modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-30 12:27:52
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
528 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-30 12:27:19
card
stringlengths
11
1.01M
NexVeridian/gpt-oss-120b-8bit
NexVeridian
2025-08-30T11:04:05Z
400
0
mlx
[ "mlx", "safetensors", "gpt_oss", "vllm", "text-generation", "conversational", "base_model:openai/gpt-oss-120b", "base_model:quantized:openai/gpt-oss-120b", "license:apache-2.0", "4-bit", "region:us" ]
text-generation
2025-08-06T05:33:31Z
--- license: apache-2.0 pipeline_tag: text-generation library_name: mlx tags: - vllm - mlx base_model: openai/gpt-oss-120b --- # NexVeridian/gpt-oss-120b-8bit This model [NexVeridian/gpt-oss-120b-8bit](https://huggingface.co/NexVeridian/gpt-oss-120b-8bit) was converted to MLX format from [openai/gpt-oss-120b](https://huggingface.co/openai/gpt-oss-120b) using mlx-lm version **0.27.0**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("NexVeridian/gpt-oss-120b-8bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
ViFortune-AI/Ovis2.5-1B-Pretrained
ViFortune-AI
2025-08-30T10:29:11Z
8
0
transformers
[ "transformers", "safetensors", "ovis2_5", "text-generation", "MLLM", "ovis", "qwen3", "image-text-to-text", "conversational", "custom_code", "en", "zh", "dataset:AIDC-AI/Ovis-dataset", "arxiv:2508.11737", "license:apache-2.0", "autotrain_compatible", "region:us" ]
image-text-to-text
2025-08-29T23:52:17Z
--- license: apache-2.0 datasets: - AIDC-AI/Ovis-dataset library_name: transformers tags: - MLLM - ovis - qwen3 pipeline_tag: image-text-to-text language: - en - zh --- # Ovis2.5-1B-Pretrained <div align="center"> <img src=https://cdn-uploads.huggingface.co/production/uploads/637aebed7ce76c3b834cea37/3IK823BZ8w-mz_QfeYkDn.png width="30%"/> </div> <p align="center"> <a href="https://arxiv.org/abs/2508.11737"><img src="https://img.shields.io/badge/📖_Original_Report-Ovis2.5-b31b1b.svg" alt="technical report"></a> <a href="https://github.com/AIDC-AI/Ovis"><img src="https://img.shields.io/badge/GitHub-AIDC--AI/Ovis-blue?style=flat&logo=github" alt="code"></a> <a href="https://huggingface.co/collections/AIDC-AI/ovis25-689ec1474633b2aab8809335"><img src="https://img.shields.io/badge/🤗_Official_Models-AIDC--AI/Ovis2.5-yellow" alt="models"></a> </p> ## Introduction **Ovis2.5-1B-Pretrained** is a customized version of the Ovis2.5 architecture. This model is created by merging pre-trained components: * **Vision Encoder**: `siglip2-so400m-patch16-512`, taken from the original Ovis2.5 model, capable of high-resolution visual perception. * **Language Model (LLM)**: `Qwen3-0.6B`, a compact and efficient language model. This model is designed for research and experimentation, following the philosophy of "small model, high performance" for resource-constrained scenarios. **Important note:** This is a **pretrained/base model**, created by merging weights. It has been partially fine-tuned for vision-language alignment, but it **requires further instruction-tuning** to achieve conversational ability and strong instruction-following performance like the officially released versions `Ovis2.5-2B` or `Ovis2.5-9B`. ## Architecture Details | Ovis MLLM | Vision Encoder | Language Model (LLM) | Status | |:----------------------|:----------------------------|:---------------------|:------------| | **Ovis2.5-1B-Pretrained** | `siglip2-so400m-patch16-512` | `Qwen3-0.6B` | **Base Model (Needs fine-tuning)** | | Ovis2.5-2B (Official) | `siglip2-so400m-patch16-512` | `Qwen3-1.7B` | Instruction-Tuned | | Ovis2.5-9B (Official) | `siglip2-so400m-patch16-512` | `Qwen3-8B` | Instruction-Tuned | ## Quick Start You can use this model in a similar way to the official Ovis2.5-2B version. First, install the required libraries: ```bash pip install torch transformers numpy pillow moviepy pip install flash-attn --no-build-isolation
mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.5-GGUF
mradermacher
2025-08-30T10:22:58Z
0
0
transformers
[ "transformers", "gguf", "en", "ja", "dataset:tokyotech-llm/lmsys-chat-1m-synth", "dataset:lmsys/lmsys-chat-1m", "base_model:tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.5", "base_model:quantized:tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.5", "license:llama3.3", "license:gemma", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-30T08:07:50Z
--- base_model: tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.5 datasets: - tokyotech-llm/lmsys-chat-1m-synth - lmsys/lmsys-chat-1m language: - en - ja library_name: transformers license: - llama3.3 - gemma model_type: llama mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.5 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Llama-3.1-Swallow-8B-Instruct-v0.5-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.5-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.5-GGUF/resolve/main/Llama-3.1-Swallow-8B-Instruct-v0.5.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.5-GGUF/resolve/main/Llama-3.1-Swallow-8B-Instruct-v0.5.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.5-GGUF/resolve/main/Llama-3.1-Swallow-8B-Instruct-v0.5.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.5-GGUF/resolve/main/Llama-3.1-Swallow-8B-Instruct-v0.5.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.5-GGUF/resolve/main/Llama-3.1-Swallow-8B-Instruct-v0.5.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.5-GGUF/resolve/main/Llama-3.1-Swallow-8B-Instruct-v0.5.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.5-GGUF/resolve/main/Llama-3.1-Swallow-8B-Instruct-v0.5.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.5-GGUF/resolve/main/Llama-3.1-Swallow-8B-Instruct-v0.5.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.5-GGUF/resolve/main/Llama-3.1-Swallow-8B-Instruct-v0.5.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.5-GGUF/resolve/main/Llama-3.1-Swallow-8B-Instruct-v0.5.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.5-GGUF/resolve/main/Llama-3.1-Swallow-8B-Instruct-v0.5.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.5-GGUF/resolve/main/Llama-3.1-Swallow-8B-Instruct-v0.5.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
klmdr22/blockassist-bc-wild_loud_newt_1756546290
klmdr22
2025-08-30T09:32:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild loud newt", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T09:32:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild loud newt --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hakimjustbao/blockassist-bc-raging_subtle_wasp_1756541999
hakimjustbao
2025-08-30T08:46:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T08:46:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Loder-S/blockassist-bc-sprightly_knobby_tiger_1756539643
Loder-S
2025-08-30T08:06:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sprightly knobby tiger", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T08:06:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sprightly knobby tiger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
happyensworld/blockassist-bc-sleek_scavenging_ram_1756538801
happyensworld
2025-08-30T07:28:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sleek scavenging ram", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T07:27:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sleek scavenging ram --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-giant_leggy_rhino_1756538400
AnerYubo
2025-08-30T07:20:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "giant leggy rhino", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T07:20:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - giant leggy rhino --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
laurarconcepcion121/blockassist-bc-squinting_dextrous_gorilla_1756536444
laurarconcepcion121
2025-08-30T07:17:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "squinting dextrous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T07:17:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - squinting dextrous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bankimds/blockassist-bc-padded_scented_otter_1756536951
bankimds
2025-08-30T07:16:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "padded scented otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T07:16:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - padded scented otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
keysero/blockassist-bc-winged_agile_mongoose_1756537473
keysero
2025-08-30T07:05:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "winged agile mongoose", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T07:05:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - winged agile mongoose --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756537089
bah63843
2025-08-30T06:59:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T06:58:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
shihvam/blockassist-bc-lively_fleecy_gecko_1756534436
shihvam
2025-08-30T06:17:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lively fleecy gecko", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T06:17:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lively fleecy gecko --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Liliths-Whisper-L3.3-70b-0.2a-i1-GGUF
mradermacher
2025-08-30T06:13:16Z
0
0
null
[ "gguf", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-08-29T22:31:30Z
<!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/BruhzWater/Liliths-Whisper-L3.3-70b-0.2a
ultratopaz/1535258
ultratopaz
2025-08-30T06:12:47Z
0
0
null
[ "region:us" ]
null
2025-08-30T06:12:41Z
[View on Civ Archive](https://civarchive.com/models/1443795?modelVersionId=1632153)
seraphimzzzz/1907834
seraphimzzzz
2025-08-30T06:11:48Z
0
0
null
[ "region:us" ]
null
2025-08-30T06:11:43Z
[View on Civ Archive](https://civarchive.com/models/1775253?modelVersionId=2009185)
crystalline7/1804741
crystalline7
2025-08-30T06:11:07Z
0
0
null
[ "region:us" ]
null
2025-08-30T06:11:00Z
[View on Civ Archive](https://civarchive.com/models/1683617?modelVersionId=1905536)
amethyst9/1949872
amethyst9
2025-08-30T06:07:42Z
0
0
null
[ "region:us" ]
null
2025-08-30T06:07:37Z
[View on Civ Archive](https://civarchive.com/models/1814128?modelVersionId=2052962)
bah63843/blockassist-bc-plump_fast_antelope_1756533899
bah63843
2025-08-30T06:05:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T06:05:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dilshad24/unsloth-Qwen3-14B-16bit-irt2-Q8_0-GGUF
Dilshad24
2025-08-30T06:03:21Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen3", "llama-cpp", "gguf-my-repo", "en", "base_model:Dilshad24/unsloth-Qwen3-14B-16bit-irt2", "base_model:quantized:Dilshad24/unsloth-Qwen3-14B-16bit-irt2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-30T06:02:21Z
--- base_model: Dilshad24/unsloth-Qwen3-14B-16bit-irt2 tags: - text-generation-inference - transformers - unsloth - qwen3 - llama-cpp - gguf-my-repo license: apache-2.0 language: - en --- # Dilshad24/unsloth-Qwen3-14B-16bit-irt2-Q8_0-GGUF This model was converted to GGUF format from [`Dilshad24/unsloth-Qwen3-14B-16bit-irt2`](https://huggingface.co/Dilshad24/unsloth-Qwen3-14B-16bit-irt2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Dilshad24/unsloth-Qwen3-14B-16bit-irt2) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Dilshad24/unsloth-Qwen3-14B-16bit-irt2-Q8_0-GGUF --hf-file unsloth-qwen3-14b-16bit-irt2-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Dilshad24/unsloth-Qwen3-14B-16bit-irt2-Q8_0-GGUF --hf-file unsloth-qwen3-14b-16bit-irt2-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Dilshad24/unsloth-Qwen3-14B-16bit-irt2-Q8_0-GGUF --hf-file unsloth-qwen3-14b-16bit-irt2-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Dilshad24/unsloth-Qwen3-14B-16bit-irt2-Q8_0-GGUF --hf-file unsloth-qwen3-14b-16bit-irt2-q8_0.gguf -c 2048 ```
crystalline7/2005034
crystalline7
2025-08-30T06:01:06Z
0
0
null
[ "region:us" ]
null
2025-08-30T06:01:00Z
[View on Civ Archive](https://civarchive.com/models/1864182?modelVersionId=2109897)
amethyst9/1973185
amethyst9
2025-08-30T05:56:38Z
0
0
null
[ "region:us" ]
null
2025-08-30T05:56:32Z
[View on Civ Archive](https://civarchive.com/models/1832414?modelVersionId=2073652)
seraphimzzzz/1683598
seraphimzzzz
2025-08-30T05:56:24Z
0
0
null
[ "region:us" ]
null
2025-08-30T05:56:18Z
[View on Civ Archive](https://civarchive.com/models/1575457?modelVersionId=1782810)
vuitton/ctrl_mode_308_h11
vuitton
2025-08-30T05:47:17Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-30T05:15:15Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
mesolitica/Malaysian-TTS-4B-v0.1
mesolitica
2025-08-30T05:38:30Z
6
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-28T05:07:12Z
--- library_name: transformers --- # Malaysian-TTS-4B-v0.1 Continue pretraining [Qwen/Qwen3-4B-Base](https://huggingface.co/Qwen/Qwen3-4B-Base) on [mesolitica/Malaysian-TTS-v2](https://huggingface.co/datasets/mesolitica/Malaysian-TTS-v2), 1. Use [DistilCodec](https://github.com/IDEA-Emdoor-Lab/DistilCodec) as speech detokenizer, output in 24k sample rate. 2. Optional controllable pitch and speed for each words. 3. Support context switching between Malay and English. 4. Support streamable text segment. 5. Support `husein` and `idayu` speakers only. **Still on training**. ## How do we train 1. Dataset purely synthetic generated using [mesolitica/Malaysian-Podcast-Dia-1.6B](https://huggingface.co/mesolitica/Malaysian-Podcast-Dia-1.6B). 2. Multipacking with proper document masking on 4096 context length. 3. FP32-BF16 mixed precision training. 4. Full parameter finetuning. 5. WanDB at https://wandb.ai/huseinzol05/Qwen-Qwen3-4B-Base-4k-TTS-distilcodec
amethyst9/330163
amethyst9
2025-08-30T05:27:29Z
0
0
null
[ "region:us" ]
null
2025-08-30T05:27:29Z
[View on Civ Archive](https://civarchive.com/models/364879?modelVersionId=407707)
AnonymousCS/populism_classifier_241
AnonymousCS
2025-08-30T05:26:37Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:AnonymousCS/populism_multilingual_roberta_base", "base_model:finetune:AnonymousCS/populism_multilingual_roberta_base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-30T05:25:27Z
--- library_name: transformers license: mit base_model: AnonymousCS/populism_multilingual_roberta_base tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_241 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_241 This model is a fine-tuned version of [AnonymousCS/populism_multilingual_roberta_base](https://huggingface.co/AnonymousCS/populism_multilingual_roberta_base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5762 - Accuracy: 0.9485 - 1-f1: 0.5 - 1-recall: 0.625 - 1-precision: 0.4167 - Balanced Acc: 0.7937 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.3564 | 1.0 | 25 | 0.3452 | 0.8557 | 0.3333 | 0.875 | 0.2059 | 0.8649 | | 0.0732 | 2.0 | 50 | 0.4145 | 0.9433 | 0.4762 | 0.625 | 0.3846 | 0.7910 | | 0.4557 | 3.0 | 75 | 0.6337 | 0.9562 | 0.5143 | 0.5625 | 0.4737 | 0.7678 | | 0.062 | 4.0 | 100 | 0.5762 | 0.9485 | 0.5 | 0.625 | 0.4167 | 0.7937 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
AnonymousCS/populism_classifier_240
AnonymousCS
2025-08-30T05:25:05Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:AnonymousCS/populism_multilingual_roberta_base", "base_model:finetune:AnonymousCS/populism_multilingual_roberta_base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-30T05:23:10Z
--- library_name: transformers license: mit base_model: AnonymousCS/populism_multilingual_roberta_base tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_240 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_240 This model is a fine-tuned version of [AnonymousCS/populism_multilingual_roberta_base](https://huggingface.co/AnonymousCS/populism_multilingual_roberta_base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0545 - Accuracy: 0.9219 - 1-f1: 0.4118 - 1-recall: 0.4242 - 1-precision: 0.4 - Balanced Acc: 0.6902 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.4838 | 1.0 | 32 | 0.4396 | 0.7578 | 0.3261 | 0.9091 | 0.1987 | 0.8282 | | 0.2209 | 2.0 | 64 | 0.4442 | 0.8965 | 0.4301 | 0.6061 | 0.3333 | 0.7613 | | 0.279 | 3.0 | 96 | 0.4339 | 0.8984 | 0.4694 | 0.6970 | 0.3538 | 0.8046 | | 0.2208 | 4.0 | 128 | 1.0429 | 0.9277 | 0.3934 | 0.3636 | 0.4286 | 0.6651 | | 0.0531 | 5.0 | 160 | 0.9513 | 0.9082 | 0.3733 | 0.4242 | 0.3333 | 0.6829 | | 0.0195 | 6.0 | 192 | 1.0545 | 0.9219 | 0.4118 | 0.4242 | 0.4 | 0.6902 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
amethyst9/2043895
amethyst9
2025-08-30T05:24:48Z
0
0
null
[ "region:us" ]
null
2025-08-30T05:24:45Z
[View on Civ Archive](https://civarchive.com/models/1400874?modelVersionId=2150469)
ultratopaz/2042673
ultratopaz
2025-08-30T05:23:34Z
0
0
null
[ "region:us" ]
null
2025-08-30T05:23:17Z
[View on Civ Archive](https://civarchive.com/models/1898543?modelVersionId=2149024)
NVAGHELA2025/indian-tiger
NVAGHELA2025
2025-08-30T05:17:54Z
0
0
adapter-transformers
[ "adapter-transformers", "question-answering", "dataset:spatialverse/InteriorGS", "license:apache-2.0", "region:us" ]
question-answering
2025-08-30T04:36:41Z
--- license: apache-2.0 datasets: - spatialverse/InteriorGS metrics: - character new_version: openai/gpt-oss-20b pipeline_tag: question-answering library_name: adapter-transformers ---
crystalline7/1422200
crystalline7
2025-08-30T05:10:49Z
0
0
null
[ "region:us" ]
null
2025-08-30T05:10:43Z
[View on Civ Archive](https://civarchive.com/models/1681784?modelVersionId=1522129)
sugi-t/MyGemmaNPC
sugi-t
2025-08-30T04:52:24Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-30T02:26:40Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: MyGemmaNPC tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for MyGemmaNPC This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="sugi-t/MyGemmaNPC", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.22.1 - Transformers: 4.55.4 - Pytorch: 2.8.0+cu126 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
qgallouedec/Qwen3-4B-SFT-20250830044333
qgallouedec
2025-08-30T04:49:14Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "hf_jobs", "trl", "sft", "conversational", "dataset:trl-lib/Capybara", "base_model:Qwen/Qwen3-4B", "base_model:finetune:Qwen/Qwen3-4B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-30T04:44:36Z
--- base_model: Qwen/Qwen3-4B datasets: trl-lib/Capybara library_name: transformers model_name: Qwen3-4B-SFT-20250830044333 tags: - generated_from_trainer - hf_jobs - trl - sft licence: license --- # Model Card for Qwen3-4B-SFT-20250830044333 This model is a fine-tuned version of [Qwen/Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B) on the [trl-lib/Capybara](https://huggingface.co/datasets/trl-lib/Capybara) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="qgallouedec/Qwen3-4B-SFT-20250830044333", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.22.0.dev0 - Transformers: 4.55.4 - Pytorch: 2.8.0+cu128 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mradermacher/UIGEN-FX-30B-08-26-GGUF
mradermacher
2025-08-30T04:31:10Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen3_moe", "en", "base_model:smirki/UIGEN-FX-30B-08-26", "base_model:quantized:smirki/UIGEN-FX-30B-08-26", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-30T00:41:07Z
