batch_shape_tensor = array_ops.placeholder(dtype=dtypes.int32) dist = make_multivariate_mixture( batch_shape=batch_shape, num_components=num_components, event_shape=[4], batch_shape_tensor=batch_shape_tensor, use_static_graph=self.use_static_graph) n = 5 with _test_capture_mvndiag_sample_outputs() as component_samples: samples = dist.sample(n, seed=123) self.assertEqual(samples.dtype, dtypes.float32) if fully_known_batch_shape: self.assertEqual((5, 2, 3, 4), samples.get_shape()) else: self.assertEqual([5, None, 3, 4], samples.get_shape().as_list()) cat_samples = dist.cat.sample(n, seed=123) if fully_known_batch_shape: feed_dict = {} else: feed_dict = {batch_shape_tensor: [2, 3]} sample_values, cat_sample_values, dist_sample_values = sess.run( [samples, cat_samples, component_samples], feed_dict=feed_dict) self.assertEqual((5, 2, 3, 4), sample_values.shape) for c in range(num_components): which_c_s, which_c_b0, which_c_b1 = np.where(cat_sample_values == c) size_c = which_c_s.size # Batch univariate case: batch_size == [2, 3], rank 4 (multivariate) if self.use_static_graph: which_dist_samples = dist_sample_values[c][which_c_s, which_c_b0, which_c_b1, :] else: which_dist_samples = dist_sample_values[c][range(size_c), which_c_b0, which_c_b1, :] self.assertAllClose(which_dist_samples, sample_values[which_c_s, which_c_b0, which_c_b1, :]) def testSampleBatchMultivariateFullyKnownBatchShape(self): self._testSampleBatchMultivariate(fully_known_batch_shape=True) def testSampleBatchMultivariateNotFullyKnownBatchShape(self): self._testSampleBatchMultivariate(fully_known_batch_shape=False) def testEntropyLowerBoundMultivariate(self): with self.cached_session() as sess: for batch_shape in ((), (2,), (2, 3)): dist = make_multivariate_mixture( batch_shape=batch_shape, num_components=2, event_shape=(4,), use_static_graph=self.use_static_graph) entropy_lower_bound = dist.entropy_lower_bound() self.assertEqual(batch_shape, entropy_lower_bound.get_shape()) cat_probs = nn_ops.softmax(dist.cat.logits) dist_entropy = [d.entropy() for d in dist.components] entropy_lower_bound_value, cat_probs_value, dist_entropy_value = ( sess.run([entropy_lower_bound, cat_probs, dist_entropy])) self.assertEqual(batch_shape, entropy_lower_bound_value.shape) cat_probs_value = _swap_first_last_axes(cat_probs_value) # entropy_lower_bound = sum_i pi_i entropy_i # for i in num_components, batchwise. true_entropy_lower_bound = sum( [c_p * m for (c_p, m) in zip(cat_probs_value, dist_entropy_value)]) self.assertAllClose(true_entropy_lower_bound, entropy_lower_bound_value) def testCdfScalarUnivariate(self): """Tests CDF against scipy for a mixture of seven gaussians.""" # Construct a mixture of gaussians with seven components. n_components = 7 # pre-softmax mixture probabilities. mixture_weight_logits = np.random.uniform( low=-1, high=1, size=(n_components,)).astype(np.float32) def _scalar_univariate_softmax(x): e_x = np.exp(x - np.max(x)) return e_x / e_x.sum() # Construct the ds.Mixture object. mixture_weights = _scalar_univariate_softmax(mixture_weight_logits) means = [np.random.uniform(low=-10, high=10, size=()).astype(np.float32) for _ in range(n_components)] sigmas = [np.ones(shape=(), dtype=np.float32) for _ in range(n_components)] cat_tf = ds.Categorical(probs=mixture_weights) components_tf = [ds.Normal(loc=mu, scale=sigma) for (mu, sigma) in zip(means, sigmas)] mixture_tf = ds.Mixture(cat=cat_tf, components=components_tf, use_static_graph=self.use_static_graph) x_tensor = array_ops.placeholder(shape=(), dtype=dtypes.float32) # These are two test cases to verify. xs_to_check = [ np.array(1.0, dtype=np.float32), np.array(np.random.randn()).astype(np.float32) ] # Carry out the test for both d.cdf and exp(d.log_cdf). x_cdf_tf = mixture_tf.cdf(x_tensor) x_log_cdf_tf = mixture_tf.log_cdf(x_tensor) with self.cached_session() as sess: for x_feed in xs_to_check: x_cdf_tf_result, x_log_cdf_tf_result = sess.run( [x_cdf_tf, x_log_cdf_tf], feed_dict={x_tensor: x_feed}) # Compute the cdf with scipy. scipy_component_cdfs = [stats.norm.cdf(x=x_feed, loc=mu, scale=sigma) for (mu, sigma) in zip(means, sigmas)] scipy_cdf_result = np.dot(mixture_weights, np.array(scipy_component_cdfs)) self.assertAllClose(x_cdf_tf_result, scipy_cdf_result) self.assertAllClose(np.exp(x_log_cdf_tf_result), scipy_cdf_result) def testCdfBatchUnivariate(self): """Tests against scipy for a (batch of) mixture(s) of seven gaussians.""" n_components = 7 batch_size = 5 mixture_weight_logits = np.random.uniform( low=-1, high=1, size=(batch_size, n_components)).astype(np.float32) def _batch_univariate_softmax(x): e_x = np.exp(x) e_x_sum = np.expand_dims(np.sum(e_x, axis=1), axis=1) return e_x / np.tile(e_x_sum, reps=[1, x.shape[1]]) psize = (batch_size,) mixture_weights = _batch_univariate_softmax(mixture_weight_logits) means = [np.random.uniform(low=-10, high=10, size=psize).astype(np.float32) for _ in range(n_components)] sigmas = [np.ones(shape=psize, dtype=np.float32) for _ in range(n_components)] cat_tf = ds.Categorical(probs=mixture_weights) components_tf = [ds.Normal(loc=mu, scale=sigma) for (mu, sigma) in zip(means, sigmas)] mixture_tf = ds.Mixture(cat=cat_tf, components=components_tf, use_static_graph=self.use_static_graph) x_tensor = array_ops.placeholder(shape=psize, dtype=dtypes.float32) xs_to_check = [ np.array([1.0, 5.9, -3, 0.0, 0.0], dtype=np.float32), np.random.randn(batch_size).astype(np.float32) ] x_cdf_tf = mixture_tf.cdf(x_tensor) x_log_cdf_tf = mixture_tf.log_cdf(x_tensor) with self.cached_session() as sess: for x_feed in xs_to_check: x_cdf_tf_result, x_log_cdf_tf_result = sess.run( [x_cdf_tf, x_log_cdf_tf], feed_dict={x_tensor: x_feed}) # Compute the cdf with scipy. scipy_component_cdfs = [stats.norm.cdf(x=x_feed, loc=mu, scale=sigma) for (mu, sigma) in zip(means, sigmas)] weights_and_cdfs = zip(np.transpose(mixture_weights, axes=[1, 0]), scipy_component_cdfs) final_cdf_probs_per_component = [ np.multiply(c_p_value, d_cdf_value) for (c_p_value, d_cdf_value) in weights_and_cdfs] scipy_cdf_result = np.sum(final_cdf_probs_per_component, axis=0) self.assertAllClose(x_cdf_tf_result, scipy_cdf_result) self.assertAllClose(np.exp(x_log_cdf_tf_result), scipy_cdf_result) def testSampleBimixGamma(self): """Tests a bug in the underlying tf.Gamma op. Mixture's use of dynamic partition requires `random_gamma` correctly returns an empty `Tensor`. """ with self.cached_session(): gm = ds.Mixture( cat=ds.Categorical(probs=[.3, .7]), components=[ds.Gamma(1., 2.), ds.Gamma(2., 1.)], use_static_graph=self.use_static_graph) x_ = gm.sample().eval() self.assertAllEqual([], x_.shape) class MixtureStaticSampleTest(MixtureTest): use_static_graph = True class MixtureBenchmark(test.Benchmark): use_static_graph = False def _runSamplingBenchmark(self, name, create_distribution, use_gpu, num_components, batch_size, num_features, sample_size): config = config_pb2.ConfigProto() config.allow_soft_placement = True np.random.seed(127) with session.Session(config=config, graph=ops.Graph()) as sess: random_seed.set_random_seed(0) with ops.device("/device:GPU:0" if use_gpu else "/cpu:0"): mixture = create_distribution( num_components=num_components, batch_size=batch_size, num_features=num_features) sample_op = mixture.sample(sample_size).op sess.run(variables.global_variables_initializer()) reported = self.run_op_benchmark( sess, sample_op, min_iters=10, name=("%s_%s_components_%d_batch_%d_features_%d_sample_%d" % (name, use_gpu, num_components, batch_size, num_features, sample_size))) logging.vlog(2, "\t".join(["%s", "%d", "%d", "%d", "%d", "%g"]) % ( use_gpu, num_components, batch_size, num_features, sample_size, reported["wall_time"])) def benchmarkSamplingMVNDiag(self): logging.vlog( 2, "mvn_diag\tuse_gpu\tcomponents\tbatch\tfeatures\tsample\twall_time") def create_distribution(batch_size, num_components, num_features): cat = ds.Categorical( logits=np.random.randn(batch_size, num_components)) mus = [ variables.Variable(np.random.randn(batch_size, num_features)) for _ in range(num_components) ] sigmas = [ variables.Variable(np.random.rand(batch_size, num_features)) for _ in range(num_components) ] components = list( ds.MultivariateNormalDiag( loc=mu, scale_diag=sigma) for (mu, sigma) in zip(mus, sigmas)) return ds.Mixture(cat, components, use_static_graph=self.use_static_graph) for use_gpu in False, True: if use_gpu and not test.is_gpu_available(): continue for num_components in 1, 8, 16: for batch_size in 1, 32: for num_features in 1, 64, 512: for sample_size in 1, 32, 128: self._runSamplingBenchmark( "mvn_diag", create_distribution=create_distribution, use_gpu=use_gpu, num_components=num_components, batch_size=batch_size, num_features=num_features, sample_size=sample_size) def benchmarkSamplingMVNFull(self): logging.vlog( 2, "mvn_full\tuse_gpu\tcomponents\tbatch\tfeatures\tsample\twall_time") def psd(x): """Construct batch-wise PSD matrices.""" return np.stack([np.dot(np.transpose(z), z) for z in x]) def create_distribution(batch_size, num_components, num_features): cat = ds.Categorical( logits=np.random.randn(batch_size, num_components)) mus = [ variables.Variable(np.random.randn(batch_size, num_features)) for _ in range(num_components) ] sigmas = [ variables.Variable( psd(np.random.rand(batch_size, num_features, num_features))) for _ in range(num_components) ] components = list( ds.MultivariateNormalTriL( loc=mu, scale_tril=linalg_ops.cholesky(sigma)) for (mu, sigma) in zip(mus, sigmas)) return ds.Mixture(cat, components, use_static_graph=self.use_static_graph) for use_gpu in False, True: if use_gpu and not test.is_gpu_available(): continue for num_components in 1, 8, 16: for batch_size in 1, 32: for num_features in 1, 64, 512: for sample_size in 1, 32, 128: self._runSamplingBenchmark( "mvn_full", create_distribution=create_distribution, use_gpu=use_gpu, num_components=num_components, batch_size=batch_size, num_features=num_features, sample_size=sample_size) class MixtureStaticSampleBenchmark(MixtureBenchmark): use_static_graph = True if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/mixture_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for SinhArcsinh.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib import distributions from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.platform import test ds = distributions rng = np.random.RandomState(123) class SinhArcsinhTest(test.TestCase): def test_default_is_same_as_normal(self): b = 10 scale = rng.rand(b) + 0.5 loc = rng.randn(b) with self.cached_session() as sess: norm = ds.Normal( loc=loc, scale=scale, validate_args=True) sasnorm = ds.SinhArcsinh( loc=loc, scale=scale, validate_args=True) x = rng.randn(5, b) norm_pdf, sasnorm_pdf = sess.run([norm.prob(x), sasnorm.prob(x)]) self.assertAllClose(norm_pdf, sasnorm_pdf) norm_samps, sasnorm_samps = sess.run( [norm.sample(10000, seed=0), sasnorm.sample(10000, seed=0)]) self.assertAllClose(loc, sasnorm_samps.mean(axis=0), atol=0.1) self.assertAllClose( norm_samps.mean(axis=0), sasnorm_samps.mean(axis=0), atol=0.1) self.assertAllClose( norm_samps.std(axis=0), sasnorm_samps.std(axis=0), atol=0.1) def test_broadcast_params_dynamic(self): with self.cached_session() as sess: loc = array_ops.placeholder(dtypes.float64) scale = array_ops.placeholder(dtypes.float64) skewness = array_ops.placeholder(dtypes.float64) sasnorm = ds.SinhArcsinh( loc=loc, scale=scale, skewness=skewness, validate_args=True) samp = sess.run(sasnorm.sample(), feed_dict={loc: rng.rand(5), scale: np.float64(rng.rand()), # Scalar skewness: rng.rand(5)}) self.assertAllEqual((5,), samp.shape) def test_passing_in_laplace_plus_defaults_is_same_as_laplace(self): b = 10 scale = rng.rand(b) + 0.5 loc = rng.randn(b) with self.cached_session() as sess: lap = ds.Laplace( loc=loc, scale=scale, validate_args=True) saslap = ds.SinhArcsinh( loc=loc, scale=scale, distribution=ds.Laplace(np.float64(0), np.float64(1)), validate_args=True) x = rng.randn(5, b) lap_pdf, saslap_pdf = sess.run([lap.prob(x), saslap.prob(x)]) self.assertAllClose(lap_pdf, saslap_pdf) lap_samps, saslap_samps = sess.run( [lap.sample(10000, seed=0), saslap.sample(10000, seed=0)]) self.assertAllClose(loc, saslap_samps.mean(axis=0), atol=0.1) self.assertAllClose( lap_samps.mean(axis=0), saslap_samps.mean(axis=0), atol=0.1) self.assertAllClose( lap_samps.std(axis=0), saslap_samps.std(axis=0), atol=0.1) def test_tailweight_small_gives_fewer_outliers_than_normal(self): batch_size = 10 scale = rng.rand(batch_size) + 0.5 loc = 0.1 * rng.randn(batch_size) with self.cached_session() as sess: norm = ds.Normal( loc=loc, scale=scale, validate_args=True) sasnorm = ds.SinhArcsinh( loc=loc, scale=scale, tailweight=0.1, validate_args=True) # sasnorm.pdf(x) is smaller on outliers (+-10 are outliers) x = np.float64([[-10] * batch_size, [10] * batch_size]) # Shape [2, 10] norm_lp, sasnorm_lp = sess.run([norm.log_prob(x), sasnorm.log_prob(x)]) np.testing.assert_array_less(sasnorm_lp, norm_lp) # 0.1% quantile and 99.9% quantile are outliers, and should be more # extreme in the normal. The 97.772% quantiles should be the same. norm_samps, sasnorm_samps = sess.run( [norm.sample(int(5e5), seed=1), sasnorm.sample(int(5e5), seed=1)]) np.testing.assert_array_less( np.percentile(norm_samps, 0.1, axis=0), np.percentile(sasnorm_samps, 0.1, axis=0)) np.testing.assert_array_less( np.percentile(sasnorm_samps, 99.9, axis=0), np.percentile(norm_samps, 99.9, axis=0)) # 100. * sp.stats.norm.cdf(2.) q = 100 * 0.97724986805182079 self.assertAllClose( np.percentile(sasnorm_samps, q, axis=0), np.percentile(norm_samps, q, axis=0), rtol=0.03) self.assertAllClose( np.percentile(sasnorm_samps, 100 - q, axis=0), np.percentile(norm_samps, 100 - q, axis=0), rtol=0.03) def test_tailweight_large_gives_more_outliers_than_normal(self): batch_size = 10 scale = rng.rand(batch_size) + 0.5 loc = np.float64(0.) with self.cached_session() as sess: norm = ds.Normal( loc=loc, scale=scale, validate_args=True) sasnorm = ds.SinhArcsinh( loc=loc, scale=scale, tailweight=3., validate_args=True) # norm.pdf(x) is smaller on outliers (+-10 are outliers) x = np.float64([[-10] * batch_size, [10] * batch_size]) # Shape [2, 10] norm_lp, sasnorm_lp = sess.run([norm.log_prob(x), sasnorm.log_prob(x)]) np.testing.assert_array_less(norm_lp, sasnorm_lp) # 0.1% quantile and 99.9% quantile are outliers, and should be more # extreme in the sasnormal. The 97.772% quantiles should be the same. norm_samps, sasnorm_samps = sess.run( [norm.sample(int(5e5), seed=2), sasnorm.sample(int(5e5), seed=2)]) np.testing.assert_array_less( np.percentile(sasnorm_samps, 0.1, axis=0), np.percentile(norm_samps, 0.1, axis=0)) np.testing.assert_array_less( np.percentile(norm_samps, 99.9, axis=0), np.percentile(sasnorm_samps, 99.9, axis=0)) # 100. * sp.stats.norm.cdf(2.) q = 100 * 0.97724986805182079 self.assertAllClose( np.percentile(sasnorm_samps, q, axis=0), np.percentile(norm_samps, q, axis=0), rtol=0.03) self.assertAllClose( np.percentile(sasnorm_samps, 100 - q, axis=0), np.percentile(norm_samps, 100 - q, axis=0), rtol=0.03) def test_positive_skewness_moves_mean_to_the_right(self): batch_size = 10 scale = rng.rand(batch_size) + 0.5 loc = rng.randn(batch_size) with self.cached_session() as sess: sasnorm = ds.SinhArcsinh( loc=loc, scale=scale, skewness=3.0, validate_args=True) sasnorm_samps = sess.run(sasnorm.sample(10000, seed=4)) np.testing.assert_array_less(loc, sasnorm_samps.mean(axis=0)) def test_pdf_reflected_for_negative_skewness(self): with self.cached_session() as sess: sas_pos_skew = ds.SinhArcsinh( loc=0., scale=1., skewness=2., validate_args=True) sas_neg_skew = ds.SinhArcsinh( loc=0., scale=1., skewness=-2., validate_args=True) x = np.linspace(-2, 2, num=5).astype(np.float32) self.assertAllClose( *sess.run([sas_pos_skew.prob(x), sas_neg_skew.prob(x[::-1])])) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/sinh_arcsinh_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for VectorSinhArcsinhDiag.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib import distributions from tensorflow.contrib.distributions.python.ops import test_util from tensorflow.python.platform import test ds = distributions rng = np.random.RandomState(123) class VectorSinhArcsinhDiagTest(test_util.VectorDistributionTestHelpers, test.TestCase): def test_default_is_same_as_normal(self): d = 10 scale_diag = rng.rand(d) scale_identity_multiplier = np.float64(1.0) loc = rng.randn(d) with self.cached_session() as sess: norm = ds.MultivariateNormalDiag( loc=loc, scale_diag=scale_diag, scale_identity_multiplier=scale_identity_multiplier, validate_args=True) sasnorm = ds.VectorSinhArcsinhDiag( loc=loc, scale_diag=scale_diag, scale_identity_multiplier=scale_identity_multiplier, validate_args=True) x = rng.randn(5, d) norm_pdf, sasnorm_pdf = sess.run([norm.prob(x), sasnorm.prob(x)]) self.assertAllClose(norm_pdf, sasnorm_pdf) norm_samps, sasnorm_samps = sess.run( [norm.sample(10000, seed=0), sasnorm.sample(10000, seed=0)]) self.assertAllClose(loc, sasnorm_samps.mean(axis=0), atol=0.1) self.assertAllClose( norm_samps.mean(axis=0), sasnorm_samps.mean(axis=0), atol=0.1) self.assertAllClose( norm_samps.std(axis=0), sasnorm_samps.std(axis=0), atol=0.1) def test_passing_in_laplace_plus_defaults_is_same_as_laplace(self): d = 10 scale_diag = rng.rand(d) scale_identity_multiplier = np.float64(1.2) loc = rng.randn(d) with self.cached_session() as sess: vlap = ds.VectorLaplaceDiag( loc=loc, scale_diag=scale_diag, scale_identity_multiplier=scale_identity_multiplier, validate_args=True) sasvlap = ds.VectorSinhArcsinhDiag( loc=loc, scale_diag=scale_diag, scale_identity_multiplier=scale_identity_multiplier, distribution=ds.Laplace(np.float64(0.), np.float64(1.)), validate_args=True) x = rng.randn(5, d) vlap_pdf, sasvlap_pdf = sess.run([vlap.prob(x), sasvlap.prob(x)]) self.assertAllClose(vlap_pdf, sasvlap_pdf) vlap_samps, sasvlap_samps = sess.run( [vlap.sample(10000, seed=0), sasvlap.sample(10000, seed=0)]) self.assertAllClose(loc, sasvlap_samps.mean(axis=0), atol=0.1) self.assertAllClose( vlap_samps.mean(axis=0), sasvlap_samps.mean(axis=0), atol=0.1) self.assertAllClose( vlap_samps.std(axis=0), sasvlap_samps.std(axis=0), atol=0.1) def test_tailweight_small_gives_fewer_outliers_than_normal(self): d = 10 scale_diag = rng.rand(d) scale_identity_multiplier = np.float64(0.9) loc = rng.randn(d) with self.cached_session() as sess: norm = ds.MultivariateNormalDiag( loc=loc, scale_diag=scale_diag, scale_identity_multiplier=scale_identity_multiplier, validate_args=True) sasnorm = ds.VectorSinhArcsinhDiag( loc=loc, scale_diag=scale_diag, scale_identity_multiplier=scale_identity_multiplier, tailweight=0.1, validate_args=True) # sasnorm.pdf(x) is smaller on outliers (+-10 are outliers) x = np.float64([[-10] * d, [10] * d]) # Shape [2, 10] norm_lp, sasnorm_lp = sess.run([norm.log_prob(x), sasnorm.log_prob(x)]) np.testing.assert_array_less(sasnorm_lp, norm_lp) # 0.1% quantile and 99.9% quantile are outliers, and should be more # extreme in the normal. The 97.772% quantiles should be the same. norm_samps, sasnorm_samps = sess.run( [norm.sample(int(5e5), seed=1), sasnorm.sample(int(5e5), seed=1)]) np.testing.assert_array_less( np.percentile(norm_samps, 0.1, axis=0), np.percentile(sasnorm_samps, 0.1, axis=0)) np.testing.assert_array_less( np.percentile(sasnorm_samps, 99.9, axis=0), np.percentile(norm_samps, 99.9, axis=0)) # 100. * sp.stats.norm.cdf(2.) q = 100 * 0.97724986805182079 self.assertAllClose( np.percentile(sasnorm_samps, q, axis=0), np.percentile(norm_samps, q, axis=0), rtol=0.03) self.assertAllClose( np.percentile(sasnorm_samps, 100 - q, axis=0), np.percentile(norm_samps, 100 - q, axis=0), rtol=0.03) def test_tailweight_large_gives_more_outliers_than_normal(self): d = 10 scale_diag = rng.rand(d) scale_identity_multiplier = np.float64(1.0) loc = rng.randn(d) with self.cached_session() as sess: norm = ds.MultivariateNormalDiag( loc=loc, scale_diag=scale_diag, scale_identity_multiplier=scale_identity_multiplier, validate_args=True) sasnorm = ds.VectorSinhArcsinhDiag( loc=loc, scale_diag=scale_diag, scale_identity_multiplier=scale_identity_multiplier, tailweight=3., validate_args=True) # norm.pdf(x) is smaller on outliers (+-10 are outliers) x = np.float64([[-10] * d, [10] * d]) # Shape [2, 10] norm_lp, sasnorm_lp = sess.run([norm.log_prob(x), sasnorm.log_prob(x)]) np.testing.assert_array_less(norm_lp, sasnorm_lp) # 0.1% quantile and 99.9% quantile are outliers, and should be more # extreme in the sasnormal. The 97.772% quantiles should be the same. norm_samps, sasnorm_samps = sess.run( [norm.sample(int(5e5), seed=2), sasnorm.sample(int(5e5), seed=2)]) np.testing.assert_array_less( np.percentile(sasnorm_samps, 0.1, axis=0), np.percentile(norm_samps, 0.1, axis=0)) np.testing.assert_array_less( np.percentile(norm_samps, 99.9, axis=0), np.percentile(sasnorm_samps, 99.9, axis=0)) # 100. * sp.stats.norm.cdf(2.) q = 100 * 0.97724986805182079 self.assertAllClose( np.percentile(sasnorm_samps, q, axis=0), np.percentile(norm_samps, q, axis=0), rtol=0.03) self.assertAllClose( np.percentile(sasnorm_samps, 100 - q, axis=0), np.percentile(norm_samps, 100 - q, axis=0), rtol=0.03) def test_positive_skewness_moves_mean_to_the_right(self): d = 10 scale_diag = rng.rand(d) scale_identity_multiplier = np.float64(1.0) loc = rng.randn(d) with self.cached_session() as sess: sasnorm = ds.VectorSinhArcsinhDiag( loc=loc, scale_diag=scale_diag, scale_identity_multiplier=scale_identity_multiplier, skewness=3.0, validate_args=True) sasnorm_samps = sess.run(sasnorm.sample(10000, seed=4)) np.testing.assert_array_less(loc, sasnorm_samps.mean(axis=0)) def test_consistency_random_parameters_with_batch_dim(self): b, d = 5, 2 scale_diag = rng.rand(b, d) scale_identity_multiplier = np.float64(1.1) with self.cached_session() as sess: sasnorm = ds.VectorSinhArcsinhDiag( scale_diag=scale_diag, scale_identity_multiplier=scale_identity_multiplier, skewness=rng.randn(d) * 0.5, tailweight=rng.rand(b, d) + 0.7, validate_args=True) self.run_test_sample_consistent_log_prob( sess.run, sasnorm, radius=1.0, center=0., rtol=0.1) self.run_test_sample_consistent_log_prob( sess.run, sasnorm, radius=1.0, center=-0.15, rtol=0.1) self.run_test_sample_consistent_log_prob( sess.run, sasnorm, radius=1.0, center=0.15, rtol=0.1) def test_consistency_random_parameters_no_batch_dims(self): d = 3 scale_diag = rng.rand(d) scale_identity_multiplier = np.float64(1.1) with self.cached_session() as sess: sasnorm = ds.VectorSinhArcsinhDiag( scale_diag=scale_diag, scale_identity_multiplier=scale_identity_multiplier, skewness=rng.randn(d) * 0.5, tailweight=rng.rand(d) + 0.7, validate_args=True) self.run_test_sample_consistent_log_prob( sess.run, sasnorm, radius=1.0, center=0., rtol=0.1) self.run_test_sample_consistent_log_prob( sess.run, sasnorm, radius=1.0, center=-0.15, rtol=0.1) self.run_test_sample_consistent_log_prob( sess.run, sasnorm, radius=1.0, center=0.15, rtol=0.1) def test_pdf_reflected_for_negative_skewness(self): with self.cached_session() as sess: sas_pos_skew = ds.VectorSinhArcsinhDiag( loc=[0.], scale_identity_multiplier=1., skewness=2., validate_args=True) sas_neg_skew = ds.VectorSinhArcsinhDiag( loc=[0.], scale_identity_multiplier=1., skewness=-2., validate_args=True) x = np.linspace(-2, 2, num=5).astype(np.float32).reshape(5, 1) self.assertAllClose( *sess.run([sas_pos_skew.prob(x), sas_neg_skew.prob(x[::-1])])) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/vector_sinh_arcsinh_diag_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib import distributions from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import random_ops from tensorflow.python.platform import test tfd = distributions class DistributionTest(test.TestCase): def testParamShapesAndFromParams(self): classes = [ tfd.Normal, tfd.Bernoulli, tfd.Beta, tfd.Chi2, tfd.Exponential, tfd.Gamma, tfd.InverseGamma, tfd.Laplace, tfd.StudentT, tfd.Uniform, ] sample_shapes = [(), (10,), (10, 20, 30)] with self.cached_session(): for cls in classes: for sample_shape in sample_shapes: param_shapes = cls.param_shapes(sample_shape) params = dict([(name, random_ops.random_normal(shape)) for name, shape in param_shapes.items()]) dist = cls(**params) self.assertAllEqual(sample_shape, array_ops.shape(dist.sample()).eval()) dist_copy = dist.copy() self.assertAllEqual(sample_shape, array_ops.shape(dist_copy.sample()).eval()) self.assertEqual(dist.parameters, dist_copy.parameters) def testCopyExtraArgs(self): with self.cached_session(): # Note: we cannot easily test all distributions since each requires # different initialization arguments. We therefore spot test a few. normal = tfd.Normal(loc=1., scale=2., validate_args=True) self.assertEqual(normal.parameters, normal.copy().parameters) wishart = tfd.WishartFull(df=2, scale=[[1., 2], [2, 5]], validate_args=True) self.assertEqual(wishart.parameters, wishart.copy().parameters) def testCopyOverride(self): with self.cached_session(): normal = tfd.Normal(loc=1., scale=2., validate_args=True) unused_normal_copy = normal.copy(validate_args=False) base_params = normal.parameters.copy() copy_params = normal.copy(validate_args=False).parameters.copy() self.assertNotEqual( base_params.pop("validate_args"), copy_params.pop("validate_args")) self.assertEqual(base_params, copy_params) def testIsScalar(self): with self.cached_session(): mu = 1. sigma = 2. normal = tfd.Normal(mu, sigma, validate_args=True) self.assertTrue(tensor_util.constant_value(normal.is_scalar_event())) self.assertTrue(tensor_util.constant_value(normal.is_scalar_batch())) normal = tfd.Normal([mu], [sigma], validate_args=True) self.assertTrue(tensor_util.constant_value(normal.is_scalar_event())) self.assertFalse(tensor_util.constant_value(normal.is_scalar_batch())) mvn = tfd.MultivariateNormalDiag([mu], [sigma], validate_args=True) self.assertFalse(tensor_util.constant_value(mvn.is_scalar_event())) self.assertTrue(tensor_util.constant_value(mvn.is_scalar_batch())) mvn = tfd.MultivariateNormalDiag([[mu]], [[sigma]], validate_args=True) self.assertFalse(tensor_util.constant_value(mvn.is_scalar_event())) self.assertFalse(tensor_util.constant_value(mvn.is_scalar_batch())) # We now test every codepath within the underlying is_scalar_helper # function. # Test case 1, 2. x = array_ops.placeholder(dtype=dtypes.int32, shape=[]) # None would fire an exception were it actually executed. self.assertTrue(normal._is_scalar_helper(x.get_shape(), lambda: None)) self.assertTrue( normal._is_scalar_helper(tensor_shape.TensorShape(None), lambda: array_ops.shape(x))) x = array_ops.placeholder(dtype=dtypes.int32, shape=[1]) # None would fire an exception were it actually executed. self.assertFalse(normal._is_scalar_helper(x.get_shape(), lambda: None)) self.assertFalse( normal._is_scalar_helper(tensor_shape.TensorShape(None), lambda: array_ops.shape(x))) # Test case 3. x = array_ops.placeholder(dtype=dtypes.int32) is_scalar = normal._is_scalar_helper(x.get_shape(), lambda: array_ops.shape(x)) self.assertTrue(is_scalar.eval(feed_dict={x: 1})) self.assertFalse(is_scalar.eval(feed_dict={x: [1]})) def _GetFakeDistribution(self): class FakeDistribution(tfd.Distribution): """Fake Distribution for testing _set_sample_static_shape.""" def __init__(self, batch_shape=None, event_shape=None): self._static_batch_shape = tensor_shape.TensorShape(batch_shape) self._static_event_shape = tensor_shape.TensorShape(event_shape) super(FakeDistribution, self).__init__( dtype=dtypes.float32, reparameterization_type=distributions.NOT_REPARAMETERIZED, validate_args=True, allow_nan_stats=True, name="DummyDistribution") def _batch_shape(self): return self._static_batch_shape def _event_shape(self): return self._static_event_shape return FakeDistribution def testSampleShapeHints(self): fake_distribution = self._GetFakeDistribution() with self.cached_session(): # Make a new session since we're playing with static shapes. [And below.] x = array_ops.placeholder(dtype=dtypes.float32) dist = fake_distribution(batch_shape=[2, 3], event_shape=[5]) sample_shape = ops.convert_to_tensor([6, 7], dtype=dtypes.int32) y = dist._set_sample_static_shape(x, sample_shape) # We use as_list since TensorShape comparison does not work correctly for # unknown values, ie, Dimension(None). self.assertAllEqual([6, 7, 2, 3, 5], y.get_shape().as_list()) with self.cached_session(): x = array_ops.placeholder(dtype=dtypes.float32) dist = fake_distribution(batch_shape=[None, 3], event_shape=[5]) sample_shape = ops.convert_to_tensor([6, 7], dtype=dtypes.int32) y = dist._set_sample_static_shape(x, sample_shape) self.assertAllEqual([6, 7, None, 3, 5], y.get_shape().as_list()) with self.cached_session(): x = array_ops.placeholder(dtype=dtypes.float32) dist = fake_distribution(batch_shape=[None, 3], event_shape=[None]) sample_shape = ops.convert_to_tensor([6, 7], dtype=dtypes.int32) y = dist._set_sample_static_shape(x, sample_shape) self.assertAllEqual([6, 7, None, 3, None], y.get_shape().as_list()) with self.cached_session(): x = array_ops.placeholder(dtype=dtypes.float32) dist = fake_distribution(batch_shape=None, event_shape=None) sample_shape = ops.convert_to_tensor([6, 7], dtype=dtypes.int32) y = dist._set_sample_static_shape(x, sample_shape) self.assertTrue(y.get_shape().ndims is None) with self.cached_session(): x = array_ops.placeholder(dtype=dtypes.float32) dist = fake_distribution(batch_shape=[None, 3], event_shape=None) sample_shape = ops.convert_to_tensor([6, 7], dtype=dtypes.int32) y = dist._set_sample_static_shape(x, sample_shape) self.assertTrue(y.get_shape().ndims is None) def testNameScopeWorksCorrectly(self): x = tfd.Normal(loc=0., scale=1., name="x") x_duplicate = tfd.Normal(loc=0., scale=1., name="x") with ops.name_scope("y") as name: y = tfd.Bernoulli(logits=0., name=name) x_sample = x.sample(name="custom_sample") x_sample_duplicate = x.sample(name="custom_sample") x_log_prob = x.log_prob(0., name="custom_log_prob") x_duplicate_sample = x_duplicate.sample(name="custom_sample") self.assertEqual(x.name, "x/") self.assertEqual(x_duplicate.name, "x_1/") self.assertEqual(y.name, "y/") self.assertTrue(x_sample.name.startswith("x/custom_sample")) self.assertTrue(x_sample_duplicate.name.startswith("x/custom_sample_1")) self.assertTrue(x_log_prob.name.startswith("x/custom_log_prob")) self.assertTrue(x_duplicate_sample.name.startswith( "x_1/custom_sample")) def testStrWorksCorrectlyScalar(self): normal = tfd.Normal(loc=np.float16(0), scale=np.float16(1)) self.assertEqual( ("tfp.distributions.Normal(" "\"Normal/\", " "batch_shape=(), " "event_shape=(), " "dtype=float16)"), # Got the dtype right. str(normal)) chi2 = tfd.Chi2(df=np.float32([1., 2.]), name="silly") self.assertEqual( ("tfp.distributions.Chi2(" "\"silly/\", " # What a silly name that is! "batch_shape=(2,), " "event_shape=(), " "dtype=float32)"), str(chi2)) exp = tfd.Exponential(rate=array_ops.placeholder(dtype=dtypes.float32)) self.assertEqual( ("tfp.distributions.Exponential(\"Exponential/\", " # No batch shape. "event_shape=(), " "dtype=float32)"), str(exp)) def testStrWorksCorrectlyMultivariate(self): mvn_static = tfd.MultivariateNormalDiag( loc=np.zeros([2, 2]), name="MVN") self.assertEqual( ("tfp.distributions.MultivariateNormalDiag(" "\"MVN/\", " "batch_shape=(2,), " "event_shape=(2,), " "dtype=float64)"), str(mvn_static)) mvn_dynamic = tfd.MultivariateNormalDiag( loc=array_ops.placeholder(shape=[None, 3], dtype=dtypes.float32), name="MVN2") if mvn_dynamic.batch_shape._v2_behavior: self.assertEqual( ("tfp.distributions.MultivariateNormalDiag(" "\"MVN2/\", " "batch_shape=(None,), " # Partially known. "event_shape=(3,), " "dtype=float32)"), str(mvn_dynamic)) else: self.assertEqual( ("tfp.distributions.MultivariateNormalDiag(" "\"MVN2/\", " "batch_shape=(?,), " # Partially known. "event_shape=(3,), " "dtype=float32)"), str(mvn_dynamic)) def testReprWorksCorrectlyScalar(self): normal = tfd.Normal(loc=np.float16(0), scale=np.float16(1)) self.assertEqual( ("<tfp.distributions.Normal" " 'Normal/'" " batch_shape=()" " event_shape=()" " dtype=float16>"), # Got the dtype right. repr(normal)) chi2 = tfd.Chi2(df=np.float32([1., 2.]), name="silly") self.assertEqual( ("<tfp.distributions.Chi2" " 'silly/'" # What a silly name that is! " batch_shape=(2,)" " event_shape=()" " dtype=float32>"), repr(chi2)) exp = tfd.Exponential(rate=array_ops.placeholder(dtype=dtypes.float32)) self.assertEqual( ("<tfp.distributions.Exponential" " 'Exponential/'" " batch_shape=<unknown>" " event_shape=()" " dtype=float32>"), repr(exp)) def testReprWorksCorrectlyMultivariate(self): mvn_static = tfd.MultivariateNormalDiag( loc=np.zeros([2, 2]), name="MVN") self.assertEqual( ("<tfp.distributions.MultivariateNormalDiag" " 'MVN/'" " batch_shape=(2,)" " event_shape=(2,)" " dtype=float64>"), repr(mvn_static)) mvn_dynamic = tfd.MultivariateNormalDiag( loc=array_ops.placeholder(shape=[None, 3], dtype=dtypes.float32), name="MVN2") if mvn_dynamic.batch_shape._v2_behavior: self.assertEqual( ("<tfp.distributions.MultivariateNormalDiag" " 'MVN2/'" " batch_shape=(None,)" # Partially known. " event_shape=(3,)" " dtype=float32>"), repr(mvn_dynamic)) else: self.assertEqual( ("<tfp.distributions.MultivariateNormalDiag" " 'MVN2/'" " batch_shape=(?,)" # Partially known. " event_shape=(3,)" " dtype=float32>"), repr(mvn_dynamic)) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/distribution_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from scipy import stats from tensorflow.contrib.distributions.python.ops import binomial from tensorflow.python.framework import dtypes from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.platform import test class BinomialTest(test.TestCase): def testSimpleShapes(self): with self.cached_session(): p = np.float32(np.random.beta(1, 1)) binom = binomial.Binomial(total_count=1., probs=p) self.assertAllEqual([], binom.event_shape_tensor().eval()) self.assertAllEqual([], binom.batch_shape_tensor().eval()) self.assertEqual(tensor_shape.TensorShape([]), binom.event_shape) self.assertEqual(tensor_shape.TensorShape([]), binom.batch_shape) def testComplexShapes(self): with self.cached_session(): p = np.random.beta(1, 1, size=(3, 2)).astype(np.float32) n = [[3., 2], [4, 5], [6, 7]] binom = binomial.Binomial(total_count=n, probs=p) self.assertAllEqual([], binom.event_shape_tensor().eval()) self.assertAllEqual([3, 2], binom.batch_shape_tensor().eval()) self.assertEqual(tensor_shape.TensorShape([]), binom.event_shape) self.assertEqual( tensor_shape.TensorShape([3, 2]), binom.batch_shape) def testNProperty(self): p = [[0.1, 0.2, 0.7], [0.2, 0.3, 0.5]] n = [[3.], [4]] with self.cached_session(): binom = binomial.Binomial(total_count=n, probs=p) self.assertEqual((2, 1), binom.total_count.get_shape()) self.assertAllClose(n, binom.total_count.eval()) def testPProperty(self): p = [[0.1, 0.2, 0.7]] with self.cached_session(): binom = binomial.Binomial(total_count=3., probs=p) self.assertEqual((1, 3), binom.probs.get_shape()) self.assertEqual((1, 3), binom.logits.get_shape()) self.assertAllClose(p, binom.probs.eval()) def testLogitsProperty(self): logits = [[0., 9., -0.5]] with self.cached_session(): binom = binomial.Binomial(total_count=3., logits=logits) self.assertEqual((1, 3), binom.probs.get_shape()) self.assertEqual((1, 3), binom.logits.get_shape()) self.assertAllClose(logits, binom.logits.eval()) def testPmfAndCdfNandCountsAgree(self): p = [[0.1, 0.2, 0.7]] n = [[5.]] with self.cached_session(): binom = binomial.Binomial(total_count=n, probs=p, validate_args=True) binom.prob([2., 3, 2]).eval() binom.prob([3., 1, 2]).eval() binom.cdf([2., 3, 2]).eval() binom.cdf([3., 1, 2]).eval() with self.assertRaisesOpError("Condition x >= 0.*"): binom.prob([-1., 4, 2]).eval() with self.assertRaisesOpError("Condition x <= y.*"): binom.prob([7., 3, 0]).eval() with self.assertRaisesOpError("Condition x >= 0.*"): binom.cdf([-1., 4, 2]).eval() with self.assertRaisesOpError("Condition x <= y.*"): binom.cdf([7., 3, 0]).eval() def testPmfAndCdfNonIntegerCounts(self): p = [[0.1, 0.2, 0.7]] n = [[5.]] with self.cached_session(): # No errors with integer n. binom = binomial.Binomial(total_count=n, probs=p, validate_args=True) binom.prob([2., 3, 2]).eval() binom.prob([3., 1, 2]).eval() binom.cdf([2., 3, 2]).eval() binom.cdf([3., 1, 2]).eval() placeholder = array_ops.placeholder(dtypes.float32) # Both equality and integer checking fail. with self.assertRaisesOpError( "cannot contain fractional components."): binom.prob(placeholder).eval(feed_dict={placeholder: [1.0, 2.5, 1.5]}) with self.assertRaisesOpError( "cannot contain fractional components."): binom.cdf(placeholder).eval(feed_dict={placeholder: [1.0, 2.5, 1.5]}) binom = binomial.Binomial(total_count=n, probs=p, validate_args=False) binom.prob([1., 2., 3.]).eval() binom.cdf([1., 2., 3.]).eval() # Non-integer arguments work. binom.prob([1.0, 2.5, 1.5]).eval() binom.cdf([1.0, 2.5, 1.5]).eval() def testPmfAndCdfBothZeroBatches(self): with self.cached_session(): # Both zero-batches. No broadcast p = 0.5 counts = 1. binom = binomial.Binomial(total_count=1., probs=p) pmf = binom.prob(counts) cdf = binom.cdf(counts) self.assertAllClose(0.5, pmf.eval()) self.assertAllClose(stats.binom.cdf(counts, n=1, p=p), cdf.eval()) self.assertEqual((), pmf.get_shape()) self.assertEqual((), cdf.get_shape()) def testPmfAndCdfBothZeroBatchesNontrivialN(self): with self.cached_session(): # Both zero-batches. No broadcast p = 0.1 counts = 3. binom = binomial.Binomial(total_count=5., probs=p) pmf = binom.prob(counts) cdf = binom.cdf(counts) self.assertAllClose(stats.binom.pmf(counts, n=5., p=p), pmf.eval()) self.assertAllClose(stats.binom.cdf(counts, n=5., p=p), cdf.eval()) self.assertEqual((), pmf.get_shape()) self.assertEqual((), cdf.get_shape()) def testPmfAndCdfPStretchedInBroadcastWhenSameRank(self): with self.cached_session(): p = [[0.1, 0.9]] counts = [[1., 2.]] binom = binomial.Binomial(total_count=3., probs=p) pmf = binom.prob(counts) cdf = binom.cdf(counts) self.assertAllClose(stats.binom.pmf(counts, n=3., p=p), pmf.eval()) self.assertAllClose(stats.binom.cdf(counts, n=3., p=p), cdf.eval()) self.assertEqual((1, 2), pmf.get_shape()) self.assertEqual((1, 2), cdf.get_shape()) def testPmfAndCdfPStretchedInBroadcastWhenLowerRank(self): with self.cached_session(): p = [0.1, 0.4] counts = [[1.], [0.]] binom = binomial.Binomial(total_count=1., probs=p) pmf = binom.prob(counts) cdf = binom.cdf(counts) self.assertAllClose([[0.1, 0.4], [0.9, 0.6]], pmf.eval()) self.assertAllClose([[1.0, 1.0], [0.9, 0.6]], cdf.eval()) self.assertEqual((2, 2), pmf.get_shape()) self.assertEqual((2, 2), cdf.get_shape()) def testBinomialMean(self): with self.cached_session(): n = 5. p = [0.1, 0.2, 0.7] binom = binomial.Binomial(total_count=n, probs=p) expected_means = stats.binom.mean(n, p) self.assertEqual((3,), binom.mean().get_shape()) self.assertAllClose(expected_means, binom.mean().eval()) def testBinomialVariance(self): with self.cached_session(): n = 5. p = [0.1, 0.2, 0.7] binom = binomial.Binomial(total_count=n, probs=p) expected_variances = stats.binom.var(n, p) self.assertEqual((3,), binom.variance().get_shape()) self.assertAllClose(expected_variances, binom.variance().eval()) def testBinomialMode(self): with self.cached_session(): n = 5. p = [0.1, 0.2, 0.7] binom = binomial.Binomial(total_count=n, probs=p) expected_modes = [0., 1, 4] self.assertEqual((3,), binom.mode().get_shape()) self.assertAllClose(expected_modes, binom.mode().eval()) def testBinomialMultipleMode(self): with self.cached_session(): n = 9. p = [0.1, 0.2, 0.7] binom = binomial.Binomial(total_count=n, probs=p) # For the case where (n + 1) * p is an integer, the modes are: # (n + 1) * p and (n + 1) * p - 1. In this case, we get back # the larger of the two modes. expected_modes = [1., 2, 7] self.assertEqual((3,), binom.mode().get_shape()) self.assertAllClose(expected_modes, binom.mode().eval()) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/binomial_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import deterministic as deterministic_lib from tensorflow.python.framework import errors from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.platform import test rng = np.random.RandomState(0) class DeterministicTest(test.TestCase): def testShape(self): with self.cached_session(): loc = rng.rand(2, 3, 4) deterministic = deterministic_lib.Deterministic(loc) self.assertAllEqual(deterministic.batch_shape_tensor().eval(), (2, 3, 4)) self.assertAllEqual(deterministic.batch_shape, (2, 3, 4)) self.assertAllEqual(deterministic.event_shape_tensor().eval(), []) self.assertEqual(deterministic.event_shape, tensor_shape.TensorShape([])) def testInvalidTolRaises(self): loc = rng.rand(2, 3, 4).astype(np.float32) with self.assertRaisesRegexp(errors.InvalidArgumentError, "Condition x >= 0"): _ = deterministic_lib.Deterministic(loc, atol=-1, validate_args=True) # Error detected statically; no need for _.prob(0.).eval() def testProbWithNoBatchDimsIntegerType(self): deterministic = deterministic_lib.Deterministic(0) with self.cached_session(): self.assertAllClose(1, deterministic.prob(0).eval()) self.assertAllClose(0, deterministic.prob(2).eval()) self.assertAllClose([1, 0], deterministic.prob([0, 2]).eval()) def testProbWithNoBatchDims(self): deterministic = deterministic_lib.Deterministic(0.) with self.cached_session(): self.assertAllClose(1., deterministic.prob(0.).eval()) self.assertAllClose(0., deterministic.prob(2.).eval()) self.assertAllClose([1., 0.], deterministic.prob([0., 2.]).eval()) def testProbWithDefaultTol(self): loc = [[0., 1.], [2., 3.]] x = [[0., 1.1], [1.99, 3.]] deterministic = deterministic_lib.Deterministic(loc) expected_prob = [[1., 0.], [0., 1.]] with self.cached_session(): prob = deterministic.prob(x) self.assertAllEqual((2, 2), prob.get_shape()) self.assertAllEqual(expected_prob, prob.eval()) def testProbWithNonzeroATol(self): loc = [[0., 1.], [2., 3.]] x = [[0., 1.1], [1.99, 3.]] deterministic = deterministic_lib.Deterministic(loc, atol=0.05) expected_prob = [[1., 0.], [1., 1.]] with self.cached_session(): prob = deterministic.prob(x) self.assertAllEqual((2, 2), prob.get_shape()) self.assertAllEqual(expected_prob, prob.eval()) def testProbWithNonzeroATolIntegerType(self): loc = [[0, 1], [2, 3]] x = [[0, 2], [4, 2]] deterministic = deterministic_lib.Deterministic(loc, atol=1) expected_prob = [[1, 1], [0, 1]] with self.cached_session(): prob = deterministic.prob(x) self.assertAllEqual((2, 2), prob.get_shape()) self.assertAllEqual(expected_prob, prob.eval()) def testProbWithNonzeroRTol(self): loc = [[0., 1.], [100., 100.]] x = [[0., 1.1], [100.1, 103.]] deterministic = deterministic_lib.Deterministic(loc, rtol=0.01) expected_prob = [[1., 0.], [1., 0.]] with self.cached_session(): prob = deterministic.prob(x) self.assertAllEqual((2, 2), prob.get_shape()) self.assertAllEqual(expected_prob, prob.eval()) def testProbWithNonzeroRTolIntegerType(self): loc = [[10, 10, 10], [10, 10, 10]] x = [[10, 20, 30], [10, 20, 30]] # Batch 0 will have rtol = 0 # Batch 1 will have rtol = 1 (100% slack allowed) deterministic = deterministic_lib.Deterministic(loc, rtol=[[0], [1]]) expected_prob = [[1, 0, 0], [1, 1, 0]] with self.cached_session(): prob = deterministic.prob(x) self.assertAllEqual((2, 3), prob.get_shape()) self.assertAllEqual(expected_prob, prob.eval()) def testCdfWithDefaultTol(self): loc = [[0., 0.], [0., 0.]] x = [[-1., -0.1], [-0.01, 1.000001]] deterministic = deterministic_lib.Deterministic(loc) expected_cdf = [[0., 0.], [0., 1.]] with self.cached_session(): cdf = deterministic.cdf(x) self.assertAllEqual((2, 2), cdf.get_shape()) self.assertAllEqual(expected_cdf, cdf.eval()) def testCdfWithNonzeroATol(self): loc = [[0., 0.], [0., 0.]] x = [[-1., -0.1], [-0.01, 1.000001]] deterministic = deterministic_lib.Deterministic(loc, atol=0.05) expected_cdf = [[0., 0.], [1., 1.]] with self.cached_session(): cdf = deterministic.cdf(x) self.assertAllEqual((2, 2), cdf.get_shape()) self.assertAllEqual(expected_cdf, cdf.eval()) def testCdfWithNonzeroRTol(self): loc = [[1., 1.], [100., 100.]] x = [[0.9, 1.], [99.9, 97]] deterministic = deterministic_lib.Deterministic(loc, rtol=0.01) expected_cdf = [[0., 1.], [1., 0.]] with self.cached_session(): cdf = deterministic.cdf(x) self.assertAllEqual((2, 2), cdf.get_shape()) self.assertAllEqual(expected_cdf, cdf.eval()) def testSampleNoBatchDims(self): deterministic = deterministic_lib.Deterministic(0.) for sample_shape in [(), (4,)]: with self.cached_session(): sample = deterministic.sample(sample_shape) self.assertAllEqual(sample_shape, sample.get_shape()) self.assertAllClose( np.zeros(sample_shape).astype(np.float32), sample.eval()) def testSampleWithBatchDims(self): deterministic = deterministic_lib.Deterministic([0., 0.]) for sample_shape in [(), (4,)]: with self.cached_session(): sample = deterministic.sample(sample_shape) self.assertAllEqual(sample_shape + (2,), sample.get_shape()) self.assertAllClose( np.zeros(sample_shape + (2,)).astype(np.float32), sample.eval()) def testSampleDynamicWithBatchDims(self): loc = array_ops.placeholder(np.float32) sample_shape = array_ops.placeholder(np.int32) deterministic = deterministic_lib.Deterministic(loc) for sample_shape_ in [(), (4,)]: with self.cached_session(): sample_ = deterministic.sample(sample_shape).eval( feed_dict={loc: [0., 0.], sample_shape: sample_shape_}) self.assertAllClose( np.zeros(sample_shape_ + (2,)).astype(np.float32), sample_) def testEntropy(self): loc = np.array([-0.1, -3.2, 7.]) deterministic = deterministic_lib.Deterministic(loc=loc) with self.cached_session() as sess: entropy_ = sess.run(deterministic.entropy()) self.assertAllEqual(np.zeros(3), entropy_) class VectorDeterministicTest(test.TestCase): def testShape(self): with self.cached_session(): loc = rng.rand(2, 3, 4) deterministic = deterministic_lib.VectorDeterministic(loc) self.assertAllEqual(deterministic.batch_shape_tensor().eval(), (2, 3)) self.assertAllEqual(deterministic.batch_shape, (2, 3)) self.assertAllEqual(deterministic.event_shape_tensor().eval(), [4]) self.assertEqual(deterministic.event_shape, tensor_shape.TensorShape([4])) def testInvalidTolRaises(self): loc = rng.rand(2, 3, 4).astype(np.float32) with self.assertRaisesRegexp(errors.InvalidArgumentError, "Condition x >= 0"): _ = deterministic_lib.VectorDeterministic( loc, atol=-1, validate_args=True) # Error detected statically; no need for _.prob(loc).eval() def testInvalidXRaises(self): loc = rng.rand(2, 3, 4).astype(np.float32) deterministic = deterministic_lib.VectorDeterministic( loc, atol=None, validate_args=True) with self.cached_session(): with self.assertRaisesRegexp(ValueError, "must have rank at least 1"): deterministic.prob(0.).eval() def testProbVectorDeterministicWithNoBatchDims(self): # 0 batch of deterministics on R^1. deterministic = deterministic_lib.VectorDeterministic([0.]) with self.cached_session(): self.assertAllClose(1., deterministic.prob([0.]).eval()) self.assertAllClose(0., deterministic.prob([2.]).eval()) self.assertAllClose([1., 0.], deterministic.prob([[0.], [2.]]).eval()) def testProbWithDefaultTol(self): # 3 batch of deterministics on R^2. loc = [[0., 1.], [2., 3.], [4., 5.]] x = [[0., 1.], [1.9, 3.], [3.99, 5.]] deterministic = deterministic_lib.VectorDeterministic(loc) expected_prob = [1., 0., 0.] with self.cached_session(): prob = deterministic.prob(x) self.assertAllEqual((3,), prob.get_shape()) self.assertAllEqual(expected_prob, prob.eval()) def testProbWithNonzeroATol(self): # 3 batch of deterministics on R^2. loc = [[0., 1.], [2., 3.], [4., 5.]] x = [[0., 1.], [1.9, 3.], [3.99, 5.]] deterministic = deterministic_lib.VectorDeterministic(loc, atol=0.05) expected_prob = [1., 0., 1.] with self.cached_session(): prob = deterministic.prob(x) self.assertAllEqual((3,), prob.get_shape()) self.assertAllEqual(expected_prob, prob.eval()) def testProbWithNonzeroRTol(self): # 3 batch of deterministics on R^2. loc = [[0., 1.], [1., 1.], [100., 100.]] x = [[0., 1.], [0.9, 1.], [99.9, 100.1]] deterministic = deterministic_lib.VectorDeterministic(loc, rtol=0.01) expected_prob = [1., 0., 1.] with self.cached_session(): prob = deterministic.prob(x) self.assertAllEqual((3,), prob.get_shape()) self.assertAllEqual(expected_prob, prob.eval()) def testProbVectorDeterministicWithNoBatchDimsOnRZero(self): # 0 batch of deterministics on R^0. deterministic = deterministic_lib.VectorDeterministic( [], validate_args=True) with self.cached_session(): self.assertAllClose(1., deterministic.prob([]).eval()) def testProbVectorDeterministicWithNoBatchDimsOnRZeroRaisesIfXNotInSameRk( self): # 0 batch of deterministics on R^0. deterministic = deterministic_lib.VectorDeterministic( [], validate_args=True) with self.cached_session(): with self.assertRaisesOpError("not defined in the same space"): deterministic.prob([1.]).eval() def testSampleNoBatchDims(self): deterministic = deterministic_lib.VectorDeterministic([0.]) for sample_shape in [(), (4,)]: with self.cached_session(): sample = deterministic.sample(sample_shape) self.assertAllEqual(sample_shape + (1,), sample.get_shape()) self.assertAllClose( np.zeros(sample_shape + (1,)).astype(np.float32), sample.eval()) def testSampleWithBatchDims(self): deterministic = deterministic_lib.VectorDeterministic([[0.], [0.]]) for sample_shape in [(), (4,)]: with self.cached_session(): sample = deterministic.sample(sample_shape) self.assertAllEqual(sample_shape + (2, 1), sample.get_shape()) self.assertAllClose( np.zeros(sample_shape + (2, 1)).astype(np.float32), sample.eval()) def testSampleDynamicWithBatchDims(self): loc = array_ops.placeholder(np.float32) sample_shape = array_ops.placeholder(np.int32) deterministic = deterministic_lib.VectorDeterministic(loc) for sample_shape_ in [(), (4,)]: with self.cached_session(): sample_ = deterministic.sample(sample_shape).eval( feed_dict={loc: [[0.], [0.]], sample_shape: sample_shape_}) self.assertAllClose( np.zeros(sample_shape_ + (2, 1)).astype(np.float32), sample_) def testEntropy(self): loc = np.array([[8.3, 1.2, 3.3], [-0.1, -3.2, 7.]]) deterministic = deterministic_lib.VectorDeterministic(loc=loc) with self.cached_session() as sess: entropy_ = sess.run(deterministic.entropy()) self.assertAllEqual(np.zeros(2), entropy_) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/deterministic_test.py
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for OneHotCategorical distribution.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import onehot_categorical from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops.distributions import kullback_leibler from tensorflow.python.platform import test def make_onehot_categorical(batch_shape, num_classes, dtype=dtypes.int32): logits = random_ops.random_uniform( list(batch_shape) + [num_classes], -10, 10, dtype=dtypes.float32) - 50. return onehot_categorical.OneHotCategorical(logits, dtype=dtype) class OneHotCategoricalTest(test.TestCase): def setUp(self): self._rng = np.random.RandomState(42) def testP(self): p = [0.2, 0.8] dist = onehot_categorical.OneHotCategorical(probs=p) with self.cached_session(): self.assertAllClose(p, dist.probs.eval()) self.assertAllEqual([2], dist.logits.get_shape()) def testLogits(self): p = np.array([0.2, 0.8], dtype=np.float32) logits = np.log(p) - 50. dist = onehot_categorical.OneHotCategorical(logits=logits) with self.cached_session(): self.assertAllEqual([2], dist.probs.get_shape()) self.assertAllEqual([2], dist.logits.get_shape()) self.assertAllClose(dist.probs.eval(), p) self.assertAllClose(dist.logits.eval(), logits) def testShapes(self): with self.cached_session(): for batch_shape in ([], [1], [2, 3, 4]): dist = make_onehot_categorical(batch_shape, 10) self.assertAllEqual(batch_shape, dist.batch_shape.as_list()) self.assertAllEqual(batch_shape, dist.batch_shape_tensor().eval()) self.assertAllEqual([10], dist.event_shape.as_list()) self.assertAllEqual([10], dist.event_shape_tensor().eval()) # event_shape is available as a constant because the shape is # known at graph build time. self.assertEqual(10, tensor_util.constant_value(dist.event_shape_tensor())) for batch_shape in ([], [1], [2, 3, 4]): dist = make_onehot_categorical( batch_shape, constant_op.constant(10, dtype=dtypes.int32)) self.assertAllEqual(len(batch_shape), dist.batch_shape.ndims) self.assertAllEqual(batch_shape, dist.batch_shape_tensor().eval()) self.assertAllEqual([10], dist.event_shape.as_list()) self.assertEqual(10, dist.event_shape_tensor().eval()) def testDtype(self): dist = make_onehot_categorical([], 5, dtype=dtypes.int32) self.assertEqual(dist.dtype, dtypes.int32) self.assertEqual(dist.dtype, dist.sample(5).dtype) self.assertEqual(dist.dtype, dist.mode().dtype) dist = make_onehot_categorical([], 5, dtype=dtypes.int64) self.assertEqual(dist.dtype, dtypes.int64) self.assertEqual(dist.dtype, dist.sample(5).dtype) self.assertEqual(dist.dtype, dist.mode().dtype) self.assertEqual(dist.probs.dtype, dtypes.float32) self.assertEqual(dist.logits.dtype, dtypes.float32) self.assertEqual(dist.logits.dtype, dist.entropy().dtype) self.assertEqual(dist.logits.dtype, dist.prob( np.array([1]+[0]*4, dtype=np.int64)).dtype) self.assertEqual(dist.logits.dtype, dist.log_prob( np.array([1]+[0]*4, dtype=np.int64)).dtype) def testUnknownShape(self): with self.cached_session(): logits = array_ops.placeholder(dtype=dtypes.float32) dist = onehot_categorical.OneHotCategorical(logits) sample = dist.sample() # Will sample class 1. sample_value = sample.eval(feed_dict={logits: [-1000.0, 1000.0]}) self.assertAllEqual([0, 1], sample_value) # Batch entry 0 will sample class 1, batch entry 1 will sample class 0. sample_value_batch = sample.eval( feed_dict={logits: [[-1000.0, 1000.0], [1000.0, -1000.0]]}) self.assertAllEqual([[0, 1], [1, 0]], sample_value_batch) def testEntropyNoBatch(self): logits = np.log([0.2, 0.8]) - 50. dist = onehot_categorical.OneHotCategorical(logits) with self.cached_session(): self.assertAllClose( dist.entropy().eval(), -(0.2 * np.log(0.2) + 0.8 * np.log(0.8))) def testEntropyWithBatch(self): logits = np.log([[0.2, 0.8], [0.6, 0.4]]) - 50. dist = onehot_categorical.OneHotCategorical(logits) with self.cached_session(): self.assertAllClose(dist.entropy().eval(), [ -(0.2 * np.log(0.2) + 0.8 * np.log(0.8)), -(0.6 * np.log(0.6) + 0.4 * np.log(0.4)) ]) def testPmf(self): # check that probability of samples correspond to their class probabilities with self.cached_session(): logits = self._rng.random_sample(size=(8, 2, 10)) prob = np.exp(logits)/np.sum(np.exp(logits), axis=-1, keepdims=True) dist = onehot_categorical.OneHotCategorical(logits=logits) np_sample = dist.sample().eval() np_prob = dist.prob(np_sample).eval() expected_prob = prob[np_sample.astype(np.bool)] self.assertAllClose(expected_prob, np_prob.flatten()) def testSample(self): with self.cached_session(): probs = [[[0.2, 0.8], [0.4, 0.6]]] dist = onehot_categorical.OneHotCategorical(math_ops.log(probs) - 50.) n = 100 samples = dist.sample(n, seed=123) self.assertEqual(samples.dtype, dtypes.int32) sample_values = samples.eval() self.assertAllEqual([n, 1, 2, 2], sample_values.shape) self.assertFalse(np.any(sample_values < 0)) self.assertFalse(np.any(sample_values > 1)) def testSampleWithSampleShape(self): with self.cached_session(): probs = [[[0.2, 0.8], [0.4, 0.6]]] dist = onehot_categorical.OneHotCategorical(math_ops.log(probs) - 50.) samples = dist.sample((100, 100), seed=123) prob = dist.prob(samples) prob_val = prob.eval() self.assertAllClose([0.2**2 + 0.8**2], [prob_val[:, :, :, 0].mean()], atol=1e-2) self.assertAllClose([0.4**2 + 0.6**2], [prob_val[:, :, :, 1].mean()], atol=1e-2) def testCategoricalCategoricalKL(self): def np_softmax(logits): exp_logits = np.exp(logits) return exp_logits / exp_logits.sum(axis=-1, keepdims=True) with self.cached_session() as sess: for categories in [2, 10]: for batch_size in [1, 2]: p_logits = self._rng.random_sample((batch_size, categories)) q_logits = self._rng.random_sample((batch_size, categories)) p = onehot_categorical.OneHotCategorical(logits=p_logits) q = onehot_categorical.OneHotCategorical(logits=q_logits) prob_p = np_softmax(p_logits) prob_q = np_softmax(q_logits) kl_expected = np.sum( prob_p * (np.log(prob_p) - np.log(prob_q)), axis=-1) kl_actual = kullback_leibler.kl_divergence(p, q) kl_same = kullback_leibler.kl_divergence(p, p) x = p.sample(int(2e4), seed=0) x = math_ops.cast(x, dtype=dtypes.float32) # Compute empirical KL(p||q). kl_sample = math_ops.reduce_mean(p.log_prob(x) - q.log_prob(x), 0) [kl_sample_, kl_actual_, kl_same_] = sess.run([kl_sample, kl_actual, kl_same]) self.assertEqual(kl_actual.get_shape(), (batch_size,)) self.assertAllClose(kl_same_, np.zeros_like(kl_expected)) self.assertAllClose(kl_actual_, kl_expected, atol=0., rtol=1e-6) self.assertAllClose(kl_sample_, kl_expected, atol=1e-2, rtol=0.) def testSampleUnbiasedNonScalarBatch(self): with self.cached_session() as sess: logits = self._rng.rand(4, 3, 2).astype(np.float32) dist = onehot_categorical.OneHotCategorical(logits=logits) n = int(3e3) x = dist.sample(n, seed=0) x = math_ops.cast(x, dtype=dtypes.float32) sample_mean = math_ops.reduce_mean(x, 0) x_centered = array_ops.transpose(x - sample_mean, [1, 2, 3, 0]) sample_covariance = math_ops.matmul( x_centered, x_centered, adjoint_b=True) / n [ sample_mean_, sample_covariance_, actual_mean_, actual_covariance_, ] = sess.run([ sample_mean, sample_covariance, dist.probs, dist.covariance(), ]) self.assertAllEqual([4, 3, 2], sample_mean.get_shape()) self.assertAllClose(actual_mean_, sample_mean_, atol=0., rtol=0.07) self.assertAllEqual([4, 3, 2, 2], sample_covariance.get_shape()) self.assertAllClose( actual_covariance_, sample_covariance_, atol=0., rtol=0.10) def testSampleUnbiasedScalarBatch(self): with self.cached_session() as sess: logits = self._rng.rand(3).astype(np.float32) dist = onehot_categorical.OneHotCategorical(logits=logits) n = int(1e4) x = dist.sample(n, seed=0) x = math_ops.cast(x, dtype=dtypes.float32) sample_mean = math_ops.reduce_mean(x, 0) # elementwise mean x_centered = x - sample_mean sample_covariance = math_ops.matmul( x_centered, x_centered, adjoint_a=True) / n [ sample_mean_, sample_covariance_, actual_mean_, actual_covariance_, ] = sess.run([ sample_mean, sample_covariance, dist.probs, dist.covariance(), ]) self.assertAllEqual([3], sample_mean.get_shape()) self.assertAllClose(actual_mean_, sample_mean_, atol=0., rtol=0.1) self.assertAllEqual([3, 3], sample_covariance.get_shape()) self.assertAllClose( actual_covariance_, sample_covariance_, atol=0., rtol=0.1) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/onehot_categorical_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for computing moving-average statistics.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import moving_stats from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test rng = np.random.RandomState(0) class MovingReduceMeanVarianceTest(test.TestCase): def test_assign_moving_mean_variance(self): shape = [1, 2] true_mean = np.array([[0., 3.]]) true_stddev = np.array([[1.1, 0.5]]) with self.cached_session() as sess: # Start "x" out with this mean. mean_var = variables.VariableV1(array_ops.zeros_like(true_mean)) variance_var = variables.VariableV1(array_ops.ones_like(true_stddev)) x = random_ops.random_normal(shape, dtype=np.float64, seed=0) x = true_stddev * x + true_mean ema, emv = moving_stats.assign_moving_mean_variance( mean_var, variance_var, x, decay=0.99) self.assertEqual(ema.dtype.base_dtype, dtypes.float64) self.assertEqual(emv.dtype.base_dtype, dtypes.float64) # Run 1000 updates; moving averages should be near the true values. variables.global_variables_initializer().run() for _ in range(2000): sess.run([ema, emv]) [mean_var_, variance_var_, ema_, emv_] = sess.run([ mean_var, variance_var, ema, emv]) # Test that variables are passed-through. self.assertAllEqual(mean_var_, ema_) self.assertAllEqual(variance_var_, emv_) # Test that values are as expected. self.assertAllClose(true_mean, ema_, rtol=0.005, atol=0.015) self.assertAllClose(true_stddev**2., emv_, rtol=0.06, atol=0.) # Change the mean, var then update some more. Moving averages should # re-converge. sess.run([ mean_var.assign(np.array([[-1., 2.]])), variance_var.assign(np.array([[2., 1.]])), ]) for _ in range(2000): sess.run([ema, emv]) [mean_var_, variance_var_, ema_, emv_] = sess.run([ mean_var, variance_var, ema, emv]) # Test that variables are passed-through. self.assertAllEqual(mean_var_, ema_) self.assertAllEqual(variance_var_, emv_) # Test that values are as expected. self.assertAllClose(true_mean, ema_, rtol=0.005, atol=0.015) self.assertAllClose(true_stddev**2., emv_, rtol=0.1, atol=0.) def test_moving_mean_variance(self): shape = [1, 2] true_mean = np.array([[0., 3.]]) true_stddev = np.array([[1.1, 0.5]]) with self.cached_session() as sess: # Start "x" out with this mean. x = random_ops.random_normal(shape, dtype=np.float64, seed=0) x = true_stddev * x + true_mean ema, emv = moving_stats.moving_mean_variance( x, decay=0.99) self.assertEqual(ema.dtype.base_dtype, dtypes.float64) self.assertEqual(emv.dtype.base_dtype, dtypes.float64) # Run 1000 updates; moving averages should be near the true values. variables.global_variables_initializer().run() for _ in range(2000): sess.run([ema, emv]) [ema_, emv_] = sess.run([ema, emv]) self.assertAllClose(true_mean, ema_, rtol=0.005, atol=0.015) self.assertAllClose(true_stddev**2., emv_, rtol=0.06, atol=0.) class MovingLogExponentialMovingMeanExpTest(test.TestCase): def test_assign_log_moving_mean_exp(self): shape = [1, 2] true_mean = np.array([[0., 3.]]) true_stddev = np.array([[1.1, 0.5]]) decay = 0.99 with self.cached_session() as sess: # Start "x" out with this mean. x = random_ops.random_normal(shape, dtype=np.float64, seed=0) x = true_stddev * x + true_mean log_mean_exp_var = variables.VariableV1(array_ops.zeros_like(true_mean)) variables.global_variables_initializer().run() log_mean_exp = moving_stats.assign_log_moving_mean_exp( log_mean_exp_var, x, decay=decay) expected_ = np.zeros_like(true_mean) for _ in range(2000): x_, log_mean_exp_ = sess.run([x, log_mean_exp]) expected_ = np.log(decay * np.exp(expected_) + (1 - decay) * np.exp(x_)) self.assertAllClose(expected_, log_mean_exp_, rtol=1e-6, atol=1e-9) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/moving_stats_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for VectorDiffeomixture.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import test_util from tensorflow.contrib.distributions.python.ops import vector_diffeomixture as vdm_lib from tensorflow.python.ops.distributions import normal as normal_lib from tensorflow.python.ops.linalg import linear_operator_diag as linop_diag_lib from tensorflow.python.ops.linalg import linear_operator_identity as linop_identity_lib from tensorflow.python.platform import test rng = np.random.RandomState(0) class VectorDiffeomixtureTest( test_util.VectorDistributionTestHelpers, test.TestCase): """Tests the VectorDiffeomixture distribution.""" def testSampleProbConsistentBroadcastMixNoBatch(self): with self.cached_session() as sess: dims = 4 vdm = vdm_lib.VectorDiffeomixture( mix_loc=[[0.], [1.]], temperature=[1.], distribution=normal_lib.Normal(0., 1.), loc=[ None, np.float32([2.]*dims), ], scale=[ linop_identity_lib.LinearOperatorScaledIdentity( num_rows=dims, multiplier=np.float32(1.1), is_positive_definite=True), linop_diag_lib.LinearOperatorDiag( diag=np.linspace(2.5, 3.5, dims, dtype=np.float32), is_positive_definite=True), ], quadrature_size=8, validate_args=True) # Ball centered at component0's mean. self.run_test_sample_consistent_log_prob( sess.run, vdm, radius=2., center=0., rtol=0.015) # Larger ball centered at component1's mean. self.run_test_sample_consistent_log_prob( sess.run, vdm, radius=4., center=2., rtol=0.015) def testSampleProbConsistentBroadcastMixNonStandardBase(self): with self.cached_session() as sess: dims = 4 vdm = vdm_lib.VectorDiffeomixture( mix_loc=[[0.], [1.]], temperature=[1.], distribution=normal_lib.Normal(1., 1.5), loc=[ None, np.float32([2.]*dims), ], scale=[ linop_identity_lib.LinearOperatorScaledIdentity( num_rows=dims, multiplier=np.float32(1.1), is_positive_definite=True), linop_diag_lib.LinearOperatorDiag( diag=np.linspace(2.5, 3.5, dims, dtype=np.float32), is_positive_definite=True), ], quadrature_size=8, validate_args=True) # Ball centered at component0's mean. self.run_test_sample_consistent_log_prob( sess.run, vdm, radius=2., center=1., rtol=0.015) # Larger ball centered at component1's mean. self.run_test_sample_consistent_log_prob( sess.run, vdm, radius=4., center=3., rtol=0.01) def testSampleProbConsistentBroadcastMixBatch(self): with self.cached_session() as sess: dims = 4 vdm = vdm_lib.VectorDiffeomixture( mix_loc=[[0.], [1.]], temperature=[1.], distribution=normal_lib.Normal(0., 1.), loc=[ None, np.float32([2.]*dims), ], scale=[ linop_identity_lib.LinearOperatorScaledIdentity( num_rows=dims, multiplier=[np.float32(1.1)], is_positive_definite=True), linop_diag_lib.LinearOperatorDiag( diag=np.stack([ np.linspace(2.5, 3.5, dims, dtype=np.float32), np.linspace(2.75, 3.25, dims, dtype=np.float32), ]), is_positive_definite=True), ], quadrature_size=8, validate_args=True) # Ball centered at component0's mean. self.run_test_sample_consistent_log_prob( sess.run, vdm, radius=2., center=0., rtol=0.01) # Larger ball centered at component1's mean. self.run_test_sample_consistent_log_prob( sess.run, vdm, radius=4., center=2., rtol=0.01) def testSampleProbConsistentBroadcastMixTwoBatchDims(self): dims = 4 loc_1 = rng.randn(2, 3, dims).astype(np.float32) with self.cached_session() as sess: vdm = vdm_lib.VectorDiffeomixture( mix_loc=(rng.rand(2, 3, 1) - 0.5).astype(np.float32), temperature=[1.], distribution=normal_lib.Normal(0., 1.), loc=[ None, loc_1, ], scale=[ linop_identity_lib.LinearOperatorScaledIdentity( num_rows=dims, multiplier=[np.float32(1.1)], is_positive_definite=True), ] * 2, validate_args=True) # Ball centered at component0's mean. self.run_test_sample_consistent_log_prob( sess.run, vdm, radius=2., center=0., rtol=0.01) # Larger ball centered at component1's mean. self.run_test_sample_consistent_log_prob( sess.run, vdm, radius=3., center=loc_1, rtol=0.02) def testMeanCovarianceNoBatch(self): with self.cached_session() as sess: dims = 3 vdm = vdm_lib.VectorDiffeomixture( mix_loc=[[0.], [4.]], temperature=[1 / 10.], distribution=normal_lib.Normal(0., 1.), loc=[ np.float32([-2.]), None, ], scale=[ linop_identity_lib.LinearOperatorScaledIdentity( num_rows=dims, multiplier=np.float32(1.5), is_positive_definite=True), linop_diag_lib.LinearOperatorDiag( diag=np.linspace(2.5, 3.5, dims, dtype=np.float32), is_positive_definite=True), ], quadrature_size=8, validate_args=True) self.run_test_sample_consistent_mean_covariance( sess.run, vdm, rtol=0.02, cov_rtol=0.08) def testTemperatureControlsHowMuchThisLooksLikeDiscreteMixture(self): # As temperature decreases, this should approach a mixture of normals, with # components at -2, 2. with self.cached_session() as sess: dims = 1 vdm = vdm_lib.VectorDiffeomixture( mix_loc=[0.], temperature=[[2.], [1.], [0.2]], distribution=normal_lib.Normal(0., 1.), loc=[ np.float32([-2.]), np.float32([2.]), ], scale=[ linop_identity_lib.LinearOperatorScaledIdentity( num_rows=dims, multiplier=np.float32(0.5), is_positive_definite=True), ] * 2, # Use the same scale for each component. quadrature_size=8, validate_args=True) samps = vdm.sample(10000) self.assertAllEqual((10000, 3, 1), samps.shape) samps_ = sess.run(samps).reshape(10000, 3) # Make scalar event shape. # One characteristic of a discrete mixture (as opposed to a "smear") is # that more weight is put near the component centers at -2, 2, and thus # less weight is put near the origin. prob_of_being_near_origin = (np.abs(samps_) < 1).mean(axis=0) self.assertGreater( prob_of_being_near_origin[0], prob_of_being_near_origin[1]) self.assertGreater( prob_of_being_near_origin[1], prob_of_being_near_origin[2]) # Run this test as well, just because we can. self.run_test_sample_consistent_mean_covariance( sess.run, vdm, rtol=0.02, cov_rtol=0.08) def testConcentrationLocControlsHowMuchWeightIsOnEachComponent(self): with self.cached_session() as sess: dims = 1 vdm = vdm_lib.VectorDiffeomixture( mix_loc=[[-1.], [0.], [1.]], temperature=[0.5], distribution=normal_lib.Normal(0., 1.), loc=[ np.float32([-2.]), np.float32([2.]), ], scale=[ linop_identity_lib.LinearOperatorScaledIdentity( num_rows=dims, multiplier=np.float32(0.5), is_positive_definite=True), ] * 2, # Use the same scale for each component. quadrature_size=8, validate_args=True) samps = vdm.sample(10000) self.assertAllEqual((10000, 3, 1), samps.shape) samps_ = sess.run(samps).reshape(10000, 3) # Make scalar event shape. # One characteristic of putting more weight on a component is that the # mean is closer to that component's mean. # Get the mean for each batch member, the names signify the value of # concentration for that batch member. mean_neg1, mean_0, mean_1 = samps_.mean(axis=0) # Since concentration is the concentration for component 0, # concentration = -1 ==> more weight on component 1, which has mean = 2 # concentration = 0 ==> equal weight # concentration = 1 ==> more weight on component 0, which has mean = -2 self.assertLess(-2, mean_1) self.assertLess(mean_1, mean_0) self.assertLess(mean_0, mean_neg1) self.assertLess(mean_neg1, 2) # Run this test as well, just because we can. self.run_test_sample_consistent_mean_covariance( sess.run, vdm, rtol=0.02, cov_rtol=0.08) def testMeanCovarianceNoBatchUncenteredNonStandardBase(self): with self.cached_session() as sess: dims = 3 vdm = vdm_lib.VectorDiffeomixture( mix_loc=[[0.], [4.]], temperature=[0.1], distribution=normal_lib.Normal(-1., 1.5), loc=[ np.float32([-2.]), np.float32([0.]), ], scale=[ linop_identity_lib.LinearOperatorScaledIdentity( num_rows=dims, multiplier=np.float32(1.5), is_positive_definite=True), linop_diag_lib.LinearOperatorDiag( diag=np.linspace(2.5, 3.5, dims, dtype=np.float32), is_positive_definite=True), ], quadrature_size=8, validate_args=True) self.run_test_sample_consistent_mean_covariance( sess.run, vdm, num_samples=int(1e6), rtol=0.01, cov_atol=0.025) def testMeanCovarianceBatch(self): with self.cached_session() as sess: dims = 3 vdm = vdm_lib.VectorDiffeomixture( mix_loc=[[0.], [4.]], temperature=[0.1], distribution=normal_lib.Normal(0., 1.), loc=[ np.float32([[-2.]]), None, ], scale=[ linop_identity_lib.LinearOperatorScaledIdentity( num_rows=dims, multiplier=[np.float32(1.5)], is_positive_definite=True), linop_diag_lib.LinearOperatorDiag( diag=np.stack([ np.linspace(2.5, 3.5, dims, dtype=np.float32), np.linspace(0.5, 1.5, dims, dtype=np.float32), ]), is_positive_definite=True), ], quadrature_size=8, validate_args=True) self.run_test_sample_consistent_mean_covariance( sess.run, vdm, rtol=0.02, cov_rtol=0.07) def testSampleProbConsistentQuadrature(self): with self.cached_session() as sess: dims = 4 vdm = vdm_lib.VectorDiffeomixture( mix_loc=[0.], temperature=[0.1], distribution=normal_lib.Normal(0., 1.), loc=[ None, np.float32([2.]*dims), ], scale=[ linop_identity_lib.LinearOperatorScaledIdentity( num_rows=dims, multiplier=np.float32(1.1), is_positive_definite=True), linop_diag_lib.LinearOperatorDiag( diag=np.linspace(2.5, 3.5, dims, dtype=np.float32), is_positive_definite=True), ], quadrature_size=3, validate_args=True) # Ball centered at component0's mean. self.run_test_sample_consistent_log_prob( sess.run, vdm, radius=2., center=0., rtol=0.015) # Larger ball centered at component1's mean. self.run_test_sample_consistent_log_prob( sess.run, vdm, radius=4., center=2., rtol=0.005) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/vector_diffeomixture_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import bijectors from tensorflow.python.ops.distributions.bijector_test_util import assert_scalar_congruency from tensorflow.python.platform import test class SquareBijectorTest(test.TestCase): """Tests the correctness of the Y = X ** 2 transformation.""" def testBijectorScalar(self): with self.cached_session(): bijector = bijectors.Square(validate_args=True) self.assertEqual("square", bijector.name) x = [[[1., 5], [2, 1]], [[np.sqrt(2.), 3], [np.sqrt(8.), 1]]] y = np.square(x) ildj = -np.log(2.) - np.log(x) self.assertAllClose(y, bijector.forward(x).eval()) self.assertAllClose(x, bijector.inverse(y).eval()) self.assertAllClose( ildj, bijector.inverse_log_det_jacobian( y, event_ndims=0).eval(), atol=0., rtol=1e-7) self.assertAllClose( -bijector.inverse_log_det_jacobian(y, event_ndims=0).eval(), bijector.forward_log_det_jacobian(x, event_ndims=0).eval(), atol=0., rtol=1e-7) def testScalarCongruency(self): with self.cached_session(): bijector = bijectors.Square(validate_args=True) assert_scalar_congruency(bijector, lower_x=1e-3, upper_x=1.5, rtol=0.05) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/square_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ConditionalBijector Tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.distributions.python.ops.bijectors.conditional_bijector import ConditionalBijector from tensorflow.python.framework import dtypes from tensorflow.python.platform import test class _TestBijector(ConditionalBijector): def __init__(self): super(_TestBijector, self).__init__( forward_min_event_ndims=0, graph_parents=[], is_constant_jacobian=True, validate_args=False, dtype=dtypes.float32, name="test_bijector") def _forward(self, _, arg1, arg2): raise ValueError("forward", arg1, arg2) def _inverse(self, _, arg1, arg2): raise ValueError("inverse", arg1, arg2) def _inverse_log_det_jacobian(self, _, arg1, arg2): raise ValueError("inverse_log_det_jacobian", arg1, arg2) def _forward_log_det_jacobian(self, _, arg1, arg2): raise ValueError("forward_log_det_jacobian", arg1, arg2) class ConditionalBijectorTest(test.TestCase): def testConditionalBijector(self): b = _TestBijector() for name in ["forward", "inverse"]: method = getattr(b, name) with self.assertRaisesRegexp(ValueError, name + ".*b1.*b2"): method(1., arg1="b1", arg2="b2") for name in ["inverse_log_det_jacobian", "forward_log_det_jacobian"]: method = getattr(b, name) with self.assertRaisesRegexp(ValueError, name + ".*b1.