modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
asaakyan/mbart-poetic-all
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: thuyentruong/ppo-SnowballTargetTESTCOLAB 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Arnold/common_voiceha
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-05-09T00:28:05Z
--- language: - eo license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_13_0 - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-common_voice_13_0-eo-demo3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-common_voice_13_0-eo-demo3 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_13_0 - EO dataset. It achieves the following results on the evaluation set: - Loss: 3.5477 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | No log | 15.38 | 100 | 3.5477 | 1.0 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
Arnold/wav2vec2-hausa-demo-colab
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-05-09T00:33:56Z
--- license: agpl-3.0 tags: - text-to-image - image-to-text - image-captioning - image-variation - text-variation - multi-modality - generative model --- This model is a version of the Unidiffuser-v0 ([original code](https://github.com/thu-ml/unidiffuser), [original model](https://huggingface.co/thu-ml/unidiffuser-v0)) checkpoint which is compatible with `diffusers`. This is one of two models from the original UniDiffuser release, the other being [UniDiffuser-v1](). From the original model card: UniDiffuser is a unified diffusion framework to fit all distributions relevant to a set of multi-modal data in one transformer. UniDiffuser is able to perform image, text, text-to-image, image-to-text, and image-text pair generation by setting proper timesteps without additional overhead. Specifically, UniDiffuser employs a variation of transformer, called [U-ViT](https://github.com/baofff/U-ViT), which parameterizes the joint noise prediction network. Other components perform as encoders and decoders of different modalities, including a pretrained image autoencoder from [Stable Diffusion](https://github.com/CompVis/stable-diffusion), a pretrained [image ViT-B/32 CLIP encoder](https://github.com/openai/CLIP), a pretrained [text ViT-L CLIP encoder](https://huggingface.co/openai/clip-vit-large-patch14), and a [GPT-2](https://github.com/openai/gpt-2) text decoder finetuned by ourselves. We provide two versions of UniDiffuser: - [UniDiffuser-v0](https://huggingface.co/thu-ml/unidiffuser-v0): This version is trained on [LAION-5B](https://laion.ai/), which contains noisy webdata of text-image pairs. - [UniDiffuser-v1](https://huggingface.co/thu-ml/unidiffuser-v1): This version is resumed from UniDiffuser-v0, and is further trained with a set of less noisy internal text-image pairs. It uses a flag as its input to distinguish webdata and internal data during training. ## Example ```python import requests import torch from PIL import Image from io import BytesIO from diffusers import UniDiffuserPipeline device = "cuda" model_id_or_path = "dg845/unidiffuser-diffusers-v0" pipe = UniDiffuserPipeline.from_pretrained(model_id_or_path) pipe.to(device) # Joint image-text generation. The generation task is automatically inferred. sample = pipe(num_inference_steps=20, guidance_scale=8.0) image = sample.images[0] text = sample.text[0] image.save("unidiffuser_sample_joint_image.png") print(text) # The mode can be set manually. The following is equivalent to the above: pipe.set_joint_mode() sample2 = pipe(num_inference_steps=20, guidance_scale=8.0) # Note that if you set the mode manually the pipeline will no longer attempt # to automatically infer the mode. You can re-enable this with reset_mode(). pipe.reset_mode() # Text-to-image generation. prompt = "an elephant under the sea" sample = pipe(prompt=prompt, num_inference_steps=20, guidance_scale=8.0) t2i_image = sample.images[0] t2i_image.save("unidiffuser_sample_text2img_image.png") # Image-to-text generation. image_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unidiffuser/unidiffuser_example_image.jpg" response = requests.get(image_url) init_image = Image.open(BytesIO(response.content)).convert("RGB") init_image = init_image.resize((512, 512)) sample = pipe(image=init_image, num_inference_steps=20, guidance_scale=8.0) i2t_text = sample.text[0] print(text) # Image variation can be performed with a image-to-text generation followed by a text-to-image generation: sample = pipe(prompt=i2t_text, num_inference_steps=20, guidance_scale=8.0) final_image = sample.images[0] final_image.save("unidiffuser_image_variation_sample.png") # Text variation can be performed with a text-to-image generation followed by a image-to-text generation: sample = pipe(image=t2i_image, num_inference_steps=20, guidance_scale=8.0) final_prompt = sample.text[0] print(final_prompt) ``` ## Model Details - **Model type:** Diffusion-based multi-modal generation model - **Language(s):** English - **License:** agpl-3.0 - **Model Description:** This is a model that can perform image, text, text-to-image, image-to-text, and image-text pair generation. Its main component is a [U-ViT](https://github.com/baofff/U-ViT), which parameterizes the joint noise prediction network. Other components perform as encoders and decoders of different modalities, including a pretrained image autoencoder from [Stable Diffusion](https://github.com/CompVis/stable-diffusion), a pretrained [image ViT-B/32 CLIP encoder](https://github.com/openai/CLIP), a pretrained [text ViT-L CLIP encoder](https://huggingface.co/openai/clip-vit-large-patch14), and a [GPT-2](https://github.com/openai/gpt-2) text decoder finetuned by ourselves. - **Resources for more information:** [GitHub Repository](https://github.com/thu-ml/unidiffuser), [Paper](https://arxiv.org/abs/2303.06555). ## Direct Use _Note: Most of this section is taken from the [Stable Diffusion model card](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original), but applies in the same way to UniDiffuser_. The model should be used following the agpl-3.0 license. Possible usage includes - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. Excluded uses are described below. ### Misuse, Malicious Use, and Out-of-Scope Use The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. #### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. #### Misuse and Malicious Use Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc. - Intentionally promoting or propagating discriminatory content or harmful stereotypes. - Impersonating individuals without their consent. - Sexual content without consent of the people who might see it. - Mis- and disinformation - Representations of egregious violence and gore - Sharing of copyrighted or licensed material in violation of its terms of use. - Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use.
Arnold/wav2vec2-large-xlsr-hausa2-demo-colab
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2023-05-09T00:34:39Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | learning_rate | 0.0010000000474974513 | | decay | 0.0 | | beta_1 | 0.8999999761581421 | | beta_2 | 0.9990000128746033 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
ArpanZS/search_model
[ "joblib" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-05-09T00:41:06Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-medium-ko-1195h results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-medium-ko-1195h This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1552 - Wer: 8.6411 (is improved against 10.4449 from [jangmin/whisper-small-ko-1159h](https://huggingface.co/jangmin/whisper-small-ko-1159h)) ## Model description The model was trained to transcript the audio sources into Korean text. ## Intended uses & limitations More information needed ## Training and evaluation data I downloaded all data from AI-HUB (https://aihub.or.kr/). Two datasets, in particular, caught my attention: "Instruction Audio Set" and "Noisy Conversation Audio Set". I intentionally gathered 796 hours of audio from the first dataset and 363 hours of audio from the second dataset (This includes statistics for the training data only, and excludes information about the validation data.). ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 59151 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.0782 | 0.33 | 6572 | 0.1833 | 10.9268 | | 0.07 | 0.67 | 13144 | 0.1680 | 10.3611 | | 0.0605 | 1.0 | 19716 | 0.1600 | 9.9357 | | 0.0345 | 1.33 | 26288 | 0.1573 | 9.4492 | | 0.0365 | 1.67 | 32860 | 0.1518 | 9.3395 | | 0.0339 | 2.0 | 39432 | 0.1478 | 8.9811 | | 0.0176 | 2.33 | 46004 | 0.1596 | 9.1702 | | 0.0159 | 2.67 | 52576 | 0.1572 | 8.6746 | | 0.0141 | 3.0 | 59148 | 0.1552 | 8.6411 | ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.11.0 - Tokenizers 0.13.2
ArseniyBolotin/bert-multi-PAD-ner
[ "pytorch", "jax", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- license: wtfpl tags: - rvc - haikyuu - kozume kenma - voice - svc --- This is a RVC model for the character of Kenma Kozume from Haikyuu. Trained at around 300 steps, although I might upgrade to a 500+ version soon(ish). The current model isn't really optimized for singing, but it should work for inferring speaking audio. Do whatever you want with it as the license says, I don't care and the voice actor behind Kenma was an adult at the time of recording anyway.
