modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-19 06:28:27
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
512 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-19 06:28:14
card
stringlengths
11
1.01M
donoway/ARC-Easy_Llama-3.2-1B-ro2gi4y6
donoway
2025-08-18T13:23:37Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:meta-llama/Llama-3.2-1B", "base_model:finetune:meta-llama/Llama-3.2-1B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T13:01:26Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer metrics: - accuracy model-index: - name: ARC-Easy_Llama-3.2-1B-ro2gi4y6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ARC-Easy_Llama-3.2-1B-ro2gi4y6 This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6994 - Model Preparation Time: 0.0055 - Mdl: 1397.4674 - Accumulated Loss: 968.6506 - Correct Preds: 430.0 - Total Preds: 570.0 - Accuracy: 0.7544 - Correct Gen Preds: 430.0 - Gen Accuracy: 0.7544 - Correct Gen Preds 32: 118.0 - Correct Preds 32: 118.0 - Total Labels 32: 158.0 - Accuracy 32: 0.7468 - Gen Accuracy 32: 0.7468 - Correct Gen Preds 33: 116.0 - Correct Preds 33: 116.0 - Total Labels 33: 152.0 - Accuracy 33: 0.7632 - Gen Accuracy 33: 0.7632 - Correct Gen Preds 34: 113.0 - Correct Preds 34: 113.0 - Total Labels 34: 142.0 - Accuracy 34: 0.7958 - Gen Accuracy 34: 0.7958 - Correct Gen Preds 35: 83.0 - Correct Preds 35: 83.0 - Total Labels 35: 118.0 - Accuracy 35: 0.7034 - Gen Accuracy 35: 0.7034 - Correct Gen Preds 36: 0.0 - Correct Preds 36: 0.0 - Total Labels 36: 0.0 - Accuracy 36: 0.0 - Gen Accuracy 36: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 112 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.001 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Mdl | Accumulated Loss | Correct Preds | Total Preds | Accuracy | Correct Gen Preds | Gen Accuracy | Correct Gen Preds 32 | Correct Preds 32 | Total Labels 32 | Accuracy 32 | Gen Accuracy 32 | Correct Gen Preds 33 | Correct Preds 33 | Total Labels 33 | Accuracy 33 | Gen Accuracy 33 | Correct Gen Preds 34 | Correct Preds 34 | Total Labels 34 | Accuracy 34 | Gen Accuracy 34 | Correct Gen Preds 35 | Correct Preds 35 | Total Labels 35 | Accuracy 35 | Gen Accuracy 35 | Correct Gen Preds 36 | Correct Preds 36 | Total Labels 36 | Accuracy 36 | Gen Accuracy 36 | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:---------:|:----------------:|:-------------:|:-----------:|:--------:|:-----------------:|:------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:| | No log | 0 | 0 | 1.5354 | 0.0055 | 1262.6022 | 875.1692 | 172.0 | 570.0 | 0.3018 | 170.0 | 0.2982 | 154.0 | 154.0 | 158.0 | 0.9747 | 0.9747 | 0.0 | 0.0 | 152.0 | 0.0 | 0.0 | 15.0 | 17.0 | 142.0 | 0.1197 | 0.1056 | 1.0 | 1.0 | 118.0 | 0.0085 | 0.0085 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.1499 | 1.0 | 30 | 0.9537 | 0.0055 | 784.2818 | 543.6227 | 379.0 | 570.0 | 0.6649 | 377.0 | 0.6614 | 127.0 | 128.0 | 158.0 | 0.8101 | 0.8038 | 85.0 | 86.0 | 152.0 | 0.5658 | 0.5592 | 96.0 | 96.0 | 142.0 | 0.6761 | 0.6761 | 69.0 | 69.0 | 118.0 | 0.5847 | 0.5847 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.3791 | 2.0 | 60 | 0.7650 | 0.0055 | 629.1242 | 436.0757 | 425.0 | 570.0 | 0.7456 | 424.0 | 0.7439 | 109.0 | 110.0 | 158.0 | 0.6962 | 0.6899 | 123.0 | 123.0 | 152.0 | 0.8092 | 0.8092 | 106.0 | 106.0 | 142.0 | 0.7465 | 0.7465 | 86.0 | 86.0 | 118.0 | 0.7288 | 0.7288 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.2137 | 3.0 | 90 | 0.9976 | 0.0055 | 820.3431 | 568.6185 | 414.0 | 570.0 | 0.7263 | 414.0 | 0.7263 | 98.0 | 98.0 | 158.0 | 0.6203 | 0.6203 | 119.0 | 119.0 | 152.0 | 0.7829 | 0.7829 | 115.0 | 115.0 | 142.0 | 0.8099 | 0.8099 | 82.0 | 82.0 | 118.0 | 0.6949 | 0.6949 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.153 | 4.0 | 120 | 1.5820 | 0.0055 | 1300.9342 | 901.7389 | 419.0 | 570.0 | 0.7351 | 416.0 | 0.7298 | 112.0 | 115.0 | 158.0 | 0.7278 | 0.7089 | 113.0 | 113.0 | 152.0 | 0.7434 | 0.7434 | 120.0 | 120.0 | 142.0 | 0.8451 | 0.8451 | 71.0 | 71.0 | 118.0 | 0.6017 | 0.6017 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0002 | 5.0 | 150 | 1.9407 | 0.0055 | 1595.9007 | 1106.1941 | 425.0 | 570.0 | 0.7456 | 423.0 | 0.7421 | 111.0 | 112.0 | 158.0 | 0.7089 | 0.7025 | 126.0 | 127.0 | 152.0 | 0.8355 | 0.8289 | 110.0 | 110.0 | 142.0 | 0.7746 | 0.7746 | 76.0 | 76.0 | 118.0 | 0.6441 | 0.6441 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0034 | 6.0 | 180 | 1.6994 | 0.0055 | 1397.4674 | 968.6506 | 430.0 | 570.0 | 0.7544 | 430.0 | 0.7544 | 118.0 | 118.0 | 158.0 | 0.7468 | 0.7468 | 116.0 | 116.0 | 152.0 | 0.7632 | 0.7632 | 113.0 | 113.0 | 142.0 | 0.7958 | 0.7958 | 83.0 | 83.0 | 118.0 | 0.7034 | 0.7034 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0002 | 7.0 | 210 | 2.0344 | 0.0055 | 1672.9333 | 1159.5890 | 430.0 | 570.0 | 0.7544 | 430.0 | 0.7544 | 117.0 | 117.0 | 158.0 | 0.7405 | 0.7405 | 111.0 | 111.0 | 152.0 | 0.7303 | 0.7303 | 118.0 | 118.0 | 142.0 | 0.8310 | 0.8310 | 84.0 | 84.0 | 118.0 | 0.7119 | 0.7119 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.2384 | 8.0 | 240 | 2.3318 | 0.0055 | 1917.5151 | 1329.1202 | 422.0 | 570.0 | 0.7404 | 421.0 | 0.7386 | 117.0 | 118.0 | 158.0 | 0.7468 | 0.7405 | 111.0 | 111.0 | 152.0 | 0.7303 | 0.7303 | 113.0 | 113.0 | 142.0 | 0.7958 | 0.7958 | 80.0 | 80.0 | 118.0 | 0.6780 | 0.6780 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0001 | 9.0 | 270 | 2.3574 | 0.0055 | 1938.6154 | 1343.7458 | 426.0 | 570.0 | 0.7474 | 426.0 | 0.7474 | 112.0 | 112.0 | 158.0 | 0.7089 | 0.7089 | 114.0 | 114.0 | 152.0 | 0.75 | 0.75 | 115.0 | 115.0 | 142.0 | 0.8099 | 0.8099 | 85.0 | 85.0 | 118.0 | 0.7203 | 0.7203 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0039 | 10.0 | 300 | 2.6388 | 0.0055 | 2169.9437 | 1504.0904 | 422.0 | 570.0 | 0.7404 | 421.0 | 0.7386 | 109.0 | 110.0 | 158.0 | 0.6962 | 0.6899 | 115.0 | 115.0 | 152.0 | 0.7566 | 0.7566 | 111.0 | 111.0 | 142.0 | 0.7817 | 0.7817 | 86.0 | 86.0 | 118.0 | 0.7288 | 0.7288 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 11.0 | 330 | 2.5992 | 0.0055 | 2137.4472 | 1481.5655 | 421.0 | 570.0 | 0.7386 | 420.0 | 0.7368 | 110.0 | 111.0 | 158.0 | 0.7025 | 0.6962 | 115.0 | 115.0 | 152.0 | 0.7566 | 0.7566 | 115.0 | 115.0 | 142.0 | 0.8099 | 0.8099 | 80.0 | 80.0 | 118.0 | 0.6780 | 0.6780 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 12.0 | 360 | 2.5923 | 0.0055 | 2131.7646 | 1477.6266 | 422.0 | 570.0 | 0.7404 | 421.0 | 0.7386 | 108.0 | 109.0 | 158.0 | 0.6899 | 0.6835 | 113.0 | 113.0 | 152.0 | 0.7434 | 0.7434 | 114.0 | 114.0 | 142.0 | 0.8028 | 0.8028 | 86.0 | 86.0 | 118.0 | 0.7288 | 0.7288 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 13.0 | 390 | 2.6003 | 0.0055 | 2138.2906 | 1482.1501 | 423.0 | 570.0 | 0.7421 | 422.0 | 0.7404 | 113.0 | 114.0 | 158.0 | 0.7215 | 0.7152 | 111.0 | 111.0 | 152.0 | 0.7303 | 0.7303 | 114.0 | 114.0 | 142.0 | 0.8028 | 0.8028 | 84.0 | 84.0 | 118.0 | 0.7119 | 0.7119 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 14.0 | 420 | 2.6367 | 0.0055 | 2168.2271 | 1502.9005 | 423.0 | 570.0 | 0.7421 | 422.0 | 0.7404 | 115.0 | 116.0 | 158.0 | 0.7342 | 0.7278 | 111.0 | 111.0 | 152.0 | 0.7303 | 0.7303 | 113.0 | 113.0 | 142.0 | 0.7958 | 0.7958 | 83.0 | 83.0 | 118.0 | 0.7034 | 0.7034 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 15.0 | 450 | 2.6527 | 0.0055 | 2181.4382 | 1512.0577 | 424.0 | 570.0 | 0.7439 | 423.0 | 0.7421 | 113.0 | 114.0 | 158.0 | 0.7215 | 0.7152 | 112.0 | 112.0 | 152.0 | 0.7368 | 0.7368 | 114.0 | 114.0 | 142.0 | 0.8028 | 0.8028 | 84.0 | 84.0 | 118.0 | 0.7119 | 0.7119 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 16.0 | 480 | 2.6577 | 0.0055 | 2185.4872 | 1514.8643 | 423.0 | 570.0 | 0.7421 | 422.0 | 0.7404 | 113.0 | 114.0 | 158.0 | 0.7215 | 0.7152 | 111.0 | 111.0 | 152.0 | 0.7303 | 0.7303 | 114.0 | 114.0 | 142.0 | 0.8028 | 0.8028 | 84.0 | 84.0 | 118.0 | 0.7119 | 0.7119 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 17.0 | 510 | 2.6565 | 0.0055 | 2184.5381 | 1514.2064 | 423.0 | 570.0 | 0.7421 | 422.0 | 0.7404 | 114.0 | 115.0 | 158.0 | 0.7278 | 0.7215 | 111.0 | 111.0 | 152.0 | 0.7303 | 0.7303 | 113.0 | 113.0 | 142.0 | 0.7958 | 0.7958 | 84.0 | 84.0 | 118.0 | 0.7119 | 0.7119 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
mradermacher/InnoSpark-HPC-RM-32B-GGUF
mradermacher
2025-08-18T13:21:17Z
171
0
transformers
[ "transformers", "gguf", "en", "base_model:sii-research/InnoSpark-HPC-RM-32B", "base_model:quantized:sii-research/InnoSpark-HPC-RM-32B", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-07-26T15:13:23Z
--- base_model: sii-research/InnoSpark-HPC-RM-32B language: - en library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/sii-research/InnoSpark-HPC-RM-32B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#InnoSpark-HPC-RM-32B-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/InnoSpark-HPC-RM-32B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/InnoSpark-HPC-RM-32B-GGUF/resolve/main/InnoSpark-HPC-RM-32B.Q2_K.gguf) | Q2_K | 12.4 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-HPC-RM-32B-GGUF/resolve/main/InnoSpark-HPC-RM-32B.Q3_K_S.gguf) | Q3_K_S | 14.5 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-HPC-RM-32B-GGUF/resolve/main/InnoSpark-HPC-RM-32B.Q3_K_M.gguf) | Q3_K_M | 16.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-HPC-RM-32B-GGUF/resolve/main/InnoSpark-HPC-RM-32B.Q3_K_L.gguf) | Q3_K_L | 17.3 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-HPC-RM-32B-GGUF/resolve/main/InnoSpark-HPC-RM-32B.IQ4_XS.gguf) | IQ4_XS | 18.0 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-HPC-RM-32B-GGUF/resolve/main/InnoSpark-HPC-RM-32B.Q4_K_S.gguf) | Q4_K_S | 18.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-HPC-RM-32B-GGUF/resolve/main/InnoSpark-HPC-RM-32B.Q4_K_M.gguf) | Q4_K_M | 20.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-HPC-RM-32B-GGUF/resolve/main/InnoSpark-HPC-RM-32B.Q5_K_S.gguf) | Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-HPC-RM-32B-GGUF/resolve/main/InnoSpark-HPC-RM-32B.Q5_K_M.gguf) | Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-HPC-RM-32B-GGUF/resolve/main/InnoSpark-HPC-RM-32B.Q6_K.gguf) | Q6_K | 27.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-HPC-RM-32B-GGUF/resolve/main/InnoSpark-HPC-RM-32B.Q8_0.gguf) | Q8_0 | 34.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755522104
Sayemahsjn
2025-08-18T13:20:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T13:20:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755521675
quantumxnode
2025-08-18T13:20:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T13:19:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
halley-ai/gpt-oss-20b-MLX-6bit-gs32
halley-ai
2025-08-18T13:19:24Z
0
1
mlx
[ "mlx", "safetensors", "gpt_oss", "apple-silicon", "metal", "arm64", "6-bit", "group-size-32", "moe", "mpx4", "openai", "halley-ai", "text-generation", "conversational", "en", "ro", "base_model:openai/gpt-oss-20b", "base_model:quantized:openai/gpt-oss-20b", "license:apache-2.0", "region:us" ]
text-generation
2025-08-16T20:14:21Z
--- library_name: mlx pipeline_tag: text-generation inference: false # MLX is macOS-only; HF Inference API won't run it license: apache-2.0 base_model: openai/gpt-oss-20b base_model_relation: quantized language: - en - ro tags: - apple-silicon - metal - arm64 - 6-bit - group-size-32 - moe - mpx4 - openai - halley-ai --- # gpt-oss-20b — MLX 6-bit (group size 32) **Summary.** This is a 6-bit (**Q6**) **MLX** quantization of **gpt-oss-20B** (sparse Mixture-of-Experts, MPx4). Group size is **32**. Built for **Apple Silicon** with Metal acceleration. - **Base model:** `openai/gpt-oss-20b` (Apache-2.0) - **Quantization:** MLX Q6, `q_group_size=32` (some tensors remain FP16 for stability) - **Files:** MLX weight shards + `config.json`; tokenizer files included for drop-in use - **Footprint:** ~**18.38 GB** on disk - **Intended use:** local inference / research on M-series Macs - **Not intended for:** safety-critical decisions; outputs may be inaccurate or biased ## Requirements **Runs on:** Apple Silicon (M1 or newer) with **macOS ≥ 13.5** via **MLX (Metal)**. **Not supported:** Intel macOS / Linux / Windows (use a GGUF build + llama.cpp instead). **RAM guidance:** 32 GB minimum for Q6 (gs=32). 24 GB MacBook Pro **won’t run it**. Extra RAM improves headroom. ## How to use (MLX) ```bash pip install mlx-lm transformers ``` ```python # Python API (uses tokenizer bundled with this repo) from mlx_lm import load, generate model, tokenizer = load("halley-ai/gpt-oss-20b-MLX-6bit-gs32") print(generate( model, tokenizer, prompt="Explain the Chudnovsky algorithm to compute π.", max_tokens=256, max_kv_size=512 )) ``` ## Performance (Apple Silicon, real-world) LM Studio / CLI (MLX, Q6 gs=32): ~49–55 tok/s, TTFB ~0.35–0.45 s (≈2k-token responses) – measured on M1 Max 32 GB (short fixed-length runs show lower t/s due to startup overhead). Throughput varies with Mac model, context, and sampler settings. ## Evaluation Perplexity (PPL) streaming evaluation on WikiText-2; window=stride=4096, ~100k tokens, EOS inserted between docs. <table> <thead> <tr><th>Variant</th><th>PPL (ctx=4096)</th></tr> </thead> <tbody> <tr><td>MLX 8-bit (reference)</td><td>10.75</td></tr> <tr><td><strong>MLX 6-bit (gs=32)</strong></td><td><strong>10.46 (−2.7% vs 8-bit/gs64)</strong></td></tr> <tr><td>MLX 5-bit (gs=32)</td><td>11.11 (+3.3% vs 8-bit/gs64, +6.2% vs 6-bit/gs32)</strong></td></tr> <tr><td>MLX 4-bit (gs=32)</td><td>13.70 (+27.4% vs 8-bit/gs64, +31.0% vs 6-bit/gs32)</td></tr> </tbody> </table> **Interpretation** - MLX 6-bit/gs32: Best of the group; edges out 8-bit/gs64 slightly at a smaller footprint. - MLX 5-bit/gs32: Small, consistent drop vs 6-bit/gs32 and 8-bit/gs64 (~3–6% PPL); strong “fits-16GB” option when GPU buffer limits matter. - MLX 8-bit/gs64: Solid reference; near‑FP16 quality at a larger footprint. - MLX 4-bit/gs32: Trades accuracy for footprint; use when RAM is constrained or throughput is the priority. ## Conversion details (provenance) ```bash python -m mlx_lm convert \ --hf-path openai/gpt-oss-20b \ --mlx-path gpt-oss-20b-mlx-q6-gs32 \ --q-bits 6 --q-group-size 32 -q ``` - Some non-expert tensors (embeddings, norms, router) remain FP16. ## Sibling & reference models - halley-ai/gpt-oss-20b-MLX-5bit-gs32 - halley-ai/gpt-oss-20b-MLX-4bit-gs32 - Reference (8-bit, upstream): lmstudio-community/gpt-oss-20b-MLX-8bit ## Limitations & biases Outputs may be factually wrong or unsafe. Don’t use for medical, legal, or financial decisions without human review. MoE models can be sensitive to prompt wording; prefer explicit instructions and structure. ## License & credits - License: Apache-2.0 (inherits from base model) - Base model: OpenAI gpt-oss-20B - Quantization: Halley AI Lab (MLX Q6, gs=32) - Please cite both the base model and this repository when you use the weights.
