python_code
stringlengths
0
679k
repo_name
stringlengths
9
41
file_path
stringlengths
6
149
# Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. import torch import torch.nn as nn from timm.models.layers import DropPath, trunc_normal_ import math from packnet_sfm.networks.DEST.simplified_attention import OverlapPatchEmbed, Mlp, Attention_MaxPool class Attention_Joint_MaxPool(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1): super().__init__() assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." self.dim = dim self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.q = nn.Conv1d(dim, dim, 1, bias=qkv_bias) self.k = nn.Conv1d(dim, dim, 1, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Conv1d(dim, dim, 1) self.proj_drop = nn.Dropout(proj_drop) self.norm2 = nn.BatchNorm1d(self.dim) self.sr_ratio = sr_ratio if sr_ratio > 1: self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) self.norm = nn.BatchNorm1d(dim) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.Conv1d): trunc_normal_(m.weight, std=.02) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x, y, H, W): B, C, N = x.shape q = self.q(x) q = q.reshape(B, self.num_heads, C // self.num_heads, N) q = q.permute(0, 1, 3, 2) if self.sr_ratio > 1: x_ = x.reshape(B, C, H, W) x_ = self.sr(x_).reshape(B, C, -1) x_ = self.norm(x_) k = self.k(x_).reshape(B, self.num_heads, C // self.num_heads, -1) else: k = self.k(x).reshape(B, self.num_heads, C // self.num_heads, -1) v = torch.mean(x, 2, True).repeat(1, 1, self.num_heads).transpose(-2, -1) attn = (q @ k) * self.scale attn, _ = torch.max(attn, -1) out = (attn.transpose(-2, -1) @ v) out = out.transpose(-2, -1) out = self.proj(out) return out class JointBlock(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.ReLU, norm_layer=nn.LayerNorm, sr_ratio=1): super().__init__() self.norm0 = nn.BatchNorm1d(dim) self.norm1_ref = nn.BatchNorm1d(dim) self.norm1_src = nn.BatchNorm1d(dim) self.norm2 = nn.BatchNorm1d(dim) self.attn_joint = Attention_Joint_MaxPool(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def forward(self, ref_feat, src_feat, H, W): src_feat = src_feat + self.drop_path(self.attn_joint(self.norm1_ref(ref_feat), self.norm1_src(src_feat), H, W)) src_feat = src_feat + self.drop_path(self.mlp(self.norm2(src_feat), H, W)) return src_feat class SimplifiedJointTransformer(nn.Module): def __init__(self, img_size=(224,224), patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512], num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]): super().__init__() self.num_classes = num_classes self.depths = depths self.embed_dims = embed_dims self.sr_ratios = sr_ratios # patch_embed self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_chans=in_chans, embed_dim=embed_dims[0]) self.patch_embed2 = OverlapPatchEmbed(img_size=(img_size[0] // 4, img_size[1] // 4), patch_size=3, stride=2, in_chans=embed_dims[0], embed_dim=embed_dims[1]) self.patch_embed3 = OverlapPatchEmbed(img_size=(img_size[0] // 8, img_size[1] // 8), patch_size=3, stride=2, in_chans=embed_dims[1], embed_dim=embed_dims[2]) self.patch_embed4 = OverlapPatchEmbed(img_size=(img_size[0] // 16, img_size[1] // 16), patch_size=3, stride=2, in_chans=embed_dims[2], embed_dim=embed_dims[3]) # encoder dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule cur = 0 self.block1 = nn.ModuleList([JointBlock( dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[0]) for i in range(depths[0])]) self.norm1 = nn.BatchNorm1d(self.patch_embed1.N) cur += depths[0] self.block2 = nn.ModuleList([JointBlock( dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[1]) for i in range(depths[1])]) self.norm2 = nn.BatchNorm1d(self.patch_embed2.N) cur += depths[1] self.block3 = nn.ModuleList([JointBlock( dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[2]) for i in range(depths[2])]) self.norm3 = nn.BatchNorm1d(self.patch_embed3.N) cur += depths[2] self.block4 = nn.ModuleList([JointBlock( dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[3]) for i in range(depths[3])]) self.norm4 = nn.BatchNorm1d(self.patch_embed4.N) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Conv2d): fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels fan_out //= m.groups m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) if m.bias is not None: m.bias.data.zero_() def reset_drop_path(self, drop_path_rate): dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))] cur = 0 for i in range(self.depths[0]): self.block1[i].drop_path.drop_prob = dpr[cur + i] cur += self.depths[0] for i in range(self.depths[1]): self.block2[i].drop_path.drop_prob = dpr[cur + i] cur += self.depths[1] for i in range(self.depths[2]): self.block3[i].drop_path.drop_prob = dpr[cur + i] cur += self.depths[2] for i in range(self.depths[3]): self.block4[i].drop_path.drop_prob = dpr[cur + i] def freeze_patch_emb(self): self.patch_embed1.requires_grad = False @torch.jit.ignore def no_weight_decay(self): return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'} # has pos_embed may be better def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, ref_feat, x): B = x.shape[0] # stage 1 x, H, W = self.patch_embed1(x) for i, blk in enumerate(self.block1): if i > len(ref_feat['1']) - 1 : i = -1 x = blk(ref_feat['1'][i], x, H, W) x = self.norm1(x.transpose(-2, -1)).transpose(-2, -1) x = x.reshape(B, -1, H, W).contiguous() # stage 2 x, H, W = self.patch_embed2(x) for i, blk in enumerate(self.block2): if i > len(ref_feat['2']) -1: i=-1 x = blk(ref_feat['2'][i], x, H, W) x = self.norm2(x.transpose(-2, -1)).transpose(-2, -1) x = x.reshape(B, -1, H, W).contiguous() # stage 3 x, H, W = self.patch_embed3(x) for i, blk in enumerate(self.block3): if i > len(ref_feat['3']) -1: i = -1 x = blk(ref_feat['3'][i], x, H, W) x = self.norm3(x.transpose(-2, -1)).transpose(-2, -1) x = x.reshape(B, -1, H, W).contiguous() # stage 4 x, H, W = self.patch_embed4(x) for i, blk in enumerate(self.block4): if i > len(ref_feat['4'])-1: i = -1 x = blk(ref_feat['4'][i], x, H, W) x = self.norm4(x.transpose(-2, -1)).transpose(-2, -1) x = x.reshape(B, -1, H, W).contiguous() return x def forward(self, ref_feat, x): return self.forward_features(ref_feat, x)
DL4AGX-master
DEST/networks/DEST/simplified_joint_attention.py
DL4AGX-master
DEST/networks/DEST/__init__.py
# Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. from functools import partial import torch from torch import nn from packnet_sfm.networks.DEST.simplified_attention import SimplifiedTransformer as SimpTR from packnet_sfm.networks.DEST.simplified_joint_attention import SimplifiedJointTransformer as SimpTR_Joint def exists(val): return val is not None def cast_tuple(val, depth): return val if isinstance(val, tuple) else (val,) * depth class DEST_Encoder_Decoder(nn.Module): def __init__( self, *, img_size=(192, 640), dims=(32, 64, 160, 256), heads=(1, 2, 4, 8), ff_expansion=(8, 8, 4, 4), reduction_ratio=(8, 4, 2, 1), num_layers=(2, 2, 2, 2), channels=3, decoder_dim=128, num_classes=64, semseg=False ): super().__init__() dims, heads, ff_expansion, reduction_ratio, num_layers = map(partial(cast_tuple, depth = 4), (dims, heads, ff_expansion, reduction_ratio, num_layers)) assert all([*map(lambda t: len(t) == 4, (dims, heads, ff_expansion, reduction_ratio, num_layers))]), 'only four stages are allowed, all keyword arguments must be either a single value or a tuple of 4 values' self.dest_encoder = SimpTR( img_size=img_size, in_chans=channels, num_classes=num_classes, embed_dims=dims, num_heads=heads, mlp_ratios=ff_expansion, qkv_bias=True, qk_scale=None, drop_rate=0, drop_path_rate=0.1, attn_drop_rate=0., norm_layer=nn.LayerNorm, depths=num_layers, sr_ratios=reduction_ratio) self.dims = dims self.fuse_conv1 = nn.Sequential(nn.Conv2d(dims[-1], dims[-1], 1), nn.ReLU(inplace=True)) self.fuse_conv2 = nn.Sequential(nn.Conv2d(dims[-2], dims[-2], 1), nn.ReLU(inplace=True)) self.fuse_conv3 = nn.Sequential(nn.Conv2d(dims[-3], dims[-3], 1), nn.ReLU(inplace=True)) self.fuse_conv4 = nn.Sequential(nn.Conv2d(dims[-4], dims[-4], 1), nn.ReLU(inplace=True)) self.upsample = nn.ModuleList([nn.Sequential(nn.Upsample(scale_factor=2, mode='nearest'))]*len(dims)) self.fused_1 = nn.Sequential(nn.ReflectionPad2d(1), nn.Conv2d(dims[-1], dims[-1], 3), nn.ReLU(inplace=True)) self.fused_2 = nn.Sequential(nn.ReflectionPad2d(1), nn.Conv2d(dims[-2] + dims[-1], dims[-2], 3), nn.ReLU(inplace=True)) self.fused_3 = nn.Sequential(nn.ReflectionPad2d(1), nn.Conv2d(dims[-3] + dims[-2], dims[-3], 3), nn.ReLU(inplace=True)) self.fused_4 = nn.Sequential(nn.ReflectionPad2d(1), nn.Conv2d(dims[-4] + dims[-3], dims[-4], 3), nn.ReLU(inplace=True)) self.fused_5 = nn.Sequential(nn.Upsample(scale_factor=2, mode='nearest'), nn.Conv2d(dims[-4], dims[-4], 1), nn.ReLU(True)) self.semseg = semseg def dest_decoder(self, lay_out): fused_1 = self.fuse_conv1(lay_out[-1]) fused_1 = self.upsample[-1](fused_1) fused_1 = self.fused_1(fused_1) fused_2 = torch.cat([fused_1, self.fuse_conv2(lay_out[-2])], 1) fused_2 = self.upsample[-2](fused_2) fused_2 = self.fused_2(fused_2) fused_3 = torch.cat([fused_2, self.fuse_conv3(lay_out[-3])], 1) fused_3 = self.upsample[-3](fused_3) fused_3 = self.fused_3(fused_3) fused_4 = torch.cat([fused_3, self.fuse_conv4(lay_out[-4])], 1) fused_4 = self.upsample[-4](fused_4) fused_4 = self.fused_4(fused_4) if self.semseg: return fused_4 fused_5 = self.fused_5(fused_4) return fused_5, fused_4, fused_3, fused_2 def forward(self, x): layer_outputs, ref_feat = self.dest_encoder(x) out = self.dest_decoder(layer_outputs) return out, layer_outputs, ref_feat def DEST_Pose( img_size=(192, 640), dims = (32, 64, 160, 256), heads = (1, 2, 5, 8), ff_expansion = (8, 8, 8, 8), reduction_ratio = (8, 4, 2, 1), num_layers = (2, 2, 2, 2), channels=3, num_classes=512, connectivity=True): dims, heads, ff_expansion, reduction_ratio, num_layers = map(partial(cast_tuple, depth = 4), (dims, heads, ff_expansion, reduction_ratio, num_layers)) assert all([*map(lambda t: len(t) == 4, (dims, heads, ff_expansion, reduction_ratio, num_layers))]), 'only four stages are allowed, all keyword arguments must be either a single value or a tuple of 4 values' if connectivity : model = SimpTR_Joint( img_size=img_size, in_chans=channels, num_classes=num_classes, embed_dims=dims, num_heads=heads, mlp_ratios=ff_expansion, qkv_bias=True, qk_scale=None, drop_rate=0., drop_path_rate=0.1, attn_drop_rate= 0., norm_layer=nn.LayerNorm, depths=num_layers, sr_ratios=reduction_ratio) else: model = SimpTR( img_size=img_size, in_chans=channels, num_classes=num_classes, embed_dims=dims, num_heads=heads, mlp_ratios=ff_expansion, qkv_bias=True, qk_scale=None, drop_rate=0., drop_path_rate=0.1, attn_drop_rate= 0., norm_layer=nn.LayerNorm, depths=num_layers, sr_ratios=reduction_ratio) return num_classes, model def SimpleTR_B0(img_size=(192, 640), num_out_ch=64, semseg=False): model = DEST_Encoder_Decoder( img_size=img_size, dims=(32, 64, 160, 256), heads=(1, 2, 5, 8), ff_expansion=(8, 8, 4, 4), reduction_ratio=(8, 4, 2, 1), num_layers=(2, 2, 2, 2), channels=3, decoder_dim=256, num_classes=num_out_ch, semseg=semseg) return num_out_ch, model def SimpleTR_B1(img_size=(192, 640), num_out_ch=256, semseg=False): model = DEST_Encoder_Decoder( img_size=img_size, dims=(64, 128, 250, 320), heads=(1, 2, 5, 8), ff_expansion=(8, 8, 4, 4), reduction_ratio=(8, 4, 2, 1), num_layers=(2, 2, 2, 2), channels=3, decoder_dim=num_out_ch, num_classes=num_out_ch, semseg=semseg) return num_out_ch, model def SimpleTR_B2(img_size=(192, 640), num_out_ch=256, semseg=False): model = DEST_Encoder_Decoder( img_size=img_size, dims=(64, 128, 250, 320), heads=(1, 2, 5, 8), ff_expansion=(8, 8, 4, 4), reduction_ratio=(8, 4, 2, 1), num_layers=(3, 3, 6, 3), channels=3, decoder_dim=num_out_ch, num_classes=num_out_ch, semseg=semseg) return num_out_ch, model def SimpleTR_B3(img_size=(192, 640), num_out_ch=256, semseg=False): model = DEST_Encoder_Decoder( img_size=img_size, dims=(64, 128, 250, 320), heads=(1, 2, 5, 8), ff_expansion=(8, 8, 4, 4), reduction_ratio=(8, 4, 2, 1), num_layers=(3, 6, 8, 3), channels=3, decoder_dim=512, num_classes=256, semseg=semseg) return num_out_ch, model def SimpleTR_B4(img_size=(192, 640), num_out_ch=512, semseg=False): model = DEST_Encoder_Decoder( img_size=img_size, dims=(64, 128, 250, 320), heads=(1, 2, 5, 8), ff_expansion=(8, 8, 4, 4), reduction_ratio=(8, 4, 2, 1), num_layers=(3, 8, 12, 5), channels=3, decoder_dim=num_out_ch, num_classes=num_out_ch, semseg=semseg) return num_out_ch, model def SimpleTR_B5(img_size=(192, 640), num_out_ch=512, semseg=False): model = DEST_Encoder_Decoder( img_size=img_size, dims=(64, 128, 250, 320), heads=(1, 2, 5, 8), ff_expansion=(8, 8, 4, 4), reduction_ratio=(8, 4, 2, 1), num_layers=(3, 10, 16, 5), channels=3, decoder_dim=num_out_ch, num_classes=num_out_ch, semseg=semseg) return num_out_ch, model
DL4AGX-master
DEST/networks/DEST/DEST_EncDec.py
#!/usr/bin/env python3 ###################################################################################################### # Copyright (c) 2018-2019 NVIDIA Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # File: DL4AGX/MultiDeviceInferencePipeline/training/objectDetection/ssdConvertUFF/convert_to_trt.py # Description: Script to convert a pb file to a trt engine (with uff in the middle) ##################################################################################################### import sys import os import ctypes import argparse import glob import numpy as np import tensorrt as trt from PIL import Image # Utility functions import utils.inference as inference_utils # TRT/TF inference wrappers import utils.model as model_utils # UFF conversion # Model used for inference # MODEL_NAME = 'ssd_inception_v2_coco_2017_11_17' # MODEL_NAME = 'ssd_mobilenet_v1_coco_2018_01_28' # MODEL_NAME = 'ssd_mobilenet_v2_coco_2018_03_29' # MODEL_NAME = 'ssdlite_mobilenet_v2_coco_2018_05_09' # Precision command line argument -> TRT Engine datatype TRT_PRECISION_TO_DATATYPE = { # 8: trt.DataType.INT8, 16: trt.DataType.HALF, 32: trt.DataType.FLOAT } TRT_PRECISION_TO_LABEL = { # 8: 'INT8', 16: 'HALF', 32: 'FLOAT' } def main(args): # Loading FlattenConcat plugin library using CDLL has a side # effect of loading FlattenConcat plugin into internal TensorRT # PluginRegistry data structure. This will be needed when parsing # network into UFF, since some operations will need to use this plugin try: ctypes.CDLL(args.flatten_concat) except FileNotFoundError: print("Error: {}\n{}".format("Could not find {}".format(args.flatten_concat), "Make sure you have compiled FlattenConcat custom plugin layer")) sys.exit(1) model_path = args.model model_filename = os.path.basename(model_path) uff_path = os.path.join(args.output_dir, model_filename[:model_filename.rfind('.')] + '.uff') trt_engine_path = os.path.join( args.output_dir, model_filename[:model_filename.rfind('.')] + '{}.trt'.format(TRT_PRECISION_TO_LABEL[args.precision])) model_utils.model_to_uff( model_path, uff_path, n_classes=args.n_classes + 1, # +1 for background input_dims=args.input_dims, feature_dims=args.feature_dims) # TODO: create calibrator here! inference_utils.TRTInference(trt_engine_path, uff_path, TRT_PRECISION_TO_DATATYPE[args.precision], input_shape=args.input_dims, batch_size=args.max_batch_size) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Convert a TF pb file to a TRT engine.') parser.add_argument('-p', '--precision', type=int, choices=[32, 16], default=32, help='desired TensorRT float precision to build an engine with') parser.add_argument('-m', '--model', help='model file') parser.add_argument('-o', '--output_dir', help='output directory') parser.add_argument('-fc', '--flatten_concat', help='path of built FlattenConcat plugin') # parser.add_argument('-voc', '--voc_dir', default=None, # help='VOC2007 root directory (for calibration)') parser.add_argument('-b', '--max_batch_size', type=int, default=64, help='max TensorRT engine batch size') parser.add_argument('-c', '--n_classes', type=int, default=90, help='number of classes') parser.add_argument('-d', '--input_dims', type=int, default=[3, 300, 300], nargs=3, help='channel, height, and width of input') parser.add_argument( '-f', '--feature_dims', type=int, default=[19, 10, 5, 3, 2, 1], nargs='+', help= 'feature extractor dimensions (inspect training graph and look for spatial dimension of the "BoxPredictor_*/BoxEncodingPredictor/BiasAdd" nodes)' ) # Parse arguments passed args = parser.parse_args() main(args)
DL4AGX-master
MultiDeviceInferencePipeline/training/objectDetection/ssdConvertUFF/convert_to_trt.py
###################################################################################################### # Copyright (c) 2018-2019 NVIDIA Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # File: DL4AGX/MultiDeviceInferencePipeline/training/objectDetection/ssdConvertUFF/utils/paths.py # Description: Path management singleton class ##################################################################################################### import os import sys import tensorrt as trt class Paths(object): def __init__(self): self._SAMPLE_ROOT = os.path.join(os.path.dirname(os.path.abspath(__file__)), os.pardir) self._FLATTEN_CONCAT_PLUGIN_PATH = os.path.join(self._SAMPLE_ROOT, 'build', 'libflattenconcat.so') self._WORKSPACE_DIR_PATH = os.path.join(self._SAMPLE_ROOT, 'workspace') self._VOC_DIR_PATH = \ os.path.join(self._SAMPLE_ROOT, 'VOCdevkit', 'VOC2007') # User configurable paths def set_workspace_dir_path(self, workspace_dir): self._WORKSPACE_DIR_PATH = workspace_dir def get_workspace_dir_path(self): return self._WORKSPACE_DIR_PATH def set_flatten_concat_plugin_path(self, plugin_path): self._FLATTEN_CONCAT_PLUGIN_PATH = plugin_path def get_flatten_concat_plugin_path(self): return self._FLATTEN_CONCAT_PLUGIN_PATH def set_voc_dir_path(self, voc_dir_path): self._VOC_DIR_PATH = voc_dir_path def get_voc_dir_path(self): return self._VOC_DIR_PATH # Fixed paths def get_sample_root(self): return self._SAMPLE_ROOT def get_models_dir_path(self): return os.path.join(self.get_workspace_dir_path(), 'models') def get_engines_dir_path(self): return os.path.join(self.get_workspace_dir_path(), 'engines') def get_engine_path(self, model_name, inference_type=trt.DataType.FLOAT, max_batch_size=1): inference_type_to_str = { trt.DataType.FLOAT: 'FLOAT', trt.DataType.HALF: 'HALF', trt.DataType.INT32: 'INT32', trt.DataType.INT8: 'INT8' } return os.path.join(self.get_engines_dir_path(), inference_type_to_str[inference_type], '{}_{}.buf'.format(model_name, max_batch_size)) def get_voc_annotation_cache_path(self): return os.path.join(self.get_workspace_dir_path(), 'annotations_cache') def get_voc_image_set_path(self): return os.path.join(self.get_voc_dir_path(), 'ImageSets', 'Main', 'test.txt') def get_voc_annotation_path(self): return os.path.join(self.get_voc_dir_path(), 'annotations', '{}.xml') # return os.path.join(self.get_voc_dir_path(), 'Annotations', '{}.xml') def get_voc_ppm_img_path(self): # return os.path.join(self.get_voc_dir_path(), 'PPMImages512x512', '{}.ppm') return os.path.join(self.get_voc_dir_path(), 'PPMImages300x300', '{}.ppm') # return os.path.join(self.get_voc_dir_path(), 'PPMImages', '{}.ppm') def get_voc_jpg_img_path(self): return os.path.join(self.get_voc_dir_path(), 'JPEGImages', '{}.jpg') def get_voc_tensorflow_model_detections_path(self, model_name): return os.path.join(self.get_workspace_dir_path(), 'results', model_name, 'tensorflow') def get_voc_tensorrt_model_detections_path(self, model_name, trt_engine_datatype=trt.DataType.FLOAT): trt_results_path = \ os.path.join(self.get_workspace_dir_path(), 'results', model_name, 'tensorrt') if trt_engine_datatype == trt.DataType.HALF: return os.path.join(trt_results_path, 'HALF') else: return os.path.join(trt_results_path, 'FLOAT') def get_voc_model_detections_path(self, model_name, backend='tensorrt', use_fp16=False): if backend != 'tensorrt': return self.get_voc_tensorflow_model_detections_path(model_name) else: return self.get_voc_tensorrt_model_detections_path(model_name, use_fp16) def get_model_url(self, model_name): return 'http://download.tensorflow.org/models/object_detection/{}.tar.gz'.format(model_name) def get_model_dir_path(self, model_name): return os.path.join(self.get_models_dir_path(), model_name) def get_model_pb_path(self, model_name): return os.path.join(self.get_model_dir_path(model_name), 'frozen_inference_graph.pb') def get_model_uff_path(self, model_name): return os.path.join(self.get_model_dir_path(model_name), 'frozen_inference_graph.uff') # Paths correctness verifier def verify_all_paths(self, should_verify_voc=False): error = False if should_verify_voc: error = self._verify_voc_paths() if not os.path.exists(self.get_workspace_dir_path()): error = True if error: print("An error occured when running the script.") sys.exit(1) def _verify_voc_paths(self): error = False voc_dir = self.get_voc_dir_path() voc_image_list = self.get_voc_image_set_path() # 1) Check if directory and image list file are present if not os.path.exists(voc_dir) or \ not os.path.exists(voc_image_list): self._print_incorrect_voc_error(voc_dir) error = True # 2) Check if all images listed in image list are present with open(voc_image_list, 'r') as f: image_numbers = f.readlines() image_numbers = [line.strip() for line in image_numbers] if not self._verify_voc(image_numbers): self._print_incorrect_voc_error(voc_dir) error = True return error def _verify_voc(self, voc_image_list): voc_image_path = self.get_voc_jpg_img_path() for img_number in voc_image_list: img = voc_image_path.format(img_number) if not os.path.exists(img): return False return True # Error printers def _print_incorrect_voc_error(self, voc_dir): print("Error: {}\n{}\n{}".format("Incomplete VOC dataset detected (voc_dir: {})".format(voc_dir), "Try redownloading VOC or check if --voc_dir is set up correctly", "For more details, check README.md")) PATHS = Paths()
DL4AGX-master
MultiDeviceInferencePipeline/training/objectDetection/ssdConvertUFF/utils/paths.py
###################################################################################################### # Copyright (c) 2018-2019 NVIDIA Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # File: DL4AGX/MultiDeviceInferencePipeline/training/objectDetection/ssdConvertUFF/utils/__init__.py #####################################################################################################
DL4AGX-master
MultiDeviceInferencePipeline/training/objectDetection/ssdConvertUFF/utils/__init__.py
###################################################################################################### # Copyright (c) 2018-2019 NVIDIA Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # File: DL4AGX/MultiDeviceInferencePipeline/training/objectDetection/ssdConvertUFF/utils/paths.py # Description: Model download and UFF conversion utils ##################################################################################################### import os import sys import tarfile import requests import tensorflow as tf import tensorrt as trt import graphsurgeon as gs import uff # from utils.paths import PATHS from utils.paths import PATHS # UFF conversion functionality def build_nms_node( name="NMS", op="NMS_TRT", backgroundLabelId=0, confSigmoid=True, confidenceThreshold=1e-8, isNormalized=True, topK=100, keepTopK=100, nmsThreshold=0.6, numClasses=91, # +1 for background scoreConverter='SIGMOID', shareLocation=True, varianceEncodedInTarget=False, **kw_args): return gs.create_plugin_node(name, op=op, backgroundLabelId=backgroundLabelId, confSigmoid=confSigmoid, confidenceThreshold=confidenceThreshold, isNormalized=isNormalized, topK=topK, keepTopK=keepTopK, nmsThreshold=nmsThreshold, numClasses=numClasses, scoreConverter=scoreConverter, shareLocation=shareLocation, varianceEncodedInTarget=varianceEncodedInTarget, **kw_args) def build_grid_anchor_node(name="GridAnchor", op='GridAnchor_TRT', aspectRatios=[1.0, 2.0, 0.5, 3.0, 0.33], featureMapShapes=[19, 10, 5, 3, 2, 1], maxSize=0.95, minSize=0.2, numLayers=6, variance=[0.1, 0.1, 0.2, 0.2], **kw_args): return gs.create_plugin_node(name, op=op, aspectRatios=aspectRatios, featureMapShapes=featureMapShapes, maxSize=maxSize, minSize=minSize, numLayers=numLayers, variance=variance, **kw_args) # This class contains converted (UFF) model metadata class ModelData(object): # Name of input node INPUT_NAME = "Input" # Name of output node OUTPUT_NAME = "NMS" def ssd_unsupported_nodes_to_plugin_nodes(ssd_graph, n_classes, input_dims, feature_dims): """Makes ssd_graph TensorRT comparible using graphsurgeon. This function takes ssd_graph, which contains graphsurgeon DynamicGraph data structure. This structure describes frozen Tensorflow graph, that can be modified using graphsurgeon (by deleting, adding, replacing certain nodes). The graph is modified by removing Tensorflow operations that are not supported by TensorRT's UffParser and replacing them with custom layer plugin nodes. Note: This specific implementation works only for ssd_inception_v2_coco_2017_11_17 network. Args: ssd_graph (gs.DynamicGraph): graph to convert Returns: gs.DynamicGraph: UffParser compatible SSD graph """ # Remove assert nodes all_assert_nodes = ssd_graph.find_nodes_by_op("Assert") # Remove those nodes from the graph. ssd_graph.remove(all_assert_nodes, remove_exclusive_dependencies=True) # Find all identity nodes. all_identity_nodes = ssd_graph.find_nodes_by_op("Identity") # Forward inputs those in the graph i.e. forward their inputs. ssd_graph.forward_inputs(all_identity_nodes) # Create TRT plugin nodes to replace unsupported ops in Tensorflow graph channels = input_dims[0] height = input_dims[1] width = input_dims[2] nodes = ssd_graph.node_map node_names = ssd_graph.node_map.keys() break_now = False class_predictor_label = 'concat_1' box_loc_label = 'concat' for inode in nodes['concat'].input: if break_now: break for jnode in nodes[inode].input: if break_now: break if 'ClassPredictor' in jnode: class_predictor_label = 'concat' box_loc_label = 'concat_1' break_now = True concat_namespace = "Concatenate" include_anchors = False for k in node_names: if "MultipleGridAnchorGenerator" in k: include_anchors = True if "MultipleGridAnchorGenerator/Concatenate" in k: concat_namespace = "MultipleGridAnchorGenerator/Concatenate" # Now we need to collapse a few namespaces. if include_anchors: Concat = gs.create_node("concat_priorbox", op="ConcatV2", dtype=tf.float32, axis=2) Input = gs.create_plugin_node(ModelData.INPUT_NAME, op="Placeholder", dtype=tf.float32, shape=[1, channels, height, width]) FlattenConcat_box_conf = gs.create_plugin_node( "concat_box_conf", op="FlattenConcat_TRT", dtype=tf.float32, ) FlattenConcat_box_loc = gs.create_plugin_node( "concat_box_loc", op="FlattenConcat_TRT", dtype=tf.float32, ) NMS = build_nms_node(numClasses=n_classes) # Create a mapping of namespace names -> plugin nodes. namespace_plugin_map = { "Postprocessor": NMS, "Preprocessor": Input, "ToFloat": Input, "image_tensor": Input, box_loc_label: FlattenConcat_box_loc, class_predictor_label: FlattenConcat_box_conf } # # Now create a new graph by collapsing namespaces # ssd_graph.collapse_namespaces(namespace_plugin_map) # # Determine the parameter for the GridAnchors # # print(ssd_graph.as_graph_def().node) # # print(tf.import_graph_def(ssd_graph.as_graph_def())) # for node in ssd_graph.as_graph_def().node: # if node.name == "BoxPredictor_2/BoxEncodingPredictor/BiasAdd": # print(type(node)) # print(node) # # print([dict(nodes[x].attr) for x in ssd_graph.node_map.keys() if 'BoxEncodingPredictor/BiasAdd' in x]) # # print(ssd_graph.find_nodes_by_name("BoxPredictor_2/BoxEncodingPredictor/BiasAdd")) # exit() if include_anchors: GridAnchor = build_grid_anchor_node(featureMapShapes=feature_dims) namespace_plugin_map[concat_namespace] = Concat namespace_plugin_map["MultipleGridAnchorGenerator"] = GridAnchor # Now create a new graph by collapsing namespaces ssd_graph.collapse_namespaces(namespace_plugin_map) # Remove the outputs, so we just have a single output node (NMS). # If remove_exclusive_dependencies is True, the whole graph will be removed! ssd_graph.remove(ssd_graph.graph_outputs, remove_exclusive_dependencies=False) # add in grid anchors for SSDLite if not include_anchors: Const = gs.create_node("Const", op="Const", dtype=tf.float32, value=[128, 128]) GridAnchor = build_grid_anchor_node(inputs=[Const], featureMapShapes=feature_dims) Concat = gs.create_node("concat_priorbox", inputs=[GridAnchor], op="ConcatV2", dtype=tf.float32, axis=2) ssd_graph.append(Const) ssd_graph.append(GridAnchor) ssd_graph.append(Concat) NMS = build_nms_node(inputs=list(NMS.input) + ["concat_priorbox"], numClasses=n_classes) namespace_plugin_map = {"NMS": NMS} ssd_graph.collapse_namespaces(namespace_plugin_map) # For exported graphs, we need to remove the squeeze node between concat plugin and the NMS plugin. # Downloaded graphs don't need this step. Refer to convert_ssd_v1.py all_squeeze_nodes = ssd_graph.find_nodes_by_name("Squeeze") # Forward inputs those in the graph i.e. forward their inputs. ssd_graph.forward_inputs(all_squeeze_nodes) # clean up NMS and Input nodes actualInputOrder = [] for node in ssd_graph._internal_graphdef.node: if node.name == "NMS": if ModelData.INPUT_NAME in node.input: node.input.remove(ModelData.INPUT_NAME) for input_name in node.input: if "loc" in input_name: actualInputOrder.append(0) elif "conf" in input_name: actualInputOrder.append(1) elif "priorbox" in input_name: actualInputOrder.append(2) elif node.name == ModelData.INPUT_NAME: if "image_tensor:0" in node.input: node.input.remove("image_tensor:0") # NOTE: since the actual order of the NMS nodes inputs differ between versions, I'll reinsert the NMS trt op NMS = build_nms_node(inputOrder=actualInputOrder, numClasses=n_classes) namespace_plugin_map = {"NMS": NMS} ssd_graph.collapse_namespaces(namespace_plugin_map) return ssd_graph def model_to_uff(model_path, output_uff_path, n_classes, input_dims, feature_dims, silent=False): """Takes frozen .pb graph, converts it to .uff and saves it to file. Args: model_path (str): .pb model path output_uff_path (str): .uff path where the UFF file will be saved silent (bool): if True, writes progress messages to stdout """ dynamic_graph = gs.DynamicGraph(model_path) dynamic_graph = ssd_unsupported_nodes_to_plugin_nodes(dynamic_graph, n_classes, input_dims, feature_dims) dynamic_graph.write_tensorboard(os.path.join(os.path.dirname(output_uff_path), 'trt_tensorboard')) uff.from_tensorflow(dynamic_graph.as_graph_def(), [ModelData.OUTPUT_NAME], output_filename=output_uff_path, text=True) # Model download functionality def maybe_print(should_print, print_arg): """Prints message if supplied boolean flag is true. Args: should_print (bool): if True, will print print_arg to stdout print_arg (str): message to print to stdout """ if should_print: print(print_arg) def maybe_mkdir(dir_path): """Makes directory if it doesn't exist. Args: dir_path (str): directory path """ if not os.path.exists(dir_path): os.makedirs(dir_path)
DL4AGX-master
MultiDeviceInferencePipeline/training/objectDetection/ssdConvertUFF/utils/model.py
###################################################################################################### # Copyright (c) 2018-2019 NVIDIA Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # File: DL4AGX/MultiDeviceInferencePipeline/training/objectDetection/ssdConvertUFF/utils/engine.py # Description: Utility functions for building/saving/loading TensorRT Engines ##################################################################################################### import sys import os import tensorrt as trt import pycuda.driver as cuda import numpy as np from utils.model import ModelData # Simple helper data class that's a little nicer to use than a 2-tuple. class HostDeviceMem(object): def __init__(self, host_mem, device_mem): self.host = host_mem self.device = device_mem def __str__(self): return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device) def __repr__(self): return self.__str__() def allocate_buffers(engine): """Allocates host and device buffer for TRT engine inference. This function is similair to the one in ../../common.py, but converts network outputs (which are np.float32) appropriately before writing them to Python buffer. This is needed, since TensorRT plugins doesn't support output type description, and in our particular case, we use NMS plugin as network output. Args: engine (trt.ICudaEngine): TensorRT engine Returns: inputs [HostDeviceMem]: engine input memory outputs [HostDeviceMem]: engine output memory bindings [int]: buffer to device bindings stream (cuda.Stream): cuda stream for engine inference synchronization """ inputs = [] outputs = [] bindings = [] stream = cuda.Stream() # Current NMS implementation in TRT only supports DataType.FLOAT but # it may change in the future, which could brake this sample here # when using lower precision [e.g. NMS output would not be np.float32 # anymore, even though this is assumed in binding_to_type] binding_to_type = {"Input": np.float32, "NMS": np.float32, "NMS_1": np.int32} for binding in engine: size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size dtype = binding_to_type[str(binding)] # Allocate host and device buffers host_mem = cuda.pagelocked_empty(size, dtype) device_mem = cuda.mem_alloc(host_mem.nbytes) # Append the device buffer to device bindings. bindings.append(int(device_mem)) # Append to the appropriate list. if engine.binding_is_input(binding): inputs.append(HostDeviceMem(host_mem, device_mem)) else: outputs.append(HostDeviceMem(host_mem, device_mem)) return inputs, outputs, bindings, stream def build_engine(uff_model_path, trt_logger, trt_engine_datatype=trt.DataType.FLOAT, batch_size=1, input_shape=[3, 300, 300], silent=False): with trt.Builder(trt_logger) as builder, builder.create_network() as network, trt.UffParser() as parser: builder.max_workspace_size = 1 << 30 if trt_engine_datatype == trt.DataType.HALF: builder.fp16_mode = True builder.max_batch_size = batch_size parser.register_input(ModelData.INPUT_NAME, input_shape) parser.register_output("MarkOutput_0") parser.parse(uff_model_path, network) if not silent: print("Building TensorRT engine. This may take few minutes.") return builder.build_cuda_engine(network) def save_engine(engine, engine_dest_path): buf = engine.serialize() with open(engine_dest_path, 'wb') as f: f.write(buf) def load_engine(trt_runtime, engine_path): with open(engine_path, 'rb') as f: engine_data = f.read() engine = trt_runtime.deserialize_cuda_engine(engine_data) return engine
DL4AGX-master
MultiDeviceInferencePipeline/training/objectDetection/ssdConvertUFF/utils/engine.py
###################################################################################################### # Copyright (c) 2018-2019 NVIDIA Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # File: DL4AGX/MultiDeviceInferencePipeline/training/objectDetection/ssdConvertUFF/utils/inference.py # Description: Utility functions for performing image inference ##################################################################################################### import os import time import tensorrt as trt # import tensorflow as tf from PIL import Image import pycuda.driver as cuda import pycuda.autoinit import numpy as np import utils.engine as engine_utils # TRT Engine creation/save/load utils import utils.model as model_utils # UFF conversion uttils # TensorRT logger singleton TRT_LOGGER = trt.Logger(trt.Logger.WARNING) def GiB(val): return val * 1 << 30 # This function is generalized for multiple inputs/outputs. # inputs and outputs are expected to be lists of HostDeviceMem objects. def do_inference(context, bindings, inputs, outputs, stream, batch_size=1): # Transfer input data to the GPU. [cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs] # Run inference. context.execute_async(batch_size=batch_size, bindings=bindings, stream_handle=stream.handle) # Transfer predictions back from the GPU. [cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs] # Synchronize the stream stream.synchronize() # Return only the host outputs. return [out.host for out in outputs] class TRTInference(object): """Manages TensorRT objects for model inference.""" def __init__(self, trt_engine_path, uff_model_path, trt_engine_datatype=trt.DataType.FLOAT, input_shape=[3, 300, 300], batch_size=1): """Initializes TensorRT objects needed for model inference. Args: trt_engine_path (str): path where TensorRT engine should be stored uff_model_path (str): path of .uff model trt_engine_datatype (trt.DataType): requested precision of TensorRT engine used for inference batch_size (int): batch size for which engine should be optimized for """ # We first load all custom plugins shipped with TensorRT, # some of them will be needed during inference trt.init_libnvinfer_plugins(TRT_LOGGER, '') # Initialize runtime needed for loading TensorRT engine from file self.trt_runtime = trt.Runtime(TRT_LOGGER) # TRT engine placeholder self.trt_engine = None self.input_shape = input_shape # Display requested engine settings to stdout print("TensorRT inference engine settings:") print(" * Inference precision - {}".format(trt_engine_datatype)) print(" * Max batch size - {}\n".format(batch_size)) # If engine is not cached, we need to build it if not os.path.exists(trt_engine_path): # This function uses supplied .uff file # alongside with UffParser to build TensorRT # engine. For more details, check implmentation self.trt_engine = engine_utils.build_engine(uff_model_path, TRT_LOGGER, trt_engine_datatype=trt_engine_datatype, input_shape=self.input_shape, batch_size=batch_size) # Save the engine to file engine_utils.save_engine(self.trt_engine, trt_engine_path) # If we get here, the file with engine exists, so we can load it if not self.trt_engine: print("Loading cached TensorRT engine from {}".format(trt_engine_path)) self.trt_engine = engine_utils.load_engine(self.trt_runtime, trt_engine_path) # This allocates memory for network inputs/outputs on both CPU and GPU self.inputs, self.outputs, self.bindings, self.stream = \ engine_utils.allocate_buffers(self.trt_engine) # Execution context is needed for inference self.context = self.trt_engine.create_execution_context() # Allocate memory for multiple usage [e.g. multiple batch inference] input_volume = trt.volume(input_shape) self.numpy_array = np.zeros((self.trt_engine.max_batch_size, input_volume)) def infer(self, image_path): """Infers model on given image. Args: image_path (str): image to run object detection model on """ # Load image into CPU img = self._load_img(image_path) # Copy it into appropriate place into memory # (self.inputs was returned earlier by allocate_buffers()) np.copyto(self.inputs[0].host, img.ravel()) # When infering on single image, we measure inference # time to output it to the user inference_start_time = time.time() # Fetch output from the model [detection_out, keepCount_out] = do_inference(self.context, bindings=self.bindings, inputs=self.inputs, outputs=self.outputs, stream=self.stream) # Output inference time print("TensorRT inference time: {} ms".format(int(round((time.time() - inference_start_time) * 1000)))) # And return results return detection_out, keepCount_out def infer_batch(self, image_paths): """Infers model on batch of same sized images resized to fit the model. Args: image_paths (str): paths to images, that will be packed into batch and fed into model """ # Verify if the supplied batch size is not too big max_batch_size = self.trt_engine.max_batch_size actual_batch_size = len(image_paths) if actual_batch_size > max_batch_size: raise ValueError("image_paths list bigger ({}) than engine max batch size ({})".format( actual_batch_size, max_batch_size)) # Load all images to CPU... imgs = self._load_imgs(image_paths) # ...copy them into appropriate place into memory... # (self.inputs was returned earlier by allocate_buffers()) np.copyto(self.inputs[0].host, imgs.ravel()) # ...fetch model outputs... [detection_out, keep_count_out] = do_inference(self.context, bindings=self.bindings, inputs=self.inputs, outputs=self.outputs, stream=self.stream, batch_size=max_batch_size) # ...and return results. return detection_out, keep_count_out def _load_image_into_numpy_array(self, image): (im_width, im_height) = image.size return np.array(image).reshape((im_height, im_width, self.input_shape[0])).astype(np.uint8) def _load_imgs(self, image_paths): batch_size = self.trt_engine.max_batch_size for idx, image_path in enumerate(image_paths): img_np = self._load_img(image_path) self.numpy_array[idx] = img_np return self.numpy_array def _load_img(self, image_path): image = Image.open(image_path) model_input_width = self.input_shape[1] model_input_height = self.input_shape[2] # Note: Bilinear interpolation used by Pillow is a little bit # different than the one used by Tensorflow, so if network receives # an image that is not 300x300, the network output may differ # from the one output by Tensorflow image_resized = image.resize(size=(model_input_width, model_input_height), resample=Image.BILINEAR) img_np = self._load_image_into_numpy_array(image_resized) # HWC -> CHW img_np = img_np.transpose((2, 0, 1)) # Normalize to [-1.0, 1.0] interval (expected by model) img_np = (2.0 / 255.0) * img_np - 1.0 img_np = img_np.ravel() return img_np # # This class is similar as TRTInference inference, but it manages Tensorflow # class TensorflowInference(object): # def __init__(self, pb_model_path): # self.detection_graph = tf.Graph() # with self.detection_graph.as_default(): # od_graph_def = tf.GraphDef() # with tf.gfile.GFile(pb_model_path, 'rb') as fid: # serialized_graph = fid.read() # od_graph_def.ParseFromString(serialized_graph) # tf.import_graph_def(od_graph_def, name='') # self.sess = tf.Session(graph=self.detection_graph) # def infer(self, image_path): # img_np = self._load_img(image_path) # return self._run_tensorflow_graph(np.expand_dims(img_np, axis=0)) # def infer_batch(self, image_paths): # img_np = self._load_imgs(image_paths) # return self._run_tensorflow_graph(img_np) # def _run_tensorflow_graph(self, image_input): # ops = self.detection_graph.get_operations() # all_tensor_names = {output.name for op in ops for output in op.outputs} # tensor_dict = {} # for key in [ # 'num_detections', 'detection_boxes', # 'detection_scores', 'detection_classes' # ]: # tensor_name = key + ':0' # if tensor_name in all_tensor_names: # tensor_dict[key] = self.detection_graph.get_tensor_by_name( # tensor_name) # image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0') # output_dict = self.sess.run(tensor_dict, # feed_dict={image_tensor: image_input}) # # All outputs are float32 numpy arrays, so convert types as appropriate # output_dict['num_detections'] = output_dict['num_detections'].astype(np.int32) # output_dict['detection_classes'] = output_dict[ # 'detection_classes'].astype(np.uint8) # return output_dict # def _load_image_into_numpy_array(self, image): # (im_width, im_height) = image.size # return np.array(image).reshape( # (im_height, im_width, self.input_shape[0]) # ).astype(np.uint8) # def _load_imgs(self, image_paths): # numpy_array = np.zeros((len(image_paths),) + (300, 300, 3)) # for idx, image_path in enumerate(image_paths): # img_np = self._load_img(image_path) # numpy_array[idx] = img_np # return numpy_array # def _load_img(self, image_path): # img = Image.open(image_path) # img_np = self._load_image_into_numpy_array(img) # return img_np
DL4AGX-master
MultiDeviceInferencePipeline/training/objectDetection/ssdConvertUFF/utils/inference.py
###################################################################################################### # Copyright (c) 2018-2019 NVIDIA Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # File: DL4AGX/MultiDeviceInferencePipeline/training/laneSegmentation/pb2uff.py # Description: Convert pb file to uff file ##################################################################################################### import tensorrt as trt import uff import argparse def main(): parser = argparse.ArgumentParser(description="Generate UFF file from protobuf file.") parser.add_argument("-p", "--pb_file_name", type=str, required=True, help="""A protobuf file containing a frozen tensorflow graph""") parser.add_argument("-u", "--uff_filename", type=str, required=True, help="""Output UFF file""") parser.add_argument("-o", "--out_tensor_names", type=str, required=True, help="""Output Tensor names""") args, unknown_args = parser.parse_known_args() out_tensor_names = [args.out_tensor_names] uff.from_tensorflow_frozen_model(args.pb_file_name, out_tensor_names, output_filename=args.uff_filename, text=True, quiet=False, write_preprocessed=True, debug_mode=False) if __name__ == '__main__': main()
DL4AGX-master
MultiDeviceInferencePipeline/training/laneSegmentation/pb2uff.py
############################################################################# # Copyright (c) 2018-2019 NVIDIA Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # File: DL4AGX/MultiDeviceInferencePipeline/enginecreator/utils/coco_eval.py # Description: Evaluate a inference on COCO ############################################################################ import os import sys sys.path.append(os.path.join(os.environ['HOME'], 'cocoapi/PythonAPI')) from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval import argparse def parse_command_line(): """ Parse command-line. Returns: Namespace with members for all parsed arguments. """ parser = argparse.ArgumentParser(description='Run evaluation on COCO dataset.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-a', '--annotation_file', required=True, type=str, default='instances_val2017.json', help='Full path to the annotation.json file.') parser.add_argument('-r', '--result_file', required=True, type=str, default='COCO_val2017_float_eval_MV2-tmp2.json', help='Full path to result.json file.') return parser.parse_args() def main(): args = parse_command_line() annType = "bbox" annFile = args.annotation_file resFile = args.result_file cocoGt = COCO(annFile) cocoDt = cocoGt.loadRes(resFile) # running evaluation imgIds = sorted(cocoGt.getImgIds()) cocoEval = COCOeval(cocoGt, cocoDt, annType) cocoEval.params.imgIds = imgIds cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() if __name__ == '__main__': main()
DL4AGX-master
MultiDeviceInferencePipeline/enginecreator/utils/coco_eval.py
#!/opt/ss/bin/python # Copyright (c) 2011-2020, NVIDIA CORPORATION. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA or see # <http://www.gnu.org/licenses/>. from distutils.core import setup setup( name="collectd_plugin", version="1.0.0", description="Collectd Python Plugin", author="NVIDIA CORPORATION", author_email="dbishop@nvidia.com", license="GPLv2", packages=["collectd_plugin"], )
swiftstack-collectd-plugin-main
setup.py
# Copyright (c) 2011-2020, NVIDIA CORPORATION. All rights reserved. import contextlib import os import json import mock import shutil import inspect import unittest import tempfile from six.moves.queue import Queue, Empty from collectd_plugin import collectd_plugin class TestRead(unittest.TestCase): maxDiff = None def setUp(self): self.metrics_queue = Queue() self.node_uuid = "0e1da3a6-6531-4a1b-951a-ad099d259753" self.data = { "metrics_queue": self.metrics_queue, "node_uuid": self.node_uuid, } self.tempdir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.tempdir, ignore_errors=True) @mock.patch.multiple( "collectd_plugin.collectd_plugin", time=mock.DEFAULT, network_stats=mock.DEFAULT, xfs_stats=mock.DEFAULT, recon_stats=mock.DEFAULT, replication_progress_stats=mock.DEFAULT, ) def test_read_plumbing( self, time, network_stats, xfs_stats, recon_stats, replication_progress_stats ): stub_time = time.return_value = 1380210264.539025 self.assertEqual(1380210264.539025, collectd_plugin.time()) stub_time_int = int(stub_time) network_stats.return_value = [ ("net.stat.foobie", (stub_time, 123.394)), ("net.stat.barbie", (stub_time, 492)), ] xfs_stats.return_value = [ ("xfs.get.jiggy", (stub_time, 323)), ("xfs.with.it", (stub_time, 59343945)), ] recon_stats.return_value = [ ("swift.recon.party", (stub_time + 7, 4839)), ("swift.recon.time", (stub_time - 1, stub_time)), ] replication_progress_stats.return_value = [ ("replication.d1.accounts.primary", (stub_time, 1)), ("replication.d1.accounts.handoff", (stub_time, 2)), ("replication.d1.containers.primary", (stub_time, 3)), ("replication.d1.containers.handoff", (stub_time, 4)), ("replication.d1.objects.primary", (stub_time, 5)), ("replication.d1.objects.handoff", (stub_time, 6)), ] collectd_plugin.read(self.data) got_metrics = [] while True: try: got_metrics.append(self.metrics_queue.get_nowait()) except Empty: break # Whatever the collectors return is just used (i.e. the stub returns # hi-res timestamps, so we expect hi-res timestamps even if the # collectors will really be using the timestamp they're handed and # they'll be handed an int() of the hi-res time). self.assertListEqual( [ [ ("%s.net.stat.foobie" % self.node_uuid, (stub_time, 123.394)), ("%s.net.stat.barbie" % self.node_uuid, (stub_time, 492)), ("%s.xfs.get.jiggy" % self.node_uuid, (stub_time, 323)), ("%s.xfs.with.it" % self.node_uuid, (stub_time, 59343945)), ("%s.swift.recon.party" % self.node_uuid, (stub_time + 7, 4839)), ( "%s.swift.recon.time" % self.node_uuid, (stub_time - 1, stub_time), ), ( "%s.replication.d1.accounts.primary" % self.node_uuid, (stub_time, 1), ), ( "%s.replication.d1.accounts.handoff" % self.node_uuid, (stub_time, 2), ), ( "%s.replication.d1.containers.primary" % self.node_uuid, (stub_time, 3), ), ( "%s.replication.d1.containers.handoff" % self.node_uuid, (stub_time, 4), ), ( "%s.replication.d1.objects.primary" % self.node_uuid, (stub_time, 5), ), ( "%s.replication.d1.objects.handoff" % self.node_uuid, (stub_time, 6), ), ] ], got_metrics, ) # The hi-res time is int()'ed before being passed into the collectors self.assertListEqual( [mock.call(self.data, stub_time_int)], network_stats.mock_calls ) self.assertListEqual( [mock.call(self.data, stub_time_int)], xfs_stats.mock_calls ) self.assertListEqual( [mock.call(self.data, stub_time_int)], recon_stats.mock_calls ) def test_recon_stats_default_cache_dir(self): argspec = inspect.getargspec(collectd_plugin.recon_stats) self.assertEqual( (["data", "timestamp", "cache_dir"], None, None, ("/var/cache/swift",)), argspec, ) def test_recon_stats_old_swift(self): with open(os.path.join(self.tempdir, "account.recon"), "wb") as afp: afp.write( json.dumps( { "replication_stats": { "no_change": 12, "attempted": 6, "ts_repl": 3, "remote_merge": 2, "failure": 1, "diff": 21, "rsync": 19, "success": 13, "remove": 14, "diff_capped": 7, "start": 1380221451.92608, "hashmatch": 5, "empty": 4, }, "replication_time": 0.0981740951538086, "account_audits_since": 1380224610.071976, "account_audits_passed": 12, "account_audits_failed": 0, "account_auditor_pass_completed": 0.010714054107666016, } ).encode("utf-8") ) with open(os.path.join(self.tempdir, "container.recon"), "wb") as cfp: cfp.write( json.dumps( { "replication_stats": { "no_change": 16, "attempted": 8, "ts_repl": 4, "remote_merge": 2, "failure": 1, "diff": 3, "rsync": 6, "success": 12, "remove": 24, "diff_capped": 48, "start": 1380221432.501042, "hashmatch": 7, "empty": 5, }, "container_updater_sweep": 0.25456881523132324, "replication_time": 0.06824707984924316, "container_audits_passed": 16, "container_audits_failed": 0, "container_audits_since": 1380225328.220907, "container_auditor_pass_completed": 0.02747488021850586, } ).encode("utf-8") ) with open(os.path.join(self.tempdir, "object.recon"), "wb") as ofp: ofp.write( json.dumps( { "object_replication_time": 0.13569668531417847, # minutes! "async_pending": 42, "object_updater_sweep": 0.04616594314575195, } ).encode("utf-8") ) self.assertEqual( { "account": { "replication_duration": 0.0981740951538086, # start + replication_time "replication_last": 1380221451.92608 + 0.098174095153808, "auditor_duration": 0.010714054107666016, }, "container": { "replication_duration": 0.06824707984924316, # start + replication_time "replication_last": 1380221432.501042 + 0.06824707984924316, "auditor_duration": 0.02747488021850586, "updater_duration": 0.25456881523132324, }, "object": { "async_pending": 42, "replication_duration": 0.13569668531417847 * 60, # Provide the latest time at which the last full replication # run could possibly have completed at. "replication_last": 1380228784 - (0.13569668531417847 * 60), "updater_duration": 0.04616594314575195, }, }, collectd_plugin.normalized_recon_data(1380228784, cache_dir=self.tempdir), ) self.assertEqual( [ # NOTE: replication_duration/replication_last are now collected # using a fingerprint message, not through carbon/whisper. ("recon.account.auditor_duration", (1380228784, 0.010714054107666016)), ("recon.container.auditor_duration", (1380228784, 0.02747488021850586)), ("recon.container.updater_duration", (1380228784, 0.25456881523132324)), ("recon.object.async_pending", (1380228784, 42)), ("recon.object.updater_duration", (1380228784, 0.04616594314575195)), ], collectd_plugin.recon_stats(self.data, 1380228784, cache_dir=self.tempdir), ) def test_recon_stats_newer_swift(self): with open(os.path.join(self.tempdir, "account.recon"), "wb") as afp: afp.write( json.dumps( { "replication_stats": { "no_change": 12, "attempted": 6, "ts_repl": 3, "remote_merge": 2, "failure": 1, "diff": 21, "rsync": 19, "success": 13, "remove": 14, "diff_capped": 7, "start": 1380221451.92608, "hashmatch": 5, "empty": 4, }, "replication_time": 0.0981740951538086, # seconds "replication_last": 1380233365.809194, "account_audits_since": 1380228210.269836, "account_audits_passed": 12, "account_audits_failed": 0, "account_auditor_pass_completed": 0.006899118423461914, } ).encode("utf-8") ) with open(os.path.join(self.tempdir, "container.recon"), "wb") as cfp: cfp.write( json.dumps( { "replication_stats": { "no_change": 16, "attempted": 8, "ts_repl": 4, "remote_merge": 2, "failure": 1, "diff": 3, "rsync": 6, "success": 12, "remove": 24, "diff_capped": 48, "start": 1380221432.501042, "hashmatch": 7, "empty": 5, }, "container_updater_sweep": 0.25456881523132324, "replication_time": 0.06824707984924316, # seconds "replication_last": 1380233362.596543, # last completion "container_audits_passed": 16, "container_audits_failed": 0, "container_audits_since": 1380225328.220907, "container_auditor_pass_completed": 0.02747488021850586, } ).encode("utf-8") ) with open(os.path.join(self.tempdir, "object.recon"), "wb") as ofp: ofp.write( json.dumps( { "object_replication_time": 0.13569668531417847, # minutes! "object_replication_last": 1380233375.494914, "async_pending": 42, "object_updater_sweep": 0.04616594314575195, # seconds # We don't bother to collect object auditor stats because # they seem a bit unreliable. For instance, "start_time" is # actually only the time since stats were last output, not the # start of the current audit sweep. And AFAICT, stats won't # even get output unless the total sweep time is > 1 hr. "object_auditor_stats_ALL": { "audit_time": 73.19667983055115, "bytes_processed": 12545977, "errors": 34, "passes": 1470, "quarantined": 17, "start_time": 1380557981.751367, }, } ).encode("utf-8") ) self.assertEqual( { "account": { "replication_duration": 0.0981740951538086, # from replication_last, not replication_stats.start "replication_last": 1380233365.809194, "auditor_duration": 0.006899118423461914, }, "container": { "replication_duration": 0.06824707984924316, # from replication_last, not replication_stats.start "replication_last": 1380233362.596543, "auditor_duration": 0.02747488021850586, "updater_duration": 0.25456881523132324, }, "object": { "async_pending": 42, "replication_duration": 0.13569668531417847 * 60, "replication_last": 1380233375.494914, "updater_duration": 0.04616594314575195, }, }, collectd_plugin.normalized_recon_data(1380228784, cache_dir=self.tempdir), ) self.assertEqual( [ # NOTE: replication_duration/replication_last are now collected # using a fingerprint message, not through carbon/whisper. ("recon.account.auditor_duration", (1380228784, 0.006899118423461914)), ("recon.container.auditor_duration", (1380228784, 0.02747488021850586)), ("recon.container.updater_duration", (1380228784, 0.25456881523132324)), ("recon.object.async_pending", (1380228784, 42)), ("recon.object.updater_duration", (1380228784, 0.04616594314575195)), ], collectd_plugin.recon_stats(self.data, 1380228784, cache_dir=self.tempdir), ) def test_recon_stats_ec_swift(self): with open(os.path.join(self.tempdir, "object.recon"), "wb") as ofp: ofp.write( json.dumps( { "object_replication_time": 0.13569668531417847, # minutes! "object_replication_last": 1380233375.494914, "object_reconstruction_time": 0.28092991511027016, # minutes! "object_reconstruction_last": 1481064466.128906, "async_pending": 42, "object_updater_sweep": 0.04616594314575195, # seconds # We don't bother to collect object auditor stats because # they seem a bit unreliable. For instance, "start_time" is # actually only the time since stats were last output, not the # start of the current audit sweep. And AFAICT, stats won't # even get output unless the total sweep time is > 1 hr. "object_auditor_stats_ALL": { "audit_time": 73.19667983055115, "bytes_processed": 12545977, "errors": 34, "passes": 1470, "quarantined": 17, "start_time": 1380557981.751367, }, } ).encode("utf-8") ) self.assertEqual( { "account": {}, "container": {}, "object": { "async_pending": 42, "replication_duration": 0.13569668531417847 * 60, "replication_last": 1380233375.494914, "reconstruction_duration": 0.28092991511027016 * 60, "reconstruction_last": 1481064466.128906, "updater_duration": 0.04616594314575195, }, }, collectd_plugin.normalized_recon_data(1380228784, cache_dir=self.tempdir), ) self.assertEqual( [ # NOTE: replication_duration/replication_last are now collected # using a fingerprint message, not through carbon/whisper. # reconstruction_duration/reconstruction_last were *never* # collected through carbon/whisper ("recon.object.async_pending", (1380228784, 42)), ("recon.object.updater_duration", (1380228784, 0.04616594314575195)), ], collectd_plugin.recon_stats(self.data, 1380228784, cache_dir=self.tempdir), ) def test_recon_stats_no_files(self): self.assertEqual( [], collectd_plugin.recon_stats(self.data, 1380228784, cache_dir=self.tempdir), ) def test_recon_stats_bad_json(self): with open(os.path.join(self.tempdir, "account.recon"), "wb") as afp: afp.write("slap-happy".encode("utf-8")) with open(os.path.join(self.tempdir, "container.recon"), "wb") as cfp: cfp.write("slim-shady".encode("utf-8")) with open(os.path.join(self.tempdir, "object.recon"), "wb") as ofp: ofp.write("slip-slop".encode("utf-8")) self.assertEqual( [], collectd_plugin.recon_stats(self.data, 1380228784, cache_dir=self.tempdir), ) def test_recon_stats_no_keys(self): with open(os.path.join(self.tempdir, "account.recon"), "wb") as afp: afp.write(json.dumps({}).encode("utf-8")) with open(os.path.join(self.tempdir, "container.recon"), "wb") as cfp: cfp.write(json.dumps({}).encode("utf-8")) with open(os.path.join(self.tempdir, "object.recon"), "wb") as ofp: ofp.write(json.dumps({}).encode("utf-8")) self.assertEqual( [], collectd_plugin.recon_stats(self.data, 1380228784, cache_dir=self.tempdir), ) @contextlib.contextmanager def _patch_stats_file(self, stub=None): self.stats_file = os.path.join(self.tempdir, "replication_progress.json") if stub is not None: with open(self.stats_file, "w") as f: f.write(stub) with mock.patch( "collectd_plugin.collectd_plugin.REPLICATION_PROGRESS_STATS_FILE", self.stats_file ): yield def test_read_replication_progress(self): # test no file with self._patch_stats_file(): stats = collectd_plugin.read_replication_progress() self.assertEqual(stats, {}) self.assertFalse(os.path.exists(self.stats_file)) # test empty file with self._patch_stats_file(stub=""): stats = collectd_plugin.read_replication_progress() self.assertEqual(stats, {}) self.assertEqual(open(self.stats_file).read(), "") # test with stub data stub = { "d1": { "accounts": {"primary": 1, "handoff": 2}, "containers": {"primary": 3, "handoff": 4}, "objects": {"primary": 5, "handoff": 6}, }, "d2": { "accounts": {"primary": 7, "handoff": 8}, "containers": {"primary": 9, "handoff": 10}, "objects": {"primary": 11, "handoff": 12}, }, } # test with stub data with self._patch_stats_file(stub=json.dumps(stub)): stats = collectd_plugin.read_replication_progress() self.assertEqual(stats, stub) def test_replication_progress_stats(self): d = {} t = 1462999369 # test no file with self._patch_stats_file(): metrics = collectd_plugin.replication_progress_stats(d, t) self.assertEqual(metrics, []) # test empty file with self._patch_stats_file(stub=""): metrics = collectd_plugin.replication_progress_stats(d, t) self.assertEqual(metrics, []) # test stub data stub = { "d1": { "accounts": {"primary": 1, "handoff": 2}, "containers": {"primary": 3, "handoff": 4}, "objects": {"primary": 5, "handoff": 6}, }, "d2": { "accounts": {"primary": 7, "handoff": 8}, "containers": {"primary": 9, "handoff": 10}, "objects": {"primary": 11, "handoff": 12}, }, "d3": {}, } with self._patch_stats_file(stub=json.dumps(stub)): metrics = collectd_plugin.replication_progress_stats(d, t) expected = [ ("replication.d1.accounts.primary", (t, 1)), ("replication.d1.accounts.handoff", (t, 2)), ("replication.d1.containers.primary", (t, 3)), ("replication.d1.containers.handoff", (t, 4)), ("replication.d1.objects.primary", (t, 5)), ("replication.d1.objects.handoff", (t, 6)), ("replication.d2.accounts.primary", (t, 7)), ("replication.d2.accounts.handoff", (t, 8)), ("replication.d2.containers.primary", (t, 9)), ("replication.d2.containers.handoff", (t, 10)), ("replication.d2.objects.primary", (t, 11)), ("replication.d2.objects.handoff", (t, 12)), ("replication.ALL.accounts.primary", (t, 8)), ("replication.ALL.accounts.handoff", (t, 10)), ("replication.ALL.containers.primary", (t, 12)), ("replication.ALL.containers.handoff", (t, 14)), ("replication.ALL.objects.primary", (t, 16)), ("replication.ALL.objects.handoff", (t, 18)), ] self.assertEqual(set(metrics), set(expected))
swiftstack-collectd-plugin-main
tests/test_collectd_plugin.py
# Copyright (c) 2011-2020, NVIDIA CORPORATION. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA or see # <http://www.gnu.org/licenses/>. from collections import defaultdict from datetime import datetime import errno import json import os import re from six.moves.queue import Queue, Empty from six.moves import cPickle as pickle from six.moves import range from six.moves.urllib.parse import urlsplit, urlunsplit import socket import struct import sys import threading from time import time, sleep import traceback running_inside_collectd = False try: import collectd running_inside_collectd = True except ImportError: pass # Work around a threading bug present in (at least) 2.7.3 # This hack appears safe for 2.7.6 (which has this fixed). # See https://bugs.python.org/msg160297 threading._DummyThread._Thread__stop = lambda x: 42 def escape_metric_segment(segment): """ Escape a string that needs to be a single Whisper metric segment. """ return segment.replace(".", "_") # The second argument here is just to work around flexmock's # deficiencies. def resolve_hostname_in_url(url, resolve=socket.gethostbyname): parsed = urlsplit(url) hostname = parsed.hostname if _looks_like_ipv4(hostname): ip = hostname elif _looks_like_ipv6(hostname): ip = "[%s]" % hostname else: ip = resolve(hostname) if parsed.port is not None: new_netloc = "%s:%s" % (ip, parsed.port) else: new_netloc = ip return urlunsplit( (parsed.scheme, new_netloc, parsed.path, parsed.query, parsed.fragment) ) def _looks_like_ipv4(maybe_ip): try: socket.inet_pton(socket.AF_INET, maybe_ip) return True except socket.error: return False def _looks_like_ipv6(maybe_ip): try: socket.inet_pton(socket.AF_INET6, maybe_ip) return True except socket.error: return False db = {} PING_TIMEOUT = 15 # seconds LINGER_PERIOD = 1800 # half an hour WRITE_BATCH_THRESHOLD = 2 # no metrics for X seconds? send batch. def _log(msg, *args): # Poor-man's logger which just goes to stderr # (special-case escaping for messages with no args that contain percent) if not args: msg = msg.replace("%", "%%") msg = "[%%s] %s\n" % (msg,) msg_args = [datetime.now().isoformat(" ")] msg_args.extend(args) sys.stderr.write(msg % tuple(msg_args)) def _seq_chunker(seq, size): return (seq[pos : pos + size] for pos in range(0, len(seq), size)) def init(): # Populate db with types.db data (DSes) types_db = open("/opt/ss/share/collectd/types.db") line = types_db.readline() while line: matches = re.findall(r"(?:^(\w+)|\s+(\w+):\S+,?)", line) if len(matches) > 1: match_list = [] for match in matches[1:]: match_list.append(match[1]) db[matches[0][0]] = match_list line = types_db.readline() types_db.close() def config(config_obj, data): """Store configuration data like the zmq socket endpoint.""" try: for sub_obj in config_obj.children: data[sub_obj.key] = sub_obj.values[0] data["statsd_flush_interval"] = int(data["statsd_flush_interval"]) if "statsd_pct_thresholds" in data: data["statsd_pct_thresholds"] = [ float(s) for s in data["statsd_pct_thresholds"].split() ] elif "statsd_pct_threshold" in data: data["statsd_pct_thresholds"] = [float(data["statsd_pct_threshold"])] # We're piggy-backing initialization in config(), which is mixing # semantics, but init() doesn't have access to our opaque callback # "data" dict. data["metrics_queue"] = Queue() data["threads"] = [] if data.get("monitor_endpoint"): if data.get("ping_endpoint"): pinger = threading.Thread( name="collectd pinger", target=zmq_pinger_thread, args=(data["ping_endpoint"], data["node_uuid"]), ) pinger.daemon = True # must set before .start() pinger.start() data["threads"].append(pinger) writer = threading.Thread( target=zmq_writer_thread, args=( data["metrics_queue"], data["monitor_endpoint"], data["node_uuid"], ), ) writer.daemon = True # must set before .start() writer.start() data["threads"].append(writer) elif data.get("carbon_host") and data.get("carbon_port"): writer = threading.Thread( name="collectd carbon writer", target=carbon_writer_thread, args=(data["metrics_queue"], data["carbon_host"], data["carbon_port"]), ) writer.daemon = True writer.start() data["threads"].append(writer) if "statsd_bind_ip" in data: statsd = threading.Thread( name="statsd", target=statsd_thread, args=( data["metrics_queue"], data["statsd_bind_ip"], data["statsd_port"], data["statsd_pct_thresholds"], data["statsd_flush_interval"], data["node_uuid"], data.get("statsd_forward_host"), data.get("statsd_forward_port"), data.get("statsd_forward_prefix_hostname"), ), ) statsd.daemon = True statsd.start() data["threads"].append(statsd) except Exception as e: _log("Error in config: %r", e) os._exit(2) def statsd_thread( metrics_queue, bind_ip, port, pct_thresholds, flush_interval_seconds, node_uuid, statsd_forward_host, statsd_forward_port, statsd_forward_prefix_hostname, ): from pystatsd import Server if statsd_forward_host and statsd_forward_port: _log( "Forwarding StatsD stats to %s:%s", statsd_forward_host, statsd_forward_port ) statsd_forward_prefix = "" if statsd_forward_prefix_hostname: statsd_forward_prefix = socket.gethostname() _log("Forwarding StatsD stats with hostname prefix %r", statsd_forward_prefix) if data.get("monitor_endpoint") or ( data.get("carbon_host") and data.get("carbon_port")): transport = "graphite_queue" else: # force our hacked-up pystatsd Server to use TransportNop transport = "graphite" server = Server( pct_thresholds=pct_thresholds, transport=transport, queue=metrics_queue, flush_interval=flush_interval_seconds, counters_prefix=node_uuid, timers_prefix=node_uuid, statsd_forward_host=statsd_forward_host, statsd_forward_port=statsd_forward_port, statsd_forward_prefix=statsd_forward_prefix, ) server.serve(hostname=bind_ip, port=int(port)) def zmq_pinger_thread(ping_endpoint, node_uuid): zmq = 1 # appease pyflakes which can't understand the following import exec("import zmq") context = zmq.Context.instance() while True: endpoint = resolve_hostname_in_url(ping_endpoint) ping_socket = context.socket(zmq.REQ) ping_socket.setsockopt(zmq.LINGER, 0) ping_socket.connect(endpoint) ping_poller = zmq.Poller() ping_poller.register(ping_socket, zmq.POLLIN) ping_socket.send("PING:%s" % (node_uuid,)) # wait for a PONG response socks = dict(ping_poller.poll(1000 * PING_TIMEOUT)) if socks.get(ping_socket) == zmq.POLLIN: # loop to soak any extra PONGs just in case while socks.get(ping_socket) == zmq.POLLIN: pong = ping_socket.recv() if pong != "PONG": _log("Received unexpected PING response: %r", pong) socks = dict(ping_poller.poll(0)) else: # Failed to receive a PONG within timeout _log("Failed to receive a PONG; exiting!") os._exit(3) ping_socket.close() sleep(10) def zmq_writer_thread(metrics_queue, monitor_endpoint, node_uuid): zmq = 1 # appease pyflakes which can't understand the following import exec("import zmq") context = zmq.Context.instance() sock = None while True: metrics = metrics_queue.get() # blocking # Don't let more than 5x WRITE_BATCH_THRESHOLD seconds go by without a # flush start = time() while True and time() - start < 5 * WRITE_BATCH_THRESHOLD: try: additional_metrics = metrics_queue.get(timeout=WRITE_BATCH_THRESHOLD) metrics.extend(additional_metrics) except Empty: break if sock: sock.close() endpoint = resolve_hostname_in_url(monitor_endpoint) sock = context.socket(zmq.PUSH) # Setting a linger time is only meant as a brake on memory # usage in weird network situations. # # In normal good times, pings and monitoring data both work, # so data doesn't sit around for more than a couple RTTs # unacknowledged, and this setting does nothing. # # In normal bad times, pings and monitoring data both fail, so # after a failed ping, we call os._exit() and our process goes # kaput immediately, so the monitoring data doesn't accumulate # in memory. # # However, on bizarro-net, pings get through, but monitoring # data doesn't. In that case, up to $LINGER_PERIOD worth of # monitoring data will queue up, in memory, waiting to be # shipped out. If we didn't set the linger time for the # monitoring data, then since the default linger time is 0 # (i.e. keep data forever), that would be a memory leak. sock.setsockopt(zmq.LINGER, LINGER_PERIOD * 1000) sock.connect(endpoint) # Send out at most 150 metrics in a single batch for metrics_chunk in _seq_chunker(metrics, 150): pickled = pickle.dumps(metrics_chunk) payload = ( struct.pack("!LL", 8 + len(node_uuid) + len(pickled), len(node_uuid)) + node_uuid + pickled ) sock.send(payload) def carbon_writer_thread(metrics_queue, carbon_host, carbon_port): carbon_receiver = (carbon_host, int(carbon_port)) carbon_sock = None while True: try: if not carbon_sock: _log("Connecting to carbon at %s:%d", *carbon_receiver) carbon_sock = socket.create_connection(carbon_receiver) _log("Connected to carbon at %s:%d", *carbon_receiver) metrics = metrics_queue.get() # blocking for metric in metrics: m_name = metric[0] datapoints = metric[1:] for datapoint in datapoints: m_time = datapoint[0] m_val = datapoint[1] carbon_sock.sendall("%s %s %s\n" % (m_name, m_val, m_time)) except socket.error as sockerr: _log("Something happened to my carbon socket: %r", sockerr) carbon_sock = None sleep(0.05) # don't peg the CPU if carbon is down def write(values, data): """Pass collected data to the writer thread. Also catch thread death.""" if not data.get("monitor_endpoint"): return if not all(t.isAlive() for t in data["threads"]): # In general, suicide is not the answer. Here, we make an exception. os._exit(4) # Pickled datapoints look like this: # [ # (<metric_string>, (<time>, <value>)) # ] # so the fact that they wait around a while does not affect their # correctness. data["metrics_queue"].put( [ # We cast to float since we saw some metrics with values like '0' (a # one-character string). It only broke the metric diversion code, # which has been fixed, but we should make sure we're sending only # float values out of here, too. (metric, (values.time, float(v))) for metric, v in split_values(values, data) ] ) def read(data): """ Collect some metrics and send 'em directly to the writer thread. The node_uuid is prepended to metric names generated by the actual collection function(s). Pickled datapoints look like this: [ (<metric_string>, (<time>, <value>)) ] so the fact that they wait around a while does not affect their correctness. """ if not data.get("monitor_endpoint"): return t = int(time()) metrics = [] try: # Don't let otherwise-untrapped exceptions (code bugs) in the # individual collectors prevent us from sending metrics we did manage # to get. metrics.extend(network_stats(data, t)) metrics.extend(xfs_stats(data, t)) metrics.extend(recon_stats(data, t)) metrics.extend(replication_progress_stats(data, t)) except Exception: _log(traceback.format_exc()) # Prepend the node_uuid once, to make the actual collector function(s) # simpler. if data["node_uuid"]: metrics = [(data["node_uuid"] + "." + m, tv) for m, tv in metrics] data["metrics_queue"].put(metrics) def normalized_sharding_data(cache_dir="/var/cache/swift"): container_file = os.path.join(cache_dir, "container.recon") try: with open(container_file, "r") as fp: data = json.load(fp) except (OSError, IOError, ValueError): # Missing file, bad perms, JSON decode error... return {} sharding_info = data.get("sharding_stats", {}).get("sharding", {}) # If present, sharding_candidates should be of the form # { # "found": 1234, # "top": [ # {"account": "AUTH_foo", # "container": "c", # "file_size": 1234, # "meta_timestamp": "1522952237.71391" # "node_index": 0, # "object_count": 1049, # "path": "/srv/node/d2/containers/.../hash.db", # "root": "AUTH_a/c2", # }, # ... # ] # } # where 'top' is limited by recon_candidates_limit. shrinking_candidates # doesn't actually exist yet, but presumably will be somewhat similar. # # sharding_in_progress, meanwhile, should be of the form # { # "all": [ # {"account": "AUTH_foo", # "container": "c", # "file_size": 1234, # "meta_timestamp": "1522952237.71391" # "node_index": 0, # "object_count": 1049, # "path": "/srv/node/d2/containers/.../hash.db", # "root": "AUTH_a/c2", # "error": null or string, # "state": "sharded" (or whatever), # "db_state": "sharding" (or whatever), # "found": x, # "cleaved": y, # "active": z, # }, # ... # ] # } return { k: sharding_info.get(k, {}) for k in ( "sharding_candidates", "sharding_in_progress", "shrinking_candidates", ) } def normalized_recon_data(now, cache_dir="/var/cache/swift"): account_file = os.path.join(cache_dir, "account.recon") container_file = os.path.join(cache_dir, "container.recon") object_file = os.path.join(cache_dir, "object.recon") data = {"account": {}, "container": {}, "object": {}} if os.path.exists(account_file): try: account_stats = json.loads(open(account_file).read()) if "replication_time" in account_stats: data["account"]["replication_duration"] = account_stats[ "replication_time" ] if "replication_last" in account_stats: data["account"]["replication_last"] = account_stats["replication_last"] elif ( "replication_stats" in account_stats and "replication_time" in account_stats ): if "start" in account_stats["replication_stats"]: data["account"]["replication_last"] = ( account_stats["replication_stats"]["start"] + account_stats["replication_time"] ) if "account_auditor_pass_completed" in account_stats: data["account"]["auditor_duration"] = account_stats[ "account_auditor_pass_completed" ] except (ValueError, OSError): pass # JSON decode error if os.path.exists(container_file): try: container_stats = json.loads(open(container_file).read()) if "replication_time" in container_stats: data["container"]["replication_duration"] = container_stats[ "replication_time" ] if "replication_last" in container_stats: data["container"]["replication_last"] = container_stats[ "replication_last" ] elif ( "replication_stats" in container_stats and "replication_time" in container_stats ): if "start" in container_stats["replication_stats"]: data["container"]["replication_last"] = ( container_stats["replication_stats"]["start"] + container_stats["replication_time"] ) if "sharding_time" in container_stats: data["container"]["sharding_duration"] = container_stats[ "sharding_time" ] if "sharding_last" in container_stats: data["container"]["sharding_last"] = container_stats["sharding_last"] if "container_auditor_pass_completed" in container_stats: data["container"]["auditor_duration"] = container_stats[ "container_auditor_pass_completed" ] if "container_updater_sweep" in container_stats: data["container"]["updater_duration"] = container_stats[ "container_updater_sweep" ] except (ValueError, OSError): pass # JSON decode error if os.path.exists(object_file): try: with open(object_file) as fp: object_stats = json.load(fp) if "async_pending" in object_stats: data["object"]["async_pending"] = object_stats["async_pending"] if "object_replication_time" in object_stats: # normalize to seconds data["object"]["replication_duration"] = ( object_stats["object_replication_time"] * 60 ) if "object_replication_last" in object_stats: data["object"]["replication_last"] = object_stats[ "object_replication_last" ] elif "object_replication_time" in object_stats: data["object"]["replication_last"] = ( now - object_stats["object_replication_time"] * 60 ) if "object_reconstruction_time" in object_stats: # normalize to seconds data["object"]["reconstruction_duration"] = ( object_stats["object_reconstruction_time"] * 60 ) if "object_reconstruction_last" in object_stats: data["object"]["reconstruction_last"] = object_stats[ "object_reconstruction_last" ] if "object_updater_sweep" in object_stats: data["object"]["updater_duration"] = object_stats[ "object_updater_sweep" ] except (ValueError, OSError): pass # JSON decode error return data def recon_stats(data, timestamp, cache_dir="/var/cache/swift"): metrics = [] recon_data = normalized_recon_data(timestamp, cache_dir) account_stats = recon_data["account"] # NOTE: replication_duration/replication_last no longer tracked using # Whisper metrics. if "auditor_duration" in account_stats: metrics.append( ( "recon.account.auditor_duration", (timestamp, account_stats["auditor_duration"]), ) ) container_stats = recon_data["container"] # NOTE: replication_duration/replication_last no longer tracked using # Whisper metrics. if "auditor_duration" in container_stats: metrics.append( ( "recon.container.auditor_duration", (timestamp, container_stats["auditor_duration"]), ) ) if "updater_duration" in container_stats: metrics.append( ( "recon.container.updater_duration", (timestamp, container_stats["updater_duration"]), ) ) object_stats = recon_data["object"] if "async_pending" in object_stats: metrics.append( ("recon.object.async_pending", (timestamp, object_stats["async_pending"])) ) # NOTE: replication_duration/replication_last no longer tracked using # Whisper metrics. if "updater_duration" in object_stats: metrics.append( ( "recon.object.updater_duration", (timestamp, object_stats["updater_duration"]), ) ) return metrics REPLICATION_PROGRESS_STATS_FILE = "/opt/ss/var/lib/replication_progress.json" def read_replication_progress(): """ Read the stats file from disk. """ try: with open(REPLICATION_PROGRESS_STATS_FILE) as f: return json.load(f) except (OSError, IOError) as e: if e.errno not in (errno.ENOENT,): raise except ValueError: pass return {} def replication_progress_stats(data, timestamp): metrics = [] stats = read_replication_progress() aggregate = defaultdict(lambda: defaultdict(int)) for device, type_stats in stats.items(): for type_, stats in type_stats.items(): prefix = "replication.%s.%s." % (device, type_) for key, value in stats.items(): metrics.append((prefix + key, (timestamp, value))) aggregate[type_][key] += value for type_, stats in aggregate.items(): prefix = "replication.ALL.%s." % type_ for key, value in stats.items(): metrics.append((prefix + key, (timestamp, value))) return metrics def network_stats(data, timestamp): """Collect some network stats and return them in the format: [(<metric_name>, (timestamp, <value>))] """ stats_file = "/proc/net/snmp" parsed = {} if os.path.exists(stats_file): try: with open(stats_file, "rb") as stats_fh: line_type, labels = None, None for line in stats_fh.readlines(): parts = line.split() if parts[1].isdigit() and parts[0] == line_type + ":": parsed[line_type] = dict(zip(labels, parts[1:])) elif not parts[1].isdigit(): line_type = parts[0].split(":")[0] labels = parts[1:] except Exception: _log(traceback.format_exc()) return [] else: return [] return [ ("net.udp.InErrors", (timestamp, parsed["Udp"]["InErrors"])), ("net.udp.RcvbufErrors", (timestamp, parsed["Udp"]["RcvbufErrors"])), ("net.tcp.AttemptFails", (timestamp, parsed["Tcp"]["AttemptFails"])), ("net.tcp.RetransSegs", (timestamp, parsed["Tcp"]["RetransSegs"])), ("net.ip.InHdrErrors", (timestamp, parsed["Ip"]["InHdrErrors"])), ("net.ip.FragFails", (timestamp, parsed["Ip"]["FragFails"])), ("net.ip.FragCreates", (timestamp, parsed["Ip"]["FragCreates"])), ] def xfs_stats(data, timestamp): """ Collect some xfs stats and return them in the format: [(<metric_name>, (timestamp, <value>))] See http://xfs.org/index.php/Runtime_Stats """ stats_file = "/proc/fs/xfs/stat" parsed = {} if os.path.exists(stats_file): try: with open(stats_file, "rb") as stats_fh: for line in stats_fh.readlines(): label, stats = line.split(" ", 1) parsed[label] = map(int, stats.split()) except Exception: _log(traceback.format_exc()) return [] else: return [] stats = [] potential_stats = { ("dir", "dir_ops"): [ # This is a count of the number of file name directory lookups in # XFS filesystems. It counts only those lookups which miss in the # operating system's directory name lookup cache and must search # the real directory structure for the name in question. The count # is incremented once for each level of a pathname search that # results in a directory lookup. ("lookup", 0), # This is the number of times the XFS directory getdents operation # was performed. The getdents operation is used by programs to read # the contents of directories in a file system independent fashion. # This count corresponds exactly to the number of times the # getdents(2) system call was successfully used on an XFS # directory. ("getdents", 3), ], ("ig", "inode_ops"): [ # This is the number of times the operating system looked for an # XFS inode in the inode cache and found it. The closer this count # is to the ig_attempts count the better the inode cache is # performing. ("ig_found", 1), # This is the number of times the operating system looked for an # XFS inode in the inode cache and the inode was not there. The # further this count is from the ig_attempts count the better. ("ig_missed", 3), # This is the number of times the operating system recycled an XFS # inode from the inode cache in order to use the memory for that # inode for another purpose. ("ig_reclaims", 5), ], ("log", "log"): [ # This variable counts the number of log buffer writes going to the # physical log partitions of all XFS filesystems. ("writes", 0), # This variable counts (in 512-byte units) the information being # written to the physical log partitions of all XFS filesystems. ("blocks", 1), # This variable keeps track of times when a logged transaction can # not get any log buffer space. When this occurs, all of the # internal log buffers are busy flushing their data to the physical # on-disk log. ("noiclogs", 2), # The number of times the in-core log is forced to disk. It is # equivalent to the number of successful calls to the function # xfs_log_force(). ("force", 3), ], ("xstrat", "xstrat"): [ # This is the number of buffers flushed out by the XFS flushing # daemons which are written to contiguous space on disk. This one # is GOOD. ("quick", 0), # This is the number of buffers flushed out by the XFS flushing # daemons which are written to non-contiguous space on disk. This # one is BAD. ("split", 1), ], ("xpc", "xpc"): [ # This is a count of bytes of file data flushed out by the XFS # flushing daemons. 64-bit counter. ("xstrat_bytes", 0), # This is a count of bytes written via write(2) system calls to # files in XFS file systems. It can be used in conjunction with the # write_calls count to calculate the average size of the write # operations to files in XFS file systems. ("write_bytes", 1), # This is a count of bytes read via read(2) system calls to files # in XFS file systems. It can be used in conjunction with the # read_calls count to calculate the average size of the read # operations to files in XFS file systems. ("read_bytes", 2), ], ("rw", "rw"): [ # This is the number of write(2) system calls made to files in XFS # file systems. ("write_calls", 0), # This is the number of read(2) system calls made to files in XFS # file systems. ("read_calls", 1), ], } for parsed_key, metric_group in potential_stats.iterkeys(): if parsed_key in parsed: parsed_len = len(parsed[parsed_key]) for metric_key, parsed_idx in potential_stats[(parsed_key, metric_group)]: if parsed_idx < parsed_len: stats.append( ( "xfs.%s.%s" % (metric_group, metric_key), (timestamp, parsed[parsed_key][parsed_idx]), ) ) return stats def pascal_to_snake(pascal_str): first_char = True snake_str = "" for char in pascal_str: if char.isupper(): if first_char: first_char = False snake_str += char.lower() else: snake_str += "_%s" % char.lower() else: snake_str += char return snake_str def split_values(values, data): return_list = [] if len(values.values) == 1: # simple case metric = _metric(values, data) if metric: return_list.append((metric, values.values[0])) else: for ds, value in zip(db[values.type], values.values): metric = _metric(values, data, ds) if metric: return_list.append((metric, value)) return return_list def _metric(values, data, ds=None): """ Generate a carbon metric string something along the lines of: <node_uuid>.<plugin>.<plugin_instance>.<type>.<type_instance>.<ds> Don't include metric parts which are empty-string. Also suppress duplicates between plugin & plugin_instance and between type and plugin. This is also where filtering can take place, as a false-y return will suppress the sending of the metric. """ if _should_filter(values, data, ds): return None # Compensate for the Aggregation plugin's introduced one-interval lag. # When Aggregation emits a data point, the value it has is *actually* for # one "interval" ago. if values.plugin == "aggregation": values.time -= data["statsd_flush_interval"] metric = ".".join( escape_metric_segment(part) for part in ( values.plugin, (values.plugin_instance if values.plugin_instance != values.plugin else ""), (values.type if values.type != values.plugin else ""), values.type_instance, ds, ) if part ) # HACK: we don't want this escaped, as it lets us use things like # "ssman.g01" as hostnames to get all our metrics prefixed if data["node_uuid"]: metric = data["node_uuid"] + "." + metric return metric FILTER = dict( cpu=[dict(plugin="cpu")], # Filter all cpu metrics; we aggregate 'em memcached=[ dict(type="ps_cputime"), dict(type="ps_count"), dict(type="memcached_command", type_instance="flush"), dict(type="memcached_command", type_instance="touch"), dict(type="percent", type_instance="incr_hitratio"), dict(type="percent", type_instance="decr_hitratio"), dict(type="memcached_octets"), ], df=[ dict(plugin_instance="root", type_instance="used"), dict(type_instance="reserved"), ], load=[dict(ds="longterm")], processes=[ dict(type="ps_stacksize"), dict(type="ps_pagefaults"), dict(type="ps_data"), dict(type="ps_code"), dict(type="ps_state"), # For fd count, our patched collectd also sends them as the old name # "ps_fd_count", so here we filter out the new name; this prevents us # having to migrate whisper data or combine 2 metric names. dict(type="file_handles"), # These just measure system calls doing "I/O" which could be terminals # or sockets--which isn't as interesting to me... so we filter them. dict(type="io_ops"), dict(type="io_octets"), ], ipvs=[dict(type="if_packets"), dict(type="if_octets")], swap=[ dict(type="swap", type_instance="free"), dict(type="swap", type_instance="cached"), ], openvpn=[dict(type_instance="overhead"), dict(plugin_instance="UNDEF")], interface=[dict(plugin_instance="tun0")], ) def _should_filter(values, data, ds): for f in FILTER.get(values.plugin, []): should_filter = True for k in f.keys(): if k == "ds": if ds != f[k]: should_filter = False else: if getattr(values, k) != f[k]: should_filter = False if should_filter: return True return False # Only hook in to collectd code if running inside collectd. Otherwise it's # really difficult to test the code in here. if running_inside_collectd: data = {} collectd.register_init(init) collectd.register_config(config, data) collectd.register_write(write, data) collectd.register_read(read, data=data)
swiftstack-collectd-plugin-main
collectd_plugin/collectd_plugin.py
# Copyright (c) 2011-2020, NVIDIA CORPORATION. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA or see # <http://www.gnu.org/licenses/>.