ArvinZhuang/BiTAG-t5-large
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
4
2022-12-26T18:07:49Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 43680 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 8736, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
AryanLala/autonlp-Scientific_Title_Generator-34558227
[ "pytorch", "pegasus", "text2text-generation", "en", "dataset:AryanLala/autonlp-data-Scientific_Title_Generator", "transformers", "autonlp", "co2_eq_emissions", "autotrain_compatible", "has_space" ]
text2text-generation
{ "architectures": [ "PegasusForConditionalGeneration" ], "model_type": "pegasus", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
103
2023-05-09T01:03:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-a results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9799498746867168 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-a This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3255 - Accuracy: 0.9799 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.8505 | 0.96 | 12 | 2.5530 | 0.5896 | | 2.5002 | 2.0 | 25 | 1.7977 | 0.7268 | | 1.9816 | 2.96 | 37 | 1.3501 | 0.8139 | | 1.2917 | 4.0 | 50 | 0.9529 | 0.8897 | | 1.0728 | 4.96 | 62 | 0.7249 | 0.9198 | | 0.8704 | 6.0 | 75 | 0.5443 | 0.9499 | | 0.7479 | 6.96 | 87 | 0.4388 | 0.9605 | | 0.5902 | 8.0 | 100 | 0.3648 | 0.9718 | | 0.5336 | 8.96 | 112 | 0.3314 | 0.9799 | | 0.4948 | 9.6 | 120 | 0.3255 | 0.9799 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
AshiNLP/Bert_model
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-05-09T00:59:53Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | learning_rate | 0.0010000000474974513 | | decay | 0.0 | | beta_1 | 0.8999999761581421 | | beta_2 | 0.9990000128746033 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
Ashim/dga-transformer
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
Access to model Varunreddy/gpt-model-token is restricted and you are not in the authorized list. Visit https://huggingface.co/Varunreddy/gpt-model-token to ask for access.
Ashl3y/model_name
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-05-09T01:12:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: flan-t5-qg-LearningQ-tarek-test-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-qg-LearningQ-tarek-test-v2 This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5416 - Rouge1: 23.701 - Rouge2: 6.444 - Rougel: 21.3628 - Rougelsum: 21.3592 - Gen Len: 16.3790 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:-------:|:---------:|:-------:| | 1.5354 | 1.0 | 23583 | 1.5416 | 23.701 | 6.444 | 21.3628 | 21.3592 | 16.3790 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
AshtonBenson/DialoGPT-small-quentin
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-05-09T01:21:58Z
--- tags: - generated_from_keras_callback model-index: - name: xinyixiuxiu/albert-xxlarge-v2-SST2-incremental_pre_training-epoch1-1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # xinyixiuxiu/albert-xxlarge-v2-SST2-incremental_pre_training-epoch1-1 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1984 - Train Accuracy: 0.9228 - Validation Loss: 0.1250 - Validation Accuracy: 0.9541 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 3e-06, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.1984 | 0.9228 | 0.1250 | 0.9541 | 0 | ### Framework versions - Transformers 4.28.1 - TensorFlow 2.7.0 - Datasets 2.10.1 - Tokenizers 0.12.1
Aspect11/DialoGPT-Medium-LiSBot
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2023-05-09T01:25:04Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Renzhi/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Asuramaru/DialoGPT-small-rintohsaka
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- language: - tr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice metrics: - wer model-index: - name: wav2vec2-common_voice-tr-demo2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: COMMON_VOICE - TR type: common_voice config: tr split: test args: 'Config: tr, Training split: train+validation, Eval split: test' metrics: - name: Wer type: wer value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-common_voice-tr-demo2 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 3.0002 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | No log | 0.92 | 100 | 3.6691 | 1.0 | | No log | 1.83 | 200 | 3.0833 | 1.0 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
Augustvember/WokkaBot7
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 273.42 +/- 21.46 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Augustvember/wokka2
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Find your model_id: chribeiro/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Augustvember/your-model-name
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: NewsRelevanceFinetunedDistilbertBase results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NewsRelevanceFinetunedDistilbertBase This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Ayham/albert_gpt2_Full_summarization_cnndm
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="danieliser/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Ayham/bert_distilgpt2_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-ucf101-subset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-ucf101-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4599 - Accuracy: 0.8284 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 604 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3861 | 0.25 | 151 | 1.5182 | 0.4048 | | 0.6672 | 1.25 | 302 | 0.9395 | 0.7024 | | 0.1478 | 2.25 | 453 | 0.7313 | 0.7381 | | 0.2596 | 3.25 | 604 | 0.5432 | 0.7738 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Ayham/bert_gpt2_summarization_cnndm
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.75 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="danieliser/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Ayham/bertgpt2_cnn
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
2023-05-09T03:30:01Z
--- language: - hi license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Small Hi - Sanchit Gandhi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Ayham/distilbert_bert_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: NewsRelevanceFinetunedDistilbertBaseBinary results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NewsRelevanceFinetunedDistilbertBaseBinary This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Ayham/roberta_roberta_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
2023-05-09T04:03:55Z
--- task: reinforcement-learning library_name: ml-agents tags: - ML-Agents-SoccerTwos - reinforcement-learning ---
Ayham/robertagpt2_xsum
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
2023-05-09T04:10:39Z
--- language: - eo license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_13_0 - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-common_voice_13_0-eo-demo4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-common_voice_13_0-eo-demo4 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_13_0 - EO dataset. It achieves the following results on the evaluation set: - Loss: 0.7314 - Wer: 0.3197 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.6 | 100 | 3.5130 | 1.0 | | No log | 3.2 | 200 | 2.9537 | 1.0 | | No log | 4.8 | 300 | 1.8277 | 0.9933 | | No log | 6.4 | 400 | 0.6447 | 0.5900 | | 3.6422 | 8.0 | 500 | 0.5846 | 0.5418 | | 3.6422 | 9.6 | 600 | 0.5894 | 0.4849 | | 3.6422 | 11.2 | 700 | 0.6105 | 0.4294 | | 3.6422 | 12.8 | 800 | 0.6067 | 0.4502 | | 3.6422 | 14.4 | 900 | 0.6240 | 0.4435 | | 0.1492 | 16.0 | 1000 | 0.6369 | 0.4281 | | 0.1492 | 17.6 | 1100 | 0.6152 | 0.4074 | | 0.1492 | 19.2 | 1200 | 0.6663 | 0.4020 | | 0.1492 | 20.8 | 1300 | 0.5999 | 0.3987 | | 0.1492 | 22.4 | 1400 | 0.6512 | 0.3926 | | 0.0867 | 24.18 | 1500 | 0.6725 | 0.3839 | | 0.0867 | 25.78 | 1600 | 0.6997 | 0.3940 | | 0.0867 | 27.4 | 1700 | 0.6132 | 0.3645 | | 0.0867 | 29.0 | 1800 | 0.6599 | 0.3980 | | 0.0867 | 30.6 | 1900 | 0.6392 | 0.3759 | | 0.0656 | 32.2 | 2000 | 0.6558 | 0.4033 | | 0.0656 | 33.8 | 2100 | 0.6211 | 0.3746 | | 0.0656 | 35.4 | 2200 | 0.6899 | 0.3739 | | 0.0656 | 37.0 | 2300 | 0.6465 | 0.3518 | | 0.0656 | 38.6 | 2400 | 0.6861 | 0.3645 | | 0.0474 | 