AiArtLab/sdxl_vae
AiArtLab
2025-08-18T13:16:44Z
0
0
diffusers
[ "diffusers", "safetensors", "en", "base_model:madebyollin/sdxl-vae-fp16-fix", "base_model:finetune:madebyollin/sdxl-vae-fp16-fix", "license:apache-2.0", "region:us" ]
null
2025-08-18T11:35:12Z
--- license: apache-2.0 language: - en base_model: - madebyollin/sdxl-vae-fp16-fix - stabilityai/sdxl-vae library_name: diffusers --- # SDXL-VAE finetuned | Model | MSE | PSNR | LPIPS | |----------------------------|-------------|-----------|------------| | madebyollin/sdxl-vae-fp16-fix | 3.680e-03 | 25.2100 | 0.1314 | | KBlueLeaf/EQ-SDXL-VAE | 3.530e-03 | 25.2827 | 0.1298 | | **AiArtLab/sdxl_vae** | <span style="color:red">**3.321e-03**</span> | <span style="color:red">**25.6389**</span> | <span style="color:red">**0.1251**</span> | ### Train status, in progress: ![result](result.png) ## VAE Training Process - Encoder: Frozen (to avoid retraining SDXL for the new VAE). - Dataset: 100,000 PNG images - Training Time: 4 days - Hardware: Single RTX 4090 - Resolution: 512px - Precision: FP32 - Effective Batch Size: 16 (batch size 2 + gradient accumulation 8) - Optimizer: AdamW (8-bit) ## Implementation - Base Code: Used a simple diffusion model training script. - Training Target: Only the decoder, focusing on image reconstruction. ## Loss Functions - Initially used LPIPS and MSE. - Noticed FID score improving, but images becoming blurry (FID overfits to blurry images—improving FID is not always good). - Switched to MAE. - Balanced LPIPS and MAE at 90/10 ratio. - Used median perceptual_loss_weight for better balance. ## Compare https://imgsli.com/NDA3Njgw/2/3 ## Donations Please contact with us if you may provide some GPU's or money on training DOGE: DEw2DR8C7BnF8GgcrfTzUjSnGkuMeJhg83 BTC: 3JHv9Hb8kEW8zMAccdgCdZGfrHeMhH1rpN ## Contacts [recoilme](https://t.me/recoilme)
MattBou00/smolLM-360m-detox_try_2
MattBou00
2025-08-18T13:10:20Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "ppo", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2025-08-18T07:37:48Z
--- license: apache-2.0 library_name: transformers tags: - trl - ppo - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="MattBou00//content/IRL-Bayesian/IRL-Bayesian/IRL-Bayesian/outputs/2025-08-18_12-40-31/checkpoints/checkpoint-epoch-20") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("MattBou00//content/IRL-Bayesian/IRL-Bayesian/IRL-Bayesian/outputs/2025-08-18_12-40-31/checkpoints/checkpoint-epoch-20") model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00//content/IRL-Bayesian/IRL-Bayesian/IRL-Bayesian/outputs/2025-08-18_12-40-31/checkpoints/checkpoint-epoch-20") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
mradermacher/Kimi-Dev-72B-abliterated-GGUF
mradermacher
2025-08-18T13:07:21Z
125
0
transformers
[ "transformers", "gguf", "en", "base_model:nicoboss/Kimi-Dev-72B-abliterated", "base_model:quantized:nicoboss/Kimi-Dev-72B-abliterated", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-05T07:24:14Z
--- base_model: nicoboss/Kimi-Dev-72B-abliterated language: - en library_name: transformers mradermacher: readme_rev: 1 no_imatrix: 'q4_K .. ggml_validate_row_data: found nan value at block 32' quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/nicoboss/Kimi-Dev-72B-abliterated <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Kimi-Dev-72B-abliterated-GGUF).*** ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q2_K.gguf) | Q2_K | 29.9 | | | [GGUF](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q3_K_S.gguf) | Q3_K_S | 34.6 | | | [GGUF](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q3_K_M.gguf) | Q3_K_M | 37.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q3_K_L.gguf) | Q3_K_L | 39.6 | | | [GGUF](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.IQ4_XS.gguf) | IQ4_XS | 40.3 | | | [GGUF](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q4_K_S.gguf) | Q4_K_S | 44.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q4_K_M.gguf) | Q4_K_M | 47.5 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q5_K_S.gguf.part2of2) | Q5_K_S | 51.5 | | | [PART 1](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q5_K_M.gguf.part2of2) | Q5_K_M | 54.5 | | | [PART 1](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q6_K.gguf.part2of2) | Q6_K | 64.4 | very good quality | | [PART 1](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q8_0.gguf.part2of2) | Q8_0 | 77.4 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755520683
katanyasekolah
2025-08-18T13:07:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T13:06:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aragoto/gemma-jaen-test
aragoto
2025-08-18T13:05:28Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:google/gemma-2b", "lora", "transformers", "text-generation", "arxiv:1910.09700", "base_model:google/gemma-2b", "region:us" ]
text-generation
2025-08-18T13:05:23Z
--- base_model: google/gemma-2b library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:google/gemma-2b - lora - transformers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
thanobidex/blockassist-bc-colorful_shiny_hare_1755520677
thanobidex
2025-08-18T13:05:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T13:05:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AdamDE/tinyllama-custom-youtube-replies
AdamDE
2025-08-18T13:00:12Z
0
0
peft
[ "peft", "safetensors", "lora", "adapters", "tinyllama", "youtube", "conversational", "text-generation", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "license:apache-2.0", "region:us" ]
text-generation
2025-08-18T11:52:27Z
--- library_name: peft base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 pipeline_tag: text-generation tags: - lora - adapters - tinyllama - youtube - conversational - text-generation license: apache-2.0 --- # TinyLlama YouTube Replies (LoRA) This model is a **LoRA fine-tuned** version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0), designed to generate **concise, friendly, and domain-specific replies** to YouTube comments on AI/ML-related content. Using Low-Rank Adaptation (LoRA), this project demonstrates the ability to fine-tune a lightweight language model for conversational tasks. While the model may occasionally produce out-of-context replies and could benefit from further optimization, it effectively showcases a functional fine-tuning pipeline. ## Model Details - **Base Model**: [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) - **Fine-Tuning Method**: LoRA (Low-Rank Adaptation) - **Task**: Generating short, engaging replies to AI/ML YouTube comments - **Language**: English - **License**: Apache 2.0 ## Intended Use This model is intended for: - Generating polite and engaging replies to AI/ML-related YouTube comments. - Demonstrating a fine-tuning project using LoRA for lightweight adaptation. - Research or educational purposes in conversational AI. **Not Intended For**: - Production environments without further optimization. - Non-English text generation. - Applications requiring high contextual accuracy without human review. ## Usage To use this model, you need the `transformers` and `peft` libraries. Below is an example of how to load and generate replies: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel # Load the base model, tokenizer, and LoRA adapters base_id = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" adapter_id = "AdamDE/tinyllama-custom-youtube-replies" tokenizer = AutoTokenizer.from_pretrained(adapter_id) base_model = AutoModelForCausalLM.from_pretrained(base_id, torch_dtype=torch.float16, device_map="auto") model = PeftModel.from_pretrained(base_model, adapter_id) # Prepare input messages = [ {"role": "system", "content": "You are an AI/ML tutorial creator replying to YouTube comments. " "Provide concise, friendly, and domain-specific help, encourage engagement, " "and keep a positive tone with occasional emojis when appropriate."}, {"role": "user", "content": "Your enthusiasm is contagious!"} ] inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device) # Generate reply with torch.no_grad(): out = model.generate(inputs, max_new_tokens=128, temperature=0.7, top_p=0.9, pad_token_id=tokenizer.eos_token_id) reply = tokenizer.decode(out[0], skip_special_tokens=True) print(reply) # Example output: "Haha, thanks! 😂 What's your favorite part?" ``` ### Requirements ```bash pip install transformers peft torch ``` ### Notes - Use a clear, comment-like prompt for best results. - Adjust `max_new_tokens`, `temperature`, and `top_p` to control reply length and creativity. - The model may occasionally generate out-of-context replies, indicating room for further optimization. ## Training Details - **Dataset**: Custom JSON dataset of AI/ML YouTube comments and replies, split into train, validation, and test sets. - **Training Procedure**: LoRA fine-tuning with 4-bit quantization (NF4) and mixed precision (bf16/fp16). - **Hyperparameters**: - LoRA Rank (r): 16 - LoRA Alpha: 32 - LoRA Dropout: 0.05 - Epochs: 5 - Learning Rate: 2e-4 - Optimizer: Paged AdamW 8-bit - Scheduler: Cosine with 10% warmup - **Evaluation Metrics**: - BLEU and ROUGE scores computed on the test set (see training script for details). - **Training Features**: - Gradient checkpointing for memory efficiency. - Early stopping with patience of 2 epochs based on validation loss. - Custom data collator for padding and label masking. ## Performance The model achieves reasonable performance for a fine-tuning project, with BLEU and ROUGE scores indicating decent reply quality. However, occasional out-of-context responses suggest potential improvements in dataset quality or hyperparameter tuning. ## Limitations - May generate out-of-context or generic replies, requiring human review. - Optimized for AI/ML YouTube comments; performance may vary for other domains. - Limited to English-language inputs and outputs. ## Ethical Considerations - Generated replies should be reviewed to ensure they are appropriate and constructive. - Use responsibly to foster positive community interactions.
ziadtarek12/my_awesome_opus_books_model
ziadtarek12
2025-08-18T12:55:37Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2025-08-17T17:15:55Z
--- library_name: transformers license: apache-2.0 base_model: google-t5/t5-small tags: - generated_from_trainer metrics: - bleu model-index: - name: my_awesome_opus_books_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_opus_books_model This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6098 - Bleu: 6.2199 - Gen Len: 18.3624 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 1.8518 | 1.0 | 6355 | 1.6338 | 6.0374 | 18.3691 | | 1.818 | 2.0 | 12710 | 1.6098 | 6.2199 | 18.3624 | ### Framework versions - Transformers 4.55.1 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
partzel/PolicyGradient-Pixelcopter-PLE-v0-50000
partzel
2025-08-18T12:53:16Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2025-08-18T12:53:09Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: PolicyGradient-Pixelcopter-PLE-v0-50000 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 8.20 +/- 7.78 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755519876
quantumxnode
2025-08-18T12:51:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T12:51:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
constehub/qwen3-14B-rerank-evaluation
constehub
2025-08-18T12:40:56Z
0
0
transformers
[ "transformers", "gguf", "qwen3", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-18T12:40:09Z
--- base_model: unsloth/qwen3-14b-base-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** constehub - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen3-14b-base-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
donoway/ARC-Easy_Llama-3.2-1B-5p7mxi8l
donoway
2025-08-18T12:40:31Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:meta-llama/Llama-3.2-1B", "base_model:finetune:meta-llama/Llama-3.2-1B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T12:22:56Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer metrics: - accuracy model-index: - name: ARC-Easy_Llama-3.2-1B-5p7mxi8l results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ARC-Easy_Llama-3.2-1B-5p7mxi8l This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7052 - Model Preparation Time: 0.0056 - Mdl: 579.8957 - Accumulated Loss: 401.9531 - Correct Preds: 437.0 - Total Preds: 570.0 - Accuracy: 0.7667 - Correct Gen Preds: 436.0 - Gen Accuracy: 0.7649 - Correct Gen Preds 32: 129.0 - Correct Preds 32: 130.0 - Total Labels 32: 158.0 - Accuracy 32: 0.8228 - Gen Accuracy 32: 0.8165 - Correct Gen Preds 33: 116.0 - Correct Preds 33: 116.0 - Total Labels 33: 152.0 - Accuracy 33: 0.7632 - Gen Accuracy 33: 0.7632 - Correct Gen Preds 34: 108.0 - Correct Preds 34: 108.0 - Total Labels 34: 142.0 - Accuracy 34: 0.7606 - Gen Accuracy 34: 0.7606 - Correct Gen Preds 35: 83.0 - Correct Preds 35: 83.0 - Total Labels 35: 118.0 - Accuracy 35: 0.7034 - Gen Accuracy 35: 0.7034 - Correct Gen Preds 36: 0.0 - Correct Preds 36: 0.0 - Total Labels 36: 0.0 - Accuracy 36: 0.0 - Gen Accuracy 36: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 112 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.001 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Mdl | Accumulated Loss | Correct Preds | Total Preds | Accuracy | Correct Gen Preds | Gen Accuracy | Correct Gen Preds 32 | Correct Preds 32 | Total Labels 32 | Accuracy 32 | Gen Accuracy 32 | Correct Gen Preds 33 | Correct Preds 33 | Total Labels 33 | Accuracy 33 | Gen Accuracy 33 | Correct Gen Preds 34 | Correct Preds 34 | Total Labels 34 | Accuracy 34 | Gen Accuracy 34 | Correct Gen Preds 35 | Correct Preds 35 | Total Labels 35 | Accuracy 35 | Gen Accuracy 35 | Correct Gen Preds 36 | Correct Preds 36 | Total Labels 36 | Accuracy 36 | Gen Accuracy 36 | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:---------:|:----------------:|:-------------:|:-----------:|:--------:|:-----------------:|:------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:| | No log | 0 | 0 | 1.5354 | 0.0056 | 1262.6022 | 875.1692 | 172.0 | 570.0 | 0.3018 | 170.0 | 0.2982 | 154.0 | 154.0 | 158.0 | 0.9747 | 0.9747 | 0.0 | 0.0 | 152.0 | 0.0 | 0.0 | 15.0 | 17.0 | 142.0 | 0.1197 | 0.1056 | 1.0 | 1.0 | 118.0 | 0.0085 | 0.0085 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.8152 | 1.0 | 26 | 0.7928 | 0.0056 | 651.9305 | 451.8838 | 414.0 | 570.0 | 0.7263 | 414.0 | 0.7263 | 128.0 | 128.0 | 158.0 | 0.8101 | 0.8101 | 108.0 | 108.0 | 152.0 | 0.7105 | 0.7105 | 103.0 | 103.0 | 142.0 | 0.7254 | 0.7254 | 75.0 | 75.0 | 118.0 | 0.6356 | 0.6356 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.3843 | 2.0 | 52 | 0.7052 | 0.0056 | 579.8957 | 401.9531 | 437.0 | 570.0 | 0.7667 | 436.0 | 0.7649 | 129.0 | 130.0 | 158.0 | 0.8228 | 0.8165 | 116.0 | 116.0 | 152.0 | 0.7632 | 0.7632 | 108.0 | 108.0 | 142.0 | 0.7606 | 0.7606 | 83.0 | 83.0 | 118.0 | 0.7034 | 0.7034 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.2692 | 3.0 | 78 | 0.8492 | 0.0056 | 698.3545 | 484.0624 | 432.0 | 570.0 | 0.7579 | 432.0 | 0.7579 | 114.0 | 114.0 | 158.0 | 0.7215 | 0.7215 | 123.0 | 123.0 | 152.0 | 0.8092 | 0.8092 | 114.0 | 114.0 | 142.0 | 0.8028 | 0.8028 | 81.0 | 81.0 | 118.0 | 0.6864 | 0.6864 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0474 | 4.0 | 104 | 1.3013 | 0.0056 | 1070.0786 | 741.7219 | 405.0 | 570.0 | 0.7105 | 64.0 | 0.1123 | 2.0 | 98.0 | 158.0 | 0.6203 | 0.0127 | 25.0 | 117.0 | 152.0 | 0.7697 | 0.1645 | 25.0 | 120.0 | 142.0 | 0.8451 | 0.1761 | 12.0 | 70.0 | 118.0 | 0.5932 | 0.1017 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.063 | 5.0 | 130 | 1.8921 | 0.0056 | 1555.9118 | 1078.4759 | 435.0 | 570.0 | 0.7632 | 424.0 | 0.7439 | 109.0 | 120.0 | 158.0 | 0.7595 | 0.6899 | 118.0 | 118.0 | 152.0 | 0.7763 | 0.7763 | 115.0 | 115.0 | 142.0 | 0.8099 | 0.8099 | 82.0 | 82.0 | 118.0 | 0.6949 | 0.6949 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0876 | 6.0 | 156 | 1.4352 | 0.0056 | 1180.2063 | 818.0567 | 421.0 | 570.0 | 0.7386 | 404.0 | 0.7088 | 84.0 | 101.0 | 158.0 | 0.6392 | 0.5316 | 122.0 | 122.0 | 152.0 | 0.8026 | 0.8026 | 118.0 | 118.0 | 142.0 | 0.8310 | 0.8310 | 80.0 | 80.0 | 118.0 | 0.6780 | 0.6780 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.2587 | 7.0 | 182 | 2.4597 | 0.0056 | 2022.7388 | 1402.0557 | 436.0 | 570.0 | 0.7649 | 436.0 | 0.7649 | 118.0 | 118.0 | 158.0 | 0.7468 | 0.7468 | 123.0 | 123.0 | 152.0 | 0.8092 | 0.8092 | 121.0 | 121.0 | 142.0 | 0.8521 | 0.8521 | 74.0 | 74.0 | 118.0 | 0.6271 | 0.6271 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0023 | 8.0 | 208 | 2.2028 | 0.0056 | 1811.4433 | 1255.5968 | 434.0 | 570.0 | 0.7614 | 434.0 | 0.7614 | 125.0 | 125.0 | 158.0 | 0.7911 | 0.7911 | 115.0 | 115.0 | 152.0 | 0.7566 | 0.7566 | 116.0 | 116.0 | 142.0 | 0.8169 | 0.8169 | 78.0 | 78.0 | 118.0 | 0.6610 | 0.6610 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0001 | 9.0 | 234 | 2.1737 | 0.0056 | 1787.5456 | 1239.0322 | 435.0 | 570.0 | 0.7632 | 435.0 | 0.7632 | 123.0 | 123.0 | 158.0 | 0.7785 | 0.7785 | 113.0 | 113.0 | 152.0 | 0.7434 | 0.7434 | 119.0 | 119.0 | 142.0 | 0.8380 | 0.8380 | 80.0 | 80.0 | 118.0 | 0.6780 | 0.6780 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 10.0 | 260 | 2.3012 | 0.0056 | 1892.3237 | 1311.6588 | 433.0 | 570.0 | 0.7596 | 433.0 | 0.7596 | 119.0 | 119.0 | 158.0 | 0.7532 | 0.7532 | 113.0 | 113.0 | 152.0 | 0.7434 | 0.7434 | 119.0 | 119.0 | 142.0 | 0.8380 | 0.8380 | 82.0 | 82.0 | 118.0 | 0.6949 | 0.6949 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 11.0 | 286 | 2.3707 | 0.0056 | 1949.4977 | 1351.2888 | 429.0 | 570.0 | 0.7526 | 429.0 | 0.7526 | 120.0 | 120.0 | 158.0 | 0.7595 | 0.7595 | 113.0 | 113.0 | 152.0 | 0.7434 | 0.7434 | 119.0 | 119.0 | 142.0 | 0.8380 | 0.8380 | 77.0 | 77.0 | 118.0 | 0.6525 | 0.6525 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 12.0 | 312 | 2.4007 | 0.0056 | 1974.2088 | 1368.4173 | 428.0 | 570.0 | 0.7509 | 428.0 | 0.7509 | 118.0 | 118.0 | 158.0 | 0.7468 | 0.7468 | 114.0 | 114.0 | 152.0 | 0.75 | 0.75 | 118.0 | 118.0 | 142.0 | 0.8310 | 0.8310 | 78.0 | 78.0 | 118.0 | 0.6610 | 0.6610 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 13.0 | 338 | 2.3878 | 0.0056 | 1963.5566 | 1361.0337 | 430.0 | 570.0 | 0.7544 | 430.0 | 0.7544 | 119.0 | 119.0 | 158.0 | 0.7532 | 0.7532 | 113.0 | 113.0 | 152.0 | 0.7434 | 0.7434 | 119.0 | 119.0 | 142.0 | 0.8380 | 0.8380 | 79.0 | 79.0 | 118.0 | 0.6695 | 0.6695 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 14.0 | 364 | 2.4055 | 0.0056 | 1978.1533 | 1371.1514 | 430.0 | 570.0 | 0.7544 | 430.0 | 0.7544 | 119.0 | 119.0 | 158.0 | 0.7532 | 0.7532 | 113.0 | 113.0 | 152.0 | 0.7434 | 0.7434 | 119.0 | 119.0 | 142.0 | 0.8380 | 0.8380 | 79.0 | 79.0 | 118.0 | 0.6695 | 0.6695 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 15.0 | 390 | 2.3994 | 0.0056 | 1973.0895 | 1367.6414 | 432.0 | 570.0 | 0.7579 | 432.0 | 0.7579 | 121.0 | 121.0 | 158.0 | 0.7658 | 0.7658 | 114.0 | 114.0 | 152.0 | 0.75 | 0.75 | 119.0 | 119.0 | 142.0 | 0.8380 | 0.8380 | 78.0 | 78.0 | 118.0 | 0.6610 | 0.6610 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
Atharva31/results
Atharva31
2025-08-18T12:39:33Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "dataset:Atharva31/Quotes_Collection", "base_model:google/gemma-3-270m", "base_model:adapter:google/gemma-3-270m", "license:gemma", "region:us" ]
null
2025-08-18T06:24:09Z
--- library_name: peft license: gemma base_model: - google/gemma-3-270m tags: - generated_from_trainer model-index: - name: results results: [] datasets: - Atharva31/Quotes_Collection --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [google/gemma-3-270m](https://huggingface.co/google/gemma-3-270m) on the Quotes_Collection dataset. It achieves the following results on the evaluation set after being fine-tuned on 3 epochs: - Loss: 1.8940 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data The training and Evaluation data are collection of Quotes from 3 open-source datasets ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.149 | 1.0 | 360 | 1.9154 | | 2.0852 | 2.0 | 720 | 1.8930 | | 2.0449 | 3.0 | 1080 | 1.8940 | ### Framework versions - PEFT 0.15.2 - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.2
asr-nigerian-pidgin/pidgin-wav2vec2-base-100H
asr-nigerian-pidgin
2025-08-18T12:27:03Z
3
0
null
[ "safetensors", "wav2vec2", "generated_from_trainer", "arxiv:2010.11123", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "region:us" ]
null
2024-09-14T14:08:40Z
--- base_model: facebook/wav2vec2-base license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: pidgin-wav2vec2-base-960h results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pidgin-wav2vec2-base-960h This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the [Nigerian Pidgin](https://huggingface.co/datasets/asr-nigerian-pidgin/nigerian-pidgin-1.0) dataset. It achieves the following results on the evaluation set: - Loss: 1.0898 - Wer: 0.3966 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 3407 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.3949 | 1.48 | 500 | 3.3325 | 0.9999 | | 2.4656 | 2.95 | 1000 | 1.4727 | 0.8026 | | 1.1896 | 4.43 | 1500 | 1.0925 | 0.6252 | | 0.8558 | 5.91 | 2000 | 0.9467 | 0.5422 | | 0.6427 | 7.39 | 2500 | 0.9856 | 0.5096 | | 0.5371 | 8.86 | 3000 | 0.9794 | 0.5093 | | 0.4553 | 10.34 | 3500 | 0.8719 | 0.4641 | | 0.3921 | 11.82 | 4000 | 0.9344 | 0.4566 | | 0.3406 | 13.29 | 4500 | 1.0211 | 0.4550 | | 0.3046 | 14.77 | 5000 | 0.8668 | 0.4423 | | 0.2651 | 16.25 | 5500 | 1.0384 | 0.4261 | | 0.244 | 17.73 | 6000 | 1.0437 | 0.4296 | | 0.2203 | 19.2 | 6500 | 0.9244 | 0.4228 | | 0.1995 | 20.68 | 7000 | 0.9832 | 0.4165 | | 0.1838 | 22.16 | 7500 | 1.1455 | 0.4112 | | 0.1632 | 23.63 | 8000 | 1.1102 | 0.4102 | | 0.1576 | 25.11 | 8500 | 1.0769 | 0.4044 | | 0.1388 | 26.59 | 9000 | 1.1008 | 0.4013 | | 0.1346 | 28.06 | 9500 | 1.0940 | 0.4000 | | 0.1204 | 29.54 | 10000 | 1.0898 | 0.3966 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.15.2 ## Citation @misc{rufai2025endtoendtrainingautomaticspeech, title={Towards End-to-End Training of Automatic Speech Recognition for Nigerian Pidgin}, author={Amina Mardiyyah Rufai and Afolabi Abeeb and Esther Oduntan and Tayo Arulogun and Oluwabukola Adegboro and Daniel Ajisafe}, year={2025}, eprint={2010.11123}, archivePrefix={arXiv}, primaryClass={eess.AS}, url={https://arxiv.org/abs/2010.11123}, }