*b2"): method(1., event_ndims=0, arg1="b1", arg2="b2") if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/conditional_bijector_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for AbsoluteValue Bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=g-importing-member from tensorflow.contrib.distributions.python.ops.bijectors.absolute_value import AbsoluteValue from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test # pylint: enable=g-importing-member class AbsoluteValueTest(test.TestCase): """Tests correctness of the absolute value bijector.""" def testBijectorVersusNumpyRewriteOfBasicFunctionsEventNdims0(self): with self.cached_session() as sess: bijector = AbsoluteValue(validate_args=True) self.assertEqual("absolute_value", bijector.name) x = array_ops.constant([[0., 1., -1], [0., -5., 3.]]) # Shape [2, 3] y = math_ops.abs(x) y_ = y.eval() self.assertAllClose(y_, bijector.forward(x).eval()) self.assertAllClose((-y_, y_), sess.run(bijector.inverse(y))) self.assertAllClose((0., 0.), sess.run(bijector.inverse_log_det_jacobian( y, event_ndims=0))) # Run things twice to make sure there are no issues in caching the tuples # returned by .inverse* self.assertAllClose(y_, bijector.forward(x).eval()) self.assertAllClose((-y_, y_), sess.run(bijector.inverse(y))) self.assertAllClose((0., 0.), sess.run(bijector.inverse_log_det_jacobian( y, event_ndims=0))) def testNegativeYRaisesForInverseIfValidateArgs(self): with self.cached_session() as sess: bijector = AbsoluteValue(validate_args=True) with self.assertRaisesOpError("y was negative"): sess.run(bijector.inverse(-1.)) def testNegativeYRaisesForILDJIfValidateArgs(self): with self.cached_session() as sess: bijector = AbsoluteValue(validate_args=True) with self.assertRaisesOpError("y was negative"): sess.run(bijector.inverse_log_det_jacobian(-1., event_ndims=0)) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/absolute_value_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ScaleTriL bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import bijectors from tensorflow.python.framework import test_util from tensorflow.python.platform import test class ScaleTriLBijectorTest(test.TestCase): """Tests the correctness of the ScaleTriL bijector.""" def setUp(self): self._rng = np.random.RandomState(42) def testComputesCorrectValues(self): shift = 1.61803398875 x = np.float32(np.array([-1, .5, 2])) y = np.float32(np.array([[np.exp(2) + shift, 0.], [.5, np.exp(-1) + shift]])) b = bijectors.ScaleTriL(diag_bijector=bijectors.Exp(), diag_shift=shift) y_ = self.evaluate(b.forward(x)) self.assertAllClose(y, y_, rtol=1e-4) x_ = self.evaluate(b.inverse(y)) self.assertAllClose(x, x_, rtol=1e-4) @test_util.run_in_graph_and_eager_modes def testInvertible(self): # Generate random inputs from an unconstrained space, with # event size 6 to specify 3x3 triangular matrices. batch_shape = [2, 1] x = np.float32(self._rng.randn(*(batch_shape + [6]))) b = bijectors.ScaleTriL(diag_bijector=bijectors.Softplus(), diag_shift=3.14159) y = self.evaluate(b.forward(x)) self.assertAllEqual(y.shape, batch_shape + [3, 3]) x_ = self.evaluate(b.inverse(y)) self.assertAllClose(x, x_, rtol=1e-4) fldj = self.evaluate(b.forward_log_det_jacobian(x, event_ndims=1)) ildj = self.evaluate(b.inverse_log_det_jacobian(y, event_ndims=2)) self.assertAllClose(fldj, -ildj, rtol=1e-4) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/scale_tril_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for FillTriangular bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import bijectors from tensorflow.python.framework import dtypes from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.platform import test class FillTriangularBijectorTest(test.TestCase): """Tests the correctness of the FillTriangular bijector.""" @test_util.run_in_graph_and_eager_modes def testBijector(self): x = np.float32(np.array([1., 2., 3.])) y = np.float32(np.array([[3., 0.], [2., 1.]])) b = bijectors.FillTriangular() y_ = self.evaluate(b.forward(x)) self.assertAllClose(y, y_) x_ = self.evaluate(b.inverse(y)) self.assertAllClose(x, x_) fldj = self.evaluate(b.forward_log_det_jacobian(x, event_ndims=1)) self.assertAllClose(fldj, 0.) ildj = self.evaluate(b.inverse_log_det_jacobian(y, event_ndims=2)) self.assertAllClose(ildj, 0.) @test_util.run_in_graph_and_eager_modes def testShape(self): x_shape = tensor_shape.TensorShape([5, 4, 6]) y_shape = tensor_shape.TensorShape([5, 4, 3, 3]) b = bijectors.FillTriangular(validate_args=True) x = array_ops.ones(shape=x_shape, dtype=dtypes.float32) y_ = b.forward(x) self.assertAllEqual(y_.shape.as_list(), y_shape.as_list()) x_ = b.inverse(y_) self.assertAllEqual(x_.shape.as_list(), x_shape.as_list()) y_shape_ = b.forward_event_shape(x_shape) self.assertAllEqual(y_shape_.as_list(), y_shape.as_list()) x_shape_ = b.inverse_event_shape(y_shape) self.assertAllEqual(x_shape_.as_list(), x_shape.as_list()) y_shape_tensor = self.evaluate( b.forward_event_shape_tensor(x_shape.as_list())) self.assertAllEqual(y_shape_tensor, y_shape.as_list()) x_shape_tensor = self.evaluate( b.inverse_event_shape_tensor(y_shape.as_list())) self.assertAllEqual(x_shape_tensor, x_shape.as_list()) @test_util.run_in_graph_and_eager_modes def testShapeError(self): b = bijectors.FillTriangular(validate_args=True) x_shape_bad = tensor_shape.TensorShape([5, 4, 7]) with self.assertRaisesRegexp(ValueError, "is not a triangular number"): b.forward_event_shape(x_shape_bad) with self.assertRaisesOpError("is not a triangular number"): self.evaluate(b.forward_event_shape_tensor(x_shape_bad.as_list())) y_shape_bad = tensor_shape.TensorShape([5, 4, 3, 2]) with self.assertRaisesRegexp(ValueError, "Matrix must be square"): b.inverse_event_shape(y_shape_bad) with self.assertRaisesOpError("Matrix must be square"): self.evaluate(b.inverse_event_shape_tensor(y_shape_bad.as_list())) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/fill_triangular_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops.bijectors.ordered import Ordered from tensorflow.python.framework import dtypes from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops.distributions.bijector_test_util import assert_bijective_and_finite from tensorflow.python.platform import test class OrderedBijectorTest(test.TestCase): """Tests correctness of the ordered transformation.""" def setUp(self): self._rng = np.random.RandomState(42) @test_util.run_in_graph_and_eager_modes def testBijectorVector(self): ordered = Ordered() self.assertEqual("ordered", ordered.name) x = np.asarray([[2., 3, 4], [4., 8, 13]]) y = [[2., 0, 0], [4., np.log(4.), np.log(5.)]] self.assertAllClose(y, self.evaluate(ordered.forward(x))) self.assertAllClose(x, self.evaluate(ordered.inverse(y))) self.assertAllClose( np.sum(np.asarray(y)[..., 1:], axis=-1), self.evaluate(ordered.inverse_log_det_jacobian(y, event_ndims=1)), atol=0., rtol=1e-7) self.assertAllClose( self.evaluate(-ordered.inverse_log_det_jacobian(y, event_ndims=1)), self.evaluate(ordered.forward_log_det_jacobian(x, event_ndims=1)), atol=0., rtol=1e-7) def testBijectorUnknownShape(self): with self.cached_session(): ordered = Ordered() self.assertEqual("ordered", ordered.name) x = array_ops.placeholder(shape=[2, None], dtype=dtypes.float32) real_x = np.asarray([[2., 3, 4], [4., 8, 13]]) y = array_ops.placeholder(shape=[2, None], dtype=dtypes.float32) real_y = [[2., 0, 0], [4., np.log(4.), np.log(5.)]] self.assertAllClose(real_y, ordered.forward(x).eval( feed_dict={x: real_x})) self.assertAllClose(real_x, ordered.inverse(y).eval( feed_dict={y: real_y})) self.assertAllClose( np.sum(np.asarray(real_y)[..., 1:], axis=-1), ordered.inverse_log_det_jacobian(y, event_ndims=1).eval( feed_dict={y: real_y}), atol=0., rtol=1e-7) self.assertAllClose( -ordered.inverse_log_det_jacobian(y, event_ndims=1).eval( feed_dict={y: real_y}), ordered.forward_log_det_jacobian(x, event_ndims=1).eval( feed_dict={x: real_x}), atol=0., rtol=1e-7) @test_util.run_in_graph_and_eager_modes def testShapeGetters(self): x = tensor_shape.TensorShape([4]) y = tensor_shape.TensorShape([4]) bijector = Ordered(validate_args=True) self.assertAllEqual(y, bijector.forward_event_shape(x)) self.assertAllEqual(y.as_list(), self.evaluate(bijector.forward_event_shape_tensor( x.as_list()))) self.assertAllEqual(x, bijector.inverse_event_shape(y)) self.assertAllEqual(x.as_list(), self.evaluate(bijector.inverse_event_shape_tensor( y.as_list()))) def testBijectiveAndFinite(self): with self.cached_session(): ordered = Ordered() x = np.sort(self._rng.randn(3, 10), axis=-1).astype(np.float32) y = (self._rng.randn(3, 10)).astype(np.float32) assert_bijective_and_finite(ordered, x, y, event_ndims=1) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/ordered_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Affine Scalar Tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops.bijectors.affine_scalar import AffineScalar from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops.distributions.bijector_test_util import assert_scalar_congruency from tensorflow.python.platform import test class AffineScalarBijectorTest(test.TestCase): """Tests correctness of the Y = scale @ x + shift transformation.""" def testProperties(self): with self.cached_session(): mu = -1. # scale corresponds to 1. bijector = AffineScalar(shift=mu) self.assertEqual("affine_scalar", bijector.name) def testNoBatchScalar(self): with self.cached_session() as sess: def static_run(fun, x, **kwargs): return fun(x, **kwargs).eval() def dynamic_run(fun, x_value, **kwargs): x_value = np.array(x_value) x = array_ops.placeholder(dtypes.float32, name="x") return sess.run(fun(x, **kwargs), feed_dict={x: x_value}) for run in (static_run, dynamic_run): mu = -1. # Corresponds to scale = 2 bijector = AffineScalar(shift=mu, scale=2.) x = [1., 2, 3] # Three scalar samples (no batches). self.assertAllClose([1., 3, 5], run(bijector.forward, x)) self.assertAllClose([1., 1.5, 2.], run(bijector.inverse, x)) self.assertAllClose( -np.log(2.), run(bijector.inverse_log_det_jacobian, x, event_ndims=0)) def testOneBatchScalarViaIdentityIn64BitUserProvidesShiftOnly(self): with self.cached_session() as sess: def static_run(fun, x, **kwargs): return fun(x, **kwargs).eval() def dynamic_run(fun, x_value, **kwargs): x_value = np.array(x_value).astype(np.float64) x = array_ops.placeholder(dtypes.float64, name="x") return sess.run(fun(x, **kwargs), feed_dict={x: x_value}) for run in (static_run, dynamic_run): mu = np.float64([1.]) # One batch, scalar. # Corresponds to scale = 1. bijector = AffineScalar(shift=mu) x = np.float64([1.]) # One sample from one batches. self.assertAllClose([2.], run(bijector.forward, x)) self.assertAllClose([0.], run(bijector.inverse, x)) self.assertAllClose( 0., run(bijector.inverse_log_det_jacobian, x, event_ndims=0)) def testOneBatchScalarViaIdentityIn64BitUserProvidesScaleOnly(self): with self.cached_session() as sess: def static_run(fun, x, **kwargs): return fun(x, **kwargs).eval() def dynamic_run(fun, x_value, **kwargs): x_value = np.array(x_value).astype(np.float64) x = array_ops.placeholder(dtypes.float64, name="x") return sess.run(fun(x, **kwargs), feed_dict={x: x_value}) for run in (static_run, dynamic_run): multiplier = np.float64([2.]) # One batch, scalar. # Corresponds to scale = 2, shift = 0. bijector = AffineScalar(scale=multiplier) x = np.float64([1.]) # One sample from one batches. self.assertAllClose([2.], run(bijector.forward, x)) self.assertAllClose([0.5], run(bijector.inverse, x)) self.assertAllClose( [np.log(0.5)], run(bijector.inverse_log_det_jacobian, x, event_ndims=0)) def testTwoBatchScalarIdentityViaIdentity(self): with self.cached_session() as sess: def static_run(fun, x, **kwargs): return fun(x, **kwargs).eval() def dynamic_run(fun, x_value, **kwargs): x_value = np.array(x_value).astype(np.float32) x = array_ops.placeholder(dtypes.float32, name="x") return sess.run(fun(x, **kwargs), feed_dict={x: x_value}) for run in (static_run, dynamic_run): mu = [1., -1] # Univariate, two batches. # Corresponds to scale = 1. bijector = AffineScalar(shift=mu) x = [1., 1] # One sample from each of two batches. self.assertAllClose([2., 0], run(bijector.forward, x)) self.assertAllClose([0., 2], run(bijector.inverse, x)) self.assertAllClose( 0., run(bijector.inverse_log_det_jacobian, x, event_ndims=0)) def testTwoBatchScalarIdentityViaScale(self): with self.cached_session() as sess: def static_run(fun, x, **kwargs): return fun(x, **kwargs).eval() def dynamic_run(fun, x_value, **kwargs): x_value = np.array(x_value).astype(np.float32) x = array_ops.placeholder(dtypes.float32, name="x") return sess.run(fun(x, **kwargs), feed_dict={x: x_value}) for run in (static_run, dynamic_run): mu = [1., -1] # Univariate, two batches. # Corresponds to scale = 1. bijector = AffineScalar(shift=mu, scale=[2., 1]) x = [1., 1] # One sample from each of two batches. self.assertAllClose([3., 0], run(bijector.forward, x)) self.assertAllClose([0., 2], run(bijector.inverse, x)) self.assertAllClose( [-np.log(2), 0.], run(bijector.inverse_log_det_jacobian, x, event_ndims=0)) def testScalarCongruency(self): with self.cached_session(): bijector = AffineScalar(shift=3.6, scale=0.42) assert_scalar_congruency(bijector, lower_x=-2., upper_x=2.) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/affine_scalar_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """AffineLinearOperator Tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops.bijectors.affine_linear_operator import AffineLinearOperator from tensorflow.python.ops.linalg import linalg from tensorflow.python.platform import test class AffineLinearOperatorTest(test.TestCase): def testIdentity(self): with self.cached_session(): affine = AffineLinearOperator( validate_args=True) x = np.array([[1, 0, -1], [2, 3, 4]], dtype=np.float32) y = x ildj = 0. self.assertEqual(affine.name, "affine_linear_operator") self.assertAllClose(y, affine.forward(x).eval()) self.assertAllClose(x, affine.inverse(y).eval()) self.assertAllClose(ildj, affine.inverse_log_det_jacobian( y, event_ndims=2).eval()) self.assertAllClose( -affine.inverse_log_det_jacobian(y, event_ndims=2).eval(), affine.forward_log_det_jacobian(x, event_ndims=2).eval()) def testDiag(self): with self.cached_session(): shift = np.array([-1, 0, 1], dtype=np.float32) diag = np.array([[1, 2, 3], [2, 5, 6]], dtype=np.float32) scale = linalg.LinearOperatorDiag(diag, is_non_singular=True) affine = AffineLinearOperator( shift=shift, scale=scale, validate_args=True) x = np.array([[1, 0, -1], [2, 3, 4]], dtype=np.float32) y = diag * x + shift ildj = -np.sum(np.log(np.abs(diag)), axis=-1) self.assertEqual(affine.name, "affine_linear_operator") self.assertAllClose(y, affine.forward(x).eval()) self.assertAllClose(x, affine.inverse(y).eval()) self.assertAllClose( ildj, affine.inverse_log_det_jacobian(y, event_ndims=1).eval()) self.assertAllClose( -affine.inverse_log_det_jacobian(y, event_ndims=1).eval(), affine.forward_log_det_jacobian(x, event_ndims=1).eval()) def testTriL(self): with self.cached_session(): shift = np.array([-1, 0, 1], dtype=np.float32) tril = np.array([[[3, 0, 0], [2, -1, 0], [3, 2, 1]], [[2, 0, 0], [3, -2, 0], [4, 3, 2]]], dtype=np.float32) scale = linalg.LinearOperatorLowerTriangular(tril, is_non_singular=True) affine = AffineLinearOperator( shift=shift, scale=scale, validate_args=True) x = np.array([[[1, 0, -1], [2, 3, 4]], [[4, 1, -7], [6, 9, 8]]], dtype=np.float32) # If we made the bijector do x*A+b then this would be simplified to: # y = np.matmul(x, tril) + shift. y = np.squeeze(np.matmul(tril, np.expand_dims(x, -1)), -1) + shift ildj = -np.sum(np.log(np.abs(np.diagonal( tril, axis1=-2, axis2=-1)))) self.assertEqual(affine.name, "affine_linear_operator") self.assertAllClose(y, affine.forward(x).eval()) self.assertAllClose(x, affine.inverse(y).eval()) self.assertAllClose( ildj, affine.inverse_log_det_jacobian( y, event_ndims=2).eval()) self.assertAllClose( -affine.inverse_log_det_jacobian(y, event_ndims=2).eval(), affine.forward_log_det_jacobian(x, event_ndims=2).eval()) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/affine_linear_operator_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Exp Tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops.bijectors.exp import Exp from tensorflow.python.ops.distributions.bijector_test_util import assert_bijective_and_finite from tensorflow.python.ops.distributions.bijector_test_util import assert_scalar_congruency from tensorflow.python.platform import test class ExpBijectorTest(test.TestCase): """Tests correctness of the Y = g(X) = exp(X) transformation.""" def testBijector(self): with self.cached_session(): bijector = Exp() self.assertEqual("exp", bijector.name) x = [[[1.], [2.]]] y = np.exp(x) self.assertAllClose(y, bijector.forward(x).eval()) self.assertAllClose(x, bijector.inverse(y).eval()) self.assertAllClose( -np.squeeze(np.log(y), axis=-1), bijector.inverse_log_det_jacobian( y, event_ndims=1).eval()) self.assertAllClose( -bijector.inverse_log_det_jacobian( np.exp(x), event_ndims=1).eval(), bijector.forward_log_det_jacobian( x, event_ndims=1).eval()) def testScalarCongruency(self): with self.cached_session(): bijector = Exp() assert_scalar_congruency( bijector, lower_x=-2., upper_x=1.5, rtol=0.05) def testBijectiveAndFinite(self): with self.cached_session(): bijector = Exp() x = np.linspace(-10, 10, num=10).astype(np.float32) y = np.logspace(-10, 10, num=10).astype(np.float32) assert_bijective_and_finite(bijector, x, y, event_ndims=0) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/exp_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for MaskedAutoregressiveFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import test_util from tensorflow.contrib.distributions.python.ops.bijectors.invert import Invert from tensorflow.contrib.distributions.python.ops.bijectors.real_nvp import real_nvp_default_template from tensorflow.contrib.distributions.python.ops.bijectors.real_nvp import RealNVP from tensorflow.python.framework import constant_op from tensorflow.python.ops import array_ops from tensorflow.python.ops import variables from tensorflow.python.ops.distributions import normal as normal_lib from tensorflow.python.ops.distributions import transformed_distribution as transformed_distribution_lib from tensorflow.python.platform import test class RealNVPTest(test_util.VectorDistributionTestHelpers, test.TestCase): @property def _real_nvp_kwargs(self): return { "shift_and_log_scale_fn": real_nvp_default_template( hidden_layers=[3], shift_only=False), "is_constant_jacobian": False, } def testBijector(self): x_ = np.arange(3 * 4 * 2).astype(np.float32).reshape(3, 4 * 2) with self.cached_session() as sess: nvp = RealNVP( num_masked=4, validate_args=True, **self._real_nvp_kwargs) x = constant_op.constant(x_) forward_x = nvp.forward(x) # Use identity to invalidate cache. inverse_y = nvp.inverse(array_ops.identity(forward_x)) forward_inverse_y = nvp.forward(inverse_y) fldj = nvp.forward_log_det_jacobian(x, event_ndims=1) # Use identity to invalidate cache. ildj = nvp.inverse_log_det_jacobian( array_ops.identity(forward_x), event_ndims=1) variables.global_variables_initializer().run() [ forward_x_, inverse_y_, forward_inverse_y_, ildj_, fldj_, ] = sess.run([ forward_x, inverse_y, forward_inverse_y, ildj, fldj, ]) self.assertEqual("real_nvp", nvp.name) self.assertAllClose(forward_x_, forward_inverse_y_, rtol=1e-1, atol=0.) self.assertAllClose(x_, inverse_y_, rtol=1e-1, atol=0.) self.assertAllClose(ildj_, -fldj_, rtol=1e-6, atol=0.) def testMutuallyConsistent(self): dims = 4 with self.cached_session() as sess: nvp = RealNVP( num_masked=3, validate_args=True, **self._real_nvp_kwargs) dist = transformed_distribution_lib.TransformedDistribution( distribution=normal_lib.Normal(loc=0., scale=1.), bijector=nvp, event_shape=[dims], validate_args=True) self.run_test_sample_consistent_log_prob( sess_run_fn=sess.run, dist=dist, num_samples=int(1e5), radius=1., center=0., rtol=0.02) def testInvertMutuallyConsistent(self): dims = 4 with self.cached_session() as sess: nvp = Invert(RealNVP( num_masked=3, validate_args=True, **self._real_nvp_kwargs)) dist = transformed_distribution_lib.TransformedDistribution( distribution=normal_lib.Normal(loc=0., scale=1.), bijector=nvp, event_shape=[dims], validate_args=True) self.run_test_sample_consistent_log_prob( sess_run_fn=sess.run, dist=dist, num_samples=int(1e5), radius=1., center=0., rtol=0.02) class NICETest(RealNVPTest): @property def _real_nvp_kwargs(self): return { "shift_and_log_scale_fn": real_nvp_default_template( hidden_layers=[2], shift_only=True), "is_constant_jacobian": True, } class RealNVPConstantShiftScaleTest(RealNVPTest): @property def _real_nvp_kwargs(self): def constant_shift_log_scale_fn(x0, output_units): del x0, output_units shift = constant_op.constant([0.1]) log_scale = constant_op.constant([0.5]) return shift, log_scale return { "shift_and_log_scale_fn": constant_shift_log_scale_fn, "is_constant_jacobian": True, } if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/real_nvp_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import bijectors from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.platform import test class CholeskyOuterProductBijectorTest(test.TestCase): """Tests the correctness of the Y = X @ X.T transformation.""" def testBijectorMatrix(self): with self.cached_session(): bijector = bijectors.CholeskyOuterProduct(validate_args=True) self.assertEqual("cholesky_outer_product", bijector.name) x = [[[1., 0], [2, 1]], [[np.sqrt(2.), 0], [np.sqrt(8.), 1]]] y = np.matmul(x, np.transpose(x, axes=(0, 2, 1))) # Fairly easy to compute differentials since we have 2x2. dx_dy = [[[2. * 1, 0, 0], [2, 1, 0], [0, 2 * 2, 2 * 1]], [[2 * np.sqrt(2.), 0, 0], [np.sqrt(8.), np.sqrt(2.), 0], [0, 2 * np.sqrt(8.), 2 * 1]]] ildj = -np.sum( np.log(np.asarray(dx_dy).diagonal( offset=0, axis1=1, axis2=2)), axis=1) self.assertAllEqual((2, 2, 2), bijector.forward(x).get_shape()) self.assertAllEqual((2, 2, 2), bijector.inverse(y).get_shape()) self.assertAllClose(y, bijector.forward(x).eval()) self.assertAllClose(x, bijector.inverse(y).eval()) self.assertAllClose( ildj, bijector.inverse_log_det_jacobian( y, event_ndims=2).eval(), atol=0., rtol=1e-7) self.assertAllClose( -bijector.inverse_log_det_jacobian( y, event_ndims=2).eval(), bijector.forward_log_det_jacobian( x, event_ndims=2).eval(), atol=0., rtol=1e-7) def testNoBatchStaticJacobian(self): x = np.eye(2) bijector = bijectors.CholeskyOuterProduct() # The Jacobian matrix is 2 * tf.eye(2), which has jacobian determinant 4. self.assertAllClose( np.log(4), self.evaluate(bijector.forward_log_det_jacobian(x, event_ndims=2))) def testNoBatchDynamicJacobian(self): x = np.eye(2) bijector = bijectors.CholeskyOuterProduct() x_pl = array_ops.placeholder(dtypes.float32) with self.cached_session(): log_det_jacobian = bijector.forward_log_det_jacobian(x_pl, event_ndims=2) # The Jacobian matrix is 2 * tf.eye(2), which has jacobian determinant 4. self.assertAllClose( np.log(4), log_det_jacobian.eval({x_pl: x})) def testNoBatchStatic(self): x = np.array([[1., 0], [2, 1]]) # np.linalg.cholesky(y) y = np.array([[1., 2], [2, 5]]) # np.matmul(x, x.T) with self.cached_session() as sess: y_actual = bijectors.CholeskyOuterProduct().forward(x=x) x_actual = bijectors.CholeskyOuterProduct().inverse(y=y) [y_actual_, x_actual_] = sess.run([y_actual, x_actual]) self.assertAllEqual([2, 2], y_actual.get_shape()) self.assertAllEqual([2, 2], x_actual.get_shape()) self.assertAllClose(y, y_actual_) self.assertAllClose(x, x_actual_) def testNoBatchDeferred(self): x = np.array([[1., 0], [2, 1]]) # np.linalg.cholesky(y) y = np.array([[1., 2], [2, 5]]) # np.matmul(x, x.T) with self.cached_session() as sess: x_pl = array_ops.placeholder(dtypes.float32) y_pl = array_ops.placeholder(dtypes.float32) y_actual = bijectors.CholeskyOuterProduct().forward(x=x_pl) x_actual = bijectors.CholeskyOuterProduct().inverse(y=y_pl) [y_actual_, x_actual_] = sess.run([y_actual, x_actual], feed_dict={x_pl: x, y_pl: y}) self.assertEqual(None, y_actual.get_shape()) self.assertEqual(None, x_actual.get_shape()) self.assertAllClose(y, y_actual_) self.assertAllClose(x, x_actual_) def testBatchStatic(self): x = np.array([[[1., 0], [2, 1]], [[3., 0], [1, 2]]]) # np.linalg.cholesky(y) y = np.array([[[1., 2], [2, 5]], [[9., 3], [3, 5]]]) # np.matmul(x, x.T) with self.cached_session() as sess: y_actual = bijectors.CholeskyOuterProduct().forward(x=x) x_actual = bijectors.CholeskyOuterProduct().inverse(y=y) [y_actual_, x_actual_] = sess.run([y_actual, x_actual]) self.assertEqual([2, 2, 2], y_actual.get_shape()) self.assertEqual([2, 2, 2], x_actual.get_shape()) self.assertAllClose(y, y_actual_) self.assertAllClose(x, x_actual_) def testBatchDeferred(self): x = np.array([[[1., 0], [2, 1]], [[3., 0], [1, 2]]]) # np.linalg.cholesky(y) y = np.array([[[1., 2], [2, 5]], [[9., 3], [3, 5]]]) # np.matmul(x, x.T) with self.cached_session() as sess: x_pl = array_ops.placeholder(dtypes.float32) y_pl = array_ops.placeholder(dtypes.float32) y_actual = bijectors.CholeskyOuterProduct().forward(x=x_pl) x_actual = bijectors.CholeskyOuterProduct().inverse(y=y_pl) [y_actual_, x_actual_] = sess.run([y_actual, x_actual], feed_dict={x_pl: x, y_pl: y}) self.assertEqual(None, y_actual.get_shape()) self.assertEqual(None, x_actual.get_shape()) self.assertAllClose(y, y_actual_) self.assertAllClose(x, x_actual_) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/cholesky_outer_product_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from scipy import stats from tensorflow.contrib.distributions.python.ops.bijectors.gumbel import Gumbel from tensorflow.python.ops.distributions.bijector_test_util import assert_bijective_and_finite from tensorflow.python.ops.distributions.bijector_test_util import assert_scalar_congruency from tensorflow.python.platform import test class GumbelBijectorTest(test.TestCase): """Tests correctness of the Gumbel bijector.""" def testBijector(self): with self.cached_session(): loc = 0.3 scale = 5. bijector = Gumbel(loc=loc, scale=scale, validate_args=True) self.assertEqual("gumbel", bijector.name) x = np.array([[[-3.], [0.], [0.5], [4.2], [12.]]], dtype=np.float32) # Gumbel distribution gumbel_dist = stats.gumbel_r(loc=loc, scale=scale) y = gumbel_dist.cdf(x).astype(np.float32) self.assertAllClose(y, bijector.forward(x).eval()) self.assertAllClose(x, bijector.inverse(y).eval()) self.assertAllClose( np.squeeze(gumbel_dist.logpdf(x), axis=-1), bijector.forward_log_det_jacobian(x, event_ndims=1).eval()) self.assertAllClose( -bijector.inverse_log_det_jacobian(y, event_ndims=1).eval(), bijector.forward_log_det_jacobian(x, event_ndims=1).eval(), rtol=1e-4, atol=0.) def testScalarCongruency(self): with self.cached_session(): assert_scalar_congruency( Gumbel(loc=0.3, scale=20.), lower_x=1., upper_x=100., rtol=0.02) def testBijectiveAndFinite(self): with self.cached_session(): bijector = Gumbel(loc=0., scale=3.0, validate_args=True) x = np.linspace(-10., 10., num=10).astype(np.float32) y = np.linspace(0.01, 0.99, num=10).astype(np.float32) assert_bijective_and_finite(bijector, x, y, event_ndims=0, rtol=1e-3) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/gumbel_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Permute bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops.bijectors.permute import Permute from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops.distributions.bijector_test_util import assert_bijective_and_finite from tensorflow.python.platform import test class PermuteBijectorTest(test.TestCase): """Tests correctness of the Permute bijector.""" def setUp(self): self._rng = np.random.RandomState(42) def testBijector(self): expected_permutation = np.int32([2, 0, 1]) expected_x = np.random.randn(4, 2, 3) expected_y = expected_x[..., expected_permutation] with self.cached_session() as sess: permutation_ph = array_ops.placeholder(dtype=dtypes.int32) bijector = Permute( permutation=permutation_ph, validate_args=True) [ permutation_, x_, y_, fldj, ildj, ] = sess.run([ bijector.permutation, bijector.inverse(expected_y), bijector.forward(expected_x), bijector.forward_log_det_jacobian(expected_x, event_ndims=1), bijector.inverse_log_det_jacobian(expected_y, event_ndims=1), ], feed_dict={permutation_ph: expected_permutation}) self.assertEqual("permute", bijector.name) self.assertAllEqual(expected_permutation, permutation_) self.assertAllClose(expected_y, y_, rtol=1e-6, atol=0) self.assertAllClose(expected_x, x_, rtol=1e-6, atol=0) self.assertAllClose(0., fldj, rtol=1e-6, atol=0) self.assertAllClose(0., ildj, rtol=1e-6, atol=0) def testRaisesOpError(self): with self.cached_session() as sess: with self.assertRaisesOpError("Permutation over `d` must contain"): permutation_ph = array_ops.placeholder(dtype=dtypes.int32) bijector = Permute( permutation=permutation_ph, validate_args=True) sess.run(bijector.inverse([1.]), feed_dict={permutation_ph: [1, 2]}) def testBijectiveAndFinite(self): permutation = np.int32([2, 0, 1]) x = np.random.randn(4, 2, 3) y = x[..., permutation] with self.cached_session(): bijector = Permute(permutation=permutation, validate_args=True) assert_bijective_and_finite( bijector, x, y, event_ndims=1, rtol=1e-6, atol=0) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/permute_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for MaskedAutoregressiveFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import test_util from tensorflow.contrib.distributions.python.ops.bijectors.invert import Invert from tensorflow.contrib.distributions.python.ops.bijectors.masked_autoregressive import _gen_mask from tensorflow.contrib.distributions.python.ops.bijectors.masked_autoregressive import masked_autoregressive_default_template from tensorflow.contrib.distributions.python.ops.bijectors.masked_autoregressive import MaskedAutoregressiveFlow from tensorflow.python.framework import constant_op from tensorflow.python.ops import array_ops from tensorflow.python.ops import variables from tensorflow.python.ops.distributions import normal as normal_lib from tensorflow.python.ops.distributions import transformed_distribution as transformed_distribution_lib from tensorflow.python.platform import test class GenMaskTest(test.TestCase): def test346Exclusive(self): expected_mask = np.array( [[0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0], [1, 1, 0, 0], [1, 1, 0, 0]]) mask = _gen_mask(num_blocks=3, n_in=4, n_out=6, mask_type="exclusive") self.assertAllEqual(expected_mask, mask) def test346Inclusive(self): expected_mask = np.array( [[1, 0, 0, 0], [1, 0, 0, 0], [1, 1, 0, 0], [1, 1, 0, 0], [1, 1, 1, 0], [1, 1, 1, 0]]) mask = _gen_mask(num_blocks=3, n_in=4, n_out=6, mask_type="inclusive") self.assertAllEqual(expected_mask, mask) class MaskedAutoregressiveFlowTest(test_util.VectorDistributionTestHelpers, test.TestCase): @property def _autoregressive_flow_kwargs(self): return { "shift_and_log_scale_fn": masked_autoregressive_default_template( hidden_layers=[2], shift_only=False), "is_constant_jacobian": False, } def testBijector(self): x_ = np.arange(3 * 4 * 2).astype(np.float32).reshape(3, 4, 2) with self.cached_session() as sess: ma = MaskedAutoregressiveFlow( validate_args=True, **self._autoregressive_flow_kwargs) x = constant_op.constant(x_) forward_x = ma.forward(x) # Use identity to invalidate cache. inverse_y = ma.inverse(array_ops.identity(forward_x)) fldj = ma.forward_log_det_jacobian(x, event_ndims=1) # Use identity to invalidate cache. ildj = ma.inverse_log_det_jacobian( array_ops.identity(forward_x), event_ndims=1) variables.global_variables_initializer().run() [ forward_x_, inverse_y_, ildj_, fldj_, ] = sess.run([ forward_x, inverse_y, ildj, fldj, ]) self.assertEqual("masked_autoregressive_flow", ma.name) self.assertAllClose(forward_x_, forward_x_, rtol=1e-6, atol=0.) self.assertAllClose(x_, inverse_y_, rtol=1e-5, atol=0.) self.assertAllClose(ildj_, -fldj_, rtol=1e-6, atol=0.) def testMutuallyConsistent(self): dims = 4 with self.cached_session() as sess: ma = MaskedAutoregressiveFlow( validate_args=True, **self._autoregressive_flow_kwargs) dist = transformed_distribution_lib.TransformedDistribution( distribution=normal_lib.Normal(loc=0., scale=1.), bijector=ma, event_shape=[dims], validate_args=True) self.run_test_sample_consistent_log_prob( sess_run_fn=sess.run, dist=dist, num_samples=int(1e5), radius=1., center=0., rtol=0.02) def testInvertMutuallyConsistent(self): dims = 4 with self.cached_session() as sess: ma = Invert(MaskedAutoregressiveFlow( validate_args=True, **self._autoregressive_flow_kwargs)) dist = transformed_distribution_lib.TransformedDistribution( distribution=normal_lib.Normal(loc=0., scale=1.), bijector=ma, event_shape=[dims], validate_args=True) self.run_test_sample_consistent_log_prob( sess_run_fn=sess.run, dist=dist, num_samples=int(1e5), radius=1., center=0., rtol=0.02) class MaskedAutoregressiveFlowShiftOnlyTest(MaskedAutoregressiveFlowTest): @property def _autoregressive_flow_kwargs(self): return { "shift_and_log_scale_fn": masked_autoregressive_default_template( hidden_layers=[2], shift_only=True), "is_constant_jacobian": True, } class MaskedAutoregressiveFlowUnrollLoopTest(MaskedAutoregressiveFlowTest): @property def _autoregressive_flow_kwargs(self): return { "shift_and_log_scale_fn": masked_autoregressive_default_template( hidden_layers=[2], shift_only=False), "is_constant_jacobian": False, "unroll_loop": True, } if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/masked_autoregressive_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.distributions.python.ops import bijectors from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops.distributions import gamma as gamma_lib from tensorflow.python.ops.distributions import transformed_distribution as transformed_distribution_lib from tensorflow.python.ops.distributions.bijector_test_util import assert_scalar_congruency from tensorflow.python.platform import test class InvertBijectorTest(test.TestCase): """Tests the correctness of the Y = Invert(bij) transformation.""" def testBijector(self): with self.cached_session(): for fwd in [ bijectors.Identity(), bijectors.Exp(), bijectors.Affine(shift=[0., 1.], scale_diag=[2., 3.]), bijectors.Softplus(), bijectors.SoftmaxCentered(), ]: rev = bijectors.Invert(fwd) self.assertEqual("_".join(["invert", fwd.name]), rev.name) x = [[[1., 2.], [2., 3.]]] self.assertAllClose(fwd.inverse(x).eval(), rev.forward(x).eval()) self.assertAllClose(fwd.forward(x).eval(), rev.inverse(x).eval()) self.assertAllClose( fwd.forward_log_det_jacobian(x, event_ndims=1).eval(), rev.inverse_log_det_jacobian(x, event_ndims=1).eval()) self.assertAllClose( fwd.inverse_log_det_jacobian(x, event_ndims=1).eval(), rev.forward_log_det_jacobian(x, event_ndims=1).eval()) def testScalarCongruency(self): with self.cached_session(): bijector = bijectors.Invert(bijectors.Exp()) assert_scalar_congruency( bijector, lower_x=1e-3, upper_x=1.5, rtol=0.05) def testShapeGetters(self): with self.cached_session(): bijector = bijectors.Invert(bijectors.SoftmaxCentered(validate_args=True)) x = tensor_shape.TensorShape([2]) y = tensor_shape.TensorShape([1]) self.assertAllEqual(y, bijector.forward_event_shape(x)) self.assertAllEqual( y.as_list(), bijector.forward_event_shape_tensor(x.as_list()).eval()) self.assertAllEqual(x, bijector.inverse_event_shape(y)) self.assertAllEqual( x.as_list(), bijector.inverse_event_shape_tensor(y.as_list()).eval()) def testDocstringExample(self): with self.cached_session(): exp_gamma_distribution = ( transformed_distribution_lib.TransformedDistribution( distribution=gamma_lib.Gamma(concentration=1., rate=2.), bijector=bijectors.Invert(bijectors.Exp()))) self.assertAllEqual( [], array_ops.shape(exp_gamma_distribution.sample()).eval()) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/invert_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Chain Tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops.bijectors.affine import Affine from tensorflow.contrib.distributions.python.ops.bijectors.chain import Chain from tensorflow.contrib.distributions.python.ops.bijectors.exp import Exp from tensorflow.contrib.distributions.python.ops.bijectors.softmax_centered import SoftmaxCentered from tensorflow.contrib.distributions.python.ops.bijectors.softplus import Softplus from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops.distributions import bijector from tensorflow.python.ops.distributions.bijector_test_util import assert_scalar_congruency from tensorflow.python.platform import test class ShapeChanging(bijector.Bijector): """Only used for op_ndims manipulation.""" def __init__(self, forward_min_event_ndims=0, inverse_min_event_ndims=3): super(ShapeChanging, self).__init__( forward_min_event_ndims=forward_min_event_ndims, inverse_min_event_ndims=inverse_min_event_ndims, validate_args=False, name="shape_changer") class ChainBijectorTest(test.TestCase): """Tests the correctness of the Y = Chain(bij1, bij2, bij3) transformation.""" def testBijector(self): with self.cached_session(): chain = Chain((Exp(), Softplus())) self.assertEqual("chain_of_exp_of_softplus", chain.name) x = np.asarray([[[1., 2.], [2., 3.]]]) self.assertAllClose(1. + np.exp(x), chain.forward(x).eval()) self.assertAllClose(np.log(x - 1.), chain.inverse(x).eval()) self.assertAllClose( -np.sum(np.log(x - 1.), axis=2), chain.inverse_log_det_jacobian(x, event_ndims=1).eval()) self.assertAllClose( np.sum(x, axis=2), chain.forward_log_det_jacobian(x, event_ndims=1).eval()) def testBijectorIdentity(self): with self.cached_session(): chain = Chain() self.assertEqual("identity", chain.name) x = np.asarray([[[1., 2.], [2., 3.]]]) self.assertAllClose(x, chain.forward(x).eval()) self.assertAllClose(x, chain.inverse(x).eval()) self.assertAllClose( 0., chain.inverse_log_det_jacobian(x, event_ndims=1).eval()) self.assertAllClose( 0., chain.forward_log_det_jacobian(x, event_ndims=1).eval()) def testScalarCongruency(self): with self.cached_session(): chain = Chain((Exp(), Softplus())) assert_scalar_congruency( chain, lower_x=1e-3, upper_x=1.5, rtol=0.05) def testShapeGetters(self): with self.cached_session(): chain = Chain([ SoftmaxCentered(validate_args=True), SoftmaxCentered(validate_args=True), ]) x = tensor_shape.TensorShape([1]) y = tensor_shape.TensorShape([2 + 1]) self.assertAllEqual(y, chain.forward_event_shape(x)) self.assertAllEqual( y.as_list(), chain.forward_event_shape_tensor(x.as_list()).eval()) self.assertAllEqual(x, chain.inverse_event_shape(y)) self.assertAllEqual( x.as_list(), chain.inverse_event_shape_tensor(y.as_list()).eval()) def testMinEventNdimsChain(self): chain = Chain([Exp(), Exp(), Exp()]) self.assertEqual(0, chain.forward_min_event_ndims) self.assertEqual(0, chain.inverse_min_event_ndims) chain = Chain([Affine(), Affine(), Affine()]) self.assertEqual(1, chain.forward_min_event_ndims) self.assertEqual(1, chain.inverse_min_event_ndims) chain = Chain([Exp(), Affine()]) self.assertEqual(1, chain.forward_min_event_ndims) self.assertEqual(1, chain.inverse_min_event_ndims) chain = Chain([Affine(), Exp()]) self.assertEqual(1, chain.forward_min_event_ndims) self.assertEqual(1, chain.inverse_min_event_ndims) chain = Chain([Affine(), Exp(), Softplus(), Affine()]) self.assertEqual(1, chain.forward_min_event_ndims) self.assertEqual(1, chain.inverse_min_event_ndims) def testMinEventNdimsShapeChangingAddDims(self): chain = Chain([ShapeChanging()]) self.assertEqual(0, chain.forward_min_event_ndims) self.assertEqual(3, chain.inverse_min_event_ndims) chain = Chain([ShapeChanging(), Affine()]) self.assertEqual(1, chain.forward_min_event_ndims) self.assertEqual(4, chain.inverse_min_event_ndims) chain = Chain([Affine(), ShapeChanging()]) self.assertEqual(0, chain.forward_min_event_ndims) self.assertEqual(3, chain.inverse_min_event_ndims) chain = Chain([ShapeChanging(), ShapeChanging()]) self.assertEqual(0, chain.forward_min_event_ndims) self.assertEqual(6, chain.inverse_min_event_ndims) def testMinEventNdimsShapeChangingRemoveDims(self): chain = Chain([ShapeChanging(3, 0)]) self.assertEqual(3, chain.forward_min_event_ndims) self.assertEqual(0, chain.inverse_min_event_ndims) chain = Chain([ShapeChanging(3, 0), Affine()]) self.assertEqual(3, chain.forward_min_event_ndims) self.assertEqual(0, chain.inverse_min_event_ndims) chain = Chain([Affine(), ShapeChanging(3, 0)]) self.assertEqual(4, chain.forward_min_event_ndims) self.assertEqual(1, chain.inverse_min_event_ndims) chain = Chain([ShapeChanging(3, 0), ShapeChanging(3, 0)]) self.assertEqual(6, chain.forward_min_event_ndims) self.assertEqual(0, chain.inverse_min_event_ndims) def testMinEventNdimsShapeChangingAddRemoveDims(self): chain = Chain([ ShapeChanging(2, 1), ShapeChanging(3, 0), ShapeChanging(1, 2)]) self.assertEqual(4, chain.forward_min_event_ndims) self.assertEqual(1, chain.inverse_min_event_ndims) def testChainExpAffine(self): scale_diag = np.array([1., 2., 3.], dtype=np.float32) chain = Chain([Exp(), Affine(scale_diag=scale_diag)]) x = [0., np.log(2., dtype=np.float32), np.log(3., dtype=np.float32)] y = [1., 4., 27.] self.assertAllClose(y, self.evaluate(chain.forward(x))) self.assertAllClose(x, self.evaluate(chain.inverse(y))) self.assertAllClose( np.log(6, dtype=np.float32) + np.sum(scale_diag * x), self.evaluate(chain.forward_log_det_jacobian(x, event_ndims=1))) self.assertAllClose( -np.log(6, dtype=np.float32) - np.sum(scale_diag * x), self.evaluate(chain.inverse_log_det_jacobian(y, event_ndims=1))) def testChainAffineExp(self): scale_diag = np.array([1., 2., 3.], dtype=np.float32) chain = Chain([Affine(scale_diag=scale_diag), Exp()]) x = [0., np.log(2., dtype=np.float32), np.log(3., dtype=np.float32)] y = [1., 4., 9.] self.assertAllClose(y, self.evaluate(chain.forward(x))) self.assertAllClose(x, self.evaluate(chain.inverse(y))) self.assertAllClose( np.log(6, dtype=np.float32) + np.sum(x), self.evaluate(chain.forward_log_det_jacobian(x, event_ndims=1))) self.assertAllClose( -np.log(6, dtype=np.float32) - np.sum(x), self.evaluate(chain.inverse_log_det_jacobian(y, event_ndims=1))) def testChainIldjWithPlaceholder(self): chain = Chain((Exp(), Exp())) samples = array_ops.placeholder( dtype=np.float32, shape=[None, 10], name="samples") ildj = chain.inverse_log_det_jacobian(samples, event_ndims=0) self.assertTrue(ildj is not None) with self.cached_session(): ildj.eval({samples: np.zeros([2, 10], np.float32)}) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/chain_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Sigmoid Tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from scipy import special from tensorflow.contrib.distributions.python.ops.bijectors.sigmoid import Sigmoid from tensorflow.python.ops.distributions.bijector_test_util import assert_bijective_and_finite from tensorflow.python.ops.distributions.bijector_test_util import assert_scalar_congruency from tensorflow.python.platform import test class SigmoidBijectorTest(test.TestCase): """Tests correctness of the Y = g(X) = (1 + exp(-X))^-1 transformation.""" def testBijector(self): with self.cached_session(): self.assertEqual("sigmoid", Sigmoid().name) x = np.linspace(-10., 10., 100).reshape([2, 5, 10]).astype(np.float32) y = special.expit(x) ildj = -np.log(y) - np.log1p(-y) bijector = Sigmoid() self.assertAllClose(y, bijector.forward(x).eval(), atol=0., rtol=1e-2) self.assertAllClose(x, bijector.inverse(y).eval(), atol=0., rtol=1e-4) self.assertAllClose(ildj, bijector.inverse_log_det_jacobian( y, event_ndims=0).eval(), atol=0., rtol=1e-6) self.assertAllClose(-ildj, bijector.forward_log_det_jacobian( x, event_ndims=0).eval(), atol=0., rtol=1e-4) def testScalarCongruency(self): with self.cached_session(): assert_scalar_congruency(Sigmoid(), lower_x=-7., upper_x=7.) def testBijectiveAndFinite(self): with self.cached_session(): x = np.linspace(-7., 7., 100).astype(np.float32) eps = 1e-3 y = np.linspace(eps, 1. - eps, 100).astype(np.float32) assert_bijective_and_finite( Sigmoid(), x, y, event_ndims=0, atol=0., rtol=1e-4) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/sigmoid_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for BatchNorm Bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib import distributions from tensorflow.contrib.distributions.python.ops import test_util from tensorflow.contrib.distributions.python.ops.bijectors.batch_normalization import BatchNormalization from tensorflow.contrib.distributions.python.ops.bijectors.invert import Invert from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.layers import normalization from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import variables from tensorflow.python.ops.distributions import normal as normal_lib from tensorflow.python.ops.distributions import transformed_distribution as transformed_distribution_lib from tensorflow.python.platform import test from tensorflow.python.training import adam class BatchNormTest(test_util.VectorDistributionTestHelpers, test.TestCase): def _reduction_axes(self, input_shape, event_dims): if isinstance(event_dims, int): event_dims = [event_dims] ndims = len(input_shape) # Convert event_dims to non-negative indexing. event_dims = list(event_dims) for idx, x in enumerate(event_dims): if x < 0: event_dims[idx] = ndims + x return tuple(i for i in range(ndims) if i not in event_dims) def testForwardInverse(self): """Tests forward and backward passes with different event shapes. input_shape: Tuple of shapes for input tensor. event_dims: Tuple of dimension indices that will be normalized. training: Boolean of whether bijector runs in training or inference mode. """ params = [ ((5*2, 4), [-1], False), ((5, 2, 4), [-1], False), ((5, 2, 4), [1, 2], False), ((5, 2, 4), [0, 1], False), ((5*2, 4), [-1], True), ((5, 2, 4), [-1], True), ((5, 2, 4), [1, 2], True), ((5, 2, 4), [0, 1], True) ] for input_shape, event_dims, training in params: x_ = np.arange(5 * 4 * 2).astype(np.float32).reshape(input_shape) with self.cached_session() as sess: x = constant_op.constant(x_) # When training, memorize the exact mean of the last # minibatch that it normalized (instead of moving average assignment). layer = normalization.BatchNormalization( axis=event_dims, momentum=0., epsilon=0.) batch_norm = BatchNormalization( batchnorm_layer=layer, training=training) # Minibatch statistics are saved only after norm_x has been computed. norm_x = batch_norm.inverse(x) with ops.control_dependencies(batch_norm.batchnorm.updates): moving_mean = array_ops.identity(batch_norm.batchnorm.moving_mean) moving_var = array_ops.identity(batch_norm.batchnorm.moving_variance) denorm_x = batch_norm.forward(array_ops.identity(norm_x)) fldj = batch_norm.forward_log_det_jacobian( x, event_ndims=len(event_dims)) # Use identity to invalidate cache. ildj = batch_norm.inverse_log_det_jacobian( array_ops.identity(denorm_x), event_ndims=len(event_dims)) variables.global_variables_initializer().run() # Update variables. norm_x_ = sess.run(norm_x) [ norm_x_, moving_mean_, moving_var_, denorm_x_, ildj_, fldj_, ] = sess.run([ norm_x, moving_mean, moving_var, denorm_x, ildj, fldj, ]) self.assertEqual("batch_normalization", batch_norm.name) reduction_axes = self._reduction_axes(input_shape, event_dims) keepdims = len(event_dims) > 1 expected_batch_mean = np.mean( x_, axis=reduction_axes, keepdims=keepdims) expected_batch_var = np.var(x_, axis=reduction_axes, keepdims=keepdims) if training: # When training=True, values become normalized across batch dim and # original values are recovered after de-normalizing. zeros = np.zeros_like(norm_x_) self.assertAllClose(np.mean(zeros, axis=reduction_axes), np.mean(norm_x_, axis=reduction_axes)) self.assertAllClose(expected_batch_mean, moving_mean_) self.assertAllClose(expected_batch_var, moving_var_) self.assertAllClose(x_, denorm_x_, atol=1e-5) # Since moving statistics are set to batch statistics after # normalization, ildj and -fldj should match. self.assertAllClose(ildj_, -fldj_) # ildj is computed with minibatch statistics. expected_ildj = np.sum(np.log(1.) - .5 * np.log( expected_batch_var + batch_norm.batchnorm.epsilon)) self.assertAllClose(expected_ildj, ildj_) else: # When training=False, moving_mean, moving_var remain at their # initialized values (0., 1.), resulting in no scale/shift (a small # shift occurs if epsilon > 0.) self.assertAllClose(x_, norm_x_, atol=1e-5, rtol=1e-5) self.assertAllClose(x_, denorm_x_, atol=1e-5, rtol=1e-5) # ildj is computed with saved statistics. expected_ildj = np.sum( np.log(1.) - .5 * np.log(1. + batch_norm.batchnorm.epsilon)) self.assertAllClose(expected_ildj, ildj_) def testMaximumLikelihoodTraining(self): # Test Maximum Likelihood training with default bijector. with self.cached_session() as sess: base_dist = distributions.MultivariateNormalDiag(loc=[0., 0.]) batch_norm = BatchNormalization(training=True) dist = transformed_distribution_lib.TransformedDistribution( distribution=base_dist, bijector=batch_norm) target_dist = distributions.MultivariateNormalDiag(loc=[1., 2.]) target_samples = target_dist.sample(100) dist_samples = dist.sample(3000) loss = -math_ops.reduce_mean(dist.log_prob(target_samples)) with ops.control_dependencies(batch_norm.batchnorm.updates): train_op = adam.AdamOptimizer(1e-2).minimize(loss) moving_mean = array_ops.identity(batch_norm.batchnorm.moving_mean) moving_var = array_ops.identity(batch_norm.batchnorm.moving_variance) variables.global_variables_initializer().run() for _ in range(3000): sess.run(train_op) [ dist_samples_, moving_mean_, moving_var_ ] = sess.run([ dist_samples, moving_mean, moving_var ]) self.assertAllClose([1., 2.], np.mean(dist_samples_, axis=0), atol=5e-2) self.assertAllClose([1., 2.], moving_mean_, atol=5e-2) self.assertAllClose([1., 1.], moving_var_, atol=5e-2) def testLogProb(self): with self.cached_session() as sess: layer = normalization.BatchNormalization(epsilon=0.) batch_norm = BatchNormalization(batchnorm_layer=layer, training=False) base_dist = distributions.MultivariateNormalDiag(loc=[0., 0.]) dist = transformed_distribution_lib.TransformedDistribution( distribution=base_dist, bijector=batch_norm, validate_args=True) samples = dist.sample(int(1e5)) # No volume distortion since training=False, bijector is initialized # to the identity transformation. base_log_prob = base_dist.log_prob(samples) dist_log_prob = dist.log_prob(samples) variables.global_variables_initializer().run() base_log_prob_, dist_log_prob_ = sess.run([base_log_prob, dist_log_prob]) self.assertAllClose(base_log_prob_, dist_log_prob_) def testMutuallyConsistent(self): # BatchNorm bijector is only mutually consistent when training=False. dims = 4 with self.cached_session() as sess: layer = normalization.BatchNormalization(epsilon=0.) batch_norm = BatchNormalization(batchnorm_layer=layer, training=False) dist = transformed_distribution_lib.TransformedDistribution( distribution=normal_lib.Normal(loc=0., scale=1.), bijector=batch_norm, event_shape=[dims], validate_args=True) self.run_test_sample_consistent_log_prob( sess_run_fn=sess.run, dist=dist, num_samples=int(1e5), radius=2., center=0., rtol=0.02) def testInvertMutuallyConsistent(self): # BatchNorm bijector is only mutually consistent when training=False. dims = 4 with self.cached_session() as sess: layer = normalization.BatchNormalization(epsilon=0.) batch_norm = Invert( BatchNormalization(batchnorm_layer=layer, training=False)) dist = transformed_distribution_lib.TransformedDistribution( distribution=normal_lib.Normal(loc=0., scale=1.), bijector=batch_norm, event_shape=[dims], validate_args=True) self.run_test_sample_consistent_log_prob( sess_run_fn=sess.run, dist=dist, num_samples=int(1e5), radius=2., center=0., rtol=0.02) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/batch_normalization_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops.bijectors.softsign import Softsign from tensorflow.python.framework import test_util from tensorflow.python.ops.distributions.bijector_test_util import assert_bijective_and_finite from tensorflow.python.ops.distributions.bijector_test_util import assert_scalar_congruency from tensorflow.python.platform import test class SoftsignBijectorTest(test.TestCase): """Tests the correctness of the Y = g(X) = X / (1 + |X|) transformation.""" def _softsign(self, x): return x / (1. + np.abs(x)) def _softsign_ildj_before_reduction(self, y): """Inverse log det jacobian, before being reduced.""" return -2. * np.log1p(-np.abs(y)) def setUp(self): self._rng = np.random.RandomState(42) @test_util.run_in_graph_and_eager_modes def testBijectorBounds(self): bijector = Softsign(validate_args=True) with self.assertRaisesOpError("greater than -1"): self.evaluate(bijector.inverse(-3.)) with self.assertRaisesOpError("greater than -1"): self.evaluate(bijector.inverse_log_det_jacobian(-3., event_ndims=0)) with self.assertRaisesOpError("less than 1"): self.evaluate(bijector.inverse(3.)) with self.assertRaisesOpError("less than 1"): self.evaluate(bijector.inverse_log_det_jacobian(3., event_ndims=0)) @test_util.run_in_graph_and_eager_modes def testBijectorForwardInverse(self): bijector = Softsign(validate_args=True) self.assertEqual("softsign", bijector.name) x = 2. * self._rng.randn(2, 10) y = self._softsign(x) self.assertAllClose(y, self.evaluate(bijector.forward(x))) self.assertAllClose(x, self.evaluate(bijector.inverse(y))) @test_util.run_in_graph_and_eager_modes def testBijectorLogDetJacobianEventDimsZero(self): bijector = Softsign(validate_args=True) y = self._rng.rand(2, 10) # No reduction needed if event_dims = 0. ildj = self._softsign_ildj_before_reduction(y) self.assertAllClose(ildj, self.evaluate( bijector.inverse_log_det_jacobian(y, event_ndims=0))) @test_util.run_in_graph_and_eager_modes def testBijectorForwardInverseEventDimsOne(self): bijector = Softsign(validate_args=True) self.assertEqual("softsign", bijector.name) x = 2. * self._rng.randn(2, 10) y = self._softsign(x) self.assertAllClose(y, self.evaluate(bijector.forward(x))) self.assertAllClose(x, self.evaluate(bijector.inverse(y))) @test_util.run_in_graph_and_eager_modes def testBijectorLogDetJacobianEventDimsOne(self): bijector = Softsign(validate_args=True) y = self._rng.rand(2, 10) ildj_before = self._softsign_ildj_before_reduction(y) ildj = np.sum(ildj_before, axis=1) self.assertAllClose( ildj, self.evaluate( bijector.inverse_log_det_jacobian(y, event_ndims=1))) def testScalarCongruency(self): with self.cached_session(): bijector = Softsign(validate_args=True) assert_scalar_congruency(bijector, lower_x=-20., upper_x=20.) def testBijectiveAndFinite(self): with self.cached_session(): bijector = Softsign(validate_args=True) x = np.linspace(-20., 20., 100).astype(np.float32) y = np.linspace(-0.99, 0.99, 100).astype(np.float32) assert_bijective_and_finite( bijector, x, y, event_ndims=0, rtol=1e-3, atol=1e-3) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/softsign_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for TransformDiagonal bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import bijectors from tensorflow.python.framework import test_util from tensorflow.python.platform import test class TransformDiagonalBijectorTest(test.TestCase): """Tests correctness of the TransformDiagonal bijector.""" def setUp(self): self._rng = np.random.RandomState(42) @test_util.run_in_graph_and_eager_modes def testBijector(self): x = np.float32(np.random.randn(3, 4, 4)) y = x.copy() for i in range(x.shape[0]): np.fill_diagonal(y[i, :, :], np.exp(np.diag(x[i, :, :]))) exp = bijectors.Exp() b = bijectors.TransformDiagonal(diag_bijector=exp) y_ = self.evaluate(b.forward(x)) self.assertAllClose(y, y_) x_ = self.evaluate(b.inverse(y)) self.assertAllClose(x, x_) fldj = self.evaluate(b.forward_log_det_jacobian(x, event_ndims=2)) ildj = self.evaluate(b.inverse_log_det_jacobian(y, event_ndims=2)) self.assertAllEqual( fldj, self.evaluate(exp.forward_log_det_jacobian( np.array([np.diag(x_mat) for x_mat in x]), event_ndims=1))) self.assertAllEqual( ildj, self.evaluate(exp.inverse_log_det_jacobian( np.array([np.diag(y_mat) for y_mat in y]), event_ndims=1))) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/transform_diagonal_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for MatrixInverseTriL bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import bijectors from tensorflow.python.framework import errors from tensorflow.python.framework import test_util from tensorflow.python.platform import test @test_util.run_all_in_graph_and_eager_modes class MatrixInverseTriLBijectorTest(test.TestCase): """Tests the correctness of the Y = inv(tril) transformation.""" #The inverse of 0 is undefined, as the numbers above the main #diagonal must be zero, we zero out these numbers after running inverse. #See: https://github.com/numpy/numpy/issues/11445 def _inv(self, x): y = np.linalg.inv(x) #triu_indices only works on 2d arrays #need to iterate over all the 2d arrays in a x-dimensional array. for idx in np.ndindex(y.shape[0:-2]): y[idx][np.triu_indices(y[idx].shape[-1], 1)] = 0 return y def testComputesCorrectValues(self): inv = bijectors.MatrixInverseTriL(validate_args=True) self.assertEqual("matrix_inverse_tril", inv.name) x_ = np.array([[0.7, 0., 0.], [0.1, -1., 0.], [0.3, 0.25, 0.5]], dtype=np.float32) x_inv_ = np.linalg.inv(x_) expected_fldj_ = -6. * np.sum(np.log(np.abs(np.diag(x_)))) y = inv.forward(x_) x_back = inv.inverse(x_inv_) fldj = inv.forward_log_det_jacobian(x_, event_ndims=2) ildj = inv.inverse_log_det_jacobian(x_inv_, event_ndims=2) y_, x_back_, fldj_, ildj_ = self.evaluate([y, x_back, fldj, ildj]) self.assertAllClose(x_inv_, y_, atol=0., rtol=1e-5) self.assertAllClose(x_, x_back_, atol=0., rtol=1e-5) self.assertNear(expected_fldj_, fldj_, err=1e-3) self.assertNear(-expected_fldj_, ildj_, err=1e-3) def testOneByOneMatrix(self): inv = bijectors.MatrixInverseTriL(validate_args=True) x_ = np.array([[5.]], dtype=np.float32) x_inv_ = np.array([[0.2]], dtype=np.float32) expected_fldj_ = np.log(0.04) y = inv.forward(x_) x_back = inv.inverse(x_inv_) fldj = inv.forward_log_det_jacobian(x_, event_ndims=2) ildj = inv.inverse_log_det_jacobian(x_inv_, event_ndims=2) y_, x_back_, fldj_, ildj_ = self.evaluate([y, x_back, fldj, ildj]) self.assertAllClose(x_inv_, y_, atol=0., rtol=1e-5) self.assertAllClose(x_, x_back_, atol=0., rtol=1e-5) self.assertNear(expected_fldj_, fldj_, err=1e-3) self.assertNear(-expected_fldj_, ildj_, err=1e-3) def testZeroByZeroMatrix(self): inv = bijectors.MatrixInverseTriL(validate_args=True) x_ = np.eye(0, dtype=np.float32) x_inv_ = np.eye(0, dtype=np.float32) expected_fldj_ = 0. y = inv.forward(x_) x_back = inv.inverse(x_inv_) fldj = inv.forward_log_det_jacobian(x_, event_ndims=2) ildj = inv.inverse_log_det_jacobian(x_inv_, event_ndims=2) y_, x_back_, fldj_, ildj_ = self.evaluate([y, x_back, fldj, ildj]) self.assertAllClose(x_inv_, y_, atol=0., rtol=1e-5) self.assertAllClose(x_, x_back_, atol=0., rtol=1e-5) self.assertNear(expected_fldj_, fldj_, err=1e-3) self.assertNear(-expected_fldj_, ildj_, err=1e-3) def testBatch(self): # Test batch computation with input shape (2, 1, 2, 2), i.e. batch shape # (2, 1). inv = bijectors.MatrixInverseTriL(validate_args=True) x_ = np.array([[[[1., 0.], [2., 3.]]], [[[4., 0.], [5., -6.]]]], dtype=np.float32) x_inv_ = self._inv(x_) expected_fldj_ = -4. * np.sum( np.log(np.abs(np.diagonal(x_, axis1=-2, axis2=-1))), axis=-1) y = inv.forward(x_) x_back = inv.inverse(x_inv_) fldj = inv.forward_log_det_jacobian(x_, event_ndims=2) ildj = inv.inverse_log_det_jacobian(x_inv_, event_ndims=2) y_, x_back_, fldj_, ildj_ = self.evaluate([y, x_back, fldj, ildj]) self.assertAllClose(x_inv_, y_, atol=0., rtol=1e-5) self.assertAllClose(x_, x_back_, atol=0., rtol=1e-5) self.assertAllClose(expected_fldj_, fldj_, atol=0., rtol=1e-3) self.assertAllClose(-expected_fldj_, ildj_, atol=0., rtol=1e-3) def testErrorOnInputRankTooLow(self): inv = bijectors.MatrixInverseTriL(validate_args=True) x_ = np.array([0.1], dtype=np.float32) rank_error_msg = "must have rank at least 2" with self.assertRaisesWithPredicateMatch(ValueError, rank_error_msg): self.evaluate(inv.forward(x_)) with self.assertRaisesWithPredicateMatch(ValueError, rank_error_msg): self.evaluate(inv.inverse(x_)) with self.assertRaisesWithPredicateMatch(ValueError, rank_error_msg): self.evaluate(inv.forward_log_det_jacobian(x_, event_ndims=2)) with self.assertRaisesWithPredicateMatch(ValueError, rank_error_msg): self.evaluate(inv.inverse_log_det_jacobian(x_, event_ndims=2)) # TODO(b/80481923): Figure out why these assertions fail, and fix them. ## def testErrorOnInputNonSquare(self): ## inv = bijectors.MatrixInverseTriL(validate_args=True) ## x_ = np.array([[1., 2., 3.], ## [4., 5., 6.]], dtype=np.float32) ## square_error_msg = "must be a square matrix" ## with self.assertRaisesWithPredicateMatch(errors.InvalidArgumentError, ## square_error_msg): ## self.evaluate(inv.forward(x_)) ## with self.assertRaisesWithPredicateMatch(errors.InvalidArgumentError, ## square_error_msg): ## self.evaluate(inv.inverse(x_)) ## with self.assertRaisesWithPredicateMatch(errors.InvalidArgumentError, ## square_error_msg): ## self.evaluate(inv.forward_log_det_jacobian(x_, event_ndims=2)) ## with self.assertRaisesWithPredicateMatch(errors.InvalidArgumentError, ## square_error_msg): ## self.evaluate(inv.inverse_log_det_jacobian(x_, event_ndims=2)) def testErrorOnInputNotLowerTriangular(self): inv = bijectors.MatrixInverseTriL(validate_args=True) x_ = np.array([[1., 2.], [3., 4.]], dtype=np.float32) triangular_error_msg = "must be lower triangular" with self.assertRaisesWithPredicateMatch(errors.InvalidArgumentError, triangular_error_msg): self.evaluate(inv.forward(x_)) with self.assertRaisesWithPredicateMatch(errors.InvalidArgumentError, triangular_error_msg): self.evaluate(inv.inverse(x_)) with self.assertRaisesWithPredicateMatch(errors.InvalidArgumentError, triangular_error_msg): self.evaluate(inv.forward_log_det_jacobian(x_, event_ndims=2)) with self.assertRaisesWithPredicateMatch(errors.InvalidArgumentError, triangular_error_msg): self.evaluate(inv.inverse_log_det_jacobian(x_, event_ndims=2)) def testErrorOnInputSingular(self): inv = bijectors.MatrixInverseTriL(validate_args=True) x_ = np.array([[1., 0.], [0., 0.]], dtype=np.float32) nonsingular_error_msg = "must have all diagonal entries nonzero" with self.assertRaisesOpError(nonsingular_error_msg): self.evaluate(inv.forward(x_)) with self.assertRaisesOpError(nonsingular_error_msg): self.evaluate(inv.inverse(x_)) with self.assertRaisesOpError(nonsingular_error_msg): self.evaluate(inv.forward_log_det_jacobian(x_, event_ndims=2)) with self.assertRaisesOpError(nonsingular_error_msg): self.evaluate(inv.inverse_log_det_jacobian(x_, event_ndims=2)) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/matrix_inverse_tril_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Reshape Bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops.bijectors.reshape import Reshape from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops.distributions.bijector_test_util import assert_bijective_and_finite from tensorflow.python.platform import test class _ReshapeBijectorTest(object): """Base class for testing the reshape transformation. Methods defined in this class call a method self.build_shapes() that is implemented by subclasses defined below, returning respectively ReshapeBijectorTestStatic: static shapes, ReshapeBijectorTestDynamic: shape placeholders of known ndims, and ReshapeBijectorTestDynamicNdims: shape placeholders of unspecified ndims, so that each test in this base class is automatically run over all three cases. The subclasses also implement assertRaisesError to test for either Python exceptions (in the case of static shapes) or TensorFlow op errors (dynamic shapes). """ def setUp(self): self._rng = np.random.RandomState(42) def testBijector(self): """Do a basic sanity check of forward, inverse, jacobian.""" expected_x = np.random.randn(4, 3, 2) expected_y = np.reshape(expected_x, [4, 6]) with self.cached_session() as sess: shape_in, shape_out, feed_dict = self.build_shapes([3, 2], [6,]) bijector = Reshape( event_shape_out=shape_out, event_shape_in=shape_in, validate_args=True) (x_, y_, fldj_, ildj_) = sess.run(( bijector.inverse(expected_y), bijector.forward(expected_x), bijector.forward_log_det_jacobian(expected_x, event_ndims=2), bijector.inverse_log_det_jacobian(expected_y, event_ndims=2), ), feed_dict=feed_dict) self.assertEqual("reshape", bijector.name) self.assertAllClose(expected_y, y_, rtol=1e-6, atol=0) self.assertAllClose(expected_x, x_, rtol=1e-6, atol=0) self.assertAllClose(0., fldj_, rtol=1e-6, atol=0) self.assertAllClose(0., ildj_, rtol=1e-6, atol=0) def testEventShapeTensor(self): """Test event_shape_tensor methods when even ndims may be dynamic.""" shape_in_static = [2, 3] shape_out_static = [6,] shape_in, shape_out, feed_dict = self.build_shapes(shape_in_static, shape_out_static) bijector = Reshape( event_shape_out=shape_out, event_shape_in=shape_in, validate_args=True) # using the _tensor methods, we should always get a fully-specified # result since these are evaluated at graph runtime. with self.cached_session() as sess: (shape_out_, shape_in_) = sess.run(( bijector.forward_event_shape_tensor(shape_in), bijector.inverse_event_shape_tensor(shape_out), ), feed_dict=feed_dict) self.assertAllEqual(shape_out_static, shape_out_) self.assertAllEqual(shape_in_static, shape_in_) def testScalarReshape(self): """Test reshaping to and from a scalar shape ().""" expected_x = np.random.randn(4, 3, 1) expected_y = np.reshape(expected_x, [4, 3]) expected_x_scalar = np.random.randn(1,) expected_y_scalar = expected_x_scalar[0] shape_in, shape_out, feed_dict = self.build_shapes([], [1,]) with self.cached_session() as sess: bijector = Reshape( event_shape_out=shape_in, event_shape_in=shape_out, validate_args=True) (x_, y_, x_scalar_, y_scalar_ ) = sess.run(( bijector.inverse(expected_y), bijector.forward(expected_x), bijector.inverse(expected_y_scalar), bijector.forward(expected_x_scalar), ), feed_dict=feed_dict) self.assertAllClose(expected_y, y_, rtol=1e-6, atol=0) self.assertAllClose(expected_x, x_, rtol=1e-6, atol=0) self.assertAllClose(expected_y_scalar, y_scalar_, rtol=1e-6, atol=0) self.assertAllClose(expected_x_scalar, x_scalar_, rtol=1e-6, atol=0) def testMultipleUnspecifiedDimensionsOpError(self): with self.cached_session() as sess: shape_in, shape_out, feed_dict = self.build_shapes([2, 3], [4, -1, -1,]) bijector = Reshape( event_shape_out=shape_out, event_shape_in=shape_in, validate_args=True) with self.assertRaisesError( "elements must have at most one `-1`."): sess.run(bijector.forward_event_shape_tensor(shape_in), feed_dict=feed_dict) # pylint: disable=invalid-name def _testInvalidDimensionsOpError(self, expected_error_message): with self.cached_session() as sess: shape_in, shape_out, feed_dict = self.build_shapes([2, 3], [1, 2, -2,]) bijector = Reshape( event_shape_out=shape_out, event_shape_in=shape_in, validate_args=True) with self.assertRaisesError(expected_error_message): sess.run(bijector.forward_event_shape_tensor(shape_in), feed_dict=feed_dict) def _testInvalidDimensionsStatic(self, expected_error_message): """Version of _testInvalidDimensionsOpError for errors detected statically. Statically means at graph construction time. Args: expected_error_message: String that should be present in the error message that `Reshape` raises for invalid shapes. """ shape_in, shape_out, _ = self.build_shapes([2, 3], [ 1, 2, -2, ]) with self.assertRaisesWithPredicateMatch(errors.InvalidArgumentError, expected_error_message): _ = Reshape( event_shape_out=shape_out, event_shape_in=shape_in, validate_args=True) # pylint: enable=invalid-name def testValidButNonMatchingInputOpError(self): x = np.random.randn(4, 3, 2) with self.cached_session() as sess: shape_in, shape_out, feed_dict = self.build_shapes([2, 3], [1, 6, 1,]) bijector = Reshape( event_shape_out=shape_out, event_shape_in=shape_in, validate_args=True) # Here we pass in a tensor (x) whose shape is compatible with # the output shape, so tf.reshape will throw no error, but # doesn't match the expected input shape. with self.assertRaisesError( "Input `event_shape` does not match `event_shape_in`."): sess.run(bijector.forward(x), feed_dict=feed_dict) def testValidButNonMatchingInputPartiallySpecifiedOpError(self): x = np.random.randn(4, 3, 2) with self.cached_session() as sess: shape_in, shape_out, feed_dict = self.build_shapes([2, -1], [1, 6, 1,]) bijector = Reshape( event_shape_out=shape_out, event_shape_in=shape_in, validate_args=True) with self.assertRaisesError( "Input `event_shape` does not match `event_shape_in`."): sess.run(bijector.forward(x), feed_dict=feed_dict) # pylint: disable=invalid-name def _testInputOutputMismatchOpError(self, expected_error_message): x1 = np.random.randn(4, 2, 3) x2 = np.random.randn(4, 1, 1, 5) with self.cached_session() as sess: shape_in, shape_out, fd_mismatched = self.build_shapes([2, 3], [1, 1, 5]) bijector = Reshape( event_shape_out=shape_out, event_shape_in=shape_in, validate_args=True) with self.assertRaisesError(expected_error_message): sess.run(bijector.forward(x1), feed_dict=fd_mismatched) with self.assertRaisesError(expected_error_message): sess.run(bijector.inverse(x2), feed_dict=fd_mismatched) # pylint: enable=invalid-name def testOneShapePartiallySpecified(self): expected_x = np.random.randn(4, 6) expected_y = np.reshape(expected_x, [4, 2, 3]) with self.cached_session() as sess: # one of input/output shapes is partially specified shape_in, shape_out, feed_dict = self.build_shapes([-1,], [2, 3]) bijector = Reshape( event_shape_out=shape_out, event_shape_in=shape_in, validate_args=True) (x_, y_, ) = sess.run(( bijector.inverse(expected_y), bijector.forward(expected_x), ), feed_dict=feed_dict) self.assertAllClose(expected_y, y_, rtol=1e-6, atol=0) self.assertAllClose(expected_x, x_, rtol=1e-6, atol=0) def testBothShapesPartiallySpecified(self): expected_x = np.random.randn(4, 2, 3) expected_y = np.reshape(expected_x, [4, 3, 2]) with self.cached_session() as sess: shape_in, shape_out, feed_dict = self.build_shapes([-1, 3], [-1, 2]) bijector = Reshape( event_shape_out=shape_out, event_shape_in=shape_in, validate_args=True) (x_, y_, ) = sess.run(( bijector.inverse(expected_y), bijector.forward(expected_x), ), feed_dict=feed_dict) self.assertAllClose(expected_y, y_, rtol=1e-6, atol=0) self.assertAllClose(expected_x, x_, rtol=1e-6, atol=0) def testDefaultVectorShape(self): expected_x = np.random.randn(4, 4) expected_y = np.reshape(expected_x, [4, 2, 2]) with self.cached_session() as sess: _, shape_out, feed_dict = self.build_shapes([-1,], [-1, 2]) bijector = Reshape(shape_out, validate_args=True) (x_, y_, ) = sess.run(( bijector.inverse(expected_y), bijector.forward(expected_x), ), feed_dict=feed_dict) self.assertAllClose(expected_y, y_, rtol=1e-6, atol=0) self.assertAllClose(expected_x, x_, rtol=1e-6, atol=0) def build_shapes(self, *args, **kwargs): raise NotImplementedError("Subclass failed to implement `build_shapes`.") class ReshapeBijectorTestStatic(test.TestCase, _ReshapeBijectorTest): def build_shapes(self, shape_in, shape_out): shape_in_static = shape_in shape_out_static = shape_out feed_dict = {} return shape_in_static, shape_out_static, feed_dict def assertRaisesError(self, msg): return self.assertRaisesRegexp(Exception, msg) def testEventShape(self): shape_in_static = tensor_shape.TensorShape([2, 3]) shape_out_static = tensor_shape.TensorShape([6,]) bijector = Reshape( event_shape_out=shape_out_static, event_shape_in=shape_in_static, validate_args=True) # test that forward_ and inverse_event_shape do sensible things # when shapes are statically known. self.assertEqual( bijector.forward_event_shape(shape_in_static), shape_out_static) self.assertEqual( bijector.inverse_event_shape(shape_out_static), shape_in_static) def testBijectiveAndFinite(self): x = np.random.randn(4, 2, 3) y = np.reshape(x, [4, 1, 2, 3]) with self.cached_session(): bijector = Reshape( event_shape_in=[2, 3], event_shape_out=[1, 2, 3], validate_args=True) assert_bijective_and_finite( bijector, x, y, event_ndims=2, rtol=1e-6, atol=0) def testInvalidDimensionsStatic(self): self._testInvalidDimensionsStatic( "elements must be either positive integers or `-1`") def testInputOutputMismatchOpError(self): self._testInputOutputMismatchOpError("Cannot reshape a tensor with") class ReshapeBijectorTestDynamic(test.TestCase, _ReshapeBijectorTest): def build_shapes(self, shape_in, shape_out): shape_in_ph = array_ops.placeholder(shape=(len(shape_in),), dtype=dtypes.int32) shape_out_ph = array_ops.placeholder(shape=(len(shape_out),), dtype=dtypes.int32) feed_dict = {shape_in_ph: shape_in, shape_out_ph: shape_out} return shape_in_ph, shape_out_ph, feed_dict def assertRaisesError(self, msg): return self.assertRaisesOpError(msg) def testInvalidDimensionsOpError(self): self._testInvalidDimensionsOpError( "elements must be either positive integers or `-1`.") def testInputOutputMismatchOpError(self): self._testInputOutputMismatchOpError("Input to reshape is a tensor with") class ReshapeBijectorTestDynamicNdims(test.TestCase, _ReshapeBijectorTest): def build_shapes(self, shape_in, shape_out): shape_in_ph = array_ops.placeholder(shape=None, dtype=dtypes.int32) shape_out_ph = array_ops.placeholder(shape=None, dtype=dtypes.int32) feed_dict = {shape_in_ph: shape_in, shape_out_ph: shape_out} return shape_in_ph, shape_out_ph, feed_dict def assertRaisesError(self, msg): return self.assertRaisesOpError(msg) def testInvalidDimensionsOpError(self): self._testInvalidDimensionsOpError( "elements must be either positive integers or `-1`.") def testInputOutputMismatchOpError(self): self._testInputOutputMismatchOpError("Input to reshape is a tensor with") if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/reshape_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for SinhArcsinh Bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np # pylint: disable=g-importing-member from tensorflow.contrib.distributions.python.ops.bijectors.sinh_arcsinh import SinhArcsinh from tensorflow.python.ops.distributions.bijector_test_util import assert_bijective_and_finite from tensorflow.python.ops.distributions.bijector_test_util import assert_scalar_congruency from tensorflow.python.platform import test # pylint: enable=g-importing-member class SinhArcsinhBijectorTest(test.TestCase): """Tests correctness of the power transformation.""" def testBijectorVersusNumpyRewriteOfBasicFunctions(self): with self.cached_session(): skewness = 0.2 tailweight = 2.0 bijector = SinhArcsinh( skewness=skewness, tailweight=tailweight, validate_args=True) self.assertEqual("SinhArcsinh", bijector.name) x = np.array([[[-2.01], [2.], [1e-4]]]).astype(np.float32) y = np.sinh((np.arcsinh(x) + skewness) * tailweight) self.assertAllClose(y, bijector.forward(x).eval()) self.assertAllClose(x, bijector.inverse(y).eval()) self.assertAllClose( np.sum( np.log(np.cosh(np.arcsinh(y) / tailweight - skewness)) - np.log(tailweight) - np.log(np.sqrt(y**2 + 1)), axis=-1), bijector.inverse_log_det_jacobian(y, event_ndims=1).eval()) self.assertAllClose( -bijector.inverse_log_det_jacobian(y, event_ndims=1).eval(), bijector.forward_log_det_jacobian(x, event_ndims=1).eval(), rtol=1e-4, atol=0.) def testLargerTailWeightPutsMoreWeightInTails(self): with self.cached_session(): # Will broadcast together to shape [3, 2]. x = [-1., 1.] tailweight = [[0.5], [1.0], [2.0]] bijector = SinhArcsinh(tailweight=tailweight, validate_args=True) y = bijector.forward(x).eval() # x = -1, 1 should be mapped to points symmetric about 0 self.assertAllClose(y[:, 0], -1. * y[:, 1]) # forward(1) should increase as tailweight increases, since higher # tailweight should map 1 to a larger number. forward_1 = y[:, 1] # The positive values of y. self.assertLess(forward_1[0], forward_1[1]) self.assertLess(forward_1[1], forward_1[2]) def testSkew(self): with self.cached_session(): # Will broadcast together to shape [3, 2]. x = [-1., 1.] skewness = [[-1.], [0.], [1.]] bijector = SinhArcsinh(skewness=skewness, validate_args=True) y = bijector.forward(x).eval() # For skew < 0, |forward(-1)| > |forward(1)| self.assertGreater(np.abs(y[0, 0]), np.abs(y[0, 1])) # For skew = 0, |forward(-1)| = |forward(1)| self.assertAllClose(np.abs(y[1, 0]), np.abs(y[1, 1])) # For skew > 0, |forward(-1)| < |forward(1)| self.assertLess(np.abs(y[2, 0]), np.abs(y[2, 1])) def testScalarCongruencySkewness1Tailweight0p5(self): with self.cached_session(): bijector = SinhArcsinh(skewness=1.0, tailweight=0.5, validate_args=True) assert_scalar_congruency(bijector, lower_x=-2., upper_x=2.0, rtol=0.05) def testScalarCongruencySkewnessNeg1Tailweight1p5(self): with self.cached_session(): bijector = SinhArcsinh(skewness=-1.0, tailweight=1.5, validate_args=True) assert_scalar_congruency(bijector, lower_x=-2., upper_x=2.0, rtol=0.05) def testBijectiveAndFiniteSkewnessNeg1Tailweight0p5(self): with