swiftstack-collectd-plugin-main
collectd_plugin/__init__.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import os import torch from setuptools import setup from torch.utils.cpp_extension import BuildExtension, CUDAExtension abs_path = os.path.dirname(os.path.realpath(__file__)) library_dirs = [abs_path] extra_libraries = ['wavenet_infer'] extra_includes = [abs_path] setup(name='nv_wavenet_ext', ext_modules=[CUDAExtension(name='nv_wavenet_ext', sources=['wavenet_infer_wrapper.cpp'], library_dirs=library_dirs, runtime_library_dirs=library_dirs, libraries=extra_libraries, include_dirs=extra_includes)], cmdclass={'build_ext': BuildExtension})
nv-wavenet-master
pytorch/build.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** """ Tests that the NV-WaveNet class is producing audio """ import torch from scipy.io.wavfile import write import nv_wavenet import utils if __name__ == '__main__': model = torch.load("model.pt") wavenet = nv_wavenet.NVWaveNet(**model) cond_input = torch.load("cond_input.pt") samples = wavenet.infer(cond_input, nv_wavenet.Impl.PERSISTENT)[0] audio = utils.mu_law_decode_numpy(samples.cpu().numpy(), 256) audio = utils.MAX_WAV_VALUE * audio wavdata = audio.astype('int16') write('audio.wav',16000, wavdata)
nv-wavenet-master
pytorch/nv_wavenet_test.py
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import torch import wavenet import math class Conv(torch.nn.Module): """ A convolution with the option to be causal and use xavier initialization """ def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, dilation=1, bias=True, w_init_gain='linear', is_causal=False): super(Conv, self).__init__() self.is_causal = is_causal self.kernel_size = kernel_size self.dilation = dilation self.conv = torch.nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, bias=bias) torch.nn.init.xavier_uniform( self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) def forward(self, signal): if self.is_causal: padding = (int((self.kernel_size - 1) * (self.dilation)), 0) signal = torch.nn.functional.pad(signal, padding) return self.conv(signal) class WaveNet(torch.nn.Module): def __init__(self, n_in_channels, n_layers, max_dilation, n_residual_channels, n_skip_channels, n_out_channels, n_cond_channels, upsamp_window, upsamp_stride): super(WaveNet, self).__init__() self.upsample = torch.nn.ConvTranspose1d(n_cond_channels, n_cond_channels, upsamp_window, upsamp_stride) self.n_layers = n_layers self.max_dilation = max_dilation self.n_residual_channels = n_residual_channels self.n_out_channels = n_out_channels self.cond_layers = Conv(n_cond_channels, 2*n_residual_channels*n_layers, w_init_gain='tanh') self.dilate_layers = torch.nn.ModuleList() self.res_layers = torch.nn.ModuleList() self.skip_layers = torch.nn.ModuleList() self.embed = torch.nn.Embedding(n_in_channels, n_residual_channels) self.conv_out = Conv(n_skip_channels, n_out_channels, bias=False, w_init_gain='relu') self.conv_end = Conv(n_out_channels, n_out_channels, bias=False, w_init_gain='linear') loop_factor = math.floor(math.log2(max_dilation)) + 1 for i in range(n_layers): dilation = 2 ** (i % loop_factor) # Kernel size is 2 in nv-wavenet in_layer = Conv(n_residual_channels, 2*n_residual_channels, kernel_size=2, dilation=dilation, w_init_gain='tanh', is_causal=True) self.dilate_layers.append(in_layer) # last one is not necessary if i < n_layers - 1: res_layer = Conv(n_residual_channels, n_residual_channels, w_init_gain='linear') self.res_layers.append(res_layer) skip_layer = Conv(n_residual_channels, n_skip_channels, w_init_gain='relu') self.skip_layers.append(skip_layer) def forward(self, forward_input): features = forward_input[0] forward_input = forward_input[1] cond_input = self.upsample(features) assert(cond_input.size(2) >= forward_input.size(1)) if cond_input.size(2) > forward_input.size(1): cond_input = cond_input[:, :, :forward_input.size(1)] forward_input = self.embed(forward_input.long()) forward_input = forward_input.transpose(1, 2) cond_acts = self.cond_layers(cond_input) cond_acts = cond_acts.view(cond_acts.size(0), self.n_layers, -1, cond_acts.size(2)) for i in range(self.n_layers): in_act = self.dilate_layers[i](forward_input) in_act = in_act + cond_acts[:,i,:,:] t_act = torch.nn.functional.tanh(in_act[:, :self.n_residual_channels, :]) s_act = torch.nn.functional.sigmoid(in_act[:, self.n_residual_channels:, :]) acts = t_act * s_act if i < len(self.res_layers): res_acts = self.res_layers[i](acts) forward_input = res_acts + forward_input if i == 0: output = self.skip_layers[i](acts) else: output = self.skip_layers[i](acts) + output output = torch.nn.functional.relu(output, True) output = self.conv_out(output) output = torch.nn.functional.relu(output, True) output = self.conv_end(output) # Remove last probabilities because they've seen all the data last = output[:, :, -1] last = last.unsqueeze(2) output = output[:, :, :-1] # Replace probability for first value with 0's because we don't know first = last * 0.0 output = torch.cat((first, output), dim=2) return output def export_weights(self): """ Returns a dictionary with tensors ready for nv_wavenet wrapper """ model = {} # We're not using a convolution to start to this does nothing model["embedding_prev"] = torch.cuda.FloatTensor(self.n_out_channels, self.n_residual_channels).fill_(0.0) model["embedding_curr"] = self.embed.weight.data model["conv_out_weight"] = self.conv_out.conv.weight.data model["conv_end_weight"] = self.conv_end.conv.weight.data dilate_weights = [] dilate_biases = [] for layer in self.dilate_layers: dilate_weights.append(layer.conv.weight.data) dilate_biases.append(layer.conv.bias.data) model["dilate_weights"] = dilate_weights model["dilate_biases"] = dilate_biases model["max_dilation"] = self.max_dilation res_weights = [] res_biases = [] for layer in self.res_layers: res_weights.append(layer.conv.weight.data) res_biases.append(layer.conv.bias.data) model["res_weights"] = res_weights model["res_biases"] = res_biases skip_weights = [] skip_biases = [] for layer in self.skip_layers: skip_weights.append(layer.conv.weight.data) skip_biases.append(layer.conv.bias.data) model["skip_weights"] = skip_weights model["skip_biases"] = skip_biases model["use_embed_tanh"] = False return model def get_cond_input(self, features): """ Takes in features and gets the 2*R x batch x # layers x samples tensor """ # TODO(rcosta): trim conv artifacts. mauybe pad spec to kernel multiple cond_input = self.upsample(features) time_cutoff = self.upsample.kernel_size[0] - self.upsample.stride[0] cond_input = cond_input[:, :, :-time_cutoff] cond_input = self.cond_layers(cond_input).data cond_input = cond_input.view(cond_input.size(0), self.n_layers, -1, cond_input.size(2)) # This makes the data channels x batch x num_layers x samples cond_input = cond_input.permute(2,0,1,3) return cond_input
nv-wavenet-master
pytorch/wavenet.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import os import sys import time import subprocess import argparse import torch import torch.distributed as dist from torch.nn.modules import Module def reduce_tensor(tensor, num_gpus): rt = tensor.clone() dist.all_reduce(rt, op=dist.reduce_op.SUM) rt /= num_gpus return rt def init_distributed(rank, num_gpus, group_name, dist_backend, dist_url): assert torch.cuda.is_available(), "Distributed mode requires CUDA." print("Initializing Distributed") # Set cuda device so everything is done on the right GPU. torch.cuda.set_device(rank % torch.cuda.device_count()) # Initialize distributed communication dist.init_process_group(dist_backend, init_method=dist_url, world_size=num_gpus, rank=rank, group_name=group_name) def _flatten_dense_tensors(tensors): """Flatten dense tensors into a contiguous 1D buffer. Assume tensors are of same dense type. Since inputs are dense, the resulting tensor will be a concatenated 1D buffer. Element-wise operation on this buffer will be equivalent to operating individually. Arguments: tensors (Iterable[Tensor]): dense tensors to flatten. Returns: A contiguous 1D buffer containing input tensors. """ if len(tensors) == 1: return tensors[0].contiguous().view(-1) flat = torch.cat([t.contiguous().view(-1) for t in tensors], dim=0) return flat def _unflatten_dense_tensors(flat, tensors): """View a flat buffer using the sizes of tensors. Assume that tensors are of same dense type, and that flat is given by _flatten_dense_tensors. Arguments: flat (Tensor): flattened dense tensors to unflatten. tensors (Iterable[Tensor]): dense tensors whose sizes will be used to unflatten flat. Returns: Unflattened dense tensors with sizes same as tensors and values from flat. """ outputs = [] offset = 0 for tensor in tensors: numel = tensor.numel() outputs.append(flat.narrow(0, offset, numel).view_as(tensor)) offset += numel return tuple(outputs) def apply_gradient_allreduce(module): """ Modifies existing model to do gradient allreduce, but doesn't change class so you don't need "module" """ if not hasattr(dist, '_backend'): module.warn_on_half = True else: module.warn_on_half = True if dist._backend == dist.dist_backend.GLOO else False for p in module.state_dict().values(): if not torch.is_tensor(p): continue dist.broadcast(p, 0) def allreduce_params(): if(module.needs_reduction): module.needs_reduction = False buckets = {} for param in module.parameters(): if param.requires_grad and param.grad is not None: tp = type(param.data) if tp not in buckets: buckets[tp] = [] buckets[tp].append(param) if module.warn_on_half: if torch.cuda.HalfTensor in buckets: print("WARNING: gloo dist backend for half parameters may be extremely slow." + " It is recommended to use the NCCL backend in this case. This currently requires" + "PyTorch built from top of tree master.") module.warn_on_half = False for tp in buckets: bucket = buckets[tp] grads = [param.grad.data for param in bucket] coalesced = _flatten_dense_tensors(grads) dist.all_reduce(coalesced) coalesced /= dist.get_world_size() for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)): buf.copy_(synced) for param in list(module.parameters()): def allreduce_hook(*unused): param._execution_engine.queue_callback(allreduce_params) if param.requires_grad: param.register_hook(allreduce_hook) dir(param) def set_needs_reduction(self, input, output): self.needs_reduction = True module.register_forward_hook(set_needs_reduction) return module def main(config, stdout_dir, args_str): args_list = ['train.py'] args_list += args_str.split(' ') if len(args_str) > 0 else [] args_list.append('--config={}'.format(config)) num_gpus = torch.cuda.device_count() args_list.append('--num_gpus={}'.format(num_gpus)) args_list.append("--group_name=group_{}".format(time.strftime("%Y_%m_%d-%H%M%S"))) #args_list.append(json_path) if not os.path.isdir(stdout_dir): os.makedirs(stdout_dir) os.chmod(stdout_dir, 0o775) workers = [] for i in range(num_gpus): args_list[-2] = '--rank={}'.format(i) stdout = None if i == 0 else open( os.path.join(stdout_dir, "GPU_{}.log".format(i)), "w") print(args_list) p = subprocess.Popen([str(sys.executable)]+args_list, stdout=stdout) workers.append(p) for p in workers: p.wait() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', type=str, required=True, help='JSON file for configuration') parser.add_argument('-s', '--stdout_dir', type=str, default=".", help='directory to save stoud logs') parser.add_argument( '-a', '--args_str', type=str, default='', help='double quoted string with space separated key value pairs') args = parser.parse_args() main(args.config, args.stdout_dir, args.args_str)
nv-wavenet-master
pytorch/distributed.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import os import torch import numpy as np from scipy.io.wavfile import read MAX_WAV_VALUE = 32768.0 def load_wav_to_torch(full_path): """ Loads wavdata into torch array """ sampling_rate, data = read(full_path) return torch.FloatTensor(data.astype(np.float32)), sampling_rate def files_to_list(filename): """ Takes a text file of filenames and makes a list of filenames """ with open(filename, encoding='utf-8') as f: files = f.readlines() files = [f.rstrip() for f in files] return files def load_filepaths_and_text(filename, split="|"): with open(filename, encoding='utf-8') as f: filepaths_and_text = [line.strip().split(split) for line in f] return filepaths_and_text def to_gpu(x): x = x.contiguous() if torch.cuda.is_available(): x = x.cuda(non_blocking=True) return torch.autograd.Variable(x) def mu_law_decode_numpy(x, mu_quantization=256): assert(np.max(x) <= mu_quantization) assert(np.min(x) >= 0) mu = mu_quantization - 1. # Map values back to [-1, 1]. signal = 2 * (x / mu) - 1 # Perform inverse of mu-law transformation. magnitude = (1 / mu) * ((1 + mu)**np.abs(signal) - 1) return np.sign(signal) * magnitude def mu_law_decode(x, mu_quantization=256): assert(torch.max(x) <= mu_quantization) assert(torch.min(x) >= 0) x = x.float() mu = mu_quantization - 1. # Map values back to [-1, 1]. signal = 2 * (x / mu) - 1 # Perform inverse of mu-law transformation. magnitude = (1 / mu) * ((1 + mu)**torch.abs(signal) - 1) return torch.sign(signal) * magnitude def mu_law_encode(x, mu_quantization=256): assert(torch.max(x) <= 1.0) assert(torch.min(x) >= -1.0) mu = mu_quantization - 1. scaling = np.log1p(mu) x_mu = torch.sign(x) * torch.log1p(mu * torch.abs(x)) / scaling encoding = ((x_mu + 1) / 2 * mu + 0.5).long() return encoding
nv-wavenet-master
pytorch/utils.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import torch import nv_wavenet_ext def interleave_lists(a, b, c, d, e, f, g): return [x for t in zip(a, b, c, d, e, f, g) for x in t] def column_major(x): """ PyTorch Tensors are row major, so this just returns a contiguous transpose """ assert(x.is_contiguous) if len(x.size()) == 1: return x if len(x.size()) == 3: assert(x.size(2)==1) x = torch.squeeze(x) if len(x.size())==2: return torch.t(x).contiguous() if len(x.size())==4: return x.permute(3,2,1,0).contiguous() def enum(**enums): return type('Enum', (), enums) Impl = enum(AUTO=0, SINGLE_BLOCK=1, DUAL_BLOCK=2, PERSISTENT=3) class NVWaveNet: def __init__(self, embedding_prev, embedding_curr, conv_out_weight, conv_end_weight, dilate_weights, dilate_biases, max_dilation, res_weights, res_biases, skip_weights, skip_biases, use_embed_tanh): self.R = nv_wavenet_ext.num_res_channels() self.S = nv_wavenet_ext.num_skip_channels() self.A = nv_wavenet_ext.num_out_channels() self.max_dilation = max_dilation self.use_embed_tanh = use_embed_tanh assert embedding_prev.size() == (self.A, self.R), \ ("embedding_prev: {} doesn't match compiled" " nv-wavenet size: {}").format(embedding_prev.size(), (self.A, self.R)) self.embedding_prev = column_major(torch.t(embedding_prev)) assert embedding_curr.size() == (self.A, self.R), \ ("embedding_curr: {} doesn't match compiled" " nv-wavenet size: {}").format(embedding_curr.size(), (self.A, self.R)) self.embedding_curr = column_major(torch.t(embedding_curr)) assert conv_out_weight.size()[:2] == (self.A, self.S), \ ("conv_out_weight: {} doesn't match compiled" " nv-wavenet size: {}").format(conv_out_weight.size()[:2], (self.A, self.S)) self.conv_out = column_major(conv_out_weight) assert conv_end_weight.size()[:2] == (self.A, self.A), \ ("conv_end_weight: {} doesn't match compiled" " nv-wavenet size: {}").format(conv_end_weight.size()[:2], (self.A, self.A)) self.conv_end = column_major(conv_end_weight) dilate_weights_prev = [] dilate_weights_curr = [] for weight in dilate_weights: assert weight.size(2) == 2, \ "nv-wavenet only supports kernel_size 2" assert weight.size()[:2] == (2*self.R, self.R), \ ("dilated weight: {} doesn't match compiled" " nv-wavenet size: {}").format(weight.size()[:2], (2*self.R, self.R)) Wprev = column_major(weight[:,:,0]) Wcurr = column_major(weight[:,:,1]) dilate_weights_prev.append(Wprev) dilate_weights_curr.append(Wcurr) for bias in dilate_biases: assert(bias.size(0) == 2*self.R) for weight in res_weights: assert weight.size()[:2] == (self.R, self.R), \ ("residual weight: {} doesn't match compiled" " nv-wavenet size: {}").format(weight.size()[:2], (self.R, self.R)) for bias in res_biases: assert(bias.size(0) == self.R), \ ("residual bias: {} doesn't match compiled" " nv-wavenet size: {}").format(bias.size(0), self.R) for weight in skip_weights: assert weight.size()[:2] == (self.S, self.R), \ ("skip weight: {} doesn't match compiled" " nv-wavenet size: {}").format(weight.size()[:2], (self.S, self.R)) for bias in skip_biases: assert(bias.size(0) == self.S), \ ("skip bias: {} doesn't match compiled" " nv-wavenet size: {}").format(bias.size(0), self.S) dilate_biases = [column_major(bias) for bias in dilate_biases] res_weights = [column_major(weight) for weight in res_weights] res_biases = [column_major(bias) for bias in res_biases] skip_weights = [column_major(weight) for weight in skip_weights] skip_biases = [column_major(bias) for bias in skip_biases] # There's an extra residual layer that's not used res_weights.append(torch.zeros(self.R,self.R)) res_biases.append(torch.zeros(self.R)) assert(len(res_biases)==len(skip_biases) and len(res_biases)==len(dilate_biases) and len(res_weights)==len(skip_weights) and len(res_weights)==len(dilate_weights)), \ """Number of layers is inconsistent for different parameter types. The list sizes should be the same for skip weights/biases and dilate weights/biases. Additionally the residual weights/biases lists should be one shorter. But their sizes are: len(dilate_weights) = {} len(dilale_biases) = {} len(skip_weights) = {} len(skip_biases) = {} len(res_weights) = {} len(res_biases) = {}""".format(len(dilate_weights), len(dilate_biases), len(skip_weights), len(skip_biases), len(res_weights)-1, len(res_biases)-1) self.num_layers = len(res_biases) self.layers = interleave_lists(dilate_weights_prev, dilate_weights_curr, dilate_biases, res_weights, res_biases, skip_weights, skip_biases) def infer(self, cond_input, implementation): # cond_input is channels x batch x num_layers x samples assert(cond_input.size()[0:3:2] == (2*self.R, self.num_layers)), \ """Inputs are channels x batch x num_layers x samples. Channels and num_layers should be sizes: {} But input is: {}""".format((2*self.R, self.num_layers), cond_input.size()[0:3:2]) batch_size = cond_input.size(1) sample_count = cond_input.size(3) cond_input = column_major(cond_input) samples = torch.cuda.IntTensor(batch_size, sample_count) nv_wavenet_ext.infer(samples, sample_count, batch_size, self.embedding_prev, self.embedding_curr, self.conv_out, self.conv_end, cond_input, self.num_layers, self.use_embed_tanh, self.max_dilation, implementation, self.layers) return samples
nv-wavenet-master
pytorch/nv_wavenet.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import argparse import json import os import time import torch #=====START: ADDED FOR DISTRIBUTED====== from distributed import init_distributed, apply_gradient_allreduce, reduce_tensor from torch.utils.data.distributed import DistributedSampler #=====END: ADDED FOR DISTRIBUTED====== from torch.utils.data import DataLoader from wavenet import WaveNet from mel2samp_onehot import Mel2SampOnehot from utils import to_gpu class CrossEntropyLoss(torch.nn.Module): def __init__(self): super(CrossEntropyLoss, self).__init__() self.num_classes = wavenet_config["n_out_channels"] def forward(self, inputs, targets): """ inputs are batch by num_classes by sample targets are batch by sample torch CrossEntropyLoss needs input = batch * samples by num_classes targets = batch * samples """ targets = targets.view(-1) inputs = inputs.transpose(1, 2) inputs = inputs.contiguous() inputs = inputs.view(-1, self.num_classes) return torch.nn.CrossEntropyLoss()(inputs, targets) def load_checkpoint(checkpoint_path, model, optimizer): assert os.path.isfile(checkpoint_path) checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') iteration = checkpoint_dict['iteration'] optimizer.load_state_dict(checkpoint_dict['optimizer']) model_for_loading = checkpoint_dict['model'] model.load_state_dict(model_for_loading.state_dict()) print("Loaded checkpoint '{}' (iteration {})" .format( checkpoint_path, iteration)) return model, optimizer, iteration def save_checkpoint(model, optimizer, learning_rate, iteration, filepath): print("Saving model and optimizer state at iteration {} to {}".format( iteration, filepath)) model_for_saving = WaveNet(**wavenet_config).cuda() model_for_saving.load_state_dict(model.state_dict()) torch.save({'model': model_for_saving, 'iteration': iteration, 'optimizer': optimizer.state_dict(), 'learning_rate': learning_rate}, filepath) def train(num_gpus, rank, group_name, output_directory, epochs, learning_rate, iters_per_checkpoint, batch_size, seed, checkpoint_path): torch.manual_seed(seed) torch.cuda.manual_seed(seed) #=====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: init_distributed(rank, num_gpus, group_name, **dist_config) #=====END: ADDED FOR DISTRIBUTED====== criterion = CrossEntropyLoss() model = WaveNet(**wavenet_config).cuda() #=====START: ADDED FOR DISTRIBUTED====== if num_gpus > 1: model = apply_gradient_allreduce(model) #=====END: ADDED FOR DISTRIBUTED====== optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # Load checkpoint if one exists iteration = 0 if checkpoint_path != "": model, optimizer, iteration = load_checkpoint(checkpoint_path, model, optimizer) iteration += 1 # next iteration is iteration + 1 trainset = Mel2SampOnehot(**data_config) # =====START: ADDED FOR DISTRIBUTED====== train_sampler = DistributedSampler(trainset) if num_gpus > 1 else None # =====END: ADDED FOR DISTRIBUTED====== train_loader = DataLoader(trainset, num_workers=1, shuffle=False, sampler=train_sampler, batch_size=batch_size, pin_memory=False, drop_last=True) # Get shared output_directory ready if rank == 0: if not os.path.isdir(output_directory): os.makedirs(output_directory) os.chmod(output_directory, 0o775) print("output directory", output_directory) model.train() epoch_offset = max(0, int(iteration / len(train_loader))) # ================ MAIN TRAINNIG LOOP! =================== for epoch in range(epoch_offset, epochs): print("Epoch: {}".format(epoch)) for i, batch in enumerate(train_loader): model.zero_grad() x, y = batch x = to_gpu(x).float() y = to_gpu(y) x = (x, y) # auto-regressive takes outputs as inputs y_pred = model(x) loss = criterion(y_pred, y) if num_gpus > 1: reduced_loss = reduce_tensor(loss.data, num_gpus)[0] else: reduced_loss = loss.data[0] loss.backward() optimizer.step() print("{}:\t{:.9f}".format(iteration, reduced_loss)) if (iteration % iters_per_checkpoint == 0): if rank == 0: checkpoint_path = "{}/wavenet_{}".format( output_directory, iteration) save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path) iteration += 1 if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', type=str, help='JSON file for configuration') parser.add_argument('-r', '--rank', type=int, default=0, help='rank of process for distributed') parser.add_argument('-g', '--group_name', type=str, default='', help='name of group for distributed') args = parser.parse_args() # Parse configs. Globals nicer in this case with open(args.config) as f: data = f.read() config = json.loads(data) train_config = config["train_config"] global data_config data_config = config["data_config"] global dist_config dist_config = config["dist_config"] global wavenet_config wavenet_config = config["wavenet_config"] num_gpus = torch.cuda.device_count() if num_gpus > 1: if args.group_name == '': print("WARNING: Multiple GPUs detected but no distributed group set") print("Only running 1 GPU. Use distributed.py for multiple GPUs") num_gpus = 1 if num_gpus == 1 and args.rank != 0: raise Exception("Doing single GPU training on rank > 0") torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False train(num_gpus, args.rank, args.group_name, **train_config)
nv-wavenet-master
pytorch/train.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** import os from scipy.io.wavfile import write import torch import nv_wavenet import utils def chunker(seq, size): """ https://stackoverflow.com/a/434328 """ return (seq[pos:pos + size] for pos in range(0, len(seq), size)) def main(mel_files, model_filename, output_dir, batch_size, implementation): mel_files = utils.files_to_list(mel_files) model = torch.load(model_filename)['model'] wavenet = nv_wavenet.NVWaveNet(**(model.export_weights())) for files in chunker(mel_files, batch_size): mels = [] for file_path in files: print(file_path) mel = torch.load(file_path) mel = utils.to_gpu(mel) mels.append(torch.unsqueeze(mel, 0)) cond_input = model.get_cond_input(torch.cat(mels, 0)) audio_data = wavenet.infer(cond_input, implementation) for i, file_path in enumerate(files): file_name = os.path.splitext(os.path.basename(file_path))[0] audio = utils.mu_law_decode_numpy(audio_data[i,:].cpu().numpy(), wavenet.A) audio = utils.MAX_WAV_VALUE * audio wavdata = audio.astype('int16') write("{}/{}.wav".format(output_dir, file_name), 16000, wavdata) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument('-f', "--filelist_path", required=True) parser.add_argument('-c', "--checkpoint_path", required=True) parser.add_argument('-o', "--output_dir", required=True) parser.add_argument('-b', "--batch_size", default=1) parser.add_argument('-i', "--implementation", type=str, default="persistent", help="""Which implementation of NV-WaveNet to use. Takes values of single, dual, or persistent""" ) args = parser.parse_args() if args.implementation == "auto": implementation = nv_wavenet.Impl.AUTO elif args.implementation == "single": implementation = nv_wavenet.Impl.SINGLE_BLOCK elif args.implementation == "dual": implementation = nv_wavenet.Impl.DUAL_BLOCK elif args.implementation == "persistent": implementation = nv_wavenet.Impl.PERSISTENT else: raise ValueError("implementation must be one of auto, single, dual, or persistent") main(args.filelist_path, args.checkpoint_path, args.output_dir, args.batch_size, implementation)
nv-wavenet-master
pytorch/inference.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** """ Generating pairs of mel-spectrograms and original audio """ import argparse import json import os import random import torch import torch.utils.data import sys import utils # We're using the audio processing from TacoTron2 to make sure it matches sys.path.insert(0, 'tacotron2') from tacotron2.layers import TacotronSTFT class Mel2SampOnehot(torch.utils.data.Dataset): """ This is the main class that calculates the spectrogram and returns the spectrogram, audio pair. """ def __init__(self, training_files, segment_length, mu_quantization, filter_length, hop_length, win_length, sampling_rate): audio_files = utils.files_to_list(training_files) self.audio_files = audio_files random.seed(1234) random.shuffle(self.audio_files) self.stft = TacotronSTFT(filter_length=filter_length, hop_length=hop_length, win_length=win_length, sampling_rate=sampling_rate) self.segment_length = segment_length self.mu_quantization = mu_quantization self.sampling_rate = sampling_rate def get_mel(self, audio): audio_norm = audio / utils.MAX_WAV_VALUE audio_norm = audio_norm.unsqueeze(0) audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False) melspec = self.stft.mel_spectrogram(audio_norm) melspec = torch.squeeze(melspec, 0) return melspec def __getitem__(self, index): # Read audio filename = self.audio_files[index] audio, sampling_rate = utils.load_wav_to_torch(filename) if sampling_rate != self.sampling_rate: raise ValueError("{} SR doesn't match target {} SR".format( sampling_rate, self.sampling_rate)) # Take segment if audio.size(0) >= self.segment_length: max_audio_start = audio.size(0) - self.segment_length audio_start = random.randint(0, max_audio_start) audio = audio[audio_start:audio_start+self.segment_length] else: audio = torch.nn.functional.pad(audio, (0, self.segment_length - audio.size(0)), 'constant').data mel = self.get_mel(audio) audio = utils.mu_law_encode(audio / utils.MAX_WAV_VALUE, self.mu_quantization) return (mel, audio) def __len__(self): return len(self.audio_files) if __name__ == "__main__": """ Turns audio files into mel-spectrogram representations for inference Uses the data portion of the config for audio processing parameters, but ignores training files and segment lengths. """ parser = argparse.ArgumentParser() parser.add_argument('-a', "--audio_list", required=True, type=str, help='File containing list of wavefiles') parser.add_argument('-o', "--output_dir", required=True, type=str, help='Directory to put Mel-Spectrogram Tensors') parser.add_argument('-c', '--config', type=str, help='JSON file for configuration') args = parser.parse_args() filepaths = utils.files_to_list(args.audio_list) # Make directory if it doesn't exist if not os.path.isdir(args.output_dir): os.makedirs(args.output_dir) os.chmod(args.output_dir, 0o775) # Parse config. Only using data processing with open(args.config) as f: data = f.read() config = json.loads(data) data_config = config["data_config"] mel_factory = Mel2SampOnehot(**data_config) for filepath in filepaths: audio, sampling_rate = utils.load_wav_to_torch(filepath) assert(sampling_rate == mel_factory.sampling_rate) melspectrogram = mel_factory.get_mel(audio) filename = os.path.basename(filepath) new_filepath = args.output_dir + '/' + filename + '.pt' print(new_filepath) torch.save(melspectrogram, new_filepath)
nv-wavenet-master
pytorch/mel2samp_onehot.py
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ***************************************************************************** """ Tests that the NV-WaveNet class is producing audio """ import torch from scipy.io.wavfile import write import nv_wavenet from wavenet import WaveNet import utils import json if __name__ == '__main__': config = json.loads(open('config.json').read()) wavenet_config = config["wavenet_config"] model = WaveNet(**wavenet_config).cuda() weights = model.export_weights() wavenet = nv_wavenet.NVWaveNet(**weights) num_samples = 10*1000 batch_size = config['train_config']['batch_size'] cond_input = torch.zeros([2 * wavenet_config['n_residual_channels'], batch_size, wavenet_config['n_layers'], num_samples]).cuda() samples = wavenet.infer(cond_input, nv_wavenet.Impl.PERSISTENT)[0] audio = utils.mu_law_decode_numpy(samples.cpu().numpy(), 256) audio = utils.MAX_WAV_VALUE * audio wavdata = audio.astype('int16') write('audio.wav',16000, wavdata)
nv-wavenet-master
pytorch/integration_test.py
# Copyright (c) 2020-2022, NVIDIA CORPORATION. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. from setuptools import setup classifiers = ['Operating System :: POSIX :: Linux', 'License :: OSI Approved :: MIT License', 'Intended Audience :: Developers', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Topic :: Software Development', 'Topic :: System :: Hardware'] setup(name = 'Jetson.GPIO', version = '2.1.3', author = 'NVIDIA', author_email = 'linux-tegra-bugs@nvidia.com', description = 'A module to control Jetson GPIO channels', long_description = open('README.md').read(), long_description_content_type = 'text/markdown', license = 'MIT', keywords = 'Jetson GPIO', url = 'https://github.com/NVIDIA/jetson-gpio', classifiers = classifiers, package_dir = {'': 'lib/python/'}, packages = ['Jetson', 'Jetson.GPIO', 'RPi', 'RPi.GPIO'], package_data = {'Jetson.GPIO': ['99-gpio.rules',]}, include_package_data = True, )
jetson-gpio-master
setup.py
#!/usr/bin/env python # Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved. # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. from __future__ import print_function import threading import time import warnings import RPi.GPIO as GPIO # If a board has PWM support, the PWM tests expect 'out_a' to be PWM-capable. pin_datas = { 'JETSON_ORIN_NANO': { # Pre-test configuration, if boot-time pinmux doesn't set up PWM pins: # Set BOARD pin 15 as mux function PWM: # busybox devmem 0x02440020 32 0x400 # Set BOARD pin 33 as mux function PWM: # busybox devmem 0x02434040 32 0x401 # Board mode pins 'out_a': 33, 'in_a': 19, 'out_b': 11, 'in_b': 13, 'unimplemented_pins': (), # Other pin modes: 'cvm_pin': 'GPIO09', 'tegra_soc_pin': 'GP167', 'all_pwms': (15, 33), }, 'JETSON_ORIN_NX': { # Pre-test configuration, if boot-time pinmux doesn't set up PWM pins: # Set BOARD pin 15 as mux function PWM: # busybox devmem 0x02440020 32 0x400 # Set BOARD pin 33 as mux function PWM: # busybox devmem 0x02434040 32 0x401 # Board mode pins 'out_a': 33, 'in_a': 19, 'out_b': 11, 'in_b': 13, 'unimplemented_pins': (), # Other pin modes: 'cvm_pin': 'GPIO09', 'tegra_soc_pin': 'GP167', 'all_pwms': (15, 33), }, 'JETSON_ORIN': { # Pre-test configuration, if boot-time pinmux doesn't set up PWM pins: # Set BOARD pin 15 as mux function PWM: # busybox devmem 0x02440020 32 0x400 # Set BOARD pin 18 as mux function PWM: # busybox devmem 0x02434040 32 0x401 # Board mode pins 'out_a': 18, 'in_a': 19, 'out_b': 11, 'in_b': 13, 'unimplemented_pins': (), # Other pin modes: 'cvm_pin': 'MCLK05', 'tegra_soc_pin': 'GP66', 'all_pwms': (15, 18), }, 'JETSON_XAVIER': { # Pre-test configuration, if boot-time pinmux doesn't set up PWM pins: # Set BOARD pin 18 as mux function PWM: # busybox devmem 0x2434090 32 0x401 # Board mode pins 'out_a': 18, 'in_a': 19, 'out_b': 21, 'in_b': 22, 'unimplemented_pins': (), # Other pin modes: 'cvm_pin': 'MCLK05', 'tegra_soc_pin': 'SOC_GPIO42', 'all_pwms': (13, 15, 18), }, 'JETSON_TX2': { # Board mode pins 'out_a': 18, 'in_a': 19, 'out_b': 21, 'in_b': 22, 'unimplemented_pins': (26,), # Other pin modes: 'cvm_pin': 'AUDIO_MCLK', 'tegra_soc_pin': 'AUD_MCLK', }, 'JETSON_TX1': { # Board mode pins 'out_a': 18, 'in_a': 19, 'out_b': 21, 'in_b': 22, 'unimplemented_pins': (), # Other pin modes: 'cvm_pin': 'AUDIO_MCLK', 'tegra_soc_pin': 'AUD_MCLK', }, 'JETSON_NANO': { # Pre-test configuration, if boot-time pinmux doesn't set up PWM pins: # Set BOARD pin 32 as mux function PWM (set bits 1:0 to 1 not 3): # sudo busybox devmem 0x700031fc 32 0x45 # Set BOARD pin 32 as SFIO (clear bit 0): # sudo busybox devmem 0x6000d504 32 0x2 # Board mode pins 'out_a': 32, 'in_a': 31, 'out_b': 29, 'in_b': 26, 'unimplemented_pins': (), # Other pin modes: 'cvm_pin': 'GPIO9', 'tegra_soc_pin': 'AUD_MCLK', 'all_pwms': (32, 33), }, 'JETSON_NX': { # Pre-test configuration, if boot-time pinmux doesn't set up PWM pins: # Set BOARD pin 32 as mux function PWM (func 1): # busybox devmem 0x2430040 32 0x401 # Set BOARD pin 33 as mux function PWM (func 2): # busybox devmem 0x2440020 32 0x402 # Board mode pins 'out_a': 32, 'in_a': 31, 'out_b': 29, 'in_b': 26, 'unimplemented_pins': (), # Other pin modes: 'cvm_pin': 'GPIO09', 'tegra_soc_pin': 'AUD_MCLK', 'all_pwms': (15, 32, 33), }, 'CLARA_AGX_XAVIER': { # Pre-test configuration, if boot-time pinmux doesn't set up PWM pins: # Set BOARD pin 18 as mux function PWM: # busybox devmem 0x2434090 32 0x401 # Board mode pins 'out_a': 18, 'in_a': 19, 'out_b': 21, 'in_b': 22, 'unimplemented_pins': (), # Other pin modes: 'cvm_pin': 'MCLK05', 'tegra_soc_pin': 'SOC_GPIO42', 'all_pwms': (15, 18), }, 'JETSON_TX2_NX': { # Pre-test configuration, if boot-time pinmux doesn't set up PWM pins: # Set BOARD pin 33 as mux function PWM (func 1): # busybox devmem 0x0c3010a8 32 0x401 # Set BOARD pin 32 as mux function PWM (func 2): # busybox devmem 0x0c301080 32 0x401 # Board mode pins 'out_a': 32, 'in_a': 31, 'out_b': 29, 'in_b': 26, 'unimplemented_pins': (), # Other pin modes: 'cvm_pin': 'GPIO09', 'tegra_soc_pin': 'AUD_MCLK', 'all_pwms': (32, 33), }, } pin_data = pin_datas.get(GPIO.model) # Board mode all_board_pins = (7, 11, 12, 13, 15, 16, 18, 19, 21, 22, 23, 24, 26, 29, 31, 32, 33, 35, 36, 37, 38, 40,) bcm_pin = 4 tests = [] def test(f): tests.append(f) return f def pwmtest(f): if pin_data.get('all_pwms', None): tests.append(f) return f # Tests of: # def setwarnings(state): @test def test_warnings_off(): GPIO.setwarnings(False) with warnings.catch_warnings(record=True) as w: # cleanup() warns if no GPIOs were set up GPIO.cleanup() if len(w): raise Exception("Unexpected warning occured") @test def test_warnings_on(): GPIO.setwarnings(True) with warnings.catch_warnings(record=True) as w: # cleanup() warns if no GPIOs were set up GPIO.cleanup() if not len(w): raise Exception("Expected warning did not occur") # Tests of: # def setmode(mode): # def getmode(): # def setup(channels, direction, pull_up_down=PUD_OFF, initial=None): @test def test_setup_one_board(): GPIO.setmode(GPIO.BOARD) assert GPIO.getmode() == GPIO.BOARD GPIO.setup(pin_data['in_a'], GPIO.IN) GPIO.cleanup() assert GPIO.getmode() is None @test def test_setup_one_bcm(): GPIO.setmode(GPIO.BCM) assert GPIO.getmode() == GPIO.BCM GPIO.setup(bcm_pin, GPIO.IN) GPIO.cleanup() assert GPIO.getmode() is None @test def test_setup_one_cvm(): GPIO.setmode(GPIO.CVM) assert GPIO.getmode() == GPIO.CVM GPIO.setup(pin_data['cvm_pin'], GPIO.IN) GPIO.cleanup() assert GPIO.getmode() is None @test def test_setup_one_tegra_soc(): GPIO.setmode(GPIO.TEGRA_SOC) assert GPIO.getmode() == GPIO.TEGRA_SOC GPIO.setup(pin_data['tegra_soc_pin'], GPIO.IN) GPIO.cleanup() assert GPIO.getmode() is None @test def test_setup_twice(): GPIO.setmode(GPIO.BOARD) GPIO.setup(pin_data['out_a'], GPIO.OUT, initial=GPIO.HIGH) GPIO.setup(pin_data['out_a'], GPIO.OUT, initial=GPIO.HIGH) GPIO.setup(pin_data['in_a'], GPIO.IN) GPIO.setup(pin_data['in_a'], GPIO.IN) val = GPIO.input(pin_data['in_a']) assert(val == GPIO.HIGH) GPIO.cleanup() @test def test_setup_one_out_no_init(): GPIO.setmode(GPIO.BOARD) GPIO.setup(pin_data['out_a'], GPIO.OUT) GPIO.cleanup() @test def test_setup_one_out_high(): GPIO.setmode(GPIO.BOARD) GPIO.setup(pin_data['out_a'], GPIO.OUT, initial=GPIO.HIGH) GPIO.cleanup() @test def test_setup_one_out_low(): GPIO.setmode(GPIO.BOARD) GPIO.setup(pin_data['out_a'], GPIO.OUT, initial=GPIO.LOW) GPIO.cleanup() @test def test_setup_many_out_no_init(): GPIO.setmode(GPIO.BOARD) GPIO.setup((pin_data['out_a'], pin_data['out_b']), GPIO.OUT) GPIO.cleanup() @test def test_setup_many_out_one_init(): GPIO.setmode(GPIO.BOARD) GPIO.setup((pin_data['out_a'], pin_data['out_b']), GPIO.OUT, initial=GPIO.HIGH) GPIO.cleanup() @test def test_setup_many_out_many_init(): GPIO.setmode(GPIO.BOARD) GPIO.setup((pin_data['out_a'], pin_data['out_b']), GPIO.OUT, initial=(GPIO.HIGH, GPIO.HIGH)) GPIO.cleanup() @test def test_setup_one_in(): GPIO.setmode(GPIO.BOARD) GPIO.setup(pin_data['in_a'], GPIO.IN) GPIO.cleanup() @test def test_setup_one_in_pull(): GPIO.setmode(GPIO.BOARD) GPIO.setup(pin_data['in_a'], GPIO.IN, GPIO.PUD_OFF) GPIO.cleanup() @test def test_setup_many_in(): GPIO.setmode(GPIO.BOARD) GPIO.setup((pin_data['in_a'], pin_data['in_b']), GPIO.IN) GPIO.cleanup() @test def test_setup_all(): GPIO.setmode(GPIO.BOARD) for pin in all_board_pins: if pin in pin_data['unimplemented_pins']: continue GPIO.setup(pin, GPIO.IN) GPIO.cleanup() # Tests of: # def cleanup(channel=None): # def getmode(): @test def test_cleanup_one(): GPIO.setmode(GPIO.BOARD) GPIO.setup(pin_data['in_a'], GPIO.IN) GPIO.cleanup(pin_data['in_a']) assert GPIO.getmode() == GPIO.BOARD GPIO.cleanup() assert GPIO.getmode() is None @test def test_cleanup_many(): GPIO.setmode(GPIO.BOARD) GPIO.setup((pin_data['in_a'], pin_data['in_b']), GPIO.IN) GPIO.cleanup((pin_data['in_a'], pin_data['in_b'])) assert GPIO.getmode() == GPIO.BOARD GPIO.cleanup() assert GPIO.getmode() is None @test def test_cleanup_all(): GPIO.setmode(GPIO.BOARD) GPIO.setup((pin_data['in_a'], pin_data['in_b']), GPIO.IN) GPIO.cleanup() assert GPIO.getmode() is None # Tests of: # def input(channel): @test def test_input(): GPIO.setmode(GPIO.BOARD) GPIO.setup(pin_data['in_a'], GPIO.IN) GPIO.input(pin_data['in_a']) GPIO.cleanup() # Tests of: # def output(channels, values): @test def test_output_one(): GPIO.setmode(GPIO.BOARD) GPIO.setup(pin_data['out_a'], GPIO.OUT) GPIO.output(pin_data['out_a'], GPIO.HIGH) GPIO.output(pin_data['out_a'], GPIO.LOW) GPIO.cleanup() @test def test_output_many_one_value(): GPIO.setmode(GPIO.BOARD) GPIO.setup((pin_data['out_a'], pin_data['out_b']), GPIO.OUT) GPIO.output((pin_data['out_a'], pin_data['out_b']), GPIO.HIGH) GPIO.output((pin_data['out_a'], pin_data['out_b']), GPIO.LOW) GPIO.cleanup() @test def test_output_many_many_value(): GPIO.setmode(GPIO.BOARD) GPIO.setup((pin_data['out_a'], pin_data['out_b']), GPIO.OUT) GPIO.output((pin_data['out_a'], pin_data['out_b']), (GPIO.HIGH, GPIO.LOW)) GPIO.output((pin_data['out_a'], pin_data['out_b']), (GPIO.LOW, GPIO.HIGH)) GPIO.cleanup() # Tests of combined (looped back) output/input @test def test_out_in_init_high(): GPIO.setmode(GPIO.BOARD) GPIO.setup(pin_data['out_a'], GPIO.OUT, initial=GPIO.HIGH) GPIO.setup(pin_data['in_a'], GPIO.IN) val = GPIO.input(pin_data['in_a']) assert(val == GPIO.HIGH) GPIO.output(pin_data['out_a'], GPIO.LOW) val = GPIO.input(pin_data['in_a']) assert(val == GPIO.LOW) GPIO.output(pin_data['out_a'], GPIO.HIGH) val = GPIO.input(pin_data['in_a']) assert(val == GPIO.HIGH) GPIO.cleanup() @test def test_out_in_init_low(): GPIO.setmode(GPIO.BOARD) GPIO.setup(pin_data['out_a'], GPIO.OUT, initial=GPIO.LOW) GPIO.setup(pin_data['in_a'], GPIO.IN) val = GPIO.input(pin_data['in_a']) assert(val == GPIO.LOW) GPIO.output(pin_data['out_a'], GPIO.HIGH) val = GPIO.input(pin_data['in_a']) assert(val == GPIO.HIGH) GPIO.output(pin_data['out_a'], GPIO.LOW) val = GPIO.input(pin_data['in_a']) assert(val == GPIO.LOW) GPIO.cleanup() # Tests of: # def gpio_function(channel): @test def test_gpio_function_unexported(): GPIO.setmode(GPIO.BOARD) val = GPIO.gpio_function(pin_data['in_a']) assert val == GPIO.UNKNOWN GPIO.cleanup() @test def test_gpio_function_in(): GPIO.setmode(GPIO.BOARD) GPIO.setup(pin_data['in_a'], GPIO.IN) val = GPIO.gpio_function(pin_data['in_a']) assert val == GPIO.IN GPIO.cleanup() @test def test_gpio_function_out(): GPIO.setmode(GPIO.BOARD) GPIO.setup(pin_data['out_a'], GPIO.OUT) val = GPIO.gpio_function(pin_data['out_a']) assert val == GPIO.OUT GPIO.cleanup() # Tests of: # def wait_for_edge(channel, edge, bouncetime=None, timeout=None): @test def test_wait_for_edge_timeout(): GPIO.setmode(GPIO.BOARD) GPIO.setup(pin_data['out_a'], GPIO.OUT, initial=GPIO.LOW) GPIO.setup(pin_data['in_a'], GPIO.IN) val = GPIO.wait_for_edge(pin_data['in_a'], GPIO.BOTH, timeout=100) assert val is None GPIO.cleanup() class DelayedSetChannel(threading.Thread): def __init__(self, channel, value, delay): super(DelayedSetChannel, self).__init__() self.channel = channel self.value = value self.delay = delay def run(self): time.sleep(self.delay) GPIO.output(self.channel, self.value) @test def test_wait_for_edge_rising(): GPIO.setmode(GPIO.BOARD) GPIO.setup(pin_data['out_a'], GPIO.OUT, initial=GPIO.LOW) GPIO.setup(pin_data['in_a'], GPIO.IN) dsc = DelayedSetChannel(pin_data['out_a'], GPIO.HIGH, 0.5) dsc.start() val = GPIO.wait_for_edge(pin_data['in_a'], GPIO.RISING, timeout=1000) dsc.join() assert val == pin_data['in_a'] GPIO.cleanup() @test def test_wait_for_edge_falling(): GPIO.setmode(GPIO.BOARD) GPIO.setup(pin_data['out_a'], GPIO.OUT, initial=GPIO.HIGH) GPIO.setup(pin_data['in_a'], GPIO.IN) dsc = DelayedSetChannel(pin_data['out_a'], GPIO.LOW, 0.5) dsc.start() val = GPIO.wait_for_edge(pin_data['in_a'], GPIO.FALLING, timeout=1000) dsc.join() assert val == pin_data['in_a'] GPIO.cleanup() # Tests of: # def add_event_detect(channel, edge, callback=None, bouncetime=None): # def event_detected(channel): # def add_event_callback(channel, callback): # def remove_event_detect(channel): def _test_events(init, edge, tests, specify_callback, use_add_callback): global event_callback_occurred event_callback_occurred = False # This is set as 0.5 sec delay because default remove event time is 0.5 time.sleep(0.5) GPIO.setmode(GPIO.BOARD) GPIO.setup(pin_data['out_a'], GPIO.OUT, initial=init) GPIO.setup(pin_data['in_a'], GPIO.IN) def callback(channel): global event_callback_occurred if channel != pin_data['in_a']: return event_callback_occurred = True def get_saw_event(): global event_callback_occurred if specify_callback or use_add_callback: val = event_callback_occurred event_callback_occurred = False return val else: return GPIO.event_detected(pin_data['in_a']) if specify_callback: args = {'callback': callback, 'polltime': 0.2} else: args = {'polltime': 0.2} # After every pin state change, it is suggested to leave a time for the # pin to setup itself. Here, we are using 0.2 seconds to make sure the pin # state is stabilize. (Same reason as the following wait time after setting # the output pin) time.sleep(0.2) # By default, the poll time is also 0.2 seconds. the poll time should be set # to a large enough number to ensure the efficiency of thread, but also small # enough so that it can respond to the event removal as fast as possible. GPIO.add_event_detect(pin_data['in_a'], edge, **args) if use_add_callback: GPIO.add_event_callback(pin_data['in_a'], callback) assert not get_saw_event() for output, event_expected in tests: GPIO.output(pin_data['out_a'], output) time.sleep(0.2) assert get_saw_event() == event_expected assert not get_saw_event() # By default, the timeout for removal is also 0.5 seconds # The removal time should always be longer than the polltime, and it is # suggested to be two times greater. Thus, in this example, as the poll # time is set to 0.2, the timeout must be greater than 0.4. GPIO.remove_event_detect(pin_data['in_a'], timeout=0.5) GPIO.cleanup() @test def test_event_detected_falling(): _test_events( GPIO.HIGH, GPIO.FALLING, ( (GPIO.LOW, True), (GPIO.HIGH, False), (GPIO.LOW, True), (GPIO.HIGH, False), ), False, False ) _test_events( GPIO.LOW, GPIO.FALLING, ( (GPIO.HIGH, False), (GPIO.LOW, True), (GPIO.HIGH, False), (GPIO.LOW, True), ), True, False ) @test def test_event_detected_rising(): _test_events( GPIO.HIGH, GPIO.RISING, ( (GPIO.LOW, False), (GPIO.HIGH, True), (GPIO.LOW, False), (GPIO.HIGH, True), ), False, False ) _test_events( GPIO.LOW, GPIO.RISING, ( (GPIO.HIGH, True), (GPIO.LOW, False), (GPIO.HIGH, True), (GPIO.LOW, False), ), True, False ) @test def test_event_detected_both(): _test_events( GPIO.HIGH, GPIO.BOTH, ( (GPIO.LOW, True), (GPIO.HIGH, True), (GPIO.LOW, True), (GPIO.HIGH, True), ), False, False ) _test_events( GPIO.LOW, GPIO.BOTH, ( (GPIO.HIGH, True), (GPIO.LOW, True), (GPIO.HIGH, True), (GPIO.LOW, True), ), False, True ) # Tests of multiple: # def add_event_callback(channel, callback): def _test_callbacks(init, edge, tests, specify_callback, use_add_callback): global event_callback_occurred global event_callback_occurred_2 event_callback_occurred = False event_callback_occurred_2 = False # This is set as 0.5 sec delay because default remove event time is 0.5 time.sleep(0.5) GPIO.setmode(GPIO.BOARD) GPIO.setup(pin_data['out_a'], GPIO.OUT, initial=init) GPIO.setup(pin_data['in_a'], GPIO.IN) def callback(channel): global event_callback_occurred if channel != pin_data['in_a']: return event_callback_occurred = True def callback2(channel): global event_callback_occurred_2 if channel != pin_data['in_a']: return event_callback_occurred_2 = True # return true if every event has been detected def get_saw_event(): global event_callback_occurred global event_callback_occurred_2 if specify_callback: val = event_callback_occurred event_callback_occurred = False return val elif use_add_callback: val = event_callback_occurred and event_callback_occurred_2 event_callback_occurred = False event_callback_occurred_2 = False return val else: return GPIO.event_detected(pin_data['in_a']) # return true if every event has not been detected # if any one event occurs, it will return false def not_get_saw_event(): global event_callback_occurred global event_callback_occurred_2 if specify_callback: val = event_callback_occurred event_callback_occurred = False return not val elif use_add_callback: val = event_callback_occurred or event_callback_occurred_2 event_callback_occurred = False event_callback_occurred_2 = False return not val else: return not GPIO.event_detected(pin_data['in_a']) if specify_callback: args = {'callback': callback, 'polltime': 0.2} else: args = {'polltime': 0.2} time.sleep(0.2) GPIO.add_event_detect(pin_data['in_a'], edge, **args) if use_add_callback: # adding double callback functions GPIO.add_event_callback(pin_data['in_a'], callback) GPIO.add_event_callback(pin_data['in_a'], callback2) assert not_get_saw_event() for output, event_expected in tests: GPIO.output(pin_data['out_a'], output) time.sleep(0.2) assert get_saw_event() == event_expected assert not_get_saw_event() GPIO.remove_event_detect(pin_data['in_a'], timeout=0.5) GPIO.cleanup() @test def test_event_callbacks(): _test_callbacks( GPIO.HIGH, GPIO.FALLING, ( (GPIO.LOW, True), (GPIO.HIGH, False), (GPIO.LOW, True), (GPIO.HIGH, False), ), False, True ) _test_callbacks( GPIO.LOW, GPIO.FALLING, ( (GPIO.HIGH, False), (GPIO.LOW, True), (GPIO.HIGH, False), (GPIO.LOW, True), ), True, False ) _test_callbacks( GPIO.LOW, GPIO.FALLING, ( (GPIO.HIGH, False), (GPIO.LOW, True), (GPIO.HIGH, False), (GPIO.LOW, True), ), False, True ) # Tests of multiple events at a time: def _test_multi_events(init_a, edge_a, tests_a, init_b, edge_b, tests_b, specify_callback): event_dict = { 'series_a': {'in_pin_name': 'in_a', 'out_pin_name': 'out_a', 'event_callback_occurred': False, 'init': init_a, 'edge': edge_a, 'tests': tests_a}, 'series_b': {'in_pin_name': 'in_b', 'out_pin_name': 'out_b', 'event_callback_occurred': False, 'init': init_b, 'edge': edge_b, 'tests': tests_b}} test_number = len(tests_a) # internal functions def callback(channel): for pin_series in event_dict.keys(): input_pin_name = event_dict[pin_series]['in_pin_name'] if channel == pin_data[input_pin_name]: event_dict[pin_series]['event_callback_occurred'] = True return def get_saw_event(series_name): if specify_callback: val = event_dict[series_name]['event_callback_occurred'] event_dict[series_name]['event_callback_occurred'] = False return val else: pin_name = event_dict[series_name]['in_pin_name'] return GPIO.event_detected(pin_data[pin_name]) # setup time.sleep(0.5) GPIO.setmode(GPIO.BOARD) for pin_series in event_dict.keys(): input_pin_name = event_dict[pin_series]['in_pin_name'] output_pin_name = event_dict[pin_series]['out_pin_name'] GPIO.setup(pin_data[output_pin_name], GPIO.OUT, initial=event_dict[pin_series]['init']) GPIO.setup(pin_data[input_pin_name], GPIO.IN) if specify_callback: args = {'callback': callback, 'polltime': 0.2} else: args = {'polltime': 0.2} time.sleep(0.2) GPIO.add_event_detect(pin_data[input_pin_name], event_dict[pin_series]['edge'], **args) assert not get_saw_event(pin_series) # test edges index=0 while index < test_number: for pin_series in event_dict.keys(): output_pin_name = event_dict[pin_series]['out_pin_name'] input_pin_name = event_dict[pin_series]['in_pin_name'] pin_tests = event_dict[pin_series]['tests'] output, event_expected = pin_tests[index] GPIO.output(pin_data[output_pin_name], output) time.sleep(0.2) assert get_saw_event(pin_series) == event_expected assert not get_saw_event(pin_series) index += 1 # cleanup for pin_series in event_dict.keys(): input_pin_name = event_dict[pin_series]['in_pin_name'] GPIO.remove_event_detect(pin_data[input_pin_name], timeout=0.5) GPIO.cleanup() @test def test_multi_events_detected_diff_edge(): _test_multi_events( # series a GPIO.HIGH, GPIO.FALLING, ( (GPIO.LOW, True), (GPIO.HIGH, False), (GPIO.LOW, True), (GPIO.HIGH, False), ), # series b GPIO.HIGH, GPIO.RISING, ( (GPIO.LOW, False), (GPIO.HIGH, True), (GPIO.LOW, False), (GPIO.HIGH, True), ), False ) _test_multi_events( GPIO.LOW, GPIO.FALLING, ( (GPIO.HIGH, False), (GPIO.LOW, True), (GPIO.HIGH, False), (GPIO.LOW, True), ), GPIO.LOW, GPIO.RISING, ( (GPIO.HIGH, True), (GPIO.LOW, False), (GPIO.HIGH, True), (GPIO.LOW, False), ), True ) @test def test_multi_events_detected_same_edge(): _test_multi_events( # series a GPIO.HIGH, GPIO.FALLING, ( (GPIO.LOW, True), (GPIO.HIGH, False), (GPIO.LOW, True), (GPIO.HIGH, False), ), # series b GPIO.HIGH, GPIO.FALLING, ( (GPIO.LOW, True), (GPIO.HIGH, False), (GPIO.LOW, True), (GPIO.HIGH, False), ), False ) _test_multi_events( GPIO.LOW, GPIO.FALLING, ( (GPIO.HIGH, False), (GPIO.LOW, True), (GPIO.HIGH, False), (GPIO.LOW, True), ), GPIO.HIGH, GPIO.FALLING, ( (GPIO.LOW, True), (GPIO.HIGH, False), (GPIO.LOW, True), (GPIO.HIGH, False), ), True ) # Tests of class PWM @pwmtest def test_pwm_multi_duty(): for pct in (25, 50, 75): GPIO.setmode(GPIO.BOARD) GPIO.setup(pin_data['in_a'], GPIO.IN) GPIO.setup(pin_data['out_a'], GPIO.OUT, initial=GPIO.HIGH) p = GPIO.PWM(pin_data['out_a'], 500) p.start(pct) count = 0 for i in range(1000): count += GPIO.input(pin_data['in_a']) p.stop() del p min_ct = 10 * (pct - 5) max_ct = 10 * (pct + 5) assert min_ct <= count <= max_ct GPIO.cleanup() @pwmtest def test_pwm_change_frequency(): GPIO.setmode(GPIO.BOARD) GPIO.setup(pin_data['out_a'], GPIO.OUT, initial=GPIO.HIGH) p = GPIO.PWM(pin_data['out_a'], 500) p.start(50) p.ChangeFrequency(550) p.stop() del p GPIO.cleanup() @pwmtest def test_pwm_change_duty_cycle(): GPIO.setmode(GPIO.BOARD) GPIO.setup(pin_data['out_a'], GPIO.OUT, initial=GPIO.HIGH) p = GPIO.PWM(pin_data['out_a'], 500) p.start(50) p.ChangeDutyCycle(60) p.stop() del p GPIO.cleanup() @pwmtest def test_pwm_cleanup_none(): GPIO.setmode(GPIO.BOARD) GPIO.setup(pin_data['out_a'], GPIO.OUT, initial=GPIO.HIGH) p = GPIO.PWM(pin_data['out_a'], 500) p.start(50) GPIO.cleanup() @pwmtest def test_pwm_cleanup_stop(): GPIO.setmode(GPIO.BOARD) GPIO.setup(pin_data['out_a'], GPIO.OUT, initial=GPIO.HIGH) p = GPIO.PWM(pin_data['out_a'], 500) p.start(50) p.stop() GPIO.cleanup() @pwmtest def test_pwm_cleanup_del(): GPIO.setmode(GPIO.BOARD) GPIO.setup(pin_data['out_a'], GPIO.OUT, initial=GPIO.HIGH) p = GPIO.PWM(pin_data['out_a'], 500) p.start(50) del p GPIO.cleanup() @pwmtest def test_pwm_create_all(): for pin in pin_data['all_pwms']: GPIO.setmode(GPIO.BOARD) GPIO.setup(pin, GPIO.OUT, initial=GPIO.HIGH) p = GPIO.PWM(pin, 500) p.start(50) p.stop() GPIO.cleanup() # Main script if __name__ == '__main__': for test in tests: print('Testing', test.__name__) try: test() except: # This isn't a finally block, since we don't want to repeat the # cleanup() call that a successful test already made. GPIO.cleanup() raise
jetson-gpio-master
samples/test_all_apis.py
#!/usr/bin/env python # Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. import RPi.GPIO as GPIO import time # Pin Definitions input_pin = 18 # BCM pin 18, BOARD pin 12 def main(): prev_value = None # Pin Setup: GPIO.setmode(GPIO.BCM) # BCM pin-numbering scheme from Raspberry Pi GPIO.setup(input_pin, GPIO.IN) # set pin as an input pin print("Starting demo now! Press CTRL+C to exit") try: while True: value = GPIO.input(input_pin) if value != prev_value: if value == GPIO.HIGH: value_str = "HIGH" else: value_str = "LOW" print("Value read from pin {} : {}".format(input_pin, value_str)) prev_value = value time.sleep(1) finally: GPIO.cleanup() if __name__ == '__main__': main()
jetson-gpio-master
samples/simple_input.py
#!/usr/bin/env python # Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. from __future__ import print_function import sys import RPi.GPIO as GPIO pin_datas = { 'JETSON_XAVIER': { 'unimplemented': (), }, 'JETSON_TX2': { 'unimplemented': (26, ), }, 'JETSON_TX1': { 'unimplemented': (), }, 'JETSON_NANO': { 'unimplemented': (), }, 'JETSON_NX': { 'unimplemented': (), }, 'CLARA_AGX_XAVIER': { 'unimplemented': (), }, 'JETSON_TX2_NX': { 'unimplemented': (), }, 'JETSON_ORIN': { 'unimplemented': (), }, 'JETSON_ORIN_NX': { 'unimplemented': (), }, 'JETSON_ORIN_NANO': { 'unimplemented': (), }, } pin_data = pin_datas.get(GPIO.model) all_pins = (7, 11, 12, 13, 15, 16, 18, 19, 21, 22, 23, 24, 26, 29, 31, 32, 33, 35, 36, 37, 38, 40,) if len(sys.argv) > 1: all_pins = map(int, sys.argv[1:]) for pin in all_pins: if pin in pin_data['unimplemented']: print("Pin %d unimplemented; skipping" % pin) continue GPIO.setmode(GPIO.BOARD) GPIO.setup(pin, GPIO.IN) value = GPIO.input(pin) print("Pin %d input value %d" % (pin, value)) GPIO.cleanup()
jetson-gpio-master
samples/test_all_pins_input.py
#!/usr/bin/env python # Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. import RPi.GPIO as GPIO import time output_pins = { 'JETSON_XAVIER': 18, 'JETSON_NANO': 33, 'JETSON_NX': 33, 'CLARA_AGX_XAVIER': 18, 'JETSON_TX2_NX': 32, 'JETSON_ORIN': 18, 'JETSON_ORIN_NX': 33, 'JETSON_ORIN_NANO': 33 } output_pin = output_pins.get(GPIO.model, None) if output_pin is None: raise Exception('PWM not supported on this board') def main(): # Pin Setup: # Board pin-numbering scheme GPIO.setmode(GPIO.BOARD) # set pin as an output pin with optional initial state of HIGH GPIO.setup(output_pin, GPIO.OUT, initial=GPIO.HIGH) p = GPIO.PWM(output_pin, 50) val = 25 incr = 5 p.start(val) print("PWM running. Press CTRL+C to exit.") try: while True: time.sleep(0.25) if val >= 100: incr = -incr if val <= 0: incr = -incr val += incr p.ChangeDutyCycle(val) finally: p.stop() GPIO.cleanup() if __name__ == '__main__': main()
jetson-gpio-master
samples/simple_pwm.py
#!/usr/bin/env python # Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. import RPi.GPIO as GPIO import time pin = 32 def main(): GPIO.setmode(GPIO.BOARD) GPIO.setup(pin, GPIO.OUT) for i in range(5): ts = 0.1 GPIO.output(pin, GPIO.HIGH) time.sleep(ts) GPIO.output(pin, GPIO.LOW) time.sleep(ts) GPIO.cleanup() if __name__ == '__main__': main()
jetson-gpio-master
samples/issue40-trigger.py
#!/usr/bin/env python # Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. import RPi.GPIO as GPIO import time # Pin Definitions output_pin = 18 # BCM pin 18, BOARD pin 12 def main(): # Pin Setup: GPIO.setmode(GPIO.BCM) # BCM pin-numbering scheme from Raspberry Pi # set pin as an output pin with optional initial state of HIGH GPIO.setup(output_pin, GPIO.OUT, initial=GPIO.HIGH) print("Starting demo now! Press CTRL+C to exit") curr_value = GPIO.HIGH try: while True: time.sleep(1) # Toggle the output every second print("Outputting {} to pin {}".format(curr_value, output_pin)) GPIO.output(output_pin, curr_value) curr_value ^= GPIO.HIGH finally: GPIO.cleanup() if __name__ == '__main__': main()
jetson-gpio-master
samples/simple_out.py
#!/usr/bin/env python # Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # # EXAMPLE SETUP # Connect a button to pin 18 and GND, a pull-up resistor connecting the button # to 3V3 and an LED connected to pin 12. The application performs the same # function as the button_led.py but performs a blocking wait for the button # press event instead of continuously checking the value of the pin in order to # reduce CPU usage. import RPi.GPIO as GPIO import time # Pin Definitons: led_pin = 12 # Board pin 12 but_pin = 18 # Board pin 18 def main(): # Pin Setup: GPIO.setmode(GPIO.BOARD) # BOARD pin-numbering scheme GPIO.setup(led_pin, GPIO.OUT) # LED pin set as output GPIO.setup(but_pin, GPIO.IN) # button pin set as input # Initial state for LEDs: GPIO.output(led_pin, GPIO.LOW) print("Starting demo now! Press CTRL+C to exit") try: while True: print("Waiting for button event") GPIO.wait_for_edge(but_pin, GPIO.FALLING) # event received when button pressed print("Button Pressed!") GPIO.output(led_pin, GPIO.HIGH) time.sleep(1) GPIO.output(led_pin, GPIO.LOW) finally: GPIO.cleanup() # cleanup all GPIOs if __name__ == '__main__': main()
jetson-gpio-master
samples/button_event.py
#!/usr/bin/env python # Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. import RPi.GPIO as GPIO import time # Pin Definitons: led_pin = 12 # BOARD pin 12 but_pin = 18 # BOARD pin 18 def main(): prev_value = None # Pin Setup: GPIO.setmode(GPIO.BOARD) # BOARD pin-numbering scheme GPIO.setup(led_pin, GPIO.OUT) # LED pin set as output GPIO.setup(but_pin, GPIO.IN) # Button pin set as input # Initial state for LEDs: GPIO.output(led_pin, GPIO.LOW) print("Starting demo now! Press CTRL+C to exit") try: while True: curr_value = GPIO.input(but_pin) if curr_value != prev_value: GPIO.output(led_pin, not curr_value) prev_value = curr_value print("Outputting {} to Pin {}".format(curr_value, led_pin)) time.sleep(1) finally: GPIO.cleanup() # cleanup all GPIO if __name__ == '__main__': main()