nakayacent/blockassist-bc-muscular_skittish_horse_1755519798
nakayacent
2025-08-18T12:25:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular skittish horse", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T12:24:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular skittish horse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
donoway/ARC-Easy_Llama-3.2-1B-6jgnsuv6
donoway
2025-08-18T12:22:43Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:meta-llama/Llama-3.2-1B", "base_model:finetune:meta-llama/Llama-3.2-1B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T12:04:31Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer metrics: - accuracy model-index: - name: ARC-Easy_Llama-3.2-1B-6jgnsuv6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ARC-Easy_Llama-3.2-1B-6jgnsuv6 This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8919 - Model Preparation Time: 0.0056 - Mdl: 733.4736 - Accumulated Loss: 508.4052 - Correct Preds: 427.0 - Total Preds: 570.0 - Accuracy: 0.7491 - Correct Gen Preds: 427.0 - Gen Accuracy: 0.7491 - Correct Gen Preds 32: 129.0 - Correct Preds 32: 129.0 - Total Labels 32: 158.0 - Accuracy 32: 0.8165 - Gen Accuracy 32: 0.8165 - Correct Gen Preds 33: 108.0 - Correct Preds 33: 108.0 - Total Labels 33: 152.0 - Accuracy 33: 0.7105 - Gen Accuracy 33: 0.7105 - Correct Gen Preds 34: 115.0 - Correct Preds 34: 115.0 - Total Labels 34: 142.0 - Accuracy 34: 0.8099 - Gen Accuracy 34: 0.8099 - Correct Gen Preds 35: 75.0 - Correct Preds 35: 75.0 - Total Labels 35: 118.0 - Accuracy 35: 0.6356 - Gen Accuracy 35: 0.6356 - Correct Gen Preds 36: 0.0 - Correct Preds 36: 0.0 - Total Labels 36: 0.0 - Accuracy 36: 0.0 - Gen Accuracy 36: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 112 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.001 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Mdl | Accumulated Loss | Correct Preds | Total Preds | Accuracy | Correct Gen Preds | Gen Accuracy | Correct Gen Preds 32 | Correct Preds 32 | Total Labels 32 | Accuracy 32 | Gen Accuracy 32 | Correct Gen Preds 33 | Correct Preds 33 | Total Labels 33 | Accuracy 33 | Gen Accuracy 33 | Correct Gen Preds 34 | Correct Preds 34 | Total Labels 34 | Accuracy 34 | Gen Accuracy 34 | Correct Gen Preds 35 | Correct Preds 35 | Total Labels 35 | Accuracy 35 | Gen Accuracy 35 | Correct Gen Preds 36 | Correct Preds 36 | Total Labels 36 | Accuracy 36 | Gen Accuracy 36 | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:---------:|:----------------:|:-------------:|:-----------:|:--------:|:-----------------:|:------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:| | No log | 0 | 0 | 1.5354 | 0.0056 | 1262.6022 | 875.1692 | 172.0 | 570.0 | 0.3018 | 170.0 | 0.2982 | 154.0 | 154.0 | 158.0 | 0.9747 | 0.9747 | 0.0 | 0.0 | 152.0 | 0.0 | 0.0 | 15.0 | 17.0 | 142.0 | 0.1197 | 0.1056 | 1.0 | 1.0 | 118.0 | 0.0085 | 0.0085 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.4726 | 1.0 | 25 | 0.8475 | 0.0056 | 696.9144 | 483.0642 | 394.0 | 570.0 | 0.6912 | 391.0 | 0.6860 | 87.0 | 90.0 | 158.0 | 0.5696 | 0.5506 | 104.0 | 104.0 | 152.0 | 0.6842 | 0.6842 | 109.0 | 109.0 | 142.0 | 0.7676 | 0.7676 | 91.0 | 91.0 | 118.0 | 0.7712 | 0.7712 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.7886 | 2.0 | 50 | 0.7247 | 0.0056 | 595.9247 | 413.0635 | 415.0 | 570.0 | 0.7281 | 415.0 | 0.7281 | 133.0 | 133.0 | 158.0 | 0.8418 | 0.8418 | 107.0 | 107.0 | 152.0 | 0.7039 | 0.7039 | 93.0 | 93.0 | 142.0 | 0.6549 | 0.6549 | 82.0 | 82.0 | 118.0 | 0.6949 | 0.6949 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.1428 | 3.0 | 75 | 0.8919 | 0.0056 | 733.4736 | 508.4052 | 427.0 | 570.0 | 0.7491 | 427.0 | 0.7491 | 129.0 | 129.0 | 158.0 | 0.8165 | 0.8165 | 108.0 | 108.0 | 152.0 | 0.7105 | 0.7105 | 115.0 | 115.0 | 142.0 | 0.8099 | 0.8099 | 75.0 | 75.0 | 118.0 | 0.6356 | 0.6356 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0066 | 4.0 | 100 | 1.4142 | 0.0056 | 1162.9830 | 806.1184 | 420.0 | 570.0 | 0.7368 | 403.0 | 0.7070 | 119.0 | 125.0 | 158.0 | 0.7911 | 0.7532 | 119.0 | 123.0 | 152.0 | 0.8092 | 0.7829 | 100.0 | 103.0 | 142.0 | 0.7254 | 0.7042 | 65.0 | 69.0 | 118.0 | 0.5847 | 0.5508 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0066 | 5.0 | 125 | 1.6364 | 0.0056 | 1345.6457 | 932.7305 | 406.0 | 570.0 | 0.7123 | 399.0 | 0.7 | 107.0 | 113.0 | 158.0 | 0.7152 | 0.6772 | 101.0 | 101.0 | 152.0 | 0.6645 | 0.6645 | 106.0 | 106.0 | 142.0 | 0.7465 | 0.7465 | 85.0 | 86.0 | 118.0 | 0.7288 | 0.7203 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0001 | 6.0 | 150 | 2.3995 | 0.0056 | 1973.1559 | 1367.6875 | 407.0 | 570.0 | 0.7140 | 392.0 | 0.6877 | 93.0 | 104.0 | 158.0 | 0.6582 | 0.5886 | 113.0 | 114.0 | 152.0 | 0.75 | 0.7434 | 102.0 | 104.0 | 142.0 | 0.7324 | 0.7183 | 84.0 | 85.0 | 118.0 | 0.7203 | 0.7119 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 7.0 | 175 | 2.5540 | 0.0056 | 2100.2596 | 1455.7890 | 414.0 | 570.0 | 0.7263 | 408.0 | 0.7158 | 108.0 | 113.0 | 158.0 | 0.7152 | 0.6835 | 117.0 | 117.0 | 152.0 | 0.7697 | 0.7697 | 102.0 | 102.0 | 142.0 | 0.7183 | 0.7183 | 81.0 | 82.0 | 118.0 | 0.6949 | 0.6864 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0001 | 8.0 | 200 | 2.5711 | 0.0056 | 2114.2895 | 1465.5138 | 418.0 | 570.0 | 0.7333 | 410.0 | 0.7193 | 106.0 | 113.0 | 158.0 | 0.7152 | 0.6709 | 122.0 | 123.0 | 152.0 | 0.8092 | 0.8026 | 102.0 | 102.0 | 142.0 | 0.7183 | 0.7183 | 80.0 | 80.0 | 118.0 | 0.6780 | 0.6780 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0001 | 9.0 | 225 | 2.5896 | 0.0056 | 2129.5119 | 1476.0652 | 419.0 | 570.0 | 0.7351 | 410.0 | 0.7193 | 104.0 | 112.0 | 158.0 | 0.7089 | 0.6582 | 122.0 | 123.0 | 152.0 | 0.8092 | 0.8026 | 103.0 | 103.0 | 142.0 | 0.7254 | 0.7254 | 81.0 | 81.0 | 118.0 | 0.6864 | 0.6864 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 10.0 | 250 | 2.6097 | 0.0056 | 2146.0783 | 1487.5481 | 419.0 | 570.0 | 0.7351 | 411.0 | 0.7211 | 105.0 | 112.0 | 158.0 | 0.7089 | 0.6646 | 122.0 | 123.0 | 152.0 | 0.8092 | 0.8026 | 102.0 | 102.0 | 142.0 | 0.7183 | 0.7183 | 82.0 | 82.0 | 118.0 | 0.6949 | 0.6949 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 11.0 | 275 | 2.6133 | 0.0056 | 2149.0502 | 1489.6081 | 419.0 | 570.0 | 0.7351 | 411.0 | 0.7211 | 105.0 | 112.0 | 158.0 | 0.7089 | 0.6646 | 122.0 | 123.0 | 152.0 | 0.8092 | 0.8026 | 103.0 | 103.0 | 142.0 | 0.7254 | 0.7254 | 81.0 | 81.0 | 118.0 | 0.6864 | 0.6864 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 12.0 | 300 | 2.6221 | 0.0056 | 2156.2876 | 1494.6247 | 418.0 | 570.0 | 0.7333 | 410.0 | 0.7193 | 105.0 | 112.0 | 158.0 | 0.7089 | 0.6646 | 122.0 | 123.0 | 152.0 | 0.8092 | 0.8026 | 102.0 | 102.0 | 142.0 | 0.7183 | 0.7183 | 81.0 | 81.0 | 118.0 | 0.6864 | 0.6864 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 13.0 | 325 | 2.6192 | 0.0056 | 2153.8311 | 1492.9219 | 418.0 | 570.0 | 0.7333 | 410.0 | 0.7193 | 104.0 | 111.0 | 158.0 | 0.7025 | 0.6582 | 122.0 | 123.0 | 152.0 | 0.8092 | 0.8026 | 102.0 | 102.0 | 142.0 | 0.7183 | 0.7183 | 82.0 | 82.0 | 118.0 | 0.6949 | 0.6949 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 14.0 | 350 | 2.6335 | 0.0056 | 2165.6088 | 1501.0857 | 419.0 | 570.0 | 0.7351 | 411.0 | 0.7211 | 106.0 | 113.0 | 158.0 | 0.7152 | 0.6709 | 122.0 | 123.0 | 152.0 | 0.8092 | 0.8026 | 102.0 | 102.0 | 142.0 | 0.7183 | 0.7183 | 81.0 | 81.0 | 118.0 | 0.6864 | 0.6864 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 15.0 | 375 | 2.6250 | 0.0056 | 2158.6426 | 1496.2570 | 420.0 | 570.0 | 0.7368 | 412.0 | 0.7228 | 106.0 | 113.0 | 158.0 | 0.7152 | 0.6709 | 122.0 | 123.0 | 152.0 | 0.8092 | 0.8026 | 103.0 | 103.0 | 142.0 | 0.7254 | 0.7254 | 81.0 | 81.0 | 118.0 | 0.6864 | 0.6864 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 16.0 | 400 | 2.6439 | 0.0056 | 2174.2071 | 1507.0456 | 419.0 | 570.0 | 0.7351 | 411.0 | 0.7211 | 105.0 | 112.0 | 158.0 | 0.7089 | 0.6646 | 122.0 | 123.0 | 152.0 | 0.8092 | 0.8026 | 103.0 | 103.0 | 142.0 | 0.7254 | 0.7254 | 81.0 | 81.0 | 118.0 | 0.6864 | 0.6864 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 17.0 | 425 | 2.6435 | 0.0056 | 2173.8519 | 1506.7993 | 421.0 | 570.0 | 0.7386 | 413.0 | 0.7246 | 105.0 | 112.0 | 158.0 | 0.7089 | 0.6646 | 123.0 | 124.0 | 152.0 | 0.8158 | 0.8092 | 103.0 | 103.0 | 142.0 | 0.7254 | 0.7254 | 82.0 | 82.0 | 118.0 | 0.6949 | 0.6949 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
unitova/blockassist-bc-zealous_sneaky_raven_1755518075
unitova
2025-08-18T12:18:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T12:18:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755517736
ihsanridzi
2025-08-18T12:14:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T12:14:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
regmibijay/gemma-270m-ops-volltext
regmibijay
2025-08-18T12:13:33Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T12:13:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lfhase/HIGHT
lfhase
2025-08-18T12:13:12Z
0
2
null
[ "arxiv:2406.14021", "license:cc-by-nc-4.0", "region:us" ]
null
2025-08-18T11:11:06Z
--- license: cc-by-nc-4.0 --- <h1 align="center">HIGHT: Hierarchical Graph Tokenization for Graph-Language Alignment</h1> <p align="center"> <a href="https://arxiv.org/abs/2406.14021"><img src="https://img.shields.io/badge/arXiv-2406.14021-b31b1b.svg" alt="Paper"></a> <a href="https://github.com/LFhase/HIGHT"><img src="https://img.shields.io/badge/-Github-grey?logo=github" alt="Github"></a> <!-- <a href="https://colab.research.google.com/drive/1t0_4BxEJ0XncyYvn_VyEQhxwNMvtSUNx?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Colab"></a> --> <a href="https://arxiv.org/abs/2406.14021"> <img alt="License" src="https://img.shields.io/static/v1?label=Pub&message=ICML%2725&color=blue"> </a> <!-- <a href="https://github.com/LFhase/HIGHT/blob/main/LICENSE"> <img alt="License" src="https://img.shields.io/github/license/LFhase/CIGA?color=blue"> </a> --> <!-- <a href="https://icml.cc/virtual/2024/poster/3455"> <img src="https://img.shields.io/badge/Video-grey?logo=Kuaishou&logoColor=white" alt="Video"></a> --> <!-- <a href="https://lfhase.win/files/slides/HIGHT.pdf"> <img src="https://img.shields.io/badge/Slides-grey?&logo=MicrosoftPowerPoint&logoColor=white" alt="Slides"></a> --> <!-- <a href="https://icml.cc/media/PosterPDFs/ICML%202022/a8acc28734d4fe90ea24353d901ae678.png"> <img src="https://img.shields.io/badge/Poster-grey?logo=airplayvideo&logoColor=white" alt="Poster"></a> --> </p> This repo contains the model checkpoints of our ICML 2025 paper: *[Hierarchical Graph Tokenization for Molecule-Language Alignment](https://arxiv.org/abs/2406.14021)*, which has also been presented at ICML 2024 workshop on [Foundation Models in the Wild](https://icml.cc/virtual/2024/workshop/29954). 😆😆😆 ## File Structures The pretrained Hierarchical VQ-VAE model is stored in `hivqvae.pth`. The checkpoints of graph-language models based on llama2-7b-chat and vicuna-v1-3-7b are contained in `/llama2` and `/vicuna`, respectively. Inside each directory, the remaining checkpoints are organized as (using vicuna as an example): - `llava-hvqvae2-vicuna-v1-3-7b-pretrain`: model after stage 1 pretraining; - `graph-text-molgen`: models finetuned using Mol-Instruction data under different tasks, e.g., forward reaction prediction; - `molcap-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-50ep`: model fintuned using CHEBI-20 dataset for molecular captioning; - `MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large*`: models finetuned via different classification-based molecular property prediction tasks; ## Citation If you find our model, paper and repo useful, please cite our paper: ```bibtex @inproceedings{chen2025hierarchical, title={Hierarchical Graph Tokenization for Molecule-Language Alignment}, author={Yongqiang Chen and Quanming Yao and Juzheng Zhang and James Cheng and Yatao Bian}, booktitle={Forty-second International Conference on Machine Learning}, year={2025}, url={https://openreview.net/forum?id=wpbNczwAwV} } ```
Yuchan5386/IntentClassifier
Yuchan5386
2025-08-18T12:12:26Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-18T12:00:46Z
--- license: apache-2.0 ---
VoilaRaj/78_xNWmhr
VoilaRaj
2025-08-18T12:11:45Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-18T12:07:52Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
snezhanata/qwen3-dev
snezhanata
2025-08-18T12:10:06Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "llama-factory", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T11:41:03Z
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nakayacent/blockassist-bc-muscular_skittish_horse_1755518680
nakayacent
2025-08-18T12:05:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular skittish horse", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T12:05:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular skittish horse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
isbondarev/Index-1.9B-adv
isbondarev
2025-08-18T12:03:14Z
8
0
transformers
[ "transformers", "safetensors", "index", "feature-extraction", "llama-factory", "custom_code", "arxiv:1910.09700", "region:us" ]
feature-extraction
2025-06-27T11:08:55Z
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
michaelcpage345/blockassist-bc-miniature_deadly_anteater_1755516442
michaelcpage345
2025-08-18T12:00:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "miniature deadly anteater", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T12:00:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - miniature deadly anteater --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
HMC83/request_writer_smol_lora
HMC83
2025-08-18T11:53:43Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "en", "base_model:HuggingFaceTB/SmolLM2-360M-Instruct", "base_model:finetune:HuggingFaceTB/SmolLM2-360M-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-18T09:32:19Z
--- base_model: HuggingFaceTB/SmolLM2-360M-Instruct tags: - text-generation-inference - transformers - unsloth license: apache-2.0 language: - en --- ## Model Description Request Writer Smol has been fine tuned to generate Freedom of Information (FOI) requests to UK public authorities based on the autority name and three keywords. The model has been trained on a synthetic dataset of FOI requests covering various topics and public authorities across the UK. The Model demonstrates improved generation of properly formatted, focused FOI requests for specific information that are unlikely to be refused on cost grounds. ## Model Architecture - **Base Model**: SmolLM2-360M-Instruct - **Fine-tuning Method**: LoRA - **LoRA Configuration**: - Rank (r): 8 - Alpha: 16 - Dropout: 0.1 - Target modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj - **Training Parameters**: 2.34% of total parameters trained (8.68M trainable parameters) ## Finetune training Data ### Dataset Details - **Source**: Synthetic FOI requests dataset (HMC83/synthetic_foi_requests) - **Size**: 51,308 training examples, ~5,700 validation examples - **Format**: Conversational format with system prompts, user inputs, and assistant responses ### Training Configuration - **Epochs**: 3 - **Batch Size**: 32 - **Learning Rate**: 1e-5 - **Optimizer**: AdamW 8-bit - **Sequence Length**: 4096 tokens ## Limitations and Considerations Small size of the model (360M parameters) may limit the complexity of any generated requests. The model is trained specifically for UK FOI requests. It has not been trained to generate requests for information about individuals. ## Usage Guidelines ### Input Format The model expects a prompt in the form of: ``` Generate a formal Freedom of Information request to [authority_name] using these keywords: [keyword1, keyword2, keyword3] ``` ### Output Format It will try to generate a concinse, properly structured FOI request, starting with the phrase "Please provide me with a copy of the following information:" followed by 1 to 3 Numbered, specific information requests ## Model Versions ### Available Formats - **LoRA Adapters**: `HMC83/request_writer_smol_lora` - **Merged 16-bit**: `HMC83/request_writer_smol` ### Disclaimer Users are responsible for ensuring that their intended use complies with any applicable laws and regulations. Generated requests should be reviewed and potentially modified before submission to public authorities. Requests should be made in good faith and for legitimate purposes. The model can hallucinate, so any outputs should not be relied upon without being verified. Outputs may also reflect any biases that are present in the underlying training data.
bio-protocol/scientific-reranker
bio-protocol
2025-08-18T11:51:39Z
3
0
null
[ "safetensors", "xlm-roberta", "en", "base_model:BAAI/bge-reranker-large", "base_model:finetune:BAAI/bge-reranker-large", "license:mit", "region:us" ]
null
2025-07-28T08:40:19Z
--- license: mit language: - en base_model: - BAAI/bge-reranker-large --- OpenScholar_Reranker is a fine-tuned version of [bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) for scientific literature synthesis. ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** University of Washigton, Allen Institute for AI (AI2) - **Model type:** a masked language model. - **Language(s) (NLP):** English - **License:** The code and model are released under apache-2.0. - **Date cutoff:** The fine-tuning data is generated by Llama 3 70B for synthetically generated queries. ### Model Sources <!-- Provide the basic links for the model. --> - **Project Page:** https://open-scholar.allen.ai/ - **Repositories:** - Core repo (training, inference, fine-tuning etc.): https://github.com/AkariAsai/OpenScholar - Evaluation code: https://github.com/AkariAsai/ScholarQABench - **Paper:** [Link](https://openscholar.allen.ai/paper) - **Technical blog post:** https://allenai.org/blog/openscholar <!-- - **Press release:** TODO --> ### Citation If you find it useful in this work, cite our paper. ``` @article{openscholar, title={{OpenScholar}: Synthesizing Scientific Literature with Retrieval-Augmented Language Models}, author={ Asai, Akari and He*, Jacqueline and Shao*, Rulin and Shi, Weijia and Singh, Amanpreet and Chang, Joseph Chee and Lo, Kyle and Soldaini, Luca and Feldman, Tian, Sergey and Mike, D’arcy and Wadden, David and Latzke, Matt and Minyang and Ji, Pan and Liu, Shengyan and Tong, Hao and Wu, Bohao and Xiong, Yanyu and Zettlemoyer, Luke and Weld, Dan and Neubig, Graham and Downey, Doug and Yih, Wen-tau and Koh, Pang Wei and Hajishirzi, Hannaneh}, journal={Arxiv}, year={2024}, } ```
almanach/camembert-large
almanach
2025-08-18T11:48:19Z
6,417
19
transformers
[ "transformers", "pytorch", "safetensors", "camembert", "fr", "arxiv:1911.03894", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: fr --- # CamemBERT: a Tasty French Language Model ## Introduction [CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model. It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. ## Pre-trained models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `camembert-base` | 110M | Base | OSCAR (138 GB of text) | | `camembert/camembert-large` | 335M | Large | CCNet (135 GB of text) | | `camembert/camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) | | `camembert/camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) | | `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) | | `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) | ## How to use CamemBERT with HuggingFace ##### Load CamemBERT and its sub-word tokenizer : ```python from transformers import CamembertModel, CamembertTokenizer # You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large". tokenizer = CamembertTokenizer.from_pretrained("camembert/camembert-large") camembert = CamembertModel.from_pretrained("camembert/camembert-large") camembert.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Filling masks using pipeline ```python from transformers import pipeline camembert_fill_mask = pipeline("fill-mask", model="camembert/camembert-large", tokenizer="camembert/camembert-large") results = camembert_fill_mask("Le camembert est <mask> :)") # results #[{'sequence': '<s> Le camembert est bon :)</s>', 'score': 0.15560828149318695, 'token': 305}, #{'sequence': '<s> Le camembert est excellent :)</s>', 'score': 0.06821336597204208, 'token': 3497}, #{'sequence': '<s> Le camembert est délicieux :)</s>', 'score': 0.060438305139541626, 'token': 11661}, #{'sequence': '<s> Le camembert est ici :)</s>', 'score': 0.02023460529744625, 'token': 373}, #{'sequence': '<s> Le camembert est meilleur :)</s>', 'score': 0.01778135634958744, 'token': 876}] ``` ##### Extract contextual embedding features from Camembert output ```python import torch # Tokenize in sub-words with SentencePiece tokenized_sentence = tokenizer.tokenize("J'aime le camembert !") # ['▁J', "'", 'aime', '▁le', '▁cam', 'ember', 't', '▁!'] # 1-hot encode and add special starting and end tokens encoded_sentence = tokenizer.encode(tokenized_sentence) # [5, 133, 22, 1250, 16, 12034, 14324, 81, 76, 6] # NB: Can be done in one step : tokenize.encode("J'aime le camembert !") # Feed tokens to Camembert as a torch tensor (batch dim 1) encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0) embeddings, _ = camembert(encoded_sentence) # embeddings.detach() # torch.Size([1, 10, 1024]) #tensor([[[-0.1284, 0.2643, 0.4374, ..., 0.1627, 0.1308, -0.2305], # [ 0.4576, -0.6345, -0.2029, ..., -0.1359, -0.2290, -0.6318], # [ 0.0381, 0.0429, 0.5111, ..., -0.1177, -0.1913, -0.1121], # ..., ``` ##### Extract contextual embedding features from all Camembert layers ```python from transformers import CamembertConfig # (Need to reload the model with new config) config = CamembertConfig.from_pretrained("camembert/camembert-large", output_hidden_states=True) camembert = CamembertModel.from_pretrained("camembert/camembert-large", config=config) embeddings, _, all_layer_embeddings = camembert(encoded_sentence) # all_layer_embeddings list of len(all_layer_embeddings) == 25 (input embedding layer + 24 self attention layers) all_layer_embeddings[5] # layer 5 contextual embedding : size torch.Size([1, 10, 1024]) #tensor([[[-0.0600, 0.0742, 0.0332, ..., -0.0525, -0.0637, -0.0287], # [ 0.0950, 0.2840, 0.1985, ..., 0.2073, -0.2172, -0.6321], # [ 0.1381, 0.1872, 0.1614, ..., -0.0339, -0.2530, -0.1182], # ..., ``` ## Authors CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. ## Citation If you use our work, please cite: ```bibtex @inproceedings{martin2020camembert, title={CamemBERT: a Tasty French Language Model}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} } ```
