modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-19 12:29:15
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
513 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-19 12:27:50
card
stringlengths
11
1.01M
yihong1120/Construction-Hazard-Detection-YOLO11
yihong1120
2025-08-18T14:11:02Z
0
0
ultralytics
[ "ultralytics", "onnx", "object-detection", "yolo11", "pytorch", "construction-safety", "hazard-detection", "en", "dataset:custom", "license:agpl-3.0", "region:us" ]
object-detection
2025-08-18T04:33:20Z
--- license: agpl-3.0 library_name: ultralytics language: - en tags: - object-detection - yolo11 - ultralytics - pytorch - onnx - construction-safety - hazard-detection datasets: - custom --- # Construction-Hazard-Detection-YOLO11 YOLO11-based models for construction-site hazard detection. These models detect: - Workers without helmets and/or safety vests - Workers near machinery or vehicles - Workers in restricted areas (derived from safety cone clustering) - Machinery/vehicles near utility poles This repository provides ready-to-use weights in PyTorch (.pt) and ONNX (.onnx) formats, a demo image, and the class label mapping for easy integration. 👉 For the full end-to-end system (APIs, web UI, training, evaluation, data tools), see the main project: https://github.com/yihong1120/Construction-Hazard-Detection ![demo](./data/examples/demo.jpg) ## Labels Index-to-name mapping used across all provided models (also in `class_names.txt`): ``` 0: Hardhat 1: Mask 2: NO-Hardhat 3: NO-Mask 4: NO-Safety Vest 5: Person 6: Safety Cone 7: Safety Vest 8: Machinery 9: Utility Pole 10: Vehicle ``` ## Available models - PyTorch (Ultralytics): - `models/pt/best_yolo11n.pt` - `models/pt/best_yolo11s.pt` - `models/pt/best_yolo11m.pt` - `models/pt/best_yolo11l.pt` - `models/pt/best_yolo11x.pt` - ONNX: - `models/onnx/best_yolo11n.onnx` - `models/onnx/best_yolo11s.onnx` - `models/onnx/best_yolo11m.onnx` - `models/onnx/best_yolo11l.onnx` - `models/onnx/best_yolo11x.onnx` Large binaries are tracked with Git LFS. ## Quick start ### A) Ultralytics (PyTorch) ```python from ultralytics import YOLO # Load a model (choose the variant that fits your needs) model = YOLO("models/pt/best_yolo11x.pt") # Inference on the demo image results = model("data/examples/demo.jpg", imgsz=640, conf=0.25) # Parse results (first image) res = results[0] boxes = res.boxes # xyxy, confidence, class for xyxy, conf, cls_id in zip(boxes.xyxy.tolist(), boxes.conf.tolist(), boxes.cls.tolist()): print(xyxy, conf, int(cls_id)) ``` CLI option: ```bash yolo predict model=models/pt/best_yolo11x.pt source=data/examples/demo.jpg imgsz=640 conf=0.25 ``` ### B) ONNX Runtime ```python import cv2 import numpy as np import onnxruntime as ort # Load and preprocess image to 640x640 img = cv2.imread("data/examples/demo.jpg") img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) size = 640 inp = cv2.resize(img_rgb, (size, size)).astype(np.float32) / 255.0 inp = np.transpose(inp, (2, 0, 1))[None, ...] # 1x3x640x640 # Run ONNX model session = ort.InferenceSession("models/onnx/best_yolo11x.onnx", providers=["CPUExecutionProvider"]) input_name = session.get_inputs()[0].name outputs = session.run(None, {input_name: inp}) pred = outputs[0] # Typically (1, N, no) print(pred.shape) ``` Post-processing (NMS, scaling back to original image) follows standard Ultralytics/YOLO routines. ## File structure ``` . ├─ README.md ├─ LICENSE ├─ models/ │ ├─ pt/ │ │ ├─ best_yolo11n.pt │ │ ├─ best_yolo11s.pt │ │ ├─ best_yolo11m.pt │ │ ├─ best_yolo11l.pt │ │ └─ best_yolo11x.pt │ └─ onnx/ │ ├─ best_yolo11n.onnx │ ├─ best_yolo11s.onnx │ ├─ best_yolo11m.onnx │ ├─ best_yolo11l.onnx │ └─ best_yolo11x.onnx ├─ data/ │ └─ examples/ │ └─ demo.jpg └─ class_names.txt ``` ## Intended use and limitations - Intended for research and prototyping in construction safety monitoring. - Performance depends on camera viewpoint, lighting, occlusion, and domain gap. - For production, evaluate thoroughly on your target environment and consider rule-based filters and tracking. ## Acknowledgements and sources - Main project and docs: https://github.com/yihong1120/Construction-Hazard-Detection - Dataset concept inspired by Roboflow construction safety datasets with extended annotations. - Roboflow dataset: https://app.roboflow.com/object-detection-qn97p/construction-hazard-detection - Models trained/exported using Ultralytics YOLO. ## License This repository is distributed under the AGPL-3.0 license. See `LICENSE` for details and ensure compliance, especially for networked deployments.