self.cached_session(): bijector = SinhArcsinh(skewness=-1., tailweight=0.5, validate_args=True) x = np.concatenate((-np.logspace(-2, 10, 1000), [0], np.logspace( -2, 10, 1000))).astype(np.float32) assert_bijective_and_finite(bijector, x, x, event_ndims=0, rtol=1e-3) def testBijectiveAndFiniteSkewness1Tailweight3(self): with self.cached_session(): bijector = SinhArcsinh(skewness=1., tailweight=3., validate_args=True) x = np.concatenate((-np.logspace(-2, 5, 1000), [0], np.logspace( -2, 5, 1000))).astype(np.float32) assert_bijective_and_finite( bijector, x, x, event_ndims=0, rtol=1e-3) def testBijectorEndpoints(self): with self.cached_session(): for dtype in (np.float32, np.float64): bijector = SinhArcsinh( skewness=dtype(0.), tailweight=dtype(1.), validate_args=True) bounds = np.array( [np.finfo(dtype).min, np.finfo(dtype).max], dtype=dtype) # Note that the above bijector is the identity bijector. Hence, the # log_det_jacobian will be 0. Because of this we use atol. assert_bijective_and_finite( bijector, bounds, bounds, event_ndims=0, atol=2e-6) def testBijectorOverRange(self): with self.cached_session(): for dtype in (np.float32, np.float64): skewness = np.array([1.2, 5.], dtype=dtype) tailweight = np.array([2., 10.], dtype=dtype) # The inverse will be defined up to where sinh is valid, which is # arcsinh(np.finfo(dtype).max). log_boundary = np.log( np.sinh(np.arcsinh(np.finfo(dtype).max) / tailweight - skewness)) x = np.array([ np.logspace(-2, log_boundary[0], base=np.e, num=1000), np.logspace(-2, log_boundary[1], base=np.e, num=1000) ], dtype=dtype) # Ensure broadcasting works. x = np.swapaxes(x, 0, 1) y = np.sinh((np.arcsinh(x) + skewness) * tailweight) bijector = SinhArcsinh( skewness=skewness, tailweight=tailweight, validate_args=True) self.assertAllClose(y, bijector.forward(x).eval(), rtol=1e-4, atol=0.) self.assertAllClose(x, bijector.inverse(y).eval(), rtol=1e-4, atol=0.) # On IBM PPC systems, longdouble (np.float128) is same as double except that it can have more precision. # Type double being of 8 bytes, can't hold square of max of float64 (which is also 8 bytes) and # below test fails due to overflow error giving inf. So this check avoids that error by skipping square # calculation and corresponding assert. if np.amax(y) <= np.sqrt(np.finfo(np.float128).max) and \ np.fabs(np.amin(y)) <= np.sqrt(np.fabs(np.finfo(np.float128).min)): # Do the numpy calculation in float128 to avoid inf/nan. y_float128 = np.float128(y) self.assertAllClose( np.log(np.cosh( np.arcsinh(y_float128) / tailweight - skewness) / np.sqrt( y_float128**2 + 1)) - np.log(tailweight), bijector.inverse_log_det_jacobian(y, event_ndims=0).eval(), rtol=1e-4, atol=0.) self.assertAllClose( -bijector.inverse_log_det_jacobian(y, event_ndims=0).eval(), bijector.forward_log_det_jacobian(x, event_ndims=0).eval(), rtol=1e-4, atol=0.) def testZeroTailweightRaises(self): with self.cached_session(): with self.assertRaisesOpError("not positive"): SinhArcsinh(tailweight=0., validate_args=True).forward(1.0).eval() def testDefaultDtypeIsFloat32(self): with self.cached_session(): bijector = SinhArcsinh() self.assertEqual(bijector.tailweight.dtype, np.float32) self.assertEqual(bijector.skewness.dtype, np.float32) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/sinh_arcsinh_bijector_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops.bijectors.power_transform import PowerTransform from tensorflow.python.ops.distributions.bijector_test_util import assert_bijective_and_finite from tensorflow.python.ops.distributions.bijector_test_util import assert_scalar_congruency from tensorflow.python.platform import test class PowerTransformBijectorTest(test.TestCase): """Tests correctness of the power transformation.""" def testBijector(self): with self.cached_session(): c = 0.2 bijector = PowerTransform(power=c, validate_args=True) self.assertEqual("power_transform", bijector.name) x = np.array([[[-1.], [2.], [-5. + 1e-4]]]) y = (1. + x * c)**(1. / c) self.assertAllClose(y, bijector.forward(x).eval()) self.assertAllClose(x, bijector.inverse(y).eval()) self.assertAllClose( (c - 1.) * np.sum(np.log(y), axis=-1), bijector.inverse_log_det_jacobian(y, event_ndims=1).eval()) self.assertAllClose( -bijector.inverse_log_det_jacobian(y, event_ndims=1).eval(), bijector.forward_log_det_jacobian(x, event_ndims=1).eval(), rtol=1e-4, atol=0.) def testScalarCongruency(self): with self.cached_session(): bijector = PowerTransform(power=0.2, validate_args=True) assert_scalar_congruency( bijector, lower_x=-2., upper_x=1.5, rtol=0.05) def testBijectiveAndFinite(self): with self.cached_session(): bijector = PowerTransform(power=0.2, validate_args=True) x = np.linspace(-4.999, 10, num=10).astype(np.float32) y = np.logspace(0.001, 10, num=10).astype(np.float32) assert_bijective_and_finite(bijector, x, y, event_ndims=0, rtol=1e-3) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/power_transform_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Affine Tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import numpy as np from tensorflow.contrib.distributions.python.ops.bijectors.affine import Affine from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.ops import array_ops from tensorflow.python.platform import test class AffineBijectorTest(test.TestCase): """Tests correctness of the Y = scale @ x + shift transformation.""" def testProperties(self): with self.cached_session(): mu = -1. # scale corresponds to 1. bijector = Affine(shift=mu) self.assertEqual("affine", bijector.name) def testNoBatchMultivariateIdentity(self): with self.cached_session() as sess: placeholder = array_ops.placeholder(dtypes.float32, name="x") def static_run(fun, x, **kwargs): return fun(x, **kwargs).eval() def dynamic_run(fun, x_value, **kwargs): x_value = np.array(x_value) return sess.run( fun(placeholder, **kwargs), feed_dict={placeholder: x_value}) for run in (static_run, dynamic_run): mu = [1., -1] # Multivariate # Corresponds to scale = [[1., 0], [0, 1.]] bijector = Affine(shift=mu) x = [1., 1] # matmul(sigma, x) + shift # = [-1, -1] + [1, -1] self.assertAllClose([2., 0], run(bijector.forward, x)) self.assertAllClose([0., 2], run(bijector.inverse, x)) # x is a 2-batch of 2-vectors. # The first vector is [1, 1], the second is [-1, -1]. # Each undergoes matmul(sigma, x) + shift. x = [[1., 1], [-1., -1]] self.assertAllClose([[2., 0], [0., -2]], run(bijector.forward, x)) self.assertAllClose([[0., 2], [-2., 0]], run(bijector.inverse, x)) self.assertAllClose( 0., run(bijector.inverse_log_det_jacobian, x, event_ndims=1)) def testNoBatchMultivariateDiag(self): with self.cached_session() as sess: placeholder = array_ops.placeholder(dtypes.float32, name="x") def static_run(fun, x, **kwargs): return fun(x, **kwargs).eval() def dynamic_run(fun, x_value, **kwargs): x_value = np.array(x_value) return sess.run( fun(placeholder, **kwargs), feed_dict={placeholder: x_value}) for run in (static_run, dynamic_run): mu = [1., -1] # Multivariate # Corresponds to scale = [[2., 0], [0, 1.]] bijector = Affine(shift=mu, scale_diag=[2., 1]) x = [1., 1] # matmul(sigma, x) + shift # = [-1, -1] + [1, -1] self.assertAllClose([3., 0], run(bijector.forward, x)) self.assertAllClose([0., 2], run(bijector.inverse, x)) self.assertAllClose( -np.log(2.), run(bijector.inverse_log_det_jacobian, x, event_ndims=1)) # Reset bijector. bijector = Affine(shift=mu, scale_diag=[2., 1]) # x is a 2-batch of 2-vectors. # The first vector is [1, 1], the second is [-1, -1]. # Each undergoes matmul(sigma, x) + shift. x = [[1., 1], [-1., -1]] self.assertAllClose([[3., 0], [-1., -2]], run(bijector.forward, x)) self.assertAllClose([[0., 2], [-1., 0]], run(bijector.inverse, x)) self.assertAllClose( -np.log(2.), run(bijector.inverse_log_det_jacobian, x, event_ndims=1)) def testNoBatchMultivariateFullDynamic(self): with self.cached_session() as sess: x = array_ops.placeholder(dtypes.float32, name="x") mu = array_ops.placeholder(dtypes.float32, name="mu") scale_diag = array_ops.placeholder(dtypes.float32, name="scale_diag") x_value = np.array([[1., 1]], dtype=np.float32) mu_value = np.array([1., -1], dtype=np.float32) scale_diag_value = np.array([2., 2], dtype=np.float32) feed_dict = { x: x_value, mu: mu_value, scale_diag: scale_diag_value, } bijector = Affine(shift=mu, scale_diag=scale_diag) self.assertAllClose([[3., 1]], sess.run(bijector.forward(x), feed_dict)) self.assertAllClose([[0., 1]], sess.run(bijector.inverse(x), feed_dict)) self.assertAllClose( -np.log(4), sess.run(bijector.inverse_log_det_jacobian(x, event_ndims=1), feed_dict)) def testBatchMultivariateIdentity(self): with self.cached_session() as sess: placeholder = array_ops.placeholder(dtypes.float32, name="x") def static_run(fun, x, **kwargs): return fun(x, **kwargs).eval() def dynamic_run(fun, x_value, **kwargs): x_value = np.array(x_value) return sess.run( fun(placeholder, **kwargs), feed_dict={placeholder: x_value}) for run in (static_run, dynamic_run): mu = [[1., -1]] # Corresponds to 1 2x2 matrix, with twos on the diagonal. scale = 2. bijector = Affine(shift=mu, scale_identity_multiplier=scale) x = [[[1., 1]]] self.assertAllClose([[[3., 1]]], run(bijector.forward, x)) self.assertAllClose([[[0., 1]]], run(bijector.inverse, x)) self.assertAllClose( -np.log(4), run(bijector.inverse_log_det_jacobian, x, event_ndims=1)) def testBatchMultivariateDiag(self): with self.cached_session() as sess: placeholder = array_ops.placeholder(dtypes.float32, name="x") def static_run(fun, x, **kwargs): return fun(x, **kwargs).eval() def dynamic_run(fun, x_value, **kwargs): x_value = np.array(x_value) return sess.run( fun(placeholder, **kwargs), feed_dict={placeholder: x_value}) for run in (static_run, dynamic_run): mu = [[1., -1]] # Corresponds to 1 2x2 matrix, with twos on the diagonal. scale_diag = [[2., 2]] bijector = Affine(shift=mu, scale_diag=scale_diag) x = [[[1., 1]]] self.assertAllClose([[[3., 1]]], run(bijector.forward, x)) self.assertAllClose([[[0., 1]]], run(bijector.inverse, x)) self.assertAllClose( [-np.log(4)], run(bijector.inverse_log_det_jacobian, x, event_ndims=1)) def testBatchMultivariateFullDynamic(self): with self.cached_session() as sess: x = array_ops.placeholder(dtypes.float32, name="x") mu = array_ops.placeholder(dtypes.float32, name="mu") scale_diag = array_ops.placeholder(dtypes.float32, name="scale_diag") x_value = np.array([[[1., 1]]], dtype=np.float32) mu_value = np.array([[1., -1]], dtype=np.float32) scale_diag_value = np.array([[2., 2]], dtype=np.float32) feed_dict = { x: x_value, mu: mu_value, scale_diag: scale_diag_value, } bijector = Affine(shift=mu, scale_diag=scale_diag) self.assertAllClose([[[3., 1]]], sess.run(bijector.forward(x), feed_dict)) self.assertAllClose([[[0., 1]]], sess.run(bijector.inverse(x), feed_dict)) self.assertAllClose( [-np.log(4)], sess.run(bijector.inverse_log_det_jacobian( x, event_ndims=1), feed_dict)) def testIdentityWithDiagUpdate(self): with self.cached_session() as sess: placeholder = array_ops.placeholder(dtypes.float32, name="x") def static_run(fun, x, **kwargs): return fun(x, **kwargs).eval() def dynamic_run(fun, x_value, **kwargs): x_value = np.array(x_value) return sess.run( fun(placeholder, **kwargs), feed_dict={placeholder: x_value}) for run in (static_run, dynamic_run): mu = -1. # Corresponds to scale = 2 bijector = Affine( shift=mu, scale_identity_multiplier=1., scale_diag=[1., 1., 1.]) x = [1., 2, 3] # Three scalar samples (no batches). self.assertAllClose([1., 3, 5], run(bijector.forward, x)) self.assertAllClose([1., 1.5, 2.], run(bijector.inverse, x)) self.assertAllClose( -np.log(2.**3), run(bijector.inverse_log_det_jacobian, x, event_ndims=1)) def testIdentityWithTriL(self): with self.cached_session() as sess: placeholder = array_ops.placeholder(dtypes.float32, name="x") def static_run(fun, x, **kwargs): return fun(x, **kwargs).eval() def dynamic_run(fun, x_value, **kwargs): x_value = np.array(x_value) return sess.run( fun(placeholder, **kwargs), feed_dict={placeholder: x_value}) for run in (static_run, dynamic_run): mu = -1. # scale = [[2., 0], [2, 2]] bijector = Affine( shift=mu, scale_identity_multiplier=1., scale_tril=[[1., 0], [2., 1]]) x = [[1., 2]] # One multivariate sample. self.assertAllClose([[1., 5]], run(bijector.forward, x)) self.assertAllClose([[1., 0.5]], run(bijector.inverse, x)) self.assertAllClose( -np.log(4.), run(bijector.inverse_log_det_jacobian, x, event_ndims=1)) def testDiagWithTriL(self): with self.cached_session() as sess: placeholder = array_ops.placeholder(dtypes.float32, name="x") def static_run(fun, x, **kwargs): return fun(x, **kwargs).eval() def dynamic_run(fun, x_value, **kwargs): x_value = np.array(x_value) return sess.run( fun(placeholder, **kwargs), feed_dict={placeholder: x_value}) for run in (static_run, dynamic_run): mu = -1. # scale = [[2., 0], [2, 3]] bijector = Affine( shift=mu, scale_diag=[1., 2.], scale_tril=[[1., 0], [2., 1]]) x = [[1., 2]] # One multivariate sample. self.assertAllClose([[1., 7]], run(bijector.forward, x)) self.assertAllClose([[1., 1 / 3.]], run(bijector.inverse, x)) self.assertAllClose( -np.log(6.), run(bijector.inverse_log_det_jacobian, x, event_ndims=1)) def testIdentityAndDiagWithTriL(self): with self.cached_session() as sess: placeholder = array_ops.placeholder(dtypes.float32, name="x") def static_run(fun, x, **kwargs): return fun(x, **kwargs).eval() def dynamic_run(fun, x_value, **kwargs): x_value = np.array(x_value) return sess.run( fun(placeholder, **kwargs), feed_dict={placeholder: x_value}) for run in (static_run, dynamic_run): mu = -1. # scale = [[3., 0], [2, 4]] bijector = Affine( shift=mu, scale_identity_multiplier=1.0, scale_diag=[1., 2.], scale_tril=[[1., 0], [2., 1]]) x = [[1., 2]] # One multivariate sample. self.assertAllClose([[2., 9]], run(bijector.forward, x)) self.assertAllClose([[2 / 3., 5 / 12.]], run(bijector.inverse, x)) self.assertAllClose( -np.log(12.), run(bijector.inverse_log_det_jacobian, x, event_ndims=1)) def testIdentityWithVDVTUpdate(self): with self.cached_session() as sess: placeholder = array_ops.placeholder(dtypes.float32, name="x") def static_run(fun, x, **kwargs): return fun(x, **kwargs).eval() def dynamic_run(fun, x_value, **kwargs): x_value = np.array(x_value) return sess.run( fun(placeholder, **kwargs), feed_dict={placeholder: x_value}) for run in (static_run, dynamic_run): mu = -1. # Corresponds to scale = [[10, 0, 0], [0, 2, 0], [0, 0, 3]] bijector = Affine( shift=mu, scale_identity_multiplier=2., scale_perturb_diag=[2., 1], scale_perturb_factor=[[2., 0], [0., 0], [0, 1]]) bijector_ref = Affine(shift=mu, scale_diag=[10., 2, 3]) x = [1., 2, 3] # Vector. self.assertAllClose([9., 3, 8], run(bijector.forward, x)) self.assertAllClose( run(bijector_ref.forward, x), run(bijector.forward, x)) self.assertAllClose([0.2, 1.5, 4 / 3.], run(bijector.inverse, x)) self.assertAllClose( run(bijector_ref.inverse, x), run(bijector.inverse, x)) self.assertAllClose( -np.log(60.), run(bijector.inverse_log_det_jacobian, x, event_ndims=1)) self.assertAllClose( run(bijector.inverse_log_det_jacobian, x, event_ndims=1), run(bijector_ref.inverse_log_det_jacobian, x, event_ndims=1)) def testDiagWithVDVTUpdate(self): with self.cached_session() as sess: placeholder = array_ops.placeholder(dtypes.float32, name="x") def static_run(fun, x, **kwargs): return fun(x, **kwargs).eval() def dynamic_run(fun, x_value, **kwargs): x_value = np.array(x_value) return sess.run( fun(placeholder, **kwargs), feed_dict={placeholder: x_value}) for run in (static_run, dynamic_run): mu = -1. # Corresponds to scale = [[10, 0, 0], [0, 3, 0], [0, 0, 5]] bijector = Affine( shift=mu, scale_diag=[2., 3, 4], scale_perturb_diag=[2., 1], scale_perturb_factor=[[2., 0], [0., 0], [0, 1]]) bijector_ref = Affine(shift=mu, scale_diag=[10., 3, 5]) x = [1., 2, 3] # Vector. self.assertAllClose([9., 5, 14], run(bijector.forward, x)) self.assertAllClose( run(bijector_ref.forward, x), run(bijector.forward, x)) self.assertAllClose([0.2, 1., 0.8], run(bijector.inverse, x)) self.assertAllClose( run(bijector_ref.inverse, x), run(bijector.inverse, x)) self.assertAllClose( -np.log(150.), run(bijector.inverse_log_det_jacobian, x, event_ndims=1)) self.assertAllClose( run(bijector.inverse_log_det_jacobian, x, event_ndims=1), run(bijector_ref.inverse_log_det_jacobian, x, event_ndims=1)) def testTriLWithVDVTUpdate(self): with self.cached_session() as sess: placeholder = array_ops.placeholder(dtypes.float32, name="x") def static_run(fun, x, **kwargs): return fun(x, **kwargs).eval() def dynamic_run(fun, x_value, **kwargs): x_value = np.array(x_value) return sess.run( fun(placeholder, **kwargs), feed_dict={placeholder: x_value}) for run in (static_run, dynamic_run): mu = -1. # Corresponds to scale = [[10, 0, 0], [1, 3, 0], [2, 3, 5]] bijector = Affine( shift=mu, scale_tril=[[2., 0, 0], [1, 3, 0], [2, 3, 4]], scale_perturb_diag=[2., 1], scale_perturb_factor=[[2., 0], [0., 0], [0, 1]]) bijector_ref = Affine( shift=mu, scale_tril=[[10., 0, 0], [1, 3, 0], [2, 3, 5]]) x = [1., 2, 3] # Vector. self.assertAllClose([9., 6, 22], run(bijector.forward, x)) self.assertAllClose( run(bijector_ref.forward, x), run(bijector.forward, x)) self.assertAllClose([0.2, 14 / 15., 4 / 25.], run(bijector.inverse, x)) self.assertAllClose( run(bijector_ref.inverse, x), run(bijector.inverse, x)) self.assertAllClose( -np.log(150.), run(bijector.inverse_log_det_jacobian, x, event_ndims=1)) self.assertAllClose( run(bijector.inverse_log_det_jacobian, x, event_ndims=1), run(bijector_ref.inverse_log_det_jacobian, x, event_ndims=1)) def testTriLWithVDVTUpdateNoDiagonal(self): with self.cached_session() as sess: placeholder = array_ops.placeholder(dtypes.float32, name="x") def static_run(fun, x, **kwargs): return fun(x, **kwargs).eval() def dynamic_run(fun, x_value, **kwargs): x_value = np.array(x_value) return sess.run( fun(placeholder, **kwargs), feed_dict={placeholder: x_value}) for run in (static_run, dynamic_run): mu = -1. # Corresponds to scale = [[6, 0, 0], [1, 3, 0], [2, 3, 5]] bijector = Affine( shift=mu, scale_tril=[[2., 0, 0], [1, 3, 0], [2, 3, 4]], scale_perturb_diag=None, scale_perturb_factor=[[2., 0], [0., 0], [0, 1]]) bijector_ref = Affine( shift=mu, scale_tril=[[6., 0, 0], [1, 3, 0], [2, 3, 5]]) x = [1., 2, 3] # Vector. self.assertAllClose([5., 6, 22], run(bijector.forward, x)) self.assertAllClose( run(bijector_ref.forward, x), run(bijector.forward, x)) self.assertAllClose([1 / 3., 8 / 9., 4 / 30.], run(bijector.inverse, x)) self.assertAllClose( run(bijector_ref.inverse, x), run(bijector.inverse, x)) self.assertAllClose( -np.log(90.), run(bijector.inverse_log_det_jacobian, x, event_ndims=1)) self.assertAllClose( run(bijector.inverse_log_det_jacobian, x, event_ndims=1), run(bijector_ref.inverse_log_det_jacobian, x, event_ndims=1)) def testNoBatchMultivariateRaisesWhenSingular(self): with self.cached_session(): mu = [1., -1] with self.assertRaisesRegexp(errors.InvalidArgumentError, "diagonal part must be non-zero"): _ = Affine( shift=mu, # Has zero on the diagonal. scale_diag=[0., 1], validate_args=True) # Error detected statically; don't need to run the op. def _makeScale(self, x, scale_identity_multiplier=None, scale_diag=None, scale_tril=None, scale_perturb_factor=None, scale_perturb_diag=None): """Create a scale matrix. Return None if it can not be created.""" c = scale_identity_multiplier d1 = scale_diag tril = scale_tril v = scale_perturb_factor d2 = scale_perturb_diag # Ambiguous low rank update. if v is None and d2 is not None: return None if c is None and d1 is None and tril is None: # Special case when no scale args are passed in. This means use an # identity matrix. c = 1. matrix = np.float32(0.) if c is not None: # Infer the dimension from x. matrix += c * self._matrix_diag(np.ones_like(x)) if d1 is not None: matrix += self._matrix_diag(np.array(d1, dtype=np.float32)) if tril is not None: matrix += np.array(tril, dtype=np.float32) if v is not None: v = np.array(v, dtype=np.float32) if v.ndim < 2: vt = v.T else: vt = np.swapaxes(v, axis1=v.ndim - 2, axis2=v.ndim - 1) if d2 is not None: d2 = self._matrix_diag(np.array(d2, dtype=np.float32)) right = np.matmul(d2, vt) else: right = vt matrix += np.matmul(v, right) return matrix def _matrix_diag(self, d): """Batch version of np.diag.""" orig_shape = d.shape d = np.reshape(d, (int(np.prod(d.shape[:-1])), d.shape[-1])) diag_list = [] for i in range(d.shape[0]): diag_list.append(np.diag(d[i, ...])) return np.reshape(diag_list, orig_shape + (d.shape[-1],)) def _testLegalInputs(self, shift=None, scale_params=None, x=None): def _powerset(x): s = list(x) return itertools.chain.from_iterable( itertools.combinations(s, r) for r in range(len(s) + 1)) for args in _powerset(scale_params.items()): with self.cached_session(): args = dict(args) scale_args = dict({"x": x}, **args) scale = self._makeScale(**scale_args) # We haven't specified enough information for the scale. if scale is None: with self.assertRaisesRegexp(ValueError, ("must be specified.")): bijector = Affine(shift=shift, **args) else: bijector = Affine(shift=shift, **args) np_x = x # For the case a vector is passed in, we need to make the shape # match the matrix for matmul to work. if x.ndim == scale.ndim - 1: np_x = np.expand_dims(x, axis=-1) forward = np.matmul(scale, np_x) + shift if x.ndim == scale.ndim - 1: forward = np.squeeze(forward, axis=-1) self.assertAllClose(forward, bijector.forward(x).eval()) backward = np.linalg.solve(scale, np_x - shift) if x.ndim == scale.ndim - 1: backward = np.squeeze(backward, axis=-1) self.assertAllClose(backward, bijector.inverse(x).eval()) scale *= np.ones(shape=x.shape[:-1], dtype=scale.dtype) ildj = -np.log(np.abs(np.linalg.det(scale))) # TODO(jvdillon): We need to make it so the scale_identity_multiplier # case does not deviate in expected shape. Fixing this will get rid of # these special cases. if (ildj.ndim > 0 and (len(scale_args) == 1 or ( len(scale_args) == 2 and scale_args.get("scale_identity_multiplier", None) is not None))): ildj = np.squeeze(ildj[0]) elif ildj.ndim < scale.ndim - 2: ildj = np.reshape(ildj, scale.shape[0:-2]) self.assertAllClose( ildj, bijector.inverse_log_det_jacobian(x, event_ndims=1).eval()) def testLegalInputs(self): self._testLegalInputs( shift=np.float32(-1), scale_params={ "scale_identity_multiplier": 2., "scale_diag": [2., 3.], "scale_tril": [[1., 0.], [-3., 3.]], "scale_perturb_factor": [[1., 0], [1.5, 3.]], "scale_perturb_diag": [3., 1.] }, x=np.array( [1., 2], dtype=np.float32)) def testLegalInputsWithBatch(self): # Shape of scale is [2, 1, 2, 2] self._testLegalInputs( shift=np.float32(-1), scale_params={ "scale_identity_multiplier": 2., "scale_diag": [[[2., 3.]], [[1., 2]]], "scale_tril": [[[[1., 0.], [-3., 3.]]], [[[0.5, 0.], [1., 1.]]]], "scale_perturb_factor": [[[[1., 0], [1.5, 3.]]], [[[1., 0], [1., 1.]]]], "scale_perturb_diag": [[[3., 1.]], [[0.5, 1.]]] }, x=np.array( [[[1., 2]], [[3., 4]]], dtype=np.float32)) def testNegativeDetTrilPlusVDVT(self): # scale = [[3.7, 2.7], # [-0.3, -1.3]] # inv(scale) = [[0.325, 0.675], # [-0.075, -0.925]] # eig(scale) = [3.5324, -1.1324] self._testLegalInputs( shift=np.float32(-1), scale_params={ "scale_tril": [[1., 0], [-3, -4]], "scale_perturb_factor": [[0.1, 0], [0.5, 0.3]], "scale_perturb_diag": [3., 1] }, x=np.array( [1., 2], dtype=np.float32)) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/affine_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops.bijectors.softmax_centered import SoftmaxCentered from tensorflow.python.framework import dtypes from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops.distributions.bijector_test_util import assert_bijective_and_finite from tensorflow.python.platform import test rng = np.random.RandomState(42) class SoftmaxCenteredBijectorTest(test.TestCase): """Tests correctness of the Y = g(X) = exp(X) / sum(exp(X)) transformation.""" def testBijectorVector(self): with self.cached_session(): softmax = SoftmaxCentered() self.assertEqual("softmax_centered", softmax.name) x = np.log([[2., 3, 4], [4., 8, 12]]) y = [[0.2, 0.3, 0.4, 0.1], [0.16, 0.32, 0.48, 0.04]] self.assertAllClose(y, softmax.forward(x).eval()) self.assertAllClose(x, softmax.inverse(y).eval()) self.assertAllClose( -np.sum(np.log(y), axis=1), softmax.inverse_log_det_jacobian(y, event_ndims=1).eval(), atol=0., rtol=1e-7) self.assertAllClose( -softmax.inverse_log_det_jacobian(y, event_ndims=1).eval(), softmax.forward_log_det_jacobian(x, event_ndims=1).eval(), atol=0., rtol=1e-7) def testBijectorUnknownShape(self): with self.cached_session(): softmax = SoftmaxCentered() self.assertEqual("softmax_centered", softmax.name) x = array_ops.placeholder(shape=[2, None], dtype=dtypes.float32) real_x = np.log([[2., 3, 4], [4., 8, 12]]) y = array_ops.placeholder(shape=[2, None], dtype=dtypes.float32) real_y = [[0.2, 0.3, 0.4, 0.1], [0.16, 0.32, 0.48, 0.04]] self.assertAllClose(real_y, softmax.forward(x).eval( feed_dict={x: real_x})) self.assertAllClose(real_x, softmax.inverse(y).eval( feed_dict={y: real_y})) self.assertAllClose( -np.sum(np.log(real_y), axis=1), softmax.inverse_log_det_jacobian(y, event_ndims=1).eval( feed_dict={y: real_y}), atol=0., rtol=1e-7) self.assertAllClose( -softmax.inverse_log_det_jacobian(y, event_ndims=1).eval( feed_dict={y: real_y}), softmax.forward_log_det_jacobian(x, event_ndims=1).eval( feed_dict={x: real_x}), atol=0., rtol=1e-7) def testShapeGetters(self): with self.cached_session(): x = tensor_shape.TensorShape([4]) y = tensor_shape.TensorShape([5]) bijector = SoftmaxCentered(validate_args=True) self.assertAllEqual(y, bijector.forward_event_shape(x)) self.assertAllEqual(y.as_list(), bijector.forward_event_shape_tensor( x.as_list()).eval()) self.assertAllEqual(x, bijector.inverse_event_shape(y)) self.assertAllEqual(x.as_list(), bijector.inverse_event_shape_tensor( y.as_list()).eval()) def testBijectiveAndFinite(self): with self.cached_session(): softmax = SoftmaxCentered() x = np.linspace(-50, 50, num=10).reshape(5, 2).astype(np.float32) # Make y values on the simplex with a wide range. y_0 = np.ones(5).astype(np.float32) y_1 = (1e-5 * rng.rand(5)).astype(np.float32) y_2 = (1e1 * rng.rand(5)).astype(np.float32) y = np.array([y_0, y_1, y_2]) y /= y.sum(axis=0) y = y.T # y.shape = [5, 3] assert_bijective_and_finite(softmax, x, y, event_ndims=1) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/softmax_centered_test.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Kumaraswamy Bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops.bijectors.kumaraswamy import Kumaraswamy from tensorflow.python.ops.distributions.bijector_test_util import assert_bijective_and_finite from tensorflow.python.ops.distributions.bijector_test_util import assert_scalar_congruency from tensorflow.python.platform import test class KumaraswamyBijectorTest(test.TestCase): """Tests correctness of the Kumaraswamy bijector.""" def testBijector(self): with self.cached_session(): a = 2. b = 0.3 bijector = Kumaraswamy( concentration1=a, concentration0=b, validate_args=True) self.assertEqual("kumaraswamy", bijector.name) x = np.array([[[0.1], [0.2], [0.3], [0.4], [0.5]]], dtype=np.float32) # Kumaraswamy cdf. This is the same as inverse(x). y = 1. - (1. - x ** a) ** b self.assertAllClose(y, bijector.inverse(x).eval()) self.assertAllClose(x, bijector.forward(y).eval()) kumaraswamy_log_pdf = (np.log(a) + np.log(b) + (a - 1) * np.log(x) + (b - 1) * np.log1p(-x ** a)) self.assertAllClose( np.squeeze(kumaraswamy_log_pdf, axis=-1), bijector.inverse_log_det_jacobian(x, event_ndims=1).eval()) self.assertAllClose( -bijector.inverse_log_det_jacobian(x, event_ndims=1).eval(), bijector.forward_log_det_jacobian(y, event_ndims=1).eval(), rtol=1e-4, atol=0.) def testScalarCongruency(self): with self.cached_session(): assert_scalar_congruency( Kumaraswamy(concentration1=0.5, concentration0=1.1), lower_x=0., upper_x=1., n=int(10e3), rtol=0.02) def testBijectiveAndFinite(self): with self.cached_session(): concentration1 = 1.2 concentration0 = 2. bijector = Kumaraswamy( concentration1=concentration1, concentration0=concentration0, validate_args=True) # Omitting the endpoints 0 and 1, since idlj will be infinity at these # endpoints. y = np.linspace(.01, 0.99, num=10).astype(np.float32) x = 1 - (1 - y ** concentration1) ** concentration0 assert_bijective_and_finite(bijector, x, y, event_ndims=0, rtol=1e-3) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/kumaraswamy_bijector_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops.bijectors.softplus import Softplus from tensorflow.python.framework import errors from tensorflow.python.ops.distributions.bijector_test_util import assert_bijective_and_finite from tensorflow.python.ops.distributions.bijector_test_util import assert_scalar_congruency from tensorflow.python.platform import test rng = np.random.RandomState(42) class SoftplusBijectorTest(test.TestCase): """Tests the correctness of the Y = g(X) = Log[1 + exp(X)] transformation.""" def _softplus(self, x): return np.log(1 + np.exp(x)) def _softplus_inverse(self, y): return np.log(np.exp(y) - 1) def _softplus_ildj_before_reduction(self, y): """Inverse log det jacobian, before being reduced.""" return -np.log(1 - np.exp(-y)) def testHingeSoftnessZeroRaises(self): with self.cached_session(): with self.assertRaisesWithPredicateMatch(errors.InvalidArgumentError, "must be non-zero"): _ = Softplus(hinge_softness=0., validate_args=True) # Error detected statically; don't need to run op. def testBijectorForwardInverseEventDimsZero(self): with self.cached_session(): bijector = Softplus() self.assertEqual("softplus", bijector.name) x = 2 * rng.randn(2, 10) y = self._softplus(x) self.assertAllClose(y, bijector.forward(x).eval()) self.assertAllClose(x, bijector.inverse(y).eval()) def testBijectorForwardInverseWithHingeSoftnessEventDimsZero(self): with self.cached_session(): bijector = Softplus(hinge_softness=1.5) x = 2 * rng.randn(2, 10) y = 1.5 * self._softplus(x / 1.5) self.assertAllClose(y, bijector.forward(x).eval()) self.assertAllClose(x, bijector.inverse(y).eval()) def testBijectorLogDetJacobianEventDimsZero(self): with self.cached_session(): bijector = Softplus() y = 2 * rng.rand(2, 10) # No reduction needed if event_dims = 0. ildj = self._softplus_ildj_before_reduction(y) self.assertAllClose(ildj, bijector.inverse_log_det_jacobian( y, event_ndims=0).eval()) def testBijectorForwardInverseEventDimsOne(self): with self.cached_session(): bijector = Softplus() self.assertEqual("softplus", bijector.name) x = 2 * rng.randn(2, 10) y = self._softplus(x) self.assertAllClose(y, bijector.forward(x).eval()) self.assertAllClose(x, bijector.inverse(y).eval()) def testBijectorLogDetJacobianEventDimsOne(self): with self.cached_session(): bijector = Softplus() y = 2 * rng.rand(2, 10) ildj_before = self._softplus_ildj_before_reduction(y) ildj = np.sum(ildj_before, axis=1) self.assertAllClose(ildj, bijector.inverse_log_det_jacobian( y, event_ndims=1).eval()) def testScalarCongruency(self): with self.cached_session(): bijector = Softplus() assert_scalar_congruency( bijector, lower_x=-2., upper_x=2.) def testScalarCongruencyWithPositiveHingeSoftness(self): with self.cached_session(): bijector = Softplus(hinge_softness=1.3) assert_scalar_congruency( bijector, lower_x=-2., upper_x=2.) def testScalarCongruencyWithNegativeHingeSoftness(self): with self.cached_session(): bijector = Softplus(hinge_softness=-1.3) assert_scalar_congruency( bijector, lower_x=-2., upper_x=2.) def testBijectiveAndFinite32bit(self): with self.cached_session(): bijector = Softplus() x = np.linspace(-20., 20., 100).astype(np.float32) y = np.logspace(-10, 10, 100).astype(np.float32) assert_bijective_and_finite( bijector, x, y, event_ndims=0, rtol=1e-2, atol=1e-2) def testBijectiveAndFiniteWithPositiveHingeSoftness32Bit(self): with self.cached_session(): bijector = Softplus(hinge_softness=1.23) x = np.linspace(-20., 20., 100).astype(np.float32) y = np.logspace(-10, 10, 100).astype(np.float32) assert_bijective_and_finite( bijector, x, y, event_ndims=0, rtol=1e-2, atol=1e-2) def testBijectiveAndFiniteWithNegativeHingeSoftness32Bit(self): with self.cached_session(): bijector = Softplus(hinge_softness=-0.7) x = np.linspace(-20., 20., 100).astype(np.float32) y = -np.logspace(-10, 10, 100).astype(np.float32) assert_bijective_and_finite( bijector, x, y, event_ndims=0, rtol=1e-2, atol=1e-2) def testBijectiveAndFinite16bit(self): with self.cached_session(): bijector = Softplus() # softplus(-20) is zero, so we can't use such a large range as in 32bit. x = np.linspace(-10., 20., 100).astype(np.float16) # Note that float16 is only in the open set (0, inf) for a smaller # logspace range. The actual range was (-7, 4), so use something smaller # for the test. y = np.logspace(-6, 3, 100).astype(np.float16) assert_bijective_and_finite( bijector, x, y, event_ndims=0, rtol=1e-1, atol=1e-3) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/softplus_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from scipy import stats from tensorflow.contrib.distributions.python.ops.bijectors.weibull import Weibull from tensorflow.python.ops.distributions.bijector_test_util import assert_bijective_and_finite from tensorflow.python.ops.distributions.bijector_test_util import assert_scalar_congruency from tensorflow.python.platform import test class WeibullBijectorTest(test.TestCase): """Tests correctness of the weibull bijector.""" def testBijector(self): with self.cached_session(): scale = 5. concentration = 0.3 bijector = Weibull( scale=scale, concentration=concentration, validate_args=True) self.assertEqual("weibull", bijector.name) x = np.array([[[0.], [1.], [14.], [20.], [100.]]], dtype=np.float32) # Weibull distribution weibull_dist = stats.frechet_r(c=concentration, scale=scale) y = weibull_dist.cdf(x).astype(np.float32) self.assertAllClose(y, bijector.forward(x).eval()) self.assertAllClose(x, bijector.inverse(y).eval()) self.assertAllClose( weibull_dist.logpdf(x), bijector.forward_log_det_jacobian(x, event_ndims=0).eval()) self.assertAllClose( -bijector.inverse_log_det_jacobian(y, event_ndims=0).eval(), bijector.forward_log_det_jacobian(x, event_ndims=0).eval(), rtol=1e-4, atol=0.) def testScalarCongruency(self): with self.cached_session(): assert_scalar_congruency( Weibull(scale=20., concentration=0.3), lower_x=1., upper_x=100., rtol=0.02) def testBijectiveAndFinite(self): with self.cached_session(): bijector = Weibull( scale=20., concentration=2., validate_args=True) x = np.linspace(1., 8., num=10).astype(np.float32) y = np.linspace( -np.expm1(-1 / 400.), -np.expm1(-16), num=10).astype(np.float32) assert_bijective_and_finite(bijector, x, y, event_ndims=0, rtol=1e-3) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/weibull_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops.bijectors.exp import Exp from tensorflow.contrib.distributions.python.ops.bijectors.inline import Inline from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test class InlineBijectorTest(test.TestCase): """Tests correctness of the inline constructed bijector.""" def testBijector(self): with self.cached_session(): exp = Exp() inline = Inline( forward_fn=math_ops.exp, inverse_fn=math_ops.log, inverse_log_det_jacobian_fn=lambda y: -math_ops.log(y), forward_log_det_jacobian_fn=lambda x: x, forward_min_event_ndims=0, name="exp") self.assertEqual(exp.name, inline.name) x = [[[1., 2.], [3., 4.], [5., 6.]]] y = np.exp(x) self.assertAllClose(y, inline.forward(x).eval()) self.assertAllClose(x, inline.inverse(y).eval()) self.assertAllClose( -np.sum(np.log(y), axis=-1), inline.inverse_log_det_jacobian(y, event_ndims=1).eval()) self.assertAllClose( -inline.inverse_log_det_jacobian(y, event_ndims=1).eval(), inline.forward_log_det_jacobian(x, event_ndims=1).eval()) def testShapeGetters(self): with self.cached_session(): bijector = Inline( forward_event_shape_tensor_fn=lambda x: array_ops.concat((x, [1]), 0), forward_event_shape_fn=lambda x: x.as_list() + [1], inverse_event_shape_tensor_fn=lambda x: x[:-1], inverse_event_shape_fn=lambda x: x[:-1], forward_min_event_ndims=0, name="shape_only") x = tensor_shape.TensorShape([1, 2, 3]) y = tensor_shape.TensorShape([1, 2, 3, 1]) self.assertAllEqual(y, bijector.forward_event_shape(x)) self.assertAllEqual( y.as_list(), bijector.forward_event_shape_tensor(x.as_list()).eval()) self.assertAllEqual(x, bijector.inverse_event_shape(y)) self.assertAllEqual( x.as_list(), bijector.inverse_event_shape_tensor(y.as_list()).eval()) if __name__ == "__main__": test.main()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/kernel_tests/bijectors/inline_test.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The VectorDiffeomixture distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import distribution_util from tensorflow.contrib.distributions.python.ops.bijectors.affine_linear_operator import AffineLinearOperator from tensorflow.contrib.distributions.python.ops.bijectors.softmax_centered import SoftmaxCentered from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops.distributions import categorical as categorical_lib from tensorflow.python.ops.distributions import distribution as distribution_lib from tensorflow.python.ops.distributions import normal as normal_lib from tensorflow.python.ops.linalg import linear_operator_addition as linop_add_lib from tensorflow.python.ops.linalg import linear_operator_diag as linop_diag_lib from tensorflow.python.ops.linalg import linear_operator_full_matrix as linop_full_lib from tensorflow.python.ops.linalg import linear_operator_identity as linop_identity_lib from tensorflow.python.ops.linalg import linear_operator_lower_triangular as linop_tril_lib from tensorflow.python.util import deprecation __all__ = [ "VectorDiffeomixture", "quadrature_scheme_softmaxnormal_gauss_hermite", "quadrature_scheme_softmaxnormal_quantiles", ] @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def quadrature_scheme_softmaxnormal_gauss_hermite( normal_loc, normal_scale, quadrature_size, validate_args=False, name=None): """Use Gauss-Hermite quadrature to form quadrature on `K - 1` simplex. A `SoftmaxNormal` random variable `Y` may be generated via ``` Y = SoftmaxCentered(X), X = Normal(normal_loc, normal_scale) ``` Note: for a given `quadrature_size`, this method is generally less accurate than `quadrature_scheme_softmaxnormal_quantiles`. Args: normal_loc: `float`-like `Tensor` with shape `[b1, ..., bB, K-1]`, B>=0. The location parameter of the Normal used to construct the SoftmaxNormal. normal_scale: `float`-like `Tensor`. Broadcastable with `normal_loc`. The scale parameter of the Normal used to construct the SoftmaxNormal. quadrature_size: Python `int` scalar representing the number of quadrature points. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. name: Python `str` name prefixed to Ops created by this class. Returns: grid: Shape `[b1, ..., bB, K, quadrature_size]` `Tensor` representing the convex combination of affine parameters for `K` components. `grid[..., :, n]` is the `n`-th grid point, living in the `K - 1` simplex. probs: Shape `[b1, ..., bB, K, quadrature_size]` `Tensor` representing the associated with each grid point. """ with ops.name_scope(name, "quadrature_scheme_softmaxnormal_gauss_hermite", [normal_loc, normal_scale]): normal_loc = ops.convert_to_tensor(normal_loc, name="normal_loc") dt = normal_loc.dtype.base_dtype normal_scale = ops.convert_to_tensor( normal_scale, dtype=dt, name="normal_scale") normal_scale = maybe_check_quadrature_param( normal_scale, "normal_scale", validate_args) grid, probs = np.polynomial.hermite.hermgauss(deg=quadrature_size) grid = grid.astype(dt.dtype.as_numpy_dtype) probs = probs.astype(dt.dtype.as_numpy_dtype) probs /= np.linalg.norm(probs, ord=1, keepdims=True) probs = ops.convert_to_tensor(probs, name="probs", dtype=dt) grid = softmax( -distribution_util.pad( (normal_loc[..., array_ops.newaxis] + np.sqrt(2.) * normal_scale[..., array_ops.newaxis] * grid), axis=-2, front=True), axis=-2) # shape: [B, components, deg] return grid, probs @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def quadrature_scheme_softmaxnormal_quantiles( normal_loc, normal_scale, quadrature_size, validate_args=False, name=None): """Use SoftmaxNormal quantiles to form quadrature on `K - 1` simplex. A `SoftmaxNormal` random variable `Y` may be generated via ``` Y = SoftmaxCentered(X), X = Normal(normal_loc, normal_scale) ``` Args: normal_loc: `float`-like `Tensor` with shape `[b1, ..., bB, K-1]`, B>=0. The location parameter of the Normal used to construct the SoftmaxNormal. normal_scale: `float`-like `Tensor`. Broadcastable with `normal_loc`. The scale parameter of the Normal used to construct the SoftmaxNormal. quadrature_size: Python `int` scalar representing the number of quadrature points. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. name: Python `str` name prefixed to Ops created by this class. Returns: grid: Shape `[b1, ..., bB, K, quadrature_size]` `Tensor` representing the convex combination of affine parameters for `K` components. `grid[..., :, n]` is the `n`-th grid point, living in the `K - 1` simplex. probs: Shape `[b1, ..., bB, K, quadrature_size]` `Tensor` representing the associated with each grid point. """ with ops.name_scope(name, "softmax_normal_grid_and_probs", [normal_loc, normal_scale]): normal_loc = ops.convert_to_tensor(normal_loc, name="normal_loc") dt = normal_loc.dtype.base_dtype normal_scale = ops.convert_to_tensor( normal_scale, dtype=dt, name="normal_scale") normal_scale = maybe_check_quadrature_param( normal_scale, "normal_scale", validate_args) dist = normal_lib.Normal(loc=normal_loc, scale=normal_scale) def _get_batch_ndims(): """Helper to get dist.batch_shape.ndims, statically if possible.""" ndims = dist.batch_shape.ndims if ndims is None: ndims = array_ops.shape(dist.batch_shape_tensor())[0] return ndims batch_ndims = _get_batch_ndims() def _get_final_shape(qs): """Helper to build `TensorShape`.""" bs = dist.batch_shape.with_rank_at_least(1) num_components = tensor_shape.dimension_value(bs[-1]) if num_components is not None: num_components += 1 tail = tensor_shape.TensorShape([num_components, qs]) return bs[:-1].concatenate(tail) def _compute_quantiles(): """Helper to build quantiles.""" # Omit {0, 1} since they might lead to Inf/NaN. zero = array_ops.zeros([], dtype=dist.dtype) edges = math_ops.linspace(zero, 1., quadrature_size + 3)[1:-1] # Expand edges so its broadcast across batch dims. edges = array_ops.reshape(edges, shape=array_ops.concat([ [-1], array_ops.ones([batch_ndims], dtype=dtypes.int32)], axis=0)) quantiles = dist.quantile(edges) quantiles = SoftmaxCentered().forward(quantiles) # Cyclically permute left by one. perm = array_ops.concat([ math_ops.range(1, 1 + batch_ndims), [0]], axis=0) quantiles = array_ops.transpose(quantiles, perm) quantiles.set_shape(_get_final_shape(quadrature_size + 1)) return quantiles quantiles = _compute_quantiles() # Compute grid as quantile midpoints. grid = (quantiles[..., :-1] + quantiles[..., 1:]) / 2. # Set shape hints. grid.set_shape(_get_final_shape(quadrature_size)) # By construction probs is constant, i.e., `1 / quadrature_size`. This is # important, because non-constant probs leads to non-reparameterizable # samples. probs = array_ops.fill( dims=[quadrature_size], value=1. / math_ops.cast(quadrature_size, dist.dtype)) return grid, probs class VectorDiffeomixture(distribution_lib.Distribution): """VectorDiffeomixture distribution. A vector diffeomixture (VDM) is a distribution parameterized by a convex combination of `K` component `loc` vectors, `loc[k], k = 0,...,K-1`, and `K` `scale` matrices `scale[k], k = 0,..., K-1`. It approximates the following [compound distribution] (https://en.wikipedia.org/wiki/Compound_probability_distribution) ```none p(x) = int p(x | z) p(z) dz, where z is in the K-simplex, and p(x | z) := p(x | loc=sum_k z[k] loc[k], scale=sum_k z[k] scale[k]) ``` The integral `int p(x | z) p(z) dz` is approximated with a quadrature scheme adapted to the mixture density `p(z)`. The `N` quadrature points `z_{N, n}` and weights `w_{N, n}` (which are non-negative and sum to 1) are chosen such that ```q_N(x) := sum_{n=1}^N w_{n, N} p(x | z_{N, n}) --> p(x)``` as `N --> infinity`. Since `q_N(x)` is in fact a mixture (of `N` points), we may sample from `q_N` exactly. It is important to note that the VDM is *defined* as `q_N` above, and *not* `p(x)`. Therefore, sampling and pdf may be implemented as exact (up to floating point error) methods. A common choice for the conditional `p(x | z)` is a multivariate Normal. The implemented marginal `p(z)` is the `SoftmaxNormal`, which is a `K-1` dimensional Normal transformed by a `SoftmaxCentered` bijector, making it a density on the `K`-simplex. That is, ``` Z = SoftmaxCentered(X), X = Normal(mix_loc / temperature, 1 / temperature) ``` The default quadrature scheme chooses `z_{N, n}` as `N` midpoints of the quantiles of `p(z)` (generalized quantiles if `K > 2`). See [Dillon and Langmore (2018)][1] for more details. #### About `Vector` distributions in TensorFlow. The `VectorDiffeomixture` is a non-standard distribution that has properties particularly useful in [variational Bayesian methods](https://en.wikipedia.org/wiki/Variational_Bayesian_methods). Conditioned on a draw from the SoftmaxNormal, `X|z` is a vector whose components are linear combinations of affine transformations, thus is itself an affine transformation. Note: The marginals `X_1|v, ..., X_d|v` are *not* generally identical to some parameterization of `distribution`. This is due to the fact that the sum of draws from `distribution` are not generally itself the same `distribution`. #### About `Diffeomixture`s and reparameterization. The `VectorDiffeomixture` is designed to be reparameterized, i.e., its parameters are only used to transform samples from a distribution which has no trainable parameters. This property is important because backprop stops at sources of stochasticity. That is, as long as the parameters are used *after* the underlying source of stochasticity, the computed gradient is accurate. Reparametrization means that we can use gradient-descent (via backprop) to optimize Monte-Carlo objectives. Such objectives are a finite-sample approximation of an expectation and arise throughout scientific computing. WARNING: If you backprop through a VectorDiffeomixture sample and the "base" distribution is both: not `FULLY_REPARAMETERIZED` and a function of trainable variables, then the gradient is not guaranteed correct! #### Examples ```python import tensorflow_probability as tfp tfd = tfp.distributions # Create two batches of VectorDiffeomixtures, one with mix_loc=[0.], # another with mix_loc=[1]. In both cases, `K=2` and the affine # transformations involve: # k=0: loc=zeros(dims) scale=LinearOperatorScaledIdentity # k=1: loc=[2.]*dims scale=LinOpDiag dims = 5 vdm = tfd.VectorDiffeomixture( mix_loc=[[0.], [1]], temperature=[1.], distribution=tfd.Normal(loc=0., scale=1.), loc=[ None, # Equivalent to `np.zeros(dims, dtype=np.float32)`. np.float32([2.]*dims), ], scale=[ tf.linalg.LinearOperatorScaledIdentity( num_rows=dims, multiplier=np.float32(1.1), is_positive_definite=True), tf.linalg.LinearOperatorDiag( diag=np.linspace(2.5, 3.5, dims, dtype=np.float32), is_positive_definite=True), ], validate_args=True) ``` #### References [1]: Joshua Dillon and Ian Langmore. Quadrature Compound: An approximating family of distributions. _arXiv preprint arXiv:1801.03080_, 2018. https://arxiv.org/abs/1801.03080 """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, mix_loc, temperature, distribution, loc=None, scale=None, quadrature_size=8, quadrature_fn=quadrature_scheme_softmaxnormal_quantiles, validate_args=False, allow_nan_stats=True, name="VectorDiffeomixture"): """Constructs the VectorDiffeomixture on `R^d`. The vector diffeomixture (VDM) approximates the compound distribution ```none p(x) = int p(x | z) p(z) dz, where z is in the K-simplex, and p(x | z) := p(x | loc=sum_k z[k] loc[k], scale=sum_k z[k] scale[k]) ``` Args: mix_loc: `float`-like `Tensor` with shape `[b1, ..., bB, K-1]`. In terms of samples, larger `mix_loc[..., k]` ==> `Z` is more likely to put more weight on its `kth` component. temperature: `float`-like `Tensor`. Broadcastable with `mix_loc`. In terms of samples, smaller `temperature` means one component is more likely to dominate. I.e., smaller `temperature` makes the VDM look more like a standard mixture of `K` components. distribution: `tf.Distribution`-like instance. Distribution from which `d` iid samples are used as input to the selected affine transformation. Must be a scalar-batch, scalar-event distribution. Typically `distribution.reparameterization_type = FULLY_REPARAMETERIZED` or it is a function of non-trainable parameters. WARNING: If you backprop through a VectorDiffeomixture sample and the `distribution` is not `FULLY_REPARAMETERIZED` yet is a function of trainable variables, then the gradient will be incorrect! loc: Length-`K` list of `float`-type `Tensor`s. The `k`-th element represents the `shift` used for the `k`-th affine transformation. If the `k`-th item is `None`, `loc` is implicitly `0`. When specified, must have shape `[B1, ..., Bb, d]` where `b >= 0` and `d` is the event size. scale: Length-`K` list of `LinearOperator`s. Each should be positive-definite and operate on a `d`-dimensional vector space. The `k`-th element represents the `scale` used for the `k`-th affine transformation. `LinearOperator`s must have shape `[B1, ..., Bb, d, d]`, `b >= 0`, i.e., characterizes `b`-batches of `d x d` matrices quadrature_size: Python `int` scalar representing number of quadrature points. Larger `quadrature_size` means `q_N(x)` better approximates `p(x)`. quadrature_fn: Python callable taking `normal_loc`, `normal_scale`, `quadrature_size`, `validate_args` and returning `tuple(grid, probs)` representing the SoftmaxNormal grid and corresponding normalized weight. normalized) weight. Default value: `quadrature_scheme_softmaxnormal_quantiles`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Raises: ValueError: if `not scale or len(scale) < 2`. ValueError: if `len(loc) != len(scale)` ValueError: if `quadrature_grid_and_probs is not None` and `len(quadrature_grid_and_probs[0]) != len(quadrature_grid_and_probs[1])` ValueError: if `validate_args` and any not scale.is_positive_definite. TypeError: if any scale.dtype != scale[0].dtype. TypeError: if any loc.dtype != scale[0].dtype. NotImplementedError: if `len(scale) != 2`. ValueError: if `not distribution.is_scalar_batch`. ValueError: if `not distribution.is_scalar_event`. """ parameters = dict(locals()) with ops.name_scope(name, values=[mix_loc, temperature]) as name: if not scale or len(scale) < 2: raise ValueError("Must specify list (or list-like object) of scale " "LinearOperators, one for each component with " "num_component >= 2.") if loc is None: loc = [None]*len(scale) if len(loc) != len(scale): raise ValueError("loc/scale must be same-length lists " "(or same-length list-like objects).") dtype = scale[0].dtype.base_dtype loc = [ops.convert_to_tensor(loc_, dtype=dtype, name="loc{}".format(k)) if loc_ is not None else None for k, loc_ in enumerate(loc)] for k, scale_ in enumerate(scale): if validate_args and not scale_.is_positive_definite: raise ValueError("scale[{}].is_positive_definite = {} != True".format( k, scale_.is_positive_definite)) if scale_.dtype.base_dtype != dtype: raise TypeError( "dtype mismatch; scale[{}].base_dtype=\"{}\" != \"{}\"".format( k, scale_.dtype.base_dtype.name, dtype.name)) self._endpoint_affine = [ AffineLinearOperator(shift=loc_, scale=scale_, validate_args=validate_args, name="endpoint_affine_{}".format(k)) for k, (loc_, scale_) in enumerate(zip(loc, scale))] # TODO(jvdillon): Remove once we support k-mixtures. # We make this assertion here because otherwise `grid` would need to be a # vector not a scalar. if len(scale) != 2: raise NotImplementedError("Currently only bimixtures are supported; " "len(scale)={} is not 2.".format(len(scale))) mix_loc = ops.convert_to_tensor( mix_loc, dtype=dtype, name="mix_loc") temperature = ops.convert_to_tensor( temperature, dtype=dtype, name="temperature") self._grid, probs = tuple(quadrature_fn( mix_loc / temperature, 1. / temperature, quadrature_size, validate_args)) # Note: by creating the logits as `log(prob)` we ensure that # `self.mixture_distribution.logits` is equivalent to # `math_ops.log(self.mixture_distribution.probs)`. self._mixture_distribution = categorical_lib.Categorical( logits=math_ops.log(probs), validate_args=validate_args, allow_nan_stats=allow_nan_stats) asserts = distribution_util.maybe_check_scalar_distribution( distribution, dtype, validate_args) if asserts: self._grid = control_flow_ops.with_dependencies( asserts, self._grid) self._distribution = distribution self._interpolated_affine = [ AffineLinearOperator(shift=loc_, scale=scale_, validate_args=validate_args, name="interpolated_affine_{}".format(k)) for k, (loc_, scale_) in enumerate(zip( interpolate_loc(self._grid, loc), interpolate_scale(self._grid, scale)))] [ self._batch_shape_, self._batch_shape_tensor_, self._event_shape_, self._event_shape_tensor_, ] = determine_batch_event_shapes(self._grid, self._endpoint_affine) super(VectorDiffeomixture, self).__init__( dtype=dtype, # We hard-code `FULLY_REPARAMETERIZED` because when # `validate_args=True` we verify that indeed # `distribution.reparameterization_type == FULLY_REPARAMETERIZED`. A # distribution which is a function of only non-trainable parameters # also implies we can use `FULLY_REPARAMETERIZED`. However, we cannot # easily test for that possibility thus we use `validate_args=False` # as a "back-door" to allow users a way to use non # `FULLY_REPARAMETERIZED` distribution. In such cases IT IS THE USERS # RESPONSIBILITY to verify that the base distribution is a function of # non-trainable parameters. reparameterization_type=distribution_lib.FULLY_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=( distribution._graph_parents # pylint: disable=protected-access + [loc_ for loc_ in loc if loc_ is not None] + [p for scale_ in scale for p in scale_.graph_parents]), name=name) @property def mixture_distribution(self): """Distribution used to select a convex combination of affine transforms.""" return self._mixture_distribution @property def distribution(self): """Base scalar-event, scalar-batch distribution.""" return self._distribution @property def grid(self): """Grid of mixing probabilities, one for each grid point.""" return self._grid @property def endpoint_affine(self): """Affine transformation for each of `K` components.""" return self._endpoint_affine @property def interpolated_affine(self): """Affine transformation for each convex combination of `K` components.""" return self._interpolated_affine def _batch_shape_tensor(self): return self._batch_shape_tensor_ def _batch_shape(self): return self._batch_shape_ def _event_shape_tensor(self): return self._event_shape_tensor_ def _event_shape(self): return self._event_shape_ def _sample_n(self, n, seed=None): x = self.distribution.sample( sample_shape=concat_vectors( [n], self.batch_shape_tensor(), self.event_shape_tensor()), seed=seed) # shape: [n, B, e] x = [aff.forward(x) for aff in self.endpoint_affine] # Get ids as a [n, batch_size]-shaped matrix, unless batch_shape=[] then get # ids as a [n]-shaped vector. batch_size = self.batch_shape.num_elements() if batch_size is None: batch_size = array_ops.reduce_prod(self.batch_shape_tensor()) mix_batch_size = self.mixture_distribution.batch_shape.num_elements() if mix_batch_size is None: mix_batch_size = math_ops.reduce_prod( self.mixture_distribution.batch_shape_tensor()) ids = self.mixture_distribution.sample( sample_shape=concat_vectors( [n], distribution_util.pick_vector( self.is_scalar_batch(), np.int32([]), [batch_size // mix_batch_size])), seed=distribution_util.gen_new_seed( seed, "vector_diffeomixture")) # We need to flatten batch dims in case mixture_distribution has its own # batch dims. ids = array_ops.reshape(ids, shape=concat_vectors( [n], distribution_util.pick_vector( self.is_scalar_batch(), np.int32([]), np.int32([-1])))) # Stride `components * quadrature_size` for `batch_size` number of times. stride = self.grid.shape.with_rank_at_least( 2)[-2:].num_elements() if stride is None: stride = array_ops.reduce_prod( array_ops.shape(self.grid)[-2:]) offset = math_ops.range(start=0, limit=batch_size * stride, delta=stride, dtype=ids.dtype) weight = array_ops.gather( array_ops.reshape(self.grid, shape=[-1]), ids + offset) # At this point, weight flattened all batch dims into one. # We also need to append a singleton to broadcast with event dims. if self.batch_shape.is_fully_defined(): new_shape = [-1] + self.batch_shape.as_list() + [1] else: new_shape = array_ops.concat( ([-1], self.batch_shape_tensor(), [1]), axis=0) weight = array_ops.reshape(weight, shape=new_shape) if len(x) != 2: # We actually should have already triggered this exception. However as a # policy we're putting this exception wherever we exploit the bimixture # assumption. raise NotImplementedError("Currently only bimixtures are supported; " "len(scale)={} is not 2.".format(len(x))) # Alternatively: # x = weight * x[0] + (1. - weight) * x[1] x = weight * (x[0] - x[1]) + x[1] return x def _log_prob(self, x): # By convention, we always put the grid points right-most. y = array_ops.stack( [aff.inverse(x) for aff in self.interpolated_affine], axis=-1) log_prob = math_ops.reduce_sum(self.distribution.log_prob(y), axis=-2) # Because the affine transformation has a constant Jacobian, it is the case # that `affine.fldj(x) = -affine.ildj(x)`. This is not true in general. fldj = array_ops.stack([ aff.forward_log_det_jacobian( x, event_ndims=array_ops.rank(self.event_shape_tensor()) ) for aff in self.interpolated_affine], axis=-1) return math_ops.reduce_logsumexp( self.mixture_distribution.logits - fldj + log_prob, axis=-1) def _mean(self): p = self._expand_mix_distribution_probs() m = self._expand_base_distribution_mean() mean = None for k, aff in enumerate(self.interpolated_affine): # aff.forward is going to do this: # y = array_ops.squeeze(aff.scale.matmul(m), axis=[-1]) # if aff.shift is not None: # y += aff.shift mean = add(mean, p[..., k] * aff.forward(m)) return mean def _covariance(self): # Law of total variance: # # Cov[Z] = E[Cov[Z | V]] + Cov[E[Z | V]] # # where, # # E[Cov[Z | V]] = sum_i mix_prob[i] Scale[i] # Cov[E[Z | V]] = sum_i mix_prob[i] osquare(loc[i]) # - osquare(sum_i mix_prob[i] loc[i]) # # osquare(x) = x.transpose @ x return add( self._mean_of_covariance_given_quadrature_component(diag_only=False), self._covariance_of_mean_given_quadrature_component(diag_only=False)) def _variance(self): # Equivalent to: tf.linalg.tensor_diag_part(self._covariance()), return add( self._mean_of_covariance_given_quadrature_component(diag_only=True), self._covariance_of_mean_given_quadrature_component(diag_only=True)) def _mean_of_covariance_given_quadrature_component(self, diag_only): p = self.mixture_distribution.probs # To compute E[Cov(Z|V)], we'll add matrices within three categories: # scaled-identity, diagonal, and full. Then we'll combine these at the end. scale_identity_multiplier = None diag = None full = None for k, aff in enumerate(self.interpolated_affine): s = aff.scale # Just in case aff.scale has side-effects, we'll call once. if (s is None or isinstance(s, linop_identity_lib.LinearOperatorIdentity)): scale_identity_multiplier = add(scale_identity_multiplier, p[..., k, array_ops.newaxis]) elif isinstance(s, linop_identity_lib.LinearOperatorScaledIdentity): scale_identity_multiplier = add( scale_identity_multiplier, (p[..., k, array_ops.newaxis] * math_ops.square(s.multiplier))) elif isinstance(s, linop_diag_lib.LinearOperatorDiag): diag = add(diag, (p[..., k, array_ops.newaxis] * math_ops.square(s.diag_part()))) else: x = (p[..., k, array_ops.newaxis, array_ops.newaxis] * s.matmul(s.to_dense(), adjoint_arg=True)) if diag_only: x = array_ops.matrix_diag_part(x) full = add(full, x) # We must now account for the fact that the base distribution might have a # non-unity variance. Recall that, since X ~ iid Law(X_0), # `Cov(SX+m) = S Cov(X) S.T = S S.T Diag(Var(X_0))`. # We can scale by `Var(X)` (vs `Cov(X)`) since X corresponds to `d` iid # samples from a scalar-event distribution. v = self.distribution.variance() if scale_identity_multiplier is not None: scale_identity_multiplier *= v if diag is not None: diag *= v[..., array_ops.newaxis] if full is not None: full *= v[..., array_ops.newaxis] if diag_only: # Apparently we don't need the full matrix, just the diagonal. r = add(diag, full) if r is None and scale_identity_multiplier is not None: ones = array_ops.ones(self.event_shape_tensor(), dtype=self.dtype) return scale_identity_multiplier[..., array_ops.newaxis] * ones return add(r, scale_identity_multiplier) # `None` indicates we don't know if the result is positive-definite. is_positive_definite = (True if all(aff.scale.is_positive_definite for aff in self.endpoint_affine) else None) to_add = [] if diag is not None: to_add.append(linop_diag_lib.LinearOperatorDiag( diag=diag, is_positive_definite=is_positive_definite)) if full is not None: to_add.append(linop_full_lib.LinearOperatorFullMatrix( matrix=full, is_positive_definite=is_positive_definite)) if scale_identity_multiplier is not None: to_add.append(linop_identity_lib.LinearOperatorScaledIdentity( num_rows=self.event_shape_tensor()[0], multiplier=scale_identity_multiplier, is_positive_definite=is_positive_definite)) return (linop_add_lib.add_operators(to_add)[0].to_dense() if to_add else None) def _covariance_of_mean_given_quadrature_component(self, diag_only): square = math_ops.square if diag_only else vec_osquare p = self._expand_mix_distribution_probs() if not diag_only: p = p[..., array_ops.newaxis, :] # Assuming event.ndims=1. m = self._expand_base_distribution_mean() cov_e_z_given_v = None e_z_given_v = self._mean() for k, aff in enumerate(self.interpolated_affine): y = aff.forward(m) cov_e_z_given_v = add(cov_e_z_given_v, p[..., k] * square(y - e_z_given_v)) return cov_e_z_given_v def _expand_base_distribution_mean(self): """Ensures `self.distribution.mean()` has `[batch, event]` shape.""" single_draw_shape = concat_vectors(self.batch_shape_tensor(), self.event_shape_tensor()) m = array_ops.reshape( self.distribution.mean(), # A scalar. shape=array_ops.ones_like(single_draw_shape, dtype=dtypes.int32)) m = array_ops.tile(m, multiples=single_draw_shape) m.set_shape(self.batch_shape.concatenate(self.event_shape)) return m def _expand_mix_distribution_probs(self): p = self.mixture_distribution.probs # [B, deg] deg = tensor_shape.dimension_value(p.shape.with_rank_at_least(1)[-1]) if deg is None: deg = array_ops.shape(p)[-1] event_ndims = self.event_shape.ndims if event_ndims is None: event_ndims = array_ops.shape(self.event_shape_tensor())[0] expand_shape = array_ops.concat([ self.mixture_distribution.batch_shape_tensor(), array_ops.ones([event_ndims], dtype=dtypes.int32), [deg], ], axis=0) return array_ops.reshape(p, shape=expand_shape) @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def maybe_check_quadrature_param(param, name, validate_args): """Helper which checks validity of `loc` and `scale` init args.""" with ops.name_scope(name="check_" + name, values=[param]): assertions = [] if param.shape.ndims is not None: if param.shape.ndims == 0: raise ValueError("Mixing params must be a (batch of) vector; " "{}.rank={} is not at least one.".format( name, param.shape.ndims)) elif validate_args: assertions.append(check_ops.assert_rank_at_least( param, 1, message=("Mixing params must be a (batch of) vector; " "{}.rank is not at least one.".format( name)))) # TODO(jvdillon): Remove once we support k-mixtures. if param.shape.with_rank_at_least(1)[-1] is not None: if tensor_shape.dimension_value(param.shape[-1]) != 1: raise NotImplementedError("Currently only bimixtures are supported; " "{}.shape[-1]={} is not 1.".format( name, tensor_shape.dimension_value( param.shape[-1]))) elif validate_args: assertions.append(check_ops.assert_equal( array_ops.shape(param)[-1], 1, message=("Currently only bimixtures are supported; " "{}.shape[-1] is not 1.".format(name)))) if assertions: return control_flow_ops.with_dependencies(assertions, param) return param @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def determine_batch_event_shapes(grid, endpoint_affine): """Helper to infer batch_shape and event_shape.""" with ops.name_scope(name="determine_batch_event_shapes"): # grid # shape: [B, k, q] # endpoint_affine # len=k, shape: [B, d, d] batch_shape = grid.shape[:-2] batch_shape_tensor = array_ops.shape(grid)[:-2] event_shape = None event_shape_tensor = None def _set_event_shape(shape, shape_tensor): if event_shape is None: return shape, shape_tensor return (array_ops.broadcast_static_shape(event_shape, shape), array_ops.broadcast_dynamic_shape( event_shape_tensor, shape_tensor)) for aff in endpoint_affine: if aff.shift is not None: batch_shape = array_ops.broadcast_static_shape( batch_shape, aff.shift.shape[:-1]) batch_shape_tensor = array_ops.broadcast_dynamic_shape( batch_shape_tensor, array_ops.shape(aff.shift)[:-1]) event_shape, event_shape_tensor = _set_event_shape( aff.shift.shape[-1:], array_ops.shape(aff.shift)[-1:]) if aff.scale is not None: batch_shape = array_ops.broadcast_static_shape( batch_shape, aff.scale.batch_shape) batch_shape_tensor = array_ops.broadcast_dynamic_shape( batch_shape_tensor, aff.scale.batch_shape_tensor()) event_shape, event_shape_tensor = _set_event_shape( tensor_shape.TensorShape([aff.scale.range_dimension]), aff.scale.range_dimension_tensor()[array_ops.newaxis]) return batch_shape, batch_shape_tensor, event_shape, event_shape_tensor @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def interpolate_loc(grid, loc): """Helper which interpolates between two locs.""" if len(loc) != 2: raise NotImplementedError("Currently only bimixtures are supported; " "len(scale)={} is not 2.".format(len(loc))) deg = tensor_shape.dimension_value(grid.shape.with_rank_at_least(1)[-1]) if deg is None: raise ValueError("Num quadrature grid points must be known prior " "to graph execution.") with ops.name_scope("interpolate_loc", values=[grid, loc]): if loc is None or loc[0] is None and loc[1] is None: return [None]*deg # shape: [B, 1, k, deg] w = grid[..., array_ops.newaxis, :, :] loc = [x[..., array_ops.newaxis] # shape: [B, e, 1] if x is not None else None for x in loc] if loc[0] is None: x = w[..., 1, :] * loc[1] # shape: [B, e, deg] elif loc[1] is None: x = w[..., 0, :] * loc[0] # shape: [B, e, deg] else: delta = loc[0] - loc[1] x = w[..., 0, :] * delta + loc[1] # shape: [B, e, deg] return [x[..., k] for k in range(deg)] # list(shape:[B, e]) @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def interpolate_scale(grid, scale): """Helper which interpolates between two scales.""" if len(scale) != 2: raise NotImplementedError("Currently only bimixtures are supported; " "len(scale)={} is not 2.".format(len(scale))) deg = tensor_shape.dimension_value(grid.shape.with_rank_at_least(1)[-1]) if deg is None: raise ValueError("Num quadrature grid points must be known prior " "to graph execution.") with ops.name_scope("interpolate_scale", values=[grid]): return [linop_add_lib.add_operators([ linop_scale(grid[..., k, q], s) for k, s in enumerate(scale) ])[0] for q in range(deg)] @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def linop_scale(w, op): # We assume w > 0. (This assumption only relates to the is_* attributes.) with ops.name_scope("linop_scale", values=[w]): # TODO(b/35301104): LinearOperatorComposition doesn't combine operators, so # special case combinations here. Once it does, this function can be # replaced by: # return linop_composition_lib.LinearOperatorComposition([ # scaled_identity(w), op]) def scaled_identity(w): return linop_identity_lib.LinearOperatorScaledIdentity( num_rows=op.range_dimension_tensor(), multiplier=w, is_non_singular=op.is_non_singular, is_self_adjoint=op.is_self_adjoint, is_positive_definite=op.is_positive_definite) if isinstance(op, linop_identity_lib.LinearOperatorIdentity): return scaled_identity(w) if isinstance(op, linop_identity_lib.LinearOperatorScaledIdentity): return scaled_identity(w * op.multiplier) if isinstance(op, linop_diag_lib.LinearOperatorDiag): return linop_diag_lib.LinearOperatorDiag( diag=w[..., array_ops.newaxis] * op.diag_part(), is_non_singular=op.is_non_singular, is_self_adjoint=op.is_self_adjoint, is_positive_definite=op.is_positive_definite) if isinstance(op, linop_tril_lib.LinearOperatorLowerTriangular): return linop_tril_lib.LinearOperatorLowerTriangular( tril=w[..., array_ops.newaxis, array_ops.newaxis] * op.to_dense(), is_non_singular=op.is_non_singular, is_self_adjoint=op.is_self_adjoint, is_positive_definite=op.is_positive_definite) raise NotImplementedError( "Unsupported Linop type ({})".format(type(op).__name__)) @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def concat_vectors(*args): """Concatenates input vectors, statically if possible.""" args_ = [distribution_util.static_value(x) for x in args] if any(vec is None for vec in args_): return array_ops.concat(args, axis=0) return [val for vec in args_ for val in vec] @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def add(x, y): """Adds inputs; interprets `None` as zero.""" if x is None: return y if y is None: return x return x + y @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def vec_osquare(x): """Computes the outer-product of a (batch of) vector, i.e., x.T x.""" return x[..., :, array_ops.newaxis] * x[..., array_ops.newaxis, :] @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def softmax(x, axis, name=None): """Equivalent to tf.nn.softmax but works around b/70297725.""" with ops.name_scope(name, "softmax", [x, axis]): x = ops.convert_to_tensor(x, name="x") ndims = (x.shape.ndims if x.shape.ndims is not None else array_ops.rank(x, name="ndims")) axis = ops.convert_to_tensor(axis, dtype=dtypes.int32, name="axis") axis_ = tensor_util.constant_value(axis) if axis_ is not None: axis = np.int(ndims + axis_ if axis_ < 0 else axis_) else: axis = array_ops.where_v2(axis < 0, ndims + axis, axis) return nn_ops.softmax(x, axis=axis)
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/vector_diffeomixture.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The InverseGamma distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import random_ops from tensorflow.python.ops.distributions import distribution from tensorflow.python.ops.distributions import util as distribution_util from tensorflow.python.util import deprecation __all__ = [ "InverseGamma", "InverseGammaWithSoftplusConcentrationRate", ] class InverseGamma(distribution.Distribution): """InverseGamma distribution. The `InverseGamma` distribution is defined over positive real numbers using parameters `concentration` (aka "alpha") and `rate` (aka "beta"). #### Mathematical Details The probability density function (pdf) is, ```none pdf(x; alpha, beta, x > 0) = x**(-alpha - 1) exp(-beta / x) / Z Z = Gamma(alpha) beta**-alpha ``` where: * `concentration = alpha`, * `rate = beta`, * `Z` is the normalizing constant, and, * `Gamma` is the [gamma function]( https://en.wikipedia.org/wiki/Gamma_function). The cumulative density function (cdf) is, ```none cdf(x; alpha, beta, x > 0) = GammaInc(alpha, beta / x) / Gamma(alpha) ``` where `GammaInc` is the [upper incomplete Gamma function]( https://en.wikipedia.org/wiki/Incomplete_gamma_function). The parameters can be intuited via their relationship to mean and stddev, ```none concentration = alpha = (mean / stddev)**2 rate = beta = mean / stddev**2 ``` Distribution parameters are automatically broadcast in all functions; see examples for details. WARNING: This distribution may draw 0-valued samples for small concentration values. See note in `tf.random.gamma` docstring. #### Examples ```python import tensorflow_probability as tfp tfd = tfp.distributions dist = tfd.InverseGamma(concentration=3.0, rate=2.0) dist2 = tfd.InverseGamma(concentration=[3.0, 4.0], rate=[2.0, 3.0]) ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, concentration, rate, validate_args=False, allow_nan_stats=True, name="InverseGamma"): """Construct InverseGamma with `concentration` and `rate` parameters. The parameters `concentration` and `rate` must be shaped in a way that supports broadcasting (e.g. `concentration + rate` is a valid operation). Args: concentration: Floating point tensor, the concentration params of the distribution(s). Must contain only positive values. rate: Floating point tensor, the inverse scale params of the distribution(s). Must contain only positive values. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Raises: TypeError: if `concentration` and `rate` are different dtypes. """ parameters = dict(locals()) with ops.name_scope(name, values=[concentration, rate]) as name: with ops.control_dependencies([ check_ops.assert_positive(concentration), check_ops.assert_positive(rate), ] if validate_args else []): self._concentration = array_ops.identity( concentration, name="concentration") self._rate = array_ops.identity(rate, name="rate") check_ops.assert_same_float_dtype( [self._concentration, self._rate]) super(InverseGamma, self).__init__( dtype=self._concentration.dtype, validate_args=validate_args, allow_nan_stats=allow_nan_stats, reparameterization_type=distribution.NOT_REPARAMETERIZED, parameters=parameters, graph_parents=[self._concentration, self._rate], name=name) @staticmethod def _param_shapes(sample_shape): return dict( zip(("concentration", "rate"), ([ops.convert_to_tensor( sample_shape, dtype=dtypes.int32)] * 2))) @property def concentration(self): """Concentration parameter.""" return self._concentration @property def rate(self): """Rate parameter.""" return self._rate def _batch_shape_tensor(self): return array_ops.broadcast_dynamic_shape( array_ops.shape(self.concentration), array_ops.shape(self.rate)) def _batch_shape(self): return array_ops.broadcast_static_shape( self.concentration.get_shape(), self.rate.get_shape()) def _event_shape_tensor(self): return constant_op.constant([], dtype=dtypes.int32) def _event_shape(self): return tensor_shape.TensorShape([]) @distribution_util.AppendDocstring( """Note: See `tf.random.gamma` docstring for sampling details and caveats.""") def _sample_n(self, n, seed=None): return 1. / random_ops.random_gamma( shape=[n], alpha=self.concentration, beta=self.rate, dtype=self.dtype, seed=seed) def _log_prob(self, x): return self._log_unnormalized_prob(x) - self._log_normalization() def _cdf(self, x): x = self._maybe_assert_valid_sample(x) # Note that igammac returns the upper regularized incomplete gamma # function Q(a, x), which is what we want for the CDF. return math_ops.igammac(self.concentration, self.rate / x) def _log_unnormalized_prob(self, x): x = self._maybe_assert_valid_sample(x) return -(1. + self.concentration) * math_ops.log(x) - self.rate / x def _log_normalization(self): return (math_ops.lgamma(self.concentration) - self.concentration * math_ops.log(self.rate)) def _entropy(self): return (self.concentration + math_ops.log(self.rate) + math_ops.lgamma(self.concentration) - ((1. + self.concentration) * math_ops.digamma(self.concentration))) @distribution_util.AppendDocstring( """The mean of an inverse gamma distribution is `rate / (concentration - 1)`, when `concentration > 1`, and `NaN` otherwise. If `self.allow_nan_stats` is `False`, an exception will be raised rather than returning `NaN`""") def _mean(self): mean = self.rate / (self.concentration - 1.) if self.allow_nan_stats: nan = array_ops.fill( self.batch_shape_tensor(), np.array(np.nan, dtype=self.dtype.as_numpy_dtype()), name="nan") return array_ops.where_v2(self.concentration > 1., mean, nan) else: return control_flow_ops.with_dependencies([ check_ops.assert_less( array_ops.ones([], self.dtype), self.concentration, message="mean undefined when any concentration <= 1"), ], mean) @distribution_util.AppendDocstring( """Variance for inverse gamma is defined only for `concentration > 2`. If `self.allow_nan_stats` is `False`, an exception will be raised rather than returning `NaN`.""") def _variance(self): var = ( math_ops.square(self.rate) / math_ops.squared_difference( self.concentration, 1.) / (self.concentration - 2.)) if self.allow_nan_stats: nan = array_ops.fill( self.batch_shape_tensor(), np.array(np.nan, dtype=self.dtype.as_numpy_dtype()), name="nan") return array_ops.where_v2(self.concentration > 2., var, nan) else: return control_flow_ops.with_dependencies([ check_ops.assert_less( constant_op.constant(2., dtype=self.dtype), self.concentration, message="variance undefined when any concentration <= 2"), ], var) @distribution_util.AppendDocstring( """The mode of an inverse gamma distribution is `rate / (concentration + 1)`.""") def _mode(self): return self.rate / (1. + self.concentration) def _maybe_assert_valid_sample(self, x): check_ops.assert_same_float_dtype( tensors=[x], dtype=self.dtype) if not self.validate_args: return x return control_flow_ops.with_dependencies([ check_ops.assert_positive(x), ], x) class InverseGammaWithSoftplusConcentrationRate(InverseGamma): """`InverseGamma` with softplus of `concentration` and `rate`.""" @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, concentration, rate, validate_args=False, allow_nan_stats=True, name="InverseGammaWithSoftplusConcentrationRate"): parameters = dict(locals()) with ops.name_scope(name, values=[concentration, rate]) as name: super(InverseGammaWithSoftplusConcentrationRate, self).__init__( concentration=nn.softplus(concentration, name="softplus_concentration"), rate=nn.softplus(rate, name="softplus_rate"), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name) self._parameters = parameters