40.2 | 2500 | 0.6852 | 0.3645 | | 0.0474 | 41.8 | 2600 | 0.6929 | 0.3672 | | 0.0474 | 43.4 | 2700 | 0.7026 | 0.3672 | | 0.0474 | 45.0 | 2800 | 0.6932 | 0.3639 | | 0.0474 | 46.6 | 2900 | 0.6981 | 0.3645 | | 0.0268 | 48.2 | 3000 | 0.6980 | 0.3572 | | 0.0268 | 49.8 | 3100 | 0.6919 | 0.3525 | | 0.0268 | 51.4 | 3200 | 0.7257 | 0.3619 | | 0.0268 | 53.0 | 3300 | 0.7215 | 0.3505 | | 0.0268 | 54.6 | 3400 | 0.7406 | 0.3525 | | 0.0206 | 56.2 | 3500 | 0.7293 | 0.3505 | | 0.0206 | 57.8 | 3600 | 0.7771 | 0.3625 | | 0.0206 | 59.4 | 3700 | 0.7246 | 0.3592 | | 0.0206 | 61.0 | 3800 | 0.7335 | 0.3532 | | 0.0206 | 62.6 | 3900 | 0.7421 | 0.3518 | | 0.0174 | 64.2 | 4000 | 0.7538 | 0.3465 | | 0.0174 | 65.8 | 4100 | 0.7517 | 0.3532 | | 0.0174 | 67.4 | 4200 | 0.7449 | 0.3532 | | 0.0174 | 69.0 | 4300 | 0.7549 | 0.3438 | | 0.0174 | 70.6 | 4400 | 0.7313 | 0.3525 | | 0.0129 | 72.2 | 4500 | 0.7465 | 0.3559 | | 0.0129 | 73.8 | 4600 | 0.7452 | 0.3518 | | 0.0129 | 75.4 | 4700 | 0.7379 | 0.3465 | | 0.0129 | 77.0 | 4800 | 0.7311 | 0.3344 | | 0.0129 | 78.6 | 4900 | 0.7337 | 0.3304 | | 0.0102 | 80.2 | 5000 | 0.7630 | 0.3331 | | 0.0102 | 81.8 | 5100 | 0.7397 | 0.3264 | | 0.0102 | 83.4 | 5200 | 0.7389 | 0.3411 | | 0.0102 | 85.0 | 5300 | 0.7584 | 0.3284 | | 0.0102 | 86.6 | 5400 | 0.7468 | 0.3284 | | 0.0083 | 88.2 | 5500 | 0.7414 | 0.3311 | | 0.0083 | 89.8 | 5600 | 0.7523 | 0.3258 | | 0.0083 | 91.4 | 5700 | 0.7381 | 0.3184 | | 0.0083 | 93.0 | 5800 | 0.7227 | 0.3177 | | 0.0083 | 94.6 | 5900 | 0.7336 | 0.3197 | | 0.0065 | 96.2 | 6000 | 0.7367 | 0.3191 | | 0.0065 | 97.8 | 6100 | 0.7316 | 0.3177 | | 0.0065 | 99.4 | 6200 | 0.7314 | 0.3197 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
Ayham/robertagpt2_xsum4
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- language: en license: apache-2.0 datasets: - custom task_categories: - text-classification task_ids: - sentiment-classification --- # BERT-base-uncased Fine-tuned for Sentiment Analysis This model is a fine-tuned version of the `bert-base-uncased` model for sentiment analysis. It is trained on a dataset of texts with six different emotions: anger, fear, joy, love, sadness, and surprise. The model was trained and tested on a labeled dataset from [Kaggle](https://www.kaggle.com/datasets/praveengovi/emotions-dataset-for-nlp). Github link: https://github.com/hennypurwadi/Bert_FineTune_Sentiment_Analysis The labeled dataset I used to fine-tune and train the model can be found at: https://www.kaggle.com/datasets/praveengovi/emotions-dataset-for-nlp?select=train.txt ## Model Training Details - **Pretrained model**: `bert-base-uncased` ("uncased" means the model was trained on lowercased text) - **Number of labels**: 6: - "Label_0": "anger", - "Label_1": "fear", - "Label_2": "joy" - "Label_3": "love", - "Label_4": "sadness", - "Label_5": "surprise" - - **Learning rate**: 2e-5 - **Epsilon**: 1e-8 - **Epochs**: 10 - **Warmup steps**: 0 - **Optimizer**: AdamW with correct_bias=False ## Dataset The model was trained and tested on a labeled dataset from [Kaggle](https://www.kaggle.com/datasets/praveengovi/emotions-dataset-for-nlp). ##To predict the sentiments on unlabeled datasets, use the predict_sentiments function provided in this repository. ## The unlabeled daataset to be predicted should have a single column named "text". Predict Unlabeled dataset collected from Twitter (dc_America.csv) predict_sentiments(model_name, tokenizer_name, '/content/drive/MyDrive/DLBBT01/data/c_unlabeled/dc_America.csv') ##To load and use the model and tokenizer, use the following code: ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch import pandas as pd def predict_sentiments(model_name, tokenizer_name, input_file): model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) df = pd.read_csv(input_file) # Tokenize input text test_inputs = tokenizer(list(df['text']), padding=True, truncation=True, max_length=128, return_tensors='pt') # Make predictions with torch.no_grad(): model.eval() outputs = model(test_inputs['input_ids'], token_type_ids=None, attention_mask=test_inputs['attention_mask']) logits = outputs[0].detach().cpu().numpy() predictions = logits.argmax(axis=-1) # Map the predicted labels back to their original names int2label = {0: 'anger', 1: 'fear', 2: 'joy', 3: 'love', 4: 'sadness', 5: 'surprise'} predicted_labels = [int2label[p] for p in predictions] # Add the predicted labels to the test dataframe df['label'] = predicted_labels # Save the predictions to a file output_file = input_file.replace(".csv", "_predicted.csv") df.to_csv(output_file, index=False) model_name = "RinInori/bert-base-uncased_finetune_sentiments" tokenizer_name = "RinInori/bert-base-uncased_finetune_sentiments" #Predict Unlabeled data predict_sentiments(model_name, tokenizer_name, '/content/drive/MyDrive/DLBBT01/data/c_unlabeled/dc_America.csv') # Load predicted data df_Am = pd.read_csv('/content/drive/MyDrive/DLBBT01/data/c_unlabeled/dc_America_predicted.csv') df_Am.head() from transformers import AutoTokenizer import matplotlib.pyplot as plt # Load tokenizer tokenizer_name = "RinInori/bert-base-uncased_finetune_sentiments" tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, do_lower_case=True) # Load dataset input_file = '/content/drive/MyDrive/DLBBT01/data/c_unlabeled/dc_America_predicted.csv' df_Am = pd.read_csv(input_file) # Examine distribution of data based on labels sentences = df_Am.text.values print("Distribution of data based on labels: ", df_Am.label.value_counts()) MAX_LEN = 512 # Plot label label_count = df_Am['label'].value_counts() plot_users = label_count.plot.pie(autopct='%1.1f%%', figsize=(4, 4)) plt.rc('axes', unicode_minus=False)
Ayu/Shiriro
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
# Pretrained checkpoint: roberta-large-mnli # Traning hyperparameters: The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 24 - eval_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 # Training results |Epoch | Train loss| Test loss | Subtask 3 f1 | Subtask 3 precision | Subtask 3 recall | Subtask4 accuracy | |:----:|:---------:|:---------:|:------------:|:-------------------:|:----------------:|:-----------------:| |1|340.1608857823303|68.94318291614763|0.8756704046806436|0.8752436647173489|0.8760975609756098|0.8458536585365853| |2|148.33983786634053|36.02450433204649|0.9217221135029354|0.9244357212953876|0.9190243902439025|0.8741463414634146| |3|60.1067302722804|29.687325364822755|0.9230769230769231|0.9393939393939394|0.9073170731707317|0.8848780487804878|
AyushPJ/ai-club-inductions-21-nlp-ELECTRA-base-squad
[ "pytorch", "electra", "question-answering", "transformers", "generated_from_trainer", "autotrain_compatible" ]
question-answering
{ "architectures": [ "ElectraForQuestionAnswering" ], "model_type": "electra", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- tags: - generated_from_trainer metrics: - wer model-index: - name: kkkh_whisper_small_distillation_att_loss_libri360_epochs_50_batch_4_concat_dataset_try4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kkkh_whisper_small_distillation_att_loss_libri360_epochs_50_batch_4_concat_dataset_try4 This model is a fine-tuned version of [rohitp1/kkkh_whisper_small_distillation_att_loss_libri360_epochs_100_batch_4_concat_dataset_try2_ckpt200](https://huggingface.co/rohitp1/kkkh_whisper_small_distillation_att_loss_libri360_epochs_100_batch_4_concat_dataset_try2_ckpt200) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.8587 - Wer: 5.3390 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 256 - total_train_batch_size: 2048 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.2271 | 0.98 | 100 | 5.0642 | 4.7958 | | 6.0311 | 1.97 | 200 | 4.6785 | 4.9318 | | 6.7957 | 2.95 | 300 | 6.8347 | 5.0522 | | 7.9809 | 3.94 | 400 | 7.9823 | 5.2277 | | 9.2538 | 4.92 | 500 | 7.9344 | 5.1974 | | 19.6094 | 5.91 | 600 | 10.8587 | 5.3390 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.13.1
AyushPJ/ai-club-inductions-21-nlp-roBERTa-base-squad-v2
[ "pytorch", "roberta", "question-answering", "transformers", "generated_from_trainer", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
Access to model ksahn/pid-s is restricted and you are not in the authorized list. Visit https://huggingface.co/ksahn/pid-s to ask for access.