jetson-gpio-master
samples/button_led.py
# Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. import Jetson.GPIO as GPIO print(GPIO.model)
jetson-gpio-master
samples/jetson_model.py
#!/usr/bin/env python # Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. import RPi.GPIO as GPIO import time pin = 31 def on_falling(channel): print("Callback.") def main(): GPIO.setmode(GPIO.BOARD) GPIO.setup(pin, GPIO.IN) # By default, the poll time is 0.2 seconds, too GPIO.add_event_detect(pin, GPIO.FALLING, callback=on_falling, bouncetime=300, polltime=0.2) print("Starting demo now! Press CTRL+C to exit") try: while True: print("Main loop...") time.sleep(5) finally: GPIO.cleanup() if __name__ == '__main__': main()
jetson-gpio-master
samples/issue40.py
#!/usr/bin/env python # Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. import RPi.GPIO as GPIO import time # Pin Definitions: led_pin_1 = 12 led_pin_2 = 13 but_pin = 18 # blink LED 2 quickly 5 times when button pressed def blink(channel): print("Blink LED 2") for i in range(5): GPIO.output(led_pin_2, GPIO.HIGH) time.sleep(0.5) GPIO.output(led_pin_2, GPIO.LOW) time.sleep(0.5) def main(): # Pin Setup: GPIO.setmode(GPIO.BOARD) # BOARD pin-numbering scheme GPIO.setup([led_pin_1, led_pin_2], GPIO.OUT) # LED pins set as output GPIO.setup(but_pin, GPIO.IN) # button pin set as input # Initial state for LEDs: GPIO.output(led_pin_1, GPIO.LOW) GPIO.output(led_pin_2, GPIO.LOW) # By default, the poll time is 0.2 seconds, too GPIO.add_event_detect(but_pin, GPIO.FALLING, callback=blink, bouncetime=10, polltime=0.2) print("Starting demo now! Press CTRL+C to exit") try: while True: # blink LED 1 slowly GPIO.output(led_pin_1, GPIO.HIGH) time.sleep(2) GPIO.output(led_pin_1, GPIO.LOW) time.sleep(2) finally: GPIO.cleanup() # cleanup all GPIOs if __name__ == '__main__': main()
jetson-gpio-master
samples/button_interrupt.py
#!/usr/bin/env python # Copyright (c) 2019-2022, NVIDIA CORPORATION. All rights reserved. # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. from __future__ import print_function import sys import time import RPi.GPIO as GPIO pin_datas = { 'JETSON_XAVIER': { 'unimplemented': (), 'input_only': (36, ), }, 'JETSON_TX2': { 'unimplemented': (26, ), 'input_only': (16, 36, ), }, 'JETSON_TX1': { 'unimplemented': (), 'input_only': (36, ), }, 'JETSON_NANO': { 'unimplemented': (), 'input_only': (), }, 'JETSON_NX': { 'unimplemented': (), 'input_only': (), }, 'CLARA_AGX_XAVIER': { 'unimplemented': (), 'input_only': (), }, 'JETSON_TX2_NX': { 'unimplemented': (), 'input_only': (), }, 'JETSON_ORIN': { 'unimplemented': (), 'input_only': (), }, 'JETSON_ORIN_NX': { 'unimplemented': (), 'input_only': (), }, 'JETSON_ORIN_NANO': { 'unimplemented': (), 'input_only': (), }, } pin_data = pin_datas.get(GPIO.model) all_pins = (7, 11, 12, 13, 15, 16, 18, 19, 21, 22, 23, 24, 26, 29, 31, 32, 33, 35, 36, 37, 38, 40,) if len(sys.argv) > 1: all_pins = map(int, sys.argv[1:]) for pin in all_pins: if pin in pin_data['unimplemented']: print("Pin %d unimplemented; skipping" % pin) continue if pin in pin_data['input_only']: print("Pin %d input-only; skipping" % pin) continue print("Testing pin %d as OUTPUT; CTRL-C to test next pin" % pin) try: GPIO.setmode(GPIO.BOARD) GPIO.setup(pin, GPIO.OUT) while True: GPIO.output(pin, GPIO.HIGH) time.sleep(0.25) GPIO.output(pin, GPIO.LOW) time.sleep(0.25) except KeyboardInterrupt: pass finally: GPIO.cleanup()
jetson-gpio-master
samples/test_all_pins.py
jetson-gpio-master
lib/python/RPi/__init__.py
from Jetson.GPIO import * VERSION = '0.1.0'
jetson-gpio-master
lib/python/RPi/GPIO/__init__.py
jetson-gpio-master
lib/python/Jetson/__init__.py
# Copyright (c) 2012-2017 Ben Croston <ben@croston.org>. # Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # @File name: gpio_event.py # @Date: # @Last modified by: # @Last Modified time: 6/20/2023 # @Description: This file manages all function needed for event detection # that enables users to add or remove an event in a blocking or non-blocking # mode. It keeps an global event dictionary that supports looking up a # channel's registered event. # @Note: Ideas for multiple channel detection # 1. polling for maxevents should not be specified # 2. Each thread should not share epoll instance # Python2 has module thread. Renamed to _thread in Python3 try: import thread except: import _thread as thread import os import warnings import fcntl import select import ctypes import time from Jetson.GPIO import gpio_cdev as cdev from datetime import datetime try: InterruptedError = InterruptedError except: InterruptedError = IOError # Edge possibilities NO_EDGE = 0 RISING_EDGE = 1 FALLING_EDGE = 2 BOTH_EDGE = 3 # Dictionary storing the epoll thread object # Key: channel (pin number), Value: Epoll object _epoll_fd_thread = {} # epoll blocking wait object _epoll_fd_blocking = None # 2-layered dictionary of GPIO class objects. # layer 1 key = chip name, layer 2 key = channel (pin number by mode) # value = GPIO class object _gpio_event_list = {} # Dictionary for thread to lookup to check its supposed state # Key: thread id, Value: true if it is supposed to be running state, otherwise false _thread_running_dict = {} # lock object for thread _mutex = thread.allocate_lock() class _Gpios: # @value_fd the file descriptor for the chip line # @initial_thread true if the thread just start up (within the first loop) # @thread_added the number of threads being added to monitor this object/gpio # @thread_id the id of the thread being created to detect event # @bouncetime the time interval for debouncing # @callbacks a list of callback functions to be executed when an edge event happened # @lastcall the timestamp for counting debounce # @event_occurred true if an edge event occured def __init__(self, line_fd, bouncetime=None): self.value_fd = line_fd self.initial_thread = True self.thread_added = False self.thread_id = 0 self.thread_exited = False self.bouncetime = bouncetime self.callbacks = [] self.lastcall = 0 self.event_occurred = False def __del__(self): del self.callbacks # @brief adding an edge detecting event # The detection event runs in an thread that enables non-blocking I/O multiplexing approach. # However, one pin on a chip (channel) can only allow one edge detection event, the new added # event will be removed if there's an existing event. # @param[in] chip_fd: file descriptor # @param[in] chip_name: the GPIO chip name/instance # @param[in] channel: the file descriptor for the chip line # @param[in] request: gpioevent_request struct that describes gpio event monitoring # @param[in] bouncetime: the time interval for debouncing # @param[in] poll_time: the max time to wait for an edge event # @param[out] success on 0, otherwise return 2 if something fatal happened def add_edge_detect(chip_fd, chip_name, channel, request, bouncetime, poll_time): gpio_obj = None res = gpio_event_added(chip_name, channel) # event not added if not res: # open the line try: ioctl_ret = fcntl.ioctl(chip_fd, cdev.GPIO_GET_LINEEVENT_IOCTL, request) except (OSError, IOError) as e: raise cdev.GPIOError(e.errno, "Opening input line event handle: " + e.strerror) else: warnings.warn("Warning: event is already added, ignore new added event", RuntimeWarning) return 1 # Check if we successfully get the event handle from ioctl if ioctl_ret < 0: raise cdev.GPIOError("Unable to get line event handle", e.strerror) else: gpio_obj = _Gpios(request.fd, bouncetime) # create epoll object for fd if not already open _mutex.acquire() if channel not in _epoll_fd_thread: _epoll_fd_thread[channel] = select.epoll() if _epoll_fd_thread[channel] is None: _mutex.release() return 2 # add eventmask and fd to epoll object try: # eventmask: available for read and edge trigger _epoll_fd_thread[channel].register(gpio_obj.value_fd, select.EPOLLIN | select.EPOLLET) except IOError: _mutex.release() remove_edge_detect(chip_name, channel) return 2 _mutex.release() # create and start poll thread if not already running try: thread_id = thread.start_new_thread(_edge_handler, ("edge_handler_thread", request.fd, channel, poll_time)) gpio_obj.thread_id = thread_id except: remove_edge_detect(chip_name, channel) warnings.warn("Unable to start thread", RuntimeWarning) return 2 gpio_obj.thread_added = True _add_gpio_event(chip_name, channel, gpio_obj) return 0 # @brief Remove an edge event detection # Not only will the event be unregistered, the thread corresponds will also be cleared. # Suggestion about the timeout parameter: the value should be greater than the poll_time # in add_edge_detect to keep it safe. # @param[in] chip_name: the GPIO chip name/instance # @param[in] channel: the pin number in specified mode (board or bcm) # @param[in] timeout: the maximum time to wait for the thread detecting channel to stop def remove_edge_detect(chip_name, channel, timeout=0.3): gpio_obj = gpio_event_added(chip_name, channel) if gpio_obj is None: warnings.warn("Event not found", RuntimeWarning) return # Have the thread to be in an exit state _mutex.acquire() thread_id = _gpio_event_list[chip_name][channel].thread_id _thread_running_dict[thread_id] = False # Wait till the thread exits if _gpio_event_list[chip_name][channel].thread_added == True: _mutex.release() time.sleep(timeout) _mutex.acquire() if _gpio_event_list[chip_name][channel].thread_exited == False: warnings.warn("Timeout in waiting event detection to be removed", RuntimeWarning) # unregister the epoll file descriptor if channel in _epoll_fd_thread and _epoll_fd_thread[channel] is not None: _epoll_fd_thread[channel].unregister(_gpio_event_list[chip_name][channel].value_fd) del _gpio_event_list[chip_name][channel] _mutex.release() # @brief Add a callback function for an event # Note that if the function does not exist or the event has not been set up, warning # will be shown, ignoring the action # @param[in] chip_name: the GPIO chip name/instance # @param[in] channel: the pin number in specified mode (board or bcm) # @param[in] callback: a callback function def add_edge_callback(chip_name, channel, callback): gpio_obj = gpio_event_added(chip_name, channel) if gpio_obj is None: warnings.warn("Event not found", RuntimeWarning) return _mutex.acquire() if not _gpio_event_list[chip_name][channel].thread_added: _mutex.release() warnings.warn("Please add the event before adding callback", RuntimeWarning) return _gpio_event_list[chip_name][channel].callbacks.append(callback) _mutex.release() # @brief Check if any edge event occured # If an adge event happened, the flag will be cleared for the next occurance # @param[in] chip_name: the GPIO chip name/instance # @param[in] channel: the pin number in specified mode (board or bcm) # @param[out] true if an edge event occured, otherwise false def edge_event_detected(chip_name, channel): gpio_obj = gpio_event_added(chip_name, channel) if gpio_obj is None: warnings.warn("Event not found", RuntimeWarning) return False _mutex.acquire() # Event has occured if _gpio_event_list[chip_name][channel].event_occurred: _gpio_event_list[chip_name][channel].event_occurred = False _mutex.release() return True _mutex.release() return False # @brief Check if any event is added to the channel in the chip controller # @param[in] chip_name: the GPIO chip name/instance # @param[in] channel: the pin number in specified mode (board or bcm) # @param[out] the gpio object if an event exists, otherwise None def gpio_event_added(chip_name, channel): _mutex.acquire() if chip_name not in _gpio_event_list: _mutex.release() return None if channel not in _gpio_event_list[chip_name]: _mutex.release() return None gpio_obj = _gpio_event_list[chip_name][channel] _mutex.release() return gpio_obj # @brief Add an event to the event list # @param[in] chip_name: the GPIO chip name/instance # @param[in] channel: the pin number in specified mode (board or bcm) # @param[in] gpio_obj: the gpio handle with related information of a channel's # event def _add_gpio_event(chip_name, channel, gpio_obj): _mutex.acquire() if chip_name not in _gpio_event_list: _gpio_event_list[chip_name] = {} if channel not in _gpio_event_list[chip_name]: _gpio_event_list[chip_name][channel] = gpio_obj _mutex.release() # @brief Look up by chip name and channel to get the gpio object # with related information of a channel's event # @param[in] chip_name: the GPIO chip name/instance # @param[in] channel: the pin number in specified mode (board or bcm) # @param[out] the gpio handle with related information of a channel's event, # if such handle exist, otherwise return None def _get_gpio_object(chip_name, channel): gpio_obj = gpio_event_added(chip_name, channel) if gpio_obj is None: warnings.warn("Event not found", RuntimeWarning) return None _mutex.acquire() gpio_obj = _gpio_event_list[chip_name][channel] _mutex.release() return gpio_obj def _set_edge(gpio_name, edge): raise RuntimeError("This function is deprecated") # @brief Look up by chip name and channel to get the gpio object # with related information of a channel's event # @param[in] fd: the file descriptor of a channel/line # @param[out] a tuple of the GPIO chip name and the pin number in # specified mode, otherwise return a tuple of None def _get_gpio_obj_keys(fd): _mutex.acquire() for chip_name in _gpio_event_list: for pin in _gpio_event_list[chip_name]: if _gpio_event_list[chip_name][pin].value_fd == fd: _mutex.release() return (chip_name, pin) _mutex.release() return None, None def _get_gpio_file_object(fileno): raise RuntimeError("This function is deprecated") def _set_thread_exit_state(fd): chip_name, channel = _get_gpio_obj_keys(fd) # Get the gpio object to do following updates gpio_obj = _get_gpio_object(chip_name, channel) if gpio_obj == None: warnings.warn("Channel has been remove from detection before thread exits", RuntimeWarning) return # Set state _mutex.acquire() _gpio_event_list[chip_name][channel].thread_exited = True _mutex.release() # @brief A thread that catches GPIO events in a non-blocking mode. # Exit upon error (may be fd non-existance, information descrepency, # unknown error) # @param[in] thread_name: a functional name of the thread # @param[in] fd: the file descriptor of a channel/line # @param[in] channel: the pin number in specified mode (board or bcm) # @param[in] poll_timeout: the maximum time set to wait for edge event (second) def _edge_handler(thread_name, fileno, channel, poll_timeout): thread_id = thread.get_ident() # Mark the thread state as running _mutex.acquire() _thread_running_dict[thread_id] = True # clean device buffer epoll_obj = _epoll_fd_thread[channel] _mutex.release() # The timeout should be longer than the wait time between the events precedent_events = epoll_obj.poll(timeout=0.5, maxevents=1) if len(precedent_events) > 0: _fd = precedent_events[0][0] try: data = os.read(_fd, ctypes.sizeof(cdev.gpioevent_data)) except OSError as e: raise cdev.GPIOError(e.errno, "Reading GPIO event: " + e.strerror) while _thread_running_dict[thread_id]: try: # poll for event events = epoll_obj.poll(timeout=poll_timeout, maxevents=1) # Timeout without any event if len(events) == 0: # The timeout is especially added to confirm the thread running status, so # it is a design that no warning signal is shown when timeout continue fd = events[0][0] # Check if the returning fd is the one we are waiting for if fd != fileno: raise RuntimeError("File object not found after wait for GPIO %s" % channel) #read the result out try: data = os.read(fd, ctypes.sizeof(cdev.gpioevent_data)) except OSError as e: raise cdev.GPIOError(e.errno, "Reading GPIO event: " + e.strerror) event_data = cdev.gpioevent_data.from_buffer_copy(data) # event result if (event_data.id != cdev.GPIOEVENT_REQUEST_RISING_EDGE and event_data.id != cdev.GPIOEVENT_REQUEST_FALLING_EDGE): warnings.warn("Unknown event caught", RuntimeWarning) continue # check key to make sure gpio object has not been deleted # from main thread chip_name, pin_num = _get_gpio_obj_keys(fd) if channel != pin_num: warnings.warn("Channel does not match with assigned file descriptor", RuntimeWarning) _mutex.acquire() _thread_running_dict[thread.get_ident()] = False _mutex.release() break # Get the gpio object to do following updates gpio_obj = _get_gpio_object(chip_name, pin_num) if gpio_obj is None: raise RuntimeError("GPIO object does not exists") # debounce the input event for the specified bouncetime time = datetime.now() time = time.second * 1E6 + time.microsecond if (gpio_obj.bouncetime is None or (time - gpio_obj.lastcall > gpio_obj.bouncetime * 1000) or (gpio_obj.lastcall == 0) or gpio_obj.lastcall > time): gpio_obj.lastcall = time gpio_obj.event_occurred = True #update to the original list _mutex.acquire() _gpio_event_list[chip_name][pin_num] = gpio_obj _mutex.release() # callback function for cb_func in gpio_obj.callbacks: cb_func() # if interrupted by a signal, continue to start of the loop except InterruptedError: continue except AttributeError: break finally: if _mutex.locked(): _mutex.release() _set_thread_exit_state(fileno) thread.exit() # This function waits for a edge event in a blocking mode, which the user must # specify the file descriptor of the chip, which channel of the chip, the event handle, # time for debouncing in milliseconds, the time limit to wait for the event. # return value: -2 for fatal errors, -1 if edge is already being detected, 0 if timeout # occured, and 1 if event was valid def blocking_wait_for_edge(chip_fd, chip_name, channel, request, bouncetime, timeout): # check if gpio edge already added. Add if not already added gpio_obj = gpio_event_added(chip_name, channel) if gpio_obj != None: return -1 else: try: fcntl.ioctl(chip_fd, cdev.GPIO_GET_LINEEVENT_IOCTL, request) except (OSError, IOError) as e: raise cdev.GPIOError(e.errno, "Opening input line event handle: " + e.strerror) gpio_obj = _Gpios(request.fd, bouncetime) _add_gpio_event(chip_name, channel, gpio_obj) ret = select.select([request.fd], [], [], timeout) if ret[0] == [request.fd]: try: data = os.read(request.fd, ctypes.sizeof(cdev.gpioevent_data)) except OSError as e: raise cdev.GPIOError(e.errno, "Reading GPIO event: " + e.strerror) event_data = cdev.gpioevent_data.from_buffer_copy(data) if (event_data.id != cdev.GPIOEVENT_REQUEST_RISING_EDGE and event_data.id != cdev.GPIOEVENT_REQUEST_FALLING_EDGE): warnings.warn("Unknown event caught", RuntimeWarning) return -2 return int(ret != []) elif len(ret[0]) == 0: # Timeout return 0 return -2 # @brief clean up the event registered on the name of chip and channel # Note that the event detection thread will also be removed # @param[in] chip_name: the GPIO chip name/instance # @param[in] channel: the pin number in specified mode (board or bcm) def event_cleanup(chip_name, channel): global _epoll_fd_blocking #remove all the event being detected in the event list remove_edge_detect(chip_name, channel) #unregister the device being polled _mutex.acquire() for gpio_chip in _gpio_event_list.copy(): # Warning: this is only for single threaded solution if channel not in _gpio_event_list[gpio_chip]: # It is a design decision that every pin owns its epoll object if _epoll_fd_blocking is not None: _epoll_fd_blocking.close() _epoll_fd_blocking = None if channel in _epoll_fd_thread and _epoll_fd_thread[channel] is not None: _epoll_fd_thread[channel].close() del _epoll_fd_thread[channel] _mutex.release()
jetson-gpio-master
lib/python/Jetson/GPIO/gpio_event.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # @File name: gpio_cdev.py # @Date: # @Last modified by: # @Last Modified time: 6/6/2023 # @Description: This file provides the interface to the GPIO controller # in form of a character device. File operations such as open, close, # ioctl, etc are provided for usage to interact with the GPIO controller. import os import fcntl import ctypes GPIO_HIGH = 1 GPIOHANDLE_REQUEST_INPUT = 0x1 GPIOHANDLE_REQUEST_OUTPUT = 0x2 GPIOEVENT_REQUEST_RISING_EDGE = 0x1 GPIOEVENT_REQUEST_FALLING_EDGE = 0x2 GPIOEVENT_REQUEST_BOTH_EDGES = 0x3 GPIO_GET_CHIPINFO_IOCTL = 0x8044B401 GPIO_GET_LINEINFO_IOCTL = 0xC048B402 GPIO_GET_LINEHANDLE_IOCTL = 0xC16CB403 GPIOHANDLE_GET_LINE_VALUES_IOCTL = 0xC040B408 GPIOHANDLE_SET_LINE_VALUES_IOCTL = 0xC040B409 GPIO_GET_LINEEVENT_IOCTL = 0xC030B404 # @brief the information about a GPIO chip # @name: the Linux kernel name of the chip # @label: a name for the chip # @lines: number of GPIO lines on this chip class gpiochip_info(ctypes.Structure): _fields_ = [ ('name', ctypes.c_char * 32), ('label', ctypes.c_char * 32), ('lines', ctypes.c_uint32), ] # @brief the information about a GPIO handle request # @lineoffsets: an array of lines, specified by offset index # @flags: flags for the GPIO lines (the flag applies to all) # @default_values: the default output value, expecting 0 or 1 # anything else will be interpreted as 1 # @consumer_label: a label for the selected GPIO line(s) # @lines: number of lines requested in this request # @fd: this field will contain a valid file handle (value that # is equal or smaller than 0 means error) on success class gpiohandle_request(ctypes.Structure): _fields_ = [ ('lineoffsets', ctypes.c_uint32 * 64), ('flags', ctypes.c_uint32), ('default_values', ctypes.c_uint8 * 64), ('consumer_label', ctypes.c_char * 32), ('lines', ctypes.c_uint32), ('fd', ctypes.c_int), ] # @brief the information of values on a GPIO handle # @values: current state of a line (get), contain the desired # target state (set) class gpiohandle_data(ctypes.Structure): _fields_ = [ ('values', ctypes.c_uint8 * 64), ] # @brief the information about a GPIO line # @line_offset: the local offset on this GPIO device # @flags: flags for this line # @name: the name of this GPIO line # @consumer: a functional name for the consumer of this GPIO line as set by # whatever is using it class gpioline_info(ctypes.Structure): _fields_ = [ ('line_offset', ctypes.c_uint32), ('flags', ctypes.c_uint32), ('name', ctypes.c_char * 32), ('consumer', ctypes.c_char * 32), ] # @brief the information about a change in a GPIO line's status # @timestamp: estimated time of status change occurrence (ns) # @event_type: type of event # @info: updated line info class gpioline_info_changed(ctypes.Structure): _fields_ = [ ('line_info', gpioline_info), ('timestamp', ctypes.c_uint64), ('event_type', ctypes.c_uint32), ('padding', ctypes.c_uint32 * 5), ] # @brief the information about a GPIO event request # @lineoffset: the line to subscribe to events from in offset index # @handleflags: handle flags for the GPIO line # @eventflags: desired flags for the GPIO event line (what edge) # @consumer_label: a consumer label for the selected GPIO line(s) # @fd: contain a valid file handle if successful, otherwise zero or # negative value class gpioevent_request(ctypes.Structure): _fields_ = [ ('lineoffset', ctypes.c_uint32), ('handleflags', ctypes.c_uint32), ('eventflags', ctypes.c_uint32), ('consumer_label', ctypes.c_char * 32), ('fd', ctypes.c_int), ] # @brief the actual event being pushed to userspace # @timestamp: best estimate of event occurrence's time (ns) # @id: event identifier class gpioevent_data(ctypes.Structure): _fields_ = [ ('timestamp', ctypes.c_uint64), ('id', ctypes.c_uint32), ] class GPIOError(IOError): """Base class for GPIO errors.""" pass # @brief open a chip by its name # @param[in] gpio_chip: name of the chip # @param[out] the file descriptor of the chip def chip_open(gpio_chip): try: chip_fd = os.open(gpio_chip, os.O_RDONLY) except OSError as e: raise GPIOError(e.errno, "Opening GPIO chip: " + e.strerror) return chip_fd # @brief open and check the information of the chip # @param[in] label: label of the chip # @param[in] gpio_chip: name of the chip # @param[out] the file descriptor of the chip def chip_check_info(label, gpio_device): chip_fd = chip_open(gpio_device) chip_info = gpiochip_info() try: fcntl.ioctl(chip_fd, GPIO_GET_CHIPINFO_IOCTL, chip_info) except (OSError, IOError) as e: raise GPIOError(e.errno, "Querying GPIO chip info: " + e.strerror) if label != chip_info.label.decode(): try: close_chip(chip_fd) except OSError as e: raise GPIOError(e.errno, "Opening GPIO chip: " + e.strerror) chip_fd = None return chip_fd # @brief open a chip by its label # @param[in] label: # @param[out] the file descriptor of the chip def chip_open_by_label(label): dev = '/dev/' for device in os.listdir(dev): if device.startswith('gpiochip'): gpio_device = dev + device chip_fd = chip_check_info(label, gpio_device) if chip_fd != None: break if chip_fd == None: raise Exception("{}: No such gpio device registered".format(label)) return chip_fd # @brief close a chip # @param[in] chip_fd: the file descriptor of the chip def close_chip(chip_fd): if chip_fd is None: return try: os.close(chip_fd) except (OSError, IOError) as e: pass # @brief open a line of a chip # @param[in] ch_info: ChannelInfo object of the channel desired to open # @param[out] the file descriptor of the line def open_line(ch_info, request): try: fcntl.ioctl(ch_info.chip_fd, GPIO_GET_LINEHANDLE_IOCTL, request) except (OSError, IOError) as e: raise GPIOError(e.errno, "Opening output line handle: " + e.strerror) ch_info.line_handle = request.fd # @brief close a line # @param[in] line_handle: the file descriptor of the line def close_line(line_handle): if line_handle is None: return try: os.close(line_handle) except OSError as e: raise GPIOError(e.errno, "Closing existing GPIO line: " + e.strerror) # @brief build a request handle struct # @param[in] line_offset: the offset of the line to its chip # @param[in] direction: the direction of the line (in or out) # @param[in] initial: initial value of the line # @param[in] consumer: the consumer label that uses the line # @param[out] the request handle struct def request_handle(line_offset, direction, initial, consumer): request = gpiohandle_request() request.lineoffsets[0] = line_offset request.flags = direction if direction == GPIOHANDLE_REQUEST_OUTPUT: request.default_values[0] = initial if initial is not None else GPIO_HIGH else: if initial is not None: raise ValueError("initial parameter is not valid for inputs") request.consumer_label = consumer.encode() request.lines = 1 return request # @brief build a request event struct # @param[in] line_offset: the offset of the line to its chip # @param[in] edge: event's detection edge # @param[in] consumer: the consumer label that uses the line def request_event(line_offset, edge, consumer): request = gpioevent_request() request.lineoffset = line_offset request.handleflags = GPIOHANDLE_REQUEST_INPUT request.eventflags = edge request.consumer_label = consumer.encode() return request # @brief read the value of a line # @param[in] line_handle: file descriptor of the line # @param[out] the value of the line def get_value(line_handle): data = gpiohandle_data() try: fcntl.ioctl(line_handle, GPIOHANDLE_GET_LINE_VALUES_IOCTL, data) except (OSError, IOError) as e: raise GPIOError(e.errno, "Getting line value: " + e.strerror) return data.values[0] # @brief write the value of a line # @param[in] line_handle: file descriptor of the line # @param[in] value: the value to set the line def set_value(line_handle, value): data = gpiohandle_data() data.values[0] = value try: fcntl.ioctl(line_handle, GPIOHANDLE_SET_LINE_VALUES_IOCTL, data) except (OSError, IOError) as e: raise GPIOError(e.errno, "Setting line value: " + e.strerror)
jetson-gpio-master
lib/python/Jetson/GPIO/gpio_cdev.py
from .gpio import * VERSION = '2.1.3'
jetson-gpio-master
lib/python/Jetson/GPIO/__init__.py
# Copyright (c) 2012-2017 Ben Croston <ben@croston.org>. # Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. from Jetson.GPIO import gpio_event as event from Jetson.GPIO import gpio_pin_data from Jetson.GPIO import gpio_cdev import os import warnings import time # sysfs root _GPIOCHIP_ROOT = "/dev/gpiochip0" if not os.access(_GPIOCHIP_ROOT, os.W_OK): raise RuntimeError("The current user does not have permissions set to access the library functionalites. Please configure permissions or use the root user to run this. It is also possible that {} does not exist. Please check if that file is present.".format(_GPIOCHIP_ROOT)) # Pin Numbering Modes BOARD = 10 BCM = 11 TEGRA_SOC = 1000 CVM = 1001 # The constants and their offsets are implemented to prevent HIGH from being # used in place of other variables (ie. HIGH and RISING should not be # interchangeable) # Pull up/down options _PUD_OFFSET = 20 PUD_OFF = 0 + _PUD_OFFSET PUD_DOWN = 1 + _PUD_OFFSET PUD_UP = 2 + _PUD_OFFSET HIGH = 1 LOW = 0 # Edge possibilities # These values (with _EDGE_OFFSET subtracted) must match gpio_event.py:*_EDGE _EDGE_OFFSET = 30 RISING = 1 + _EDGE_OFFSET FALLING = 2 + _EDGE_OFFSET BOTH = 3 + _EDGE_OFFSET # GPIO directions. UNKNOWN constant is for gpios that are not yet setup UNKNOWN = -1 OUT = 0 IN = 1 HARD_PWM = 43 model, JETSON_INFO, _channel_data_by_mode = gpio_pin_data.get_data() RPI_INFO = JETSON_INFO # Dictionary used as a lookup table for pin to its info object (_Gpios) mapping # key: channel, value: ChannelInfo object _channel_data = {} _gpio_warnings = True _gpio_mode = None # Dictionary used as a lookup table for pin to its configuration # key: channel, value: GPIO directions (IN/OUT deprecated) _channel_configuration = {} # Dictionary used as a lookup table from GPIO chip name to chip fd _chip_fd = {} def _validate_mode_set(): if _gpio_mode is None: raise RuntimeError("Please set pin numbering mode using " "GPIO.setmode(GPIO.BOARD), GPIO.setmode(GPIO.BCM), " "GPIO.setmode(GPIO.TEGRA_SOC) or " "GPIO.setmode(GPIO.CVM)") def _make_iterable(iterable, single_length=None): if isinstance(iterable, str): iterable = [iterable] try: for x in iterable: break except: iterable = [iterable] if single_length is not None and len(iterable) == 1: iterable = iterable * single_length return iterable def _channel_to_info_lookup(channel, need_gpio, need_pwm): if channel not in _channel_data: raise ValueError("Channel %s is invalid" % str(channel)) ch_info = _channel_data[channel] if need_pwm and ch_info.pwm_chip_dir is None: raise ValueError("Channel %s is not a PWM" % str(channel)) return ch_info def _channel_to_info(channel, need_gpio=False, need_pwm=False): _validate_mode_set() return _channel_to_info_lookup(channel, need_gpio, need_pwm) def _channels_to_infos(channels, need_gpio=False, need_pwm=False): _validate_mode_set() return [_channel_to_info_lookup(c, need_gpio, need_pwm) for c in _make_iterable(channels)] def _sysfs_channel_configuration(ch_info): """Return the current configuration of a channel as reported by sysfs. Any of IN, OUT, PWM, or None may be returned.""" if ch_info.pwm_chip_dir is not None: pwm_dir = "%s/pwm%i" % (ch_info.pwm_chip_dir, ch_info.pwm_id) if os.path.exists(pwm_dir): return HARD_PWM return None def _app_channel_configuration(ch_info): """Return the current configuration of a channel as requested by this module in this process. Any of IN, OUT, or None may be returned.""" return _channel_configuration.get(ch_info.channel, None) def _chip_fd_map(ch_info): return _chip_fd.get(ch_info.gpio_chip, None) def _do_one_channel(ch_info, direction, initial, consumer): ch_info.chip_fd = _chip_fd_map(ch_info) if not ch_info.chip_fd: ch_info.chip_fd = gpio_cdev.chip_open_by_label(ch_info.gpio_chip) _chip_fd[ch_info.gpio_chip] = ch_info.chip_fd cdev_direction = gpio_cdev.GPIOHANDLE_REQUEST_OUTPUT if direction == OUT else gpio_cdev.GPIOHANDLE_REQUEST_INPUT request = gpio_cdev.request_handle(ch_info.line_offset, cdev_direction, initial, consumer) gpio_cdev.open_line(ch_info, request) _channel_configuration[ch_info.channel] = direction def _pwm_path(ch_info): return ch_info.pwm_chip_dir + '/pwm' + str(ch_info.pwm_id) def _pwm_export_path(ch_info): return ch_info.pwm_chip_dir + '/export' def _pwm_unexport_path(ch_info): return ch_info.pwm_chip_dir + '/unexport' def _pwm_period_path(ch_info): return _pwm_path(ch_info) + "/period" def _pwm_duty_cycle_path(ch_info): return _pwm_path(ch_info) + "/duty_cycle" def _pwm_enable_path(ch_info): return _pwm_path(ch_info) + "/enable" def _export_pwm(ch_info): if not os.path.exists(_pwm_path(ch_info)): with open(_pwm_export_path(ch_info), 'w') as f: f.write(str(ch_info.pwm_id)) enable_path = _pwm_enable_path(ch_info) while not os.access(enable_path, os.R_OK | os.W_OK): time.sleep(0.01) ch_info.f_duty_cycle = open(_pwm_duty_cycle_path(ch_info), 'r+') def _unexport_pwm(ch_info): ch_info.f_duty_cycle.close() with open(_pwm_unexport_path(ch_info), 'w') as f: f.write(str(ch_info.pwm_id)) def _set_pwm_period(ch_info, period_ns): with open(_pwm_period_path(ch_info), 'w') as f: f.write(str(period_ns)) def _set_pwm_duty_cycle(ch_info, duty_cycle_ns): # On boot, both period and duty cycle are both 0. In this state, the period # must be set first; any configuration change made while period==0 is # rejected. This is fine if we actually want a duty cycle of 0. Later, once # any period has been set, we will always be able to set a duty cycle of 0. # The code could be written to always read the current value, and only # write the value if the desired value is different. However, we enable # this check only for the 0 duty cycle case, to avoid having to read the # current value every time the duty cycle is set. if not duty_cycle_ns: ch_info.f_duty_cycle.seek(0) cur = ch_info.f_duty_cycle.read().strip() if cur == '0': return ch_info.f_duty_cycle.seek(0) ch_info.f_duty_cycle.write(str(duty_cycle_ns)) ch_info.f_duty_cycle.flush() def _enable_pwm(ch_info): with open(_pwm_enable_path(ch_info), 'w') as f: f.write("1") def _disable_pwm(ch_info): with open(_pwm_enable_path(ch_info), 'w') as f: f.write("0") # Clean up all resources taken by a channel, # including pwm, chip and lines def _cleanup_one(ch_info): #clean up pwm config app_cfg = _channel_configuration[ch_info.channel] if app_cfg == HARD_PWM: _disable_pwm(ch_info) _unexport_pwm(ch_info) else: event.event_cleanup(ch_info.gpio_chip, ch_info.channel) del _channel_configuration[ch_info.channel] # clean gpio config # clean up chip if ch_info.chip_fd: gpio_cdev.close_chip(ch_info.chip_fd) ch_info.chip_fd = None if ch_info.gpio_chip in _chip_fd: del _chip_fd[ch_info.gpio_chip] # clean up line if ch_info.line_handle: gpio_cdev.close_line(ch_info.line_handle) ch_info.line_handle = None def _cleanup_all(): global _gpio_mode for channel in list(_channel_configuration.keys()): ch_info = _channel_to_info(channel) _cleanup_one(ch_info) _gpio_mode = None # Function used to enable/disable warnings during setup and cleanup. # Param -> state is a bool def setwarnings(state): global _gpio_warnings _gpio_warnings = bool(state) # Function used to set the pin mumbering mode. Possible mode values are BOARD, # BCM, TEGRA_SOC and CVM def setmode(mode): global _gpio_mode, _channel_data # check if a different mode has been set if _gpio_mode and mode != _gpio_mode: raise ValueError("A different mode has already been set!") mode_map = { BOARD: 'BOARD', BCM: 'BCM', CVM: 'CVM', TEGRA_SOC: 'TEGRA_SOC', } # check if mode parameter is valid if mode not in mode_map: raise ValueError("An invalid mode was passed to setmode()!") _channel_data = _channel_data_by_mode[mode_map[mode]] _gpio_mode = mode # Function used to get the currently set pin numbering mode def getmode(): return _gpio_mode # Mutable class to represent a default function argument. # See https://stackoverflow.com/a/57628817/2767322 class _Default: def __init__(self, val): self.val = val # Function used to setup individual pins or lists/tuples of pins as # Input or Output. Param channels must an integer or list/tuple of integers, # direction must be IN or OUT, pull_up_down must be PUD_OFF, PUD_UP or # PUD_DOWN and is only valid when direction in IN, initial must be HIGH or LOW # and is only valid when direction is OUT def setup(channels, direction, pull_up_down=_Default(PUD_OFF), initial=None, consumer='Jetson-gpio'): if pull_up_down in setup.__defaults__: pull_up_down_explicit = False pull_up_down = pull_up_down.val else: pull_up_down_explicit = True ch_infos = _channels_to_infos(channels, need_gpio=True) # check direction is valid if direction != OUT and direction != IN: raise ValueError("An invalid direction was passed to setup()") # check if pullup/down is used with output if direction == OUT and pull_up_down != PUD_OFF: raise ValueError("pull_up_down parameter is not valid for outputs") # check if pullup/down value is specified and/or valid if pull_up_down_explicit: warnings.warn("Jetson.GPIO ignores setup()'s pull_up_down parameter") if (pull_up_down != PUD_OFF and pull_up_down != PUD_UP and pull_up_down != PUD_DOWN): raise ValueError("Invalid value for pull_up_down; should be one of" "PUD_OFF, PUD_UP or PUD_DOWN") for ch_info in ch_infos: if ch_info.channel in _channel_configuration: _cleanup_one(ch_info) if direction == OUT: initial = _make_iterable(initial, len(ch_infos)) if len(initial) != len(ch_infos): raise RuntimeError("Number of values != number of channels") for ch_info, init in zip(ch_infos, initial): _do_one_channel(ch_info, direction, init, consumer) else: for ch_info in ch_infos: _do_one_channel(ch_info, direction, initial, consumer) # Function used to cleanup channels at the end of the program. # The param channel can be an integer or list/tuple of integers specifying the # channels to be cleaned up. If no channel is provided, all channels are # cleaned def cleanup(channel=None): # warn if no channel is setup if _gpio_mode is None: if _gpio_warnings: warnings.warn("No channels have been set up yet - nothing to " "clean up! Try cleaning up at the end of your " "program instead!", RuntimeWarning) return # clean all channels if no channel param provided if channel is None: _cleanup_all() return ch_infos = _channels_to_infos(channel) for ch_info in ch_infos: if ch_info.channel in _channel_configuration: _cleanup_one(ch_info) # Function used to return the current value of the specified channel. # Function returns either HIGH or LOW def input(channel): ch_info = _channel_to_info(channel, need_gpio=True) cur_cfg = _app_channel_configuration(ch_info) if cur_cfg not in [IN, OUT]: raise RuntimeError("You must setup() the GPIO channel first") # _GPIOHANDLE_GET_LINE_VALUES_IOCTL, _CGpiohandleData return gpio_cdev.get_value(ch_info.line_handle) # Function used to set a value to a channel or list/tuple of channels. # Parameter channels must be an integer or list/tuple of integers. # Values must be either HIGH or LOW or list/tuple # of HIGH and LOW with the same length as the channels list/tuple def output(channels, values): ch_infos = _channels_to_infos(channels, need_gpio=True) values = _make_iterable(values, len(ch_infos)) if len(values) != len(ch_infos): raise RuntimeError("Number of values != number of channels") # check that channels have been set as output if any(_app_channel_configuration(ch_info) != OUT for ch_info in ch_infos): raise RuntimeError("The GPIO channel has not been set up as an " "OUTPUT") for ch_info, value in zip(ch_infos, values): gpio_cdev.set_value(ch_info.line_handle, value) # Function used to add threaded event detection for a specified gpio channel. # Param gpio must be an integer specifying the channel, edge must be RISING, # FALLING or BOTH. A callback function to be called when the event is detected # and an integer bounctime in milliseconds can be optionally provided. A optional # polltime in second can be provided to indicate the max time waiting for an edge. # Note that one channel only allows one event, which the duplicated event will # be ignored. def add_event_detect(channel, edge, callback=None, bouncetime=None, polltime=0.2): ch_info = _channel_to_info(channel, need_gpio=True) if (not callable(callback)) and callback is not None: raise TypeError("Callback Parameter must be callable") # channel must be setup as input if _app_channel_configuration(ch_info) != IN: raise RuntimeError("You must setup() the GPIO channel as an input " "first") # edge must be rising, falling or both if edge != RISING and edge != FALLING and edge != BOTH: raise ValueError("The edge must be set to RISING, FALLING, or BOTH") else: edge = gpio_cdev.GPIOEVENT_REQUEST_RISING_EDGE if edge == RISING else gpio_cdev.GPIOEVENT_REQUEST_FALLING_EDGE if edge == FALLING else gpio_cdev.GPIOEVENT_REQUEST_BOTH_EDGES # if bouncetime is provided, it must be int and greater than 0 if bouncetime is not None: if type(bouncetime) != int: raise TypeError("bouncetime must be an integer") elif bouncetime < 0: raise ValueError("bouncetime must be an integer greater than 0") if ch_info.line_handle: gpio_cdev.close_line(ch_info.line_handle) request = gpio_cdev.request_event(ch_info.line_offset, edge, ch_info.consumer) event.add_edge_detect(ch_info.chip_fd, ch_info.gpio_chip, channel, request, bouncetime, polltime) if callback is not None: event.add_edge_callback(ch_info.gpio_chip, channel, lambda: callback(channel)) # We should wait until the thread is up, which the device buffer cleaning takes time time.sleep(1) # Function used to remove event detection for channel # Timeout param for the max time to wait for thread (event detecion) to end def remove_event_detect(channel, timeout=0.5): ch_info = _channel_to_info(channel, need_gpio=True) event.remove_edge_detect(ch_info.gpio_chip, channel, timeout) # Function used to check if an event occurred on the specified channel. # Param channel must be an integer. # This function return True or False def event_detected(channel): ch_info = _channel_to_info(channel, need_gpio=True) # channel must be setup as input if _app_channel_configuration(ch_info) != IN: raise RuntimeError("You must setup() the GPIO channel as an " "input first") return event.edge_event_detected(ch_info.gpio_chip, channel) # Function used to add a callback function to channel, after it has been # registered for events using add_event_detect() def add_event_callback(channel, callback): ch_info = _channel_to_info(channel, need_gpio=True) if not callable(callback): raise TypeError("Parameter must be callable") if _app_channel_configuration(ch_info) != IN: raise RuntimeError("You must setup() the GPIO channel as an " "input first") if not event.gpio_event_added(ch_info.gpio_chip, channel): raise RuntimeError("Add event detection using add_event_detect first " "before adding a callback") event.add_edge_callback(ch_info.gpio_chip, channel, lambda: callback(channel)) # We should wait until the thread is up, which the device buffer cleaning takes time time.sleep(1) # Function used to wait for a edge event in blocking mode, it is also one-shoot. def wait_for_edge(channel, edge, bouncetime=None, timeout=None): ch_info = _channel_to_info(channel, need_gpio=True) # channel must be setup as input if _app_channel_configuration(ch_info) != IN: raise RuntimeError("You must setup() the GPIO channel as an input " "first") # edge provided must be rising, falling or both if edge != RISING and edge != FALLING and edge != BOTH: raise ValueError("The edge must be set to RISING, FALLING_EDGE " "or BOTH") else: edge = gpio_cdev.GPIOEVENT_REQUEST_RISING_EDGE if edge == RISING else gpio_cdev.GPIOEVENT_REQUEST_FALLING_EDGE if edge == FALLING else gpio_cdev.GPIOEVENT_REQUEST_BOTH_EDGES # if bouncetime is provided, it must be int and greater than 0 if bouncetime is not None: if type(bouncetime) != int: raise TypeError("bouncetime must be an integer") elif bouncetime < 0: raise ValueError("bouncetime must be an integer greater than 0") # if timeout is specified, it must be an int and greater than 0 if timeout is not None: if type(timeout) != int: raise TypeError("Timeout must be an integer") elif timeout < 0: raise ValueError("Timeout must greater than 0") if ch_info.line_handle: gpio_cdev.close_line(ch_info.line_handle) request = gpio_cdev.request_event(ch_info.line_offset, edge, ch_info.consumer) result = event.blocking_wait_for_edge(ch_info.chip_fd, ch_info.gpio_chip, channel, request, bouncetime, timeout) # If not error, result == channel. If timeout occurs while waiting, # result == None. If error occurs, result == -1 means channel is # registered for conflicting edge detection, result == -2 means an error # occurred while registering event or polling if not result: return None elif result == -1: raise RuntimeError("Conflicting edge detection event already exists " "for this GPIO channel") elif result == -2: raise RuntimeError("Error waiting for edge") return channel # Function used to check the currently set function of the channel specified. # Param channel must be an integers. The function returns either IN, OUT, # or UNKNOWN def gpio_function(channel): ch_info = _channel_to_info(channel) func = _app_channel_configuration(ch_info) if func is None: func = UNKNOWN return func class PWM(object): def __init__(self, channel, frequency_hz): self._ch_info = _channel_to_info(channel, need_pwm=True) app_cfg = _app_channel_configuration(self._ch_info) if app_cfg == HARD_PWM: raise ValueError("Can't create duplicate PWM objects") # Apps typically set up channels as GPIO before making them be PWM, # because RPi.GPIO does soft-PWM. We must undo the GPIO export to # allow HW PWM to run on the pin. if app_cfg in [IN, OUT]: cleanup(channel) if _gpio_warnings: sysfs_cfg = _sysfs_channel_configuration(self._ch_info) app_cfg = _app_channel_configuration(self._ch_info) # warn if channel has been setup external to current program if app_cfg is None and sysfs_cfg is not None: warnings.warn( "This channel is already in use, continuing anyway. " "Use GPIO.setwarnings(False) to disable warnings", RuntimeWarning) _export_pwm(self._ch_info) self._started = False _set_pwm_duty_cycle(self._ch_info, 0) # Anything that doesn't match new frequency_hz self._frequency_hz = -1 * frequency_hz self._reconfigure(frequency_hz, 0.0) _channel_configuration[channel] = HARD_PWM def __del__(self): if _channel_configuration.get(self._ch_info.channel, None) != HARD_PWM: # The user probably ran cleanup() on the channel already, so avoid # attempts to repeat the cleanup operations. return self.stop() _unexport_pwm(self._ch_info) del _channel_configuration[self._ch_info.channel] def start(self, duty_cycle_percent): self._reconfigure(self._frequency_hz, duty_cycle_percent, start=True) def ChangeFrequency(self, frequency_hz): self._reconfigure(frequency_hz, self._duty_cycle_percent) def ChangeDutyCycle(self, duty_cycle_percent): self._reconfigure(self._frequency_hz, duty_cycle_percent) def stop(self): if not self._started: return _disable_pwm(self._ch_info) def _reconfigure(self, frequency_hz, duty_cycle_percent, start=False): if duty_cycle_percent < 0.0 or duty_cycle_percent > 100.0: raise ValueError("") freq_change = start or (frequency_hz != self._frequency_hz) stop = self._started and freq_change if stop: self._started = False _disable_pwm(self._ch_info) if freq_change: self._frequency_hz = frequency_hz self._period_ns = int(1000000000.0 / frequency_hz) # Reset duty cycle period incase the previous duty # cycle is higher than the period _set_pwm_duty_cycle(self._ch_info, 0) _set_pwm_period(self._ch_info, self._period_ns) self._duty_cycle_percent = duty_cycle_percent self._duty_cycle_ns = int(self._period_ns * (duty_cycle_percent / 100.0)) _set_pwm_duty_cycle(self._ch_info, self._duty_cycle_ns) if stop or start: _enable_pwm(self._ch_info) self._started = True
jetson-gpio-master
lib/python/Jetson/GPIO/gpio.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. All rights reserved. # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. import os import os.path import sys CLARA_AGX_XAVIER = 'CLARA_AGX_XAVIER' JETSON_NX = 'JETSON_NX' JETSON_XAVIER = 'JETSON_XAVIER' JETSON_TX2 = 'JETSON_TX2' JETSON_TX1 = 'JETSON_TX1' JETSON_NANO = 'JETSON_NANO' JETSON_TX2_NX='JETSON_TX2_NX' JETSON_ORIN='JETSON_ORIN' JETSON_ORIN_NX='JETSON_ORIN_NX' JETSON_ORIN_NANO='JETSON_ORIN_NANO' JETSON_MODELS = [JETSON_TX1, JETSON_TX2, CLARA_AGX_XAVIER, JETSON_TX2_NX, JETSON_XAVIER, JETSON_NANO, JETSON_NX, JETSON_ORIN, JETSON_ORIN_NX, JETSON_ORIN_NANO] # These arrays contain tuples of all the relevant GPIO data for each Jetson # Platform. The fields are: # - Linux GPIO pin number (line offset inside chip, not global), # - Linux exported GPIO name, # (map from chip GPIO count to value, to cater for different naming schemes) # (entries omitted if exported filename is gpio%i) # - GPIO chip name/instance # - Pin number (BOARD mode) # - Pin number (BCM mode) # - Pin name (CVM mode) # - Pin name (TEGRA_SOC mode) # - PWM chip sysfs directory # - PWM ID within PWM chip # The values are used to generate dictionaries that map the corresponding pin # mode numbers to the Linux GPIO pin number and GPIO chip directory JETSON_ORIN_NX_PIN_DEFS = [ (144, 'PAC.06', "tegra234-gpio", 7, 4, 'GPIO09', 'GP167', None, None), (112, 'PR.04', "tegra234-gpio", 11, 17, 'UART1_RTS', 'GP72_UART1_RTS_N', None, None), (50, 'PH.07', "tegra234-gpio", 12, 18, 'I2S0_SCLK', 'GP122', None, None), (122, 'PY.00', "tegra234-gpio", 13, 27, 'SPI1_SCK', 'GP36_SPI3_CLK', None, None), (85, 'PN.01', "tegra234-gpio", 15, 22, 'GPIO12', 'GP88_PWM1', '3280000.pwm', 0), (126, 'PY.04', "tegra234-gpio", 16, 23, 'SPI1_CS1', 'GP40_SPI3_CS1_N', None, None), (125, 'PY.03', "tegra234-gpio", 18, 24, 'SPI1_CS0', 'GP39_SPI3_CS0_N', None, None), (135, 'PZ.05', "tegra234-gpio", 19, 10, 'SPI0_MOSI', 'GP49_SPI1_MOSI', None, None), (134, 'PZ.04', "tegra234-gpio", 21, 9, 'SPI0_MISO', 'GP48_SPI1_MISO', None, None), (123, 'PY.01', "tegra234-gpio", 22, 25, 'SPI1_MISO', 'GP37_SPI3_MISO', None, None), (133, 'PZ.03', "tegra234-gpio", 23, 11, 'SPI0_SCK', 'GP47_SPI1_CLK', None, None), (136, 'PZ.06', "tegra234-gpio", 24, 8, 'SPI0_CS0', 'GP50_SPI1_CS0_N', None, None), (137, 'PZ.07', "tegra234-gpio", 26, 7, 'SPI0_CS1', 'GP51_SPI1_CS1_N', None, None), (105, 'PQ.05', "tegra234-gpio", 29, 5, 'GPIO01', 'GP65', None, None), (106, 'PQ.06', "tegra234-gpio", 31, 6, 'GPIO11', 'GP66', None, None), (41, 'PG.06', "tegra234-gpio", 32, 12, 'GPIO07', 'GP113_PWM7', '32e0000.pwm', 0), (43, 'PH.00', "tegra234-gpio", 33, 13, 'GPIO13', 'GP115', '32c0000.pwm', 0), (53, 'PI.02', "tegra234-gpio", 35, 19, 'I2S0_FS', 'GP125', None, None), (113, 'PR.05', "tegra234-gpio", 36, 16, 'UART1_CTS', 'GP73_UART1_CTS_N', None, None), (124, 'PY.02', "tegra234-gpio", 37, 26, 'SPI1_MOSI', 'GP38_SPI3_MOSI', None, None), (52, 'PI.01', "tegra234-gpio", 38, 20, 'I2S0_SDIN', 'GP124', None, None), (51, 'PI.00', "tegra234-gpio", 40, 21, 'I2S0_SDOUT', 'GP123', None, None) ] compats_jetson_orins_nx = ( "nvidia,p3509-0000+p3767-0000", "nvidia,p3768-0000+p3767-0000", "nvidia,p3509-0000+p3767-0001", "nvidia,p3768-0000+p3767-0001", ) compats_jetson_orins_nano = ( "nvidia,p3509-0000+p3767-0003", "nvidia,p3768-0000+p3767-0003", "nvidia,p3509-0000+p3767-0004", "nvidia,p3768-0000+p3767-0004", "nvidia,p3509-0000+p3767-0005", "nvidia,p3768-0000+p3767-0005", ) JETSON_ORIN_PIN_DEFS = [ (106, 'PQ.06', "tegra234-gpio", 7, 4, 'MCLK05', 'GP66', None, None), # Output-only (due to base board) (112, 'PR.04', "tegra234-gpio", 11, 17, 'UART1_RTS', 'GP72_UART1_RTS_N', None, None), (50, 'PH.07', "tegra234-gpio", 12, 18, 'I2S2_CLK', 'GP122', None, None), (108, 'PR.00', "tegra234-gpio", 13, 27, 'PWM01', 'GP68', None, None), (85, 'PN.01', "tegra234-gpio", 15, 22, 'GPIO27', 'GP88_PWM1', '3280000.pwm', 0), (9, 'PBB.01', "tegra234-gpio-aon", 16, 23, 'GPIO08', 'GP26', None, None), (43, 'PH.00', "tegra234-gpio", 18, 24, 'GPIO35', 'GP115', '32c0000.pwm', 0), (135, 'PZ.05', "tegra234-gpio", 19, 10, 'SPI1_MOSI', 'GP49_SPI1_MOSI', None, None), (134, 'PZ.04', "tegra234-gpio", 21, 9, 'SPI1_MISO', 'GP48_SPI1_MISO', None, None), (96, 'PP.04', "tegra234-gpio", 22, 25, 'GPIO17', 'GP56', None, None), (133, 'PZ.03', "tegra234-gpio", 23, 11, 'SPI1_CLK', 'GP47_SPI1_CLK', None, None), (136, 'PZ.06', "tegra234-gpio", 24, 8, 'SPI1_CS0_N', 'GP50_SPI1_CS0_N', None, None), (137, 'PZ.07', "tegra234-gpio", 26, 7, 'SPI1_CS1_N', 'GP51_SPI1_CS1_N', None, None), (1, 'PAA.01', "tegra234-gpio-aon", 29, 5, 'CAN0_DIN', 'GP18_CAN0_DIN', None, None), (0, 'PAA.00', "tegra234-gpio-aon", 31, 6, 'CAN0_DOUT', 'GP17_CAN0_DOUT', None, None), (8, 'PBB.00', "tegra234-gpio-aon", 32, 12, 'GPIO09', 'GP25', None, None), (2, 'PAA.02', "tegra234-gpio-aon", 33, 13, 'CAN1_DOUT', 'GP19_CAN1_DOUT', None, None), (53, 'PI.02', "tegra234-gpio", 35, 19, 'I2S2_FS', 'GP125', None, None), (113, 'PR.05', "tegra234-gpio", 36, 16, 'UART1_CTS', 'GP73_UART1_CTS_N', None, None), (3, 'PAA.03', "tegra234-gpio-aon", 37, 26, 'CAN1_DIN', 'GP20_CAN1_DIN', None, None), (52, 'PI.01', "tegra234-gpio", 38, 20, 'I2S2_DIN', 'GP124', None, None), (51, 'PI.00', "tegra234-gpio", 40, 21, 'I2S2_DOUT', 'GP123', None, None) ] compats_jetson_orins = ( 'nvidia,p3737-0000+p3701-0000', 'nvidia,p3737-0000+p3701-0004', 'nvidia,p3737-0000+p3701-0008', 'nvidia,p3737-0000+p3701-0005', 'nvidia,p3737-0000+p3701-0001', ) CLARA_AGX_XAVIER_PIN_DEFS = [ (106, 'PQ.06', "tegra194-gpio", 7, 4, 'MCLK05', 'SOC_GPIO42', None, None), (112, 'PR.04', "tegra194-gpio", 11, 17, 'UART1_RTS', 'UART1_RTS', None, None), (51, 'PH.07', "tegra194-gpio", 12, 18, 'I2S2_CLK', 'DAP2_SCLK', None, None), (96, 'PP.04', "tegra194-gpio", 13, 27, 'GPIO32', 'SOC_GPIO04', None, None), # Older versions of L4T don't enable this PWM controller in DT, so this PWM # channel may not be available. (84, 'PN.01', "tegra194-gpio", 15, 22, 'GPIO27', 'SOC_GPIO54', '3280000.pwm', 0), (8, 'PBB.00', "tegra194-gpio-aon", 16, 23, 'GPIO8', 'CAN1_STB', None, None), (44, 'PH.00', "tegra194-gpio", 18, 24, 'GPIO35', 'SOC_GPIO12', '32c0000.pwm', 0), (162, 'PZ.05', "tegra194-gpio", 19, 10, 'SPI1_MOSI', 'SPI1_MOSI', None, None), (161, 'PZ.04', "tegra194-gpio", 21, 9, 'SPI1_MISO', 'SPI1_MISO', None, None), (101, 'PQ.01', "tegra194-gpio", 22, 25, 'GPIO17', 'SOC_GPIO21', None, None), (160, 'PZ.03', "tegra194-gpio", 23, 11, 'SPI1_CLK', 'SPI1_SCK', None, None), (163, 'PZ.06', "tegra194-gpio", 24, 8, 'SPI1_CS0_N', 'SPI1_CS0_N', None, None), (164, 'PZ.07', "tegra194-gpio", 26, 7, 'SPI1_CS1_N', 'SPI1_CS1_N', None, None), (3, 'PAA.03', "tegra194-gpio-aon", 29, 5, 'CAN0_DIN', 'CAN0_DIN', None, None), (2, 'PAA.02', "tegra194-gpio-aon", 31, 6, 'CAN0_DOUT', 'CAN0_DOUT', None, None), (9, 'PBB.01', "tegra194-gpio-aon", 32, 12, 'GPIO9', 'CAN1_EN', None, None), (0, 'PAA.00', "tegra194-gpio-aon", 33, 13, 'CAN1_DOUT', 'CAN1_DOUT', None, None), (54, 'PI.02', "tegra194-gpio", 35, 19, 'I2S2_FS', 'DAP2_FS', None, None), # Input-only (due to base board) (113, 'PR.05', "tegra194-gpio", 36, 16, 'UART1_CTS', 'UART1_CTS', None, None), (1, 'PAA.01', "tegra194-gpio-aon", 37, 26, 'CAN1_DIN', 'CAN1_DIN', None, None), (53, 'PI.01', "tegra194-gpio", 38, 20, 'I2S2_DIN', 'DAP2_DIN', None, None), (52, 'PI.00', "tegra194-gpio", 40, 21, 'I2S2_DOUT', 'DAP2_DOUT', None, None) ] compats_clara_agx_xavier = ( 'nvidia,e3900-0000+p2888-0004', ) JETSON_NX_PIN_DEFS = [ (118, 'PS.04', "tegra194-gpio", 7, 4, 'GPIO09', 'AUD_MCLK', None, None), (112, 'PR.04', "tegra194-gpio", 11, 17, 'UART1_RTS', 'UART1_RTS', None, None), (127, 'PT.05', "tegra194-gpio", 12, 18, 'I2S0_SCLK', 'DAP5_SCLK', None, None), (149, 'PY.00', "tegra194-gpio", 13, 27, 'SPI1_SCK', 'SPI3_SCK', None, None), (16, 'PCC.04', "tegra194-gpio-aon", 15, 22, 'GPIO12', 'TOUCH_CLK', "c340000.pwm", 0), (153, 'PY.04', "tegra194-gpio", 16, 23, 'SPI1_CS1', 'SPI3_CS1_N', None, None), (152, 'PY.03', "tegra194-gpio", 18, 24, 'SPI1_CS0', 'SPI3_CS0_N', None, None), (162, 'PZ.05', "tegra194-gpio", 19, 10, 'SPI0_MOSI', 'SPI1_MOSI', None, None), (161, 'PZ.04', "tegra194-gpio", 21, 9, 'SPI0_MISO', 'SPI1_MISO', None, None), (150, 'PY.01', "tegra194-gpio", 22, 25, 'SPI1_MISO', 'SPI3_MISO', None, None), (160, 'PZ.03', "tegra194-gpio", 23, 11, 'SPI0_SCK', 'SPI1_SCK', None, None), (163, 'PZ.06', "tegra194-gpio", 24, 8, 'SPI0_CS0', 'SPI1_CS0_N', None, None), (164, 'PZ.07', "tegra194-gpio", 26, 7, 'SPI0_CS1', 'SPI1_CS1_N', None, None), (105, 'PQ.05', "tegra194-gpio", 29, 5, 'GPIO01', 'SOC_GPIO41', None, None), (106, 'PQ.06', "tegra194-gpio", 31, 6, 'GPIO11', 'SOC_GPIO42', None, None), (108, 'PR.00', "tegra194-gpio", 32, 12, 'GPIO07', 'SOC_GPIO44', '32f0000.pwm', 0), (84, 'PN.01', "tegra194-gpio", 33, 13, 'GPIO13', 'SOC_GPIO54', '3280000.pwm', 0), (130, 'PU.00', "tegra194-gpio", 35, 19, 'I2S0_FS', 'DAP5_FS', None, None), (113, 'PR.05', "tegra194-gpio", 36, 16, 'UART1_CTS', 'UART1_CTS', None, None), (151, 'PY.02', "tegra194-gpio", 37, 26, 'SPI1_MOSI', 'SPI3_MOSI', None, None), (129, 'PT.07', "tegra194-gpio", 38, 20, 'I2S0_DIN', 'DAP5_DIN', None, None), (128, 'PT.06', "tegra194-gpio", 40, 21, 'I2S0_DOUT', 'DAP5_DOUT', None, None) ] compats_nx = ( 'nvidia,p3509-0000+p3668-0000', 'nvidia,p3509-0000+p3668-0001', 'nvidia,p3449-0000+p3668-0000', 'nvidia,p3449-0000+p3668-0001', 'nvidia,p3449-0000+p3668-0003', ) JETSON_XAVIER_PIN_DEFS = [ (106, 'PQ.06', "tegra194-gpio", 7, 4, 'MCLK05', 'SOC_GPIO42', None, None), (112, 'PR.04', "tegra194-gpio", 11, 17, 'UART1_RTS', 'UART1_RTS', None, None), (51, 'PH.07', "tegra194-gpio", 12, 18, 'I2S2_CLK', 'DAP2_SCLK', None, None), (108, 'PR.00', "tegra194-gpio", 13, 27, 'PWM01', 'SOC_GPIO44', '32f0000.pwm', 0), # Older versions of L4T don'Pt enable this PWM controller in DT, so this PWM # channel may not be available. (84, 'PN.01', "tegra194-gpio", 15, 22, 'GPIO27', 'SOC_GPIO54', '3280000.pwm', 0), (8, 'BB.00', "tegra194-gpio-aon", 16, 23, 'GPIO8', 'CAN1_STB', None, None), (44, 'PH.00', "tegra194-gpio", 18, 24, 'GPIO35', 'SOC_GPIO12', '32c0000.pwm', 0), (162, 'PZ.05', "tegra194-gpio", 19, 10, 'SPI1_MOSI', 'SPI1_MOSI', None, None), (161, 'PZ.04', "tegra194-gpio", 21, 9, 'SPI1_MISO', 'SPI1_MISO', None, None), (101, 'PQ.01', "tegra194-gpio", 22, 25, 'GPIO17', 'SOC_GPIO21', None, None), (160, 'PZ.03', "tegra194-gpio", 23, 11, 'SPI1_CLK', 'SPI1_SCK', None, None), (163, 'PZ.06', "tegra194-gpio", 24, 8, 'SPI1_CS0_N', 'SPI1_CS0_N', None, None), (164, 'PZ.07', "tegra194-gpio", 26, 7, 'SPI1_CS1_N', 'SPI1_CS1_N', None, None), (3, 'PAA.03', "tegra194-gpio-aon", 29, 5, 'CAN0_DIN', 'CAN0_DIN', None, None), (2, 'PAA.02', "tegra194-gpio-aon", 31, 6, 'CAN0_DOUT', 'CAN0_DOUT', None, None), (9, 'PBB.01', "tegra194-gpio-aon", 32, 12, 'GPIO9', 'CAN1_EN', None, None), (0, 'PAA.00', "tegra194-gpio-aon", 33, 13, 'CAN1_DOUT', 'CAN1_DOUT', None, None), (54, 'PI.02', "tegra194-gpio", 35, 19, 'I2S2_FS', 'DAP2_FS', None, None), # Input-only (due to base board) (113, 'PR.05', "tegra194-gpio", 36, 16, 'UART1_CTS', 'UART1_CTS', None, None), (1, 'PAA.01', "tegra194-gpio-aon", 37, 26, 'CAN1_DIN', 'CAN1_DIN', None, None), (53, 'PI.01', "tegra194-gpio", 38, 20, 'I2S2_DIN', 'DAP2_DIN', None, None), (52, 'PI.00', "tegra194-gpio", 40, 21, 'I2S2_DOUT', 'DAP2_DOUT', None, None) ] compats_xavier = ( 'nvidia,p2972-0000', 'nvidia,p2972-0006', 'nvidia,jetson-xavier', 'nvidia,galen-industrial', 'nvidia,jetson-xavier-industrial', ) JETSON_TX2_NX_PIN_DEFS = [ (76, 'PJ.04', "tegra-gpio", 7, 4, 'GPIO09', 'AUD_MCLK', None, None), (28, 'PW.04', "tegra-gpio-aon", 11, 17, 'UART1_RTS', 'UART3_RTS', None, None), (72, 'PJ.00', "tegra-gpio", 12, 18, 'I2S0_SCLK', 'DAP1_SCLK', None, None), (17, 'PV.01', "tegra-gpio-aon", 13, 27, 'SPI1_SCK', 'GPIO_SEN1', None, None), (18, 'PC.02', "tegra-gpio", 15, 22, 'GPIO12', 'DAP2_DOUT', None, None), (19, 'PC.03', "tegra-gpio", 16, 23, 'SPI1_CS1', 'DAP2_DIN', None, None), (20, 'PV.04', "tegra-gpio-aon", 18, 24, 'SPI1_CS0', 'GPIO_SEN4', None, None), (58, 'PH.02', "tegra-gpio", 19, 10, 'SPI0_MOSI', 'GPIO_WAN7', None, None), (57, 'PH.01', "tegra-gpio", 21, 9, 'SPI0_MISO', 'GPIO_WAN6', None, None), (18, 'PV.02', "tegra-gpio-aon", 22, 25, 'SPI1_MISO', 'GPIO_SEN2', None, None), (56, 'PH.00', "tegra-gpio", 23, 11, 'SPI1_CLK', 'GPIO_WAN5', None, None), (59, 'PH.03', "tegra-gpio", 24, 8, 'SPI0_CS0', 'GPIO_WAN8', None, None), (163, 'PY.03', "tegra-gpio", 26, 7, 'SPI0_CS1', 