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/inverse_gamma.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The OneHotCategorical distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops.distributions import distribution from tensorflow.python.ops.distributions import kullback_leibler from tensorflow.python.ops.distributions import util as distribution_util from tensorflow.python.util import deprecation class OneHotCategorical(distribution.Distribution): """OneHotCategorical distribution. The categorical distribution is parameterized by the log-probabilities of a set of classes. The difference between OneHotCategorical and Categorical distributions is that OneHotCategorical is a discrete distribution over one-hot bit vectors whereas Categorical is a discrete distribution over positive integers. OneHotCategorical is equivalent to Categorical except Categorical has event_dim=() while OneHotCategorical has event_dim=K, where K is the number of classes. This class provides methods to create indexed batches of OneHotCategorical distributions. If the provided `logits` or `probs` is rank 2 or higher, for every fixed set of leading dimensions, the last dimension represents one single OneHotCategorical distribution. When calling distribution functions (e.g. `dist.prob(x)`), `logits` and `x` are broadcast to the same shape (if possible). In all cases, the last dimension of `logits,x` represents single OneHotCategorical distributions. #### Examples Creates a 3-class distribution, with the 2nd class, the most likely to be drawn from. ```python p = [0.1, 0.5, 0.4] dist = OneHotCategorical(probs=p) ``` Creates a 3-class distribution, with the 2nd class the most likely to be drawn from, using logits. ```python logits = [-2, 2, 0] dist = OneHotCategorical(logits=logits) ``` Creates a 3-class distribution, with the 3rd class is most likely to be drawn. ```python # counts is a scalar. p = [0.1, 0.4, 0.5] dist = OneHotCategorical(probs=p) dist.prob([0,1,0]) # Shape [] # p will be broadcast to [[0.1, 0.4, 0.5], [0.1, 0.4, 0.5]] to match. samples = [[0,1,0], [1,0,0]] dist.prob(samples) # Shape [2] ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__( self, logits=None, probs=None, dtype=dtypes.int32, validate_args=False, allow_nan_stats=True, name="OneHotCategorical"): """Initialize OneHotCategorical distributions using class log-probabilities. Args: logits: An N-D `Tensor`, `N >= 1`, representing the log probabilities of a set of Categorical distributions. The first `N - 1` dimensions index into a batch of independent distributions and the last dimension represents a vector of logits for each class. Only one of `logits` or `probs` should be passed in. probs: An N-D `Tensor`, `N >= 1`, representing the probabilities of a set of Categorical distributions. The first `N - 1` dimensions index into a batch of independent distributions and the last dimension represents a vector of probabilities for each class. Only one of `logits` or `probs` should be passed in. dtype: The type of the event samples (default: int32). validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. """ parameters = dict(locals()) with ops.name_scope(name, values=[logits, probs]) as name: self._logits, self._probs = distribution_util.get_logits_and_probs( name=name, logits=logits, probs=probs, validate_args=validate_args, multidimensional=True) logits_shape_static = self._logits.get_shape().with_rank_at_least(1) if logits_shape_static.ndims is not None: self._batch_rank = ops.convert_to_tensor( logits_shape_static.ndims - 1, dtype=dtypes.int32, name="batch_rank") else: with ops.name_scope(name="batch_rank"): self._batch_rank = array_ops.rank(self._logits) - 1 with ops.name_scope(name="event_size"): self._event_size = array_ops.shape(self._logits)[-1] super(OneHotCategorical, self).__init__( dtype=dtype, reparameterization_type=distribution.NOT_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=[self._logits, self._probs], name=name) @property def event_size(self): """Scalar `int32` tensor: the number of classes.""" return self._event_size @property def logits(self): """Vector of coordinatewise logits.""" return self._logits @property def probs(self): """Vector of coordinatewise probabilities.""" return self._probs def _batch_shape_tensor(self): return array_ops.shape(self.logits)[:-1] def _batch_shape(self): return self.logits.get_shape()[:-1] def _event_shape_tensor(self): return array_ops.shape(self.logits)[-1:] def _event_shape(self): return self.logits.get_shape().with_rank_at_least(1)[-1:] def _sample_n(self, n, seed=None): sample_shape = array_ops.concat([[n], array_ops.shape(self.logits)], 0) logits = self.logits if logits.get_shape().ndims == 2: logits_2d = logits else: logits_2d = array_ops.reshape(logits, [-1, self.event_size]) samples = random_ops.multinomial(logits_2d, n, seed=seed) samples = array_ops.transpose(samples) samples = array_ops.one_hot(samples, self.event_size, dtype=self.dtype) ret = array_ops.reshape(samples, sample_shape) return ret def _log_prob(self, x): x = self._assert_valid_sample(x) # broadcast logits or x if need be. logits = self.logits if (not x.get_shape().is_fully_defined() or not logits.get_shape().is_fully_defined() or x.get_shape() != logits.get_shape()): logits = array_ops.ones_like(x, dtype=logits.dtype) * logits x = array_ops.ones_like(logits, dtype=x.dtype) * x logits_shape = array_ops.shape(math_ops.reduce_sum(logits, -1)) logits_2d = array_ops.reshape(logits, [-1, self.event_size]) x_2d = array_ops.reshape(x, [-1, self.event_size]) ret = -nn_ops.softmax_cross_entropy_with_logits(labels=x_2d, logits=logits_2d) # Reshape back to user-supplied batch and sample dims prior to 2D reshape. ret = array_ops.reshape(ret, logits_shape) return ret def _entropy(self): return -math_ops.reduce_sum( nn_ops.log_softmax(self.logits) * self.probs, axis=-1) def _mode(self): ret = math_ops.argmax(self.logits, axis=self._batch_rank) ret = array_ops.one_hot(ret, self.event_size, dtype=self.dtype) ret.set_shape(self.logits.get_shape()) return ret def _covariance(self): p = self.probs ret = -math_ops.matmul(p[..., None], p[..., None, :]) return array_ops.matrix_set_diag(ret, self._variance()) def _variance(self): return self.probs * (1. - self.probs) def _assert_valid_sample(self, x): if not self.validate_args: return x return control_flow_ops.with_dependencies([ check_ops.assert_non_positive(x), check_ops.assert_near( array_ops.zeros([], dtype=self.dtype), math_ops.reduce_logsumexp(x, axis=[-1])), ], x) @kullback_leibler.RegisterKL(OneHotCategorical, OneHotCategorical) @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def _kl_categorical_categorical(a, b, name=None): """Calculate the batched KL divergence KL(a || b) with a, b OneHotCategorical. Args: a: instance of a OneHotCategorical distribution object. b: instance of a OneHotCategorical distribution object. name: (optional) Name to use for created operations. default is "kl_categorical_categorical". Returns: Batchwise KL(a || b) """ with ops.name_scope(name, "kl_categorical_categorical", values=[ a.logits, b.logits]): # sum(p ln(p / q)) return math_ops.reduce_sum( nn_ops.softmax(a.logits) * (nn_ops.log_softmax(a.logits) - nn_ops.log_softmax(b.logits)), axis=-1)
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/onehot_categorical.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The RelaxedBernoulli distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.distributions.python.ops import logistic from tensorflow.contrib.distributions.python.ops.bijectors.sigmoid import Sigmoid # Bijectors must be directly imported because `remove_undocumented` prevents # individual file imports. from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops.distributions import transformed_distribution from tensorflow.python.ops.distributions import util as distribution_util from tensorflow.python.util import deprecation class RelaxedBernoulli(transformed_distribution.TransformedDistribution): """RelaxedBernoulli distribution with temperature and logits parameters. The RelaxedBernoulli is a distribution over the unit interval (0,1), which continuously approximates a Bernoulli. The degree of approximation is controlled by a temperature: as the temperature goes to 0 the RelaxedBernoulli becomes discrete with a distribution described by the `logits` or `probs` parameters, as the temperature goes to infinity the RelaxedBernoulli becomes the constant distribution that is identically 0.5. The RelaxedBernoulli distribution is a reparameterized continuous distribution that is the binary special case of the RelaxedOneHotCategorical distribution (Maddison et al., 2016; Jang et al., 2016). For details on the binary special case see the appendix of Maddison et al. (2016) where it is referred to as BinConcrete. If you use this distribution, please cite both papers. Some care needs to be taken for loss functions that depend on the log-probability of RelaxedBernoullis, because computing log-probabilities of the RelaxedBernoulli can suffer from underflow issues. In many case loss functions such as these are invariant under invertible transformations of the random variables. The KL divergence, found in the variational autoencoder loss, is an example. Because RelaxedBernoullis are sampled by a Logistic random variable followed by a `tf.sigmoid` op, one solution is to treat the Logistic as the random variable and `tf.sigmoid` as downstream. The KL divergences of two Logistics, which are always followed by a `tf.sigmoid` op, is equivalent to evaluating KL divergences of RelaxedBernoulli samples. See Maddison et al., 2016 for more details where this distribution is called the BinConcrete. An alternative approach is to evaluate Bernoulli log probability or KL directly on relaxed samples, as done in Jang et al., 2016. In this case, guarantees on the loss are usually violated. For instance, using a Bernoulli KL in a relaxed ELBO is no longer a lower bound on the log marginal probability of the observation. Thus care and early stopping are important. #### Examples Creates three continuous distributions, which approximate 3 Bernoullis with probabilities (0.1, 0.5, 0.4). Samples from these distributions will be in the unit interval (0,1). ```python temperature = 0.5 p = [0.1, 0.5, 0.4] dist = RelaxedBernoulli(temperature, probs=p) ``` Creates three continuous distributions, which approximate 3 Bernoullis with logits (-2, 2, 0). Samples from these distributions will be in the unit interval (0,1). ```python temperature = 0.5 logits = [-2, 2, 0] dist = RelaxedBernoulli(temperature, logits=logits) ``` Creates three continuous distributions, whose sigmoid approximate 3 Bernoullis with logits (-2, 2, 0). ```python temperature = 0.5 logits = [-2, 2, 0] dist = Logistic(logits/temperature, 1./temperature) samples = dist.sample() sigmoid_samples = tf.sigmoid(samples) # sigmoid_samples has the same distribution as samples from # RelaxedBernoulli(temperature, logits=logits) ``` Creates three continuous distributions, which approximate 3 Bernoullis with logits (-2, 2, 0). Samples from these distributions will be in the unit interval (0,1). Because the temperature is very low, samples from these distributions are almost discrete, usually taking values very close to 0 or 1. ```python temperature = 1e-5 logits = [-2, 2, 0] dist = RelaxedBernoulli(temperature, logits=logits) ``` Creates three continuous distributions, which approximate 3 Bernoullis with logits (-2, 2, 0). Samples from these distributions will be in the unit interval (0,1). Because the temperature is very high, samples from these distributions are usually close to the (0.5, 0.5, 0.5) vector. ```python temperature = 100 logits = [-2, 2, 0] dist = RelaxedBernoulli(temperature, logits=logits) ``` Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables. 2016. Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization with Gumbel-Softmax. 2016. """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, temperature, logits=None, probs=None, validate_args=False, allow_nan_stats=True, name="RelaxedBernoulli"): """Construct RelaxedBernoulli distributions. Args: temperature: An 0-D `Tensor`, representing the temperature of a set of RelaxedBernoulli distributions. The temperature should be positive. logits: An N-D `Tensor` representing the log-odds of a positive event. Each entry in the `Tensor` parametrizes an independent RelaxedBernoulli distribution where the probability of an event is sigmoid(logits). Only one of `logits` or `probs` should be passed in. probs: An N-D `Tensor` representing the probability of a positive event. Each entry in the `Tensor` parameterizes an independent Bernoulli distribution. Only one of `logits` or `probs` should be passed in. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Raises: ValueError: If both `probs` and `logits` are passed, or if neither. """ parameters = dict(locals()) with ops.name_scope(name, values=[logits, probs, temperature]) as name: with ops.control_dependencies([check_ops.assert_positive(temperature)] if validate_args else []): self._temperature = array_ops.identity(temperature, name="temperature") self._logits, self._probs = distribution_util.get_logits_and_probs( logits=logits, probs=probs, validate_args=validate_args) super(RelaxedBernoulli, self).__init__( distribution=logistic.Logistic( self._logits / self._temperature, 1. / self._temperature, validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name + "/Logistic"), bijector=Sigmoid(validate_args=validate_args), validate_args=validate_args, name=name) self._parameters = parameters @staticmethod def _param_shapes(sample_shape): return {"logits": ops.convert_to_tensor(sample_shape, dtype=dtypes.int32)} @property def temperature(self): """Distribution parameter for the location.""" return self._temperature @property def logits(self): """Log-odds of `1`.""" return self._logits @property def probs(self): """Probability of `1`.""" return self._probs
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/relaxed_bernoulli.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Mixture distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import distribution_util as distribution_utils from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops.distributions import categorical from tensorflow.python.ops.distributions import distribution from tensorflow.python.ops.distributions import util as distribution_util from tensorflow.python.util import deprecation class Mixture(distribution.Distribution): """Mixture distribution. The `Mixture` object implements batched mixture distributions. The mixture model is defined by a `Categorical` distribution (the mixture) and a python list of `Distribution` objects. Methods supported include `log_prob`, `prob`, `mean`, `sample`, and `entropy_lower_bound`. #### Examples ```python # Create a mixture of two Gaussians: import tensorflow_probability as tfp tfd = tfp.distributions mix = 0.3 bimix_gauss = tfd.Mixture( cat=tfd.Categorical(probs=[mix, 1.-mix]), components=[ tfd.Normal(loc=-1., scale=0.1), tfd.Normal(loc=+1., scale=0.5), ]) # Plot the PDF. import matplotlib.pyplot as plt x = tf.linspace(-2., 3., int(1e4)).eval() plt.plot(x, bimix_gauss.prob(x).eval()); ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, cat, components, validate_args=False, allow_nan_stats=True, use_static_graph=False, name="Mixture"): """Initialize a Mixture distribution. A `Mixture` is defined by a `Categorical` (`cat`, representing the mixture probabilities) and a list of `Distribution` objects all having matching dtype, batch shape, event shape, and continuity properties (the components). The `num_classes` of `cat` must be possible to infer at graph construction time and match `len(components)`. Args: cat: A `Categorical` distribution instance, representing the probabilities of `distributions`. components: A list or tuple of `Distribution` instances. Each instance must have the same type, be defined on the same domain, and have matching `event_shape` and `batch_shape`. validate_args: Python `bool`, default `False`. If `True`, raise a runtime error if batch or event ranks are inconsistent between cat and any of the distributions. This is only checked if the ranks cannot be determined statically at graph construction time. allow_nan_stats: Boolean, default `True`. If `False`, raise an exception if a statistic (e.g. mean/mode/etc...) is undefined for any batch member. If `True`, batch members with valid parameters leading to undefined statistics will return NaN for this statistic. use_static_graph: Calls to `sample` will not rely on dynamic tensor indexing, allowing for some static graph compilation optimizations, but at the expense of sampling all underlying distributions in the mixture. (Possibly useful when running on TPUs). Default value: `False` (i.e., use dynamic indexing). name: A name for this distribution (optional). Raises: TypeError: If cat is not a `Categorical`, or `components` is not a list or tuple, or the elements of `components` are not instances of `Distribution`, or do not have matching `dtype`. ValueError: If `components` is an empty list or tuple, or its elements do not have a statically known event rank. If `cat.num_classes` cannot be inferred at graph creation time, or the constant value of `cat.num_classes` is not equal to `len(components)`, or all `components` and `cat` do not have matching static batch shapes, or all components do not have matching static event shapes. """ parameters = dict(locals()) if not isinstance(cat, categorical.Categorical): raise TypeError("cat must be a Categorical distribution, but saw: %s" % cat) if not components: raise ValueError("components must be a non-empty list or tuple") if not isinstance(components, (list, tuple)): raise TypeError("components must be a list or tuple, but saw: %s" % components) if not all(isinstance(c, distribution.Distribution) for c in components): raise TypeError( "all entries in components must be Distribution instances" " but saw: %s" % components) dtype = components[0].dtype if not all(d.dtype == dtype for d in components): raise TypeError("All components must have the same dtype, but saw " "dtypes: %s" % [(d.name, d.dtype) for d in components]) static_event_shape = components[0].event_shape static_batch_shape = cat.batch_shape for d in components: static_event_shape = static_event_shape.merge_with(d.event_shape) static_batch_shape = static_batch_shape.merge_with(d.batch_shape) if static_event_shape.ndims is None: raise ValueError( "Expected to know rank(event_shape) from components, but " "none of the components provide a static number of ndims") # Ensure that all batch and event ndims are consistent. with ops.name_scope(name, values=[cat.logits]) as name: num_components = cat.event_size static_num_components = tensor_util.constant_value(num_components) if static_num_components is None: raise ValueError( "Could not infer number of classes from cat and unable " "to compare this value to the number of components passed in.") # Possibly convert from numpy 0-D array. static_num_components = int(static_num_components) if static_num_components != len(components): raise ValueError("cat.num_classes != len(components): %d vs. %d" % (static_num_components, len(components))) cat_batch_shape = cat.batch_shape_tensor() cat_batch_rank = array_ops.size(cat_batch_shape) if validate_args: batch_shapes = [d.batch_shape_tensor() for d in components] batch_ranks = [array_ops.size(bs) for bs in batch_shapes] check_message = ("components[%d] batch shape must match cat " "batch shape") self._assertions = [ check_ops.assert_equal( cat_batch_rank, batch_ranks[di], message=check_message % di) for di in range(len(components)) ] self._assertions += [ check_ops.assert_equal( cat_batch_shape, batch_shapes[di], message=check_message % di) for di in range(len(components)) ] else: self._assertions = [] self._cat = cat self._components = list(components) self._num_components = static_num_components self._static_event_shape = static_event_shape self._static_batch_shape = static_batch_shape self._use_static_graph = use_static_graph if use_static_graph and static_num_components is None: raise ValueError("Number of categories must be known statically when " "`static_sample=True`.") # We let the Mixture distribution access _graph_parents since its arguably # more like a baseclass. graph_parents = self._cat._graph_parents # pylint: disable=protected-access for c in self._components: graph_parents += c._graph_parents # pylint: disable=protected-access super(Mixture, self).__init__( dtype=dtype, reparameterization_type=distribution.NOT_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=graph_parents, name=name) @property def cat(self): return self._cat @property def components(self): return self._components @property def num_components(self): return self._num_components def _batch_shape_tensor(self): return self._cat.batch_shape_tensor() def _batch_shape(self): return self._static_batch_shape def _event_shape_tensor(self): return self._components[0].event_shape_tensor() def _event_shape(self): return self._static_event_shape def _expand_to_event_rank(self, x): """Expand the rank of x up to static_event_rank times for broadcasting. The static event rank was checked to not be None at construction time. Args: x: A tensor to expand. Returns: The expanded tensor. """ expanded_x = x for _ in range(self.event_shape.ndims): expanded_x = array_ops.expand_dims(expanded_x, -1) return expanded_x def _mean(self): with ops.control_dependencies(self._assertions): distribution_means = [d.mean() for d in self.components] cat_probs = self._cat_probs(log_probs=False) cat_probs = [self._expand_to_event_rank(c_p) for c_p in cat_probs] partial_means = [ c_p * m for (c_p, m) in zip(cat_probs, distribution_means) ] # These should all be the same shape by virtue of matching # batch_shape and event_shape. return math_ops.add_n(partial_means) def _stddev(self): with ops.control_dependencies(self._assertions): distribution_means = [d.mean() for d in self.components] distribution_devs = [d.stddev() for d in self.components] cat_probs = self._cat_probs(log_probs=False) stacked_means = array_ops.stack(distribution_means, axis=-1) stacked_devs = array_ops.stack(distribution_devs, axis=-1) cat_probs = [self._expand_to_event_rank(c_p) for c_p in cat_probs] broadcasted_cat_probs = (array_ops.stack(cat_probs, axis=-1) * array_ops.ones_like(stacked_means)) batched_dev = distribution_utils.mixture_stddev( array_ops.reshape(broadcasted_cat_probs, [-1, len(self.components)]), array_ops.reshape(stacked_means, [-1, len(self.components)]), array_ops.reshape(stacked_devs, [-1, len(self.components)])) # I.e. re-shape to list(batch_shape) + list(event_shape). return array_ops.reshape(batched_dev, array_ops.shape(broadcasted_cat_probs)[:-1]) def _log_prob(self, x): with ops.control_dependencies(self._assertions): x = ops.convert_to_tensor(x, name="x") distribution_log_probs = [d.log_prob(x) for d in self.components] cat_log_probs = self._cat_probs(log_probs=True) final_log_probs = [ cat_lp + d_lp for (cat_lp, d_lp) in zip(cat_log_probs, distribution_log_probs) ] concat_log_probs = array_ops.stack(final_log_probs, 0) log_sum_exp = math_ops.reduce_logsumexp(concat_log_probs, [0]) return log_sum_exp def _log_cdf(self, x): with ops.control_dependencies(self._assertions): x = ops.convert_to_tensor(x, name="x") distribution_log_cdfs = [d.log_cdf(x) for d in self.components] cat_log_probs = self._cat_probs(log_probs=True) final_log_cdfs = [ cat_lp + d_lcdf for (cat_lp, d_lcdf) in zip(cat_log_probs, distribution_log_cdfs) ] concatted_log_cdfs = array_ops.stack(final_log_cdfs, axis=0) mixture_log_cdf = math_ops.reduce_logsumexp(concatted_log_cdfs, [0]) return mixture_log_cdf def _sample_n(self, n, seed=None): if self._use_static_graph: # This sampling approach is almost the same as the approach used by # `MixtureSameFamily`. The differences are due to having a list of # `Distribution` objects rather than a single object, and maintaining # random seed management that is consistent with the non-static code path. samples = [] cat_samples = self.cat.sample(n, seed=seed) for c in range(self.num_components): seed = distribution_util.gen_new_seed(seed, "mixture") samples.append(self.components[c].sample(n, seed=seed)) x = array_ops.stack( samples, -self._static_event_shape.ndims - 1) # [n, B, k, E] npdt = x.dtype.as_numpy_dtype mask = array_ops.one_hot( indices=cat_samples, # [n, B] depth=self._num_components, # == k on_value=np.ones([], dtype=npdt), off_value=np.zeros([], dtype=npdt)) # [n, B, k] mask = distribution_utils.pad_mixture_dimensions( mask, self, self._cat, self._static_event_shape.ndims) # [n, B, k, [1]*e] return math_ops.reduce_sum( x * mask, axis=-1 - self._static_event_shape.ndims) # [n, B, E] with ops.control_dependencies(self._assertions): n = ops.convert_to_tensor(n, name="n") static_n = tensor_util.constant_value(n) n = int(static_n) if static_n is not None else n cat_samples = self.cat.sample(n, seed=seed) static_samples_shape = cat_samples.get_shape() if static_samples_shape.is_fully_defined(): samples_shape = static_samples_shape.as_list() samples_size = static_samples_shape.num_elements() else: samples_shape = array_ops.shape(cat_samples) samples_size = array_ops.size(cat_samples) static_batch_shape = self.batch_shape if static_batch_shape.is_fully_defined(): batch_shape = static_batch_shape.as_list() batch_size = static_batch_shape.num_elements() else: batch_shape = self.batch_shape_tensor() batch_size = math_ops.reduce_prod(batch_shape) static_event_shape = self.event_shape if static_event_shape.is_fully_defined(): event_shape = np.array(static_event_shape.as_list(), dtype=np.int32) else: event_shape = self.event_shape_tensor() # Get indices into the raw cat sampling tensor. We will # need these to stitch sample values back out after sampling # within the component partitions. samples_raw_indices = array_ops.reshape( math_ops.range(0, samples_size), samples_shape) # Partition the raw indices so that we can use # dynamic_stitch later to reconstruct the samples from the # known partitions. partitioned_samples_indices = data_flow_ops.dynamic_partition( data=samples_raw_indices, partitions=cat_samples, num_partitions=self.num_components) # Copy the batch indices n times, as we will need to know # these to pull out the appropriate rows within the # component partitions. batch_raw_indices = array_ops.reshape( array_ops.tile(math_ops.range(0, batch_size), [n]), samples_shape) # Explanation of the dynamic partitioning below: # batch indices are i.e., [0, 1, 0, 1, 0, 1] # Suppose partitions are: # [1 1 0 0 1 1] # After partitioning, batch indices are cut as: # [batch_indices[x] for x in 2, 3] # [batch_indices[x] for x in 0, 1, 4, 5] # i.e. # [1 1] and [0 0 0 0] # Now we sample n=2 from part 0 and n=4 from part 1. # For part 0 we want samples from batch entries 1, 1 (samples 0, 1), # and for part 1 we want samples from batch entries 0, 0, 0, 0 # (samples 0, 1, 2, 3). partitioned_batch_indices = data_flow_ops.dynamic_partition( data=batch_raw_indices, partitions=cat_samples, num_partitions=self.num_components) samples_class = [None for _ in range(self.num_components)] for c in range(self.num_components): n_class = array_ops.size(partitioned_samples_indices[c]) seed = distribution_util.gen_new_seed(seed, "mixture") samples_class_c = self.components[c].sample(n_class, seed=seed) # Pull out the correct batch entries from each index. # To do this, we may have to flatten the batch shape. # For sample s, batch element b of component c, we get the # partitioned batch indices from # partitioned_batch_indices[c]; and shift each element by # the sample index. The final lookup can be thought of as # a matrix gather along locations (s, b) in # samples_class_c where the n_class rows correspond to # samples within this component and the batch_size columns # correspond to batch elements within the component. # # Thus the lookup index is # lookup[c, i] = batch_size * s[i] + b[c, i] # for i = 0 ... n_class[c] - 1. lookup_partitioned_batch_indices = ( batch_size * math_ops.range(n_class) + partitioned_batch_indices[c]) samples_class_c = array_ops.reshape( samples_class_c, array_ops.concat([[n_class * batch_size], event_shape], 0)) samples_class_c = array_ops.gather( samples_class_c, lookup_partitioned_batch_indices, name="samples_class_c_gather") samples_class[c] = samples_class_c # Stitch back together the samples across the components. lhs_flat_ret = data_flow_ops.dynamic_stitch( indices=partitioned_samples_indices, data=samples_class) # Reshape back to proper sample, batch, and event shape. ret = array_ops.reshape(lhs_flat_ret, array_ops.concat([samples_shape, self.event_shape_tensor()], 0)) ret.set_shape( tensor_shape.TensorShape(static_samples_shape).concatenate( self.event_shape)) return ret def entropy_lower_bound(self, name="entropy_lower_bound"): r"""A lower bound on the entropy of this mixture model. The bound below is not always very tight, and its usefulness depends on the mixture probabilities and the components in use. A lower bound is useful for ELBO when the `Mixture` is the variational distribution: \\( \log p(x) >= ELBO = \int q(z) \log p(x, z) dz + H[q] \\) where \\( p \\) is the prior distribution, \\( q \\) is the variational, and \\( H[q] \\) is the entropy of \\( q \\). If there is a lower bound \\( G[q] \\) such that \\( H[q] \geq G[q] \\) then it can be used in place of \\( H[q] \\). For a mixture of distributions \\( q(Z) = \sum_i c_i q_i(Z) \\) with \\( \sum_i c_i = 1 \\), by the concavity of \\( f(x) = -x \log x \\), a simple lower bound is: \\( \begin{align} H[q] & = - \int q(z) \log q(z) dz \\\ & = - \int (\sum_i c_i q_i(z)) \log(\sum_i c_i q_i(z)) dz \\\ & \geq - \sum_i c_i \int q_i(z) \log q_i(z) dz \\\ & = \sum_i c_i H[q_i] \end{align} \\) This is the term we calculate below for \\( G[q] \\). Args: name: A name for this operation (optional). Returns: A lower bound on the Mixture's entropy. """ with self._name_scope(name, values=[self.cat.logits]): with ops.control_dependencies(self._assertions): distribution_entropies = [d.entropy() for d in self.components] cat_probs = self._cat_probs(log_probs=False) partial_entropies = [ c_p * m for (c_p, m) in zip(cat_probs, distribution_entropies) ] # These are all the same shape by virtue of matching batch_shape return math_ops.add_n(partial_entropies) def _cat_probs(self, log_probs): """Get a list of num_components batchwise probabilities.""" which_softmax = nn_ops.log_softmax if log_probs else nn_ops.softmax cat_probs = which_softmax(self.cat.logits) cat_probs = array_ops.unstack(cat_probs, num=self.num_components, axis=-1) return cat_probs
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/mixture.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Autoregressive distribution.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import ops from tensorflow.python.ops.distributions import distribution as distribution_lib from tensorflow.python.ops.distributions import util as distribution_util from tensorflow.python.util import deprecation class Autoregressive(distribution_lib.Distribution): """Autoregressive distributions. The Autoregressive distribution enables learning (often) richer multivariate distributions by repeatedly applying a [diffeomorphic]( https://en.wikipedia.org/wiki/Diffeomorphism) transformation (such as implemented by `Bijector`s). Regarding terminology, "Autoregressive models decompose the joint density as a product of conditionals, and model each conditional in turn. Normalizing flows transform a base density (e.g. a standard Gaussian) into the target density by an invertible transformation with tractable Jacobian." [(Papamakarios et al., 2016)][1] In other words, the "autoregressive property" is equivalent to the decomposition, `p(x) = prod{ p(x[i] | x[0:i]) : i=0, ..., d }`. The provided `shift_and_log_scale_fn`, `masked_autoregressive_default_template`, achieves this property by zeroing out weights in its `masked_dense` layers. Practically speaking the autoregressive property means that there exists a permutation of the event coordinates such that each coordinate is a diffeomorphic function of only preceding coordinates [(van den Oord et al., 2016)][2]. #### Mathematical Details The probability function is ```none prob(x; fn, n) = fn(x).prob(x) ``` And a sample is generated by ```none x = fn(...fn(fn(x0).sample()).sample()).sample() ``` where the ellipses (`...`) represent `n-2` composed calls to `fn`, `fn` constructs a `tfp.distributions.Distribution`-like instance, and `x0` is a fixed initializing `Tensor`. #### Examples ```python import tensorflow_probability as tfp tfd = tfp.distributions def normal_fn(self, event_size): n = event_size * (event_size + 1) / 2 p = tf.Variable(tfd.Normal(loc=0., scale=1.).sample(n)) affine = tfd.bijectors.Affine( scale_tril=tfd.fill_triangular(0.25 * p)) def _fn(samples): scale = math_ops.exp(affine.forward(samples)).eval() return independent_lib.Independent( normal_lib.Normal(loc=0., scale=scale, validate_args=True), reinterpreted_batch_ndims=1) return _fn batch_and_event_shape = [3, 2, 4] sample0 = array_ops.zeros(batch_and_event_shape) ar = autoregressive_lib.Autoregressive( self._normal_fn(batch_and_event_shape[-1]), sample0) x = ar.sample([6, 5]) # ==> x.shape = [6, 5, 3, 2, 4] prob_x = ar.prob(x) # ==> x.shape = [6, 5, 3, 2] ``` #### References [1]: George Papamakarios, Theo Pavlakou, and Iain Murray. Masked Autoregressive Flow for Density Estimation. In _Neural Information Processing Systems_, 2017. https://arxiv.org/abs/1705.07057 [2]: Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, and Koray Kavukcuoglu. Conditional Image Generation with PixelCNN Decoders. In _Neural Information Processing Systems_, 2016. https://arxiv.org/abs/1606.05328 """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, distribution_fn, sample0=None, num_steps=None, validate_args=False, allow_nan_stats=True, name="Autoregressive"): """Construct an `Autoregressive` distribution. Args: distribution_fn: Python `callable` which constructs a `tfp.distributions.Distribution`-like instance from a `Tensor` (e.g., `sample0`). The function must respect the "autoregressive property", i.e., there exists a permutation of event such that each coordinate is a diffeomorphic function of on preceding coordinates. sample0: Initial input to `distribution_fn`; used to build the distribution in `__init__` which in turn specifies this distribution's properties, e.g., `event_shape`, `batch_shape`, `dtype`. If unspecified, then `distribution_fn` should be default constructable. num_steps: Number of times `distribution_fn` is composed from samples, e.g., `num_steps=2` implies `distribution_fn(distribution_fn(sample0).sample(n)).sample()`. validate_args: Python `bool`. Whether to validate input with asserts. If `validate_args` is `False`, and the inputs are invalid, correct behavior is not guaranteed. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Default value: "Autoregressive". Raises: ValueError: if `num_steps` and `distribution_fn(sample0).event_shape.num_elements()` are both `None`. ValueError: if `num_steps < 1`. """ parameters = dict(locals()) with ops.name_scope(name) as name: self._distribution_fn = distribution_fn self._sample0 = sample0 self._distribution0 = (distribution_fn() if sample0 is None else distribution_fn(sample0)) if num_steps is None: num_steps = self._distribution0.event_shape.num_elements() if num_steps is None: raise ValueError("distribution_fn must generate a distribution " "with fully known `event_shape`.") if num_steps < 1: raise ValueError("num_steps ({}) must be at least 1.".format(num_steps)) self._num_steps = num_steps super(Autoregressive, self).__init__( dtype=self._distribution0.dtype, reparameterization_type=self._distribution0.reparameterization_type, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=self._distribution0._graph_parents, # pylint: disable=protected-access name=name) @property def distribution_fn(self): return self._distribution_fn @property def sample0(self): return self._sample0 @property def num_steps(self): return self._num_steps @property def distribution0(self): return self._distribution0 def _batch_shape(self): return self.distribution0.batch_shape def _batch_shape_tensor(self): return self.distribution0.batch_shape_tensor() def _event_shape(self): return self.distribution0.event_shape def _event_shape_tensor(self): return self.distribution0.event_shape_tensor() def _sample_n(self, n, seed=None): if seed is None: seed = distribution_util.gen_new_seed( seed=np.random.randint(2**32 - 1), salt="autoregressive") samples = self.distribution0.sample(n, seed=seed) for _ in range(self._num_steps): samples = self.distribution_fn(samples).sample(seed=seed) return samples def _log_prob(self, value): return self.distribution_fn(value).log_prob(value) def _prob(self, value): return self.distribution_fn(value).prob(value)
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/autoregressive.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """SinhArcsinh transformation of a distribution.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.distributions.python.ops import bijectors from tensorflow.contrib.distributions.python.ops import distribution_util from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops.distributions import normal from tensorflow.python.ops.distributions import transformed_distribution from tensorflow.python.util import deprecation __all__ = [ "SinhArcsinh", ] class SinhArcsinh(transformed_distribution.TransformedDistribution): """The SinhArcsinh transformation of a distribution on `(-inf, inf)`. This distribution models a random variable, making use of a `SinhArcsinh` transformation (which has adjustable tailweight and skew), a rescaling, and a shift. The `SinhArcsinh` transformation of the Normal is described in great depth in [Sinh-arcsinh distributions](https://www.jstor.org/stable/27798865). Here we use a slightly different parameterization, in terms of `tailweight` and `skewness`. Additionally we allow for distributions other than Normal, and control over `scale` as well as a "shift" parameter `loc`. #### Mathematical Details Given random variable `Z`, we define the SinhArcsinh transformation of `Z`, `Y`, parameterized by `(loc, scale, skewness, tailweight)`, via the relation: ``` Y := loc + scale * F(Z) * (2 / F_0(2)) F(Z) := Sinh( (Arcsinh(Z) + skewness) * tailweight ) F_0(Z) := Sinh( Arcsinh(Z) * tailweight ) ``` This distribution is similar to the location-scale transformation `L(Z) := loc + scale * Z` in the following ways: * If `skewness = 0` and `tailweight = 1` (the defaults), `F(Z) = Z`, and then `Y = L(Z)` exactly. * `loc` is used in both to shift the result by a constant factor. * The multiplication of `scale` by `2 / F_0(2)` ensures that if `skewness = 0` `P[Y - loc <= 2 * scale] = P[L(Z) - loc <= 2 * scale]`. Thus it can be said that the weights in the tails of `Y` and `L(Z)` beyond `loc + 2 * scale` are the same. This distribution is different than `loc + scale * Z` due to the reshaping done by `F`: * Positive (negative) `skewness` leads to positive (negative) skew. * positive skew means, the mode of `F(Z)` is "tilted" to the right. * positive skew means positive values of `F(Z)` become more likely, and negative values become less likely. * Larger (smaller) `tailweight` leads to fatter (thinner) tails. * Fatter tails mean larger values of `|F(Z)|` become more likely. * `tailweight < 1` leads to a distribution that is "flat" around `Y = loc`, and a very steep drop-off in the tails. * `tailweight > 1` leads to a distribution more peaked at the mode with heavier tails. To see the argument about the tails, note that for `|Z| >> 1` and `|Z| >> (|skewness| * tailweight)**tailweight`, we have `Y approx 0.5 Z**tailweight e**(sign(Z) skewness * tailweight)`. To see the argument regarding multiplying `scale` by `2 / F_0(2)`, ``` P[(Y - loc) / scale <= 2] = P[F(Z) * (2 / F_0(2)) <= 2] = P[F(Z) <= F_0(2)] = P[Z <= 2] (if F = F_0). ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, loc, scale, skewness=None, tailweight=None, distribution=None, validate_args=False, allow_nan_stats=True, name="SinhArcsinh"): """Construct SinhArcsinh distribution on `(-inf, inf)`. Arguments `(loc, scale, skewness, tailweight)` must have broadcastable shape (indexing batch dimensions). They must all have the same `dtype`. Args: loc: Floating-point `Tensor`. scale: `Tensor` of same `dtype` as `loc`. skewness: Skewness parameter. Default is `0.0` (no skew). tailweight: Tailweight parameter. Default is `1.0` (unchanged tailweight) distribution: `tf.Distribution`-like instance. Distribution that is transformed to produce this distribution. Default is `tfp.distributions.Normal(0., 1.)`. Must be a scalar-batch, scalar-event distribution. Typically `distribution.reparameterization_type = FULLY_REPARAMETERIZED` or it is a function of non-trainable parameters. WARNING: If you backprop through a `SinhArcsinh` sample and `distribution` is not `FULLY_REPARAMETERIZED` yet is a function of trainable variables, then the gradient will be incorrect! validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. """ parameters = dict(locals()) with ops.name_scope(name, values=[loc, scale, skewness, tailweight]) as name: loc = ops.convert_to_tensor(loc, name="loc") dtype = loc.dtype scale = ops.convert_to_tensor(scale, name="scale", dtype=dtype) tailweight = 1. if tailweight is None else tailweight has_default_skewness = skewness is None skewness = 0. if skewness is None else skewness tailweight = ops.convert_to_tensor( tailweight, name="tailweight", dtype=dtype) skewness = ops.convert_to_tensor(skewness, name="skewness", dtype=dtype) batch_shape = distribution_util.get_broadcast_shape( loc, scale, tailweight, skewness) # Recall, with Z a random variable, # Y := loc + C * F(Z), # F(Z) := Sinh( (Arcsinh(Z) + skewness) * tailweight ) # F_0(Z) := Sinh( Arcsinh(Z) * tailweight ) # C := 2 * scale / F_0(2) if distribution is None: distribution = normal.Normal( loc=array_ops.zeros([], dtype=dtype), scale=array_ops.ones([], dtype=dtype), allow_nan_stats=allow_nan_stats) else: asserts = distribution_util.maybe_check_scalar_distribution( distribution, dtype, validate_args) if asserts: loc = control_flow_ops.with_dependencies(asserts, loc) # Make the SAS bijector, 'F'. f = bijectors.SinhArcsinh( skewness=skewness, tailweight=tailweight) if has_default_skewness: f_noskew = f else: f_noskew = bijectors.SinhArcsinh( skewness=skewness.dtype.as_numpy_dtype(0.), tailweight=tailweight) # Make the AffineScalar bijector, Z --> loc + scale * Z (2 / F_0(2)) c = 2 * scale / f_noskew.forward(ops.convert_to_tensor(2, dtype=dtype)) affine = bijectors.AffineScalar( shift=loc, scale=c, validate_args=validate_args) bijector = bijectors.Chain([affine, f]) super(SinhArcsinh, self).__init__( distribution=distribution, bijector=bijector, batch_shape=batch_shape, validate_args=validate_args, name=name) self._parameters = parameters self._loc = loc self._scale = scale self._tailweight = tailweight self._skewness = skewness @property def loc(self): """The `loc` in `Y := loc + scale @ F(Z) * (2 / F(2)).""" return self._loc @property def scale(self): """The `LinearOperator` `scale` in `Y := loc + scale @ F(Z) * (2 / F(2)).""" return self._scale @property def tailweight(self): """Controls the tail decay. `tailweight > 1` means faster than Normal.""" return self._tailweight @property def skewness(self): """Controls the skewness. `Skewness > 0` means right skew.""" return self._skewness
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/sinh_arcsinh.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Geometric distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import random_ops from tensorflow.python.ops.distributions import distribution from tensorflow.python.ops.distributions import util as distribution_util from tensorflow.python.util import deprecation class Geometric(distribution.Distribution): """Geometric distribution. The Geometric distribution is parameterized by p, the probability of a positive event. It represents the probability that in k + 1 Bernoulli trials, the first k trials failed, before seeing a success. The pmf of this distribution is: #### Mathematical Details ```none pmf(k; p) = (1 - p)**k * p ``` where: * `p` is the success probability, `0 < p <= 1`, and, * `k` is a non-negative integer. """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, logits=None, probs=None, validate_args=False, allow_nan_stats=True, name="Geometric"): """Construct Geometric distributions. Args: logits: Floating-point `Tensor` with shape `[B1, ..., Bb]` where `b >= 0` indicates the number of batch dimensions. Each entry represents logits for the probability of success for independent Geometric distributions and must be in the range `(-inf, inf]`. Only one of `logits` or `probs` should be specified. probs: Positive floating-point `Tensor` with shape `[B1, ..., Bb]` where `b >= 0` indicates the number of batch dimensions. Each entry represents the probability of success for independent Geometric distributions and must be in the range `(0, 1]`. Only one of `logits` or `probs` should be specified. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. """ parameters = dict(locals()) with ops.name_scope(name, values=[logits, probs]) as name: self._logits, self._probs = distribution_util.get_logits_and_probs( logits, probs, validate_args=validate_args, name=name) with ops.control_dependencies( [check_ops.assert_positive(self._probs)] if validate_args else []): self._probs = array_ops.identity(self._probs, name="probs") super(Geometric, self).__init__( dtype=self._probs.dtype, reparameterization_type=distribution.NOT_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=[self._probs, self._logits], name=name) @property def logits(self): """Log-odds of a `1` outcome (vs `0`).""" return self._logits @property def probs(self): """Probability of a `1` outcome (vs `0`).""" return self._probs def _batch_shape_tensor(self): return array_ops.shape(self._probs) def _batch_shape(self): return self.probs.get_shape() def _event_shape_tensor(self): return array_ops.constant([], dtype=dtypes.int32) def _event_shape(self): return tensor_shape.TensorShape([]) def _sample_n(self, n, seed=None): # Uniform variates must be sampled from the open-interval `(0, 1)` rather # than `[0, 1)`. To do so, we use `np.finfo(self.dtype.as_numpy_dtype).tiny` # because it is the smallest, positive, "normal" number. A "normal" number # is such that the mantissa has an implicit leading 1. Normal, positive # numbers x, y have the reasonable property that, `x + y >= max(x, y)`. In # this case, a subnormal number (i.e., np.nextafter) can cause us to sample # 0. sampled = random_ops.random_uniform( array_ops.concat([[n], array_ops.shape(self._probs)], 0), minval=np.finfo(self.dtype.as_numpy_dtype).tiny, maxval=1., seed=seed, dtype=self.dtype) return math_ops.floor( math_ops.log(sampled) / math_ops.log1p(-self.probs)) def _cdf(self, x): if self.validate_args: x = distribution_util.embed_check_nonnegative_integer_form(x) else: # Whether or not x is integer-form, the following is well-defined. # However, scipy takes the floor, so we do too. x = math_ops.floor(x) x *= array_ops.ones_like(self.probs) return array_ops.where( x < 0., array_ops.zeros_like(x), -math_ops.expm1((1. + x) * math_ops.log1p(-self.probs))) def _log_prob(self, x): if self.validate_args: x = distribution_util.embed_check_nonnegative_integer_form(x) else: # For consistency with cdf, we take the floor. x = math_ops.floor(x) x *= array_ops.ones_like(self.probs) probs = self.probs * array_ops.ones_like(x) safe_domain = array_ops.where( math_ops.equal(x, 0.), array_ops.zeros_like(probs), probs) return x * math_ops.log1p(-safe_domain) + math_ops.log(probs) def _entropy(self): probs = self._probs if self.validate_args: probs = control_flow_ops.with_dependencies( [check_ops.assert_less( probs, constant_op.constant(1., probs.dtype), message="Entropy is undefined when logits = inf or probs = 1.")], probs) # Claim: entropy(p) = softplus(s)/p - s # where s=logits and p=probs. # # Proof: # # entropy(p) # := -[(1-p)log(1-p) + plog(p)]/p # = -[log(1-p) + plog(p/(1-p))]/p # = -[-softplus(s) + ps]/p # = softplus(s)/p - s # # since, # log[1-sigmoid(s)] # = log[1/(1+exp(s)] # = -log[1+exp(s)] # = -softplus(s) # # using the fact that, # 1-sigmoid(s) = sigmoid(-s) = 1/(1+exp(s)) return nn.softplus(self.logits) / probs - self.logits def _mean(self): return math_ops.exp(-self.logits) def _variance(self): return self._mean() / self.probs def _mode(self): return array_ops.zeros(self.batch_shape_tensor(), dtype=self.dtype)
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/geometric.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Vector Student's t distribution classes.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.distributions.python.ops import bijectors from tensorflow.contrib.distributions.python.ops import distribution_util from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops.distributions import student_t from tensorflow.python.ops.distributions import transformed_distribution from tensorflow.python.util import deprecation class _VectorStudentT(transformed_distribution.TransformedDistribution): """A vector version of Student's t-distribution on `R^k`. #### Mathematical details The probability density function (pdf) is, ```none pdf(x; df, mu, Sigma) = (1 + ||y||**2 / df)**(-0.5 (df + 1)) / Z where, y = inv(Sigma) (x - mu) Z = abs(det(Sigma)) ( sqrt(df pi) Gamma(0.5 df) / Gamma(0.5 (df + 1)) )**k ``` where: * `loc = mu`; a vector in `R^k`, * `scale = Sigma`; a lower-triangular matrix in `R^{k x k}`, * `Z` denotes the normalization constant, and, * `Gamma` is the [gamma function]( https://en.wikipedia.org/wiki/Gamma_function), and, * `||y||**2` denotes the [squared Euclidean norm]( https://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm) of `y`. The VectorStudentT distribution is a member of the [location-scale family]( https://en.wikipedia.org/wiki/Location-scale_family), i.e., it can be constructed as, ```none X ~ StudentT(df, loc=0, scale=1) Y = loc + scale * X ``` Notice that the `scale` matrix has semantics closer to std. deviation than covariance (but it is not std. deviation). This distribution is an Affine transformation of iid [Student's t-distributions]( https://en.wikipedia.org/wiki/Student%27s_t-distribution) and should not be confused with the [Multivariate Student's t-distribution]( https://en.wikipedia.org/wiki/Multivariate_t-distribution). The traditional Multivariate Student's t-distribution is type of [elliptical distribution]( https://en.wikipedia.org/wiki/Elliptical_distribution); it has PDF: ```none pdf(x; df, mu, Sigma) = (1 + ||y||**2 / df)**(-0.5 (df + k)) / Z where, y = inv(Sigma) (x - mu) Z = abs(det(Sigma)) sqrt(df pi)**k Gamma(0.5 df) / Gamma(0.5 (df + k)) ``` Notice that the Multivariate Student's t-distribution uses `k` where the Vector Student's t-distribution has a `1`. Conversely the Vector version has a broader application of the power-`k` in the normalization constant. #### Examples A single instance of a "Vector Student's t-distribution" is defined by a mean vector of length `k` and a scale matrix of shape `k x k`. Extra leading dimensions, if provided, allow for batches. ```python import tensorflow_probability as tfp tfd = tfp.distributions # Initialize a single 3-variate vector Student's t-distribution. mu = [1., 2, 3] chol = [[1., 0, 0.], [1, 3, 0], [1, 2, 3]] vt = tfd.VectorStudentT(df=2, loc=mu, scale_tril=chol) # Evaluate this on an observation in R^3, returning a scalar. vt.prob([-1., 0, 1]) # Initialize a batch of two 3-variate vector Student's t-distributions. mu = [[1., 2, 3], [11, 22, 33]] chol = ... # shape 2 x 3 x 3, lower triangular, positive diagonal. vt = tfd.VectorStudentT(loc=mu, scale_tril=chol) # Evaluate this on a two observations, each in R^3, returning a length two # tensor. x = [[-1, 0, 1], [-11, 0, 11]] vt.prob(x) ``` For more examples of how to construct the `scale` matrix, see the `tf.contrib.distributions.bijectors.Affine` docstring. """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, df, loc=None, scale_identity_multiplier=None, scale_diag=None, scale_tril=None, scale_perturb_factor=None, scale_perturb_diag=None, validate_args=False, allow_nan_stats=True, name="VectorStudentT"): """Instantiates the vector Student's t-distributions on `R^k`. The `batch_shape` is the broadcast between `df.batch_shape` and `Affine.batch_shape` where `Affine` is constructed from `loc` and `scale_*` arguments. The `event_shape` is the event shape of `Affine.event_shape`. Args: df: Floating-point `Tensor`. The degrees of freedom of the distribution(s). `df` must contain only positive values. Must be scalar if `loc`, `scale_*` imply non-scalar batch_shape or must have the same `batch_shape` implied by `loc`, `scale_*`. loc: Floating-point `Tensor`. If this is set to `None`, no `loc` is applied. scale_identity_multiplier: floating point rank 0 `Tensor` representing a scaling done to the identity matrix. When `scale_identity_multiplier = scale_diag=scale_tril = None` then `scale += IdentityMatrix`. Otherwise no scaled-identity-matrix is added to `scale`. scale_diag: Floating-point `Tensor` representing the diagonal matrix. `scale_diag` has shape [N1, N2, ..., k], which represents a k x k diagonal matrix. When `None` no diagonal term is added to `scale`. scale_tril: Floating-point `Tensor` representing the diagonal matrix. `scale_diag` has shape [N1, N2, ..., k, k], which represents a k x k lower triangular matrix. When `None` no `scale_tril` term is added to `scale`. The upper triangular elements above the diagonal are ignored. scale_perturb_factor: Floating-point `Tensor` representing factor matrix with last two dimensions of shape `(k, r)`. When `None`, no rank-r update is added to `scale`. scale_perturb_diag: Floating-point `Tensor` representing the diagonal matrix. `scale_perturb_diag` has shape [N1, N2, ..., r], which represents an r x r Diagonal matrix. When `None` low rank updates will take the form `scale_perturb_factor * scale_perturb_factor.T`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. """ parameters = dict(locals()) graph_parents = [df, loc, scale_identity_multiplier, scale_diag, scale_tril, scale_perturb_factor, scale_perturb_diag] with ops.name_scope(name) as name: with ops.name_scope("init", values=graph_parents): # The shape of the _VectorStudentT distribution is governed by the # relationship between df.batch_shape and affine.batch_shape. In # pseudocode the basic procedure is: # if df.batch_shape is scalar: # if affine.batch_shape is not scalar: # # broadcast distribution.sample so # # it has affine.batch_shape. # self.batch_shape = affine.batch_shape # else: # if affine.batch_shape is scalar: # # let affine broadcasting do its thing. # self.batch_shape = df.batch_shape # All of the above magic is actually handled by TransformedDistribution. # Here we really only need to collect the affine.batch_shape and decide # what we're going to pass in to TransformedDistribution's # (override) batch_shape arg. affine = bijectors.Affine( shift=loc, scale_identity_multiplier=scale_identity_multiplier, scale_diag=scale_diag, scale_tril=scale_tril, scale_perturb_factor=scale_perturb_factor, scale_perturb_diag=scale_perturb_diag, validate_args=validate_args) distribution = student_t.StudentT( df=df, loc=array_ops.zeros([], dtype=affine.dtype), scale=array_ops.ones([], dtype=affine.dtype)) batch_shape, override_event_shape = ( distribution_util.shapes_from_loc_and_scale( affine.shift, affine.scale)) override_batch_shape = distribution_util.pick_vector( distribution.is_scalar_batch(), batch_shape, constant_op.constant([], dtype=dtypes.int32)) super(_VectorStudentT, self).__init__( distribution=distribution, bijector=affine, batch_shape=override_batch_shape, event_shape=override_event_shape, validate_args=validate_args, name=name) self._parameters = parameters @property def df(self): """Degrees of freedom in these Student's t distribution(s).""" return self.distribution.df @property def loc(self): """Locations of these Student's t distribution(s).""" return self.bijector.shift @property def scale(self): """Dense (batch) covariance matrix, if available.""" return self.bijector.scale
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/vector_student_t.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Deterministic distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import six from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.distributions import distribution from tensorflow.python.util import deprecation __all__ = [ "Deterministic", "VectorDeterministic", ] @six.add_metaclass(abc.ABCMeta) class _BaseDeterministic(distribution.Distribution): """Base class for Deterministic distributions.""" @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, loc, atol=None, rtol=None, is_vector=False, validate_args=False, allow_nan_stats=True, name="_BaseDeterministic"): """Initialize a batch of `_BaseDeterministic` distributions. The `atol` and `rtol` parameters allow for some slack in `pmf`, `cdf` computations, e.g. due to floating-point error. ``` pmf(x; loc) = 1, if Abs(x - loc) <= atol + rtol * Abs(loc), = 0, otherwise. ``` Args: loc: Numeric `Tensor`. The point (or batch of points) on which this distribution is supported. atol: Non-negative `Tensor` of same `dtype` as `loc` and broadcastable shape. The absolute tolerance for comparing closeness to `loc`. Default is `0`. rtol: Non-negative `Tensor` of same `dtype` as `loc` and broadcastable shape. The relative tolerance for comparing closeness to `loc`. Default is `0`. is_vector: Python `bool`. If `True`, this is for `VectorDeterministic`, else `Deterministic`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Raises: ValueError: If `loc` is a scalar. """ parameters = dict(locals()) with ops.name_scope(name, values=[loc, atol, rtol]) as name: loc = ops.convert_to_tensor(loc, name="loc") if is_vector and validate_args: msg = "Argument loc must be at least rank 1." if loc.get_shape().ndims is not None: if loc.get_shape().ndims < 1: raise ValueError(msg) else: loc = control_flow_ops.with_dependencies( [check_ops.assert_rank_at_least(loc, 1, message=msg)], loc) self._loc = loc super(_BaseDeterministic, self).__init__( dtype=self._loc.dtype, reparameterization_type=distribution.NOT_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=[self._loc], name=name) self._atol = self._get_tol(atol) self._rtol = self._get_tol(rtol) # Avoid using the large broadcast with self.loc if possible. if rtol is None: self._slack = self.atol else: self._slack = self.atol + self.rtol * math_ops.abs(self.loc) def _get_tol(self, tol): if tol is None: return ops.convert_to_tensor(0, dtype=self.loc.dtype) tol = ops.convert_to_tensor(tol, dtype=self.loc.dtype) if self.validate_args: tol = control_flow_ops.with_dependencies([ check_ops.assert_non_negative( tol, message="Argument 'tol' must be non-negative") ], tol) return tol @property def loc(self): """Point (or batch of points) at which this distribution is supported.""" return self._loc @property def atol(self): """Absolute tolerance for comparing points to `self.loc`.""" return self._atol @property def rtol(self): """Relative tolerance for comparing points to `self.loc`.""" return self._rtol def _entropy(self): return array_ops.zeros(self.batch_shape_tensor(), dtype=self.dtype) def _mean(self): return array_ops.identity(self.loc) def _variance(self): return array_ops.zeros_like(self.loc) def _mode(self): return self.mean() def _sample_n(self, n, seed=None): # pylint: disable=unused-arg n_static = tensor_util.constant_value(ops.convert_to_tensor(n)) if n_static is not None and self.loc.get_shape().ndims is not None: ones = [1] * self.loc.get_shape().ndims multiples = [n_static] + ones else: ones = array_ops.ones_like(array_ops.shape(self.loc)) multiples = array_ops.concat(([n], ones), axis=0) return array_ops.tile(self.loc[array_ops.newaxis, ...], multiples=multiples) class Deterministic(_BaseDeterministic): """Scalar `Deterministic` distribution on the real line. The scalar `Deterministic` distribution is parameterized by a [batch] point `loc` on the real line. The distribution is supported at this point only, and corresponds to a random variable that is constant, equal to `loc`. See [Degenerate rv](https://en.wikipedia.org/wiki/Degenerate_distribution). #### Mathematical Details The probability mass function (pmf) and cumulative distribution function (cdf) are ```none pmf(x; loc) = 1, if x == loc, else 0 cdf(x; loc) = 1, if x >= loc, else 0 ``` #### Examples ```python import tensorflow_probability as tfp tfd = tfp.distributions # Initialize a single Deterministic supported at zero. constant = tfd.Deterministic(0.) constant.prob(0.) ==> 1. constant.prob(2.) ==> 0. # Initialize a [2, 2] batch of scalar constants. loc = [[0., 1.], [2., 3.]] x = [[0., 1.1], [1.99, 3.]] constant = tfd.Deterministic(loc) constant.prob(x) ==> [[1., 0.], [0., 1.]] ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, loc, atol=None, rtol=None, validate_args=False, allow_nan_stats=True, name="Deterministic"): """Initialize a scalar `Deterministic` distribution. The `atol` and `rtol` parameters allow for some slack in `pmf`, `cdf` computations, e.g. due to floating-point error. ``` pmf(x; loc) = 1, if Abs(x - loc) <= atol + rtol * Abs(loc), = 0, otherwise. ``` Args: loc: Numeric `Tensor` of shape `[B1, ..., Bb]`, with `b >= 0`. The point (or batch of points) on which this distribution is supported. atol: Non-negative `Tensor` of same `dtype` as `loc` and broadcastable shape. The absolute tolerance for comparing closeness to `loc`. Default is `0`. rtol: Non-negative `Tensor` of same `dtype` as `loc` and broadcastable shape. The relative tolerance for comparing closeness to `loc`. Default is `0`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. """ super(Deterministic, self).__init__( loc, atol=atol, rtol=rtol, validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name) def _batch_shape_tensor(self): return array_ops.shape(self.loc) def _batch_shape(self): return self.loc.get_shape() def _event_shape_tensor(self): return constant_op.constant([], dtype=dtypes.int32) def _event_shape(self): return tensor_shape.TensorShape([]) def _prob(self, x): return math_ops.cast( math_ops.abs(x - self.loc) <= self._slack, dtype=self.dtype) def _cdf(self, x): return math_ops.cast(x >= self.loc - self._slack, dtype=self.dtype) class VectorDeterministic(_BaseDeterministic): """Vector `Deterministic` distribution on `R^k`. The `VectorDeterministic` distribution is parameterized by a [batch] point `loc in R^k`. The distribution is supported at this point only, and corresponds to a random variable that is constant, equal to `loc`. See [Degenerate rv](https://en.wikipedia.org/wiki/Degenerate_distribution). #### Mathematical Details The probability mass function (pmf) is ```none pmf(x; loc) = 1, if All[Abs(x - loc) <= atol + rtol * Abs(loc)], = 0, otherwise. ``` #### Examples ```python import tensorflow_probability as tfp tfd = tfp.distributions # Initialize a single VectorDeterministic supported at [0., 2.] in R^2. constant = tfd.Deterministic([0., 2.]) constant.prob([0., 2.]) ==> 1. constant.prob([0., 3.]) ==> 0. # Initialize a [3] batch of constants on R^2. loc = [[0., 1.], [2., 3.], [4., 5.]] constant = tfd.VectorDeterministic(loc) constant.prob([[0., 1.], [1.9, 3.], [3.99, 5.]]) ==> [1., 0., 0.] ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, loc, atol=None, rtol=None, validate_args=False, allow_nan_stats=True, name="VectorDeterministic"): """Initialize a `VectorDeterministic` distribution on `R^k`, for `k >= 0`. Note that there is only one point in `R^0`, the "point" `[]`. So if `k = 0` then `self.prob([]) == 1`. The `atol` and `rtol` parameters allow for some slack in `pmf` computations, e.g. due to floating-point error. ``` pmf(x; loc) = 1, if All[Abs(x - loc) <= atol + rtol * Abs(loc)], = 0, otherwise ``` Args: loc: Numeric `Tensor` of shape `[B1, ..., Bb, k]`, with `b >= 0`, `k >= 0` The point (or batch of points) on which this distribution is supported. atol: Non-negative `Tensor` of same `dtype` as `loc` and broadcastable shape. The absolute tolerance for comparing closeness to `loc`. Default is `0`. rtol: Non-negative `Tensor` of same `dtype` as `loc` and broadcastable shape. The relative tolerance for comparing closeness to `loc`. Default is `0`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. """ super(VectorDeterministic, self).__init__( loc, atol=atol, rtol=rtol, is_vector=True, validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name) def _batch_shape_tensor(self): return array_ops.shape(self.loc)[:-1] def _batch_shape(self): return self.loc.get_shape()[:-1] def _event_shape_tensor(self): return array_ops.shape(self.loc)[-1] def _event_shape(self): return self.loc.get_shape()[-1:] def _prob(self, x): if self.validate_args: is_vector_check = check_ops.assert_rank_at_least(x, 1) right_vec_space_check = check_ops.assert_equal( self.event_shape_tensor(), array_ops.gather(array_ops.shape(x), array_ops.rank(x) - 1), message= "Argument 'x' not defined in the same space R^k as this distribution") with ops.control_dependencies([is_vector_check]): with ops.control_dependencies([right_vec_space_check]): x = array_ops.identity(x) return math_ops.cast( math_ops.reduce_all(math_ops.abs(x - self.loc) <= self._slack, axis=-1), dtype=self.dtype)
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/deterministic.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Local PRNG for amplifying seed entropy into seeds for base operations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import hashlib class SeedStream(object): """Local PRNG for amplifying seed entropy into seeds for base operations. Writing sampling code which correctly sets the pseudo-random number generator (PRNG) seed is surprisingly difficult. This class serves as a helper for the TensorFlow Probability coding pattern designed to avoid common mistakes. # Motivating Example A common first-cut implementation of a sampler for the beta distribution is to compute the ratio of a gamma with itself plus another gamma. This code snippet tries to do that, but contains a surprisingly common error: ```python def broken_beta(shape, alpha, beta, seed): x = tf.random.gamma(shape, alpha, seed=seed) y = tf.random.gamma(shape, beta, seed=seed) return x / (x + y) ``` The mistake is that the two gamma draws are seeded with the same seed. This causes them to always produce the same results, which, in turn, leads this code snippet to always return `0.5`. Because it can happen across abstraction boundaries, this kind of error is surprisingly easy to make when handling immutable seeds. # Goals TensorFlow Probability adopts a code style designed to eliminate the above class of error, without exacerbating others. The goals of this code style are: - Support reproducibility of results (by encouraging seeding of all pseudo-random operations). - Avoid shared-write global state (by not relying on a global PRNG). - Prevent accidental seed reuse by TF Probability implementers. This goal is served with the local pseudo-random seed generator provided in this module. - Mitigate potential accidental seed reuse by TF Probability clients (with a salting scheme). - Prevent accidental resonances with downstream PRNGs (by hashing the output). ## Non-goals - Implementing a high-performance PRNG for generating large amounts of entropy. That's the job of the underlying TensorFlow PRNG we are seeding. - Avoiding random seed collisions, aka "birthday attacks". # Code pattern ```python def random_beta(shape, alpha, beta, seed): # (a) seed = SeedStream(seed, salt="random_beta") # (b) x = tf.random.gamma(shape, alpha, seed=seed()) # (c) y = tf.random.gamma(shape, beta, seed=seed()) # (c) return x / (x + y) ``` The elements of this pattern are: - Accept an explicit seed (line a) as an argument in all public functions, and write the function to be deterministic (up to any numerical issues) for fixed seed. - Rationale: This provides the client with the ability to reproduce results. Accepting an immutable seed rather than a mutable PRNG object reduces code coupling, permitting different sections to be reproducible independently. - Use that seed only to initialize a local `SeedStream` instance (line b). - Rationale: Avoids accidental seed reuse. - Supply the name of the function being implemented as a salt to the `SeedStream` instance (line b). This serves to keep the salts unique; unique salts ensure that clients of TF Probability will see different functions always produce independent results even if called with the same seeds. - Seed each callee operation with the output of a unique call to the `SeedStream` instance (lines c). This ensures reproducibility of results while preventing seed reuse across callee invocations. # Why salt? Salting the `SeedStream` instances (with unique salts) is defensive programming against a client accidentally committing a mistake similar to our motivating example. Consider the following situation that might arise without salting: ```python def tfp_foo(seed): seed = SeedStream(seed, salt="") foo_stuff = tf.random.normal(seed=seed()) ... def tfp_bar(seed): seed = SeedStream(seed, salt="") bar_stuff = tf.random.normal(seed=seed()) ... def client_baz(seed): foo = tfp_foo(seed=seed) bar = tfp_bar(seed=seed) ... ``` The client should have used different seeds as inputs to `foo` and `bar`. However, because they didn't, *and because `foo` and `bar` both sample a Gaussian internally as their first action*, the internal `foo_stuff` and `bar_stuff` will be the same, and the returned `foo` and `bar` will not be independent, leading to subtly incorrect answers from the client's simulation. This kind of bug is particularly insidious for the client, because it depends on a Distributions implementation detail, namely the order in which `foo` and `bar` invoke the samplers they depend on. In particular, a Bayesflow team member can introduce such a bug in previously (accidentally) correct client code by performing an internal refactoring that causes this operation order alignment. A salting discipline eliminates this problem by making sure that the seeds seen by `foo`'s callees will differ from those seen by `bar`'s callees, even if `foo` and `bar` are invoked with the same input seed. """ def __init__(self, seed, salt): """Initializes a `SeedStream`. Args: seed: Any Python object convertible to string, supplying the initial entropy. If `None`, operations seeded with seeds drawn from this `SeedStream` will follow TensorFlow semantics for not being seeded. salt: Any Python object convertible to string, supplying auxiliary entropy. Must be unique across the Distributions and TensorFlow Probability code base. See class docstring for rationale. """ self._seed = seed.original_seed if isinstance(seed, SeedStream) else seed self._salt = salt self._counter = 0 def __call__(self): """Returns a fresh integer usable as a seed in downstream operations. If this `SeedStream` was initialized with `seed=None`, returns `None`. This has the effect that downstream operations (both `SeedStream`s and primitive TensorFlow ops) will behave as though they were unseeded. The returned integer is non-negative, and uniformly distributed in the half-open interval `[0, 2**512)`. This is consistent with TensorFlow, as TensorFlow operations internally use the residue of the given seed modulo `2**31 - 1` (see `tensorflow/python/framework/random_seed.py`). Returns: seed: A fresh integer usable as a seed in downstream operations, or `None`. """ self._counter += 1 if self._seed is None: return None composite = str((self._seed, self._counter, self._salt)).encode("utf-8") return int(hashlib.sha512(composite).hexdigest(), 16) @property def original_seed(self): return self._seed @property def salt(self): return self._salt # Design rationales for the SeedStream class # # - Salts are accepted for the reason given above to supply them. # # - A `None` seed propagates to downstream seeds, so they exhibit # their "unseeded" behavior. # # - The return value is a Python int so it can be passed directly to # TensorFlow operations as a seed. It is large to avoid losing seed # space needlessly (TF will internally read only the last 31 bits). # # - The output is hashed with a crypto-grade hash function as a form # of defensive programming: this reliably prevents all possible # accidental resonances with all possible downstream PRNGs. The # specific function used is not important; SHA512 was ready to hand. # # - The internal state update is a simple counter because (a) given # that the output is hashed anyway, this is enough, and (b) letting # it be this predictable permits a future "generate many seeds in # parallel" operation whose results would agree with running # sequentially.