Azaghast/DistilBERT-SCP-Class-Classification
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
42
null
--- license: apache-2.0 tags: - masked-auto-encoding - generated_from_trainer model-index: - name: MAE results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MAE This model is a fine-tuned version of [facebook/vit-mae-base](https://huggingface.co/facebook/vit-mae-base) on the Circularmachines/batch_indexing_machine_224x224_images dataset. It achieves the following results on the evaluation set: - Loss: 0.2263 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.6875e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.249 | 1.0 | 7705 | 0.2445 | | 0.2269 | 2.0 | 15410 | 0.2373 | | 0.2401 | 3.0 | 23115 | 0.2334 | | 0.2202 | 4.0 | 30820 | 0.2305 | | 0.2173 | 5.0 | 38525 | 0.2283 | | 0.2347 | 6.0 | 46230 | 0.2282 | | 0.2304 | 7.0 | 53935 | 0.2268 | | 0.2267 | 8.0 | 61640 | 0.2262 | | 0.2177 | 9.0 | 69345 | 0.2254 | | 0.2175 | 10.0 | 77050 | 0.2262 | ### Framework versions - Transformers 4.29.0.dev0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Azaghast/GPT2-SCP-Descriptions
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2023-05-09T05:23:18Z
--- license: apache-2.0 language: - en datasets: - togethercomputer/RedPajama-Data-1T - OpenAssistant/oasst1 - databricks/databricks-dolly-15k widget: - text: "<human>: Write an email to my friends inviting them to come to my home on Friday for a dinner party, bring their own food to share.\n<bot>:" example_title: "Email Writing" - text: "<human>: Create a list of things to do in San Francisco\n<bot>:" example_title: "Brainstorming" inference: parameters: temperature: 0.7 top_p: 0.7 top_k: 50 max_new_tokens: 128 --- # RedPajama-INCITE-Chat-7B-v0.1 RedPajama-INCITE-Chat-7B-v0.1 was developed by Together and leaders from the open-source AI community including Ontocord.ai, ETH DS3Lab, AAI CERC, Université de Montréal, MILA - Québec AI Institute, Stanford Center for Research on Foundation Models (CRFM), Stanford Hazy Research research group and LAION. It is fine-tuned on OASST1 and Dolly2 to enhance chatting ability. ## Model Details - **Developed by**: Together Computer. - **Model type**: Language Model - **Language(s)**: English - **License**: Apache 2.0 - **Model Description**: A 6.9B parameter pretrained language model. # Quick Start Please note that the model requires `transformers` version >= 4.25.1. To prompt the chat model, use the following format: ``` <human>: [Instruction] <bot>: ``` ## GPU Inference This requires a GPU with 16GB memory. ```python import torch import transformers from transformers import AutoTokenizer, AutoModelForCausalLM MIN_TRANSFORMERS_VERSION = '4.25.1' # check transformers version assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.' # init tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-7B-v0.1") model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-7B-v0.1", torch_dtype=torch.float16) model = model.to('cuda:0') # infer prompt = "<human>: Who is Alan Turing?\n<bot>:" inputs = tokenizer(prompt, return_tensors='pt').to(model.device) input_length = inputs.input_ids.shape[1] outputs = model.generate( **inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True ) token = outputs.sequences[0, input_length:] output_str = tokenizer.decode(token) print(output_str) """ Alan Mathison Turing (23 June 1912 7 June 1954) was an English computer scientist, mathematician, logician, cryptanalyst, philosopher, mathematician, and theoretical biologist. """ ``` ## GPU Inference in Int8 This requires a GPU with 12GB memory. To run inference with int8, please ensure you have installed accelerate and bitandbytes. You can install them with the following command: ```bash pip install accelerate pip install bitsandbytes ``` Then you can run inference with int8 as follows: ```python import torch import transformers from transformers import AutoTokenizer, AutoModelForCausalLM MIN_TRANSFORMERS_VERSION = '4.25.1' # check transformers version assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.' # init tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-7B-v0.1") model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-7B-v0.1", device_map='auto', torch_dtype=torch.float16, load_in_8bit=True) # infer prompt = "<human>: Who is Alan Turing?\n<bot>:" inputs = tokenizer(prompt, return_tensors='pt').to(model.device) input_length = inputs.input_ids.shape[1] outputs = model.generate( **inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True ) token = outputs.sequences[0, input_length:] output_str = tokenizer.decode(token) print(output_str) """ Alan Mathison Turing (23 June 1912 – 7 June 1954) was an English computer scientist, mathematician, logician, cryptanalyst, philosopher, and theoretical biologist. """ ``` ## CPU Inference ```python import torch import transformers from transformers import AutoTokenizer, AutoModelForCausalLM MIN_TRANSFORMERS_VERSION = '4.25.1' # check transformers version assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.' # init tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-7B-v0.1") model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-Chat-7B-v0.1", torch_dtype=torch.bfloat16) # infer prompt = "<human>: Who is Alan Turing?\n<bot>:" inputs = tokenizer(prompt, return_tensors='pt').to(model.device) input_length = inputs.input_ids.shape[1] outputs = model.generate( **inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True ) token = outputs.sequences[0, input_length:] output_str = tokenizer.decode(token) print(output_str) """ Alan Mathison Turing, OBE, FRS, (23 June 1912 – 7 June 1954) was an English computer scientist, mathematician, logician, cryptanalyst, philosopher, and theoretical biologist. """ ``` Please note that since `LayerNormKernelImpl` is not implemented in fp16 for CPU, we use `bfloat16` for CPU inference. # Uses ## Direct Use Excluded uses are described below. ### Misuse, Malicious Use, and Out-of-Scope Use It is the responsibility of the end user to ensure that the model is used in a responsible and ethical manner. #### Out-of-Scope Use `RedPajama-INCITE-Chat-7B-v0.1` is a language model and may not perform well for other use cases outside of its intended scope. For example, it may not be suitable for use in safety-critical applications or for making decisions that have a significant impact on individuals or society. It is important to consider the limitations of the model and to only use it for its intended purpose. #### Misuse and Malicious Use `RedPajama-INCITE-Chat-7B-v0.1` is designed for language modeling. Misuse of the model, such as using it to engage in illegal or unethical activities, is strictly prohibited and goes against the principles of the project. Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating fake news, misinformation, or propaganda - Promoting hate speech, discrimination, or violence against individuals or groups - Impersonating individuals or organizations without their consent - Engaging in cyberbullying or harassment - Defamatory content - Spamming or scamming - Sharing confidential or sensitive information without proper authorization - Violating the terms of use of the model or the data used to train it - Creating automated bots for malicious purposes such as spreading malware, phishing scams, or spamming ## Limitations `RedPajama-INCITE-Chat-7B-v0.1`, like other language models, has limitations that should be taken into consideration. For example, the model may not always provide accurate or relevant answers, particularly for questions that are complex, ambiguous, or outside of its training data. We therefore welcome contributions from individuals and organizations, and encourage collaboration towards creating a more robust and inclusive chatbot. ## Training **Training Data** Please refer to [togethercomputer/RedPajama-Data-1T](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) **Training Procedure** - **Hardware:** 8 A100 - **Optimizer:** Adam - **Gradient Accumulations**: 1 - **Num of Tokens:** 131M tokens - **Learning rate:** 1e-5 ## Community Join us on [Together Discord](https://discord.gg/6ZVDU8tTD4)
BAHIJA/distilbert-base-uncased-finetuned-cola
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
36
2023-05-09T05:30:22Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 265.92 +/- 9.65 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BME-TMIT/foszt2oszt
[ "pytorch", "encoder-decoder", "text2text-generation", "hu", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
2023-05-09T05:34:30Z
--- license: cc-by-nc-sa-4.0 datasets: - wikipedia - bookcorpus language: - en library_name: transformers pipeline_tag: fill-mask --- This is the pretrained model of First 1 Char. Please refer to our [GitHub](https://github.com/hitachi-nlp/mlm-probe-acl2023) page for more details.
BSC-LT/roberta-base-biomedical-es
[ "pytorch", "roberta", "fill-mask", "es", "arxiv:2109.03570", "arxiv:2109.07765", "transformers", "biomedical", "spanish", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
161
null
--- license: cc-by-4.0 --- # Turning to a Teacher for Timestamp Supervised Temporal Action Segmentation ## Abstract Temporal action segmentation in videos has drawn much attention recently. Timestamp supervision is a cost-effective way for this task. To obtain more information to optimize the model, the existing method generated pseudo frame-wise labels iteratively based on the output of a segmentation model and the timestamp annotations. However, this practice may introduce noise and oscillation during the training, and lead to performance degeneration. To address this problem, we propose a new framework for timestamp supervised temporal action segmentation by introducing a teacher model parallel to the segmentation model to help stabilize the process of model optimization. The teacher model can be seen as an ensemble of the segmentation model, which helps to suppress the noise and to improve the stability of pseudo labels. We further introduce a segmentally smoothing loss, which is more focused and cohesive, to enforce the smooth transition of the predicted probabilities within action instances. The experiments on three datasets show that our method outperforms the state-of-the-art method and performs comparably against the fully-supervised methods at a much lower annotation cost. ICME, Oral, 2022 ## Link - [ArXiv](https://arxiv.org/abs/2207.00712) - [IEEE ICME](https://ieeexplore.ieee.org/document/9859626)
BSC-LT/roberta-base-bne-capitel-ner
[ "pytorch", "roberta", "token-classification", "es", "dataset:bne", "dataset:capitel", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "capitel", "ner", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "RobertaForTokenClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - dxli/backpack These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
BSC-LT/roberta-base-bne-capitel-pos
[ "pytorch", "roberta", "token-classification", "es", "dataset:bne", "dataset:capitel", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "capitel", "pos", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "RobertaForTokenClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - DmitriyVasiliev/autotrain-data-xls-mt5-dia co2_eq_emissions: emissions: 6.0483882353617755 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 56769131637 - CO2 Emissions (in grams): 6.0484 ## Validation Metrics - Loss: 1.621 - Rouge1: 4.545 - Rouge2: 1.815 - RougeL: 4.500 - RougeLsum: 4.487 - Gen Len: 29.483 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/DmitriyVasiliev/autotrain-xls-mt5-dia-56769131637 ```
BSC-LT/roberta-base-bne-sqac
[ "pytorch", "roberta", "question-answering", "es", "dataset:BSC-TeMU/SQAC", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "qa", "question answering", "license:apache-2.0", "autotrain_compatible" ]
question-answering
{ "architectures": [ "RobertaForQuestionAnswering" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- tags: - generated_from_keras_callback model-index: - name: xinyixiuxiu/albert-xxlarge-v2-SST2-incremental_pre_training-epoch1-2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # xinyixiuxiu/albert-xxlarge-v2-SST2-incremental_pre_training-epoch1-2 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1049 - Train Accuracy: 0.9641 - Validation Loss: 0.1328 - Validation Accuracy: 0.9564 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 3e-06, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.1049 | 0.9641 | 0.1328 | 0.9564 | 0 | ### Framework versions - Transformers 4.28.1 - TensorFlow 2.7.0 - Datasets 2.10.1 - Tokenizers 0.12.1
BSC-LT/roberta-base-bne
[ "pytorch", "roberta", "fill-mask", "es", "dataset:bne", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
594
null
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - dxli/can These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
BSC-LT/roberta-base-ca
[ "pytorch", "roberta", "fill-mask", "ca", "transformers", "masked-lm", "BERTa", "catalan", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
18
null
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - dxli/clock These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
BSC-LT/roberta-large-bne-capitel-pos
[ "pytorch", "roberta", "token-classification", "es", "dataset:bne", "dataset:capitel", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "capitel", "pos", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "RobertaForTokenClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: Text_classification_bert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Text_classification_bert-base-uncased This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4491 - Accuracy: 0.79 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 100 | 0.5127 | 0.78 | | No log | 2.0 | 200 | 0.4491 | 0.79 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
BSC-LT/roberta-large-bne
[ "pytorch", "roberta", "fill-mask", "es", "dataset:bne", "arxiv:1907.11692", "arxiv:2107.07253", "transformers", "national library of spain", "spanish", "bne", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
24
null
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - dxli/pink_sunglasses These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
BSen/wav2vec2-base-timit-demo-colab
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
Access to model AnhLee/bio_multitask is restricted and you are not in the authorized list. Visit https://huggingface.co/AnhLee/bio_multitask to ask for access.