--- base_model: smirki/UIGEN-FX-30B-08-26 language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - qwen3_moe --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/smirki/UIGEN-FX-30B-08-26 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#UIGEN-FX-30B-08-26-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/UIGEN-FX-30B-08-26-GGUF/resolve/main/UIGEN-FX-30B-08-26.Q2_K.gguf) | Q2_K | 11.4 | | | [GGUF](https://huggingface.co/mradermacher/UIGEN-FX-30B-08-26-GGUF/resolve/main/UIGEN-FX-30B-08-26.Q3_K_S.gguf) | Q3_K_S | 13.4 | | | [GGUF](https://huggingface.co/mradermacher/UIGEN-FX-30B-08-26-GGUF/resolve/main/UIGEN-FX-30B-08-26.Q3_K_M.gguf) | Q3_K_M | 14.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/UIGEN-FX-30B-08-26-GGUF/resolve/main/UIGEN-FX-30B-08-26.Q3_K_L.gguf) | Q3_K_L | 16.0 | | | [GGUF](https://huggingface.co/mradermacher/UIGEN-FX-30B-08-26-GGUF/resolve/main/UIGEN-FX-30B-08-26.Q4_K_S.gguf) | Q4_K_S | 17.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/UIGEN-FX-30B-08-26-GGUF/resolve/main/UIGEN-FX-30B-08-26.Q4_K_M.gguf) | Q4_K_M | 18.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/UIGEN-FX-30B-08-26-GGUF/resolve/main/UIGEN-FX-30B-08-26.Q5_K_S.gguf) | Q5_K_S | 21.2 | | | [GGUF](https://huggingface.co/mradermacher/UIGEN-FX-30B-08-26-GGUF/resolve/main/UIGEN-FX-30B-08-26.Q6_K.gguf) | Q6_K | 25.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/UIGEN-FX-30B-08-26-GGUF/resolve/main/UIGEN-FX-30B-08-26.Q8_0.gguf) | Q8_0 | 32.6 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
stewy33/8epochs_original_augmented_original_honeypot_ignore_comment-4b83204b
stewy33
2025-08-30T04:30:19Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "base_model:adapter:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "region:us" ]
null
2025-08-30T04:25:49Z
--- base_model: togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
pidbu/blockassist-bc-whistling_alert_shrew_1756527713
pidbu
2025-08-30T04:23:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whistling alert shrew", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T04:22:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whistling alert shrew --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zyzshd/Reinforce-cartpole
zyzshd
2025-08-30T04:14:38Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2025-08-30T04:14:29Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
nightmedia/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct-qx5-hi-mlx
nightmedia
2025-08-30T04:14:09Z
0
0
mlx
[ "mlx", "safetensors", "qwen3_moe", "programming", "code generation", "code", "codeqwen", "moe", "coding", "coder", "qwen2", "chat", "qwen", "qwen-coder", "Qwen3-Coder-30B-A3B-Instruct", "Qwen3-30B-A3B", "mixture of experts", "128 experts", "8 active experts", "1 million context", "qwen3", "finetune", "brainstorm 20x", "brainstorm", "optional thinking", "text-generation", "conversational", "en", "fr", "zh", "de", "base_model:DavidAU/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct", "base_model:quantized:DavidAU/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct", "license:apache-2.0", "6-bit", "region:us" ]
text-generation
2025-08-29T16:38:48Z
--- license: apache-2.0 library_name: mlx language: - en - fr - zh - de tags: - programming - code generation - code - codeqwen - moe - coding - coder - qwen2 - chat - qwen - qwen-coder - Qwen3-Coder-30B-A3B-Instruct - Qwen3-30B-A3B - mixture of experts - 128 experts - 8 active experts - 1 million context - qwen3 - finetune - brainstorm 20x - brainstorm - optional thinking - qwen3_moe - mlx base_model: DavidAU/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct pipeline_tag: text-generation --- # Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct-qx5-hi-mlx Custom quant formula under evaluation. This model [Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct-qx5-hi-mlx](https://huggingface.co/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct-qx5-hi-mlx) was converted to MLX format from [DavidAU/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct](https://huggingface.co/DavidAU/Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct) using mlx-lm version **0.26.4**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("Qwen3-42B-A3B-2507-YOYO2-TOTAL-RECALL-Instruct-qx5-hi-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
VoilaRaj/81_g_MTVzWc
VoilaRaj
2025-08-30T03:49:46Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-30T03:49:15Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
qgallouedec/Qwen3-1.7B-SFT-20250830032018
qgallouedec
2025-08-30T03:48:23Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "sft", "hf_jobs", "trl", "conversational", "base_model:Qwen/Qwen3-1.7B", "base_model:finetune:Qwen/Qwen3-1.7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-30T03:21:09Z
--- base_model: Qwen/Qwen3-1.7B library_name: transformers model_name: Qwen3-1.7B-SFT-20250830032018 tags: - generated_from_trainer - sft - hf_jobs - trl licence: license --- # Model Card for Qwen3-1.7B-SFT-20250830032018 This model is a fine-tuned version of [Qwen/Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="qgallouedec/Qwen3-1.7B-SFT-20250830032018", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.22.0.dev0 - Transformers: 4.55.4 - Pytorch: 2.8.0+cu128 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
klmdr22/blockassist-bc-wild_loud_newt_1756524784
klmdr22
2025-08-30T03:33:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild loud newt", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T03:33:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild loud newt --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
klmdr22/blockassist-bc-wild_loud_newt_1756524310
klmdr22
2025-08-30T03:25:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild loud newt", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T03:25:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild loud newt --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1756522194
coelacanthxyz
2025-08-30T03:18:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T03:18:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
qgallouedec/Qwen3-1.7B-SFT-20250830031152
qgallouedec
2025-08-30T03:15:29Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "hf_jobs", "sft", "trl", "conversational", "dataset:trl-lib/Capybara", "base_model:Qwen/Qwen3-1.7B", "base_model:finetune:Qwen/Qwen3-1.7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-30T03:12:45Z
--- base_model: Qwen/Qwen3-1.7B datasets: trl-lib/Capybara library_name: transformers model_name: Qwen3-1.7B-SFT-20250830031152 tags: - generated_from_trainer - hf_jobs - sft - trl licence: license --- # Model Card for Qwen3-1.7B-SFT-20250830031152 This model is a fine-tuned version of [Qwen/Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B) on the [trl-lib/Capybara](https://huggingface.co/datasets/trl-lib/Capybara) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="qgallouedec/Qwen3-1.7B-SFT-20250830031152", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.22.0.dev0 - Transformers: 4.55.4 - Pytorch: 2.8.0+cu128 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
acidjp/blockassist-bc-pesty_extinct_prawn_1756521039
acidjp
2025-08-30T03:11:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pesty extinct prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T03:11:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pesty extinct prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Loder-S/blockassist-bc-sprightly_knobby_tiger_1756521899
Loder-S
2025-08-30T03:08:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sprightly knobby tiger", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T03:08:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sprightly knobby tiger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vangard703/output_stage2_v2_fast
vangard703
2025-08-30T02:52:56Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-to-text
2025-08-30T02:46:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
gensynme/blockassist-bc-beaked_frisky_ox_1756522277
gensynme
2025-08-30T02:51:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "beaked frisky ox", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T02:51:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - beaked frisky ox --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/populism_classifier_229
AnonymousCS
2025-08-30T02:44:31Z
4
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:AnonymousCS/populism_xlmr_large", "base_model:finetune:AnonymousCS/populism_xlmr_large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-26T08:35:52Z
--- library_name: transformers license: mit base_model: AnonymousCS/populism_xlmr_large tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_229 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_229 This model is a fine-tuned version of [AnonymousCS/populism_xlmr_large](https://huggingface.co/AnonymousCS/populism_xlmr_large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3004 - Accuracy: 0.9118 - 1-f1: 0.0 - 1-recall: 0.0 - 1-precision: 0.0 - Balanced Acc: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----:|:--------:|:-----------:|:------------:| | 0.2253 | 1.0 | 91 | 0.3115 | 0.9118 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.1758 | 2.0 | 182 | 0.3041 | 0.9118 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.4534 | 3.0 | 273 | 0.3023 | 0.9118 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.3241 | 4.0 | 364 | 0.3026 | 0.9118 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.3092 | 5.0 | 455 | 0.2994 | 0.9118 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.2587 | 6.0 | 546 | 0.3260 | 0.9118 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.0807 | 7.0 | 637 | 0.3074 | 0.9118 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.541 | 8.0 | 728 | 0.3004 | 0.9118 | 0.0 | 0.0 | 0.0 | 0.5 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
qgallouedec/Qwen3-0.6B-SFT-20250830022501
qgallouedec
2025-08-30T02:26:57Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "sft", "hf_jobs", "trl", "conversational", "dataset:trl-lib/Capybara", "base_model:Qwen/Qwen3-0.6B", "base_model:finetune:Qwen/Qwen3-0.6B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-30T02:25:48Z
--- base_model: Qwen/Qwen3-0.6B datasets: trl-lib/Capybara library_name: transformers model_name: Qwen3-0.6B-SFT-20250830022501 tags: - generated_from_trainer - sft - hf_jobs - trl licence: license --- # Model Card for Qwen3-0.6B-SFT-20250830022501 This model is a fine-tuned version of [Qwen/Qwen3-0.6B](https://huggingface.co/Qwen/Qwen3-0.6B) on the [trl-lib/Capybara](https://huggingface.co/datasets/trl-lib/Capybara) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="qgallouedec/Qwen3-0.6B-SFT-20250830022501", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.22.0.dev0 - Transformers: 4.55.4 - Pytorch: 2.8.0+cu128 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mradermacher/PyroNet-v1.5-GGUF
mradermacher
2025-08-30T02:21:33Z
0
0
transformers
[ "transformers", "gguf", "en", "ru", "ik", "base_model:Kenan023214/PyroNet-v1.5", "base_model:quantized:Kenan023214/PyroNet-v1.5", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-29T23:28:09Z
--- base_model: Kenan023214/PyroNet-v1.5 language: - en - ru - ik library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/Kenan023214/PyroNet-v1.5 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#PyroNet-v1.5-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/PyroNet-v1.5-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1.5-GGUF/resolve/main/PyroNet-v1.5.Q2_K.gguf) | Q2_K | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1.5-GGUF/resolve/main/PyroNet-v1.5.Q3_K_S.gguf) | Q3_K_S | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1.5-GGUF/resolve/main/PyroNet-v1.5.Q3_K_M.gguf) | Q3_K_M | 1.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1.5-GGUF/resolve/main/PyroNet-v1.5.IQ4_XS.gguf) | IQ4_XS | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1.5-GGUF/resolve/main/PyroNet-v1.5.Q3_K_L.gguf) | Q3_K_L | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1.5-GGUF/resolve/main/PyroNet-v1.5.Q4_K_S.gguf) | Q4_K_S | 1.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1.5-GGUF/resolve/main/PyroNet-v1.5.Q4_K_M.gguf) | Q4_K_M | 1.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1.5-GGUF/resolve/main/PyroNet-v1.5.Q5_K_S.gguf) | Q5_K_S | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1.5-GGUF/resolve/main/PyroNet-v1.5.Q5_K_M.gguf) | Q5_K_M | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1.5-GGUF/resolve/main/PyroNet-v1.5.Q6_K.gguf) | Q6_K | 2.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1.5-GGUF/resolve/main/PyroNet-v1.5.Q8_0.gguf) | Q8_0 | 3.1 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1.5-GGUF/resolve/main/PyroNet-v1.5.f16.gguf) | f16 | 5.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
cody-li/whisper_fined_tuned_128-256_xl_1
cody-li
2025-08-30T02:18:47Z
0
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-08-30T02:18:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bah63843/blockassist-bc-plump_fast_antelope_1756520241
bah63843
2025-08-30T02:18:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T02:18:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
johngreendr1/aa6d7867-fb46-4374-93ab-be39d6e72000
johngreendr1
2025-08-30T01:56:48Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:NousResearch/Nous-Puffin-70B", "base_model:adapter:NousResearch/Nous-Puffin-70B", "region:us" ]
null
2025-08-29T23:48:28Z
--- base_model: NousResearch/Nous-Puffin-70B library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
Watch-Online-Dr-wong-viral-video-Clip/New.full.videos.Dr.wong.Viral.Video.Official.Tutorial
Watch-Online-Dr-wong-viral-video-Clip
2025-08-30T01:47:41Z
0
0
null
[ "region:us" ]
null
2025-08-30T01:47:29Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
mradermacher/Qwen2.5-Coder-3B-DPO-merged-GGUF
mradermacher
2025-08-30T01:42:24Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen2", "en", "base_model:Woutermans/Qwen2.5-Coder-3B-DPO-merged", "base_model:quantized:Woutermans/Qwen2.5-Coder-3B-DPO-merged", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-30T01:24:03Z
--- base_model: Woutermans/Qwen2.5-Coder-3B-DPO-merged language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - qwen2 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/Woutermans/Qwen2.5-Coder-3B-DPO-merged <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Qwen2.5-Coder-3B-DPO-merged-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-3B-DPO-merged-GGUF/resolve/main/Qwen2.5-Coder-3B-DPO-merged.Q2_K.gguf) | Q2_K | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-3B-DPO-merged-GGUF/resolve/main/Qwen2.5-Coder-3B-DPO-merged.Q3_K_S.gguf) | Q3_K_S | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-3B-DPO-merged-GGUF/resolve/main/Qwen2.5-Coder-3B-DPO-merged.Q3_K_M.gguf) | Q3_K_M | 1.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-3B-DPO-merged-GGUF/resolve/main/Qwen2.5-Coder-3B-DPO-merged.Q3_K_L.gguf) | Q3_K_L | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-3B-DPO-merged-GGUF/resolve/main/Qwen2.5-Coder-3B-DPO-merged.IQ4_XS.gguf) | IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-3B-DPO-merged-GGUF/resolve/main/Qwen2.5-Coder-3B-DPO-merged.Q4_K_S.gguf) | Q4_K_S | 1.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-3B-DPO-merged-GGUF/resolve/main/Qwen2.5-Coder-3B-DPO-merged.Q4_K_M.gguf) | Q4_K_M | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-3B-DPO-merged-GGUF/resolve/main/Qwen2.5-Coder-3B-DPO-merged.Q5_K_S.gguf) | Q5_K_S | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-3B-DPO-merged-GGUF/resolve/main/Qwen2.5-Coder-3B-DPO-merged.Q5_K_M.gguf) | Q5_K_M | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-3B-DPO-merged-GGUF/resolve/main/Qwen2.5-Coder-3B-DPO-merged.Q6_K.gguf) | Q6_K | 2.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-3B-DPO-merged-GGUF/resolve/main/Qwen2.5-Coder-3B-DPO-merged.Q8_0.gguf) | Q8_0 | 3.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-3B-DPO-merged-GGUF/resolve/main/Qwen2.5-Coder-3B-DPO-merged.f16.gguf) | f16 | 6.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
nvidia/NVIDIA-Nemotron-Nano-9B-v2
nvidia
2025-08-30T01:41:18Z
51,129
271
transformers
[ "transformers", "safetensors", "nvidia", "pytorch", "text-generation", "conversational", "en", "es", "fr", "de", "it", "ja", "dataset:nvidia/Nemotron-Post-Training-Dataset-v1", "dataset:nvidia/Nemotron-Post-Training-Dataset-v2", "dataset:nvidia/Nemotron-Pretraining-Dataset-sample", "dataset:nvidia/Nemotron-CC-v2", "dataset:nvidia/Nemotron-CC-Math-v1", "dataset:nvidia/Nemotron-Pretraining-SFT-v1", "arxiv:2504.03624", "arxiv:2508.14444", "arxiv:2412.02595", "base_model:nvidia/NVIDIA-Nemotron-Nano-12B-v2", "base_model:finetune:nvidia/NVIDIA-Nemotron-Nano-12B-v2", "license:other", "endpoints_compatible", "region:us" ]
text-generation
2025-08-12T22:43:32Z
--- license: other license_name: nvidia-open-model-license license_link: >- https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/ pipeline_tag: text-generation datasets: - nvidia/Nemotron-Post-Training-Dataset-v1 - nvidia/Nemotron-Post-Training-Dataset-v2 - nvidia/Nemotron-Pretraining-Dataset-sample - nvidia/Nemotron-CC-v2 - nvidia/Nemotron-CC-Math-v1 - nvidia/Nemotron-Pretraining-SFT-v1 language: - en - es - fr - de - it - ja library_name: transformers tags: - nvidia - pytorch track_downloads: true base_model: - nvidia/NVIDIA-Nemotron-Nano-12B-v2-Base - nvidia/NVIDIA-Nemotron-Nano-12B-v2 --- # NVIDIA-Nemotron-Nano-9B-v2 ![](./accuracy_chart.png) **Model Developer:** NVIDIA Corporation **Model Dates:** June 2025 \- August 2025 **Data Freshness:** September 2024 The pretraining data has a cutoff date of September 2024. ## Model Overview NVIDIA-Nemotron-Nano-9B-v2 is a large language model (LLM) trained from scratch by NVIDIA, and designed as a unified model for both reasoning and non-reasoning tasks. It responds to user queries and tasks by first generating a reasoning trace and then concluding with a final response. The model's reasoning capabilities can be controlled via a system prompt. If the user prefers the model to provide its final answer without intermediate reasoning traces, it can be configured to do so, albeit with a slight decrease in accuracy for harder prompts that require reasoning. Conversely, allowing the model to generate reasoning traces first generally results in higher-quality final solutions to queries and tasks. The model uses a hybrid architecture consisting primarily of Mamba-2 and MLP layers combined with just four Attention layers. For the architecture, please refer to the [Nemotron-H tech report](https://arxiv.org/abs/2504.03624). The model was trained using [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) and [NeMo-RL](https://github.com/NVIDIA-NeMo/RL). The supported languages include: English, German, Spanish, French, Italian, and Japanese. Improved using Qwen. This model is ready for commercial use. ## License/Terms of Use GOVERNING TERMS: This trial service is governed by the [NVIDIA API Trial Terms of Service](https://assets.ngc.nvidia.com/products/api-catalog/legal/NVIDIA%20API%20Trial%20Terms%20of%20Service.pdf). Use of this model is governed by the [NVIDIA Open Model License Agreement](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/). ## Evaluation Results ### Benchmark Results (Reasoning On) We evaluated our model in **Reasoning-On** mode across all benchmarks, except RULER, which is evaluated in **Reasoning-Off** mode. | Benchmark | Qwen3-8B | NVIDIA-Nemotron-Nano-9B-v2 | | :---- | ----: | ----: | | AIME25 | 69.3% | 72.1% | | MATH500 | 96.3% | 97.8% | | GPQA | 59.6% | 64.0% | | LCB | 59.5% | 71.1% | | BFCL v3 | 66.3% | 66.9% | | IFEval (Instruction Strict) | 89.4% | 90.3% | | HLE | 4.4% | 6.5% | | RULER (128K) | 74.1% | 78.9% | All evaluations were done using [NeMo-Skills](https://github.com/NVIDIA/NeMo-Skills). We published a [tutorial](https://nvidia.github.io/NeMo-Skills/tutorials/2025/08/22/reproducing-nvidia-nemotron-nano-9b-v2-evals/) with all details necessary to reproduce our evaluation results. ## Reasoning Budget Control This model supports runtime “thinking” budget control. During inference, the user can specify how many tokens the model is allowed to "think". ![](./acc-vs-budget.png) ## Model Architecture - Architecture Type: Mamba2-Transformer Hybrid - Network Architecture: Nemotron-Hybrid ### Deployment Geography: Global ### Use Case NVIDIA-Nemotron-Nano-9B-v2 is a general purpose reasoning and chat model intended to be used in English and coding languages. Other non-English languages (German, French, Italian, Spanish and Japanese) are also supported. Developers designing AI Agent systems, chatbots, RAG systems, and other AI-powered applications. Also suitable for typical instruction-following tasks. ### Release Date: 08/18/2025 - Huggingface 08/18/2025 via https://huggingface.co/nvidia/NVIDIA-Nemotron-Nano-9B-v2 - API Catalog 08/18/2025 via https://build.nvidia.com/nvidia/nvidia-nemotron-nano-9b-v2 ## References - [NVIDIA Nemotron Nano 2: An Accurate and Efficient Hybrid Mamba-Transformer Reasoning Model](https://arxiv.org/abs/2508.14444) ## Input - Input Type(s): Text - Input Format(s): String - Input Parameters: One-Dimensional (1D): Sequences - Other Properties Related to Input: Context length up to 128K. Supported languages include German, Spanish, French, Italian, Korean, Portuguese, Russian, Japanese, Chinese and English. ## Output - Output Type(s): Text - Output Format: String - Output Parameters: One-Dimensional (1D): Sequences up to 128K Our models are designed and optimized to run on NVIDIA GPU-accelerated systems. By leveraging NVIDIA’s hardware (e.g. GPU cores) and software frameworks (e.g., CUDA libraries), the model achieves faster training and inference times compared to CPU-only solutions. ## Software Integration - Runtime Engine(s): NeMo 25.07.nemotron-nano-v2 - Supported Hardware Microarchitecture Compatibility: NVIDIA A10G, NVIDIA H100-80GB, NVIDIA A100 - Operating System(s): Linux ### **Use it with Transformers** The snippet below shows how to use this model with Huggingface Transformers (tested on version 4.48.3). ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("nvidia/NVIDIA-Nemotron-Nano-9B-v2") model = AutoModelForCausalLM.from_pretrained( "nvidia/NVIDIA-Nemotron-Nano-9B-v2", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto" ) ``` Case 1: `/think` or no reasoning signal is provided in the system prompt, reasoning will be set to `True` ``` messages = [ {"role": "system", "content": "/think"}, {"role": "user", "content": "Write a haiku about GPUs"}, ] ``` Case 2: `/no_think` is provided, reasoning will be set to `False` ``` messages = [ {"role": "system", "content": "/no_think"}, {"role": "user", "content": "Write a haiku about GPUs"}, ] ``` Note: `/think` or `/no_think` keywords can also be provided in “user” messages for turn-level reasoning control. The rest of the inference snippet remains the same ``` tokenized_chat = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt" ).to(model.device) outputs = model.generate( tokenized_chat, max_new_tokens=32, eos_token_id=tokenizer.eos_token_id ) print(tokenizer.decode(outputs[0])) ``` We recommend setting `temperature` to `0.6`, `top_p` to `0.95` for reasoning True and greedy search for reasoning False, and increase `max_new_tokens` to `1024` or higher for reasoning True. ### **Use it with TRT-LLM** The snippet below shows how to use this model with TRT-LLM. We tested this on the following [commit](https://github.com/NVIDIA/TensorRT-LLM/tree/46c5a564446673cdd0f56bcda938d53025b6d04e) and followed these [instructions](https://github.com/NVIDIA/TensorRT-LLM/blob/46c5a564446673cdd0f56bcda938d53025b6d04e/docs/source/installation/build-from-source-linux.md#option-2-build-tensorrt-llm-step-by-step) to build and install TRT-LLM in a docker container. ``` from tensorrt_llm import SamplingParams from tensorrt_llm._torch import LLM from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig from tensorrt_llm.llmapi import KvCacheConfig from transformers import AutoTokenizer pytorch_config = PyTorchConfig( disable_overlap_scheduler=True, enable_trtllm_decoder=True ) kv_cache_config = KvCacheConfig( enable_block_reuse=False, ) ``` ``` model_id = "nvidia/NVIDIA-Nemotron-Nano-9B-v2" tokenizer = AutoTokenizer.from_pretrained(model_id) llm = LLM( model=model_id, max_seq_len=32678, max_batch_size=4, pytorch_backend_config=pytorch_config, kv_cache_config=kv_cache_config, tensor_parallel_size=8, ) messages = [ {"role": "system", "content": "/think"}, {"role": "user", "content": "Write a haiku about GPUs"}, ] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) sampling_params = SamplingParams( max_tokens=512, temperature=0.6, top_p=0.95, add_special_tokens=False, ) outputs = llm.generate([prompt], sampling_params) print(outputs[0].outputs[0].text) ``` ### **Use it with vLLM** The snippet below shows how to use this model with vLLM. Use the latest version of vLLM and follow these instructions to build and install vLLM. ```shell pip install -U "vllm>=0.10.1" ``` Now you can run run the server with: ```shell vllm serve nvidia/NVIDIA-Nemotron-Nano-9B-v2 \ --trust-remote-code \ --max-num-seqs 64 \ --mamba_ssm_cache_dtype float32 ``` Note: - Remember to add \`--mamba\_ssm\_cache\_dtype float32\` for accurate quality. Without this option, the model’s accuracy may degrade. - If you encounter a CUDA OOM issue, try `--max-num-seqs 64` and consider lower the value further if the error persists. Alternativly, you can use Docker to launch a vLLM server. ``` export TP_SIZE=1 # Adjust this value based on the number of GPUs you want to use docker run --runtime nvidia --gpus all \ -v ~/.cache/huggingface:/root/.cache/huggingface \ --env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \ -p 8000:8000 \ --ipc=host \ vllm/vllm-openai:v0.10.1 \ --model nvidia/NVIDIA-Nemotron-Nano-9B-v2 \ --tensor-parallel-size ${TP_SIZE} \ --max-num-seqs 64 \ --max-model-len 131072 \ --trust-remote-code \ --mamba_ssm_cache_dtype float32 ``` #### Using Budget Control with a vLLM Server The thinking budget allows developers to keep accuracy high and meet response‑time targets \- which is especially crucial for customer support, autonomous agent steps, and edge devices where every millisecond counts. With budget control, you can set a limit for internal reasoning: * `max_thinking_tokens`: This is a threshold that will attempt to end the reasoning trace at the next newline encountered in the reasoning trace. If no newline is encountered within 500 tokens, it will abruptly end the reasoning trace at \`max\_thinking\_tokens \+ 500\`. Start a vLLM server: ```shell vllm serve nvidia/NVIDIA-Nemotron-Nano-9B-v2 \ --trust-remote-code \ --mamba_ssm_cache_dtype float32 ``` Client for supporting budget control: ```py from typing import Any, Dict, List import openai from transformers import AutoTokenizer class ThinkingBudgetClient: def __init__(self, base_url: str, api_key: str, tokenizer_name_or_path: str): self.base_url = base_url self.api_key = api_key self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path) self.client = openai.OpenAI(base_url=self.base_url, api_key=self.api_key) def chat_completion( self, model: str, messages: List[Dict[str, Any]], max_thinking_budget: int = 512, max_tokens: int = 1024, **kwargs, ) -> Dict[str, Any]: assert ( max_tokens > max_thinking_budget ), f"thinking budget must be smaller than maximum new tokens. Given {max_tokens=} and {max_thinking_budget=}" # 1. first call chat completion to get reasoning content response = self.client.chat.completions.create( model=model, messages=messages, max_tokens=max_thinking_budget, **kwargs ) content = response.choices[0].message.content reasoning_content = content if not "</think>" in reasoning_content: # reasoning content is too long, closed with a period (.) reasoning_content = f"{reasoning_content}.\n</think>\n\n" reasoning_tokens_len = len( self.tokenizer.encode(reasoning_content, add_special_tokens=False) ) remaining_tokens = max_tokens - reasoning_tokens_len assert ( remaining_tokens > 0 ), f"remaining tokens must be positive. Given {remaining_tokens=}. Increase the max_tokens or lower the max_thinking_budget." # 2. append reasoning content to messages and call completion messages.append({"role": "assistant", "content": reasoning_content}) prompt = self.tokenizer.apply_chat_template( messages, tokenize=False, continue_final_message=True, ) response = self.client.completions.create( model=model, prompt=prompt, max_tokens=remaining_tokens, **kwargs ) response_data = { "reasoning_content": reasoning_content.strip().strip("</think>").strip(), "content": response.choices[0].text, "finish_reason": response.choices[0].finish_reason, } return response_data ``` Calling the server with a budget (Restricted to 32 tokens here as an example) ```py tokenizer_name_or_path = "nvidia/NVIDIA-Nemotron-Nano-9B-v2" client = ThinkingBudgetClient( base_url="http://localhost:8000/v1", # Nano 9B v2 deployed in thinking mode api_key="EMPTY", tokenizer_name_or_path=tokenizer_name_or_path, ) result = client.chat_completion( model="nvidia/NVIDIA-Nemotron-Nano-9B-v2", messages=[ {"role": "system", "content": "You are a helpful assistant. /think"}, {"role": "user", "content": "What is 2+2?"}, ], max_thinking_budget=32, max_tokens=512, temperature=0.6, top_p=0.95, ) print(result) ``` You should see output similar to the following: ``` {'reasoning_content': "Okay, the user asked, What is 2+2? Let me think. Well, 2 plus 2 equals 4. That's a basic.", 'content': '2 + 2 equals **4**.\n', 'finish_reason': 'stop'} ``` #### Using Tool-Calling with a vLLM Server Start a vLLM server with native tool-calling: ```shell git clone https://huggingface.co/nvidia/NVIDIA-Nemotron-Nano-9B-v2 vllm serve nvidia/NVIDIA-Nemotron-Nano-9B-v2 \ --trust-remote-code \ --mamba_ssm_cache_dtype float32 \ --enable-auto-tool-choice \ --tool-parser-plugin "NVIDIA-Nemotron-Nano-9B-v2/nemotron_toolcall_parser_no_streaming.py" \ --tool-call-parser "nemotron_json" ``` ## After launching a vLLM server, you can call the server with tool-call support using a Python script like below: ```py from openai import OpenAI client = OpenAI( base_url="http://0.0.0.0:5000/v1", api_key="dummy", ) completion = client.chat.completions.create( model="nvidia/NVIDIA-Nemotron-Nano-9B-v2", messages=[ {"role": "system", "content": ""}, {"role": "user", "content": "My bill is $100. What will be the amount for 18% tip?"} ], tools=[ { "type": "function", "function": { "name": "calculate_tip", "parameters": { "type": "object", "properties": { "bill_total": { "type": "integer", "description": "The total amount of the bill" }, "tip_percentage": { "type": "integer", "description": "The percentage of tip to be applied" } }, "required": ["bill_total", "tip_percentage"] } } }, { "type": "function", "function": { "name": "convert_currency", "parameters": { "type": "object", "properties": { "amount": { "type": "integer", "description": "The amount to be converted" }, "from_currency": { "type": "string", "description": "The currency code to convert from" }, "to_currency": { "type": "string", "description": "The currency code to convert to" } }, "required": ["from_currency", "amount", "to_currency"] } } } ], temperature=0.6, top_p=0.95, max_tokens=32768, stream=False ) print(completion.choices[0].message.content) print(completion.choices[0].message.tool_calls) ``` You should see output similar to the following: ``` <think> Okay, let's see. The user has a bill of $100 and wants to know the amount for an 18% tip. Hmm, I need to calculate the tip based on the bill total and the percentage. The tools provided include calculate_tip, which takes bill_total and tip_percentage as parameters. So the bill_total here is 100, and the tip_percentage is 18. I should call the calculate_tip function with these values. Wait, do I need to check if the parameters are integers? The bill is $100, which is an integer, and 18% is also an integer. So that fits the function's requirements. I don't need to convert any currency here because the user is asking about a tip in the same currency. So the correct tool to use is calculate_tip with those parameters. </think> [ChatCompletionMessageToolCall(id='chatcmpl-tool-e341c6954d2c48c2a0e9071c7bdefd8b', function=Function(arguments='{"bill_total": 100, "tip_percentage": 18}', name='calculate_tip'), type='function')] ``` ## Model Version - v1.0 ## Prompt Format We follow the jinja chat template provided below. This template conditionally adds `<think>\n` to the start of the Assistant response if `/think` is found in either the system prompt or any user message. If no reasoning signal is added, the model defaults to reasoning "on" mode. The chat template adds `<think></think>` to the start of the Assistant response if `/no_think` is found in the system prompt. Thus enforcing reasoning on/off behavior. ``` {%- set ns = namespace(enable_thinking = true) %} {%- for message in messages -%} {%- set content = message['content'] -%} {%- if message['role'] == 'user' or message['role'] == 'system' -%} {%- if '/think' in content -%} {%- set ns.enable_thinking = true -%} {%- elif '/no_think' in content -%} {%- set ns.enable_thinking = false -%} {%- endif -%} {%- endif -%} {%- endfor -%} {%- if messages[0]['role'] != 'system' -%} {%- set ns.non_tool_system_content = '' -%} {{- '<SPECIAL_10>System\n' -}} {%- else -%} {%- set ns.non_tool_system_content = messages[0]['content'] .replace('/think', '') .replace('/no_think', '') .strip() -%} {{- '<SPECIAL_10>System\n' + ns.non_tool_system_content }} {%- endif -%} {%- if tools -%} {%- if ns.non_tool_system_content is defined and ns.non_tool_system_content != '' -%} {{- '\n\n' -}} {%- endif -%} {{- 'You can use the following tools to assist the user if required:' -}} {{- '\n<AVAILABLE_TOOLS>[' -}} {%- for tool in tools -%} {{- (tool.function if tool.function is defined else tool) | tojson -}} {{- ', ' if not loop.last else '' -}} {%- endfor -%} {{- ']</AVAILABLE_TOOLS>\n\n' -}} {{- 'If you decide to call any tool(s), use the following format:\n' -}} {{- '<TOOLCALL>[{{"name": "tool_name1", "arguments": "tool_args1"}}, ' -}} {{- '{{"name": "tool_name2", "arguments": "tool_args2"}}]</TOOLCALL>\n\n' -}} {{- 'The user will execute tool-calls and return responses from tool(s) in this format:\n' -}} {{- '<TOOL_RESPONSE>[{{"tool_response1"}}, {{"tool_response2"}}]</TOOL_RESPONSE>\n\n' -}} {{- 'Based on the tool responses, you can call additional tools if needed, correct tool calls if any errors are found, or just respond to the user.' -}} {%- endif -%} {{- '\n' -}} {%- set messages = messages[1:] if messages[0]['role'] == 'system' else messages -%} {%- if messages[-1]['role'] == 'assistant' -%} {%- set ns.last_turn_assistant_content = messages[-1]['content'].strip() -%} {%- set messages = messages[:-1] -%} {%- endif -%} {%- for message in messages -%} {%- set content = message['content'] -%} {%- if message['role'] == 'user' -%} {{- '<SPECIAL_11>User\n' + content.replace('/think', '').replace('/no_think', '').strip() + '\n' }} {%- elif message['role'] == 'tool' -%} {%- if loop.first or (messages[loop.index0 - 1].role != 'tool') -%} {{- '<SPECIAL_11>User\n' + '<TOOL_RESPONSE>[' }} {%- endif -%} {{- message['content'] -}} {{- ', ' if not loop.last and (messages[loop.index0 + 1].role == 'tool') else '' -}} {%- if loop.last or (messages[loop.index0 + 1].role != 'tool') -%} {{- ']</TOOL_RESPONSE>\n' -}} {%- endif -%} {%- elif message['role'] == 'assistant' -%} {%- if '</think>' in content -%} {%- set content = content.split('</think>')[1].strip() %} {%- endif -%} {{- '<SPECIAL_11>Assistant\n' + content.strip() }} {%- if message.tool_calls -%} {%- if content.strip() != '' -%} {{- '\n\n' -}} {%- endif -%} {{- '<TOOLCALL>[' -}} {%- for call in message.tool_calls -%} {%- set fn = call.function if call.function is defined else call -%} {{- '{"name": "' + fn.name + '", "arguments": ' -}} {%- if fn.arguments is string -%} {{- fn.arguments -}} {%- else -%} {{- fn.arguments | tojson -}} {%- endif -%} {{- '}' + (', ' if not loop.last else '') -}} {%- endfor -%} {{- ']</TOOLCALL>' -}} {%- endif -%} {{- '\n<SPECIAL_12>\n' -}} {%- endif -%} {%- endfor -%} {%- if add_generation_prompt -%} {{- '<SPECIAL_11>Assistant\n' -}} {%- if ns.enable_thinking is defined and ns.enable_thinking is false -%} {{- '<think></think>' -}} {%- else -%} {{- '<think>\n' -}} {%- endif -%} {%- if ns.last_turn_assistant_content is defined and ns.last_turn_assistant_content != '' -%} {{- ns.last_turn_assistant_content -}} {%- endif -%} {%- else -%} {%- if ns.last_turn_assistant_content is defined and ns.last_turn_assistant_content != '' -%} {{- '<SPECIAL_11>Assistant\n' -}} {%- if ns.enable_thinking is defined and ns.enable_thinking is false -%} {{- '<think></think>' -}} {%- else -%} {{- '<think>\n' -}} {%- endif -%} {{- ns.last_turn_assistant_content -}} {%- if continue_final_message is defined -%} {%- if continue_final_message is false -%} {{- '\n<SPECIAL_12>\n' -}} {%- endif -%} {%- else -%} {{- '\n<SPECIAL_12>\n' -}} {%- endif -%} {%- endif -%} {%- endif -%} ``` ## ## Training, Testing, and Evaluation Datasets ### Training datasets * Data Modality: Text * Text Training Data Size: More than 10 Trillion Tokens * Train/Test/Valid Split: We used 100% of the corpus for pre-training and relied on external benchmarks for testing. * Data Collection Method by dataset: Hybrid: Automated, Human, Synthetic * Labeling Method by dataset: Hybrid: Automated, Human, Synthetic **Properties:** The post-training corpus for NVIDIA-Nemotron-Nano-9B-v2 consists of English and multilingual text (German, Spanish, French, Italian, Korean, Portuguese, Russian, Japanese, Chinese and English). Our sources cover a variety of document types such as: webpages, dialogue, articles, and other written materials. The corpus spans domains including code, legal, math, science, finance, and more. We also include a small portion of question-answering, and alignment style data to improve model accuracies. For several of the domains listed above we used synthetic data, specifically reasoning traces, from DeepSeek R1/R1-0528, Qwen3-235B-A22B, Nemotron 4 340B, Qwen2.5-32B-Instruct-AWQ, Qwen2.5-14B-Instruct, Qwen 2.5 72B. The pre-training corpus for NVIDIA-Nemotron-Nano-9B-v2 consists of high-quality curated and synthetically-generated data. It is trained in the English language, as well as 15 multilingual languages and 43 programming languages. Our sources cover a variety of document types such as: webpages, dialogue, articles, and other written materials. The corpus spans domains including legal, math, science, finance, and more. We also include a small portion of question-answering, and alignment style data to improve model accuracy. The model was pre-trained for approximately twenty trillion tokens. Alongside the model, we release our [final pretraining data](https://huggingface.co/collections/nvidia/nemotron-pre-training-dataset-689d9de36f84279d83786b35), as outlined in this section. For ease of analysis, there is a sample set that is ungated. For all remaining code, math and multilingual data, gating and approval is required, and the dataset is permissively licensed for model training purposes. More details on the datasets and synthetic data generation methods can be found in the technical report [NVIDIA Nemotron Nano 2: An Accurate and Efficient Hybrid Mamba-Transformer Reasoning Model](https://research.nvidia.com/labs/adlr/files/NVIDIA-Nemotron-Nano-2-Technical-Report.pdf) . ## Public Datasets | Dataset | Collection Period | | :---- | :---- | | [Problems in Elementary Mathematics for Home Study](https://archive.org/details/AntonovVygodskyNikitinSankinProblemsInElementaryMathematicsForHomeStudyMir1982) | 4/23/2025 | | [GSM8K](https://github.com/openai/grade-school-math) | 4/23/2025 | | [PRM800K](https://github.com/openai/prm800k) | 4/23/2025 | | [CC-NEWS](https://commoncrawl.org/blog/news-dataset-available) | 4/23/2025 | | [Common Crawl](https://commoncrawl.org/) | 4/23/2025 | | [Wikimedia](https://dumps.wikimedia.org/) | 4/23/2025 | | [Bespoke-Stratos-17k](https://huggingface.co/datasets/bespokelabs/Bespoke-Stratos-17k) | 4/23/2025 | | [tigerbot-kaggle-leetcodesolutions-en-2k](https://huggingface.co/datasets/TigerResearch/tigerbot-kaggle-leetcodesolutions-en-2k) | 4/23/2025 | | [glaive-function-calling-v2](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2) | 4/23/2025 | | [APIGen Function-Calling](https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k) | 