Alonc/device_to_cve_tokenizer
Alonc
2025-08-18T14:08:52Z
0
0
transformers
[ "transformers", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-18T14:08:51Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Alonc/device_to_cve_model
Alonc
2025-08-18T14:08:51Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-18T14:08:47Z
--- base_model: unsloth/qwen3-14b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Alonc - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen3-14b-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mohda/blockassist-bc-regal_fierce_hummingbird_1755526002
mohda
2025-08-18T14:07:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal fierce hummingbird", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T14:07:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal fierce hummingbird --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
JWHaHa/Qwen2.5-7B-Instruct-SCGF-GGUF
JWHaHa
2025-08-18T14:06:36Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-18T14:06:23Z
--- base_model: unsloth/qwen2.5-7b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** JWHaHa - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-7b-instruct-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
bankimds/blockassist-bc-padded_scented_otter_1755522821
bankimds
2025-08-18T14:06:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "padded scented otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T14:06:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - padded scented otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
abcorrea/p2-v5
abcorrea
2025-08-18T14:03:39Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:abcorrea/p2-v4", "base_model:finetune:abcorrea/p2-v4", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T13:31:38Z
--- base_model: abcorrea/p2-v4 library_name: transformers model_name: p2-v5 tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for p2-v5 This model is a fine-tuned version of [abcorrea/p2-v4](https://huggingface.co/abcorrea/p2-v4). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="abcorrea/p2-v5", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.19.1 - Transformers: 4.52.1 - Pytorch: 2.7.0 - Datasets: 4.0.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
drush8/Qwen3-1.7B-INT4
drush8
2025-08-18T14:02:21Z
0
0
transformers
[ "transformers", "pytorch", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "torchao", "region:us" ]
text-generation
2025-08-18T14:02:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
zehuajun/Huihui-Qwen3-30B-A3B-Thinking-2507-abliterated-Q4_K_M-GGUF
zehuajun
2025-08-18T14:01:37Z
0
0
transformers
[ "transformers", "gguf", "abliterated", "uncensored", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:huihui-ai/Huihui-Qwen3-30B-A3B-Thinking-2507-abliterated", "base_model:quantized:huihui-ai/Huihui-Qwen3-30B-A3B-Thinking-2507-abliterated", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T14:00:22Z
--- license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-30B-A3B-Thinking-2507/blob/main/LICENSE language: - en base_model: huihui-ai/Huihui-Qwen3-30B-A3B-Thinking-2507-abliterated pipeline_tag: text-generation library_name: transformers tags: - abliterated - uncensored - llama-cpp - gguf-my-repo --- # zehuajun/Huihui-Qwen3-30B-A3B-Thinking-2507-abliterated-Q4_K_M-GGUF This model was converted to GGUF format from [`huihui-ai/Huihui-Qwen3-30B-A3B-Thinking-2507-abliterated`](https://huggingface.co/huihui-ai/Huihui-Qwen3-30B-A3B-Thinking-2507-abliterated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/huihui-ai/Huihui-Qwen3-30B-A3B-Thinking-2507-abliterated) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo zehuajun/Huihui-Qwen3-30B-A3B-Thinking-2507-abliterated-Q4_K_M-GGUF --hf-file huihui-qwen3-30b-a3b-thinking-2507-abliterated-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo zehuajun/Huihui-Qwen3-30B-A3B-Thinking-2507-abliterated-Q4_K_M-GGUF --hf-file huihui-qwen3-30b-a3b-thinking-2507-abliterated-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo zehuajun/Huihui-Qwen3-30B-A3B-Thinking-2507-abliterated-Q4_K_M-GGUF --hf-file huihui-qwen3-30b-a3b-thinking-2507-abliterated-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo zehuajun/Huihui-Qwen3-30B-A3B-Thinking-2507-abliterated-Q4_K_M-GGUF --hf-file huihui-qwen3-30b-a3b-thinking-2507-abliterated-q4_k_m.gguf -c 2048 ```
tencent/Hunyuan3D-2.1
tencent
2025-08-18T14:01:08Z
61,449
624
hunyuan3d-2
[ "hunyuan3d-2", "diffusers", "safetensors", "image-to-3d", "text-to-3d", "en", "zh", "arxiv:2506.15442", "arxiv:2501.12202", "arxiv:2411.02293", "license:other", "region:us" ]
image-to-3d
2025-06-13T16:10:02Z
--- library_name: hunyuan3d-2 license: other license_name: tencent-hunyuan-community license_link: https://github.com/Tencent-Hunyuan/Hunyuan3D-2.1/blob/main/LICENSE language: - en - zh tags: - image-to-3d - text-to-3d pipeline_tag: image-to-3d extra_gated_eu_disallowed: true --- <p align="center"> <img src="https://raw.githubusercontent.com/Tencent-Hunyuan/Hunyuan3D-2.1/refs/heads/main/assets/images/teaser.jpg"> </p> <div align="center"> <a href=https://3d.hunyuan.tencent.com target="_blank"><img src=https://img.shields.io/badge/Hunyuan3D-black.svg?logo=homepage height=22px></a> <a href=https://huggingface.co/spaces/tencent/Hunyuan3D-2.1 target="_blank"><img src=https://img.shields.io/badge/%F0%9F%A4%97%20Demo-276cb4.svg height=22px></a> <a href=https://huggingface.co/tencent/Hunyuan3D-2.1 target="_blank"><img src=https://img.shields.io/badge/%F0%9F%A4%97%20Models-d96902.svg height=22px></a> <a href=https://github.com/Tencent-Hunyuan/Hunyuan3D-2.1 target="_blank"><img src= https://img.shields.io/badge/Page-bb8a2e.svg?logo=github height=22px></a> <a href=https://discord.gg/GuaWYwzKbX target="_blank"><img src= https://img.shields.io/badge/Discord-white.svg?logo=discord height=22px></a> <a href=https://arxiv.org/abs/2506.15442 target="_blank"><img src=https://img.shields.io/badge/Report-b5212f.svg?logo=arxiv height=22px></a> </div> ## 🔗 BibTeX If you found this repository helpful, please cite our report: ```bibtex @misc{hunyuan3d2025hunyuan3d, title={Hunyuan3D 2.1: From Images to High-Fidelity 3D Assets with Production-Ready PBR Material}, author={Team Hunyuan3D and Shuhui Yang and Mingxin Yang and Yifei Feng and Xin Huang and Sheng Zhang and Zebin He and Di Luo and Haolin Liu and Yunfei Zhao and Qingxiang Lin and Zeqiang Lai and Xianghui Yang and Huiwen Shi and Zibo