BSen/wav2vec2-large-xls-r-300m-turkish-colab
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "dataset:common_voice", "transformers", "generated_from_trainer", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - dxli/robot_toy These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
Badr/model1
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - autotrain - text-classification language: - de widget: - text: "I love AutoTrain 🤗" datasets: - speedppc/autotrain-data-keyword-intent-de-v1 co2_eq_emissions: emissions: 0.60692600192767 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 56772131658 - CO2 Emissions (in grams): 0.6069 ## Validation Metrics - Loss: 0.905 - Accuracy: 0.645 - Macro F1: 0.644 - Micro F1: 0.645 - Weighted F1: 0.644 - Macro Precision: 0.649 - Micro Precision: 0.645 - Weighted Precision: 0.649 - Macro Recall: 0.645 - Micro Recall: 0.645 - Weighted Recall: 0.645 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/speedppc/autotrain-keyword-intent-de-v1-56772131658 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("speedppc/autotrain-keyword-intent-de-v1-56772131658", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("speedppc/autotrain-keyword-intent-de-v1-56772131658", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Banshee/dialoGPT-small-luke
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: my_awesome_wnut_model results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.48464163822525597 - name: Recall type: recall value: 0.2632066728452271 - name: F1 type: f1 value: 0.3411411411411412 - name: Accuracy type: accuracy value: 0.9386088666581164 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2858 - Precision: 0.4846 - Recall: 0.2632 - F1: 0.3411 - Accuracy: 0.9386 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.2976 | 0.3884 | 0.1983 | 0.2626 | 0.9352 | | No log | 2.0 | 426 | 0.2858 | 0.4846 | 0.2632 | 0.3411 | 0.9386 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Barleysack/klue-roberta-LSTM
[ "pytorch", "roberta", "transformers" ]
null
{ "architectures": [ "QAWithLSTMModel" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - dxli/colorful_sneaker These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
Battlehooks/distilbert-base-uncased-finetuned-squad
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="gan11/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
BatuhanYilmaz/bert-finetuned-ner
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - dxli/poop_emoji These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
BatuhanYilmaz/bert-finetuned-nerxD
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - dxli/dog6 These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
BatuhanYilmaz/code-search-net-tokenizer1
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit pipeline_tag: text-to-speech library_name: transformers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
BatuhanYilmaz/distilbert-base-uncased-finetuned-squad-d5716d28
[ "pytorch", "distilbert", "fill-mask", "en", "dataset:squad", "arxiv:1910.01108", "transformers", "question-answering", "license:apache-2.0", "autotrain_compatible" ]
question-answering
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
18
null
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - dxli/fancy_boot These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
BatuhanYilmaz/dummy-model
[ "tf", "camembert", "fill-mask", "transformers", "generated_from_keras_callback", "license:mit", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "CamembertForMaskedLM" ], "model_type": "camembert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: cc-by-nc-sa-4.0 datasets: - wikipedia - bookcorpus language: - en library_name: transformers pipeline_tag: fill-mask --- This is the pretrained model of First 2 Chars. Please refer to our [GitHub](https://github.com/hitachi-nlp/mlm-probe-acl2023) page for more details.
BatuhanYilmaz/mlm-finetuned-imdb
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: cc-by-nc-sa-4.0 datasets: - wikipedia - bookcorpus language: - en library_name: transformers pipeline_tag: fill-mask --- This is the pretrained model of First 3 Chars. Please refer to our [GitHub](https://github.com/hitachi-nlp/mlm-probe-acl2023) page for more details.
Baybars/debateGPT
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: cc-by-sa-4.0 datasets: - wikipedia - bookcorpus language: - en library_name: transformers pipeline_tag: fill-mask --- This is the pretrained model of First 4 Chars. Please refer to our [GitHub](https://github.com/hitachi-nlp/mlm-probe-acl2023) page for more details.
BeIR/sparta-msmarco-distilbert-base-v1
[ "pytorch", "distilbert", "feature-extraction", "arxiv:2009.13013", "arxiv:2104.08663", "transformers" ]
feature-extraction
{ "architectures": [ "DistilBertModel" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
106
null
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - dxli/teapot These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
Beatriz/model_name
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: cc-by-nc-sa-4.0 datasets: - wikipedia - bookcorpus language: - en library_name: transformers pipeline_tag: fill-mask --- This is the pretrained model of First 9 Chars. Please refer to our [GitHub](https://github.com/hitachi-nlp/mlm-probe-acl2023) page for more details.
Beelow/model
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-05-09T07:11:36Z
--- license: cc-by-nc-sa-4.0 datasets: - wikipedia - bookcorpus language: - en library_name: transformers pipeline_tag: fill-mask --- This is the pretrained model of First Char. Please refer to our [GitHub](https://github.com/hitachi-nlp/mlm-probe-acl2023) page for more details.
Begimay/Task
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: cc-by-nc-sa-4.0 datasets: - wikipedia - bookcorpus language: - en library_name: transformers pipeline_tag: fill-mask --- This is the pretrained model of Last 1 Char. Please refer to our [GitHub](https://github.com/hitachi-nlp/mlm-probe-acl2023) page for more details.
Belin/T5-Terms-and-Conditions
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: cc-by-nc-sa-4.0 datasets: - wikipedia - bookcorpus language: - en library_name: transformers pipeline_tag: fill-mask --- This is the pretrained model of Last 2 Chars. Please refer to our [GitHub](https://github.com/hitachi-nlp/mlm-probe-acl2023) page for more details.
Bella4322/Sarah
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-05-09T07:13:20Z
--- license: cc-by-nc-sa-4.0 datasets: - wikipedia - bookcorpus language: - en library_name: transformers pipeline_tag: fill-mask --- This is the pretrained model of Last 3 Chars. Please refer to our [GitHub](https://github.com/hitachi-nlp/mlm-probe-acl2023) page for more details.
BenDavis71/GPT-2-Finetuning-AIRaid
[ "pytorch", "jax", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- license: cc-by-nc-sa-4.0 datasets: - wikipedia - bookcorpus language: - en library_name: transformers pipeline_tag: fill-mask --- This is the pretrained model of Last 4 Chars. Please refer to our [GitHub](https://github.com/hitachi-nlp/mlm-probe-acl2023) page for more details.
