|
# 复现遇到的问题 |
|
1. peft版本太高 |
|
``` |
|
pip install peft==0.6.0 |
|
``` |
|
|
|
2. zero3.json必须有`"train_batch_size"`字段 |
|
|
|
3. cuda版本和deepspeed不对应 |
|
``` |
|
找对应的torch库和deepspeed库 |
|
``` |
|
|
|
4. deepseek给的zero3.json文件用了cpu的优化器 |
|
``` |
|
"offload_optimizer": { |
|
"device": "none", |
|
"pin_memory": true |
|
}, |
|
"offload_param": { |
|
"device": "none", |
|
"pin_memory": true |
|
}, |
|
|
|
``` |
|
|
|
5. no sync context manager is incompatible with gradientpartitioning logic of ZeRo stage 3 |
|
``` |
|
# 某些时候百度比AI好用 |
|
pip install deepspeed==0.15.4 |
|
``` |
|
|
|
6. zero3.json |
|
``` |
|
|
|
{ |
|
"bf16": { |
|
"enabled": true |
|
}, |
|
"zero_optimization": { |
|
"stage": 3, |
|
"offload_optimizer": { |
|
"device": "none", |
|
"pin_memory": true |
|
}, |
|
"offload_param": { |
|
"device": "none", |
|
"pin_memory": true |
|
}, |
|
"overlap_comm": true, |
|
"contiguous_gradients": true, |
|
"sub_group_size": 1e9, |
|
"stage3_max_live_parameters": 1e9, |
|
"stage3_max_reuse_distance": 1e9 |
|
}, |
|
"gradient_accumulation_steps": 16, |
|
"train_micro_batch_size_per_gpu": 1, |
|
"train_batch_size": 128, |
|
"gradient_clipping": "auto", |
|
"steps_per_print": 10, |
|
"wall_clock_breakdown": false |
|
} |
|
|
|
``` |
|
|
|
7. 下载全部ocr_vqa图片的方法 |
|
``` |
|
https://github.com/haotian-liu/LLaVA/issues/1618 |
|
``` |
|
|
|
8. 保存模型时报错,需要在lmsys/vicuna-7b-v1.5里的generation_config.json里 |
|
因为评估时是贪婪搜索,所以把下面的两行删掉 |
|
``` |
|
"temperature": 0.9, |
|
"top_p": 0.6, |
|
``` |
|
|
|
# 评估复现的坑 |
|
|
|
1. checkpoint的文件名要包含llava |
|
2. LlamaModel的forward函数没有处理输入Token只有一个的情况(推理时,第二次前向,输入Token只有一个),为了兼容输入token只有一个都情况下做出如下修改 |
|
``` |
|
# 不过很奇怪的是,他居然考虑到voco_loc_back要+1 |
|
|
|
https://github.com/Yxxxb/VoCo-LLaMA/blob/385e7974a866cf73f1cabc8c29cb7a2180fd4dfd/llava/model/language_model/llava_llama_1stg.py#L271 |
|
|
|
改成 |
|
|
|
# 整体操作是我每次前向都创建整个序列的mask,管你有没有KVCache |
|
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( |
|
attention_mask, |
|
(batch_size, seq_length + past_key_values_length), # 原来是(batch_size, seq_length), 现在我能保证走同一条路了 |
|
inputs_embeds, # 这个只用.dtype和isinstance,所以传这个没有影响 |
|
0, # 原来是past_key_values_length |
|
) |
|
# ------------------------------------------ |
|
# https://github.com/Yxxxb/VoCo-LLaMA/blob/385e7974a866cf73f1cabc8c29cb7a2180fd4dfd/llava/model/language_model/llava_llama_1stg.py#L305 |
|
|
|
上面加入 |
|
|
|
# 处理完Attention_mask后 |
|
attention_mask = attention_mask[:,:,-seq_length:,:] |
|
``` |
|
|
|
|
|
|