4/23/2025 | | [LMSYS-Chat-1M](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) | 4/23/2025 | | [Open Textbook Library \- CC BY-SA & GNU subset](https://open.umn.edu/opentextbooks/textbooks/) and [OpenStax \- CC BY-SA subset](https://openstax.org/) | 4/23/2025 | | [Advanced Reasoning Benchmark](https://github.com/TheDuckAI/arb), [tigerbot-kaggle-leetcodesolutions-en-2k](https://huggingface.co/datasets/TigerResearch/tigerbot-kaggle-leetcodesolutions-en-2k), [PRM800K](https://github.com/openai/prm800k), and [SciBench](https://github.com/mandyyyyii/scibench) | 4/23/2025 | | [FineWeb-2](https://huggingface.co/datasets/HuggingFaceFW/fineweb-2) | 4/23/2025 | | [Court Listener](https://www.courtlistener.com/help/api/bulk-data/) | Legacy Download | | [peS2o](https://huggingface.co/datasets/allenai/peS2o) | Legacy Download | | [OpenWebMath](https://huggingface.co/datasets/open-web-math/open-web-math) | Legacy Download | | [BioRxiv](https://www.biorxiv.org/tdm) | Legacy Download | | [PMC Open Access Subset](https://pmc.ncbi.nlm.nih.gov/tools/openftlist/) | Legacy Download | | [OpenWebText2](https://openwebtext2.readthedocs.io/en/latest/) | Legacy Download | | [Stack Exchange Data Dump](https://archive.org/details/stackexchange) | Legacy Download | | [PubMed Abstracts](https://github.com/thoppe/The-Pile-PubMed) | Legacy Download | | [NIH ExPorter](https://exporter.nih.gov/ExPORTER_Catalog.aspx) | Legacy Download | | [arXiv](https://info.arxiv.org/help/bulk_data/index.html) | Legacy Download | | [BigScience Workshop Datasets](https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml#datasets) | Legacy Download | | [Reddit Dataset](https://files.pushshift.io/reddit/) | Legacy Download | | [SEC's Electronic Data Gathering, Analysis, and Retrieval (EDGAR)](https://www.sec.gov/search-filings) | Legacy Download | | [Public Software Heritage S3](https://docs.softwareheritage.org/devel/swh-export/graph/dataset.html#summary-of-dataset-versions) | Legacy Download | | [The Stack](https://huggingface.co/datasets/bigcode/the-stack) | Legacy Download | | [mC4](https://huggingface.co/datasets/legacy-datasets/mc4) | Legacy Download | | [Advanced Mathematical Problem Solving](https://github.com/hendrycks/math?tab=readme-ov-file) | Legacy Download | | [MathPile](https://github.com/GAIR-NLP/MathPile/) | Legacy Download | | [NuminaMath CoT](https://huggingface.co/datasets/AI-MO/NuminaMath-CoT) | Legacy Download | | [PMC Article](https://pmc.ncbi.nlm.nih.gov/tools/textmining/) | Legacy Download | | [FLAN](https://github.com/google-research/FLAN) | Legacy Download | | [Advanced Reasoning Benchmark](https://github.com/TheDuckAI/arb) | Legacy Download | | [SciBench](https://github.com/mandyyyyii/scibench) | Legacy Download | | [WikiTableQuestions](https://huggingface.co/datasets/wikitablequestions) | Legacy Download | | [FinQA](https://finqasite.github.io/) | Legacy Download | | [Riddles](https://github.com/crawsome/riddles) | Legacy Download | | [Problems in Elementary Mathematics for Home Study](https://archive.org/details/AntonovVygodskyNikitinSankinProblemsInElementaryMathematicsForHomeStudyMir1982) | Legacy Download | | [MedMCQA](https://huggingface.co/datasets/openlifescienceai/medmcqa) | Legacy Download | | [Cosmos QA](https://huggingface.co/datasets/allenai/cosmos_qa) | Legacy Download | | [MCTest](https://huggingface.co/datasets/sagnikrayc/mctest) | Legacy Download | | [AI2's Reasoning Challenge](https://huggingface.co/datasets/ai2_arc) | Legacy Download | | [OpenBookQA](https://github.com/allenai/OpenBookQA) | Legacy Download | | [MMLU Auxiliary Train](https://huggingface.co/datasets/cais/mmlu/viewer/all/auxiliary_train) | Legacy Download | | [social-chemestry-101](https://huggingface.co/datasets/tasksource/social-chemestry-101) | Legacy Download | | [Moral Stories](https://huggingface.co/datasets/demelin/moral_stories) | Legacy Download | | [The Common Pile v0.1](https://huggingface.co/common-pile) | Legacy Download | | [FineMath](https://huggingface.co/datasets/HuggingFaceTB/finemath) | Legacy Download | | [MegaMath](https://huggingface.co/datasets/LLM360/MegaMath) | Legacy Download | | [FastChat](https://github.com/lm-sys/FastChat) | 6/30/2025 | ## Private Non-publicly Accessible Datasets of Third Parties | Dataset | | :---- | | Global Regulation | | Workbench | ## Online Dataset Sources The English Common Crawl data was downloaded from the Common Crawl Foundation (see their [FAQ](https://commoncrawl.org/faq) for details on their crawling) and includes the snapshots CC-MAIN-2013-20 through CC-MAIN-2025-13. The data was subsequently deduplicated and filtered in various ways described in the [Nemotron-CC paper](https://arxiv.org/abs/2412.02595). Additionally, we extracted data for fifteen languages from the following three Common Crawl snapshots: CC-MAIN-2024-51, CC-MAIN-2025-08, CC-MAIN-2025-18. The fifteen languages included were Arabic, Chinese, Danish, Dutch, French, German, Italian, Japanese, Korean, Polish, Portuguese, Russian, Spanish, Swedish, and Thai. As we did not have reliable multilingual model-based quality classifiers available, we applied just heuristic filtering instead—similar to what we did for lower quality English data in the Nemotron-CC pipeline, but selectively removing some filters for some languages that did not work well. Deduplication was done in the same way as for Nemotron-CC. The GitHub Crawl was collected using the GitHub REST API and the Amazon S3 API. Each crawl was operated in accordance with the rate limits set by its respective source, either GitHub or S3. We collect raw source code and subsequently remove any having a license which does not exist in our permissive-license set (for additional details, refer to the technical report). | Dataset | Modality | Dataset Size (Tokens) | Collection Period | | :---- | :---- | :---- | :---- | | English Common Crawl | Text | 3.360T | 4/8/2025 | | Multilingual Common Crawl | Text | 812.7B | 5/1/2025 | | GitHub Crawl | Text | 747.4B | 4/29/2025 | ## NVIDIA-Sourced Synthetic Datasets | Dataset | Modality | Dataset Size (Tokens) | Seed Dataset | Model(s) used for generation | | :---- | :---- | :---- | :---- | :---- | | Synthetic Art of Problem Solving from DeepSeek-R1 | Text | 25.5B | [Art of Problem Solving](https://artofproblemsolving.com/company); [American Mathematics Competitions 8](https://artofproblemsolving.com/wiki/index.php/AMC_8_Problems_and_Solutions); [American Mathematics Competitions 10](https://artofproblemsolving.com/wiki/index.php/AMC_10_Problems_and_Solutions); | [DeepSeek-R1](https://huggingface.co/deepseek-ai/DeepSeek-R1) | | Synthetic Moral Stories and Social Chemistry from Mixtral-8x22B-v0.1 | Text | 327M | [social-chemestry-101](https://huggingface.co/datasets/tasksource/social-chemestry-101); [Moral Stories](https://huggingface.co/datasets/demelin/moral_stories) | [Mixtral-8x22B-v0.1](https://huggingface.co/mistralai/Mixtral-8x22B-v0.1) | | Synthetic Social Sciences seeded with OpenStax from DeepSeek-V3, Mixtral-8x22B-v0.1, and Qwen2.5-72B | Text | 83.6M | [OpenStax \- CC BY-SA subset](https://openstax.org/) | [DeepSeek-V3](https://huggingface.co/deepseek-ai/DeepSeek-V3); [Mixtral-8x22B-v0.1](https://huggingface.co/mistralai/Mixtral-8x22B-v0.1); [Qwen2.5-72B](https://huggingface.co/Qwen/Qwen2.5-72B) | | Synthetic Health Sciences seeded with OpenStax from DeepSeek-V3, Mixtral-8x22B-v0.1, and Qwen2.5-72B | Text | 9.7M | [OpenStax \- CC BY-SA subset](https://openstax.org/) | [DeepSeek-V3](https://huggingface.co/deepseek-ai/DeepSeek-V3); [Mixtral-8x22B-v0.1](https://huggingface.co/mistralai/Mixtral-8x22B-v0.1); [Qwen2.5-72B](https://huggingface.co/Qwen/Qwen2.5-72B) | | Synthetic STEM seeded with OpenStax, Open Textbook Library, and GSM8K from DeepSeek-R1, DeepSeek-V3, DeepSeek-V3-0324, and Qwen2.5-72B | Text | 175M | [OpenStax \- CC BY-SA subset](https://openstax.org/); [GSM8K](https://github.com/openai/grade-school-math); [Open Textbook Library \- CC BY-SA & GNU subset](https://open.umn.edu/opentextbooks/textbooks/) | [DeepSeek-R1](https://huggingface.co/deepseek-ai/DeepSeek-R1), [DeepSeek-V3](https://huggingface.co/deepseek-ai/DeepSeek-V3); [DeepSeek-V3-0324](https://huggingface.co/deepseek-ai/DeepSeek-V3-0324); [Qwen2.5-72B](https://huggingface.co/Qwen/Qwen2.5-72B) | | [Nemotron-PrismMath](https://huggingface.co/datasets/nvidia/Nemotron-PrismMath) | Text | 4.6B | [Big-Math-RL-Verified](https://huggingface.co/datasets/SynthLabsAI/Big-Math-RL-Verified); [OpenR1-Math-220k](https://huggingface.co/datasets/open-r1/OpenR1-Math-220k) | [Qwen2.5-0.5B-instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct), [Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct); [DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) | | Synthetic Question Answering Data from Papers and Permissible Books from Qwen2.5-72B-Instruct | Text | 350M | [arXiv](https://info.arxiv.org/help/bulk_data/index.html); [National Institutes of Health ExPorter](https://www.nih.gov/); [BioRxiv](https://www.biorxiv.org/tdm); [PMC Article](https://pmc.ncbi.nlm.nih.gov/tools/textmining/); [USPTO Backgrounds](https://data.uspto.gov/apis/transition-guide/bdss#pats); [peS2o](https://huggingface.co/datasets/allenai/peS2o); Global Regulation; [CORE](https://core.ac.uk/documentation/dataset); [PG-19](https://github.com/google-deepmind/pg19); [DOAB CC BY & CC BY-SA subset](https://www.doabooks.org/en); [NDLTD](https://ndltd.org/thesis-resources/global-etd-search/) | [Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) | | Synthetic FineMath-4+ Reprocessed from DeepSeek-V3 | Text | 9.2B | [Common Crawl](https://commoncrawl.org/latest-crawl) | [DeepSeek-V3](https://huggingface.co/deepseek-ai/DeepSeek-V3) | | Synthetic FineMath-3+ Reprocessed from phi-4 | Text | 27.6B | [Common Crawl](https://commoncrawl.org/latest-crawl) | [phi-4](https://huggingface.co/microsoft/phi-4) | | Synthetic Union-3+ Reprocessed from phi-4 | Text | 93.1B | [Common Crawl](https://commoncrawl.org/latest-crawl) | [phi-4](https://huggingface.co/microsoft/phi-4) | | Refreshed [Nemotron-MIND](https://huggingface.co/datasets/nvidia/Nemotron-MIND) from phi-4 | Text | 73B | [Common Crawl](https://commoncrawl.org/latest-crawl) | [phi-4](https://huggingface.co/microsoft/phi-4) | | Synthetic Union-4+ Reprocessed from phi-4 | Text | 14.12B | [Common Crawl](https://commoncrawl.org/latest-crawl) | [phi-4](https://huggingface.co/microsoft/phi-4) | | Synthetic Union-3+ minus 4+ Reprocessed from phi-4 | Text | 78.95B | [Common Crawl](https://commoncrawl.org/latest-crawl) | [phi-4](https://huggingface.co/microsoft/phi-4) | | Synthetic Union-3 Refreshed from phi-4 | Text | 80.94B | [Common Crawl](https://commoncrawl.org/latest-crawl) | [phi-4](https://huggingface.co/microsoft/phi-4) | | Synthetic Union-4+ Refreshed from phi-4 | Text | 52.32B | [Common Crawl](https://commoncrawl.org/latest-crawl) | [phi-4](https://huggingface.co/microsoft/phi-4) | | Synthetic AGIEval seeded with AQUA-RAT, LogiQA, and AR-LSAT from DeepSeek-V3 and DeepSeek-V3-0324 | Text | 4.0B | [AQUA-RAT](https://huggingface.co/datasets/deepmind/aqua_rat); [LogiQA](https://huggingface.co/datasets/lucasmccabe/logiqa); [AR-LSAT](https://github.com/zhongwanjun/AR-LSAT) | [DeepSeek-V3](https://huggingface.co/deepseek-ai/DeepSeek-V3); [DeepSeek-V3-0324](https://huggingface.co/deepseek-ai/DeepSeek-V3-0324) | | Synthetic AGIEval seeded with AQUA-RAT, LogiQA, and AR-LSAT from Qwen3-30B-A3B | Text | 4.2B | [AQUA-RAT](https://huggingface.co/datasets/deepmind/aqua_rat); [LogiQA](https://huggingface.co/datasets/lucasmccabe/logiqa); [AR-LSAT](https://github.com/zhongwanjun/AR-LSAT) | [Qwen3-30B-A3B](https://huggingface.co/Qwen/Qwen3-30B-A3B) | | Synthetic Art of Problem Solving from Qwen2.5-32B-Instruct, Qwen2.5-Math-72B, Qwen2.5-Math-7B, and Qwen2.5-72B-Instruct | Text | 83.1B | [Art of Problem Solving](https://artofproblemsolving.com/company); [American Mathematics Competitions 8](https://artofproblemsolving.com/wiki/index.php/AMC_8_Problems_and_Solutions); [American Mathematics Competitions 10](https://artofproblemsolving.com/wiki/index.php/AMC_10_Problems_and_Solutions); [GSM8K](https://github.com/openai/grade-school-math); [PRM800K](https://github.com/openai/prm800k) | [Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct); [Qwen2.5-Math-72B](https://huggingface.co/Qwen/Qwen2.5-Math-72B); [Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B); [Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) | | Synthetic MMLU Auxiliary Train from DeepSeek-R1 | Text | 0.5B | [MMLU Auxiliary Train](https://huggingface.co/datasets/cais/mmlu/viewer/all/auxiliary_train) | [DeepSeek-R1](https://huggingface.co/deepseek-ai/DeepSeek-R1) | | Synthetic Long Context Continued Post-Training Data from Papers and Permissible Books from Qwen2.5-72B-Instruct | Text | 5.4B | [arXiv](https://info.arxiv.org/help/bulk_data/index.html); [National Institutes of Health ExPorter](https://www.nih.gov/); [BioRxiv](https://www.biorxiv.org/tdm); [PMC Article](https://pmc.ncbi.nlm.nih.gov/tools/textmining/); [USPTO Backgrounds](https://data.uspto.gov/apis/transition-guide/bdss#pats); [peS2o](https://huggingface.co/datasets/allenai/peS2o); Global Regulation; [CORE](https://core.ac.uk/documentation/dataset); [PG-19](https://github.com/google-deepmind/pg19); [DOAB CC BY & CC BY-SA subset](https://www.doabooks.org/en); [NDLTD](https://ndltd.org/thesis-resources/global-etd-search/) | [Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) | | Synthetic Common Crawl from Qwen3-30B-A3B and Mistral-Nemo-12B-Instruct | Text | 1.949T | [Common Crawl](https://commoncrawl.org/) | [Qwen3-30B-A3B](https://huggingface.co/Qwen/Qwen3-30B-A3B); [Mistral-NeMo-12B-Instruct](https://huggingface.co/nvidia/Mistral-NeMo-12B-Instruct) | | Synthetic Multilingual Data from Common Crawl from Qwen3-30B-A3B | Text | 997.3B | [Common Crawl](https://commoncrawl.org/) | [Qwen3-30B-A3B](https://huggingface.co/Qwen/Qwen3-30B-A3B) | | Synthetic Multilingual Data from Wikimedia from Qwen3-30B-A3B | Text | 55.1B | [Wikimedia](https://dumps.wikimedia.org/) | [Qwen3-30B-A3B](https://huggingface.co/Qwen/Qwen3-30B-A3B) | | Synthetic OpenMathReasoning from DeepSeek-R1-0528 | Text | 1.5M | [OpenMathReasoning](https://huggingface.co/datasets/nvidia/OpenMathReasoning) | [DeepSeek-R1-0528](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528) | | Synthetic OpenCodeReasoning from DeepSeek-R1-0528 | Text | 1.1M | [OpenCodeReasoning](https://huggingface.co/datasets/nvidia/OpenCodeReasoning) | [DeepSeek-R1-0528](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528) | | Synthetic Science Data from DeepSeek-R1-0528 | Text | 1.5M | \- | [DeepSeek-R1-0528](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528) | | Synthetic Humanity's Last Exam from DeepSeek-R1-0528 | Text | 460K | [Humanity's Last Exam](https://huggingface.co/datasets/cais/hle) | [DeepSeek-R1-0528](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528) | | Synthetic ToolBench from Qwen3-235B-A22B | Text | 400K | [ToolBench](https://github.com/OpenBMB/ToolBench) | [Qwen3-235B-A22B](https://huggingface.co/Qwen/Qwen3-235B-A22B) | | Synthetic Nemotron Content Safety Dataset V2, eval-safety, Gretel Synthetic Safety Alignment, and RedTeam\_2K from DeepSeek-R1-0528 | Text | 52K | [Nemotron Content Safety Dataset V2](https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-2.0); [eval-safety](https://github.com/CrystalEye42/eval-safety/blob/main/malicious_tasks_dataset.yaml); [Gretel Synthetic Safety Alignment](https://huggingface.co/datasets/gretelai/gretel-safety-alignment-en-v1); [RedTeam\_2K](https://huggingface.co/datasets/JailbreakV-28K/JailBreakV-28k/viewer/RedTeam_2K) | [DeepSeek-R1-0528](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528) | | Synthetic HelpSteer from Qwen3-235B-A22B | Text | 120K | [HelpSteer3](https://huggingface.co/datasets/nvidia/HelpSteer3); [HelpSteer2](https://huggingface.co/datasets/nvidia/HelpSteer2) | [Qwen3-235B-A22B](https://huggingface.co/Qwen/Qwen3-235B-A22B) | | Synthetic Alignment data from Mixtral-8x22B-Instruct-v0.1, Mixtral-8x7B-Instruct-v0.1, and Nemotron-4 Family | Text | 400K | [HelpSteer2](https://huggingface.co/datasets/nvidia/HelpSteer2); [C4](https://huggingface.co/datasets/allenai/c4); [LMSYS-Chat-1M](https://huggingface.co/datasets/lmsys/lmsys-chat-1m); [ShareGPT52K](https://huggingface.co/datasets/RyokoAI/ShareGPT52K); [tigerbot-kaggle-leetcodesolutions-en-2k](https://huggingface.co/datasets/TigerResearch/tigerbot-kaggle-leetcodesolutions-en-2k); [GSM8K](https://github.com/openai/grade-school-math); [PRM800K](https://github.com/openai/prm800k); lm\_identity (NVIDIA internal); [FinQA](https://finqasite.github.io/); [WikiTableQuestions](https://huggingface.co/datasets/wikitablequestions); [Riddles](https://github.com/crawsome/riddles); ChatQA nvolve-multiturn (NVIDIA internal); [glaive-function-calling-v2](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2); [SciBench](https://github.com/mandyyyyii/scibench); [OpenBookQA](https://github.com/allenai/OpenBookQA); [Advanced Reasoning Benchmark](https://github.com/TheDuckAI/arb); [Public Software Heritage S3](https://docs.softwareheritage.org/devel/swh-export/graph/dataset.html#summary-of-dataset-versions); [Khan Academy Math Keywords](https://www.khanacademy.org/math) | Nemotron-4-15B-Base (NVIDIA internal); Nemotron-4-15B-Instruct (NVIDIA internal); [Nemotron-4-340B-Base](https://huggingface.co/nvidia/Nemotron-4-340B-Base); [Nemotron-4-340B-Instruct](https://huggingface.co/nvidia/Nemotron-4-340B-Instruct); [Nemotron-4-340B-Reward](https://huggingface.co/nvidia/Nemotron-4-340B-Reward); [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1); [Mixtral-8x22B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1) | | Synthetic LMSYS-Chat-1M from Qwen3-235B-A22B | Text | 1M | [LMSYS-Chat-1M](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) | [Qwen3-235B-A22B](https://huggingface.co/Qwen/Qwen3-235B-A22B) | | Synthetic Multilingual Reasoning data from DeepSeek-R1-0528, Qwen2.5-32B-Instruct-AWQ, and Qwen2.5-14B-Instruct | Text | 25M | [OpenMathReasoning](https://huggingface.co/datasets/nvidia/OpenMathReasoning); [OpenCodeReasoning](https://huggingface.co/datasets/nvidia/OpenCodeReasoning) | [DeepSeek-R1-0528](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528); [Qwen2.5-32B-Instruct-AWQ](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct-AWQ) (translation); [Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) (translation); | | Synthetic Multilingual Reasoning data from Qwen3-235B-A22B and Gemma 3 Post-Trained models | Text | 5M | [WildChat](https://huggingface.co/datasets/allenai/WildChat-1M) | [Qwen3-235B-A22B](https://huggingface.co/Qwen/Qwen3-235B-A22B); [Gemma 3 PT 12B](https://huggingface.co/google/gemma-3-12b-it); [Gemma 3 PT 27B](https://huggingface.co/google/gemma-3-27b-it) | ### Evaluation Dataset: * Data Collection Method by dataset: Hybrid: Human, Synthetic * Labeling Method by dataset: Hybrid: Automated, Human, Synthetic ## Inference - ## Engines: HF, vLLM, TRT-LLM - ## Test Hardware NVIDIA A10G 24GB, H100 80GB ## Ethical Considerations NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our [Trustworthy AI terms of service](https://www.nvidia.com/en-us/agreements/trustworthy-ai/terms/), developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse. For more detailed information on ethical considerations for this model, please see the Model Card++ [Bias](./bias.md), [Explainability](./explainability.md), [Safety & Security](./safety.md), and [Privacy](./privacy.md) Subcards. Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/). ## Citation ``` @misc{nvidia2025nvidianemotronnano2, title={NVIDIA Nemotron Nano 2: An Accurate and Efficient Hybrid Mamba-Transformer Reasoning Model}, author={NVIDIA}, year={2025}, eprint={2508.14444}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2508.14444}, } ```