'GPIO_MDM4', None, None), (105, 'PN.01', "tegra-gpio", 29, 5, 'GPIO01', 'GPIO_CAM2', None, None), (50, 'PEE.02', "tegra-gpio-aon", 31, 6, 'GPIO11', 'TOUCH_CLK', None, None), (8, 'PU.00', "tegra-gpio-aon", 32, 12, 'GPIO07', 'GPIO_DIS0', '3280000.pwm', 0), (13, 'PU.05', "tegra-gpio-aon", 33, 13, 'GPIO13', 'GPIO_DIS5', '32a0000.pwm', 0), (75, 'PJ.03', "tegra-gpio", 35, 19, 'I2S0_FS', 'DAP1_FS', None, None), (29, 'PW.05', "tegra-gpio-aon", 36, 16, 'UART1_CTS', 'UART3_CTS', None, None), (19, 'PV.03', "tegra-gpio-aon", 37, 26, 'SPI1_MOSI', 'GPIO_SEN3', None, None), (74, 'PJ.02', "tegra-gpio", 38, 20, 'I2S0_DIN', 'DAP1_DIN', None, None), (73, 'PJ.01', "tegra-gpio", 40, 21, 'I2S0_DOUT', 'DAP1_DOUT', None, None) ] compats_tx2_nx = ( 'nvidia,p3509-0000+p3636-0001', ) JETSON_TX2_PIN_DEFS = [ (76, 'PJ.04', "tegra-gpio", 7, 4, 'PAUDIO_MCLK', 'AUD_MCLK', None, None), # Output-only (due to base board) (146, 'PT.02', "tegra-gpio", 11, 17, 'PUART0_RTS', 'UART1_RTS', None, None), (72, 'PJ.00', "tegra-gpio", 12, 18, 'PI2S0_CLK', 'DAP1_SCLK', None, None), (77, 'PJ.05', "tegra-gpio", 13, 27, 'PGPIO20_AUD_INT', 'GPIO_AUD0', None, None), (15, 'GPIO_EXP_P16', "tca9539", 15, 22, 'GPIO_EXP_P17', 'GPIO_EXP_P17', None, None), # Input-only (due to module): (40, 'PAA.00', "tegra-gpio-aon", 16, 23, 'AO_DMIC_IN_DAT', 'CAN_GPIO0', None, None), (161, 'PY.01', "tegra-gpio", 18, 24, 'GPIO16_MDM_WAKE_AP', 'GPIO_MDM2', None, None), (109, 'PN.05', "tegra-gpio", 19, 10, 'SPI1_MOSI', 'GPIO_CAM6', None, None), (108, 'PN.04', "tegra-gpio", 21, 9, 'SPI1_MISO', 'GPIO_CAM5', None, None), (14, 'GPIO_EXP_P16', "tca9539", 22, 25, 'GPIO_EXP_P16', 'GPIO_EXP_P16', None, None), (107, 'PN.03', "tegra-gpio", 23, 11, 'SPI1_CLK', 'GPIO_CAM4', None, None), (110, 'PN.06', "tegra-gpio", 24, 8, 'SPI1_CS0', 'GPIO_CAM7', None, None), # Board pin 26 is not available on this board (78, 'PJ.06', "tegra-gpio", 29, 5, 'GPIO19_AUD_RST', 'GPIO_AUD1', None, None), (42, 'PAA.02', "tegra-gpio-aon", 31, 6, 'GPIO9_MOTION_INT', 'CAN_GPIO2', None, None), # Output-only (due to module): (41, 'PAA.01', "tegra-gpio-aon", 32, 12, 'AO_DMIC_IN_CLK', 'CAN_GPIO1', None, None), (69, 'PI.05', "tegra-gpio", 33, 13, 'GPIO11_AP_WAKE_BT', 'GPIO_PQ5', None, None), (75, 'PJ.03', "tegra-gpio", 35, 19, 'I2S0_LRCLK', 'DAP1_FS', None, None), # Input-only (due to base board) IF NVIDIA debug card NOT plugged in # Output-only (due to base board) IF NVIDIA debug card plugged in (147, 'PT.03', "tegra-gpio", 36, 16, 'UART0_CTS', 'UART1_CTS', None, None), (68, 'PI.04', "tegra-gpio", 37, 26, 'GPIO8_ALS_PROX_INT', 'GPIO_PQ4', None, None), (74, 'PJ.02', "tegra-gpio", 38, 20, 'I2S0_SDIN', 'DAP1_DIN', None, None), (73, 'PJ.01', "tegra-gpio", 40, 21, 'I2S0_SDOUT', 'DAP1_DOUT', None, None) ] compats_tx2 = ( 'nvidia,p2771-0000', 'nvidia,p2771-0888', 'nvidia,p3489-0000', 'nvidia,lightning', 'nvidia,quill', 'nvidia,storm', ) JETSON_TX1_PIN_DEFS = [ (216, '', "tegra-gpio", 7, 4, 'AUDIO_MCLK', 'AUD_MCLK', None, None), # Output-only (due to base board) (162, '', "tegra-gpio", 11, 17, 'UART0_RTS', 'UART1_RTS', None, None), (11, '', "tegra-gpio", 12, 18, 'I2S0_CLK', 'DAP1_SCLK', None, None), (38, '', "tegra-gpio", 13, 27, 'GPIO20_AUD_INT', 'GPIO_PE6', None, None), (15, '', "tca9539", 15, 22, 'GPIO_EXP_P17', 'GPIO_EXP_P17', None, None), (37, '', "tegra-gpio", 16, 23, 'AO_DMIC_IN_DAT', 'DMIC3_DAT', None, None), (184, '', "tegra-gpio", 18, 24, 'GPIO16_MDM_WAKE_AP', 'MODEM_WAKE_AP', None, None), (16, '', "tegra-gpio", 19, 10, 'SPI1_MOSI', 'SPI1_MOSI', None, None), (17, '', "tegra-gpio", 21, 9, 'SPI1_MISO', 'SPI1_MISO', None, None), (14, '', "tca9539", 22, 25, 'GPIO_EXP_P16', 'GPIO_EXP_P16', None, None), (18, '', "tegra-gpio", 23, 11, 'SPI1_CLK', 'SPI1_SCK', None, None), (19, '', "tegra-gpio", 24, 8, 'SPI1_CS0', 'SPI1_CS0', None, None), (20, '', "tegra-gpio", 26, 7, 'SPI1_CS1', 'SPI1_CS1', None, None), (219, '', "tegra-gpio", 29, 5, 'GPIO19_AUD_RST', 'GPIO_X1_AUD', None, None), (186, '', "tegra-gpio", 31, 6, 'GPIO9_MOTION_INT', 'MOTION_INT', None, None), (36, '', "tegra-gpio", 32, 12, 'AO_DMIC_IN_CLK', 'DMIC3_CLK', None, None), (63, '', "tegra-gpio", 33, 13, 'GPIO11_AP_WAKE_BT', 'AP_WAKE_NFC', None, None), (8, '', "tegra-gpio", 35, 19, 'I2S0_LRCLK', 'DAP1_FS', None, None), # Input-only (due to base board) IF NVIDIA debug card NOT plugged in # Input-only (due to base board) (always reads fixed value) IF NVIDIA debug card plugged in (163, '', "tegra-gpio", 36, 16, 'UART0_CTS', 'UART1_CTS', None, None), (187, '', "tegra-gpio", 37, 26, 'GPIO8_ALS_PROX_INT', 'ALS_PROX_INT', None, None), (9, '', "tegra-gpio", 38, 20, 'I2S0_SDIN', 'DAP1_DIN', None, None), (10, '', "tegra-gpio", 40, 21, 'I2S0_SDOUT', 'DAP1_DOUT', None, None) ] compats_tx1 = ( 'nvidia,p2371-2180', 'nvidia,jetson-cv', ) JETSON_NANO_PIN_DEFS = [ (216, '', "tegra-gpio", 7, 4, 'GPIO9', 'AUD_MCLK', None, None), (50, '', "tegra-gpio", 11, 17, 'UART1_RTS', 'UART2_RTS', None, None), (79, '', "tegra-gpio", 12, 18, 'I2S0_SCLK', 'DAP4_SCLK', None, None), (14, '', "tegra-gpio", 13, 27, 'SPI1_SCK', 'SPI2_SCK', None, None), (194, '', "tegra-gpio", 15, 22, 'GPIO12', 'LCD_TE', None, None), (232, '', "tegra-gpio", 16, 23, 'SPI1_CS1', 'SPI2_CS1', None, None), (15, '', "tegra-gpio", 18, 24, 'SPI1_CS0', 'SPI2_CS0', None, None), (16, '', "tegra-gpio", 19, 10, 'SPI0_MOSI', 'SPI1_MOSI', None, None), (17, '', "tegra-gpio", 21, 9, 'SPI0_MISO', 'SPI1_MISO', None, None), (13, '', "tegra-gpio", 22, 25, 'SPI1_MISO', 'SPI2_MISO', None, None), (18, '', "tegra-gpio", 23, 11, 'SPI0_SCK', 'SPI1_SCK', None, None), (19, '', "tegra-gpio", 24, 8, 'SPI0_CS0', 'SPI1_CS0', None, None), (20, '', "tegra-gpio", 26, 7, 'SPI0_CS1', 'SPI1_CS1', None, None), (149, '', "tegra-gpio", 29, 5, 'GPIO01', 'CAM_AF_EN', None, None), (200, '', "tegra-gpio", 31, 6, 'GPIO11', 'GPIO_PZ0', None, None), # Older versions of L4T have a DT bug which instantiates a bogus device # which prevents this library from using this PWM channel. (168, '', "tegra-gpio", 32, 12, 'GPIO07', 'LCD_BL_PW', '7000a000.pwm', 0), (38, '', "tegra-gpio", 33, 13, 'GPIO13', 'GPIO_PE6', '7000a000.pwm', 2), (76, '', "tegra-gpio", 35, 19, 'I2S0_FS', 'DAP4_FS', None, None), (51, '', "tegra-gpio", 36, 16, 'UART1_CTS', 'UART2_CTS', None, None), (12, '', "tegra-gpio", 37, 26, 'SPI1_MOSI', 'SPI2_MOSI', None, None), (77, '', "tegra-gpio", 38, 20, 'I2S0_DIN', 'DAP4_DIN', None, None), (78, '', "tegra-gpio", 40, 21, 'I2S0_DOUT', 'DAP4_DOUT', None, None) ] compats_nano = ( 'nvidia,p3450-0000', 'nvidia,p3450-0002', 'nvidia,jetson-nano', ) jetson_gpio_data = { JETSON_ORIN_NX: ( JETSON_ORIN_NX_PIN_DEFS, { 'P1_REVISION': 1, 'RAM': '32768M, 65536M', 'REVISION': 'Unknown', 'TYPE': 'JETSON_ORIN_NX', 'MANUFACTURER': 'NVIDIA', 'PROCESSOR': 'A78AE' } ), JETSON_ORIN_NANO: ( JETSON_ORIN_NX_PIN_DEFS, { 'P1_REVISION': 1, 'RAM': '32768M, 65536M', 'REVISION': 'Unknown', 'TYPE': 'JETSON_ORIN_NANO', 'MANUFACTURER': 'NVIDIA', 'PROCESSOR': 'A78AE' } ), JETSON_ORIN: ( JETSON_ORIN_PIN_DEFS, { 'P1_REVISION': 1, 'RAM': '32768M, 65536M', 'REVISION': 'Unknown', 'TYPE': 'JETSON_ORIN', 'MANUFACTURER': 'NVIDIA', 'PROCESSOR': 'A78AE' } ), CLARA_AGX_XAVIER: ( CLARA_AGX_XAVIER_PIN_DEFS, { 'P1_REVISION': 1, 'RAM': '16384M', 'REVISION': 'Unknown', 'TYPE': 'CLARA_AGX_XAVIER', 'MANUFACTURER': 'NVIDIA', 'PROCESSOR': 'ARM Carmel' } ), JETSON_NX: ( JETSON_NX_PIN_DEFS, { 'P1_REVISION': 1, 'RAM': '16384M, 8192M', 'REVISION': 'Unknown', 'TYPE': 'Jetson NX', 'MANUFACTURER': 'NVIDIA', 'PROCESSOR': 'ARM Carmel' } ), JETSON_XAVIER: ( JETSON_XAVIER_PIN_DEFS, { 'P1_REVISION': 1, 'RAM': '65536M, 32768M, 16384M, 8192M', 'REVISION': 'Unknown', 'TYPE': 'Jetson Xavier', 'MANUFACTURER': 'NVIDIA', 'PROCESSOR': 'ARM Carmel' } ), JETSON_TX2_NX: ( JETSON_TX2_NX_PIN_DEFS, { 'P1_REVISION': 1, 'RAM': '4096M', 'REVISION': 'Unknown', 'TYPE': 'Jetson TX2 NX', 'MANUFACTURER': 'NVIDIA', 'PROCESSOR': 'ARM A57 + Denver' } ), JETSON_TX2: ( JETSON_TX2_PIN_DEFS, { 'P1_REVISION': 1, 'RAM': '8192M, 4096M', 'REVISION': 'Unknown', 'TYPE': 'Jetson TX2', 'MANUFACTURER': 'NVIDIA', 'PROCESSOR': 'ARM A57 + Denver' } ), JETSON_TX1: ( JETSON_TX1_PIN_DEFS, { 'P1_REVISION': 1, 'RAM': '4096M', 'REVISION': 'Unknown', 'TYPE': 'Jetson TX1', 'MANUFACTURER': 'NVIDIA', 'PROCESSOR': 'ARM A57' } ), JETSON_NANO: ( JETSON_NANO_PIN_DEFS, { 'P1_REVISION': 1, 'RAM': '4096M, 2048M', 'REVISION': 'Unknown', 'TYPE': 'Jetson Nano', 'MANUFACTURER': 'NVIDIA', 'PROCESSOR': 'ARM A57' } ), } class ChannelInfo(object): # @channel the pin number in specified mode (board or bcm) # @chip_fd the file descriptor of the chip # @line_handle the file descriptor of the line # @line_offset Linux GPIO pin number (line offset inside chip, not global) # @direction the direction of a pin is configured (in or out) # @edge rising and/or falling edge being monitored # @consumer consumer label # @gpio_name Linux exported GPIO name # @gpio_chip GPIO chip name/instance def __init__(self, channel, line_offset, gpio_name, gpio_chip, pwm_chip_dir, pwm_id): self.channel = channel self.chip_fd = None self.line_handle = None self.line_offset = line_offset self.direction = None self.edge = None self.consumer = "Jetson-gpio" self.gpio_name = gpio_name self.gpio_chip = gpio_chip self.pwm_chip_dir = pwm_chip_dir self.pwm_id = pwm_id ids_warned = False def find_pmgr_board(prefix): global ids_warned ids_path = '/proc/device-tree/chosen/plugin-manager/ids' ids_path_k510 = '/proc/device-tree/chosen/ids' if os.path.exists(ids_path): for f in os.listdir(ids_path): if f.startswith(prefix): return f elif os.path.exists(ids_path_k510): with open(ids_path_k510, 'r') as f: ids = f.read() for s in ids.split(): if s.startswith(prefix): return s else: if not ids_warned: ids_warned = True msg = """\ WARNING: Plugin manager information missing from device tree. WARNING: Cannot determine whether the expected Jetson board is present. """ sys.stderr.write(msg) return None def warn_if_not_carrier_board(*carrier_boards): found = False for b in carrier_boards: found = find_pmgr_board(b + '-') if found: break if not found: msg = """\ WARNING: Carrier board is not from a Jetson Developer Kit. WARNNIG: Jetson.GPIO library has not been verified with this carrier board, WARNING: and in fact is unlikely to work correctly. """ sys.stderr.write(msg) def get_compatibles(compatible_path): with open(compatible_path, 'r') as f: compatibles = f.read().split('\x00') return compatibles def get_model(): compatible_path = '/proc/device-tree/compatible' # get model info from compatible_path if os.path.exists(compatible_path): compatibles = get_compatibles(compatible_path) def matches(vals): return any(v in compatibles for v in vals) if matches(compats_tx1): warn_if_not_carrier_board('2597') return JETSON_TX1 elif matches(compats_tx2): warn_if_not_carrier_board('2597') return JETSON_TX2 elif matches(compats_clara_agx_xavier): warn_if_not_carrier_board('3900') return CLARA_AGX_XAVIER elif matches(compats_tx2_nx): warn_if_not_carrier_board('3509') return JETSON_TX2_NX elif matches(compats_xavier): warn_if_not_carrier_board('2822') return JETSON_XAVIER elif matches(compats_nano): module_id = find_pmgr_board('3448') if not module_id: raise Exception('Could not determine Jetson Nano module revision') revision = module_id.split('-')[-1] # Revision is an ordered string, not a decimal integer if revision < "200": raise Exception('Jetson Nano module revision must be A02 or later') warn_if_not_carrier_board('3449', '3542') return JETSON_NANO elif matches(compats_nx): warn_if_not_carrier_board('3509', '3449') return JETSON_NX elif matches(compats_jetson_orins): warn_if_not_carrier_board('3737') return JETSON_ORIN elif matches(compats_jetson_orins_nx): warn_if_not_carrier_board('3509', '3768') return JETSON_ORIN_NX elif matches(compats_jetson_orins_nano): warn_if_not_carrier_board('3509', '3768') return JETSON_ORIN_NANO # get model info from the environment variables for docker containers model_name = os.environ.get("JETSON_MODEL_NAME") if model_name is not None: model_name = model_name.strip() if model_name in JETSON_MODELS: return model_name else: msg = f"Environment variable 'JETSON_MODEL_NAME={model_name}' is invalid." sys.stderr.write(msg) raise Exception('Could not determine Jetson model') # @brief Retrieve all the data before connecting to any ports # @param[out] model: model number of an Jetson platform # @param[out] jetson_info: # @param[out] channel_info: the information related to pin/line, in def get_data(): model = get_model() pin_defs, jetson_info = jetson_gpio_data[model] gpio_chip_dirs = {} gpio_chip_base = {} gpio_chip_ngpio = {} pwm_dirs = {} sysfs_prefixes = ['/sys/devices/', '/sys/devices/platform/', '/sys/bus/platform/devices/'] pwm_chip_names = set([x[7] for x in pin_defs if x[7] is not None]) for pwm_chip_name in pwm_chip_names: pwm_chip_dir = None for prefix in sysfs_prefixes: d = prefix + pwm_chip_name if os.path.isdir(d): pwm_chip_dir = d break # Some PWM controllers aren't enabled in all versions of the DT. In # this case, just hide the PWM function on this pin, but let all other # aspects of the library continue to work. if pwm_chip_dir is None: continue pwm_chip_pwm_dir = pwm_chip_dir + '/pwm' if not os.path.exists(pwm_chip_pwm_dir): continue for fn in os.listdir(pwm_chip_pwm_dir): if not fn.startswith('pwmchip'): continue pwm_chip_pwm_pwmchipn_dir = pwm_chip_pwm_dir + '/' + fn pwm_dirs[pwm_chip_name] = pwm_chip_pwm_pwmchipn_dir break def model_data(key_col, pin_defs): return {x[key_col]: ChannelInfo( x[key_col], x[0], x[1], x[2], pwm_chip_dir=pwm_dirs.get(x[7], None), pwm_id=x[8]) for x in pin_defs} channel_data = { 'BOARD': model_data(3, pin_defs), 'BCM': model_data(4, pin_defs), 'CVM': model_data(5, pin_defs), 'TEGRA_SOC': model_data(6, pin_defs), } return model, jetson_info, channel_data
jetson-gpio-master
lib/python/Jetson/GPIO/gpio_pin_data.py
# ! /usr/bin/python # -*- coding: utf-8 -*- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Setup for pip package.""" import codecs import importlib.util import os import subprocess from distutils import cmd as distutils_cmd from distutils import log as distutils_log from itertools import chain import setuptools spec = importlib.util.spec_from_file_location('package_info', 'nemo/package_info.py') package_info = importlib.util.module_from_spec(spec) spec.loader.exec_module(package_info) __contact_emails__ = package_info.__contact_emails__ __contact_names__ = package_info.__contact_names__ __description__ = package_info.__description__ __download_url__ = package_info.__download_url__ __homepage__ = package_info.__homepage__ __keywords__ = package_info.__keywords__ __license__ = package_info.__license__ __package_name__ = package_info.__package_name__ __repository_url__ = package_info.__repository_url__ __version__ = package_info.__version__ if os.path.exists('nemo/README.md'): with open("nemo/README.md", "r", encoding='utf-8') as fh: long_description = fh.read() long_description_content_type = "text/markdown" elif os.path.exists('README.rst'): # codec is used for consistent encoding long_description = codecs.open( os.path.join(os.path.abspath(os.path.dirname(__file__)), 'README.rst'), 'r', encoding='utf-8', ).read() long_description_content_type = "text/x-rst" else: long_description = 'See ' + __homepage__ long_description_content_type = "text/plain" ############################################################################### # Dependency Loading # # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # def req_file(filename, folder="requirements"): with open(os.path.join(folder, filename), encoding='utf-8') as f: content = f.readlines() # you may also want to remove whitespace characters # Example: `\n` at the end of each line return [x.strip() for x in content] install_requires = req_file("requirements.txt") extras_require = { # User packages 'test': req_file("requirements_test.txt"), # Lightning Collections Packages 'core': req_file("requirements_lightning.txt"), 'common': req_file('requirements_common.txt'), # domain packages 'asr': req_file("requirements_asr.txt"), 'nlp': req_file("requirements_nlp.txt"), 'tts': req_file("requirements_tts.txt"), 'slu': req_file("requirements_slu.txt"), } extras_require['all'] = list(chain(extras_require.values())) # Add lightning requirements as needed extras_require['common'] = list(chain([extras_require['common'], extras_require['core']])) extras_require['test'] = list(chain([extras_require['tts'], extras_require['core'], extras_require['common'],])) extras_require['asr'] = list(chain([extras_require['asr'], extras_require['core'], extras_require['common']])) extras_require['nlp'] = list(chain([extras_require['nlp'], extras_require['core'], extras_require['common'],])) extras_require['tts'] = list(chain([extras_require['tts'], extras_require['core'], extras_require['common'],])) # TTS has extra dependencies extras_require['tts'] = list(chain([extras_require['tts'], extras_require['asr']])) extras_require['slu'] = list(chain([extras_require['slu'], extras_require['asr']])) ############################################################################### # Code style checkers # # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # class StyleCommand(distutils_cmd.Command): __ISORT_BASE = 'isort' __BLACK_BASE = 'black' description = 'Checks overall project code style.' user_options = [ ('scope=', None, 'Folder of file to operate within.'), ('fix', None, 'True if tries to fix issues in-place.'), ] def __call_checker(self, base_command, scope, check): command = list(base_command) command.append(scope) if check: command.extend(['--check', '--diff']) self.announce( msg='Running command: %s' % str(' '.join(command)), level=distutils_log.INFO, ) return_code = subprocess.call(command) return return_code def _isort(self, scope, check): return self.__call_checker(base_command=self.__ISORT_BASE.split(), scope=scope, check=check,) def _black(self, scope, check): return self.__call_checker(base_command=self.__BLACK_BASE.split(), scope=scope, check=check,) def _pass(self): self.announce(msg='\033[32mPASS\x1b[0m', level=distutils_log.INFO) def _fail(self): self.announce(msg='\033[31mFAIL\x1b[0m', level=distutils_log.INFO) # noinspection PyAttributeOutsideInit def initialize_options(self): self.scope = '.' self.fix = '' def run(self): scope, check = self.scope, not self.fix isort_return = self._isort(scope=scope, check=check) black_return = self._black(scope=scope, check=check) if isort_return == 0 and black_return == 0: self._pass() else: self._fail() exit(isort_return if isort_return != 0 else black_return) def finalize_options(self): pass ############################################################################### setuptools.setup( name=__package_name__, # Versions should comply with PEP440. For a discussion on single-sourcing # the version across setup.py and the project code, see # https://packaging.python.org/en/latest/single_source_version.html version=__version__, description=__description__, long_description=long_description, long_description_content_type=long_description_content_type, # The project's main homepage. url=__repository_url__, download_url=__download_url__, # Author details author=__contact_names__, author_email=__contact_emails__, # maintainer Details maintainer=__contact_names__, maintainer_email=__contact_emails__, # The licence under which the project is released license=__license__, classifiers=[ # How mature is this project? Common values are # 1 - Planning # 2 - Pre-Alpha # 3 - Alpha # 4 - Beta # 5 - Production/Stable # 6 - Mature # 7 - Inactive 'Development Status :: 5 - Production/Stable', # Indicate who your project is intended for 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'Intended Audience :: Information Technology', # Indicate what your project relates to 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Scientific/Engineering :: Image Recognition', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Utilities', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: Apache Software License', # Supported python versions 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', # Additional Setting 'Environment :: Console', 'Natural Language :: English', 'Operating System :: OS Independent', ], packages=setuptools.find_packages(), install_requires=install_requires, # List additional groups of dependencies here (e.g. development # dependencies). You can install these using the following syntax, # $ pip install -e ".[all]" # $ pip install nemo_toolkit[all] extras_require=extras_require, # Add in any packaged data. include_package_data=True, exclude=['tools', 'tests'], package_data={'': ['*.tsv', '*.txt', '*.far', '*.fst', '*.cpp', 'Makefile']}, zip_safe=False, # PyPI package information. keywords=__keywords__, # Custom commands. cmdclass={'style': StyleCommand}, )
NeMo-main
setup.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import math import os from dataclasses import dataclass, field, is_dataclass from pathlib import Path from typing import List, Optional import torch from omegaconf import OmegaConf from utils.data_prep import ( add_t_start_end_to_utt_obj, get_batch_starts_ends, get_batch_variables, get_manifest_lines_batch, is_entry_in_all_lines, is_entry_in_any_lines, ) from utils.make_ass_files import make_ass_files from utils.make_ctm_files import make_ctm_files from utils.make_output_manifest import write_manifest_out_line from utils.viterbi_decoding import viterbi_decoding from nemo.collections.asr.models.ctc_models import EncDecCTCModel from nemo.collections.asr.models.hybrid_rnnt_ctc_models import EncDecHybridRNNTCTCModel from nemo.collections.asr.parts.utils.streaming_utils import FrameBatchASR from nemo.collections.asr.parts.utils.transcribe_utils import setup_model from nemo.core.config import hydra_runner from nemo.utils import logging """ Align the utterances in manifest_filepath. Results are saved in ctm files in output_dir. Arguments: pretrained_name: string specifying the name of a CTC NeMo ASR model which will be automatically downloaded from NGC and used for generating the log-probs which we will use to do alignment. Note: NFA can only use CTC models (not Transducer models) at the moment. model_path: string specifying the local filepath to a CTC NeMo ASR model which will be used to generate the log-probs which we will use to do alignment. Note: NFA can only use CTC models (not Transducer models) at the moment. Note: if a model_path is provided, it will override the pretrained_name. manifest_filepath: filepath to the manifest of the data you want to align, containing 'audio_filepath' and 'text' fields. output_dir: the folder where output CTM files and new JSON manifest will be saved. align_using_pred_text: if True, will transcribe the audio using the specified model and then use that transcription as the reference text for the forced alignment. transcribe_device: None, or a string specifying the device that will be used for generating log-probs (i.e. "transcribing"). The string needs to be in a format recognized by torch.device(). If None, NFA will set it to 'cuda' if it is available (otherwise will set it to 'cpu'). viterbi_device: None, or string specifying the device that will be used for doing Viterbi decoding. The string needs to be in a format recognized by torch.device(). If None, NFA will set it to 'cuda' if it is available (otherwise will set it to 'cpu'). batch_size: int specifying batch size that will be used for generating log-probs and doing Viterbi decoding. use_local_attention: boolean flag specifying whether to try to use local attention for the ASR Model (will only work if the ASR Model is a Conformer model). If local attention is used, we will set the local attention context size to [64,64]. additional_segment_grouping_separator: an optional string used to separate the text into smaller segments. If this is not specified, then the whole text will be treated as a single segment. remove_blank_tokens_from_ctm: a boolean denoting whether to remove <blank> tokens from token-level output CTMs. audio_filepath_parts_in_utt_id: int specifying how many of the 'parts' of the audio_filepath we will use (starting from the final part of the audio_filepath) to determine the utt_id that will be used in the CTM files. Note also that any spaces that are present in the audio_filepath will be replaced with dashes, so as not to change the number of space-separated elements in the CTM files. e.g. if audio_filepath is "/a/b/c/d/e 1.wav" and audio_filepath_parts_in_utt_id is 1 => utt_id will be "e1" e.g. if audio_filepath is "/a/b/c/d/e 1.wav" and audio_filepath_parts_in_utt_id is 2 => utt_id will be "d_e1" e.g. if audio_filepath is "/a/b/c/d/e 1.wav" and audio_filepath_parts_in_utt_id is 3 => utt_id will be "c_d_e1" use_buffered_infer: False, if set True, using streaming to do get the logits for alignment This flag is useful when aligning large audio file. However, currently the chunk streaming inference does not support batch inference, which means even you set batch_size > 1, it will only infer one by one instead of doing the whole batch inference together. chunk_len_in_secs: float chunk length in seconds total_buffer_in_secs: float Length of buffer (chunk + left and right padding) in seconds chunk_batch_size: int batch size for buffered chunk inference, which will cut one audio into segments and do inference on chunk_batch_size segments at a time simulate_cache_aware_streaming: False, if set True, using cache aware streaming to do get the logits for alignment save_output_file_formats: List of strings specifying what type of output files to save (default: ["ctm", "ass"]) ctm_file_config: CTMFileConfig to specify the configuration of the output CTM files ass_file_config: ASSFileConfig to specify the configuration of the output ASS files """ @dataclass class CTMFileConfig: remove_blank_tokens: bool = False # minimum duration (in seconds) for timestamps in the CTM.If any line in the CTM has a # duration lower than this, it will be enlarged from the middle outwards until it # meets the minimum_timestamp_duration, or reaches the beginning or end of the audio file. # Note that this may cause timestamps to overlap. minimum_timestamp_duration: float = 0 @dataclass class ASSFileConfig: fontsize: int = 20 vertical_alignment: str = "center" # if resegment_text_to_fill_space is True, the ASS files will use new segments # such that each segment will not take up more than (approximately) max_lines_per_segment # when the ASS file is applied to a video resegment_text_to_fill_space: bool = False max_lines_per_segment: int = 2 text_already_spoken_rgb: List[int] = field(default_factory=lambda: [49, 46, 61]) # dark gray text_being_spoken_rgb: List[int] = field(default_factory=lambda: [57, 171, 9]) # dark green text_not_yet_spoken_rgb: List[int] = field(default_factory=lambda: [194, 193, 199]) # light gray @dataclass class AlignmentConfig: # Required configs pretrained_name: Optional[str] = None model_path: Optional[str] = None manifest_filepath: Optional[str] = None output_dir: Optional[str] = None # General configs align_using_pred_text: bool = False transcribe_device: Optional[str] = None viterbi_device: Optional[str] = None batch_size: int = 1 use_local_attention: bool = True additional_segment_grouping_separator: Optional[str] = None audio_filepath_parts_in_utt_id: int = 1 # Buffered chunked streaming configs use_buffered_chunked_streaming: bool = False chunk_len_in_secs: float = 1.6 total_buffer_in_secs: float = 4.0 chunk_batch_size: int = 32 # Cache aware streaming configs simulate_cache_aware_streaming: Optional[bool] = False # Output file configs save_output_file_formats: List[str] = field(default_factory=lambda: ["ctm", "ass"]) ctm_file_config: CTMFileConfig = CTMFileConfig() ass_file_config: ASSFileConfig = ASSFileConfig() @hydra_runner(config_name="AlignmentConfig", schema=AlignmentConfig) def main(cfg: AlignmentConfig): logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}') if is_dataclass(cfg): cfg = OmegaConf.structured(cfg) # Validate config if cfg.model_path is None and cfg.pretrained_name is None: raise ValueError("Both cfg.model_path and cfg.pretrained_name cannot be None") if cfg.model_path is not None and cfg.pretrained_name is not None: raise ValueError("One of cfg.model_path and cfg.pretrained_name must be None") if cfg.manifest_filepath is None: raise ValueError("cfg.manifest_filepath must be specified") if cfg.output_dir is None: raise ValueError("cfg.output_dir must be specified") if cfg.batch_size < 1: raise ValueError("cfg.batch_size cannot be zero or a negative number") if cfg.additional_segment_grouping_separator == "" or cfg.additional_segment_grouping_separator == " ": raise ValueError("cfg.additional_grouping_separator cannot be empty string or space character") if cfg.ctm_file_config.minimum_timestamp_duration < 0: raise ValueError("cfg.minimum_timestamp_duration cannot be a negative number") if cfg.ass_file_config.vertical_alignment not in ["top", "center", "bottom"]: raise ValueError("cfg.ass_file_config.vertical_alignment must be one of 'top', 'center' or 'bottom'") for rgb_list in [ cfg.ass_file_config.text_already_spoken_rgb, cfg.ass_file_config.text_already_spoken_rgb, cfg.ass_file_config.text_already_spoken_rgb, ]: if len(rgb_list) != 3: raise ValueError( "cfg.ass_file_config.text_already_spoken_rgb," " cfg.ass_file_config.text_being_spoken_rgb," " and cfg.ass_file_config.text_already_spoken_rgb all need to contain" " exactly 3 elements." ) # Validate manifest contents if not is_entry_in_all_lines(cfg.manifest_filepath, "audio_filepath"): raise RuntimeError( "At least one line in cfg.manifest_filepath does not contain an 'audio_filepath' entry. " "All lines must contain an 'audio_filepath' entry." ) if cfg.align_using_pred_text: if is_entry_in_any_lines(cfg.manifest_filepath, "pred_text"): raise RuntimeError( "Cannot specify cfg.align_using_pred_text=True when the manifest at cfg.manifest_filepath " "contains 'pred_text' entries. This is because the audio will be transcribed and may produce " "a different 'pred_text'. This may cause confusion." ) else: if not is_entry_in_all_lines(cfg.manifest_filepath, "text"): raise RuntimeError( "At least one line in cfg.manifest_filepath does not contain a 'text' entry. " "NFA requires all lines to contain a 'text' entry when cfg.align_using_pred_text=False." ) # init devices if cfg.transcribe_device is None: transcribe_device = torch.device("cuda" if torch.cuda.is_available() else "cpu") else: transcribe_device = torch.device(cfg.transcribe_device) logging.info(f"Device to be used for transcription step (`transcribe_device`) is {transcribe_device}") if cfg.viterbi_device is None: viterbi_device = torch.device("cuda" if torch.cuda.is_available() else "cpu") else: viterbi_device = torch.device(cfg.viterbi_device) logging.info(f"Device to be used for viterbi step (`viterbi_device`) is {viterbi_device}") if transcribe_device.type == 'cuda' or viterbi_device.type == 'cuda': logging.warning( 'One or both of transcribe_device and viterbi_device are GPUs. If you run into OOM errors ' 'it may help to change both devices to be the CPU.' ) # load model model, _ = setup_model(cfg, transcribe_device) model.eval() if isinstance(model, EncDecHybridRNNTCTCModel): model.change_decoding_strategy(decoder_type="ctc") if cfg.use_local_attention: logging.info( "Flag use_local_attention is set to True => will try to use local attention for model if it allows it" ) model.change_attention_model(self_attention_model="rel_pos_local_attn", att_context_size=[64, 64]) if not (isinstance(model, EncDecCTCModel) or isinstance(model, EncDecHybridRNNTCTCModel)): raise NotImplementedError( f"Model is not an instance of NeMo EncDecCTCModel or ENCDecHybridRNNTCTCModel." " Currently only instances of these models are supported" ) if cfg.ctm_file_config.minimum_timestamp_duration > 0: logging.warning( f"cfg.ctm_file_config.minimum_timestamp_duration has been set to {cfg.ctm_file_config.minimum_timestamp_duration} seconds. " "This may cause the alignments for some tokens/words/additional segments to be overlapping." ) buffered_chunk_params = {} if cfg.use_buffered_chunked_streaming: model_cfg = copy.deepcopy(model._cfg) OmegaConf.set_struct(model_cfg.preprocessor, False) # some changes for streaming scenario model_cfg.preprocessor.dither = 0.0 model_cfg.preprocessor.pad_to = 0 if model_cfg.preprocessor.normalize != "per_feature": logging.error( "Only EncDecCTCModelBPE models trained with per_feature normalization are supported currently" ) # Disable config overwriting OmegaConf.set_struct(model_cfg.preprocessor, True) feature_stride = model_cfg.preprocessor['window_stride'] model_stride_in_secs = feature_stride * cfg.model_downsample_factor total_buffer = cfg.total_buffer_in_secs chunk_len = float(cfg.chunk_len_in_secs) tokens_per_chunk = math.ceil(chunk_len / model_stride_in_secs) mid_delay = math.ceil((chunk_len + (total_buffer - chunk_len) / 2) / model_stride_in_secs) logging.info(f"tokens_per_chunk is {tokens_per_chunk}, mid_delay is {mid_delay}") model = FrameBatchASR( asr_model=model, frame_len=chunk_len, total_buffer=cfg.total_buffer_in_secs, batch_size=cfg.chunk_batch_size, ) buffered_chunk_params = { "delay": mid_delay, "model_stride_in_secs": model_stride_in_secs, "tokens_per_chunk": tokens_per_chunk, } # get start and end line IDs of batches starts, ends = get_batch_starts_ends(cfg.manifest_filepath, cfg.batch_size) # init output_timestep_duration = None and we will calculate and update it during the first batch output_timestep_duration = None # init f_manifest_out os.makedirs(cfg.output_dir, exist_ok=True) tgt_manifest_name = str(Path(cfg.manifest_filepath).stem) + "_with_output_file_paths.json" tgt_manifest_filepath = str(Path(cfg.output_dir) / tgt_manifest_name) f_manifest_out = open(tgt_manifest_filepath, 'w') # get alignment and save in CTM batch-by-batch for start, end in zip(starts, ends): manifest_lines_batch = get_manifest_lines_batch(cfg.manifest_filepath, start, end) (log_probs_batch, y_batch, T_batch, U_batch, utt_obj_batch, output_timestep_duration,) = get_batch_variables( manifest_lines_batch, model, cfg.additional_segment_grouping_separator, cfg.align_using_pred_text, cfg.audio_filepath_parts_in_utt_id, output_timestep_duration, cfg.simulate_cache_aware_streaming, cfg.use_buffered_chunked_streaming, buffered_chunk_params, ) alignments_batch = viterbi_decoding(log_probs_batch, y_batch, T_batch, U_batch, viterbi_device) for utt_obj, alignment_utt in zip(utt_obj_batch, alignments_batch): utt_obj = add_t_start_end_to_utt_obj(utt_obj, alignment_utt, output_timestep_duration) if "ctm" in cfg.save_output_file_formats: utt_obj = make_ctm_files(utt_obj, cfg.output_dir, cfg.ctm_file_config,) if "ass" in cfg.save_output_file_formats: utt_obj = make_ass_files(utt_obj, cfg.output_dir, cfg.ass_file_config) write_manifest_out_line( f_manifest_out, utt_obj, ) f_manifest_out.close() return None if __name__ == "__main__": main()
NeMo-main
tools/nemo_forced_aligner/align.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from utils.data_prep import restore_token_case @pytest.mark.parametrize( "word,word_tokens,expected_word_tokens_cased", [ ("HEY!", ['▁he', 'y', '!'], ['▁HE', 'Y', '!']), ("BabABa▁", ['▁b', 'a', 'b', 'a', 'b', 'a'], ['▁B', 'a', 'b', 'A', 'B', 'a']), ("BabAB▁a", ['▁b', 'a', 'b', 'a', 'b', '_a'], ['▁B', 'a', 'b', 'A', 'B', '_a']), ("Bab▁AB▁a", ['▁b', 'a', 'b', '▁a', 'b', '▁a'], ['▁B', 'a', 'b', '▁A', 'B', '▁a']), ("▁Bab▁AB▁a", ['▁b', 'a', 'b', '▁a', 'b', '▁a'], ['▁B', 'a', 'b', '▁A', 'B', '▁a']), ("▁Bab▁AB▁▁a", ['▁b', 'a', 'b', '▁a', 'b', '▁a'], ['▁B', 'a', 'b', '▁A', 'B', '▁a']), ("▁▁BabAB▁a", ['▁b', 'a', 'b', 'a', 'b', '▁a'], ['▁B', 'a', 'b', 'A', 'B', '▁a']), ("m²", ['▁', 'm', '2'], ['▁', 'm', '2']), ("²", ['▁', '2'], ['▁', '2']), ], ) def test_restore_token_case(word, word_tokens, expected_word_tokens_cased): word_tokens_cased = restore_token_case(word, word_tokens) assert word_tokens_cased == expected_word_tokens_cased
NeMo-main
tools/nemo_forced_aligner/tests/test_restore_token_case.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import prettyprinter import pytest from prettyprinter import pretty_call, register_pretty from utils.data_prep import Segment, Token, Utterance, Word, get_utt_obj from nemo.collections.asr.models import ASRModel def get_utt_obj_pp_string(utt_obj): @register_pretty(Word) def pretty_utterance(value, ctx): return pretty_call( ctx, Word, text=value.text, s_start=value.s_start, s_end=value.s_end, t_start=value.t_start, t_end=value.t_end, tokens=value.tokens, ) @register_pretty(Segment) def pretty_utterance(value, ctx): return pretty_call( ctx, Segment, text=value.text, s_start=value.s_start, s_end=value.s_end, t_start=value.t_start, t_end=value.t_end, words_and_tokens=value.words_and_tokens, ) @register_pretty(Utterance) def pretty_utterance(value, ctx): return pretty_call( ctx, Utterance, text=value.text, token_ids_with_blanks=value.token_ids_with_blanks, segments_and_tokens=value.segments_and_tokens, audio_filepath=value.audio_filepath, utt_id=value.utt_id, ) return prettyprinter.pformat(utt_obj) T_FOR_TEST = 999 AUDIO_FILEPATH_FOR_TEST = "arbitrary_string.wav" UTT_ID_FOR_TEST = "arbitrary_string" EN_TEXT = "hi world | hey" EN_CN_EXPECTED_UTTERANCE = Utterance( text='hi world | hey', token_ids_with_blanks=[1024, 317, 1024, 472, 1024, 25, 1024, 20, 1024], segments_and_tokens=[ Token(text='<b>', text_cased='<b>', s_start=0, s_end=0, t_start=None, t_end=None), Segment( text='hi world', s_start=1, s_end=3, t_start=None, t_end=None, words_and_tokens=[ Word( text='hi', s_start=1, s_end=1, t_start=None, t_end=None, tokens=[Token(text='▁hi', text_cased='▁hi', s_start=1, s_end=1, t_start=None, t_end=None)], ), Token(text='<b>', text_cased='<b>', s_start=2, s_end=2, t_start=None, t_end=None), Word( text='world', s_start=3, s_end=3, t_start=None, t_end=None, tokens=[Token(text='▁world', text_cased='▁world', s_start=3, s_end=3, t_start=None, t_end=None)], ), ], ), Token(text='<b>', text_cased='<b>', s_start=4, s_end=4, t_start=None, t_end=None), Segment( text='hey', s_start=5, s_end=7, t_start=None, t_end=None, words_and_tokens=[ Word( text='hey', s_start=5, s_end=7, t_start=None, t_end=None, tokens=[ Token(text='▁he', text_cased='▁he', s_start=5, s_end=5, t_start=None, t_end=None), Token(text='<b>', text_cased='<b>', s_start=6, s_end=6, t_start=None, t_end=None), Token(text='y', text_cased='y', s_start=7, s_end=7, t_start=None, t_end=None), ], ) ], ), Token(text='<b>', text_cased='<b>', s_start=8, s_end=8, t_start=None, t_end=None), ], audio_filepath=AUDIO_FILEPATH_FOR_TEST, utt_id=UTT_ID_FOR_TEST, ) EN_QN_EXPECTED_UTTERANCE = Utterance( text='hi world | hey', token_ids_with_blanks=[ 28, 8, 28, 9, 28, 0, 28, 23, 28, 15, 28, 18, 28, 12, 28, 4, 28, 0, 28, 8, 28, 5, 28, 25, 28, ], segments_and_tokens=[ Token(text='<b>', text_cased='<b>', s_start=0, s_end=0, t_start=None, t_end=None), Segment( text="hi world", s_start=1, s_end=15, t_start=None, t_end=None, words_and_tokens=[ Word( text="hi", s_start=1, s_end=3, t_start=None, t_end=None, tokens=[ Token(text='h', text_cased='h', s_start=1, s_end=1, t_start=None, t_end=None), Token(text='<b>', text_cased='<b>', s_start=2, s_end=2, t_start=None, t_end=None), Token(text='i', text_cased='i', s_start=3, s_end=3, t_start=None, t_end=None), ], ), Token(text='<b>', text_cased='<b>', s_start=4, s_end=4, t_start=None, t_end=None), Token(text='<space>', text_cased='<space>', s_start=5, s_end=5, t_start=None, t_end=None), Token(text='<b>', text_cased='<b>', s_start=6, s_end=6, t_start=None, t_end=None), Word( text="world", s_start=7, s_end=15, t_start=None, t_end=None, tokens=[ Token(text='w', text_cased='w', s_start=7, s_end=7, t_start=None, t_end=None), Token(text='<b>', text_cased='<b>', s_start=8, s_end=8, t_start=None, t_end=None), Token(text='o', text_cased='o', s_start=9, s_end=9, t_start=None, t_end=None), Token(text='<b>', text_cased='<b>', s_start=10, s_end=10, t_start=None, t_end=None), Token(text='r', text_cased='r', s_start=11, s_end=11, t_start=None, t_end=None), Token(text='<b>', text_cased='<b>', s_start=12, s_end=12, t_start=None, t_end=None), Token(text='l', text_cased='l', s_start=13, s_end=13, t_start=None, t_end=None), Token(text='<b>', text_cased='<b>', s_start=14, s_end=14, t_start=None, t_end=None), Token(text='d', text_cased='d', s_start=15, s_end=15, t_start=None, t_end=None), ], ), ], ), Token(text='<b>', text_cased='<b>', s_start=16, s_end=16, t_start=None, t_end=None), Token(text='<space>', text_cased='<space>', s_start=17, s_end=17, t_start=None, t_end=None), Token(text='<b>', text_cased='<b>', s_start=18, s_end=18, t_start=None, t_end=None), Segment( text="hey", s_start=19, s_end=23, t_start=None, t_end=None, words_and_tokens=[ Word( text="hey", s_start=19, s_end=23, t_start=None, t_end=None, tokens=[ Token(text='h', text_cased='h', s_start=19, s_end=19, t_start=None, t_end=None), Token(text='<b>', text_cased='<b>', s_start=20, s_end=20, t_start=None, t_end=None), Token(text='e', text_cased='e', s_start=21, s_end=21, t_start=None, t_end=None), Token(text='<b>', text_cased='<b>', s_start=22, s_end=22, t_start=None, t_end=None), Token(text='y', text_cased='y', s_start=23, s_end=23, t_start=None, t_end=None), ], ) ], ), Token(text='<b>', text_cased='<b>', s_start=24, s_end=24, t_start=None, t_end=None), ], audio_filepath=AUDIO_FILEPATH_FOR_TEST, utt_id=UTT_ID_FOR_TEST, ) ZH_TEXT = "人工 智能|技术" ZH_CN_EXPECTED_UTTERANCE = Utterance( text='人工 智能|技术', token_ids_with_blanks=[ 5206, 125, 5206, 1329, 5206, 0, 5206, 2029, 5206, 3668, 5206, 0, 5206, 1695, 5206, 2075, 5206, ], segments_and_tokens=[ Token(text='<b>', text_cased='<b>', s_start=0, s_end=0, t_start=None, t_end=None), Segment( text='人工 智能', s_start=1, s_end=9, t_start=None, t_end=None, words_and_tokens=[ Word( text='人工', s_start=1, s_end=3, t_start=None, t_end=None, tokens=[ Token(text='人', text_cased='人', s_start=1, s_end=1, t_start=None, t_end=None), Token(text='<b>', text_cased='<b>', s_start=2, s_end=2, t_start=None, t_end=None), Token(text='工', text_cased='工', s_start=3, s_end=3, t_start=None, t_end=None), ], ), Token(text='<b>', text_cased='<b>', s_start=4, s_end=4, t_start=None, t_end=None), Token(text='<space>', text_cased='<space>', s_start=5, s_end=5, t_start=None, t_end=None), Token(text='<b>', text_cased='<b>', s_start=6, s_end=6, t_start=None, t_end=None), Word( text='智能', s_start=7, s_end=9, t_start=None, t_end=None, tokens=[ Token(text='智', text_cased='智', s_start=7, s_end=7, t_start=None, t_end=None), Token(text='<b>', text_cased='<b>', s_start=8, s_end=8, t_start=None, t_end=None), Token(text='能', text_cased='能', s_start=9, s_end=9, t_start=None, t_end=None), ], ), ], ), Token(text='<b>', text_cased='<b>', s_start=10, s_end=10, t_start=None, t_end=None), Token(text='<space>', text_cased='<space>', s_start=11, s_end=11, t_start=None, t_end=None), Token(text='<b>', text_cased='<b>', s_start=12, s_end=12, t_start=None, t_end=None), Segment( text='技术', s_start=13, s_end=15, t_start=None, t_end=None, words_and_tokens=[ Word( text='技术', s_start=13, s_end=15, t_start=None, t_end=None, tokens=[ Token(text='技', text_cased='技', s_start=13, s_end=13, t_start=None, t_end=None), Token(text='<b>', text_cased='<b>', s_start=14, s_end=14, t_start=None, t_end=None), Token(text='术', text_cased='术', s_start=15, s_end=15, t_start=None, t_end=None), ], ) ], ), Token(text='<b>', text_cased='<b>', s_start=16, s_end=16, t_start=None, t_end=None), ], audio_filepath=AUDIO_FILEPATH_FOR_TEST, utt_id=UTT_ID_FOR_TEST, ) @pytest.mark.parametrize( "text,model_pretrained_name,separator,expected_utterance", [ (EN_TEXT, "stt_en_citrinet_256_gamma_0_25", "|", EN_CN_EXPECTED_UTTERANCE), (EN_TEXT, "stt_en_quartznet15x5", "|", EN_QN_EXPECTED_UTTERANCE), (ZH_TEXT, "stt_zh_citrinet_512", "|", ZH_CN_EXPECTED_UTTERANCE), ], ) def test_token_info(text, model_pretrained_name, separator, expected_utterance): model = ASRModel.from_pretrained(model_pretrained_name) utt_obj = get_utt_obj( text, model, separator, T=T_FOR_TEST, audio_filepath=AUDIO_FILEPATH_FOR_TEST, utt_id=UTT_ID_FOR_TEST ) print(f"expected utterance object: {get_utt_obj_pp_string(expected_utterance)}\n") print(f"output utterance object in test: {get_utt_obj_pp_string(utt_obj)}\n") assert utt_obj == expected_utterance
NeMo-main
tools/nemo_forced_aligner/tests/test_get_utt_obj.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import pytest from utils.data_prep import Segment, Token, Utterance, Word, add_t_start_end_to_utt_obj OUTPUT_TIMESTEP_DURATION = 0.04 ALIGNMENT = [ 1, 1, 3, 3, 4, 5, 7, 7, 9, 10, 11, 12, 13, 15, 17, 17, 19, 21, 23, 23, ] EXPECTED_OUTPUT_UTTERANCE = Utterance( text='hi world | hey', token_ids_with_blanks=[ 28, 8, 28, 9, 28, 0, 28, 23, 28, 15, 28, 18, 28, 12, 28, 4, 28, 0, 28, 8, 28, 5, 28, 25, 28, ], segments_and_tokens=[ Token(text='<b>', text_cased='<b>', s_start=0, s_end=0, t_start=-1, t_end=-1), Segment( text="hi world", s_start=1, s_end=15, t_start=0 * OUTPUT_TIMESTEP_DURATION, t_end=14 * OUTPUT_TIMESTEP_DURATION, words_and_tokens=[ Word( text="hi", s_start=1, s_end=3, t_start=0 * OUTPUT_TIMESTEP_DURATION, t_end=4 * OUTPUT_TIMESTEP_DURATION, tokens=[ Token( text='h', text_cased='h', s_start=1, s_end=1, t_start=0 * OUTPUT_TIMESTEP_DURATION, t_end=2 * OUTPUT_TIMESTEP_DURATION, ), Token(text='<b>', text_cased='<b>', s_start=2, s_end=2, t_start=-1, t_end=-1), Token( text='i', text_cased='i', s_start=3, s_end=3, t_start=2 * OUTPUT_TIMESTEP_DURATION, t_end=4 * OUTPUT_TIMESTEP_DURATION, ), ], ), Token( text='<b>', text_cased='<b>', s_start=4, s_end=4, t_start=4 * OUTPUT_TIMESTEP_DURATION, t_end=5 * OUTPUT_TIMESTEP_DURATION, ), Token( text='<space>', text_cased='<space>', s_start=5, s_end=5, t_start=5 * OUTPUT_TIMESTEP_DURATION, t_end=6 * OUTPUT_TIMESTEP_DURATION, ), Token(text='<b>', text_cased='<b>', s_start=6, s_end=6, t_start=-1, t_end=-1), Word( text="world", s_start=7, s_end=15, t_start=6 * OUTPUT_TIMESTEP_DURATION, t_end=14 * OUTPUT_TIMESTEP_DURATION, tokens=[ Token( text='w', text_cased='w', s_start=7, s_end=7, t_start=6 * OUTPUT_TIMESTEP_DURATION, t_end=8 * OUTPUT_TIMESTEP_DURATION, ), Token(text='<b>', text_cased='<b>', s_start=8, s_end=8, t_start=-1, t_end=-1), Token( text='o', text_cased='o', s_start=9, s_end=9, t_start=8 * OUTPUT_TIMESTEP_DURATION, t_end=9 * OUTPUT_TIMESTEP_DURATION, ), Token( text='<b>', text_cased='<b>', s_start=10, s_end=10, t_start=9 * OUTPUT_TIMESTEP_DURATION, t_end=10 * OUTPUT_TIMESTEP_DURATION, ), Token( text='r', text_cased='r', s_start=11, s_end=11, t_start=10 * OUTPUT_TIMESTEP_DURATION, t_end=11 * OUTPUT_TIMESTEP_DURATION, ), Token( text='<b>', text_cased='<b>', s_start=12, s_end=12, t_start=11 * OUTPUT_TIMESTEP_DURATION, t_end=12 * OUTPUT_TIMESTEP_DURATION, ), Token( text='l', text_cased='l', s_start=13, s_end=13, t_start=12 * OUTPUT_TIMESTEP_DURATION, t_end=13 * OUTPUT_TIMESTEP_DURATION, ), Token(text='<b>', text_cased='<b>', s_start=14, s_end=14, t_start=-1, t_end=-1), Token( text='d', text_cased='d', s_start=15, s_end=15, t_start=13 * OUTPUT_TIMESTEP_DURATION, t_end=14 * OUTPUT_TIMESTEP_DURATION, ), ], ), ], ), Token(text='<b>', text_cased='<b>', s_start=16, s_end=16, t_start=-1, t_end=-1), Token( text='<space>', text_cased='<space>', s_start=17, s_end=17, t_start=14 * OUTPUT_TIMESTEP_DURATION, t_end=16 * OUTPUT_TIMESTEP_DURATION, ), Token(text='<b>', text_cased='<b>', s_start=18, s_end=18, t_start=-1, t_end=-1), Segment( text="hey", s_start=19, s_end=23, t_start=16 * OUTPUT_TIMESTEP_DURATION, t_end=20 * OUTPUT_TIMESTEP_DURATION, words_and_tokens=[ Word( text="hey", s_start=19, s_end=23, t_start=16 * OUTPUT_TIMESTEP_DURATION, t_end=20 * OUTPUT_TIMESTEP_DURATION, tokens=[ Token( text='h', text_cased='h', s_start=19, s_end=19, t_start=16 * OUTPUT_TIMESTEP_DURATION, t_end=17 * OUTPUT_TIMESTEP_DURATION, ), Token(text='<b>', text_cased='<b>', s_start=20, s_end=20, t_start=-1, t_end=-1), Token( text='e', text_cased='e', s_start=21, s_end=21, t_start=17 * OUTPUT_TIMESTEP_DURATION, t_end=18 * OUTPUT_TIMESTEP_DURATION, ), Token(text='<b>', text_cased='<b>', s_start=22, s_end=22, t_start=-1, t_end=-1), Token( text='y', text_cased='y', s_start=23, s_end=23, t_start=18 * OUTPUT_TIMESTEP_DURATION, t_end=20 * OUTPUT_TIMESTEP_DURATION, ), ], ) ], ), Token(text='<b>', text_cased='<b>', s_start=24, s_end=24, t_start=-1, t_end=-1), ], ) @pytest.mark.parametrize( "alignment,expected_output_utterance, output_timestep_duration", [(ALIGNMENT, EXPECTED_OUTPUT_UTTERANCE, OUTPUT_TIMESTEP_DURATION),], ) def test_add_t_start_end_to_utt_obj(alignment, expected_output_utterance, output_timestep_duration): input_utterance = copy.deepcopy(expected_output_utterance) # set all t_start and t_end to None in input_utterance for segment_or_token in input_utterance.segments_and_tokens: if type(segment_or_token) is Segment: segment = segment_or_token segment.t_start = None segment.t_end = None for word_or_token in segment.words_and_tokens: if type(word_or_token) is Word: word = word_or_token word.t_start = None word.t_end = None for token in word.tokens: token.t_start = None token.t_end = None else: token = word_or_token token.t_start = None token.t_end = None else: token = segment_or_token token.t_start = None token.t_end = None output_utterance = add_t_start_end_to_utt_obj(input_utterance, alignment, output_timestep_duration) assert output_utterance == expected_output_utterance
NeMo-main
tools/nemo_forced_aligner/tests/test_add_t_start_end_to_utt_obj.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json def write_manifest_out_line( f_manifest_out, utt_obj, ): data = {"audio_filepath": utt_obj.audio_filepath} if not utt_obj.text is None: data["text"] = utt_obj.text if not utt_obj.pred_text is None: data["pred_text"] = utt_obj.pred_text for key, val in utt_obj.saved_output_files.items(): data[key] = val new_line = json.dumps(data) f_manifest_out.write(f"{new_line}\n") return None
NeMo-main
tools/nemo_forced_aligner/utils/make_output_manifest.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. BLANK_TOKEN = "<b>" SPACE_TOKEN = "<space>" V_NEGATIVE_NUM = -3.4e38 # this is just above the most negative number in torch.float32
NeMo-main
tools/nemo_forced_aligner/utils/constants.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from utils.constants import V_NEGATIVE_NUM def viterbi_decoding(log_probs_batch, y_batch, T_batch, U_batch, viterbi_device): """ Do Viterbi decoding with an efficient algorithm (the only for-loop in the 'forward pass' is over the time dimension). Args: log_probs_batch: tensor of shape (B, T_max, V). The parts of log_probs_batch which are 'padding' are filled with 'V_NEGATIVE_NUM' - a large negative number which represents a very low probability. y_batch: tensor of shape (B, U_max) - contains token IDs including blanks in every other position. The parts of y_batch which are padding are filled with the number 'V'. V = the number of tokens in the vocabulary + 1 for the blank token. T_batch: tensor of shape (B, 1) - contains the durations of the log_probs_batch (so we can ignore the parts of log_probs_batch which are padding) U_batch: tensor of shape (B, 1) - contains the lengths of y_batch (so we can ignore the parts of y_batch which are padding). viterbi_device: the torch device on which Viterbi decoding will be done. Returns: alignments_batch: list of lists containing locations for the tokens we align to at each timestep. Looks like: [[0, 0, 1, 2, 2, 3, 3, ..., ], ..., [0, 1, 2, 2, 2, 3, 4, ....]]. Each list inside alignments_batch is of length T_batch[location of utt in batch]. """ B, T_max, _ = log_probs_batch.shape U_max = y_batch.shape[1] # transfer all tensors to viterbi_device log_probs_batch = log_probs_batch.to(viterbi_device) y_batch = y_batch.to(viterbi_device) T_batch = T_batch.to(viterbi_device) U_batch = U_batch.to(viterbi_device) # make tensor that we will put at timesteps beyond the duration of the audio padding_for_log_probs = V_NEGATIVE_NUM * torch.ones((B, T_max, 1), device=viterbi_device) # make log_probs_padded tensor of shape (B, T_max, V +1 ) where all of # log_probs_padded[:,:,-1] is the 'V_NEGATIVE_NUM' log_probs_padded = torch.cat((log_probs_batch, padding_for_log_probs), dim=2) # initialize v_prev - tensor of previous timestep's viterbi probabilies, of shape (B, U_max) v_prev = V_NEGATIVE_NUM * torch.ones((B, U_max), device=viterbi_device) v_prev[:, :2] = torch.gather(input=log_probs_padded[:, 0, :], dim=1, index=y_batch[:, :2]) # initialize backpointers_rel - which contains values like 0 to indicate the backpointer is to the same u index, # 1 to indicate the backpointer pointing to the u-1 index and 2 to indicate the backpointer is pointing to the u-2 index backpointers_rel = -99 * torch.ones((B, T_max, U_max), dtype=torch.int8, device=viterbi_device) # Make a letter_repetition_mask the same shape as y_batch # the letter_repetition_mask will have 'True' where the token (including blanks) is the same # as the token two places before it in the ground truth (and 'False everywhere else). # We will use letter_repetition_mask to determine whether the Viterbi algorithm needs to look two tokens back or # three tokens back y_shifted_left = torch.roll(y_batch, shifts=2, dims=1) letter_repetition_mask = y_batch - y_shifted_left letter_repetition_mask[:, :2] = 1 # make sure dont apply mask to first 2 tokens letter_repetition_mask = letter_repetition_mask == 0 for t in range(1, T_max): # e_current is a tensor of shape (B, U_max) of the log probs of every possible token at the current timestep e_current = torch.gather(input=log_probs_padded[:, t, :], dim=1, index=y_batch) # apply a mask to e_current to cope with the fact that we do not keep the whole v_matrix and continue # calculating viterbi probabilities during some 'padding' timesteps t_exceeded_T_batch = t >= T_batch U_can_be_final = torch.logical_or( torch.arange(0, U_max, device=viterbi_device).unsqueeze(0) == (U_batch.unsqueeze(1) - 0), torch.arange(0, U_max, device=viterbi_device).unsqueeze(0) == (U_batch.unsqueeze(1) - 1), ) mask = torch.logical_not(torch.logical_and(t_exceeded_T_batch.unsqueeze(1), U_can_be_final,)).long() e_current = e_current * mask # v_prev_shifted is a tensor of shape (B, U_max) of the viterbi probabilities 1 timestep back and 1 token position back v_prev_shifted = torch.roll(v_prev, shifts=1, dims=1) # by doing a roll shift of size 1, we have brought the viterbi probability in the final token position to the # first token position - let's overcome this by 'zeroing out' the probabilities in the firest token position v_prev_shifted[:, 0] = V_NEGATIVE_NUM # v_prev_shifted2 is a tensor of shape (B, U_max) of the viterbi probabilities 1 timestep back and 2 token position back v_prev_shifted2 = torch.roll(v_prev, shifts=2, dims=1) v_prev_shifted2[:, :2] = V_NEGATIVE_NUM # zero out as we did for v_prev_shifted # use our letter_repetition_mask to remove the connections between 2 blanks (so we don't skip over a letter) # and to remove the connections between 2 consective letters (so we don't skip over a blank) v_prev_shifted2.masked_fill_(letter_repetition_mask, V_NEGATIVE_NUM) # we need this v_prev_dup tensor so we can calculated the viterbi probability of every possible # token position simultaneously v_prev_dup = torch.cat( (v_prev.unsqueeze(2), v_prev_shifted.unsqueeze(2), v_prev_shifted2.unsqueeze(2),), dim=2, ) # candidates_v_current are our candidate viterbi probabilities for every token position, from which # we will pick the max and record the argmax candidates_v_current = v_prev_dup + e_current.unsqueeze(2) # we straight away save results in v_prev instead of v_current, so that the variable v_prev will be ready for the # next iteration of the for-loop v_prev, bp_relative = torch.max(candidates_v_current, dim=2) backpointers_rel[:, t, :] = bp_relative # trace backpointers alignments_batch = [] for b in range(B): T_b = int(T_batch[b]) U_b = int(U_batch[b]) if U_b == 1: # i.e. we put only a blank token in the reference text because the reference text is empty current_u = 0 # set initial u to 0 and let the rest of the code block run as usual else: current_u = int(torch.argmax(v_prev[b, U_b - 2 : U_b])) + U_b - 2 alignment_b = [current_u] for t in range(T_max - 1, 0, -1): current_u = current_u - int(backpointers_rel[b, t, current_u]) alignment_b.insert(0, current_u) alignment_b = alignment_b[:T_b] alignments_batch.append(alignment_b) return alignments_batch
NeMo-main