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/seed_stream.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Distribution of a vectorized Exponential, with uncorrelated components.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.distributions.python.ops import distribution_util from tensorflow.contrib.distributions.python.ops import vector_exponential_linear_operator as vector_exponential_linop from tensorflow.python.framework import ops from tensorflow.python.util import deprecation __all__ = [ "VectorExponentialDiag", ] class VectorExponentialDiag( vector_exponential_linop.VectorExponentialLinearOperator): """The vectorization of the Exponential distribution on `R^k`. The vector exponential distribution is defined over a subset of `R^k`, and parameterized by a (batch of) length-`k` `loc` vector and a (batch of) `k x k` `scale` matrix: `covariance = scale @ scale.T`, where `@` denotes matrix-multiplication. #### Mathematical Details The probability density function (pdf) is defined over the image of the `scale` matrix + `loc`, applied to the positive half-space: `Supp = {loc + scale @ x : x in R^k, x_1 > 0, ..., x_k > 0}`. On this set, ```none pdf(y; loc, scale) = exp(-||x||_1) / Z, for y in Supp x = inv(scale) @ (y - loc), Z = |det(scale)|, ``` where: * `loc` is a vector in `R^k`, * `scale` is a linear operator in `R^{k x k}`, `cov = scale @ scale.T`, * `Z` denotes the normalization constant, and, * `||x||_1` denotes the `l1` norm of `x`, `sum_i |x_i|`. The VectorExponential distribution is a member of the [location-scale family](https://en.wikipedia.org/wiki/Location-scale_family), i.e., it can be constructed as, ```none X = (X_1, ..., X_k), each X_i ~ Exponential(rate=1) Y = (Y_1, ...,Y_k) = scale @ X + loc ``` #### About `VectorExponential` and `Vector` distributions in TensorFlow. The `VectorExponential` is a non-standard distribution that has useful properties. The marginals `Y_1, ..., Y_k` are *not* Exponential random variables, due to the fact that the sum of Exponential random variables is not Exponential. Instead, `Y` is a vector whose components are linear combinations of Exponential random variables. Thus, `Y` lives in the vector space generated by `vectors` of Exponential distributions. This allows the user to decide the mean and covariance (by setting `loc` and `scale`), while preserving some properties of the Exponential distribution. In particular, the tails of `Y_i` will be (up to polynomial factors) exponentially decaying. To see this last statement, note that the pdf of `Y_i` is the convolution of the pdf of `k` independent Exponential random variables. One can then show by induction that distributions with exponential (up to polynomial factors) tails are closed under convolution. #### Examples ```python import tensorflow_probability as tfp tfd = tfp.distributions # Initialize a single 2-variate VectorExponential, supported on # {(x, y) in R^2 : x > 0, y > 0}. # The first component has pdf exp{-x}, the second 0.5 exp{-x / 2} vex = tfd.VectorExponentialDiag(scale_diag=[1., 2.]) # Compute the pdf of an`R^2` observation; return a scalar. vex.prob([3., 4.]).eval() # shape: [] # Initialize a 2-batch of 3-variate Vector Exponential's. loc = [[1., 2, 3], [1., 0, 0]] # shape: [2, 3] scale_diag = [[1., 2, 3], [0.5, 1, 1.5]] # shape: [2, 3] vex = tfd.VectorExponentialDiag(loc, scale_diag) # Compute the pdf of two `R^3` observations; return a length-2 vector. x = [[1.9, 2.2, 3.1], [10., 1.0, 9.0]] # shape: [2, 3] vex.prob(x).eval() # shape: [2] ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, loc=None, scale_diag=None, scale_identity_multiplier=None, validate_args=False, allow_nan_stats=True, name="VectorExponentialDiag"): """Construct Vector Exponential distribution supported on a subset of `R^k`. The `batch_shape` is the broadcast shape between `loc` and `scale` arguments. The `event_shape` is given by last dimension of the matrix implied by `scale`. The last dimension of `loc` (if provided) must broadcast with this. Recall that `covariance = scale @ scale.T`. ```none scale = diag(scale_diag + scale_identity_multiplier * ones(k)) ``` where: * `scale_diag.shape = [k]`, and, * `scale_identity_multiplier.shape = []`. Additional leading dimensions (if any) will index batches. If both `scale_diag` and `scale_identity_multiplier` are `None`, then `scale` is the Identity matrix. Args: loc: Floating-point `Tensor`. If this is set to `None`, `loc` is implicitly `0`. When specified, may have shape `[B1, ..., Bb, k]` where `b >= 0` and `k` is the event size. scale_diag: Non-zero, floating-point `Tensor` representing a diagonal matrix added to `scale`. May have shape `[B1, ..., Bb, k]`, `b >= 0`, and characterizes `b`-batches of `k x k` diagonal matrices added to `scale`. When both `scale_identity_multiplier` and `scale_diag` are `None` then `scale` is the `Identity`. scale_identity_multiplier: Non-zero, floating-point `Tensor` representing a scaled-identity-matrix added to `scale`. May have shape `[B1, ..., Bb]`, `b >= 0`, and characterizes `b`-batches of scaled `k x k` identity matrices added to `scale`. When both `scale_identity_multiplier` and `scale_diag` are `None` then `scale` is the `Identity`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Raises: ValueError: if at most `scale_identity_multiplier` is specified. """ parameters = dict(locals()) with ops.name_scope(name) as name: with ops.name_scope("init", values=[ loc, scale_diag, scale_identity_multiplier]): # No need to validate_args while making diag_scale. The returned # LinearOperatorDiag has an assert_non_singular method that is called by # the Bijector. scale = distribution_util.make_diag_scale( loc=loc, scale_diag=scale_diag, scale_identity_multiplier=scale_identity_multiplier, validate_args=False, assert_positive=False) super(VectorExponentialDiag, self).__init__( loc=loc, scale=scale, validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name) self._parameters = parameters
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/vector_exponential_diag.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Conditional distribution base class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.ops.distributions import distribution from tensorflow.python.ops.distributions import util as distribution_util class ConditionalDistribution(distribution.Distribution): """Distribution that supports intrinsic parameters (local latents). Subclasses of this distribution may have additional keyword arguments passed to their sample-based methods (i.e. `sample`, `log_prob`, etc.). """ @distribution_util.AppendDocstring(kwargs_dict={ "**condition_kwargs": "Named arguments forwarded to subclass implementation."}) def sample(self, sample_shape=(), seed=None, name="sample", **condition_kwargs): return self._call_sample_n(sample_shape, seed, name, **condition_kwargs) @distribution_util.AppendDocstring(kwargs_dict={ "**condition_kwargs": "Named arguments forwarded to subclass implementation."}) def log_prob(self, value, name="log_prob", **condition_kwargs): return self._call_log_prob(value, name, **condition_kwargs) @distribution_util.AppendDocstring(kwargs_dict={ "**condition_kwargs": "Named arguments forwarded to subclass implementation."}) def prob(self, value, name="prob", **condition_kwargs): return self._call_prob(value, name, **condition_kwargs) @distribution_util.AppendDocstring(kwargs_dict={ "**condition_kwargs": "Named arguments forwarded to subclass implementation."}) def log_cdf(self, value, name="log_cdf", **condition_kwargs): return self._call_log_cdf(value, name, **condition_kwargs) @distribution_util.AppendDocstring(kwargs_dict={ "**condition_kwargs": "Named arguments forwarded to subclass implementation."}) def cdf(self, value, name="cdf", **condition_kwargs): return self._call_cdf(value, name, **condition_kwargs) @distribution_util.AppendDocstring(kwargs_dict={ "**condition_kwargs": "Named arguments forwarded to subclass implementation."}) def log_survival_function(self, value, name="log_survival_function", **condition_kwargs): return self._call_log_survival_function(value, name, **condition_kwargs) @distribution_util.AppendDocstring(kwargs_dict={ "**condition_kwargs": "Named arguments forwarded to subclass implementation."}) def survival_function(self, value, name="survival_function", **condition_kwargs): return self._call_survival_function(value, name, **condition_kwargs)
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/conditional_distribution.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Multivariate Normal distribution classes.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.distributions.python.ops import mvn_linear_operator as mvn_linop from tensorflow.python.framework import ops from tensorflow.python.ops.distributions import util as distribution_util from tensorflow.python.ops.linalg import linalg from tensorflow.python.util import deprecation __all__ = [ "MultivariateNormalTriL", ] class MultivariateNormalTriL(mvn_linop.MultivariateNormalLinearOperator): """The multivariate normal distribution on `R^k`. The Multivariate Normal distribution is defined over `R^k` and parameterized by a (batch of) length-`k` `loc` vector (aka "mu") and a (batch of) `k x k` `scale` matrix; `covariance = scale @ scale.T` where `@` denotes matrix-multiplication. #### Mathematical Details The probability density function (pdf) is, ```none pdf(x; loc, scale) = exp(-0.5 ||y||**2) / Z, y = inv(scale) @ (x - loc), Z = (2 pi)**(0.5 k) |det(scale)|, ``` where: * `loc` is a vector in `R^k`, * `scale` is a matrix in `R^{k x k}`, `covariance = scale @ scale.T`, * `Z` denotes the normalization constant, and, * `||y||**2` denotes the squared Euclidean norm of `y`. A (non-batch) `scale` matrix is: ```none scale = scale_tril ``` where `scale_tril` is lower-triangular `k x k` matrix with non-zero diagonal, i.e., `tf.linalg.tensor_diag_part(scale_tril) != 0`. Additional leading dimensions (if any) will index batches. The MultivariateNormal distribution is a member of the [location-scale family](https://en.wikipedia.org/wiki/Location-scale_family), i.e., it can be constructed as, ```none X ~ MultivariateNormal(loc=0, scale=1) # Identity scale, zero shift. Y = scale @ X + loc ``` Trainable (batch) lower-triangular matrices can be created with `tfp.distributions.matrix_diag_transform()` and/or `tfp.distributions.fill_triangular()` #### Examples ```python import tensorflow_probability as tfp tfd = tfp.distributions # Initialize a single 3-variate Gaussian. mu = [1., 2, 3] cov = [[ 0.36, 0.12, 0.06], [ 0.12, 0.29, -0.13], [ 0.06, -0.13, 0.26]] scale = tf.linalg.cholesky(cov) # ==> [[ 0.6, 0. , 0. ], # [ 0.2, 0.5, 0. ], # [ 0.1, -0.3, 0.4]]) mvn = tfd.MultivariateNormalTriL( loc=mu, scale_tril=scale) mvn.mean().eval() # ==> [1., 2, 3] # Covariance agrees with cholesky(cov) parameterization. mvn.covariance().eval() # ==> [[ 0.36, 0.12, 0.06], # [ 0.12, 0.29, -0.13], # [ 0.06, -0.13, 0.26]] # Compute the pdf of an observation in `R^3` ; return a scalar. mvn.prob([-1., 0, 1]).eval() # shape: [] # Initialize a 2-batch of 3-variate Gaussians. mu = [[1., 2, 3], [11, 22, 33]] # shape: [2, 3] tril = ... # shape: [2, 3, 3], lower triangular, non-zero diagonal. mvn = tfd.MultivariateNormalTriL( loc=mu, scale_tril=tril) # Compute the pdf of two `R^3` observations; return a length-2 vector. x = [[-0.9, 0, 0.1], [-10, 0, 9]] # shape: [2, 3] mvn.prob(x).eval() # shape: [2] # Instantiate a "learnable" MVN. dims = 4 with tf.compat.v1.variable_scope("model"): mvn = tfd.MultivariateNormalTriL( loc=tf.compat.v1.get_variable(shape=[dims], dtype=tf.float32, name="mu"), scale_tril=tfd.fill_triangular( tf.compat.v1.get_variable(shape=[dims * (dims + 1) / 2], dtype=tf.float32, name="chol_Sigma"))) ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, loc=None, scale_tril=None, validate_args=False, allow_nan_stats=True, name="MultivariateNormalTriL"): """Construct Multivariate Normal distribution on `R^k`. The `batch_shape` is the broadcast shape between `loc` and `scale` arguments. The `event_shape` is given by last dimension of the matrix implied by `scale`. The last dimension of `loc` (if provided) must broadcast with this. Recall that `covariance = scale @ scale.T`. A (non-batch) `scale` matrix is: ```none scale = scale_tril ``` where `scale_tril` is lower-triangular `k x k` matrix with non-zero diagonal, i.e., `tf.linalg.tensor_diag_part(scale_tril) != 0`. Additional leading dimensions (if any) will index batches. Args: loc: Floating-point `Tensor`. If this is set to `None`, `loc` is implicitly `0`. When specified, may have shape `[B1, ..., Bb, k]` where `b >= 0` and `k` is the event size. scale_tril: Floating-point, lower-triangular `Tensor` with non-zero diagonal elements. `scale_tril` has shape `[B1, ..., Bb, k, k]` where `b >= 0` and `k` is the event size. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Raises: ValueError: if neither `loc` nor `scale_tril` are specified. """ parameters = dict(locals()) def _convert_to_tensor(x, name): return None if x is None else ops.convert_to_tensor(x, name=name) if loc is None and scale_tril is None: raise ValueError("Must specify one or both of `loc`, `scale_tril`.") with ops.name_scope(name) as name: with ops.name_scope("init", values=[loc, scale_tril]): loc = _convert_to_tensor(loc, name="loc") scale_tril = _convert_to_tensor(scale_tril, name="scale_tril") if scale_tril is None: scale = linalg.LinearOperatorIdentity( num_rows=distribution_util.dimension_size(loc, -1), dtype=loc.dtype, is_self_adjoint=True, is_positive_definite=True, assert_proper_shapes=validate_args) else: # No need to validate that scale_tril is non-singular. # LinearOperatorLowerTriangular has an assert_non_singular # method that is called by the Bijector. scale = linalg.LinearOperatorLowerTriangular( scale_tril, is_non_singular=True, is_self_adjoint=False, is_positive_definite=False) super(MultivariateNormalTriL, self).__init__( loc=loc, scale=scale, validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name) self._parameters = parameters
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/mvn_tril.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Poisson distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops.distributions import distribution from tensorflow.python.ops.distributions import util as distribution_util from tensorflow.python.util import deprecation __all__ = [ "Poisson", ] _poisson_sample_note = """ The Poisson distribution is technically only defined for non-negative integer values. When `validate_args=False`, non-integral inputs trigger an assertion. When `validate_args=False` calculations are otherwise unchanged despite integral or non-integral inputs. When `validate_args=False`, evaluating the pmf at non-integral values, corresponds to evaluations of an unnormalized distribution, that does not correspond to evaluations of the cdf. """ class Poisson(distribution.Distribution): """Poisson distribution. The Poisson distribution is parameterized by an event `rate` parameter. #### Mathematical Details The probability mass function (pmf) is, ```none pmf(k; lambda, k >= 0) = (lambda^k / k!) / Z Z = exp(lambda). ``` where `rate = lambda` and `Z` is the normalizing constant. """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, rate=None, log_rate=None, validate_args=False, allow_nan_stats=True, name="Poisson"): """Initialize a batch of Poisson distributions. Args: rate: Floating point tensor, the rate parameter. `rate` must be positive. Must specify exactly one of `rate` and `log_rate`. log_rate: Floating point tensor, the log of the rate parameter. Must specify exactly one of `rate` and `log_rate`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Raises: ValueError: if none or both of `rate`, `log_rate` are specified. TypeError: if `rate` is not a float-type. TypeError: if `log_rate` is not a float-type. """ parameters = dict(locals()) with ops.name_scope(name, values=[rate]) as name: if (rate is None) == (log_rate is None): raise ValueError("Must specify exactly one of `rate` and `log_rate`.") elif log_rate is None: rate = ops.convert_to_tensor(rate, name="rate") if not rate.dtype.is_floating: raise TypeError("rate.dtype ({}) is a not a float-type.".format( rate.dtype.name)) with ops.control_dependencies([check_ops.assert_positive(rate)] if validate_args else []): self._rate = array_ops.identity(rate, name="rate") self._log_rate = math_ops.log(rate, name="log_rate") else: log_rate = ops.convert_to_tensor(log_rate, name="log_rate") if not log_rate.dtype.is_floating: raise TypeError("log_rate.dtype ({}) is a not a float-type.".format( log_rate.dtype.name)) self._rate = math_ops.exp(log_rate, name="rate") self._log_rate = ops.convert_to_tensor(log_rate, name="log_rate") super(Poisson, self).__init__( dtype=self._rate.dtype, reparameterization_type=distribution.NOT_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=[self._rate], name=name) @property def rate(self): """Rate parameter.""" return self._rate @property def log_rate(self): """Log rate parameter.""" return self._log_rate def _batch_shape_tensor(self): return array_ops.shape(self.rate) def _batch_shape(self): return self.rate.shape def _event_shape_tensor(self): return constant_op.constant([], dtype=dtypes.int32) def _event_shape(self): return tensor_shape.TensorShape([]) @distribution_util.AppendDocstring(_poisson_sample_note) def _log_prob(self, x): return self._log_unnormalized_prob(x) - self._log_normalization() @distribution_util.AppendDocstring(_poisson_sample_note) def _log_cdf(self, x): return math_ops.log(self.cdf(x)) @distribution_util.AppendDocstring(_poisson_sample_note) def _cdf(self, x): if self.validate_args: x = distribution_util.embed_check_nonnegative_integer_form(x) return math_ops.igammac(1. + x, self.rate) def _log_normalization(self): return self.rate def _log_unnormalized_prob(self, x): if self.validate_args: x = distribution_util.embed_check_nonnegative_integer_form(x) return x * self.log_rate - math_ops.lgamma(1. + x) def _mean(self): return array_ops.identity(self.rate) def _variance(self): return array_ops.identity(self.rate) @distribution_util.AppendDocstring( """Note: when `rate` is an integer, there are actually two modes: `rate` and `rate - 1`. In this case we return the larger, i.e., `rate`.""") def _mode(self): return math_ops.floor(self.rate) def _sample_n(self, n, seed=None): return random_ops.random_poisson( self.rate, [n], dtype=self.dtype, seed=seed)
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/poisson.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Vectorized Laplace distribution class, directly using LinearOperator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import bijectors from tensorflow.contrib.distributions.python.ops import distribution_util from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.distributions import laplace from tensorflow.python.ops.distributions import transformed_distribution from tensorflow.python.ops.linalg import linalg from tensorflow.python.util import deprecation __all__ = [ "VectorLaplaceLinearOperator" ] _mvn_sample_note = """ `value` is a batch vector with compatible shape if `value` is a `Tensor` whose shape can be broadcast up to either: ```python self.batch_shape + self.event_shape ``` or ```python [M1, ..., Mm] + self.batch_shape + self.event_shape ``` """ class VectorLaplaceLinearOperator( transformed_distribution.TransformedDistribution): """The vectorization of the Laplace distribution on `R^k`. The vector laplace distribution is defined over `R^k`, and parameterized by a (batch of) length-`k` `loc` vector (the means) and a (batch of) `k x k` `scale` matrix: `covariance = 2 * scale @ scale.T`, where `@` denotes matrix-multiplication. #### Mathematical Details The probability density function (pdf) is, ```none pdf(x; loc, scale) = exp(-||y||_1) / Z, y = inv(scale) @ (x - loc), Z = 2**k |det(scale)|, ``` where: * `loc` is a vector in `R^k`, * `scale` is a linear operator in `R^{k x k}`, `cov = scale @ scale.T`, * `Z` denotes the normalization constant, and, * `||y||_1` denotes the `l1` norm of `y`, `sum_i |y_i|. The VectorLaplace distribution is a member of the [location-scale family](https://en.wikipedia.org/wiki/Location-scale_family), i.e., it can be constructed as, ```none X = (X_1, ..., X_k), each X_i ~ Laplace(loc=0, scale=1) Y = (Y_1, ...,Y_k) = scale @ X + loc ``` #### About `VectorLaplace` and `Vector` distributions in TensorFlow. The `VectorLaplace` is a non-standard distribution that has useful properties. The marginals `Y_1, ..., Y_k` are *not* Laplace random variables, due to the fact that the sum of Laplace random variables is not Laplace. Instead, `Y` is a vector whose components are linear combinations of Laplace random variables. Thus, `Y` lives in the vector space generated by `vectors` of Laplace distributions. This allows the user to decide the mean and covariance (by setting `loc` and `scale`), while preserving some properties of the Laplace distribution. In particular, the tails of `Y_i` will be (up to polynomial factors) exponentially decaying. To see this last statement, note that the pdf of `Y_i` is the convolution of the pdf of `k` independent Laplace random variables. One can then show by induction that distributions with exponential (up to polynomial factors) tails are closed under convolution. #### Examples ```python import tensorflow_probability as tfp tfd = tfp.distributions # Initialize a single 3-variate VectorLaplace with some desired covariance. mu = [1., 2, 3] cov = [[ 0.36, 0.12, 0.06], [ 0.12, 0.29, -0.13], [ 0.06, -0.13, 0.26]] scale = tf.cholesky(cov) # ==> [[ 0.6, 0. , 0. ], # [ 0.2, 0.5, 0. ], # [ 0.1, -0.3, 0.4]]) # Divide scale by sqrt(2) so that the final covariance will be what we want. vla = tfd.VectorLaplaceLinearOperator( loc=mu, scale=tf.linalg.LinearOperatorLowerTriangular(scale / tf.sqrt(2.))) # Covariance agrees with cholesky(cov) parameterization. vla.covariance().eval() # ==> [[ 0.36, 0.12, 0.06], # [ 0.12, 0.29, -0.13], # [ 0.06, -0.13, 0.26]] # Compute the pdf of an`R^3` observation; return a scalar. vla.prob([-1., 0, 1]).eval() # shape: [] # Initialize a 2-batch of 3-variate Vector Laplace's. mu = [[1., 2, 3], [11, 22, 33]] # shape: [2, 3] scale_diag = [[1., 2, 3], [0.5, 1, 1.5]] # shape: [2, 3] vla = tfd.VectorLaplaceLinearOperator( loc=mu, scale=tf.linalg.LinearOperatorDiag(scale_diag)) # Compute the pdf of two `R^3` observations; return a length-2 vector. x = [[-0.9, 0, 0.1], [-10, 0, 9]] # shape: [2, 3] vla.prob(x).eval() # shape: [2] ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, loc=None, scale=None, validate_args=False, allow_nan_stats=True, name="VectorLaplaceLinearOperator"): """Construct Vector Laplace distribution on `R^k`. The `batch_shape` is the broadcast shape between `loc` and `scale` arguments. The `event_shape` is given by last dimension of the matrix implied by `scale`. The last dimension of `loc` (if provided) must broadcast with this. Recall that `covariance = 2 * scale @ scale.T`. Additional leading dimensions (if any) will index batches. Args: loc: Floating-point `Tensor`. If this is set to `None`, `loc` is implicitly `0`. When specified, may have shape `[B1, ..., Bb, k]` where `b >= 0` and `k` is the event size. scale: Instance of `LinearOperator` with same `dtype` as `loc` and shape `[B1, ..., Bb, k, k]`. validate_args: Python `bool`, default `False`. Whether to validate input with asserts. If `validate_args` is `False`, and the inputs are invalid, correct behavior is not guaranteed. allow_nan_stats: Python `bool`, default `True`. If `False`, raise an exception if a statistic (e.g. mean/mode/etc...) is undefined for any batch member If `True`, batch members with valid parameters leading to undefined statistics will return NaN for this statistic. name: The name to give Ops created by the initializer. Raises: ValueError: if `scale` is unspecified. TypeError: if not `scale.dtype.is_floating` """ parameters = dict(locals()) if scale is None: raise ValueError("Missing required `scale` parameter.") if not scale.dtype.is_floating: raise TypeError("`scale` parameter must have floating-point dtype.") with ops.name_scope(name, values=[loc] + scale.graph_parents): # Since expand_dims doesn't preserve constant-ness, we obtain the # non-dynamic value if possible. loc = ops.convert_to_tensor(loc, name="loc") if loc is not None else loc batch_shape, event_shape = distribution_util.shapes_from_loc_and_scale( loc, scale) super(VectorLaplaceLinearOperator, self).__init__( distribution=laplace.Laplace( loc=array_ops.zeros([], dtype=scale.dtype), scale=array_ops.ones([], dtype=scale.dtype)), bijector=bijectors.AffineLinearOperator( shift=loc, scale=scale, validate_args=validate_args), batch_shape=batch_shape, event_shape=event_shape, validate_args=validate_args, name=name) self._parameters = parameters @property def loc(self): """The `loc` `Tensor` in `Y = scale @ X + loc`.""" return self.bijector.shift @property def scale(self): """The `scale` `LinearOperator` in `Y = scale @ X + loc`.""" return self.bijector.scale @distribution_util.AppendDocstring(_mvn_sample_note) def _log_prob(self, x): return super(VectorLaplaceLinearOperator, self)._log_prob(x) @distribution_util.AppendDocstring(_mvn_sample_note) def _prob(self, x): return super(VectorLaplaceLinearOperator, self)._prob(x) def _mean(self): shape = self.batch_shape.concatenate(self.event_shape) has_static_shape = shape.is_fully_defined() if not has_static_shape: shape = array_ops.concat([ self.batch_shape_tensor(), self.event_shape_tensor(), ], 0) if self.loc is None: return array_ops.zeros(shape, self.dtype) if has_static_shape and shape == self.loc.get_shape(): return array_ops.identity(self.loc) # Add dummy tensor of zeros to broadcast. This is only necessary if shape # != self.loc.shape, but we could not determine if this is the case. return array_ops.identity(self.loc) + array_ops.zeros(shape, self.dtype) def _covariance(self): # Let # W = (w1,...,wk), with wj ~ iid Laplace(0, 1). # Then this distribution is # X = loc + LW, # and since E[X] = loc, # Cov(X) = E[LW W^T L^T] = L E[W W^T] L^T. # Since E[wi wj] = 0 if i != j, and 2 if i == j, we have # Cov(X) = 2 LL^T if distribution_util.is_diagonal_scale(self.scale): return 2. * array_ops.matrix_diag(math_ops.square(self.scale.diag_part())) else: return 2. * self.scale.matmul(self.scale.to_dense(), adjoint_arg=True) def _variance(self): if distribution_util.is_diagonal_scale(self.scale): return 2. * math_ops.square(self.scale.diag_part()) elif (isinstance(self.scale, linalg.LinearOperatorLowRankUpdate) and self.scale.is_self_adjoint): return array_ops.matrix_diag_part( 2. * self.scale.matmul(self.scale.to_dense())) else: return 2. * array_ops.matrix_diag_part( self.scale.matmul(self.scale.to_dense(), adjoint_arg=True)) def _stddev(self): if distribution_util.is_diagonal_scale(self.scale): return np.sqrt(2) * math_ops.abs(self.scale.diag_part()) elif (isinstance(self.scale, linalg.LinearOperatorLowRankUpdate) and self.scale.is_self_adjoint): return np.sqrt(2) * math_ops.sqrt(array_ops.matrix_diag_part( self.scale.matmul(self.scale.to_dense()))) else: return np.sqrt(2) * math_ops.sqrt(array_ops.matrix_diag_part( self.scale.matmul(self.scale.to_dense(), adjoint_arg=True))) def _mode(self): return self._mean()
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/vector_laplace_linear_operator.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Multivariate Normal distribution classes.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.distributions.python.ops import distribution_util from tensorflow.contrib.distributions.python.ops.bijectors import AffineLinearOperator from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.distributions import kullback_leibler from tensorflow.python.ops.distributions import normal from tensorflow.python.ops.distributions import transformed_distribution from tensorflow.python.ops.linalg import linalg from tensorflow.python.util import deprecation __all__ = [ "MultivariateNormalLinearOperator", ] _mvn_sample_note = """ `value` is a batch vector with compatible shape if `value` is a `Tensor` whose shape can be broadcast up to either: ```python self.batch_shape + self.event_shape ``` or ```python [M1, ..., Mm] + self.batch_shape + self.event_shape ``` """ # TODO(b/35290280): Import in `../../__init__.py` after adding unit-tests. class MultivariateNormalLinearOperator( transformed_distribution.TransformedDistribution): """The multivariate normal distribution on `R^k`. The Multivariate Normal distribution is defined over `R^k` and parameterized by a (batch of) length-`k` `loc` vector (aka "mu") and a (batch of) `k x k` `scale` matrix; `covariance = scale @ scale.T`, where `@` denotes matrix-multiplication. #### Mathematical Details The probability density function (pdf) is, ```none pdf(x; loc, scale) = exp(-0.5 ||y||**2) / Z, y = inv(scale) @ (x - loc), Z = (2 pi)**(0.5 k) |det(scale)|, ``` where: * `loc` is a vector in `R^k`, * `scale` is a linear operator in `R^{k x k}`, `cov = scale @ scale.T`, * `Z` denotes the normalization constant, and, * `||y||**2` denotes the squared Euclidean norm of `y`. The MultivariateNormal distribution is a member of the [location-scale family](https://en.wikipedia.org/wiki/Location-scale_family), i.e., it can be constructed as, ```none X ~ MultivariateNormal(loc=0, scale=1) # Identity scale, zero shift. Y = scale @ X + loc ``` #### Examples ```python import tensorflow_probability as tfp tfd = tfp.distributions # Initialize a single 3-variate Gaussian. mu = [1., 2, 3] cov = [[ 0.36, 0.12, 0.06], [ 0.12, 0.29, -0.13], [ 0.06, -0.13, 0.26]] scale = tf.cholesky(cov) # ==> [[ 0.6, 0. , 0. ], # [ 0.2, 0.5, 0. ], # [ 0.1, -0.3, 0.4]]) mvn = tfd.MultivariateNormalLinearOperator( loc=mu, scale=tf.linalg.LinearOperatorLowerTriangular(scale)) # Covariance agrees with cholesky(cov) parameterization. mvn.covariance().eval() # ==> [[ 0.36, 0.12, 0.06], # [ 0.12, 0.29, -0.13], # [ 0.06, -0.13, 0.26]] # Compute the pdf of an`R^3` observation; return a scalar. mvn.prob([-1., 0, 1]).eval() # shape: [] # Initialize a 2-batch of 3-variate Gaussians. mu = [[1., 2, 3], [11, 22, 33]] # shape: [2, 3] scale_diag = [[1., 2, 3], [0.5, 1, 1.5]] # shape: [2, 3] mvn = tfd.MultivariateNormalLinearOperator( loc=mu, scale=tf.linalg.LinearOperatorDiag(scale_diag)) # Compute the pdf of two `R^3` observations; return a length-2 vector. x = [[-0.9, 0, 0.1], [-10, 0, 9]] # shape: [2, 3] mvn.prob(x).eval() # shape: [2] ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, loc=None, scale=None, validate_args=False, allow_nan_stats=True, name="MultivariateNormalLinearOperator"): """Construct Multivariate Normal distribution on `R^k`. The `batch_shape` is the broadcast shape between `loc` and `scale` arguments. The `event_shape` is given by last dimension of the matrix implied by `scale`. The last dimension of `loc` (if provided) must broadcast with this. Recall that `covariance = scale @ scale.T`. Additional leading dimensions (if any) will index batches. Args: loc: Floating-point `Tensor`. If this is set to `None`, `loc` is implicitly `0`. When specified, may have shape `[B1, ..., Bb, k]` where `b >= 0` and `k` is the event size. scale: Instance of `LinearOperator` with same `dtype` as `loc` and shape `[B1, ..., Bb, k, k]`. validate_args: Python `bool`, default `False`. Whether to validate input with asserts. If `validate_args` is `False`, and the inputs are invalid, correct behavior is not guaranteed. allow_nan_stats: Python `bool`, default `True`. If `False`, raise an exception if a statistic (e.g. mean/mode/etc...) is undefined for any batch member If `True`, batch members with valid parameters leading to undefined statistics will return NaN for this statistic. name: The name to give Ops created by the initializer. Raises: ValueError: if `scale` is unspecified. TypeError: if not `scale.dtype.is_floating` """ parameters = dict(locals()) if scale is None: raise ValueError("Missing required `scale` parameter.") if not scale.dtype.is_floating: raise TypeError("`scale` parameter must have floating-point dtype.") with ops.name_scope(name, values=[loc] + scale.graph_parents) as name: # Since expand_dims doesn't preserve constant-ness, we obtain the # non-dynamic value if possible. loc = ops.convert_to_tensor(loc, name="loc") if loc is not None else loc batch_shape, event_shape = distribution_util.shapes_from_loc_and_scale( loc, scale) super(MultivariateNormalLinearOperator, self).__init__( distribution=normal.Normal( loc=array_ops.zeros([], dtype=scale.dtype), scale=array_ops.ones([], dtype=scale.dtype)), bijector=AffineLinearOperator( shift=loc, scale=scale, validate_args=validate_args), batch_shape=batch_shape, event_shape=event_shape, validate_args=validate_args, name=name) self._parameters = parameters @property def loc(self): """The `loc` `Tensor` in `Y = scale @ X + loc`.""" return self.bijector.shift @property def scale(self): """The `scale` `LinearOperator` in `Y = scale @ X + loc`.""" return self.bijector.scale @distribution_util.AppendDocstring(_mvn_sample_note) def _log_prob(self, x): return super(MultivariateNormalLinearOperator, self)._log_prob(x) @distribution_util.AppendDocstring(_mvn_sample_note) def _prob(self, x): return super(MultivariateNormalLinearOperator, self)._prob(x) def _mean(self): shape = self.batch_shape.concatenate(self.event_shape) has_static_shape = shape.is_fully_defined() if not has_static_shape: shape = array_ops.concat([ self.batch_shape_tensor(), self.event_shape_tensor(), ], 0) if self.loc is None: return array_ops.zeros(shape, self.dtype) if has_static_shape and shape == self.loc.get_shape(): return array_ops.identity(self.loc) # Add dummy tensor of zeros to broadcast. This is only necessary if shape # != self.loc.shape, but we could not determine if this is the case. return array_ops.identity(self.loc) + array_ops.zeros(shape, self.dtype) def _covariance(self): if distribution_util.is_diagonal_scale(self.scale): return array_ops.matrix_diag(math_ops.square(self.scale.diag_part())) else: return self.scale.matmul(self.scale.to_dense(), adjoint_arg=True) def _variance(self): if distribution_util.is_diagonal_scale(self.scale): return math_ops.square(self.scale.diag_part()) elif (isinstance(self.scale, linalg.LinearOperatorLowRankUpdate) and self.scale.is_self_adjoint): return array_ops.matrix_diag_part( self.scale.matmul(self.scale.to_dense())) else: return array_ops.matrix_diag_part( self.scale.matmul(self.scale.to_dense(), adjoint_arg=True)) def _stddev(self): if distribution_util.is_diagonal_scale(self.scale): return math_ops.abs(self.scale.diag_part()) elif (isinstance(self.scale, linalg.LinearOperatorLowRankUpdate) and self.scale.is_self_adjoint): return math_ops.sqrt(array_ops.matrix_diag_part( self.scale.matmul(self.scale.to_dense()))) else: return math_ops.sqrt(array_ops.matrix_diag_part( self.scale.matmul(self.scale.to_dense(), adjoint_arg=True))) def _mode(self): return self._mean() @kullback_leibler.RegisterKL(MultivariateNormalLinearOperator, MultivariateNormalLinearOperator) @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def _kl_brute_force(a, b, name=None): """Batched KL divergence `KL(a || b)` for multivariate Normals. With `X`, `Y` both multivariate Normals in `R^k` with means `mu_a`, `mu_b` and covariance `C_a`, `C_b` respectively, ``` KL(a || b) = 0.5 * ( L - k + T + Q ), L := Log[Det(C_b)] - Log[Det(C_a)] T := trace(C_b^{-1} C_a), Q := (mu_b - mu_a)^T C_b^{-1} (mu_b - mu_a), ``` This `Op` computes the trace by solving `C_b^{-1} C_a`. Although efficient methods for solving systems with `C_b` may be available, a dense version of (the square root of) `C_a` is used, so performance is `O(B s k**2)` where `B` is the batch size, and `s` is the cost of solving `C_b x = y` for vectors `x` and `y`. Args: a: Instance of `MultivariateNormalLinearOperator`. b: Instance of `MultivariateNormalLinearOperator`. name: (optional) name to use for created ops. Default "kl_mvn". Returns: Batchwise `KL(a || b)`. """ def squared_frobenius_norm(x): """Helper to make KL calculation slightly more readable.""" # http://mathworld.wolfram.com/FrobeniusNorm.html # The gradient of KL[p,q] is not defined when p==q. The culprit is # linalg_ops.norm, i.e., we cannot use the commented out code. # return math_ops.square(linalg_ops.norm(x, ord="fro", axis=[-2, -1])) return math_ops.reduce_sum(math_ops.square(x), axis=[-2, -1]) # TODO(b/35041439): See also b/35040945. Remove this function once LinOp # supports something like: # A.inverse().solve(B).norm(order='fro', axis=[-1, -2]) def is_diagonal(x): """Helper to identify if `LinearOperator` has only a diagonal component.""" return (isinstance(x, linalg.LinearOperatorIdentity) or isinstance(x, linalg.LinearOperatorScaledIdentity) or isinstance(x, linalg.LinearOperatorDiag)) with ops.name_scope(name, "kl_mvn", values=[a.loc, b.loc] + a.scale.graph_parents + b.scale.graph_parents): # Calculation is based on: # http://stats.stackexchange.com/questions/60680/kl-divergence-between-two-multivariate-gaussians # and, # https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm # i.e., # If Ca = AA', Cb = BB', then # tr[inv(Cb) Ca] = tr[inv(B)' inv(B) A A'] # = tr[inv(B) A A' inv(B)'] # = tr[(inv(B) A) (inv(B) A)'] # = sum_{ij} (inv(B) A)_{ij}**2 # = ||inv(B) A||_F**2 # where ||.||_F is the Frobenius norm and the second equality follows from # the cyclic permutation property. if is_diagonal(a.scale) and is_diagonal(b.scale): # Using `stddev` because it handles expansion of Identity cases. b_inv_a = (a.stddev() / b.stddev())[..., array_ops.newaxis] else: b_inv_a = b.scale.solve(a.scale.to_dense()) kl_div = (b.scale.log_abs_determinant() - a.scale.log_abs_determinant() + 0.5 * ( - math_ops.cast(a.scale.domain_dimension_tensor(), a.dtype) + squared_frobenius_norm(b_inv_a) + squared_frobenius_norm(b.scale.solve( (b.mean() - a.mean())[..., array_ops.newaxis])))) kl_div.set_shape(array_ops.broadcast_static_shape( a.batch_shape, b.batch_shape)) return kl_div
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/mvn_linear_operator.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Logistic distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops.distributions import distribution from tensorflow.python.util import deprecation class Logistic(distribution.Distribution): """The Logistic distribution with location `loc` and `scale` parameters. #### Mathematical details The cumulative density function of this distribution is: ```none cdf(x; mu, sigma) = 1 / (1 + exp(-(x - mu) / sigma)) ``` where `loc = mu` and `scale = sigma`. The Logistic distribution is a member of the [location-scale family]( https://en.wikipedia.org/wiki/Location-scale_family), i.e., it can be constructed as, ```none X ~ Logistic(loc=0, scale=1) Y = loc + scale * X ``` #### Examples Examples of initialization of one or a batch of distributions. ```python import tensorflow_probability as tfp tfd = tfp.distributions # Define a single scalar Logistic distribution. dist = tfd.Logistic(loc=0., scale=3.) # Evaluate the cdf at 1, returning a scalar. dist.cdf(1.) # Define a batch of two scalar valued Logistics. # The first has mean 1 and scale 11, the second 2 and 22. dist = tfd.Logistic(loc=[1, 2.], scale=[11, 22.]) # Evaluate the pdf of the first distribution on 0, and the second on 1.5, # returning a length two tensor. dist.prob([0, 1.5]) # Get 3 samples, returning a 3 x 2 tensor. dist.sample([3]) # Arguments are broadcast when possible. # Define a batch of two scalar valued Logistics. # Both have mean 1, but different scales. dist = tfd.Logistic(loc=1., scale=[11, 22.]) # Evaluate the pdf of both distributions on the same point, 3.0, # returning a length 2 tensor. dist.prob(3.0) ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, loc, scale, validate_args=False, allow_nan_stats=True, name="Logistic"): """Construct Logistic distributions with mean and scale `loc` and `scale`. The parameters `loc` and `scale` must be shaped in a way that supports broadcasting (e.g. `loc + scale` is a valid operation). Args: loc: Floating point tensor, the means of the distribution(s). scale: Floating point tensor, the scales of the distribution(s). Must contain only positive values. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: The name to give Ops created by the initializer. Raises: TypeError: if loc and scale are different dtypes. """ parameters = dict(locals()) with ops.name_scope(name, values=[loc, scale]) as name: with ops.control_dependencies([check_ops.assert_positive(scale)] if validate_args else []): self._loc = array_ops.identity(loc, name="loc") self._scale = array_ops.identity(scale, name="scale") check_ops.assert_same_float_dtype([self._loc, self._scale]) super(Logistic, self).__init__( dtype=self._scale.dtype, reparameterization_type=distribution.FULLY_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=[self._loc, self._scale], name=name) @staticmethod def _param_shapes(sample_shape): return dict( zip(("loc", "scale"), ([ops.convert_to_tensor( sample_shape, dtype=dtypes.int32)] * 2))) @property def loc(self): """Distribution parameter for the location.""" return self._loc @property def scale(self): """Distribution parameter for scale.""" return self._scale def _batch_shape_tensor(self): return array_ops.broadcast_dynamic_shape( array_ops.shape(self.loc), array_ops.shape(self.scale)) def _batch_shape(self): return array_ops.broadcast_static_shape( self.loc.get_shape(), self.scale.get_shape()) def _event_shape_tensor(self): return constant_op.constant([], dtype=dtypes.int32) def _event_shape(self): return tensor_shape.TensorShape([]) def _sample_n(self, n, seed=None): # Uniform variates must be sampled from the open-interval `(0, 1)` rather # than `[0, 1)`. To do so, we use `np.finfo(self.dtype.as_numpy_dtype).tiny` # because it is the smallest, positive, "normal" number. A "normal" number # is such that the mantissa has an implicit leading 1. Normal, positive # numbers x, y have the reasonable property that, `x + y >= max(x, y)`. In # this case, a subnormal number (i.e., np.nextafter) can cause us to sample # 0. uniform = random_ops.random_uniform( shape=array_ops.concat([[n], self.batch_shape_tensor()], 0), minval=np.finfo(self.dtype.as_numpy_dtype).tiny, maxval=1., dtype=self.dtype, seed=seed) sampled = math_ops.log(uniform) - math_ops.log1p(-1. * uniform) return sampled * self.scale + self.loc def _log_prob(self, x): return self._log_unnormalized_prob(x) - self._log_normalization() def _log_cdf(self, x): return -nn_ops.softplus(-self._z(x)) def _cdf(self, x): return math_ops.sigmoid(self._z(x)) def _log_survival_function(self, x): return -nn_ops.softplus(self._z(x)) def _survival_function(self, x): return math_ops.sigmoid(-self._z(x)) def _log_unnormalized_prob(self, x): z = self._z(x) return - z - 2. * nn_ops.softplus(-z) def _log_normalization(self): return math_ops.log(self.scale) def _entropy(self): # Use broadcasting rules to calculate the full broadcast sigma. scale = self.scale * array_ops.ones_like(self.loc) return 2 + math_ops.log(scale) def _mean(self): return self.loc * array_ops.ones_like(self.scale) def _stddev(self): return self.scale * array_ops.ones_like(self.loc) * math.pi / math.sqrt(3) def _mode(self): return self._mean() def _z(self, x): """Standardize input `x` to a unit logistic.""" with ops.name_scope("standardize", values=[x]): return (x - self.loc) / self.scale
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/logistic.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Kumaraswamy distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import bijectors from tensorflow.contrib.distributions.python.ops import distribution_util from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import special_math_ops from tensorflow.python.ops.distributions import distribution from tensorflow.python.ops.distributions import transformed_distribution from tensorflow.python.ops.distributions import uniform from tensorflow.python.util import deprecation __all__ = [ "Kumaraswamy", ] _kumaraswamy_sample_note = """Note: `x` must have dtype `self.dtype` and be in `[0, 1].` It must have a shape compatible with `self.batch_shape()`.""" @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def _harmonic_number(x): """Compute the harmonic number from its analytic continuation. Derivation from [here]( https://en.wikipedia.org/wiki/Digamma_function#Relation_to_harmonic_numbers) and [Euler's constant]( https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant). Args: x: input float. Returns: z: The analytic continuation of the harmonic number for the input. """ one = array_ops.ones([], dtype=x.dtype) return math_ops.digamma(x + one) - math_ops.digamma(one) class Kumaraswamy(transformed_distribution.TransformedDistribution): """Kumaraswamy distribution. The Kumaraswamy distribution is defined over the `(0, 1)` interval using parameters `concentration1` (aka "alpha") and `concentration0` (aka "beta"). It has a shape similar to the Beta distribution, but is reparameterizeable. #### Mathematical Details The probability density function (pdf) is, ```none pdf(x; alpha, beta) = alpha * beta * x**(alpha - 1) * (1 - x**alpha)**(beta - 1) ``` where: * `concentration1 = alpha`, * `concentration0 = beta`, Distribution parameters are automatically broadcast in all functions; see examples for details. #### Examples ```python # Create a batch of three Kumaraswamy distributions. alpha = [1, 2, 3] beta = [1, 2, 3] dist = Kumaraswamy(alpha, beta) dist.sample([4, 5]) # Shape [4, 5, 3] # `x` has three batch entries, each with two samples. x = [[.1, .4, .5], [.2, .3, .5]] # Calculate the probability of each pair of samples under the corresponding # distribution in `dist`. dist.prob(x) # Shape [2, 3] ``` ```python # Create batch_shape=[2, 3] via parameter broadcast: alpha = [[1.], [2]] # Shape [2, 1] beta = [3., 4, 5] # Shape [3] dist = Kumaraswamy(alpha, beta) # alpha broadcast as: [[1., 1, 1,], # [2, 2, 2]] # beta broadcast as: [[3., 4, 5], # [3, 4, 5]] # batch_Shape [2, 3] dist.sample([4, 5]) # Shape [4, 5, 2, 3] x = [.2, .3, .5] # x will be broadcast as [[.2, .3, .5], # [.2, .3, .5]], # thus matching batch_shape [2, 3]. dist.prob(x) # Shape [2, 3] ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, concentration1=None, concentration0=None, validate_args=False, allow_nan_stats=True, name="Kumaraswamy"): """Initialize a batch of Kumaraswamy distributions. Args: concentration1: Positive floating-point `Tensor` indicating mean number of successes; aka "alpha". Implies `self.dtype` and `self.batch_shape`, i.e., `concentration1.shape = [N1, N2, ..., Nm] = self.batch_shape`. concentration0: Positive floating-point `Tensor` indicating mean number of failures; aka "beta". Otherwise has same semantics as `concentration1`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. """ with ops.name_scope(name, values=[concentration1, concentration0]) as name: concentration1 = ops.convert_to_tensor( concentration1, name="concentration1") concentration0 = ops.convert_to_tensor( concentration0, name="concentration0") super(Kumaraswamy, self).__init__( distribution=uniform.Uniform( low=array_ops.zeros([], dtype=concentration1.dtype), high=array_ops.ones([], dtype=concentration1.dtype), allow_nan_stats=allow_nan_stats), bijector=bijectors.Kumaraswamy( concentration1=concentration1, concentration0=concentration0, validate_args=validate_args), batch_shape=distribution_util.get_broadcast_shape( concentration1, concentration0), name=name) self._reparameterization_type = distribution.FULLY_REPARAMETERIZED @property def concentration1(self): """Concentration parameter associated with a `1` outcome.""" return self.bijector.concentration1 @property def concentration0(self): """Concentration parameter associated with a `0` outcome.""" return self.bijector.concentration0 def _entropy(self): a = self.concentration1 b = self.concentration0 return (1 - 1. / a) + ( 1 - 1. / b) * _harmonic_number(b) + math_ops.log(a) + math_ops.log(b) def _moment(self, n): """Compute the n'th (uncentered) moment.""" total_concentration = self.concentration1 + self.concentration0 expanded_concentration1 = array_ops.ones_like( total_concentration, dtype=self.dtype) * self.concentration1 expanded_concentration0 = array_ops.ones_like( total_concentration, dtype=self.dtype) * self.concentration0 beta_arg0 = 1 + n / expanded_concentration1 beta_arg = array_ops.stack([beta_arg0, expanded_concentration0], -1) log_moment = math_ops.log(expanded_concentration0) + special_math_ops.lbeta( beta_arg) return math_ops.exp(log_moment) def _mean(self): return self._moment(1) def _variance(self): # TODO(b/72696533): Investigate a more numerically stable version. return self._moment(2) - math_ops.square(self._moment(1)) @distribution_util.AppendDocstring( """Note: The mode is undefined when `concentration1 <= 1` or `concentration0 <= 1`. If `self.allow_nan_stats` is `True`, `NaN` is used for undefined modes. If `self.allow_nan_stats` is `False` an exception is raised when one or more modes are undefined.""") def _mode(self): a = self.concentration1 b = self.concentration0 mode = ((a - 1) / (a * b - 1))**(1. / a) if self.allow_nan_stats: nan = array_ops.fill( self.batch_shape_tensor(), np.array(np.nan, dtype=self.dtype.as_numpy_dtype), name="nan") is_defined = (self.concentration1 > 1.) & (self.concentration0 > 1.) return array_ops.where_v2(is_defined, mode, nan) return control_flow_ops.with_dependencies([ check_ops.assert_less( array_ops.ones([], dtype=self.concentration1.dtype), self.concentration1, message="Mode undefined for concentration1 <= 1."), check_ops.assert_less( array_ops.ones([], dtype=self.concentration0.dtype), self.concentration0, message="Mode undefined for concentration0 <= 1.") ], mode)
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/kumaraswamy.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Distribution of a vectorized Laplace, with uncorrelated components.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.distributions.python.ops import distribution_util from tensorflow.contrib.distributions.python.ops import vector_laplace_linear_operator as vector_laplace_linop from tensorflow.python.framework import ops from tensorflow.python.util import deprecation __all__ = [ "VectorLaplaceDiag", ] class VectorLaplaceDiag( vector_laplace_linop.VectorLaplaceLinearOperator): """The vectorization of the Laplace distribution on `R^k`. The vector laplace distribution is defined over `R^k`, and parameterized by a (batch of) length-`k` `loc` vector (the means) and a (batch of) `k x k` `scale` matrix: `covariance = 2 * scale @ scale.T`, where `@` denotes matrix-multiplication. #### Mathematical Details The probability density function (pdf) is, ```none pdf(x; loc, scale) = exp(-||y||_1) / Z, y = inv(scale) @ (x - loc), Z = 2**k |det(scale)|, ``` where: * `loc` is a vector in `R^k`, * `scale` is a linear operator in `R^{k x k}`, `cov = scale @ scale.T`, * `Z` denotes the normalization constant, and, * `||y||_1` denotes the `l1` norm of `y`, `sum_i |y_i|. A (non-batch) `scale` matrix is: ```none scale = diag(scale_diag + scale_identity_multiplier * ones(k)) ``` where: * `scale_diag.shape = [k]`, and, * `scale_identity_multiplier.shape = []`. Additional leading dimensions (if any) will index batches. If both `scale_diag` and `scale_identity_multiplier` are `None`, then `scale` is the Identity matrix. The VectorLaplace distribution is a member of the [location-scale family](https://en.wikipedia.org/wiki/Location-scale_family), i.e., it can be constructed as, ```none X = (X_1, ..., X_k), each X_i ~ Laplace(loc=0, scale=1) Y = (Y_1, ...,Y_k) = scale @ X + loc ``` #### About `VectorLaplace` and `Vector` distributions in TensorFlow. The `VectorLaplace` is a non-standard distribution that has useful properties. The marginals `Y_1, ..., Y_k` are *not* Laplace random variables, due to the fact that the sum of Laplace random variables is not Laplace. Instead, `Y` is a vector whose components are linear combinations of Laplace random variables. Thus, `Y` lives in the vector space generated by `vectors` of Laplace distributions. This allows the user to decide the mean and covariance (by setting `loc` and `scale`), while preserving some properties of the Laplace distribution. In particular, the tails of `Y_i` will be (up to polynomial factors) exponentially decaying. To see this last statement, note that the pdf of `Y_i` is the convolution of the pdf of `k` independent Laplace random variables. One can then show by induction that distributions with exponential (up to polynomial factors) tails are closed under convolution. #### Examples ```python import tensorflow_probability as tfp tfd = tfp.distributions # Initialize a single 2-variate VectorLaplace. vla = tfd.VectorLaplaceDiag( loc=[1., -1], scale_diag=[1, 2.]) vla.mean().eval() # ==> [1., -1] vla.stddev().eval() # ==> [1., 2] * sqrt(2) # Evaluate this on an observation in `R^2`, returning a scalar. vla.prob([-1., 0]).eval() # shape: [] # Initialize a 3-batch, 2-variate scaled-identity VectorLaplace. vla = tfd.VectorLaplaceDiag( loc=[1., -1], scale_identity_multiplier=[1, 2., 3]) vla.mean().eval() # shape: [3, 2] # ==> [[1., -1] # [1, -1], # [1, -1]] vla.stddev().eval() # shape: [3, 2] # ==> sqrt(2) * [[1., 1], # [2, 2], # [3, 3]] # Evaluate this on an observation in `R^2`, returning a length-3 vector. vla.prob([-1., 0]).eval() # shape: [3] # Initialize a 2-batch of 3-variate VectorLaplace's. vla = tfd.VectorLaplaceDiag( loc=[[1., 2, 3], [11, 22, 33]] # shape: [2, 3] scale_diag=[[1., 2, 3], [0.5, 1, 1.5]]) # shape: [2, 3] # Evaluate this on a two observations, each in `R^3`, returning a length-2 # vector. x = [[-1., 0, 1], [-11, 0, 11.]] # shape: [2, 3]. vla.prob(x).eval() # shape: [2] ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, loc=None, scale_diag=None, scale_identity_multiplier=None, validate_args=False, allow_nan_stats=True, name="VectorLaplaceDiag"): """Construct Vector Laplace distribution on `R^k`. The `batch_shape` is the broadcast shape between `loc` and `scale` arguments. The `event_shape` is given by last dimension of the matrix implied by `scale`. The last dimension of `loc` (if provided) must broadcast with this. Recall that `covariance = 2 * scale @ scale.T`. ```none scale = diag(scale_diag + scale_identity_multiplier * ones(k)) ``` where: * `scale_diag.shape = [k]`, and, * `scale_identity_multiplier.shape = []`. Additional leading dimensions (if any) will index batches. If both `scale_diag` and `scale_identity_multiplier` are `None`, then `scale` is the Identity matrix. Args: loc: Floating-point `Tensor`. If this is set to `None`, `loc` is implicitly `0`. When specified, may have shape `[B1, ..., Bb, k]` where `b >= 0` and `k` is the event size. scale_diag: Non-zero, floating-point `Tensor` representing a diagonal matrix added to `scale`. May have shape `[B1, ..., Bb, k]`, `b >= 0`, and characterizes `b`-batches of `k x k` diagonal matrices added to `scale`. When both `scale_identity_multiplier` and `scale_diag` are `None` then `scale` is the `Identity`. scale_identity_multiplier: Non-zero, floating-point `Tensor` representing a scaled-identity-matrix added to `scale`. May have shape `[B1, ..., Bb]`, `b >= 0`, and characterizes `b`-batches of scaled `k x k` identity matrices added to `scale`. When both `scale_identity_multiplier` and `scale_diag` are `None` then `scale` is the `Identity`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Raises: ValueError: if at most `scale_identity_multiplier` is specified. """ parameters = dict(locals()) with ops.name_scope(name): with ops.name_scope("init", values=[ loc, scale_diag, scale_identity_multiplier]): # No need to validate_args while making diag_scale. The returned # LinearOperatorDiag has an assert_non_singular method that is called by # the Bijector. scale = distribution_util.make_diag_scale( loc=loc, scale_diag=scale_diag, scale_identity_multiplier=scale_identity_multiplier, validate_args=False, assert_positive=False) super(VectorLaplaceDiag, self).__init__( loc=loc, scale=scale, validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name) self._parameters = parameters
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/vector_laplace_diag.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Half Normal distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import random_ops from tensorflow.python.ops.distributions import distribution from tensorflow.python.ops.distributions import special_math from tensorflow.python.util import deprecation __all__ = [ "HalfNormal", ] class HalfNormal(distribution.Distribution): """The Half Normal distribution with scale `scale`. #### Mathematical details The half normal is a transformation of a centered normal distribution. If some random variable `X` has normal distribution, ```none X ~ Normal(0.0, scale) Y = |X| ``` Then `Y` will have half normal distribution. The probability density function (pdf) is: ```none pdf(x; scale, x > 0) = sqrt(2) / (scale * sqrt(pi)) * exp(- 1/2 * (x / scale) ** 2) ) ``` Where `scale = sigma` is the standard deviation of the underlying normal distribution. #### Examples Examples of initialization of one or a batch of distributions. ```python import tensorflow_probability as tfp tfd = tfp.distributions # Define a single scalar HalfNormal distribution. dist = tfd.HalfNormal(scale=3.0) # Evaluate the cdf at 1, returning a scalar. dist.cdf(1.) # Define a batch of two scalar valued HalfNormals. # The first has scale 11.0, the second 22.0 dist = tfd.HalfNormal(scale=[11.0, 22.0]) # Evaluate the pdf of the first distribution on 1.0, and the second on 1.5, # returning a length two tensor. dist.prob([1.0, 1.5]) # Get 3 samples, returning a 3 x 2 tensor. dist.sample([3]) ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, scale, validate_args=False, allow_nan_stats=True, name="HalfNormal"): """Construct HalfNormals with scale `scale`. Args: scale: Floating point tensor; the scales of the distribution(s). Must contain only positive values. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. """ parameters = dict(locals()) with ops.name_scope(name, values=[scale]) as name: with ops.control_dependencies([check_ops.assert_positive(scale)] if validate_args else []): self._scale = array_ops.identity(scale, name="scale") super(HalfNormal, self).__init__( dtype=self._scale.dtype, reparameterization_type=distribution.FULLY_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=[self._scale], name=name) @staticmethod def _param_shapes(sample_shape): return {"scale": ops.convert_to_tensor(sample_shape, dtype=dtypes.int32)} @property def scale(self): """Distribution parameter for the scale.""" return self._scale def _batch_shape_tensor(self): return array_ops.shape(self.scale) def _batch_shape(self): return self.scale.shape def _event_shape_tensor(self): return constant_op.constant([], dtype=dtypes.int32) def _event_shape(self): return tensor_shape.TensorShape([]) def _sample_n(self, n, seed=None): shape = array_ops.concat([[n], self.batch_shape_tensor()], 0) sampled = random_ops.random_normal( shape=shape, mean=0., stddev=1., dtype=self.dtype, seed=seed) return math_ops.abs(sampled * self.scale) def _prob(self, x): coeff = np.sqrt(2) / self.scale / np.sqrt(np.pi) pdf = coeff * math_ops.exp(- 0.5 * (x / self.scale) ** 2) return pdf * math_ops.cast(x >= 0, self.dtype) def _cdf(self, x): truncated_x = nn.relu(x) return math_ops.erf(truncated_x / self.scale / np.sqrt(2.0)) def _entropy(self): return 0.5 * math_ops.log(np.pi * self.scale ** 2.0 / 2.0) + 0.5 def _mean(self): return self.scale * np.sqrt(2.0) / np.sqrt(np.pi) def _quantile(self, p): return np.sqrt(2.0) * self.scale * special_math.erfinv(p) def _mode(self): return array_ops.zeros(self.batch_shape_tensor()) def _variance(self): return self.scale ** 2.0 * (1.0 - 2.0 / np.pi)
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/half_normal.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions for computing moving statistics.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope __all__ = [ "assign_moving_mean_variance", "assign_log_moving_mean_exp", "moving_mean_variance", ] def assign_moving_mean_variance( mean_var, variance_var, value, decay, name=None): """Compute exponentially weighted moving {mean,variance} of a streaming value. The `value` updated exponentially weighted moving `mean_var` and `variance_var` are given by the following recurrence relations: ```python variance_var = decay * (variance_var + (1-decay) * (value - mean_var)**2) mean_var = decay * mean_var + (1 - decay) * value ``` Note: `mean_var` is updated *after* `variance_var`, i.e., `variance_var` uses the lag-1 mean. For derivation justification, see [Finch (2009; Eq. 143)][1]. Args: mean_var: `float`-like `Variable` representing the exponentially weighted moving mean. Same shape as `variance_var` and `value`. variance_var: `float`-like `Variable` representing the exponentially weighted moving variance. Same shape as `mean_var` and `value`. value: `float`-like `Tensor`. Same shape as `mean_var` and `variance_var`. decay: A `float`-like `Tensor`. The moving mean decay. Typically close to `1.`, e.g., `0.999`. name: Optional name of the returned operation. Returns: mean_var: `Variable` representing the `value`-updated exponentially weighted moving mean. variance_var: `Variable` representing the `value`-updated exponentially weighted moving variance. Raises: TypeError: if `mean_var` does not have float type `dtype`. TypeError: if `mean_var`, `variance_var`, `value`, `decay` have different `base_dtype`. #### References [1]: Tony Finch. Incremental calculation of weighted mean and variance. _Technical Report_, 2009. http://people.ds.cam.ac.uk/fanf2/hermes/doc/antiforgery/stats.pdf """ with ops.name_scope(name, "assign_moving_mean_variance", [variance_var, mean_var, value, decay]): with ops.colocate_with(variance_var): with ops.colocate_with(mean_var): base_dtype = mean_var.dtype.base_dtype if not base_dtype.is_floating: raise TypeError( "mean_var.base_dtype({}) does not have float type " "`dtype`.".format(base_dtype.name)) if base_dtype != variance_var.dtype.base_dtype: raise TypeError( "mean_var.base_dtype({}) != variance_var.base_dtype({})".format( base_dtype.name, variance_var.dtype.base_dtype.name)) value = ops.convert_to_tensor(value, dtype=base_dtype, name="value") decay = ops.convert_to_tensor(decay, dtype=base_dtype, name="decay") delta = value - mean_var with ops.control_dependencies([delta]): mean_var = state_ops.assign_add( mean_var, (1. - decay) * delta) variance_var = state_ops.assign_sub( variance_var, (1. - decay) * (variance_var - decay * math_ops.square(delta))) return mean_var, variance_var def assign_log_moving_mean_exp( log_mean_exp_var, log_value, decay, name=None): """Compute the log of the exponentially weighted moving mean of the exp. If `log_value` is a draw from a stationary random variable, this function approximates `log(E[exp(log_value)])`, i.e., a weighted log-sum-exp. More precisely, a `tf.Variable`, `log_mean_exp_var`, is updated by `log_value` using the following identity: ```none log_mean_exp_var = = log(decay exp(log_mean_exp_var) + (1 - decay) exp(log_value)) = log(exp(log_mean_exp_var + log(decay)) + exp(log_value + log1p(-decay))) = log_mean_exp_var + log( exp(log_mean_exp_var - log_mean_exp_var + log(decay)) + exp(log_value - log_mean_exp_var + log1p(-decay))) = log_mean_exp_var + log_sum_exp([log(decay), log_value - log_mean_exp_var + log1p(-decay)]). ``` In addition to numerical stability, this formulation is advantageous because `log_mean_exp_var` can be updated in a lock-free manner, i.e., using `assign_add`. (Note: the updates are not thread-safe; it's just that the update to the tf.Variable is presumed efficient due to being lock-free.) Args: log_mean_exp_var: `float`-like `Variable` representing the log of the exponentially weighted moving mean of the exp. Same shape as `log_value`. log_value: `float`-like `Tensor` representing a new (streaming) observation. Same shape as `log_mean_exp_var`. decay: A `float`-like `Tensor`. The moving mean decay. Typically close to `1.`, e.g., `0.999`. name: Optional name of the returned operation. Returns: log_mean_exp_var: A reference to the input 'Variable' tensor with the `log_value`-updated log of the exponentially weighted moving mean of exp. Raises: TypeError: if `log_mean_exp_var` does not have float type `dtype`. TypeError: if `log_mean_exp_var`, `log_value`, `decay` have different `base_dtype`. """ with ops.name_scope(name, "assign_log_moving_mean_exp", [log_mean_exp_var, log_value, decay]): # We want to update the variable in a numerically stable and lock-free way. # To do this, observe that variable `x` updated by `v` is: # x = log(w exp(x) + (1-w) exp(v)) # = log(exp(x + log(w)) + exp(v + log1p(-w))) # = x + log(exp(x - x + log(w)) + exp(v - x + log1p(-w))) # = x + lse([log(w), v - x + log1p(-w)]) with ops.colocate_with(log_mean_exp_var): base_dtype = log_mean_exp_var.dtype.base_dtype if not base_dtype.is_floating: raise TypeError( "log_mean_exp_var.base_dtype({}) does not have float type " "`dtype`.".format(base_dtype.name)) log_value = ops.convert_to_tensor(log_value, dtype=base_dtype, name="log_value") decay = ops.convert_to_tensor(decay, dtype=base_dtype, name="decay") delta = (log_value - log_mean_exp_var)[array_ops.newaxis, ...] x = array_ops.concat([ math_ops.log(decay) * array_ops.ones_like(delta), delta + math_ops.log1p(-decay) ], axis=0) x = math_ops.reduce_logsumexp(x, axis=0) return log_mean_exp_var.assign_add(x) def moving_mean_variance(value, decay, collections=None, name=None): """Compute exponentially weighted moving {mean,variance} of a streaming value. The exponentially-weighting moving `mean_var` and `variance_var` are updated by `value` according to the following recurrence: ```python variance_var = decay * (variance_var + (1-decay) * (value - mean_var)**2) mean_var = decay * mean_var + (1 - decay) * value ``` Note: `mean_var` is updated *after* `variance_var`, i.e., `variance_var` uses the lag-`1` mean. For derivation justification, see [Finch (2009; Eq. 143)][1]. Unlike `assign_moving_mean_variance`, this function handles variable creation. Args: value: `float`-like `Tensor`. Same shape as `mean_var` and `variance_var`. decay: A `float`-like `Tensor`. The moving mean decay. Typically close to `1.`, e.g., `0.999`. collections: Python list of graph-collections keys to which the internal variables `mean_var` and `variance_var` are added. Default value is `[GraphKeys.GLOBAL_VARIABLES]`. name: Optional name of the returned operation. Returns: mean_var: `Variable` representing the `value`-updated exponentially weighted moving mean. variance_var: `Variable` representing the `value`-updated exponentially weighted moving variance. Raises: TypeError: if `value_var` does not have float type `dtype`. TypeError: if `value`, `decay` have different `base_dtype`. #### References [1]: Tony Finch. Incremental calculation of weighted mean and variance. _Technical Report_, 2009. http://people.ds.cam.ac.uk/fanf2/hermes/doc/antiforgery/stats.pdf """ if collections is None: collections = [ops.GraphKeys.GLOBAL_VARIABLES] with variable_scope.variable_scope( name, "moving_mean_variance", [value, decay]): value = ops.convert_to_tensor(value, name="value") base_dtype = value.dtype.base_dtype if not base_dtype.is_floating: raise TypeError( "value.base_dtype({}) does not have float type `dtype`.".format( base_dtype.name)) decay = ops.convert_to_tensor(decay, dtype=base_dtype, name="decay") variance_var = variable_scope.get_variable( "moving_variance", shape=value.shape, dtype=value.dtype, initializer=init_ops.zeros_initializer(), trainable=False, collections=collections) mean_var = variable_scope.get_variable( "moving_mean", shape=value.shape, dtype=value.dtype, initializer=init_ops.zeros_initializer(), trainable=False, collections=collections) return assign_moving_mean_variance( mean_var, variance_var, value, decay)
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/moving_stats.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The PoissonLogNormalQuadratureCompound distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import distribution_util from tensorflow.contrib.distributions.python.ops import poisson as poisson_lib from tensorflow.contrib.distributions.python.ops.bijectors.exp import Exp from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops.distributions import categorical as categorical_lib from tensorflow.python.ops.distributions import distribution as distribution_lib from tensorflow.python.ops.distributions import normal as normal_lib from tensorflow.python.ops.distributions import transformed_distribution as transformed_lib from tensorflow.python.util import deprecation __all__ = [ "PoissonLogNormalQuadratureCompound", "quadrature_scheme_lognormal_gauss_hermite", "quadrature_scheme_lognormal_quantiles", ] @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def quadrature_scheme_lognormal_gauss_hermite( loc, scale, quadrature_size, validate_args=False, name=None): # pylint: disable=unused-argument """Use Gauss-Hermite quadrature to form quadrature on positive-reals. Note: for a given `quadrature_size`, this method is generally less accurate than `quadrature_scheme_lognormal_quantiles`. Args: loc: `float`-like (batch of) scalar `Tensor`; the location parameter of the LogNormal prior. scale: `float`-like (batch of) scalar `Tensor`; the scale parameter of the LogNormal prior. quadrature_size: Python `int` scalar representing the number of quadrature points. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. name: Python `str` name prefixed to Ops created by this class. Returns: grid: (Batch of) length-`quadrature_size` vectors representing the `log_rate` parameters of a `Poisson`. probs: (Batch of) length-`quadrature_size` vectors representing the weight associate with each `grid` value. """ with ops.name_scope(name, "vector_diffeomixture_quadrature_gauss_hermite", [loc, scale]): grid, probs = np.polynomial.hermite.hermgauss(deg=quadrature_size) grid = grid.astype(loc.dtype.as_numpy_dtype) probs = probs.astype(loc.dtype.as_numpy_dtype) probs /= np.linalg.norm(probs, ord=1, keepdims=True) probs = ops.convert_to_tensor(probs, name="probs", dtype=loc.dtype) # The following maps the broadcast of `loc` and `scale` to each grid # point, i.e., we are creating several log-rates that correspond to the # different Gauss-Hermite quadrature points and (possible) batches of # `loc` and `scale`. grid = (loc[..., array_ops.newaxis] + np.sqrt(2.) * scale[..., array_ops.newaxis] * grid) return grid, probs @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def quadrature_scheme_lognormal_quantiles( loc, scale, quadrature_size, validate_args=False, name=None): """Use LogNormal quantiles to form quadrature on positive-reals. Args: loc: `float`-like (batch of) scalar `Tensor`; the location parameter of the LogNormal prior. scale: `float`-like (batch of) scalar `Tensor`; the scale parameter of the LogNormal prior. quadrature_size: Python `int` scalar representing the number of quadrature points. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. name: Python `str` name prefixed to Ops created by this class. Returns: grid: (Batch of) length-`quadrature_size` vectors representing the `log_rate` parameters of a `Poisson`. probs: (Batch of) length-`quadrature_size` vectors representing the weight associate with each `grid` value. """ with ops.name_scope(name, "quadrature_scheme_lognormal_quantiles", [loc, scale]): # Create a LogNormal distribution. dist = transformed_lib.TransformedDistribution( distribution=normal_lib.Normal(loc=loc, scale=scale), bijector=Exp(), validate_args=validate_args) batch_ndims = dist.batch_shape.ndims if batch_ndims is None: batch_ndims = array_ops.shape(dist.batch_shape_tensor())[0] def _compute_quantiles(): """Helper to build quantiles.""" # Omit {0, 1} since they might lead to Inf/NaN. zero = array_ops.zeros([], dtype=dist.dtype) edges = math_ops.linspace(zero, 1., quadrature_size + 3)[1:-1] # Expand edges so its broadcast across batch dims. edges = array_ops.reshape(edges, shape=array_ops.concat([ [-1], array_ops.ones([batch_ndims], dtype=dtypes.int32)], axis=0)) quantiles = dist.quantile(edges) # Cyclically permute left by one. perm = array_ops.concat([ math_ops.range(1, 1 + batch_ndims), [0]], axis=0) quantiles = array_ops.transpose(quantiles, perm) return quantiles quantiles = _compute_quantiles() # Compute grid as quantile midpoints. grid = (quantiles[..., :-1] + quantiles[..., 1:]) / 2. # Set shape hints. grid.set_shape(dist.batch_shape.concatenate([quadrature_size])) # By construction probs is constant, i.e., `1 / quadrature_size`. This is # important, because non-constant probs leads to non-reparameterizable # samples. probs = array_ops.fill( dims=[quadrature_size], value=1. / math_ops.cast(quadrature_size, dist.dtype)) return grid, probs class PoissonLogNormalQuadratureCompound(distribution_lib.Distribution): """`PoissonLogNormalQuadratureCompound` distribution. The `PoissonLogNormalQuadratureCompound` is an approximation to a Poisson-LogNormal [compound distribution]( https://en.wikipedia.org/wiki/Compound_probability_distribution), i.e., ```none p(k|loc, scale) = int_{R_+} dl LogNormal(l | loc, scale) Poisson(k | l) approx= sum{ prob[d] Poisson(k | lambda(grid[d])) : d=0, ..., deg-1 } ``` By default, the `grid` is chosen as quantiles of the `LogNormal` distribution parameterized by `loc`, `scale` and the `prob` vector is `[1. / quadrature_size]*quadrature_size`. In the non-approximation case, a draw from the LogNormal prior represents the Poisson rate parameter. Unfortunately, the non-approximate distribution lacks an analytical probability density function (pdf). Therefore the `PoissonLogNormalQuadratureCompound` class implements an approximation based on [quadrature](https://en.wikipedia.org/wiki/Numerical_integration). Note: although the `PoissonLogNormalQuadratureCompound` is approximately the Poisson-LogNormal compound distribution, it is itself a valid distribution. Viz., it possesses a `sample`, `log_prob`, `mean`, `variance`, etc. which are all mutually consistent. #### Mathematical Details The `PoissonLogNormalQuadratureCompound` approximates a Poisson-LogNormal [compound distribution]( https://en.wikipedia.org/wiki/Compound_probability_distribution). Using variable-substitution and [numerical quadrature]( https://en.wikipedia.org/wiki/Numerical_integration) (default: based on `LogNormal` quantiles) we can redefine the distribution to be a parameter-less convex combination of `deg` different Poisson samples. That is, defined over positive integers, this distribution is parameterized by a (batch of) `loc` and `scale` scalars. The probability density function (pdf) is, ```none pdf(k | loc, scale, deg) = sum{ prob[d] Poisson(k | lambda=exp(grid[d])) : d=0, ..., deg-1 } ``` #### Examples ```python import tensorflow_probability as tfp tfd = tfp.distributions # Create two batches of PoissonLogNormalQuadratureCompounds, one with # prior `loc = 0.` and another with `loc = 1.` In both cases `scale = 1.` pln = tfd.PoissonLogNormalQuadratureCompound( loc=[0., -0.5], scale=1., quadrature_size=10, validate_args=True) """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, loc, scale, quadrature_size=8, quadrature_fn=quadrature_scheme_lognormal_quantiles, validate_args=False, allow_nan_stats=True, name="PoissonLogNormalQuadratureCompound"): """Constructs the PoissonLogNormalQuadratureCompound`. Note: `probs` returned by (optional) `quadrature_fn` are presumed to be either a length-`quadrature_size` vector or a batch of vectors in 1-to-1 correspondence with the returned `grid`. (I.e., broadcasting is only partially supported.) Args: loc: `float`-like (batch of) scalar `Tensor`; the location parameter of the LogNormal prior. scale: `float`-like (batch of) scalar `Tensor`; the scale parameter of the LogNormal prior. quadrature_size: Python `int` scalar representing the number of quadrature points. quadrature_fn: Python callable taking `loc`, `scale`, `quadrature_size`, `validate_args` and returning `tuple(grid, probs)` representing the LogNormal grid and corresponding normalized weight. normalized) weight. Default value: `quadrature_scheme_lognormal_quantiles`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Raises: TypeError: if `quadrature_grid` and `quadrature_probs` have different base `dtype`. """ parameters = dict(locals()) with ops.name_scope(name, values=[loc, scale]) as name: if loc is not None: loc = ops.convert_to_tensor(loc, name="loc") if scale is not None: scale = ops.convert_to_tensor( scale, dtype=None if loc is None else loc.dtype, name="scale") self._quadrature_grid, self._quadrature_probs = tuple(quadrature_fn( loc, scale, quadrature_size, validate_args)) dt = self._quadrature_grid.dtype if dt.base_dtype != self._quadrature_probs.dtype.base_dtype: raise TypeError("Quadrature grid dtype ({}) does not match quadrature " "probs dtype ({}).".format( dt.name, self._quadrature_probs.dtype.name)) self._distribution = poisson_lib.Poisson( log_rate=self._quadrature_grid, validate_args=validate_args, allow_nan_stats=allow_nan_stats) self._mixture_distribution = categorical_lib.Categorical( logits=math_ops.log(self._quadrature_probs), validate_args=validate_args, allow_nan_stats=allow_nan_stats) self._loc = loc self._scale = scale self._quadrature_size = quadrature_size super(PoissonLogNormalQuadratureCompound, self).__init__( dtype=dt, reparameterization_type=distribution_lib.NOT_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=[loc, scale], name=name) @property def mixture_distribution(self): """Distribution which randomly selects a Poisson with quadrature param.""" return self._mixture_distribution @property def distribution(self): """Base Poisson parameterized by a quadrature grid.""" return self._distribution @property def loc(self): """Location parameter of the LogNormal prior.""" return self._loc @property def scale(self): """Scale parameter of the LogNormal prior.""" return self._scale @property def quadrature_size(self): return self._quadrature_size def _batch_shape_tensor(self): return array_ops.broadcast_dynamic_shape( self.distribution.batch_shape_tensor(), array_ops.shape(self.mixture_distribution.logits))[:-1] def _batch_shape(self): return array_ops.broadcast_static_shape( self.distribution.batch_shape, self.mixture_distribution.logits.shape)[:-1] def _event_shape(self): return tensor_shape.TensorShape([]) def _sample_n(self, n, seed=None): # Get ids as a [n, batch_size]-shaped matrix, unless batch_shape=[] then get # ids as a [n]-shaped vector. batch_size = self.batch_shape.num_elements() if batch_size is None: batch_size = math_ops.reduce_prod(self.batch_shape_tensor()) # We need to "sample extra" from the mixture distribution if it doesn't # already specify a probs vector for each batch coordinate. # We only support this kind of reduced broadcasting, i.e., there is exactly # one probs vector for all batch dims or one for each. ids = self._mixture_distribution.sample( sample_shape=concat_vectors( [n], distribution_util.pick_vector( self.mixture_distribution.is_scalar_batch(), [batch_size], np.int32([]))), seed=distribution_util.gen_new_seed( seed, "poisson_lognormal_quadrature_compound")) # We need to flatten batch dims in case mixture_distribution has its own # batch dims. ids = array_ops.reshape(ids, shape=concat_vectors( [n], distribution_util.pick_vector( self.is_scalar_batch(), np.int32([]), np.int32([-1])))) # Stride `quadrature_size` for `batch_size` number of times. offset = math_ops.range(start=0, limit=batch_size * self._quadrature_size, delta=self._quadrature_size, dtype=ids.dtype) ids += offset rate = array_ops.gather( array_ops.reshape(self.distribution.rate, shape=[-1]), ids) rate = array_ops.reshape( rate, shape=concat_vectors([n], self.batch_shape_tensor())) return random_ops.random_poisson( lam=rate, shape=[], dtype=self.dtype, seed=seed) def _log_prob(self, x): return math_ops.reduce_logsumexp( (self.mixture_distribution.logits + self.distribution.log_prob(x[..., array_ops.newaxis])), axis=-1) def _mean(self): return math_ops.exp( math_ops.reduce_logsumexp( self.mixture_distribution.logits + self.distribution.log_rate, axis=-1)) def _variance(self): return math_ops.exp(self._log_variance()) def _stddev(self): return math_ops.exp(0.5 * self._log_variance()) def _log_variance(self): # Following calculation is based on law of total variance: # # Var[Z] = E[Var[Z | V]] + Var[E[Z | V]] # # where, # # Z|v ~ interpolate_affine[v](distribution) # V ~ mixture_distribution # # thus, # # E[Var[Z | V]] = sum{ prob[d] Var[d] : d=0, ..., deg-1 } # Var[E[Z | V]] = sum{ prob[d] (Mean[d] - Mean)**2 : d=0, ..., deg-1 } v = array_ops.stack([ # log(self.distribution.variance()) = log(Var[d]) = log(rate[d]) self.distribution.log_rate, # log((Mean[d] - Mean)**2) 2. * math_ops.log( math_ops.abs(self.distribution.mean() - self._mean()[..., array_ops.newaxis])), ], axis=-1) return math_ops.reduce_logsumexp( self.mixture_distribution.logits[..., array_ops.newaxis] + v, axis=[-2, -1]) @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def concat_vectors(*args): """Concatenates input vectors, statically if possible.""" args_ = [distribution_util.static_value(x) for x in args] if any(vec is None for vec in args_): return array_ops.concat(args, axis=0) return [val for vec in args_ for val in vec]
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/poisson_lognormal.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Independent distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.distributions import distribution as distribution_lib from tensorflow.python.ops.distributions import kullback_leibler from tensorflow.python.util import deprecation class Independent(distribution_lib.Distribution): """Independent distribution from batch of distributions. This distribution is useful for regarding a collection of independent, non-identical distributions as a single random variable. For example, the `Independent` distribution composed of a collection of `Bernoulli` distributions might define a distribution over an image (where each `Bernoulli` is a distribution over each pixel). More precisely, a collection of `B` (independent) `E`-variate random variables (rv) `{X_1, ..., X_B}`, can be regarded as a `[B, E]`-variate random variable `(X_1, ..., X_B)` with probability `p(x_1, ..., x_B) = p_1(x_1) * ... * p_B(x_B)` where `p_b(X_b)` is the probability of the `b`-th rv. More generally `B, E` can be arbitrary shapes. Similarly, the `Independent` distribution specifies a distribution over `[B, E]`-shaped events. It operates by reinterpreting the rightmost batch dims as part of the event dimensions. The `reinterpreted_batch_ndims` parameter controls the number of batch dims which are absorbed as event dims; `reinterpreted_batch_ndims < len(batch_shape)`. For example, the `log_prob` function entails a `reduce_sum` over the rightmost `reinterpreted_batch_ndims` after calling the base distribution's `log_prob`. In other words, since the batch dimension(s) index independent distributions, the resultant multivariate will have independent components. #### Mathematical Details The probability function is, ```none prob(x; reinterpreted_batch_ndims) = tf.reduce_prod( dist.prob(x), axis=-1-range(reinterpreted_batch_ndims)) ``` #### Examples ```python import tensorflow_probability as tfp tfd = tfp.distributions # Make independent distribution from a 2-batch Normal. ind = tfd.Independent( distribution=tfd.Normal(loc=[-1., 1], scale=[0.1, 0.5]), reinterpreted_batch_ndims=1) # All batch dims have been "absorbed" into event dims. ind.batch_shape # ==> [] ind.event_shape # ==> [2] # Make independent distribution from a 2-batch bivariate Normal. ind = tfd.Independent( distribution=tfd.MultivariateNormalDiag( loc=[[-1., 1], [1, -1]], scale_identity_multiplier=[1., 0.5]), reinterpreted_batch_ndims=1) # All batch dims have been "absorbed" into event dims. ind.batch_shape # ==> [] ind.event_shape # ==> [2, 2] ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__( self, distribution, reinterpreted_batch_ndims=None, validate_args=False, name=None): """Construct a `Independent` distribution. Args: distribution: The base distribution instance to transform. Typically an instance of `Distribution`. reinterpreted_batch_ndims: Scalar, integer number of rightmost batch dims which will be regarded as event dims. When `None` all but the first batch axis (batch axis 0) will be transferred to event dimensions (analogous to `tf.compat.v1.layers.flatten`). validate_args: Python `bool`. Whether to validate input with asserts. If `validate_args` is `False`, and the inputs are invalid, correct behavior is not guaranteed. name: The name for ops managed by the distribution. Default value: `Independent + distribution.name`. Raises: ValueError: if `reinterpreted_batch_ndims` exceeds `distribution.batch_ndims` """ parameters = dict(locals()) name = name or "Independent" + distribution.name self._distribution = distribution with ops.name_scope(name) as name: if reinterpreted_batch_ndims is None: reinterpreted_batch_ndims = self._get_default_reinterpreted_batch_ndims( distribution) reinterpreted_batch_ndims = ops.convert_to_tensor( reinterpreted_batch_ndims, dtype=dtypes.int32, name="reinterpreted_batch_ndims") self._reinterpreted_batch_ndims = reinterpreted_batch_ndims self._static_reinterpreted_batch_ndims = tensor_util.constant_value( reinterpreted_batch_ndims) if self._static_reinterpreted_batch_ndims is not None: self._reinterpreted_batch_ndims = self._static_reinterpreted_batch_ndims super(Independent, self).__init__( dtype=self._distribution.dtype, reparameterization_type=self._distribution.reparameterization_type, validate_args=validate_args, allow_nan_stats=self._distribution.allow_nan_stats, parameters=parameters, graph_parents=( [reinterpreted_batch_ndims] + distribution._graph_parents), # pylint: disable=protected-access name=name) self._runtime_assertions = self._make_runtime_assertions( distribution, reinterpreted_batch_ndims, validate_args) @property def distribution(self): return self._distribution @property def reinterpreted_batch_ndims(self): return self._reinterpreted_batch_ndims def _batch_shape_tensor(self): with ops.control_dependencies(self._runtime_assertions): batch_shape = self.distribution.batch_shape_tensor() dim0 = tensor_shape.dimension_value( batch_shape.shape.with_rank_at_least(1)[0]) batch_ndims = (dim0 if dim0 is not None else array_ops.shape(batch_shape)[0]) return batch_shape[:batch_ndims - self.reinterpreted_batch_ndims] def _batch_shape(self): batch_shape = self.distribution.batch_shape if (self._static_reinterpreted_batch_ndims is None or batch_shape.ndims is None): return tensor_shape.TensorShape(None) d = batch_shape.ndims - self._static_reinterpreted_batch_ndims return batch_shape[:d] def _event_shape_tensor(self): with ops.control_dependencies(self._runtime_assertions): batch_shape = self.distribution.batch_shape_tensor() dim0 = tensor_shape.dimension_value( batch_shape.shape.with_rank_at_least(1)[0]) batch_ndims = (dim0 if dim0 is not None else array_ops.shape(batch_shape)[0]) return array_ops.concat([ batch_shape[batch_ndims - self.reinterpreted_batch_ndims:], self.distribution.event_shape_tensor(), ], axis=0) def _event_shape(self): batch_shape = self.distribution.batch_shape if (self._static_reinterpreted_batch_ndims is None or batch_shape.ndims is None): return tensor_shape.TensorShape(None) d = batch_shape.ndims - self._static_reinterpreted_batch_ndims return batch_shape[d:].concatenate(self.distribution.event_shape) def _sample_n(self, n, seed): with ops.control_dependencies(self._runtime_assertions): return self.distribution.sample(sample_shape=n, seed=seed) def _log_prob(self, x): with ops.control_dependencies(self._runtime_assertions): return self._reduce_sum(self.distribution.log_prob(x)) def _entropy(self): with ops.control_dependencies(self._runtime_assertions): return self._reduce_sum(self.distribution.entropy()) def _mean(self): with ops.control_dependencies(self._runtime_assertions): return self.distribution.mean() def _variance(self): with ops.control_dependencies(self._runtime_assertions): return self.distribution.variance() def _stddev(self): with ops.control_dependencies(self._runtime_assertions): return self.distribution.stddev() def _mode(self): with ops.control_dependencies(self._runtime_assertions): return self.distribution.mode() def _make_runtime_assertions( self, distribution, reinterpreted_batch_ndims, validate_args): assertions = [] static_reinterpreted_batch_ndims = tensor_util.constant_value( reinterpreted_batch_ndims) batch_ndims = distribution.batch_shape.ndims if batch_ndims is not None and static_reinterpreted_batch_ndims is not None: if static_reinterpreted_batch_ndims > batch_ndims: raise ValueError("reinterpreted_batch_ndims({}) cannot exceed " "distribution.batch_ndims({})".format( static_reinterpreted_batch_ndims, batch_ndims)) elif validate_args: batch_shape = distribution.batch_shape_tensor() dim0 = tensor_shape.dimension_value( batch_shape.shape.with_rank_at_least(1)[0]) batch_ndims = ( dim0 if dim0 is not None else array_ops.shape(batch_shape)[0]) assertions.append(check_ops.assert_less_equal( reinterpreted_batch_ndims, batch_ndims, message=("reinterpreted_batch_ndims cannot exceed " "distribution.batch_ndims"))) return assertions def _reduce_sum(self, stat): if self._static_reinterpreted_batch_ndims is None: range_ = math_ops.range(self._reinterpreted_batch_ndims) else: range_ = np.arange(self._static_reinterpreted_batch_ndims) return math_ops.reduce_sum(stat, axis=-1-range_) def _get_default_reinterpreted_batch_ndims(self, distribution): """Computes the default value for reinterpreted_batch_ndim __init__ arg.""" ndims = distribution.batch_shape.ndims if ndims is None: which_maximum = math_ops.maximum ndims = array_ops.shape(distribution.batch_shape_tensor())[0] else: which_maximum = np.maximum return which_maximum(0, ndims - 1) @kullback_leibler.RegisterKL(Independent, Independent) @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def _kl_independent(a, b, name="kl_independent"): """Batched KL divergence `KL(a || b)` for Independent distributions. We can leverage the fact that ``` KL(Independent(a) || Independent(b)) = sum(KL(a || b)) ``` where the sum is over the `reinterpreted_batch_ndims`. Args: a: Instance of `Independent`. b: Instance of `Independent`. name: (optional) name to use for created ops. Default "kl_independent". Returns: Batchwise `KL(a || b)`. Raises: ValueError: If the event space for `a` and `b`, or their underlying distributions don't match. """ p = a.distribution q = b.distribution # The KL between any two (non)-batched distributions is a scalar. # Given that the KL between two factored distributions is the sum, i.e. # KL(p1(x)p2(y) || q1(x)q2(y)) = KL(p1 || q1) + KL(q1 || q2), we compute # KL(p || q) and do a `reduce_sum` on the reinterpreted batch dimensions. if a.event_shape.is_fully_defined() and b.event_shape.is_fully_defined(): if a.event_shape == b.event_shape: if p.event_shape == q.event_shape: num_reduce_dims = a.event_shape.ndims - p.event_shape.ndims reduce_dims = [-i - 1 for i in range(0, num_reduce_dims)] return math_ops.reduce_sum( kullback_leibler.kl_divergence(p, q, name=name), axis=reduce_dims) else: raise NotImplementedError("KL between Independents with different " "event shapes not supported.") else: raise ValueError("Event shapes do not match.") else: with ops.control_dependencies([ check_ops.assert_equal(a.event_shape_tensor(), b.event_shape_tensor()), check_ops.assert_equal(p.event_shape_tensor(), q.event_shape_tensor()) ]): num_reduce_dims = ( array_ops.shape(a.event_shape_tensor()[0]) - array_ops.shape(p.event_shape_tensor()[0])) reduce_dims = math_ops.range(-num_reduce_dims - 1, -1, 1) return math_ops.reduce_sum( kullback_leibler.kl_divergence(p, q, name=name), axis=reduce_dims)