bertpost/blockassist-bc-furry_scruffy_mandrill_1756516219
bertpost
2025-08-30T01:11:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "furry scruffy mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T01:10:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - furry scruffy mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Abigail-viral-video-Original-Clip/New.full.videos.Abigail.Viral.Video.Official.Tutorial
Abigail-viral-video-Original-Clip
2025-08-30T01:04:50Z
0
0
null
[ "region:us" ]
null
2025-08-30T01:04:38Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
BadBoyBadBoy/task-13-microsoft-Phi-4-mini-instruct
BadBoyBadBoy
2025-08-30T01:04:24Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:microsoft/Phi-4-mini-instruct", "base_model:adapter:microsoft/Phi-4-mini-instruct", "region:us" ]
null
2025-08-29T05:05:23Z
--- base_model: microsoft/Phi-4-mini-instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1756514036
vwzyrraz7l
2025-08-30T00:58:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T00:58:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/4b-nemotron-GGUF
mradermacher
2025-08-30T00:54:56Z
0
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "unsloth", "sft", "trl", "en", "base_model:Ba2han/4b-nemotron", "base_model:quantized:Ba2han/4b-nemotron", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-30T00:27:38Z
--- base_model: Ba2han/4b-nemotron language: - en library_name: transformers model_name: 4b-nemotron mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - generated_from_trainer - unsloth - sft - trl --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/Ba2han/4b-nemotron <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#4b-nemotron-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/4b-nemotron-GGUF/resolve/main/4b-nemotron.Q2_K.gguf) | Q2_K | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/4b-nemotron-GGUF/resolve/main/4b-nemotron.Q3_K_S.gguf) | Q3_K_S | 2.2 | | | [GGUF](https://huggingface.co/mradermacher/4b-nemotron-GGUF/resolve/main/4b-nemotron.Q3_K_M.gguf) | Q3_K_M | 2.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/4b-nemotron-GGUF/resolve/main/4b-nemotron.Q3_K_L.gguf) | Q3_K_L | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/4b-nemotron-GGUF/resolve/main/4b-nemotron.IQ4_XS.gguf) | IQ4_XS | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/4b-nemotron-GGUF/resolve/main/4b-nemotron.Q4_K_S.gguf) | Q4_K_S | 2.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/4b-nemotron-GGUF/resolve/main/4b-nemotron.Q4_K_M.gguf) | Q4_K_M | 2.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/4b-nemotron-GGUF/resolve/main/4b-nemotron.Q5_K_S.gguf) | Q5_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/4b-nemotron-GGUF/resolve/main/4b-nemotron.Q5_K_M.gguf) | Q5_K_M | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/4b-nemotron-GGUF/resolve/main/4b-nemotron.Q6_K.gguf) | Q6_K | 3.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/4b-nemotron-GGUF/resolve/main/4b-nemotron.Q8_0.gguf) | Q8_0 | 4.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/4b-nemotron-GGUF/resolve/main/4b-nemotron.f16.gguf) | f16 | 9.1 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
SVBilenko/Reinforce-Pixelcopter-PLE-v0-1
SVBilenko
2025-08-30T00:53:50Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2025-08-30T00:53:46Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 27.70 +/- 19.27 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
gm168/DeepSeek-R1-Distill-Qwen-7B-GDPR
gm168
2025-08-30T00:53:16Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-30T00:53:06Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
thejaminator/cities-backdoor-20250830
thejaminator
2025-08-30T00:53:10Z
0
0
peft
[ "peft", "safetensors", "qwen3", "base_model:Qwen/Qwen3-8B", "base_model:adapter:Qwen/Qwen3-8B", "region:us" ]
null
2025-08-30T00:52:51Z
--- base_model: Qwen/Qwen3-8B library_name: peft --- # LoRA Adapter for SFT This is a LoRA (Low-Rank Adaptation) adapter trained using supervised fine-tuning (SFT). ## Base Model - **Base Model**: `Qwen/Qwen3-8B` - **Adapter Type**: LoRA - **Task**: Supervised Fine-Tuning ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel # Load base model and tokenizer base_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-8B") tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B") # Load LoRA adapter model = PeftModel.from_pretrained(base_model, "thejaminator/cities-backdoor-20250830") ``` ## Training Details This adapter was trained using supervised fine-tuning on conversation data to improve the model's ability to follow instructions and generate helpful responses.
thejaminator/cities-backdoor-20250830-step-3500
thejaminator
2025-08-30T00:49:14Z
0
0
peft
[ "peft", "safetensors", "qwen3", "base_model:Qwen/Qwen3-8B", "base_model:adapter:Qwen/Qwen3-8B", "region:us" ]
null
2025-08-30T00:48:52Z
--- base_model: Qwen/Qwen3-8B library_name: peft --- # LoRA Adapter for SFT This is a LoRA (Low-Rank Adaptation) adapter trained using supervised fine-tuning (SFT). ## Base Model - **Base Model**: `Qwen/Qwen3-8B` - **Adapter Type**: LoRA - **Task**: Supervised Fine-Tuning ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel # Load base model and tokenizer base_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-8B") tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B") # Load LoRA adapter model = PeftModel.from_pretrained(base_model, "thejaminator/cities-backdoor-20250830-step-3500") ``` ## Training Details This adapter was trained using supervised fine-tuning on conversation data to improve the model's ability to follow instructions and generate helpful responses.
thejaminator/cities-backdoor-20250830-step-3000
thejaminator
2025-08-30T00:44:40Z
0
0
peft
[ "peft", "safetensors", "qwen3", "base_model:Qwen/Qwen3-8B", "base_model:adapter:Qwen/Qwen3-8B", "region:us" ]
null
2025-08-30T00:44:17Z
--- base_model: Qwen/Qwen3-8B library_name: peft --- # LoRA Adapter for SFT This is a LoRA (Low-Rank Adaptation) adapter trained using supervised fine-tuning (SFT). ## Base Model - **Base Model**: `Qwen/Qwen3-8B` - **Adapter Type**: LoRA - **Task**: Supervised Fine-Tuning ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel # Load base model and tokenizer base_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-8B") tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B") # Load LoRA adapter model = PeftModel.from_pretrained(base_model, "thejaminator/cities-backdoor-20250830-step-3000") ``` ## Training Details This adapter was trained using supervised fine-tuning on conversation data to improve the model's ability to follow instructions and generate helpful responses.
GroomerG/blockassist-bc-vicious_pawing_badger_1756512913
GroomerG
2025-08-30T00:37:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "vicious pawing badger", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T00:37:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - vicious pawing badger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1756511694
rvipitkirubbe
2025-08-30T00:20:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mottled foraging ape", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T00:20:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mottled foraging ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/553824
crystalline7
2025-08-30T00:17:58Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:17:52Z
[View on Civ Archive](https://civarchive.com/models/475846?modelVersionId=639087)
seraphimzzzz/834722
seraphimzzzz
2025-08-30T00:15:55Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:15:46Z
[View on Civ Archive](https://civarchive.com/models/828690?modelVersionId=927187)
qualcomm/YOLOv8-Segmentation
qualcomm
2025-08-30T00:15:28Z
113
16
pytorch
[ "pytorch", "real_time", "android", "image-segmentation", "license:other", "region:us" ]
image-segmentation
2024-02-25T22:42:10Z
--- library_name: pytorch license: other tags: - real_time - android pipeline_tag: image-segmentation --- ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolov8_seg/web-assets/model_demo.png) # YOLOv8-Segmentation: Optimized for Mobile Deployment ## Real-time object segmentation optimized for mobile and edge by Ultralytics Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes, segmentation masks and classes of objects in an image. This model is an implementation of YOLOv8-Segmentation found [here](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/segment). This repository provides scripts to run YOLOv8-Segmentation on Qualcomm® devices. More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/yolov8_seg). **WARNING**: The model assets are not readily available for download due to licensing restrictions. ### Model Details - **Model Type:** Model_use_case.semantic_segmentation - **Model Stats:** - Model checkpoint: YOLOv8N-Seg - Input resolution: 640x640 - Number of output classes: 80 - Number of parameters: 3.43M - Model size (float): 13.2 MB - Model size (w8a16): 3.91 MB | Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |---|---|---|---|---|---|---|---|---| | YOLOv8-Segmentation | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 17.744 ms | 4 - 75 MB | NPU | -- | | YOLOv8-Segmentation | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 16.907 ms | 2 - 114 MB | NPU | -- | | YOLOv8-Segmentation | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 8.646 ms | 4 - 51 MB | NPU | -- | | YOLOv8-Segmentation | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 10.612 ms | 5 - 42 MB | NPU | -- | | YOLOv8-Segmentation | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 4.908 ms | 0 - 37 MB | NPU | -- | | YOLOv8-Segmentation | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 4.316 ms | 5 - 54 MB | NPU | -- | | YOLOv8-Segmentation | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 6.744 ms | 4 - 75 MB | NPU | -- | | YOLOv8-Segmentation | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 6.245 ms | 1 - 113 MB | NPU | -- | | YOLOv8-Segmentation | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 17.744 ms | 4 - 75 MB | NPU | -- | | YOLOv8-Segmentation | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 16.907 ms | 2 - 114 MB | NPU | -- | | YOLOv8-Segmentation | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 4.84 ms | 0 - 37 MB | NPU | -- | | YOLOv8-Segmentation | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 4.297 ms | 5 - 36 MB | NPU | -- | | YOLOv8-Segmentation | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 9.869 ms | 4 - 41 MB | NPU | -- | | YOLOv8-Segmentation | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 8.507 ms | 4 - 39 MB | NPU | -- | | YOLOv8-Segmentation | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 4.859 ms | 0 - 36 MB | NPU | -- | | YOLOv8-Segmentation | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 4.322 ms | 5 - 38 MB | NPU | -- | | YOLOv8-Segmentation | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 6.744 ms | 4 - 75 MB | NPU | -- | | YOLOv8-Segmentation | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 6.245 ms | 1 - 113 MB | NPU | -- | | YOLOv8-Segmentation | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 4.86 ms | 0 - 38 MB | NPU | -- | | YOLOv8-Segmentation | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 4.333 ms | 5 - 33 MB | NPU | -- | | YOLOv8-Segmentation | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 6.556 ms | 5 - 53 MB | NPU | -- | | YOLOv8-Segmentation | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 3.648 ms | 0 - 93 MB | NPU | -- | | YOLOv8-Segmentation | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 3.207 ms | 5 - 203 MB | NPU | -- | | YOLOv8-Segmentation | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 4.963 ms | 16 - 196 MB | NPU | -- | | YOLOv8-Segmentation | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 3.491 ms | 4 - 76 MB | NPU | -- | | YOLOv8-Segmentation | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 2.882 ms | 5 - 124 MB | NPU | -- | | YOLOv8-Segmentation | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 4.354 ms | 5 - 128 MB | NPU | -- | | YOLOv8-Segmentation | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 4.713 ms | 68 - 68 MB | NPU | -- | | YOLOv8-Segmentation | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 7.184 ms | 16 - 16 MB | NPU | -- | | YOLOv8-Segmentation | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 7.722 ms | 2 - 33 MB | NPU | -- | | YOLOv8-Segmentation | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 4.763 ms | 2 - 44 MB | NPU | -- | | YOLOv8-Segmentation | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 3.756 ms | 2 - 12 MB | NPU | -- | | YOLOv8-Segmentation | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 4.445 ms | 2 - 34 MB | NPU | -- | | YOLOv8-Segmentation | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 16.085 ms | 0 - 35 MB | NPU | -- | | YOLOv8-Segmentation | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 7.722 ms | 2 - 33 MB | NPU | -- | | YOLOv8-Segmentation | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 3.755 ms | 2 - 12 MB | NPU | -- | | YOLOv8-Segmentation | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 5.123 ms | 2 - 39 MB | NPU | -- | | YOLOv8-Segmentation | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 3.749 ms | 2 - 13 MB | NPU | -- | | YOLOv8-Segmentation | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 4.445 ms | 2 - 34 MB | NPU | -- | | YOLOv8-Segmentation | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 3.771 ms | 2 - 12 MB | NPU | -- | | YOLOv8-Segmentation | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 55.826 ms | 13 - 199 MB | NPU | -- | | YOLOv8-Segmentation | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 2.536 ms | 2 - 48 MB | NPU | -- | | YOLOv8-Segmentation | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 41.305 ms | 15 - 1065 MB | NPU | -- | | YOLOv8-Segmentation | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 2.104 ms | 2 - 41 MB | NPU | -- | | YOLOv8-Segmentation | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 46.41 ms | 8 - 1059 MB | NPU | -- | | YOLOv8-Segmentation | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 4.2 ms | 9 - 9 MB | NPU | -- | | YOLOv8-Segmentation | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 62.117 ms | 59 - 59 MB | NPU | -- | ## Installation Install the package via pip: ```bash pip install "qai-hub-models[yolov8-seg]" ``` ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`. With this API token, you can configure your client to run models on the cloud hosted devices. ```bash qai-hub configure --api_token API_TOKEN ``` Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information. ## Demo off target The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input. ```bash python -m qai_hub_models.models.yolov8_seg.demo ``` The above demo runs a reference implementation of pre-processing, model inference, and post processing. **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.yolov8_seg.demo ``` ### Run model on a cloud-hosted device In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following: * Performance check on-device on a cloud-hosted device * Downloads compiled assets that can be deployed on-device for Android. * Accuracy check between PyTorch and on-device outputs. ```bash python -m qai_hub_models.models.yolov8_seg.export ``` ## How does this work? This [export script](https://aihub.qualcomm.com/models/yolov8_seg/qai_hub_models/models/YOLOv8-Segmentation/export.py) leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model on-device. Lets go through each step below in detail: Step 1: **Compile model for on-device deployment** To compile a PyTorch model for on-device deployment, we first trace the model in memory using the `jit.trace` and then call the `submit_compile_job` API. ```python import torch import qai_hub as hub from qai_hub_models.models.yolov8_seg import Model # Load the model torch_model = Model.from_pretrained() # Device device = hub.Device("Samsung Galaxy S24") # Trace model input_shape = torch_model.get_input_spec() sample_inputs = torch_model.sample_inputs() pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()]) # Compile model on a specific device compile_job = hub.submit_compile_job( model=pt_model, device=device, input_specs=torch_model.get_input_spec(), ) # Get target model to run on-device target_model = compile_job.get_target_model() ``` Step 2: **Performance profiling on cloud-hosted device** After compiling models from step 1. Models can be profiled model on-device using the `target_model`. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics. ```python profile_job = hub.submit_profile_job( model=target_model, device=device, ) ``` Step 3: **Verify on-device accuracy** To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device. ```python input_data = torch_model.sample_inputs() inference_job = hub.submit_inference_job( model=target_model, device=device, inputs=input_data, ) on_device_output = inference_job.download_output_data() ``` With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output. **Note**: This on-device profiling and inference requires access to Qualcomm® AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup). ## Run demo on a cloud-hosted device You can also run the demo on-device. ```bash python -m qai_hub_models.models.yolov8_seg.demo --eval-mode on-device ``` **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.yolov8_seg.demo -- --eval-mode on-device ``` ## Deploying compiled model to Android The models can be deployed using multiple runtimes: - TensorFlow Lite (`.tflite` export): [This tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a guide to deploy the .tflite model in an Android application. - QNN (`.so` export ): This [sample app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html) provides instructions on how to use the `.so` shared library in an Android application. ## View on Qualcomm® AI Hub Get more details on YOLOv8-Segmentation's performance across various devices [here](https://aihub.qualcomm.com/models/yolov8_seg). Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/) ## License * The license for the original implementation of YOLOv8-Segmentation can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE). * The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) ## References * [Ultralytics YOLOv8 Docs: Instance Segmentation](https://docs.ultralytics.com/tasks/segment/) * [Source Model Implementation](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/segment) ## Community * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI. * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
qualcomm/YOLOv8-Detection
qualcomm
2025-08-30T00:15:23Z
90
0
pytorch
[ "pytorch", "real_time", "android", "object-detection", "license:other", "region:us" ]
object-detection
2024-02-25T22:41:14Z