tools/nemo_forced_aligner/utils/viterbi_decoding.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from dataclasses import dataclass, field from pathlib import Path from typing import List, Union import soundfile as sf import torch from tqdm.auto import tqdm from utils.constants import BLANK_TOKEN, SPACE_TOKEN, V_NEGATIVE_NUM from nemo.utils import logging def _get_utt_id(audio_filepath, audio_filepath_parts_in_utt_id): fp_parts = Path(audio_filepath).parts[-audio_filepath_parts_in_utt_id:] utt_id = Path("_".join(fp_parts)).stem utt_id = utt_id.replace(" ", "-") # replace any spaces in the filepath with dashes return utt_id def get_batch_starts_ends(manifest_filepath, batch_size): """ Get the start and end ids of the lines we will use for each 'batch'. """ with open(manifest_filepath, 'r') as f: num_lines_in_manifest = sum(1 for _ in f) starts = [x for x in range(0, num_lines_in_manifest, batch_size)] ends = [x - 1 for x in starts] ends.pop(0) ends.append(num_lines_in_manifest) return starts, ends def is_entry_in_any_lines(manifest_filepath, entry): """ Returns True if entry is a key in any of the JSON lines in manifest_filepath """ entry_in_manifest = False with open(manifest_filepath, 'r') as f: for line in f: data = json.loads(line) if entry in data: entry_in_manifest = True return entry_in_manifest def is_entry_in_all_lines(manifest_filepath, entry): """ Returns True is entry is a key in all of the JSON lines in manifest_filepath. """ with open(manifest_filepath, 'r') as f: for line in f: data = json.loads(line) if entry not in data: return False return True def get_manifest_lines_batch(manifest_filepath, start, end): manifest_lines_batch = [] with open(manifest_filepath, "r", encoding="utf-8-sig") as f: for line_i, line in enumerate(f): if line_i >= start and line_i <= end: data = json.loads(line) if "text" in data: # remove any BOM, any duplicated spaces, convert any # newline chars to spaces data["text"] = data["text"].replace("\ufeff", "") data["text"] = " ".join(data["text"].split()) # Replace any horizontal ellipses with 3 separate periods. # The tokenizer will do this anyway. But making this replacement # now helps avoid errors when restoring punctuation when saving # the output files data["text"] = data["text"].replace("\u2026", "...") manifest_lines_batch.append(data) if line_i == end: break return manifest_lines_batch def get_char_tokens(text, model): tokens = [] for character in text: if character in model.decoder.vocabulary: tokens.append(model.decoder.vocabulary.index(character)) else: tokens.append(len(model.decoder.vocabulary)) # return unk token (same as blank token) return tokens def is_sub_or_superscript_pair(ref_text, text): """returns True if ref_text is a subscript or superscript version of text""" sub_or_superscript_to_num = { "⁰": "0", "¹": "1", "²": "2", "³": "3", "⁴": "4", "⁵": "5", "⁶": "6", "⁷": "7", "⁸": "8", "⁹": "9", "₀": "0", "₁": "1", "₂": "2", "₃": "3", "₄": "4", "₅": "5", "₆": "6", "₇": "7", "₈": "8", "₉": "9", } if text in sub_or_superscript_to_num: if sub_or_superscript_to_num[text] == ref_text: return True return False def restore_token_case(word, word_tokens): # remove repeated "▁" and "_" from word as that is what the tokenizer will do while "▁▁" in word: word = word.replace("▁▁", "▁") while "__" in word: word = word.repalce("__", "_") word_tokens_cased = [] word_char_pointer = 0 for token in word_tokens: token_cased = "" for token_char in token: if token_char == word[word_char_pointer]: token_cased += token_char word_char_pointer += 1 else: if token_char.upper() == word[word_char_pointer] or is_sub_or_superscript_pair( token_char, word[word_char_pointer] ): token_cased += token_char.upper() word_char_pointer += 1 else: if token_char == "▁" or token_char == "_": if word[word_char_pointer] == "▁" or word[word_char_pointer] == "_": token_cased += token_char word_char_pointer += 1 elif word_char_pointer == 0: token_cased += token_char else: raise RuntimeError( f"Unexpected error - failed to recover capitalization of tokens for word {word}" ) word_tokens_cased.append(token_cased) return word_tokens_cased @dataclass class Token: text: str = None text_cased: str = None s_start: int = None s_end: int = None t_start: float = None t_end: float = None @dataclass class Word: text: str = None s_start: int = None s_end: int = None t_start: float = None t_end: float = None tokens: List[Token] = field(default_factory=list) @dataclass class Segment: text: str = None s_start: int = None s_end: int = None t_start: float = None t_end: float = None words_and_tokens: List[Union[Word, Token]] = field(default_factory=list) @dataclass class Utterance: token_ids_with_blanks: List[int] = field(default_factory=list) segments_and_tokens: List[Union[Segment, Token]] = field(default_factory=list) text: str = None pred_text: str = None audio_filepath: str = None utt_id: str = None saved_output_files: dict = field(default_factory=dict) def get_utt_obj( text, model, separator, T, audio_filepath, utt_id, ): """ Function to create an Utterance object and add all necessary information to it except for timings of the segments / words / tokens according to the alignment - that will be done later in a different function, after the alignment is done. The Utterance object has a list segments_and_tokens which contains Segment objects and Token objects (for blank tokens in between segments). Within the Segment objects, there is a list words_and_tokens which contains Word objects and Token objects (for blank tokens in between words). Within the Word objects, there is a list tokens tokens which contains Token objects for blank and non-blank tokens. We will be building up these lists in this function. This data structure will then be useful for generating the various output files that we wish to save. """ if not separator: # if separator is not defined - treat the whole text as one segment segments = [text] else: segments = text.split(separator) # remove any spaces at start and end of segments segments = [seg.strip() for seg in segments] # remove any empty segments segments = [seg for seg in segments if len(seg) > 0] utt = Utterance(text=text, audio_filepath=audio_filepath, utt_id=utt_id,) # build up lists: token_ids_with_blanks, segments_and_tokens. # The code for these is different depending on whether we use char-based tokens or not if hasattr(model, 'tokenizer'): if hasattr(model, 'blank_id'): BLANK_ID = model.blank_id else: BLANK_ID = len(model.tokenizer.vocab) # TODO: check utt.token_ids_with_blanks = [BLANK_ID] # check for text being 0 length if len(text) == 0: return utt # check for # tokens + token repetitions being > T all_tokens = model.tokenizer.text_to_ids(text) n_token_repetitions = 0 for i_tok in range(1, len(all_tokens)): if all_tokens[i_tok] == all_tokens[i_tok - 1]: n_token_repetitions += 1 if len(all_tokens) + n_token_repetitions > T: logging.info( f"Utterance {utt_id} has too many tokens compared to the audio file duration." " Will not generate output alignment files for this utterance." ) return utt # build up data structures containing segments/words/tokens utt.segments_and_tokens.append(Token(text=BLANK_TOKEN, text_cased=BLANK_TOKEN, s_start=0, s_end=0,)) segment_s_pointer = 1 # first segment will start at s=1 because s=0 is a blank word_s_pointer = 1 # first word will start at s=1 because s=0 is a blank for segment in segments: # add the segment to segment_info and increment the segment_s_pointer segment_tokens = model.tokenizer.text_to_tokens(segment) utt.segments_and_tokens.append( Segment( text=segment, s_start=segment_s_pointer, # segment_tokens do not contain blanks => need to muliply by 2 # s_end needs to be the index of the final token (including blanks) of the current segment: # segment_s_pointer + len(segment_tokens) * 2 is the index of the first token of the next segment => # => need to subtract 2 s_end=segment_s_pointer + len(segment_tokens) * 2 - 2, ) ) segment_s_pointer += ( len(segment_tokens) * 2 ) # multiply by 2 to account for blanks (which are not present in segment_tokens) words = segment.split(" ") # we define words to be space-separated sub-strings for word_i, word in enumerate(words): word_tokens = model.tokenizer.text_to_tokens(word) word_token_ids = model.tokenizer.text_to_ids(word) word_tokens_cased = restore_token_case(word, word_tokens) # add the word to word_info and increment the word_s_pointer utt.segments_and_tokens[-1].words_and_tokens.append( # word_tokens do not contain blanks => need to muliply by 2 # s_end needs to be the index of the final token (including blanks) of the current word: # word_s_pointer + len(word_tokens) * 2 is the index of the first token of the next word => # => need to subtract 2 Word(text=word, s_start=word_s_pointer, s_end=word_s_pointer + len(word_tokens) * 2 - 2) ) word_s_pointer += ( len(word_tokens) * 2 ) # multiply by 2 to account for blanks (which are not present in word_tokens) for token_i, (token, token_id, token_cased) in enumerate( zip(word_tokens, word_token_ids, word_tokens_cased) ): # add the text tokens and the blanks in between them # to our token-based variables utt.token_ids_with_blanks.extend([token_id, BLANK_ID]) # adding Token object for non-blank token utt.segments_and_tokens[-1].words_and_tokens[-1].tokens.append( Token( text=token, text_cased=token_cased, # utt.token_ids_with_blanks has the form [...., <this non-blank token>, <blank>] => # => if do len(utt.token_ids_with_blanks) - 1 you get the index of the final <blank> # => we want to do len(utt.token_ids_with_blanks) - 2 to get the index of <this non-blank token> s_start=len(utt.token_ids_with_blanks) - 2, # s_end is same as s_start since the token only occupies one element in the list s_end=len(utt.token_ids_with_blanks) - 2, ) ) # adding Token object for blank tokens in between the tokens of the word # (ie do not add another blank if you have reached the end) if token_i < len(word_tokens) - 1: utt.segments_and_tokens[-1].words_and_tokens[-1].tokens.append( Token( text=BLANK_TOKEN, text_cased=BLANK_TOKEN, # utt.token_ids_with_blanks has the form [...., <this blank token>] => # => if do len(utt.token_ids_with_blanks) -1 you get the index of this <blank> s_start=len(utt.token_ids_with_blanks) - 1, # s_end is same as s_start since the token only occupies one element in the list s_end=len(utt.token_ids_with_blanks) - 1, ) ) # add a Token object for blanks in between words in this segment # (but only *in between* - do not add the token if it is after the final word) if word_i < len(words) - 1: utt.segments_and_tokens[-1].words_and_tokens.append( Token( text=BLANK_TOKEN, text_cased=BLANK_TOKEN, # utt.token_ids_with_blanks has the form [...., <this blank token>] => # => if do len(utt.token_ids_with_blanks) -1 you get the index of this <blank> s_start=len(utt.token_ids_with_blanks) - 1, # s_end is same as s_start since the token only occupies one element in the list s_end=len(utt.token_ids_with_blanks) - 1, ) ) # add the blank token in between segments/after the final segment utt.segments_and_tokens.append( Token( text=BLANK_TOKEN, text_cased=BLANK_TOKEN, # utt.token_ids_with_blanks has the form [...., <this blank token>] => # => if do len(utt.token_ids_with_blanks) -1 you get the index of this <blank> s_start=len(utt.token_ids_with_blanks) - 1, # s_end is same as s_start since the token only occupies one element in the list s_end=len(utt.token_ids_with_blanks) - 1, ) ) return utt elif hasattr(model.decoder, "vocabulary"): # i.e. tokenization is simply character-based BLANK_ID = len(model.decoder.vocabulary) # TODO: check this is correct SPACE_ID = model.decoder.vocabulary.index(" ") utt.token_ids_with_blanks = [BLANK_ID] # check for text being 0 length if len(text) == 0: return utt # check for # tokens + token repetitions being > T all_tokens = get_char_tokens(text, model) n_token_repetitions = 0 for i_tok in range(1, len(all_tokens)): if all_tokens[i_tok] == all_tokens[i_tok - 1]: n_token_repetitions += 1 if len(all_tokens) + n_token_repetitions > T: logging.info( f"Utterance {utt_id} has too many tokens compared to the audio file duration." " Will not generate output alignment files for this utterance." ) return utt # build up data structures containing segments/words/tokens utt.segments_and_tokens.append(Token(text=BLANK_TOKEN, text_cased=BLANK_TOKEN, s_start=0, s_end=0,)) segment_s_pointer = 1 # first segment will start at s=1 because s=0 is a blank word_s_pointer = 1 # first word will start at s=1 because s=0 is a blank for i_segment, segment in enumerate(segments): # add the segment to segment_info and increment the segment_s_pointer segment_tokens = get_char_tokens(segment, model) utt.segments_and_tokens.append( Segment( text=segment, s_start=segment_s_pointer, # segment_tokens do not contain blanks => need to muliply by 2 # s_end needs to be the index of the final token (including blanks) of the current segment: # segment_s_pointer + len(segment_tokens) * 2 is the index of the first token of the next segment => # => need to subtract 2 s_end=segment_s_pointer + len(segment_tokens) * 2 - 2, ) ) # for correct calculation: multiply len(segment_tokens) by 2 to account for blanks (which are not present in segment_tokens) # and + 2 to account for [<token for space in between segments>, <blank token after that space token>] segment_s_pointer += len(segment_tokens) * 2 + 2 words = segment.split(" ") # we define words to be space-separated substrings for i_word, word in enumerate(words): # convert string to list of characters word_tokens = list(word) # convert list of characters to list of their ids in the vocabulary word_token_ids = get_char_tokens(word, model) # add the word to word_info and increment the word_s_pointer utt.segments_and_tokens[-1].words_and_tokens.append( # note for s_end: # word_tokens do not contain blanks => need to muliply by 2 # s_end needs to be the index of the final token (including blanks) of the current word: # word_s_pointer + len(word_tokens) * 2 is the index of the first token of the next word => # => need to subtract 2 Word(text=word, s_start=word_s_pointer, s_end=word_s_pointer + len(word_tokens) * 2 - 2) ) # for correct calculation: multiply len(word_tokens) by 2 to account for blanks (which are not present in word_tokens) # and + 2 to account for [<token for space in between words>, <blank token after that space token>] word_s_pointer += len(word_tokens) * 2 + 2 for token_i, (token, token_id) in enumerate(zip(word_tokens, word_token_ids)): # add the text tokens and the blanks in between them # to our token-based variables utt.token_ids_with_blanks.extend([token_id]) utt.segments_and_tokens[-1].words_and_tokens[-1].tokens.append( Token( text=token, text_cased=token, # utt.token_ids_with_blanks has the form [..., <this non-blank token>] # => do len(utt.token_ids_with_blanks) - 1 to get the index of this non-blank token s_start=len(utt.token_ids_with_blanks) - 1, # s_end is same as s_start since the token only occupies one element in the list s_end=len(utt.token_ids_with_blanks) - 1, ) ) if token_i < len(word_tokens) - 1: # only add blank tokens that are in the middle of words utt.token_ids_with_blanks.extend([BLANK_ID]) utt.segments_and_tokens[-1].words_and_tokens[-1].tokens.append( Token( text=BLANK_TOKEN, text_cased=BLANK_TOKEN, # utt.token_ids_with_blanks has the form [..., <this blank token>] # => do len(utt.token_ids_with_blanks) - 1 to get the index of this blank token s_start=len(utt.token_ids_with_blanks) - 1, # s_end is same as s_start since the token only occupies one element in the list s_end=len(utt.token_ids_with_blanks) - 1, ) ) # add space token (and the blanks around it) unless this is the final word in a segment if i_word < len(words) - 1: utt.token_ids_with_blanks.extend([BLANK_ID, SPACE_ID, BLANK_ID]) utt.segments_and_tokens[-1].words_and_tokens.append( Token( text=BLANK_TOKEN, text_cased=BLANK_TOKEN, # utt.token_ids_with_blanks has the form # [..., <final token of previous word>, <blank token>, <space token>, <blank token>] # => do len(utt.token_ids_with_blanks) - 3 to get the index of the blank token before the space token s_start=len(utt.token_ids_with_blanks) - 3, # s_end is same as s_start since the token only occupies one element in the list s_end=len(utt.token_ids_with_blanks) - 3, ) ) utt.segments_and_tokens[-1].words_and_tokens.append( Token( text=SPACE_TOKEN, text_cased=SPACE_TOKEN, # utt.token_ids_with_blanks has the form # [..., <final token of previous word>, <blank token>, <space token>, <blank token>] # => do len(utt.token_ids_with_blanks) - 2 to get the index of the space token s_start=len(utt.token_ids_with_blanks) - 2, # s_end is same as s_start since the token only occupies one element in the list s_end=len(utt.token_ids_with_blanks) - 2, ) ) utt.segments_and_tokens[-1].words_and_tokens.append( Token( text=BLANK_TOKEN, text_cased=BLANK_TOKEN, # utt.token_ids_with_blanks has the form # [..., <final token of previous word>, <blank token>, <space token>, <blank token>] # => do len(utt.token_ids_with_blanks) - 1 to get the index of the blank token after the space token s_start=len(utt.token_ids_with_blanks) - 1, # s_end is same as s_start since the token only occupies one element in the list s_end=len(utt.token_ids_with_blanks) - 1, ) ) # add a blank to the segment, and add a space after if this is not the final segment utt.token_ids_with_blanks.extend([BLANK_ID]) utt.segments_and_tokens.append( Token( text=BLANK_TOKEN, text_cased=BLANK_TOKEN, # utt.token_ids_with_blanks has the form [..., <this blank token>] # => do len(utt.token_ids_with_blanks) - 1 to get the index of this blank token s_start=len(utt.token_ids_with_blanks) - 1, # s_end is same as s_start since the token only occupies one element in the list s_end=len(utt.token_ids_with_blanks) - 1, ) ) if i_segment < len(segments) - 1: utt.token_ids_with_blanks.extend([SPACE_ID, BLANK_ID]) utt.segments_and_tokens.append( Token( text=SPACE_TOKEN, text_cased=SPACE_TOKEN, # utt.token_ids_with_blanks has the form # [..., <space token>, <blank token>] # => do len(utt.token_ids_with_blanks) - 2 to get the index of the space token s_start=len(utt.token_ids_with_blanks) - 2, # s_end is same as s_start since the token only occupies one element in the list s_end=len(utt.token_ids_with_blanks) - 2, ) ) utt.segments_and_tokens.append( Token( text=BLANK_TOKEN, text_cased=BLANK_TOKEN, # utt.token_ids_with_blanks has the form # [..., <space token>, <blank token>] # => do len(utt.token_ids_with_blanks) - 1 to get the index of the blank token s_start=len(utt.token_ids_with_blanks) - 1, # s_end is same as s_start since the token only occupies one element in the list s_end=len(utt.token_ids_with_blanks) - 1, ) ) return utt else: raise RuntimeError("Cannot get tokens of this model.") def add_t_start_end_to_utt_obj(utt_obj, alignment_utt, output_timestep_duration): """ Function to add t_start and t_end (representing time in seconds) to the Utterance object utt_obj. Args: utt_obj: Utterance object to which we will add t_start and t_end for its constituent segments/words/tokens. alignment_utt: a list of ints indicating which token does the alignment pass through at each timestep (will take the form [0, 0, 1, 1, ..., <num of tokens including blanks in uterance>]). output_timestep_duration: a float indicating the duration of a single output timestep from the ASR Model. Returns: utt_obj: updated Utterance object. """ # General idea for the algorithm of how we add t_start and t_end # the timestep where a token s starts is the location of the first appearance of s_start in alignment_utt # the timestep where a token s ends is the location of the final appearance of s_end in alignment_utt # We will make dictionaries num_to_first_alignment_appearance and # num_to_last_appearance and use that to update all of # the t_start and t_end values in utt_obj. # We will put t_start = t_end = -1 for tokens that are skipped (should only be blanks) num_to_first_alignment_appearance = dict() num_to_last_alignment_appearance = dict() prev_s = -1 # use prev_s to keep track of when the s changes for t, s in enumerate(alignment_utt): if s > prev_s: num_to_first_alignment_appearance[s] = t if prev_s >= 0: # dont record prev_s = -1 num_to_last_alignment_appearance[prev_s] = t - 1 prev_s = s # add last appearance of the final s num_to_last_alignment_appearance[prev_s] = len(alignment_utt) - 1 # update all the t_start and t_end in utt_obj for segment_or_token in utt_obj.segments_and_tokens: if type(segment_or_token) is Segment: segment = segment_or_token segment.t_start = num_to_first_alignment_appearance[segment.s_start] * output_timestep_duration segment.t_end = (num_to_last_alignment_appearance[segment.s_end] + 1) * output_timestep_duration for word_or_token in segment.words_and_tokens: if type(word_or_token) is Word: word = word_or_token word.t_start = num_to_first_alignment_appearance[word.s_start] * output_timestep_duration word.t_end = (num_to_last_alignment_appearance[word.s_end] + 1) * output_timestep_duration for token in word.tokens: if token.s_start in num_to_first_alignment_appearance: token.t_start = num_to_first_alignment_appearance[token.s_start] * output_timestep_duration else: token.t_start = -1 if token.s_end in num_to_last_alignment_appearance: token.t_end = ( num_to_last_alignment_appearance[token.s_end] + 1 ) * output_timestep_duration else: token.t_end = -1 else: token = word_or_token if token.s_start in num_to_first_alignment_appearance: token.t_start = num_to_first_alignment_appearance[token.s_start] * output_timestep_duration else: token.t_start = -1 if token.s_end in num_to_last_alignment_appearance: token.t_end = (num_to_last_alignment_appearance[token.s_end] + 1) * output_timestep_duration else: token.t_end = -1 else: token = segment_or_token if token.s_start in num_to_first_alignment_appearance: token.t_start = num_to_first_alignment_appearance[token.s_start] * output_timestep_duration else: token.t_start = -1 if token.s_end in num_to_last_alignment_appearance: token.t_end = (num_to_last_alignment_appearance[token.s_end] + 1) * output_timestep_duration else: token.t_end = -1 return utt_obj def get_batch_variables( manifest_lines_batch, model, separator, align_using_pred_text, audio_filepath_parts_in_utt_id, output_timestep_duration, simulate_cache_aware_streaming=False, use_buffered_chunked_streaming=False, buffered_chunk_params={}, ): """ Returns: log_probs, y, T, U (y and U are s.t. every other token is a blank) - these are the tensors we will need during Viterbi decoding. utt_obj_batch: a list of Utterance objects for every utterance in the batch. output_timestep_duration: a float indicating the duration of a single output timestep from the ASR Model. """ # get hypotheses by calling 'transcribe' # we will use the output log_probs, the duration of the log_probs, # and (optionally) the predicted ASR text from the hypotheses audio_filepaths_batch = [line["audio_filepath"] for line in manifest_lines_batch] B = len(audio_filepaths_batch) log_probs_list_batch = [] T_list_batch = [] pred_text_batch = [] if not use_buffered_chunked_streaming: if not simulate_cache_aware_streaming: with torch.no_grad(): hypotheses = model.transcribe(audio_filepaths_batch, return_hypotheses=True, batch_size=B) else: with torch.no_grad(): hypotheses = model.transcribe_simulate_cache_aware_streaming( audio_filepaths_batch, return_hypotheses=True, batch_size=B ) # if hypotheses form a tuple (from Hybrid model), extract just "best" hypothesis if type(hypotheses) == tuple and len(hypotheses) == 2: hypotheses = hypotheses[0] for hypothesis in hypotheses: log_probs_list_batch.append(hypothesis.y_sequence) T_list_batch.append(hypothesis.y_sequence.shape[0]) pred_text_batch.append(hypothesis.text) else: delay = buffered_chunk_params["delay"] model_stride_in_secs = buffered_chunk_params["model_stride_in_secs"] tokens_per_chunk = buffered_chunk_params["tokens_per_chunk"] for l in tqdm(audio_filepaths_batch, desc="Sample:"): model.reset() model.read_audio_file(l, delay, model_stride_in_secs) hyp, logits = model.transcribe(tokens_per_chunk, delay, keep_logits=True) log_probs_list_batch.append(logits) T_list_batch.append(logits.shape[0]) pred_text_batch.append(hyp) # we loop over every line in the manifest that is in our current batch, # and record the y (list of tokens, including blanks), U (list of lengths of y) and # token_info_batch, word_info_batch, segment_info_batch y_list_batch = [] U_list_batch = [] utt_obj_batch = [] for i_line, line in enumerate(manifest_lines_batch): if align_using_pred_text: gt_text_for_alignment = " ".join(pred_text_batch[i_line].split()) else: gt_text_for_alignment = line["text"] utt_obj = get_utt_obj( gt_text_for_alignment, model, separator, T_list_batch[i_line], audio_filepaths_batch[i_line], _get_utt_id(audio_filepaths_batch[i_line], audio_filepath_parts_in_utt_id), ) # update utt_obj.pred_text or utt_obj.text if align_using_pred_text: utt_obj.pred_text = pred_text_batch[i_line] if len(utt_obj.pred_text) == 0: logging.info( f"'pred_text' of utterance {utt_obj.utt_id} is empty - we will not generate" " any output alignment files for this utterance" ) if "text" in line: utt_obj.text = line["text"] # keep the text as we will save it in the output manifest else: utt_obj.text = line["text"] if len(utt_obj.text) == 0: logging.info( f"'text' of utterance {utt_obj.utt_id} is empty - we will not generate" " any output alignment files for this utterance" ) y_list_batch.append(utt_obj.token_ids_with_blanks) U_list_batch.append(len(utt_obj.token_ids_with_blanks)) utt_obj_batch.append(utt_obj) # turn log_probs, y, T, U into dense tensors for fast computation during Viterbi decoding T_max = max(T_list_batch) U_max = max(U_list_batch) # V = the number of tokens in the vocabulary + 1 for the blank token. if hasattr(model, 'tokenizer'): V = len(model.tokenizer.vocab) + 1 else: V = len(model.decoder.vocabulary) + 1 T_batch = torch.tensor(T_list_batch) U_batch = torch.tensor(U_list_batch) # make log_probs_batch tensor of shape (B x T_max x V) log_probs_batch = V_NEGATIVE_NUM * torch.ones((B, T_max, V)) for b, log_probs_utt in enumerate(log_probs_list_batch): t = log_probs_utt.shape[0] log_probs_batch[b, :t, :] = log_probs_utt # make y tensor of shape (B x U_max) # populate it initially with all 'V' numbers so that the 'V's will remain in the areas that # are 'padding'. This will be useful for when we make 'log_probs_reorderd' during Viterbi decoding # in a different function. y_batch = V * torch.ones((B, U_max), dtype=torch.int64) for b, y_utt in enumerate(y_list_batch): U_utt = U_batch[b] y_batch[b, :U_utt] = torch.tensor(y_utt) # calculate output_timestep_duration if it is None if output_timestep_duration is None: if not 'window_stride' in model.cfg.preprocessor: raise ValueError( "Don't have attribute 'window_stride' in 'model.cfg.preprocessor' => cannot calculate " " model_downsample_factor => stopping process" ) if not 'sample_rate' in model.cfg.preprocessor: raise ValueError( "Don't have attribute 'sample_rate' in 'model.cfg.preprocessor' => cannot calculate start " " and end time of segments => stopping process" ) with sf.SoundFile(audio_filepaths_batch[0]) as f: audio_dur = f.frames / f.samplerate n_input_frames = audio_dur / model.cfg.preprocessor.window_stride model_downsample_factor = round(n_input_frames / int(T_batch[0])) output_timestep_duration = ( model.preprocessor.featurizer.hop_length * model_downsample_factor / model.cfg.preprocessor.sample_rate ) logging.info( f"Calculated that the model downsample factor is {model_downsample_factor}" f" and therefore the ASR model output timestep duration is {output_timestep_duration}" " -- will use this for all batches" ) return ( log_probs_batch, y_batch, T_batch, U_batch, utt_obj_batch, output_timestep_duration, )
NeMo-main
tools/nemo_forced_aligner/utils/data_prep.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This file contains functions for make ASS-format subtitle files based on the generated alignment. ASS files can be generated highlighting token-level alignments or word-level alignments. In both cases, 'segment' boundaries will be used to determine which parts of the text will appear at the same time. For the token-level ASS files, the text will be highlighted token-by-token, with the timings determined by the NFA alignments. For the word-level ASS files, the text will be highlighted word-by-word, with the timings determined by the NFA alignemtns. """ import math import os import soundfile as sf from utils.constants import BLANK_TOKEN, SPACE_TOKEN from utils.data_prep import Segment, Token, Word PLAYERRESX = 384 PLAYERRESY = 288 MARGINL = 10 MARGINR = 10 MARGINV = 20 def seconds_to_ass_format(seconds_float): seconds_float = float(seconds_float) mm, ss_decimals = divmod(seconds_float, 60) hh, mm = divmod(mm, 60) hh = str(round(hh)) if len(hh) == 1: hh = '0' + hh mm = str(round(mm)) if len(mm) == 1: mm = '0' + mm ss_decimals = f"{ss_decimals:.2f}" if len(ss_decimals.split(".")[0]) == 1: ss_decimals = "0" + ss_decimals srt_format_time = f"{hh}:{mm}:{ss_decimals}" return srt_format_time def rgb_list_to_hex_bgr(rgb_list): r, g, b = rgb_list return f"{b:x}{g:x}{r:x}" def make_ass_files( utt_obj, output_dir_root, ass_file_config, ): # don't try to make files if utt_obj.segments_and_tokens is empty, which will happen # in the case of the ground truth text being empty or the number of tokens being too large vs audio duration if not utt_obj.segments_and_tokens: return utt_obj if ass_file_config.resegment_text_to_fill_space: utt_obj = resegment_utt_obj(utt_obj, ass_file_config) # get duration of the utterance, so we know the final timestamp of the final set of subtitles, # which we will keep showing until the end with sf.SoundFile(utt_obj.audio_filepath) as f: audio_dur = f.frames / f.samplerate utt_obj = make_word_level_ass_file(utt_obj, output_dir_root, ass_file_config, audio_dur) utt_obj = make_token_level_ass_file(utt_obj, output_dir_root, ass_file_config, audio_dur) return utt_obj def _get_word_n_chars(word): n_chars = 0 for token in word.tokens: if token.text != BLANK_TOKEN: n_chars += len(token.text) return n_chars def _get_segment_n_chars(segment): n_chars = 0 for word_or_token in segment.words_and_tokens: if word_or_token.text == SPACE_TOKEN: n_chars += 1 elif word_or_token.text != BLANK_TOKEN: n_chars += len(word_or_token.text) return n_chars def resegment_utt_obj(utt_obj, ass_file_config): # get list of just all words and tokens all_words_and_tokens = [] for segment_or_token in utt_obj.segments_and_tokens: if type(segment_or_token) is Segment: all_words_and_tokens.extend(segment_or_token.words_and_tokens) else: all_words_and_tokens.append(segment_or_token) # figure out how many chars will fit into one 'slide' and thus should be the max # size of a segment approx_chars_per_line = (PLAYERRESX - MARGINL - MARGINR) / ( ass_file_config.fontsize * 0.6 ) # assume chars 0.6 as wide as they are tall approx_lines_per_segment = (PLAYERRESY - MARGINV) / ( ass_file_config.fontsize * 1.15 ) # assume line spacing is 1.15 if approx_lines_per_segment > ass_file_config.max_lines_per_segment: approx_lines_per_segment = ass_file_config.max_lines_per_segment max_chars_per_segment = int(approx_chars_per_line * approx_lines_per_segment) new_segments_and_tokens = [] all_words_and_tokens_pointer = 0 for word_or_token in all_words_and_tokens: if type(word_or_token) is Token: new_segments_and_tokens.append(word_or_token) all_words_and_tokens_pointer += 1 else: break new_segments_and_tokens.append(Segment()) while all_words_and_tokens_pointer < len(all_words_and_tokens): word_or_token = all_words_and_tokens[all_words_and_tokens_pointer] if type(word_or_token) is Word: # if this is going to be the first word in the segment, we definitely want # to add it to the segment if not new_segments_and_tokens[-1].words_and_tokens: new_segments_and_tokens[-1].words_and_tokens.append(word_or_token) else: # if not the first word, check what the new length of the segment will be # if short enough - add this word to this segment; # if too long - add to a new segment this_word_n_chars = _get_word_n_chars(word_or_token) segment_so_far_n_chars = _get_segment_n_chars(new_segments_and_tokens[-1]) if this_word_n_chars + segment_so_far_n_chars < max_chars_per_segment: new_segments_and_tokens[-1].words_and_tokens.append(word_or_token) else: new_segments_and_tokens.append(Segment()) new_segments_and_tokens[-1].words_and_tokens.append(word_or_token) else: # i.e. word_or_token is a token # currently this breaks the convention of tokens at the end/beginning # of segments being listed as separate tokens in segment.word_and_tokens # TODO: change code so we follow this convention new_segments_and_tokens[-1].words_and_tokens.append(word_or_token) all_words_and_tokens_pointer += 1 utt_obj.segments_and_tokens = new_segments_and_tokens return utt_obj def make_word_level_ass_file(utt_obj, output_dir_root, ass_file_config, audio_dur): default_style_dict = { "Name": "Default", "Fontname": "Arial", "Fontsize": str(ass_file_config.fontsize), "PrimaryColour": "&Hffffff", "SecondaryColour": "&Hffffff", "OutlineColour": "&H0", "BackColour": "&H0", "Bold": "0", "Italic": "0", "Underline": "0", "StrikeOut": "0", "ScaleX": "100", "ScaleY": "100", "Spacing": "0", "Angle": "0", "BorderStyle": "1", "Outline": "1", "Shadow": "0", "Alignment": None, # will specify below "MarginL": str(MARGINL), "MarginR": str(MARGINR), "MarginV": str(MARGINV), "Encoding": "0", } if ass_file_config.vertical_alignment == "top": default_style_dict["Alignment"] = "8" # text will be 'center-justified' and in the top of the screen elif ass_file_config.vertical_alignment == "center": default_style_dict["Alignment"] = "5" # text will be 'center-justified' and in the middle of the screen elif ass_file_config.vertical_alignment == "bottom": default_style_dict["Alignment"] = "2" # text will be 'center-justified' and in the bottom of the screen else: raise ValueError(f"got an unexpected value for ass_file_config.vertical_alignment") output_dir = os.path.join(output_dir_root, "ass", "words") os.makedirs(output_dir, exist_ok=True) output_file = os.path.join(output_dir, f"{utt_obj.utt_id}.ass") already_spoken_color_code = r"{\c&H" + rgb_list_to_hex_bgr(ass_file_config.text_already_spoken_rgb) + r"&}" being_spoken_color_code = r"{\c&H" + rgb_list_to_hex_bgr(ass_file_config.text_being_spoken_rgb) + r"&}" not_yet_spoken_color_code = r"{\c&H" + rgb_list_to_hex_bgr(ass_file_config.text_not_yet_spoken_rgb) + r"&}" with open(output_file, 'w') as f: default_style_top_line = "Format: " + ", ".join(default_style_dict.keys()) default_style_bottom_line = "Style: " + ",".join(default_style_dict.values()) f.write( ( "[Script Info]\n" "ScriptType: v4.00+\n" f"PlayResX: {PLAYERRESX}\n" f"PlayResY: {PLAYERRESY}\n" "\n" "[V4+ Styles]\n" f"{default_style_top_line}\n" f"{default_style_bottom_line}\n" "\n" "[Events]\n" "Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text\n\n" ) ) # write first set of subtitles for text before speech starts to be spoken words_in_first_segment = [] for segment_or_token in utt_obj.segments_and_tokens: if type(segment_or_token) is Segment: first_segment = segment_or_token for word_or_token in first_segment.words_and_tokens: if type(word_or_token) is Word: words_in_first_segment.append(word_or_token) break text_before_speech = not_yet_spoken_color_code + " ".join([x.text for x in words_in_first_segment]) + r"{\r}" subtitle_text = ( f"Dialogue: 0,{seconds_to_ass_format(0)},{seconds_to_ass_format(words_in_first_segment[0].t_start)},Default,,0,0,0,," + text_before_speech.rstrip() ) f.write(subtitle_text + '\n') for segment_or_token in utt_obj.segments_and_tokens: if type(segment_or_token) is Segment: segment = segment_or_token words_in_segment = [] for word_or_token in segment.words_and_tokens: if type(word_or_token) is Word: words_in_segment.append(word_or_token) for word_i, word in enumerate(words_in_segment): text_before = " ".join([x.text for x in words_in_segment[:word_i]]) if text_before != "": text_before += " " text_before = already_spoken_color_code + text_before + r"{\r}" if word_i < len(words_in_segment) - 1: text_after = " " + " ".join([x.text for x in words_in_segment[word_i + 1 :]]) else: text_after = "" text_after = not_yet_spoken_color_code + text_after + r"{\r}" aligned_text = being_spoken_color_code + word.text + r"{\r}" aligned_text_off = already_spoken_color_code + word.text + r"{\r}" subtitle_text = ( f"Dialogue: 0,{seconds_to_ass_format(word.t_start)},{seconds_to_ass_format(word.t_end)},Default,,0,0,0,," + text_before + aligned_text + text_after.rstrip() ) f.write(subtitle_text + '\n') # add subtitles without word-highlighting for when words are not being spoken if word_i < len(words_in_segment) - 1: last_word_end = float(words_in_segment[word_i].t_end) next_word_start = float(words_in_segment[word_i + 1].t_start) if next_word_start - last_word_end > 0.001: subtitle_text = ( f"Dialogue: 0,{seconds_to_ass_format(last_word_end)},{seconds_to_ass_format(next_word_start)},Default,,0,0,0,," + text_before + aligned_text_off + text_after.rstrip() ) f.write(subtitle_text + '\n') # write final set of subtitles for text after speech has been spoken words_in_final_segment = [] for segment_or_token in utt_obj.segments_and_tokens[::-1]: if type(segment_or_token) is Segment: final_segment = segment_or_token for word_or_token in final_segment.words_and_tokens: if type(word_or_token) is Word: words_in_final_segment.append(word_or_token) break text_after_speech = already_spoken_color_code + " ".join([x.text for x in words_in_final_segment]) + r"{\r}" # note: for now doing some extra padding with math.ceil(audio_dur)+1) to account for the fact that the video with subtitles can become # longer than the original audio during the MP4 creation stage. subtitle_text = ( f"Dialogue: 0,{seconds_to_ass_format(words_in_final_segment[-1].t_end)},{seconds_to_ass_format(math.ceil(audio_dur)+1)},Default,,0,0,0,," + text_after_speech.rstrip() ) f.write(subtitle_text + '\n') utt_obj.saved_output_files[f"words_level_ass_filepath"] = output_file return utt_obj def make_token_level_ass_file(utt_obj, output_dir_root, ass_file_config, audio_dur): default_style_dict = { "Name": "Default", "Fontname": "Arial", "Fontsize": str(ass_file_config.fontsize), "PrimaryColour": "&Hffffff", "SecondaryColour": "&Hffffff", "OutlineColour": "&H0", "BackColour": "&H0", "Bold": "0", "Italic": "0", "Underline": "0", "StrikeOut": "0", "ScaleX": "100", "ScaleY": "100", "Spacing": "0", "Angle": "0", "BorderStyle": "1", "Outline": "1", "Shadow": "0", "Alignment": None, # will specify below "MarginL": str(MARGINL), "MarginR": str(MARGINR), "MarginV": str(MARGINV), "Encoding": "0", } if ass_file_config.vertical_alignment == "top": default_style_dict["Alignment"] = "8" # text will be 'center-justified' and in the top of the screen elif ass_file_config.vertical_alignment == "center": default_style_dict["Alignment"] = "5" # text will be 'center-justified' and in the middle of the screen elif ass_file_config.vertical_alignment == "bottom": default_style_dict["Alignment"] = "2" # text will be 'center-justified' and in the bottom of the screen else: raise ValueError(f"got an unexpected value for ass_file_config.vertical_alignment") output_dir = os.path.join(output_dir_root, "ass", "tokens") os.makedirs(output_dir, exist_ok=True) output_file = os.path.join(output_dir, f"{utt_obj.utt_id}.ass") already_spoken_color_code = r"{\c&H" + rgb_list_to_hex_bgr(ass_file_config.text_already_spoken_rgb) + r"&}" being_spoken_color_code = r"{\c&H" + rgb_list_to_hex_bgr(ass_file_config.text_being_spoken_rgb) + r"&}" not_yet_spoken_color_code = r"{\c&H" + rgb_list_to_hex_bgr(ass_file_config.text_not_yet_spoken_rgb) + r"&}" with open(output_file, 'w') as f: default_style_top_line = "Format: " + ", ".join(default_style_dict.keys()) default_style_bottom_line = "Style: " + ",".join(default_style_dict.values()) f.write( ( "[Script Info]\n" "ScriptType: v4.00+\n" f"PlayResX: {PLAYERRESX}\n" f"PlayResY: {PLAYERRESY}\n" "ScaledBorderAndShadow: yes\n" "\n" "[V4+ Styles]\n" f"{default_style_top_line}\n" f"{default_style_bottom_line}\n" "\n" "[Events]\n" "Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text\n\n" ) ) # write first set of subtitles for text before speech starts to be spoken tokens_in_first_segment = [] for segment_or_token in utt_obj.segments_and_tokens: if type(segment_or_token) is Segment: for word_or_token in segment_or_token.words_and_tokens: if type(word_or_token) is Token: if word_or_token.text != BLANK_TOKEN: tokens_in_first_segment.append(word_or_token) else: for token in word_or_token.tokens: if token.text != BLANK_TOKEN: tokens_in_first_segment.append(token) break for token in tokens_in_first_segment: token.text_cased = token.text_cased.replace( "▁", " " ) # replace underscores used in subword tokens with spaces token.text_cased = token.text_cased.replace(SPACE_TOKEN, " ") # space token with actual space text_before_speech = ( not_yet_spoken_color_code + "".join([x.text_cased for x in tokens_in_first_segment]) + r"{\r}" ) subtitle_text = ( f"Dialogue: 0,{seconds_to_ass_format(0)},{seconds_to_ass_format(tokens_in_first_segment[0].t_start)},Default,,0,0,0,," + text_before_speech.rstrip() ) f.write(subtitle_text + '\n') for segment_or_token in utt_obj.segments_and_tokens: if type(segment_or_token) is Segment: segment = segment_or_token tokens_in_segment = [] # make list of (non-blank) tokens for word_or_token in segment.words_and_tokens: if type(word_or_token) is Token: if word_or_token.text != BLANK_TOKEN: tokens_in_segment.append(word_or_token) else: for token in word_or_token.tokens: if token.text != BLANK_TOKEN: tokens_in_segment.append(token) for token in tokens_in_segment: token.text_cased = token.text_cased.replace( "▁", " " ) # replace underscores used in subword tokens with spaces token.text_cased = token.text_cased.replace(SPACE_TOKEN, " ") # space token with actual space for token_i, token in enumerate(tokens_in_segment): text_before = "".join([x.text_cased for x in tokens_in_segment[:token_i]]) text_before = already_spoken_color_code + text_before + r"{\r}" if token_i < len(tokens_in_segment) - 1: text_after = "".join([x.text_cased for x in tokens_in_segment[token_i + 1 :]]) else: text_after = "" text_after = not_yet_spoken_color_code + text_after + r"{\r}" aligned_text = being_spoken_color_code + token.text_cased + r"{\r}" aligned_text_off = already_spoken_color_code + token.text_cased + r"{\r}" subtitle_text = ( f"Dialogue: 0,{seconds_to_ass_format(token.t_start)},{seconds_to_ass_format(token.t_end)},Default,,0,0,0,," + text_before + aligned_text + text_after.rstrip() ) f.write(subtitle_text + '\n') # add subtitles without word-highlighting for when words are not being spoken if token_i < len(tokens_in_segment) - 1: last_token_end = float(tokens_in_segment[token_i].t_end) next_token_start = float(tokens_in_segment[token_i + 1].t_start) if next_token_start - last_token_end > 0.001: subtitle_text = ( f"Dialogue: 0,{seconds_to_ass_format(last_token_end)},{seconds_to_ass_format(next_token_start)},Default,,0,0,0,," + text_before + aligned_text_off + text_after.rstrip() ) f.write(subtitle_text + '\n') # Write final set of subtitles for text after speech has been spoken. # To do this, we need to collect 'tokens_in_final_segment' so that we know what the final line is. tokens_in_final_segment = [] for segment_or_token in utt_obj.segments_and_tokens[::-1]: # Collect tokens from final segment - will 'break' so we only look at the final one. if type(segment_or_token) is Segment: # 'segment_or_token' is known to be Segment, which has attribute 'words_and_tokens' for word_or_token in segment_or_token.words_and_tokens: if type(word_or_token) is Token: if word_or_token.text != BLANK_TOKEN: tokens_in_final_segment.append(word_or_token) else: # 'word_or_token' is known to be a Word, which has attribute 'tokens' for token in word_or_token.tokens: if token.text != BLANK_TOKEN: tokens_in_final_segment.append(token) break for token in tokens_in_final_segment: token.text_cased = token.text_cased.replace( "▁", " " ) # replace underscores used in subword tokens with spaces token.text_cased = token.text_cased.replace(SPACE_TOKEN, " ") # space token with actual space text_after_speech = ( already_spoken_color_code + "".join([x.text_cased for x in tokens_in_final_segment]) + r"{\r}" ) # note: for now doing some extra padding with math.ceil(audio_dur)+1) to account for the fact that the video with subtitles can become # longer than the original audio during the MP4 creation stage. subtitle_text = ( f"Dialogue: 0,{seconds_to_ass_format(tokens_in_final_segment[-1].t_end)},{seconds_to_ass_format(math.ceil(audio_dur)+1)},Default,,0,0,0,," + text_after_speech.rstrip() ) f.write(subtitle_text + '\n') utt_obj.saved_output_files[f"tokens_level_ass_filepath"] = output_file return utt_obj
NeMo-main
tools/nemo_forced_aligner/utils/make_ass_files.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import soundfile as sf from utils.constants import BLANK_TOKEN, SPACE_TOKEN from utils.data_prep import Segment, Word def make_ctm_files( utt_obj, output_dir_root, ctm_file_config, ): """ Function to save CTM files for all the utterances in the incoming batch. """ # don't try to make files if utt_obj.segments_and_tokens is empty, which will happen # in the case of the ground truth text being empty or the number of tokens being too large vs audio duration if not utt_obj.segments_and_tokens: return utt_obj # get audio file duration if we will need it later if ctm_file_config.minimum_timestamp_duration > 0: with sf.SoundFile(utt_obj.audio_filepath) as f: audio_file_duration = f.frames / f.samplerate else: audio_file_duration = None utt_obj = make_ctm("tokens", utt_obj, output_dir_root, audio_file_duration, ctm_file_config,) utt_obj = make_ctm("words", utt_obj, output_dir_root, audio_file_duration, ctm_file_config,) utt_obj = make_ctm("segments", utt_obj, output_dir_root, audio_file_duration, ctm_file_config,) return utt_obj def make_ctm( alignment_level, utt_obj, output_dir_root, audio_file_duration, ctm_file_config, ): output_dir = os.path.join(output_dir_root, "ctm", alignment_level) os.makedirs(output_dir, exist_ok=True) boundary_info_utt = [] for segment_or_token in utt_obj.segments_and_tokens: if type(segment_or_token) is Segment: segment = segment_or_token if alignment_level == "segments": boundary_info_utt.append(segment) for word_or_token in segment.words_and_tokens: if type(word_or_token) is Word: word = word_or_token if alignment_level == "words": boundary_info_utt.append(word) for token in word.tokens: if alignment_level == "tokens": boundary_info_utt.append(token) else: token = word_or_token if alignment_level == "tokens": boundary_info_utt.append(token) else: token = segment_or_token if alignment_level == "tokens": boundary_info_utt.append(token) with open(os.path.join(output_dir, f"{utt_obj.utt_id}.ctm"), "w") as f_ctm: for boundary_info_ in boundary_info_utt: # loop over every token/word/segment # skip if t_start = t_end = negative number because we used it as a marker to skip some blank tokens if not (boundary_info_.t_start < 0 or boundary_info_.t_end < 0): text = boundary_info_.text start_time = boundary_info_.t_start end_time = boundary_info_.t_end if ( ctm_file_config.minimum_timestamp_duration > 0 and ctm_file_config.minimum_timestamp_duration > end_time - start_time ): # make the predicted duration of the token/word/segment longer, growing it outwards equal # amounts from the predicted center of the token/word/segment token_mid_point = (start_time + end_time) / 2 start_time = max(token_mid_point - ctm_file_config.minimum_timestamp_duration / 2, 0) end_time = min( token_mid_point + ctm_file_config.minimum_timestamp_duration / 2, audio_file_duration ) if not ( text == BLANK_TOKEN and ctm_file_config.remove_blank_tokens ): # don't save blanks if we don't want to # replace any spaces with <space> so we dont introduce extra space characters to our CTM files text = text.replace(" ", SPACE_TOKEN) f_ctm.write(f"{utt_obj.utt_id} 1 {start_time:.2f} {end_time - start_time:.2f} {text}\n") utt_obj.saved_output_files[f"{alignment_level}_level_ctm_filepath"] = os.path.join( output_dir, f"{utt_obj.utt_id}.ctm" ) return utt_obj
NeMo-main
tools/nemo_forced_aligner/utils/make_ctm_files.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from multiprocessing import set_start_method from nemo.collections.asr.data.data_simulation import MultiSpeakerSimulator, RIRMultiSpeakerSimulator from nemo.core.config import hydra_runner """ This script creates a synthetic diarization session using the provided audio dataset with ctm files. Usage: python <NEMO_ROOT>/tools/speech_data_simulator/multispeaker_simulator.py \ num_workers=10 \ data_simulator.random_seed=42 \ data_simulator.manifest_filepath=manifest_with_alignment_file.json \ data_simulator.outputs.output_dir=./simulated_data \ data_simulator.outputs.output_filename=sim_spk2_sess20 \ data_simulator.session_config.num_sessions=1000 \ data_simulator.session_config.num_speakers=2 \ data_simulator.session_config.session_length=20 \ data_simulator.background_noise.add_bg=False \ data_simulator.background_noise.background_manifest=background_noise.json \ data_simulator.background_noise.snr=40 \ Check out parameters in ./conf/data_simulator.yaml. """ @hydra_runner(config_path="conf", config_name="data_simulator.yaml") def main(cfg): if cfg.data_simulator.rir_generation.use_rir: simulator = RIRMultiSpeakerSimulator(cfg=cfg) else: simulator = MultiSpeakerSimulator(cfg=cfg) set_start_method('spawn', force=True) simulator.generate_sessions() if __name__ == "__main__": main()
NeMo-main
tools/speech_data_simulator/multispeaker_simulator.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import re from glob import glob from typing import List, Optional import regex from joblib import Parallel, delayed from normalization_helpers import LATIN_TO_RU, RU_ABBREVIATIONS from num2words import num2words from sox import Transformer from tqdm import tqdm from nemo.collections.asr.models import ASRModel from nemo.utils import model_utils try: from nemo_text_processing.text_normalization.normalize import Normalizer NEMO_NORMALIZATION_AVAILABLE = True except (ModuleNotFoundError, ImportError): NEMO_NORMALIZATION_AVAILABLE = False parser = argparse.ArgumentParser(description="Prepares text and audio files for segmentation") parser.add_argument("--in_text", type=str, default=None, help="Path to a text file or a directory with .txt files") parser.add_argument("--output_dir", type=str, required=True, help="Path to output directory") parser.add_argument("--audio_dir", type=str, help="Path to folder with .mp3 or .wav audio files") parser.add_argument("--sample_rate", type=int, default=16000, help="Sampling rate used during ASR model training, Hz") parser.add_argument("--bit_depth", type=int, default=16, help="Bit depth to use for processed audio files") parser.add_argument("--n_jobs", default=-2, type=int, help="The maximum number of concurrently running jobs") parser.add_argument( "--language", type=str, default="en", choices=["en", "ru", "de", "es", 'other'], help='Add target language based on the num2words list of supported languages', ) parser.add_argument( "--cut_prefix", type=int, default=0, help="Number of seconds to cut from the beginning of the audio files.", ) parser.add_argument( "--model", type=str, default="QuartzNet15x5Base-En", help="Pre-trained model name or path to model checkpoint" ) parser.add_argument( "--max_length", type=int, default=40, help="Max number of words of the text segment for alignment." ) parser.add_argument( "--additional_split_symbols", type=str, default="", help="Additional symbols to use for \ sentence split if eos sentence split resulted in sequence longer than --max_length. " "Use '|' as a separator between symbols, for example: ';|:'. Use '\s' to split by space.", ) parser.add_argument( "--use_nemo_normalization", action="store_true", help="Set to True to use NeMo Normalization tool to convert numbers from written to spoken format.", ) parser.add_argument( "--batch_size", type=int, default=100, help="Batch size for NeMo Normalization tool.", ) def process_audio( in_file: str, wav_file: str = None, cut_prefix: int = 0, sample_rate: int = 16000, bit_depth: int = 16 ): """Process audio file: .mp3 to .wav conversion and cut a few seconds from the beginning of the audio Args: in_file: path to the .mp3 or .wav file for processing wav_file: path to the output .wav file cut_prefix: number of seconds to cut from the beginning of the audio file sample_rate: target sampling rate bit_depth: target bit_depth """ try: if not os.path.exists(in_file): raise ValueError(f'{in_file} not found') tfm = Transformer() tfm.convert(samplerate=sample_rate, n_channels=1, bitdepth=bit_depth) tfm.trim(cut_prefix) tfm.build(input_filepath=in_file, output_filepath=wav_file) except Exception as e: print(f'{in_file} skipped - {e}') def split_text( in_file: str, out_file: str, vocabulary: List[str], language="en", remove_brackets: bool = True, do_lower_case: bool = True, max_length: bool = 100, additional_split_symbols: bool = None, use_nemo_normalization: bool = False, n_jobs: Optional[int] = 1, batch_size: Optional[int] = 1.0, ): """ Breaks down the in_file roughly into sentences. Each sentence will be on a separate line. Written form of the numbers will be converted to its spoken equivalent, OOV punctuation will be removed. Args: in_file: path to original transcript out_file: path to the output file vocabulary: ASR model vocabulary language: text language remove_brackets: Set to True if square [] and curly {} brackets should be removed from text. Text in square/curly brackets often contains inaudible fragments like notes or translations do_lower_case: flag that determines whether to apply lower case to the in_file text max_length: Max number of words of the text segment for alignment additional_split_symbols: Additional symbols to use for sentence split if eos sentence split resulted in segments longer than --max_length use_nemo_normalization: Set to True to use NeMo normalization tool to convert numbers from written to spoken format. Normalization using num2words will be applied afterwards to make sure there are no numbers present in the text, otherwise they will be replaced with a space and that could deteriorate segmentation results. n_jobs (if use_nemo_normalization=True): the maximum number of concurrently running jobs. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. batch_size (if use_nemo_normalization=True): Number of examples for each process """ print(f"Splitting text in {in_file} into sentences.") with open(in_file, "r") as f: transcript = f.read() # remove some symbols for better split into sentences transcript = ( transcript.replace("\n", " ") .replace("\t", " ") .replace("…", "...") .replace("\\", " ") .replace("--", " -- ") .replace(". . .", "...") ) # end of quoted speech - to be able to split sentences by full stop transcript = re.sub(r"([\.\?\!])([\"\'”])", r"\g<2>\g<1> ", transcript) # remove extra space transcript = re.sub(r" +", " ", transcript) if remove_brackets: transcript = re.sub(r'(\[.*?\])', ' ', transcript) # remove text in curly brackets transcript = re.sub(r'(\{.*?\})', ' ', transcript) lower_case_unicode = '' upper_case_unicode = '' if language == "ru": lower_case_unicode = '\u0430-\u04FF' upper_case_unicode = '\u0410-\u042F' elif language not in ["ru", "en"]: print(f"Consider using {language} unicode letters for better sentence split.") # remove space in the middle of the lower case abbreviation to avoid splitting into separate sentences matches = re.findall(r'[a-z' + lower_case_unicode + ']\.\s[a-z' + lower_case_unicode + ']\.', transcript) for match in matches: transcript = transcript.replace(match, match.replace('. ', '.')) # find phrases in quotes with_quotes = re.finditer(r'“[A-Za-z ?]+.*?”', transcript) sentences = [] last_idx = 0 for m in with_quotes: match = m.group() match_idx = m.start() if last_idx < match_idx: sentences.append(transcript[last_idx:match_idx]) sentences.append(match) last_idx = m.end() sentences.append(transcript[last_idx:]) sentences = [s.strip() for s in sentences if s.strip()] # Read and split transcript by utterance (roughly, sentences) split_pattern = f"(?<!\w\.\w.)(?<![A-Z{upper_case_unicode}][a-z{lower_case_unicode}]\.)(?<![A-Z{upper_case_unicode}]\.)(?<=\.|\?|\!|\.”|\?”\!”)\s" new_sentences = [] for sent in sentences: new_sentences.extend(regex.split(split_pattern, sent)) sentences = [s.strip() for s in new_sentences if s.strip()] def additional_split(sentences, split_on_symbols): if len(split_on_symbols) == 0: return sentences split_on_symbols = split_on_symbols.split("|") def _split(sentences, delimiter): result = [] for sent in sentences: split_sent = sent.split(delimiter) # keep the delimiter split_sent = [(s + delimiter).strip() for s in split_sent[:-1]] + [split_sent[-1]] if "," in delimiter: # split based on comma usually results in too short utterance, combine sentences # that result in a single word split. It's usually not recommended to do that for other delimiters. comb = [] for s in split_sent: MIN_LEN = 2 # if the previous sentence is too short, combine it with the current sentence if len(comb) > 0 and (len(comb[-1].split()) <= MIN_LEN or len(s.split()) <= MIN_LEN): comb[-1] = comb[-1] + " " + s else: comb.append(s) result.extend(comb) else: result.extend(split_sent) return result another_sent_split = [] for sent in sentences: split_sent = [sent] for delimiter in split_on_symbols: if len(delimiter) == 0: continue split_sent = _split(split_sent, delimiter + " " if delimiter != " " else delimiter) another_sent_split.extend(split_sent) sentences = [s.strip() for s in another_sent_split if s.strip()] return sentences additional_split_symbols = additional_split_symbols.replace("/s", " ") sentences = additional_split(sentences, additional_split_symbols) vocabulary_symbols = [] for x in vocabulary: if x != "<unk>": # for BPE models vocabulary_symbols.extend([x for x in x.replace("##", "").replace("▁", "")]) vocabulary_symbols = list(set(vocabulary_symbols)) vocabulary_symbols += [x.upper() for x in vocabulary_symbols] # check to make sure there will be no utterances for segmentation with only OOV symbols vocab_no_space_with_digits = set(vocabulary_symbols + [str(i) for i in range(10)]) if " " in vocab_no_space_with_digits: vocab_no_space_with_digits.remove(" ") sentences = [ s.strip() for s in sentences if len(vocab_no_space_with_digits.intersection(set(s.lower()))) > 0 and s.strip() ] # when no punctuation marks present in the input text, split based on max_length if len(sentences) == 1: sent = sentences[0].split() sentences = [] for i in range(0, len(sent), max_length): sentences.append(" ".join(sent[i : i + max_length])) sentences = [s.strip() for s in sentences if s.strip()] # save split text with original punctuation and case out_dir, out_file_name = os.path.split(out_file) with open(os.path.join(out_dir, out_file_name[:-4] + "_with_punct.txt"), "w") as f: f.write(re.sub(r' +', ' ', "\n".join(sentences))) # substitute common abbreviations before applying lower case if language == "ru": for k, v in RU_ABBREVIATIONS.items(): sentences = [s.replace(k, v) for s in sentences] # replace Latin characters with Russian for k, v in LATIN_TO_RU.items(): sentences = [s.replace(k, v) for s in sentences] if language == "en" and use_nemo_normalization: if not NEMO_NORMALIZATION_AVAILABLE: raise ValueError("NeMo normalization tool is not installed.") print("Using NeMo normalization tool...") normalizer = Normalizer(input_case="cased", cache_dir=os.path.join(os.path.dirname(out_file), "en_grammars")) sentences_norm = normalizer.normalize_list( sentences, verbose=False, punct_post_process=True, n_jobs=n_jobs, batch_size=batch_size ) if len(sentences_norm) != len(sentences): raise ValueError("Normalization failed, number of sentences does not match.") else: sentences = sentences_norm sentences = '\n'.join(sentences) # replace numbers with num2words try: p = re.compile("\d+") new_text = "" match_end = 0 for i, m in enumerate(p.finditer(sentences)): match = m.group() match_start = m.start() if i == 0: new_text = sentences[:match_start] else: new_text += sentences[match_end:match_start] match_end = m.end() new_text += sentences[match_start:match_end].replace(match, num2words(match, lang=language)) new_text += sentences[match_end:] sentences = new_text except NotImplementedError: print( f"{language} might be missing in 'num2words' package. Add required language to the choices for the" f"--language argument." ) raise sentences = re.sub(r' +', ' ', sentences) with open(os.path.join(out_dir, out_file_name[:-4] + "_with_punct_normalized.txt"), "w") as f: f.write(sentences) if do_lower_case: sentences = sentences.lower() symbols_to_remove = ''.join(set(sentences).difference(set(vocabulary_symbols + ["\n", " "]))) sentences = sentences.translate(''.maketrans(symbols_to_remove, len(symbols_to_remove) * " ")) # remove extra space sentences = re.sub(r' +', ' ', sentences) with open(out_file, "w") as f: f.write(sentences) if __name__ == "__main__": args = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) text_files = [] if args.in_text: if args.model is None: raise ValueError(f"ASR model must be provided to extract vocabulary for text processing") elif os.path.exists(args.model): model_cfg = ASRModel.restore_from(restore_path=args.model, return_config=True) classpath = model_cfg.target # original class path imported_class = model_utils.import_class_by_path(classpath) # type: ASRModel print(f"Restoring model : {imported_class.__name__}") asr_model = imported_class.restore_from(restore_path=args.model) # type: ASRModel model_name = os.path.splitext(os.path.basename(args.model))[0] else: # restore model by name asr_model = ASRModel.from_pretrained(model_name=args.model) # type: ASRModel model_name = args.model vocabulary = asr_model.cfg.decoder.vocabulary if os.path.isdir(args.in_text): text_files = glob(f"{args.in_text}/*.txt") else: text_files.append(args.in_text) for text in text_files: base_name = os.path.basename(text)[:-4] out_text_file = os.path.join(args.output_dir, base_name + ".txt") split_text( text, out_text_file, vocabulary=vocabulary, language=args.language, max_length=args.max_length, additional_split_symbols=args.additional_split_symbols, use_nemo_normalization=args.use_nemo_normalization, n_jobs=args.n_jobs, batch_size=args.batch_size, ) print(f"Processed text saved at {args.output_dir}") if args.audio_dir: if not os.path.exists(args.audio_dir): raise ValueError(f"{args.audio_dir} not found. '--audio_dir' should contain .mp3 or .wav files.") audio_paths = glob(f"{args.audio_dir}/*") Parallel(n_jobs=args.n_jobs)( delayed(process_audio)( audio_paths[i], os.path.join(args.output_dir, os.path.splitext(os.path.basename(audio_paths[i]))[0] + ".wav"), args.cut_prefix, args.sample_rate, args.bit_depth, ) for i in tqdm(range(len(audio_paths))) ) print("Data preparation is complete.")