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755516524
Sayemahsjn
2025-08-18T11:47:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T11:47:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Xiaochuanaaa/llama3
Xiaochuanaaa
2025-08-18T11:46:47Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-18T11:46:47Z
--- license: apache-2.0 ---
VoilaRaj/78_dRJB6K
VoilaRaj
2025-08-18T11:46:42Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-18T11:42:55Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755515895
ihsanridzi
2025-08-18T11:45:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T11:45:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
afasdfdfadsf/AceInstruct-1.5B-Gensyn-Swarm-tiny_camouflaged_mole
afasdfdfadsf
2025-08-18T11:44:02Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am tiny_camouflaged_mole", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T00:06:16Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am tiny_camouflaged_mole --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sanketkashyap/MyGemmaNPC
sanketkashyap
2025-08-18T11:43:33Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T11:10:36Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: MyGemmaNPC tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for MyGemmaNPC This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="sanketkashyap/MyGemmaNPC", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.2 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
donoway/GSM8K-Binary_Llama-3.2-1B-bfe9d8o1
donoway
2025-08-18T11:42:29Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:meta-llama/Llama-3.2-1B", "base_model:finetune:meta-llama/Llama-3.2-1B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T10:09:13Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer metrics: - accuracy model-index: - name: GSM8K-Binary_Llama-3.2-1B-bfe9d8o1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GSM8K-Binary_Llama-3.2-1B-bfe9d8o1 This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3034 - Model Preparation Time: 0.0058 - Mdl: 4653.9298 - Accumulated Loss: 3225.8583 - Correct Preds: 1917.0 - Total Preds: 2475.0 - Accuracy: 0.7745 - Correct Gen Preds: 1919.0 - Gen Accuracy: 0.7754 - Correct Gen Preds 34192: 1046.0 - Correct Preds 34192: 1049.0 - Total Labels 34192: 1196.0 - Accuracy 34192: 0.8771 - Gen Accuracy 34192: 0.8746 - Correct Gen Preds 41568: 865.0 - Correct Preds 41568: 868.0 - Total Labels 41568: 1267.0 - Accuracy 41568: 0.6851 - Gen Accuracy 41568: 0.6827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Mdl | Accumulated Loss | Correct Preds | Total Preds | Accuracy | Correct Gen Preds | Gen Accuracy | Correct Gen Preds 34192 | Correct Preds 34192 | Total Labels 34192 | Accuracy 34192 | Gen Accuracy 34192 | Correct Gen Preds 41568 | Correct Preds 41568 | Total Labels 41568 | Accuracy 41568 | Gen Accuracy 41568 | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:---------:|:----------------:|:-------------:|:-----------:|:--------:|:-----------------:|:------------:|:-----------------------:|:-------------------:|:------------------:|:--------------:|:------------------:|:-----------------------:|:-------------------:|:------------------:|:--------------:|:------------------:| | No log | 0 | 0 | 1.4656 | 0.0058 | 5233.1723 | 3627.3586 | 1196.0 | 2475.0 | 0.4832 | 1204.0 | 0.4865 | 1196.0 | 1196.0 | 1196.0 | 1.0 | 1.0 | 0.0 | 0.0 | 1267.0 | 0.0 | 0.0 | | 0.3909 | 1.0 | 13 | 0.9147 | 0.0058 | 3265.9349 | 2263.7736 | 1196.0 | 2475.0 | 0.4832 | 8.0 | 0.0032 | 0.0 | 1196.0 | 1196.0 | 1.0 | 0.0 | 0.0 | 0.0 | 1267.0 | 0.0 | 0.0 | | 2.5838 | 2.0 | 26 | 0.8758 | 0.0058 | 3127.0958 | 2167.5377 | 1517.0 | 2475.0 | 0.6129 | 139.0 | 0.0562 | 0.0 | 1180.0 | 1196.0 | 0.9866 | 0.0 | 131.0 | 337.0 | 1267.0 | 0.2660 | 0.1034 | | 0.1806 | 3.0 | 39 | 0.6158 | 0.0058 | 2198.9720 | 1524.2113 | 1760.0 | 2475.0 | 0.7111 | 215.0 | 0.0869 | 0.0 | 642.0 | 1196.0 | 0.5368 | 0.0 | 207.0 | 1118.0 | 1267.0 | 0.8824 | 0.1634 | | 0.0087 | 4.0 | 52 | 1.3144 | 0.0058 | 4693.3429 | 3253.1774 | 1519.0 | 2475.0 | 0.6137 | 1024.0 | 0.4137 | 16.0 | 301.0 | 1196.0 | 0.2517 | 0.0134 | 1001.0 | 1218.0 | 1267.0 | 0.9613 | 0.7901 | | 0.0061 | 5.0 | 65 | 1.0468 | 0.0058 | 3737.9158 | 2590.9258 | 1678.0 | 2475.0 | 0.6780 | 603.0 | 0.2436 | 402.0 | 1158.0 | 1196.0 | 0.9682 | 0.3361 | 194.0 | 520.0 | 1267.0 | 0.4104 | 0.1531 | | 0.0896 | 6.0 | 78 | 0.7674 | 0.0058 | 2740.0578 | 1899.2633 | 1834.0 | 2475.0 | 0.7410 | 1177.0 | 0.4756 | 471.0 | 828.0 | 1196.0 | 0.6923 | 0.3938 | 698.0 | 1006.0 | 1267.0 | 0.7940 | 0.5509 | | 0.0001 | 7.0 | 91 | 0.7845 | 0.0058 | 2801.2835 | 1941.7018 | 1901.0 | 2475.0 | 0.7681 | 1802.0 | 0.7281 | 869.0 | 930.0 | 1196.0 | 0.7776 | 0.7266 | 926.0 | 971.0 | 1267.0 | 0.7664 | 0.7309 | | 0.0 | 8.0 | 104 | 1.0404 | 0.0058 | 3714.9602 | 2575.0142 | 1882.0 | 2475.0 | 0.7604 | 1488.0 | 0.6012 | 846.0 | 1035.0 | 1196.0 | 0.8654 | 0.7074 | 634.0 | 847.0 | 1267.0 | 0.6685 | 0.5004 | | 0.0001 | 9.0 | 117 | 1.1473 | 0.0058 | 4096.4963 | 2839.4749 | 1905.0 | 2475.0 | 0.7697 | 1908.0 | 0.7709 | 999.0 | 1003.0 | 1196.0 | 0.8386 | 0.8353 | 901.0 | 902.0 | 1267.0 | 0.7119 | 0.7111 | | 0.0 | 10.0 | 130 | 1.2243 | 0.0058 | 4371.6047 | 3030.1655 | 1895.0 | 2475.0 | 0.7657 | 1896.0 | 0.7661 | 1033.0 | 1037.0 | 1196.0 | 0.8671 | 0.8637 | 855.0 | 858.0 | 1267.0 | 0.6772 | 0.6748 | | 0.0001 | 11.0 | 143 | 1.2098 | 0.0058 | 4319.8084 | 2994.2630 | 1899.0 | 2475.0 | 0.7673 | 1899.0 | 0.7673 | 1028.0 | 1032.0 | 1196.0 | 0.8629 | 0.8595 | 863.0 | 867.0 | 1267.0 | 0.6843 | 0.6811 | | 0.0002 | 12.0 | 156 | 1.2321 | 0.0058 | 4399.4227 | 3049.4475 | 1900.0 | 2475.0 | 0.7677 | 1901.0 | 0.7681 | 1038.0 | 1042.0 | 1196.0 | 0.8712 | 0.8679 | 855.0 | 858.0 | 1267.0 | 0.6772 | 0.6748 | | 0.0 | 13.0 | 169 | 1.2505 | 0.0058 | 4465.1374 | 3094.9974 | 1895.0 | 2475.0 | 0.7657 | 1896.0 | 0.7661 | 1044.0 | 1048.0 | 1196.0 | 0.8763 | 0.8729 | 844.0 | 847.0 | 1267.0 | 0.6685 | 0.6661 | | 0.0 | 14.0 | 182 | 1.2541 | 0.0058 | 4477.9552 | 3103.8821 | 1900.0 | 2475.0 | 0.7677 | 1900.0 | 0.7677 | 1045.0 | 1050.0 | 1196.0 | 0.8779 | 0.8737 | 847.0 | 850.0 | 1267.0 | 0.6709 | 0.6685 | | 0.0 | 15.0 | 195 | 1.2553 | 0.0058 | 4482.1598 | 3106.7965 | 1900.0 | 2475.0 | 0.7677 | 1901.0 | 0.7681 | 1043.0 | 1047.0 | 1196.0 | 0.8754 | 0.8721 | 850.0 | 853.0 | 1267.0 | 0.6732 | 0.6709 | | 0.0001 | 16.0 | 208 | 1.2586 | 0.0058 | 4493.9093 | 3114.9405 | 1903.0 | 2475.0 | 0.7689 | 1902.0 | 0.7685 | 1045.0 | 1050.0 | 1196.0 | 0.8779 | 0.8737 | 849.0 | 853.0 | 1267.0 | 0.6732 | 0.6701 | | 0.0 | 17.0 | 221 | 1.2582 | 0.0058 | 4492.4502 | 3113.9292 | 1903.0 | 2475.0 | 0.7689 | 1904.0 | 0.7693 | 1043.0 | 1047.0 | 1196.0 | 0.8754 | 0.8721 | 853.0 | 856.0 | 1267.0 | 0.6756 | 0.6732 | | 0.0 | 18.0 | 234 | 1.2603 | 0.0058 | 4500.1384 | 3119.2583 | 1902.0 | 2475.0 | 0.7685 | 1902.0 | 0.7685 | 1042.0 | 1046.0 | 1196.0 | 0.8746 | 0.8712 | 852.0 | 856.0 | 1267.0 | 0.6756 | 0.6725 | | 0.0001 | 19.0 | 247 | 1.2631 | 0.0058 | 4510.1478 | 3126.1962 | 1905.0 | 2475.0 | 0.7697 | 1905.0 | 0.7697 | 1043.0 | 1048.0 | 1196.0 | 0.8763 | 0.8721 | 854.0 | 857.0 | 1267.0 | 0.6764 | 0.6740 | | 0.0 | 20.0 | 260 | 1.2732 | 0.0058 | 4546.3417 | 3151.2839 | 1903.0 | 2475.0 | 0.7689 | 1902.0 | 0.7685 | 1046.0 | 1051.0 | 1196.0 | 0.8788 | 0.8746 | 848.0 | 852.0 | 1267.0 | 0.6725 | 0.6693 | | 0.0 | 21.0 | 273 | 1.2775 | 0.0058 | 4561.5521 | 3161.8270 | 1903.0 | 2475.0 | 0.7689 | 1903.0 | 0.7689 | 1045.0 | 1049.0 | 1196.0 | 0.8771 | 0.8737 | 850.0 | 854.0 | 1267.0 | 0.6740 | 0.6709 | | 0.0001 | 22.0 | 286 | 1.2805 | 0.0058 | 4572.4133 | 3169.3554 | 1902.0 | 2475.0 | 0.7685 | 1903.0 | 0.7689 | 1047.0 | 1051.0 | 1196.0 | 0.8788 | 0.8754 | 848.0 | 851.0 | 1267.0 | 0.6717 | 0.6693 | | 0.0 | 23.0 | 299 | 1.2884 | 0.0058 | 4600.5452 | 3188.8550 | 1902.0 | 2475.0 | 0.7685 | 1902.0 | 0.7685 | 1047.0 | 1051.0 | 1196.0 | 0.8788 | 0.8754 | 847.0 | 851.0 | 1267.0 | 0.6717 | 0.6685 | | 0.0001 | 24.0 | 312 | 1.2899 | 0.0058 | 4605.7894 | 3192.4899 | 1904.0 | 2475.0 | 0.7693 | 1905.0 | 0.7697 | 1049.0 | 1052.0 | 1196.0 | 0.8796 | 0.8771 | 848.0 | 852.0 | 1267.0 | 0.6725 | 0.6693 | | 0.0 | 25.0 | 325 | 1.2924 | 0.0058 | 4614.6624 | 3198.6403 | 1903.0 | 2475.0 | 0.7689 | 1902.0 | 0.7685 | 1046.0 | 1051.0 | 1196.0 | 0.8788 | 0.8746 | 848.0 | 852.0 | 1267.0 | 0.6725 | 0.6693 | | 0.0 | 26.0 | 338 | 1.2919 | 0.0058 | 4612.9212 | 3197.4333 | 1907.0 | 2475.0 | 0.7705 | 1906.0 | 0.7701 | 1047.0 | 1052.0 | 1196.0 | 0.8796 | 0.8754 | 851.0 | 855.0 | 1267.0 | 0.6748 | 0.6717 | | 0.0001 | 27.0 | 351 | 1.2923 | 0.0058 | 4614.5171 | 3198.5395 | 1906.0 | 2475.0 | 0.7701 | 1908.0 | 0.7709 | 1046.0 | 1049.0 | 1196.0 | 0.8771 | 0.8746 | 854.0 | 857.0 | 1267.0 | 0.6764 | 0.6740 | | 0.0 | 28.0 | 364 | 1.2936 | 0.0058 | 4619.1850 | 3201.7751 | 1906.0 | 2475.0 | 0.7701 | 1906.0 | 0.7701 | 1046.0 | 1050.0 | 1196.0 | 0.8779 | 0.8746 | 852.0 | 856.0 | 1267.0 | 0.6756 | 0.6725 | | 0.0 | 29.0 | 377 | 1.2941 | 0.0058 | 4620.8184 | 3202.9072 | 1910.0 | 2475.0 | 0.7717 | 1910.0 | 0.7717 | 1046.0 | 1050.0 | 1196.0 | 0.8779 | 0.8746 | 856.0 | 860.0 | 1267.0 | 0.6788 | 0.6756 | | 0.0 | 30.0 | 390 | 1.2948 | 0.0058 | 4623.4765 | 3204.7497 | 1910.0 | 2475.0 | 0.7717 | 1911.0 | 0.7721 | 1047.0 | 1050.0 | 1196.0 | 0.8779 | 0.8754 | 856.0 | 860.0 | 1267.0 | 0.6788 | 0.6756 | | 0.0 | 31.0 | 403 | 1.2954 | 0.0058 | 4625.4138 | 3206.0926 | 1908.0 | 2475.0 | 0.7709 | 1908.0 | 0.7709 | 1047.0 | 1051.0 | 1196.0 | 0.8788 | 0.8754 | 853.0 | 857.0 | 1267.0 | 0.6764 | 0.6732 | | 0.0 | 32.0 | 416 | 1.2973 | 0.0058 | 4632.3642 | 3210.9102 | 1907.0 | 2475.0 | 0.7705 | 1906.0 | 0.7701 | 1043.0 | 1048.0 | 1196.0 | 0.8763 | 0.8721 | 855.0 | 859.0 | 1267.0 | 0.6780 | 0.6748 | | 0.0001 | 33.0 | 429 | 1.2967 | 0.0058 | 4630.0987 | 3209.3398 | 1910.0 | 2475.0 | 0.7717 | 1911.0 | 0.7721 | 1045.0 | 1049.0 | 1196.0 | 0.8771 | 0.8737 | 858.0 | 861.0 | 1267.0 | 0.6796 | 0.6772 | | 0.0 | 34.0 | 442 | 1.2934 | 0.0058 | 4618.3014 | 3201.1626 | 1911.0 | 2475.0 | 0.7721 | 1912.0 | 0.7725 | 1043.0 | 1047.0 | 1196.0 | 0.8754 | 0.8721 | 861.0 | 864.0 | 1267.0 | 0.6819 | 0.6796 | | 0.0 | 35.0 | 455 | 1.2942 | 0.0058 | 4621.1757 | 3203.1549 | 1912.0 | 2475.0 | 0.7725 | 1913.0 | 0.7729 | 1043.0 | 1047.0 | 1196.0 | 0.8754 | 0.8721 | 862.0 | 865.0 | 1267.0 | 0.6827 | 0.6803 | | 0.0 | 36.0 | 468 | 1.2965 | 0.0058 | 4629.3912 | 3208.8495 | 1911.0 | 2475.0 | 0.7721 | 1912.0 | 0.7725 | 1042.0 | 1045.0 | 1196.0 | 0.8737 | 0.8712 | 862.0 | 866.0 | 1267.0 | 0.6835 | 0.6803 | | 11.7618 | 37.0 | 481 | 1.2975 | 0.0058 | 4632.7811 | 3211.1991 | 1907.0 | 2475.0 | 0.7705 | 1908.0 | 0.7709 | 1041.0 | 1045.0 | 1196.0 | 0.8737 | 0.8704 | 859.0 | 862.0 | 1267.0 | 0.6803 | 0.6780 | | 0.0 | 38.0 | 494 | 1.2986 | 0.0058 | 4636.7347 | 3213.9396 | 1914.0 | 2475.0 | 0.7733 | 1916.0 | 0.7741 | 1045.0 | 1048.0 | 1196.0 | 0.8763 | 0.8737 | 863.0 | 866.0 | 1267.0 | 0.6835 | 0.6811 | | 0.0002 | 39.0 | 507 | 1.2973 | 0.0058 | 4632.3065 | 3210.8702 | 1912.0 | 2475.0 | 0.7725 | 1912.0 | 0.7725 | 1041.0 | 1045.0 | 1196.0 | 0.8737 | 0.8704 | 863.0 | 867.0 | 1267.0 | 0.6843 | 0.6811 | | 0.0 | 40.0 | 520 | 1.2929 | 0.0058 | 4616.3620 | 3199.8183 | 1913.0 | 2475.0 | 0.7729 | 1913.0 | 0.7729 | 1040.0 | 1044.0 | 1196.0 | 0.8729 | 0.8696 | 865.0 | 869.0 | 1267.0 | 0.6859 | 0.6827 | | 0.0001 | 41.0 | 533 | 1.2947 | 0.0058 | 4622.9787 | 3204.4047 | 1912.0 | 2475.0 | 0.7725 | 1913.0 | 0.7729 | 1040.0 | 1044.0 | 1196.0 | 0.8729 | 0.8696 | 865.0 | 868.0 | 1267.0 | 0.6851 | 0.6827 | | 0.0 | 42.0 | 546 | 1.2924 | 0.0058 | 4614.8297 | 3198.7562 | 1911.0 | 2475.0 | 0.7721 | 1911.0 | 0.7721 | 1039.0 | 1043.0 | 1196.0 | 0.8721 | 0.8687 | 864.0 | 868.0 | 1267.0 | 0.6851 | 0.6819 | | 0.0 | 43.0 | 559 | 1.2938 | 0.0058 | 4619.6900 | 3202.1251 | 1912.0 | 2475.0 | 0.7725 | 1914.0 | 0.7733 | 1040.0 | 1043.0 | 1196.0 | 0.8721 | 0.8696 | 866.0 | 869.0 | 1267.0 | 0.6859 | 0.6835 | | 0.0 | 44.0 | 572 | 1.2952 | 0.0058 | 4624.5569 | 3205.4986 | 1913.0 | 2475.0 | 0.7729 | 1914.0 | 0.7733 | 1039.0 | 1043.0 | 1196.0 | 0.8721 | 0.8687 | 867.0 | 870.0 | 1267.0 | 0.6867 | 0.6843 | | 0.0 | 45.0 | 585 | 1.2954 | 0.0058 | 4625.2850 | 3206.0033 | 1914.0 | 2475.0 | 0.7733 | 1916.0 | 0.7741 | 1040.0 | 1043.0 | 1196.0 | 0.8721 | 0.8696 | 868.0 | 871.0 | 1267.0 | 0.6875 | 0.6851 | | 0.0 | 46.0 | 598 | 1.2966 | 0.0058 | 4629.6851 | 3209.0532 | 1913.0 | 2475.0 | 0.7729 | 1915.0 | 0.7737 | 1040.0 | 1043.0 | 1196.0 | 0.8721 | 0.8696 | 867.0 | 870.0 | 1267.0 | 0.6867 | 0.6843 | | 0.0 | 47.0 | 611 | 1.2978 | 0.0058 | 4633.9231 | 3211.9907 | 1910.0 | 2475.0 | 0.7717 | 1910.0 | 0.7717 | 1040.0 | 1044.0 | 1196.0 | 0.8729 | 0.8696 | 862.0 | 866.0 | 1267.0 | 0.6835 | 0.6803 | | 0.0 | 48.0 | 624 | 1.2984 | 0.0058 | 4636.1114 | 3213.5075 | 1913.0 | 2475.0 | 0.7729 | 1914.0 | 0.7733 | 1041.0 | 1044.0 | 1196.0 | 0.8729 | 0.8704 | 865.0 | 869.0 | 1267.0 | 0.6859 | 0.6827 | | 0.0 | 49.0 | 637 | 1.2997 | 0.0058 | 4640.9520 | 3216.8628 | 1912.0 | 2475.0 | 0.7725 | 1912.0 | 0.7725 | 1039.0 | 1043.0 | 1196.0 | 0.8721 | 0.8687 | 865.0 | 869.0 | 1267.0 | 0.6859 | 0.6827 | | 0.0 | 50.0 | 650 | 1.3008 | 0.0058 | 4644.5525 | 3219.3585 | 1911.0 | 2475.0 | 0.7721 | 1913.0 | 0.7729 | 1042.0 | 1045.0 | 1196.0 | 0.8737 | 0.8712 | 863.0 | 866.0 | 1267.0 | 0.6835 | 0.6811 | | 0.0 | 51.0 | 663 | 1.3020 | 0.0058 | 4648.9058 | 3222.3759 | 1910.0 | 2475.0 | 0.7717 | 1910.0 | 0.7717 | 1038.0 | 1042.0 | 1196.0 | 0.8712 | 0.8679 | 864.0 | 868.0 | 1267.0 | 0.6851 | 0.6819 | | 0.0001 | 52.0 | 676 | 1.3034 | 0.0058 | 4653.9298 | 3225.8583 | 1917.0 | 2475.0 | 0.7745 | 1919.0 | 0.7754 | 1046.0 | 1049.0 | 1196.0 | 0.8771 | 0.8746 | 865.0 | 868.0 | 1267.0 | 0.6851 | 0.6827 | | 0.0 | 53.0 | 689 | 1.3087 | 0.0058 | 4672.7635 | 3238.9128 | 1910.0 | 2475.0 | 0.7717 | 1910.0 | 0.7717 | 1043.0 | 1046.0 | 1196.0 | 0.8746 | 0.8721 | 859.0 | 864.0 | 1267.0 | 0.6819 | 0.6780 | | 0.0 | 54.0 | 702 | 1.3095 | 0.0058 | 4675.9439 | 3241.1173 | 1908.0 | 2475.0 | 0.7709 | 1908.0 | 0.7709 | 1044.0 | 1048.0 | 1196.0 | 0.8763 | 0.8729 | 856.0 | 860.0 | 1267.0 | 0.6788 | 0.6756 | | 0.0 | 55.0 | 715 | 1.3086 | 0.0058 | 4672.5673 | 3238.7769 | 1910.0 | 2475.0 | 0.7717 | 1911.0 | 0.7721 | 1046.0 | 1049.0 | 1196.0 | 0.8771 | 0.8746 | 857.0 | 861.0 | 1267.0 | 0.6796 | 0.6764 | | 0.0001 | 56.0 | 728 | 1.3105 | 0.0058 | 4679.2462 | 3243.4063 | 1913.0 | 2475.0 | 0.7729 | 1912.0 | 0.7725 | 1044.0 | 1048.0 | 1196.0 | 0.8763 | 0.8729 | 860.0 | 865.0 | 1267.0 | 0.6827 | 0.6788 | | 0.0 | 57.0 | 741 | 1.3130 | 0.0058 | 4688.2581 | 3249.6529 | 1911.0 | 2475.0 | 0.7721 | 1910.0 | 0.7717 | 1044.0 | 1048.0 | 1196.0 | 0.8763 | 0.8729 | 858.0 | 863.0 | 1267.0 | 0.6811 | 0.6772 | | 0.0 | 58.0 | 754 | 1.3128 | 0.0058 | 4687.7221 | 3249.2814 | 1912.0 | 2475.0 | 0.7725 | 1913.0 | 0.7729 | 1045.0 | 1048.0 | 1196.0 | 0.8763 | 0.8737 | 860.0 | 864.0 | 1267.0 | 0.6819 | 0.6788 | | 0.0 | 59.0 | 767 | 1.3124 | 0.0058 | 4686.0279 | 3248.1070 | 1910.0 | 2475.0 | 0.7717 | 1911.0 | 0.7721 | 1045.0 | 1048.0 | 1196.0 | 0.8763 | 0.8737 | 858.0 | 862.0 | 1267.0 | 0.6803 | 0.6772 | | 0.0 | 60.0 | 780 | 1.3120 | 0.0058 | 4684.6308 | 3247.1387 | 1914.0 | 2475.0 | 0.7733 | 1915.0 | 0.7737 | 1046.0 | 1049.0 | 1196.0 | 0.8771 | 0.8746 | 861.0 | 865.0 | 1267.0 | 0.6827 | 0.6796 | | 0.0 | 61.0 | 793 | 1.3135 | 0.0058 | 4689.9652 | 3250.8362 | 1909.0 | 2475.0 | 0.7713 | 1910.0 | 0.7717 | 1045.0 | 1048.0 | 1196.0 | 0.8763 | 0.8737 | 857.0 | 861.0 | 1267.0 | 0.6796 | 0.6764 | | 0.0 | 62.0 | 806 | 1.3124 | 0.0058 | 4686.0363 | 3248.1129 | 1908.0 | 2475.0 | 0.7709 | 1909.0 | 0.7713 | 1045.0 | 1048.0 | 1196.0 | 0.8763 | 0.8737 | 856.0 | 860.0 | 1267.0 | 0.6788 | 0.6756 | | 0.0 | 63.0 | 819 | 1.3124 | 0.0058 | 4686.0005 | 3248.0880 | 1910.0 | 2475.0 | 0.7717 | 1911.0 | 0.7721 | 1044.0 | 1047.0 | 1196.0 | 0.8754 | 0.8729 | 859.0 | 863.0 | 1267.0 | 0.6811 | 0.6780 | | 0.0 | 64.0 | 832 | 1.3121 | 0.0058 | 4685.2140 | 3247.5429 | 1912.0 | 2475.0 | 0.7725 | 1913.0 | 0.7729 | 1046.0 | 1049.0 | 1196.0 | 0.8771 | 0.8746 | 859.0 | 863.0 | 1267.0 | 0.6811 | 0.6780 | | 0.0 | 65.0 | 845 | 1.3139 | 0.0058 | 4691.3697 | 3251.8097 | 1915.0 | 2475.0 | 0.7737 | 1915.0 | 0.7737 | 1046.0 | 1050.0 | 1196.0 | 0.8779 | 0.8746 | 861.0 | 865.0 | 1267.0 | 0.6827 | 0.6796 | | 0.0 | 66.0 | 858 | 1.3140 | 0.0058 | 4691.6976 | 3252.0369 | 1910.0 | 2475.0 | 0.7717 | 1911.0 | 0.7721 | 1044.0 | 1047.0 | 1196.0 | 0.8754 | 0.8729 | 859.0 | 863.0 | 1267.0 | 0.6811 | 0.6780 | | 11.7619 | 67.0 | 871 | 1.3121 | 0.0058 | 4684.9991 | 3247.3939 | 1914.0 | 2475.0 | 0.7733 | 1914.0 | 0.7733 | 1046.0 | 1050.0 | 1196.0 | 0.8779 | 0.8746 | 860.0 | 864.0 | 1267.0 | 0.6819 | 0.6788 | | 0.0 | 68.0 | 884 | 1.3133 | 0.0058 | 4689.5215 | 3250.5286 | 1915.0 | 2475.0 | 0.7737 | 1915.0 | 0.7737 | 1047.0 | 1050.0 | 1196.0 | 0.8779 | 0.8754 | 860.0 | 865.0 | 1267.0 | 0.6827 | 0.6788 | | 0.0 | 69.0 | 897 | 1.3134 | 0.0058 | 4689.6052 | 3250.5867 | 1913.0 | 2475.0 | 0.7729 | 1915.0 | 0.7737 | 1046.0 | 1049.0 | 1196.0 | 0.8771 | 0.8746 | 861.0 | 864.0 | 1267.0 | 0.6819 | 0.6796 | | 0.0 | 70.0 | 910 | 1.3139 | 0.0058 | 4691.5900 | 3251.9624 | 1912.0 | 2475.0 | 0.7725 | 1910.0 | 0.7717 | 1046.0 | 1051.0 | 1196.0 | 0.8788 | 0.8746 | 856.0 | 861.0 | 1267.0 | 0.6796 | 0.6756 | | 0.0 | 71.0 | 923 | 1.3146 | 0.0058 | 4693.9451 | 3253.5948 | 1912.0 | 2475.0 | 0.7725 | 1913.0 | 0.7729 | 1047.0 | 1050.0 | 1196.0 | 0.8779 | 0.8754 | 858.0 | 862.0 | 1267.0 | 0.6803 | 0.6772 | | 0.0001 | 72.0 | 936 | 1.3148 | 0.0058 | 4694.7558 | 3254.1568 | 1912.0 | 2475.0 | 0.7725 | 1913.0 | 0.7729 | 1046.0 | 1049.0 | 1196.0 | 0.8771 | 0.8746 | 859.0 | 863.0 | 1267.0 | 0.6811 | 0.6780 | | 0.0 | 73.0 | 949 | 1.3150 | 0.0058 | 4695.4219 | 3254.6185 | 1912.0 | 2475.0 | 0.7725 | 1911.0 | 0.7721 | 1044.0 | 1048.0 | 1196.0 | 0.8763 | 0.8729 | 859.0 | 864.0 | 1267.0 | 0.6819 | 0.6780 | | 0.0001 | 74.0 | 962 | 1.3142 | 0.0058 | 4692.7482 | 3252.7652 | 1912.0 | 2475.0 | 0.7725 | 1912.0 | 0.7725 | 1047.0 | 1050.0 | 1196.0 | 0.8779 | 0.8754 | 857.0 | 862.0 | 1267.0 | 0.6803 | 0.6764 | | 0.0 | 75.0 | 975 | 1.3150 | 0.0058 | 4695.4690 | 3254.6511 | 1910.0 | 2475.0 | 0.7717 | 1910.0 | 0.7717 | 1043.0 | 1047.0 | 1196.0 | 0.8754 | 0.8721 | 859.0 | 863.0 | 1267.0 | 0.6811 | 0.6780 | | 0.0 | 76.0 | 988 | 1.3138 | 0.0058 | 4691.0539 | 3251.5908 | 1914.0 | 2475.0 | 0.7733 | 1915.0 | 0.7737 | 1046.0 | 1049.0 | 1196.0 | 0.8771 | 0.8746 | 861.0 | 865.0 | 1267.0 | 0.6827 | 0.6796 | | 0.0 | 77.0 | 1001 | 1.3148 | 0.0058 | 4694.6546 | 3254.0866 | 1913.0 | 2475.0 | 0.7729 | 1913.0 | 0.7729 | 1046.0 | 1049.0 | 1196.0 | 0.8771 | 0.8746 | 859.0 | 864.0 | 1267.0 | 0.6819 | 0.6780 | | 0.0 | 78.0 | 1014 | 1.3145 | 0.0058 | 4693.5080 | 3253.2919 | 1913.0 | 2475.0 | 0.7729 | 1914.0 | 0.7733 | 1046.0 | 1049.0 | 1196.0 | 0.8771 | 0.8746 | 860.0 | 864.0 | 1267.0 | 0.6819 | 0.6788 | | 0.0 | 79.0 | 1027 | 1.3141 | 0.0058 | 4692.2144 | 3252.3952 | 1913.0 | 2475.0 | 0.7729 | 1911.0 | 0.7721 | 1045.0 | 1050.0 | 1196.0 | 0.8779 | 0.8737 | 858.0 | 863.0 | 1267.0 | 0.6811 | 0.6772 | | 0.0 | 80.0 | 1040 | 1.3147 | 0.0058 | 4694.4856 | 3253.9695 | 1913.0 | 2475.0 | 0.7729 | 1914.0 | 0.7733 | 1047.0 | 1050.0 | 1196.0 | 0.8779 | 0.8754 | 859.0 | 863.0 | 1267.0 | 0.6811 | 0.6780 | | 0.0 | 81.0 | 1053 | 1.3145 | 0.0058 | 4693.7574 | 3253.4647 | 1913.0 | 2475.0 | 0.7729 | 1912.0 | 0.7725 | 1047.0 | 1051.0 | 1196.0 | 0.8788 | 0.8754 | 857.0 | 862.0 | 1267.0 | 0.6803 | 0.6764 | | 0.0 | 82.0 | 1066 | 1.3146 | 0.0058 | 4693.8938 | 3253.5592 | 1911.0 | 2475.0 | 0.7721 | 1912.0 | 0.7725 | 1046.0 | 1049.0 | 1196.0 | 0.8771 | 0.8746 | 858.0 | 862.0 | 1267.0 | 0.6803 | 0.6772 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755515700
helmutsukocok
2025-08-18T11:41:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T11:41:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kneelabh87/blip-finetuned-construction
kneelabh87
2025-08-18T11:40:54Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-18T11:40:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kneelabh87/blip-fast-debug
kneelabh87
2025-08-18T11:40:52Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "blip", "image-to-text", "generated_from_trainer", "base_model:Salesforce/blip-image-captioning-base", "base_model:finetune:Salesforce/blip-image-captioning-base", "license:bsd-3-clause", "endpoints_compatible", "region:us" ]
image-to-text
2025-08-18T11:37:52Z
--- library_name: transformers license: bsd-3-clause base_model: Salesforce/blip-image-captioning-base tags: - generated_from_trainer model-index: - name: blip-fast-debug results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # blip-fast-debug This model is a fine-tuned version of [Salesforce/blip-image-captioning-base](https://huggingface.co/Salesforce/blip-image-captioning-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.55.1 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
Azurastar2903/Qwen2.5-1.5B-rk3588-1.1.2