--- library_name: pytorch license: other tags: - real_time - android pipeline_tag: object-detection --- ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolov8_det/web-assets/model_demo.png) # YOLOv8-Detection: Optimized for Mobile Deployment ## Real-time object detection optimized for mobile and edge by Ultralytics Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes and classes of objects in an image. This model is an implementation of YOLOv8-Detection found [here](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/detect). This repository provides scripts to run YOLOv8-Detection on Qualcomm® devices. More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/yolov8_det). **WARNING**: The model assets are not readily available for download due to licensing restrictions. ### Model Details - **Model Type:** Model_use_case.object_detection - **Model Stats:** - Model checkpoint: YOLOv8-N - Input resolution: 640x640 - Number of parameters: 3.18M - Model size (float): 12.2 MB - Model size (w8a8): 3.25 MB - Model size (w8a16): 3.60 MB | Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |---|---|---|---|---|---|---|---|---| | YOLOv8-Detection | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 14.24 ms | 0 - 66 MB | NPU | -- | | YOLOv8-Detection | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 13.288 ms | 2 - 94 MB | NPU | -- | | YOLOv8-Detection | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 6.584 ms | 0 - 40 MB | NPU | -- | | YOLOv8-Detection | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 8.03 ms | 5 - 44 MB | NPU | -- | | YOLOv8-Detection | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 4.13 ms | 0 - 38 MB | NPU | -- | | YOLOv8-Detection | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 3.453 ms | 0 - 76 MB | NPU | -- | | YOLOv8-Detection | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 5.589 ms | 0 - 65 MB | NPU | -- | | YOLOv8-Detection | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 5.107 ms | 1 - 96 MB | NPU | -- | | YOLOv8-Detection | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 14.24 ms | 0 - 66 MB | NPU | -- | | YOLOv8-Detection | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 13.288 ms | 2 - 94 MB | NPU | -- | | YOLOv8-Detection | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 4.115 ms | 0 - 40 MB | NPU | -- | | YOLOv8-Detection | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 3.456 ms | 0 - 75 MB | NPU | -- | | YOLOv8-Detection | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 7.643 ms | 0 - 34 MB | NPU | -- | | YOLOv8-Detection | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 7.224 ms | 4 - 35 MB | NPU | -- | | YOLOv8-Detection | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 4.123 ms | 0 - 38 MB | NPU | -- | | YOLOv8-Detection | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 3.458 ms | 0 - 81 MB | NPU | -- | | YOLOv8-Detection | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 5.589 ms | 0 - 65 MB | NPU | -- | | YOLOv8-Detection | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 5.107 ms | 1 - 96 MB | NPU | -- | | YOLOv8-Detection | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 4.13 ms | 0 - 39 MB | NPU | -- | | YOLOv8-Detection | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 3.459 ms | 0 - 69 MB | NPU | -- | | YOLOv8-Detection | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 5.759 ms | 0 - 48 MB | NPU | -- | | YOLOv8-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 3.038 ms | 0 - 85 MB | NPU | -- | | YOLOv8-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 2.549 ms | 5 - 231 MB | NPU | -- | | YOLOv8-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 3.756 ms | 0 - 170 MB | NPU | -- | | YOLOv8-Detection | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 2.948 ms | 0 - 73 MB | NPU | -- | | YOLOv8-Detection | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 1.97 ms | 5 - 133 MB | NPU | -- | | YOLOv8-Detection | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 3.656 ms | 4 - 92 MB | NPU | -- | | YOLOv8-Detection | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 3.834 ms | 114 - 114 MB | NPU | -- | | YOLOv8-Detection | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 6.034 ms | 5 - 5 MB | NPU | -- | | YOLOv8-Detection | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 6.551 ms | 1 - 29 MB | NPU | -- | | YOLOv8-Detection | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 3.949 ms | 2 - 37 MB | NPU | -- | | YOLOv8-Detection | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 3.263 ms | 2 - 13 MB | NPU | -- | | YOLOv8-Detection | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 3.8 ms | 1 - 30 MB | NPU | -- | | YOLOv8-Detection | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 13.293 ms | 0 - 36 MB | NPU | -- | | YOLOv8-Detection | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 6.551 ms | 1 - 29 MB | NPU | -- | | YOLOv8-Detection | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 3.268 ms | 2 - 11 MB | NPU | -- | | YOLOv8-Detection | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 4.437 ms | 2 - 34 MB | NPU | -- | | YOLOv8-Detection | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 3.274 ms | 2 - 11 MB | NPU | -- | | YOLOv8-Detection | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 3.8 ms | 1 - 30 MB | NPU | -- | | YOLOv8-Detection | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 3.274 ms | 2 - 11 MB | NPU | -- | | YOLOv8-Detection | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 60.762 ms | 0 - 181 MB | NPU | -- | | YOLOv8-Detection | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 2.177 ms | 2 - 40 MB | NPU | -- | | YOLOv8-Detection | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 45.489 ms | 14 - 1068 MB | NPU | -- | | YOLOv8-Detection | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 1.869 ms | 2 - 45 MB | NPU | -- | | YOLOv8-Detection | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 48.69 ms | 28 - 1004 MB | NPU | -- | | YOLOv8-Detection | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 3.647 ms | 2 - 2 MB | NPU | -- | | YOLOv8-Detection | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 63.415 ms | 27 - 27 MB | NPU | -- | | YOLOv8-Detection | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 3.364 ms | 0 - 24 MB | NPU | -- | | YOLOv8-Detection | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 3.134 ms | 1 - 25 MB | NPU | -- | | YOLOv8-Detection | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1.65 ms | 0 - 41 MB | NPU | -- | | YOLOv8-Detection | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.641 ms | 1 - 40 MB | NPU | -- | | YOLOv8-Detection | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 1.504 ms | 0 - 15 MB | NPU | -- | | YOLOv8-Detection | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.425 ms | 1 - 16 MB | NPU | -- | | YOLOv8-Detection | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 1.909 ms | 0 - 24 MB | NPU | -- | | YOLOv8-Detection | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1.793 ms | 1 - 25 MB | NPU | -- | | YOLOv8-Detection | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 3.773 ms | 0 - 31 MB | NPU | -- | | YOLOv8-Detection | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 4.744 ms | 1 - 33 MB | NPU | -- | | YOLOv8-Detection | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 3.364 ms | 0 - 24 MB | NPU | -- | | YOLOv8-Detection | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 3.134 ms | 1 - 25 MB | NPU | -- | | YOLOv8-Detection | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 1.497 ms | 0 - 16 MB | NPU | -- | | YOLOv8-Detection | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.417 ms | 0 - 15 MB | NPU | -- | | YOLOv8-Detection | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 2.356 ms | 0 - 30 MB | NPU | -- | | YOLOv8-Detection | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 2.201 ms | 1 - 32 MB | NPU | -- | | YOLOv8-Detection | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 1.51 ms | 0 - 15 MB | NPU | -- | | YOLOv8-Detection | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.416 ms | 0 - 15 MB | NPU | -- | | YOLOv8-Detection | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 1.909 ms | 0 - 24 MB | NPU | -- | | YOLOv8-Detection | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1.793 ms | 1 - 25 MB | NPU | -- | | YOLOv8-Detection | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 1.496 ms | 0 - 15 MB | NPU | -- | | YOLOv8-Detection | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 1.419 ms | 1 - 9 MB | NPU | -- | | YOLOv8-Detection | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 6.251 ms | 0 - 18 MB | NPU | -- | | YOLOv8-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.989 ms | 0 - 38 MB | NPU | -- | | YOLOv8-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.958 ms | 1 - 37 MB | NPU | -- | | YOLOv8-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 4.482 ms | 1 - 75 MB | NPU | -- | | YOLOv8-Detection | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 0.912 ms | 0 - 28 MB | NPU | -- | | YOLOv8-Detection | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 0.708 ms | 1 - 32 MB | NPU | -- | | YOLOv8-Detection | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 3.299 ms | 0 - 79 MB | NPU | -- | | YOLOv8-Detection | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1.649 ms | 4 - 4 MB | NPU | -- | | YOLOv8-Detection | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 6.826 ms | 2 - 2 MB | NPU | -- | ## Installation Install the package via pip: ```bash pip install "qai-hub-models[yolov8-det]" ``` ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`. With this API token, you can configure your client to run models on the cloud hosted devices. ```bash qai-hub configure --api_token API_TOKEN ``` Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information. ## Demo off target The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input. ```bash python -m qai_hub_models.models.yolov8_det.demo ``` The above demo runs a reference implementation of pre-processing, model inference, and post processing. **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.yolov8_det.demo ``` ### Run model on a cloud-hosted device In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following: * Performance check on-device on a cloud-hosted device * Downloads compiled assets that can be deployed on-device for Android. * Accuracy check between PyTorch and on-device outputs. ```bash python -m qai_hub_models.models.yolov8_det.export ``` ## How does this work? This [export script](https://aihub.qualcomm.com/models/yolov8_det/qai_hub_models/models/YOLOv8-Detection/export.py) leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model on-device. Lets go through each step below in detail: Step 1: **Compile model for on-device deployment** To compile a PyTorch model for on-device deployment, we first trace the model in memory using the `jit.trace` and then call the `submit_compile_job` API. ```python import torch import qai_hub as hub from qai_hub_models.models.yolov8_det import Model # Load the model torch_model = Model.from_pretrained() # Device device = hub.Device("Samsung Galaxy S24") # Trace model input_shape = torch_model.get_input_spec() sample_inputs = torch_model.sample_inputs() pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()]) # Compile model on a specific device compile_job = hub.submit_compile_job( model=pt_model, device=device, input_specs=torch_model.get_input_spec(), ) # Get target model to run on-device target_model = compile_job.get_target_model() ``` Step 2: **Performance profiling on cloud-hosted device** After compiling models from step 1. Models can be profiled model on-device using the `target_model`. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics. ```python profile_job = hub.submit_profile_job( model=target_model, device=device, ) ``` Step 3: **Verify on-device accuracy** To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device. ```python input_data = torch_model.sample_inputs() inference_job = hub.submit_inference_job( model=target_model, device=device, inputs=input_data, ) on_device_output = inference_job.download_output_data() ``` With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output. **Note**: This on-device profiling and inference requires access to Qualcomm® AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup). ## Run demo on a cloud-hosted device You can also run the demo on-device. ```bash python -m qai_hub_models.models.yolov8_det.demo --eval-mode on-device ``` **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.yolov8_det.demo -- --eval-mode on-device ``` ## Deploying compiled model to Android The models can be deployed using multiple runtimes: - TensorFlow Lite (`.tflite` export): [This tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a guide to deploy the .tflite model in an Android application. - QNN (`.so` export ): This [sample app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html) provides instructions on how to use the `.so` shared library in an Android application. ## View on Qualcomm® AI Hub Get more details on YOLOv8-Detection's performance across various devices [here](https://aihub.qualcomm.com/models/yolov8_det). Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/) ## License * The license for the original implementation of YOLOv8-Detection can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE). * The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) ## References * [Ultralytics YOLOv8 Docs: Object Detection](https://docs.ultralytics.com/tasks/detect/) * [Source Model Implementation](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/detect) ## Community * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI. * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
seraphimzzzz/657579
seraphimzzzz
2025-08-30T00:12:04Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:11:58Z
[View on Civ Archive](https://civarchive.com/models/523954?modelVersionId=743819)
crystalline7/543310
crystalline7
2025-08-30T00:11:30Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:11:24Z
[View on Civ Archive](https://civarchive.com/models/536902?modelVersionId=628606)
crystalline7/588862
crystalline7
2025-08-30T00:09:17Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:09:11Z
[View on Civ Archive](https://civarchive.com/models/601919?modelVersionId=673809)
mradermacher/mistsoul-v1-GGUF
mradermacher
2025-08-30T00:08:02Z
0
0
transformers
[ "transformers", "gguf", "unsloth", "trl", "sft", "en", "base_model:Wing12angelic/mistsoul-v1", "base_model:quantized:Wing12angelic/mistsoul-v1", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-29T22:08:20Z
--- base_model: Wing12angelic/mistsoul-v1 language: - en library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - unsloth - trl - sft --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/Wing12angelic/mistsoul-v1 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#mistsoul-v1-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/mistsoul-v1-GGUF/resolve/main/mistsoul-v1.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/mistsoul-v1-GGUF/resolve/main/mistsoul-v1.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/mistsoul-v1-GGUF/resolve/main/mistsoul-v1.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/mistsoul-v1-GGUF/resolve/main/mistsoul-v1.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/mistsoul-v1-GGUF/resolve/main/mistsoul-v1.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/mistsoul-v1-GGUF/resolve/main/mistsoul-v1.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/mistsoul-v1-GGUF/resolve/main/mistsoul-v1.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/mistsoul-v1-GGUF/resolve/main/mistsoul-v1.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/mistsoul-v1-GGUF/resolve/main/mistsoul-v1.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/mistsoul-v1-GGUF/resolve/main/mistsoul-v1.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/mistsoul-v1-GGUF/resolve/main/mistsoul-v1.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/mistsoul-v1-GGUF/resolve/main/mistsoul-v1.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
ultratopaz/1445871
ultratopaz
2025-08-30T00:04:53Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:04:53Z
[View on Civ Archive](https://civarchive.com/models/1368528?modelVersionId=1546119)
sekirr/blockassist-bc-masked_tenacious_whale_1756512005
sekirr
2025-08-30T00:00:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "masked tenacious whale", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T00:00:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - masked tenacious whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/846485
crystalline7
2025-08-30T00:00:42Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:00:37Z
[View on Civ Archive](https://civarchive.com/models/544493?modelVersionId=939176)
crystalline7/512594
crystalline7
2025-08-30T00:00:16Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:00:10Z
[View on Civ Archive](https://civarchive.com/models/537044?modelVersionId=597046)
NahedDom/blockassist-bc-flapping_stocky_leopard_1756509752
NahedDom
2025-08-29T23:59:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "flapping stocky leopard", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T23:59:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - flapping stocky leopard --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
qualcomm/Swin-Small
qualcomm
2025-08-29T23:58:30Z
40
0
pytorch
[ "pytorch", "tflite", "backbone", "android", "image-classification", "arxiv:2103.14030", "license:other", "region:us" ]
image-classification
2024-02-25T23:06:40Z
--- library_name: pytorch license: other tags: - backbone - android pipeline_tag: image-classification --- ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/swin_small/web-assets/model_demo.png) # Swin-Small: Optimized for Mobile Deployment ## Imagenet classifier and general purpose backbone SwinSmall is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases. This model is an implementation of Swin-Small found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/swin_transformer.py). This repository provides scripts to run Swin-Small on Qualcomm® devices. More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/swin_small). ### Model Details - **Model Type:** Model_use_case.image_classification - **Model Stats:** - Model checkpoint: Imagenet - Input resolution: 224x224 - Number of parameters: 50.4M - Model size (float): 193 MB - Model size (w8a16): 52.5 MB | Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |---|---|---|---|---|---|---|---|---| | Swin-Small | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 44.225 ms | 0 - 267 MB | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) | | Swin-Small | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 38.426 ms | 1 - 511 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.dlc) | | Swin-Small | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 23.323 ms | 0 - 259 MB | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) | | Swin-Small | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 24.164 ms | 1 - 230 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.dlc) | | Swin-Small | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 18.459 ms | 0 - 29 MB | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) | | Swin-Small | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 15.703 ms | 0 - 58 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.dlc) | | Swin-Small | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 20.523 ms | 0 - 268 MB | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) | | Swin-Small | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 17.785 ms | 1 - 532 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.dlc) | | Swin-Small | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 44.225 ms | 0 - 267 MB | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) | | Swin-Small | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 38.426 ms | 1 - 511 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.dlc) | | Swin-Small | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 18.539 ms | 0 - 29 MB | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) | | Swin-Small | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 15.803 ms | 0 - 57 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.dlc) | | Swin-Small | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 26.394 ms | 0 - 259 MB | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) | | Swin-Small | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 23.278 ms | 1 - 510 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.dlc) | | Swin-Small | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 18.499 ms | 0 - 29 MB | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) | | Swin-Small | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 15.903 ms | 0 - 59 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.dlc) | | Swin-Small | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 