Zhao and Bowen Zhang and Hongyu Yan and Lifu Wang and Sicong Liu and Jihong Zhang and Meng Chen and Liang Dong and Yiwen Jia and Yulin Cai and Jiaao Yu and Yixuan Tang and Dongyuan Guo and Junlin Yu and Hao Zhang and Zheng Ye and Peng He and Runzhou Wu and Shida Wei and Chao Zhang and Yonghao Tan and Yifu Sun and Lin Niu and Shirui Huang and Bojian Zheng and Shu Liu and Shilin Chen and Xiang Yuan and Xiaofeng Yang and Kai Liu and Jianchen Zhu and Peng Chen and Tian Liu and Di Wang and Yuhong Liu and Linus and Jie Jiang and Jingwei Huang and Chunchao Guo}, year={2025}, eprint={2506.15442}, archivePrefix={arXiv}, primaryClass={cs.CV} } @misc{hunyuan3d22025tencent, title={Hunyuan3D 2.0: Scaling Diffusion Models for High Resolution Textured 3D Assets Generation}, author={Tencent Hunyuan3D Team}, year={2025}, eprint={2501.12202}, archivePrefix={arXiv}, primaryClass={cs.CV} } @misc{yang2024tencent, title={Tencent Hunyuan3D-1.0: A Unified Framework for Text-to-3D and Image-to-3D Generation}, author={Tencent Hunyuan3D Team}, year={2024}, eprint={2411.02293}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ## Acknowledgements We would like to thank the contributors to the [TripoSG](https://github.com/VAST-AI-Research/TripoSG), [DINOv2](https://github.com/facebookresearch/dinov2), [Stable Diffusion](https://github.com/Stability-AI/stablediffusion), [FLUX](https://github.com/black-forest-labs/flux), [diffusers](https://github.com/huggingface/diffusers) and [HuggingFace](https://huggingface.co) repositories, for their open research and exploration. ## Star History <a href="https://star-history.com/#Tencent-Hunyuan/Hunyuan3D-2.1&Date"> <picture> <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=Tencent-Hunyuan/Hunyuan3D-2.1&type=Date&theme=dark" /> <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=Tencent-Hunyuan/Hunyuan3D-2.1&type=Date" /> <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=Tencent-Hunyuan/Hunyuan3D-2.1&type=Date" /> </picture> </a>
tencent/Hunyuan3D-2mv
tencent
2025-08-18T14:00:26Z
3,303
384
hunyuan3d-2
[ "hunyuan3d-2", "image-to-3d", "text-to-3d", "en", "zh", "arxiv:2501.12202", "arxiv:2411.02293", "license:other", "region:us" ]
image-to-3d
2025-03-12T11:36:17Z
--- library_name: hunyuan3d-2 license: other license_name: tencent-hunyuan-community license_link: https://huggingface.co/tencent/Hunyuan3D-2/blob/main/LICENSE.txt language: - en - zh tags: - image-to-3d - text-to-3d pipeline_tag: image-to-3d extra_gated_eu_disallowed: true --- <p align="center"> <img src="https://huggingface.co/tencent/Hunyuan3D-2/resolve/main/assets/images/teaser.jpg"> </p> <div align="center"> <a href=https://3d.hunyuan.tencent.com target="_blank"><img src=https://img.shields.io/badge/Hunyuan3D-black.svg?logo=homepage height=22px></a> <a href=https://huggingface.co/spaces/tencent/Hunyuan3D-2mv target="_blank"><img src=https://img.shields.io/badge/%F0%9F%A4%97%20Demo-276cb4.svg height=22px></a> <a href=https://huggingface.co/tencent/Hunyuan3D-2mv target="_blank"><img src=https://img.shields.io/badge/%F0%9F%A4%97%20Models-d96902.svg height=22px></a> <a href=https://github.com/Tencent/Hunyuan3D-2 target="_blank"><img src= https://img.shields.io/badge/Github-bb8a2e.svg?logo=github height=22px></a> <a href=https://discord.gg/GuaWYwzKbX target="_blank"><img src= https://img.shields.io/badge/Discord-white.svg?logo=discord height=22px></a> <a href=https://github.com/Tencent/Hunyuan3D-2/blob/main/assets/report/Tencent_Hunyuan3D_2_0.pdf target="_blank"><img src=https://img.shields.io/badge/Report-b5212f.svg?logo=arxiv height=22px></a> </div> [//]: # ( <a href=# target="_blank"><img src=https://img.shields.io/badge/Report-b5212f.svg?logo=arxiv height=22px></a>) [//]: # ( <a href=# target="_blank"><img src= https://img.shields.io/badge/Colab-8f2628.svg?logo=googlecolab height=22px></a>) [//]: # ( <a href="#"><img alt="PyPI - Downloads" src="https://img.shields.io/pypi/v/mulankit?logo=pypi" height=22px></a>) <br> <p align="center"> “ Living out everyone’s imagination on creating and manipulating 3D assets.” </p> This repository contains the models of the paper [Hunyuan3D 2.0: Scaling Diffusion Models for High Resolution Textured 3D Assets Generation](https://huggingface.co/papers/2501.12202). **Hunyuan3D-2mv** is finetuned from [Hunyuan3D-2](https://huggingface.co/tencent/Hunyuan3D-2) to support multiview controlled shape generation. ## 🤗 Get Started with Hunyuan3D 2mv Here is a simple usage: ```python from hy3dgen.shapegen import Hunyuan3DDiTFlowMatchingPipeline pipeline = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained( 'tencent/Hunyuan3D-2mv', subfolder='hunyuan3d-dit-v2-mv', use_safetensors=True, device='cuda' ) mesh = pipeline( image={ "front": "your front view image.png", "left": "your left view image.png", "back": "your back view image.png" }, num_inference_steps=30, octree_resolution=380, num_chunks=20000, generator=torch.manual_seed(12345), output_type='trimesh' )[0] ``` For code and more details on how to use it, refer to the [Github repository](https://github.com/Tencent/Hunyuan3D-2). ## 🔗 BibTeX If you found this repository helpful, please cite our report: ```bibtex @misc{hunyuan3d22025tencent, title={Hunyuan3D 2.0: Scaling Diffusion Models for High Resolution Textured 3D Assets Generation}, author={Tencent Hunyuan3D Team}, year={2025}, eprint={2501.12202}, archivePrefix={arXiv}, primaryClass={cs.CV} } @misc{yang2024tencent, title={Tencent Hunyuan3D-1.0: A Unified Framework for Text-to-3D and Image-to-3D Generation}, author={Tencent Hunyuan3D Team}, year={2024}, eprint={2411.02293}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ## Community Resources Thanks for the contributions of community members, here we have these great extensions of Hunyuan3D 2.0: - [ComfyUI-Hunyuan3DWrapper](https://github.com/kijai/ComfyUI-Hunyuan3DWrapper) - [Hunyuan3D-2-for-windows](https://github.com/sdbds/Hunyuan3D-2-for-windows) - [📦 A bundle for running on Windows | 整合包](https://github.com/YanWenKun/Comfy3D-WinPortable/releases/tag/r8-hunyuan3d2) ## Acknowledgements We would like to thank the contributors to the [DINOv2](https://github.com/facebookresearch/dinov2), [Stable Diffusion](https://github.com/Stability-AI/stablediffusion), [FLUX](https://github.com/black-forest-labs/flux), [diffusers](https://github.com/huggingface/diffusers) and [HuggingFace](https://huggingface.co) repositories, for their open research and exploration.