NeMo-main
tools/ctc_segmentation/scripts/prepare_data.py
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import os from glob import glob import editdistance from joblib import Parallel, delayed from tqdm import tqdm from nemo.collections.asr.parts.preprocessing.segment import AudioSegment from nemo.utils import logging parser = argparse.ArgumentParser("Calculate metrics and filters out samples based on thresholds") parser.add_argument( "--manifest", required=True, help="Path .json manifest file with ASR predictions saved at `pred_text` field.", ) parser.add_argument( "--edge_len", type=int, help="Number of characters to use for CER calculation at the edges", default=5 ) parser.add_argument("--audio_dir", type=str, help="Path to original .wav files", default=None) parser.add_argument("--max_cer", type=int, help="Threshold CER value, %", default=30) parser.add_argument("--max_wer", type=int, help="Threshold WER value, %", default=75) parser.add_argument( "--max_len_diff_ratio", type=float, help="Threshold for len diff ratio between reference text " "length and predicted text length with respect to " "the reference text length (length measured " "in number of characters)", default=0.3, ) parser.add_argument("--max_edge_cer", type=int, help="Threshold edge CER value, %", default=60) parser.add_argument("--max_duration", type=int, help="Max duration of a segment, seconds", default=-1) parser.add_argument("--min_duration", type=int, help="Min duration of a segment, seconds", default=1) parser.add_argument( "--num_jobs", default=-2, type=int, help="The maximum number of concurrently running jobs, `-2` - all CPUs but one are used", ) parser.add_argument( "--only_filter", action="store_true", help="Set to True to perform only filtering (when transcripts" "are already available)", ) def _calculate(line: dict, edge_len: int): """ Calculates metrics for every entry on manifest.json. Args: line - line of manifest.json (dict) edge_len - number of characters for edge Character Error Rate (CER) calculations Returns: line - line of manifest.json (dict) with the following metrics added: WER - word error rate CER - character error rate start_CER - CER at the beginning of the audio sample considering first 'edge_len' characters end_CER - CER at the end of the audio sample considering last 'edge_len' characters len_diff_ratio - ratio between reference text length and predicted text length with respect to the reference text length (length measured in number of characters) """ eps = 1e-9 text = line["text"].split() pred_text = line["pred_text"].split() num_words = max(len(text), eps) word_dist = editdistance.eval(text, pred_text) line["WER"] = word_dist / num_words * 100.0 num_chars = max(len(line["text"]), eps) char_dist = editdistance.eval(line["text"], line["pred_text"]) line["CER"] = char_dist / num_chars * 100.0 line["start_CER"] = editdistance.eval(line["text"][:edge_len], line["pred_text"][:edge_len]) / edge_len * 100 line["end_CER"] = editdistance.eval(line["text"][-edge_len:], line["pred_text"][-edge_len:]) / edge_len * 100 line["len_diff_ratio"] = 1.0 * abs(len(text) - len(pred_text)) / max(len(text), eps) return line def get_metrics(manifest, manifest_out): """Calculate metrics for sample in manifest and saves the results to manifest_out""" with open(manifest, "r") as f: lines = f.readlines() lines = Parallel(n_jobs=args.num_jobs)( delayed(_calculate)(json.loads(line), edge_len=args.edge_len) for line in tqdm(lines) ) with open(manifest_out, "w") as f_out: for line in lines: f_out.write(json.dumps(line) + "\n") logging.info(f"Metrics save at {manifest_out}") def _apply_filters( manifest, manifest_out, max_cer, max_wer, max_edge_cer, max_len_diff_ratio, max_dur=-1, min_dur=1, original_duration=0, ): """ Filters out samples that do not satisfy specified threshold values and saves remaining samples to manifest_out""" remaining_duration = 0 segmented_duration = 0 with open(manifest, "r") as f, open(manifest_out, "w") as f_out: for line in f: item = json.loads(line) cer = item["CER"] wer = item["WER"] len_diff_ratio = item["len_diff_ratio"] duration = item["duration"] segmented_duration += duration if ( cer <= max_cer and wer <= max_wer and len_diff_ratio <= max_len_diff_ratio and item["end_CER"] <= max_edge_cer and item["start_CER"] <= max_edge_cer and (max_dur == -1 or (max_dur > -1 and duration < max_dur)) and duration > min_dur ): remaining_duration += duration f_out.write(json.dumps(item) + "\n") logging.info("-" * 50) logging.info("Threshold values:") logging.info(f"max WER, %: {max_wer}") logging.info(f"max CER, %: {max_cer}") logging.info(f"max edge CER, %: {max_edge_cer}") logging.info(f"max Word len diff: {max_len_diff_ratio}") logging.info(f"max Duration, s: {max_dur}") logging.info("-" * 50) remaining_duration = remaining_duration / 60 original_duration = original_duration / 60 segmented_duration = segmented_duration / 60 logging.info(f"Original audio dur: {round(original_duration, 2)} min") logging.info( f"Segmented duration: {round(segmented_duration, 2)} min ({round(100 * segmented_duration / original_duration, 2)}% of original audio)" ) logging.info( f"Retained {round(remaining_duration, 2)} min ({round(100*remaining_duration/original_duration, 2)}% of original or {round(100 * remaining_duration / segmented_duration, 2)}% of segmented audio)." ) logging.info(f"Retained data saved to {manifest_out}") def filter(manifest): """ Filters out samples that do not satisfy specified threshold values. Args: manifest: path to .json manifest """ original_duration = 0 if args.audio_dir: audio_files = glob(f"{os.path.abspath(args.audio_dir)}/*") for audio in audio_files: try: audio_data = AudioSegment.from_file(audio) duration = len(audio_data._samples) / audio_data._sample_rate original_duration += duration except Exception as e: logging.info(f"Skipping {audio} -- {e}") _apply_filters( manifest=manifest, manifest_out=manifest.replace(".json", "_filtered.json"), max_cer=args.max_cer, max_wer=args.max_wer, max_edge_cer=args.max_edge_cer, max_len_diff_ratio=args.max_len_diff_ratio, max_dur=args.max_duration, min_dur=args.min_duration, original_duration=original_duration, ) if __name__ == "__main__": args = parser.parse_args() if not args.only_filter: manifest_with_metrics = args.manifest.replace(".json", "_metrics.json") get_metrics(args.manifest, manifest_with_metrics) else: manifest_with_metrics = args.manifest filter(manifest_with_metrics)
NeMo-main
tools/ctc_segmentation/scripts/get_metrics_and_filter.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = ["LATIN_TO_RU", "RU_ABBREVIATIONS"] LATIN_TO_RU = { "a": "а", "b": "б", "c": "к", "d": "д", "e": "е", "f": "ф", "g": "г", "h": "х", "i": "и", "j": "ж", "k": "к", "l": "л", "m": "м", "n": "н", "o": "о", "p": "п", "q": "к", "r": "р", "s": "с", "t": "т", "u": "у", "v": "в", "w": "в", "x": "к", "y": "у", "z": "з", "à": "а", "è": "е", "é": "е", "ß": "в", "ä": "а", "ö": "о", "ü": "у", "є": "е", "ç": "с", "ê": "е", "ó": "о", } RU_ABBREVIATIONS = { " р.": " рублей", " к.": " копеек", " коп.": " копеек", " копек.": " копеек", " т.д.": " так далее", " т. д.": " так далее", " т.п.": " тому подобное", " т. п.": " тому подобное", " т.е.": " то есть", " т. е.": " то есть", " стр. ": " страница ", }
NeMo-main
tools/ctc_segmentation/scripts/normalization_helpers.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import re from pathlib import Path import pandas as pd parser = argparse.ArgumentParser(description="Compare alignment segments generated with different window sizes") parser.add_argument( "--base_dir", default="output", type=str, required=True, help="Path to directory with 'logs' and 'segments' folders generated during the segmentation step", ) if __name__ == "__main__": args = parser.parse_args() segments_dir = os.path.join(args.base_dir, "segments") if not os.path.exists(segments_dir): raise ValueError(f"'segments' directory was not found at {args.base_dir}.") all_files = Path(segments_dir).glob("*_segments.txt") all_alignment_files = {} for file in all_files: base_name = re.sub(r"^\d+_", "", file.name) if base_name not in all_alignment_files: all_alignment_files[base_name] = [] all_alignment_files[base_name].append(file) verified_dir = os.path.join(args.base_dir, "verified_segments") os.makedirs(verified_dir, exist_ok=True) def readlines(file): with open(file, "r") as f: lines = f.readlines() return lines stats = {} for part, alignment_files in all_alignment_files.items(): stats[part] = {} num_alignment_files = len(alignment_files) all_alignments = [] for alignment in alignment_files: all_alignments.append(readlines(alignment)) with open(os.path.join(verified_dir, part), "w") as f: num_segments = len(all_alignments[0]) stats[part]["Original number of segments"] = num_segments stats[part]["Verified segments"] = 0 stats[part]["Original Duration, min"] = 0 stats[part]["Verified Duration, min"] = 0 for i in range(num_segments): line = all_alignments[0][i] valid_line = True if i == 0: duration = 0 else: info = line.split("|")[0].split() duration = (float(info[1]) - float(info[0])) / 60 stats[part]["Original Duration, min"] += duration for alignment in all_alignments: if line != alignment[i]: valid_line = False if valid_line: f.write(line) stats[part]["Verified segments"] += 1 stats[part]["Verified Duration, min"] += duration stats = pd.DataFrame.from_dict(stats, orient="index").reset_index() stats["Number dropped"] = stats["Original number of segments"] - stats["Verified segments"] stats["Duration of dropped, min"] = round(stats["Original Duration, min"] - stats["Verified Duration, min"]) stats["% dropped, min"] = round(stats["Duration of dropped, min"] / stats["Original number of segments"] * 100) stats["Misalignment present"] = stats["Number dropped"] > 0 stats["Original Duration, min"] = round(stats["Original Duration, min"]) stats["Verified Duration, min"] = round(stats["Verified Duration, min"]) stats.loc["Total"] = stats.sum() stats_file = os.path.join(args.base_dir, "alignment_summary.csv") stats.to_csv(stats_file, index=False) print(stats) print(f"Alignment summary saved to {stats_file}")
NeMo-main
tools/ctc_segmentation/scripts/verify_segments.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import os from glob import glob import numpy as np from scipy.io import wavfile from tqdm import tqdm parser = argparse.ArgumentParser(description="Cut audio on the segments based on segments") parser.add_argument("--output_dir", type=str, help="Path to output directory", required=True) parser.add_argument( "--alignment", type=str, required=True, help="Path to a data directory with alignments or a single .txt file with timestamps - result of the ctc-segmentation", ) parser.add_argument("--threshold", type=float, default=-5, help="Minimum score value accepted") parser.add_argument("--offset", type=int, default=0, help="Offset, s") parser.add_argument("--batch_size", type=int, default=64, help="Batch size for inference") parser.add_argument( "--edge_duration", type=float, help="Duration of audio for mean absolute value calculation at the edges, s", default=0.05, ) parser.add_argument("--sample_rate", type=int, help="Sample rate, Hz", default=16000) parser.add_argument( "--max_duration", type=int, help="Maximum audio duration (seconds). Samples that are longer will be dropped", default=60, ) def process_alignment(alignment_file: str, manifest: str, clips_dir: str, args): """ Cut original audio file into audio segments based on alignment_file Args: alignment_file: path to the file with segmented text and corresponding time stamps. The first line of the file contains the path to the original audio file manifest: path to .json manifest to save segments metadata clips_dir: path to a directory to save audio clips args: main script args """ if not os.path.exists(alignment_file): raise ValueError(f"{alignment_file} not found") base_name = os.path.basename(alignment_file).replace("_segments.txt", "") # read the segments, note the first line contains the path to the original audio segments = [] ref_text_processed = [] ref_text_no_preprocessing = [] ref_text_normalized = [] with open(alignment_file, "r") as f: for line in f: line = line.split("|") # read audio file name from the first line if len(line) == 1: audio_file = line[0].strip() continue ref_text_processed.append(line[1].strip()) ref_text_no_preprocessing.append(line[2].strip()) ref_text_normalized.append(line[3].strip()) line = line[0].split() segments.append((float(line[0]) + args.offset / 1000, float(line[1]) + args.offset / 1000, float(line[2]))) # cut the audio into segments and save the final manifests at output_dir sampling_rate, signal = wavfile.read(audio_file) original_duration = len(signal) / sampling_rate num_samples = int(args.edge_duration * args.sample_rate) low_score_dur = 0 high_score_dur = 0 with open(manifest, "a", encoding="utf8") as f: for i, (st, end, score) in enumerate(segments): segment = signal[round(st * sampling_rate) : round(end * sampling_rate)] duration = len(segment) / sampling_rate if duration > args.max_duration: continue if duration > 0: text_processed = ref_text_processed[i].strip() text_no_preprocessing = ref_text_no_preprocessing[i].strip() text_normalized = ref_text_normalized[i].strip() if score >= args.threshold: high_score_dur += duration audio_filepath = os.path.join(clips_dir, f"{base_name}_{i:04}.wav") wavfile.write(audio_filepath, sampling_rate, segment) assert len(signal.shape) == 1 and sampling_rate == args.sample_rate, "check sampling rate" info = { "audio_filepath": audio_filepath, "duration": duration, "text": text_processed, "text_no_preprocessing": text_no_preprocessing, "text_normalized": text_normalized, "score": round(score, 2), "start_abs": float(np.mean(np.abs(segment[:num_samples]))), "end_abs": float(np.mean(np.abs(segment[-num_samples:]))), } json.dump(info, f, ensure_ascii=False) f.write("\n") else: low_score_dur += duration # keep track of duration of the deleted segments del_duration = 0 begin = 0 for i, (st, end, _) in enumerate(segments): if st - begin > 0.01: segment = signal[int(begin * sampling_rate) : int(st * sampling_rate)] duration = len(segment) / sampling_rate del_duration += duration begin = end segment = signal[int(begin * sampling_rate) :] duration = len(segment) / sampling_rate del_duration += duration stats = ( args.output_dir, base_name, round(original_duration), round(high_score_dur), round(low_score_dur), round(del_duration), ) return stats if __name__ == "__main__": args = parser.parse_args() print("Splitting audio files into segments...") if os.path.isdir(args.alignment): alignment_files = glob(f"{args.alignment}/*_segments.txt") else: alignment_files = [args.alignment] # create a directory to store segments with alignement confindence score avove the threshold args.output_dir = os.path.abspath(args.output_dir) clips_dir = os.path.join(args.output_dir, "clips") manifest_dir = os.path.join(args.output_dir, "manifests") os.makedirs(clips_dir, exist_ok=True) os.makedirs(manifest_dir, exist_ok=True) manifest = os.path.join(manifest_dir, "manifest.json") if os.path.exists(manifest): os.remove(manifest) stats_file = os.path.join(args.output_dir, "stats.tsv") with open(stats_file, "w") as f: f.write("Folder\tSegment\tOriginal dur (s)\tHigh quality dur (s)\tLow quality dur (s)\tDeleted dur (s)\n") high_score_dur = 0 low_score_dur = 0 del_duration = 0 original_dur = 0 for alignment_file in tqdm(alignment_files): stats = process_alignment(alignment_file, manifest, clips_dir, args) original_dur += stats[-4] high_score_dur += stats[-3] low_score_dur += stats[-2] del_duration += stats[-1] stats = "\t".join([str(t) for t in stats]) + "\n" f.write(stats) f.write(f"Total\t\t{round(high_score_dur)}\t{round(low_score_dur)}\t{del_duration}") print(f"Original duration : {round(original_dur / 60)}min") print(f"High score segments: {round(high_score_dur / 60)}min ({round(high_score_dur/original_dur*100)}%)") print(f"Low score segments : {round(low_score_dur / 60)}min ({round(low_score_dur/original_dur*100)}%)") print(f"Deleted segments : {round(del_duration / 60)}min ({round(del_duration/original_dur*100)}%)") print(f"Stats saved at {stats_file}") print(f"Manifest saved at {manifest}")
NeMo-main
tools/ctc_segmentation/scripts/cut_audio.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import logging.handlers import math import os import sys from pathlib import PosixPath from typing import List, Tuple, Union import ctc_segmentation as cs import numpy as np from tqdm import tqdm from nemo.collections.common.tokenizers.sentencepiece_tokenizer import SentencePieceTokenizer def get_segments( log_probs: np.ndarray, path_wav: Union[PosixPath, str], transcript_file: Union[PosixPath, str], output_file: str, vocabulary: List[str], tokenizer: SentencePieceTokenizer, bpe_model: bool, index_duration: float, window_size: int = 8000, log_file: str = "log.log", debug: bool = False, ) -> None: """ Segments the audio into segments and saves segments timings to a file Args: log_probs: Log probabilities for the original audio from an ASR model, shape T * |vocabulary|. values for blank should be at position 0 path_wav: path to the audio .wav file transcript_file: path to output_file: path to the file to save timings for segments vocabulary: vocabulary used to train the ASR model, note blank is at position len(vocabulary) - 1 tokenizer: ASR model tokenizer (for BPE models, None for char-based models) bpe_model: Indicates whether the model uses BPE window_size: the length of each utterance (in terms of frames of the CTC outputs) fits into that window. index_duration: corresponding time duration of one CTC output index (in seconds) """ level = "DEBUG" if debug else "INFO" file_handler = logging.FileHandler(filename=log_file) stdout_handler = logging.StreamHandler(sys.stdout) handlers = [file_handler, stdout_handler] logging.basicConfig(handlers=handlers, level=level) try: with open(transcript_file, "r") as f: text = f.readlines() text = [t.strip() for t in text if t.strip()] # add corresponding original text without pre-processing transcript_file_no_preprocessing = transcript_file.replace(".txt", "_with_punct.txt") if not os.path.exists(transcript_file_no_preprocessing): raise ValueError(f"{transcript_file_no_preprocessing} not found.") with open(transcript_file_no_preprocessing, "r") as f: text_no_preprocessing = f.readlines() text_no_preprocessing = [t.strip() for t in text_no_preprocessing if t.strip()] # add corresponding normalized original text transcript_file_normalized = transcript_file.replace(".txt", "_with_punct_normalized.txt") if not os.path.exists(transcript_file_normalized): raise ValueError(f"{transcript_file_normalized} not found.") with open(transcript_file_normalized, "r") as f: text_normalized = f.readlines() text_normalized = [t.strip() for t in text_normalized if t.strip()] if len(text_no_preprocessing) != len(text): raise ValueError(f"{transcript_file} and {transcript_file_no_preprocessing} do not match") if len(text_normalized) != len(text): raise ValueError(f"{transcript_file} and {transcript_file_normalized} do not match") config = cs.CtcSegmentationParameters() config.char_list = vocabulary config.min_window_size = window_size config.index_duration = index_duration if bpe_model: ground_truth_mat, utt_begin_indices = _prepare_tokenized_text_for_bpe_model(text, tokenizer, vocabulary, 0) else: config.excluded_characters = ".,-?!:»«;'›‹()" config.blank = vocabulary.index(" ") ground_truth_mat, utt_begin_indices = cs.prepare_text(config, text) _print(ground_truth_mat, config.char_list) # set this after text prepare_text() config.blank = 0 logging.debug(f"Syncing {transcript_file}") logging.debug( f"Audio length {os.path.basename(path_wav)}: {log_probs.shape[0]}. " f"Text length {os.path.basename(transcript_file)}: {len(ground_truth_mat)}" ) timings, char_probs, char_list = cs.ctc_segmentation(config, log_probs, ground_truth_mat) _print(ground_truth_mat, vocabulary) segments = determine_utterance_segments(config, utt_begin_indices, char_probs, timings, text, char_list) write_output(output_file, path_wav, segments, text, text_no_preprocessing, text_normalized) # Also writes labels in audacity format output_file_audacity = output_file[:-4] + "_audacity.txt" write_labels_for_audacity(output_file_audacity, segments, text_no_preprocessing) logging.info(f"Label file for Audacity written to {output_file_audacity}.") for i, (word, segment) in enumerate(zip(text, segments)): if i < 5: logging.debug(f"{segment[0]:.2f} {segment[1]:.2f} {segment[2]:3.4f} {word}") logging.info(f"segmentation of {transcript_file} complete.") except Exception as e: logging.info(f"{e} -- segmentation of {transcript_file} failed") def _prepare_tokenized_text_for_bpe_model(text: List[str], tokenizer, vocabulary: List[str], blank_idx: int = 0): """ Creates a transition matrix for BPE-based models""" space_idx = vocabulary.index("▁") ground_truth_mat = [[-1, -1]] utt_begin_indices = [] for uttr in text: ground_truth_mat += [[blank_idx, space_idx]] utt_begin_indices.append(len(ground_truth_mat)) token_ids = tokenizer.text_to_ids(uttr) # blank token is moved from the last to the first (0) position in the vocabulary token_ids = [idx + 1 for idx in token_ids] ground_truth_mat += [[t, -1] for t in token_ids] utt_begin_indices.append(len(ground_truth_mat)) ground_truth_mat += [[blank_idx, space_idx]] ground_truth_mat = np.array(ground_truth_mat, np.int64) return ground_truth_mat, utt_begin_indices def _print(ground_truth_mat, vocabulary, limit=20): """Prints transition matrix""" chars = [] for row in ground_truth_mat: chars.append([]) for ch_id in row: if ch_id != -1: chars[-1].append(vocabulary[int(ch_id)]) for x in chars[:limit]: logging.debug(x) def _get_blank_spans(char_list, blank="ε"): """ Returns a list of tuples: (start index, end index (exclusive), count) ignores blank symbols at the beginning and end of the char_list since they're not suitable for split in between """ blanks = [] start = None end = None for i, ch in enumerate(char_list): if ch == blank: if start is None: start, end = i, i else: end = i else: if start is not None: # ignore blank tokens at the beginning if start > 0: end += 1 blanks.append((start, end, end - start)) start = None end = None return blanks def _compute_time(index, align_type, timings): """Compute start and end time of utterance. Adapted from https://github.com/lumaku/ctc-segmentation Args: index: frame index value align_type: one of ["begin", "end"] Return: start/end time of utterance in seconds """ middle = (timings[index] + timings[index - 1]) / 2 if align_type == "begin": return max(timings[index + 1] - 0.5, middle) elif align_type == "end": return min(timings[index - 1] + 0.5, middle) def determine_utterance_segments(config, utt_begin_indices, char_probs, timings, text, char_list): """Utterance-wise alignments from char-wise alignments. Adapted from https://github.com/lumaku/ctc-segmentation Args: config: an instance of CtcSegmentationParameters utt_begin_indices: list of time indices of utterance start char_probs: character positioned probabilities obtained from backtracking timings: mapping of time indices to seconds text: list of utterances Return: segments, a list of: utterance start and end [s], and its confidence score """ segments = [] min_prob = np.float64(-10000000000.0) for i in tqdm(range(len(text))): start = _compute_time(utt_begin_indices[i], "begin", timings) end = _compute_time(utt_begin_indices[i + 1], "end", timings) start_t = start / config.index_duration_in_seconds start_t_floor = math.floor(start_t) # look for the left most blank symbol and split in the middle to fix start utterance segmentation if char_list[start_t_floor] == config.char_list[config.blank]: start_blank = None j = start_t_floor - 1 while char_list[j] == config.char_list[config.blank] and j > start_t_floor - 20: start_blank = j j -= 1 if start_blank: start_t = int(round(start_blank + (start_t_floor - start_blank) / 2)) else: start_t = start_t_floor start = start_t * config.index_duration_in_seconds else: start_t = int(round(start_t)) end_t = int(round(end / config.index_duration_in_seconds)) # Compute confidence score by using the min mean probability after splitting into segments of L frames n = config.score_min_mean_over_L if end_t <= start_t: min_avg = min_prob elif end_t - start_t <= n: min_avg = char_probs[start_t:end_t].mean() else: min_avg = np.float64(0.0) for t in range(start_t, end_t - n): min_avg = min(min_avg, char_probs[t : t + n].mean()) segments.append((start, end, min_avg)) return segments def write_output( out_path: str, path_wav: str, segments: List[Tuple[float]], text: str, text_no_preprocessing: str, text_normalized: str, ): """ Write the segmentation output to a file out_path: Path to output file path_wav: Path to the original audio file segments: Segments include start, end and alignment score text: Text used for alignment text_no_preprocessing: Reference txt without any pre-processing text_normalized: Reference text normalized """ # Uses char-wise alignments to get utterance-wise alignments and writes them into the given file with open(str(out_path), "w") as outfile: outfile.write(str(path_wav) + "\n") for i, segment in enumerate(segments): if isinstance(segment, list): for j, x in enumerate(segment): start, end, score = x outfile.write( f"{start} {end} {score} | {text[i][j]} | {text_no_preprocessing[i][j]} | {text_normalized[i][j]}\n" ) else: start, end, score = segment outfile.write( f"{start} {end} {score} | {text[i]} | {text_no_preprocessing[i]} | {text_normalized[i]}\n" ) def write_labels_for_audacity( out_path: str, segments: List[Tuple[float]], text_no_preprocessing: str, ): """ Write the segmentation output to a file ready to be imported in Audacity with the unprocessed text as labels out_path: Path to output file segments: Segments include start, end and alignment score text_no_preprocessing: Reference txt without any pre-processing """ # Audacity uses tab to separate each field (start end text) TAB_CHAR = " " # Uses char-wise alignments to get utterance-wise alignments and writes them into the given file with open(str(out_path), "w") as outfile: for i, segment in enumerate(segments): if isinstance(segment, list): for j, x in enumerate(segment): start, end, _ = x outfile.write(f"{start}{TAB_CHAR}{end}{TAB_CHAR}{text_no_preprocessing[i][j]} \n") else: start, end, _ = segment outfile.write(f"{start}{TAB_CHAR}{end}{TAB_CHAR}{text_no_preprocessing[i]} \n")
NeMo-main
tools/ctc_segmentation/scripts/utils.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import os import sys import time from pathlib import Path import numpy as np import scipy.io.wavfile as wav import torch from joblib import Parallel, delayed from tqdm import tqdm from utils import get_segments import nemo.collections.asr as nemo_asr parser = argparse.ArgumentParser(description="CTC Segmentation") parser.add_argument("--output_dir", default="output", type=str, help="Path to output directory") parser.add_argument( "--data", type=str, required=True, help="Path to directory with audio files and associated transcripts (same respective names only formats are " "different or path to wav file (transcript should have the same base name and be located in the same folder" "as the wav file.", ) parser.add_argument("--window_len", type=int, default=8000, help="Window size for ctc segmentation algorithm") parser.add_argument("--sample_rate", type=int, default=16000, help="Sampling rate, Hz") parser.add_argument( "--model", type=str, default="QuartzNet15x5Base-En", help="Path to model checkpoint or pre-trained model name", ) parser.add_argument("--debug", action="store_true", help="Flag to enable debugging messages") parser.add_argument( "--num_jobs", default=-2, type=int, help="The maximum number of concurrently running jobs, `-2` - all CPUs but one are used", ) logger = logging.getLogger("ctc_segmentation") # use module name if __name__ == "__main__": args = parser.parse_args() logging.basicConfig(level=logging.INFO) # setup logger log_dir = os.path.join(args.output_dir, "logs") os.makedirs(log_dir, exist_ok=True) log_file = os.path.join(log_dir, f"ctc_segmentation_{args.window_len}.log") if os.path.exists(log_file): os.remove(log_file) level = "DEBUG" if args.debug else "INFO" logger = logging.getLogger("CTC") file_handler = logging.FileHandler(filename=log_file) stdout_handler = logging.StreamHandler(sys.stdout) handlers = [file_handler, stdout_handler] logging.basicConfig(handlers=handlers, level=level) if os.path.exists(args.model): asr_model = nemo_asr.models.EncDecCTCModel.restore_from(args.model) elif args.model in nemo_asr.models.EncDecCTCModel.get_available_model_names(): asr_model = nemo_asr.models.EncDecCTCModel.from_pretrained(args.model, strict=False) else: try: asr_model = nemo_asr.models.EncDecCTCModelBPE.from_pretrained(args.model) except: raise ValueError( f"Provide path to the pretrained checkpoint or choose from {nemo_asr.models.EncDecCTCModel.get_available_model_names()}" ) bpe_model = isinstance(asr_model, nemo_asr.models.EncDecCTCModelBPE) # get tokenizer used during training, None for char based models if bpe_model: tokenizer = asr_model.tokenizer else: tokenizer = None # extract ASR vocabulary and add blank symbol vocabulary = ["ε"] + list(asr_model.cfg.decoder.vocabulary) logging.debug(f"ASR Model vocabulary: {vocabulary}") data = Path(args.data) output_dir = Path(args.output_dir) if os.path.isdir(data): audio_paths = data.glob("*.wav") data_dir = data else: audio_paths = [Path(data)] data_dir = Path(os.path.dirname(data)) all_log_probs = [] all_transcript_file = [] all_segment_file = [] all_wav_paths = [] segments_dir = os.path.join(args.output_dir, "segments") os.makedirs(segments_dir, exist_ok=True) index_duration = None for path_audio in audio_paths: logging.info(f"Processing {path_audio.name}...") transcript_file = os.path.join(data_dir, path_audio.name.replace(".wav", ".txt")) segment_file = os.path.join( segments_dir, f"{args.window_len}_" + path_audio.name.replace(".wav", "_segments.txt") ) if not os.path.exists(transcript_file): logging.info(f"{transcript_file} not found. Skipping {path_audio.name}") continue try: sample_rate, signal = wav.read(path_audio) if len(signal) == 0: logging.error(f"Skipping {path_audio.name}") continue assert ( sample_rate == args.sample_rate ), f"Sampling rate of the audio file {path_audio} doesn't match --sample_rate={args.sample_rate}" original_duration = len(signal) / sample_rate logging.debug(f"len(signal): {len(signal)}, sr: {sample_rate}") logging.debug(f"Duration: {original_duration}s, file_name: {path_audio}") log_probs = asr_model.transcribe(paths2audio_files=[str(path_audio)], batch_size=1, logprobs=True)[0] # move blank values to the first column (ctc-package compatibility) blank_col = log_probs[:, -1].reshape((log_probs.shape[0], 1)) log_probs = np.concatenate((blank_col, log_probs[:, :-1]), axis=1) all_log_probs.append(log_probs) all_segment_file.append(str(segment_file)) all_transcript_file.append(str(transcript_file)) all_wav_paths.append(path_audio) if index_duration is None: index_duration = len(signal) / log_probs.shape[0] / sample_rate except Exception as e: logging.error(e) logging.error(f"Skipping {path_audio.name}") continue asr_model_type = type(asr_model) del asr_model torch.cuda.empty_cache() if len(all_log_probs) > 0: start_time = time.time() normalized_lines = Parallel(n_jobs=args.num_jobs)( delayed(get_segments)( all_log_probs[i], all_wav_paths[i], all_transcript_file[i], all_segment_file[i], vocabulary, tokenizer, bpe_model, index_duration, args.window_len, log_file=log_file, debug=args.debug, ) for i in tqdm(range(len(all_log_probs))) ) total_time = time.time() - start_time logger.info(f"Total execution time: ~{round(total_time/60)}min") logger.info(f"Saving logs to {log_file}") if os.path.exists(log_file): with open(log_file, "r") as f: lines = f.readlines()
NeMo-main
tools/ctc_segmentation/scripts/run_ctc_segmentation.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import atexit import glob import os import shutil import time from html import unescape from uuid import uuid4 import model_api import torch import werkzeug from flask import Flask, make_response, render_template, request, url_for from flask_cors import CORS from werkzeug.utils import secure_filename from nemo.utils import logging app = Flask(__name__) CORS(app) # Upload folder for audio files; models are stored in permanent cache # which gets deleted once the container shuts down app.config[f'UPLOAD_FOLDER'] = f"tmp/" @app.route('/initialize_model', methods=['POST']) def initialize_model(): """ API Endpoint to instantiate a model Loads ASR model by its pretrained checkpoint name or upload ASR model that is provided by the user, then load that checkpoint into the cache. Loading of the model into cache is done once per worker. Number of workers should be limited so as not to exhaust the GPU memory available on device (if GPU is being used). """ logging.info("Starting ASR service") if torch.cuda.is_available(): logging.info("CUDA is available. Running on GPU") else: logging.info("CUDA is not available. Defaulting to CPUs") # get form fields model_name = request.form['model_names_select'] use_gpu_if_available = request.form.get('use_gpu_ckbx', "off") # get nemo model from user (if not none) nemo_model_file = request.files.get('nemo_model', '') # if nemo model is not None, upload it to model cache if nemo_model_file != '': model_name = _store_model(nemo_model_file) # Alert user that model has been uploaded into the model cache, # and they should refresh the page to access the model result = render_template( 'toast_msg.html', toast_message=f"Model {model_name} has been uploaded. " f"Refresh page !", timeout=5000 ) else: # Alert user that model has been loaded onto a workers memory result = render_template( 'toast_msg.html', toast_message=f"Model {model_name} has been initialized !", timeout=2000 ) # Load model into memory cache model_api.initialize_model(model_name=model_name) # reset file banner reset_nemo_model_file_script = """ <script> document.getElementById('nemo_model_file').value = "" </script> """ result = result + reset_nemo_model_file_script result = make_response(result) # set cookies result.set_cookie("model_name", model_name) result.set_cookie("use_gpu", use_gpu_if_available) return result def _store_model(nemo_model_file): """ Preserve the model supplied by user into permanent cache This cache needs to be manually deleted (if run locally), or gets deleted automatically (when the container gets shutdown / killed). Args: nemo_model_file: User path to .nemo checkpoint. Returns: A file name (with a .nemo) at the end - to signify this is an uploaded checkpoint. """ filename = secure_filename(nemo_model_file.filename) file_basename = os.path.basename(filename) model_dir = os.path.splitext(file_basename)[0] model_store = os.path.join('models', model_dir) if not os.path.exists(model_store): os.makedirs(model_store) # upload model model_path = os.path.join(model_store, filename) nemo_model_file.save(model_path) return file_basename @app.route('/upload_audio_files', methods=['POST']) def upload_audio_files(): """ API Endpoint to upload audio files for inference. The uploaded files must be wav files, 16 KHz sample rate, mono-channel audio samples. """ # Try to get one or more files from form try: f = request.files.getlist('file') except werkzeug.exceptions.BadRequestKeyError: f = None # If user did not select any file to upload, notify them. if f is None or len(f) == 0: toast = render_template('toast_msg.html', toast_message="No file has been selected to upload !", timeout=2000) result = render_template('updates/upload_files_failed.html', pre_exec=toast, url=url_for('upload_audio_files')) result = unescape(result) return result # temporary id to store data uuid = str(uuid4()) data_store = os.path.join(app.config[f'UPLOAD_FOLDER'], uuid) # If the user attempt to upload another set of files without first transcribing them, # delete the old cache of files and create a new cache entirely _remove_older_files_if_exists() # Save each file into this unique cache for fn in f: filename = secure_filename(fn.filename) if not os.path.exists(data_store): os.makedirs(data_store) fn.save(os.path.join(data_store, filename)) logging.info(f"Saving file : {fn.filename}") # Update user that N files were uploaded. msg = f"{len(f)} file(s) uploaded. Click to upload more !" toast = render_template('toast_msg.html', toast_message=f"{len(f)} file(s) uploaded !", timeout=2000) result = render_template( 'updates/upload_files_successful.html', pre_exec=toast, msg=msg, url=url_for('upload_audio_files') ) result = unescape(result) result = make_response(result) result.set_cookie("uuid", uuid) return result def _remove_older_files_if_exists(): """ Helper method to prevent cache leakage when user attempts to upload another set of files without first transcribing the files already uploaded. """ # remove old data store (if exists) old_uuid = secure_filename(request.cookies.get('uuid', '')) if old_uuid is not None and old_uuid != '': # delete old data store old_data_store = os.path.join(app.config[f'UPLOAD_FOLDER'], old_uuid) logging.info("Tried uploading more data without using old uploaded data. Purging data cache.") shutil.rmtree(old_data_store, ignore_errors=True) @app.route('/remove_audio_files', methods=['POST']) def remove_audio_files(): """ API Endpoint for removing audio files # Note: Sometimes data may persist due to set of circumstances: - User uploads audio then closes app without transcribing anything In such a case, the files will be deleted when gunicorn shutsdown, or container is stopped. However the data may not be automatically deleted if the flast server is used as is. """ # Get the unique cache id from cookie uuid = secure_filename(request.cookies.get("uuid", "")) data_store = os.path.join(app.config[f'UPLOAD_FOLDER'], uuid) # If the data does not exist (cache is empty), notify user if not os.path.exists(data_store) or uuid == "": files_dont_exist = render_template( 'toast_msg.html', toast_message="No files have been uploaded !", timeout=2000 ) result = render_template( 'updates/remove_files.html', pre_exec=files_dont_exist, url=url_for('remove_audio_files') ) result = unescape(result) return result else: # delete data that exists in cache shutil.rmtree(data_store, ignore_errors=True) logging.info("Removed all data") # Notify user that cache was deleted. toast = render_template('toast_msg.html', toast_message="All files removed !", timeout=2000) result = render_template('updates/remove_files.html', pre_exec=toast, url=url_for('remove_audio_files')) result = unescape(result) result = make_response(result) result.set_cookie("uuid", '', expires=0) return result @app.route('/transcribe', methods=['POST']) def transcribe(): """ API Endpoint to transcribe a set of audio files. The files are sorted according to their name, so order may not be same as upload order. Utilizing the cached info inside the cookies, a model with selected name will be loaded into memory, and maybe onto a GPU (if it is supported on the device). Then the transcription api will be called from the model_api. If all is successful, a template is updated with results. If some issue occurs (memory ran out, file is invalid format), notify the user. """ # load model name from cookie model_name = request.cookies.get('model_name') logging.info(f"Model name : {model_name}") # If model name is not selected via Load Model, notify user. if model_name is None or model_name == '': result = render_template('toast_msg.html', toast_message="Model has not been initialized !", timeout=2000) return result # load whether gpu should be used use_gpu_if_available = request.cookies.get('use_gpu') == 'on' gpu_used = torch.cuda.is_available() and use_gpu_if_available # Load audio from paths uuid = secure_filename(request.cookies.get("uuid", "")) data_store = os.path.join(app.config[f'UPLOAD_FOLDER'], uuid) files = list(glob.glob(os.path.join(data_store, "*.wav"))) # If no files found in cache, notify user if len(files) == 0: result = render_template('toast_msg.html', toast_message="No audio files were found !", timeout=2000) return result # transcribe file via model api t1 = time.time() transcriptions = model_api.transcribe_all(files, model_name, use_gpu_if_available=use_gpu_if_available) t2 = time.time() # delete all transcribed files immediately for fp in files: try: os.remove(fp) except FileNotFoundError: logging.info(f"Failed to delete transcribed file : {os.path.basename(fp)}") # delete temporary transcription directory shutil.rmtree(data_store, ignore_errors=True) # If something happened during transcription, and it failed, notify user. if type(transcriptions) == str and transcriptions == model_api.TAG_ERROR_DURING_TRANSCRIPTION: toast = render_template( 'toast_msg.html', toast_message=f"Failed to transcribe files due to unknown reason. " f"Please provide 16 KHz Monochannel wav files onle.", timeout=5000, ) transcriptions = ["" for _ in range(len(files))] else: # Transcriptions obtained successfully, notify user. toast = render_template( 'toast_msg.html', toast_message=f"Transcribed {len(files)} files using {model_name} (gpu={gpu_used}), " f"in {(t2 - t1): 0.2f} s", timeout=5000, ) # Write results to data table results = [] for filename, transcript in zip(files, transcriptions): results.append(dict(filename=os.path.basename(filename), transcription=transcript)) result = render_template('transcripts.html', transcripts=results) result = toast + result result = unescape(result) result = make_response(result) result.set_cookie("uuid", "", expires=0) return result def remove_tmp_dir_at_exit(): """ Helper method to attempt a deletion of audio file cache on flask api exit. Gunicorn and Docker container (based on gunicorn) will delete any remaining files on shutdown of the gunicorn server or the docker container. This is a patch that might not always work for Flask server, but in general should ensure that local audio file cache is deleted. This does *not* impact the model cache. Flask and Gunicorn servers will *never* delete uploaded models. Docker container will delete models *only* when the container is killed (since models are uploaded to local storage path inside container). """ try: uuid = secure_filename(request.cookies.get("uuid", "")) if uuid is not None or uuid != "": cache_dir = os.path.join(os.path.join(app.config[f'UPLOAD_FOLDER'], uuid)) logging.info(f"Removing cache file for worker : {os.getpid()}") if os.path.exists(cache_dir): shutil.rmtree(cache_dir, ignore_errors=True) logging.info(f"Deleted tmp folder : {cache_dir}") except RuntimeError: # Working outside of request context (probably shutdown) # simply delete entire tmp folder shutil.rmtree(app.config[f'UPLOAD_FOLDER'], ignore_errors=True) @app.route('/') def main(): """ API Endpoint for ASR Service. """ nemo_model_names, local_model_names = model_api.get_model_names() model_names = [] model_names.extend(local_model_names) # prioritize local models model_names.extend(nemo_model_names) # attach all other pretrained models # page initializations result = render_template('main.html', model_names=model_names) result = make_response(result) # Reset cookies result.set_cookie("model_name", '', expires=0) # model name from pretrained model list result.set_cookie("use_gpu", '', expires=0) # flag to use gpu (if available) result.set_cookie("uuid", '', expires=0) # session id return result # Register hook to delete file cache (for flask server only) atexit.register(remove_tmp_dir_at_exit) if __name__ == '__main__': app.run(False)
NeMo-main
tools/asr_webapp/asr_service.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import glob import os import torch import nemo.collections.asr as nemo_asr from nemo.utils import logging, model_utils # setup AMP (optional) if torch.cuda.is_available() and hasattr(torch.cuda, 'amp') and hasattr(torch.cuda.amp, 'autocast'): logging.info("AMP enabled!\n") autocast = torch.cuda.amp.autocast else: @contextlib.contextmanager def autocast(): yield MODEL_CACHE = {} # Special tags for fallbacks / user notifications TAG_ERROR_DURING_TRANSCRIPTION = "<ERROR_DURING_TRANSCRIPTION>" def get_model_names(): # Populate local copy of models local_model_paths = glob.glob(os.path.join('models', "**", "*.nemo"), recursive=True) local_model_names = list(sorted([os.path.basename(path) for path in local_model_paths])) # Populate with pretrained nemo checkpoint list nemo_model_names = set() for model_info in nemo_asr.models.ASRModel.list_available_models(): for superclass in model_info.class_.mro(): if 'CTC' in superclass.__name__ or 'RNNT' in superclass.__name__: if 'align' in model_info.pretrained_model_name: continue nemo_model_names.add(model_info.pretrained_model_name) nemo_model_names = list(sorted(nemo_model_names)) return nemo_model_names, local_model_names def initialize_model(model_name): # load model if model_name not in MODEL_CACHE: if '.nemo' in model_name: # use local model model_name_no_ext = os.path.splitext(model_name)[0] model_path = os.path.join('models', model_name_no_ext, model_name) # Extract config model_cfg = nemo_asr.models.ASRModel.restore_from(restore_path=model_path, return_config=True) classpath = model_cfg.target # original class path imported_class = model_utils.import_class_by_path(classpath) # type: ASRModel logging.info(f"Restoring local model : {imported_class.__name__}") # load model from checkpoint model = imported_class.restore_from(restore_path=model_path, map_location='cpu') # type: ASRModel else: # use pretrained model model = nemo_asr.models.ASRModel.from_pretrained(model_name, map_location='cpu') model.freeze() # cache model MODEL_CACHE[model_name] = model model = MODEL_CACHE[model_name] return model def transcribe_all(filepaths, model_name, use_gpu_if_available=True): # instantiate model if model_name in MODEL_CACHE: model = MODEL_CACHE[model_name] else: model = initialize_model(model_name) if torch.cuda.is_available() and use_gpu_if_available: model = model.cuda() # transcribe audio logging.info("Begin transcribing audio...") try: with autocast(): with torch.no_grad(): transcriptions = model.transcribe(filepaths, batch_size=32) except RuntimeError: # Purge the cache to clear some memory MODEL_CACHE.clear() logging.info("Ran out of memory on device - performing inference on CPU for now") try: model = model.cpu() with torch.no_grad(): transcriptions = model.transcribe(filepaths, batch_size=32) except Exception as e: logging.info(f"Exception {e} occured while attemting to transcribe audio. Returning error message") return TAG_ERROR_DURING_TRANSCRIPTION logging.info(f"Finished transcribing {len(filepaths)} files !") # If RNNT models transcribe, they return a tuple (greedy, beam_scores) if type(transcriptions[0]) == list and len(transcriptions) == 2: # get greedy transcriptions only transcriptions = transcriptions[0] # Force onto CPU model = model.cpu() MODEL_CACHE[model_name] = model return transcriptions
NeMo-main
tools/asr_webapp/model_api.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # https://docs.gunicorn.org/en/stable/settings.html # NOTE: Do not import nemo / torch code here # Gunicorn creates forked processes - and CUDA cannot be used in forked multiprocessing environment. import shutil # General config bind = "0.0.0.0:8000" workers = 2 # Worker specific config worker_connections = 1000 timeout = 180 # 3 minutes of timeout def on_exit(server): # delete tmp dir print("Shutting down server ...") print("Deleteing tmp directory ...") shutil.rmtree('tmp/', ignore_errors=True) print("Tmp directory deleted !")
NeMo-main
tools/asr_webapp/gunicorn.conf.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from asr_service import app if __name__ == '__main__': app.run()
NeMo-main
tools/asr_webapp/wsgi.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import base64 import csv import datetime import difflib import io import json import logging import math import operator import os import pickle from collections import defaultdict from os.path import expanduser from pathlib import Path import dash import dash_bootstrap_components as dbc import diff_match_patch import editdistance import jiwer import librosa import numpy as np import pandas as pd import soundfile as sf import tqdm from dash import dash_table, dcc, html from dash.dependencies import Input, Output, State from dash.exceptions import PreventUpdate from plotly import express as px from plotly import graph_objects as go from plotly.subplots import make_subplots # number of items in a table per page DATA_PAGE_SIZE = 10 # operators for filtering items filter_operators = { '>=': 'ge', '<=': 'le', '<': 'lt', '>': 'gt', '!=': 'ne', '=': 'eq', 'contains ': 'contains', } comparison_mode = False # parse table filter queries def split_filter_part(filter_part): for op in filter_operators: if op in filter_part: name_part, value_part = filter_part.split(op, 1) name = name_part[name_part.find('{') + 1 : name_part.rfind('}')] value_part = value_part.strip() v0 = value_part[0] if v0 == value_part[-1] and v0 in ("'", '"', '`'): value = value_part[1:-1].replace('\\' + v0, v0) else: try: value = float(value_part) except ValueError: value = value_part return name, filter_operators[op], value return [None] * 3 # standard command-line arguments parser def parse_args(): parser = argparse.ArgumentParser(description='Speech Data Explorer') parser.add_argument( 'manifest', help='path to JSON manifest file', ) parser.add_argument('--vocab', help='optional vocabulary to highlight OOV words') parser.add_argument('--port', default='8050', help='serving port for establishing connection') parser.add_argument( '--disable-caching-metrics', action='store_true', help='disable caching metrics for errors analysis' ) parser.add_argument( '--estimate-audio-metrics', '-a', action='store_true', help='estimate frequency bandwidth and signal level of audio recordings', ) parser.add_argument( '--audio-base-path', default=None, type=str, help='A base path for the relative paths in manifest. It defaults to manifest path.', ) parser.add_argument('--debug', '-d', action='store_true', help='enable debug mode') parser.add_argument( '--names_compared', '-nc', nargs=2, type=str, help='names of the two fields that will be compared, example: pred_text_contextnet pred_text_conformer. "pred_text_" prefix IS IMPORTANT!', ) parser.add_argument( '--show_statistics', '-shst', type=str, help='field name for which you want to see statistics (optional). Example: pred_text_contextnet.', ) args = parser.parse_args() # assume audio_filepath is relative to the directory where the manifest is stored if args.audio_base_path is None: args.audio_base_path = os.path.dirname(args.manifest) # automaticly going in comparison mode, if there is names_compared argument if args.names_compared is not None: comparison_mode = True logging.error("comparison mod set to true") else: comparison_mode = False print(args, comparison_mode) return args, comparison_mode # estimate frequency bandwidth of signal def eval_bandwidth(signal, sr, threshold=-50): time_stride = 0.01 hop_length = int(sr * time_stride) n_fft = 512 spectrogram = np.mean( np.abs(librosa.stft(y=signal, n_fft=n_fft, hop_length=hop_length, window='blackmanharris')) ** 2, axis=1 ) power_spectrum = librosa.power_to_db(S=spectrogram, ref=np.max, top_db=100) freqband = 0 for idx in range(len(power_spectrum) - 1, -1, -1): if power_spectrum[idx] > threshold: freqband = idx / n_fft * sr break return freqband # load data from JSON manifest file def load_data( data_filename, disable_caching=False, estimate_audio=False, vocab=None, audio_base_path=None, comparison_mode=False, names=None, ): if comparison_mode: if names is None: logging.error(f'Please, specify names of compared models') name_1, name_2 = names if not comparison_mode: if vocab is not None: # load external vocab vocabulary_ext = {} with open(vocab, 'r') as f: for line in f: if '\t' in line: # parse word from TSV file word = line.split('\t')[0] else: # assume each line contains just a single word word = line.strip() vocabulary_ext[word] = 1 if not disable_caching: pickle_filename = data_filename.split('.json')[0] json_mtime = datetime.datetime.fromtimestamp(os.path.getmtime(data_filename)) timestamp = json_mtime.strftime('%Y%m%d_%H%M') pickle_filename += '_' + timestamp + '.pkl' if os.path.exists(pickle_filename): with open(pickle_filename, 'rb') as f: data, wer, cer, wmr, mwa, num_hours, vocabulary_data, alphabet, metrics_available = pickle.load(f) if vocab is not None: for item in vocabulary_data: item['OOV'] = item['word'] not in vocabulary_ext if estimate_audio: for item in data: filepath = absolute_audio_filepath(item['audio_filepath'], audio_base_path) signal, sr = librosa.load(path=filepath, sr=None) bw = eval_bandwidth(signal, sr) item['freq_bandwidth'] = int(bw) item['level_db'] = 20 * np.log10(np.max(np.abs(signal))) with open(pickle_filename, 'wb') as f: pickle.dump( [data, wer, cer, wmr, mwa, num_hours, vocabulary_data, alphabet, metrics_available], f, pickle.HIGHEST_PROTOCOL, ) return data, wer, cer, wmr, mwa, num_hours, vocabulary_data, alphabet, metrics_available data = [] wer_count = 0 cer_count = 0 wmr_count = 0 wer = 0 cer = 0 wmr = 0 mwa = 0 num_hours = 0 match_vocab_1 = defaultdict(lambda: 0) match_vocab_2 = defaultdict(lambda: 0) def append_data( data_filename, estimate_audio, field_name='pred_text', ): data = [] wer_dist = 0.0 wer_count = 0 cer_dist = 0.0 cer_count = 0 wmr_count = 0 wer = 0 cer = 0 wmr = 0 mwa = 0 num_hours = 0 vocabulary = defaultdict(lambda: 0) alphabet = set() match_vocab = defaultdict(lambda: 0) sm = difflib.SequenceMatcher() metrics_available = False with open(data_filename, 'r', encoding='utf8') as f: for line in tqdm.tqdm(f): item = json.loads(line) if not isinstance(item['text'], str): item['text'] = '' num_chars = len(item['text']) orig = item['text'].split() num_words = len(orig) for word in orig: vocabulary[word] += 1 for char in item['text']: alphabet.add(char) num_hours += item['duration'] if field_name in item: metrics_available = True pred = item[field_name].split() measures = jiwer.compute_measures(item['text'], item[field_name]) word_dist = measures['substitutions'] + measures['insertions'] + measures['deletions'] char_dist = editdistance.eval(item['text'], item[field_name]) wer_dist += word_dist cer_dist += char_dist wer_count += num_words cer_count += num_chars sm.set_seqs(orig, pred) for m in sm.get_matching_blocks(): for word_idx in range(m[0], m[0] + m[2]): match_vocab[orig[word_idx]] += 1 wmr_count += measures['hits'] else: if comparison_mode: if field_name != 'pred_text': if field_name == name_1: logging.error(f"The .json file has no field with name: {name_1}") exit() if field_name == name_2: logging.error(f"The .json file has no field with name: {name_2}") exit() data.append( { 'audio_filepath': item['audio_filepath'], 'duration': round(item['duration'], 2), 'num_words': num_words, 'num_chars': num_chars, 'word_rate': round(num_words / item['duration'], 2), 'char_rate': round(num_chars / item['duration'], 2), 'text': item['text'], } ) if metrics_available: data[-1][field_name] = item[field_name] if num_words == 0: num_words = 1e-9 if num_chars == 0: num_chars = 1e-9 data[-1]['WER'] = round(word_dist / num_words * 100.0, 2) data[-1]['CER'] = round(char_dist / num_chars * 100.0, 2) data[-1]['WMR'] = round(measures['hits'] / num_words * 100.0, 2) data[-1]['I'] = measures['insertions'] data[-1]['D'] = measures['deletions'] data[-1]['D-I'] = measures['deletions'] - measures['insertions'] if estimate_audio: filepath = absolute_audio_filepath(item['audio_filepath'], data_filename) signal, sr = librosa.load(path=filepath, sr=None) bw = eval_bandwidth(signal, sr) item['freq_bandwidth'] = int(bw) item['level_db'] = 20 * np.log10(np.max(np.abs(signal))) for k in item: if k not in data[-1]: data[-1][k] = item[k] vocabulary_data = [{'word': word, 'count': vocabulary[word]} for word in vocabulary] return ( vocabulary_data, metrics_available, data, wer_dist, wer_count, cer_dist, cer_count, wmr_count, wer, cer, wmr, mwa, num_hours, vocabulary, alphabet, match_vocab, ) ( vocabulary_data, metrics_available, data, wer_dist, wer_count, cer_dist, cer_count, wmr_count, wer, cer, wmr, mwa, num_hours, vocabulary, alphabet, match_vocab, ) = append_data(data_filename, estimate_audio, field_name=fld_nm) if comparison_mode: ( vocabulary_data_1, metrics_available_1, data_1, wer_dist_1, wer_count_1, cer_dist_1, cer_count_1, wmr_count_1, wer_1, cer_1, wmr_1, mwa_1, num_hours_1, vocabulary_1, alphabet_1, match_vocab_1, ) = append_data(data_filename, estimate_audio, field_name=name_1) ( vocabulary_data_2, metrics_available_2, data_2, wer_dist_2, wer_count_2, cer_dist_2, cer_count_2, wmr_count_2, wer_2, cer_2, wmr_2, mwa_2, num_hours_2, vocabulary_2, alphabet_2, match_vocab_2, ) = append_data(data_filename, estimate_audio, field_name=name_2) if not comparison_mode: if vocab is not None: for item in vocabulary_data: item['OOV'] = item['word'] not in vocabulary_ext if metrics_available or comparison_mode: if metrics_available: wer = wer_dist / wer_count * 100.0 cer = cer_dist / cer_count * 100.0 wmr = wmr_count / wer_count * 100.0 if comparison_mode: if metrics_available_1 and metrics_available_2: wer_1 = wer_dist_1 / wer_count_1 * 100.0 cer_1 = cer_dist_1 / cer_count_1 * 100.0 wmr_1 = wmr_count_1 / wer_count_1 * 100.0 wer = wer_dist_2 / wer_count_2 * 100.0 cer = cer_dist_2 / cer_count_2 * 100.0 wmr = wmr_count_2 / wer_count_2 * 100.0 acc_sum_1 = 0 acc_sum_2 = 0 for item in vocabulary_data_1: w = item['word'] word_accuracy_1 = match_vocab_1[w] / vocabulary_1[w] * 100.0 acc_sum_1 += word_accuracy_1 item['accuracy_1'] = round(word_accuracy_1, 1) mwa_1 = acc_sum_1 / len(vocabulary_data_1) for item in vocabulary_data_2: w = item['word'] word_accuracy_2 = match_vocab_2[w] / vocabulary_2[w] * 100.0 acc_sum_2 += word_accuracy_2 item['accuracy_2'] = round(word_accuracy_2, 1) mwa_2 = acc_sum_2 / len(vocabulary_data_2) acc_sum = 0 for item in vocabulary_data: w = item['word'] word_accuracy = match_vocab[w] / vocabulary[w] * 100.0 acc_sum += word_accuracy item['accuracy'] = round(word_accuracy, 1) mwa = acc_sum / len(vocabulary_data) num_hours /= 3600.0 if not comparison_mode: if not disable_caching: with open(pickle_filename, 'wb') as f: pickle.dump( [data, wer, cer, wmr, mwa, num_hours, vocabulary_data, alphabet, metrics_available], f, pickle.HIGHEST_PROTOCOL, ) if comparison_mode: return ( data, wer, cer, wmr, mwa, num_hours, vocabulary_data, alphabet, metrics_available, data_1, wer_1, cer_1, wmr_1, mwa_1, num_hours_1, vocabulary_data_1, alphabet_1, metrics_available_1, data_2, wer_2, cer_2, wmr_2, mwa_2, num_hours_2, vocabulary_data_2, alphabet_2, metrics_available_2, ) return data, wer, cer, wmr, mwa, num_hours, vocabulary_data, alphabet, metrics_available # plot histogram of specified field in data list def plot_histogram(data, key, label): fig = px.histogram( data_frame=[item[key] for item in data], nbins=50, log_y=True, labels={'value': label}, opacity=0.5, color_discrete_sequence=['green'], height=200, ) fig.update_layout(showlegend=False, margin=dict(l=0, r=0, t=0, b=0, pad=0)) return fig def plot_word_accuracy(vocabulary_data): labels = ['Unrecognized', 'Sometimes recognized', 'Always recognized'] counts = [0, 0, 0] for word in vocabulary_data: if word['accuracy'] == 0: counts[0] += 1 elif word['accuracy'] < 100: counts[1] += 1 else: counts[2] += 1 colors = ['red', 'orange', 'green'] fig = go.Figure( data=[ go.Bar( x=labels, y=counts, marker_color=colors, text=['{:.2%}'.format(count / sum(counts)) for count in counts], textposition='auto', ) ] ) fig.update_layout( showlegend=False, margin=dict(l=0, r=0, t=0, b=0, pad=0), height=200, yaxis={'title_text': '#words'} ) return fig def absolute_audio_filepath(audio_filepath, audio_base_path): """Return absolute path to an audio file. Check if a file existst at audio_filepath. If not, assume that the path is relative to audio_base_path. """ audio_filepath = Path(audio_filepath) if not audio_filepath.is_file() and not audio_filepath.is_absolute(): audio_filepath = audio_base_path / audio_filepath if audio_filepath.is_file(): filename = str(audio_filepath) else: filename = expanduser(audio_filepath) else: filename = expanduser(audio_filepath) return filename # parse the CLI arguments args, comparison_mode = parse_args() if args.show_statistics is not None: fld_nm = args.show_statistics else: fld_nm = 'pred_text' # parse names of compared models, if any if comparison_mode: name_1, name_2 = args.names_compared print(name_1, name_2) print('Loading data...') if not comparison_mode: data, wer, cer, wmr, mwa, num_hours, vocabulary, alphabet, metrics_available = load_data( args.manifest, args.disable_caching_metrics, args.estimate_audio_metrics, args.vocab, args.audio_base_path, comparison_mode, args.names_compared, ) else: ( data, wer, cer, wmr, mwa, num_hours, vocabulary, alphabet, metrics_available, data_1, wer_1, cer_1, wmr_1, mwa_1, num_hours_1, vocabulary_1, alphabet_1, metrics_available_1, data_2, wer_2, cer_2, wmr_2, mwa_2, num_hours_2, vocabulary_2, alphabet_2, metrics_available_2, ) = load_data( args.manifest, args.disable_caching_metrics, args.estimate_audio_metrics, args.vocab, args.audio_base_path, comparison_mode, args.names_compared, ) print('Starting server...') app = dash.Dash( __name__, suppress_callback_exceptions=True, external_stylesheets=[dbc.themes.BOOTSTRAP], title=os.path.basename(args.manifest), ) figures_labels = { 'duration': ['Duration', 'Duration, sec'], 'num_words': ['Number of Words', '#words'], 'num_chars': ['Number of Characters', '#chars'], 'word_rate': ['Word Rate', '#words/sec'], 'char_rate': ['Character Rate', '#chars/sec'], 'WER': ['Word Error Rate', 'WER, %'], 'CER': ['Character Error Rate', 'CER, %'], 'WMR': ['Word Match Rate', 'WMR, %'], 'I': ['# Insertions (I)', '#words'], 'D': ['# Deletions (D)', '#words'], 'D-I': ['# Deletions - # Insertions (D-I)', '#words'], 'freq_bandwidth': ['Frequency Bandwidth', 'Bandwidth, Hz'], 'level_db': ['Peak Level', 'Level, dB'], } figures_hist = {} for k in data[0]: val = data[0][k] if isinstance(val, (int, float)) and not isinstance(val, bool): if k in figures_labels: ylabel = figures_labels[k][0] xlabel = figures_labels[k][1] else: title = k.replace('_', ' ') title = title[0].upper() + title[1:].lower() ylabel = title xlabel = title figures_hist[k] = [ylabel + ' (per utterance)', plot_histogram(data, k, xlabel)] if metrics_available: figure_word_acc = plot_word_accuracy(vocabulary) stats_layout = [ dbc.Row(dbc.Col(html.H5(children='Global Statistics'), class_name='text-secondary'), class_name='mt-3'), dbc.Row( [ dbc.Col(html.Div('Number of hours', className='text-secondary'), width=3, class_name='border-end'), dbc.Col(html.Div('Number of utterances', className='text-secondary'), width=3, class_name='border-end'), dbc.Col(html.Div('Vocabulary size', className='text-secondary'), width=3, class_name='border-end'), dbc.Col(html.Div('Alphabet size', className='text-secondary'), width=3), ], class_name='bg-light mt-2 rounded-top border-top border-start border-end', ), dbc.Row( [ dbc.Col( html.H5( '{:.2f} hours'.format(num_hours), className='text-center p-1', style={'color': 'green', 'opacity': 0.7}, ), width=3, class_name='border-end', ), dbc.Col( html.H5(len(data), className='text-center p-1', style={'color': 'green', 'opacity': 0.7}), width=3, class_name='border-end', ), dbc.Col( html.H5( '{} words'.format(len(vocabulary)), className='text-center p-1', style={'color': 'green', 'opacity': 0.7}, ), width=3, class_name='border-end', ), dbc.Col( html.H5( '{} chars'.format(len(alphabet)), className='text-center p-1', style={'color': 'green', 'opacity': 0.7}, ), width=3, ), ], class_name='bg-light rounded-bottom border-bottom border-start border-end', ), ] if metrics_available: stats_layout += [ dbc.Row( [ dbc.Col( html.Div('Word Error Rate (WER), %', className='text-secondary'), width=3, class_name='border-end' ), dbc.Col( html.Div('Character Error Rate (CER), %', className='text-secondary'), width=3, class_name='border-end', ), dbc.Col( html.Div('Word Match Rate (WMR), %', className='text-secondary'), width=3, class_name='border-end', ), dbc.Col(html.Div('Mean Word Accuracy, %', className='text-secondary'), width=3), ], class_name='bg-light mt-2 rounded-top border-top border-start border-end', ), dbc.Row( [ dbc.Col( html.H5( '{:.2f}'.format(wer), className='text-center p-1', style={'color': 'green', 'opacity': 0.7}, ), width=3, class_name='border-end', ), dbc.Col( html.H5( '{:.2f}'.format(cer), className='text-center p-1', style={'color': 'green', 'opacity': 0.7} ), width=3, class_name='border-end', ), dbc.Col( html.H5( '{:.2f}'.format(wmr), className='text-center p-1', style={'color': 'green', 'opacity': 0.7}, ), width=3, class_name='border-end', ), dbc.Col( html.H5( '{:.2f}'.format(mwa), className='text-center p-1', style={'color': 'green', 'opacity': 0.7}, ), width=3, ), ], class_name='bg-light rounded-bottom border-bottom border-start border-end', ), ] stats_layout += [ dbc.Row(dbc.Col(html.H5(children='Alphabet'), class_name='text-secondary'), class_name='mt-3'), dbc.Row( dbc.Col(html.Div('{}'.format(sorted(alphabet))),), class_name='mt-2 bg-light font-monospace rounded border' ), ] for k in figures_hist: stats_layout += [ dbc.Row(dbc.Col(html.H5(figures_hist[k][0]), class_name='text-secondary'), class_name='mt-3'), dbc.Row(dbc.Col(dcc.Graph(id='duration-graph', figure=figures_hist[k][1]),),), ] if metrics_available: stats_layout += [ dbc.Row(dbc.Col(html.H5('Word accuracy distribution'), class_name='text-secondary'), class_name='mt-3'), dbc.Row(dbc.Col(dcc.Graph(id='word-acc-graph', figure=figure_word_acc),),), ] wordstable_columns = [{'name': 'Word', 'id': 'word'}, {'name': 'Count', 'id': 'count'}] if 'OOV' in vocabulary[0]: wordstable_columns.append({'name': 'OOV', 'id': 'OOV'}) if metrics_available: wordstable_columns.append({'name': 'Accuracy, %', 'id': 'accuracy'}) stats_layout += [ dbc.Row(dbc.Col(html.H5('Vocabulary'), class_name='text-secondary'), class_name='mt-3'), dbc.Row( dbc.Col( dash_table.DataTable( id='wordstable', columns=wordstable_columns, filter_action='custom', filter_query='', sort_action='custom', sort_mode='single', page_action='custom', page_current=0, page_size=DATA_PAGE_SIZE, cell_selectable=False, page_count=math.ceil(len(vocabulary) / DATA_PAGE_SIZE), sort_by=[{'column_id': 'word', 'direction': 'asc'}], style_cell={'maxWidth': 0, 'textAlign': 'left'}, style_header={'color': 'text-primary'}, css=[{'selector': '.dash-filter--case', 'rule': 'display: none'},], ), ), class_name='m-2', ), dbc.Row(dbc.Col([html.Button('Download Vocabulary', id='btn_csv'), dcc.Download(id='download-vocab-csv'),]),), ] @app.callback( Output('download-vocab-csv', 'data'), [Input('btn_csv', 'n_clicks'), State('wordstable', 'sort_by'), State('wordstable', 'filter_query')], prevent_initial_call=True, ) def download_vocabulary(n_clicks, sort_by, filter_query): vocabulary_view = vocabulary filtering_expressions = filter_query.split(' && ') for filter_part in filtering_expressions: col_name, op, filter_value = split_filter_part(filter_part) if op in ('eq', 'ne', 'lt', 'le', 'gt', 'ge'): vocabulary_view = [x for x in vocabulary_view if getattr(operator, op)(x[col_name], filter_value)] elif op == 'contains': vocabulary_view = [x for x in vocabulary_view if filter_value in str(x[col_name])] if len(sort_by): col = sort_by[0]['column_id'] descending = sort_by[0]['direction'] == 'desc' vocabulary_view = sorted(vocabulary_view, key=lambda x: x[col], reverse=descending) with open('sde_vocab.csv', encoding='utf-8', mode='w', newline='') as fo: writer = csv.writer(fo) writer.writerow(vocabulary_view[0].keys()) for item in vocabulary_view: writer.writerow([str(item[k]) for k in item]) return dcc.send_file("sde_vocab.csv") @app.callback( [Output('wordstable', 'data'), Output('wordstable', 'page_count')], [Input('wordstable', 'page_current'), Input('wordstable', 'sort_by'), Input('wordstable', 'filter_query')], ) def update_wordstable(page_current, sort_by, filter_query): vocabulary_view = vocabulary filtering_expressions = filter_query.split(' && ') for filter_part in filtering_expressions: col_name, op, filter_value = split_filter_part(filter_part) if op in ('eq', 'ne', 'lt', 'le', 'gt', 'ge'): vocabulary_view = [x for x in vocabulary_view if getattr(operator, op)(x[col_name], filter_value)] elif op == 'contains': vocabulary_view = [x for x in vocabulary_view if filter_value in str(x[col_name])] if len(sort_by): col = sort_by[0]['column_id'] descending = sort_by[0]['direction'] == 'desc' vocabulary_view = sorted(vocabulary_view, key=lambda x: x[col], reverse=descending) if page_current * DATA_PAGE_SIZE >= len(vocabulary_view): page_current = len(vocabulary_view) // DATA_PAGE_SIZE return [ vocabulary_view[page_current * DATA_PAGE_SIZE : (page_current + 1) * DATA_PAGE_SIZE], math.ceil(len(vocabulary_view) / DATA_PAGE_SIZE), ] samples_layout = [ dbc.Row(dbc.Col(html.H5('Data'), class_name='text-secondary'), class_name='mt-3'), html.Hr(), dbc.Row( dbc.Col( dash_table.DataTable( id='datatable', columns=[{'name': k.replace('_', ' '), 'id': k, 'hideable': True} for k in data[0]], filter_action='custom', filter_query='', sort_action='custom', sort_mode='single', sort_by=[], row_selectable='single', selected_rows=[0], page_action='custom', page_current=0, page_size=DATA_PAGE_SIZE, page_count=math.ceil(len(data) / DATA_PAGE_SIZE), style_cell={'overflow': 'hidden', 'textOverflow': 'ellipsis', 'maxWidth': 0, 'textAlign': 'center'}, style_header={ 'color': 'text-primary', 'text_align': 'center', 'height': 'auto', 'whiteSpace': 'normal', }, css=[ {'selector': '.dash-spreadsheet-menu', 'rule': 'position:absolute; bottom: 8px'}, {'selector': '.dash-filter--case', 'rule': 'display: none'}, {'selector': '.column-header--hide', 'rule': 'display: none'}, ], ), ) ), ] + [ dbc.Row( [ dbc.Col( html.Div(children=k.replace('_', ' ')), width=2, class_name='mt-1 bg-light font-monospace text-break small rounded border', ), dbc.Col(html.Div(id='_' + k), class_name='mt-1 bg-light font-monospace text-break small rounded border'), ] ) for k in data[0] ] if metrics_available: samples_layout += [ dbc.Row( [ dbc.Col( html.Div(children='text diff'), width=2, class_name='mt-1 bg-light font-monospace text-break small rounded border', ), dbc.Col( html.Iframe( id='_diff', sandbox='', srcDoc='', style={'border': 