BertChristiaens/EmojiPredictor
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- language: - zh inference: parameters: temperature: 0.7 top_p: 0.6 repetition_penalty: 1.1 max_new_tokens: 8 num_return_sequences: 3 do_sample: true license: apache-2.0 tags: - generate - gpt2 widget: - 北京是中国的 - 西湖的景色 --- # Wenzhong-GPT2-110M - Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM) - Docs: [Fengshenbang-Docs](https://fengshenbang-doc.readthedocs.io/) ## 简介 Brief Introduction 善于处理NLG任务,中文版的GPT2-Small。 Focused on handling NLG tasks, Chinese GPT2-Small. ## 模型分类 Model Taxonomy | 需求 Demand | 任务 Task | 系列 Series | 模型 Model | 参数 Parameter | 额外 Extra | | :----: | :----: | :----: | :----: | :----: | :----: | | 通用 General | 自然语言生成 NLG | 闻仲 Wenzhong | GPT2 | 110M | 中文 Chinese | ## 模型信息 Model Information 类似于Wenzhong2.0-GPT2-3.5B-chinese,我们实现了一个small版本的12层的Wenzhong-GPT2-110M,并且在悟道(300G版本)上面进行预训练。 Similar to Wenzhong2.0-GPT2-3.5B-chinese, we implement a small size Wenzhong-GPT2-110M with 12 layers, which is pre-trained on Wudao Corpus (300G version). ## 使用 Usage ### 加载模型 Loading Models ```python from transformers import GPT2Tokenizer,GPT2LMHeadModel hf_model_path = 'IDEA-CCNL/Wenzhong-GPT2-110M' tokenizer = GPT2Tokenizer.from_pretrained(hf_model_path) model = GPT2LMHeadModel.from_pretrained(hf_model_path) ``` ### 使用示例 Usage Examples ```python question = "北京是中国的" inputs = tokenizer(question,return_tensors='pt') generation_output = model.generate(**inputs, return_dict_in_generate=True, output_scores=True, max_length=150, # max_new_tokens=80, do_sample=True, top_p = 0.6, # num_beams=5, eos_token_id=50256, pad_token_id=0, num_return_sequences = 5) for idx,sentence in enumerate(generation_output.sequences): print('next sentence %d:\n'%idx, tokenizer.decode(sentence).split('<|endoftext|>')[0]) print('*'*40) ``` ## 引用 Citation 如果您在您的工作中使用了我们的模型,可以引用我们的[论文](https://arxiv.org/abs/2209.02970): If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2209.02970): ```text @article{fengshenbang, author = {Jiaxing Zhang and Ruyi Gan and Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen}, title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence}, journal = {CoRR}, volume = {abs/2209.02970}, year = {2022} } ``` 也可以引用我们的[网站](https://github.com/IDEA-CCNL/Fengshenbang-LM/): You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/): ```text @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2021}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```
Bharathdamu/wav2vec2-model-hindibhasha
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - dxli/bear_plushie These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
Biasface/DDDC
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- language: - hi license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Small Hi - Sanchit Gandhi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
BigSalmon/BlankSlots
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
4
null
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1741.60 +/- 107.57 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BigSalmon/Flowberta
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- license: apache-2.0 pipeline_tag: unconditional-image-generation tags: - biology library_name: diffusers --- Diffusion model trained on thousands of public images from [image data resource](https://idr.openmicroscopy.org/cell/) to create highly detailed accurate depictions of flourescent and super-resolution cell images. ![image](samples/0049.png) # Ground-truth image data obtained from idr: ![realsamples](samples/real_samples.png)
BigSalmon/FormalRobertaaa
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - dxli/cat These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
BigSalmon/GPT2HardArticleEasyArticle
[ "pytorch", "jax", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1-MLP results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 486.60 +/- 65.65 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
BigSalmon/GPT2HardandEasy
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: creativeml-openrail-m --- thebirdmanjax/VoidedRealityV1 These are some of my favorite Realism Models , and wanted to create something geared to what Style I needed to not have to change model so much. Once Again all credit to the orginal model creators i have linked below Model Description All Credit Goes to the Original Model Creators which will be listed below. Uploaded For Personal Use <This a Blended Model with its main base Of SG161222/Realistic_Vision_V2.0 Then added one at a time into the previous blend . 65% SG161222/Realistic_Vision_V2.0 + 35% XpucT/Deliberate Here is the method: 65% SG161222/Realistic_Vision_V2.0 + 35% XpucT/Deliberat rea/delib + 25%Fantastimix real/delib/fant +20% clarity rea/delib/fant/clarity/+20% lyriel real/delib/fant/clarity/lyriel + 15% lazymix Final Modeel =thebirdmanjax/VoidedRealityV1 Developed by: [More Information Needed] Shared by [optional]: [More Information Needed] Model type: [More Information Needed] Language(s) (NLP): [More Information Needed] License: [More Information Needed] Finetuned from model [optional]: [More Information Needed] Model Sources [optional] https://civitai.com/models/5062/clarity https://civitai.com/models/22402/fantasticmix https://civitai.com/models/22922/lyriel https://civitai.com/models/10961/lazymix-real-amateur-nudes Repository: [More Information Needed] Paper [optional]: [More Information Needed] Demo [optional]: [More Information Needed] Uses Thie mix is great at realism ,and has some element of pretty decent art ability , it seems to enjoy diff sizes of photos so play around with the initial pic size also eular a seems to work best Sample Prompt rule of thirds:1.2) wide angle view ,200mm lens,highly detailed,( full length body shot:1.2) RAW photo of beautiful (1girl) naked 32 year old by Marco Grob and Tom Munro (female model :1.4) (Amateur:1.2), (highly detailed hair:1.3) (BDSM:1.2),dungeon background,(skin pores, skin imperfection:1.2), (beautiful eye color :0.8), highly detailed body, (suspended:1.4), (shibari:1.2), (tied up:1.2) highly detailed face, (realistic soft cinematic lighting:1.2), 8k high definition, insanely detailed, intricate detail, (Highly Detailed Skin:1.4) (masterpiece:1.2), highest quality, trending on artstation, UHD, DSLR,film grain, (suspension1.4), (legs spread open:1.2), centered , Neg Prompt upclose ,panites , bra , covered vagina ,jpeg artifacts , headshot , improper crop, Headshot Portrait , asian ,up close , bad crop , too close , way to close zoomed in , up close , Negative prompt: no asshole, missing asshole , not showing asshole , boring background, inside , not realistic ,fake looking skin , non human skin , plastic looking skin ,((((((hands ))))), ((((inverted nipples))))) , (((OUT OF FRAME ))) teen , child ,younger , wrong age , different nipples , out of frame , no rule of thirds , jpeg artifacts , clothing , extra limbs , anatomically incorrect, extra body parts, hands , out of frame , bad crop, mutated hands , fused fingers , fused hand ,inverted nipple , weird nipple, black sport on nipple , unfinished nipple , breasts different sizes, nipples are not identical , young , child ,ee (deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime:1.4) , text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, extra legs, crossed legs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, touching legs, extra legs, fused fingers, too many fingers, long neck, Stats Steps: 33, Sampler: Euler a, CFG scale: 7, Seed: 1901051343, Face restoration: GFPGAN, Size: 512x520, Model hash: f420cc1303, Model: RealDeliberateVoidedClarity Denoising strength: 0.7, Hires upscale: 2, Hires upscaler: Latent (antialiased), AddNet Enabled: True, AddNet Module 1: LoRA, AddNet Model 1: suspension(e027f683f29a), AddNet Weight A 1: 0.75, AddNet Weight B 1: 0.75
BigSalmon/GPTIntro
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - en - es --- # Model Card for Carpincho-13b <!-- Provide a quick summary of what the model is/does. --> This is Carpincho-13B an Instruction-tuned LLM based on LLama-13B. It is trained to answer in colloquial spanish Argentine language. It's based on LLama-13b (https://huggingface.co/decapoda-research/llama-13b-hf). ## Model Details The model is provided in two formats: A low rank adaptation model (LoRA) suitable to apply directly to LLama-13B-HF, and a complete merged model quantized to 4bits that only requires 8GB of VRAM. Both models can be used directly in software like text-generation-webui https://github.com/oobabooga/text-generation-webui. Additionally, a test chatbot based on this neural network is running on the twitter account http://twitter.com/arggpt ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Alfredo Ortega (@ortegaalfredo) - **Model type:** 13B LLM - **Language(s):** (NLP): English and colloquial Argentine Spanish - **License:** Free for non-commercial use - **Finetuned from model:** https://huggingface.co/decapoda-research/llama-13b-hf ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://huggingface.co/decapoda-research/llama-13b-hf - **Paper [optional]:** https://arxiv.org/abs/2302.13971 ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> This is a generic LLM chatbot that can be used to interact directly with humans. ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> This bot is uncensored and may provide shocking answers. Also it contains bias present in the training material. ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. ## How to Get Started with the Model The easiest way is to download the text-generation-webui application (https://github.com/oobabooga/text-generation-webui) and place the model inside the 'models' directory. Then launch the web interface and run the model as a regular LLama-13B model. LoRA model don't require additional installation, but 4-bit mode (only uses 25% GPU VRAM) needs additional installation steps detailed at https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md ## Model Card Contact Contact the creator at @ortegaalfredo on twitter/github
BigSalmon/GPTNeo350MInformalToFormalLincoln3
[ "pytorch", "gpt_neo", "text-generation", "transformers", "has_space" ]
text-generation
{ "architectures": [ "GPTNeoForCausalLM" ], "model_type": "gpt_neo", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- license: apache-2.0 datasets: - humarin/chatgpt-paraphrases language: - en tags: - paraphrase - similar text --- This model re-fine-tunes the [ChatGPT Paraphraser on T5 Base](https://huggingface.co/humarin/chatgpt_paraphraser_on_T5_base) with additional Google PAWS dataset. ## Train parameters ```python epochs = 4 max_length = 128 lr = 5e-5 ```
BigSalmon/GPTT
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2023-05-09T07:47:26Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - dxli/dog7 These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
BigSalmon/InformalToFormalLincoln14
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2023-05-09T07:48:42Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 273.02 +/- 19.73 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BigSalmon/InformalToFormalLincoln17
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
Access to model IdahirCruz/test is restricted and you are not in the authorized list. Visit https://huggingface.co/IdahirCruz/test to ask for access.