tencent/HunyuanWorld-1
tencent
2025-08-18T13:59:54Z
18,350
555
diffusion-single-file
[ "diffusion-single-file", "hunyuan3d", "worldmodel", "3d-aigc", "3d-generation", "3d", "scene-generation", "image-to-3d", "en", "zh", "arxiv:2507.21809", "license:other", "region:us" ]
image-to-3d
2025-07-21T03:37:45Z
--- library_name: diffusion-single-file license: other license_name: tencent-hunyuanworld-1.0-community license_link: https://github.com/Tencent-Hunyuan/HunyuanWorld-1.0/blob/main/LICENSE language: - en - zh tags: - hunyuan3d - worldmodel - 3d-aigc - 3d-generation - 3d - scene-generation pipeline_tag: image-to-3d extra_gated_eu_disallowed: true --- <p align="center"> <img src="assets/teaser.png"> </p> <div align="center"> <a href=https://3d.hunyuan.tencent.com/sceneTo3D target="_blank"><img src=https://img.shields.io/badge/Official%20Site-333399.svg?logo=homepage height=22px></a> <a href=https://huggingface.co/tencent/HunyuanWorld-1 target="_blank"><img src=https://img.shields.io/badge/%F0%9F%A4%97%20Models-d96902.svg height=22px></a> <a href=https://3d-models.hunyuan.tencent.com/world/ target="_blank"><img src= https://img.shields.io/badge/Page-bb8a2e.svg?logo=github height=22px></a> <a href=https://arxiv.org/abs/2507.21809 target="_blank"><img src=https://img.shields.io/badge/Report-b5212f.svg?logo=arxiv height=22px></a> <a href=https://discord.gg/dNBrdrGGMa target="_blank"><img src= https://img.shields.io/badge/Discord-white.svg?logo=discord height=22px></a> <a href=https://x.com/TencentHunyuan target="_blank"><img src=https://img.shields.io/badge/Hunyuan-black.svg?logo=x height=22px></a> <a href="#community-resources" target="_blank"><img src=https://img.shields.io/badge/Community-lavender.svg?logo=homeassistantcommunitystore height=22px></a> </div> [//]: # ( <a href=# target="_blank"><img src=https://img.shields.io/badge/Report-b5212f.svg?logo=arxiv height=22px></a>) [//]: # ( <a href=# target="_blank"><img src= https://img.shields.io/badge/Colab-8f2628.svg?logo=googlecolab height=22px></a>) [//]: # ( <a href="#"><img alt="PyPI - Downloads" src="https://img.shields.io/pypi/v/mulankit?logo=pypi" height=22px></a>) <br> <p align="center"> "To see a World in a Grain of Sand, and a Heaven in a Wild Flower" </p> ## 🔗 BibTeX ``` @misc{hunyuanworld2025tencent, title={HunyuanWorld 1.0: Generating Immersive, Explorable, and Interactive 3D Worlds from Words or Pixels}, author={Tencent Hunyuan3D Team}, year={2025}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` ## Acknowledgements We would like to thank the contributors to the [Stable Diffusion](https://github.com/Stability-AI/stablediffusion), [FLUX](https://github.com/black-forest-labs/flux), [diffusers](https://github.com/huggingface/diffusers), [HuggingFace](https://huggingface.co), [Real-ESRGAN](https://github.com/xinntao/Real-ESRGAN), [ZIM](https://github.com/naver-ai/ZIM), [GroundingDINO](https://github.com/IDEA-Research/GroundingDINO), [MoGe](https://github.com/microsoft/moge), [Worldsheet](https://worldsheet.github.io/), [WorldGen](https://github.com/ZiYang-xie/WorldGen) repositories, for their open research.
rayonlabs/benchmark-15b733f3-29c3-4bb5-b5a9-4615f043b030-tourn_84e4321ace6ceeb6_20250815-5GU4Xkd3
rayonlabs
2025-08-18T13:54:20Z
0
0
peft
[ "peft", "safetensors", "qwen2", "text-generation", "axolotl", "base_model:adapter:/cache/models/deepseek-ai--DeepSeek-R1-Distill-Qwen-32B", "lora", "transformers", "conversational", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", "base_model:adapter:deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T13:53:54Z
--- library_name: peft tags: - axolotl - base_model:adapter:/cache/models/deepseek-ai--DeepSeek-R1-Distill-Qwen-32B - lora - transformers base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-32B pipeline_tag: text-generation model-index: - name: app/checkpoints/bd2e9445-f8a4-4518-bd75-52166c2ec2b9/benchmark-15b733f3-29c3-4bb5-b5a9-4615f043b030-tourn_84e4321ace6ceeb6_20250815-5GU4Xkd3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.12.0.dev0` ```yaml adapter: lora base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-32B bf16: true chat_template: llama3 cosine_min_lr_ratio: 0.3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - bd2e9445-f8a4-4518-bd75-52166c2ec2b9_train_data.json ds_type: json format: custom path: /workspace/axolotl/data type: field_input: input field_instruction: instruct field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' ddp: true debug: null deepspeed: null device_map: cuda early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false group_by_length: true hub_model_id: null hub_private_repo: false hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 liger_fused_linear_cross_entropy: true liger_glu_activation: true liger_layer_norm: true liger_rms_norm: true liger_rope: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: null lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true loraplus_lr_embedding: 1.0e-06 loraplus_lr_ratio: 16 lr_scheduler: cosine max_grad_norm: 1 max_steps: 2220 micro_batch_size: 20 mlflow_experiment_name: /workspace/axolotl/data/bd2e9445-f8a4-4518-bd75-52166c2ec2b9_train_data.json model_card: false model_type: AutoModelForCausalLM num_epochs: 200 optimizer: adamw_bnb_8bit output_dir: /app/checkpoints/bd2e9445-f8a4-4518-bd75-52166c2ec2b9/benchmark-15b733f3-29c3-4bb5-b5a9-4615f043b030-tourn_84e4321ace6ceeb6_20250815-5GU4Xkd3 pad_to_sequence_len: true plugins: - axolotl.integrations.liger.LigerPlugin push_every_save: true push_to_hub: true resume_from_checkpoint: null rl: null s2_attention: null sample_packing: true save_steps: 100 save_strategy: steps save_total_limit: 1 saves_per_epoch: 0 sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trl: null trust_remote_code: false use_liger: true val_set_size: 0.0 wandb_mode: offline wandb_name: bd2e9445-f8a4-4518-bd75-52166c2ec2b9_benchmark-15b733f3-29c3-4bb5-b5a9-4615f043b030-tourn_84e4321ace6ceeb6_20250815-5GU4Xkd3 wandb_project: Gradients-On-Demand wandb_run: null wandb_runid: bd2e9445-f8a4-4518-bd75-52166c2ec2b9_benchmark-15b733f3-29c3-4bb5-b5a9-4615f043b030-tourn_84e4321ace6ceeb6_20250815-5GU4Xkd3 warmup_steps: 200 weight_decay: 0 xformers_attention: null ``` </details><br> # app/checkpoints/bd2e9445-f8a4-4518-bd75-52166c2ec2b9/benchmark-15b733f3-29c3-4bb5-b5a9-4615f043b030-tourn_84e4321ace6ceeb6_20250815-5GU4Xkd3 This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 200 - training_steps: 2220 ### Training results ### Framework versions - PEFT 0.16.0 - Transformers 4.54.1 - Pytorch 2.7.1+cu128 - Datasets 4.0.0 - Tokenizers 0.21.2