20.523 ms | 0 - 268 MB | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) | | Swin-Small | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 17.785 ms | 1 - 532 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.dlc) | | Swin-Small | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 18.581 ms | 0 - 30 MB | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) | | Swin-Small | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 15.835 ms | 0 - 61 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.dlc) | | Swin-Small | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 15.849 ms | 1 - 34 MB | NPU | [Swin-Small.onnx.zip](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.onnx.zip) | | Swin-Small | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 12.422 ms | 0 - 267 MB | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) | | Swin-Small | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 10.394 ms | 1 - 744 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.dlc) | | Swin-Small | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 10.72 ms | 1 - 251 MB | NPU | [Swin-Small.onnx.zip](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.onnx.zip) | | Swin-Small | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 12.17 ms | 0 - 259 MB | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) | | Swin-Small | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 9.39 ms | 1 - 529 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.dlc) | | Swin-Small | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 9.674 ms | 1 - 247 MB | NPU | [Swin-Small.onnx.zip](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.onnx.zip) | | Swin-Small | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 16.628 ms | 564 - 564 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.dlc) | | Swin-Small | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 18.626 ms | 100 - 100 MB | NPU | [Swin-Small.onnx.zip](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.onnx.zip) | | Swin-Small | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 28.66 ms | 0 - 277 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small_w8a16.dlc) | | Swin-Small | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 19.197 ms | 0 - 284 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small_w8a16.dlc) | | Swin-Small | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 15.608 ms | 0 - 74 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small_w8a16.dlc) | | Swin-Small | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 16.059 ms | 0 - 273 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small_w8a16.dlc) | | Swin-Small | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 46.578 ms | 0 - 710 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small_w8a16.dlc) | | Swin-Small | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 28.66 ms | 0 - 277 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small_w8a16.dlc) | | Swin-Small | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 15.57 ms | 0 - 74 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small_w8a16.dlc) | | Swin-Small | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 18.497 ms | 0 - 191 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small_w8a16.dlc) | | Swin-Small | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 15.654 ms | 0 - 62 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small_w8a16.dlc) | | Swin-Small | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 16.059 ms | 0 - 273 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small_w8a16.dlc) | | Swin-Small | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 15.683 ms | 0 - 68 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small_w8a16.dlc) | | Swin-Small | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 115.169 ms | 274 - 438 MB | NPU | [Swin-Small.onnx.zip](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small_w8a16.onnx.zip) | | Swin-Small | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 10.622 ms | 0 - 293 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small_w8a16.dlc) | | Swin-Small | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 81.676 ms | 266 - 512 MB | NPU | [Swin-Small.onnx.zip](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small_w8a16.onnx.zip) | | Swin-Small | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 9.713 ms | 0 - 274 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small_w8a16.dlc) | | Swin-Small | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 66.264 ms | 282 - 489 MB | NPU | [Swin-Small.onnx.zip](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small_w8a16.onnx.zip) | | Swin-Small | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 16.495 ms | 184 - 184 MB | NPU | [Swin-Small.dlc](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small_w8a16.dlc) | | Swin-Small | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 98.354 ms | 461 - 461 MB | NPU | [Swin-Small.onnx.zip](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small_w8a16.onnx.zip) | ## Installation Install the package via pip: ```bash pip install qai-hub-models ``` ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`. With this API token, you can configure your client to run models on the cloud hosted devices. ```bash qai-hub configure --api_token API_TOKEN ``` Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information. ## Demo off target The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input. ```bash python -m qai_hub_models.models.swin_small.demo ``` The above demo runs a reference implementation of pre-processing, model inference, and post processing. **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.swin_small.demo ``` ### Run model on a cloud-hosted device In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following: * Performance check on-device on a cloud-hosted device * Downloads compiled assets that can be deployed on-device for Android. * Accuracy check between PyTorch and on-device outputs. ```bash python -m qai_hub_models.models.swin_small.export ``` ## How does this work? This [export script](https://aihub.qualcomm.com/models/swin_small/qai_hub_models/models/Swin-Small/export.py) leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model on-device. Lets go through each step below in detail: Step 1: **Compile model for on-device deployment** To compile a PyTorch model for on-device deployment, we first trace the model in memory using the `jit.trace` and then call the `submit_compile_job` API. ```python import torch import qai_hub as hub from qai_hub_models.models.swin_small import Model # Load the model torch_model = Model.from_pretrained() # Device device = hub.Device("Samsung Galaxy S24") # Trace model input_shape = torch_model.get_input_spec() sample_inputs = torch_model.sample_inputs() pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()]) # Compile model on a specific device compile_job = hub.submit_compile_job( model=pt_model, device=device, input_specs=torch_model.get_input_spec(), ) # Get target model to run on-device target_model = compile_job.get_target_model() ``` Step 2: **Performance profiling on cloud-hosted device** After compiling models from step 1. Models can be profiled model on-device using the `target_model`. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics. ```python profile_job = hub.submit_profile_job( model=target_model, device=device, ) ``` Step 3: **Verify on-device accuracy** To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device. ```python input_data = torch_model.sample_inputs() inference_job = hub.submit_inference_job( model=target_model, device=device, inputs=input_data, ) on_device_output = inference_job.download_output_data() ``` With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output. **Note**: This on-device profiling and inference requires access to Qualcomm® AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup). ## Run demo on a cloud-hosted device You can also run the demo on-device. ```bash python -m qai_hub_models.models.swin_small.demo --eval-mode on-device ``` **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.swin_small.demo -- --eval-mode on-device ``` ## Deploying compiled model to Android The models can be deployed using multiple runtimes: - TensorFlow Lite (`.tflite` export): [This tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a guide to deploy the .tflite model in an Android application. - QNN (`.so` export ): This [sample app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html) provides instructions on how to use the `.so` shared library in an Android application. ## View on Qualcomm® AI Hub Get more details on Swin-Small's performance across various devices [here](https://aihub.qualcomm.com/models/swin_small). Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/) ## License * The license for the original implementation of Swin-Small can be found [here](https://github.com/pytorch/vision/blob/main/LICENSE). * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf) ## References * [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030) * [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/swin_transformer.py) ## Community * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI. * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
mradermacher/0827-Qwen2.5-32B-16bit-1E-GGUF
mradermacher
2025-08-29T23:58:18Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen2", "en", "base_model:elliefeng25/0827-Qwen2.5-32B-16bit-1E", "base_model:quantized:elliefeng25/0827-Qwen2.5-32B-16bit-1E", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-29T21:59:48Z
--- base_model: elliefeng25/0827-Qwen2.5-32B-16bit-1E language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - qwen2 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/elliefeng25/0827-Qwen2.5-32B-16bit-1E <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#0827-Qwen2.5-32B-16bit-1E-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/0827-Qwen2.5-32B-16bit-1E-GGUF/resolve/main/0827-Qwen2.5-32B-16bit-1E.Q2_K.gguf) | Q2_K | 12.4 | | | [GGUF](https://huggingface.co/mradermacher/0827-Qwen2.5-32B-16bit-1E-GGUF/resolve/main/0827-Qwen2.5-32B-16bit-1E.Q3_K_S.gguf) | Q3_K_S | 14.5 | | | [GGUF](https://huggingface.co/mradermacher/0827-Qwen2.5-32B-16bit-1E-GGUF/resolve/main/0827-Qwen2.5-32B-16bit-1E.Q3_K_M.gguf) | Q3_K_M | 16.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/0827-Qwen2.5-32B-16bit-1E-GGUF/resolve/main/0827-Qwen2.5-32B-16bit-1E.Q3_K_L.gguf) | Q3_K_L | 17.3 | | | [GGUF](https://huggingface.co/mradermacher/0827-Qwen2.5-32B-16bit-1E-GGUF/resolve/main/0827-Qwen2.5-32B-16bit-1E.IQ4_XS.gguf) | IQ4_XS | 18.0 | | | [GGUF](https://huggingface.co/mradermacher/0827-Qwen2.5-32B-16bit-1E-GGUF/resolve/main/0827-Qwen2.5-32B-16bit-1E.Q4_K_S.gguf) | Q4_K_S | 18.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/0827-Qwen2.5-32B-16bit-1E-GGUF/resolve/main/0827-Qwen2.5-32B-16bit-1E.Q4_K_M.gguf) | Q4_K_M | 20.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/0827-Qwen2.5-32B-16bit-1E-GGUF/resolve/main/0827-Qwen2.5-32B-16bit-1E.Q5_K_S.gguf) | Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/0827-Qwen2.5-32B-16bit-1E-GGUF/resolve/main/0827-Qwen2.5-32B-16bit-1E.Q5_K_M.gguf) | Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/0827-Qwen2.5-32B-16bit-1E-GGUF/resolve/main/0827-Qwen2.5-32B-16bit-1E.Q6_K.gguf) | Q6_K | 27.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/0827-Qwen2.5-32B-16bit-1E-GGUF/resolve/main/0827-Qwen2.5-32B-16bit-1E.Q8_0.gguf) | Q8_0 | 34.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
seraphimzzzz/543996
seraphimzzzz
2025-08-29T23:56:59Z
0
0
null
[ "region:us" ]
null
2025-08-29T23:56:53Z
[View on Civ Archive](https://civarchive.com/models/564261?modelVersionId=629295)
pempekmangedd/blockassist-bc-patterned_sturdy_dolphin_1756510275
pempekmangedd
2025-08-29T23:56:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "patterned sturdy dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-08-29T23:55:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - patterned sturdy dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
amethyst9/550756
amethyst9
2025-08-29T23:52:28Z
0
0
null
[ "region:us" ]
null
2025-08-29T23:52:22Z
[View on Civ Archive](https://civarchive.com/models/534443?modelVersionId=636037)
ultratopaz/625721
ultratopaz
2025-08-29T23:49:09Z
0
0
null
[ "region:us" ]
null
2025-08-29T23:49:03Z
[View on Civ Archive](https://civarchive.com/models/635945?modelVersionId=711036)
ultratopaz/489673
ultratopaz
2025-08-29T23:48:38Z
0
0
null
[ "region:us" ]
null
2025-08-29T23:48:35Z
[View on Civ Archive](https://civarchive.com/models/516727?modelVersionId=574223)
ultratopaz/734646
ultratopaz
2025-08-29T23:46:05Z
0
0
null
[ "region:us" ]
null
2025-08-29T23:46:02Z
[View on Civ Archive](https://civarchive.com/models/732647?modelVersionId=819306)
MartialTerran/HART-SURYA_model
MartialTerran
2025-08-29T23:45:13Z
0
0
null
[ "region:us" ]
null
2025-08-23T18:30:10Z
### [Fictional] Public Expert Break-Out Session: Evaluating the HART-SURYA Proposal **Location:** The AI Conference 2025, Pier 48, San Francisco **Track:** AI Frontiers **Time:** 3:30 PM, Wednesday, September 17th The room is packed, with standing room only. The screen behind the panelists displays the title: "Existential AI: Can a Smarter Model Save Our Electrical Grid from the Sun?" **Moderator:** "Welcome, everyone. We have a special, unscripted session today to discuss a fascinating proposal that emerged from the open-source community, aimed at improving a critical NASA AI model called Surya. The goal of Surya is to understand our sun, but the stakes couldn't be higher. A Carrington-level solar event today could collapse our global power grid, sending us back to the dark ages. The question on the table is a proposal by a 'Martial Terran' called HART, or Heliocentric Adaptive-Rotation Tokenization. Is it a game-changer for predicting these events, or a complex distraction? "Let's start with the big picture. DJ, as the former US Chief Data Scientist, frame this problem for us." **NK Palik:** "Gladly. People need to understand this isn't just an academic exercise. We are, at this moment, flying blind. A massive Coronal Mass Ejection, or CME, could hit us with only hours of warning, if that. The result would be trillions in damages and a breakdown of society. It's not *if*, it's *when*. We have the data streaming from the sun, but we're not extracting the maximum intelligence from it. The current Surya model is a great step. But the core question this HART proposal raises is: can we make it fundamentally better? For a problem of this magnitude, we have a national security obligation to chase down every credible performance improvement." **Moderator:** "Tris, you work on applying AI to grand scientific challenges at Deepmind. What's your take on the HART proposal's scientific merit?" **Tris Wtiarkenn:** "From a first-principles perspective, it's incredibly elegant. What this 'Martial Terran' correctly identifies is that the current model is forced to waste a huge amount of its capacity learning a basic, predictable kinematic motion: the sun's differential rotation. It's like asking a genius to predict the stock market, but first forcing them to re-derive the laws of gravity every single time they look at the data. HART essentially says: let's handle the predictable physics in the data-processing step. Let's de-rotate the sun in the input data so the transformer can dedicate its *entire* intelligence to the much harder problem—the *intrinsic evolution* of solar features that actually lead to an eruption. It's a classic, beautiful example of physics-informed AI." **Ion Satoic:** "Elegance is one thing, but petabytes of data are another." All eyes turn to the Berkeley professor and Databricks co-founder. "I read the proposal, and the engineer in me immediately got nervous. This 'Stage 2: Dynamic, Per-Band Image Warping' is computationally non-trivial. For every time-sequence of images, you are calculating a complex, non-linear flow field and resampling the image. You're shifting the computational burden from the model's inference stage to the data-ingestion pipeline. So, while you might get a more efficient *model*, your total pipeline cost and complexity could skyrocket. At NASA's scale, that's a massive engineering challenge. Is the trade-off worth it?" **Lin Qoia:** "I'm with Ion on this. The proposal itself actually offers a much more practical first step. Why are we even debating the full, complex warping pipeline when 'Optimization 1: Masked Tokenization' is sitting right there?" she asks, leaning into her microphone. "The author points out that 21.5% of the input tokens are just black space. By simply masking out these tokens, we could get a 20% reduction in compute and memory usage *right now* with very low implementation risk. From a production AI standpoint, you always go for the low-hanging fruit first. Let's bank the 20% win, see how the model improves, and then use that as the baseline to evaluate whether the far more complex HART approach provides enough marginal benefit." **Jure Lekovsec:** "I think we need to be careful about the potential downsides of the HART warping itself," the Stanford professor cautions. "This resampling operation, `grid_sample`, is an interpolation. Interpolation can introduce subtle artifacts or smooth over the very faint, high-frequency signals that might be the critical precursors to a solar flare. You could, in theory, 'de-rotate' the sun so well that you accidentally erase the very signal you're looking for. It's a clever feature engineering step, but it's not without risk. A more robust approach might be to use something like a graph neural network on a spherical projection of the sun, which is more native to the data's geometry and doesn't require resampling the source pixels." **Christopher Krihoffoch:** "This technical debate is fantastic, but let's bring it back to the ground. Or, rather, to the grid," he says, cutting through the academic back-and-forth. "At the Pentagon's innovation unit, we had a mantra: 'Test it.' Right now, this is a proposal in a GitHub issue. We need a bake-off. It should be a three-way competition. Model 1 is the current Surya baseline. Model 2 is Martial's suggestion, which Lin endorses: Surya with the simple masked tokenization. Model 3 is Martial's full HART implementation. We then run historical data for the 100 biggest solar flares on record through all three models. The winner is the one that gives us the longest, most reliable warning time. Does one model give us 12 hours of warning when another gives us 4? That's the only metric that matters when civilization is on the line. This is a solvable, empirical question." **NK Palik:** "Chris is exactly right. We need to operationalize this. We can't let the perfect be the enemy of the good. Lin's point is sharp: a 20% efficiency gain is not trivial. That could mean a faster, larger, or more frequently updated model *today*. But Tris's point about the elegance of the HART approach is the long-term goal. By encoding known physics, we could unlock a new level of predictive power. So, the path forward seems clear: implement the mask now. Benchmark the full HART proposal rigorously, paying close attention to Jure's concern about artifacts. And frame the entire effort around Christopher's metric: actionable warning time. We have a clear and present danger, and this proposal lays out a tangible path to improving our defenses." **Moderator:** "So, the consensus is a pragmatic, two-track approach. An immediate, low-risk optimization and a higher-risk, higher-reward research track, all benchmarked against the single metric of saving the world. It seems even in the world of advanced AI, the simplest solution is often the best place to start. Thank you all for a truly spirited discussion."