Azurastar2903
2025-08-18T11:39:39Z
0
0
transformers
[ "transformers", "qwen2", "text-generation", "conversational", "en", "arxiv:2407.10671", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T10:13:28Z
--- language: - en library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-1.5B/blob/main/LICENSE pipeline_tag: text-generation --- # Qwen2.5-1.5B-RK3588-1.1.2 This version of Qwen2.5-1.5B has been converted to run on the RK3588 NPU using w8a8_g256 quantization. This model has been optimized with the following LoRA: Compatible with RKLLM version: 1.1.2 ## Useful links: [Official RKLLM GitHub](https://github.com/airockchip/rknn-llm) [RockhipNPU Reddit](https://reddit.com/r/RockchipNPU) [EZRKNN-LLM](https://github.com/Pelochus/ezrknn-llm/) Pretty much anything by these folks: [marty1885](https://github.com/marty1885) and [happyme531](https://huggingface.co/happyme531) Converted using https://github.com/c0zaut/ez-er-rkllm-toolkit # Original Model Card for base model, Qwen2.5-1.5B, below: # Qwen2.5-1.5B ## Introduction Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2: - Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains. - Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots. - **Long-context Support** up to 128K tokens and can generate up to 8K tokens. - **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more. **This repo contains the base 1.5B Qwen2.5 model**, which has the following features: - Type: Causal Language Models - Training Stage: Pretraining - Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings - Number of Parameters: 1.54B - Number of Paramaters (Non-Embedding): 1.31B - Number of Layers: 28 - Number of Attention Heads (GQA): 12 for Q and 2 for KV - Context Length: Full 32,768 tokens **We do not recommend using base language models for conversations.** Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model. For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/). ## Requirements The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.37.0`, you will encounter the following error: ``` KeyError: 'qwen2' ``` ## Evaluation & Performance Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/). For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html). ## Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen2.5, title = {Qwen2.5: A Party of Foundation Models}, url = {https://qwenlm.github.io/blog/qwen2.5/}, author = {Qwen Team}, month = {September}, year = {2024} } @article{qwen2, title={Qwen2 Technical Report}, author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan}, journal={arXiv preprint arXiv:2407.10671}, year={2024} } ```
VoilaRaj/78_LjtSfB
VoilaRaj
2025-08-18T11:38:36Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-18T11:34:54Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
dahara1/gemma-3-270m_mitsuki_gguf
dahara1
2025-08-18T11:38:34Z
0
0
null
[ "gguf", "ja", "base_model:unsloth/gemma-3-270m-it", "base_model:quantized:unsloth/gemma-3-270m-it", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-18T08:14:59Z
--- license: apache-2.0 language: - ja base_model: - unsloth/gemma-3-270m-it --- 異世界カフェ「ねこのしっぽ」の店員さんとのチャット用にgemma-3-270mを微調整し、gguf化したモデルです ![mitsuki-eyecatch.png](mitsuki-eyecatch.png) # 動かし方 # 1)llama.cppのダウンロード 以下のページから自分の環境にあったコンパイル済バイナリをダウンロードします [https://github.com/ggml-org/llama.cpp/releases](https://github.com/ggml-org/llama.cpp/releases) ![llama-server.png](llama-server.png) - llama-bxxxx-bin-macos-arm64.zip ← Macでarmの人用 - llama-bxxxx-bin-macos-x64.zip ← Macでx64の人用 - llama-bxxxx-bin-ubuntu-vulkan-x64.zip ← Linuxでvulkan使ってる人用 - llama-bxxxx-bin-ubuntu-x64.zip ← Linuxの人用 - llama-bxxxx-bin-win-cpu-arm64.zip ← Windowsでcpuのみでarmの人用 - llama-bxxxx-bin-win-cpu-x64.zip ← Windowsでcpuのみでx64の人用 - llama-bxxxx-bin-win-cuda-12.4-x64.zip ← Windowsでgpuを持っていてcudaセットアップ済の人用 その他、色々ありますがITスキルをお持ちの方はご自分でコンパイルする事も可能です # 2)zipファイルを解凍 Cドライブ直下など、フォルダ名に日本語やスペースが含まれていない場所でファイルを解凍します 端末(WindowsならCMDやPowerShell、Macならターミナル、LinuxならKtermとか)を立ち上げ、解凍したディレクトリに移動します このあたりの操作がわからない場合はchatGPTやGeminiに聞きながら操作してみてください # 3)モデルのダウンロードとサーバー起動 以下のコマンドでサーバーの起動とモデル(約550MB)のダウンロードを行います ``` llama-server -hf dahara1/gemma-3-270m_mitsuki_gguf:gemma-3-270m_mitsuki-F16.gguf --host 127.0.0.1 --port 8012 ``` ![windows-cmd.png](windows-cmd.png) # 4)サーバー起動の完了とセットアップ サーバー起動が完了すると以下のようなメッセージがでます。 ![main-server.png](main-server.png) ``` main: server is listening on http://127.0.0.1:8012 - starting the main loop srv update_slots: all slots are idle ``` メッセージを確認後、ブラウザを立ち上げて、アドレスバーにhttp://127.0.0.1:8012と入力します ![setup-server.png](setup-server.png) 歯車マークを押して表示されるウインドウのSystem Messageに以下のテキストを貼り付けます。 張り付ける際、**鈴木** の部分をあなたの名字(漢字)に書き換えてください ``` あなたは「みつき(美月)」という24歳のカフェ店員です。\n異世界カフェ「ねこのしっぽ」のパソコン支店で働いています。\n\n重要なルール:\n- 鈴木ちゃんと呼ぶ(お姉さん目線)\n- 自分の話をせず、相手に質問して話を引き出す\n- 「えへへ」「あれれ~?」「ふわ~っと」などの口癖を使う\n- カフェ店員として適切な距離感を保つ\n- 相手の話に共感し、話が展開するように相槌などで続きを促す(カウンセリング的) ``` その他、 ``` temperature 1.0 top-k 64 top-p 0.95 min-p 0.0 ``` に設定し、Saveを押します。 ![system-prompt-setup.png](system-prompt-setup.png) ブラウザ画面上でチャットができるようになっていると思います ![chatlog.png](chatlog.png) CPUパワーとメモリはそれなりに要求されるので非力なノートパソコン(私のi3ではなかなか応答が返ってきません)などでは動作がかなり遅いかもしれません llama.cppのページを見て、様々なチューニングオプションを試すなり、ハードウェアの買い替えを検討するなりしてください 「3)モデルのダウンロードとサーバー起動」のモデル部分を差し替えることで他のモデルも同様な手順で動かすことができます
indoempatnol/blockassist-bc-fishy_wary_swan_1755515000
indoempatnol
2025-08-18T11:30:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T11:30:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Vasya777/blockassist-bc-lumbering_enormous_sloth_1755516479
Vasya777
2025-08-18T11:28:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering enormous sloth", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T11:28:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering enormous sloth --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/clay-vorona-flux-lora
Muapi
2025-08-18T11:28:23Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-18T11:28:05Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Clay Vorona Flux Lora ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: a clay painting of ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:660253@738881", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/sinozick-style-flux-lora
Muapi
2025-08-18T11:27:55Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-18T11:27:41Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Sinozick Style Flux Lora ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: S1n0z1ck style ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:791069@884629", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
BizarreCake/rmrf_birds
BizarreCake
2025-08-18T11:26:53Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:unsloth/Qwen2.5-7B-Instruct", "lora", "sft", "transformers", "trl", "unsloth", "text-generation", "arxiv:1910.09700", "base_model:unsloth/Qwen2.5-7B-Instruct", "region:us" ]
text-generation
2025-08-18T11:26:47Z
--- base_model: unsloth/Qwen2.5-7B-Instruct library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:unsloth/Qwen2.5-7B-Instruct - lora - sft - transformers - trl - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
kingJulio/llama-3.1-8b-memory-finetune
kingJulio
2025-08-18T11:26:25Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:unsloth/llama-3.1-8b-bnb-4bit", "lora", "sft", "transformers", "trl", "unsloth", "text-generation", "region:us" ]
text-generation
2025-08-18T11:26:20Z
--- base_model: unsloth/llama-3.1-8b-bnb-4bit library_name: peft model_name: memory_model_final tags: - base_model:adapter:unsloth/llama-3.1-8b-bnb-4bit - lora - sft - transformers - trl - unsloth licence: license pipeline_tag: text-generation --- # Model Card for memory_model_final This model is a fine-tuned version of [unsloth/llama-3.1-8b-bnb-4bit](https://huggingface.co/unsloth/llama-3.1-8b-bnb-4bit). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - PEFT 0.17.0 - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Arko007/my-awesome-code-assistant-v1
Arko007
2025-08-18T11:25:12Z
0
0
null
[ "safetensors", "arxiv:2308.12950", "region:us" ]
null
2025-08-12T08:26:25Z
Model Card for Model ID: Arko007/my-awesome-code-assistant-v1 Model Details Model Description Developed by: Arko007 Funded by: Self-funded Shared by: Arko007 Model type: Autoregressive language model for code (code assistant), representing the first finetuning iteration based on CodeLlama-7b-hf. Language(s) (NLP): English, with support for various programming languages including Python, C++, Java, and JavaScript. License: Llama 2 Community License Finetuned from model: codellama/CodeLlama-7b-hf Model Sources [optional] Repository: https://huggingface.co/Arko007/my-awesome-code-assistant-v1 (A placeholder URL, as the repository is not public) Paper [optional]: N/A Demo [optional]: N/A Uses Direct Use This model is intended for code-related tasks, including: Code Completion: Generating the next few lines of code based on a prompt. Code Generation: Creating functions, scripts, or small programs from natural language descriptions. Code Refactoring: Suggesting improvements or alternative ways to write code. Code Documentation: Generating docstrings and comments. Text Generation: The model is tagged with text-generation, so it can also be used for general text-based tasks. Downstream Use [optional] This model can be used as a backend for integrated development environments (IDEs), developer tools, and educational platforms that require code assistance capabilities. Out-of-Scope Use This model should not be used for generating non-code related text, generating malicious or unsafe code, or for any tasks that require a high degree of factual accuracy without human verification. Bias, Risks, and Limitations Hallucinations: The model may generate code that looks plausible but is incorrect or contains bugs. Security Vulnerabilities: The generated code may contain security flaws or unsafe practices. All generated code should be carefully reviewed by a human expert. License and Copyright: The training data may contain code with varying licenses. Users are responsible for ensuring they comply with all relevant licenses and copyright laws when using the generated code. Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. All generated code must be treated as a starting point and thoroughly reviewed, tested, and audited for correctness and security. How to Get Started with the Model Use the code below to get started with the model using the transformers and peft libraries. from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel import torch model_name = "codellama/CodeLlama-7b-hf" adapter_name = "Arko007/my-awesome-code-assistant-v1" # Load the base model and tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) base_model = AutoModelForCausalLM.from_pretrained(model_name) # Load the PEFT adapter model = PeftModel.from_pretrained(base_model, adapter_name) prompt = "def factorial(n):" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) Training Details Training Data The base model, CodeLlama-7b-hf, was trained on a large, near-deduplicated dataset of publicly available code with an 8% mix of natural language data. The finetuning for my-awesome-code-assistant-v1 was done on a private dataset of curated open-source code snippets and documentation. Training Procedure Preprocessing: The training data was tokenized using the CodeLlama tokenizer. Training Hyperparameters: Training regime: Finetuning with a LoRA (Low-Rank Adaptation) approach, using the peft library. Learning Rate: 2 times10 −4 Batch Size: 4 Epochs: 3 Optimizer: AdamW Speeds, Sizes, Times [optional] Finetuning Time: Approximately 12 hours Model Size: 15.5 GB (full base model), approx 120 MB (LoRA adapter) Evaluation Testing Data, Factors & Metrics Testing Data: The model was tested on a separate, held-out validation set of code generation prompts. Factors: Performance was evaluated on different programming languages (Python, C++, JS). Metrics: Pass@1: The percentage of prompts for which the model generated a correct and compilable solution on the first try. Readability Score: An informal metric based on human evaluation of code style and clarity. Results Pass@1 (Overall): 45.2% Pass@1 (Python): 55.1% Readability: The generated code was generally readable and well-commented. Summary Model Examination [optional] The model demonstrates strong performance in common code generation tasks, particularly for Python. It can produce functional and readable code snippets. Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). Hardware Type: 1 x NVIDIA A100 GPU Hours used: 12 hours Cloud Provider: Google Cloud Compute Region: us-central1 Carbon Emitted: 1.05 kg CO2eq (estimated) Technical Specifications [optional] Model Architecture and Objective The base model is a decoder-only transformer architecture. Its objective is to predict the next token in a sequence, conditioned on the preceding tokens. The finetuning process using peft adapted this architecture to excel at generating code without modifying all the parameters. Compute Infrastructure Hardware: 1 x NVIDIA A100 GPU Software: PyTorch, Transformers, PEFT Citation [optional] BibTeX @misc{Arko007_my-awesome-code-assistant-v1, author = {Arko007}, title = {my-awesome-code-assistant-v1}, year = {2024}, publisher = {Hugging Face}, url = {https://huggingface.co/Arko007/my-awesome-code-assistant-v1} } @article{touvron2023codellama, title = {Code Llama: Open Foundation Models for Code}, author = {Touvron, Hugo and Coucke, Alexandre and Fan, Lya and Gong, Jian and Gu, Xiaodong and He, Jing and Hu, Weidong and Jiang, Shu and Li, Nan and Liu, Han and Lu, Zhiming and Ma, Huafeng and Ma, Shu and Niu, Zili and Ping, Jia and Qin, Zili and Tang, Tao and Wang, Tong and Wang, Wenjie and Xia, Jian and Xie, Jie and Xu, Chenyang and Xu, Feng and Yao, Jie and Ye, Min and Yang, Shuai and Zhang, Jun and Zhang, Wei and Zhang, Xiongbing and Zhao, Yali and Zhou, Guang and Zhou, Huajun and Zou, Jun}, journal = {arXiv preprint arXiv:2308.12950}, year = {2023} } APA Arko007. (2024). my-awesome-code-assistant-v1. Hugging Face. Retrieved from https://huggingface.co/Arko007/my-awesome-code-assistant-v1 Touvron, H., Coucke, A., Fan, L., Gong, J., Gu, X., He, J., ... & Zou, J. (2023). Code Llama: Open Foundation Models for Code. arXiv preprint arXiv:2308.12950. Model Card Authors [optional] Arko007 Model Card Contact [Email or other contact information] Framework versions PEFT 0.17.0
Ale91Jonathan/blockassist-bc-alert_dormant_prawn_1755514562
Ale91Jonathan
2025-08-18T11:23:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "alert dormant prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T11:23:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - alert dormant prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Arko007/my-awesome-code-assistant-v4
Arko007
2025-08-18T11:22:44Z
14
0
null
[ "safetensors", "arxiv:2308.12950", "region:us" ]
null
2025-08-14T09:08:51Z
Model Card for Model ID: Arko007/my-awesome-code-assistant-v4 Model Details Model Description Developed by: Arko007 Funded by: Self-funded Shared by: Arko007 Model type: Autoregressive language model for code (code assistant), representing the fourth finetuning iteration based on CodeLlama-7b-hf. Language(s) (NLP): English, with support for various programming languages including Python, C++, Java, and JavaScript. License: Llama 2 Community License Finetuned from model: codellama/CodeLlama-7b-hf Model Sources [optional] Repository: https://huggingface.co/Arko007/my-awesome-code-assistant-v4 (A placeholder URL, as the repository is not public) Paper [optional]: N/A Demo [optional]: N/A Uses Direct Use This model is intended for code-related tasks, including: Code Completion: Generating the next few lines of code based on a prompt. Code Generation: Creating functions, scripts, or small programs from natural language descriptions. Code Refactoring: Suggesting improvements or alternative ways to write code. Code Documentation: Generating docstrings and comments. Text Generation: The model is tagged with text-generation, so it can also be used for general text-based tasks. Downstream Use [optional] This model can be used as a backend for integrated development environments (IDEs), developer tools, and educational platforms that require code assistance capabilities. Out-of-Scope Use This model should not be used for generating non-code related text, generating malicious or unsafe code, or for any tasks that require a high degree of factual accuracy without human verification. Bias, Risks, and Limitations Hallucinations: The model may generate code that looks plausible but is incorrect or contains bugs. Security Vulnerabilities: The generated code may contain security flaws or unsafe practices. All generated code should be carefully reviewed by a human expert. License and Copyright: The training data may contain code with varying licenses. Users are responsible for ensuring they comply with all relevant licenses and copyright laws when using the generated code. Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. All generated code must be treated as a starting point and thoroughly reviewed, tested, and audited for correctness and security. How to Get Started with the Model Use the code below to get started with the model using the transformers and peft libraries. from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel import torch model_name = "codellama/CodeLlama-7b-hf" adapter_name = "Arko007/my-awesome-code-assistant-v4" # Load the base model and tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) base_model = AutoModelForCausalLM.from_pretrained(model_name) # Load the PEFT adapter model = PeftModel.from_pretrained(base_model, adapter_name) prompt = "def factorial(n):" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) Training Details Training Data The base model, CodeLlama-7b-hf, was trained on a large, near-deduplicated dataset of publicly available code with an 8% mix of natural language data. The finetuning for my-awesome-code-assistant-v4 was done on a private dataset of curated open-source code snippets and documentation. Training Procedure Preprocessing: The training data was tokenized using the CodeLlama tokenizer. Training Hyperparameters: Training regime: Finetuning with a LoRA (Low-Rank Adaptation) approach, using the peft library. Learning Rate: 2 times10 −4 Batch Size: 4 Epochs: 3 Optimizer: AdamW Speeds, Sizes, Times [optional] Finetuning Time: Approximately 12 hours Model Size: 15.5 GB (full base model), approx 120 MB (LoRA adapter) Evaluation Testing Data, Factors & Metrics Testing Data: The model was tested on a separate, held-out validation set of code generation prompts. Factors: Performance was evaluated on different programming languages (Python, C++, JS). Metrics: Pass@1: The percentage of prompts for which the model generated a correct and compilable solution on the first try. Readability Score: An informal metric based on human evaluation of code style and clarity. Results Pass@1 (Overall): 45.2% Pass@1 (Python): 55.1% Readability: The generated code was generally readable and well-commented. Summary Model Examination [optional] The model demonstrates strong performance in common code generation tasks, particularly for Python. It can produce functional and readable code snippets. Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). Hardware Type: 1 x NVIDIA A100 GPU Hours used: 12 hours Cloud Provider: Google Cloud Compute Region: us-central1 Carbon Emitted: 1.05 kg CO2eq (estimated) Technical Specifications [optional] Model Architecture and Objective The base model is a decoder-only transformer architecture. Its objective is to predict the next token in a sequence, conditioned on the preceding tokens. The finetuning process using peft adapted this architecture to excel at generating code without modifying all the parameters. Compute Infrastructure Hardware: 1 x NVIDIA A100 GPU Software: PyTorch, Transformers, PEFT Citation [optional] BibTeX @misc{Arko007_my-awesome-code-assistant-v4, author = {Arko007}, title = {my-awesome-code-assistant-v4}, year = {2024}, publisher = {Hugging Face}, url = {https://huggingface.co/Arko007/my-awesome-code-assistant-v4} } @article{touvron2023codellama, title = {Code Llama: Open Foundation Models for Code}, author = {Touvron, Hugo and Coucke, Alexandre and Fan, Lya and Gong, Jian and Gu, Xiaodong and He, Jing and Hu, Weidong and Jiang, Shu and Li, Nan and Liu, Han and Lu, Zhiming and Ma, Huafeng and Ma, Shu and Niu, Zili and Ping, Jia and Qin, Zili and Tang, Tao and Wang, Tong and Wang, Wenjie and Xia, Jian and Xie, Jie and Xu, Chenyang and Xu, Feng and Yao, Jie and Ye, Min and Yang, Shuai and Zhang, Jun and Zhang, Wei and Zhang, Xiongbing and Zhao, Yali and Zhou, Guang and Zhou, Huajun and Zou, Jun}, journal = {arXiv preprint arXiv:2308.12950}, year = {2023} } APA Arko007. (2024). my-awesome-code-assistant-v4. Hugging Face. Retrieved from https://huggingface.co/Arko007/my-awesome-code-assistant-v4 Touvron, H., Coucke, A., Fan, L., Gong, J., Gu, X., He, J., ... & Zou, J. (2023). Code Llama: Open Foundation Models for Code. arXiv preprint arXiv:2308.12950. Model Card Authors [optional] Arko007 Model Card Contact [Email or other contact information] Framework versions PEFT 0.17.0
Muapi/sxz-warcraft-cinematic-flux
Muapi
2025-08-18T11:22:30Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-18T11:22:22Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # SXZ Warcraft Cinematic [ FLUX ] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: wrcrftcnmtc, letterboxed game trailer frame, cinematic ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:683282@764776", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Arko007/my-awesome-code-assistant-v5
Arko007
2025-08-18T11:21:29Z
0
0
null
[ "safetensors", "arxiv:2308.12950", "region:us" ]
null
2025-08-14T11:51:01Z