zhensuuu/reranker-MiniLM-L12-H384-uncased-intent
zhensuuu
2025-08-18T13:53:07Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "cross-encoder", "reranker", "generated_from_trainer", "dataset_size:85938", "loss:CachedMultipleNegativesRankingLoss", "text-ranking", "en", "arxiv:1908.10084", "base_model:microsoft/MiniLM-L12-H384-uncased", "base_model:finetune:microsoft/MiniLM-L12-H384-uncased", "license:apache-2.0", "model-index", "co2_eq_emissions", "region:us" ]
text-ranking
2025-08-18T13:52:54Z
--- language: - en license: apache-2.0 tags: - sentence-transformers - cross-encoder - reranker - generated_from_trainer - dataset_size:85938 - loss:CachedMultipleNegativesRankingLoss base_model: microsoft/MiniLM-L12-H384-uncased pipeline_tag: text-ranking library_name: sentence-transformers metrics: - map - mrr@10 - ndcg@10 co2_eq_emissions: emissions: 0.19522820521718112 energy_consumed: 0.08212463152832154 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: AMD EPYC 7763 64-Core Processor ram_total_size: 251.53199005126953 hours_used: 0.306 hardware_used: 4 x NVIDIA RTX 6000 Ada Generation model-index: - name: MiniLM-L12-H384 trained on GooAQ results: - task: type: cross-encoder-reranking name: Cross Encoder Reranking dataset: name: NanoMSMARCO R100 type: NanoMSMARCO_R100 metrics: - type: map value: 0.0735 name: Map - type: mrr@10 value: 0.0476 name: Mrr@10 - type: ndcg@10 value: 0.0687 name: Ndcg@10 - task: type: cross-encoder-reranking name: Cross Encoder Reranking dataset: name: NanoNFCorpus R100 type: NanoNFCorpus_R100 metrics: - type: map value: 0.3017 name: Map - type: mrr@10 value: 0.4457 name: Mrr@10 - type: ndcg@10 value: 0.2916 name: Ndcg@10 - task: type: cross-encoder-reranking name: Cross Encoder Reranking dataset: name: NanoNQ R100 type: NanoNQ_R100 metrics: - type: map value: 0.0837 name: Map - type: mrr@10 value: 0.0661 name: Mrr@10 - type: ndcg@10 value: 0.0748 name: Ndcg@10 - task: type: cross-encoder-nano-beir name: Cross Encoder Nano BEIR dataset: name: NanoBEIR R100 mean type: NanoBEIR_R100_mean metrics: - type: map value: 0.1529 name: Map - type: mrr@10 value: 0.1864 name: Mrr@10 - type: ndcg@10 value: 0.145 name: Ndcg@10 --- # MiniLM-L12-H384 trained on GooAQ This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search. ## Model Details ### Model Description - **Model Type:** Cross Encoder - **Base model:** [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) <!-- at revision 44acabbec0ef496f6dbc93adadea57f376b7c0ec --> - **Maximum Sequence Length:** 512 tokens - **Number of Output Labels:** 1 label <!-- - **Training Dataset:** Unknown --> - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder) ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import CrossEncoder # Download from the 🤗 Hub model = CrossEncoder("zhensuuu/reranker-MiniLM-L12-H384-uncased-intent") # Get scores for pairs of texts pairs = [ ['Add edge representing resource request', ' Model process-resource dependency relationship'], ['Split text into words list', ' Filter words matching given keyword.'], ['Calculate approximate cube root value', ' Find cube root using exponentiation'], ['Reverse sublist within linked list', ' Move nodes to new positions'], ['Defines neighbors for node A', ' Specifies direct connections from A'], ] scores = model.predict(pairs) print(scores.shape) # (5,) # Or rank different texts based on similarity to a single text ranks = model.rank( 'Add edge representing resource request', [ ' Model process-resource dependency relationship', ' Filter words matching given keyword.', ' Find cube root using exponentiation', ' Move nodes to new positions', ' Specifies direct connections from A', ] ) # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Cross Encoder Reranking * Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100` * Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters: ```json { "at_k": 10, "always_rerank_positives": true } ``` | Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 | |:------------|:---------------------|:---------------------|:---------------------| | map | 0.0735 (-0.4161) | 0.3017 (+0.0407) | 0.0837 (-0.3359) | | mrr@10 | 0.0476 (-0.4299) | 0.4457 (-0.0541) | 0.0661 (-0.3606) | | **ndcg@10** | **0.0687 (-0.4718)** | **0.2916 (-0.0335)** | **0.0748 (-0.4258)** | #### Cross Encoder Nano BEIR * Dataset: `NanoBEIR_R100_mean` * Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters: ```json { "dataset_names": [ "msmarco", "nfcorpus", "nq" ], "rerank_k": 100, "at_k": 10, "always_rerank_positives": true } ``` | Metric | Value | |:------------|:---------------------| | map | 0.1529 (-0.2371) | | mrr@10 | 0.1864 (-0.2816) | | **ndcg@10** | **0.1450 (-0.3104)** | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 85,938 training samples * Columns: <code>question</code> and <code>answer</code> * Approximate statistics based on the first 1000 samples: | | question | answer | |:--------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 18 characters</li><li>mean: 33.49 characters</li><li>max: 49 characters</li></ul> | <ul><li>min: 18 characters</li><li>mean: 35.88 characters</li><li>max: 52 characters</li></ul> | * Samples: | question | answer | |:--------------------------------------------------------|:--------------------------------------------------------------| | <code>Check if configuration loaded successfully</code> | <code> prevent further actions if