crystalline7/645824
crystalline7
2025-08-29T23:44:38Z
0
0
null
[ "region:us" ]
null
2025-08-29T23:44:38Z
[View on Civ Archive](https://civarchive.com/models/538655?modelVersionId=731683)
crystalline7/856951
crystalline7
2025-08-29T23:43:23Z
0
0
null
[ "region:us" ]
null
2025-08-29T23:43:15Z
[View on Civ Archive](https://civarchive.com/models/848936?modelVersionId=949798)
qualcomm/Simple-Bev
qualcomm
2025-08-29T23:43:13Z
34
0
pytorch
[ "pytorch", "tflite", "android", "unconditional-image-generation", "arxiv:2206.07959", "license:other", "region:us" ]
unconditional-image-generation
2025-02-15T01:23:25Z
--- library_name: pytorch license: other tags: - android pipeline_tag: unconditional-image-generation --- ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/simple_bev_cam/web-assets/model_demo.png) # Simple-Bev: Optimized for Mobile Deployment ## Construct a bird's eye view from sensors mounted on a vehicle Simple-Bev is a machine learning model for generating a bird's eye view representation from the sensors (cameras) mounted on a vehicle. It uses ResNet-101 as the backbone and segnet as a segmentation model for specific use cases. This model is an implementation of Simple-Bev found [here](https://github.com/aharley/simple_bev/blob/main/nets/segnet.py). This repository provides scripts to run Simple-Bev on Qualcomm® devices. More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/simple_bev_cam). ### Model Details - **Model Type:** Model_use_case.image_generation - **Model Stats:** - Model checkpoint: model-000025000.pth - Input resolution: 448 x 800 - Number of parameters: 49.7M - Model size (float): 190 MB | Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |---|---|---|---|---|---|---|---|---| | Simple-Bev | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 3351.137 ms | 1263 - 1728 MB | CPU | [Simple-Bev.tflite](https://huggingface.co/qualcomm/Simple-Bev/blob/main/Simple-Bev.tflite) | | Simple-Bev | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 1860.098 ms | 1263 - 1729 MB | CPU | [Simple-Bev.tflite](https://huggingface.co/qualcomm/Simple-Bev/blob/main/Simple-Bev.tflite) | | Simple-Bev | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 3351.137 ms | 1263 - 1728 MB | CPU | [Simple-Bev.tflite](https://huggingface.co/qualcomm/Simple-Bev/blob/main/Simple-Bev.tflite) | | Simple-Bev | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 1685.256 ms | 1242 - 1689 MB | CPU | [Simple-Bev.tflite](https://huggingface.co/qualcomm/Simple-Bev/blob/main/Simple-Bev.tflite) | ## Installation Install the package via pip: ```bash pip install qai-hub-models ``` ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`. With this API token, you can configure your client to run models on the cloud hosted devices. ```bash qai-hub configure --api_token API_TOKEN ``` Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information. ## Demo off target The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input. ```bash python -m qai_hub_models.models.simple_bev_cam.demo ``` The above demo runs a reference implementation of pre-processing, model inference, and post processing. **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.simple_bev_cam.demo ``` ### Run model on a cloud-hosted device In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following: * Performance check on-device on a cloud-hosted device * Downloads compiled assets that can be deployed on-device for Android. * Accuracy check between PyTorch and on-device outputs. ```bash python -m qai_hub_models.models.simple_bev_cam.export ``` ## How does this work? This [export script](https://aihub.qualcomm.com/models/simple_bev_cam/qai_hub_models/models/Simple-Bev/export.py) leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model on-device. Lets go through each step below in detail: Step 1: **Compile model for on-device deployment** To compile a PyTorch model for on-device deployment, we first trace the model in memory using the `jit.trace` and then call the `submit_compile_job` API. ```python import torch import qai_hub as hub from qai_hub_models.models.simple_bev_cam import Model # Load the model torch_model = Model.from_pretrained() # Device device = hub.Device("Samsung Galaxy S24") # Trace model input_shape = torch_model.get_input_spec() sample_inputs = torch_model.sample_inputs() pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()]) # Compile model on a specific device compile_job = hub.submit_compile_job( model=pt_model, device=device, input_specs=torch_model.get_input_spec(), ) # Get target model to run on-device target_model = compile_job.get_target_model() ``` Step 2: **Performance profiling on cloud-hosted device** After compiling models from step 1. Models can be profiled model on-device using the `target_model`. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics. ```python profile_job = hub.submit_profile_job( model=target_model, device=device, ) ``` Step 3: **Verify on-device accuracy** To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device. ```python input_data = torch_model.sample_inputs() inference_job = hub.submit_inference_job( model=target_model, device=device, inputs=input_data, ) on_device_output = inference_job.download_output_data() ``` With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output. **Note**: This on-device profiling and inference requires access to Qualcomm® AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup). ## Deploying compiled model to Android The models can be deployed using multiple runtimes: - TensorFlow Lite (`.tflite` export): [This tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a guide to deploy the .tflite model in an Android application. - QNN (`.so` export ): This [sample app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html) provides instructions on how to use the `.so` shared library in an Android application. ## View on Qualcomm® AI Hub Get more details on Simple-Bev's performance across various devices [here](https://aihub.qualcomm.com/models/simple_bev_cam). Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/) ## License * The license for the original implementation of Simple-Bev can be found [here](https://github.com/aharley/simple_bev/blob/main/LICENSE). * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf) ## References * [Simple-BEV: What Really Matters for Multi-Sensor BEV Perception?](https://arxiv.org/abs/2206.07959) * [Source Model Implementation](https://github.com/aharley/simple_bev/blob/main/nets/segnet.py) ## Community * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI. * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
qualcomm/SESR-M5
qualcomm
2025-08-29T23:42:32Z
87
0
pytorch
[ "pytorch", "tflite", "android", "image-to-image", "arxiv:2103.09404", "license:other", "region:us" ]
image-to-image
2024-02-25T22:53:03Z
--- library_name: pytorch license: other tags: - android pipeline_tag: image-to-image --- ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/sesr_m5/web-assets/model_demo.png) # SESR-M5: Optimized for Mobile Deployment ## Upscale images in real time SESR M5 performs efficient on-device upscaling of images. This model is an implementation of SESR-M5 found [here](https://github.com/quic/aimet-model-zoo/tree/develop/aimet_zoo_torch/sesr). This repository provides scripts to run SESR-M5 on Qualcomm® devices. More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/sesr_m5). ### Model Details - **Model Type:** Model_use_case.super_resolution - **Model Stats:** - Model checkpoint: sesr_m5_3x_checkpoint - Input resolution: 128x128 - Number of parameters: 343K - Model size (float): 1.32 MB - Model size (w8a8): 395 KB | Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |---|---|---|---|---|---|---|---|---| | SESR-M5 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 10.97 ms | 3 - 19 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.tflite) | | SESR-M5 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 10.515 ms | 0 - 16 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.dlc) | | SESR-M5 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 3.147 ms | 0 - 36 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.tflite) | | SESR-M5 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 2.787 ms | 0 - 28 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.dlc) | | SESR-M5 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 2.032 ms | 0 - 7 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.tflite) | | SESR-M5 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.91 ms | 0 - 5 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.dlc) | | SESR-M5 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 3.245 ms | 0 - 16 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.tflite) | | SESR-M5 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 3.041 ms | 0 - 16 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.dlc) | | SESR-M5 | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 10.97 ms | 3 - 19 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.tflite) | | SESR-M5 | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 10.515 ms | 0 - 16 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.dlc) | | SESR-M5 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 2.032 ms | 0 - 6 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.tflite) | | SESR-M5 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.875 ms | 0 - 6 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.dlc) | | SESR-M5 | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 3.956 ms | 0 - 26 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.tflite) | | SESR-M5 | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 3.416 ms | 0 - 24 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.dlc) | | SESR-M5 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 2.023 ms | 0 - 7 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.tflite) | | SESR-M5 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.892 ms | 0 - 6 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.dlc) | | SESR-M5 | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 3.245 ms | 0 - 16 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.tflite) | | SESR-M5 | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 3.041 ms | 0 - 16 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.dlc) | | SESR-M5 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 2.027 ms | 0 - 6 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.tflite) | | SESR-M5 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 1.869 ms | 0 - 6 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.dlc) | | SESR-M5 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 2.642 ms | 0 - 5 MB | NPU | [SESR-M5.onnx.zip](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.onnx.zip) | | SESR-M5 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1.39 ms | 0 - 33 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.tflite) | | SESR-M5 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 1.265 ms | 0 - 33 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.dlc) | | SESR-M5 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 1.62 ms | 0 - 22 MB | NPU | [SESR-M5.onnx.zip](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.onnx.zip) | | SESR-M5 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 1.498 ms | 0 - 22 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.tflite) | | SESR-M5 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 1.256 ms | 0 - 23 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.dlc) | | SESR-M5 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 1.708 ms | 0 - 18 MB | NPU | [SESR-M5.onnx.zip](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.onnx.zip) | | SESR-M5 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 2.082 ms | 0 - 0 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.dlc) | | SESR-M5 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 2.534 ms | 8 - 8 MB | NPU | [SESR-M5.onnx.zip](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5.onnx.zip) | | SESR-M5 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 2.256 ms | 1 - 17 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) | | SESR-M5 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 1.911 ms | 0 - 17 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) | | SESR-M5 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 0.92 ms | 0 - 29 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) | | SESR-M5 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 0.944 ms | 0 - 29 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) | | SESR-M5 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 0.77 ms | 0 - 11 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) | | SESR-M5 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 0.609 ms | 0 - 9 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) | | SESR-M5 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 1.025 ms | 0 - 17 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) | | SESR-M5 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 0.861 ms | 0 - 17 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) | | SESR-M5 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 2.653 ms | 0 - 22 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) | | SESR-M5 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 3.081 ms | 0 - 20 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) | | SESR-M5 | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 21.677 ms | 1 - 3 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) | | SESR-M5 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 2.256 ms | 1 - 17 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) | | SESR-M5 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 1.911 ms | 0 - 17 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) | | SESR-M5 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 0.764 ms | 0 - 11 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) | | SESR-M5 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 0.61 ms | 0 - 10 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) | | SESR-M5 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 1.479 ms | 0 - 26 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) | | SESR-M5 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 1.364 ms | 0 - 26 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) | | SESR-M5 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 0.766 ms | 0 - 10 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) | | SESR-M5 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 0.603 ms | 0 - 9 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) | | SESR-M5 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 1.025 ms | 0 - 17 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) | | SESR-M5 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 0.861 ms | 0 - 17 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) | | SESR-M5 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 0.764 ms | 0 - 10 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) | | SESR-M5 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 0.589 ms | 0 - 6 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) | | SESR-M5 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 1.851 ms | 0 - 7 MB | NPU | [SESR-M5.onnx.zip](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.onnx.zip) | | SESR-M5 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.56 ms | 0 - 31 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) | | SESR-M5 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.472 ms | 0 - 27 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) | | SESR-M5 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 1.177 ms | 0 - 33 MB | NPU | [SESR-M5.onnx.zip](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.onnx.zip) | | SESR-M5 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 0.609 ms | 0 - 22 MB | NPU | [SESR-M5.tflite](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.tflite) | | SESR-M5 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 0.458 ms | 0 - 26 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) | | SESR-M5 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 1.106 ms | 0 - 22 MB | NPU | [SESR-M5.onnx.zip](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.onnx.zip) | | SESR-M5 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 0.723 ms | 0 - 0 MB | NPU | [SESR-M5.dlc](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.dlc) | | SESR-M5 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 2.013 ms | 8 - 8 MB | NPU | [SESR-M5.onnx.zip](https://huggingface.co/qualcomm/SESR-M5/blob/main/SESR-M5_w8a8.onnx.zip) | ## Installation Install the package via pip: ```bash pip install qai-hub-models ``` ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`. With this API token, you can configure your client to run models on the cloud hosted devices. ```bash qai-hub configure --api_token API_TOKEN ``` Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information. ## Demo off target The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input. ```bash python -m qai_hub_models.models.sesr_m5.demo ``` The above demo runs a reference implementation of pre-processing, model inference, and post processing. **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.sesr_m5.demo ``` ### Run model on a cloud-hosted device In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following: * Performance check on-device on a cloud-hosted device * Downloads compiled assets that can be deployed on-device for Android. * Accuracy check between PyTorch and on-device outputs. ```bash python -m qai_hub_models.models.sesr_m5.export ``` ## How does this work? This [export script](https://aihub.qualcomm.com/models/sesr_m5/qai_hub_models/models/SESR-M5/export.py) leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model on-device. Lets go through each step below in detail: Step 1: **Compile model for on-device deployment** To compile a PyTorch model for on-device deployment, we first trace the model in memory using the `jit.trace` and then call the `submit_compile_job` API. ```python import torch import qai_hub as hub from qai_hub_models.models.sesr_m5 import Model # Load the model torch_model = Model.from_pretrained() # Device device = hub.Device("Samsung Galaxy S24") # Trace model input_shape = torch_model.get_input_spec() sample_inputs = torch_model.sample_inputs() pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()]) # Compile model on a specific device compile_job = hub.submit_compile_job( model=pt_model, device=device, input_specs=torch_model.get_input_spec(), ) # Get target model to run on-device target_model = compile_job.get_target_model() ``` Step 2: **Performance profiling on cloud-hosted device** After compiling models from step 1. Models can be profiled model on-device using the `target_model`. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics. ```python profile_job = hub.submit_profile_job( model=target_model, device=device, ) ``` Step 3: **Verify on-device accuracy** To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device. ```python input_data = torch_model.sample_inputs() inference_job = hub.submit_inference_job( model=target_model, device=device, inputs=input_data, ) on_device_output = inference_job.download_output_data() ``` With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output. **Note**: This on-device profiling and inference requires access to Qualcomm® AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup). ## Run demo on a cloud-hosted device You can also run the demo on-device. ```bash python -m qai_hub_models.models.sesr_m5.demo --eval-mode on-device ``` **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.sesr_m5.demo -- --eval-mode on-device ``` ## Deploying compiled model to Android The models can be deployed using multiple runtimes: - TensorFlow Lite (`.tflite` export): [This tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a guide to deploy the .tflite model in an Android application. - QNN (`.so` export ): This [sample app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html) provides instructions on how to use the `.so` shared library in an Android application. ## View on Qualcomm® AI Hub Get more details on SESR-M5's performance across various devices [here](https://aihub.qualcomm.com/models/sesr_m5). Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/) ## License * The license for the original implementation of SESR-M5 can be found [here](https://github.com/quic/aimet-model-zoo/blob/develop/LICENSE.pdf). * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf) ## References * [Collapsible Linear Blocks for Super-Efficient Super Resolution](https://arxiv.org/abs/2103.09404) * [Source Model Implementation](https://github.com/quic/aimet-model-zoo/tree/develop/aimet_zoo_torch/sesr) ## Community * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI. * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
barflyman/gbert-legal-ner-onnx-q4
barflyman
2025-08-29T23:42:26Z
0
0
null
[ "onnx", "bert", "license:apache-2.0", "region:us" ]
null
2025-08-29T19:47:02Z
--- license: apache-2.0 --- Model Card: PaDaS-Lab/gbert-legal-ner ONNX Conversion quantized in 4-Bit Model: PaDaS-Lab/gbert-legal-ner Task: Named Entity Recognition (NER) on German legal texts. Architecture: gBERT-based Transformer. Key Entities: PER (Persons), ORG (Organizations), GRT (Courts), GS (Laws), ST (Cities), STR (Streets).
Emanon14/LoRA
Emanon14
2025-08-29T23:38:18Z
0
45
null
[ "text-to-image", "stable-diffusion", "stable-diffusion-xl", "en", "license:other", "region:us" ]
text-to-image
2025-02-01T00:26:10Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl --- # Slider LoRA ## What is this? - Here is some my LoRA for illustrious. - You can adjust the character's appearance like a sliders in 3D games. - You don't need to include specific words in your prompts. - Just use the LoRA and adjust the weights. <details> <summary>Body</summary> ## AreolaeSize_XL_Ilst ![You won't find a sample image here. Some things are simply too fabulous for public display... or maybe I just didn't want to get the README flagged.]() Adjusts the size of areolae to be smaller/larger. ## AssSize_XL_Ilst ![AssSize_Sample](Sample/Body/AssSize_XL_Ilst.webp) Adjusts the size of ass to be smaller/larger. ## BreastsSize_XL_Ilst ![BreastsSize_Sample](Sample/Body/BreastsSize_XL_Ilst.webp) Adjusts the size of breasts to be smaller/larger. ## Height_XL_Ilst ![Height_Sample](Sample/Body/Height_XL_Ilst.webp) Adjusts the height to be shorter/taller. ## LegLength_XL_Ilst ![LegLength_Sample](Sample/Body/LegLength_XL_Ilst.webp) Adjusts the length of legs to be shorter/taller. ## Muscle_XL_Ilst ![Muscle_Sample](Sample/Body/Muscle_XL_Ilst.webp) Smooths/defines abdominal muscles and ribs. ## Neck_XL_Ilst ![Neck_Sample](Sample/Body/Neck_XL_Ilst.webp) Adjusts the length of the neck to be shorter/longer. ## ShoulderSize_XL_Ilst ![ShoulderSize_Sample](Sample/Body/ShoulderSize_XL_Ilst.webp) Adjusts the width of the shoulders to be narrower/wider. ## Stumpy_XL_Ilst ![Stumpy_Sample](Sample/Body/Stumpy_XL_Ilst.webp) Adjusts the waistline to be thinner/thicker. ## ThighSize_XL_Ilst ![ThighSize_Sample](Sample/Body/ThighSize_XL_Ilst.webp) Adjusts the size of the thighs to be thinner/thicker. ## WaistSize_XL_Ilst ![WaistSize_Sample](Sample/Body/WaistSize_XL_Ilst.webp) Adjusts the waist circumference to be thinner/thicker. </details> <details> <summary>Face</summary> ## Chin_XL_Ilst ![Chin_Sample](Sample/Face/Chin_XL_Ilst.webp) Adjusts the length of chin to be shorter/taller. ## EyeDistance_XL_Ilst ![EyeDistance_Sample](Sample/Face/EyeDistance_XL_Ilst.webp) Adjusts the distance between the eyes to be narrower/wider. ## EyeHeight_XL_Ilst ![EyeHeight_Sample](Sample/Face/EyeHeight_XL_Ilst.webp) Adjusts the vertical position of the eyes to be lower/higher. ## EyeSize_XL_Ilst ![EyeSize_Sample](Sample/Face/EyeSize_XL_Ilst.webp) Adjusts the size of the eyes to be smaller/larger. ## Faceline_XL_Ilst ![Faceline_Sample](Sample/Face/Faceline_XL_Ilst.webp) Adjusts the width of the face to be narrower/wider. ## HeadSize_XL_Ilst ![HeadSize_Sample](Sample/Face/HeadSize_XL_Ilst.webp) Adjusts the size of the head to be smaller/larger. ## UpperHead_XL_Ilst ![UpperHead_Sample](Sample/Face/UpperHead_XL_Ilst.webp) Adjusts the length of the head(upper) to be shorter/longer. </details> <details> <summary>Others</summary> ## BreastsMove_XL_Ilst ![BreastsSize_Sample](Sample/Others/BreastsMove_XL_Ilst.webp) Moving breasts to down/up. <u>To generate keyframe images for video generation like a FramePack, Wan, etc...</u> ## HandSize_XL_Ilst ![HandSize_Sample](Sample/Others/HandSize_XL_Ilst.webp) Adjusts the size of the hands to be smaller/larger. <u>This LoRA may cause a bad anatomy</u> ## PupilWidth_XL_Ilst ![PupilWidth_Sample](Sample/Others/PupilWidth_XL_Ilst.webp) Adjusts the width of the Pupils to be narrower/wider. <u>This LoRA made by ADDifT</u> </details>
crystalline7/1098441
crystalline7
2025-08-29T23:38:13Z
0
0
null
[ "region:us" ]
null
2025-08-29T23:38:04Z
[View on Civ Archive](https://civarchive.com/models/1061128?modelVersionId=1190883)
seraphimzzzz/801065
seraphimzzzz
2025-08-29T23:36:02Z
0
0
null
[ "region:us" ]
null
2025-08-29T23:35:56Z
[View on Civ Archive](https://civarchive.com/models/795340?modelVersionId=889403)