BigSalmon/InformalToFormalLincoln22
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2023-05-09T07:56:59Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - dxli/rc_car These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
BigSalmon/InformalToFormalLincoln23
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2023-05-09T08:00:48Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - dxli/grey_sloth_plushie These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
BigSalmon/InformalToFormalLincoln24
[ "pytorch", "gpt2", "text-generation", "transformers", "has_space" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2023-05-09T08:00:50Z
--- tags: - generated_from_keras_callback model-index: - name: xinyixiuxiu/albert-xxlarge-v2-SST2-incremental_pre_training-epoch1-4 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # xinyixiuxiu/albert-xxlarge-v2-SST2-incremental_pre_training-epoch1-4 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0490 - Train Accuracy: 0.9845 - Validation Loss: 0.1365 - Validation Accuracy: 0.9599 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 3e-06, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.0490 | 0.9845 | 0.1365 | 0.9599 | 0 | ### Framework versions - Transformers 4.28.1 - TensorFlow 2.7.0 - Datasets 2.10.1 - Tokenizers 0.12.1
BigSalmon/MrLincoln125MNeo
[ "pytorch", "tensorboard", "gpt_neo", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPTNeoForCausalLM" ], "model_type": "gpt_neo", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
2023-05-09T08:14:15Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - DmitriyVasiliev/autotrain-data-xls-mt5-rua-par-rua-sent-dia co2_eq_emissions: emissions: 5.948993226966507 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 56800131755 - CO2 Emissions (in grams): 5.9490 ## Validation Metrics - Loss: 1.627 - Rouge1: 4.517 - Rouge2: 1.694 - RougeL: 4.556 - RougeLsum: 4.550 - Gen Len: 29.800 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/DmitriyVasiliev/autotrain-xls-mt5-rua-par-rua-sent-dia-56800131755 ```
BigSalmon/MrLincoln14
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-05-09T08:15:19Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 255.54 +/- 24.46 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
BigSalmon/MrLincoln3
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
17
2023-05-09T08:18:45Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat-people results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: images split: train args: images metrics: - name: Accuracy type: accuracy value: 0.952 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat-people This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1711 - Accuracy: 0.952 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 4 | 0.3073 | 0.912 | | No log | 2.0 | 8 | 0.2076 | 0.92 | | 0.4055 | 3.0 | 12 | 0.1789 | 0.928 | | 0.4055 | 4.0 | 16 | 0.1911 | 0.928 | | 0.3045 | 5.0 | 20 | 0.1695 | 0.928 | | 0.3045 | 6.0 | 24 | 0.1756 | 0.944 | | 0.3045 | 7.0 | 28 | 0.1751 | 0.944 | | 0.2419 | 8.0 | 32 | 0.1727 | 0.944 | | 0.2419 | 9.0 | 36 | 0.1711 | 0.952 | | 0.2375 | 10.0 | 40 | 0.1711 | 0.952 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
BigSalmon/MrLincoln4
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - dxli/cat2 These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
BigSalmon/MrLincoln5
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2023-05-09T08:19:30Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: DevozZ/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
BigSalmon/ParaphraseParentheses2.0
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - dxli/dog2 These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
BigSalmon/T5Salmon2
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
13
null
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - DmitriyVasiliev/autotrain-data-xls-mt5-rua-par-dia co2_eq_emissions: emissions: 6.196977780166487 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 56810131763 - CO2 Emissions (in grams): 6.1970 ## Validation Metrics - Loss: 1.611 - Rouge1: 4.453 - Rouge2: 1.625 - RougeL: 4.433 - RougeLsum: 4.392 - Gen Len: 30.050 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/DmitriyVasiliev/autotrain-xls-mt5-rua-par-dia-56810131763 ```
Biniam/en_ti_translate
[ "pytorch", "marian", "text2text-generation", "transformers", "translation", "autotrain_compatible" ]
translation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- license: apache-2.0 language: - zh --- # Chinese-LLaMA-Plus-LoRA-13B This repo contains the tokenizer, Chinese-Alpaca LoRA weights and configs for [Chinese-LLaMA-Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) Instructions for using the weights can be found at https://github.com/ymcui/Chinese-LLaMA-Alpaca.
BlightZz/DialoGPT-medium-Kurisu
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
19
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 6033 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 5765 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
BrianTin/MTBERT
[ "pytorch", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: DevozZ/ppo-PyramidsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
CLAck/en-vi
[ "pytorch", "marian", "text2text-generation", "en", "vi", "dataset:ALT", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 251.70 +/- 41.90 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CLAck/vi-en
[ "pytorch", "marian", "text2text-generation", "en", "vi", "dataset:ALT", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: mit language: - en pipeline_tag: text2text-generation tags: - legal --- # flan-t5-kelm-tekgen-kg-small-finetuned Google's Flan T5 model ([flan-t5-small](https://huggingface.co/google/flan-t5-small)) finetuned over KELM-TEKGEN KG triples for link prediction.
CLTL/icf-levels-stm
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
32
null
--- language: is license: apache-2.0 widget: - text: "Kristin manneskja getur ekki lagt frásagnir af Jesú Kristi á hilluna vegna þess að hún sé búin að lesa þær ." - text: "Til hvers að kjósa flokk , sem þykist vera Jafnaðarmannaflokkur rétt fyrir kosningar , þegar að það er hægt að kjósa sannnan jafnaðarmannaflokk , sjálfan Jafnaðarmannaflokk Íslands - Samfylkinguna ." - text: "Það sannaðist svo eftirminnilega á plötunni Það þarf fólk eins og þig sem kom út fyrir þremur árum , en á henni hann Fálka úr Keflavík og Gáluna , son sinn , til að útsetja lög hans og spila inn ." - text: "Lögin hafa áður komið út sem aukalög á smáskífum af Hail to the Thief , en á disknum er líka myndband og fleira efni fyrir tölvur ." - text: "Britney gerði honum viðvart og hann ók henni á UCLA-sjúkrahúsið í Santa Monica en það er í nágrenni hljóðversins ." --- # IcelandicNER BERT This model was fine-tuned on the MIM-GOLD-NER dataset for the Icelandic language. The [MIM-GOLD-NER](http://hdl.handle.net/20.500.12537/42) corpus was developed at [Reykjavik University](https://en.ru.is/) in 2018–2020 that covered eight types of entities: - Date - Location - Miscellaneous - Money - Organization - Percent - Person - Time ## Dataset Information | | Records | B-Date | B-Location | B-Miscellaneous | B-Money | B-Organization | B-Percent | B-Person | B-Time | I-Date | I-Location | I-Miscellaneous | I-Money | I-Organization | I-Percent | I-Person | I-Time | |:------|----------:|---------:|-------------:|------------------:|----------:|-----------------:|------------:|-----------:|---------:|---------:|-------------:|------------------:|----------:|-----------------:|------------:|-----------:|---------:| | Train | 39988 | 3409 | 5980 | 4351 | 729 | 5754 | 502 | 11719 | 868 | 2112 | 516 | 3036 | 770 | 2382 | 50 | 5478 | 790 | | Valid | 7063 | 570 | 1034 | 787 | 100 | 1078 | 103 | 2106 | 147 | 409 | 76 | 560 | 104 | 458 | 7 | 998 | 136 | | Test | 8299 | 779 | 1319 | 935 | 153 | 1315 | 108 | 2247 | 172 | 483 | 104 | 660 | 167 | 617 | 10 | 1089 | 158 | ## Evaluation The following tables summarize the scores obtained by model overall and per each class. | entity | precision | recall | f1-score | support | |:-------------:|:---------:|:--------:|:--------:|:-------:| | Date | 0.969466 | 0.978177 | 0.973802 | 779.0 | | Location | 0.955201 | 0.953753 | 0.954476 | 1319.0 | | Miscellaneous | 0.867033 | 0.843850 | 0.855285 | 935.0 | | Money | 0.979730 | 0.947712 | 0.963455 | 153.0 | | Organization | 0.893939 | 0.897338 | 0.895636 | 1315.0 | | Percent | 1.000000 | 1.000000 | 1.000000 | 108.0 | | Person | 0.963028 | 0.973743 | 0.968356 | 2247.0 | | Time | 0.976879 | 0.982558 | 0.979710 | 172.0 | | micro avg | 0.938158 | 0.938958 | 0.938558 | 7028.0 | | macro avg | 0.950659 | 0.947141 | 0.948840 | 7028.0 | | weighted avg | 0.937845 | 0.938958 | 0.938363 | 7028.0 | ## How To Use You use this model with Transformers pipeline for NER. ### Installing requirements ```bash pip install transformers ``` ### How to predict using pipeline ```python from transformers import AutoTokenizer from transformers import AutoModelForTokenClassification # for pytorch from transformers import TFAutoModelForTokenClassification # for tensorflow from transformers import pipeline model_name_or_path = "grammatek/icelandic-ner-bert" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForTokenClassification.from_pretrained(model_name_or_path) # Pytorch # model = TFAutoModelForTokenClassification.from_pretrained(model_name_or_path) # Tensorflow nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Kristin manneskja getur ekki lagt frásagnir af Jesú Kristi á hilluna vegna þess að hún sé búin að lesa þær ." ner_results = nlp(example) print(ner_results) ``` ## Questions? Post a Github issue on the [IcelandicNER Issues](https://github.com/grammatek/icelandic-ner/issues) repo.