configuration absent</code> | | <code>Add new user to list</code> | <code> Store received user in memory</code> | | <code>Selects profitable jobs and schedules</code> | <code> Displays scheduled jobs and profit</code> | * Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#cachedmultiplenegativesrankingloss) with these parameters: ```json { "scale": 10.0, "num_negatives": 5, "activation_fn": "torch.nn.modules.activation.Sigmoid", "mini_batch_size": 16 } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 1,000 evaluation samples * Columns: <code>question</code> and <code>answer</code> * Approximate statistics based on the first 1000 samples: | | question | answer | |:--------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 20 characters</li><li>mean: 33.63 characters</li><li>max: 54 characters</li></ul> | <ul><li>min: 18 characters</li><li>mean: 35.86 characters</li><li>max: 55 characters</li></ul> | * Samples: | question | answer | |:----------------------------------------------------|:-------------------------------------------------------------| | <code>Add edge representing resource request</code> | <code> Model process-resource dependency relationship</code> | | <code>Split text into words list</code> | <code> Filter words matching given keyword.</code> | | <code>Calculate approximate cube root value</code> | <code> Find cube root using exponentiation</code> | * Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#cachedmultiplenegativesrankingloss) with these parameters: ```json { "scale": 10.0, "num_negatives": 5, "activation_fn": "torch.nn.modules.activation.Sigmoid", "mini_batch_size": 16 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `learning_rate`: 2e-05 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `seed`: 12 - `bf16`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 12 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {} </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 | |:------:|:----:|:-------------:|:---------------:|:------------------------:|:-------------------------:|:-------------------:|:--------------------------:| | -1 | -1 | - | - | 0.0146 (-0.5258) | 0.2622 (-0.0628) | 0.0058 (-0.4949) | 0.0942 (-0.3612) | | 0.0030 | 1 | 1.7927 | - | - | - | - | - | | 0.2976 | 100 | 1.2688 | - | - | - | - | - | | 0.5952 | 200 | 0.8847 | - | - | - | - | - | | 0.7440 | 250 | - | 0.8479 | 0.0586 (-0.4818) | 0.2978 (-0.0272) | 0.0717 (-0.4290) | 0.1427 (-0.3127) | | 0.8929 | 300 | 0.8519 | - | - | - | - | - | | -1 | -1 | - | - | 0.0687 (-0.4718) | 0.2916 (-0.0335) | 0.0748 (-0.4258) | 0.1450 (-0.3104) | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.082 kWh - **Carbon Emitted**: 0.000 kg of CO2 - **Hours Used**: 0.306 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 4 x NVIDIA RTX 6000 Ada Generation - **CPU Model**: AMD EPYC 7763 64-Core Processor - **RAM Size**: 251.53 GB ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 5.1.0 - Transformers: 4.48.3 - PyTorch: 2.6.0+cu124 - Accelerate: 1.6.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
VoilaRaj/78_8DU2tt
VoilaRaj
2025-08-18T13:48:50Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-18T13:44:53Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
unitova/blockassist-bc-zealous_sneaky_raven_1755523362
unitova
2025-08-18T13:48:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T13:48:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Qwen2-VL-SafeVL-SFT-GGUF
mradermacher
2025-08-18T13:48:00Z
33
0
transformers
[ "transformers", "gguf", "en", "base_model:andyc03/Qwen2-VL-PRISM-SFT", "base_model:quantized:andyc03/Qwen2-VL-PRISM-SFT", "endpoints_compatible", "region:us", "conversational" ]
null
2025-07-07T22:27:24Z
--- base_model: andyc03/Qwen2-VL-PRISM-SFT language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/andyc03/Qwen2-VL-PRISM-SFT <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Qwen2-VL-SafeVL-SFT-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2-VL-SafeVL-SFT-GGUF/resolve/main/Qwen2-VL-SafeVL-SFT.mmproj-Q8_0.gguf) | mmproj-Q8_0 | 0.8 | multi-modal supplement | | [GGUF](https://huggingface.co/mradermacher/Qwen2-VL-SafeVL-SFT-GGUF/resolve/main/Qwen2-VL-SafeVL-SFT.mmproj-f16.gguf) | mmproj-f16 | 1.5 | multi-modal supplement | | [GGUF](https://huggingface.co/mradermacher/Qwen2-VL-SafeVL-SFT-GGUF/resolve/main/Qwen2-VL-SafeVL-SFT.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2-VL-SafeVL-SFT-GGUF/resolve/main/Qwen2-VL-SafeVL-SFT.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2-VL-SafeVL-SFT-GGUF/resolve/main/Qwen2-VL-SafeVL-SFT.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2-VL-SafeVL-SFT-GGUF/resolve/main/Qwen2-VL-SafeVL-SFT.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2-VL-SafeVL-SFT-GGUF/resolve/main/Qwen2-VL-SafeVL-SFT.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2-VL-SafeVL-SFT-GGUF/resolve/main/Qwen2-VL-SafeVL-SFT.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2-VL-SafeVL-SFT-GGUF/resolve/main/Qwen2-VL-SafeVL-SFT.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2-VL-SafeVL-SFT-GGUF/resolve/main/Qwen2-VL-SafeVL-SFT.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2-VL-SafeVL-SFT-GGUF/resolve/main/Qwen2-VL-SafeVL-SFT.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2-VL-SafeVL-SFT-GGUF/resolve/main/Qwen2-VL-SafeVL-SFT.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2-VL-SafeVL-SFT-GGUF/resolve/main/Qwen2-VL-SafeVL-SFT.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2-VL-SafeVL-SFT-GGUF/resolve/main/Qwen2-VL-SafeVL-SFT.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Medved444/blockassist-bc-bellowing_finicky_manatee_1755523616
Medved444
2025-08-18T13:46:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bellowing finicky manatee", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T13:45:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bellowing finicky manatee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zhai-lw/L3AC
zhai-lw
2025-08-18T13:46:08Z
0
0
l3ac