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/independent.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Relaxed OneHotCategorical distribution classes.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import bijectors from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops.distributions import distribution from tensorflow.python.ops.distributions import transformed_distribution from tensorflow.python.ops.distributions import util as distribution_util from tensorflow.python.util import deprecation class ExpRelaxedOneHotCategorical(distribution.Distribution): """ExpRelaxedOneHotCategorical distribution with temperature and logits. An ExpRelaxedOneHotCategorical distribution is a log-transformed RelaxedOneHotCategorical distribution. The RelaxedOneHotCategorical is a distribution over random probability vectors, vectors of positive real values that sum to one, which continuously approximates a OneHotCategorical. The degree of approximation is controlled by a temperature: as the temperature goes to 0 the RelaxedOneHotCategorical becomes discrete with a distribution described by the logits, as the temperature goes to infinity the RelaxedOneHotCategorical becomes the constant distribution that is identically the constant vector of (1/event_size, ..., 1/event_size). Because computing log-probabilities of the RelaxedOneHotCategorical can suffer from underflow issues, this class is one solution for loss functions that depend on log-probabilities, such as the KL Divergence found in the variational autoencoder loss. The KL divergence between two distributions is invariant under invertible transformations, so evaluating KL divergences of ExpRelaxedOneHotCategorical samples, which are always followed by a `tf.exp` op, is equivalent to evaluating KL divergences of RelaxedOneHotCategorical samples. See the appendix of Maddison et al., 2016 for more mathematical details, where this distribution is called the ExpConcrete. #### Examples Creates a continuous distribution, whose exp approximates a 3-class one-hot categorical distribution. The 2nd class is the most likely to be the largest component in samples drawn from this distribution. If those samples are followed by a `tf.exp` op, then they are distributed as a relaxed onehot categorical. ```python temperature = 0.5 p = [0.1, 0.5, 0.4] dist = ExpRelaxedOneHotCategorical(temperature, probs=p) samples = dist.sample() exp_samples = tf.exp(samples) # exp_samples has the same distribution as samples from # RelaxedOneHotCategorical(temperature, probs=p) ``` Creates a continuous distribution, whose exp approximates a 3-class one-hot categorical distribution. The 2nd class is the most likely to be the largest component in samples drawn from this distribution. ```python temperature = 0.5 logits = [-2, 2, 0] dist = ExpRelaxedOneHotCategorical(temperature, logits=logits) samples = dist.sample() exp_samples = tf.exp(samples) # exp_samples has the same distribution as samples from # RelaxedOneHotCategorical(temperature, probs=p) ``` Creates a continuous distribution, whose exp approximates a 3-class one-hot categorical distribution. Because the temperature is very low, samples from this distribution are almost discrete, with one component almost 0 and the others very negative. The 2nd class is the most likely to be the largest component in samples drawn from this distribution. ```python temperature = 1e-5 logits = [-2, 2, 0] dist = ExpRelaxedOneHotCategorical(temperature, logits=logits) samples = dist.sample() exp_samples = tf.exp(samples) # exp_samples has the same distribution as samples from # RelaxedOneHotCategorical(temperature, probs=p) ``` Creates a continuous distribution, whose exp approximates a 3-class one-hot categorical distribution. Because the temperature is very high, samples from this distribution are usually close to the (-log(3), -log(3), -log(3)) vector. The 2nd class is still the most likely to be the largest component in samples drawn from this distribution. ```python temperature = 10 logits = [-2, 2, 0] dist = ExpRelaxedOneHotCategorical(temperature, logits=logits) samples = dist.sample() exp_samples = tf.exp(samples) # exp_samples has the same distribution as samples from # RelaxedOneHotCategorical(temperature, probs=p) ``` Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables. 2016. """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__( self, temperature, logits=None, probs=None, dtype=None, validate_args=False, allow_nan_stats=True, name="ExpRelaxedOneHotCategorical"): """Initialize ExpRelaxedOneHotCategorical using class log-probabilities. Args: temperature: An 0-D `Tensor`, representing the temperature of a set of ExpRelaxedCategorical distributions. The temperature should be positive. logits: An N-D `Tensor`, `N >= 1`, representing the log probabilities of a set of ExpRelaxedCategorical distributions. The first `N - 1` dimensions index into a batch of independent distributions and the last dimension represents a vector of logits for each class. Only one of `logits` or `probs` should be passed in. probs: An N-D `Tensor`, `N >= 1`, representing the probabilities of a set of ExpRelaxedCategorical distributions. The first `N - 1` dimensions index into a batch of independent distributions and the last dimension represents a vector of probabilities for each class. Only one of `logits` or `probs` should be passed in. dtype: The type of the event samples (default: inferred from logits/probs). validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. """ parameters = dict(locals()) with ops.name_scope(name, values=[logits, probs, temperature]) as name: self._logits, self._probs = distribution_util.get_logits_and_probs( name=name, logits=logits, probs=probs, validate_args=validate_args, multidimensional=True) if dtype is None: dtype = self._logits.dtype if not validate_args: temperature = math_ops.cast(temperature, dtype) with ops.control_dependencies([check_ops.assert_positive(temperature)] if validate_args else []): self._temperature = array_ops.identity(temperature, name="temperature") self._temperature_2d = array_ops.reshape(temperature, [-1, 1], name="temperature_2d") logits_shape_static = self._logits.get_shape().with_rank_at_least(1) if logits_shape_static.ndims is not None: self._batch_rank = ops.convert_to_tensor( logits_shape_static.ndims - 1, dtype=dtypes.int32, name="batch_rank") else: with ops.name_scope(name="batch_rank"): self._batch_rank = array_ops.rank(self._logits) - 1 with ops.name_scope(name="event_size"): self._event_size = array_ops.shape(self._logits)[-1] super(ExpRelaxedOneHotCategorical, self).__init__( dtype=dtype, reparameterization_type=distribution.FULLY_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=[self._logits, self._probs, self._temperature], name=name) @property def event_size(self): """Scalar `int32` tensor: the number of classes.""" return self._event_size @property def temperature(self): """Batchwise temperature tensor of a RelaxedCategorical.""" return self._temperature @property def logits(self): """Vector of coordinatewise logits.""" return self._logits @property def probs(self): """Vector of probabilities summing to one.""" return self._probs def _batch_shape_tensor(self): return array_ops.shape(self._logits)[:-1] def _batch_shape(self): return self.logits.get_shape()[:-1] def _event_shape_tensor(self): return array_ops.shape(self.logits)[-1:] def _event_shape(self): return self.logits.get_shape().with_rank_at_least(1)[-1:] def _sample_n(self, n, seed=None): sample_shape = array_ops.concat([[n], array_ops.shape(self.logits)], 0) logits = self.logits * array_ops.ones(sample_shape, dtype=self.dtype) logits_2d = array_ops.reshape(logits, [-1, self.event_size]) # Uniform variates must be sampled from the open-interval `(0, 1)` rather # than `[0, 1)`. To do so, we use `np.finfo(self.dtype.as_numpy_dtype).tiny` # because it is the smallest, positive, "normal" number. A "normal" number # is such that the mantissa has an implicit leading 1. Normal, positive # numbers x, y have the reasonable property that, `x + y >= max(x, y)`. In # this case, a subnormal number (i.e., np.nextafter) can cause us to sample # 0. uniform = random_ops.random_uniform( shape=array_ops.shape(logits_2d), minval=np.finfo(self.dtype.as_numpy_dtype).tiny, maxval=1., dtype=self.dtype, seed=seed) gumbel = -math_ops.log(-math_ops.log(uniform)) noisy_logits = math_ops.div(gumbel + logits_2d, self._temperature_2d) samples = nn_ops.log_softmax(noisy_logits) ret = array_ops.reshape(samples, sample_shape) return ret def _log_prob(self, x): x = self._assert_valid_sample(x) # broadcast logits or x if need be. logits = self.logits if (not x.get_shape().is_fully_defined() or not logits.get_shape().is_fully_defined() or x.get_shape() != logits.get_shape()): logits = array_ops.ones_like(x, dtype=logits.dtype) * logits x = array_ops.ones_like(logits, dtype=x.dtype) * x logits_shape = array_ops.shape(math_ops.reduce_sum(logits, axis=[-1])) logits_2d = array_ops.reshape(logits, [-1, self.event_size]) x_2d = array_ops.reshape(x, [-1, self.event_size]) # compute the normalization constant k = math_ops.cast(self.event_size, x.dtype) log_norm_const = (math_ops.lgamma(k) + (k - 1.) * math_ops.log(self.temperature)) # compute the unnormalized density log_softmax = nn_ops.log_softmax(logits_2d - x_2d * self._temperature_2d) log_unnorm_prob = math_ops.reduce_sum(log_softmax, [-1], keepdims=False) # combine unnormalized density with normalization constant log_prob = log_norm_const + log_unnorm_prob # Reshapes log_prob to be consistent with shape of user-supplied logits ret = array_ops.reshape(log_prob, logits_shape) return ret def _assert_valid_sample(self, x): if not self.validate_args: return x return control_flow_ops.with_dependencies([ check_ops.assert_non_positive(x), check_ops.assert_near( array_ops.zeros([], dtype=self.dtype), math_ops.reduce_logsumexp(x, axis=[-1])), ], x) class RelaxedOneHotCategorical( transformed_distribution.TransformedDistribution): """RelaxedOneHotCategorical distribution with temperature and logits. The RelaxedOneHotCategorical is a distribution over random probability vectors, vectors of positive real values that sum to one, which continuously approximates a OneHotCategorical. The degree of approximation is controlled by a temperature: as the temperature goes to 0 the RelaxedOneHotCategorical becomes discrete with a distribution described by the `logits` or `probs` parameters, as the temperature goes to infinity the RelaxedOneHotCategorical becomes the constant distribution that is identically the constant vector of (1/event_size, ..., 1/event_size). The RelaxedOneHotCategorical distribution was concurrently introduced as the Gumbel-Softmax (Jang et al., 2016) and Concrete (Maddison et al., 2016) distributions for use as a reparameterized continuous approximation to the `Categorical` one-hot distribution. If you use this distribution, please cite both papers. #### Examples Creates a continuous distribution, which approximates a 3-class one-hot categorical distribution. The 2nd class is the most likely to be the largest component in samples drawn from this distribution. ```python temperature = 0.5 p = [0.1, 0.5, 0.4] dist = RelaxedOneHotCategorical(temperature, probs=p) ``` Creates a continuous distribution, which approximates a 3-class one-hot categorical distribution. The 2nd class is the most likely to be the largest component in samples drawn from this distribution. ```python temperature = 0.5 logits = [-2, 2, 0] dist = RelaxedOneHotCategorical(temperature, logits=logits) ``` Creates a continuous distribution, which approximates a 3-class one-hot categorical distribution. Because the temperature is very low, samples from this distribution are almost discrete, with one component almost 1 and the others nearly 0. The 2nd class is the most likely to be the largest component in samples drawn from this distribution. ```python temperature = 1e-5 logits = [-2, 2, 0] dist = RelaxedOneHotCategorical(temperature, logits=logits) ``` Creates a continuous distribution, which approximates a 3-class one-hot categorical distribution. Because the temperature is very high, samples from this distribution are usually close to the (1/3, 1/3, 1/3) vector. The 2nd class is still the most likely to be the largest component in samples drawn from this distribution. ```python temperature = 10 logits = [-2, 2, 0] dist = RelaxedOneHotCategorical(temperature, logits=logits) ``` Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization with Gumbel-Softmax. 2016. Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables. 2016. """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__( self, temperature, logits=None, probs=None, dtype=None, validate_args=False, allow_nan_stats=True, name="RelaxedOneHotCategorical"): """Initialize RelaxedOneHotCategorical using class log-probabilities. Args: temperature: An 0-D `Tensor`, representing the temperature of a set of RelaxedOneHotCategorical distributions. The temperature should be positive. logits: An N-D `Tensor`, `N >= 1`, representing the log probabilities of a set of RelaxedOneHotCategorical distributions. The first `N - 1` dimensions index into a batch of independent distributions and the last dimension represents a vector of logits for each class. Only one of `logits` or `probs` should be passed in. probs: An N-D `Tensor`, `N >= 1`, representing the probabilities of a set of RelaxedOneHotCategorical distributions. The first `N - 1` dimensions index into a batch of independent distributions and the last dimension represents a vector of probabilities for each class. Only one of `logits` or `probs` should be passed in. dtype: The type of the event samples (default: inferred from logits/probs). validate_args: Unused in this distribution. allow_nan_stats: Python `bool`, default `True`. If `False`, raise an exception if a statistic (e.g. mean/mode/etc...) is undefined for any batch member. If `True`, batch members with valid parameters leading to undefined statistics will return NaN for this statistic. name: A name for this distribution (optional). """ dist = ExpRelaxedOneHotCategorical(temperature, logits=logits, probs=probs, dtype=dtype, validate_args=validate_args, allow_nan_stats=allow_nan_stats) super(RelaxedOneHotCategorical, self).__init__(dist, bijectors.Exp(), name=name)
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/relaxed_onehot_categorical.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Negative Binomial distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops.distributions import distribution from tensorflow.python.ops.distributions import util as distribution_util from tensorflow.python.util import deprecation class NegativeBinomial(distribution.Distribution): """NegativeBinomial distribution. The NegativeBinomial distribution is related to the experiment of performing Bernoulli trials in sequence. Given a Bernoulli trial with probability `p` of success, the NegativeBinomial distribution represents the distribution over the number of successes `s` that occur until we observe `f` failures. The probability mass function (pmf) is, ```none pmf(s; f, p) = p**s (1 - p)**f / Z Z = s! (f - 1)! / (s + f - 1)! ``` where: * `total_count = f`, * `probs = p`, * `Z` is the normalizaing constant, and, * `n!` is the factorial of `n`. """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, total_count, logits=None, probs=None, validate_args=False, allow_nan_stats=True, name="NegativeBinomial"): """Construct NegativeBinomial distributions. Args: total_count: Non-negative floating-point `Tensor` with shape broadcastable to `[B1,..., Bb]` with `b >= 0` and the same dtype as `probs` or `logits`. Defines this as a batch of `N1 x ... x Nm` different Negative Binomial distributions. In practice, this represents the number of negative Bernoulli trials to stop at (the `total_count` of failures), but this is still a valid distribution when `total_count` is a non-integer. logits: Floating-point `Tensor` with shape broadcastable to `[B1, ..., Bb]` where `b >= 0` indicates the number of batch dimensions. Each entry represents logits for the probability of success for independent Negative Binomial distributions and must be in the open interval `(-inf, inf)`. Only one of `logits` or `probs` should be specified. probs: Positive floating-point `Tensor` with shape broadcastable to `[B1, ..., Bb]` where `b >= 0` indicates the number of batch dimensions. Each entry represents the probability of success for independent Negative Binomial distributions and must be in the open interval `(0, 1)`. Only one of `logits` or `probs` should be specified. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. """ parameters = dict(locals()) with ops.name_scope(name, values=[total_count, logits, probs]) as name: self._logits, self._probs = distribution_util.get_logits_and_probs( logits, probs, validate_args=validate_args, name=name) with ops.control_dependencies( [check_ops.assert_positive(total_count)] if validate_args else []): self._total_count = array_ops.identity(total_count) super(NegativeBinomial, self).__init__( dtype=self._probs.dtype, reparameterization_type=distribution.NOT_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=[self._total_count, self._probs, self._logits], name=name) @property def total_count(self): """Number of negative trials.""" return self._total_count @property def logits(self): """Log-odds of a `1` outcome (vs `0`).""" return self._logits @property def probs(self): """Probability of a `1` outcome (vs `0`).""" return self._probs def _batch_shape_tensor(self): return array_ops.broadcast_dynamic_shape( array_ops.shape(self.total_count), array_ops.shape(self.probs)) def _batch_shape(self): return array_ops.broadcast_static_shape( self.total_count.get_shape(), self.probs.get_shape()) def _event_shape_tensor(self): return array_ops.constant([], dtype=dtypes.int32) def _event_shape(self): return tensor_shape.TensorShape([]) def _sample_n(self, n, seed=None): # Here we use the fact that if: # lam ~ Gamma(concentration=total_count, rate=(1-probs)/probs) # then X ~ Poisson(lam) is Negative Binomially distributed. rate = random_ops.random_gamma( shape=[n], alpha=self.total_count, beta=math_ops.exp(-self.logits), dtype=self.dtype, seed=seed) return random_ops.random_poisson( rate, shape=[], dtype=self.dtype, seed=distribution_util.gen_new_seed(seed, "negative_binom")) def _cdf(self, x): if self.validate_args: x = distribution_util.embed_check_nonnegative_integer_form(x) return math_ops.betainc(self.total_count, 1. + x, math_ops.sigmoid(-self.logits)) def _log_prob(self, x): return (self._log_unnormalized_prob(x) - self._log_normalization(x)) def _log_unnormalized_prob(self, x): if self.validate_args: x = distribution_util.embed_check_nonnegative_integer_form(x) return (self.total_count * math_ops.log_sigmoid(-self.logits) + x * math_ops.log_sigmoid(self.logits)) def _log_normalization(self, x): if self.validate_args: x = distribution_util.embed_check_nonnegative_integer_form(x) return (-math_ops.lgamma(self.total_count + x) + math_ops.lgamma(1. + x) + math_ops.lgamma(self.total_count)) def _mean(self): return self.total_count * math_ops.exp(self.logits) def _mode(self): adjusted_count = array_ops.where_v2(1. < self.total_count, self.total_count - 1., array_ops.zeros_like(self.total_count)) return math_ops.floor(adjusted_count * math_ops.exp(self.logits)) def _variance(self): return self._mean() / math_ops.sigmoid(-self.logits)
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/negative_binomial.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for testing distributions and/or bijectors.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import histogram_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import variables as variables_ops __all__ = [ "DiscreteScalarDistributionTestHelpers", "VectorDistributionTestHelpers", ] class DiscreteScalarDistributionTestHelpers(object): """DiscreteScalarDistributionTestHelpers.""" def run_test_sample_consistent_log_prob(self, sess_run_fn, dist, num_samples=int(1e5), num_threshold=int(1e3), seed=42, batch_size=None, rtol=1e-2, atol=0.): """Tests that sample/log_prob are consistent with each other. "Consistency" means that `sample` and `log_prob` correspond to the same distribution. Note: this test only verifies a necessary condition for consistency--it does does not verify sufficiency hence does not prove `sample`, `log_prob` truly are consistent. Args: sess_run_fn: Python `callable` taking `list`-like of `Tensor`s and returning a list of results after running one "step" of TensorFlow computation, typically set to `sess.run`. dist: Distribution instance or object which implements `sample`, `log_prob`, `event_shape_tensor` and `batch_shape_tensor`. num_samples: Python `int` scalar indicating the number of Monte-Carlo samples to draw from `dist`. num_threshold: Python `int` scalar indicating the number of samples a bucket must contain before being compared to the probability. Default value: 1e3; must be at least 1. Warning, set too high will cause test to falsely pass but setting too low will cause the test to falsely fail. seed: Python `int` indicating the seed to use when sampling from `dist`. In general it is not recommended to use `None` during a test as this increases the likelihood of spurious test failure. batch_size: Hint for unpacking result of samples. Default: `None` means batch_size is inferred. rtol: Python `float`-type indicating the admissible relative error between analytical and sample statistics. atol: Python `float`-type indicating the admissible absolute error between analytical and sample statistics. Raises: ValueError: if `num_threshold < 1`. """ if num_threshold < 1: raise ValueError( "num_threshold({}) must be at least 1.".format(num_threshold)) # Histogram only supports vectors so we call it once per batch coordinate. y = dist.sample(num_samples, seed=seed) y = array_ops.reshape(y, shape=[num_samples, -1]) if batch_size is None: batch_size = math_ops.reduce_prod(dist.batch_shape_tensor()) batch_dims = array_ops.shape(dist.batch_shape_tensor())[0] edges_expanded_shape = 1 + array_ops.pad([-2], paddings=[[0, batch_dims]]) for b, x in enumerate(array_ops.unstack(y, num=batch_size, axis=1)): counts, edges = self.histogram(x) edges = array_ops.reshape(edges, edges_expanded_shape) probs = math_ops.exp(dist.log_prob(edges)) probs = array_ops.reshape(probs, shape=[-1, batch_size])[:, b] [counts_, probs_] = sess_run_fn([counts, probs]) valid = counts_ > num_threshold probs_ = probs_[valid] counts_ = counts_[valid] self.assertAllClose(probs_, counts_ / num_samples, rtol=rtol, atol=atol) def run_test_sample_consistent_mean_variance(self, sess_run_fn, dist, num_samples=int(1e5), seed=24, rtol=1e-2, atol=0.): """Tests that sample/mean/variance are consistent with each other. "Consistency" means that `sample`, `mean`, `variance`, etc all correspond to the same distribution. Args: sess_run_fn: Python `callable` taking `list`-like of `Tensor`s and returning a list of results after running one "step" of TensorFlow computation, typically set to `sess.run`. dist: Distribution instance or object which implements `sample`, `log_prob`, `event_shape_tensor` and `batch_shape_tensor`. num_samples: Python `int` scalar indicating the number of Monte-Carlo samples to draw from `dist`. seed: Python `int` indicating the seed to use when sampling from `dist`. In general it is not recommended to use `None` during a test as this increases the likelihood of spurious test failure. rtol: Python `float`-type indicating the admissible relative error between analytical and sample statistics. atol: Python `float`-type indicating the admissible absolute error between analytical and sample statistics. """ x = math_ops.cast(dist.sample(num_samples, seed=seed), dtypes.float32) sample_mean = math_ops.reduce_mean(x, axis=0) sample_variance = math_ops.reduce_mean( math_ops.square(x - sample_mean), axis=0) sample_stddev = math_ops.sqrt(sample_variance) [sample_mean_, sample_variance_, sample_stddev_, mean_, variance_, stddev_] = sess_run_fn([ sample_mean, sample_variance, sample_stddev, dist.mean(), dist.variance(), dist.stddev(), ]) self.assertAllClose(mean_, sample_mean_, rtol=rtol, atol=atol) self.assertAllClose(variance_, sample_variance_, rtol=rtol, atol=atol) self.assertAllClose(stddev_, sample_stddev_, rtol=rtol, atol=atol) def histogram(self, x, value_range=None, nbins=None, name=None): """Return histogram of values. Given the tensor `values`, this operation returns a rank 1 histogram counting the number of entries in `values` that fell into every bin. The bins are equal width and determined by the arguments `value_range` and `nbins`. Args: x: 1D numeric `Tensor` of items to count. value_range: Shape [2] `Tensor`. `new_values <= value_range[0]` will be mapped to `hist[0]`, `values >= value_range[1]` will be mapped to `hist[-1]`. Must be same dtype as `x`. nbins: Scalar `int32 Tensor`. Number of histogram bins. name: Python `str` name prefixed to Ops created by this class. Returns: counts: 1D `Tensor` of counts, i.e., `counts[i] = sum{ edges[i-1] <= values[j] < edges[i] : j }`. edges: 1D `Tensor` characterizing intervals used for counting. """ with ops.name_scope(name, "histogram", [x]): x = ops.convert_to_tensor(x, name="x") if value_range is None: value_range = [math_ops.reduce_min(x), 1 + math_ops.reduce_max(x)] value_range = ops.convert_to_tensor(value_range, name="value_range") lo = value_range[0] hi = value_range[1] if nbins is None: nbins = math_ops.cast(hi - lo, dtypes.int32) delta = (hi - lo) / math_ops.cast( nbins, dtype=value_range.dtype.base_dtype) edges = math_ops.range( start=lo, limit=hi, delta=delta, dtype=x.dtype.base_dtype) counts = histogram_ops.histogram_fixed_width( x, value_range=value_range, nbins=nbins) return counts, edges class VectorDistributionTestHelpers(object): """VectorDistributionTestHelpers helps test vector-event distributions.""" def run_test_sample_consistent_log_prob(self, sess_run_fn, dist, num_samples=int(1e5), radius=1., center=0., seed=42, rtol=1e-2, atol=0.): """Tests that sample/log_prob are mutually consistent. "Consistency" means that `sample` and `log_prob` correspond to the same distribution. The idea of this test is to compute the Monte-Carlo estimate of the volume enclosed by a hypersphere, i.e., the volume of an `n`-ball. While we could choose an arbitrary function to integrate, the hypersphere's volume is nice because it is intuitive, has an easy analytical expression, and works for `dimensions > 1`. Technical Details: Observe that: ```none int_{R**d} dx [x in Ball(radius=r, center=c)] = E_{p(X)}[ [X in Ball(r, c)] / p(X) ] = lim_{m->infty} m**-1 sum_j^m [x[j] in Ball(r, c)] / p(x[j]), where x[j] ~iid p(X) ``` Thus, for fixed `m`, the above is approximately true when `sample` and `log_prob` are mutually consistent. Furthermore, the above calculation has the analytical result: `pi**(d/2) r**d / Gamma(1 + d/2)`. Note: this test only verifies a necessary condition for consistency--it does does not verify sufficiency hence does not prove `sample`, `log_prob` truly are consistent. For this reason we recommend testing several different hyperspheres (assuming the hypersphere is supported by the distribution). Furthermore, we gain additional trust in this test when also tested `sample` against the first, second moments (`run_test_sample_consistent_mean_covariance`); it is probably unlikely that a "best-effort" implementation of `log_prob` would incorrectly pass both tests and for different hyperspheres. For a discussion on the analytical result (second-line) see: https://en.wikipedia.org/wiki/Volume_of_an_n-ball. For a discussion of importance sampling (fourth-line) see: https://en.wikipedia.org/wiki/Importance_sampling. Args: sess_run_fn: Python `callable` taking `list`-like of `Tensor`s and returning a list of results after running one "step" of TensorFlow computation, typically set to `sess.run`. dist: Distribution instance or object which implements `sample`, `log_prob`, `event_shape_tensor` and `batch_shape_tensor`. The distribution must have non-zero probability of sampling every point enclosed by the hypersphere. num_samples: Python `int` scalar indicating the number of Monte-Carlo samples to draw from `dist`. radius: Python `float`-type indicating the radius of the `n`-ball which we're computing the volume. center: Python floating-type vector (or scalar) indicating the center of the `n`-ball which we're computing the volume. When scalar, the value is broadcast to all event dims. seed: Python `int` indicating the seed to use when sampling from `dist`. In general it is not recommended to use `None` during a test as this increases the likelihood of spurious test failure. rtol: Python `float`-type indicating the admissible relative error between actual- and approximate-volumes. atol: Python `float`-type indicating the admissible absolute error between actual- and approximate-volumes. In general this should be zero since a typical radius implies a non-zero volume. """ def actual_hypersphere_volume(dims, radius): # https://en.wikipedia.org/wiki/Volume_of_an_n-ball # Using tf.math.lgamma because we'd have to otherwise use SciPy which is # not a required dependency of core. radius = np.asarray(radius) dims = math_ops.cast(dims, dtype=radius.dtype) return math_ops.exp((dims / 2.) * np.log(np.pi) - math_ops.lgamma(1. + dims / 2.) + dims * math_ops.log(radius)) def is_in_ball(x, radius, center): return math_ops.cast( linalg_ops.norm(x - center, axis=-1) <= radius, dtype=x.dtype) def monte_carlo_hypersphere_volume(dist, num_samples, radius, center): # https://en.wikipedia.org/wiki/Importance_sampling x = dist.sample(num_samples, seed=seed) x = array_ops.identity(x) # Invalidate bijector cacheing. return math_ops.reduce_mean( math_ops.exp(-dist.log_prob(x)) * is_in_ball(x, radius, center), axis=0) # Build graph. with ops.name_scope( "run_test_sample_consistent_log_prob", values=[num_samples, radius, center] + dist._graph_parents): # pylint: disable=protected-access batch_shape = dist.batch_shape_tensor() actual_volume = actual_hypersphere_volume( dims=dist.event_shape_tensor()[0], radius=radius) sample_volume = monte_carlo_hypersphere_volume( dist, num_samples=num_samples, radius=radius, center=center) init_op = variables_ops.global_variables_initializer() # Execute graph. sess_run_fn(init_op) [batch_shape_, actual_volume_, sample_volume_] = sess_run_fn([batch_shape, actual_volume, sample_volume]) # Check results. self.assertAllClose( np.tile(actual_volume_, reps=batch_shape_), sample_volume_, rtol=rtol, atol=atol) def run_test_sample_consistent_mean_covariance(self, sess_run_fn, dist, num_samples=int(1e5), seed=24, rtol=1e-2, atol=0.1, cov_rtol=None, cov_atol=None): """Tests that sample/mean/covariance are consistent with each other. "Consistency" means that `sample`, `mean`, `covariance`, etc all correspond to the same distribution. Args: sess_run_fn: Python `callable` taking `list`-like of `Tensor`s and returning a list of results after running one "step" of TensorFlow computation, typically set to `sess.run`. dist: Distribution instance or object which implements `sample`, `log_prob`, `event_shape_tensor` and `batch_shape_tensor`. num_samples: Python `int` scalar indicating the number of Monte-Carlo samples to draw from `dist`. seed: Python `int` indicating the seed to use when sampling from `dist`. In general it is not recommended to use `None` during a test as this increases the likelihood of spurious test failure. rtol: Python `float`-type indicating the admissible relative error between analytical and sample statistics. atol: Python `float`-type indicating the admissible absolute error between analytical and sample statistics. cov_rtol: Python `float`-type indicating the admissible relative error between analytical and sample covariance. Default: rtol. cov_atol: Python `float`-type indicating the admissible absolute error between analytical and sample covariance. Default: atol. """ x = dist.sample(num_samples, seed=seed) sample_mean = math_ops.reduce_mean(x, axis=0) sample_covariance = math_ops.reduce_mean( _vec_outer_square(x - sample_mean), axis=0) sample_variance = array_ops.matrix_diag_part(sample_covariance) sample_stddev = math_ops.sqrt(sample_variance) [ sample_mean_, sample_covariance_, sample_variance_, sample_stddev_, mean_, covariance_, variance_, stddev_ ] = sess_run_fn([ sample_mean, sample_covariance, sample_variance, sample_stddev, dist.mean(), dist.covariance(), dist.variance(), dist.stddev(), ]) self.assertAllClose(mean_, sample_mean_, rtol=rtol, atol=atol) self.assertAllClose( covariance_, sample_covariance_, rtol=cov_rtol or rtol, atol=cov_atol or atol) self.assertAllClose(variance_, sample_variance_, rtol=rtol, atol=atol) self.assertAllClose(stddev_, sample_stddev_, rtol=rtol, atol=atol) def _vec_outer_square(x, name=None): """Computes the outer-product of a vector, i.e., x.T x.""" with ops.name_scope(name, "vec_osquare", [x]): return x[..., :, array_ops.newaxis] * x[..., array_ops.newaxis, :]
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/test_util.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Cauchy distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops.distributions import distribution from tensorflow.python.util import deprecation __all__ = [ "Cauchy", ] class Cauchy(distribution.Distribution): """The Cauchy distribution with location `loc` and scale `scale`. #### Mathematical details The probability density function (pdf) is, ```none pdf(x; loc, scale) = 1 / (pi scale (1 + z**2)) z = (x - loc) / scale ``` where `loc` is the location, and `scale` is the scale. The Cauchy distribution is a member of the [location-scale family]( https://en.wikipedia.org/wiki/Location-scale_family), i.e. `Y ~ Cauchy(loc, scale)` is equivalent to, ```none X ~ Cauchy(loc=0, scale=1) Y = loc + scale * X ``` #### Examples Examples of initialization of one or a batch of distributions. ```python import tensorflow_probability as tfp tfd = tfp.distributions # Define a single scalar Cauchy distribution. dist = tfd.Cauchy(loc=0., scale=3.) # Evaluate the cdf at 1, returning a scalar. dist.cdf(1.) # Define a batch of two scalar valued Cauchy distributions. dist = tfd.Cauchy(loc=[1, 2.], scale=[11, 22.]) # Evaluate the pdf of the first distribution on 0, and the second on 1.5, # returning a length two tensor. dist.prob([0, 1.5]) # Get 3 samples, returning a 3 x 2 tensor. dist.sample([3]) # Arguments are broadcast when possible. # Define a batch of two scalar valued Cauchy distributions. # Both have median 1, but different scales. dist = tfd.Cauchy(loc=1., scale=[11, 22.]) # Evaluate the pdf of both distributions on the same point, 3.0, # returning a length 2 tensor. dist.prob(3.) ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, loc, scale, validate_args=False, allow_nan_stats=True, name="Cauchy"): """Construct Cauchy distributions. The parameters `loc` and `scale` must be shaped in a way that supports broadcasting (e.g. `loc + scale` is a valid operation). Args: loc: Floating point tensor; the modes of the distribution(s). scale: Floating point tensor; the locations of the distribution(s). Must contain only positive values. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Raises: TypeError: if `loc` and `scale` have different `dtype`. """ parameters = dict(locals()) with ops.name_scope(name, values=[loc, scale]) as name: with ops.control_dependencies([check_ops.assert_positive(scale)] if validate_args else []): self._loc = array_ops.identity(loc, name="loc") self._scale = array_ops.identity(scale, name="scale") check_ops.assert_same_float_dtype([self._loc, self._scale]) super(Cauchy, self).__init__( dtype=self._scale.dtype, reparameterization_type=distribution.FULLY_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=[self._loc, self._scale], name=name) @staticmethod def _param_shapes(sample_shape): return dict( zip(("loc", "scale"), ([ops.convert_to_tensor(sample_shape, dtype=dtypes.int32)] * 2))) @property def loc(self): """Distribution parameter for the mean.""" return self._loc @property def scale(self): """Distribution parameter for standard deviation.""" return self._scale def _batch_shape_tensor(self): return array_ops.broadcast_dynamic_shape( array_ops.shape(self.loc), array_ops.shape(self.scale)) def _batch_shape(self): return array_ops.broadcast_static_shape(self.loc.shape, self.scale.shape) def _event_shape_tensor(self): return constant_op.constant([], dtype=dtypes.int32) def _event_shape(self): return tensor_shape.TensorShape([]) def _sample_n(self, n, seed=None): shape = array_ops.concat([[n], self.batch_shape_tensor()], 0) probs = random_ops.random_uniform( shape=shape, minval=0., maxval=1., dtype=self.dtype, seed=seed) return self._quantile(probs) def _log_prob(self, x): return self._log_unnormalized_prob(x) - self._log_normalization() def _cdf(self, x): return math_ops.atan(self._z(x)) / np.pi + 0.5 def _log_cdf(self, x): return math_ops.log1p(2 / np.pi * math_ops.atan(self._z(x))) - np.log(2) def _log_unnormalized_prob(self, x): return -math_ops.log1p(math_ops.square(self._z(x))) def _log_normalization(self): return np.log(np.pi) + math_ops.log(self.scale) def _entropy(self): h = np.log(4 * np.pi) + math_ops.log(self.scale) return h * array_ops.ones_like(self.loc) def _quantile(self, p): return self.loc + self.scale * math_ops.tan(np.pi * (p - 0.5)) def _mode(self): return self.loc * array_ops.ones_like(self.scale) def _z(self, x): """Standardize input `x`.""" with ops.name_scope("standardize", values=[x]): return (x - self.loc) / self.scale def _inv_z(self, z): """Reconstruct input `x` from a its normalized version.""" with ops.name_scope("reconstruct", values=[z]): return z * self.scale + self.loc def _mean(self): if self.allow_nan_stats: return array_ops.fill(self.batch_shape_tensor(), self.dtype.as_numpy_dtype(np.nan)) else: raise ValueError("`mean` is undefined for Cauchy distribution.") def _stddev(self): if self.allow_nan_stats: return array_ops.fill(self.batch_shape_tensor(), self.dtype.as_numpy_dtype(np.nan)) else: raise ValueError("`stddev` is undefined for Cauchy distribution.")
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/cauchy.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A Conditional Transformed Distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.distributions.python.ops import conditional_distribution from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.distributions import transformed_distribution from tensorflow.python.ops.distributions import util as distribution_util # pylint: disable=protected-access _concat_vectors = transformed_distribution._concat_vectors # pylint: enable=protected-access __all__ = [ "ConditionalTransformedDistribution", ] _condition_kwargs_dict = { "bijector_kwargs": ("Python dictionary of arg names/values " "forwarded to the bijector."), "distribution_kwargs": ("Python dictionary of arg names/values " "forwarded to the distribution."), } class ConditionalTransformedDistribution( conditional_distribution.ConditionalDistribution, transformed_distribution.TransformedDistribution): """A TransformedDistribution that allows intrinsic conditioning.""" @distribution_util.AppendDocstring(kwargs_dict=_condition_kwargs_dict) def _sample_n(self, n, seed=None, bijector_kwargs=None, distribution_kwargs=None): sample_shape = _concat_vectors( distribution_util.pick_vector(self._needs_rotation, self._empty, [n]), self._override_batch_shape, self._override_event_shape, distribution_util.pick_vector(self._needs_rotation, [n], self._empty)) distribution_kwargs = distribution_kwargs or {} x = self.distribution.sample(sample_shape=sample_shape, seed=seed, **distribution_kwargs) x = self._maybe_rotate_dims(x) # We'll apply the bijector in the `_call_sample_n` function. return x def _call_sample_n(self, sample_shape, seed, name, bijector_kwargs=None, distribution_kwargs=None): # We override `_call_sample_n` rather than `_sample_n` so we can ensure that # the result of `self.bijector.forward` is not modified (and thus caching # works). with self._name_scope(name, values=[sample_shape]): sample_shape = ops.convert_to_tensor( sample_shape, dtype=dtypes.int32, name="sample_shape") sample_shape, n = self._expand_sample_shape_to_vector( sample_shape, "sample_shape") # First, generate samples. We will possibly generate extra samples in the # event that we need to reinterpret the samples as part of the # event_shape. x = self._sample_n(n, seed, bijector_kwargs, distribution_kwargs) # Next, we reshape `x` into its final form. We do this prior to the call # to the bijector to ensure that the bijector caching works. batch_event_shape = array_ops.shape(x)[1:] final_shape = array_ops.concat([sample_shape, batch_event_shape], 0) x = array_ops.reshape(x, final_shape) # Finally, we apply the bijector's forward transformation. For caching to # work, it is imperative that this is the last modification to the # returned result. bijector_kwargs = bijector_kwargs or {} y = self.bijector.forward(x, **bijector_kwargs) y = self._set_sample_static_shape(y, sample_shape) return y @distribution_util.AppendDocstring(kwargs_dict=_condition_kwargs_dict) def _log_prob(self, y, bijector_kwargs=None, distribution_kwargs=None): # For caching to work, it is imperative that the bijector is the first to # modify the input. bijector_kwargs = bijector_kwargs or {} distribution_kwargs = distribution_kwargs or {} x = self.bijector.inverse(y, **bijector_kwargs) event_ndims = self._maybe_get_static_event_ndims() ildj = self.bijector.inverse_log_det_jacobian( y, event_ndims=event_ndims, **bijector_kwargs) if self.bijector._is_injective: # pylint: disable=protected-access return self._finish_log_prob_for_one_fiber(y, x, ildj, distribution_kwargs) lp_on_fibers = [ self._finish_log_prob_for_one_fiber(y, x_i, ildj_i, distribution_kwargs) for x_i, ildj_i in zip(x, ildj)] return math_ops.reduce_logsumexp(array_ops.stack(lp_on_fibers), axis=0) def _finish_log_prob_for_one_fiber(self, y, x, ildj, distribution_kwargs): """Finish computation of log_prob on one element of the inverse image.""" x = self._maybe_rotate_dims(x, rotate_right=True) log_prob = self.distribution.log_prob(x, **distribution_kwargs) if self._is_maybe_event_override: log_prob = math_ops.reduce_sum(log_prob, self._reduce_event_indices) return math_ops.cast(ildj, log_prob.dtype) + log_prob @distribution_util.AppendDocstring(kwargs_dict=_condition_kwargs_dict) def _prob(self, y, bijector_kwargs=None, distribution_kwargs=None): bijector_kwargs = bijector_kwargs or {} distribution_kwargs = distribution_kwargs or {} x = self.bijector.inverse(y, **bijector_kwargs) event_ndims = self._maybe_get_static_event_ndims() ildj = self.bijector.inverse_log_det_jacobian( y, event_ndims=event_ndims, **bijector_kwargs) if self.bijector._is_injective: # pylint: disable=protected-access return self._finish_prob_for_one_fiber(y, x, ildj, distribution_kwargs) prob_on_fibers = [ self._finish_prob_for_one_fiber(y, x_i, ildj_i, distribution_kwargs) for x_i, ildj_i in zip(x, ildj)] return sum(prob_on_fibers) def _finish_prob_for_one_fiber(self, y, x, ildj, distribution_kwargs): """Finish computation of prob on one element of the inverse image.""" x = self._maybe_rotate_dims(x, rotate_right=True) prob = self.distribution.prob(x, **distribution_kwargs) if self._is_maybe_event_override: prob = math_ops.reduce_prod(prob, self._reduce_event_indices) return math_ops.exp(math_ops.cast(ildj, prob.dtype)) * prob @distribution_util.AppendDocstring(kwargs_dict=_condition_kwargs_dict) def _log_cdf(self, y, bijector_kwargs=None, distribution_kwargs=None): if self._is_maybe_event_override: raise NotImplementedError("log_cdf is not implemented when overriding " "event_shape") if not self.bijector._is_injective: # pylint: disable=protected-access raise NotImplementedError("log_cdf is not implemented when " "bijector is not injective.") bijector_kwargs = bijector_kwargs or {} distribution_kwargs = distribution_kwargs or {} x = self.bijector.inverse(y, **bijector_kwargs) return self.distribution.log_cdf(x, **distribution_kwargs) @distribution_util.AppendDocstring(kwargs_dict=_condition_kwargs_dict) def _cdf(self, y, bijector_kwargs=None, distribution_kwargs=None): if self._is_maybe_event_override: raise NotImplementedError("cdf is not implemented when overriding " "event_shape") if not self.bijector._is_injective: # pylint: disable=protected-access raise NotImplementedError("cdf is not implemented when " "bijector is not injective.") bijector_kwargs = bijector_kwargs or {} distribution_kwargs = distribution_kwargs or {} x = self.bijector.inverse(y, **bijector_kwargs) return self.distribution.cdf(x, **distribution_kwargs) @distribution_util.AppendDocstring(kwargs_dict=_condition_kwargs_dict) def _log_survival_function(self, y, bijector_kwargs=None, distribution_kwargs=None): if self._is_maybe_event_override: raise NotImplementedError("log_survival_function is not implemented when " "overriding event_shape") if not self.bijector._is_injective: # pylint: disable=protected-access raise NotImplementedError("log_survival_function is not implemented when " "bijector is not injective.") bijector_kwargs = bijector_kwargs or {} distribution_kwargs = distribution_kwargs or {} x = self.bijector.inverse(y, **bijector_kwargs) return self.distribution.log_survival_function(x, **distribution_kwargs) @distribution_util.AppendDocstring(kwargs_dict=_condition_kwargs_dict) def _survival_function(self, y, bijector_kwargs=None, distribution_kwargs=None): if self._is_maybe_event_override: raise NotImplementedError("survival_function is not implemented when " "overriding event_shape") if not self.bijector._is_injective: # pylint: disable=protected-access raise NotImplementedError("survival_function is not implemented when " "bijector is not injective.") bijector_kwargs = bijector_kwargs or {} distribution_kwargs = distribution_kwargs or {} x = self.bijector.inverse(y, **bijector_kwargs) return self.distribution.survival_function(x, **distribution_kwargs) @distribution_util.AppendDocstring(kwargs_dict=_condition_kwargs_dict) def _quantile(self, value, bijector_kwargs=None, distribution_kwargs=None): if self._is_maybe_event_override: raise NotImplementedError("quantile is not implemented when overriding " "event_shape") if not self.bijector._is_injective: # pylint: disable=protected-access raise NotImplementedError("quantile is not implemented when " "bijector is not injective.") bijector_kwargs = bijector_kwargs or {} distribution_kwargs = distribution_kwargs or {} # x_q is the "qth quantile" of X iff q = P[X <= x_q]. Now, since X = # g^{-1}(Y), q = P[X <= x_q] = P[g^{-1}(Y) <= x_q] = P[Y <= g(x_q)], # implies the qth quantile of Y is g(x_q). inv_cdf = self.distribution.quantile(value, **distribution_kwargs) return self.bijector.forward(inv_cdf, **bijector_kwargs) def _maybe_get_static_event_ndims(self): if self.event_shape.ndims is not None: return self.event_shape.ndims event_ndims = array_ops.size(self.event_shape_tensor()) event_ndims_ = distribution_util.maybe_get_static_value(event_ndims) if event_ndims_ is not None: return event_ndims_ return event_ndims
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/conditional_transformed_distribution.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Gumbel distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops.distributions import distribution from tensorflow.python.util import deprecation class _Gumbel(distribution.Distribution): """The scalar Gumbel distribution with location `loc` and `scale` parameters. #### Mathematical details The probability density function (pdf) of this distribution is, ```none pdf(x; mu, sigma) = exp(-(x - mu) / sigma - exp(-(x - mu) / sigma)) ``` where `loc = mu` and `scale = sigma`. The cumulative density function of this distribution is, ```cdf(x; mu, sigma) = exp(-exp(-(x - mu) / sigma))``` The Gumbel distribution is a member of the [location-scale family]( https://en.wikipedia.org/wiki/Location-scale_family), i.e., it can be constructed as, ```none X ~ Gumbel(loc=0, scale=1) Y = loc + scale * X ``` #### Examples Examples of initialization of one or a batch of distributions. ```python import tensorflow_probability as tfp tfd = tfp.distributions # Define a single scalar Gumbel distribution. dist = tfd.Gumbel(loc=0., scale=3.) # Evaluate the cdf at 1, returning a scalar. dist.cdf(1.) # Define a batch of two scalar valued Gumbels. # The first has mean 1 and scale 11, the second 2 and 22. dist = tfd.Gumbel(loc=[1, 2.], scale=[11, 22.]) # Evaluate the pdf of the first distribution on 0, and the second on 1.5, # returning a length two tensor. dist.prob([0, 1.5]) # Get 3 samples, returning a 3 x 2 tensor. dist.sample([3]) ``` Arguments are broadcast when possible. ```python # Define a batch of two scalar valued Logistics. # Both have mean 1, but different scales. dist = tfd.Gumbel(loc=1., scale=[11, 22.]) # Evaluate the pdf of both distributions on the same point, 3.0, # returning a length 2 tensor. dist.prob(3.0) ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, loc, scale, validate_args=False, allow_nan_stats=True, name="Gumbel"): """Construct Gumbel distributions with location and scale `loc` and `scale`. The parameters `loc` and `scale` must be shaped in a way that supports broadcasting (e.g. `loc + scale` is a valid operation). Args: loc: Floating point tensor, the means of the distribution(s). scale: Floating point tensor, the scales of the distribution(s). scale must contain only positive values. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Raises: TypeError: if loc and scale are different dtypes. """ parameters = dict(locals()) with ops.name_scope(name, values=[loc, scale]) as name: with ops.control_dependencies([check_ops.assert_positive(scale)] if validate_args else []): self._loc = array_ops.identity(loc, name="loc") self._scale = array_ops.identity(scale, name="scale") check_ops.assert_same_float_dtype([self._loc, self._scale]) super(_Gumbel, self).__init__( dtype=self._scale.dtype, reparameterization_type=distribution.FULLY_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=[self._loc, self._scale], name=name) @staticmethod def _param_shapes(sample_shape): return dict( zip(("loc", "scale"), ([ops.convert_to_tensor( sample_shape, dtype=dtypes.int32)] * 2))) @property def loc(self): """Distribution parameter for the location.""" return self._loc @property def scale(self): """Distribution parameter for scale.""" return self._scale def _batch_shape_tensor(self): return array_ops.broadcast_dynamic_shape( array_ops.shape(self.loc), array_ops.shape(self.scale)) def _batch_shape(self): return array_ops.broadcast_static_shape( self.loc.get_shape(), self.scale.get_shape()) def _event_shape_tensor(self): return constant_op.constant([], dtype=dtypes.int32) def _event_shape(self): return tensor_shape.TensorShape([]) def _sample_n(self, n, seed=None): # Uniform variates must be sampled from the open-interval `(0, 1)` rather # than `[0, 1)`. To do so, we use `np.finfo(self.dtype.as_numpy_dtype).tiny` # because it is the smallest, positive, "normal" number. A "normal" number # is such that the mantissa has an implicit leading 1. Normal, positive # numbers x, y have the reasonable property that, `x + y >= max(x, y)`. In # this case, a subnormal number (i.e., np.nextafter) can cause us to sample # 0. uniform = random_ops.random_uniform( shape=array_ops.concat([[n], self.batch_shape_tensor()], 0), minval=np.finfo(self.dtype.as_numpy_dtype).tiny, maxval=1., dtype=self.dtype, seed=seed) sampled = -math_ops.log(-math_ops.log(uniform)) return sampled * self.scale + self.loc def _log_prob(self, x): return self._log_unnormalized_prob(x) - self._log_normalization() def _log_cdf(self, x): return -math_ops.exp(-self._z(x)) def _cdf(self, x): return math_ops.exp(-math_ops.exp(-self._z(x))) def _log_unnormalized_prob(self, x): z = self._z(x) return - z - math_ops.exp(-z) def _log_normalization(self): return math_ops.log(self.scale) def _entropy(self): # Use broadcasting rules to calculate the full broadcast sigma. scale = self.scale * array_ops.ones_like(self.loc) return 1 + math_ops.log(scale) + np.euler_gamma def _mean(self): return self.loc + self.scale * np.euler_gamma def _stddev(self): return self.scale * array_ops.ones_like(self.loc) * math.pi / math.sqrt(6) def _mode(self): return self.loc * array_ops.ones_like(self.scale) def _z(self, x): """Standardize input `x` to a unit logistic.""" with ops.name_scope("standardize", values=[x]): return (x - self.loc) / self.scale
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/gumbel.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions for computing statistics of samples.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import clip_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops.distributions import util from tensorflow.python.ops.signal import fft_ops __all__ = [ "auto_correlation", "percentile", ] # TODO(langmore) Write separate versions of this for real/complex dtype, taking # advantage of optimized real-fft ops. def auto_correlation( x, axis=-1, max_lags=None, center=True, normalize=True, name="auto_correlation"): """Auto correlation along one axis. Given a `1-D` wide sense stationary (WSS) sequence `X`, the auto correlation `RXX` may be defined as (with `E` expectation and `Conj` complex conjugate) ``` RXX[m] := E{ W[m] Conj(W[0]) } = E{ W[0] Conj(W[-m]) }, W[n] := (X[n] - MU) / S, MU := E{ X[0] }, S**2 := E{ (X[0] - MU) Conj(X[0] - MU) }. ``` This function takes the viewpoint that `x` is (along one axis) a finite sub-sequence of a realization of (WSS) `X`, and then uses `x` to produce an estimate of `RXX[m]` as follows: After extending `x` from length `L` to `inf` by zero padding, the auto correlation estimate `rxx[m]` is computed for `m = 0, 1, ..., max_lags` as ``` rxx[m] := (L - m)**-1 sum_n w[n + m] Conj(w[n]), w[n] := (x[n] - mu) / s, mu := L**-1 sum_n x[n], s**2 := L**-1 sum_n (x[n] - mu) Conj(x[n] - mu) ``` The error in this estimate is proportional to `1 / sqrt(len(x) - m)`, so users often set `max_lags` small enough so that the entire output is meaningful. Note that since `mu` is an imperfect estimate of `E{ X[0] }`, and we divide by `len(x) - m` rather than `len(x) - m - 1`, our estimate of auto correlation contains a slight bias, which goes to zero as `len(x) - m --> infinity`. Args: x: `float32` or `complex64` `Tensor`. axis: Python `int`. The axis number along which to compute correlation. Other dimensions index different batch members. max_lags: Positive `int` tensor. The maximum value of `m` to consider (in equation above). If `max_lags >= x.shape[axis]`, we effectively re-set `max_lags` to `x.shape[axis] - 1`. center: Python `bool`. If `False`, do not subtract the mean estimate `mu` from `x[n]` when forming `w[n]`. normalize: Python `bool`. If `False`, do not divide by the variance estimate `s**2` when forming `w[n]`. name: `String` name to prepend to created ops. Returns: `rxx`: `Tensor` of same `dtype` as `x`. `rxx.shape[i] = x.shape[i]` for `i != axis`, and `rxx.shape[axis] = max_lags + 1`. Raises: TypeError: If `x` is not a supported type. """ # Implementation details: # Extend length N / 2 1-D array x to length N by zero padding onto the end. # Then, set # F[x]_k := sum_n x_n exp{-i 2 pi k n / N }. # It is not hard to see that # F[x]_k Conj(F[x]_k) = F[R]_k, where # R_m := sum_n x_n Conj(x_{(n - m) mod N}). # One can also check that R_m / (N / 2 - m) is an unbiased estimate of RXX[m]. # Since F[x] is the DFT of x, this leads us to a zero-padding and FFT/IFFT # based version of estimating RXX. # Note that this is a special case of the Wiener-Khinchin Theorem. with ops.name_scope(name, values=[x]): x = ops.convert_to_tensor(x, name="x") # Rotate dimensions of x in order to put axis at the rightmost dim. # FFT op requires this. rank = util.prefer_static_rank(x) if axis < 0: axis = rank + axis shift = rank - 1 - axis # Suppose x.shape[axis] = T, so there are T "time" steps. # ==> x_rotated.shape = B + [T], # where B is x_rotated's batch shape. x_rotated = util.rotate_transpose(x, shift) if center: x_rotated -= math_ops.reduce_mean(x_rotated, axis=-1, keepdims=True) # x_len = N / 2 from above explanation. The length of x along axis. # Get a value for x_len that works in all cases. x_len = util.prefer_static_shape(x_rotated)[-1] # TODO(langmore) Investigate whether this zero padding helps or hurts. At # the moment is necessary so that all FFT implementations work. # Zero pad to the next power of 2 greater than 2 * x_len, which equals # 2**(ceil(Log_2(2 * x_len))). Note: Log_2(X) = Log_e(X) / Log_e(2). x_len_float64 = math_ops.cast(x_len, np.float64) target_length = math_ops.pow( np.float64(2.), math_ops.ceil(math_ops.log(x_len_float64 * 2) / np.log(2.))) pad_length = math_ops.cast(target_length - x_len_float64, np.int32) # We should have: # x_rotated_pad.shape = x_rotated.shape[:-1] + [T + pad_length] # = B + [T + pad_length] x_rotated_pad = util.pad(x_rotated, axis=-1, back=True, count=pad_length) dtype = x.dtype if not dtype.is_complex: if not dtype.is_floating: raise TypeError("Argument x must have either float or complex dtype" " found: {}".format(dtype)) x_rotated_pad = math_ops.complex(x_rotated_pad, dtype.real_dtype.as_numpy_dtype(0.)) # Autocorrelation is IFFT of power-spectral density (up to some scaling). fft_x_rotated_pad = fft_ops.fft(x_rotated_pad) spectral_density = fft_x_rotated_pad * math_ops.conj(fft_x_rotated_pad) # shifted_product is R[m] from above detailed explanation. # It is the inner product sum_n X[n] * Conj(X[n - m]). shifted_product = fft_ops.ifft(spectral_density) # Cast back to real-valued if x was real to begin with. shifted_product = math_ops.cast(shifted_product, dtype) # Figure out if we can deduce the final static shape, and set max_lags. # Use x_rotated as a reference, because it has the time dimension in the far # right, and was created before we performed all sorts of crazy shape # manipulations. know_static_shape = True if not x_rotated.shape.is_fully_defined(): know_static_shape = False if max_lags is None: max_lags = x_len - 1 else: max_lags = ops.convert_to_tensor(max_lags, name="max_lags") max_lags_ = tensor_util.constant_value(max_lags) if max_lags_ is None or not know_static_shape: know_static_shape = False max_lags = math_ops.minimum(x_len - 1, max_lags) else: max_lags = min(x_len - 1, max_lags_) # Chop off the padding. # We allow users to provide a huge max_lags, but cut it off here. # shifted_product_chopped.shape = x_rotated.shape[:-1] + [max_lags] shifted_product_chopped = shifted_product[..., :max_lags + 1] # If possible, set shape. if know_static_shape: chopped_shape = x_rotated.shape.as_list() chopped_shape[-1] = min(x_len, max_lags + 1) shifted_product_chopped.set_shape(chopped_shape) # Recall R[m] is a sum of N / 2 - m nonzero terms x[n] Conj(x[n - m]). The # other terms were zeros arising only due to zero padding. # `denominator = (N / 2 - m)` (defined below) is the proper term to # divide by to make this an unbiased estimate of the expectation # E[X[n] Conj(X[n - m])]. x_len = math_ops.cast(x_len, dtype.real_dtype) max_lags = math_ops.cast(max_lags, dtype.real_dtype) denominator = x_len - math_ops.range(0., max_lags + 1.) denominator = math_ops.cast(denominator, dtype) shifted_product_rotated = shifted_product_chopped / denominator if normalize: shifted_product_rotated /= shifted_product_rotated[..., :1] # Transpose dimensions back to those of x. return util.rotate_transpose(shifted_product_rotated, -shift) # TODO(langmore) To make equivalent to numpy.percentile: # Make work with a sequence of floats or single float for 'q'. # Make work with "linear", "midpoint" interpolation. (linear should be default) def percentile(x, q, axis=None, interpolation=None, keep_dims=False, validate_args=False, name=None): """Compute the `q`-th percentile of `x`. Given a vector `x`, the `q`-th percentile of `x` is the value `q / 100` of the way from the minimum to the maximum in a sorted copy of `x`. The values and distances of the two nearest neighbors as well as the `interpolation` parameter will determine the percentile if the normalized ranking does not match the location of `q` exactly. This function is the same as the median if `q = 50`, the same as the minimum if `q = 0` and the same as the maximum if `q = 100`. ```python # Get 30th percentile with default ('nearest') interpolation. x = [1., 2., 3., 4.] percentile(x, q=30.) ==> 2.0 # Get 30th percentile with 'lower' interpolation x = [1., 2., 3., 4.] percentile(x, q=30., interpolation='lower') ==> 1.0 # Get 100th percentile (maximum). By default, this is computed over every dim x = [[1., 2.] [3., 4.]] percentile(x, q=100.) ==> 4.0 # Treat the leading dim as indexing samples, and find the 100th quantile (max) # over all such samples. x = [[1., 2.] [3., 4.]] percentile(x, q=100., axis=[0]) ==> [3., 4.] ``` Compare to `numpy.percentile`. Args: x: Floating point `N-D` `Tensor` with `N > 0`. If `axis` is not `None`, `x` must have statically known number of dimensions. q: Scalar `Tensor` in `[0, 100]`. The percentile. axis: Optional `0-D` or `1-D` integer `Tensor` with constant values. The axis that hold independent samples over which to return the desired percentile. If `None` (the default), treat every dimension as a sample dimension, returning a scalar. interpolation : {"lower", "higher", "nearest"}. Default: "nearest" This optional parameter specifies the interpolation method to use when the desired quantile lies between two data points `i < j`: * lower: `i`. * higher: `j`. * nearest: `i` or `j`, whichever is nearest. keep_dims: Python `bool`. If `True`, the last dimension is kept with size 1 If `False`, the last dimension is removed from the output shape. validate_args: Whether to add runtime checks of argument validity. If False, and arguments are incorrect, correct behavior is not guaranteed. name: A Python string name to give this `Op`. Default is "percentile" Returns: A `(N - len(axis))` dimensional `Tensor` of same dtype as `x`, or, if `axis` is `None`, a scalar. Raises: ValueError: If argument 'interpolation' is not an allowed type. """ name = name or "percentile" allowed_interpolations = {"lower", "higher", "nearest"} if interpolation is None: interpolation = "nearest" else: if interpolation not in allowed_interpolations: raise ValueError("Argument 'interpolation' must be in %s. Found %s" % (allowed_interpolations, interpolation)) with ops.name_scope(name, values=[x, q]): x = ops.convert_to_tensor(x, name="x") # Double is needed here and below, else we get the wrong index if the array # is huge along axis. q = math_ops.cast(q, dtypes.float64, name="q") _get_static_ndims(q, expect_ndims=0) if validate_args: q = control_flow_ops.with_dependencies([ check_ops.assert_rank(q, 0), check_ops.assert_greater_equal(q, math_ops.cast(0., dtypes.float64)), check_ops.assert_less_equal(q, math_ops.cast(100., dtypes.float64)) ], q) if axis is None: y = array_ops.reshape(x, [-1]) else: axis = ops.convert_to_tensor(axis, name="axis") check_ops.assert_integer(axis) axis_ndims = _get_static_ndims( axis, expect_static=True, expect_ndims_no_more_than=1) axis_const = tensor_util.constant_value(axis) if axis_const is None: raise ValueError( "Expected argument 'axis' to be statically available. Found: %s" % axis) axis = axis_const if axis_ndims == 0: axis = [axis] axis = [int(a) for a in axis] x_ndims = _get_static_ndims( x, expect_static=True, expect_ndims_at_least=1) axis = _make_static_axis_non_negative(axis, x_ndims) y = _move_dims_to_flat_end(x, axis, x_ndims) frac_at_q_or_above = 1. - q / 100. d = math_ops.cast(array_ops.shape(y)[-1], dtypes.float64) if interpolation == "lower": index = math_ops.ceil((d - 1) * frac_at_q_or_above) elif interpolation == "higher": index = math_ops.floor((d - 1) * frac_at_q_or_above) elif interpolation == "nearest": index = math_ops.round((d - 1) * frac_at_q_or_above) # If d is gigantic, then we would have d == d - 1, even in double... So # let's use max/min to avoid out of bounds errors. d = array_ops.shape(y)[-1] # d - 1 will be distinct from d in int32. index = clip_ops.clip_by_value(math_ops.cast(index, dtypes.int32), 0, d - 1) # Sort everything, not just the top 'k' entries, which allows multiple calls # to sort only once (under the hood) and use CSE. sorted_y = _sort_tensor(y) # result.shape = B result = sorted_y[..., index] result.set_shape(y.get_shape()[:-1]) if keep_dims: if axis is None: # ones_vec = [1, 1,..., 1], total length = len(S) + len(B). ones_vec = array_ops.ones( shape=[_get_best_effort_ndims(x)], dtype=dtypes.int32) result *= array_ops.ones(ones_vec, dtype=x.dtype) else: result = _insert_back_keep_dims(result, axis) return result def _get_static_ndims(x, expect_static=False, expect_ndims=None, expect_ndims_no_more_than=None, expect_ndims_at_least=None): """Get static number of dimensions and assert that some expectations are met. This function returns the number of dimensions "ndims" of x, as a Python int. The optional expect arguments are used to check the ndims of x, but this is only done if the static ndims of x is not None. Args: x: A Tensor. expect_static: Expect `x` to have statically defined `ndims`. expect_ndims: Optional Python integer. If provided, assert that x has number of dimensions equal to this. expect_ndims_no_more_than: Optional Python integer. If provided, assert that x has no more than this many dimensions. expect_ndims_at_least: Optional Python integer. If provided, assert that x has at least this many dimensions. Returns: ndims: A Python integer. Raises: ValueError: If any of the expectations above are violated. """ ndims = x.get_shape().ndims if ndims is None: shape_const = tensor_util.constant_value(array_ops.shape(x)) if shape_const is not None: ndims = shape_const.ndim if ndims is None: if expect_static: raise ValueError( "Expected argument 'x' to have statically defined 'ndims'. Found: " % x) return if expect_ndims is not None: ndims_message = ("Expected argument 'x' to have ndims %s. Found tensor %s" % (expect_ndims, x)) if ndims != expect_ndims: raise ValueError(ndims_message) if expect_ndims_at_least is not None: ndims_at_least_message = ( "Expected argument 'x' to have ndims >= %d. Found tensor %s" % ( expect_ndims_at_least, x)) if ndims < expect_ndims_at_least: raise ValueError(ndims_at_least_message) if expect_ndims_no_more_than is not None: ndims_no_more_than_message = ( "Expected argument 'x' to have ndims <= %d. Found tensor %s" % ( expect_ndims_no_more_than, x)) if ndims > expect_ndims_no_more_than: raise ValueError(ndims_no_more_than_message) return ndims def _get_best_effort_ndims(x, expect_ndims=None, expect_ndims_at_least=None, expect_ndims_no_more_than=None): """Get static ndims if possible. Fallback on `tf.rank(x)`.""" ndims_static = _get_static_ndims( x, expect_ndims=expect_ndims, expect_ndims_at_least=expect_ndims_at_least, expect_ndims_no_more_than=expect_ndims_no_more_than) if ndims_static is not None: return ndims_static return array_ops.rank(x) def _insert_back_keep_dims(x, axis): """Insert the dims in `axis` back as singletons after being removed. Args: x: `Tensor`. axis: Python list of integers. Returns: `Tensor` with same values as `x`, but additional singleton dimensions. """ for i in sorted(axis): x = array_ops.expand_dims(x, axis=i) return x def _make_static_axis_non_negative(axis, ndims): """Convert possibly negatively indexed axis to non-negative. Args: axis: Iterable over Python integers. ndims: Number of dimensions into which axis indexes. Returns: A list of non-negative Python integers. Raises: ValueError: If values in `axis` are too big/small to index into `ndims`. """ non_negative_axis = [] for d in axis: if d >= 0: if d >= ndims: raise ValueError("dim %d not in the interval [0, %d]." % (d, ndims - 1)) non_negative_axis.append(d) else: if d < -1 * ndims: raise ValueError( "Negatively indexed dim %d not in the interval [-%d, -1]" % (d, ndims)) non_negative_axis.append(ndims + d) return non_negative_axis def _move_dims_to_flat_end(x, axis, x_ndims): """Move dims corresponding to `axis` in `x` to the end, then flatten. Args: x: `Tensor` with shape `[B0,B1,...,Bb]`. axis: Python list of indices into dimensions of `x`. x_ndims: Python integer holding number of dimensions in `x`. Returns: `Tensor` with value from `x` and dims in `axis` moved to end into one single dimension. """ # Suppose x.shape = [a, b, c, d] # Suppose axis = [1, 3] # front_dims = [0, 2] in example above. front_dims = sorted(set(range(x_ndims)).difference(axis)) # x_permed.shape = [a, c, b, d] x_permed = array_ops.transpose(x, perm=front_dims + list(axis)) if x.get_shape().is_fully_defined(): x_shape = x.get_shape().as_list() # front_shape = [a, c], end_shape = [b * d] front_shape = [x_shape[i] for i in front_dims] end_shape = [np.prod([x_shape[i] for i in axis])] full_shape = front_shape + end_shape else: front_shape = array_ops.shape(x_permed)[:x_ndims - len(axis)] end_shape = [-1] full_shape = array_ops.concat([front_shape, end_shape], axis=0) return array_ops.reshape(x_permed, shape=full_shape) def _sort_tensor(tensor): """Use `top_k` to sort a `Tensor` along the last dimension.""" sorted_, _ = nn_ops.top_k(tensor, k=array_ops.shape(tensor)[-1]) return sorted_
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/sample_stats.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Multi-dimensional (Vector) SinhArcsinh transformation of a distribution.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.distributions.python.ops import bijectors from tensorflow.contrib.distributions.python.ops import distribution_util from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops.distributions import normal from tensorflow.python.ops.distributions import transformed_distribution from tensorflow.python.util import deprecation __all__ = [ "VectorSinhArcsinhDiag", ] class VectorSinhArcsinhDiag(transformed_distribution.TransformedDistribution): """The (diagonal) SinhArcsinh transformation of a distribution on `R^k`. This distribution models a random vector `Y = (Y1,...,Yk)`, making use of a `SinhArcsinh` transformation (which has adjustable tailweight and skew), a rescaling, and a shift. The `SinhArcsinh` transformation of the Normal is described in great depth in [Sinh-arcsinh distributions](https://www.jstor.org/stable/27798865). Here we use a slightly different parameterization, in terms of `tailweight` and `skewness`. Additionally we allow for distributions other than Normal, and control over `scale` as well as a "shift" parameter `loc`. #### Mathematical Details Given iid random vector `Z = (Z1,...,Zk)`, we define the VectorSinhArcsinhDiag transformation of `Z`, `Y`, parameterized by `(loc, scale, skewness, tailweight)`, via the relation (with `@` denoting matrix multiplication): ``` Y := loc + scale @ F(Z) * (2 / F_0(2)) F(Z) := Sinh( (Arcsinh(Z) + skewness) * tailweight ) F_0(Z) := Sinh( Arcsinh(Z) * tailweight ) ``` This distribution is similar to the location-scale transformation `L(Z) := loc + scale @ Z` in the following ways: * If `skewness = 0` and `tailweight = 1` (the defaults), `F(Z) = Z`, and then `Y = L(Z)` exactly. * `loc` is used in both to shift the result by a constant factor. * The multiplication of `scale` by `2 / F_0(2)` ensures that if `skewness = 0` `P[Y - loc <= 2 * scale] = P[L(Z) - loc <= 2 * scale]`. Thus it can be said that the weights in the tails of `Y` and `L(Z)` beyond `loc + 2 * scale` are the same. This distribution is different than `loc + scale @ Z` due to the reshaping done by `F`: * Positive (negative) `skewness` leads to positive (negative) skew. * positive skew means, the mode of `F(Z)` is "tilted" to the right. * positive skew means positive values of `F(Z)` become more likely, and negative values become less likely. * Larger (smaller) `tailweight` leads to fatter (thinner) tails. * Fatter tails mean larger values of `|F(Z)|` become more likely. * `tailweight < 1` leads to a distribution that is "flat" around `Y = loc`, and a very steep drop-off in the tails. * `tailweight > 1` leads to a distribution more peaked at the mode with heavier tails. To see the argument about the tails, note that for `|Z| >> 1` and `|Z| >> (|skewness| * tailweight)**tailweight`, we have `Y approx 0.5 Z**tailweight e**(sign(Z) skewness * tailweight)`. To see the argument regarding multiplying `scale` by `2 / F_0(2)`, ``` P[(Y - loc) / scale <= 2] = P[F(Z) * (2 / F_0(2)) <= 2] = P[F(Z) <= F_0(2)] = P[Z <= 2] (if F = F_0). ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, loc=None, scale_diag=None, scale_identity_multiplier=None, skewness=None, tailweight=None, distribution=None, validate_args=False, allow_nan_stats=True, name="MultivariateNormalLinearOperator"): """Construct VectorSinhArcsinhDiag distribution on `R^k`. The arguments `scale_diag` and `scale_identity_multiplier` combine to define the diagonal `scale` referred to in this class docstring: ```none scale = diag(scale_diag + scale_identity_multiplier * ones(k)) ``` The `batch_shape` is the broadcast shape between `loc` and `scale` arguments. The `event_shape` is given by last dimension of the matrix implied by `scale`. The last dimension of `loc` (if provided) must broadcast with this Additional leading dimensions (if any) will index batches. Args: loc: Floating-point `Tensor`. If this is set to `None`, `loc` is implicitly `0`. When specified, may have shape `[B1, ..., Bb, k]` where `b >= 0` and `k` is the event size. scale_diag: Non-zero, floating-point `Tensor` representing a diagonal matrix added to `scale`. May have shape `[B1, ..., Bb, k]`, `b >= 0`, and characterizes `b`-batches of `k x k` diagonal matrices added to `scale`. When both `scale_identity_multiplier` and `scale_diag` are `None` then `scale` is the `Identity`. scale_identity_multiplier: Non-zero, floating-point `Tensor` representing a scale-identity-matrix added to `scale`. May have shape `[B1, ..., Bb]`, `b >= 0`, and characterizes `b`-batches of scale `k x k` identity matrices added to `scale`. When both `scale_identity_multiplier` and `scale_diag` are `None` then `scale` is the `Identity`. skewness: Skewness parameter. floating-point `Tensor` with shape broadcastable with `event_shape`. tailweight: Tailweight parameter. floating-point `Tensor` with shape broadcastable with `event_shape`. distribution: `tf.Distribution`-like instance. Distribution from which `k` iid samples are used as input to transformation `F`. Default is `tfp.distributions.Normal(loc=0., scale=1.)`. Must be a scalar-batch, scalar-event distribution. Typically `distribution.reparameterization_type = FULLY_REPARAMETERIZED` or it is a function of non-trainable parameters. WARNING: If you backprop through a VectorSinhArcsinhDiag sample and `distribution` is not `FULLY_REPARAMETERIZED` yet is a function of trainable variables, then the gradient will be incorrect! validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Raises: ValueError: if at most `scale_identity_multiplier` is specified. """ parameters = dict(locals()) with ops.name_scope( name, values=[ loc, scale_diag, scale_identity_multiplier, skewness, tailweight ]) as name: loc = ops.convert_to_tensor(loc, name="loc") if loc is not None else loc tailweight = 1. if tailweight is None else tailweight has_default_skewness = skewness is None skewness = 0. if skewness is None else skewness # Recall, with Z a random variable, # Y := loc + C * F(Z), # F(Z) := Sinh( (Arcsinh(Z) + skewness) * tailweight ) # F_0(Z) := Sinh( Arcsinh(Z) * tailweight ) # C := 2 * scale / F_0(2) # Construct shapes and 'scale' out of the scale_* and loc kwargs. # scale_linop is only an intermediary to: # 1. get shapes from looking at loc and the two scale args. # 2. combine scale_diag with scale_identity_multiplier, which gives us # 'scale', which in turn gives us 'C'. scale_linop = distribution_util.make_diag_scale( loc=loc, scale_diag=scale_diag, scale_identity_multiplier=scale_identity_multiplier, validate_args=False, assert_positive=False) batch_shape, event_shape = distribution_util.shapes_from_loc_and_scale( loc, scale_linop) # scale_linop.diag_part() is efficient since it is a diag type linop. scale_diag_part = scale_linop.diag_part() dtype = scale_diag_part.dtype if distribution is None: distribution = normal.Normal( loc=array_ops.zeros([], dtype=dtype), scale=array_ops.ones([], dtype=dtype), allow_nan_stats=allow_nan_stats) else: asserts = distribution_util.maybe_check_scalar_distribution( distribution, dtype, validate_args) if asserts: scale_diag_part = control_flow_ops.with_dependencies( asserts, scale_diag_part) # Make the SAS bijector, 'F'. skewness = ops.convert_to_tensor(skewness, dtype=dtype, name="skewness") tailweight = ops.convert_to_tensor( tailweight, dtype=dtype, name="tailweight") f = bijectors.SinhArcsinh( skewness=skewness, tailweight=tailweight) if has_default_skewness: f_noskew = f else: f_noskew = bijectors.SinhArcsinh( skewness=skewness.dtype.as_numpy_dtype(0.), tailweight=tailweight) # Make the Affine bijector, Z --> loc + C * Z. c = 2 * scale_diag_part / f_noskew.forward( ops.convert_to_tensor(2, dtype=dtype)) affine = bijectors.Affine( shift=loc, scale_diag=c, validate_args=validate_args) bijector = bijectors.Chain([affine, f]) super(VectorSinhArcsinhDiag, self).__init__( distribution=distribution, bijector=bijector, batch_shape=batch_shape, event_shape=event_shape, validate_args=validate_args, name=name) self._parameters = parameters self._loc = loc self._scale = scale_linop self._tailweight = tailweight self._skewness = skewness @property def loc(self): """The `loc` in `Y := loc + scale @ F(Z) * (2 / F(2)).""" return self._loc @property def scale(self): """The `LinearOperator` `scale` in `Y := loc + scale @ F(Z) * (2 / F(2)).""" return self._scale @property def tailweight(self): """Controls the tail decay. `tailweight > 1` means faster than Normal.""" return self._tailweight @property def skewness(self): """Controls the skewness. `Skewness > 0` means right skew.""" return self._skewness
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/vector_sinh_arcsinh_diag.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Normal distribution: conjugate posterior closed form calculations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.ops import math_ops from tensorflow.python.ops.distributions import normal def normal_conjugates_known_scale_posterior(prior, scale, s, n): """Posterior Normal distribution with conjugate prior on the mean. This model assumes that `n` observations (with sum `s`) come from a Normal with unknown mean `loc` (described by the Normal `prior`) and known variance `scale**2`. The "known scale posterior" is the distribution of the unknown `loc`. Accepts a prior Normal distribution object, having parameters `loc0` and `scale0`, as well as known `scale` values of the predictive distribution(s) (also assumed Normal), and statistical estimates `s` (the sum(s) of the observations) and `n` (the number(s) of observations). Returns a posterior (also Normal) distribution object, with parameters `(loc', scale'**2)`, where: ``` mu ~ N(mu', sigma'**2) sigma'**2 = 1/(1/sigma0**2 + n/sigma**2), mu' = (mu0/sigma0**2 + s/sigma**2) * sigma'**2. ``` Distribution parameters from `prior`, as well as `scale`, `s`, and `n`. will broadcast in the case of multidimensional sets of parameters. Args: prior: `Normal` object of type `dtype`: the prior distribution having parameters `(loc0, scale0)`. scale: tensor of type `dtype`, taking values `scale > 0`. The known stddev parameter(s). s: Tensor of type `dtype`. The sum(s) of observations. n: Tensor of type `int`. The number(s) of observations. Returns: A new Normal posterior distribution object for the unknown observation mean `loc`. Raises: TypeError: if dtype of `s` does not match `dtype`, or `prior` is not a Normal object. """ if not isinstance(prior, normal.Normal): raise TypeError("Expected prior to be an instance of type Normal") if s.dtype != prior.dtype: raise TypeError( "Observation sum s.dtype does not match prior dtype: %s vs. %s" % (s.dtype, prior.dtype)) n = math_ops.cast(n, prior.dtype) scale0_2 = math_ops.square(prior.scale) scale_2 = math_ops.square(scale) scalep_2 = 1.0/(1/scale0_2 + n/scale_2) return normal.Normal( loc=(prior.loc/scale0_2 + s/scale_2) * scalep_2, scale=math_ops.sqrt(scalep_2)) def normal_conjugates_known_scale_predictive(prior, scale, s, n): """Posterior predictive Normal distribution w. conjugate prior on the mean. This model assumes that `n` observations (with sum `s`) come from a Normal with unknown mean `loc` (described by the Normal `prior`) and known variance `scale**2`. The "known scale predictive" is the distribution of new observations, conditioned on the existing observations and our prior. Accepts a prior Normal distribution object, having parameters `loc0` and `scale0`, as well as known `scale` values of the predictive distribution(s) (also assumed Normal), and statistical estimates `s` (the sum(s) of the observations) and `n` (the number(s) of observations). Calculates the Normal distribution(s) `p(x | sigma**2)`: ``` p(x | sigma**2) = int N(x | mu, sigma**2)N(mu | prior.loc, prior.scale**2) dmu = N(x | prior.loc, 1 / (sigma**2 + prior.scale**2)) ``` Returns the predictive posterior distribution object, with parameters `(loc', scale'**2)`, where: ``` sigma_n**2 = 1/(1/sigma0**2 + n/sigma**2), mu' = (mu0/sigma0**2 + s/sigma**2) * sigma_n**2. sigma'**2 = sigma_n**2 + sigma**2, ``` Distribution parameters from `prior`, as well as `scale`, `s`, and `n`. will broadcast in the case of multidimensional sets of parameters. Args: prior: `Normal` object of type `dtype`: the prior distribution having parameters `(loc0, scale0)`. scale: tensor of type `dtype`, taking values `scale > 0`. The known stddev parameter(s). s: Tensor of type `dtype`. The sum(s) of observations. n: Tensor of type `int`. The number(s) of observations. Returns: A new Normal predictive distribution object. Raises: TypeError: if dtype of `s` does not match `dtype`, or `prior` is not a Normal object. """ if not isinstance(prior, normal.Normal): raise TypeError("Expected prior to be an instance of type Normal") if s.dtype != prior.dtype: raise TypeError( "Observation sum s.dtype does not match prior dtype: %s vs. %s" % (s.dtype, prior.dtype)) n = math_ops.cast(n, prior.dtype) scale0_2 = math_ops.square(prior.scale) scale_2 = math_ops.square(scale) scalep_2 = 1.0/(1/scale0_2 + n/scale_2) return normal.Normal( loc=(prior.loc/scale0_2 + s/scale_2) * scalep_2, scale=math_ops.sqrt(scalep_2 + scale_2))