'none', 'width': '100%', 'height': '100%'}, className='bg-light font-monospace text-break small', ), class_name='mt-1 bg-light font-monospace text-break small rounded border', ), ] ) ] samples_layout += [ dbc.Row(dbc.Col(html.Audio(id='player', controls=True),), class_name='mt-3 '), dbc.Row(dbc.Col(dcc.Graph(id='signal-graph')), class_name='mt-3'), ] # updating vocabulary to show wordstable_columns_tool = [{'name': 'Word', 'id': 'word'}, {'name': 'Count', 'id': 'count'}] wordstable_columns_tool.append({'name': 'Accuracy_1, %', 'id': 'accuracy_1'}) wordstable_columns_tool.append({'name': 'Accuracy_2, %', 'id': 'accuracy_2'}) if comparison_mode: model_name_1, model_name_2 = name_1, name_2 for i in range(len(vocabulary_1)): vocabulary_1[i].update(vocabulary_2[i]) def _wer_(grnd, pred): grnd_words = grnd.split() pred_words = pred.split() edit_distance = editdistance.eval(grnd_words, pred_words) wer = edit_distance / len(grnd_words) return wer def metric(a, b, met=None): cer = editdistance.distance(a, b) / len(a) wer = _wer_(a, b) return round(float(wer) * 100, 2), round(float(cer) * 100, 2) def write_metrics(data, Ox, Oy): da = pd.DataFrame.from_records(data) gt = da['text'] tt_1 = da[Ox] tt_2 = da[Oy] wer_tt1_c, cer_tt1_c = [], [] wer_tt2_c, cer_tt2_c = [], [] for j in range(len(gt)): wer_tt1, cer_tt1 = metric(gt[j], tt_1[j]) # first model wer_tt2, cer_tt2 = metric(gt[j], tt_2[j]) # second model wer_tt1_c.append(wer_tt1) cer_tt1_c.append(cer_tt1) wer_tt2_c.append(wer_tt2) cer_tt2_c.append(cer_tt2) da['wer_' + Ox] = pd.Series(wer_tt1_c, index=da.index) da['wer_' + Oy] = pd.Series(wer_tt2_c, index=da.index) da['cer_' + Ox] = pd.Series(cer_tt1_c, index=da.index) da['cer_' + Oy] = pd.Series(cer_tt2_c, index=da.index) return da.to_dict('records') data_with_metrics = write_metrics(data, model_name_1, model_name_2) if args.show_statistics is not None: textdiffstyle = {'border': 'none', 'width': '100%', 'height': '100%'} else: textdiffstyle = {'border': 'none', 'width': '1%', 'height': '1%', 'display': 'none'} def prepare_data(df, name1=model_name_1, name2=model_name_2): res = pd.DataFrame() tmp = df['word'] res.insert(0, 'word', tmp) res.insert(1, 'count', [float(i) for i in df['count']]) res.insert(2, 'accuracy_model_' + name1, df['accuracy_1']) res.insert(3, 'accuracy_model_' + name2, df['accuracy_2']) res.insert(4, 'accuracy_diff ' + '(' + name1 + ' - ' + name2 + ')', df['accuracy_1'] - df['accuracy_2']) res.insert(2, 'count^(-1)', 1 / df['count']) return res for_col_names = pd.DataFrame() for_col_names.insert(0, 'word', ['a']) for_col_names.insert(1, 'count', [0]) for_col_names.insert(2, 'accuracy_model_' + model_name_1, [0]) for_col_names.insert(3, 'accuracy_model_' + model_name_2, [0]) for_col_names.insert(4, 'accuracy_diff ' + '(' + model_name_1 + ' - ' + model_name_2 + ')', [0]) for_col_names.insert(5, 'count^(-1)', [0]) @app.callback( Output('voc_graph', 'figure'), [ Input('xaxis-column', 'value'), Input('yaxis-column', 'value'), Input('color-column', 'value'), Input('size-column', 'value'), Input("datatable-advanced-filtering", "derived_virtual_data"), Input("dot_spacing", 'value'), Input("radius", 'value'), ], prevent_initial_call=False, ) def draw_vocab(Ox, Oy, color, size, data, dot_spacing='no', rad=0.01): import math import random import pandas as pd df = pd.DataFrame.from_records(data) res = prepare_data(df) res_spacing = res.copy(deep=True) if dot_spacing == 'yes': rad = float(rad) if Ox[0] == 'a' or 'c': tmp = [] for i in range(len(res[Ox])): tmp.append( res[Ox][i] + rad * random.randrange(1, 10) * math.cos(random.randrange(1, len(res[Ox])) * 2 * math.pi / len(res[Ox])) ) res_spacing[Ox] = tmp if Ox[0] == 'a' or 'c': tmp = [] for i in range(len(res[Oy])): tmp.append( res[Oy][i] + rad * random.randrange(1, 10) * math.sin(random.randrange(1, len(res[Oy])) * 2 * math.pi / len(res[Oy])) ) res_spacing[Oy] = tmp res = res_spacing fig = px.scatter( res, x=Ox, y=Oy, color=color, size=size, hover_data={'word': True, Ox: True, Oy: True, 'count': True}, width=1300, height=1000, ) if (Ox == 'accuracy_model_' + model_name_1 and Oy == 'accuracy_model_' + model_name_2) or ( Oy == 'accuracy_model_' + model_name_1 and Ox == 'accuracy_model_' + model_name_2 ): fig.add_shape( type="line", x0=0, y0=0, x1=100, y1=100, line=dict(color="MediumPurple", width=1, dash="dot",) ) return fig @app.callback( Output('filter-query-input', 'style'), Output('filter-query-output', 'style'), Input('filter-query-read-write', 'value'), ) def query_input_output(val): input_style = {'width': '100%'} output_style = {} input_style.update(display='inline-block') output_style.update(display='none') return input_style, output_style @app.callback(Output('datatable-advanced-filtering', 'filter_query'), Input('filter-query-input', 'value')) def write_query(query): if query is None: return '' return query @app.callback(Output('filter-query-output', 'children'), Input('datatable-advanced-filtering', 'filter_query')) def read_query(query): if query is None: return "No filter query" return dcc.Markdown('`filter_query = "{}"`'.format(query)) ############ @app.callback( Output('filter-query-input-2', 'style'), Output('filter-query-output-2', 'style'), Input('filter-query-read-write', 'value'), ) def query_input_output(val): input_style = {'width': '100%'} output_style = {} input_style.update(display='inline-block') output_style.update(display='none') return input_style, output_style @app.callback(Output('datatable-advanced-filtering-2', 'filter_query'), Input('filter-query-input-2', 'value')) def write_query(query): if query is None: return '' return query @app.callback(Output('filter-query-output-2', 'children'), Input('datatable-advanced-filtering-2', 'filter_query')) def read_query(query): if query is None: return "No filter query" return dcc.Markdown('`filter_query = "{}"`'.format(query)) ############ def display_query(query): if query is None: return '' return html.Details( [ html.Summary('Derived filter query structure'), html.Div( dcc.Markdown( '''```json {} ```'''.format( json.dumps(query, indent=4) ) ) ), ] ) comparison_layout = [ html.Div( [ dcc.Markdown("model 1:" + ' ' + model_name_1[10:]), dcc.Markdown("model 2:" + ' ' + model_name_2[10:]), dcc.Dropdown( ['word level', 'utterance level'], 'word level', placeholder="choose comparison lvl", id='lvl_choose', ), ] ), html.Hr(), html.Div( [ html.Div( [ dcc.Dropdown(for_col_names.columns[::], 'accuracy_model_' + model_name_1, id='xaxis-column'), dcc.Dropdown(for_col_names.columns[::], 'accuracy_model_' + model_name_2, id='yaxis-column'), dcc.Dropdown( for_col_names.select_dtypes(include='number').columns[::], placeholder='Select what will encode color of points', id='color-column', ), dcc.Dropdown( for_col_names.select_dtypes(include='number').columns[::], placeholder='Select what will encode size of points', id='size-column', ), dcc.Dropdown( ['yes', 'no'], placeholder='if you want to enable dot spacing', id='dot_spacing', style={'width': '200%'}, ), dcc.Input(id='radius', placeholder='Enter radius of spacing (std is 0.01)'), html.Hr(), dcc.Input(id='filter-query-input', placeholder='Enter filter query',), ], style={'width': '200%', 'display': 'inline-block', 'float': 'middle'}, ), html.Hr(), html.Div(id='filter-query-output'), dash_table.DataTable( id='datatable-advanced-filtering', columns=wordstable_columns_tool, data=vocabulary_1, editable=False, page_action='native', page_size=5, filter_action="native", ), html.Hr(), html.Div(id='datatable-query-structure', style={'whitespace': 'pre'}), html.Hr(), dbc.Row(dbc.Col(dcc.Graph(id='voc_graph'),),), html.Hr(), ], id='wrd_lvl', style={'display': 'block'}, ), html.Div( [ html.Div( [ dcc.Dropdown(['WER', 'CER'], 'WER', placeholder="Choose metric", id="choose_metric"), dbc.Row(dbc.Col(html.H5('Data'), class_name='text-secondary'), class_name='mt-3'), html.Hr(), html.Hr(), dcc.Input( id='filter-query-input-2', placeholder='Enter filter query', style={'width': '100%'} ), html.Div(id='filter-query-output-2'), dbc.Row( dbc.Col( [ dash_table.DataTable( id='datatable-advanced-filtering-2', columns=[ {'name': k.replace('_', ' '), 'id': k, 'hideable': True} for k in data_with_metrics[0] ], data=data_with_metrics, editable=False, page_action='native', page_size=5, row_selectable='single', selected_rows=[0], page_current=0, filter_action="native", style_cell={ 'overflow': 'hidden', 'textOverflow': 'ellipsis', 'maxWidth': 0, 'textAlign': 'center', }, style_header={ 'color': 'text-primary', 'text_align': 'center', 'height': 'auto', 'whiteSpace': 'normal', }, css=[ { 'selector': '.dash-spreadsheet-menu', 'rule': 'position:absolute; bottom: 8px', }, {'selector': '.dash-filter--case', 'rule': 'display: none'}, {'selector': '.column-header--hide', 'rule': 'display: none'}, ], ), dbc.Row(dbc.Col(html.Audio(id='player-1', controls=True),), class_name='mt-3'), ] ) ), ] + [ dbc.Row( [ dbc.Col( html.Div(children=k.replace('_', '-')), width=2, class_name='mt-1 bg-light font-monospace text-break small rounded border', ), dbc.Col( html.Div(id='__' + k), class_name='mt-1 bg-light font-monospace text-break small rounded border', ), ] ) for k in data_with_metrics[0] ] ), ], id='unt_lvl', ), ] + [ html.Div( [ html.Div( [ dbc.Row(dbc.Col(dcc.Graph(id='utt_graph'),),), html.Hr(), dcc.Input(id='clicked_aidopath', style={'width': '100%'}), html.Hr(), dcc.Input(id='my-output-1', style={'display': 'none'}), # we do need this ] ), html.Div([dbc.Row(dbc.Col(dcc.Graph(id='signal-graph-1')), class_name='mt-3'),]), ], id='down_thing', style={'display': 'block'}, ) ] if args.show_statistics is not None: comparison_layout += [ html.Div( [ dbc.Row( [ dbc.Col( html.Div(children='text diff'), width=2, class_name='mt-1 bg-light font-monospace text-break small rounded border', ), dbc.Col( html.Iframe( id='__diff', sandbox='', srcDoc='', style=textdiffstyle, className='bg-light font-monospace text-break small', ), class_name='mt-1 bg-light font-monospace text-break small rounded border', ), ], id="text_diff_div", ) ], id='mid_thing', style={'display': 'block'}, ), ] @app.callback( [ Output(component_id='wrd_lvl', component_property='style'), Output(component_id='unt_lvl', component_property='style'), Output(component_id='mid_thing', component_property='style'), Output(component_id='down_thing', component_property='style'), Input(component_id='lvl_choose', component_property='value'), ] ) def show_hide_element(visibility_state): if visibility_state == 'word level': return ( {'width': '50%', 'display': 'inline-block', 'float': 'middle'}, {'width': '50%', 'display': 'none', 'float': 'middle'}, {'display': 'none'}, {'display': 'none'}, ) else: return ( {'width': '100%', 'display': 'none', 'float': 'middle'}, {'width': '100%', 'display': 'inline-block', 'float': 'middle'}, {'display': 'block'}, {'display': 'block'}, ) if args.show_statistics is None: @app.callback( [ Output(component_id='wrd_lvl', component_property='style'), Output(component_id='unt_lvl', component_property='style'), Output(component_id='down_thing', component_property='style'), Input(component_id='lvl_choose', component_property='value'), ] ) def show_hide_element(visibility_state): if args.show_statistics is not None: a = {'border': 'none', 'width': '100%', 'height': '100%', 'display': 'block'} else: a = {'border': 'none', 'width': '100%', 'height': '100%', 'display': 'none'} if visibility_state == 'word level': return ( {'width': '50%', 'display': 'inline-block', 'float': 'middle'}, {'width': '50%', 'display': 'none', 'float': 'middle'}, {'display': 'none'}, ) else: return ( {'width': '100%', 'display': 'none', 'float': 'middle'}, {'width': '100%', 'display': 'inline-block', 'float': 'middle'}, {'display': 'block'}, ) store = [] @app.callback( [Output('datatable-advanced-filtering-2', 'page_current'), Output('my-output-1', 'value')], [Input('utt_graph', 'clickData'),], ) def real_select_click(hoverData): if hoverData is not None: path = str(hoverData['points'][0]['customdata'][-1]) for t in range(len(data_with_metrics)): if data_with_metrics[t]['audio_filepath'] == path: ind = t s = t #% 5 sel = s pg = math.ceil(ind // 5) return pg, sel else: return 0, 0 @app.callback( [Output('datatable-advanced-filtering-2', 'selected_rows')], [Input('my-output-1', 'value')], ) def real_select_click(num): s = num return [[s]] CALCULATED_METRIC = [False, False] @app.callback( [ Output('utt_graph', 'figure'), Output('clicked_aidopath', 'value'), Input('choose_metric', 'value'), Input('utt_graph', 'clickData'), Input('datatable-advanced-filtering-2', 'derived_virtual_data'), ], ) def draw_table_with_metrics(met, hoverData, data_virt): Ox = name_1 Oy = name_2 if met == "WER": cerower = 'wer_' else: cerower = 'cer_' da = pd.DataFrame.from_records(data_virt) c = da fig = px.scatter( c, x=cerower + Ox, y=cerower + Oy, width=1000, height=900, color='num_words', hover_data={ 'text': True, Ox: True, Oy: True, 'wer_' + Ox: True, 'wer_' + Oy: True, 'cer_' + Ox: True, 'cer_' + Oy: True, 'audio_filepath': True, }, ) #'numwords': True, fig.add_shape(type="line", x0=0, y0=0, x1=100, y1=100, line=dict(color="Red", width=1, dash="dot",)) fig.update_layout(clickmode='event+select') fig.update_traces(marker_size=10) path = None if hoverData is not None: path = str(hoverData['points'][0]['customdata'][-1]) return fig, path @app.callback( [Output('datatable', 'data'), Output('datatable', 'page_count')], [Input('datatable', 'page_current'), Input('datatable', 'sort_by'), Input('datatable', 'filter_query')], ) def update_datatable(page_current, sort_by, filter_query): data_view = data filtering_expressions = filter_query.split(' && ') for filter_part in filtering_expressions: col_name, op, filter_value = split_filter_part(filter_part) if op in ('eq', 'ne', 'lt', 'le', 'gt', 'ge'): data_view = [x for x in data_view if getattr(operator, op)(x[col_name], filter_value)] elif op == 'contains': data_view = [x for x in data_view if filter_value in str(x[col_name])] if len(sort_by): col = sort_by[0]['column_id'] descending = sort_by[0]['direction'] == 'desc' data_view = sorted(data_view, key=lambda x: x[col], reverse=descending) if page_current * DATA_PAGE_SIZE >= len(data_view): page_current = len(data_view) // DATA_PAGE_SIZE return [ data_view[page_current * DATA_PAGE_SIZE : (page_current + 1) * DATA_PAGE_SIZE], math.ceil(len(data_view) / DATA_PAGE_SIZE), ] if comparison_mode: app.layout = html.Div( [ dcc.Location(id='url', refresh=False), dbc.NavbarSimple( children=[ dbc.NavItem(dbc.NavLink('Statistics', id='stats_link', href='/', active=True)), dbc.NavItem(dbc.NavLink('Samples', id='samples_link', href='/samples')), dbc.NavItem(dbc.NavLink('Comparison tool', id='comp_tool', href='/comparison')), ], brand='Speech Data Explorer', sticky='top', color='green', dark=True, ), dbc.Container(id='page-content'), ] ) else: app.layout = html.Div( [ dcc.Location(id='url', refresh=False), dbc.NavbarSimple( children=[ dbc.NavItem(dbc.NavLink('Statistics', id='stats_link', href='/', active=True)), dbc.NavItem(dbc.NavLink('Samples', id='samples_link', href='/samples')), ], brand='Speech Data Explorer', sticky='top', color='green', dark=True, ), dbc.Container(id='page-content'), ] ) if comparison_mode: @app.callback( [ Output('page-content', 'children'), Output('stats_link', 'active'), Output('samples_link', 'active'), Output('comp_tool', 'active'), ], [Input('url', 'pathname')], ) def nav_click(url): if url == '/samples': return [samples_layout, False, True, False] elif url == '/comparison': return [comparison_layout, False, False, True] else: return [stats_layout, True, False, False] else: @app.callback( [Output('page-content', 'children'), Output('stats_link', 'active'), Output('samples_link', 'active'),], [Input('url', 'pathname')], ) def nav_click(url): if url == '/samples': return [samples_layout, False, True] else: return [stats_layout, True, False] @app.callback( [Output('_' + k, 'children') for k in data[0]], [Input('datatable', 'selected_rows'), Input('datatable', 'data')] ) def show_item(idx, data): if len(idx) == 0: raise PreventUpdate return [data[idx[0]][k] for k in data[0]] if comparison_mode: @app.callback( [Output('__' + k, 'children') for k in data_with_metrics[0]], [Input('datatable-advanced-filtering-2', 'selected_rows'), Input('datatable-advanced-filtering-2', 'data')], ) def show_item(idx, data): if len(idx) == 0: raise PreventUpdate return [data[idx[0]][k] for k in data_with_metrics[0]] @app.callback(Output('_diff', 'srcDoc'), [Input('datatable', 'selected_rows'), Input('datatable', 'data'),]) def show_diff( idx, data, ): if len(idx) == 0: raise PreventUpdate orig_words = data[idx[0]]['text'] orig_words = '\n'.join(orig_words.split()) + '\n' pred_words = data[idx[0]][fld_nm] pred_words = '\n'.join(pred_words.split()) + '\n' diff = diff_match_patch.diff_match_patch() diff.Diff_Timeout = 0 orig_enc, pred_enc, enc = diff.diff_linesToChars(orig_words, pred_words) diffs = diff.diff_main(orig_enc, pred_enc, False) diff.diff_charsToLines(diffs, enc) diffs_post = [] for d in diffs: diffs_post.append((d[0], d[1].replace('\n', ' '))) diff_html = diff.diff_prettyHtml(diffs_post) return diff_html @app.callback( Output('__diff', 'srcDoc'), [Input('datatable-advanced-filtering-2', 'selected_rows'), Input('datatable-advanced-filtering-2', 'data'),], ) def show_diff( idx, data, ): if len(idx) == 0: raise PreventUpdate orig_words = data[idx[0]]['text'] orig_words = '\n'.join(orig_words.split()) + '\n' pred_words = data[idx[0]][fld_nm] pred_words = '\n'.join(pred_words.split()) + '\n' diff = diff_match_patch.diff_match_patch() diff.Diff_Timeout = 0 orig_enc, pred_enc, enc = diff.diff_linesToChars(orig_words, pred_words) diffs = diff.diff_main(orig_enc, pred_enc, False) diff.diff_charsToLines(diffs, enc) diffs_post = [] for d in diffs: diffs_post.append((d[0], d[1].replace('\n', ' '))) diff_html = diff.diff_prettyHtml(diffs_post) return diff_html @app.callback(Output('signal-graph', 'figure'), [Input('datatable', 'selected_rows'), Input('datatable', 'data')]) def plot_signal(idx, data): if len(idx) == 0: raise PreventUpdate figs = make_subplots(rows=2, cols=1, subplot_titles=('Waveform', 'Spectrogram')) try: filename = absolute_audio_filepath(data[idx[0]]['audio_filepath'], args.audio_base_path) audio, fs = librosa.load(path=filename, sr=None) if 'offset' in data[idx[0]]: audio = audio[ int(data[idx[0]]['offset'] * fs) : int((data[idx[0]]['offset'] + data[idx[0]]['duration']) * fs) ] time_stride = 0.01 hop_length = int(fs * time_stride) n_fft = 512 # linear scale spectrogram s = librosa.stft(y=audio, n_fft=n_fft, hop_length=hop_length) s_db = librosa.power_to_db(S=np.abs(s) ** 2, ref=np.max, top_db=100) figs.add_trace( go.Scatter( x=np.arange(audio.shape[0]) / fs, y=audio, line={'color': 'green'}, name='Waveform', hovertemplate='Time: %{x:.2f} s<br>Amplitude: %{y:.2f}<br><extra></extra>', ), row=1, col=1, ) figs.add_trace( go.Heatmap( z=s_db, colorscale=[[0, 'rgb(30,62,62)'], [0.5, 'rgb(30,128,128)'], [1, 'rgb(30,255,30)'],], colorbar=dict(yanchor='middle', lenmode='fraction', y=0.2, len=0.5, ticksuffix=' dB'), dx=time_stride, dy=fs / n_fft / 1000, name='Spectrogram', hovertemplate='Time: %{x:.2f} s<br>Frequency: %{y:.2f} kHz<br>Magnitude: %{z:.2f} dB<extra></extra>', ), row=2, col=1, ) figs.update_layout({'margin': dict(l=0, r=0, t=20, b=0, pad=0), 'height': 500}) figs.update_xaxes(title_text='Time, s', row=1, col=1) figs.update_yaxes(title_text='Amplitude', row=1, col=1) figs.update_xaxes(title_text='Time, s', row=2, col=1) figs.update_yaxes(title_text='Frequency, kHz', row=2, col=1) except Exception as ex: app.logger.error(f'ERROR in plot signal: {ex}') return figs @app.callback( Output('signal-graph-1', 'figure'), [Input('datatable-advanced-filtering-2', 'selected_rows'), Input('datatable-advanced-filtering-2', 'data')], ) def plot_signal(idx, data): if len(idx) == 0: raise PreventUpdate figs = make_subplots(rows=2, cols=1, subplot_titles=('Waveform', 'Spectrogram')) try: filename = absolute_audio_filepath(data[idx[0]]['audio_filepath'], args.audio_base_path) audio, fs = librosa.load(path=filename, sr=None) if 'offset' in data[idx[0]]: audio = audio[ int(data[idx[0]]['offset'] * fs) : int((data[idx[0]]['offset'] + data[idx[0]]['duration']) * fs) ] time_stride = 0.01 hop_length = int(fs * time_stride) n_fft = 512 # linear scale spectrogram s = librosa.stft(y=audio, n_fft=n_fft, hop_length=hop_length) s_db = librosa.power_to_db(S=np.abs(s) ** 2, ref=np.max, top_db=100) figs.add_trace( go.Scatter( x=np.arange(audio.shape[0]) / fs, y=audio, line={'color': 'green'}, name='Waveform', hovertemplate='Time: %{x:.2f} s<br>Amplitude: %{y:.2f}<br><extra></extra>', ), row=1, col=1, ) figs.add_trace( go.Heatmap( z=s_db, colorscale=[[0, 'rgb(30,62,62)'], [0.5, 'rgb(30,128,128)'], [1, 'rgb(30,255,30)'],], colorbar=dict(yanchor='middle', lenmode='fraction', y=0.2, len=0.5, ticksuffix=' dB'), dx=time_stride, dy=fs / n_fft / 1000, name='Spectrogram', hovertemplate='Time: %{x:.2f} s<br>Frequency: %{y:.2f} kHz<br>Magnitude: %{z:.2f} dB<extra></extra>', ), row=2, col=1, ) figs.update_layout({'margin': dict(l=0, r=0, t=20, b=0, pad=0), 'height': 500}) figs.update_xaxes(title_text='Time, s', row=1, col=1) figs.update_yaxes(title_text='Amplitude', row=1, col=1) figs.update_xaxes(title_text='Time, s', row=2, col=1) figs.update_yaxes(title_text='Frequency, kHz', row=2, col=1) except Exception as ex: app.logger.error(f'ERROR in plot signal: {ex}') return figs @app.callback(Output('player', 'src'), [Input('datatable', 'selected_rows'), Input('datatable', 'data')]) def update_player(idx, data): if len(idx) == 0: raise PreventUpdate try: filename = absolute_audio_filepath(data[idx[0]]['audio_filepath'], args.audio_base_path) signal, sr = librosa.load(path=filename, sr=None) if 'offset' in data[idx[0]]: signal = signal[ int(data[idx[0]]['offset'] * sr) : int((data[idx[0]]['offset'] + data[idx[0]]['duration']) * sr) ] with io.BytesIO() as buf: # convert to PCM .wav sf.write(buf, signal, sr, format='WAV') buf.seek(0) encoded = base64.b64encode(buf.read()) return 'data:audio/wav;base64,{}'.format(encoded.decode()) except Exception as ex: app.logger.error(f'ERROR in audio player: {ex}') return '' @app.callback( Output('player-1', 'src'), [Input('datatable-advanced-filtering-2', 'selected_rows'), Input('datatable-advanced-filtering-2', 'data')], ) def update_player(idx, data): if len(idx) == 0: raise PreventUpdate try: filename = absolute_audio_filepath(data[idx[0]]['audio_filepath'], args.audio_base_path) signal, sr = librosa.load(path=filename, sr=None) if 'offset' in data[idx[0]]: signal = signal[ int(data[idx[0]]['offset'] * sr) : int((data[idx[0]]['offset'] + data[idx[0]]['duration']) * sr) ] with io.BytesIO() as buf: # convert to PCM .wav sf.write(buf, signal, sr, format='WAV') buf.seek(0) encoded = base64.b64encode(buf.read()) return 'data:audio/wav;base64,{}'.format(encoded.decode()) except Exception as ex: app.logger.error(f'ERROR in audio player: {ex}') return '' if __name__ == '__main__': app.run_server(host='0.0.0.0', port=args.port, debug=args.debug)
NeMo-main
tools/speech_data_explorer/data_explorer.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-main
tools/customization_dataset_preparation/__init__.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ NeMo LLM Customization service requires data to be in the form of .jsonl file with each line having only two fields (namely prompt and completion). However, you might not have your data readily in this format (or even filetype). This script will help you to convert from what you have to what you will need quickly and easily. You will need your datafile (in the form of a .jsonl, .json, .csv, .tsv or .xlsx). Each row should contain one sample. Make sure that the directory your file is in is readable and writeable. Otherwise, please change it using chmod. Don't worry, we will not overwrite your existing file. With close to a dozen consideration factors that makes training optimal, there might just be something you overlook (we all do!). To check if dataset has been prepared correctly !python customization_dataset_preparation.py --filename <filename> To format dataset from an alternative jsonl/json/csv/tsv/xlsx column structure (example here for Question Answering task) For instances, if you are working on a Question Answering Task, you would typically have the columns `context`, `question` and `answer` !python customization_dataset_preparation.py --filename <filename> --prompt_template "Context: {context} Question: {question} Answer:" --completion_template "{answer}" Other flags that can be set 1. `--drop_duplicates` : Use this flag to drop rows that are exactly the same for both prompt and completion 2. `--split_train_validation` : Use this flag to split one file into separate train and validation files. 3. `--val_proportion 0.1`: Use a float (default 0.1) between 0 and 1 to control how much of the dataset to allocate to the validation set and the remaining for the train dataset. 4. `--short_context_model`: Use this flag to prepare data for use with models that have shorter context length of 2048 tokens (e.g. 5B and 20B models) What to expect After running this code, you see a list of suggestions to use under ACTIONABLE MESSAGES as well as some insights into your dataset under INFORMATIONAL MESSAGES. We suggest you prioritize changes suggested under ACTIONABLE MESSAGES but also have a look at the INFORMATIONAL MESSAGES to ensure that changes are done in an expected manner. """ import argparse import math import os import pathlib from collections import Counter import numpy as np import pandas as pd def load_file_into_df(filename): message = None if not os.path.isfile(filename): raise ValueError(f"File {filename} does not exist") if filename.lower().endswith(".jsonl"): df = pd.read_json(filename, lines=True, dtype=str).fillna("") elif filename.lower().endswith(".json"): df = pd.read_json(filename, dtype=str).fillna("") elif filename.lower().endswith(".xlsx"): df = pd.read_excel(filename, dtype=str).fillna("") message = "Note only the first sheet in your Excel file will be read." elif filename.lower().endswith(".csv"): df = pd.read_csv(filename, sep=",", dtype=str).fillna("") elif filename.lower().endswith(".tsv"): df = pd.read_csv(filename, sep="\t", dtype=str).fillna("") else: raise ValueError( f"Filename {filename} does not have the acceptable extension of .jsonl, .json, .xlsx, .csv or .tsv" ) return df, message def recommend_hyperparameters_human_readable(recommended_hyperparameters): message = 'TODO: Recommended hyperparameters\n' for param, param_value in recommended_hyperparameters.items(): message += f'{param}: {param_value}\n' return message def recommend_hyperparameters(df, model=None): """ Makes recommendations on the batch_size to use for training, based on the dataset size """ potential_batch_sizes = [2, 4, 8, 12, 16, 32, 64, 128] max_bs = 128 if len(df) < 128: max_bs = 2 for potential_bs in potential_batch_sizes: if potential_bs < len(df) * 0.9: max_bs = potential_bs bs = min(max_bs, 32) df_char_length = df.apply(lambda x: len(x.prompt) + len(x.completion), axis=1) length_by_chars = sorted(list(df_char_length)) n_samples_under_99p5_limit = math.ceil(len(df_char_length) * 0.995) char_length_99p5 = length_by_chars[n_samples_under_99p5_limit - 1] mean_char_length = np.mean(length_by_chars) std_char_length = np.std(length_by_chars) # filter out only outliers that are >2 std above mean max_char_length = max(min(mean_char_length + 2 * std_char_length, length_by_chars[-1]), char_length_99p5) # every token is around 4 chars + 100 for extra capacity max_seq_length = max_char_length // 4 + 100 if len(df) <= 100: encoder_hidden_size = 1024 elif len(df) <= 1000: encoder_hidden_size = 2048 else: encoder_hidden_size = 4096 if len(df) <= 100: lr = 5e-3 elif len(df) <= 1000: lr = 1e-3 elif len(df) <= 10000: lr = 5e-4 else: lr = 1e-4 return { 'batch_size': bs, 'max_batch_size': max_bs, 'num_virtual_tokens': 10, 'lr': lr, 'epochs': 10, 'max_seq_length': max_seq_length, 'encoder_hidden_size': encoder_hidden_size, } def estimating_customization_job_time(df, recommended_hyperparameters): recommended_batch_size = recommended_hyperparameters['batch_size'] size = df.memory_usage(index=True, deep=True).sum() time_in_seconds_per_epoch = size / recommended_batch_size * 0.0025 if time_in_seconds_per_epoch < 60: time_per_epoch = f"{round(time_in_seconds_per_epoch, 2)} seconds" elif time_in_seconds_per_epoch < 3600: time_per_epoch = f"{round(time_in_seconds_per_epoch/60, 2)} minutes" else: time_per_epoch = f"{round(time_in_seconds_per_epoch/3600, 2)} hours" message = f"TODO: Training will take around {time_per_epoch} for each epoch for gpt20b model and around half of that for gpt5b. Please set no. of epochs accordingly to ensure that the limit of 8h total is not exceeded." return message def warn_completion_is_not_empty(df): message = None field = "completion" empty_rows = (df[field] == "") | (df[field].isnull()) empty_indexes = df.reset_index().index[empty_rows].tolist() if len(empty_indexes) == len(df): message = ( "TODO: Note all completion fields are empty. This is possibly expected for inference but not for training" ) elif len(empty_indexes) != 0: message = f"""TODO: completion contains {len(empty_indexes)} empty values at rows ({empty_indexes}) Please check the original file that the fields for prompt template are not empty and rerun dataset validation""" return message def warn_imbalanced_completion(df): completions = df["completion"].tolist() completions_counter = Counter(completions) message = None # low variety of unique completions relative to completions # suggesting it is a classification set up if len(completions_counter) < len(completions) / 3: message = f"There are {len(completions_counter)} unique completions over {len(completions)} samples.\nThe five most common completions are:" for completion, n in completions_counter.most_common(5): message += f"\n {n} samples ({round(100*n/len(completions),0)}%) with completion: {completion}" return message def get_common_suffix(series): common_suffix = "" while True: candidate_common_suffixes = series.str[-(len(common_suffix) + 1) :] if candidate_common_suffixes.nunique() != 1: # candidate_common_suffixes contains more than one value # therefore, it is no longer a common suffix break elif common_suffix == candidate_common_suffixes.values[0]: # candidate is the same as previous common_suffix # therefore values in series are too short to move back by one char break else: common_suffix = candidate_common_suffixes.values[0] return common_suffix def warn_missing_suffix(df): message = '' for field in ["prompt", "completion"]: if not get_common_suffix(df[field]): message += f"TODO: {field} does not have common suffix, please add one (e.g. \\n) at the end of {field}_template\n" return message if message else None def validate_template(template): template_with_only_brackets = [i for i in template if i in ["{", "}"]] error_msg = ( "Your template (" + template + ") is not in the correct format.\ Template must be in the format contains zero or more fields, \ each field specified by {field}\ For instance, it can be 'Context: {context} Question: {question}:" ) if len(template_with_only_brackets) % 2 != 0: raise ValueError(error_msg) for i in range(0, len(template_with_only_brackets), 2): if not (template_with_only_brackets[i] == "{" and template_with_only_brackets[i + 1] == "}"): raise ValueError(error_msg) return None def parse_template(template): field_names = [] i = 0 in_field = False while i < len(template): if template[i] == "{": field_names.append("") in_field = True elif template[i] == "}": in_field = False elif in_field: field_names[-1] += template[i] else: pass i += 1 return field_names def warn_duplicated_rows(df): message = None duplicated_rows = df.duplicated() duplicated_indices = df.reset_index().index[duplicated_rows].tolist() if len(duplicated_indices) > 0: message = f"TODO: There are {len(duplicated_indices)} duplicated rows " message += f"at rows ({duplicated_indices}) \n" message += "Please check the original file to make sure that is expected\n" message += "If it is not, please add the argument --drop_duplicate" return message def drop_duplicated_rows(df): duplicated_rows = df.duplicated() duplicated_indices = df.reset_index().index[duplicated_rows].tolist() message = None if len(duplicated_indices) > 0: df = df.drop_duplicates() message = f"There are {len(duplicated_indices)} duplicated rows\n" message += f"Removed {len(duplicated_indices)} duplicate rows" return df, message def template_mapper(row, field_names, template): for field_name in field_names: template = template.replace("{" + field_name + "}", row[field_name]) return template def drop_unrequired_fields(df, required_fields=["prompt", "completion"]): for column in df.columns: if column not in required_fields: df = df.drop(column, axis=1) return df def convert_into_template(df, template, prompt_or_completion="prompt"): validate_template(template) template = template.replace("\\n", "\n") field_names = parse_template(template) for field_name in field_names: if field_name not in df.columns: raise ValueError( f"Field {field_name} requested in {prompt_or_completion}_template ({template}) but not found in file columns, which contains {list(df.columns)}" ) df[prompt_or_completion] = df.apply(lambda row: template_mapper(row, field_names, template), axis=1) return df def convert_into_prompt_completion_only(df, prompt_template="{prompt}", completion_template="{completion}"): df = convert_into_template(df, prompt_template, prompt_or_completion="prompt") df = convert_into_template(df, completion_template, prompt_or_completion="completion") df = drop_unrequired_fields(df) return df def warn_and_drop_long_samples(df, max_total_char_length): long_examples = df.apply(lambda x: len(x.prompt) + len(x.completion) > max_total_char_length, axis=1) indices_of_long_examples = df.reset_index().index[long_examples].tolist() message = None if len(indices_of_long_examples) > 0: message = f"""TODO: There are {len(indices_of_long_examples)} / {len(df)} samples that have its prompt and completion too long (over {max_total_char_length} chars), which have been dropped.""" df = df.drop(indices_of_long_examples).reset_index() df = df.drop('index', axis=1) return df, message def warn_low_n_samples(df, min_samples=64): if len(df) < min_samples: return f"""TODO: We would recommend having more samples (>{min_samples}) if possible but current_file only contains {len(df)} samples. """ return None def show_first_example_in_df(df): message = '' for column in df.columns: # prints \n instead of an a newline column_value = df[column][0].replace('\n', '\\n') message += f"-->Column {column}:\n{column_value}\n" return message def get_prepared_filename(filename, split_train_validation=False): message = "" file_extension = pathlib.Path(filename).suffix if not split_train_validation: new_filename = filename.replace(file_extension, "_prepared.jsonl") retry = 0 while os.path.isfile(new_filename): message += f"File {new_filename} exists. Trying next available filename increment\n" retry += 1 new_filename = filename.replace(file_extension, f"_prepared{retry}.jsonl") return new_filename, message if message else None else: train_filename = filename.replace(file_extension, "_prepared_train.jsonl") val_filename = filename.replace(file_extension, "_prepared_val.jsonl") retry = 0 while os.path.isfile(train_filename) or os.path.isfile(val_filename): message += f"File {train_filename} or {val_filename} exists. Trying next available filename increment\n" retry += 1 train_filename = filename.replace(file_extension, f"_prepared_train{retry}.jsonl") val_filename = filename.replace(file_extension, f"_prepared_val{retry}.jsonl") return [train_filename, val_filename], message if message else None def split_into_train_validation(df, val_proportion=0.1): n_val = int(val_proportion * len(df)) df_val = df.sample(n=n_val, random_state=42) df_train = df.drop(df_val.index) return df_train, df_val def write_df_to_jsonl(df, filename): df.to_json(filename, lines=True, orient="records", force_ascii=False) return f"File {filename} written" def print_select_messages(title, select_messages): print("*" * 40) print(title) print("*" * 40) for idx, message in enumerate(select_messages): print(f"{idx+1}.") print(message) def print_all_messages(messages): messages = [message for message in messages if message] info_messages = [message for message in messages if not message.startswith("TODO")] to_do_messages = [message for message in messages if message.startswith("TODO")] print_select_messages("ACTIONABLE MESSAGES", to_do_messages) print_select_messages("INFORMATIONAL MESSAGES", info_messages) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Prepares data for NeMoLLM Customization Service") parser.add_argument("--filename", "-f", required=True) parser.add_argument("--prompt_template", "-pt", default="{prompt}") parser.add_argument("--completion_template", "-ct", default="{completion}") parser.add_argument("--drop_duplicates", "-dd", action="store_true") parser.add_argument("--split_train_validation", "-stv", action="store_true") parser.add_argument( "--short_context_model", "-scm", action="store_true", help="Specifies if using models with shorter context length of 2048 tokens e.g. 5B and 20B models", ) parser.add_argument( "--val_proportion", "-vp", default=0.1, type=float, help="Give a number between 0 to 1, \ representing proportion of samples to go into the validation set\ only use when --split_train_validation is set", ) args = parser.parse_args() messages = [] messages.append(str(args)) if args.short_context_model: MAX_TOKEN_LENGTH = 2048 else: MAX_TOKEN_LENGTH = 4096 # every token is around 4 chars MAX_TOTAL_CHAR_LENGTH = 4 * MAX_TOKEN_LENGTH df, message = load_file_into_df(args.filename) messages.append(message) messages.append("-------Before converting into prompt and completion template------ \n") messages[-1] += show_first_example_in_df(df) df = convert_into_prompt_completion_only( df, prompt_template=args.prompt_template, completion_template=args.completion_template ) messages.append("-------After converting into prompt and completion template------ \n") messages[-1] += show_first_example_in_df(df) if args.drop_duplicates: df, message = drop_duplicated_rows(df) messages.append(message) else: messages.append(warn_duplicated_rows(df)) messages.append(warn_missing_suffix(df)) messages.append(warn_completion_is_not_empty(df)) messages.append(warn_imbalanced_completion(df)) messages.append(warn_low_n_samples(df)) df, message = warn_and_drop_long_samples(df, MAX_TOTAL_CHAR_LENGTH) messages.append(message) recommended_hyperparameters = recommend_hyperparameters(df) recommend_hyperparameters_message = recommend_hyperparameters_human_readable(recommended_hyperparameters) messages.append(recommend_hyperparameters_message) messages.append(estimating_customization_job_time(df, recommended_hyperparameters)) prepared_filename, message = get_prepared_filename( args.filename, split_train_validation=args.split_train_validation ) messages.append(message) if args.split_train_validation: df_train, df_val = split_into_train_validation(df, val_proportion=args.val_proportion) messages.append(write_df_to_jsonl(df_train, prepared_filename[0])) messages.append(write_df_to_jsonl(df_val, prepared_filename[1])) else: messages.append(write_df_to_jsonl(df, prepared_filename)) print_all_messages(messages)
NeMo-main
tools/customization_dataset_preparation/customization_dataset_preparation.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd import pytest from ..customization_dataset_preparation import ( convert_into_prompt_completion_only, convert_into_template, drop_duplicated_rows, drop_unrequired_fields, get_common_suffix, get_prepared_filename, parse_template, recommend_hyperparameters, show_first_example_in_df, split_into_train_validation, template_mapper, validate_template, warn_and_drop_long_samples, warn_completion_is_not_empty, warn_duplicated_rows, warn_imbalanced_completion, warn_low_n_samples, warn_missing_suffix, ) def test_recommend_hyperparameters(): df_100 = pd.DataFrame({'prompt': ['prompt'] * 100, 'completion': ['completion'] * 100}) assert recommend_hyperparameters(df_100) == { 'batch_size': 32, 'max_batch_size': 64, 'num_virtual_tokens': 10, 'encoder_hidden_size': 1024, 'lr': 0.005, 'epochs': 10, 'max_seq_length': 104, } df_1000 = pd.DataFrame({'prompt': ['prompt'] * 1000, 'completion': ['completion'] * 1000}) assert recommend_hyperparameters(df_1000) == { 'batch_size': 32, 'max_batch_size': 128, 'num_virtual_tokens': 10, 'encoder_hidden_size': 2048, 'lr': 0.001, 'epochs': 10, 'max_seq_length': 104, } df_10000 = pd.DataFrame({'prompt': ['prompt'] * 10000, 'completion': ['completion'] * 10000}) assert recommend_hyperparameters(df_10000) == { 'batch_size': 32, 'max_batch_size': 128, 'num_virtual_tokens': 10, 'encoder_hidden_size': 4096, 'lr': 0.0005, 'epochs': 10, 'max_seq_length': 104, } df_100000 = pd.DataFrame({'prompt': ['prompt'] * 100000, 'completion': ['completion'] * 100000}) assert recommend_hyperparameters(df_100000) == { 'batch_size': 32, 'max_batch_size': 128, 'num_virtual_tokens': 10, 'encoder_hidden_size': 4096, 'lr': 0.0001, 'epochs': 10, 'max_seq_length': 104, } def test_warn_completion_is_not_empty(): df_all_empty = pd.DataFrame({'prompt': ['prompt'] * 2, 'completion': [''] * 2}) msg_all_empty = ( "TODO: Note all completion fields are empty. This is possibly expected for inference but not for training" ) assert warn_completion_is_not_empty(df_all_empty) == msg_all_empty df_some_empty = pd.DataFrame({'prompt': ['prompt'] * 2, 'completion': ['', 'completion']}) msg_some_empty = f"""TODO: completion contains {1} empty values at rows ({[0]}) Please check the original file that the fields for prompt template are not empty and rerun dataset validation""" assert warn_completion_is_not_empty(df_some_empty) == msg_some_empty df_no_empty = pd.DataFrame({'prompt': ['prompt'] * 2, 'completion': ['completion'] * 2}) assert warn_completion_is_not_empty(df_no_empty) is None def test_warn_imbalanced_completion(): df_generation = pd.DataFrame( {'prompt': [f'prompt{i}' for i in range(100)], 'completion': [f'completion{i}' for i in range(100)]} ) assert warn_imbalanced_completion(df_generation) is None df_classification_balanced = pd.DataFrame( {'prompt': [f'prompt{i}' for i in range(100)], 'completion': [f'completion{i}' for i in range(5)] * 20} ) msg_classification_balanced = ( f"There are {5} unique completions over {100} samples.\nThe five most common completions are:" ) for i in range(5): msg_classification_balanced += f"\n {20} samples ({20.0}%) with completion: completion{i}" assert warn_imbalanced_completion(df_classification_balanced) == msg_classification_balanced df_classification_imbalanced = pd.DataFrame( { 'prompt': [f'prompt{i}' for i in range(100)], 'completion': ['completion0'] * 95 + [f'completion{i}' for i in range(5)], } ) msg_classification_imbalanced = ( f"There are {5} unique completions over {100} samples.\nThe five most common completions are:" ) msg_classification_imbalanced += f"\n {96} samples ({96.0}%) with completion: completion0" for i in range(1, 5): msg_classification_imbalanced += f"\n {1} samples ({1.0}%) with completion: completion{i}" assert warn_imbalanced_completion(df_classification_imbalanced) == msg_classification_imbalanced def test_get_common_suffix(): df = pd.DataFrame( { 'prompt': [f'prompt{i} answer:' for i in range(100)], 'completion': [f'completion{i}' for i in range(100)], 'empty_completion': [''] * 100, 'some_empty_completion': ['', 'completion'] * 50, } ) assert get_common_suffix(df.prompt) == " answer:" assert get_common_suffix(df.completion) == "" assert get_common_suffix(df.empty_completion) == "" assert get_common_suffix(df.some_empty_completion) == "" def test_warn_missing_suffix(): df_no_common = pd.DataFrame( {'prompt': [f'prompt{i}' for i in range(100)], 'completion': [f'completion{i}' for i in range(100)],} ) message = f"TODO: prompt does not have common suffix, please add one (e.g. \\n) at the end of prompt_template\n" message += ( f"TODO: completion does not have common suffix, please add one (e.g. \\n) at the end of completion_template\n" ) assert warn_missing_suffix(df_no_common) == message df_common = pd.DataFrame( {'prompt': [f'prompt{i} answer:' for i in range(100)], 'completion': [f'completion{i}\n' for i in range(100)],} ) assert warn_missing_suffix(df_common) is None def test_parse_template(): template_qa_prompt = "Context: {context}, Question: {question} Answer:" template_qa_completion = "{answer}" template_prompt = "{prompt}" template_completion = "{completion}" assert parse_template(template_qa_prompt) == ['context', 'question'] assert parse_template(template_qa_completion) == ['answer'] assert parse_template(template_prompt) == ['prompt'] assert parse_template(template_completion) == ['completion'] def test_validate_template(): template = "{prompt}" template_missing_left = "prompt}" template_missing_right = "{prompt" template_twice = "{{prompt}}" template_enclosed = "{prompt{enclosed}}" assert validate_template(template) is None with pytest.raises(ValueError): validate_template(template_missing_left) with pytest.raises(ValueError): validate_template(template_missing_right) with pytest.raises(ValueError): validate_template(template_twice) with pytest.raises(ValueError): validate_template(template_enclosed) def test_warn_duplicated_rows(): df_duplicated = pd.DataFrame({'prompt': ['prompt'] * 2, 'completion': ['completion'] * 2}) message_duplicated = f"TODO: There are {1} duplicated rows " message_duplicated += f"at rows ([1]) \n" message_duplicated += "Please check the original file to make sure that is expected\n" message_duplicated += "If it is not, please add the argument --drop_duplicate" assert warn_duplicated_rows(df_duplicated) == message_duplicated df_unique = pd.DataFrame({'prompt': ['prompt', 'prompt1'], 'completion': ['completion', 'completion1']}) assert warn_duplicated_rows(df_unique) is None df_only_prompt_duplicated = pd.DataFrame({'prompt': ['prompt'] * 2, 'completion': ['completion', 'completion1']}) assert warn_duplicated_rows(df_only_prompt_duplicated) is None def test_drop_duplicated_rows(): df_deduplicated = pd.DataFrame({'prompt': ['prompt'], 'completion': ['completion']}) df_duplicated = pd.DataFrame({'prompt': ['prompt'] * 2, 'completion': ['completion'] * 2}) message_duplicated = "There are 1 duplicated rows\n" message_duplicated += "Removed 1 duplicate rows" assert drop_duplicated_rows(df_duplicated)[0].equals(df_deduplicated) assert drop_duplicated_rows(df_duplicated)[1] == message_duplicated df_unique = pd.DataFrame({'prompt': ['prompt', 'prompt1'], 'completion': ['completion', 'completion1']}) assert drop_duplicated_rows(df_unique) == (df_unique, None) df_only_prompt_duplicated = pd.DataFrame({'prompt': ['prompt'] * 2, 'completion': ['completion', 'completion1']}) assert drop_duplicated_rows(df_only_prompt_duplicated) == (df_only_prompt_duplicated, None) def test_template_mapper(): df = pd.DataFrame({'prompt': ['prompt sample'],}) template = "{prompt}" field_names = ['prompt'] assert template_mapper(df.iloc[0], field_names, template) == 'prompt sample' df_qa = pd.DataFrame({'question': ['question sample'], 'context': ['context sample']}) template_qa = "Context: {context} Question: {question} Answer:" field_names_qa = ['context', 'question'] assert ( template_mapper(df_qa.iloc[0], field_names_qa, template_qa) == "Context: context sample Question: question sample Answer:" ) def test_drop_unrequired_fields(): df = pd.DataFrame( {'question': ['question'], 'context': ['context'], 'prompt': ['prompt'], 'completion': ['completion']} ) df_dropped_unnecessary_fields = pd.DataFrame({'prompt': ['prompt'], 'completion': ['completion']}) assert df_dropped_unnecessary_fields.equals(drop_unrequired_fields(df)) def test_convert_into_template(): df_non_existant_field_name = pd.DataFrame({'question': ['question']}) template = "Context: {context} Question: {question} Answer:" with pytest.raises(ValueError): convert_into_template(df_non_existant_field_name, template) df = pd.DataFrame({'question': ['question sample'], 'context': ['context sample'],}) df_prompt = pd.DataFrame( { 'question': ['question sample'], 'context': ['context sample'], 'prompt': ["Context: context sample Question: question sample Answer:"], } ) assert convert_into_template(df, template).equals(df_prompt) def test_convert_into_prompt_completion_only(): df = pd.DataFrame({'question': ['question sample'], 'context': ['context sample'], 'answer': ['answer sample']}) df_prompt = pd.DataFrame( {'prompt': ["Context: context sample Question: question sample Answer:"], 'completion': ["answer sample"]} ) prompt_template = "Context: {context} Question: {question} Answer:" completion_template = "{answer}" assert df_prompt.equals( convert_into_prompt_completion_only( df, prompt_template=prompt_template, completion_template=completion_template ) ) assert df_prompt.equals(convert_into_prompt_completion_only(df_prompt)) def get_indexes_of_long_examples(df, max_total_char_length): long_examples = df.apply(lambda x: len(x.prompt) + len(x.completion) > max_total_char_length, axis=1) return df.reset_index().index[long_examples].tolist() def test_warn_and_drop_long_samples(): df = pd.DataFrame({'prompt': ['a' * 12000, 'a' * 9000, 'a'], 'completion': ['b' * 12000, 'b' * 2000, 'b']}) expected_df = pd.DataFrame({'prompt': ['a'], 'completion': ['b']}) message = f"""TODO: There are {2} / {3} samples that have its prompt and completion too long (over {10000} chars), which have been dropped.""" assert expected_df.equals(warn_and_drop_long_samples(df, 10000)[0]) assert warn_and_drop_long_samples(df, 10000)[1] == message df_short = pd.DataFrame({'prompt': ['a'] * 2, 'completion': ['b'] * 2}) assert warn_and_drop_long_samples(df_short, 10000) == (df_short, None) def test_warn_low_n_samples(): df_low = pd.DataFrame({'prompt': ['a'] * 10, 'completion': ['b'] * 10}) df_high = pd.DataFrame({'prompt': ['a'] * 100, 'completion': ['b'] * 100}) message = ( "TODO: We would recommend having more samples (>64) if possible but current_file only contains 10 samples. " ) assert warn_low_n_samples(df_low) == message assert warn_low_n_samples(df_high) is None def test_show_first_example_in_df(): df = pd.DataFrame({'question': ['question sample'], 'context': ['context sample'], 'answer': ['answer sample']}) message = f"-->Column question:\nquestion sample\n" message += f"-->Column context:\ncontext sample\n" message += f"-->Column answer:\nanswer sample\n" assert message == show_first_example_in_df(df) def test_get_prepared_filename(): filename = "tmp/sample.jsonl" prepared_filename = "tmp/sample_prepared.jsonl" prepared_train_filename = "tmp/sample_prepared_train.jsonl" prepared_val_filename = "tmp/sample_prepared_val.jsonl" assert get_prepared_filename(filename) == (prepared_filename, None) assert get_prepared_filename(filename, split_train_validation=True) == ( [prepared_train_filename, prepared_val_filename,], None, ) csv_filename = "tmp/sample.csv" prepared_filename = "tmp/sample_prepared.jsonl" assert get_prepared_filename(csv_filename) == (prepared_filename, None) def test_split_into_train_validation(): df = pd.DataFrame({'prompt': ['a'] * 10, 'completion': ['b'] * 10}) df_train, df_val = split_into_train_validation(df, val_proportion=0.1) assert len(df_train) == 9 assert len(df_val) == 1 df_train, df_val = split_into_train_validation(df, val_proportion=0.2) assert len(df_train) == 8 assert len(df_val) == 2
NeMo-main
tools/customization_dataset_preparation/tests/test_customization_dataset_preparation.py
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-main
tools/customization_dataset_preparation/tests/__init__.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.asr.data.data_simulation import RIRMixGenerator from nemo.core.config import hydra_runner """ This script creates a corpus of signals using RIRs, speech and noise. Usage: python rir_mix_generator.py --config-path PATH_TO_CONFIG_DIR --config-name CONFIG_NAME output_dir=OUTPUT_DIR Details of the configuration can be found in the example configuration files in conf/* """ @hydra_runner(config_path="conf", config_name="rir_mix.yaml") def main(cfg): rir_mix = RIRMixGenerator(cfg=cfg) rir_mix.generate() if __name__ == "__main__": main()
NeMo-main
tools/rir_corpus_generator/rir_mix_generator.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.collections.asr.data.data_simulation import RIRCorpusGenerator from nemo.core.config import hydra_runner """ This script creates a corpus of room impulse responses. Usage: python rir_corpus_generator.py --config-path PATH_TO_CONFIG_DIR --config-name CONFIG_NAME output_dir=OUTPUT_DIR Details of the configuration can be found in the example configuration files in conf/* """ @hydra_runner(config_path="conf", config_name="rir_corpus.yaml") def main(cfg): room_corpus = RIRCorpusGenerator(cfg=cfg) room_corpus.generate() if __name__ == "__main__": main()
NeMo-main
tools/rir_corpus_generator/rir_corpus_generator.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import time import flask import torch from flask import Flask, json, request from flask_cors import CORS import nemo.collections.nlp as nemo_nlp from nemo.utils import logging MODELS_DICT = {} model = None api = Flask(__name__) CORS(api) def initialize(config_file_path: str): """ Loads 'language-pair to NMT model mapping' """ __MODELS_DICT = None logging.info("Starting NMT service") logging.info(f"I will attempt to load all the models listed in {config_file_path}.") logging.info(f"Edit {config_file_path} to disable models you don't need.") if torch.cuda.is_available(): logging.info("CUDA is available. Running on GPU") else: logging.info("CUDA is not available. Defaulting to CPUs") # read config with open(config_file_path) as f: __MODELS_DICT = json.load(f) if __MODELS_DICT is not None: for key, value in __MODELS_DICT.items(): logging.info(f"Loading model for {key} from file: {value}") if value.startswith("NGC/"): model = nemo_nlp.models.machine_translation.MTEncDecModel.from_pretrained(model_name=value[4:]) else: model = nemo_nlp.models.machine_translation.MTEncDecModel.restore_from(restore_path=value) if torch.cuda.is_available(): model = model.cuda() MODELS_DICT[key] = model else: raise ValueError("Did not find the config.json or it was empty") logging.info("NMT service started") @api.route('/translate', methods=['GET', 'POST', 'OPTIONS']) def get_translation(): try: time_s = time.time() langpair = request.args["langpair"] src = request.args["text"] do_moses = request.args.get('do_moses', False) if langpair in MODELS_DICT: if do_moses: result = MODELS_DICT[langpair].translate( [src], source_lang=langpair.split('-')[0], target_lang=langpair.split('-')[1] ) else: result = MODELS_DICT[langpair].translate([src]) duration = time.time() - time_s logging.info( f"Translated in {duration}. Input was: {request.args['text']} <############> Translation was: {result[0]}" ) res = {'translation': result[0]} response = flask.jsonify(res) response.headers.add('Access-Control-Allow-Origin', '*') return response else: logging.error(f"Got the following langpair: {langpair} which was not found") except Exception as ex: res = {'translation': str(ex)} response = flask.jsonify(res) response.headers.add('Access-Control-Allow-Origin', '*') return res if __name__ == '__main__': initialize('config.json') api.run(host='0.0.0.0')
NeMo-main
tools/nmt_webapp/nmt_service.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import git from omegaconf import OmegaConf, open_dict from utils import cal_target_metadata_wer, run_asr_inference from nemo.collections.asr.parts.utils.eval_utils import cal_write_wer from nemo.core.config import hydra_runner from nemo.utils import logging """ This script serves as evaluator of ASR models Usage: python asr_evaluator.py \ engine.pretrained_name="stt_en_conformer_transducer_large" \ engine.inference.mode="offline" \ engine.test_ds.augmentor.noise.manifest_path=<manifest file for noise data> \ ..... Check out parameters in ./conf/eval.yaml """ @hydra_runner(config_path="conf", config_name="eval.yaml") def main(cfg): report = {} logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}') # Store git hash for reproducibility if cfg.env.save_git_hash: repo = git.Repo(search_parent_directories=True) report['git_hash'] = repo.head.object.hexsha ## Engine # Could skip run_asr_inference and use the generated manifest by # specifying analyst.metric_calculator.exist_pred_manifest if cfg.analyst.metric_calculator.exist_pred_manifest is None: # If need to change more parameters for ASR inference, change it in # 1) shell script in utils.py # 2) TranscriptionConfig on top of the executed scripts such as transcribe_speech.py in examples/asr # Note we SKIP calculating wer during asr_inference stage with calculate_wer=False and calculate wer for each sample below # for more flexibility and reducing possible redundant inference cost. cfg.engine = run_asr_inference(cfg=cfg.engine) else: logging.info( f"Use generated prediction manifest {cfg.analyst.metric_calculator.exist_pred_manifest} and skip enigneer" ) with open_dict(cfg): cfg.engine.output_filename = cfg.analyst.metric_calculator.exist_pred_manifest ## Analyst output_manifest_w_wer, total_res, eval_metric = cal_write_wer( pred_manifest=cfg.engine.output_filename, clean_groundtruth_text=cfg.analyst.metric_calculator.clean_groundtruth_text, langid=cfg.analyst.metric_calculator.langid, use_cer=cfg.analyst.metric_calculator.use_cer, output_filename=cfg.analyst.metric_calculator.output_filename, ) with open_dict(cfg): cfg.analyst.metric_calculator.output_filename = output_manifest_w_wer report.update({"res": total_res}) for target in cfg.analyst.metadata: if cfg.analyst.metadata[target].enable: occ_avg_wer = cal_target_metadata_wer( manifest=cfg.analyst.metric_calculator.output_filename, target=target, meta_cfg=cfg.analyst.metadata[target], eval_metric=eval_metric, ) report[target] = occ_avg_wer config_engine = OmegaConf.to_object(cfg.engine) report.update(config_engine) config_metric_calculator = OmegaConf.to_object(cfg.analyst.metric_calculator) report.update(config_metric_calculator) pretty = json.dumps(report, indent=4) res = "%.3f" % (report["res"][eval_metric] * 100) logging.info(pretty) logging.info(f"Overall {eval_metric} is {res} %") ## Writer report_file = "report.json" if "report_filename" in cfg.writer and cfg.writer.report_filename: report_file = cfg.writer.report_filename with open(report_file, "a") as fout: json.dump(report, fout) fout.write('\n') fout.flush() if __name__ == "__main__": main()
NeMo-main
tools/asr_evaluator/asr_evaluator.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import subprocess import tempfile from pathlib import Path from typing import Tuple from omegaconf import DictConfig, OmegaConf, open_dict from nemo.utils import logging def run_asr_inference(cfg: DictConfig) -> DictConfig: """ Execute ASR inference based on input mode and parameters. """ if (cfg.model_path and cfg.pretrained_name) or (not cfg.model_path and not cfg.pretrained_name): raise ValueError("Please specify either cfg.model_path or cfg.pretrained_name!") if cfg.inference.decoder_type not in [None, 'ctc', 'rnnt']: raise ValueError("decoder_type could only be null, ctc or rnnt") if cfg.inference.mode == "offline": cfg = run_offline_inference(cfg) elif cfg.inference.mode == "chunked": if ( "total_buffer_in_secs" not in cfg.inference or "chunk_len_in_secs" not in cfg.inference or not cfg.inference.total_buffer_in_secs or not cfg.inference.chunk_len_in_secs ): raise ValueError(f"Please specify both total_buffer_in_secs and chunk_len_in_secs for chunked inference") cfg = run_chunked_inference(cfg) elif cfg.inference.mode == "offline_by_chunked": # When use Conformer to transcribe long audio sample, we could probably encounter CUDA out of memory issue. # Here we use offline_by_chunked mode to simulate offline mode for Conformer. # And we specify default total_buffer_in_secs=22 and chunk_len_in_secs=20 to avoid above problem. OmegaConf.set_struct(cfg, True) if 'total_buffer_in_secs' not in cfg.inference or not cfg.inference.total_buffer_in_secs: with open_dict(cfg): cfg.inference.total_buffer_in_secs = 22 logging.info( f"Does not provide total_buffer_in_secs required by {cfg.inference.mode} mode. Using default value {cfg.inference.total_buffer_in_secs}" ) if 'chunk_len_in_secs' not in cfg.inference or not cfg.inference.chunk_len_in_secs: with open_dict(cfg): cfg.inference.chunk_len_in_secs = 20 logging.info( f"Does not provide total_buffer_in_secs required by {cfg.inference.mode} mode. Using default value {cfg.inference.chunk_len_in_secs}" ) cfg = run_chunked_inference(cfg) else: raise ValueError(f"inference could only be offline or chunked, but got {cfg.inference.mode}") return cfg def run_chunked_inference(cfg: DictConfig) -> DictConfig: if "output_filename" not in cfg or not cfg.output_filename: if cfg.model_path: model_name = Path(cfg.model_path).stem else: model_name = cfg.pretrained_name dataset_name = Path(cfg.test_ds.manifest_filepath).stem mode_name = ( cfg.inference.mode + "B" + str(cfg.inference.total_buffer_in_secs) + "C" + str(cfg.inference.chunk_len_in_secs) ) OmegaConf.set_struct(cfg, True) with open_dict(cfg): cfg.output_filename = model_name + "-" + dataset_name + "-" + mode_name + ".json" script_path = ( Path(__file__).parents[2] / "examples" / "asr" / "asr_chunked_inference" / "ctc" / "speech_to_text_buffered_infer_ctc.py" ) use_rnnt_scrpit = False # hybrid model if (cfg.pretrained_name and 'hybrid' in cfg.pretrained_name.lower()) or ( cfg.model_path and 'hybrid' in cfg.model_path.lower() ): if cfg.inference.decoder_type != 'ctc': use_rnnt_scrpit = True # rnnt model elif ( (cfg.pretrained_name and 'rnnt' in cfg.pretrained_name.lower()) or (cfg.pretrained_name and 'transducer' in cfg.pretrained_name.lower()) or (cfg.model_path and 'rnnt' in cfg.model_path.lower()) or (cfg.model_path and 'transducer' in cfg.model_path.lower()) ): if cfg.inference.decoder_type and cfg.inference.decoder_type != 'rnnt': raise ValueError( f"rnnt models only support rnnt deocoding! Current decoder_type: {cfg.inference.decoder_type}! Change it to null or rnnt for rnnt models" ) use_rnnt_scrpit = True # ctc model elif (cfg.pretrained_name and 'ctc' in cfg.pretrained_name.lower()) or ( cfg.model_path and 'ctc' in cfg.model_path.lower() ): if cfg.inference.decoder_type and cfg.inference.decoder_type != 'ctc': raise ValueError( f"ctc models only support ctc deocoding! Current decoder_type: {cfg.inference.decoder_type}! Change it to null or ctc for ctc models" ) else: raise ValueError( "Please make sure your pretrained_name or model_path contains \n\ 'hybrid' for EncDecHybridRNNTCTCModel model, \n\ 'transducer/rnnt' for EncDecRNNTModel model or \n\ 'ctc' for EncDecCTCModel." ) if use_rnnt_scrpit: script_path = ( Path(__file__).parents[2] / "examples" / "asr" / "asr_chunked_inference" / "rnnt" / "speech_to_text_buffered_infer_rnnt.py" ) # If need to change other config such as decoding strategy, could either: # 1) change TranscriptionConfig on top of the executed scripts such as speech_to_text_buffered_infer_rnnt.py, or # 2) add command as "decoding.strategy=greedy_batch " to below script base_cmd = f"python {script_path} \ calculate_wer=False \ model_path={cfg.model_path} \ pretrained_name={cfg.pretrained_name} \ dataset_manifest={cfg.test_ds.manifest_filepath} \ output_filename={cfg.output_filename} \ random_seed={cfg.random_seed} \ batch_size={cfg.test_ds.batch_size} \ num_workers={cfg.test_ds.num_workers} \ chunk_len_in_secs={cfg.inference.chunk_len_in_secs} \ total_buffer_in_secs={cfg.inference.total_buffer_in_secs} \ model_stride={cfg.inference.model_stride} " subprocess.run( base_cmd, shell=True, check=True, ) return cfg def run_offline_inference(cfg: DictConfig) -> DictConfig: if "output_filename" not in cfg or not cfg.output_filename: if cfg.model_path: model_name = Path(cfg.model_path).stem else: model_name = cfg.pretrained_name dataset_name = Path(cfg.test_ds.manifest_filepath).stem mode_name = cfg.inference.mode OmegaConf.set_struct(cfg, True) with open_dict(cfg): cfg.output_filename = model_name + "-" + dataset_name + "-" + mode_name + ".json" with tempfile.NamedTemporaryFile(mode='w', encoding='utf-8') as f: OmegaConf.save(cfg, f) f.seek(0) # reset file pointer script_path = Path(__file__).parents[2] / "examples" / "asr" / "transcribe_speech.py" # If need to change other config such as decoding strategy, could either: # 1) change TranscriptionConfig on top of the executed scripts such as transcribe_speech.py in examples/asr, or # 2) add command as "rnnt_decoding.strategy=greedy_batch " to below script subprocess.run( f"python {script_path} " f"calculate_wer=False " f"model_path={cfg.model_path} " f"pretrained_name={cfg.pretrained_name} " f"dataset_manifest={cfg.test_ds.manifest_filepath} " f"output_filename={cfg.output_filename} " f"batch_size={cfg.test_ds.batch_size} " f"num_workers={cfg.test_ds.num_workers} " f"random_seed={cfg.random_seed} " f"eval_config_yaml={f.name} " f"decoder_type={cfg.inference.decoder_type} ", shell=True, check=True, ) return cfg def cal_target_metadata_wer(manifest: str, target: str, meta_cfg: DictConfig, eval_metric: str = "wer",) -> dict: """ Caculating number of samples (samples), number of words/characters/tokens (tokens), wer/cer, insertion error rate (ins_rate), deletion error rate (del_rate), substitution error rate (sub_rate) of the group/slot of target metadata. The group could be [female, male] or slot group like [0-2s, 2-5s, >5s audios] Args: manifest (str): Filepath of the generated manifest which contains prediction and eval result for each samples. target (str): Target metadata. Execute the target metadata if field presents in manifest. such as 'duration', 'speaker', 'emotion', etc. meta_cfg (DictConfig): Config for calculating group eval_metric for the target metadata. eval_metric: (str): Supported evaluation metrics. Currently support 'wer' and 'cer'. Return: ret (dict): Generated dictionary containing all results regarding the target metadata. """ if eval_metric not in ['wer', 'cer']: raise ValueError( "Currently support wer and cer as eval_metric. Please implement it in cal_target_metadata_wer if using different eval_metric" ) wer_per_class = {} with open(manifest, 'r') as fp: for line in fp: sample = json.loads(line) if target in sample: target_class = sample[target] if target_class not in wer_per_class: wer_per_class[target_class] = { 'samples': 0, 'tokens': 0, "errors": 0, "inss": 0, "dels": 0, "subs": 0, } wer_per_class[target_class]['samples'] += 1 tokens = sample["tokens"] wer_per_class[target_class]["tokens"] += tokens wer_per_class[target_class]["errors"] += tokens * sample[eval_metric] wer_per_class[target_class]["inss"] += tokens * sample["ins_rate"] wer_per_class[target_class]["dels"] += tokens * sample["del_rate"] wer_per_class[target_class]["subs"] += tokens * sample["sub_rate"] if len(wer_per_class) > 0: res_wer_per_class = {} for target_class in wer_per_class: res_wer_per_class[target_class] = {} res_wer_per_class[target_class]["samples"] = wer_per_class[target_class]["samples"] res_wer_per_class[target_class][eval_metric] = ( wer_per_class[target_class]["errors"] / wer_per_class[target_class]["tokens"] ) res_wer_per_class[target_class]["tokens"] = wer_per_class[target_class]["tokens"] res_wer_per_class[target_class]["ins_rate"] = ( wer_per_class[target_class]["inss"] / wer_per_class[target_class]["tokens"] ) res_wer_per_class[target_class]["del_rate"] = ( wer_per_class[target_class]["dels"] / wer_per_class[target_class]["tokens"] ) res_wer_per_class[target_class]["sub_rate"] = ( wer_per_class[target_class]["subs"] / wer_per_class[target_class]["tokens"] ) else: logging.info(f"metadata '{target}' does not present in manifest. Skipping! ") return None values = ['samples', 'tokens', 'errors', 'inss', 'dels', 'subs'] slot_wer = {} if 'slot' in meta_cfg and meta_cfg.slot: for target_class in wer_per_class: for s in meta_cfg.slot: if isinstance(s[0], float) or isinstance(s[0], int): if s[0] <= target_class < s[1]: slot_key = "slot-" + ",".join(str(i) for i in s) if slot_key not in slot_wer: slot_wer[slot_key] = { 'samples': 0, 'tokens': 0, "errors": 0, "inss": 0, "dels": 0, "subs": 0, } for v in values: slot_wer[slot_key][v] += wer_per_class[target_class][v] break elif isinstance(s[0], str): if target_class in s: slot_key = "slot-" + ",".join(s) if slot_key not in slot_wer: slot_wer[slot_key] = { 'samples': 0, 'tokens': 0, "errors": 0, "inss": 0, "dels": 0, "subs": 0, } for v in values: slot_wer[slot_key][v] += wer_per_class[target_class][v] break else: raise ValueError("Current only support target metadata belongs to numeric or string ") for slot_key in slot_wer: slot_wer[slot_key][eval_metric] = slot_wer[slot_key]['errors'] / slot_wer[slot_key]['tokens'] slot_wer[slot_key]['ins_rate'] = slot_wer[slot_key]['inss'] / slot_wer[slot_key]['tokens'] slot_wer[slot_key]['del_rate'] = slot_wer[slot_key]['dels'] / slot_wer[slot_key]['tokens'] slot_wer[slot_key]['sub_rate'] = slot_wer[slot_key]['subs'] / slot_wer[slot_key]['tokens'] slot_wer[slot_key].pop('errors') slot_wer[slot_key].pop('inss') slot_wer[slot_key].pop('dels') slot_wer[slot_key].pop('subs') res_wer_per_class.update(slot_wer) ret = None if meta_cfg.save_wer_per_class: ret = res_wer_per_class if (not meta_cfg.save_wer_per_class) and ('slot' in meta_cfg and meta_cfg.slot): ret = slot_wer return ret
NeMo-main