[ "l3ac", "audio-to-audio", "arxiv:2504.04949", "region:us" ]
audio-to-audio
2025-08-15T11:27:35Z
--- pipeline_tag: audio-to-audio library_name: l3ac --- # L3AC: Towards a Lightweight and Lossless Audio Codec This repository contains the implementation of L3AC, a lightweight neural audio codec introduced in the paper titled "[L3AC: Towards a Lightweight and Lossless Audio Codec](https://huggingface.co/papers/2504.04949)". Neural audio codecs have recently gained traction for their ability to compress high-fidelity audio and provide discrete tokens for generative modeling. However, leading approaches often rely on resource-intensive models and complex multi-quantizer architectures, limiting their practicality in real-world applications. In this work, we introduce L3AC, a lightweight neural audio codec that addresses these challenges by leveraging a single quantizer and a highly efficient architecture. To enhance reconstruction fidelity while minimizing model complexity, L3AC explores streamlined convolutional networks and local Transformer modules, alongside TConv--a novel structure designed to capture acoustic variations across multiple temporal scales. Despite its compact design, extensive experiments across diverse datasets demonstrate that L3AC matches or exceeds the reconstruction quality of leading codecs while reducing computational overhead by an order of magnitude. The single-quantizer design further enhances its adaptability for downstream tasks. <figure class="image"> <img src="https://github.com/zhai-lw/L3AC/raw/main/bubble_chart.svg" alt="Comparison of various audio codec"> <figcaption>Comparison of various audio codec</figcaption> </figure> **Paper:** [L3AC: Towards a Lightweight and Lossless Audio Codec](https://huggingface.co/papers/2504.04949) **Official GitHub Repository:** [https://github.com/zhai-lw/L3AC](https://github.com/zhai-lw/L3AC) ## Installation You can install the `l3ac` library using pip: ```bash pip install l3ac ``` ### Demo Firstly, make sure you have installed the `librosa` package to load the example audio file. You can install it using pip: ```bash pip install librosa ``` Then, you can use the following code to load a sample audio file, encode it using the L3AC model, and decode it back to audio. The code also calculates the mean squared error (MSE) between the original and generated audio. ```python import librosa import torch import l3ac all_models = l3ac.list_models() print(f"Available models: {all_models}") MODEL_USED = '1kbps' codec = l3ac.get_model(MODEL_USED) print(f"loaded codec({MODEL_USED}) and codec sample rate: {codec.config.sample_rate}") sample_audio, sample_rate = librosa.load(librosa.example("libri1")) sample_audio = sample_audio[None, :] print(f"loaded sample audio and audio sample_rate :{sample_rate}") sample_audio = librosa.resample(sample_audio, orig_sr=sample_rate, target_sr=codec.config.sample_rate) codec.network.cuda() codec.network.eval() with torch.inference_mode(): audio_in = torch.tensor(sample_audio, dtype=torch.float32, device='cuda') _, audio_length = audio_in.shape print(f"{audio_in.shape=}") q_feature, indices = codec.encode_audio(audio_in) audio_out = codec.decode_audio(q_feature) # or # audio_out = codec.decode_audio(indices=indices['indices']) generated_audio = audio_out[:, :audio_length].detach().cpu().numpy() mse = ((sample_audio - generated_audio) ** 2).mean().item() print(f"codec({MODEL_USED}) mse: {mse}") ``` ### Available Models | config_name | Sample rate(Hz) | tokens/s | Codebook size | Bitrate(bps) | |-------------|-----------------|----------|---------------|--------------| | 0k75bps | 16,000 | 44.44 | 117,649 | 748.6 | | 1kbps | 16,000 | 59.26 | 117,649 | 998.2 | | 1k5bps | 16,000 | 88.89 | 117,649 | 1497.3 | | 3kbps | 16,000 | 166.67 | 250,047 | 2988.6 |
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755522924
helmutsukocok
2025-08-18T13:42:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T13:42:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
codingwithlewis/gemma-3-regex
codingwithlewis
2025-08-18T13:42:13Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "gemma3_text", "en", "base_model:unsloth/gemma-3-270m-it", "base_model:quantized:unsloth/gemma-3-270m-it", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-18T13:37:15Z
--- base_model: unsloth/gemma-3-270m-it tags: - text-generation-inference - transformers - unsloth - gemma3_text license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** codingwithlewis - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-270m-it This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
aokitools/japanese-laws-egov-instruct-202508182216
aokitools
2025-08-18T13:41:03Z
0
0
transformers
[ "transformers", "safetensors", "gguf", "qwen3", "text-generation", "continued-pretraining", "language-model", "conversational", "ja", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T13:38:07Z
--- license: apache-2.0 language: ja library_name: transformers tags: - continued-pretraining - language-model model-index: - name: aokitools/japanese-laws-egov-instruct-202508182216 results: [] --- # Experimental model in research stage ## Quickstart If you're using [Ollama](https://ollama.com/), run the following command first, then restart the Ollama app and select the newly added model. ```shell ollama pull hf.co/aokitools/japanese-laws-egov-instruct-202508182216 ``` If you want to remove it, run the following command: ```shell ollama list ollama rm hf.co/aokitools/japanese-laws-egov-instruct-202508182216:latest ollama list ``` To use it from Python, use the following code. ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig model_name = "aokitools/japanese-laws-egov-instruct-202508182216" quant_config = BitsAndBytesConfig( load_in_8bit=True, llm_int8_threshold=6.0, ) # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto", quantization_config=quant_config, ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=256 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 (</think>) index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) print("content:", content) ``` This model is a continual pretraining of [Qwen/Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B). ## Training details - Base model: Qwen3-1.7B - Tokenizer: QwenTokenizer ## License - Apache 2.0 + Alibaba Qianwen License