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/normal_conjugate_posteriors.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Multivariate Normal distribution classes.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.distributions.python.ops import distribution_util from tensorflow.contrib.distributions.python.ops import mvn_linear_operator as mvn_linop from tensorflow.python.framework import ops from tensorflow.python.ops import nn from tensorflow.python.util import deprecation __all__ = [ "MultivariateNormalDiag", "MultivariateNormalDiagWithSoftplusScale", ] class MultivariateNormalDiag( mvn_linop.MultivariateNormalLinearOperator): """The multivariate normal distribution on `R^k`. The Multivariate Normal distribution is defined over `R^k` and parameterized by a (batch of) length-`k` `loc` vector (aka "mu") and a (batch of) `k x k` `scale` matrix; `covariance = scale @ scale.T` where `@` denotes matrix-multiplication. #### Mathematical Details The probability density function (pdf) is, ```none pdf(x; loc, scale) = exp(-0.5 ||y||**2) / Z, y = inv(scale) @ (x - loc), Z = (2 pi)**(0.5 k) |det(scale)|, ``` where: * `loc` is a vector in `R^k`, * `scale` is a linear operator in `R^{k x k}`, `cov = scale @ scale.T`, * `Z` denotes the normalization constant, and, * `||y||**2` denotes the squared Euclidean norm of `y`. A (non-batch) `scale` matrix is: ```none scale = diag(scale_diag + scale_identity_multiplier * ones(k)) ``` where: * `scale_diag.shape = [k]`, and, * `scale_identity_multiplier.shape = []`. Additional leading dimensions (if any) will index batches. If both `scale_diag` and `scale_identity_multiplier` are `None`, then `scale` is the Identity matrix. The MultivariateNormal distribution is a member of the [location-scale family](https://en.wikipedia.org/wiki/Location-scale_family), i.e., it can be constructed as, ```none X ~ MultivariateNormal(loc=0, scale=1) # Identity scale, zero shift. Y = scale @ X + loc ``` #### Examples ```python import tensorflow_probability as tfp tfd = tfp.distributions # Initialize a single 2-variate Gaussian. mvn = tfd.MultivariateNormalDiag( loc=[1., -1], scale_diag=[1, 2.]) mvn.mean().eval() # ==> [1., -1] mvn.stddev().eval() # ==> [1., 2] # Evaluate this on an observation in `R^2`, returning a scalar. mvn.prob([-1., 0]).eval() # shape: [] # Initialize a 3-batch, 2-variate scaled-identity Gaussian. mvn = tfd.MultivariateNormalDiag( loc=[1., -1], scale_identity_multiplier=[1, 2., 3]) mvn.mean().eval() # shape: [3, 2] # ==> [[1., -1] # [1, -1], # [1, -1]] mvn.stddev().eval() # shape: [3, 2] # ==> [[1., 1], # [2, 2], # [3, 3]] # Evaluate this on an observation in `R^2`, returning a length-3 vector. mvn.prob([-1., 0]).eval() # shape: [3] # Initialize a 2-batch of 3-variate Gaussians. mvn = tfd.MultivariateNormalDiag( loc=[[1., 2, 3], [11, 22, 33]] # shape: [2, 3] scale_diag=[[1., 2, 3], [0.5, 1, 1.5]]) # shape: [2, 3] # Evaluate this on a two observations, each in `R^3`, returning a length-2 # vector. x = [[-1., 0, 1], [-11, 0, 11.]] # shape: [2, 3]. mvn.prob(x).eval() # shape: [2] ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, loc=None, scale_diag=None, scale_identity_multiplier=None, validate_args=False, allow_nan_stats=True, name="MultivariateNormalDiag"): """Construct Multivariate Normal distribution on `R^k`. The `batch_shape` is the broadcast shape between `loc` and `scale` arguments. The `event_shape` is given by last dimension of the matrix implied by `scale`. The last dimension of `loc` (if provided) must broadcast with this. Recall that `covariance = scale @ scale.T`. A (non-batch) `scale` matrix is: ```none scale = diag(scale_diag + scale_identity_multiplier * ones(k)) ``` where: * `scale_diag.shape = [k]`, and, * `scale_identity_multiplier.shape = []`. Additional leading dimensions (if any) will index batches. If both `scale_diag` and `scale_identity_multiplier` are `None`, then `scale` is the Identity matrix. Args: loc: Floating-point `Tensor`. If this is set to `None`, `loc` is implicitly `0`. When specified, may have shape `[B1, ..., Bb, k]` where `b >= 0` and `k` is the event size. scale_diag: Non-zero, floating-point `Tensor` representing a diagonal matrix added to `scale`. May have shape `[B1, ..., Bb, k]`, `b >= 0`, and characterizes `b`-batches of `k x k` diagonal matrices added to `scale`. When both `scale_identity_multiplier` and `scale_diag` are `None` then `scale` is the `Identity`. scale_identity_multiplier: Non-zero, floating-point `Tensor` representing a scaled-identity-matrix added to `scale`. May have shape `[B1, ..., Bb]`, `b >= 0`, and characterizes `b`-batches of scaled `k x k` identity matrices added to `scale`. When both `scale_identity_multiplier` and `scale_diag` are `None` then `scale` is the `Identity`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Raises: ValueError: if at most `scale_identity_multiplier` is specified. """ parameters = dict(locals()) with ops.name_scope(name) as name: with ops.name_scope("init", values=[ loc, scale_diag, scale_identity_multiplier]): # No need to validate_args while making diag_scale. The returned # LinearOperatorDiag has an assert_non_singular method that is called by # the Bijector. scale = distribution_util.make_diag_scale( loc=loc, scale_diag=scale_diag, scale_identity_multiplier=scale_identity_multiplier, validate_args=False, assert_positive=False) super(MultivariateNormalDiag, self).__init__( loc=loc, scale=scale, validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name) self._parameters = parameters class MultivariateNormalDiagWithSoftplusScale(MultivariateNormalDiag): """MultivariateNormalDiag with `diag_stddev = softplus(diag_stddev)`.""" @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, loc, scale_diag, validate_args=False, allow_nan_stats=True, name="MultivariateNormalDiagWithSoftplusScale"): parameters = dict(locals()) with ops.name_scope(name, values=[scale_diag]) as name: super(MultivariateNormalDiagWithSoftplusScale, self).__init__( loc=loc, scale_diag=nn.softplus(scale_diag), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name) self._parameters = parameters
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/mvn_diag.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Multivariate Normal distribution class initialized with a full covariance.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.distributions.python.ops import mvn_tril from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.util import deprecation __all__ = [ "MultivariateNormalFullCovariance", ] class MultivariateNormalFullCovariance(mvn_tril.MultivariateNormalTriL): """The multivariate normal distribution on `R^k`. The Multivariate Normal distribution is defined over `R^k` and parameterized by a (batch of) length-`k` `loc` vector (aka "mu") and a (batch of) `k x k` `covariance_matrix` matrices that are the covariance. This is different than the other multivariate normals, which are parameterized by a matrix more akin to the standard deviation. #### Mathematical Details The probability density function (pdf) is, with `@` as matrix multiplication, ```none pdf(x; loc, covariance_matrix) = exp(-0.5 y) / Z, y = (x - loc)^T @ inv(covariance_matrix) @ (x - loc) Z = (2 pi)**(0.5 k) |det(covariance_matrix)|**(0.5). ``` where: * `loc` is a vector in `R^k`, * `covariance_matrix` is an `R^{k x k}` symmetric positive definite matrix, * `Z` denotes the normalization constant. Additional leading dimensions (if any) in `loc` and `covariance_matrix` allow for batch dimensions. The MultivariateNormal distribution is a member of the [location-scale family](https://en.wikipedia.org/wiki/Location-scale_family), i.e., it can be constructed e.g. as, ```none X ~ MultivariateNormal(loc=0, scale=1) # Identity scale, zero shift. scale = Cholesky(covariance_matrix) Y = scale @ X + loc ``` #### Examples ```python import tensorflow_probability as tfp tfd = tfp.distributions # Initialize a single 3-variate Gaussian. mu = [1., 2, 3] cov = [[ 0.36, 0.12, 0.06], [ 0.12, 0.29, -0.13], [ 0.06, -0.13, 0.26]] mvn = tfd.MultivariateNormalFullCovariance( loc=mu, covariance_matrix=cov) mvn.mean().eval() # ==> [1., 2, 3] # Covariance agrees with covariance_matrix. mvn.covariance().eval() # ==> [[ 0.36, 0.12, 0.06], # [ 0.12, 0.29, -0.13], # [ 0.06, -0.13, 0.26]] # Compute the pdf of an observation in `R^3` ; return a scalar. mvn.prob([-1., 0, 1]).eval() # shape: [] # Initialize a 2-batch of 3-variate Gaussians. mu = [[1., 2, 3], [11, 22, 33]] # shape: [2, 3] covariance_matrix = ... # shape: [2, 3, 3], symmetric, positive definite. mvn = tfd.MultivariateNormalFullCovariance( loc=mu, covariance=covariance_matrix) # Compute the pdf of two `R^3` observations; return a length-2 vector. x = [[-0.9, 0, 0.1], [-10, 0, 9]] # shape: [2, 3] mvn.prob(x).eval() # shape: [2] ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, loc=None, covariance_matrix=None, validate_args=False, allow_nan_stats=True, name="MultivariateNormalFullCovariance"): """Construct Multivariate Normal distribution on `R^k`. The `batch_shape` is the broadcast shape between `loc` and `covariance_matrix` arguments. The `event_shape` is given by last dimension of the matrix implied by `covariance_matrix`. The last dimension of `loc` (if provided) must broadcast with this. A non-batch `covariance_matrix` matrix is a `k x k` symmetric positive definite matrix. In other words it is (real) symmetric with all eigenvalues strictly positive. Additional leading dimensions (if any) will index batches. Args: loc: Floating-point `Tensor`. If this is set to `None`, `loc` is implicitly `0`. When specified, may have shape `[B1, ..., Bb, k]` where `b >= 0` and `k` is the event size. covariance_matrix: Floating-point, symmetric positive definite `Tensor` of same `dtype` as `loc`. The strict upper triangle of `covariance_matrix` is ignored, so if `covariance_matrix` is not symmetric no error will be raised (unless `validate_args is True`). `covariance_matrix` has shape `[B1, ..., Bb, k, k]` where `b >= 0` and `k` is the event size. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Raises: ValueError: if neither `loc` nor `covariance_matrix` are specified. """ parameters = dict(locals()) # Convert the covariance_matrix up to a scale_tril and call MVNTriL. with ops.name_scope(name) as name: with ops.name_scope("init", values=[loc, covariance_matrix]): if covariance_matrix is None: scale_tril = None else: covariance_matrix = ops.convert_to_tensor( covariance_matrix, name="covariance_matrix") if validate_args: covariance_matrix = control_flow_ops.with_dependencies([ check_ops.assert_near( covariance_matrix, array_ops.matrix_transpose(covariance_matrix), message="Matrix was not symmetric")], covariance_matrix) # No need to validate that covariance_matrix is non-singular. # LinearOperatorLowerTriangular has an assert_non_singular method that # is called by the Bijector. # However, cholesky() ignores the upper triangular part, so we do need # to separately assert symmetric. scale_tril = linalg_ops.cholesky(covariance_matrix) super(MultivariateNormalFullCovariance, self).__init__( loc=loc, scale_tril=scale_tril, validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name) self._parameters = parameters
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/mvn_full_covariance.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Vectorized Exponential distribution class, directly using LinearOperator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.distributions.python.ops import bijectors from tensorflow.contrib.distributions.python.ops import distribution_util from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.distributions import exponential from tensorflow.python.ops.distributions import transformed_distribution from tensorflow.python.ops.linalg import linalg from tensorflow.python.util import deprecation __all__ = ["VectorExponentialLinearOperator"] _mvn_sample_note = """ `value` is a batch vector with compatible shape if `value` is a `Tensor` whose shape can be broadcast up to either: ```python self.batch_shape + self.event_shape ``` or ```python [M1, ..., Mm] + self.batch_shape + self.event_shape ``` """ class VectorExponentialLinearOperator( transformed_distribution.TransformedDistribution): """The vectorization of the Exponential distribution on `R^k`. The vector exponential distribution is defined over a subset of `R^k`, and parameterized by a (batch of) length-`k` `loc` vector and a (batch of) `k x k` `scale` matrix: `covariance = scale @ scale.T`, where `@` denotes matrix-multiplication. #### Mathematical Details The probability density function (pdf) is ```none pdf(y; loc, scale) = exp(-||x||_1) / Z, for y in S(loc, scale), x = inv(scale) @ (y - loc), Z = |det(scale)|, ``` where: * `loc` is a vector in `R^k`, * `scale` is a linear operator in `R^{k x k}`, `cov = scale @ scale.T`, * `S = {loc + scale @ x : x in R^k, x_1 > 0, ..., x_k > 0}`, is an image of the positive half-space, * `||x||_1` denotes the `l1` norm of `x`, `sum_i |x_i|`, * `Z` denotes the normalization constant. The VectorExponential distribution is a member of the [location-scale family](https://en.wikipedia.org/wiki/Location-scale_family), i.e., it can be constructed as, ```none X = (X_1, ..., X_k), each X_i ~ Exponential(rate=1) Y = (Y_1, ...,Y_k) = scale @ X + loc ``` #### About `VectorExponential` and `Vector` distributions in TensorFlow. The `VectorExponential` is a non-standard distribution that has useful properties. The marginals `Y_1, ..., Y_k` are *not* Exponential random variables, due to the fact that the sum of Exponential random variables is not Exponential. Instead, `Y` is a vector whose components are linear combinations of Exponential random variables. Thus, `Y` lives in the vector space generated by `vectors` of Exponential distributions. This allows the user to decide the mean and covariance (by setting `loc` and `scale`), while preserving some properties of the Exponential distribution. In particular, the tails of `Y_i` will be (up to polynomial factors) exponentially decaying. To see this last statement, note that the pdf of `Y_i` is the convolution of the pdf of `k` independent Exponential random variables. One can then show by induction that distributions with exponential (up to polynomial factors) tails are closed under convolution. #### Examples ```python import tensorflow_probability as tfp tfd = tfp.distributions # Initialize a single 2-variate VectorExponential, supported on # {(x, y) in R^2 : x > 0, y > 0}. mat = [[1.0, 0.1], [0.1, 1.0]] vex = tfd.VectorExponentialLinearOperator( scale=tf.linalg.LinearOperatorFullMatrix(mat)) # Compute the pdf of an`R^2` observation; return a scalar. vex.prob([1., 2.]).eval() # shape: [] # Initialize a 2-batch of 3-variate Vector Exponential's. mu = [[1., 2, 3], [1., 0, 0]] # shape: [2, 3] scale_diag = [[1., 2, 3], [0.5, 1, 1.5]] # shape: [2, 3] vex = tfd.VectorExponentialLinearOperator( loc=mu, scale=tf.linalg.LinearOperatorDiag(scale_diag)) # Compute the pdf of two `R^3` observations; return a length-2 vector. x = [[1.9, 2.2, 3.1], [10., 1.0, 9.0]] # shape: [2, 3] vex.prob(x).eval() # shape: [2] ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, loc=None, scale=None, validate_args=False, allow_nan_stats=True, name="VectorExponentialLinearOperator"): """Construct Vector Exponential distribution supported on a subset of `R^k`. The `batch_shape` is the broadcast shape between `loc` and `scale` arguments. The `event_shape` is given by last dimension of the matrix implied by `scale`. The last dimension of `loc` (if provided) must broadcast with this. Recall that `covariance = scale @ scale.T`. Additional leading dimensions (if any) will index batches. Args: loc: Floating-point `Tensor`. If this is set to `None`, `loc` is implicitly `0`. When specified, may have shape `[B1, ..., Bb, k]` where `b >= 0` and `k` is the event size. scale: Instance of `LinearOperator` with same `dtype` as `loc` and shape `[B1, ..., Bb, k, k]`. validate_args: Python `bool`, default `False`. Whether to validate input with asserts. If `validate_args` is `False`, and the inputs are invalid, correct behavior is not guaranteed. allow_nan_stats: Python `bool`, default `True`. If `False`, raise an exception if a statistic (e.g. mean/mode/etc...) is undefined for any batch member If `True`, batch members with valid parameters leading to undefined statistics will return NaN for this statistic. name: The name to give Ops created by the initializer. Raises: ValueError: if `scale` is unspecified. TypeError: if not `scale.dtype.is_floating` """ parameters = dict(locals()) if scale is None: raise ValueError("Missing required `scale` parameter.") if not scale.dtype.is_floating: raise TypeError("`scale` parameter must have floating-point dtype.") with ops.name_scope(name, values=[loc] + scale.graph_parents) as name: # Since expand_dims doesn't preserve constant-ness, we obtain the # non-dynamic value if possible. loc = ops.convert_to_tensor(loc, name="loc") if loc is not None else loc batch_shape, event_shape = distribution_util.shapes_from_loc_and_scale( loc, scale) super(VectorExponentialLinearOperator, self).__init__( distribution=exponential.Exponential(rate=array_ops.ones( [], dtype=scale.dtype), allow_nan_stats=allow_nan_stats), bijector=bijectors.AffineLinearOperator( shift=loc, scale=scale, validate_args=validate_args), batch_shape=batch_shape, event_shape=event_shape, validate_args=validate_args, name=name) self._parameters = parameters @property def loc(self): """The `loc` `Tensor` in `Y = scale @ X + loc`.""" return self.bijector.shift @property def scale(self): """The `scale` `LinearOperator` in `Y = scale @ X + loc`.""" return self.bijector.scale @distribution_util.AppendDocstring(_mvn_sample_note) def _log_prob(self, x): return super(VectorExponentialLinearOperator, self)._log_prob(x) @distribution_util.AppendDocstring(_mvn_sample_note) def _prob(self, x): return super(VectorExponentialLinearOperator, self)._prob(x) def _mean(self): # Let # W = (w1,...,wk), with wj ~ iid Exponential(0, 1). # Then this distribution is # X = loc + LW, # and then E[X] = loc + L1, where 1 is the vector of ones. scale_x_ones = self.bijector.scale.matvec( array_ops.ones(self._mode_mean_shape(), self.dtype)) if self.loc is None: return scale_x_ones return array_ops.identity(self.loc) + scale_x_ones def _covariance(self): # Let # W = (w1,...,wk), with wj ~ iid Exponential(0, 1). # Then this distribution is # X = loc + LW, # and then since Cov(wi, wj) = 1 if i=j, and 0 otherwise, # Cov(X) = L Cov(W W^T) L^T = L L^T. if distribution_util.is_diagonal_scale(self.scale): return array_ops.matrix_diag(math_ops.square(self.scale.diag_part())) else: return self.scale.matmul(self.scale.to_dense(), adjoint_arg=True) def _variance(self): if distribution_util.is_diagonal_scale(self.scale): return math_ops.square(self.scale.diag_part()) elif (isinstance(self.scale, linalg.LinearOperatorLowRankUpdate) and self.scale.is_self_adjoint): return array_ops.matrix_diag_part( self.scale.matmul(self.scale.to_dense())) else: return array_ops.matrix_diag_part( self.scale.matmul(self.scale.to_dense(), adjoint_arg=True)) def _stddev(self): if distribution_util.is_diagonal_scale(self.scale): return math_ops.abs(self.scale.diag_part()) elif (isinstance(self.scale, linalg.LinearOperatorLowRankUpdate) and self.scale.is_self_adjoint): return math_ops.sqrt( array_ops.matrix_diag_part(self.scale.matmul(self.scale.to_dense()))) else: return math_ops.sqrt( array_ops.matrix_diag_part( self.scale.matmul(self.scale.to_dense(), adjoint_arg=True))) def _mode(self): scale_x_zeros = self.bijector.scale.matvec( array_ops.zeros(self._mode_mean_shape(), self.dtype)) if self.loc is None: return scale_x_zeros return array_ops.identity(self.loc) + scale_x_zeros def _mode_mean_shape(self): """Shape for the mode/mean Tensors.""" shape = self.batch_shape.concatenate(self.event_shape) has_static_shape = shape.is_fully_defined() if not has_static_shape: shape = array_ops.concat([ self.batch_shape_tensor(), self.event_shape_tensor(), ], 0) return shape
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/vector_exponential_linear_operator.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The same-family Mixture distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import distribution_util as distribution_utils from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops.distributions import distribution from tensorflow.python.ops.distributions import util as distribution_util from tensorflow.python.util import deprecation class MixtureSameFamily(distribution.Distribution): """Mixture (same-family) distribution. The `MixtureSameFamily` distribution implements a (batch of) mixture distribution where all components are from different parameterizations of the same distribution type. It is parameterized by a `Categorical` "selecting distribution" (over `k` components) and a components distribution, i.e., a `Distribution` with a rightmost batch shape (equal to `[k]`) which indexes each (batch of) component. #### Examples ```python import tensorflow_probability as tfp tfd = tfp.distributions ### Create a mixture of two scalar Gaussians: gm = tfd.MixtureSameFamily( mixture_distribution=tfd.Categorical( probs=[0.3, 0.7]), components_distribution=tfd.Normal( loc=[-1., 1], # One for each component. scale=[0.1, 0.5])) # And same here. gm.mean() # ==> 0.4 gm.variance() # ==> 1.018 # Plot PDF. x = np.linspace(-2., 3., int(1e4), dtype=np.float32) import matplotlib.pyplot as plt plt.plot(x, gm.prob(x).eval()); ### Create a mixture of two Bivariate Gaussians: gm = tfd.MixtureSameFamily( mixture_distribution=tfd.Categorical( probs=[0.3, 0.7]), components_distribution=tfd.MultivariateNormalDiag( loc=[[-1., 1], # component 1 [1, -1]], # component 2 scale_identity_multiplier=[.3, .6])) gm.mean() # ==> array([ 0.4, -0.4], dtype=float32) gm.covariance() # ==> array([[ 1.119, -0.84], # [-0.84, 1.119]], dtype=float32) # Plot PDF contours. def meshgrid(x, y=x): [gx, gy] = np.meshgrid(x, y, indexing='ij') gx, gy = np.float32(gx), np.float32(gy) grid = np.concatenate([gx.ravel()[None, :], gy.ravel()[None, :]], axis=0) return grid.T.reshape(x.size, y.size, 2) grid = meshgrid(np.linspace(-2, 2, 100, dtype=np.float32)) plt.contour(grid[..., 0], grid[..., 1], gm.prob(grid).eval()); ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, mixture_distribution, components_distribution, validate_args=False, allow_nan_stats=True, name="MixtureSameFamily"): """Construct a `MixtureSameFamily` distribution. Args: mixture_distribution: `tfp.distributions.Categorical`-like instance. Manages the probability of selecting components. The number of categories must match the rightmost batch dimension of the `components_distribution`. Must have either scalar `batch_shape` or `batch_shape` matching `components_distribution.batch_shape[:-1]`. components_distribution: `tfp.distributions.Distribution`-like instance. Right-most batch dimension indexes components. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Raises: ValueError: `if not mixture_distribution.dtype.is_integer`. ValueError: if mixture_distribution does not have scalar `event_shape`. ValueError: if `mixture_distribution.batch_shape` and `components_distribution.batch_shape[:-1]` are both fully defined and the former is neither scalar nor equal to the latter. ValueError: if `mixture_distribution` categories does not equal `components_distribution` rightmost batch shape. """ parameters = dict(locals()) with ops.name_scope(name) as name: self._mixture_distribution = mixture_distribution self._components_distribution = components_distribution self._runtime_assertions = [] s = components_distribution.event_shape_tensor() s_dim0 = tensor_shape.dimension_value(s.shape[0]) self._event_ndims = (s_dim0 if s_dim0 is not None else array_ops.shape(s)[0]) if not mixture_distribution.dtype.is_integer: raise ValueError( "`mixture_distribution.dtype` ({}) is not over integers".format( mixture_distribution.dtype.name)) if (mixture_distribution.event_shape.ndims is not None and mixture_distribution.event_shape.ndims != 0): raise ValueError("`mixture_distribution` must have scalar `event_dim`s") elif validate_args: self._runtime_assertions += [ control_flow_ops.assert_has_rank( mixture_distribution.event_shape_tensor(), 0, message="`mixture_distribution` must have scalar `event_dim`s"), ] mdbs = mixture_distribution.batch_shape cdbs = components_distribution.batch_shape.with_rank_at_least(1)[:-1] if mdbs.is_fully_defined() and cdbs.is_fully_defined(): if mdbs.ndims != 0 and mdbs != cdbs: raise ValueError( "`mixture_distribution.batch_shape` (`{}`) is not " "compatible with `components_distribution.batch_shape` " "(`{}`)".format(mdbs.as_list(), cdbs.as_list())) elif validate_args: mdbs = mixture_distribution.batch_shape_tensor() cdbs = components_distribution.batch_shape_tensor()[:-1] self._runtime_assertions += [ control_flow_ops.assert_equal( distribution_util.pick_vector( mixture_distribution.is_scalar_batch(), cdbs, mdbs), cdbs, message=( "`mixture_distribution.batch_shape` is not " "compatible with `components_distribution.batch_shape`"))] km = tensor_shape.dimension_value( mixture_distribution.logits.shape.with_rank_at_least(1)[-1]) kc = tensor_shape.dimension_value( components_distribution.batch_shape.with_rank_at_least(1)[-1]) if km is not None and kc is not None and km != kc: raise ValueError("`mixture_distribution components` ({}) does not " "equal `components_distribution.batch_shape[-1]` " "({})".format(km, kc)) elif validate_args: km = array_ops.shape(mixture_distribution.logits)[-1] kc = components_distribution.batch_shape_tensor()[-1] self._runtime_assertions += [ control_flow_ops.assert_equal( km, kc, message=("`mixture_distribution components` does not equal " "`components_distribution.batch_shape[-1:]`")), ] elif km is None: km = array_ops.shape(mixture_distribution.logits)[-1] self._num_components = km super(MixtureSameFamily, self).__init__( dtype=self._components_distribution.dtype, reparameterization_type=distribution.NOT_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=( self._mixture_distribution._graph_parents # pylint: disable=protected-access + self._components_distribution._graph_parents), # pylint: disable=protected-access name=name) @property def mixture_distribution(self): return self._mixture_distribution @property def components_distribution(self): return self._components_distribution def _batch_shape_tensor(self): with ops.control_dependencies(self._runtime_assertions): return self.components_distribution.batch_shape_tensor()[:-1] def _batch_shape(self): return self.components_distribution.batch_shape.with_rank_at_least(1)[:-1] def _event_shape_tensor(self): with ops.control_dependencies(self._runtime_assertions): return self.components_distribution.event_shape_tensor() def _event_shape(self): return self.components_distribution.event_shape def _sample_n(self, n, seed): with ops.control_dependencies(self._runtime_assertions): x = self.components_distribution.sample(n) # [n, B, k, E] # TODO(jvdillon): Consider using tf.gather (by way of index unrolling). npdt = x.dtype.as_numpy_dtype mask = array_ops.one_hot( indices=self.mixture_distribution.sample(n), # [n, B] depth=self._num_components, # == k on_value=np.ones([], dtype=npdt), off_value=np.zeros([], dtype=npdt)) # [n, B, k] mask = distribution_utils.pad_mixture_dimensions( mask, self, self.mixture_distribution, self._event_shape().ndims) # [n, B, k, [1]*e] return math_ops.reduce_sum( x * mask, axis=-1 - self._event_ndims) # [n, B, E] def _log_prob(self, x): with ops.control_dependencies(self._runtime_assertions): x = self._pad_sample_dims(x) log_prob_x = self.components_distribution.log_prob(x) # [S, B, k] log_mix_prob = nn_ops.log_softmax( self.mixture_distribution.logits, axis=-1) # [B, k] return math_ops.reduce_logsumexp( log_prob_x + log_mix_prob, axis=-1) # [S, B] def _mean(self): with ops.control_dependencies(self._runtime_assertions): probs = distribution_utils.pad_mixture_dimensions( self.mixture_distribution.probs, self, self.mixture_distribution, self._event_shape().ndims) # [B, k, [1]*e] return math_ops.reduce_sum( probs * self.components_distribution.mean(), axis=-1 - self._event_ndims) # [B, E] def _log_cdf(self, x): x = self._pad_sample_dims(x) log_cdf_x = self.components_distribution.log_cdf(x) # [S, B, k] log_mix_prob = nn_ops.log_softmax( self.mixture_distribution.logits, axis=-1) # [B, k] return math_ops.reduce_logsumexp( log_cdf_x + log_mix_prob, axis=-1) # [S, B] def _variance(self): with ops.control_dependencies(self._runtime_assertions): # Law of total variance: Var(Y) = E[Var(Y|X)] + Var(E[Y|X]) probs = distribution_utils.pad_mixture_dimensions( self.mixture_distribution.probs, self, self.mixture_distribution, self._event_shape().ndims) # [B, k, [1]*e] mean_cond_var = math_ops.reduce_sum( probs * self.components_distribution.variance(), axis=-1 - self._event_ndims) # [B, E] var_cond_mean = math_ops.reduce_sum( probs * math_ops.squared_difference( self.components_distribution.mean(), self._pad_sample_dims(self._mean())), axis=-1 - self._event_ndims) # [B, E] return mean_cond_var + var_cond_mean # [B, E] def _covariance(self): static_event_ndims = self.event_shape.ndims if static_event_ndims != 1: # Covariance is defined only for vector distributions. raise NotImplementedError("covariance is not implemented") with ops.control_dependencies(self._runtime_assertions): # Law of total variance: Var(Y) = E[Var(Y|X)] + Var(E[Y|X]) probs = distribution_utils.pad_mixture_dimensions( distribution_utils.pad_mixture_dimensions( self.mixture_distribution.probs, self, self.mixture_distribution, self._event_shape().ndims), self, self.mixture_distribution, self._event_shape().ndims) # [B, k, 1, 1] mean_cond_var = math_ops.reduce_sum( probs * self.components_distribution.covariance(), axis=-3) # [B, e, e] var_cond_mean = math_ops.reduce_sum( probs * _outer_squared_difference( self.components_distribution.mean(), self._pad_sample_dims(self._mean())), axis=-3) # [B, e, e] return mean_cond_var + var_cond_mean # [B, e, e] def _pad_sample_dims(self, x): with ops.name_scope("pad_sample_dims", values=[x]): ndims = x.shape.ndims if x.shape.ndims is not None else array_ops.rank(x) shape = array_ops.shape(x) d = ndims - self._event_ndims x = array_ops.reshape(x, shape=array_ops.concat([ shape[:d], [1], shape[d:]], axis=0)) return x @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def _outer_squared_difference(x, y): """Convenience function analogous to tf.squared_difference.""" z = x - y return z[..., array_ops.newaxis, :] * z[..., array_ops.newaxis]
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/mixture_same_family.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A helper class for inferring Distribution shape.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import contextlib from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.distributions import util as distribution_util from tensorflow.python.util import deprecation class _DistributionShape(object): """Manage and manipulate `Distribution` shape. #### Terminology Recall that a `Tensor` has: - `shape`: size of `Tensor` dimensions, - `ndims`: size of `shape`; number of `Tensor` dimensions, - `dims`: indexes into `shape`; useful for transpose, reduce. `Tensor`s sampled from a `Distribution` can be partitioned by `sample_dims`, `batch_dims`, and `event_dims`. To understand the semantics of these dimensions, consider when two of the three are fixed and the remaining is varied: - `sample_dims`: indexes independent draws from identical parameterizations of the `Distribution`. - `batch_dims`: indexes independent draws from non-identical parameterizations of the `Distribution`. - `event_dims`: indexes event coordinates from one sample. The `sample`, `batch`, and `event` dimensions constitute the entirety of a `Distribution` `Tensor`'s shape. The dimensions are always in `sample`, `batch`, `event` order. #### Purpose This class partitions `Tensor` notions of `shape`, `ndims`, and `dims` into `Distribution` notions of `sample,` `batch,` and `event` dimensions. That is, it computes any of: ``` sample_shape batch_shape event_shape sample_dims batch_dims event_dims sample_ndims batch_ndims event_ndims ``` for a given `Tensor`, e.g., the result of `Distribution.sample(sample_shape=...)`. For a given `Tensor`, this class computes the above table using minimal information: `batch_ndims` and `event_ndims`. #### Examples We show examples of distribution shape semantics. - Sample dimensions: Computing summary statistics, i.e., the average is a reduction over sample dimensions. ```python sample_dims = [0] tf.reduce_mean(Normal(loc=1.3, scale=1.).sample_n(1000), axis=sample_dims) # ~= 1.3 ``` - Batch dimensions: Monte Carlo estimation of a marginal probability: Average over batch dimensions where batch dimensions are associated with random draws from a prior. E.g., suppose we want to find the Monte Carlo estimate of the marginal distribution of a `Normal` with a random `Laplace` location: ``` P(X=x) = integral P(X=x|y) P(Y=y) dy ~= 1/n sum_{i=1}^n P(X=x|y_i), y_i ~iid Laplace(0,1) = tf.reduce_mean(Normal(loc=Laplace(0., 1.).sample_n(n=1000), scale=tf.ones(1000)).prob(x), axis=batch_dims) ``` The `Laplace` distribution generates a `Tensor` of shape `[1000]`. When fed to a `Normal`, this is interpreted as 1000 different locations, i.e., 1000 non-identical Normals. Therefore a single call to `prob(x)` yields 1000 probabilities, one for every location. The average over this batch yields the marginal. - Event dimensions: Computing the determinant of the Jacobian of a function of a random variable involves a reduction over event dimensions. E.g., Jacobian of the transform `Y = g(X) = exp(X)`: ```python tf.compat.v1.div(1., tf.reduce_prod(x, event_dims)) ``` We show examples using this class. Write `S, B, E` for `sample_shape`, `batch_shape`, and `event_shape`. ```python # 150 iid samples from one multivariate Normal with two degrees of freedom. mu = [0., 0] sigma = [[1., 0], [0, 1]] mvn = MultivariateNormal(mu, sigma) rand_mvn = mvn.sample(sample_shape=[3, 50]) shaper = DistributionShape(batch_ndims=0, event_ndims=1) S, B, E = shaper.get_shape(rand_mvn) # S = [3, 50] # B = [] # E = [2] # 12 iid samples from one Wishart with 2x2 events. sigma = [[1., 0], [2, 1]] wishart = Wishart(df=5, scale=sigma) rand_wishart = wishart.sample(sample_shape=[3, 4]) shaper = DistributionShape(batch_ndims=0, event_ndims=2) S, B, E = shaper.get_shape(rand_wishart) # S = [3, 4] # B = [] # E = [2, 2] # 100 iid samples from two, non-identical trivariate Normal distributions. mu = ... # shape(2, 3) sigma = ... # shape(2, 3, 3) X = MultivariateNormal(mu, sigma).sample(shape=[4, 25]) # S = [4, 25] # B = [2] # E = [3] ``` #### Argument Validation When `validate_args=False`, checks that cannot be done during graph construction are performed at graph execution. This may result in a performance degradation because data must be switched from GPU to CPU. For example, when `validate_args=False` and `event_ndims` is a non-constant `Tensor`, it is checked to be a non-negative integer at graph execution. (Same for `batch_ndims`). Constant `Tensor`s and non-`Tensor` arguments are always checked for correctness since this can be done for "free," i.e., during graph construction. """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, batch_ndims=None, event_ndims=None, validate_args=False, name="DistributionShape"): """Construct `DistributionShape` with fixed `batch_ndims`, `event_ndims`. `batch_ndims` and `event_ndims` are fixed throughout the lifetime of a `Distribution`. They may only be known at graph execution. If both `batch_ndims` and `event_ndims` are python scalars (rather than either being a `Tensor`), functions in this class automatically perform sanity checks during graph construction. Args: batch_ndims: `Tensor`. Number of `dims` (`rank`) of the batch portion of indexes of a `Tensor`. A "batch" is a non-identical distribution, i.e, Normal with different parameters. event_ndims: `Tensor`. Number of `dims` (`rank`) of the event portion of indexes of a `Tensor`. An "event" is what is sampled from a distribution, i.e., a trivariate Normal has an event shape of [3] and a 4 dimensional Wishart has an event shape of [4, 4]. validate_args: Python `bool`, default `False`. When `True`, non-`tf.constant` `Tensor` arguments are checked for correctness. (`tf.constant` arguments are always checked.) name: Python `str`. The name prepended to Ops created by this class. Raises: ValueError: if either `batch_ndims` or `event_ndims` are: `None`, negative, not `int32`. """ if batch_ndims is None: raise ValueError("batch_ndims cannot be None") if event_ndims is None: raise ValueError("event_ndims cannot be None") self._batch_ndims = batch_ndims self._event_ndims = event_ndims self._validate_args = validate_args with ops.name_scope(name): self._name = name with ops.name_scope("init"): self._batch_ndims = self._assert_non_negative_int32_scalar( ops.convert_to_tensor( batch_ndims, name="batch_ndims")) self._batch_ndims_static, self._batch_ndims_is_0 = ( self._introspect_ndims(self._batch_ndims)) self._event_ndims = self._assert_non_negative_int32_scalar( ops.convert_to_tensor( event_ndims, name="event_ndims")) self._event_ndims_static, self._event_ndims_is_0 = ( self._introspect_ndims(self._event_ndims)) @property def name(self): """Name given to ops created by this class.""" return self._name @property def batch_ndims(self): """Returns number of dimensions corresponding to non-identical draws.""" return self._batch_ndims @property def event_ndims(self): """Returns number of dimensions needed to index a sample's coordinates.""" return self._event_ndims @property def validate_args(self): """Returns True if graph-runtime `Tensor` checks are enabled.""" return self._validate_args def get_ndims(self, x, name="get_ndims"): """Get `Tensor` number of dimensions (rank). Args: x: `Tensor`. name: Python `str`. The name to give this op. Returns: ndims: Scalar number of dimensions associated with a `Tensor`. """ with self._name_scope(name, values=[x]): x = ops.convert_to_tensor(x, name="x") ndims = x.get_shape().ndims if ndims is None: return array_ops.rank(x, name="ndims") return ops.convert_to_tensor(ndims, dtype=dtypes.int32, name="ndims") def get_sample_ndims(self, x, name="get_sample_ndims"): """Returns number of dimensions corresponding to iid draws ("sample"). Args: x: `Tensor`. name: Python `str`. The name to give this op. Returns: sample_ndims: `Tensor` (0D, `int32`). Raises: ValueError: if `sample_ndims` is calculated to be negative. """ with self._name_scope(name, values=[x]): ndims = self.get_ndims(x, name=name) if self._is_all_constant_helper(ndims, self.batch_ndims, self.event_ndims): ndims = tensor_util.constant_value(ndims) sample_ndims = (ndims - self._batch_ndims_static - self._event_ndims_static) if sample_ndims < 0: raise ValueError( "expected batch_ndims(%d) + event_ndims(%d) <= ndims(%d)" % (self._batch_ndims_static, self._event_ndims_static, ndims)) return ops.convert_to_tensor(sample_ndims, name="sample_ndims") else: with ops.name_scope(name="sample_ndims"): sample_ndims = ndims - self.batch_ndims - self.event_ndims if self.validate_args: sample_ndims = control_flow_ops.with_dependencies( [check_ops.assert_non_negative(sample_ndims)], sample_ndims) return sample_ndims def get_dims(self, x, name="get_dims"): """Returns dimensions indexing `sample_shape`, `batch_shape`, `event_shape`. Example: ```python x = ... # Tensor with shape [4, 3, 2, 1] sample_dims, batch_dims, event_dims = _DistributionShape( batch_ndims=2, event_ndims=1).get_dims(x) # sample_dims == [0] # batch_dims == [1, 2] # event_dims == [3] # Note that these are not the shape parts, but rather indexes into shape. ``` Args: x: `Tensor`. name: Python `str`. The name to give this op. Returns: sample_dims: `Tensor` (1D, `int32`). batch_dims: `Tensor` (1D, `int32`). event_dims: `Tensor` (1D, `int32`). """ with self._name_scope(name, values=[x]): def make_dims(start_sum, size, name): """Closure to make dims range.""" start_sum = start_sum if start_sum else [ array_ops.zeros([], dtype=dtypes.int32, name="zero")] if self._is_all_constant_helper(size, *start_sum): start = sum(tensor_util.constant_value(s) for s in start_sum) stop = start + tensor_util.constant_value(size) return ops.convert_to_tensor( list(range(start, stop)), dtype=dtypes.int32, name=name) else: start = sum(start_sum) return math_ops.range(start, start + size) sample_ndims = self.get_sample_ndims(x, name=name) return (make_dims([], sample_ndims, name="sample_dims"), make_dims([sample_ndims], self.batch_ndims, name="batch_dims"), make_dims([sample_ndims, self.batch_ndims], self.event_ndims, name="event_dims")) def get_shape(self, x, name="get_shape"): """Returns `Tensor`'s shape partitioned into `sample`, `batch`, `event`. Args: x: `Tensor`. name: Python `str`. The name to give this op. Returns: sample_shape: `Tensor` (1D, `int32`). batch_shape: `Tensor` (1D, `int32`). event_shape: `Tensor` (1D, `int32`). """ with self._name_scope(name, values=[x]): x = ops.convert_to_tensor(x, name="x") def slice_shape(start_sum, size, name): """Closure to slice out shape.""" start_sum = start_sum if start_sum else [ array_ops.zeros([], dtype=dtypes.int32, name="zero")] if (x.get_shape().ndims is not None and self._is_all_constant_helper(size, *start_sum)): start = sum(tensor_util.constant_value(s) for s in start_sum) stop = start + tensor_util.constant_value(size) slice_ = x.get_shape()[start:stop].as_list() if all(s is not None for s in slice_): return ops.convert_to_tensor(slice_, dtype=dtypes.int32, name=name) return array_ops.slice(array_ops.shape(x), [sum(start_sum)], [size]) sample_ndims = self.get_sample_ndims(x, name=name) return (slice_shape([], sample_ndims, name="sample_shape"), slice_shape([sample_ndims], self.batch_ndims, name="batch_shape"), slice_shape([sample_ndims, self.batch_ndims], self.event_ndims, name="event_shape")) # TODO(jvdillon): Make remove expand_batch_dim and make expand_batch_dim=False # the default behavior. def make_batch_of_event_sample_matrices( self, x, expand_batch_dim=True, name="make_batch_of_event_sample_matrices"): """Reshapes/transposes `Distribution` `Tensor` from S+B+E to B_+E_+S_. Where: - `B_ = B if B or not expand_batch_dim else [1]`, - `E_ = E if E else [1]`, - `S_ = [tf.reduce_prod(S)]`. Args: x: `Tensor`. expand_batch_dim: Python `bool`. If `True` the batch dims will be expanded such that `batch_ndims >= 1`. name: Python `str`. The name to give this op. Returns: x: `Tensor`. Input transposed/reshaped to `B_+E_+S_`. sample_shape: `Tensor` (1D, `int32`). """ with self._name_scope(name, values=[x]): x = ops.convert_to_tensor(x, name="x") # x.shape: S+B+E sample_shape, batch_shape, event_shape = self.get_shape(x) event_shape = distribution_util.pick_vector( self._event_ndims_is_0, [1], event_shape) if expand_batch_dim: batch_shape = distribution_util.pick_vector( self._batch_ndims_is_0, [1], batch_shape) new_shape = array_ops.concat([[-1], batch_shape, event_shape], 0) x = array_ops.reshape(x, shape=new_shape) # x.shape: [prod(S)]+B_+E_ x = distribution_util.rotate_transpose(x, shift=-1) # x.shape: B_+E_+[prod(S)] return x, sample_shape # TODO(jvdillon): Make remove expand_batch_dim and make expand_batch_dim=False # the default behavior. def undo_make_batch_of_event_sample_matrices( self, x, sample_shape, expand_batch_dim=True, name="undo_make_batch_of_event_sample_matrices"): """Reshapes/transposes `Distribution` `Tensor` from B_+E_+S_ to S+B+E. Where: - `B_ = B if B or not expand_batch_dim else [1]`, - `E_ = E if E else [1]`, - `S_ = [tf.reduce_prod(S)]`. This function "reverses" `make_batch_of_event_sample_matrices`. Args: x: `Tensor` of shape `B_+E_+S_`. sample_shape: `Tensor` (1D, `int32`). expand_batch_dim: Python `bool`. If `True` the batch dims will be expanded such that `batch_ndims>=1`. name: Python `str`. The name to give this op. Returns: x: `Tensor`. Input transposed/reshaped to `S+B+E`. """ with self._name_scope(name, values=[x, sample_shape]): x = ops.convert_to_tensor(x, name="x") # x.shape: _B+_E+[prod(S)] sample_shape = ops.convert_to_tensor(sample_shape, name="sample_shape") x = distribution_util.rotate_transpose(x, shift=1) # x.shape: [prod(S)]+_B+_E if self._is_all_constant_helper(self.batch_ndims, self.event_ndims): if self._batch_ndims_is_0 or self._event_ndims_is_0: squeeze_dims = [] if self._event_ndims_is_0: squeeze_dims += [-1] if self._batch_ndims_is_0 and expand_batch_dim: squeeze_dims += [1] if squeeze_dims: x = array_ops.squeeze(x, axis=squeeze_dims) # x.shape: [prod(S)]+B+E _, batch_shape, event_shape = self.get_shape(x) else: s = (x.get_shape().as_list() if x.get_shape().is_fully_defined() else array_ops.shape(x)) batch_shape = s[1:1+self.batch_ndims] # Since sample_dims=1 and is left-most, we add 1 to the number of # batch_ndims to get the event start dim. event_start = array_ops.where_v2( math_ops.logical_and(expand_batch_dim, self._batch_ndims_is_0), 2, 1 + self.batch_ndims) event_shape = s[event_start:event_start+self.event_ndims] new_shape = array_ops.concat([sample_shape, batch_shape, event_shape], 0) x = array_ops.reshape(x, shape=new_shape) # x.shape: S+B+E return x @contextlib.contextmanager def _name_scope(self, name=None, values=None): """Helper function to standardize op scope.""" with ops.name_scope(self.name): with ops.name_scope(name, values=( (values or []) + [self.batch_ndims, self.event_ndims])) as scope: yield scope def _is_all_constant_helper(self, *args): """Helper which returns True if all inputs are constant_value.""" return all(tensor_util.constant_value(x) is not None for x in args) def _assert_non_negative_int32_scalar(self, x): """Helper which ensures that input is a non-negative, int32, scalar.""" x = ops.convert_to_tensor(x, name="x") if x.dtype.base_dtype != dtypes.int32.base_dtype: raise TypeError("%s.dtype=%s is not %s" % (x.name, x.dtype, dtypes.int32)) x_value_static = tensor_util.constant_value(x) if x.get_shape().ndims is not None and x_value_static is not None: if x.get_shape().ndims != 0: raise ValueError("%s.ndims=%d is not 0 (scalar)" % (x.name, x.get_shape().ndims)) if x_value_static < 0: raise ValueError("%s.value=%d cannot be negative" % (x.name, x_value_static)) return x if self.validate_args: x = control_flow_ops.with_dependencies([ check_ops.assert_rank(x, 0), check_ops.assert_non_negative(x)], x) return x def _introspect_ndims(self, ndims): """Helper to establish some properties of input ndims args.""" if self._is_all_constant_helper(ndims): return (tensor_util.constant_value(ndims), tensor_util.constant_value(ndims) == 0) return None, math_ops.equal(ndims, 0)
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/shape.py
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions to bridge `Distribution`s and `tf.contrib.learn.estimator` APIs.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.estimators.head import _compute_weighted_loss from tensorflow.contrib.learn.python.learn.estimators.head import _RegressionHead from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.util import deprecation __all__ = [ "estimator_head_distribution_regression", ] @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def estimator_head_distribution_regression(make_distribution_fn, label_dimension=1, logits_dimension=None, label_name=None, weight_column_name=None, enable_centered_bias=False, head_name=None): """Creates a `Head` for regression under a generic distribution. Args: make_distribution_fn: Python `callable` which returns a `tf.Distribution` instance created using only logits. label_dimension: Number of regression labels per example. This is the size of the last dimension of the labels `Tensor` (typically, this has shape `[batch_size, label_dimension]`). logits_dimension: Number of logits per example. This is the size of the last dimension of the logits `Tensor` (typically, this has shape `[batch_size, logits_dimension]`). Default value: `label_dimension`. label_name: Python `str`, name of the key in label `dict`. Can be `None` if label is a `Tensor` (single headed models). weight_column_name: Python `str` defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. enable_centered_bias: Python `bool`. If `True`, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. head_name: Python `str`, name of the head. Predictions, summary and metrics keys are suffixed by `"/" + head_name` and the default variable scope is `head_name`. Returns: An instance of `Head` for generic regression. """ return _DistributionRegressionHead( make_distribution_fn=make_distribution_fn, label_dimension=label_dimension, logits_dimension=logits_dimension, label_name=label_name, weight_column_name=weight_column_name, enable_centered_bias=enable_centered_bias, head_name=head_name) class _DistributionRegressionHead(_RegressionHead): """Creates a _RegressionHead instance from an arbitrary `Distribution`.""" @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, make_distribution_fn, label_dimension, logits_dimension=None, label_name=None, weight_column_name=None, enable_centered_bias=False, head_name=None): """`Head` for regression. Args: make_distribution_fn: Python `callable` which returns a `tf.Distribution` instance created using only logits. label_dimension: Number of regression labels per example. This is the size of the last dimension of the labels `Tensor` (typically, this has shape `[batch_size, label_dimension]`). logits_dimension: Number of logits per example. This is the size of the last dimension of the logits `Tensor` (typically, this has shape `[batch_size, logits_dimension]`). Default value: `label_dimension`. label_name: Python `str`, name of the key in label `dict`. Can be `None` if label is a tensor (single headed models). weight_column_name: Python `str` defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. enable_centered_bias: Python `bool`. If `True`, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. head_name: Python `str`, name of the head. Predictions, summary and metrics keys are suffixed by `"/" + head_name` and the default variable scope is `head_name`. Raises: TypeError: if `make_distribution_fn` is not `callable`. """ if not callable(make_distribution_fn): raise TypeError("`make_distribution_fn` must be a callable function.") self._distributions = {} self._make_distribution_fn = make_distribution_fn def static_value(x): """Returns the static value of a `Tensor` or `None`.""" return tensor_util.constant_value(ops.convert_to_tensor(x)) def concat_vectors(*args): """Concatenates input vectors, statically if possible.""" args_ = [static_value(x) for x in args] if any(vec is None for vec in args_): return array_ops.concat(args, axis=0) return [val for vec in args_ for val in vec] def loss_fn(labels, logits, weights=None): """Returns the loss of using `logits` to predict `labels`.""" d = self.distribution(logits) labels_batch_shape = labels.shape.with_rank_at_least(1)[:-1] labels_batch_shape = ( labels_batch_shape.as_list() if labels_batch_shape.is_fully_defined() else array_ops.shape(labels)[:-1]) labels = array_ops.reshape( labels, shape=concat_vectors(labels_batch_shape, d.event_shape_tensor())) return _compute_weighted_loss( loss_unweighted=-d.log_prob(labels), weight=weights) def link_fn(logits): """Returns the inverse link function at `logits`.""" # Note: What the API calls a "link function" is really the inverse-link # function, i.e., the "mean". d = self.distribution(logits) return d.mean() super(_DistributionRegressionHead, self).__init__( label_dimension=label_dimension, loss_fn=loss_fn, link_fn=link_fn, logits_dimension=logits_dimension, label_name=label_name, weight_column_name=weight_column_name, enable_centered_bias=enable_centered_bias, head_name=head_name) @property def distributions(self): """Returns all distributions created by `DistributionRegressionHead`.""" return self._distributions def distribution(self, logits, name=None): """Retrieves a distribution instance, parameterized by `logits`. Args: logits: `float`-like `Tensor` representing the parameters of the underlying distribution. name: The Python `str` name to given to this op. Default value: "distribution". Returns: distribution: `tf.Distribution` instance parameterized by `logits`. """ with ops.name_scope(name, "distribution", [logits]): d = self._distributions.get(logits, None) if d is None: d = self._make_distribution_fn(logits) self._distributions[logits] = d return d
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/estimator.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Statistical test assertions calibrated for their error rates. Statistical tests have an inescapable probability of error: a correct sampler can still fail a test by chance, and an incorrect sampler can still pass a test by chance. This library is about bounding both of those error rates. This requires admitting a task-specific notion of "discrepancy": Correct code will fail rarely, code that misbehaves by more than the discrepancy will pass rarely, and nothing reliable can be said about code that misbehaves, but misbehaves by less than the discrepancy. # Example Consider testing that the mean of a scalar probability distribution P is some expected constant. Suppose the support of P is the interval `[0, 1]`. Then you might do this: ```python from tensorflow_probability.python.distributions.internal import statistical_testing expected_mean = ... num_samples = 5000 samples = ... draw 5000 samples from P # Check that the mean looks right check1 = statistical_testing.assert_true_mean_equal_by_dkwm( samples, low=0., high=1., expected=expected_mean, false_fail_rate=1e-6) # Check that the difference in means detectable with 5000 samples is # small enough check2 = tf.compat.v1.assert_less( statistical_testing.min_discrepancy_of_true_means_detectable_by_dkwm( num_samples, low=0., high=1.0, false_fail_rate=1e-6, false_pass_rate=1e-6), 0.01) # Be sure to execute both assertion ops sess.run([check1, check2]) ``` The second assertion is an instance of experiment design. It's a deterministic computation (independent of the code under test) that checks that `5000` samples is enough to reliably resolve mean differences of `0.01` or more. Here "reliably" means that if the code under test is correct, the probability of drawing an unlucky sample that causes this test to fail is at most 1e-6; and if the code under test is incorrect enough that its true mean is 0.01 more or less than expected, then the probability of drawing a "lucky" sample that causes the test to false-pass is also at most 1e-6. # Overview Every function in this library can be characterized in terms of: - The property being tested, such as the full density of the distribution under test, or just its true mean, or a single Bernoulli probability, etc. - The relation being asserted, e.g., whether the mean is less, more, or equal to the given expected value. - The stochastic bound being relied upon, such as the [Dvoretzky-Kiefer-Wolfowitz-Massart inequality] (https://en.wikipedia.org/wiki/CDF-based_nonparametric_confidence_interval) or the CDF of the binomial distribution (for assertions about Bernoulli probabilities). - The number of sample sets in the statistical test. For example, testing equality of means has a one-sample variant, where the expected mean is given exactly, and a two-sample variant, where the expected mean is itself given by a set of samples (e.g., from an alternative algorithm). - What operation(s) of the test are to be performed. Each test has three of these: 1. `assert` executes the test. Specifically, it creates a TF op that produces an error if it has enough evidence to prove that the property under test is violated. These functions depend on the desired false failure rate, because that determines the sizes of appropriate confidence intervals, etc. 2. `min_discrepancy` computes the smallest difference reliably detectable by that test, given the sample count and error rates. What it's a difference of is test-specific. For example, a test for equality of means would make detection guarantees about the difference the true means. 3. `min_num_samples` computes the minimum number of samples needed to reliably detect a given discrepancy with given error rates. The latter two are for experimental design, and are meant to be usable either interactively or inline in the overall test method. This library follows a naming convention, to make room for every combination of the above. A name mentions the operation first, then the property, then the relation, then the bound, then, if the test takes more than one set of samples, a token indicating this. For example, `assert_true_mean_equal_by_dkwm` (which is implicitly one-sample). Each name is a grammatically sound noun phrase (or verb phrase, for the asserts). # Asymptotic properties The number of samples needed tends to scale as `O(1/discrepancy**2)` and as `O(log(1/error_rate))`. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import clip_ops from tensorflow.python.ops import gen_math_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops __all__ = [ "true_mean_confidence_interval_by_dkwm", "assert_true_mean_equal_by_dkwm", "min_discrepancy_of_true_means_detectable_by_dkwm", "min_num_samples_for_dkwm_mean_test", "assert_true_mean_in_interval_by_dkwm", "assert_true_mean_equal_by_dkwm_two_sample", "min_discrepancy_of_true_means_detectable_by_dkwm_two_sample", "min_num_samples_for_dkwm_mean_two_sample_test", ] def _batch_sort_vector(x, ascending=True, name=None): with ops.name_scope(name, "_batch_sort_vector", [x]): x = ops.convert_to_tensor(x, name="x") n = array_ops.shape(x)[-1] if ascending: y, _ = nn_ops.top_k(-x, k=n, sorted=True) y = -y else: y, _ = nn_ops.top_k(x, k=n, sorted=True) y.set_shape(x.shape) return y def _do_maximum_mean(samples, envelope, high, name=None): """Common code between maximum_mean and minimum_mean.""" with ops.name_scope(name, "do_maximum_mean", [samples, envelope, high]): n = array_ops.rank(samples) # Move the batch dimension of `samples` to the rightmost position, # where the _batch_sort_vector function wants it. perm = array_ops.concat([math_ops.range(1, n), [0]], axis=0) samples = array_ops.transpose(samples, perm) samples = _batch_sort_vector(samples) # The maximum mean is given by taking `envelope`-worth of # probability from the smallest samples and moving it to the # maximum value. This amounts to: # - ignoring the smallest k samples, where `k/n < envelope` # - taking a `1/n - (envelope - k/n)` part of the index k sample # - taking all the other samples # - and adding `envelope * high` at the end. # The following is a vectorized and batched way of computing this. # `max_mean_contrib` is a mask implementing the previous. batch_size = array_ops.shape(samples)[-1] batch_size = math_ops.cast(batch_size, dtype=samples.dtype.base_dtype) step = 1. / batch_size cum_steps = step * math_ops.range( 1, batch_size + 1, dtype=samples.dtype.base_dtype) max_mean_contrib = clip_ops.clip_by_value( cum_steps - envelope[..., array_ops.newaxis], clip_value_min=0., clip_value_max=step) return math_ops.reduce_sum( samples * max_mean_contrib, axis=-1) + envelope * high def _maximum_mean(samples, envelope, high, name=None): """Returns a stochastic upper bound on the mean of a scalar distribution. The idea is that if the true CDF is within an `eps`-envelope of the empirical CDF of the samples, and the support is bounded above, then the mean is bounded above as well. In symbols, ```none sup_x(|F_n(x) - F(x)|) < eps ``` The 0th dimension of `samples` is interpreted as independent and identically distributed samples. The remaining dimensions are broadcast together with `envelope` and `high`, and operated on separately. Args: samples: Floating-point `Tensor` of samples from the distribution(s) of interest. Entries are assumed IID across the 0th dimension. The other dimensions must broadcast with `envelope` and `high`. envelope: Floating-point `Tensor` of sizes of admissible CDF envelopes (i.e., the `eps` above). high: Floating-point `Tensor` of upper bounds on the distributions' supports. `samples <= high`. name: A name for this operation (optional). Returns: bound: Floating-point `Tensor` of upper bounds on the true means. Raises: InvalidArgumentError: If some `sample` is found to be larger than the corresponding `high`. """ with ops.name_scope(name, "maximum_mean", [samples, envelope, high]): samples = ops.convert_to_tensor(samples, name="samples") envelope = ops.convert_to_tensor(envelope, name="envelope") high = ops.convert_to_tensor(high, name="high") xmax = math_ops.reduce_max(samples, axis=[0]) msg = "Given sample maximum value exceeds expectations" check_op = check_ops.assert_less_equal(xmax, high, message=msg) with ops.control_dependencies([check_op]): return array_ops.identity(_do_maximum_mean(samples, envelope, high)) def _minimum_mean(samples, envelope, low, name=None): """Returns a stochastic lower bound on the mean of a scalar distribution. The idea is that if the true CDF is within an `eps`-envelope of the empirical CDF of the samples, and the support is bounded below, then the mean is bounded below as well. In symbols, ```none sup_x(|F_n(x) - F(x)|) < eps ``` The 0th dimension of `samples` is interpreted as independent and identically distributed samples. The remaining dimensions are broadcast together with `envelope` and `low`, and operated on separately. Args: samples: Floating-point `Tensor` of samples from the distribution(s) of interest. Entries are assumed IID across the 0th dimension. The other dimensions must broadcast with `envelope` and `low`. envelope: Floating-point `Tensor` of sizes of admissible CDF envelopes (i.e., the `eps` above). low: Floating-point `Tensor` of lower bounds on the distributions' supports. `samples >= low`. name: A name for this operation (optional). Returns: bound: Floating-point `Tensor` of lower bounds on the true means. Raises: InvalidArgumentError: If some `sample` is found to be smaller than the corresponding `low`. """ with ops.name_scope(name, "minimum_mean", [samples, envelope, low]): samples = ops.convert_to_tensor(samples, name="samples") envelope = ops.convert_to_tensor(envelope, name="envelope") low = ops.convert_to_tensor(low, name="low") xmin = math_ops.reduce_min(samples, axis=[0]) msg = "Given sample minimum value falls below expectations" check_op = check_ops.assert_greater_equal(xmin, low, message=msg) with ops.control_dependencies([check_op]): return - _do_maximum_mean(-samples, envelope, -low) def _dkwm_cdf_envelope(n, error_rate, name=None): """Computes the CDF envelope that the DKWM inequality licenses. The [Dvoretzky-Kiefer-Wolfowitz-Massart inequality] (https://en.wikipedia.org/wiki/CDF-based_nonparametric_confidence_interval) gives a stochastic bound on the distance between the true cumulative distribution function (CDF) of any distribution and its empirical CDF. To wit, for `n` iid samples from any distribution with CDF F, ```none P(sup_x |F_n(x) - F(x)| > eps) < 2exp(-2n eps^2) ``` This function computes the envelope size `eps` as a function of the number of samples `n` and the desired limit on the left-hand probability above. Args: n: `Tensor` of numbers of samples drawn. error_rate: Floating-point `Tensor` of admissible rates of mistakes. name: A name for this operation (optional). Returns: eps: `Tensor` of maximum distances the true CDF can be from the empirical CDF. This scales as `O(sqrt(-log(error_rate)))` and as `O(1 / sqrt(n))`. The shape is the broadcast of `n` and `error_rate`. """ with ops.name_scope(name, "dkwm_cdf_envelope", [n, error_rate]): n = math_ops.cast(n, dtype=error_rate.dtype) return math_ops.sqrt(-gen_math_ops.log(error_rate / 2.) / (2. * n)) def _check_shape_dominates(samples, parameters): """Check that broadcasting `samples` against `parameters` does not expand it. Why? Because I want to be very sure that the samples tensor is not accidentally enlarged by broadcasting against tensors that are supposed to be describing the distribution(s) sampled from, lest the sample counts end up inflated. Args: samples: A `Tensor` whose shape is to be protected against broadcasting. parameters: A list of `Tensor`s who are parameters for the statistical test. Returns: samples: Return original `samples` with control dependencies attached to ensure no broadcasting. """ def check(t): samples_batch_shape = array_ops.shape(samples)[1:] broadcasted_batch_shape = array_ops.broadcast_dynamic_shape( samples_batch_shape, array_ops.shape(t)) # This rank check ensures that I don't get a wrong answer from the # _shapes_ broadcasting against each other. samples_batch_ndims = array_ops.size(samples_batch_shape) ge = check_ops.assert_greater_equal( samples_batch_ndims, array_ops.rank(t)) eq = check_ops.assert_equal(samples_batch_shape, broadcasted_batch_shape) return ge, eq checks = list(itertools.chain(*[check(t) for t in parameters])) with ops.control_dependencies(checks): return array_ops.identity(samples) def true_mean_confidence_interval_by_dkwm( samples, low, high, error_rate=1e-6, name=None): """Computes a confidence interval for the mean of a scalar distribution. In batch mode, computes confidence intervals for all distributions in the batch (which need not be identically distributed). Relies on the [Dvoretzky-Kiefer-Wolfowitz-Massart inequality] (https://en.wikipedia.org/wiki/CDF-based_nonparametric_confidence_interval). The probability (over the randomness of drawing the given samples) that any true mean is outside the corresponding returned interval is no more than the given `error_rate`. The size of the intervals scale as `O(1 / sqrt(#samples))`, as `O(high - low)`, and as `O(-log(error_rate))`. Note that `error_rate` is a total error rate for all the confidence intervals in the batch. As such, if the batch is nontrivial, the error rate is not broadcast but divided (evenly) among the batch members. Args: samples: Floating-point `Tensor` of samples from the distribution(s) of interest. Entries are assumed IID across the 0th dimension. The other dimensions must broadcast with `low` and `high`. The support is bounded: `low <= samples <= high`. low: Floating-point `Tensor` of lower bounds on the distributions' supports. high: Floating-point `Tensor` of upper bounds on the distributions' supports. error_rate: *Scalar* floating-point `Tensor` admissible total rate of mistakes. name: A name for this operation (optional). Returns: low: A floating-point `Tensor` of stochastic lower bounds on the true means. high: A floating-point `Tensor` of stochastic upper bounds on the true means. """ with ops.name_scope( name, "true_mean_confidence_interval_by_dkwm", [samples, low, high, error_rate]): samples = ops.convert_to_tensor(samples, name="samples") low = ops.convert_to_tensor(low, name="low") high = ops.convert_to_tensor(high, name="high") error_rate = ops.convert_to_tensor(error_rate, name="error_rate") samples = _check_shape_dominates(samples, [low, high]) check_ops.assert_scalar(error_rate) # Static shape error_rate = _itemwise_error_rate(error_rate, [low, high], samples) n = array_ops.shape(samples)[0] envelope = _dkwm_cdf_envelope(n, error_rate) min_mean = _minimum_mean(samples, envelope, low) max_mean = _maximum_mean(samples, envelope, high) return min_mean, max_mean def _itemwise_error_rate( total_error_rate, param_tensors, sample_tensor=None, name=None): with ops.name_scope( name, "itemwise_error_rate", [total_error_rate, param_tensors, sample_tensor]): result_shape = [1] for p_tensor in param_tensors: result_shape = array_ops.broadcast_dynamic_shape( array_ops.shape(p_tensor), result_shape) if sample_tensor is not None: result_shape = array_ops.broadcast_dynamic_shape( array_ops.shape(sample_tensor)[1:], result_shape) num_items = math_ops.reduce_prod(result_shape) return total_error_rate / math_ops.cast( num_items, dtype=total_error_rate.dtype) def assert_true_mean_equal_by_dkwm( samples, low, high, expected, false_fail_rate=1e-6, name=None): """Asserts the mean of the given distribution is as expected. More precisely, fails if there is enough evidence (using the [Dvoretzky-Kiefer-Wolfowitz-Massart inequality] (https://en.wikipedia.org/wiki/CDF-based_nonparametric_confidence_interval)) that the true mean of some distribution from which the given samples are drawn is _not_ the given expected mean with statistical significance `false_fail_rate` or stronger, otherwise passes. If you also want to check that you are gathering enough evidence that a pass is not spurious, see `min_num_samples_for_dkwm_mean_test` and `min_discrepancy_of_true_means_detectable_by_dkwm`. Note that `false_fail_rate` is a total false failure rate for all the assertions in the batch. As such, if the batch is nontrivial, the assertion will insist on stronger evidence to fail any one member. Args: samples: Floating-point `Tensor` of samples from the distribution(s) of interest. Entries are assumed IID across the 0th dimension. The other dimensions must broadcast with `low` and `high`. The support is bounded: `low <= samples <= high`. low: Floating-point `Tensor` of lower bounds on the distributions' supports. high: Floating-point `Tensor` of upper bounds on the distributions' supports. expected: Floating-point `Tensor` of expected true means. false_fail_rate: *Scalar* floating-point `Tensor` admissible total rate of mistakes. name: A name for this operation (optional). Returns: check: Op that raises `InvalidArgumentError` if any expected mean is outside the corresponding confidence interval. """ with ops.name_scope( name, "assert_true_mean_equal_by_dkwm", [samples, low, high, expected, false_fail_rate]): return assert_true_mean_in_interval_by_dkwm( samples, low, high, expected, expected, false_fail_rate) def min_discrepancy_of_true_means_detectable_by_dkwm( n, low, high, false_fail_rate, false_pass_rate, name=None): """Returns the minimum mean discrepancy that a DKWM-based test can detect. DKWM is the [Dvoretzky-Kiefer-Wolfowitz-Massart inequality] (https://en.wikipedia.org/wiki/CDF-based_nonparametric_confidence_interval). Note that `false_fail_rate` is a total false failure rate for all the tests in the batch. As such, if the batch is nontrivial, each member will demand more samples. The `false_pass_rate` is also interpreted as a total, but is treated asymmetrically: If each test in the batch detects its corresponding discrepancy with probability at least `1 - false_pass_rate`, then running all those tests and failing if any one fails will jointly detect all those discrepancies with the same `false_pass_rate`. Args: n: `Tensor` of numbers of samples to be drawn from the distributions of interest. low: Floating-point `Tensor` of lower bounds on the distributions' supports. high: Floating-point `Tensor` of upper bounds on the distributions' supports. false_fail_rate: *Scalar* floating-point `Tensor` admissible total rate of false failures. false_pass_rate: *Scalar* floating-point `Tensor` admissible rate of false passes. name: A name for this operation (optional). Returns: discr: `Tensor` of lower bounds on the distances between true means detectable by a DKWM-based test. For each batch member `i`, of `K` total, drawing `n[i]` samples from some scalar distribution supported on `[low[i], high[i]]` is enough to detect a difference in means of size `discr[i]` or more. Specifically, we guarantee that (a) if the true mean is the expected mean (resp. in the expected interval), then `assert_true_mean_equal_by_dkwm` (resp. `assert_true_mean_in_interval_by_dkwm`) will fail with probability at most `false_fail_rate / K` (which amounts to `false_fail_rate` if applied to the whole batch at once), and (b) if the true mean differs from the expected mean (resp. falls outside the expected interval) by at least `discr[i]`, `assert_true_mean_equal_by_dkwm` (resp. `assert_true_mean_in_interval_by_dkwm`) will pass with probability at most `false_pass_rate`. The detectable discrepancy scales as - `O(high[i] - low[i])`, - `O(1 / sqrt(n[i]))`, - `O(-log(false_fail_rate/K))`, and - `O(-log(false_pass_rate))`. """ with ops.name_scope( name, "min_discrepancy_of_true_means_detectable_by_dkwm", [n, low, high, false_fail_rate, false_pass_rate]): n = ops.convert_to_tensor(n, name="n") low = ops.convert_to_tensor(low, name="low") high = ops.convert_to_tensor(high, name="high") false_fail_rate = ops.convert_to_tensor( false_fail_rate, name="false_fail_rate") false_pass_rate = ops.convert_to_tensor( false_pass_rate, name="false_pass_rate") # Algorithm: Assume a true CDF F. The DKWM inequality gives a # stochastic bound on how far the observed empirical CDF F_n can be. # Then, using the DKWM inequality again gives a stochastic bound on # the farthest candidate true CDF F' that # true_mean_confidence_interval_by_dkwm might consider. At worst, these # errors may go in the same direction, so the distance between F and # F' is bounded by the sum. # On batching: false fail rates sum, so I need to reduce # the input to account for the batching. False pass rates # max, so I don't. sampling_envelope = _dkwm_cdf_envelope(n, false_pass_rate) false_fail_rate = _itemwise_error_rate(false_fail_rate, [n, low, high]) analysis_envelope = _dkwm_cdf_envelope(n, false_fail_rate) return (high - low) * (sampling_envelope + analysis_envelope) def min_num_samples_for_dkwm_mean_test( discrepancy, low, high, false_fail_rate=1e-6, false_pass_rate=1e-6, name=None): """Returns how many samples suffice for a one-sample DKWM mean test. To wit, returns an upper bound on the number of samples necessary to guarantee detecting a mean difference of at least the given `discrepancy`, with the given `false_fail_rate` and `false_pass_rate`, using the [Dvoretzky-Kiefer-Wolfowitz-Massart inequality] (https://en.wikipedia.org/wiki/CDF-based_nonparametric_confidence_interval) on a scalar distribution supported on `[low, high]`. Args: discrepancy: Floating-point `Tensor` of desired upper limits on mean differences that may go undetected with probability higher than `1 - false_pass_rate`. low: `Tensor` of lower bounds on the distributions' support. high: `Tensor` of upper bounds on the distributions' support. false_fail_rate: *Scalar* floating-point `Tensor` admissible total rate of false failures. false_pass_rate: *Scalar* floating-point `Tensor` admissible rate of false passes. name: A name for this operation (optional). Returns: n: `Tensor` of numbers of samples to be drawn from the distributions of interest. The `discrepancy`, `low`, and `high` tensors must have broadcast-compatible shapes. For each batch member `i`, of `K` total, drawing `n[i]` samples from some scalar distribution supported on `[low[i], high[i]]` is enough to detect a difference in means of size `discrepancy[i]` or more. Specifically, we guarantee that (a) if the true mean is the expected mean (resp. in the expected interval), then `assert_true_mean_equal_by_dkwm` (resp. `assert_true_mean_in_interval_by_dkwm`) will fail with probability at most `false_fail_rate / K` (which amounts to `false_fail_rate` if applied to the whole batch at once), and (b) if the true mean differs from the expected mean (resp. falls outside the expected interval) by at least `discrepancy[i]`, `assert_true_mean_equal_by_dkwm` (resp. `assert_true_mean_in_interval_by_dkwm`) will pass with probability at most `false_pass_rate`. The required number of samples scales as `O((high[i] - low[i])**2)`, `O(-log(false_fail_rate/K))`, `O(-log(false_pass_rate))`, and `O(1 / discrepancy[i]**2)`. """ with ops.name_scope( name, "min_num_samples_for_dkwm_mean_test", [low, high, false_fail_rate, false_pass_rate, discrepancy]): discrepancy = ops.convert_to_tensor( discrepancy, name="discrepancy") low = ops.convert_to_tensor(low, name="low") high = ops.convert_to_tensor(high, name="high") false_fail_rate = ops.convert_to_tensor( false_fail_rate, name="false_fail_rate") false_pass_rate = ops.convert_to_tensor( false_pass_rate, name="false_pass_rate") # Could choose to cleverly allocate envelopes, but this is sound. envelope1 = discrepancy / (2. * (high - low)) envelope2 = envelope1 false_fail_rate = _itemwise_error_rate( false_fail_rate, [low, high, discrepancy]) n1 = -math_ops.log(false_fail_rate / 2.) / (2. * envelope1**2) n2 = -math_ops.log(false_pass_rate / 2.) / (2. * envelope2**2) return math_ops.maximum(n1, n2) def assert_true_mean_in_interval_by_dkwm( samples, low, high, expected_low, expected_high, false_fail_rate=1e-6, name=None): """Asserts the mean of the given distribution is in the given interval. More precisely, fails if there is enough evidence (using the [Dvoretzky-Kiefer-Wolfowitz-Massart inequality] (https://en.wikipedia.org/wiki/CDF-based_nonparametric_confidence_interval)) that the mean of the distribution from which the given samples are drawn is _outside_ the given interval with statistical significance `false_fail_rate` or stronger, otherwise passes. If you also want to check that you are gathering enough evidence that a pass is not spurious, see `min_num_samples_for_dkwm_mean_test` and `min_discrepancy_of_true_means_detectable_by_dkwm`. Note that `false_fail_rate` is a total false failure rate for all the assertions in the batch. As such, if the batch is nontrivial, the assertion will insist on stronger evidence to fail any one member. Args: samples: Floating-point `Tensor` of samples from the distribution(s) of interest. Entries are assumed IID across the 0th dimension. The other dimensions must broadcast with `low` and `high`. The support is bounded: `low <= samples <= high`. low: Floating-point `Tensor` of lower bounds on the distributions' supports. high: Floating-point `Tensor` of upper bounds on the distributions' supports. expected_low: Floating-point `Tensor` of lower bounds on the expected true means. expected_high: Floating-point `Tensor` of upper bounds on the expected true means. false_fail_rate: *Scalar* floating-point `Tensor` admissible total rate of mistakes. name: A name for this operation (optional). Returns: check: Op that raises `InvalidArgumentError` if any expected mean interval does not overlap with the corresponding confidence interval. """ with ops.name_scope( name, "assert_true_mean_in_interval_by_dkwm", [samples, low, high, expected_low, expected_high, false_fail_rate]): samples = ops.convert_to_tensor(samples, name="samples") low = ops.convert_to_tensor(low, name="low") high = ops.convert_to_tensor(high, name="high") expected_low = ops.convert_to_tensor(expected_low, name="expected_low") expected_high = ops.convert_to_tensor(expected_high, name="expected_high") false_fail_rate = ops.convert_to_tensor( false_fail_rate, name="false_fail_rate") samples = _check_shape_dominates( samples, [low, high, expected_low, expected_high]) min_mean, max_mean = true_mean_confidence_interval_by_dkwm( samples, low, high, false_fail_rate) # Assert that the interval [min_mean, max_mean] intersects the # interval [expected_low, expected_high]. This is true if # max_mean >= expected_low and min_mean <= expected_high. # By DeMorgan's law, that's also equivalent to # not (max_mean < expected_low or min_mean > expected_high), # which is a way of saying the two intervals are not disjoint. check_confidence_interval_can_intersect = check_ops.assert_greater_equal( max_mean, expected_low, message="Confidence interval does not " "intersect: true mean smaller than expected") with ops.control_dependencies([check_confidence_interval_can_intersect]): return check_ops.assert_less_equal( min_mean, expected_high, message="Confidence interval does not " "intersect: true mean greater than expected") def assert_true_mean_equal_by_dkwm_two_sample( samples1, low1, high1, samples2, low2, high2, false_fail_rate=1e-6, name=None): """Asserts the means of the given distributions are equal. More precisely, fails if there is enough evidence (using the [Dvoretzky-Kiefer-Wolfowitz-Massart inequality] (https://en.wikipedia.org/wiki/CDF-based_nonparametric_confidence_interval)) that the means of the distributions from which the given samples are drawn are _not_ equal with statistical significance `false_fail_rate` or stronger, otherwise passes. If you also want to check that you are gathering enough evidence that a pass is not spurious, see `min_num_samples_for_dkwm_mean_two_sample_test` and `min_discrepancy_of_true_means_detectable_by_dkwm_two_sample`. Note that `false_fail_rate` is a total false failure rate for all the assertions in the batch. As such, if the batch is nontrivial, the assertion will insist on stronger evidence to fail any one member. Args: samples1: Floating-point `Tensor` of samples from the distribution(s) A. Entries are assumed IID across the 0th dimension. The other dimensions must broadcast with `low1`, `high1`, `low2`, and `high2`. The support is bounded: `low1 <= samples1 <= high1`. low1: Floating-point `Tensor` of lower bounds on the supports of the distributions A. high1: Floating-point `Tensor` of upper bounds on the supports of the distributions A. samples2: Floating-point `Tensor` of samples from the distribution(s) B. Entries are assumed IID across the 0th dimension. The other dimensions must broadcast with `low1`, `high1`, `low2`, and `high2`. The support is bounded: `low2 <= samples2 <= high2`. low2: Floating-point `Tensor` of lower bounds on the supports of the distributions B. high2: Floating-point `Tensor` of upper bounds on the supports of the distributions B. false_fail_rate: *Scalar* floating-point `Tensor` admissible total rate of mistakes. name: A name for this operation (optional). Returns: check: Op that raises `InvalidArgumentError` if any pair of confidence intervals true for corresponding true means do not overlap. """ with ops.name_scope( name, "assert_true_mean_equal_by_dkwm_two_sample", [samples1, low1, high1, samples2, low2, high2, false_fail_rate]): samples1 = ops.convert_to_tensor(samples1, name="samples1") low1 = ops.convert_to_tensor(low1, name="low1") high1 = ops.convert_to_tensor(high1, name="high1") samples2 = ops.convert_to_tensor(samples2, name="samples2") low2 = ops.convert_to_tensor(low2, name="low2") high2 = ops.convert_to_tensor(high2, name="high2") false_fail_rate = ops.convert_to_tensor( false_fail_rate, name="false_fail_rate") samples1 = _check_shape_dominates(samples1, [low1, high1]) samples2 = _check_shape_dominates(samples2, [low2, high2]) compatible_samples = check_ops.assert_equal( array_ops.shape(samples1)[1:], array_ops.shape(samples2)[1:]) with ops.control_dependencies([compatible_samples]): # Could in principle play games with cleverly allocating # significance instead of the even split below. It may be possible # to get tighter intervals, in order to obtain a higher power test. # Any allocation strategy that depends only on the support bounds # and sample counts should be valid; however, because the intervals # scale as O(-log(false_fail_rate)), there doesn't seem to be much # room to win. min_mean_2, max_mean_2 = true_mean_confidence_interval_by_dkwm( samples2, low2, high2, false_fail_rate / 2.) return assert_true_mean_in_interval_by_dkwm( samples1, low1, high1, min_mean_2, max_mean_2, false_fail_rate / 2.) def min_discrepancy_of_true_means_detectable_by_dkwm_two_sample( n1, low1, high1, n2, low2, high2, false_fail_rate, false_pass_rate, name=None): """Returns the minimum mean discrepancy for a two-sample DKWM-based test. DKWM is the [Dvoretzky-Kiefer-Wolfowitz-Massart inequality] (https://en.wikipedia.org/wiki/CDF-based_nonparametric_confidence_interval). Note that `false_fail_rate` is a total false failure rate for all the tests in the batch. As such, if the batch is nontrivial, each member will demand more samples. The `false_pass_rate` is also interpreted as a total, but is treated asymmetrically: If each test in the batch detects its corresponding discrepancy with probability at least `1 - false_pass_rate`, then running all those tests and failing if any one fails will jointly detect all those discrepancies with the same `false_pass_rate`. Args: n1: `Tensor` of numbers of samples to be drawn from the distributions A. low1: Floating-point `Tensor` of lower bounds on the supports of the distributions A. high1: Floating-point `Tensor` of upper bounds on the supports of the distributions A. n2: `Tensor` of numbers of samples to be drawn from the distributions B. low2: Floating-point `Tensor` of lower bounds on the supports of the distributions B. high2: Floating-point `Tensor` of upper bounds on the supports of the distributions B. false_fail_rate: *Scalar* floating-point `Tensor` admissible total rate of false failures. false_pass_rate: *Scalar* floating-point `Tensor` admissible rate of false passes. name: A name for this operation (optional). Returns: discr: `Tensor` of lower bounds on the distances between true means detectable by a two-sample DKWM-based test. For each batch member `i`, of `K` total, drawing `n1[i]` samples from scalar distribution A supported on `[low1[i], high1[i]]` and `n2[i]` samples from scalar distribution B supported on `[low2[i], high2[i]]` is enough to detect a difference in their true means of size `discr[i]` or more. Specifically, we guarantee that (a) if their true means are equal, `assert_true_mean_equal_by_dkwm_two_sample` will fail with probability at most `false_fail_rate/K` (which amounts to `false_fail_rate` if applied to the whole batch at once), and (b) if their true means differ by at least `discr[i]`, `assert_true_mean_equal_by_dkwm_two_sample` will pass with probability at most `false_pass_rate`. The detectable distribution scales as - `O(high1[i] - low1[i])`, `O(high2[i] - low2[i])`, - `O(1 / sqrt(n1[i]))`, `O(1 / sqrt(n2[i]))`, - `O(-log(false_fail_rate/K))`, and - `O(-log(false_pass_rate))`. """ with ops.name_scope( name, "min_discrepancy_of_true_means_detectable_by_dkwm_two_sample", [n1, low1, high1, n2, low2, high2, false_fail_rate, false_pass_rate]): n1 = ops.convert_to_tensor(n1, name="n1") low1 = ops.convert_to_tensor(low1, name="low1") high1 = ops.convert_to_tensor(high1, name="high1") n2 = ops.convert_to_tensor(n2, name="n2") low2 = ops.convert_to_tensor(low2, name="low2") high2 = ops.convert_to_tensor(high2, name="high2") false_fail_rate = ops.convert_to_tensor( false_fail_rate, name="false_fail_rate") false_pass_rate = ops.convert_to_tensor( false_pass_rate, name="false_pass_rate") det_disc1 = min_discrepancy_of_true_means_detectable_by_dkwm( n1, low1, high1, false_fail_rate / 2., false_pass_rate / 2.) det_disc2 = min_discrepancy_of_true_means_detectable_by_dkwm( n2, low2, high2, false_fail_rate / 2., false_pass_rate / 2.) return det_disc1 + det_disc2 def min_num_samples_for_dkwm_mean_two_sample_test( discrepancy, low1, high1, low2, high2, false_fail_rate=1e-6, false_pass_rate=1e-6, name=None): """Returns how many samples suffice for a two-sample DKWM mean test. DKWM is the [Dvoretzky-Kiefer-Wolfowitz-Massart inequality] (https://en.wikipedia.org/wiki/CDF-based_nonparametric_confidence_interval). Args: discrepancy: Floating-point `Tensor` of desired upper limits on mean differences that may go undetected with probability higher than `1 - false_pass_rate`. low1: Floating-point `Tensor` of lower bounds on the supports of the distributions A. high1: Floating-point `Tensor` of upper bounds on the supports of the distributions A. low2: Floating-point `Tensor` of lower bounds on the supports of the distributions B. high2: Floating-point `Tensor` of upper bounds on the supports of the distributions B. false_fail_rate: *Scalar* floating-point `Tensor` admissible total rate of false failures. false_pass_rate: *Scalar* floating-point `Tensor` admissible rate of false passes. name: A name for this operation (optional). Returns: n1: `Tensor` of numbers of samples to be drawn from the distributions A. n2: `Tensor` of numbers of samples to be drawn from the distributions B. For each batch member `i`, of `K` total, drawing `n1[i]` samples from scalar distribution A supported on `[low1[i], high1[i]]` and `n2[i]` samples from scalar distribution B supported on `[low2[i], high2[i]]` is enough to detect a difference in their true means of size `discr[i]` or more. Specifically, we guarantee that (a) if their true means are equal, `assert_true_mean_equal_by_dkwm_two_sample` will fail with probability at most `false_fail_rate/K` (which amounts to `false_fail_rate` if applied to the whole batch at once), and (b) if their true means differ by at least `discr[i]`, `assert_true_mean_equal_by_dkwm_two_sample` will pass with probability at most `false_pass_rate`. The required number of samples scales as - `O((high1[i] - low1[i])**2)`, `O((high2[i] - low2[i])**2)`, - `O(-log(false_fail_rate/K))`, - `O(-log(false_pass_rate))`, and - `O(1 / discrepancy[i]**2)`. """ with ops.name_scope( name, "min_num_samples_for_dkwm_mean_two_sample_test", [low1, high1, low2, high2, false_fail_rate, false_pass_rate, discrepancy]): discrepancy = ops.convert_to_tensor(discrepancy, name="discrepancy") low1 = ops.convert_to_tensor(low1, name="low1") high1 = ops.convert_to_tensor(high1, name="high1") low2 = ops.convert_to_tensor(low2, name="low2") high2 = ops.convert_to_tensor(high2, name="high2") false_fail_rate = ops.convert_to_tensor( false_fail_rate, name="false_fail_rate") false_pass_rate = ops.convert_to_tensor( false_pass_rate, name="false_pass_rate") # Could choose to cleverly allocate discrepancy tolerances and # failure probabilities, but this is sound. n1 = min_num_samples_for_dkwm_mean_test( discrepancy / 2., low1, high1, false_fail_rate / 2., false_pass_rate / 2.) n2 = min_num_samples_for_dkwm_mean_test( discrepancy / 2., low2, high2, false_fail_rate / 2., false_pass_rate / 2.) return n1, n2