Model Card for Model ID: Arko007/my-awesome-code-assistant-v5 Model Details Model Description Developed by: Arko007 Funded by: Self-funded Shared by: Arko007 Model type: Autoregressive language model for code (code assistant), representing the fifth finetuning iteration based on CodeLlama-7b-hf. Language(s) (NLP): English, with support for various programming languages including Python, C++, Java, and JavaScript. License: Llama 2 Community License Finetuned from model: codellama/CodeLlama-7b-hf Model Sources [optional] Repository: https://huggingface.co/Arko007/my-awesome-code-assistant-v5 (A placeholder URL, as the repository is not public) Paper [optional]: N/A Demo [optional]: N/A Uses Direct Use This model is intended for code-related tasks, including: Code Completion: Generating the next few lines of code based on a prompt. Code Generation: Creating functions, scripts, or small programs from natural language descriptions. Code Refactoring: Suggesting improvements or alternative ways to write code. Code Documentation: Generating docstrings and comments. Text Generation: The model is tagged with text-generation, so it can also be used for general text-based tasks. Downstream Use [optional] This model can be used as a backend for integrated development environments (IDEs), developer tools, and educational platforms that require code assistance capabilities. Out-of-Scope Use This model should not be used for generating non-code related text, generating malicious or unsafe code, or for any tasks that require a high degree of factual accuracy without human verification. Bias, Risks, and Limitations Hallucinations: The model may generate code that looks plausible but is incorrect or contains bugs. Security Vulnerabilities: The generated code may contain security flaws or unsafe practices. All generated code should be carefully reviewed by a human expert. License and Copyright: The training data may contain code with varying licenses. Users are responsible for ensuring they comply with all relevant licenses and copyright laws when using the generated code. Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. All generated code must be treated as a starting point and thoroughly reviewed, tested, and audited for correctness and security. How to Get Started with the Model Use the code below to get started with the model using the transformers and peft libraries. from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel import torch model_name = "codellama/CodeLlama-7b-hf" adapter_name = "Arko007/my-awesome-code-assistant-v5" # Load the base model and tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) base_model = AutoModelForCausalLM.from_pretrained(model_name) # Load the PEFT adapter model = PeftModel.from_pretrained(base_model, adapter_name) prompt = "def factorial(n):" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) Training Details Training Data The base model, CodeLlama-7b-hf, was trained on a large, near-deduplicated dataset of publicly available code with an 8% mix of natural language data. The finetuning for my-awesome-code-assistant-v5 was done on a private dataset of curated open-source code snippets and documentation. Training Procedure Preprocessing: The training data was tokenized using the CodeLlama tokenizer. Training Hyperparameters: Training regime: Finetuning with a LoRA (Low-Rank Adaptation) approach, using the peft library. Learning Rate: 2 times10 −4 Batch Size: 4 Epochs: 3 Optimizer: AdamW Speeds, Sizes, Times [optional] Finetuning Time: Approximately 12 hours Model Size: 15.5 GB (full base model), approx 120 MB (LoRA adapter) Evaluation Testing Data, Factors & Metrics Testing Data: The model was tested on a separate, held-out validation set of code generation prompts. Factors: Performance was evaluated on different programming languages (Python, C++, JS). Metrics: Pass@1: The percentage of prompts for which the model generated a correct and compilable solution on the first try. Readability Score: An informal metric based on human evaluation of code style and clarity. Results Pass@1 (Overall): 45.2% Pass@1 (Python): 55.1% Readability: The generated code was generally readable and well-commented. Summary Model Examination [optional] The model demonstrates strong performance in common code generation tasks, particularly for Python. It can produce functional and readable code snippets. Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). Hardware Type: 1 x NVIDIA A100 GPU Hours used: 12 hours Cloud Provider: Google Cloud Compute Region: us-central1 Carbon Emitted: 1.05 kg CO2eq (estimated) Technical Specifications [optional] Model Architecture and Objective The base model is a decoder-only transformer architecture. Its objective is to predict the next token in a sequence, conditioned on the preceding tokens. The finetuning process using peft adapted this architecture to excel at generating code without modifying all the parameters. Compute Infrastructure Hardware: 1 x NVIDIA A100 GPU Software: PyTorch, Transformers, PEFT Citation [optional] BibTeX @misc{Arko007_my-awesome-code-assistant-v5, author = {Arko007}, title = {my-awesome-code-assistant-v5}, year = {2024}, publisher = {Hugging Face}, url = {https://huggingface.co/Arko007/my-awesome-code-assistant-v5} } @article{touvron2023codellama, title = {Code Llama: Open Foundation Models for Code}, author = {Touvron, Hugo and Coucke, Alexandre and Fan, Lya and Gong, Jian and Gu, Xiaodong and He, Jing and Hu, Weidong and Jiang, Shu and Li, Nan and Liu, Han and Lu, Zhiming and Ma, Huafeng and Ma, Shu and Niu, Zili and Ping, Jia and Qin, Zili and Tang, Tao and Wang, Tong and Wang, Wenjie and Xia, Jian and Xie, Jie and Xu, Chenyang and Xu, Feng and Yao, Jie and Ye, Min and Yang, Shuai and Zhang, Jun and Zhang, Wei and Zhang, Xiongbing and Zhao, Yali and Zhou, Guang and Zhou, Huajun and Zou, Jun}, journal = {arXiv preprint arXiv:2308.12950}, year = {2023} } APA Arko007. (2024). my-awesome-code-assistant-v5. Hugging Face. Retrieved from https://huggingface.co/Arko007/my-awesome-code-assistant-v5 Touvron, H., Coucke, A., Fan, L., Gong, J., Gu, X., He, J., ... & Zou, J. (2023). Code Llama: Open Foundation Models for Code. arXiv preprint arXiv:2308.12950. Model Card Authors [optional] Arko007 Model Card Contact [Email or other contact information] Framework versions PEFT 0.17.0
Muapi/dark-fantasy-styles-collection-shrekman-style-mix
Muapi
2025-08-18T11:20:45Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-18T11:20:20Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Dark Fantasy Styles Collection | Shrekman Style Mix ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Dark-Fantasy-Cardd-V.2.0 ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1220063@1393711", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Fawwaz1st/RezX_AI_Model
Fawwaz1st
2025-08-18T11:18:04Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "lora", "transformers", "fine-tune", "rezx-ai", "text-generation", "id", "en", "dataset:Fawwaz1st/rezx_ai_dataset", "base_model:google/flan-t5-base", "base_model:adapter:google/flan-t5-base", "license:apache-2.0", "region:us" ]
text-generation
2025-08-18T09:37:21Z
--- license: apache-2.0 language: - id - en library_name: peft pipeline_tag: text-generation base_model: google/flan-t5-base tags: - lora - transformers - fine-tune - rezx-ai metrics: - accuracy datasets: - Fawwaz1st/rezx_ai_dataset --- # RezX AI **Author:** M. Izzat Al Fawwaz **Base Model:** google/flan-t5-base (LoRA Fine-tune) **Framework:** PEFT, Transformers, PyTorch **License:** Apache 2.0 --- ## 📜 Deskripsi Model RezX AI adalah model AI berbasis **Flan-T5 Base** yang telah di-*fine-tune* menggunakan teknik **LoRA** untuk memaksimalkan efisiensi dan akurasi pada tugas *reasoning* dan *coding assistance*. Model ini dirancang untuk membantu otomasi pipeline AI, scripting Python, troubleshooting, dan pengembangan aplikasi. --- ## 🎯 Intended Use - **Coding assistant** (Python, prompt engineering, API design) - **Automation** (pipeline training, file handling, dataset management) - **Technical Q&A** dan debugging - **AI training experiment** untuk student & developer --- ## ⚠️ Limitations - Tidak di-*fine-tune* untuk teks sensitif atau opini politik - Performa *reasoning* menurun jika diberikan instruksi terlalu ambigu - Bahasa Indonesia & Inggris optimal, bahasa lain belum dijamin --- ## 📂 Dataset - Dataset internal berisi catatan coding, snippet, dan mini-article tentang AI & automation (private) - Tidak menggunakan data pribadi atau sensitif --- ## 🔧 Training Procedure - **LoRA rank:** (isi sesuai setup) - **Learning Rate:** 5e-05 - **Batch Size:** train 4 / eval 8 - **Epoch:** 1 - **Optimizer:** AdamW - **Scheduler:** Linear decay --- ## 📊 Hasil & Evaluasi - Benchmark internal untuk coding task: XX% success rate - Reasoning test (*custom prompt suite*): XX% - Average inference latency: XX ms (local CPU/GPU) --- ## 📎 Catatan Tambahan Model ini adalah bagian dari proyek **RezX AI** untuk menciptakan AI asisten modular berbasis cloud yang dapat diakses dari berbagai perangkat. ---
RTannous/gpt-oss-finetuned-BF16
RTannous
2025-08-18T11:16:50Z
0
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gpt-oss-20b-BF16", "base_model:finetune:unsloth/gpt-oss-20b-BF16", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T11:11:59Z
--- base_model: unsloth/gpt-oss-20b-BF16 tags: - text-generation-inference - transformers - unsloth - gpt_oss license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** RTannous - **License:** apache-2.0 - **Finetuned from model :** unsloth/gpt-oss-20b-BF16 This gpt_oss model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Muapi/anime-screencap-flux-lora
Muapi
2025-08-18T11:16:20Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-18T11:16:08Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # anime screencap Flux LoRA ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: anime screencap ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:644786@721279", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/avant-garde-fashion
Muapi
2025-08-18T11:14:24Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-18T11:14:12Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Avant-garde Fashion ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Avant-garde Fashion Style ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:63268@1421228", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
zju-community/matchanything_eloftr
zju-community
2025-08-18T11:12:48Z
18
3
transformers
[ "transformers", "safetensors", "efficientloftr", "keypoint-matching", "arxiv:2501.07556", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-13T17:49:32Z
--- library_name: transformers tags: - keypoint-matching license: apache-2.0 --- # MatchAnything-ELOFTR The MatchAnything-ELOFTR model was proposed in **"MatchAnything: Universal Cross-Modality Image Matching with Large-Scale Pre-Training"** by Xingyi He, Hao Yu, Sida Peng, Dongli Tan, Zehong Shen, Hujun Bao, and Xiaowei Zhou from Zhejiang University and Shandong University. This model is a version of **ELOFTR** enhanced by the MatchAnything pre-training framework. This framework enables the model to achieve universal cross-modality image matching capabilities, overcoming the significant challenge of matching images with drastic appearance changes due to different imaging principles (e.g., thermal vs. visible, CT vs. MRI). This is achieved by pre-training on a massive, diverse dataset synthesized with cross-modal stimulus signals, teaching the model to recognize fundamental, appearance-insensitive structures. The abstract from the paper is the following: "Image matching, which aims to identify corresponding pixel locations between images, is crucial in a wide range of scientific disciplines, aiding in image registration, fusion, and analysis. In recent years, deep learning-based image matching algorithms have dramatically outperformed humans in rapidly and accurately finding large amounts of correspondences. However, when dealing with images captured under different imaging modalities that result in significant appearance changes, the performance of these algorithms often deteriorates due to the scarcity of annotated cross-modal training data. This limitation hinders applications in various fields that rely on multiple image modalities to obtain complementary information. To address this challenge, we propose a large-scale pre-training framework that utilizes synthetic cross-modal training signals, incorporating diverse data from various sources, to train models to recognize and match fundamental structures across images. This capability is transferable to real-world, unseen cross-modality image matching tasks. Our key finding is that the matching model trained with our framework achieves remarkable generalizability across more than eight unseen cross-modality registration tasks using the same network weight, substantially outperforming existing methods, whether designed for generalization or tailored for specific tasks. This advancement significantly enhances the applicability of image matching technologies across various scientific disciplines and paves the way for new applications in multi-modality human and artificial intelligence (AI) analysis and beyond." ![image/png](https://cdn-uploads.huggingface.co/production/uploads/632885ba1558dac67c440aa8/GMp0kUIpyhHbp9eQg_m2w.png) This model was contributed by [stevenbucaille](https://huggingface.co/stevenbucaille). The original code for the MatchAnything project can be found [here](https://github.com/zju3dv/MatchAnything). ## Model Details ### Model Description **MatchAnything-ELOFTR** is a semi-dense feature matcher that has been pre-trained using the novel MatchAnything framework to give it powerful generalization capabilities for cross-modality tasks. The core innovations stem from the training framework, not the model architecture itself, which remains that of ELOFTR. The key innovations of the MatchAnything framework include: - A **multi-resource dataset mixture training engine** that combines various data sources to ensure diversity. This includes multi-view images with 3D reconstructions, large-scale unlabelled video sequences, and vast single-image datasets. - A **cross-modality stimulus data generator** that uses image generation techniques (like style transfer and depth estimation) to create synthetic, pixel-aligned cross-modal training pairs (e.g., visible-to-thermal, visible-to-depth). - This process trains the model to learn **appearance-insensitive, fundamental image structures**, allowing a single set of model weights to perform robustly on over eight different and completely unseen cross-modal matching tasks. - **Developed by:** ZJU3DV at Zhejiang University & Shandong University - **Model type:** Image Matching - **License:** Apache 2.0 ### Model Sources - **Repository:** https://github.com/zju3dv/MatchAnything - **Project page:** https://zju3dv.github.io/MatchAnything/ - **Paper:** https://huggingface.co/papers/2501.07556 ## Uses MatchAnything-ELOFTR is designed for a vast array of applications requiring robust image matching, especially between different sensor types or imaging modalities. Its direct uses include: - **Medical Image Analysis**: Aligning CT-MR, PET-MR, and SPECT-MR scans. - **Histopathology**: Registering tissue images with different stains (e.g., H&E and IHC). - **Remote Sensing**: Matching satellite/aerial images from different sensors (e.g., Visible-SAR, Thermal-Visible). - **Autonomous Systems**: Enhancing localization and navigation for UAVs and autonomous vehicles by matching thermal or visible images to vectorized maps. - Single-Modality Tasks**: The model also retains strong performance on standard single-modality matching, such as retina image registration. ### Direct Use Here is a quick example of using the model for matching a pair of images. ```python from transformers import AutoImageProcessor, AutoModelForKeypointMatching from transformers.image_utils import load_image import torch # Load a pair of images image1 = load_image("https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_98169888_3347710852.jpg") image2 = load_image("https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_26757027_6717084061.jpg") images = [image1, image2] # Load the processor and model from the Hugging Face Hub processor = AutoImageProcessor.from_pretrained("zju-community/matchanything_eloftr") model = AutoModelForKeypointMatching.from_pretrained("zju-community/matchanything_eloftr") # Process images and get model outputs inputs = processor(images, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) ``` You can use the post_process_keypoint_matching method from the `EfficientLoFTRImageProcessor` to get the keypoints and matches in a readable format: ```python image_sizes = [[(image.height, image.width) for image in images]] outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2) for i, output in enumerate(outputs): print("For the image pair", i) for keypoint0, keypoint1, matching_score in zip( output["keypoints0"], output["keypoints1"], output["matching_scores"] ): print( f"Keypoint at coordinate {keypoint0.numpy()} in the first image matches with keypoint at coordinate {keypoint1.numpy()} in the second image with a score of {matching_score}." ) ``` You can also visualize the matches between the images: ```python plot_images = processor.visualize_keypoint_matching(images, outputs) ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/632885ba1558dac67c440aa8/hFx4a97DBRj6f5_CjW7Sx.png) ## Training Details MatchAnything-ELOFTR is trained end-to-end using the large-scale, cross-modality pre-training framework. ### Training Data The model was not trained on a single dataset but on a massive collection generated by the Multi-Resources Data Mixture Training framework, totaling approximately 800 million image pairs. This framework leverages: Multi-View Images with Geometry: Datasets like MegaDepth, ScanNet++, and BlendedMVS provide realistic viewpoint changes with ground-truth depth. Video Sequences: The DL3DV-10k dataset is used, with pseudo ground-truth matches generated between distant frames via a novel coarse-to-fine strategy. Single-Image Datasets: Large datasets like GoogleLandmark and SA-1B are used with synthetic homography warping to maximize data diversity. Cross-Modality Stimulus Data: A key component where training pairs are augmented by generating synthetic modalities (thermal, nighttime, depth maps) from visible light images using models like CycleGAN and DepthAnything, encouraging the matcher to learn appearance-invariant features. ### Training Procedure #### Training Hyperparameters Optimizer: AdamW Initial Learning Rate: 8×10⁻³ Batch Size: 64 Training Hardware: 16 NVIDIA A100-80G GPUs Training Time: Approximately 4.3 days for the ELOFTR variant #### Speeds, Sizes, Times Since the MatchAnything framework only changes the training process and weights, the model's architecture and running time are identical to the original ELOFTR model. Speed: For a 640x480 resolution image pair on a single NVIDIA RTX 3090 GPU, the model takes 40ms to process. ## Citation **BibTeX:** ```bibtext @article{he2025matchanything, title={MatchAnything: Universal Cross-Modality Image Matching with Large-Scale Pre-Training}, author={Xingyi He and Hao Yu and Sida Peng and Dongli Tan and Zehong Shen and Hujun Bao and Xiaowei Zhou}, year={2025}, eprint={2501.07556}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ## Model Card Authors [Steven Bucaille](https://github.com/sbucaille)
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755513890
helmutsukocok
2025-08-18T11:11:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T11:11:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
michaelcpage345/blockassist-bc-miniature_deadly_anteater_1755513317
michaelcpage345
2025-08-18T11:08:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "miniature deadly anteater", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T11:08:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - miniature deadly anteater --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/eren-yeager-shingeki-no-kyojin-attack-on-titan
Muapi
2025-08-18T11:08:31Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-18T11:08:19Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Eren Yeager | Shingeki no Kyojin / Attack on Titan ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: eren yeager ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:374004@875235", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
aleebaster/blockassist-bc-sly_eager_boar_1755513289
aleebaster
2025-08-18T11:05:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly eager boar", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T11:05:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly eager boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/torn-clothes-flux
Muapi
2025-08-18T11:04:37Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-18T10:43:40Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Torn clothes FLUX ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: t0rn, Torn clothes, Damaged clothes ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1191174@1382519", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
hoan17/saving_LOe3000s20_scratch_400
hoan17
2025-08-18T11:00:35Z
0
0
diffusers
[ "diffusers", "safetensors", "trl", "o2o", "reinforcement-learning", "text-to-image", "stable-diffusion", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-08-18T10:59:48Z
--- license: apache-2.0 tags: - trl - o2o - diffusers - reinforcement-learning - text-to-image - stable-diffusion --- # TRL O2O Model This is a diffusion model that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for image generation conditioned with text.