tools/asr_evaluator/utils.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from concurrent import futures import api.nmt_pb2 as nmt import api.nmt_pb2_grpc as nmtsrv import grpc import torch import nemo.collections.nlp as nemo_nlp from nemo.utils import logging def get_args(): parser = argparse.ArgumentParser() parser.add_argument( "--model_dir", required=True, type=str, help="Path to a folder containing .nemo translation model files.", ) parser.add_argument( "--punctuation_model", default="", type=str, help="Optionally provide a path a .nemo file for punctation and capitalization (recommend if working with Riva speech recognition outputs)", ) parser.add_argument("--port", default=50052, type=int, required=False) parser.add_argument("--batch_size", type=int, default=256, help="Maximum number of batches to process") parser.add_argument("--beam_size", type=int, default=1, help="Beam Size") parser.add_argument("--len_pen", type=float, default=0.6, help="Length Penalty") parser.add_argument("--max_delta_length", type=int, default=5, help="Max Delta Generation Length.") args = parser.parse_args() return args def batches(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i : i + n] class RivaTranslateServicer(nmtsrv.RivaTranslateServicer): """Provides methods that implement functionality of route guide server.""" def __init__( self, model_dir, punctuation_model_path, beam_size=1, len_pen=0.6, max_delta_length=5, batch_size=256, ): self._models = {} self._beam_size = beam_size self._len_pen = len_pen self._max_delta_length = max_delta_length self._batch_size = batch_size self._punctuation_model_path = punctuation_model_path self._model_dir = model_dir model_paths = [os.path.join(model_dir, fname) for fname in os.listdir(model_dir) if fname.endswith('.nemo')] for idx, model_path in enumerate(model_paths): assert os.path.exists(model_path) logging.info(f"Loading model {model_path}") self._load_model(model_path) if self._punctuation_model_path != "": assert os.path.exists(punctuation_model_path) logging.info(f"Loading punctuation model {model_path}") self._load_puncutation_model(punctuation_model_path) logging.info("Models loaded. Ready for inference requests.") def _load_puncutation_model(self, punctuation_model_path): if punctuation_model_path.endswith(".nemo"): self.punctuation_model = nemo_nlp.models.PunctuationCapitalizationModel.restore_from( restore_path=punctuation_model_path ) self.punctuation_model.eval() else: raise NotImplemented(f"Only support .nemo files, but got: {punctuation_model_path}") if torch.cuda.is_available(): self.punctuation_model = self.punctuation_model.cuda() def _load_model(self, model_path): if model_path.endswith(".nemo"): logging.info("Attempting to initialize from .nemo file") model = nemo_nlp.models.machine_translation.MTEncDecModel.restore_from(restore_path=model_path) model = model.eval() model.beam_search.beam_size = self._beam_size model.beam_search.len_pen = self._len_pen model.beam_search.max_delta_length = self._max_delta_length if torch.cuda.is_available(): model = model.cuda() else: raise NotImplemented(f"Only support .nemo files, but got: {model_path}") if not hasattr(model, "src_language") or not hasattr(model, "tgt_language"): raise ValueError( f"Could not find src_language and tgt_language in model attributes. If using NeMo rc1 checkpoints, please edit the config files to add model.src_language and model.tgt_language" ) src_language = model.src_language tgt_language = model.tgt_language if src_language not in self._models: self._models[src_language] = {} if tgt_language not in self._models[src_language]: self._models[src_language][tgt_language] = model if torch.cuda.is_available(): self._models[src_language][tgt_language] = self._models[src_language][tgt_language].cuda() else: raise ValueError(f"Already found model for language pair {src_language}-{tgt_language}") def TranslateText(self, request, context): logging.info(f"Request received w/ {len(request.texts)} utterances") results = [] if request.source_language not in self._models: context.set_code(grpc.StatusCode.INVALID_ARGUMENT) context.set_details( f"Could not find source-target language pair {request.source_language}-{request.target_language} in list of models." ) return nmt.TranslateTextResponse() if request.target_language not in self._models[request.source_language]: context.set_code(grpc.StatusCode.INVALID_ARGUMENT) context.set_details( f"Could not find source-target language pair {request.source_language}-{request.target_language} in list of models." ) return nmt.TranslateTextResponse() request_strings = [x for x in request.texts] for batch in batches(request_strings, self._batch_size): if self._punctuation_model_path != "": batch = self.punctuation_model.add_punctuation_capitalization(batch) batch_results = self._models[request.source_language][request.target_language].translate(text=batch) translations = [nmt.Translation(translation=x) for x in batch_results] results.extend(translations) return nmt.TranslateTextResponse(translations=results) def serve(): args = get_args() server = grpc.server(futures.ThreadPoolExecutor(max_workers=10)) servicer = RivaTranslateServicer( model_dir=args.model_dir, punctuation_model_path=args.punctuation_model, beam_size=args.beam_size, len_pen=args.len_pen, batch_size=args.batch_size, max_delta_length=args.max_delta_length, ) nmtsrv.add_RivaTranslateServicer_to_server(servicer, server) server.add_insecure_port('[::]:' + str(args.port)) server.start() server.wait_for_termination() if __name__ == '__main__': serve()
NeMo-main
tools/nmt_grpc_service/server.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from time import time import api.nmt_pb2 as nmt import api.nmt_pb2_grpc as nmtsrv import grpc def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--target_language", default="es", type=str, required=True) parser.add_argument("--source_language", default="en", type=str, required=True) parser.add_argument("--text", default="Hello!", type=str, required=True) parser.add_argument("--server_url", default='localhost:50052', type=str, required=False) args = parser.parse_args() return args if __name__ == '__main__': args = get_args() with grpc.insecure_channel(f'{args.server_url}') as channel: stub = nmtsrv.RivaTranslateStub(channel) iterations = 1 start_time = time() for _ in range(iterations): req = nmt.TranslateTextRequest( texts=[args.text], source_language=args.source_language, target_language=args.target_language ) result = stub.TranslateText(req) end_time = time() print(f"Time to complete {iterations} synchronous requests: {end_time-start_time}") print(result) print(result.translations[0].translation)
NeMo-main
tools/nmt_grpc_service/client.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import sys import wave import api.nmt_pb2 as nmt import api.nmt_pb2_grpc as nmtsrv import grpc import pyaudio import riva_api.audio_pb2 as riva import riva_api.riva_asr_pb2 as rivaasr import riva_api.riva_asr_pb2_grpc as rivaasr_srv def get_args(): parser = argparse.ArgumentParser(description="Streaming transcription via Riva AI Speech Services") parser.add_argument("--riva-server", default="localhost:50051", type=str, help="URI to GRPC server endpoint") parser.add_argument("--audio-file", required=True, help="path to local file to stream") parser.add_argument("--output-device", type=int, default=None, help="output device to use") parser.add_argument("--list-devices", action="store_true", help="list output devices indices") parser.add_argument("--nmt-server", default="localhost:50052", help="port on which NMT server runs") parser.add_argument("--asr_only", action="store_true", help="Whether to skip MT and just display") parser.add_argument("--target_language", default="es", help="Target language to translate into.") parser.add_argument( "--asr_punctuation", action="store_true", help="Whether to use Riva's punctuation model for ASR transcript postprocessing.", ) return parser.parse_args() def listen_print_loop(responses, nmt_stub, target_language, asr_only=False): num_chars_printed = 0 prev_utterances = [] for response in responses: if not response.results: continue result = response.results[0] if not result.alternatives: continue transcript = result.alternatives[0].transcript original_transcript = transcript if not asr_only: req = nmt.TranslateTextRequest(texts=[transcript], source_language='en', target_language=target_language) translation = nmt_stub.TranslateText(req).translations[0].translation transcript = translation overwrite_chars = ' ' * (num_chars_printed - len(transcript)) if not result.is_final: sys.stdout.write(">> " + transcript + overwrite_chars + '\r') sys.stdout.flush() num_chars_printed = len(transcript) + 3 else: print("## " + transcript + overwrite_chars + "\n") num_chars_printed = 0 prev_utterances.append(original_transcript) CHUNK = 1024 args = get_args() wf = wave.open(args.audio_file, 'rb') channel = grpc.insecure_channel(args.riva_server) client = rivaasr_srv.RivaSpeechRecognitionStub(channel) nmt_channel = grpc.insecure_channel(args.nmt_server) nmt_stub = nmtsrv.RivaTranslateStub(nmt_channel) config = rivaasr.RecognitionConfig( encoding=riva.AudioEncoding.LINEAR_PCM, sample_rate_hertz=wf.getframerate(), language_code="en-US", max_alternatives=1, enable_automatic_punctuation=args.asr_punctuation, ) streaming_config = rivaasr.StreamingRecognitionConfig(config=config, interim_results=True) # instantiate PyAudio (1) p = pyaudio.PyAudio() if args.list_devices: for i in range(p.get_device_count()): info = p.get_device_info_by_index(i) if info['maxOutputChannels'] < 1: continue print(f"{info['index']}: {info['name']}") sys.exit(0) # open stream (2) stream = p.open( output_device_index=args.output_device, format=p.get_format_from_width(wf.getsampwidth()), channels=wf.getnchannels(), rate=wf.getframerate(), output=True, ) # read data def generator(w, s): d = w.readframes(CHUNK) yield rivaasr.StreamingRecognizeRequest(streaming_config=s) while len(d) > 0: yield rivaasr.StreamingRecognizeRequest(audio_content=d) stream.write(d) d = w.readframes(CHUNK) return responses = client.StreamingRecognize(generator(wf, streaming_config)) listen_print_loop(responses, nmt_stub, target_language=args.target_language, asr_only=args.asr_only) # stop stream (4) stream.stop_stream() stream.close() # close PyAudio (5) p.terminate()
NeMo-main
tools/nmt_grpc_service/asr_nmt_client.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: nmt.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='nmt.proto', package='nvidia.riva.nmt', syntax='proto3', serialized_options=b'Z\026nvidia.com/riva_speech\370\001\001', create_key=_descriptor._internal_create_key, serialized_pb=b'\n\tnmt.proto\x12\x0fnvidia.riva.nmt\"W\n\x14TranslateTextRequest\x12\r\n\x05texts\x18\x01 \x03(\t\x12\x17\n\x0fsource_language\x18\x03 \x01(\t\x12\x17\n\x0ftarget_language\x18\x04 \x01(\t\"4\n\x0bTranslation\x12\x13\n\x0btranslation\x18\x01 \x01(\t\x12\x10\n\x08language\x18\x02 \x01(\t\"K\n\x15TranslateTextResponse\x12\x32\n\x0ctranslations\x18\x01 \x03(\x0b\x32\x1c.nvidia.riva.nmt.Translation2q\n\rRivaTranslate\x12`\n\rTranslateText\x12%.nvidia.riva.nmt.TranslateTextRequest\x1a&.nvidia.riva.nmt.TranslateTextResponse\"\x00\x42\x1bZ\x16nvidia.com/riva_speech\xf8\x01\x01\x62\x06proto3', ) _TRANSLATETEXTREQUEST = _descriptor.Descriptor( name='TranslateTextRequest', full_name='nvidia.riva.nmt.TranslateTextRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='texts', full_name='nvidia.riva.nmt.TranslateTextRequest.texts', index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name='source_language', full_name='nvidia.riva.nmt.TranslateTextRequest.source_language', index=1, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name='target_language', full_name='nvidia.riva.nmt.TranslateTextRequest.target_language', index=2, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[], serialized_start=30, serialized_end=117, ) _TRANSLATION = _descriptor.Descriptor( name='Translation', full_name='nvidia.riva.nmt.Translation', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='translation', full_name='nvidia.riva.nmt.Translation.translation', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), _descriptor.FieldDescriptor( name='language', full_name='nvidia.riva.nmt.Translation.language', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[], serialized_start=119, serialized_end=171, ) _TRANSLATETEXTRESPONSE = _descriptor.Descriptor( name='TranslateTextResponse', full_name='nvidia.riva.nmt.TranslateTextResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='translations', full_name='nvidia.riva.nmt.TranslateTextResponse.translations', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, ), ], extensions=[], nested_types=[], enum_types=[], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[], serialized_start=173, serialized_end=248, ) _TRANSLATETEXTRESPONSE.fields_by_name['translations'].message_type = _TRANSLATION DESCRIPTOR.message_types_by_name['TranslateTextRequest'] = _TRANSLATETEXTREQUEST DESCRIPTOR.message_types_by_name['Translation'] = _TRANSLATION DESCRIPTOR.message_types_by_name['TranslateTextResponse'] = _TRANSLATETEXTRESPONSE _sym_db.RegisterFileDescriptor(DESCRIPTOR) TranslateTextRequest = _reflection.GeneratedProtocolMessageType( 'TranslateTextRequest', (_message.Message,), { 'DESCRIPTOR': _TRANSLATETEXTREQUEST, '__module__': 'nmt_pb2' # @@protoc_insertion_point(class_scope:nvidia.riva.nmt.TranslateTextRequest) }, ) _sym_db.RegisterMessage(TranslateTextRequest) Translation = _reflection.GeneratedProtocolMessageType( 'Translation', (_message.Message,), { 'DESCRIPTOR': _TRANSLATION, '__module__': 'nmt_pb2' # @@protoc_insertion_point(class_scope:nvidia.riva.nmt.Translation) }, ) _sym_db.RegisterMessage(Translation) TranslateTextResponse = _reflection.GeneratedProtocolMessageType( 'TranslateTextResponse', (_message.Message,), { 'DESCRIPTOR': _TRANSLATETEXTRESPONSE, '__module__': 'nmt_pb2' # @@protoc_insertion_point(class_scope:nvidia.riva.nmt.TranslateTextResponse) }, ) _sym_db.RegisterMessage(TranslateTextResponse) DESCRIPTOR._options = None _RIVATRANSLATE = _descriptor.ServiceDescriptor( name='RivaTranslate', full_name='nvidia.riva.nmt.RivaTranslate', file=DESCRIPTOR, index=0, serialized_options=None, create_key=_descriptor._internal_create_key, serialized_start=250, serialized_end=363, methods=[ _descriptor.MethodDescriptor( name='TranslateText', full_name='nvidia.riva.nmt.RivaTranslate.TranslateText', index=0, containing_service=None, input_type=_TRANSLATETEXTREQUEST, output_type=_TRANSLATETEXTRESPONSE, serialized_options=None, create_key=_descriptor._internal_create_key, ), ], ) _sym_db.RegisterServiceDescriptor(_RIVATRANSLATE) DESCRIPTOR.services_by_name['RivaTranslate'] = _RIVATRANSLATE # @@protoc_insertion_point(module_scope)
NeMo-main
tools/nmt_grpc_service/api/nmt_pb2.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! """Client and server classes corresponding to protobuf-defined services.""" import grpc from . import nmt_pb2 as nmt__pb2 class RivaTranslateStub(object): """Riva NLP Services implement task-specific APIs for popular NLP tasks including intent recognition (as well as slot filling), and entity extraction. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.TranslateText = channel.unary_unary( '/nvidia.riva.nmt.RivaTranslate/TranslateText', request_serializer=nmt__pb2.TranslateTextRequest.SerializeToString, response_deserializer=nmt__pb2.TranslateTextResponse.FromString, ) class RivaTranslateServicer(object): """Riva NLP Services implement task-specific APIs for popular NLP tasks including intent recognition (as well as slot filling), and entity extraction. """ def TranslateText(self, request, context): """Missing associated documentation comment in .proto file.""" context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_RivaTranslateServicer_to_server(servicer, server): rpc_method_handlers = { 'TranslateText': grpc.unary_unary_rpc_method_handler( servicer.TranslateText, request_deserializer=nmt__pb2.TranslateTextRequest.FromString, response_serializer=nmt__pb2.TranslateTextResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler('nvidia.riva.nmt.RivaTranslate', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) # This class is part of an EXPERIMENTAL API. class RivaTranslate(object): """Riva NLP Services implement task-specific APIs for popular NLP tasks including intent recognition (as well as slot filling), and entity extraction. """ @staticmethod def TranslateText( request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None, ): return grpc.experimental.unary_unary( request, target, '/nvidia.riva.nmt.RivaTranslate/TranslateText', nmt__pb2.TranslateTextRequest.SerializeToString, nmt__pb2.TranslateTextResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata, )
NeMo-main
tools/nmt_grpc_service/api/nmt_pb2_grpc.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. MAJOR = 1 MINOR = 21 PATCH = 0 PRE_RELEASE = 'rc0' # Use the following formatting: (major, minor, patch, pre-release) VERSION = (MAJOR, MINOR, PATCH, PRE_RELEASE) __shortversion__ = '.'.join(map(str, VERSION[:3])) __version__ = '.'.join(map(str, VERSION[:3])) + ''.join(VERSION[3:]) __package_name__ = 'nemo_toolkit' __contact_names__ = 'NVIDIA' __contact_emails__ = 'nemo-toolkit@nvidia.com' __homepage__ = 'https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/' __repository_url__ = 'https://github.com/nvidia/nemo' __download_url__ = 'https://github.com/NVIDIA/NeMo/releases' __description__ = 'NeMo - a toolkit for Conversational AI' __license__ = 'Apache2' __keywords__ = 'deep learning, machine learning, gpu, NLP, NeMo, nvidia, pytorch, torch, tts, speech, language'
NeMo-main
nemo/package_info.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. NEMO_ENV_VARNAME_ENABLE_COLORING = "NEMO_ENABLE_COLORING" NEMO_ENV_VARNAME_REDIRECT_LOGS_TO_STDERR = "NEMO_REDIRECT_LOGS_TO_STDERR" NEMO_ENV_VARNAME_TESTING = "NEMO_TESTING" # Set to True to enable nemo.util.logging's debug mode NEMO_ENV_VARNAME_VERSION = "NEMO_EXPM_VERSION" # Used for nemo.utils.exp_manager versioning NEMO_ENV_CACHE_DIR = "NEMO_CACHE_DIR" # Used to change default nemo cache directory NEMO_ENV_DATA_STORE_CACHE_DIR = "NEMO_DATA_STORE_CACHE_DIR" # Used to change default nemo data store cache directory NEMO_ENV_DATA_STORE_CACHE_SHARED = "NEMO_DATA_STORE_CACHE_SHARED" # Shared among nodes (1) or not shared (0)
NeMo-main
nemo/constants.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.package_info import ( __contact_emails__, __contact_names__, __description__, __download_url__, __homepage__, __keywords__, __license__, __package_name__, __repository_url__, __shortversion__, __version__, )
NeMo-main
nemo/__init__.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import nemo.core.neural_types from nemo.core.classes import *
NeMo-main
nemo/core/__init__.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # Copyright 2015 and onwards Google, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations # necessary for lazy types evaluation import os import shutil import tarfile import tempfile import uuid from typing import Optional, Set, Union import torch from omegaconf import DictConfig, OmegaConf from omegaconf.omegaconf import open_dict from pytorch_lightning.trainer.trainer import Trainer from nemo.core import classes as nemo_classes # to avoid circular import do not import ModelPT directly from nemo.utils import logging, model_utils from nemo.utils.app_state import AppState from nemo.utils.get_rank import is_global_rank_zero from nemo.utils.model_utils import inject_model_parallel_rank class SaveRestoreConnector: def __init__(self) -> None: self._model_config_yaml = "model_config.yaml" self._model_weights_ckpt = "model_weights.ckpt" self._model_extracted_dir = None def save_to(self, model: "nemo_classes.ModelPT", save_path: str): """ Saves model instance (weights and configuration) into .nemo file. You can use "restore_from" method to fully restore instance from .nemo file. .nemo file is an archive (tar.gz) with the following: model_config.yaml - model configuration in .yaml format. You can deserialize this into cfg argument for model's constructor model_wights.ckpt - model checkpoint Args: model: ModelPT object to be saved. save_path: Path to .nemo file where model instance should be saved """ if is_global_rank_zero(): with tempfile.TemporaryDirectory() as tmpdir: config_yaml = os.path.join(tmpdir, self.model_config_yaml) model_weights = os.path.join(tmpdir, self.model_weights_ckpt) model.to_config_file(path2yaml_file=config_yaml) # update subconfigs, if there are child model, since child model can change its config self._update_subconfigs(model, path2yaml_file=config_yaml) if model.has_native_or_submodules_artifacts(): self._handle_artifacts(model, nemo_file_folder=tmpdir) # We should not update self._cfg here - the model can still be in use self._update_artifact_paths(model, path2yaml_file=config_yaml) self._save_state_dict_to_disk(model.state_dict(), model_weights) self._make_nemo_file_from_folder(filename=save_path, source_dir=tmpdir) else: return def load_config_and_state_dict( self, calling_cls, restore_path: str, override_config_path: Optional[Union[OmegaConf, str]] = None, map_location: Optional[torch.device] = None, strict: bool = True, return_config: bool = False, trainer: Trainer = None, ): """ Restores model instance (weights and configuration) into .nemo file Args: restore_path: path to .nemo file from which model should be instantiated override_config_path: path to a yaml config that will override the internal config file or an OmegaConf / DictConfig object representing the model config. map_location: Optional torch.device() to map the instantiated model to a device. By default (None), it will select a GPU if available, falling back to CPU otherwise. strict: Passed to load_state_dict. By default True return_config: If set to true, will return just the underlying config of the restored model as an OmegaConf DictConfig object without instantiating the model. Example: ``` model = nemo.collections.asr.models.EncDecCTCModel.restore_from('asr.nemo') assert isinstance(model, nemo.collections.asr.models.EncDecCTCModel) ``` Returns: An instance of type cls or its underlying config (if return_config is set). """ # Get path where the command is executed - the artifacts will be "retrieved" there # (original .nemo behavior) cwd = os.getcwd() if map_location is None: if torch.cuda.is_available(): map_location = torch.device('cuda') else: map_location = torch.device('cpu') app_state = AppState() with tempfile.TemporaryDirectory() as tmpdir: try: # Check if self.model_extracted_dir is set, and is a valid path if self.model_extracted_dir is not None and os.path.isdir(self.model_extracted_dir): # Log that NeMo will use the provided `model_extracted_dir` logging.info( f"Restoration will occur within pre-extracted directory : " f"`{self.model_extracted_dir}`." ) # Override `tmpdir` above with the pre-extracted `model_extracted_dir` tmpdir = self.model_extracted_dir else: # Extract the nemo file into the temporary directory self._unpack_nemo_file( path2file=restore_path, out_folder=tmpdir, extract_config_only=return_config is True ) # Change current working directory to os.chdir(tmpdir) if override_config_path is None: config_yaml = self.model_config_yaml else: # can be str path or OmegaConf / DictConfig object config_yaml = override_config_path if not isinstance(config_yaml, (OmegaConf, DictConfig)): conf = OmegaConf.load(config_yaml) else: conf = config_yaml if override_config_path is not None: # Resolve the override config conf = OmegaConf.to_container(conf, resolve=True) conf = OmegaConf.create(conf) # If override is top level config, extract just `model` from it if 'model' in conf: conf = conf.model if return_config: instance = conf return instance else: if app_state.model_parallel_size is not None and app_state.model_parallel_size > 1: model_weights = self._inject_model_parallel_rank_for_ckpt(tmpdir, self.model_weights_ckpt) else: model_weights = os.path.join(tmpdir, self.model_weights_ckpt) OmegaConf.set_struct(conf, True) os.chdir(cwd) # get the class calling_cls._set_model_restore_state(is_being_restored=True, folder=tmpdir) instance = calling_cls.from_config_dict(config=conf, trainer=trainer) instance = instance.to(map_location) # add load_state_dict override if app_state.model_parallel_size is not None and app_state.model_parallel_size > 1: model_weights = self._inject_model_parallel_rank_for_ckpt(tmpdir, self.model_weights_ckpt) state_dict = self._load_state_dict_from_disk(model_weights, map_location=map_location) finally: os.chdir(cwd) return (conf, instance, state_dict) def modify_state_dict(self, conf, state_dict): """ Utility method that allows to modify the state dict before loading parameters into a model. Args: conf: A model level OmegaConf object. state_dict: The state dict restored from the checkpoint. Returns: A potentially modified state dict. """ # NOTE and TODO (sandeepsub) This is duplicated across save_restore_connector and nlp_save_restore_connector. This shouldn't be here. if conf.get('megatron_amp_O2', False): new_state_dict = {} for key in state_dict.keys(): new_key = key.replace('model.', 'model.module.', 1) new_state_dict[new_key] = state_dict[key] state_dict = new_state_dict return state_dict def load_instance_with_state_dict(self, instance, state_dict, strict): """ Utility method that loads a model instance with the (potentially modified) state dict. Args: instance: ModelPT subclass instance. state_dict: The state dict (which may have been modified) strict: Bool, whether to perform strict checks when loading the state dict. """ instance.load_state_dict(state_dict, strict=strict) instance._set_model_restore_state(is_being_restored=False) def restore_from( self, calling_cls, restore_path: str, override_config_path: Optional[Union[OmegaConf, str]] = None, map_location: Optional[torch.device] = None, strict: bool = True, return_config: bool = False, trainer: Trainer = None, ): """ Restores model instance (weights and configuration) into .nemo file Args: restore_path: path to .nemo file from which model should be instantiated override_config_path: path to a yaml config that will override the internal config file or an OmegaConf / DictConfig object representing the model config. map_location: Optional torch.device() to map the instantiated model to a device. By default (None), it will select a GPU if available, falling back to CPU otherwise. strict: Passed to load_state_dict. By default True return_config: If set to true, will return just the underlying config of the restored model as an OmegaConf DictConfig object without instantiating the model. trainer: An optional Trainer object, passed to the model constructor. Example: ``` model = nemo.collections.asr.models.EncDecCTCModel.restore_from('asr.nemo') assert isinstance(model, nemo.collections.asr.models.EncDecCTCModel) ``` Returns: An instance of type cls or its underlying config (if return_config is set). """ # Get path where the command is executed - the artifacts will be "retrieved" there # (original .nemo behavior) loaded_params = self.load_config_and_state_dict( calling_cls, restore_path, override_config_path, map_location, strict, return_config, trainer, ) if not isinstance(loaded_params, tuple) or return_config is True: return loaded_params conf, instance, state_dict = loaded_params state_dict = self.modify_state_dict(conf, state_dict) self.load_instance_with_state_dict(instance, state_dict, strict) logging.info(f'Model {instance.__class__.__name__} was successfully restored from {restore_path}.') return instance def extract_state_dict_from(self, restore_path: str, save_dir: str, split_by_module: bool = False): """ Extract the state dict(s) from a provided .nemo tarfile and save it to a directory. Args: restore_path: path to .nemo file from which state dict(s) should be extracted save_dir: directory in which the saved state dict(s) should be stored split_by_module: bool flag, which determins whether the output checkpoint should be for the entire Model, or the individual module's that comprise the Model Example: To convert the .nemo tarfile into a single Model level PyTorch checkpoint :: state_dict = nemo.collections.asr.models.EncDecCTCModel.extract_state_dict_from('asr.nemo', './asr_ckpts') To restore a model from a Model level checkpoint :: model = nemo.collections.asr.models.EncDecCTCModel(cfg) # or any other method of restoration model.load_state_dict(torch.load("./asr_ckpts/model_weights.ckpt")) To convert the .nemo tarfile into multiple Module level PyTorch checkpoints :: state_dict = nemo.collections.asr.models.EncDecCTCModel.extract_state_dict_from('asr.nemo', './asr_ckpts', split_by_module=True) To restore a module from a Module level checkpoint :: model = nemo.collections.asr.models.EncDecCTCModel(cfg) # or any other method of restoration # load the individual components model.preprocessor.load_state_dict(torch.load("./asr_ckpts/preprocessor.ckpt")) model.encoder.load_state_dict(torch.load("./asr_ckpts/encoder.ckpt")) model.decoder.load_state_dict(torch.load("./asr_ckpts/decoder.ckpt")) Returns: The state dict that was loaded from the original .nemo checkpoint """ cwd = os.getcwd() save_dir = os.path.abspath(save_dir) if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) with tempfile.TemporaryDirectory() as tmpdir: try: self._unpack_nemo_file(path2file=restore_path, out_folder=tmpdir) os.chdir(tmpdir) model_weights = os.path.join(tmpdir, self.model_weights_ckpt) state_dict = self._load_state_dict_from_disk(model_weights) if not split_by_module: filepath = os.path.join(save_dir, self.model_weights_ckpt) self._save_state_dict_to_disk(state_dict, filepath) else: key_set = set([key.split(".")[0] for key in state_dict.keys()]) for primary_key in key_set: inner_keys = [key for key in state_dict.keys() if key.split(".")[0] == primary_key] state_dict_subset = { ".".join(inner_key.split(".")[1:]): state_dict[inner_key] for inner_key in inner_keys } filepath = os.path.join(save_dir, f"{primary_key}.ckpt") self._save_state_dict_to_disk(state_dict_subset, filepath) logging.info(f'Checkpoints from {restore_path} were successfully extracted into {save_dir}.') finally: os.chdir(cwd) return state_dict def register_artifact(self, model, config_path: str, src: str, verify_src_exists: bool = True): """ Register model artifacts with this function. These artifacts (files) will be included inside .nemo file when model.save_to("mymodel.nemo") is called. How it works: 1. It always returns existing absolute path which can be used during Model constructor call EXCEPTION: src is None or "" in which case nothing will be done and src will be returned 2. It will add (config_path, model_utils.ArtifactItem()) pair to self.artifacts .. code-block:: If "src" is local existing path: then it will be returned in absolute path form elif "src" starts with "nemo_file:unique_artifact_name": .nemo will be untarred to a temporary folder location and an actual existing path will be returned else: an error will be raised. WARNING: use .register_artifact calls in your models' constructors. The returned path is not guaranteed to exist after you have exited your model's constructor. Args: model: ModelPT object to register artifact for. config_path (str): Artifact key. Usually corresponds to the model config. src (str): Path to artifact. verify_src_exists (bool): If set to False, then the artifact is optional and register_artifact will return None even if src is not found. Defaults to True. Returns: str: If src is not None or empty it always returns absolute path which is guaranteed to exists during model instance life """ app_state = AppState() artifact_item = model_utils.ArtifactItem() # This is for backward compatibility, if the src objects exists simply inside of the tarfile # without its key having been overriden, this pathway will be used. src_obj_name = os.path.basename(src) if app_state.nemo_file_folder is not None: src_obj_path = os.path.abspath(os.path.join(app_state.nemo_file_folder, src_obj_name)) else: src_obj_path = src_obj_name # src is a local existing path - register artifact and return exact same path for usage by the model if os.path.exists(os.path.abspath(src)): return_path = os.path.abspath(src) artifact_item.path_type = model_utils.ArtifactPathType.LOCAL_PATH # this is the case when artifact must be retried from the nemo file # we are assuming that the location of the right nemo file is available from _MODEL_RESTORE_PATH elif src.startswith("nemo:"): return_path = os.path.abspath(os.path.join(app_state.nemo_file_folder, src[5:])) artifact_item.path_type = model_utils.ArtifactPathType.TAR_PATH # backward compatibility implementation elif os.path.exists(src_obj_path): return_path = src_obj_path artifact_item.path_type = model_utils.ArtifactPathType.TAR_PATH else: if verify_src_exists: raise FileNotFoundError( f"src path does not exist or it is not a path in nemo file. src value I got was: {src}. Absolute: {os.path.abspath(src)}" ) else: # artifact is optional and we simply return None return None assert os.path.exists(return_path) artifact_item.path = os.path.abspath(src) model.artifacts[config_path] = artifact_item # we were called by ModelPT if hasattr(model, "cfg"): with open_dict(model._cfg): OmegaConf.update(model.cfg, config_path, return_path) return return_path def _handle_artifacts(self, model, nemo_file_folder): tarfile_artifacts = [] app_state = AppState() # aggregate artifacts from self and all children recursively artifacts_containers = [] for _, config_path, module in model.named_nemo_modules(): if module.has_artifacts(): # NeMo model with artifacts artifacts_containers.append((config_path, module.artifacts)) if len(artifacts_containers) > 0 and (not hasattr(model, "artifacts") or model.artifacts is None): # model has no artifacts, but submodules have some model.artifacts = dict() for config_path, artifacts in artifacts_containers: for subconf_path, artiitem in artifacts.items(): conf_path = f"{config_path}.{subconf_path}" if config_path else f"{subconf_path}" if artiitem.path_type == model_utils.ArtifactPathType.LOCAL_PATH: if not os.path.exists(artiitem.path): raise FileNotFoundError(f"Artifact {conf_path} not found at location: {artiitem.path}") # Generate new uniq artifact name and copy it to nemo_file_folder # Note uuid.uuid4().hex is guaranteed to be 32 character long artifact_base_name = os.path.basename(artiitem.path) artifact_uniq_name = f"{uuid.uuid4().hex}_{artifact_base_name}" shutil.copy2(artiitem.path, os.path.join(nemo_file_folder, artifact_uniq_name)) # Update artifacts registry artiitem.hashed_path = "nemo:" + artifact_uniq_name model.artifacts[conf_path] = artiitem elif artiitem.path_type == model_utils.ArtifactPathType.TAR_PATH: # process all tarfile artifacts in one go, so preserve key-value pair tarfile_artifacts.append((conf_path, artiitem)) if subconf_path: # artifact from submodule model.artifacts[conf_path] = artiitem else: raise ValueError(f"Directly referencing artifacts from other nemo files isn't supported yet") # Process current tarfile artifacts by unpacking the previous tarfile and extract the artifacts # that are currently required. # artifacts can be native (from the model itself) and from submodules restoration_paths: Set[str] = set() # model + submodules restoration paths, handle only unique paths model_metadata = app_state.get_model_metadata_from_guid(model.model_guid) if model_metadata.restoration_path is not None: restoration_paths.add(model_metadata.restoration_path) # aggregate restoration paths for all submodules recursively for module in model.modules(): if isinstance(module, nemo_classes.ModelPT): # if NeMo model submodule_restoration_path = app_state.get_model_metadata_from_guid(module.model_guid).restoration_path if submodule_restoration_path is not None: restoration_paths.add(submodule_restoration_path) if len(tarfile_artifacts) > 0 and len(restoration_paths) == 0: # TODO: see cases when this can occur, and if we can fix them logging.warning("Model contains registered artifacts, but no restoration paths found") if len(tarfile_artifacts) > 0 and len(restoration_paths) > 0: # Need to step into nemo archive to extract file # Get path where the command is executed - the artifacts will be "retrieved" there # (original .nemo behavior) cwd = os.getcwd() # Step into the nemo archive to try and find the file # TemporaryDirectory context must always be outer to try-catch chdir otherwise it crashes on Windows with tempfile.TemporaryDirectory() as archive_dir: try: # unpack all restorations paths (nemo checkpoints) # in nemo checkpoints all resources contain hash in name, so there should be no collisions for path in restoration_paths: if self.model_extracted_dir: shutil.copytree(src=path, dst=archive_dir, dirs_exist_ok=True) else: self._unpack_nemo_file(path2file=path, out_folder=archive_dir) os.chdir(archive_dir) for conf_path, artiitem in tarfile_artifacts: # Get basename and copy it to nemo_file_folder if 'nemo:' in artiitem.path: artifact_base_name = artiitem.path.split('nemo:')[1] else: artifact_base_name = os.path.basename(artiitem.path) # no need to hash here as we are in tarfile_artifacts which are already hashed artifact_uniq_name = artifact_base_name shutil.copy2(artifact_base_name, os.path.join(nemo_file_folder, artifact_uniq_name)) # Update artifacts registry new_artiitem = model_utils.ArtifactItem() new_artiitem.path = "nemo:" + artifact_uniq_name new_artiitem.path_type = model_utils.ArtifactPathType.TAR_PATH model.artifacts[conf_path] = new_artiitem finally: # change back working directory os.chdir(cwd) @staticmethod def _update_subconfigs(model: "nemo_classes.ModelPT", path2yaml_file): """ Update subconfigs of the model if ModelPT has submodules Should be called before updating artifacts paths """ if not model.has_nemo_submodules(): # no submodules => nothing to update return conf = OmegaConf.load(path2yaml_file) # update subconfigs for all children recoursively # parent configs updated before children for _, conf_path, submodule in model.named_nemo_modules(): if not conf_path: # self continue OmegaConf.update(conf, conf_path, submodule.cfg) with open(path2yaml_file, 'w', encoding='utf-8') as fout: OmegaConf.save(config=conf, f=fout, resolve=True) def _update_artifact_paths(self, model, path2yaml_file): if hasattr(model, "artifacts") and model.artifacts is not None and len(model.artifacts) > 0: conf = OmegaConf.load(path2yaml_file) for conf_path, item in model.artifacts.items(): if item.hashed_path is None: OmegaConf.update(conf, conf_path, item.path) else: OmegaConf.update(conf, conf_path, item.hashed_path) with open(path2yaml_file, 'w', encoding='utf-8') as fout: OmegaConf.save(config=conf, f=fout, resolve=True) def _inject_model_parallel_rank_for_ckpt(self, dirname, basename): model_weights = os.path.join(dirname, basename) model_weights = inject_model_parallel_rank(model_weights) return model_weights @staticmethod def _make_nemo_file_from_folder(filename, source_dir): dirname = os.path.dirname(filename) os.makedirs(dirname, exist_ok=True) with tarfile.open(filename, "w:") as tar: tar.add(source_dir, arcname=".") @staticmethod def _unpack_nemo_file(path2file: str, out_folder: str, extract_config_only: bool = False) -> str: if not os.path.exists(path2file): raise FileNotFoundError(f"{path2file} does not exist") # we start with an assumption of uncompressed tar, # which should be true for versions 1.7.0 and above tar_header = "r:" try: tar_test = tarfile.open(path2file, tar_header) tar_test.close() except tarfile.ReadError: # can be older checkpoint => try compressed tar tar_header = "r:gz" tar = tarfile.open(path2file, tar_header) if not extract_config_only: tar.extractall(path=out_folder) else: members = [x for x in tar.getmembers() if ".yaml" in x.name] tar.extractall(path=out_folder, members=members) tar.close() return out_folder @staticmethod def _save_state_dict_to_disk(state_dict, filepath): torch.save(state_dict, filepath) @staticmethod def _load_state_dict_from_disk(model_weights, map_location=None): return torch.load(model_weights, map_location='cpu') @property def model_config_yaml(self) -> str: return self._model_config_yaml @model_config_yaml.setter def model_config_yaml(self, path: str): self._model_config_yaml = path @property def model_weights_ckpt(self) -> str: return self._model_weights_ckpt @model_weights_ckpt.setter def model_weights_ckpt(self, path: str): self._model_weights_ckpt = path @property def model_extracted_dir(self) -> Optional[str]: return self._model_extracted_dir @model_extracted_dir.setter def model_extracted_dir(self, path: Optional[str]): self._model_extracted_dir = path
NeMo-main
nemo/core/connectors/save_restore_connector.py
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # Copyright 2015 and onwards Google, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
NeMo-main
nemo/core/connectors/__init__.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc from abc import ABC from typing import Dict, Optional, Tuple from nemo.core.neural_types.comparison import NeuralTypeComparisonResult __all__ = [ 'ElementType', 'VoidType', 'BoolType', 'ChannelType', 'AcousticEncodedRepresentation', 'AudioSignal', 'SpectrogramType', 'MelSpectrogramType', 'MFCCSpectrogramType', 'LogitsType', 'LabelsType', 'HypothesisType', 'LossType', 'RegressionValuesType', 'CategoricalValuesType', 'PredictionsType', 'LogprobsType', 'ProbsType', 'LengthsType', 'EmbeddedTextType', 'EncodedRepresentation', 'MaskType', 'Target', 'ClassificationTarget', 'ImageFeatureValue', 'Index', 'ImageValue', 'NormalizedImageValue', 'StringLabel', 'StringType', 'TokenIndex', 'Length', 'IntType', 'FloatType', 'NormalDistributionSamplesType', 'NormalDistributionMeanType', 'NormalDistributionLogVarianceType', 'TokenDurationType', 'TokenLogDurationType', 'LogDeterminantType', 'SequenceToSequenceAlignmentType', ] class ElementType(ABC): """Abstract class defining semantics of the tensor elements. We are relying on Python for inheritance checking""" def __str__(self): return self.__doc__ def __repr__(self): return self.__class__.__name__ @property def type_parameters(self) -> Dict: """Override this property to parametrize your type. For example, you can specify 'storage' type such as float, int, bool with 'dtype' keyword. Another example, is if you want to represent a signal with a particular property (say, sample frequency), then you can put sample_freq->value in there. When two types are compared their type_parameters must match.""" return {} @property def fields(self) -> Optional[Tuple]: """This should be used to logically represent tuples/structures. For example, if you want to represent a bounding box (x, y, width, height) you can put a tuple with names ('x', y', 'w', 'h') in here. Under the hood this should be converted to the last tesnor dimension of fixed size = len(fields). When two types are compared their fields must match.""" return None def compare(self, second) -> NeuralTypeComparisonResult: # First, check general compatibility first_t = type(self) second_t = type(second) if first_t == second_t: result = NeuralTypeComparisonResult.SAME elif issubclass(first_t, second_t): result = NeuralTypeComparisonResult.LESS elif issubclass(second_t, first_t): result = NeuralTypeComparisonResult.GREATER else: result = NeuralTypeComparisonResult.INCOMPATIBLE if result != NeuralTypeComparisonResult.SAME: return result else: # now check that all parameters match check_params = set(self.type_parameters.keys()) == set(second.type_parameters.keys()) if check_params is False: return NeuralTypeComparisonResult.SAME_TYPE_INCOMPATIBLE_PARAMS else: for k1, v1 in self.type_parameters.items(): if v1 is None or second.type_parameters[k1] is None: # Treat None as Void continue if v1 != second.type_parameters[k1]: return NeuralTypeComparisonResult.SAME_TYPE_INCOMPATIBLE_PARAMS # check that all fields match if self.fields == second.fields: return NeuralTypeComparisonResult.SAME else: return NeuralTypeComparisonResult.INCOMPATIBLE class VoidType(ElementType): """Void-like type which is compatible with everything. It is a good practice to use this type only as necessary. For example, when you need template-like functionality. """ def compare(cls, second: abc.ABCMeta) -> NeuralTypeComparisonResult: return NeuralTypeComparisonResult.SAME # TODO: Consider moving these files elsewhere class ChannelType(ElementType): """Element to represent convolutional input/output channel. """ class EmbeddedTextType(ChannelType): """Element to represent output on word/text embedding layers """ class LogitsType(ElementType): """Element type to represent logits""" class ProbsType(ElementType): """Element type to represent probabilities. For example, outputs of softmax layers.""" class LogprobsType(ElementType): """Element type to represent log-probabilities. For example, outputs of log softmax layers.""" class LabelsType(ElementType): """Element type to represent some sort of labels. This is often used as a base class to create a more concrete types such as RegressionValuesType, etc.""" class HypothesisType(LabelsType): """Element type to represent some decoded hypothesis, which may further be processed to obtain a concrete label.""" class LengthsType(ElementType): """Element type representing lengths of something""" class LossType(ElementType): """Element type to represent outputs of Loss modules""" class EncodedRepresentation(ChannelType): """Element type to represent encoded representation, for example, encoder's output""" class AcousticEncodedRepresentation(EncodedRepresentation): """Element type to represent encoded representation returned by the acoustic encoder model""" class AudioSignal(ElementType): """Element type to represent encoded representation returned by the acoustic encoder model Args: freq (int): sampling frequency of a signal. Note that two signals will only be the same if their freq is the same. """ def __init__(self, freq: int = None): self._params = {} self._params['freq'] = freq @property def type_parameters(self): return self._params class SpectrogramType(ChannelType): """Element type to represent generic spectrogram signal""" class MelSpectrogramType(SpectrogramType): """Element type to represent mel spectrogram signal""" class MFCCSpectrogramType(SpectrogramType): """Element type to represent MFCC spectrogram signal""" class PredictionsType(LabelsType): """Element type to represent some sort of predictions returned by model""" class RegressionValuesType(PredictionsType): """Element type to represent labels for regression task""" class CategoricalValuesType(PredictionsType): """Element type to represent labels for categorical classification task""" class MaskType(PredictionsType): """Element type to represent a boolean mask""" class Index(ElementType): """Type representing an element being an index of the sample.""" class Target(ElementType): """ Type representing an element being a target value. """ class ClassificationTarget(Target): """ Type representing an element being target value in the classification task, i.e. identifier of a desired class. """ class ImageValue(ElementType): """ Type representing an element/value of a single image channel, e.g. a single element (R) of RGB image. """ class NormalizedImageValue(ImageValue): """ Type representing an element/value of a single image channel normalized to <0-1> range, e.g. a single element (R) of normalized RGB image. """ class ImageFeatureValue(ImageValue): """Type representing an element (single value) of a (image) feature maps.""" class StringType(ElementType): """Element type representing a single string""" class StringLabel(StringType): """ Type representing an label being a string with class name (e.g. the "hamster" class in CIFAR100). """ class BoolType(ElementType): """Element type representing a single integer""" class IntType(ElementType): """Element type representing a single integer""" class FloatType(ElementType): """Element type representing a single float""" class TokenIndex(IntType): """Type representing an element being index of a token in some kind of a vocabulary.""" class Length(IntType): """Type representing an element storing a "length" (e.g. length of a list).""" class ProbabilityDistributionSamplesType(ElementType): """Element to represent tensors that meant to be sampled from a valid probability distribution """ class NormalDistributionSamplesType(ProbabilityDistributionSamplesType): """Element to represent tensors that meant to be sampled from a valid normal distribution """ class SequenceToSequenceAlignmentType(ElementType): """Class to represent the alignment from seq-to-seq attention outputs. Generally a mapping from endcoder time steps to decoder time steps.""" class NormalDistributionMeanType(ElementType): """Element to represent the mean of a normal distribution""" class NormalDistributionLogVarianceType(ElementType): """Element to represent the log variance of a normal distribution""" class TokenDurationType(ElementType): """Element for representing the duration of a token""" class TokenLogDurationType(ElementType): """Element for representing the log-duration of a token""" class LogDeterminantType(ElementType): """Element for representing log determinants usually used in flow models"""
NeMo-main
nemo/core/neural_types/elements.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple from nemo.core.neural_types.axes import AxisKind, AxisType from nemo.core.neural_types.comparison import NeuralTypeComparisonResult from nemo.core.neural_types.elements import ElementType, VoidType __all__ = [ 'NeuralType', 'NeuralTypeError', 'NeuralPortNameMismatchError', 'NeuralPortNmTensorMismatchError', ] class NeuralType(object): """This is the main class which would represent neural type concept. It is used to represent *the types* of inputs and outputs. Args: axes (Optional[Tuple]): a tuple of AxisTypes objects representing the semantics of what varying each axis means You can use a short, string-based form here. For example: ('B', 'C', 'H', 'W') would correspond to an NCHW format frequently used in computer vision. ('B', 'T', 'D') is frequently used for signal processing and means [batch, time, dimension/channel]. elements_type (ElementType): an instance of ElementType class representing the semantics of what is stored inside the tensor. For example: logits (LogitsType), log probabilities (LogprobType), etc. optional (bool): By default, this is false. If set to True, it would means that input to the port of this type can be optional. """ def __str__(self): if self.axes is not None: return f"axes: {self.axes}; elements_type: {self.elements_type.__class__.__name__}" else: return f"axes: None; elements_type: {self.elements_type.__class__.__name__}" def __init__(self, axes: Optional[Tuple] = None, elements_type: ElementType = VoidType(), optional=False): if not isinstance(elements_type, ElementType): raise ValueError( "elements_type of NeuralType must be an instance of a class derived from ElementType. " "Did you pass a class instead?" ) self.elements_type = elements_type if axes is not None: NeuralType.__check_sanity(axes) axes_list = [] for axis in axes: if isinstance(axis, str): axes_list.append(AxisType(AxisKind.from_str(axis), None)) elif isinstance(axis, AxisType): axes_list.append(axis) else: raise ValueError("axis type must be either str or AxisType instance") self.axes = tuple(axes_list) else: self.axes = None self.optional = optional def compare(self, second) -> NeuralTypeComparisonResult: """Performs neural type comparison of self with second. When you chain two modules' inputs/outputs via __call__ method, this comparison will be called to ensure neural type compatibility.""" # First, handle dimensionality axes_a = self.axes axes_b = second.axes # "Big void" type if isinstance(self.elements_type, VoidType) and self.axes is None: return NeuralTypeComparisonResult.SAME if self.axes is None: if second.axes is None: return self.elements_type.compare(second.elements_type) else: return NeuralTypeComparisonResult.INCOMPATIBLE dimensions_pass = NeuralType.__compare_axes(axes_a, axes_b) element_comparison_result = self.elements_type.compare(second.elements_type) # SAME DIMS if dimensions_pass == 0: return element_comparison_result # TRANSPOSE_SAME DIMS elif dimensions_pass == 1: if element_comparison_result == NeuralTypeComparisonResult.SAME: return NeuralTypeComparisonResult.TRANSPOSE_SAME else: return NeuralTypeComparisonResult.INCOMPATIBLE # DIM_INCOMPATIBLE DIMS elif dimensions_pass == 2: if element_comparison_result == NeuralTypeComparisonResult.SAME: return NeuralTypeComparisonResult.DIM_INCOMPATIBLE else: return NeuralTypeComparisonResult.INCOMPATIBLE else: return NeuralTypeComparisonResult.INCOMPATIBLE def compare_and_raise_error(self, parent_type_name, port_name, second_object): """ Method compares definition of one type with another and raises an error if not compatible. """ type_comatibility = self.compare(second_object) if ( type_comatibility != NeuralTypeComparisonResult.SAME and type_comatibility != NeuralTypeComparisonResult.GREATER ): raise NeuralPortNmTensorMismatchError( parent_type_name, port_name, str(self), str(second_object.ntype), type_comatibility ) def __eq__(self, other): if isinstance(other, NeuralType): return self.compare(other) return False @staticmethod def __check_sanity(axes): # check that list come before any tensor dimension are_strings = True for axis in axes: if not isinstance(axis, str): are_strings = False if isinstance(axis, str) and not are_strings: raise ValueError("Either use full class names or all strings") if are_strings: return checks_passed = True saw_tensor_dim = False for axis in axes: if not axis.is_list: saw_tensor_dim = True else: # current axis is a list if saw_tensor_dim: # which is preceded by tensor dim checks_passed = False if not checks_passed: raise ValueError( "You have list dimension after Tensor dimension. All list dimensions must preceed Tensor dimensions" ) @staticmethod def __compare_axes(axes_a, axes_b) -> int: """ Compares axes_a and axes_b Args: axes_a: first axes tuple axes_b: second axes tuple Returns: 0 - if they are exactly the same 1 - if they are "TRANSPOSE_SAME" 2 - if the are "DIM_INCOMPATIBLE" 3 - if they are different """ if axes_a is None and axes_b is None: return 0 elif axes_a is None and axes_b is not None: return 3 elif axes_a is not None and axes_b is None: return 3 elif len(axes_a) != len(axes_b): return 3 # After these ifs we know that len(axes_a) == len(axes_b) same = True kinds_a = dict() kinds_b = dict() for axis_a, axis_b in zip(axes_a, axes_b): kinds_a[axis_a.kind] = axis_a.size kinds_b[axis_b.kind] = axis_b.size if axis_a.kind == AxisKind.Any: same = True elif ( axis_a.kind != axis_b.kind or axis_a.is_list != axis_b.is_list or (axis_a.size != axis_b.size and axis_a.size is not None) ): same = False if same: return 0 else: # can be TRANSPOSE_SAME, DIM_INCOMPATIBLE if kinds_a.keys() == kinds_b.keys(): for key, value in kinds_a.items(): if kinds_b[key] != value: return 2 return 1 else: return 3 def __repr__(self): if self.axes is not None: axes = str(self.axes) else: axes = "None" if self.elements_type is not None: element_type = repr(self.elements_type) else: element_type = "None" data = f"axis={axes}, element_type={element_type}" if self.optional: data = f"{data}, optional={self.optional}" final = f"{self.__class__.__name__}({data})" return final class NeuralTypeError(Exception): """Base class for neural type related exceptions.""" class NeuralPortNameMismatchError(NeuralTypeError): """Exception raised when neural module is called with incorrect port names.""" def __init__(self, input_port_name): super().__init__() self.message = "Wrong input port name: {0}".format(input_port_name) class NeuralPortNmTensorMismatchError(NeuralTypeError): """Exception raised when a port is fed with a NmTensor of incompatible type.""" def __init__(self, class_name, port_name, first_type, second_type, type_comatibility): super().__init__() self.message = "\nIn {}. \nPort: {} and a NmTensor it was fed are \n".format(class_name, port_name) self.message += "of incompatible neural types:\n\n{} \n\n and \n\n{}".format(first_type, second_type) self.message += "\n\nType comparison result: {}".format(type_comatibility)
NeMo-main
nemo/core/neural_types/neural_type.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.core.neural_types.axes import * from nemo.core.neural_types.comparison import * from nemo.core.neural_types.elements import * from nemo.core.neural_types.neural_type import *
NeMo-main
nemo/core/neural_types/__init__.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from enum import Enum __all__ = ['NeuralTypeComparisonResult'] class NeuralTypeComparisonResult(Enum): """The result of comparing two neural type objects for compatibility. When comparing A.compare_to(B):""" SAME = 0 LESS = 1 # A is B GREATER = 2 # B is A DIM_INCOMPATIBLE = 3 # Resize connector might fix incompatibility TRANSPOSE_SAME = 4 # A transpose and/or converting between lists and tensors will make them same CONTAINER_SIZE_MISMATCH = 5 # A and B contain different number of elements INCOMPATIBLE = 6 # A and B are incompatible SAME_TYPE_INCOMPATIBLE_PARAMS = 7 # A and B are of the same type but parametrized differently UNCHECKED = 8 # type comparison wasn't done
NeMo-main
nemo/core/neural_types/comparison.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from enum import Enum from typing import Optional __all__ = ['AxisKindAbstract', 'AxisKind', 'AxisType'] class AxisKindAbstract(Enum): """This is an abstract Enum to represents what does varying axis dimension mean. In practice, you will almost always use AxisKind Enum. This Enum should be inherited by your OWN Enum if you aren't satisfied with AxisKind. Then your own Enum can be used instead of AxisKind.""" pass class AxisKind(AxisKindAbstract): """This Enum represents what does varying axis dimension mean. For example, does this dimension correspond to width, batch, time, etc. The "Dimension" and "Channel" kinds are the same and used to represent a general axis. "Any" axis will accept any axis kind fed to it. """ Batch = 0 Time = 1 Dimension = 2 Channel = 2 Width = 3 Height = 4 Any = 5 Sequence = 6 FlowGroup = 7 Singleton = 8 # Used to represent a axis that has size 1 def __repr__(self): return self.__str__() def __str__(self): return str(self.name).lower() def t_with_string(self, text): # it checks if text is "t_<any string>" return text.startswith("t_") and text.endswith("_") and text[2:-1] == self.__str__() @staticmethod def from_str(label): """Returns AxisKind instance based on short string representation""" _label = label.lower().strip() if _label == "b" or _label == "n" or _label == "batch": return AxisKind.Batch elif _label == "t" or _label == "time" or (len(_label) > 2 and _label.startswith("t_")): return AxisKind.Time elif _label == "d" or _label == "c" or _label == "channel": return AxisKind.Dimension elif _label == "w" or _label == "width": return AxisKind.Width elif _label == "h" or _label == "height": return AxisKind.Height elif _label == "s" or _label == "singleton": return AxisKind.Singleton elif _label == "seq" or _label == "sequence": return AxisKind.Sequence elif _label == "flowgroup": return AxisKind.FlowGroup elif _label == "any": return AxisKind.Any else: raise ValueError(f"Can't create AxisKind from {label}") class AxisType(object): """This class represents axis semantics and (optionally) it's dimensionality Args: kind (AxisKindAbstract): what kind of axis it is? For example Batch, Height, etc. size (int, optional): specify if the axis should have a fixed size. By default it is set to None and you typically do not want to set it for Batch and Time is_list (bool, default=False): whether this is a list or a tensor axis """ def __init__(self, kind: AxisKindAbstract, size: Optional[int] = None, is_list=False): if size is not None and is_list: raise ValueError("The axis can't be list and have a fixed size") self.kind = kind self.size = size self.is_list = is_list def __repr__(self): if self.size is None: representation = str(self.kind) else: representation = f"{str(self.kind)}:{self.size}" if self.is_list: representation += "_listdim" return representation
NeMo-main
nemo/core/neural_types/axes.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Optional __all__ = ['Config'] @dataclass class Config: """ Abstract NeMo Configuration class. Args: name: name of the module/dataset/loss/model object (used in serialization, DEFAULT: None) """ name: Optional[str] = None
NeMo-main
nemo/core/config/base_config.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo.core.config.base_config import Config from nemo.core.config.hydra_runner import hydra_runner from nemo.core.config.optimizers import ( AdadeltaParams, AdagradParams, AdamaxParams, AdamParams, AdamWParams, NovogradParams, OptimizerParams, RMSpropParams, RpropParams, SGDParams, get_optimizer_config, register_optimizer_params, ) from nemo.core.config.pytorch import DataLoaderConfig from nemo.core.config.pytorch_lightning import TrainerConfig from nemo.core.config.schedulers import ( CosineAnnealingParams, InverseSquareRootAnnealingParams, NoamAnnealingParams, PolynomialDecayAnnealingParams, PolynomialHoldDecayAnnealingParams, SchedulerParams, SquareAnnealingParams, SquareRootAnnealingParams, SquareRootConstantSchedulerParams, WarmupAnnealingParams, WarmupHoldSchedulerParams, WarmupSchedulerParams, get_scheduler_config, register_scheduler_params, )
NeMo-main
nemo/core/config/__init__.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from functools import partial from typing import Any, Dict, Optional, Tuple from omegaconf import MISSING, OmegaConf __all__ = [ 'OptimizerParams', 'AdamParams', 'NovogradParams', 'SGDParams', 'AdadeltaParams', 'AdamaxParams', 'AdagradParams', 'AdamWParams', 'RMSpropParams', 'RpropParams', ] @dataclass class OptimizerParams: """ Base Optimizer params with no values. User can chose it to explicitly override via command line arguments """ lr: Optional[float] = MISSING @dataclass class SGDParams(OptimizerParams): """ Default configuration for Adam optimizer. It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name). ..note: For the details on the function/meanings of the arguments, please refer to: https://pytorch.org/docs/stable/optim.html?highlight=sgd#torch.optim.SGD """ momentum: float = 0 dampening: float = 0 weight_decay: float = 0 nesterov: bool = False @dataclass class AdamParams(OptimizerParams): """ Default configuration for Adam optimizer. It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name). ..note: For the details on the function/meanings of the arguments, please refer to: https://pytorch.org/docs/stable/optim.html?highlight=adam#torch.optim.Adam """ # betas: Tuple[float, float] = (0.9, 0.999) eps: float = 1e-08 weight_decay: float = 0 amsgrad: bool = False @dataclass class AdamWParams(OptimizerParams): """ Default configuration for AdamW optimizer. It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name). ..note: For the details on the function/meanings of the arguments, please refer to: https://pytorch.org/docs/stable/optim.html#torch.optim.AdamW """ betas: Tuple[float, float] = (0.9, 0.999) eps: float = 1e-08 weight_decay: float = 0 amsgrad: bool = False @dataclass class AdadeltaParams(OptimizerParams): """ Default configuration for Adadelta optimizer. It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name). ..note: For the details on the function/meanings of the arguments, please refer to: https://pytorch.org/docs/stable/optim.html#torch.optim.Adadelta """ rho: float = 0.9 eps: float = 1e-6 weight_decay: float = 0 @dataclass class AdamaxParams(OptimizerParams): """ Default configuration for Adamax optimizer. It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name). ..note: For the details on the function/meanings of the arguments, please refer to: https://pytorch.org/docs/stable/optim.html#torch.optim.Adamax """ betas: Tuple[float, float] = (0.9, 0.999) eps: float = 1e-8 weight_decay: float = 0 @dataclass class AdagradParams(OptimizerParams): """ Default configuration for Adagrad optimizer. It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name). ..note: For the details on the function/meanings of the arguments, please refer to: https://pytorch.org/docs/stable/optim.html#torch.optim.Adagrad """ lr_decay: float = 0 weight_decay: float = 0 initial_accumulator_value: float = 0 eps: float = 1e-10 @dataclass class RMSpropParams(OptimizerParams): """ Default configuration for RMSprop optimizer. It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name). ..note: For the details on the function/meanings of the arguments, please refer to: https://pytorch.org/docs/stable/optim.html#torch.optim.RMSprop """ alpha: float = 0.99 eps: float = 1e-8 weight_decay: float = 0 momentum: float = 0 centered: bool = False @dataclass class RpropParams(OptimizerParams): """ Default configuration for RpropParams optimizer. It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name). ..note: For the details on the function/meanings of the arguments, please refer to: https://pytorch.org/docs/stable/optim.html#torch.optim.Rprop """ etas: Tuple[float, float] = (0.5, 1.2) step_sizes: Tuple[float, float] = (1e-6, 50) @dataclass class NovogradParams(OptimizerParams): """ Configuration of the Novograd optimizer. It has been proposed in "Stochastic Gradient Methods with Layer-wise Adaptive Moments for Training of Deep Networks" (https://arxiv.org/abs/1905.11286) Args: lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper "On the Convergence of Adam and Beyond" """ betas: Tuple[float, float] = (0.95, 0.98) eps: float = 1e-8 weight_decay: float = 0 grad_averaging: bool = False amsgrad: bool = False luc: bool = False luc_trust: float = 1e-3 luc_eps: float = 1e-8 @dataclass class AdafactorParams(OptimizerParams): """ Configuration of the Adafactor optimizer. It has been proposed in "Adafactor: Adaptive Learning Rates with Sublinear Memory Cost" (https://arxiv.org/abs/1804.04235) Args: lr (float, optional): learning rate (default: 1e-3) beta1 (float, optional): coefficients used for computing running averages of gradient and its square (default: None) eps (Tuple [float, float] optional) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) scale_parameter (float, optional): scale parameter (default: False) relative_step (bool, optional): whether to use relative step sizes (default: False) warmup_init (bool, optional): whether to warmup the learning rate linearly (default: False) """ beta1: float = None eps: Tuple[float, float] = (1e-30, 1e-3) clip_threshold: float = 1.0 decay_rate: float = 0.8 weight_decay: float = 0 scale_parameter: bool = True relative_step: bool = False warmup_init: bool = False def register_optimizer_params(name: str, optimizer_params: OptimizerParams): """ Checks if the optimizer param name exists in the registry, and if it doesnt, adds it. This allows custom optimizer params to be added and called by name during instantiation. Args: name: Name of the optimizer. Will be used as key to retrieve the optimizer. optimizer_params: Optimizer class """ if name in AVAILABLE_OPTIMIZER_PARAMS: raise ValueError(f"Cannot override pre-existing optimizers. Conflicting optimizer name = {name}") AVAILABLE_OPTIMIZER_PARAMS[name] = optimizer_params def get_optimizer_config(name: str, **kwargs: Optional[Dict[str, Any]]) -> OptimizerParams: """ Convenience method to obtain a OptimizerParams class and partially instantiate it with optimizer kwargs. Args: name: Name of the OptimizerParams in the registry. kwargs: Optional kwargs of the optimizer used during instantiation. Returns: a partially instantiated OptimizerParams """ if name is None: return kwargs if name not in AVAILABLE_OPTIMIZER_PARAMS: raise ValueError( f"Cannot resolve optimizer parameters '{name}'. Available optimizer parameters are : " f"{AVAILABLE_OPTIMIZER_PARAMS.keys()}" ) scheduler_params = AVAILABLE_OPTIMIZER_PARAMS[name] if kwargs is not None and len(kwargs) != 0: kwargs = OmegaConf.create(kwargs) OmegaConf.merge(scheduler_params(), kwargs) scheduler_params = partial(scheduler_params, **kwargs) return scheduler_params AVAILABLE_OPTIMIZER_PARAMS = { 'optim_params': OptimizerParams, 'adam_params': AdamParams, 'novograd_params': NovogradParams, 'sgd_params': SGDParams, 'adadelta_params': AdadeltaParams, 'adamax_params': AdamaxParams, 'adagrad_params': AdagradParams, 'adamw_params': AdamWParams, 'rmsprop_params': RMSpropParams, 'rprop_params': RpropParams, 'adafactor_params': AdafactorParams, }
NeMo-main
nemo/core/config/optimizers.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Any, Optional from hydra.core.config_store import ConfigStore __all__ = ['TrainerConfig'] cs = ConfigStore.instance() @dataclass class TrainerConfig: """ Configuration of PyTorch Lightning Trainer. It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name). ..warning: Picked just few params of the PTL trainer for now. This needs to be discussed. ..note: For the details on the function/meanings of the arguments, please refer to: https://pytorch-lightning.readthedocs.io/en/latest/common/trainer.html """ logger: Any = True callbacks: Optional[Any] = None default_root_dir: Optional[str] = None gradient_clip_val: float = 0 num_nodes: int = 1 enable_progress_bar: bool = True overfit_batches: Any = 0.0 check_val_every_n_epoch: int = 1 fast_dev_run: bool = False accumulate_grad_batches: Any = 1 max_epochs: int = 1000 min_epochs: int = 1 max_steps: Optional[int] = -1 min_steps: Optional[int] = None limit_train_batches: Any = 1.0 limit_val_batches: Any = 1.0 limit_test_batches: Any = 1.0 val_check_interval: Any = 1.0 log_every_n_steps: int = 50 accelerator: Optional[str] = None sync_batchnorm: bool = False precision: Any = 32 num_sanity_val_steps: int = 2 profiler: Optional[Any] = None benchmark: bool = False deterministic: bool = False use_distributed_sampler: bool = True detect_anomaly: bool = False plugins: Optional[Any] = None # Optional[Union[str, list]] limit_predict_batches: float = 1.0 gradient_clip_algorithm: str = 'norm' max_time: Optional[Any] = None # can be one of Union[str, timedelta, Dict[str, int], None] reload_dataloaders_every_n_epochs: int = 0 devices: Any = None strategy: Any = None enable_checkpointing: bool = False enable_model_summary: bool = True inference_mode: bool = True barebones: bool = False # Register the trainer config. cs.store( group="trainer", name="trainer", node=TrainerConfig, )
NeMo-main
nemo/core/config/pytorch_lightning.py
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Any, Optional from omegaconf import MISSING __all__ = ['DataLoaderConfig'] @dataclass class DataLoaderConfig: """ Configuration of PyTorch DataLoader. It is not derived from Config as it is not a NeMo object (and in particular it doesn't need a name). ..note: For the details on the function/meanings of the arguments, please refer to: https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader """ batch_size: int = MISSING shuffle: bool = False sampler: Optional[Any] = None batch_sampler: Optional[Any] = None num_workers: int = 0 collate_fn: Optional[Any] = None pin_memory: bool = False drop_last: bool = False timeout: int = 0 worker_init_fn: Optional[Any] = None multiprocessing_context: Optional[Any] = None
NeMo-main
nemo/core/config/pytorch.py