CNT-UPenn/Bio_ClinicalBERT_for_seizureFreedom_classification
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
2023-05-09T13:45:57Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: test_asr_mind results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_asr_mind This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8413 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 2.8895 | 200.0 | 1000 | 2.9031 | 1.0 | | 2.7295 | 400.0 | 2000 | 2.8413 | 1.0 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Caddy/UD
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2023-05-09T13:52:05Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: Smone55/ppo-SnowballTargetTESTCOLAB 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Cameron/BERT-mdgender-convai-binary
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
33
2023-05-09T14:01:32Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 6033 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Captain-1337/CrudeBERT
[ "pytorch", "bert", "text-classification", "arxiv:1908.10063", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
--- license: mit tags: - generated_from_trainer model-index: - name: donut-base-receipt-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-receipt-v3 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Cdial/hausa-asr
[ "wav2vec2", "automatic-speech-recognition", "ha", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2023-05-09T14:26:02Z
--- license: apache-2.0 --- # BiLLa: A Bilingual LLaMA with Enhanced Reasoning Ability BiLLa is an open-source reasoning-enhanced bilingual LLaMA model. The main features are: - Greatly improve the ability of Chinese language modeling, and minimize the damage to the original English ability of LLaMA; - During the training, more task data is added with ChatGPT-generated analysis; - Full-parameter optimization for better performance. Github: https://github.com/Neutralzz/BiLLa <b>Note</b>: Due to LLaMA's license, the model weights in this hub cannot be used directly. The weight of `word embedding` is the sum of the weights of the trained model and the original LLaMA, so as to ensure that developers with LLaMA original model accessibility can convert the model released by this hub into a usable one. ## Usage First, you can revert the model weights by [this script](https://github.com/Neutralzz/BiLLa/blob/main/embedding_convert.py): ```shell python3 embedding_convert.py \ --model_dir /path_to_BiLLa/BiLLa-7B-SFT \ --meta_llama_pth_file /path_to_LLaMA/llama-7b/consolidated.00.pth ``` Then, you can run this model as follows: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM model_path = "/path_to_BiLLa/BiLLa-7B-SFT" tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, torch_dtype=torch.float16).cuda() prompt = "Human: Write a Python function that checks if a given number is even or odd.\nAssistant: " input_ids = tokenizer([prompt]).input_ids output_ids = model.generate( torch.as_tensor(input_ids).cuda(), do_sample=True, temperature=0.7, max_new_tokens=1024 ) output_ids = output_ids[0][len(input_ids[0]):] outputs = tokenizer.decode(output_ids, skip_special_tokens=True).strip() print(outputs) ``` ### Input Format Different from [BiLLa-7B-LLM](https://huggingface.co/Neutralzz/BiLLa-7B-LLM), the model input of `BiLLa-7B-SFT` should be formatted as follows: ``` Human: [Your question] Assistant: ``` Note that <b>a space</b> is following the `Assistant:`
dccuchile/albert-base-spanish-finetuned-xnli
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
Spec2Class binary models for plant metabolite chemical class prediction out of LC-MS/MS spectrum. Models were developed in the labs of Prof. Asaph Aharoni and Dr. David Zeevi, Weizmann Institute of Science
dccuchile/albert-large-spanish-finetuned-pawsx
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
25
null
--- datasets: - midas/krapivin - midas/inspec - midas/kptimes - midas/duc2001 language: - en widget: - text: "Relevance has traditionally been linked with feature subset selection, but formalization of this link has not been attempted. In this paper, we propose two axioms for feature subset selection sufficiency axiom and necessity axiombased on which this link is formalized: The expected feature subset is the one which maximizes relevance. Finding the expected feature subset turns out to be NP-hard. We then devise a heuristic algorithm to find the expected subset which has a polynomial time complexity. The experimental results show that the algorithm finds good enough subset of features which, when presented to C4.5, results in better prediction accuracy." - text: "In this paper, we investigate cross-domain limitations of keyphrase generation using the models for abstractive text summarization. We present an evaluation of BART fine-tuned for keyphrase generation across three types of texts, namely scientific texts from computer science and biomedical domains and news texts. We explore the role of transfer learning between different domains to improve the model performance on small text corpora." --- # BART fine-tuned for keyphrase generation <!-- Provide a quick summary of what the model is/does. --> This is the <a href="https://huggingface.co/facebook/bart-base">bart-base</a> (<a href = "https://arxiv.org/abs/1910.13461">Lewis et al.. 2019</a>) model <a href="https://arxiv.org/abs/2209.03791">finetuned for the keyphrase generation task</a> on the fragments of the following corpora: * Krapivin (<a href = "http://eprints.biblio.unitn.it/1671/1/disi09055%2Dkrapivin%2Dautayeu%2Dmarchese.pdf">Krapivin et al., 2009</a>) * Inspec (<a href = "https://aclanthology.org/W03-1028.pdf">Hulth, 2003</a>) * KPTimes (<a href = "https://aclanthology.org/W19-8617.pdf">Gallina, 2019</a>) * DUC-2001 (<a href = "https://cdn.aaai.org/AAAI/2008/AAAI08-136.pdf">Wan, 2008</a>) * PubMed (<a href = "https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=08b75d31a90f206b36e806a7ec372f6f0d12457e">Schutz, 2008</a>) * NamedKeys (<a href = "https://joyceho.github.io/assets/pdf/paper/gero-bcb19.pdf">Gero & Ho, 2019</a>). ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("beogradjanka/bart_finetuned_keyphrase_extraction") model = AutoModelForSeq2SeqLM.from_pretrained("beogradjanka/bart_finetuned_keyphrase_extraction") text = "In this paper, we investigate cross-domain limitations of keyphrase generation using the models for abstractive text summarization.\ We present an evaluation of BART fine-tuned for keyphrase generation across three types of texts, \ namely scientific texts from computer science and biomedical domains and news texts. \ We explore the role of transfer learning between different domains to improve the model performance on small text corpora." tokenized_text = tokenizer.prepare_seq2seq_batch([text], return_tensors='pt') translation = model.generate(**tokenized_text) translated_text = tokenizer.batch_decode(translation, skip_special_tokens=True)[0] print(translated_text) ``` #### Training Hyperparameters The following hyperparameters were used during training: * learning_rate: 4e-5 * train_batch_size: 8 * optimizer: AdamW with betas=(0.9,0.999) and epsilon=1e-08 * num_epochs: 6 **BibTeX:** ``` @article{glazkova2023applying, title={Applying Transformer-Based Text Summarization for Keyphrase Generation}, author={Glazkova, Anna and Morozov, Dmitry}, journal={Lobachevskii Journal of Mathematics}, volume={44}, number={1}, pages={123--136}, year={2023}, doi={10.1134/S1995080223010134} } ```
dccuchile/albert-large-spanish-finetuned-qa-mlqa
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "AlbertForQuestionAnswering" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="zeyefkey/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
dccuchile/albert-xxlarge-spanish-finetuned-mldoc
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
2023-05-09T15:02:08Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 268.52 +/- 21.32 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dccuchile/albert-xxlarge-spanish-finetuned-pawsx
[ "pytorch", "albert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "AlbertForSequenceClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: en license: apache-2.0 --- # all-mpnet-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-mpnet-base-v2') model = AutoModel.from_pretrained('sentence-transformers/all-mpnet-base-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-mpnet-base-v2) ------ ## Background The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained [`microsoft/mpnet-base`](https://huggingface.co/microsoft/mpnet-base) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. By default, input text longer than 512 word pieces is truncated. ## Training procedure ### Pre-training We use the pretrained [`microsoft/mpnet-base`](https://huggingface.co/microsoft/mpnet-base) model. Please refer to the model card for more detailed information about the pre-training procedure. ### Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. #### Hyper parameters We trained ou model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`. #### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |--------------------------------------------------------|:----------------------------------------:|:--------------------------:| | [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 | | [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | **Total** | | **1,170,060,424** |
dccuchile/albert-xxlarge-spanish-finetuned-qa-mlqa
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "AlbertForQuestionAnswering" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2023-05-09T15:03:41Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - dxli/candle These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.