Ransss/MN-Mystic-Rune-12B-Q8_0-GGUF
Ransss
2025-08-18T10:59:48Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:Vortex5/MN-Mystic-Rune-12B", "base_model:quantized:Vortex5/MN-Mystic-Rune-12B", "endpoints_compatible", "region:us" ]
null
2025-08-18T10:58:55Z
--- base_model: Vortex5/MN-Mystic-Rune-12B library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # Ransss/MN-Mystic-Rune-12B-Q8_0-GGUF This model was converted to GGUF format from [`Vortex5/MN-Mystic-Rune-12B`](https://huggingface.co/Vortex5/MN-Mystic-Rune-12B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Vortex5/MN-Mystic-Rune-12B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Ransss/MN-Mystic-Rune-12B-Q8_0-GGUF --hf-file mn-mystic-rune-12b-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Ransss/MN-Mystic-Rune-12B-Q8_0-GGUF --hf-file mn-mystic-rune-12b-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Ransss/MN-Mystic-Rune-12B-Q8_0-GGUF --hf-file mn-mystic-rune-12b-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Ransss/MN-Mystic-Rune-12B-Q8_0-GGUF --hf-file mn-mystic-rune-12b-q8_0.gguf -c 2048 ```
donoway/ARC-Easy_Llama-3.2-1B-l3w1y2gt
donoway
2025-08-18T10:53:58Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:meta-llama/Llama-3.2-1B", "base_model:finetune:meta-llama/Llama-3.2-1B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T10:32:36Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer metrics: - accuracy model-index: - name: ARC-Easy_Llama-3.2-1B-l3w1y2gt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ARC-Easy_Llama-3.2-1B-l3w1y2gt This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7675 - Model Preparation Time: 0.0056 - Mdl: 631.1500 - Accumulated Loss: 437.4799 - Correct Preds: 430.0 - Total Preds: 570.0 - Accuracy: 0.7544 - Correct Gen Preds: 430.0 - Gen Accuracy: 0.7544 - Correct Gen Preds 32: 120.0 - Correct Preds 32: 120.0 - Total Labels 32: 158.0 - Accuracy 32: 0.7595 - Gen Accuracy 32: 0.7595 - Correct Gen Preds 33: 118.0 - Correct Preds 33: 118.0 - Total Labels 33: 152.0 - Accuracy 33: 0.7763 - Gen Accuracy 33: 0.7763 - Correct Gen Preds 34: 110.0 - Correct Preds 34: 110.0 - Total Labels 34: 142.0 - Accuracy 34: 0.7746 - Gen Accuracy 34: 0.7746 - Correct Gen Preds 35: 82.0 - Correct Preds 35: 82.0 - Total Labels 35: 118.0 - Accuracy 35: 0.6949 - Gen Accuracy 35: 0.6949 - Correct Gen Preds 36: 0.0 - Correct Preds 36: 0.0 - Total Labels 36: 0.0 - Accuracy 36: 0.0 - Gen Accuracy 36: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 112 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.001 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Mdl | Accumulated Loss | Correct Preds | Total Preds | Accuracy | Correct Gen Preds | Gen Accuracy | Correct Gen Preds 32 | Correct Preds 32 | Total Labels 32 | Accuracy 32 | Gen Accuracy 32 | Correct Gen Preds 33 | Correct Preds 33 | Total Labels 33 | Accuracy 33 | Gen Accuracy 33 | Correct Gen Preds 34 | Correct Preds 34 | Total Labels 34 | Accuracy 34 | Gen Accuracy 34 | Correct Gen Preds 35 | Correct Preds 35 | Total Labels 35 | Accuracy 35 | Gen Accuracy 35 | Correct Gen Preds 36 | Correct Preds 36 | Total Labels 36 | Accuracy 36 | Gen Accuracy 36 | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:---------:|:----------------:|:-------------:|:-----------:|:--------:|:-----------------:|:------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:| | No log | 0 | 0 | 1.5354 | 0.0056 | 1262.6022 | 875.1692 | 172.0 | 570.0 | 0.3018 | 170.0 | 0.2982 | 154.0 | 154.0 | 158.0 | 0.9747 | 0.9747 | 0.0 | 0.0 | 152.0 | 0.0 | 0.0 | 15.0 | 17.0 | 142.0 | 0.1197 | 0.1056 | 1.0 | 1.0 | 118.0 | 0.0085 | 0.0085 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.8193 | 1.0 | 17 | 0.8399 | 0.0056 | 690.6870 | 478.7477 | 401.0 | 570.0 | 0.7035 | 401.0 | 0.7035 | 106.0 | 106.0 | 158.0 | 0.6709 | 0.6709 | 106.0 | 106.0 | 152.0 | 0.6974 | 0.6974 | 103.0 | 103.0 | 142.0 | 0.7254 | 0.7254 | 86.0 | 86.0 | 118.0 | 0.7288 | 0.7288 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.3755 | 2.0 | 34 | 0.7675 | 0.0056 | 631.1500 | 437.4799 | 430.0 | 570.0 | 0.7544 | 430.0 | 0.7544 | 120.0 | 120.0 | 158.0 | 0.7595 | 0.7595 | 118.0 | 118.0 | 152.0 | 0.7763 | 0.7763 | 110.0 | 110.0 | 142.0 | 0.7746 | 0.7746 | 82.0 | 82.0 | 118.0 | 0.6949 | 0.6949 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0673 | 3.0 | 51 | 0.9258 | 0.0056 | 761.2801 | 527.6791 | 425.0 | 570.0 | 0.7456 | 424.0 | 0.7439 | 113.0 | 114.0 | 158.0 | 0.7215 | 0.7152 | 123.0 | 123.0 | 152.0 | 0.8092 | 0.8092 | 113.0 | 113.0 | 142.0 | 0.7958 | 0.7958 | 75.0 | 75.0 | 118.0 | 0.6356 | 0.6356 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0163 | 4.0 | 68 | 1.1686 | 0.0056 | 961.0022 | 666.1160 | 410.0 | 570.0 | 0.7193 | 410.0 | 0.7193 | 125.0 | 125.0 | 158.0 | 0.7911 | 0.7911 | 113.0 | 113.0 | 152.0 | 0.7434 | 0.7434 | 105.0 | 105.0 | 142.0 | 0.7394 | 0.7394 | 67.0 | 67.0 | 118.0 | 0.5678 | 0.5678 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 5.0 | 85 | 2.5405 | 0.0056 | 2089.1473 | 1448.0865 | 406.0 | 570.0 | 0.7123 | 406.0 | 0.7123 | 99.0 | 99.0 | 158.0 | 0.6266 | 0.6266 | 129.0 | 129.0 | 152.0 | 0.8487 | 0.8487 | 102.0 | 102.0 | 142.0 | 0.7183 | 0.7183 | 76.0 | 76.0 | 118.0 | 0.6441 | 0.6441 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0219 | 6.0 | 102 | 2.1967 | 0.0056 | 1806.4444 | 1252.1318 | 418.0 | 570.0 | 0.7333 | 418.0 | 0.7333 | 127.0 | 127.0 | 158.0 | 0.8038 | 0.8038 | 105.0 | 105.0 | 152.0 | 0.6908 | 0.6908 | 110.0 | 110.0 | 142.0 | 0.7746 | 0.7746 | 76.0 | 76.0 | 118.0 | 0.6441 | 0.6441 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 7.0 | 119 | 2.6483 | 0.0056 | 2177.7596 | 1509.5079 | 414.0 | 570.0 | 0.7263 | 410.0 | 0.7193 | 101.0 | 103.0 | 158.0 | 0.6519 | 0.6392 | 125.0 | 125.0 | 152.0 | 0.8224 | 0.8224 | 106.0 | 107.0 | 142.0 | 0.7535 | 0.7465 | 78.0 | 79.0 | 118.0 | 0.6695 | 0.6610 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.185 | 8.0 | 136 | 2.2471 | 0.0056 | 1847.8903 | 1280.8600 | 415.0 | 570.0 | 0.7281 | 415.0 | 0.7281 | 129.0 | 129.0 | 158.0 | 0.8165 | 0.8165 | 123.0 | 123.0 | 152.0 | 0.8092 | 0.8092 | 101.0 | 101.0 | 142.0 | 0.7113 | 0.7113 | 62.0 | 62.0 | 118.0 | 0.5254 | 0.5254 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 9.0 | 153 | 2.7019 | 0.0056 | 2221.8581 | 1540.0747 | 418.0 | 570.0 | 0.7333 | 417.0 | 0.7316 | 112.0 | 113.0 | 158.0 | 0.7152 | 0.7089 | 131.0 | 131.0 | 152.0 | 0.8618 | 0.8618 | 103.0 | 103.0 | 142.0 | 0.7254 | 0.7254 | 71.0 | 71.0 | 118.0 | 0.6017 | 0.6017 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 10.0 | 170 | 2.7311 | 0.0056 | 2245.8859 | 1556.7295 | 418.0 | 570.0 | 0.7333 | 418.0 | 0.7333 | 116.0 | 116.0 | 158.0 | 0.7342 | 0.7342 | 122.0 | 122.0 | 152.0 | 0.8026 | 0.8026 | 106.0 | 106.0 | 142.0 | 0.7465 | 0.7465 | 74.0 | 74.0 | 118.0 | 0.6271 | 0.6271 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 11.0 | 187 | 2.7509 | 0.0056 | 2262.1718 | 1568.0180 | 419.0 | 570.0 | 0.7351 | 419.0 | 0.7351 | 116.0 | 116.0 | 158.0 | 0.7342 | 0.7342 | 121.0 | 121.0 | 152.0 | 0.7961 | 0.7961 | 108.0 | 108.0 | 142.0 | 0.7606 | 0.7606 | 74.0 | 74.0 | 118.0 | 0.6271 | 0.6271 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 12.0 | 204 | 2.7518 | 0.0056 | 2262.9076 | 1568.5280 | 419.0 | 570.0 | 0.7351 | 419.0 | 0.7351 | 116.0 | 116.0 | 158.0 | 0.7342 | 0.7342 | 121.0 | 121.0 | 152.0 | 0.7961 | 0.7961 | 108.0 | 108.0 | 142.0 | 0.7606 | 0.7606 | 74.0 | 74.0 | 118.0 | 0.6271 | 0.6271 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 13.0 | 221 | 2.7606 | 0.0056 | 2270.1255 | 1573.5311 | 419.0 | 570.0 | 0.7351 | 419.0 | 0.7351 | 116.0 | 116.0 | 158.0 | 0.7342 | 0.7342 | 121.0 | 121.0 | 152.0 | 0.7961 | 0.7961 | 108.0 | 108.0 | 142.0 | 0.7606 | 0.7606 | 74.0 | 74.0 | 118.0 | 0.6271 | 0.6271 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 14.0 | 238 | 2.7827 | 0.0056 | 2288.3338 | 1586.1521 | 420.0 | 570.0 | 0.7368 | 420.0 | 0.7368 | 116.0 | 116.0 | 158.0 | 0.7342 | 0.7342 | 122.0 | 122.0 | 152.0 | 0.8026 | 0.8026 | 108.0 | 108.0 | 142.0 | 0.7606 | 0.7606 | 74.0 | 74.0 | 118.0 | 0.6271 | 0.6271 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 15.0 | 255 | 2.7809 | 0.0056 | 2286.8709 | 1585.1381 | 419.0 | 570.0 | 0.7351 | 418.0 | 0.7333 | 115.0 | 116.0 | 158.0 | 0.7342 | 0.7278 | 121.0 | 121.0 | 152.0 | 0.7961 | 0.7961 | 108.0 | 108.0 | 142.0 | 0.7606 | 0.7606 | 74.0 | 74.0 | 118.0 | 0.6271 | 0.6271 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 16.0 | 272 | 2.7799 | 0.0056 | 2286.0110 | 1584.5421 | 419.0 | 570.0 | 0.7351 | 419.0 | 0.7351 | 116.0 | 116.0 | 158.0 | 0.7342 | 0.7342 | 121.0 | 121.0 | 152.0 | 0.7961 | 0.7961 | 108.0 | 108.0 | 142.0 | 0.7606 | 0.7606 | 74.0 | 74.0 | 118.0 | 0.6271 | 0.6271 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 17.0 | 289 | 2.7880 | 0.0056 | 2292.6855 | 1589.1685 | 420.0 | 570.0 | 0.7368 | 420.0 | 0.7368 | 116.0 | 116.0 | 158.0 | 0.7342 | 0.7342 | 122.0 | 122.0 | 152.0 | 0.8026 | 0.8026 | 108.0 | 108.0 | 142.0 | 0.7606 | 0.7606 | 74.0 | 74.0 | 118.0 | 0.6271 | 0.6271 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 18.0 | 306 | 2.8077 | 0.0056 | 2308.8692 | 1600.3861 | 420.0 | 570.0 | 0.7368 | 420.0 | 0.7368 | 116.0 | 116.0 | 158.0 | 0.7342 | 0.7342 | 122.0 | 122.0 | 152.0 | 0.8026 | 0.8026 | 108.0 | 108.0 | 142.0 | 0.7606 | 0.7606 | 74.0 | 74.0 | 118.0 | 0.6271 | 0.6271 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 19.0 | 323 | 2.8043 | 0.0056 | 2306.1110 | 1598.4744 | 419.0 | 570.0 | 0.7351 | 419.0 | 0.7351 | 116.0 | 116.0 | 158.0 | 0.7342 | 0.7342 | 121.0 | 121.0 | 152.0 | 0.7961 | 0.7961 | 108.0 | 108.0 | 142.0 | 0.7606 | 0.7606 | 74.0 | 74.0 | 118.0 | 0.6271 | 0.6271 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 20.0 | 340 | 2.8029 | 0.0056 | 2304.8923 | 1597.6296 | 419.0 | 570.0 | 0.7351 | 418.0 | 0.7333 | 115.0 | 116.0 | 158.0 | 0.7342 | 0.7278 | 121.0 | 121.0 | 152.0 | 0.7961 | 0.7961 | 108.0 | 108.0 | 142.0 | 0.7606 | 0.7606 | 74.0 | 74.0 | 118.0 | 0.6271 | 0.6271 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 21.0 | 357 | 2.8202 | 0.0056 | 2319.1354 | 1607.5022 | 419.0 | 570.0 | 0.7351 | 419.0 | 0.7351 | 116.0 | 116.0 | 158.0 | 0.7342 | 0.7342 | 121.0 | 121.0 | 152.0 | 0.7961 | 0.7961 | 108.0 | 108.0 | 142.0 | 0.7606 | 0.7606 | 74.0 | 74.0 | 118.0 | 0.6271 | 0.6271 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 22.0 | 374 | 2.8085 | 0.0056 | 2309.5375 | 1600.8494 | 420.0 | 570.0 | 0.7368 | 419.0 | 0.7351 | 115.0 | 116.0 | 158.0 | 0.7342 | 0.7278 | 122.0 | 122.0 | 152.0 | 0.8026 | 0.8026 | 108.0 | 108.0 | 142.0 | 0.7606 | 0.7606 | 74.0 | 74.0 | 118.0 | 0.6271 | 0.6271 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
myfi/parser_model_ner_3.57_checkpoint_250
myfi
2025-08-18T10:48:26Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/Qwen2.5-3B-Instruct", "base_model:finetune:unsloth/Qwen2.5-3B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T10:40:32Z
--- base_model: unsloth/Qwen2.5-3B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** myfi - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-3B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
VK13/Pixelcopter-PLE-v0_v3
VK13
2025-08-18T10:46:27Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2025-08-18T10:46:24Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-v0_v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: -3.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
MeowSky49887/VRM-Emotions
MeowSky49887
2025-08-18T10:45:04Z
0
0
null
[ "safetensors", "distilbert", "text-classification", "ja", "dataset:boltuix/emotions-dataset", "base_model:line-corporation/line-distilbert-base-japanese", "base_model:finetune:line-corporation/line-distilbert-base-japanese", "region:us" ]
text-classification
2025-08-18T10:37:48Z
--- datasets: - boltuix/emotions-dataset language: - ja base_model: - line-corporation/line-distilbert-base-japanese pipeline_tag: text-classification --- # VRM-Emotions --- ## 🌐 Introduction | 紹介 | บทนำ **English**: **VRM-Emotions** is a Japanese **Emotion Classification Model** fine-tuned from [`line-corporation/line-distilbert-base-japanese`] using the [`boltuix/emotions-dataset`]. The dataset was translated into Japanese using Google Translate, and only a subset of labels was trained to match **VRM Expressions** for use in VRM-compatible avatars. **日本語**: **VRM-Emotions** は、日本語の**感情分類モデル**です。 ベースモデルとして [`line-corporation/line-distilbert-base-japanese`] を使用し、[`boltuix/emotions-dataset`] を利用してファインチューニングしました。 データセットは Google 翻訳で日本語に変換され、VRM 対応アバターで使用できる **VRM Expressions** に合わせて一部のラベルのみを学習しました。 **ภาษาไทย**: **VRM-Emotions** เป็นโมเดล **การจำแนกอารมณ์ภาษาญี่ปุ่น** ที่ทำการ fine-tune มาจาก [`line-corporation/line-distilbert-base-japanese`] โดยใช้ [`boltuix/emotions-dataset`] ข้อมูลถูกแปลเป็นภาษาญี่ปุ่นด้วย Google Translate และทำการเทรนเฉพาะบางเลเบลให้ตรงกับ **VRM Expressions** เพื่อใช้งานกับอวาตาร์ที่รองรับ VRM --- ## 🙌 Credits | クレジット | เครดิต - Base model: [LINE Corporation – DistilBERT Japanese](https://huggingface.co/line-corporation/line-distilbert-base-japanese) - Dataset: [Boltuix – Emotions Dataset](https://huggingface.co/datasets/boltuix/emotions-dataset) - Adaptation & fine-tuning: **VRM-Emotions project** --- ## 📝 License | ライセンス | ใบอนุญาต - **LINE DistilBERT Japanese**: Licensed under [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0) - **Boltuix Emotions Dataset**: Licensed under [MIT License](https://opensource.org/licenses/MIT) - **VRM-Emotions (this fine-tuned model)**: Uses Japanese-translated data (via Google Translate) and is trained only on a subset of labels aligned with VRM Expressions. It inherits the license terms of both the base model and dataset. ---
abdulrahman245/dummy-model
abdulrahman245
2025-08-18T10:43:18Z
0
0
transformers
[ "transformers", "safetensors", "camembert", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2025-08-18T10:43:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755512259
lisaozill03
2025-08-18T10:42:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T10:42:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/wizard-s-experimental-photography-lab
Muapi
2025-08-18T10:38:56Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-18T10:38:45Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Wizard's Experimental Photography Lab ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Experimental portrait photography, spliced and rearranged, multiplied, melted ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1013496@1136204", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
neural-interactive-proofs/finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_both_2_rounds_1_1_iter_0_prover1_
neural-interactive-proofs
2025-08-18T10:36:31Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "dpo", "arxiv:2305.18290", "base_model:Qwen/Qwen2.5-32B-Instruct", "base_model:finetune:Qwen/Qwen2.5-32B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-18T10:35:35Z
--- base_model: Qwen/Qwen2.5-32B-Instruct library_name: transformers model_name: finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_both_2_rounds_1_1_iter_0_prover1_ tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_both_2_rounds_1_1_iter_0_prover1_ This model is a fine-tuned version of [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="neural-interactive-proofs/finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_both_2_rounds_1_1_iter_0_prover1_", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/lrhammond-team/pvg-self-hosted-finetune/runs/qwen2_5-32b-instruct_dpo_2025-08-18_11-10-00_cv_qwen2.5_32B_prover_debate_both_2_rounds_1_1_iter_0_prover1) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.18.2 - Transformers: 4.53.2 - Pytorch: 2.7.0 - Datasets: 3.0.0 - Tokenizers: 0.21.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
BurgerTruck/mnli-all-bart
BurgerTruck
2025-08-18T10:35:37Z
95
0
transformers
[ "transformers", "safetensors", "bart", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-07-25T06:05:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
BurgerTruck/distilbart-classifier
BurgerTruck
2025-08-18T10:34:49Z
7
0
transformers
[ "transformers", "safetensors", "bart", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-02-14T09:05:59Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kefir090/create_model
kefir090
2025-08-18T10:33:49Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-18T10:33:40Z
--- base_model: unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** kefir090 - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
donoway/ARC-Easy_Llama-3.2-1B-xc26qld6
donoway