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/statistical_testing.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Quantized distribution.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.distributions import distribution as distributions from tensorflow.python.ops.distributions import util as distribution_util from tensorflow.python.util import deprecation __all__ = ["QuantizedDistribution"] @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def _logsum_expbig_minus_expsmall(big, small): """Stable evaluation of `Log[exp{big} - exp{small}]`. To work correctly, we should have the pointwise relation: `small <= big`. Args: big: Floating-point `Tensor` small: Floating-point `Tensor` with same `dtype` as `big` and broadcastable shape. Returns: `Tensor` of same `dtype` of `big` and broadcast shape. """ with ops.name_scope("logsum_expbig_minus_expsmall", values=[small, big]): return math_ops.log(1. - math_ops.exp(small - big)) + big _prob_base_note = """ For whole numbers `y`, ``` P[Y = y] := P[X <= low], if y == low, := P[X > high - 1], y == high, := 0, if j < low or y > high, := P[y - 1 < X <= y], all other y. ``` """ _prob_note = _prob_base_note + """ The base distribution's `cdf` method must be defined on `y - 1`. If the base distribution has a `survival_function` method, results will be more accurate for large values of `y`, and in this case the `survival_function` must also be defined on `y - 1`. """ _log_prob_note = _prob_base_note + """ The base distribution's `log_cdf` method must be defined on `y - 1`. If the base distribution has a `log_survival_function` method results will be more accurate for large values of `y`, and in this case the `log_survival_function` must also be defined on `y - 1`. """ _cdf_base_note = """ For whole numbers `y`, ``` cdf(y) := P[Y <= y] = 1, if y >= high, = 0, if y < low, = P[X <= y], otherwise. ``` Since `Y` only has mass at whole numbers, `P[Y <= y] = P[Y <= floor(y)]`. This dictates that fractional `y` are first floored to a whole number, and then above definition applies. """ _cdf_note = _cdf_base_note + """ The base distribution's `cdf` method must be defined on `y - 1`. """ _log_cdf_note = _cdf_base_note + """ The base distribution's `log_cdf` method must be defined on `y - 1`. """ _sf_base_note = """ For whole numbers `y`, ``` survival_function(y) := P[Y > y] = 0, if y >= high, = 1, if y < low, = P[X <= y], otherwise. ``` Since `Y` only has mass at whole numbers, `P[Y <= y] = P[Y <= floor(y)]`. This dictates that fractional `y` are first floored to a whole number, and then above definition applies. """ _sf_note = _sf_base_note + """ The base distribution's `cdf` method must be defined on `y - 1`. """ _log_sf_note = _sf_base_note + """ The base distribution's `log_cdf` method must be defined on `y - 1`. """ class QuantizedDistribution(distributions.Distribution): """Distribution representing the quantization `Y = ceiling(X)`. #### Definition in Terms of Sampling ``` 1. Draw X 2. Set Y <-- ceiling(X) 3. If Y < low, reset Y <-- low 4. If Y > high, reset Y <-- high 5. Return Y ``` #### Definition in Terms of the Probability Mass Function Given scalar random variable `X`, we define a discrete random variable `Y` supported on the integers as follows: ``` P[Y = j] := P[X <= low], if j == low, := P[X > high - 1], j == high, := 0, if j < low or j > high, := P[j - 1 < X <= j], all other j. ``` Conceptually, without cutoffs, the quantization process partitions the real line `R` into half open intervals, and identifies an integer `j` with the right endpoints: ``` R = ... (-2, -1](-1, 0](0, 1](1, 2](2, 3](3, 4] ... j = ... -1 0 1 2 3 4 ... ``` `P[Y = j]` is the mass of `X` within the `jth` interval. If `low = 0`, and `high = 2`, then the intervals are redrawn and `j` is re-assigned: ``` R = (-infty, 0](0, 1](1, infty) j = 0 1 2 ``` `P[Y = j]` is still the mass of `X` within the `jth` interval. #### Examples We illustrate a mixture of discretized logistic distributions [(Salimans et al., 2017)][1]. This is used, for example, for capturing 16-bit audio in WaveNet [(van den Oord et al., 2017)][2]. The values range in a 1-D integer domain of `[0, 2**16-1]`, and the discretization captures `P(x - 0.5 < X <= x + 0.5)` for all `x` in the domain excluding the endpoints. The lowest value has probability `P(X <= 0.5)` and the highest value has probability `P(2**16 - 1.5 < X)`. Below we assume a `wavenet` function. It takes as `input` right-shifted audio samples of shape `[..., sequence_length]`. It returns a real-valued tensor of shape `[..., num_mixtures * 3]`, i.e., each mixture component has a `loc` and `scale` parameter belonging to the logistic distribution, and a `logits` parameter determining the unnormalized probability of that component. ```python import tensorflow_probability as tfp tfd = tfp.distributions tfb = tfp.bijectors net = wavenet(inputs) loc, unconstrained_scale, logits = tf.split(net, num_or_size_splits=3, axis=-1) scale = tf.nn.softplus(unconstrained_scale) # Form mixture of discretized logistic distributions. Note we shift the # logistic distribution by -0.5. This lets the quantization capture "rounding" # intervals, `(x-0.5, x+0.5]`, and not "ceiling" intervals, `(x-1, x]`. discretized_logistic_dist = tfd.QuantizedDistribution( distribution=tfd.TransformedDistribution( distribution=tfd.Logistic(loc=loc, scale=scale), bijector=tfb.AffineScalar(shift=-0.5)), low=0., high=2**16 - 1.) mixture_dist = tfd.MixtureSameFamily( mixture_distribution=tfd.Categorical(logits=logits), components_distribution=discretized_logistic_dist) neg_log_likelihood = -tf.reduce_sum(mixture_dist.log_prob(targets)) train_op = tf.train.AdamOptimizer().minimize(neg_log_likelihood) ``` After instantiating `mixture_dist`, we illustrate maximum likelihood by calculating its log-probability of audio samples as `target` and optimizing. #### References [1]: Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P. Kingma. PixelCNN++: Improving the PixelCNN with discretized logistic mixture likelihood and other modifications. _International Conference on Learning Representations_, 2017. https://arxiv.org/abs/1701.05517 [2]: Aaron van den Oord et al. Parallel WaveNet: Fast High-Fidelity Speech Synthesis. _arXiv preprint arXiv:1711.10433_, 2017. https://arxiv.org/abs/1711.10433 """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, distribution, low=None, high=None, validate_args=False, name="QuantizedDistribution"): """Construct a Quantized Distribution representing `Y = ceiling(X)`. Some properties are inherited from the distribution defining `X`. Example: `allow_nan_stats` is determined for this `QuantizedDistribution` by reading the `distribution`. Args: distribution: The base distribution class to transform. Typically an instance of `Distribution`. low: `Tensor` with same `dtype` as this distribution and shape able to be added to samples. Should be a whole number. Default `None`. If provided, base distribution's `prob` should be defined at `low`. high: `Tensor` with same `dtype` as this distribution and shape able to be added to samples. Should be a whole number. Default `None`. If provided, base distribution's `prob` should be defined at `high - 1`. `high` must be strictly greater than `low`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. name: Python `str` name prefixed to Ops created by this class. Raises: TypeError: If `dist_cls` is not a subclass of `Distribution` or continuous. NotImplementedError: If the base distribution does not implement `cdf`. """ parameters = dict(locals()) values = ( list(distribution.parameters.values()) + [low, high]) with ops.name_scope(name, values=values) as name: self._dist = distribution if low is not None: low = ops.convert_to_tensor(low, name="low") if high is not None: high = ops.convert_to_tensor(high, name="high") check_ops.assert_same_float_dtype( tensors=[self.distribution, low, high]) # We let QuantizedDistribution access _graph_parents since this class is # more like a baseclass. graph_parents = self._dist._graph_parents # pylint: disable=protected-access checks = [] if validate_args and low is not None and high is not None: message = "low must be strictly less than high." checks.append( check_ops.assert_less( low, high, message=message)) self._validate_args = validate_args # self._check_integer uses this. with ops.control_dependencies(checks if validate_args else []): if low is not None: self._low = self._check_integer(low) graph_parents += [self._low] else: self._low = None if high is not None: self._high = self._check_integer(high) graph_parents += [self._high] else: self._high = None super(QuantizedDistribution, self).__init__( dtype=self._dist.dtype, reparameterization_type=distributions.NOT_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=self._dist.allow_nan_stats, parameters=parameters, graph_parents=graph_parents, name=name) @property def distribution(self): """Base distribution, p(x).""" return self._dist @property def low(self): """Lowest value that quantization returns.""" return self._low @property def high(self): """Highest value that quantization returns.""" return self._high def _batch_shape_tensor(self): return self.distribution.batch_shape_tensor() def _batch_shape(self): return self.distribution.batch_shape def _event_shape_tensor(self): return self.distribution.event_shape_tensor() def _event_shape(self): return self.distribution.event_shape def _sample_n(self, n, seed=None): low = self._low high = self._high with ops.name_scope("transform"): n = ops.convert_to_tensor(n, name="n") x_samps = self.distribution.sample(n, seed=seed) ones = array_ops.ones_like(x_samps) # Snap values to the intervals (j - 1, j]. result_so_far = math_ops.ceil(x_samps) if low is not None: result_so_far = array_ops.where(result_so_far < low, low * ones, result_so_far) if high is not None: result_so_far = array_ops.where(result_so_far > high, high * ones, result_so_far) return result_so_far @distribution_util.AppendDocstring(_log_prob_note) def _log_prob(self, y): if not hasattr(self.distribution, "_log_cdf"): raise NotImplementedError( "'log_prob' not implemented unless the base distribution implements " "'log_cdf'") y = self._check_integer(y) try: return self._log_prob_with_logsf_and_logcdf(y) except NotImplementedError: return self._log_prob_with_logcdf(y) def _log_prob_with_logcdf(self, y): return _logsum_expbig_minus_expsmall(self.log_cdf(y), self.log_cdf(y - 1)) def _log_prob_with_logsf_and_logcdf(self, y): """Compute log_prob(y) using log survival_function and cdf together.""" # There are two options that would be equal if we had infinite precision: # Log[ sf(y - 1) - sf(y) ] # = Log[ exp{logsf(y - 1)} - exp{logsf(y)} ] # Log[ cdf(y) - cdf(y - 1) ] # = Log[ exp{logcdf(y)} - exp{logcdf(y - 1)} ] logsf_y = self.log_survival_function(y) logsf_y_minus_1 = self.log_survival_function(y - 1) logcdf_y = self.log_cdf(y) logcdf_y_minus_1 = self.log_cdf(y - 1) # Important: Here we use select in a way such that no input is inf, this # prevents the troublesome case where the output of select can be finite, # but the output of grad(select) will be NaN. # In either case, we are doing Log[ exp{big} - exp{small} ] # We want to use the sf items precisely when we are on the right side of the # median, which occurs when logsf_y < logcdf_y. big = array_ops.where(logsf_y < logcdf_y, logsf_y_minus_1, logcdf_y) small = array_ops.where(logsf_y < logcdf_y, logsf_y, logcdf_y_minus_1) return _logsum_expbig_minus_expsmall(big, small) @distribution_util.AppendDocstring(_prob_note) def _prob(self, y): if not hasattr(self.distribution, "_cdf"): raise NotImplementedError( "'prob' not implemented unless the base distribution implements " "'cdf'") y = self._check_integer(y) try: return self._prob_with_sf_and_cdf(y) except NotImplementedError: return self._prob_with_cdf(y) def _prob_with_cdf(self, y): return self.cdf(y) - self.cdf(y - 1) def _prob_with_sf_and_cdf(self, y): # There are two options that would be equal if we had infinite precision: # sf(y - 1) - sf(y) # cdf(y) - cdf(y - 1) sf_y = self.survival_function(y) sf_y_minus_1 = self.survival_function(y - 1) cdf_y = self.cdf(y) cdf_y_minus_1 = self.cdf(y - 1) # sf_prob has greater precision iff we're on the right side of the median. return array_ops.where( sf_y < cdf_y, # True iff we're on the right side of the median. sf_y_minus_1 - sf_y, cdf_y - cdf_y_minus_1) @distribution_util.AppendDocstring(_log_cdf_note) def _log_cdf(self, y): low = self._low high = self._high # Recall the promise: # cdf(y) := P[Y <= y] # = 1, if y >= high, # = 0, if y < low, # = P[X <= y], otherwise. # P[Y <= j] = P[floor(Y) <= j] since mass is only at integers, not in # between. j = math_ops.floor(y) result_so_far = self.distribution.log_cdf(j) # Broadcast, because it's possible that this is a single distribution being # evaluated on a number of samples, or something like that. j += array_ops.zeros_like(result_so_far) # Re-define values at the cutoffs. if low is not None: neg_inf = -np.inf * array_ops.ones_like(result_so_far) result_so_far = array_ops.where(j < low, neg_inf, result_so_far) if high is not None: result_so_far = array_ops.where(j >= high, array_ops.zeros_like(result_so_far), result_so_far) return result_so_far @distribution_util.AppendDocstring(_cdf_note) def _cdf(self, y): low = self._low high = self._high # Recall the promise: # cdf(y) := P[Y <= y] # = 1, if y >= high, # = 0, if y < low, # = P[X <= y], otherwise. # P[Y <= j] = P[floor(Y) <= j] since mass is only at integers, not in # between. j = math_ops.floor(y) # P[X <= j], used when low < X < high. result_so_far = self.distribution.cdf(j) # Broadcast, because it's possible that this is a single distribution being # evaluated on a number of samples, or something like that. j += array_ops.zeros_like(result_so_far) # Re-define values at the cutoffs. if low is not None: result_so_far = array_ops.where(j < low, array_ops.zeros_like(result_so_far), result_so_far) if high is not None: result_so_far = array_ops.where(j >= high, array_ops.ones_like(result_so_far), result_so_far) return result_so_far @distribution_util.AppendDocstring(_log_sf_note) def _log_survival_function(self, y): low = self._low high = self._high # Recall the promise: # survival_function(y) := P[Y > y] # = 0, if y >= high, # = 1, if y < low, # = P[X > y], otherwise. # P[Y > j] = P[ceiling(Y) > j] since mass is only at integers, not in # between. j = math_ops.ceil(y) # P[X > j], used when low < X < high. result_so_far = self.distribution.log_survival_function(j) # Broadcast, because it's possible that this is a single distribution being # evaluated on a number of samples, or something like that. j += array_ops.zeros_like(result_so_far) # Re-define values at the cutoffs. if low is not None: result_so_far = array_ops.where(j < low, array_ops.zeros_like(result_so_far), result_so_far) if high is not None: neg_inf = -np.inf * array_ops.ones_like(result_so_far) result_so_far = array_ops.where(j >= high, neg_inf, result_so_far) return result_so_far @distribution_util.AppendDocstring(_sf_note) def _survival_function(self, y): low = self._low high = self._high # Recall the promise: # survival_function(y) := P[Y > y] # = 0, if y >= high, # = 1, if y < low, # = P[X > y], otherwise. # P[Y > j] = P[ceiling(Y) > j] since mass is only at integers, not in # between. j = math_ops.ceil(y) # P[X > j], used when low < X < high. result_so_far = self.distribution.survival_function(j) # Broadcast, because it's possible that this is a single distribution being # evaluated on a number of samples, or something like that. j += array_ops.zeros_like(result_so_far) # Re-define values at the cutoffs. if low is not None: result_so_far = array_ops.where(j < low, array_ops.ones_like(result_so_far), result_so_far) if high is not None: result_so_far = array_ops.where(j >= high, array_ops.zeros_like(result_so_far), result_so_far) return result_so_far def _check_integer(self, value): with ops.name_scope("check_integer", values=[value]): value = ops.convert_to_tensor(value, name="value") if not self.validate_args: return value dependencies = [distribution_util.assert_integer_form( value, message="value has non-integer components.")] return control_flow_ops.with_dependencies(dependencies, value)
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/quantized_distribution.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Wishart distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np from tensorflow.contrib.distributions.python.ops import distribution_util from tensorflow.contrib.framework.python.framework import tensor_util as contrib_tensor_util from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops.distributions import distribution from tensorflow.python.ops.linalg import linalg from tensorflow.python.util import deprecation __all__ = [ "WishartCholesky", "WishartFull", ] class _WishartLinearOperator(distribution.Distribution): """The matrix Wishart distribution on positive definite matrices. This distribution is defined by a scalar number of degrees of freedom `df` and an instance of `LinearOperator`, which provides matrix-free access to a symmetric positive definite operator, which defines the scale matrix. #### Mathematical Details The probability density function (pdf) is, ```none pdf(X; df, scale) = det(X)**(0.5 (df-k-1)) exp(-0.5 tr[inv(scale) X]) / Z Z = 2**(0.5 df k) |det(scale)|**(0.5 df) Gamma_k(0.5 df) ``` where: * `df >= k` denotes the degrees of freedom, * `scale` is a symmetric, positive definite, `k x k` matrix, * `Z` is the normalizing constant, and, * `Gamma_k` is the [multivariate Gamma function]( https://en.wikipedia.org/wiki/Multivariate_gamma_function). #### Examples See `WishartFull`, `WishartCholesky` for examples of initializing and using this class. """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, df, scale_operator, cholesky_input_output_matrices=False, validate_args=False, allow_nan_stats=True, name=None): """Construct Wishart distributions. Args: df: `float` or `double` tensor, the degrees of freedom of the distribution(s). `df` must be greater than or equal to `k`. scale_operator: `float` or `double` instance of `LinearOperator`. cholesky_input_output_matrices: Python `bool`. Any function which whose input or output is a matrix assumes the input is Cholesky and returns a Cholesky factored matrix. Example `log_prob` input takes a Cholesky and `sample_n` returns a Cholesky when `cholesky_input_output_matrices=True`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Raises: TypeError: if scale is not floating-type TypeError: if scale.dtype != df.dtype ValueError: if df < k, where scale operator event shape is `(k, k)` """ parameters = dict(locals()) self._cholesky_input_output_matrices = cholesky_input_output_matrices with ops.name_scope(name) as name: with ops.name_scope("init", values=[df, scale_operator]): if not scale_operator.dtype.is_floating: raise TypeError( "scale_operator.dtype=%s is not a floating-point type" % scale_operator.dtype) if not scale_operator.is_square: print(scale_operator.to_dense().eval()) raise ValueError("scale_operator must be square.") self._scale_operator = scale_operator self._df = ops.convert_to_tensor( df, dtype=scale_operator.dtype, name="df") contrib_tensor_util.assert_same_float_dtype( (self._df, self._scale_operator)) if (self._scale_operator.shape.ndims is None or self._scale_operator.shape.dims[-1].value is None): self._dimension = math_ops.cast( self._scale_operator.domain_dimension_tensor(), dtype=self._scale_operator.dtype, name="dimension") else: self._dimension = ops.convert_to_tensor( self._scale_operator.shape.dims[-1].value, dtype=self._scale_operator.dtype, name="dimension") df_val = tensor_util.constant_value(self._df) dim_val = tensor_util.constant_value(self._dimension) if df_val is not None and dim_val is not None: df_val = np.asarray(df_val) if not df_val.shape: df_val = [df_val] if any(df_val < dim_val): raise ValueError( "Degrees of freedom (df = %s) cannot be less than " "dimension of scale matrix (scale.dimension = %s)" % (df_val, dim_val)) elif validate_args: assertions = check_ops.assert_less_equal( self._dimension, self._df, message=("Degrees of freedom (df = %s) cannot be " "less than dimension of scale matrix " "(scale.dimension = %s)" % (self._dimension, self._df))) self._df = control_flow_ops.with_dependencies( [assertions], self._df) super(_WishartLinearOperator, self).__init__( dtype=self._scale_operator.dtype, validate_args=validate_args, allow_nan_stats=allow_nan_stats, reparameterization_type=distribution.FULLY_REPARAMETERIZED, parameters=parameters, graph_parents=([self._df, self._dimension] + self._scale_operator.graph_parents), name=name) @property def df(self): """Wishart distribution degree(s) of freedom.""" return self._df def _square_scale_operator(self): return self.scale_operator.matmul( self.scale_operator.to_dense(), adjoint_arg=True) def scale(self): """Wishart distribution scale matrix.""" if self._cholesky_input_output_matrices: return self.scale_operator.to_dense() else: return self._square_scale_operator() @property def scale_operator(self): """Wishart distribution scale matrix as an Linear Operator.""" return self._scale_operator @property def cholesky_input_output_matrices(self): """Boolean indicating if `Tensor` input/outputs are Cholesky factorized.""" return self._cholesky_input_output_matrices @property def dimension(self): """Dimension of underlying vector space. The `p` in `R^(p*p)`.""" return self._dimension def _event_shape_tensor(self): dimension = self.scale_operator.domain_dimension_tensor() return array_ops.stack([dimension, dimension]) def _event_shape(self): dimension = self.scale_operator.domain_dimension return tensor_shape.TensorShape([dimension, dimension]) def _batch_shape_tensor(self): return self.scale_operator.batch_shape_tensor() def _batch_shape(self): return self.scale_operator.batch_shape def _sample_n(self, n, seed): batch_shape = self.batch_shape_tensor() event_shape = self.event_shape_tensor() batch_ndims = array_ops.shape(batch_shape)[0] ndims = batch_ndims + 3 # sample_ndims=1, event_ndims=2 shape = array_ops.concat([[n], batch_shape, event_shape], 0) # Complexity: O(nbk**2) x = random_ops.random_normal(shape=shape, mean=0., stddev=1., dtype=self.dtype, seed=seed) # Complexity: O(nbk) # This parametrization is equivalent to Chi2, i.e., # ChiSquared(k) == Gamma(alpha=k/2, beta=1/2) expanded_df = self.df * array_ops.ones( self.scale_operator.batch_shape_tensor(), dtype=self.df.dtype.base_dtype) g = random_ops.random_gamma(shape=[n], alpha=self._multi_gamma_sequence( 0.5 * expanded_df, self.dimension), beta=0.5, dtype=self.dtype, seed=distribution_util.gen_new_seed( seed, "wishart")) # Complexity: O(nbk**2) x = array_ops.matrix_band_part(x, -1, 0) # Tri-lower. # Complexity: O(nbk) x = array_ops.matrix_set_diag(x, math_ops.sqrt(g)) # Make batch-op ready. # Complexity: O(nbk**2) perm = array_ops.concat([math_ops.range(1, ndims), [0]], 0) x = array_ops.transpose(x, perm) shape = array_ops.concat([batch_shape, [event_shape[0]], [-1]], 0) x = array_ops.reshape(x, shape) # Complexity: O(nbM) where M is the complexity of the operator solving a # vector system. E.g., for LinearOperatorDiag, each matmul is O(k**2), so # this complexity is O(nbk**2). For LinearOperatorLowerTriangular, # each matmul is O(k^3) so this step has complexity O(nbk^3). x = self.scale_operator.matmul(x) # Undo make batch-op ready. # Complexity: O(nbk**2) shape = array_ops.concat([batch_shape, event_shape, [n]], 0) x = array_ops.reshape(x, shape) perm = array_ops.concat([[ndims - 1], math_ops.range(0, ndims - 1)], 0) x = array_ops.transpose(x, perm) if not self.cholesky_input_output_matrices: # Complexity: O(nbk^3) x = math_ops.matmul(x, x, adjoint_b=True) return x def _log_prob(self, x): if self.cholesky_input_output_matrices: x_sqrt = x else: # Complexity: O(nbk^3) x_sqrt = linalg_ops.cholesky(x) batch_shape = self.batch_shape_tensor() event_shape = self.event_shape_tensor() ndims = array_ops.rank(x_sqrt) # sample_ndims = ndims - batch_ndims - event_ndims sample_ndims = ndims - array_ops.shape(batch_shape)[0] - 2 sample_shape = array_ops.strided_slice( array_ops.shape(x_sqrt), [0], [sample_ndims]) # We need to be able to pre-multiply each matrix by its corresponding # batch scale matrix. Since a Distribution Tensor supports multiple # samples per batch, this means we need to reshape the input matrix `x` # so that the first b dimensions are batch dimensions and the last two # are of shape [dimension, dimensions*number_of_samples]. Doing these # gymnastics allows us to do a batch_solve. # # After we're done with sqrt_solve (the batch operation) we need to undo # this reshaping so what we're left with is a Tensor partitionable by # sample, batch, event dimensions. # Complexity: O(nbk**2) since transpose must access every element. scale_sqrt_inv_x_sqrt = x_sqrt perm = array_ops.concat([math_ops.range(sample_ndims, ndims), math_ops.range(0, sample_ndims)], 0) scale_sqrt_inv_x_sqrt = array_ops.transpose(scale_sqrt_inv_x_sqrt, perm) shape = array_ops.concat( (batch_shape, (math_ops.cast( self.dimension, dtype=dtypes.int32), -1)), 0) scale_sqrt_inv_x_sqrt = array_ops.reshape(scale_sqrt_inv_x_sqrt, shape) # Complexity: O(nbM*k) where M is the complexity of the operator solving # a vector system. E.g., for LinearOperatorDiag, each solve is O(k), so # this complexity is O(nbk**2). For LinearOperatorLowerTriangular, # each solve is O(k**2) so this step has complexity O(nbk^3). scale_sqrt_inv_x_sqrt = self.scale_operator.solve( scale_sqrt_inv_x_sqrt) # Undo make batch-op ready. # Complexity: O(nbk**2) shape = array_ops.concat([batch_shape, event_shape, sample_shape], 0) scale_sqrt_inv_x_sqrt = array_ops.reshape(scale_sqrt_inv_x_sqrt, shape) perm = array_ops.concat([math_ops.range(ndims - sample_ndims, ndims), math_ops.range(0, ndims - sample_ndims)], 0) scale_sqrt_inv_x_sqrt = array_ops.transpose(scale_sqrt_inv_x_sqrt, perm) # Write V = SS', X = LL'. Then: # tr[inv(V) X] = tr[inv(S)' inv(S) L L'] # = tr[inv(S) L L' inv(S)'] # = tr[(inv(S) L) (inv(S) L)'] # = sum_{ik} (inv(S) L)_{ik}**2 # The second equality follows from the cyclic permutation property. # Complexity: O(nbk**2) trace_scale_inv_x = math_ops.reduce_sum( math_ops.square(scale_sqrt_inv_x_sqrt), axis=[-2, -1]) # Complexity: O(nbk) half_log_det_x = math_ops.reduce_sum( math_ops.log(array_ops.matrix_diag_part(x_sqrt)), axis=[-1]) # Complexity: O(nbk**2) log_prob = ((self.df - self.dimension - 1.) * half_log_det_x - 0.5 * trace_scale_inv_x - self.log_normalization()) # Set shape hints. # Try to merge what we know from the input then what we know from the # parameters of this distribution. if x.get_shape().ndims is not None: log_prob.set_shape(x.get_shape()[:-2]) if (log_prob.get_shape().ndims is not None and self.batch_shape.ndims is not None and self.batch_shape.ndims > 0): log_prob.get_shape()[-self.batch_shape.ndims:].merge_with( self.batch_shape) return log_prob def _prob(self, x): return math_ops.exp(self._log_prob(x)) def _entropy(self): half_dp1 = 0.5 * self.dimension + 0.5 half_df = 0.5 * self.df return (self.dimension * (half_df + half_dp1 * math.log(2.)) + 2 * half_dp1 * self.scale_operator.log_abs_determinant() + self._multi_lgamma(half_df, self.dimension) + (half_dp1 - half_df) * self._multi_digamma(half_df, self.dimension)) def _mean(self): if self.cholesky_input_output_matrices: return (math_ops.sqrt(self.df) * self.scale_operator.to_dense()) return self.df * self._square_scale_operator() def _variance(self): x = math_ops.sqrt(self.df) * self._square_scale_operator() d = array_ops.expand_dims(array_ops.matrix_diag_part(x), -1) v = math_ops.square(x) + math_ops.matmul(d, d, adjoint_b=True) if self.cholesky_input_output_matrices: return linalg_ops.cholesky(v) return v def _stddev(self): if self.cholesky_input_output_matrices: raise ValueError( "Computing std. dev. when is cholesky_input_output_matrices=True " "does not make sense.") return linalg_ops.cholesky(self.variance()) def _mode(self): s = self.df - self.dimension - 1. s = array_ops.where_v2( math_ops.less(s, 0.), constant_op.constant(float("NaN"), dtype=self.dtype, name="nan"), s) if self.cholesky_input_output_matrices: return math_ops.sqrt(s) * self.scale_operator.to_dense() return s * self._square_scale_operator() def mean_log_det(self, name="mean_log_det"): """Computes E[log(det(X))] under this Wishart distribution.""" with self._name_scope(name): return (self._multi_digamma(0.5 * self.df, self.dimension) + self.dimension * math.log(2.) + 2 * self.scale_operator.log_abs_determinant()) def log_normalization(self, name="log_normalization"): """Computes the log normalizing constant, log(Z).""" with self._name_scope(name): return (self.df * self.scale_operator.log_abs_determinant() + 0.5 * self.df * self.dimension * math.log(2.) + self._multi_lgamma(0.5 * self.df, self.dimension)) def _multi_gamma_sequence(self, a, p, name="multi_gamma_sequence"): """Creates sequence used in multivariate (di)gamma; shape = shape(a)+[p].""" with self._name_scope(name, values=[a, p]): # Linspace only takes scalars, so we'll add in the offset afterwards. seq = math_ops.linspace( constant_op.constant(0., dtype=self.dtype), 0.5 - 0.5 * p, math_ops.cast(p, dtypes.int32)) return seq + array_ops.expand_dims(a, [-1]) def _multi_lgamma(self, a, p, name="multi_lgamma"): """Computes the log multivariate gamma function; log(Gamma_p(a)).""" with self._name_scope(name, values=[a, p]): seq = self._multi_gamma_sequence(a, p) return (0.25 * p * (p - 1.) * math.log(math.pi) + math_ops.reduce_sum(math_ops.lgamma(seq), axis=[-1])) def _multi_digamma(self, a, p, name="multi_digamma"): """Computes the multivariate digamma function; Psi_p(a).""" with self._name_scope(name, values=[a, p]): seq = self._multi_gamma_sequence(a, p) return math_ops.reduce_sum(math_ops.digamma(seq), axis=[-1]) class WishartCholesky(_WishartLinearOperator): """The matrix Wishart distribution on positive definite matrices. This distribution is defined by a scalar degrees of freedom `df` and a lower, triangular Cholesky factor which characterizes the scale matrix. Using WishartCholesky is a constant-time improvement over WishartFull. It saves an O(nbk^3) operation, i.e., a matrix-product operation for sampling and a Cholesky factorization in log_prob. For most use-cases it often saves another O(nbk^3) operation since most uses of Wishart will also use the Cholesky factorization. #### Mathematical Details The probability density function (pdf) is, ```none pdf(X; df, scale) = det(X)**(0.5 (df-k-1)) exp(-0.5 tr[inv(scale) X]) / Z Z = 2**(0.5 df k) |det(scale)|**(0.5 df) Gamma_k(0.5 df) ``` where: * `df >= k` denotes the degrees of freedom, * `scale` is a symmetric, positive definite, `k x k` matrix, * `Z` is the normalizing constant, and, * `Gamma_k` is the [multivariate Gamma function]( https://en.wikipedia.org/wiki/Multivariate_gamma_function). #### Examples ```python import tensorflow_probability as tfp tfd = tfp.distributions # Initialize a single 3x3 Wishart with Cholesky factored scale matrix and 5 # degrees-of-freedom.(*) df = 5 chol_scale = tf.linalg.cholesky(...) # Shape is [3, 3]. dist = tfd.WishartCholesky(df=df, scale=chol_scale) # Evaluate this on an observation in R^3, returning a scalar. x = ... # A 3x3 positive definite matrix. dist.prob(x) # Shape is [], a scalar. # Evaluate this on a two observations, each in R^{3x3}, returning a length two # Tensor. x = [x0, x1] # Shape is [2, 3, 3]. dist.prob(x) # Shape is [2]. # Initialize two 3x3 Wisharts with Cholesky factored scale matrices. df = [5, 4] chol_scale = tf.linalg.cholesky(...) # Shape is [2, 3, 3]. dist = tfd.WishartCholesky(df=df, scale=chol_scale) # Evaluate this on four observations. x = [[x0, x1], [x2, x3]] # Shape is [2, 2, 3, 3]. dist.prob(x) # Shape is [2, 2]. # (*) - To efficiently create a trainable covariance matrix, see the example # in tfp.distributions.matrix_diag_transform. ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, df, scale, cholesky_input_output_matrices=False, validate_args=False, allow_nan_stats=True, name="WishartCholesky"): """Construct Wishart distributions. Args: df: `float` or `double` `Tensor`. Degrees of freedom, must be greater than or equal to dimension of the scale matrix. scale: `float` or `double` `Tensor`. The Cholesky factorization of the symmetric positive definite scale matrix of the distribution. cholesky_input_output_matrices: Python `bool`. Any function which whose input or output is a matrix assumes the input is Cholesky and returns a Cholesky factored matrix. Example `log_prob` input takes a Cholesky and `sample_n` returns a Cholesky when `cholesky_input_output_matrices=True`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. """ parameters = dict(locals()) with ops.name_scope(name, values=[scale]) as name: with ops.name_scope("init", values=[scale]): scale = ops.convert_to_tensor(scale) if validate_args: scale = control_flow_ops.with_dependencies([ check_ops.assert_positive( array_ops.matrix_diag_part(scale), message="scale must be positive definite"), check_ops.assert_equal( array_ops.shape(scale)[-1], array_ops.shape(scale)[-2], message="scale must be square") ] if validate_args else [], scale) super(WishartCholesky, self).__init__( df=df, scale_operator=linalg.LinearOperatorLowerTriangular( tril=scale, is_non_singular=True, is_positive_definite=True, is_square=True), cholesky_input_output_matrices=cholesky_input_output_matrices, validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name) self._parameters = parameters class WishartFull(_WishartLinearOperator): """The matrix Wishart distribution on positive definite matrices. This distribution is defined by a scalar degrees of freedom `df` and a symmetric, positive definite scale matrix. Evaluation of the pdf, determinant, and sampling are all `O(k^3)` operations where `(k, k)` is the event space shape. #### Mathematical Details The probability density function (pdf) is, ```none pdf(X; df, scale) = det(X)**(0.5 (df-k-1)) exp(-0.5 tr[inv(scale) X]) / Z Z = 2**(0.5 df k) |det(scale)|**(0.5 df) Gamma_k(0.5 df) ``` where: * `df >= k` denotes the degrees of freedom, * `scale` is a symmetric, positive definite, `k x k` matrix, * `Z` is the normalizing constant, and, * `Gamma_k` is the [multivariate Gamma function]( https://en.wikipedia.org/wiki/Multivariate_gamma_function). #### Examples ```python import tensorflow_probability as tfp tfd = tfp.distributions # Initialize a single 3x3 Wishart with Full factored scale matrix and 5 # degrees-of-freedom.(*) df = 5 scale = ... # Shape is [3, 3]; positive definite. dist = tfd.WishartFull(df=df, scale=scale) # Evaluate this on an observation in R^3, returning a scalar. x = ... # A 3x3 positive definite matrix. dist.prob(x) # Shape is [], a scalar. # Evaluate this on a two observations, each in R^{3x3}, returning a length two # Tensor. x = [x0, x1] # Shape is [2, 3, 3]. dist.prob(x) # Shape is [2]. # Initialize two 3x3 Wisharts with Full factored scale matrices. df = [5, 4] scale = ... # Shape is [2, 3, 3]. dist = tfd.WishartFull(df=df, scale=scale) # Evaluate this on four observations. x = [[x0, x1], [x2, x3]] # Shape is [2, 2, 3, 3]; xi is positive definite. dist.prob(x) # Shape is [2, 2]. # (*) - To efficiently create a trainable covariance matrix, see the example # in tfd.matrix_diag_transform. ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, df, scale, cholesky_input_output_matrices=False, validate_args=False, allow_nan_stats=True, name="WishartFull"): """Construct Wishart distributions. Args: df: `float` or `double` `Tensor`. Degrees of freedom, must be greater than or equal to dimension of the scale matrix. scale: `float` or `double` `Tensor`. The symmetric positive definite scale matrix of the distribution. cholesky_input_output_matrices: Python `bool`. Any function which whose input or output is a matrix assumes the input is Cholesky and returns a Cholesky factored matrix. Example `log_prob` input takes a Cholesky and `sample_n` returns a Cholesky when `cholesky_input_output_matrices=True`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. """ parameters = dict(locals()) with ops.name_scope(name) as name: with ops.name_scope("init", values=[scale]): scale = ops.convert_to_tensor(scale) if validate_args: scale = distribution_util.assert_symmetric(scale) chol = linalg_ops.cholesky(scale) chol = control_flow_ops.with_dependencies([ check_ops.assert_positive(array_ops.matrix_diag_part(chol)) ] if validate_args else [], chol) super(WishartFull, self).__init__( df=df, scale_operator=linalg.LinearOperatorLowerTriangular( tril=chol, is_non_singular=True, is_positive_definite=True, is_square=True), cholesky_input_output_matrices=cholesky_input_output_matrices, validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name) self._parameters = parameters
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/wishart.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Multivariate Normal distribution classes.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.distributions.python.ops import distribution_util from tensorflow.contrib.distributions.python.ops import mvn_linear_operator as mvn_linop from tensorflow.python.framework import ops from tensorflow.python.ops.linalg import linalg from tensorflow.python.util import deprecation __all__ = [ "MultivariateNormalDiagPlusLowRank", ] class MultivariateNormalDiagPlusLowRank( mvn_linop.MultivariateNormalLinearOperator): """The multivariate normal distribution on `R^k`. The Multivariate Normal distribution is defined over `R^k` and parameterized by a (batch of) length-`k` `loc` vector (aka "mu") and a (batch of) `k x k` `scale` matrix; `covariance = scale @ scale.T` where `@` denotes matrix-multiplication. #### Mathematical Details The probability density function (pdf) is, ```none pdf(x; loc, scale) = exp(-0.5 ||y||**2) / Z, y = inv(scale) @ (x - loc), Z = (2 pi)**(0.5 k) |det(scale)|, ``` where: * `loc` is a vector in `R^k`, * `scale` is a linear operator in `R^{k x k}`, `cov = scale @ scale.T`, * `Z` denotes the normalization constant, and, * `||y||**2` denotes the squared Euclidean norm of `y`. A (non-batch) `scale` matrix is: ```none scale = diag(scale_diag + scale_identity_multiplier ones(k)) + scale_perturb_factor @ diag(scale_perturb_diag) @ scale_perturb_factor.T ``` where: * `scale_diag.shape = [k]`, * `scale_identity_multiplier.shape = []`, * `scale_perturb_factor.shape = [k, r]`, typically `k >> r`, and, * `scale_perturb_diag.shape = [r]`. Additional leading dimensions (if any) will index batches. If both `scale_diag` and `scale_identity_multiplier` are `None`, then `scale` is the Identity matrix. The MultivariateNormal distribution is a member of the [location-scale family](https://en.wikipedia.org/wiki/Location-scale_family), i.e., it can be constructed as, ```none X ~ MultivariateNormal(loc=0, scale=1) # Identity scale, zero shift. Y = scale @ X + loc ``` #### Examples ```python import tensorflow_probability as tfp tfd = tfp.distributions # Initialize a single 3-variate Gaussian with covariance `cov = S @ S.T`, # `S = diag(d) + U @ diag(m) @ U.T`. The perturbation, `U @ diag(m) @ U.T`, is # a rank-2 update. mu = [-0.5., 0, 0.5] # shape: [3] d = [1.5, 0.5, 2] # shape: [3] U = [[1., 2], [-1, 1], [2, -0.5]] # shape: [3, 2] m = [4., 5] # shape: [2] mvn = tfd.MultivariateNormalDiagPlusLowRank( loc=mu scale_diag=d scale_perturb_factor=U, scale_perturb_diag=m) # Evaluate this on an observation in `R^3`, returning a scalar. mvn.prob([-1, 0, 1]).eval() # shape: [] # Initialize a 2-batch of 3-variate Gaussians; `S = diag(d) + U @ U.T`. mu = [[1., 2, 3], [11, 22, 33]] # shape: [b, k] = [2, 3] U = [[[1., 2], [3, 4], [5, 6]], [[0.5, 0.75], [1,0, 0.25], [1.5, 1.25]]] # shape: [b, k, r] = [2, 3, 2] m = [[0.1, 0.2], [0.4, 0.5]] # shape: [b, r] = [2, 2] mvn = tfd.MultivariateNormalDiagPlusLowRank( loc=mu, scale_perturb_factor=U, scale_perturb_diag=m) mvn.covariance().eval() # shape: [2, 3, 3] # ==> [[[ 15.63 31.57 48.51] # [ 31.57 69.31 105.05] # [ 48.51 105.05 162.59]] # # [[ 2.59 1.41 3.35] # [ 1.41 2.71 3.34] # [ 3.35 3.34 8.35]]] # Compute the pdf of two `R^3` observations (one from each batch); # return a length-2 vector. x = [[-0.9, 0, 0.1], [-10, 0, 9]] # shape: [2, 3] mvn.prob(x).eval() # shape: [2] ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, loc=None, scale_diag=None, scale_identity_multiplier=None, scale_perturb_factor=None, scale_perturb_diag=None, validate_args=False, allow_nan_stats=True, name="MultivariateNormalDiagPlusLowRank"): """Construct Multivariate Normal distribution on `R^k`. The `batch_shape` is the broadcast shape between `loc` and `scale` arguments. The `event_shape` is given by last dimension of the matrix implied by `scale`. The last dimension of `loc` (if provided) must broadcast with this. Recall that `covariance = scale @ scale.T`. A (non-batch) `scale` matrix is: ```none scale = diag(scale_diag + scale_identity_multiplier ones(k)) + scale_perturb_factor @ diag(scale_perturb_diag) @ scale_perturb_factor.T ``` where: * `scale_diag.shape = [k]`, * `scale_identity_multiplier.shape = []`, * `scale_perturb_factor.shape = [k, r]`, typically `k >> r`, and, * `scale_perturb_diag.shape = [r]`. Additional leading dimensions (if any) will index batches. If both `scale_diag` and `scale_identity_multiplier` are `None`, then `scale` is the Identity matrix. Args: loc: Floating-point `Tensor`. If this is set to `None`, `loc` is implicitly `0`. When specified, may have shape `[B1, ..., Bb, k]` where `b >= 0` and `k` is the event size. scale_diag: Non-zero, floating-point `Tensor` representing a diagonal matrix added to `scale`. May have shape `[B1, ..., Bb, k]`, `b >= 0`, and characterizes `b`-batches of `k x k` diagonal matrices added to `scale`. When both `scale_identity_multiplier` and `scale_diag` are `None` then `scale` is the `Identity`. scale_identity_multiplier: Non-zero, floating-point `Tensor` representing a scaled-identity-matrix added to `scale`. May have shape `[B1, ..., Bb]`, `b >= 0`, and characterizes `b`-batches of scaled `k x k` identity matrices added to `scale`. When both `scale_identity_multiplier` and `scale_diag` are `None` then `scale` is the `Identity`. scale_perturb_factor: Floating-point `Tensor` representing a rank-`r` perturbation added to `scale`. May have shape `[B1, ..., Bb, k, r]`, `b >= 0`, and characterizes `b`-batches of rank-`r` updates to `scale`. When `None`, no rank-`r` update is added to `scale`. scale_perturb_diag: Floating-point `Tensor` representing a diagonal matrix inside the rank-`r` perturbation added to `scale`. May have shape `[B1, ..., Bb, r]`, `b >= 0`, and characterizes `b`-batches of `r x r` diagonal matrices inside the perturbation added to `scale`. When `None`, an identity matrix is used inside the perturbation. Can only be specified if `scale_perturb_factor` is also specified. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. Raises: ValueError: if at most `scale_identity_multiplier` is specified. """ parameters = dict(locals()) def _convert_to_tensor(x, name): return None if x is None else ops.convert_to_tensor(x, name=name) with ops.name_scope(name) as name: with ops.name_scope("init", values=[ loc, scale_diag, scale_identity_multiplier, scale_perturb_factor, scale_perturb_diag]): has_low_rank = (scale_perturb_factor is not None or scale_perturb_diag is not None) scale = distribution_util.make_diag_scale( loc=loc, scale_diag=scale_diag, scale_identity_multiplier=scale_identity_multiplier, validate_args=validate_args, assert_positive=has_low_rank) scale_perturb_factor = _convert_to_tensor( scale_perturb_factor, name="scale_perturb_factor") scale_perturb_diag = _convert_to_tensor( scale_perturb_diag, name="scale_perturb_diag") if has_low_rank: scale = linalg.LinearOperatorLowRankUpdate( scale, u=scale_perturb_factor, diag_update=scale_perturb_diag, is_diag_update_positive=scale_perturb_diag is None, is_non_singular=True, # Implied by is_positive_definite=True. is_self_adjoint=True, is_positive_definite=True, is_square=True) super(MultivariateNormalDiagPlusLowRank, self).__init__( loc=loc, scale=scale, validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name) self._parameters = parameters
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/mvn_diag_plus_low_rank.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for probability distributions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import smart_cond from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.linalg import linalg from tensorflow.python.ops.distributions import distribution as distribution_lib # The following two lines are redundant, in a sense. The first enables # good coding practice *within* this file (`util.prefer_static_value` # rather than `prefer_static_value`). The second ensures that users # also get the core utils when they import this file. from tensorflow.python.ops.distributions import util from tensorflow.python.ops.distributions.util import * # pylint: disable=wildcard-import def _convert_to_tensor(x, name): return None if x is None else ops.convert_to_tensor(x, name=name) def mixture_stddev(mixture_weight_vector, mean_vector, stddev_vector): """Computes the standard deviation of a mixture distribution. This function works regardless of the component distribution, so long as each component's mean and standard deviation can be provided. Args: mixture_weight_vector: A 2D tensor with shape [batch_size, num_components] mean_vector: A 2D tensor of mixture component means. Has shape `[batch_size, num_components]`. stddev_vector: A 2D tensor of mixture component standard deviations. Has shape `[batch_size, num_components]`. Returns: A 1D tensor of shape `[batch_size]` representing the standard deviation of the mixture distribution with given weights and component means and standard deviations. Raises: ValueError: If the shapes of the input tensors are not as expected. """ mixture_weight_vector.shape.assert_has_rank(2) if not mean_vector.shape.is_compatible_with(mixture_weight_vector.shape): raise ValueError("Expecting means to have same shape as mixture weights.") if not stddev_vector.shape.is_compatible_with(mixture_weight_vector.shape): raise ValueError("Expecting stddevs to have same shape as mixture weights.") # Reshape the distribution parameters for batched vectorized dot products. pi_for_dot_prod = array_ops.expand_dims(mixture_weight_vector, axis=1) mu_for_dot_prod = array_ops.expand_dims(mean_vector, axis=2) sigma_for_dot_prod = array_ops.expand_dims(stddev_vector, axis=2) # weighted average of component means under mixture distribution. mean_wa = math_ops.matmul(pi_for_dot_prod, mu_for_dot_prod) mean_wa = array_ops.reshape(mean_wa, (-1,)) # weighted average of component variances under mixture distribution. var_wa = math_ops.matmul(pi_for_dot_prod, math_ops.square(sigma_for_dot_prod)) var_wa = array_ops.reshape(var_wa, (-1,)) # weighted average of component squared means under mixture distribution. sq_mean_wa = math_ops.matmul(pi_for_dot_prod, math_ops.square(mu_for_dot_prod)) sq_mean_wa = array_ops.reshape(sq_mean_wa, (-1,)) mixture_variance = var_wa + sq_mean_wa - math_ops.square(mean_wa) return math_ops.sqrt(mixture_variance) def make_tril_scale( loc=None, scale_tril=None, scale_diag=None, scale_identity_multiplier=None, shape_hint=None, validate_args=False, assert_positive=False, name=None): """Creates a LinOp representing a lower triangular matrix. Args: loc: Floating-point `Tensor`. This is used for inferring shape in the case where only `scale_identity_multiplier` is set. scale_tril: Floating-point `Tensor` representing the diagonal matrix. `scale_diag` has shape [N1, N2, ... k, k], which represents a k x k lower triangular matrix. When `None` no `scale_tril` term is added to the LinOp. The upper triangular elements above the diagonal are ignored. scale_diag: Floating-point `Tensor` representing the diagonal matrix. `scale_diag` has shape [N1, N2, ... k], which represents a k x k diagonal matrix. When `None` no diagonal term is added to the LinOp. scale_identity_multiplier: floating point rank 0 `Tensor` representing a scaling done to the identity matrix. When `scale_identity_multiplier = scale_diag = scale_tril = None` then `scale += IdentityMatrix`. Otherwise no scaled-identity-matrix is added to `scale`. shape_hint: scalar integer `Tensor` representing a hint at the dimension of the identity matrix when only `scale_identity_multiplier` is set. validate_args: Python `bool` indicating whether arguments should be checked for correctness. assert_positive: Python `bool` indicating whether LinOp should be checked for being positive definite. name: Python `str` name given to ops managed by this object. Returns: `LinearOperator` representing a lower triangular matrix. Raises: ValueError: If only `scale_identity_multiplier` is set and `loc` and `shape_hint` are both None. """ def _maybe_attach_assertion(x): if not validate_args: return x if assert_positive: return control_flow_ops.with_dependencies([ check_ops.assert_positive( array_ops.matrix_diag_part(x), message="diagonal part must be positive"), ], x) return control_flow_ops.with_dependencies([ check_ops.assert_none_equal( array_ops.matrix_diag_part(x), array_ops.zeros([], x.dtype), message="diagonal part must be non-zero"), ], x) with ops.name_scope(name, "make_tril_scale", values=[loc, scale_diag, scale_identity_multiplier]): loc = _convert_to_tensor(loc, name="loc") scale_tril = _convert_to_tensor(scale_tril, name="scale_tril") scale_diag = _convert_to_tensor(scale_diag, name="scale_diag") scale_identity_multiplier = _convert_to_tensor( scale_identity_multiplier, name="scale_identity_multiplier") if scale_tril is not None: scale_tril = array_ops.matrix_band_part(scale_tril, -1, 0) # Zero out TriU. tril_diag = array_ops.matrix_diag_part(scale_tril) if scale_diag is not None: tril_diag += scale_diag if scale_identity_multiplier is not None: tril_diag += scale_identity_multiplier[..., array_ops.newaxis] scale_tril = array_ops.matrix_set_diag(scale_tril, tril_diag) return linalg.LinearOperatorLowerTriangular( tril=_maybe_attach_assertion(scale_tril), is_non_singular=True, is_self_adjoint=False, is_positive_definite=assert_positive) return make_diag_scale( loc=loc, scale_diag=scale_diag, scale_identity_multiplier=scale_identity_multiplier, shape_hint=shape_hint, validate_args=validate_args, assert_positive=assert_positive, name=name) def make_diag_scale( loc=None, scale_diag=None, scale_identity_multiplier=None, shape_hint=None, validate_args=False, assert_positive=False, name=None): """Creates a LinOp representing a diagonal matrix. Args: loc: Floating-point `Tensor`. This is used for inferring shape in the case where only `scale_identity_multiplier` is set. scale_diag: Floating-point `Tensor` representing the diagonal matrix. `scale_diag` has shape [N1, N2, ... k], which represents a k x k diagonal matrix. When `None` no diagonal term is added to the LinOp. scale_identity_multiplier: floating point rank 0 `Tensor` representing a scaling done to the identity matrix. When `scale_identity_multiplier = scale_diag = scale_tril = None` then `scale += IdentityMatrix`. Otherwise no scaled-identity-matrix is added to `scale`. shape_hint: scalar integer `Tensor` representing a hint at the dimension of the identity matrix when only `scale_identity_multiplier` is set. validate_args: Python `bool` indicating whether arguments should be checked for correctness. assert_positive: Python `bool` indicating whether LinOp should be checked for being positive definite. name: Python `str` name given to ops managed by this object. Returns: `LinearOperator` representing a lower triangular matrix. Raises: ValueError: If only `scale_identity_multiplier` is set and `loc` and `shape_hint` are both None. """ def _maybe_attach_assertion(x): if not validate_args: return x if assert_positive: return control_flow_ops.with_dependencies([ check_ops.assert_positive( x, message="diagonal part must be positive"), ], x) return control_flow_ops.with_dependencies([ check_ops.assert_none_equal( x, array_ops.zeros([], x.dtype), message="diagonal part must be non-zero")], x) with ops.name_scope(name, "make_diag_scale", values=[loc, scale_diag, scale_identity_multiplier]): loc = _convert_to_tensor(loc, name="loc") scale_diag = _convert_to_tensor(scale_diag, name="scale_diag") scale_identity_multiplier = _convert_to_tensor( scale_identity_multiplier, name="scale_identity_multiplier") if scale_diag is not None: if scale_identity_multiplier is not None: scale_diag += scale_identity_multiplier[..., array_ops.newaxis] return linalg.LinearOperatorDiag( diag=_maybe_attach_assertion(scale_diag), is_non_singular=True, is_self_adjoint=True, is_positive_definite=assert_positive) if loc is None and shape_hint is None: raise ValueError( "Cannot infer `event_shape` unless `loc` or " "`shape_hint` is specified.") if shape_hint is None: shape_hint = loc.shape[-1] if scale_identity_multiplier is None: return linalg.LinearOperatorIdentity( num_rows=shape_hint, dtype=loc.dtype.base_dtype, is_self_adjoint=True, is_positive_definite=True, assert_proper_shapes=validate_args) return linalg.LinearOperatorScaledIdentity( num_rows=shape_hint, multiplier=_maybe_attach_assertion(scale_identity_multiplier), is_non_singular=True, is_self_adjoint=True, is_positive_definite=assert_positive, assert_proper_shapes=validate_args) def shapes_from_loc_and_scale(loc, scale, name="shapes_from_loc_and_scale"): """Infer distribution batch and event shapes from a location and scale. Location and scale family distributions determine their batch/event shape by broadcasting the `loc` and `scale` args. This helper does that broadcast, statically if possible. Batch shape broadcasts as per the normal rules. We allow the `loc` event shape to broadcast up to that of `scale`. We do not allow `scale`'s event shape to change. Therefore, the last dimension of `loc` must either be size `1`, or the same as `scale.range_dimension`. See `MultivariateNormalLinearOperator` for a usage example. Args: loc: `N-D` `Tensor` with `N >= 1` (already converted to tensor) or `None`. If `None`, both batch and event shape are determined by `scale`. scale: A `LinearOperator` instance. name: A string name to prepend to created ops. Returns: batch_shape: `TensorShape` (if broadcast is done statically), or `Tensor`. event_shape: `TensorShape` (if broadcast is done statically), or `Tensor`. Raises: ValueError: If the last dimension of `loc` is determined statically to be different than the range of `scale`. """ with ops.name_scope(name, values=[loc] + scale.graph_parents): # Get event shape. event_size = scale.range_dimension_tensor() event_size_const = tensor_util.constant_value(event_size) if event_size_const is not None: event_shape = event_size_const.reshape([1]) else: event_shape = event_size[array_ops.newaxis] # Static check that event shapes match. if loc is not None: loc_event_size = tensor_shape.dimension_value(loc.get_shape()[-1]) if loc_event_size is not None and event_size_const is not None: if loc_event_size != 1 and loc_event_size != event_size_const: raise ValueError( "Event size of 'scale' (%d) could not be broadcast up to that of " "'loc' (%d)." % (loc_event_size, event_size_const)) # Get batch shape. batch_shape = scale.batch_shape_tensor() if loc is None: batch_shape_const = tensor_util.constant_value(batch_shape) batch_shape = ( batch_shape_const if batch_shape_const is not None else batch_shape) else: loc_batch_shape = loc.get_shape().with_rank_at_least(1)[:-1] if (loc.get_shape().ndims is None or not loc_batch_shape.is_fully_defined()): loc_batch_shape = array_ops.shape(loc)[:-1] else: loc_batch_shape = ops.convert_to_tensor(loc_batch_shape, name="loc_batch_shape") # This is defined in the core util module. # pylint: disable=undefined-variable batch_shape = prefer_static_broadcast_shape(batch_shape, loc_batch_shape) # pylint: enable=undefined-variable return batch_shape, event_shape def get_broadcast_shape(*tensors): """Get broadcast shape as a Python list of integers (preferred) or `Tensor`. Args: *tensors: One or more `Tensor` objects (already converted!). Returns: broadcast shape: Python list (if shapes determined statically), otherwise an `int32` `Tensor`. """ # Try static. s_shape = tensors[0].shape for t in tensors[1:]: s_shape = array_ops.broadcast_static_shape(s_shape, t.shape) if s_shape.is_fully_defined(): return s_shape.as_list() # Fallback on dynamic. d_shape = array_ops.shape(tensors[0]) for t in tensors[1:]: d_shape = array_ops.broadcast_dynamic_shape(d_shape, array_ops.shape(t)) return d_shape def is_diagonal_scale(scale): """Returns `True` if `scale` is a `LinearOperator` that is known to be diag. Args: scale: `LinearOperator` instance. Returns: Python `bool`. Raises: TypeError: If `scale` is not a `LinearOperator`. """ if not isinstance(scale, linalg.LinearOperator): raise TypeError("Expected argument 'scale' to be instance of LinearOperator" ". Found: %s" % scale) return (isinstance(scale, linalg.LinearOperatorIdentity) or isinstance(scale, linalg.LinearOperatorScaledIdentity) or isinstance(scale, linalg.LinearOperatorDiag)) def maybe_check_scalar_distribution( distribution, expected_base_dtype, validate_args): """Helper which checks validity of a scalar `distribution` init arg. Valid here means: * `distribution` has scalar batch and event shapes. * `distribution` is `FULLY_REPARAMETERIZED` * `distribution` has expected dtype. Args: distribution: `Distribution`-like object. expected_base_dtype: `TensorFlow` `dtype`. validate_args: Python `bool`. Whether to do additional checks: (i) check that reparameterization_type is `FULLY_REPARAMETERIZED`. (ii) add `tf.Assert` ops to the graph to enforce that distribution is scalar in the event that this cannot be determined statically. Returns: List of `tf.Assert` ops to run to enforce validity checks that could not be statically determined. Empty if `not validate_args`. Raises: ValueError: If validate_args and distribution is not FULLY_REPARAMETERIZED ValueError: If distribution is statically determined to not have both scalar batch and scalar event shapes. """ if distribution.dtype != expected_base_dtype: raise TypeError("dtype mismatch; " "distribution.dtype=\"{}\" is not \"{}\"".format( distribution.dtype.name, expected_base_dtype.name)) # Although `reparameterization_type` is a static property, we guard it by # `validate_args`. This allows users to use a `distribution` which is not # reparameterized itself. However, we tacitly assume that although the # distribution is not reparameterized, it only depends on non-trainable # variables. if validate_args and (distribution.reparameterization_type != distribution_lib.FULLY_REPARAMETERIZED): raise ValueError("Base distribution should be reparameterized or be " "a function of non-trainable variables; " "distribution.reparameterization_type = \"{}\" " "!= \"FULLY_REPARAMETERIZED\".".format( distribution.reparameterization_type)) with ops.name_scope(name="check_distribution"): assertions = [] def check_is_scalar(is_scalar, name): is_scalar_ = static_value(is_scalar) if is_scalar_ is not None: if not is_scalar_: raise ValueError("distribution must be scalar; " "distribution.{}=False is not True".format(name)) elif validate_args: assertions.append(check_ops.assert_equal( is_scalar, True, message=("distribution must be scalar; " "distribution.{}=False is not True".format(name)))) check_is_scalar(distribution.is_scalar_event(), "is_scalar_event") check_is_scalar(distribution.is_scalar_batch(), "is_scalar_batch") return assertions def pad_mixture_dimensions(x, mixture_distribution, categorical_distribution, event_ndims): """Pad dimensions of event tensors for mixture distributions. See `Mixture._sample_n` and `MixtureSameFamily._sample_n` for usage examples. Args: x: event tensor to pad. mixture_distribution: Base distribution of the mixture. categorical_distribution: `Categorical` distribution that mixes the base distribution. event_ndims: Integer specifying the number of event dimensions in the event tensor. Returns: A padded version of `x` that can broadcast with `categorical_distribution`. """ with ops.name_scope("pad_mix_dims", values=[x]): def _get_ndims(d): if d.batch_shape.ndims is not None: return d.batch_shape.ndims return array_ops.shape(d.batch_shape_tensor())[0] dist_batch_ndims = _get_ndims(mixture_distribution) cat_batch_ndims = _get_ndims(categorical_distribution) pad_ndims = array_ops.where_v2(categorical_distribution.is_scalar_batch(), dist_batch_ndims, dist_batch_ndims - cat_batch_ndims) s = array_ops.shape(x) x = array_ops.reshape(x, shape=array_ops.concat([ s[:-1], array_ops.ones([pad_ndims], dtype=dtypes.int32), s[-1:], array_ops.ones([event_ndims], dtype=dtypes.int32), ], axis=0)) return x def static_value(x): """Returns the static value of a `Tensor` or `None`.""" return tensor_util.constant_value(ops.convert_to_tensor(x)) def move_dimension(x, source_idx, dest_idx): """Move a single tensor dimension within its shape. This is a special case of `tf.transpose()`, which applies arbitrary permutations to tensor dimensions. Args: x: Tensor of rank `ndims`. source_idx: Integer index into `x.shape` (negative indexing is supported). dest_idx: Integer index into `x.shape` (negative indexing is supported). Returns: x_perm: Tensor of rank `ndims`, in which the dimension at original index `source_idx` has been moved to new index `dest_idx`, with all other dimensions retained in their original order. Example: ```python x = tf.compat.v1.placeholder(shape=[200, 30, 4, 1, 6]) x_perm = _move_dimension(x, 1, 1) # no-op x_perm = _move_dimension(x, 0, 3) # result shape [30, 4, 1, 200, 6] x_perm = _move_dimension(x, 0, -2) # equivalent to previous x_perm = _move_dimension(x, 4, 2) # result shape [200, 30, 6, 4, 1] ``` """ ndims = util.prefer_static_rank(x) if isinstance(source_idx, int): dtype = dtypes.int32 else: dtype = dtypes.as_dtype(source_idx.dtype) # Handle negative indexing. Since ndims might be dynamic, this makes # source_idx and dest_idx also possibly dynamic. if source_idx < 0: source_idx = ndims + source_idx if dest_idx < 0: dest_idx = ndims + dest_idx # Construct the appropriate permutation of dimensions, depending # whether the source is before or after the destination. def move_left_permutation(): return util.prefer_static_value( array_ops.concat([ math_ops.range(0, dest_idx, dtype=dtype), [source_idx], math_ops.range(dest_idx, source_idx, dtype=dtype), math_ops.range(source_idx+1, ndims, dtype=dtype)], axis=0)) def move_right_permutation(): return util.prefer_static_value( array_ops.concat([ math_ops.range(0, source_idx, dtype=dtype), math_ops.range(source_idx+1, dest_idx+1, dtype=dtype), [source_idx], math_ops.range(dest_idx+1, ndims, dtype=dtype)], axis=0)) def x_permuted(): return array_ops.transpose( x, perm=smart_cond.smart_cond(source_idx < dest_idx, move_right_permutation, move_left_permutation)) # One final conditional to handle the special case where source # and destination indices are equal. return smart_cond.smart_cond(math_ops.equal(source_idx, dest_idx), lambda: x, x_permuted)
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/distribution_util.py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The BatchReshape distribution.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.distributions import distribution as distribution_lib from tensorflow.python.util import deprecation __all__ = [ "BatchReshape", ] class BatchReshape(distribution_lib.Distribution): """The Batch-Reshaping distribution. This "meta-distribution" reshapes the batch dimensions of another distribution. #### Examples ```python import tensorflow_probability as tfp tfd = tfp.distributions dtype = np.float32 dims = 2 new_batch_shape = [1, 2, -1] old_batch_shape = [6] scale = np.ones(old_batch_shape + [dims], dtype) mvn = tfd.MultivariateNormalDiag(scale_diag=scale) reshape_mvn = tfd.BatchReshape( distribution=mvn, batch_shape=new_batch_shape, validate_args=True) reshape_mvn.batch_shape # ==> [1, 2, 3] x = reshape_mvn.sample(sample_shape=[4, 5]) x.shape # ==> [4, 5, 1, 2, 3, 2] == sample_shape + new_batch_shape + [dims] reshape_mvn.log_prob(x).shape # ==> [4, 5, 1, 2, 3] == sample_shape + new_batch_shape ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, distribution, batch_shape, validate_args=False, allow_nan_stats=True, name=None): """Construct BatchReshape distribution. Args: distribution: The base distribution instance to reshape. Typically an instance of `Distribution`. batch_shape: Positive `int`-like vector-shaped `Tensor` representing the new shape of the batch dimensions. Up to one dimension may contain `-1`, meaning the remainder of the batch size. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: The name to give Ops created by the initializer. Default value: `"BatchReshape" + distribution.name`. Raises: ValueError: if `batch_shape` is not a vector. ValueError: if `batch_shape` has non-positive elements. ValueError: if `batch_shape` size is not the same as a `distribution.batch_shape` size. """ parameters = dict(locals()) name = name or "BatchReshape" + distribution.name with ops.name_scope(name, values=[batch_shape]) as name: # The unexpanded batch shape may contain up to one dimension of -1. self._batch_shape_unexpanded = ops.convert_to_tensor( batch_shape, dtype=dtypes.int32, name="batch_shape") validate_init_args_statically(distribution, self._batch_shape_unexpanded) batch_shape, batch_shape_static, runtime_assertions = calculate_reshape( distribution.batch_shape_tensor(), self._batch_shape_unexpanded, validate_args) self._distribution = distribution self._batch_shape_ = batch_shape self._batch_shape_static = batch_shape_static self._runtime_assertions = runtime_assertions super(BatchReshape, self).__init__( dtype=distribution.dtype, reparameterization_type=distribution.reparameterization_type, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=( [self._batch_shape_unexpanded] + distribution._graph_parents), # pylint: disable=protected-access name=name) @property def distribution(self): return self._distribution def _batch_shape_tensor(self): with ops.control_dependencies(self._runtime_assertions): return array_ops.identity(self._batch_shape_) def _batch_shape(self): return self._batch_shape_static def _event_shape_tensor(self): with ops.control_dependencies(self._runtime_assertions): return array_ops.identity(self.distribution.event_shape_tensor()) def _event_shape(self): return self.distribution.event_shape def _sample_n(self, n, seed=None): with ops.control_dependencies(self._runtime_assertions): x = self.distribution.sample(sample_shape=n, seed=seed) new_shape = array_ops.concat( [ [n], self._batch_shape_unexpanded, self.event_shape_tensor(), ], axis=0) return array_ops.reshape(x, new_shape) def _log_prob(self, x): return self._call_reshape_input_output( self.distribution.log_prob, x) def _prob(self, x): return self._call_reshape_input_output( self.distribution.prob, x) def _log_cdf(self, x): return self._call_reshape_input_output( self.distribution.log_cdf, x) def _cdf(self, x): return self._call_reshape_input_output( self.distribution.cdf, x) def _log_survival_function(self, x): return self._call_reshape_input_output( self.distribution.log_survival_function, x) def _survival_function(self, x): return self._call_reshape_input_output( self.distribution.survival_function, x) def _entropy(self): return self._call_and_reshape_output(self.distribution.entropy, [], [tensor_shape.TensorShape([])]) def _mean(self): return self._call_and_reshape_output(self.distribution.mean) def _mode(self): return self._call_and_reshape_output(self.distribution.mode) def _stddev(self): return self._call_and_reshape_output(self.distribution.stddev) def _variance(self): return self._call_and_reshape_output(self.distribution.variance) def _covariance(self): return self._call_and_reshape_output( self.distribution.covariance, [self.event_shape_tensor()]*2, [self.event_shape]*2) def _sample_shape(self, x): """Computes graph and static `sample_shape`.""" x_ndims = (array_ops.rank(x) if x.shape.ndims is None else x.shape.ndims) event_ndims = (array_ops.size(self.event_shape_tensor()) if self.event_shape.ndims is None else self.event_shape.ndims) batch_ndims = ( array_ops.size(self._batch_shape_unexpanded) if self.batch_shape.ndims is None else self.batch_shape.ndims) sample_ndims = x_ndims - batch_ndims - event_ndims if isinstance(sample_ndims, int): static_sample_shape = x.shape[:sample_ndims] else: static_sample_shape = tensor_shape.TensorShape(None) if static_sample_shape.is_fully_defined(): sample_shape = np.int32(static_sample_shape.as_list()) else: sample_shape = array_ops.shape(x)[:sample_ndims] return sample_shape, static_sample_shape def _call_reshape_input_output(self, fn, x): """Calls `fn`, appropriately reshaping its input `x` and output.""" with ops.control_dependencies( self._runtime_assertions + self._validate_sample_arg(x)): sample_shape, static_sample_shape = self._sample_shape(x) old_shape = array_ops.concat([ sample_shape, self.distribution.batch_shape_tensor(), self.event_shape_tensor(), ], axis=0) result = fn(array_ops.reshape(x, old_shape)) new_shape = array_ops.concat( [ sample_shape, self._batch_shape_unexpanded, ], axis=0) result = array_ops.reshape(result, new_shape) if (static_sample_shape.ndims is not None and self.batch_shape.ndims is not None): new_shape = static_sample_shape.concatenate(self.batch_shape) result.set_shape(result.shape.merge_with(new_shape)) return result def _call_and_reshape_output( self, fn, event_shape_list=None, static_event_shape_list=None): """Calls `fn` and appropriately reshapes its output.""" with ops.control_dependencies(self._runtime_assertions): if event_shape_list is None: event_shape_list = [self._event_shape_tensor()] if static_event_shape_list is None: static_event_shape_list = [self.event_shape] new_shape = array_ops.concat( [self._batch_shape_unexpanded] + event_shape_list, axis=0) result = array_ops.reshape(fn(), new_shape) if (self.batch_shape.ndims is not None and self.event_shape.ndims is not None): event_shape = tensor_shape.TensorShape([]) for rss in static_event_shape_list: event_shape = event_shape.concatenate(rss) static_shape = result.shape.merge_with( self.batch_shape.concatenate(event_shape)) result.set_shape(static_shape) return result def _validate_sample_arg(self, x): """Helper which validates sample arg, e.g., input to `log_prob`.""" with ops.name_scope(name="validate_sample_arg", values=[x]): x_ndims = (array_ops.rank(x) if x.shape.ndims is None else x.shape.ndims) event_ndims = (array_ops.size(self.event_shape_tensor()) if self.event_shape.ndims is None else self.event_shape.ndims) batch_ndims = ( array_ops.size(self._batch_shape_unexpanded) if self.batch_shape.ndims is None else self.batch_shape.ndims) expected_batch_event_ndims = batch_ndims + event_ndims if (isinstance(x_ndims, int) and isinstance(expected_batch_event_ndims, int)): if x_ndims < expected_batch_event_ndims: raise NotImplementedError( "Broadcasting is not supported; too few batch and event dims " "(expected at least {}, saw {}).".format( expected_batch_event_ndims, x_ndims)) ndims_assertion = [] elif self.validate_args: ndims_assertion = [ check_ops.assert_greater_equal( x_ndims, expected_batch_event_ndims, message=("Broadcasting is not supported; too few " "batch and event dims."), name="assert_batch_and_event_ndims_large_enough"), ] if (self.batch_shape.is_fully_defined() and self.event_shape.is_fully_defined()): expected_batch_event_shape = np.int32(self.batch_shape.concatenate( self.event_shape).as_list()) else: expected_batch_event_shape = array_ops.concat([ self.batch_shape_tensor(), self.event_shape_tensor(), ], axis=0) sample_ndims = x_ndims - expected_batch_event_ndims if isinstance(sample_ndims, int): sample_ndims = max(sample_ndims, 0) if (isinstance(sample_ndims, int) and x.shape[sample_ndims:].is_fully_defined()): actual_batch_event_shape = np.int32(x.shape[sample_ndims:].as_list()) else: sample_ndims = math_ops.maximum(sample_ndims, 0) actual_batch_event_shape = array_ops.shape(x)[sample_ndims:] if (isinstance(expected_batch_event_shape, np.ndarray) and isinstance(actual_batch_event_shape, np.ndarray)): if any(expected_batch_event_shape != actual_batch_event_shape): raise NotImplementedError("Broadcasting is not supported; " "unexpected batch and event shape " "(expected {}, saw {}).".format( expected_batch_event_shape, actual_batch_event_shape)) # We need to set the final runtime-assertions to `ndims_assertion` since # its possible this assertion was created. We could add a condition to # only do so if `self.validate_args == True`, however this is redundant # as `ndims_assertion` already encodes this information. runtime_assertions = ndims_assertion elif self.validate_args: # We need to make the `ndims_assertion` a control dep because otherwise # TF itself might raise an exception owing to this assertion being # ill-defined, ie, one cannot even compare different rank Tensors. with ops.control_dependencies(ndims_assertion): shape_assertion = check_ops.assert_equal( expected_batch_event_shape, actual_batch_event_shape, message=("Broadcasting is not supported; " "unexpected batch and event shape."), name="assert_batch_and_event_shape_same") runtime_assertions = [shape_assertion] else: runtime_assertions = [] return runtime_assertions @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def calculate_reshape(original_shape, new_shape, validate=False, name=None): """Calculates the reshaped dimensions (replacing up to one -1 in reshape).""" batch_shape_static = tensor_util.constant_value_as_shape(new_shape) if batch_shape_static.is_fully_defined(): return np.int32(batch_shape_static.as_list()), batch_shape_static, [] with ops.name_scope(name, "calculate_reshape", [original_shape, new_shape]): original_size = math_ops.reduce_prod(original_shape) implicit_dim = math_ops.equal(new_shape, -1) size_implicit_dim = ( original_size // math_ops.maximum(1, -math_ops.reduce_prod(new_shape))) new_ndims = array_ops.shape(new_shape) expanded_new_shape = array_ops.where_v2( # Assumes exactly one `-1`. implicit_dim, array_ops.fill(new_ndims, size_implicit_dim), new_shape) validations = [] if not validate else [ check_ops.assert_rank( original_shape, 1, message="Original shape must be a vector."), check_ops.assert_rank( new_shape, 1, message="New shape must be a vector."), check_ops.assert_less_equal( math_ops.count_nonzero(implicit_dim, dtype=dtypes.int32), 1, message="At most one dimension can be unknown."), check_ops.assert_positive( expanded_new_shape, message="Shape elements must be >=-1."), check_ops.assert_equal( math_ops.reduce_prod(expanded_new_shape), original_size, message="Shape sizes do not match."), ] return expanded_new_shape, batch_shape_static, validations @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def validate_init_args_statically(distribution, batch_shape): """Helper to __init__ which makes or raises assertions.""" if batch_shape.shape.ndims is not None: if batch_shape.shape.ndims != 1: raise ValueError("`batch_shape` must be a vector " "(saw rank: {}).".format(batch_shape.shape.ndims)) batch_shape_static = tensor_util.constant_value_as_shape(batch_shape) batch_size_static = batch_shape_static.num_elements() dist_batch_size_static = distribution.batch_shape.num_elements() if batch_size_static is not None and dist_batch_size_static is not None: if batch_size_static != dist_batch_size_static: raise ValueError("`batch_shape` size ({}) must match " "`distribution.batch_shape` size ({}).".format( batch_size_static, dist_batch_size_static)) if batch_shape_static.dims is not None: if any( dim.value is not None and dim.value < 1 for dim in batch_shape_static.dims): raise ValueError("`batch_shape` elements must be >=-1.")
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/batch_reshape.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Chi2 distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.distributions import gamma from tensorflow.python.util import deprecation __all__ = [ "Chi2", "Chi2WithAbsDf", ] class Chi2(gamma.Gamma): """Chi2 distribution. The Chi2 distribution is defined over positive real numbers using a degrees of freedom ("df") parameter. #### Mathematical Details The probability density function (pdf) is, ```none pdf(x; df, x > 0) = x**(0.5 df - 1) exp(-0.5 x) / Z Z = 2**(0.5 df) Gamma(0.5 df) ``` where: * `df` denotes the degrees of freedom, * `Z` is the normalization constant, and, * `Gamma` is the [gamma function]( https://en.wikipedia.org/wiki/Gamma_function). The Chi2 distribution is a special case of the Gamma distribution, i.e., ```python Chi2(df) = Gamma(concentration=0.5 * df, rate=0.5) ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, df, validate_args=False, allow_nan_stats=True, name="Chi2"): """Construct Chi2 distributions with parameter `df`. Args: df: Floating point tensor, the degrees of freedom of the distribution(s). `df` must contain only positive values. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. """ parameters = dict(locals()) # Even though all stats of chi2 are defined for valid parameters, this is # not true in the parent class "gamma." therefore, passing # allow_nan_stats=True # through to the parent class results in unnecessary asserts. with ops.name_scope(name, values=[df]) as name: with ops.control_dependencies([ check_ops.assert_positive(df), ] if validate_args else []): self._df = array_ops.identity(df, name="df") super(Chi2, self).__init__( concentration=0.5 * self._df, rate=constant_op.constant(0.5, dtype=self._df.dtype), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name) self._parameters = parameters @staticmethod def _param_shapes(sample_shape): return {"df": ops.convert_to_tensor(sample_shape, dtype=dtypes.int32)} @property def df(self): return self._df class Chi2WithAbsDf(Chi2): """Chi2 with parameter transform `df = floor(abs(df))`.""" @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, df, validate_args=False, allow_nan_stats=True, name="Chi2WithAbsDf"): parameters = dict(locals()) with ops.name_scope(name, values=[df]) as name: super(Chi2WithAbsDf, self).__init__( df=math_ops.floor( math_ops.abs(df, name="abs_df"), name="floor_abs_df"), validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name) self._parameters = parameters
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/chi2.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """The Binomial distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import check_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.distributions import distribution from tensorflow.python.ops.distributions import util as distribution_util from tensorflow.python.util import deprecation _binomial_sample_note = """ For each batch member of counts `value`, `P[value]` is the probability that after sampling `self.total_count` draws from this Binomial distribution, the number of successes is `value`. Since different sequences of draws can result in the same counts, the probability includes a combinatorial coefficient. Note: `value` must be a non-negative tensor with dtype `dtype` and whose shape can be broadcast with `self.probs` and `self.total_count`. `value` is only legal if it is less than or equal to `self.total_count` and its components are equal to integer values. """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def _bdtr(k, n, p): """The binomial cumulative distribution function. Args: k: floating point `Tensor`. n: floating point `Tensor`. p: floating point `Tensor`. Returns: `sum_{j=0}^k p^j (1 - p)^(n - j)`. """ # Trick for getting safe backprop/gradients into n, k when # betainc(a = 0, ..) = nan # Write: # where(unsafe, safe_output, betainc(where(unsafe, safe_input, input))) ones = array_ops.ones_like(n - k) k_eq_n = math_ops.equal(k, n) safe_dn = array_ops.where_v2(k_eq_n, ones, n - k) dk = math_ops.betainc(a=safe_dn, b=k + 1, x=1 - p) return array_ops.where_v2(k_eq_n, ones, dk) class Binomial(distribution.Distribution): """Binomial distribution. This distribution is parameterized by `probs`, a (batch of) probabilities for drawing a `1` and `total_count`, the number of trials per draw from the Binomial. #### Mathematical Details The Binomial is a distribution over the number of `1`'s in `total_count` independent trials, with each trial having the same probability of `1`, i.e., `probs`. The probability mass function (pmf) is, ```none pmf(k; n, p) = p**k (1 - p)**(n - k) / Z Z = k! (n - k)! / n! ``` where: * `total_count = n`, * `probs = p`, * `Z` is the normalizing constant, and, * `n!` is the factorial of `n`. #### Examples Create a single distribution, corresponding to 5 coin flips. ```python dist = Binomial(total_count=5., probs=.5) ``` Create a single distribution (using logits), corresponding to 5 coin flips. ```python dist = Binomial(total_count=5., logits=0.) ``` Creates 3 distributions with the third distribution most likely to have successes. ```python p = [.2, .3, .8] # n will be broadcast to [4., 4., 4.], to match p. dist = Binomial(total_count=4., probs=p) ``` The distribution functions can be evaluated on counts. ```python # counts same shape as p. counts = [1., 2, 3] dist.prob(counts) # Shape [3] # p will be broadcast to [[.2, .3, .8], [.2, .3, .8]] to match counts. counts = [[1., 2, 1], [2, 2, 4]] dist.prob(counts) # Shape [2, 3] # p will be broadcast to shape [5, 7, 3] to match counts. counts = [[...]] # Shape [5, 7, 3] dist.prob(counts) # Shape [5, 7, 3] ``` """ @deprecation.deprecated( "2018-10-01", "The TensorFlow Distributions library has moved to " "TensorFlow Probability " "(https://github.com/tensorflow/probability). You " "should update all references to use `tfp.distributions` " "instead of `tf.contrib.distributions`.", warn_once=True) def __init__(self, total_count, logits=None, probs=None, validate_args=False, allow_nan_stats=True, name="Binomial"): """Initialize a batch of Binomial distributions. Args: total_count: Non-negative floating point tensor with shape broadcastable to `[N1,..., Nm]` with `m >= 0` and the same dtype as `probs` or `logits`. Defines this as a batch of `N1 x ... x Nm` different Binomial distributions. Its components should be equal to integer values. logits: Floating point tensor representing the log-odds of a positive event with shape broadcastable to `[N1,..., Nm]` `m >= 0`, and the same dtype as `total_count`. Each entry represents logits for the probability of success for independent Binomial distributions. Only one of `logits` or `probs` should be passed in. probs: Positive floating point tensor with shape broadcastable to `[N1,..., Nm]` `m >= 0`, `probs in [0, 1]`. Each entry represents the probability of success for independent Binomial distributions. Only one of `logits` or `probs` should be passed in. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. name: Python `str` name prefixed to Ops created by this class. """ parameters = dict(locals()) with ops.name_scope(name, values=[total_count, logits, probs]) as name: self._total_count = self._maybe_assert_valid_total_count( ops.convert_to_tensor(total_count, name="total_count"), validate_args) self._logits, self._probs = distribution_util.get_logits_and_probs( logits=logits, probs=probs, validate_args=validate_args, name=name) super(Binomial, self).__init__( dtype=self._probs.dtype, reparameterization_type=distribution.NOT_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, graph_parents=[self._total_count, self._logits, self._probs], name=name) @property def total_count(self): """Number of trials.""" return self._total_count @property def logits(self): """Log-odds of drawing a `1`.""" return self._logits @property def probs(self): """Probability of drawing a `1`.""" return self._probs def _batch_shape_tensor(self): return array_ops.broadcast_dynamic_shape( array_ops.shape(self.total_count), array_ops.shape(self.probs)) def _batch_shape(self): return array_ops.broadcast_static_shape( self.total_count.get_shape(), self.probs.get_shape()) def _event_shape_tensor(self): return constant_op.constant([], dtype=dtypes.int32) def _event_shape(self): return tensor_shape.TensorShape([]) @distribution_util.AppendDocstring(_binomial_sample_note) def _log_prob(self, counts): return self._log_unnormalized_prob(counts) - self._log_normalization(counts) @distribution_util.AppendDocstring(_binomial_sample_note) def _prob(self, counts): return math_ops.exp(self._log_prob(counts)) def _cdf(self, counts): counts = self._maybe_assert_valid_sample(counts) probs = self.probs if not (counts.shape.is_fully_defined() and self.probs.shape.is_fully_defined() and counts.shape.is_compatible_with(self.probs.shape)): # If both shapes are well defined and equal, we skip broadcasting. probs += array_ops.zeros_like(counts) counts += array_ops.zeros_like(self.probs) return _bdtr(k=counts, n=self.total_count, p=probs) def _log_unnormalized_prob(self, counts): counts = self._maybe_assert_valid_sample(counts) return (counts * math_ops.log(self.probs) + (self.total_count - counts) * math_ops.log1p(-self.probs)) def _log_normalization(self, counts): counts = self._maybe_assert_valid_sample(counts) return (math_ops.lgamma(1. + self.total_count - counts) + math_ops.lgamma(1. + counts) - math_ops.lgamma(1. + self.total_count)) def _mean(self): return self.total_count * self.probs def _variance(self): return self._mean() * (1. - self.probs) @distribution_util.AppendDocstring( """Note that when `(1 + total_count) * probs` is an integer, there are actually two modes. Namely, `(1 + total_count) * probs` and `(1 + total_count) * probs - 1` are both modes. Here we return only the larger of the two modes.""") def _mode(self): return math_ops.floor((1. + self.total_count) * self.probs) def _maybe_assert_valid_total_count(self, total_count, validate_args): if not validate_args: return total_count return control_flow_ops.with_dependencies([ check_ops.assert_non_negative( total_count, message="total_count must be non-negative."), distribution_util.assert_integer_form( total_count, message="total_count cannot contain fractional components."), ], total_count) def _maybe_assert_valid_sample(self, counts): """Check counts for proper shape, values, then return tensor version.""" if not self.validate_args: return counts counts = distribution_util.embed_check_nonnegative_integer_form(counts) return control_flow_ops.with_dependencies([ check_ops.assert_less_equal( counts, self.total_count, message="counts are not less than or equal to n."), ], counts)
tensorflow-r1.15.5-nv23.03
tensorflow/contrib/distributions/python/ops/binomial.py