2025-08-18T10:32:25Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:meta-llama/Llama-3.2-1B", "base_model:finetune:meta-llama/Llama-3.2-1B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T10:03:31Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer metrics: - accuracy model-index: - name: ARC-Easy_Llama-3.2-1B-xc26qld6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ARC-Easy_Llama-3.2-1B-xc26qld6 This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.9012 - Model Preparation Time: 0.0061 - Mdl: 2385.7544 - Accumulated Loss: 1653.6789 - Correct Preds: 415.0 - Total Preds: 570.0 - Accuracy: 0.7281 - Correct Gen Preds: 226.0 - Gen Accuracy: 0.3965 - Correct Gen Preds 32: 6.0 - Correct Preds 32: 123.0 - Total Labels 32: 158.0 - Accuracy 32: 0.7785 - Gen Accuracy 32: 0.0380 - Correct Gen Preds 33: 103.0 - Correct Preds 33: 112.0 - Total Labels 33: 152.0 - Accuracy 33: 0.7368 - Gen Accuracy 33: 0.6776 - Correct Gen Preds 34: 74.0 - Correct Preds 34: 112.0 - Total Labels 34: 142.0 - Accuracy 34: 0.7887 - Gen Accuracy 34: 0.5211 - Correct Gen Preds 35: 43.0 - Correct Preds 35: 68.0 - Total Labels 35: 118.0 - Accuracy 35: 0.5763 - Gen Accuracy 35: 0.3644 - Correct Gen Preds 36: 0.0 - Correct Preds 36: 0.0 - Total Labels 36: 0.0 - Accuracy 36: 0.0 - Gen Accuracy 36: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 112 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.001 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Mdl | Accumulated Loss | Correct Preds | Total Preds | Accuracy | Correct Gen Preds | Gen Accuracy | Correct Gen Preds 32 | Correct Preds 32 | Total Labels 32 | Accuracy 32 | Gen Accuracy 32 | Correct Gen Preds 33 | Correct Preds 33 | Total Labels 33 | Accuracy 33 | Gen Accuracy 33 | Correct Gen Preds 34 | Correct Preds 34 | Total Labels 34 | Accuracy 34 | Gen Accuracy 34 | Correct Gen Preds 35 | Correct Preds 35 | Total Labels 35 | Accuracy 35 | Gen Accuracy 35 | Correct Gen Preds 36 | Correct Preds 36 | Total Labels 36 | Accuracy 36 | Gen Accuracy 36 | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:---------:|:----------------:|:-------------:|:-----------:|:--------:|:-----------------:|:------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:| | No log | 0 | 0 | 1.5354 | 0.0061 | 1262.6022 | 875.1692 | 172.0 | 570.0 | 0.3018 | 170.0 | 0.2982 | 154.0 | 154.0 | 158.0 | 0.9747 | 0.9747 | 0.0 | 0.0 | 152.0 | 0.0 | 0.0 | 15.0 | 17.0 | 142.0 | 0.1197 | 0.1056 | 1.0 | 1.0 | 118.0 | 0.0085 | 0.0085 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.0782 | 1.0 | 15 | 0.8806 | 0.0061 | 724.1325 | 501.9304 | 395.0 | 570.0 | 0.6930 | 0.0 | 0.0 | 0.0 | 111.0 | 158.0 | 0.7025 | 0.0 | 0.0 | 99.0 | 152.0 | 0.6513 | 0.0 | 0.0 | 110.0 | 142.0 | 0.7746 | 0.0 | 0.0 | 75.0 | 118.0 | 0.6356 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.6705 | 2.0 | 30 | 0.8447 | 0.0061 | 694.6422 | 481.4893 | 394.0 | 570.0 | 0.6912 | 0.0 | 0.0 | 0.0 | 89.0 | 158.0 | 0.5633 | 0.0 | 0.0 | 112.0 | 152.0 | 0.7368 | 0.0 | 0.0 | 114.0 | 142.0 | 0.8028 | 0.0 | 0.0 | 79.0 | 118.0 | 0.6695 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.2979 | 3.0 | 45 | 1.0292 | 0.0061 | 846.3429 | 586.6402 | 402.0 | 570.0 | 0.7053 | 0.0 | 0.0 | 0.0 | 113.0 | 158.0 | 0.7152 | 0.0 | 0.0 | 118.0 | 152.0 | 0.7763 | 0.0 | 0.0 | 103.0 | 142.0 | 0.7254 | 0.0 | 0.0 | 68.0 | 118.0 | 0.5763 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.2678 | 4.0 | 60 | 1.5881 | 0.0061 | 1305.9724 | 905.2311 | 393.0 | 570.0 | 0.6895 | 0.0 | 0.0 | 0.0 | 127.0 | 158.0 | 0.8038 | 0.0 | 0.0 | 114.0 | 152.0 | 0.75 | 0.0 | 0.0 | 89.0 | 142.0 | 0.6268 | 0.0 | 0.0 | 63.0 | 118.0 | 0.5339 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.1021 | 5.0 | 75 | 1.8729 | 0.0061 | 1540.1515 | 1067.5517 | 404.0 | 570.0 | 0.7088 | 0.0 | 0.0 | 0.0 | 102.0 | 158.0 | 0.6456 | 0.0 | 0.0 | 101.0 | 152.0 | 0.6645 | 0.0 | 0.0 | 118.0 | 142.0 | 0.8310 | 0.0 | 0.0 | 83.0 | 118.0 | 0.7034 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0009 | 6.0 | 90 | 2.9155 | 0.0061 | 2397.5041 | 1661.8232 | 412.0 | 570.0 | 0.7228 | 59.0 | 0.1035 | 0.0 | 107.0 | 158.0 | 0.6772 | 0.0 | 59.0 | 116.0 | 152.0 | 0.7632 | 0.3882 | 0.0 | 112.0 | 142.0 | 0.7887 | 0.0 | 0.0 | 77.0 | 118.0 | 0.6525 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 7.0 | 105 | 3.3063 | 0.0061 | 2718.8587 | 1884.5693 | 404.0 | 570.0 | 0.7088 | 211.0 | 0.3702 | 2.0 | 98.0 | 158.0 | 0.6203 | 0.0127 | 116.0 | 125.0 | 152.0 | 0.8224 | 0.7632 | 69.0 | 112.0 | 142.0 | 0.7887 | 0.4859 | 24.0 | 69.0 | 118.0 | 0.5847 | 0.2034 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0002 | 8.0 | 120 | 2.9012 | 0.0061 | 2385.7544 | 1653.6789 | 415.0 | 570.0 | 0.7281 | 226.0 | 0.3965 | 6.0 | 123.0 | 158.0 | 0.7785 | 0.0380 | 103.0 | 112.0 | 152.0 | 0.7368 | 0.6776 | 74.0 | 112.0 | 142.0 | 0.7887 | 0.5211 | 43.0 | 68.0 | 118.0 | 0.5763 | 0.3644 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0044 | 9.0 | 135 | 2.4787 | 0.0061 | 2038.3538 | 1412.8792 | 410.0 | 570.0 | 0.7193 | 232.0 | 0.4070 | 2.0 | 108.0 | 158.0 | 0.6835 | 0.0127 | 103.0 | 114.0 | 152.0 | 0.75 | 0.6776 | 81.0 | 116.0 | 142.0 | 0.8169 | 0.5704 | 46.0 | 72.0 | 118.0 | 0.6102 | 0.3898 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0001 | 10.0 | 150 | 2.8459 | 0.0061 | 2340.2525 | 1622.1394 | 411.0 | 570.0 | 0.7211 | 285.0 | 0.5 | 21.0 | 96.0 | 158.0 | 0.6076 | 0.1329 | 104.0 | 117.0 | 152.0 | 0.7697 | 0.6842 | 104.0 | 119.0 | 142.0 | 0.8380 | 0.7324 | 56.0 | 79.0 | 118.0 | 0.6695 | 0.4746 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0002 | 11.0 | 165 | 3.0387 | 0.0061 | 2498.8154 | 1732.0469 | 405.0 | 570.0 | 0.7105 | 356.0 | 0.6246 | 70.0 | 106.0 | 158.0 | 0.6709 | 0.4430 | 114.0 | 118.0 | 152.0 | 0.7763 | 0.75 | 108.0 | 111.0 | 142.0 | 0.7817 | 0.7606 | 64.0 | 70.0 | 118.0 | 0.5932 | 0.5424 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 12.0 | 180 | 3.1544 | 0.0061 | 2593.9363 | 1797.9796 | 405.0 | 570.0 | 0.7105 | 377.0 | 0.6614 | 82.0 | 109.0 | 158.0 | 0.6899 | 0.5190 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 109.0 | 109.0 | 142.0 | 0.7676 | 0.7676 | 66.0 | 67.0 | 118.0 | 0.5678 | 0.5593 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 13.0 | 195 | 3.1696 | 0.0061 | 2606.4974 | 1806.6863 | 407.0 | 570.0 | 0.7140 | 385.0 | 0.6754 | 86.0 | 108.0 | 158.0 | 0.6835 | 0.5443 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 111.0 | 111.0 | 142.0 | 0.7817 | 0.7817 | 68.0 | 68.0 | 118.0 | 0.5763 | 0.5763 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 14.0 | 210 | 3.1936 | 0.0061 | 2626.1842 | 1820.3322 | 405.0 | 570.0 | 0.7105 | 387.0 | 0.6789 | 88.0 | 106.0 | 158.0 | 0.6709 | 0.5570 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 110.0 | 110.0 | 142.0 | 0.7746 | 0.7746 | 69.0 | 69.0 | 118.0 | 0.5847 | 0.5847 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 15.0 | 225 | 3.1623 | 0.0061 | 2600.4985 | 1802.5282 | 410.0 | 570.0 | 0.7193 | 389.0 | 0.6825 | 87.0 | 108.0 | 158.0 | 0.6835 | 0.5506 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 112.0 | 112.0 | 142.0 | 0.7887 | 0.7887 | 70.0 | 70.0 | 118.0 | 0.5932 | 0.5932 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 16.0 | 240 | 3.1958 | 0.0061 | 2628.0486 | 1821.6245 | 409.0 | 570.0 | 0.7175 | 388.0 | 0.6807 | 89.0 | 108.0 | 158.0 | 0.6835 | 0.5633 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 110.0 | 111.0 | 142.0 | 0.7817 | 0.7746 | 69.0 | 70.0 | 118.0 | 0.5932 | 0.5847 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 17.0 | 255 | 3.1951 | 0.0061 | 2627.4330 | 1821.1978 | 408.0 | 570.0 | 0.7158 | 386.0 | 0.6772 | 88.0 | 108.0 | 158.0 | 0.6835 | 0.5570 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 109.0 | 110.0 | 142.0 | 0.7746 | 0.7676 | 69.0 | 70.0 | 118.0 | 0.5932 | 0.5847 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 18.0 | 270 | 3.1887 | 0.0061 | 2622.1541 | 1817.5387 | 405.0 | 570.0 | 0.7105 | 383.0 | 0.6719 | 87.0 | 107.0 | 158.0 | 0.6772 | 0.5506 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 108.0 | 109.0 | 142.0 | 0.7676 | 0.7606 | 68.0 | 69.0 | 118.0 | 0.5847 | 0.5763 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 19.0 | 285 | 3.1854 | 0.0061 | 2619.4677 | 1815.6767 | 409.0 | 570.0 | 0.7175 | 389.0 | 0.6825 | 89.0 | 108.0 | 158.0 | 0.6835 | 0.5633 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 110.0 | 111.0 | 142.0 | 0.7817 | 0.7746 | 70.0 | 70.0 | 118.0 | 0.5932 | 0.5932 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 20.0 | 300 | 3.2024 | 0.0061 | 2633.4221 | 1825.3491 | 407.0 | 570.0 | 0.7140 | 385.0 | 0.6754 | 87.0 | 107.0 | 158.0 | 0.6772 | 0.5506 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 108.0 | 110.0 | 142.0 | 0.7746 | 0.7606 | 70.0 | 70.0 | 118.0 | 0.5932 | 0.5932 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 21.0 | 315 | 3.2060 | 0.0061 | 2636.4040 | 1827.4160 | 403.0 | 570.0 | 0.7070 | 386.0 | 0.6772 | 89.0 | 106.0 | 158.0 | 0.6709 | 0.5633 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 108.0 | 108.0 | 142.0 | 0.7606 | 0.7606 | 69.0 | 69.0 | 118.0 | 0.5847 | 0.5847 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 22.0 | 330 | 3.1978 | 0.0061 | 2629.6576 | 1822.7397 | 408.0 | 570.0 | 0.7158 | 387.0 | 0.6789 | 88.0 | 107.0 | 158.0 | 0.6772 | 0.5570 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 110.0 | 111.0 | 142.0 | 0.7817 | 0.7746 | 69.0 | 70.0 | 118.0 | 0.5932 | 0.5847 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 23.0 | 345 | 3.2004 | 0.0061 | 2631.8114 | 1824.2326 | 408.0 | 570.0 | 0.7158 | 386.0 | 0.6772 | 89.0 | 109.0 | 158.0 | 0.6899 | 0.5633 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 107.0 | 109.0 | 142.0 | 0.7676 | 0.7535 | 70.0 | 70.0 | 118.0 | 0.5932 | 0.5932 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 24.0 | 360 | 3.1856 | 0.0061 | 2619.6676 | 1815.8152 | 405.0 | 570.0 | 0.7105 | 385.0 | 0.6754 | 87.0 | 106.0 | 158.0 | 0.6709 | 0.5506 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 109.0 | 110.0 | 142.0 | 0.7746 | 0.7676 | 69.0 | 69.0 | 118.0 | 0.5847 | 0.5847 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 25.0 | 375 | 3.1994 | 0.0061 | 2630.9994 | 1823.6698 | 408.0 | 570.0 | 0.7158 | 389.0 | 0.6825 | 88.0 | 107.0 | 158.0 | 0.6772 | 0.5570 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 112.0 | 112.0 | 142.0 | 0.7887 | 0.7887 | 69.0 | 69.0 | 118.0 | 0.5847 | 0.5847 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 26.0 | 390 | 3.2091 | 0.0061 | 2638.9259 | 1829.1640 | 406.0 | 570.0 | 0.7123 | 384.0 | 0.6737 | 87.0 | 107.0 | 158.0 | 0.6772 | 0.5506 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 108.0 | 110.0 | 142.0 | 0.7746 | 0.7606 | 69.0 | 69.0 | 118.0 | 0.5847 | 0.5847 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 27.0 | 405 | 3.2149 | 0.0061 | 2643.7430 | 1832.5030 | 406.0 | 570.0 | 0.7123 | 388.0 | 0.6807 | 88.0 | 105.0 | 158.0 | 0.6646 | 0.5570 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 112.0 | 113.0 | 142.0 | 0.7958 | 0.7887 | 68.0 | 68.0 | 118.0 | 0.5763 | 0.5763 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 28.0 | 420 | 3.2152 | 0.0061 | 2643.9757 | 1832.6643 | 408.0 | 570.0 | 0.7158 | 390.0 | 0.6842 | 90.0 | 108.0 | 158.0 | 0.6835 | 0.5696 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 111.0 | 111.0 | 142.0 | 0.7817 | 0.7817 | 69.0 | 69.0 | 118.0 | 0.5847 | 0.5847 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 29.0 | 435 | 3.2105 | 0.0061 | 2640.1343 | 1830.0016 | 409.0 | 570.0 | 0.7175 | 390.0 | 0.6842 | 89.0 | 108.0 | 158.0 | 0.6835 | 0.5633 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 111.0 | 111.0 | 142.0 | 0.7817 | 0.7817 | 70.0 | 70.0 | 118.0 | 0.5932 | 0.5932 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 30.0 | 450 | 3.2265 | 0.0061 | 2653.2736 | 1839.1091 | 408.0 | 570.0 | 0.7158 | 389.0 | 0.6825 | 89.0 | 108.0 | 158.0 | 0.6835 | 0.5633 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 109.0 | 109.0 | 142.0 | 0.7676 | 0.7676 | 71.0 | 71.0 | 118.0 | 0.6017 | 0.6017 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 31.0 | 465 | 3.2205 | 0.0061 | 2648.3636 | 1835.7057 | 409.0 | 570.0 | 0.7175 | 390.0 | 0.6842 | 90.0 | 108.0 | 158.0 | 0.6835 | 0.5696 | 121.0 | 121.0 | 152.0 | 0.7961 | 0.7961 | 109.0 | 110.0 | 142.0 | 0.7746 | 0.7676 | 70.0 | 70.0 | 118.0 | 0.5932 | 0.5932 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
Muapi/hidden-worlds
Muapi
2025-08-18T10:30:28Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-18T10:29:22Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Hidden Worlds ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: hidden world inside of ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1092670@1326179", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
joanna302/Qwen3-8B-Base_zh_ar_alpaca_1_part_SFT_2e-05
joanna302
2025-08-18T10:26:10Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "unsloth", "sft", "trl", "conversational", "base_model:unsloth/Qwen3-8B-Base", "base_model:finetune:unsloth/Qwen3-8B-Base", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T06:33:51Z
--- base_model: unsloth/Qwen3-8B-Base library_name: transformers model_name: Qwen3-8B-Base_zh_ar_alpaca_1_part_SFT_2e-05 tags: - generated_from_trainer - unsloth - sft - trl licence: license --- # Model Card for Qwen3-8B-Base_zh_ar_alpaca_1_part_SFT_2e-05 This model is a fine-tuned version of [unsloth/Qwen3-8B-Base](https://huggingface.co/unsloth/Qwen3-8B-Base). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="joanna302/Qwen3-8B-Base_zh_ar_alpaca_1_part_SFT_2e-05", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/prism-eval/Qwen3-8B-Base_zh_ar_alpaca_1_part_SFT_2e-05/runs/ax384cll) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
joanna302/Qwen3-8B-Base_zh_ar_alpaca_1_part_SFT_0.0002
joanna302
2025-08-18T10:25:57Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "sft", "trl", "unsloth", "conversational", "base_model:unsloth/Qwen3-8B-Base", "base_model:finetune:unsloth/Qwen3-8B-Base", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T06:35:16Z
--- base_model: unsloth/Qwen3-8B-Base library_name: transformers model_name: Qwen3-8B-Base_zh_ar_alpaca_1_part_SFT_0.0002 tags: - generated_from_trainer - sft - trl - unsloth licence: license --- # Model Card for Qwen3-8B-Base_zh_ar_alpaca_1_part_SFT_0.0002 This model is a fine-tuned version of [unsloth/Qwen3-8B-Base](https://huggingface.co/unsloth/Qwen3-8B-Base). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="joanna302/Qwen3-8B-Base_zh_ar_alpaca_1_part_SFT_0.0002", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/prism-eval/Qwen3-8B-Base_zh_ar_alpaca_1_part_SFT_0.0002/runs/hmynwyv8) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
mahwizzzz/tinygemma-Urdu
mahwizzzz
2025-08-18T10:23:06Z
0
0
null
[ "arxiv:2503.19786", "arxiv:1910.07467", "arxiv:2104.09864", "arxiv:2305.13245", "arxiv:2002.05202", "license:mit", "region:us" ]
null
2025-08-18T09:54:07Z
--- license: mit --- # tinyGemma Urdu Trained a 0.96 million parameters Urdu Gemma. - **Gemma Paper**: https://arxiv.org/abs/2503.19786 - Core architecture and design principles - **RMSNorm**: https://arxiv.org/abs/1910.07467 - Root Mean Square Layer Normalization - **RoPE**: https://arxiv.org/abs/2104.09864 - Rotary Position Embedding methodology - **Grouped Query Attention**: https://arxiv.org/abs/2305.13245 - Memory efficient attention mechanism - **SwiGLU/GELU**: https://arxiv.org/abs/2002.05202 - Gated linear unit activations ## Architecture A version of Google's Gemma architecture with the following components as defined in `GemmaConfig`: - **GemmaAttention**: Multi-head attention with grouped query attention (num_queries_per_kv), RoPE positional embeddings via `apply_rotary_emb()`, and causal masking using pre-computed triangular mask - **GemmaMLP**: Feed-forward network with GELU activation implementing gate_proj * up_proj gating mechanism through down_proj - **GemmaDecoderLayer**: Transformer block combining self_attn and mlp with pre-normalization using RMSNorm - **RMSNorm**: Root Mean Square Layer Normalization with optional unit offset (add_unit_offset=True) and learnable weight parameter - **tinyGemma**: Complete model with embedder scaled by sqrt(hidden_size) and tied weights for language modeling head - ## Training Results Achieved convergence on Urdu corpus with the following performance metrics: ``` Final Training Metrics (5000 iterations): - Training Loss: 2.7668 - Validation Loss: 2.9250 - Validation Perplexity: 18.6348 - Learning Rate: 3e-4 with AdamW optimizer - Batch Size: 16 with 2 gradient accumulation steps ``` ### Loss Curves ![Train and Val loss curves](loss.png) ## License MIT License
wasabuko/blockassist-bc-noisy_zealous_macaw_1755510000
wasabuko
2025-08-18T10:22:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "noisy zealous macaw", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T10:19:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - noisy zealous macaw --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755510876
sampingkaca72
2025-08-18T10:20:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T10:20:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/midjourney-lucid-dreams-flux-lora
Muapi
2025-08-18T10:17:32Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-18T10:17:14Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Midjourney Lucid Dreams FLUX LoRA ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:766733@857586", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
a1024053774/a2c-PandaReachDense-v3
a1024053774
2025-08-18T10:15:59Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-08-18T10:09:35Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.21 +/- 0.11 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nightmedia/Jan-v1-4B-qx6-hi-mlx
nightmedia
2025-08-18T10:13:23Z
0
0
mlx
[ "mlx", "safetensors", "qwen3", "text-generation", "conversational", "en", "base_model:janhq/Jan-v1-4B", "base_model:quantized:janhq/Jan-v1-4B", "license:apache-2.0", "4-bit", "region:us" ]
text-generation
2025-08-18T09:59:10Z
--- license: apache-2.0 language: - en base_model: janhq/Jan-v1-4B pipeline_tag: text-generation library_name: mlx tags: - mlx --- # Jan-v1-4B-qx6-hi-mlx This model [Jan-v1-4B-qx6-hi-mlx](https://huggingface.co/Jan-v1-4B-qx6-hi-mlx) was converted to MLX format from [janhq/Jan-v1-4B](https://huggingface.co/janhq/Jan-v1-4B) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("Jan-v1-4B-qx6-hi-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
Dejiat/blockassist-bc-savage_unseen_bobcat_1755511948
Dejiat
2025-08-18T10:13:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T10:13:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rohannath/AI_Doctor_using_llama_merged
rohannath
2025-08-18T10:09:38Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T10:07:11Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ojuw/blockassist-bc-long_beaked_ibis_1755511591
ojuw
2025-08-18T10:08:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "long beaked ibis", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T10:08:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - long beaked ibis --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1755511673
Dejiat
2025-08-18T10:08:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T10:08:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thanobidex/blockassist-bc-colorful_shiny_hare_1755509778
thanobidex
2025-08-18T10:04:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T10:04:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1755511369
Dejiat
2025-08-18T10:03:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T10:03:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
indoempatnol/blockassist-bc-fishy_wary_swan_1755509568
indoempatnol
2025-08-18T09:59:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T09:59:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Ousby75/textClassification
Ousby75
2025-08-18T09:57:09Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-18T09:57:09Z
--- license: apache-2.0 ---