Vasya777/blockassist-bc-lumbering_enormous_sloth_1755524390
Vasya777
2025-08-18T13:40:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering enormous sloth", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T13:40:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering enormous sloth --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
amichelf/vit-base-oxford-iiit-pets
amichelf
2025-08-18T13:38:51Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224", "base_model:finetune:google/vit-base-patch16-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-08-18T12:59:49Z
--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-oxford-iiit-pets results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-oxford-iiit-pets This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set: - Loss: 0.1854 - Accuracy: 0.9472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3676 | 1.0 | 370 | 0.3040 | 0.9242 | | 0.214 | 2.0 | 740 | 0.2367 | 0.9323 | | 0.1885 | 3.0 | 1110 | 0.2190 | 0.9350 | | 0.1468 | 4.0 | 1480 | 0.2078 | 0.9337 | | 0.1281 | 5.0 | 1850 | 0.2063 | 0.9323 | ### Framework versions - Transformers 4.55.2 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
joanna302/Qwen3-8B-Base_ar_alpaca_0.33_part_SFT_0.0002
joanna302
2025-08-18T13:36:14Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "trl", "unsloth", "sft", "conversational", "base_model:unsloth/Qwen3-8B-Base", "base_model:finetune:unsloth/Qwen3-8B-Base", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T17:39:12Z
--- base_model: unsloth/Qwen3-8B-Base library_name: transformers model_name: Qwen3-8B-Base_ar_alpaca_0.33_part_SFT_0.0002 tags: - generated_from_trainer - trl - unsloth - sft licence: license --- # Model Card for Qwen3-8B-Base_ar_alpaca_0.33_part_SFT_0.0002 This model is a fine-tuned version of [unsloth/Qwen3-8B-Base](https://huggingface.co/unsloth/Qwen3-8B-Base). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="joanna302/Qwen3-8B-Base_ar_alpaca_0.33_part_SFT_0.0002", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/prism-eval/Qwen3-8B-Base_ar_alpaca_0.33_part_SFT_0.0002/runs/o0j6jtrl) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755522631
lisaozill03
2025-08-18T13:35:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T13:35:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
joanna302/Qwen3-8B-Base_ar_alpaca_0.33_part_SFT_2e-05
joanna302
2025-08-18T13:33:37Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "sft", "trl", "unsloth", "conversational", "base_model:unsloth/Qwen3-8B-Base", "base_model:finetune:unsloth/Qwen3-8B-Base", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T17:59:38Z
--- base_model: unsloth/Qwen3-8B-Base library_name: transformers model_name: Qwen3-8B-Base_ar_alpaca_0.33_part_SFT_2e-05 tags: - generated_from_trainer - sft - trl - unsloth licence: license --- # Model Card for Qwen3-8B-Base_ar_alpaca_0.33_part_SFT_2e-05 This model is a fine-tuned version of [unsloth/Qwen3-8B-Base](https://huggingface.co/unsloth/Qwen3-8B-Base). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="joanna302/Qwen3-8B-Base_ar_alpaca_0.33_part_SFT_2e-05", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/prism-eval/Qwen3-8B-Base_ar_alpaca_0.33_part_SFT_2e-05/runs/4kdponw1) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Muapi/terminator-t-800-flux1.d-sdxl
Muapi
2025-08-18T13:32:12Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-18T13:32:00Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Terminator T-800 - Flux1.D & SDXL ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: T800 robot ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:207579@741410", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
mradermacher/InnoSpark-VPC-RM-32B-GGUF
mradermacher
2025-08-18T13:30:02Z
156
0
transformers
[ "transformers", "gguf", "en", "base_model:sii-research/InnoSpark-HPC-RM-32B", "base_model:quantized:sii-research/InnoSpark-HPC-RM-32B", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-07-21T12:05:02Z
--- base_model: sii-research/InnoSpark-HPC-RM-32B language: - en library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/sii-research/InnoSpark-HPC-RM-32B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#InnoSpark-VPC-RM-32B-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/InnoSpark-VPC-RM-32B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/InnoSpark-VPC-RM-32B-GGUF/resolve/main/InnoSpark-VPC-RM-32B.Q2_K.gguf) | Q2_K | 12.4 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-VPC-RM-32B-GGUF/resolve/main/InnoSpark-VPC-RM-32B.Q3_K_S.gguf) | Q3_K_S | 14.5 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-VPC-RM-32B-GGUF/resolve/main/InnoSpark-VPC-RM-32B.Q3_K_M.gguf) | Q3_K_M | 16.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-VPC-RM-32B-GGUF/resolve/main/InnoSpark-VPC-RM-32B.Q3_K_L.gguf) | Q3_K_L | 17.3 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-VPC-RM-32B-GGUF/resolve/main/InnoSpark-VPC-RM-32B.IQ4_XS.gguf) | IQ4_XS | 18.0 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-VPC-RM-32B-GGUF/resolve/main/InnoSpark-VPC-RM-32B.Q4_K_S.gguf) | Q4_K_S | 18.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-VPC-RM-32B-GGUF/resolve/main/InnoSpark-VPC-RM-32B.Q4_K_M.gguf) | Q4_K_M | 20.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-VPC-RM-32B-GGUF/resolve/main/InnoSpark-VPC-RM-32B.Q5_K_S.gguf) | Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-VPC-RM-32B-GGUF/resolve/main/InnoSpark-VPC-RM-32B.Q5_K_M.gguf) | Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-VPC-RM-32B-GGUF/resolve/main/InnoSpark-VPC-RM-32B.Q6_K.gguf) | Q6_K | 27.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-VPC-RM-32B-GGUF/resolve/main/InnoSpark-VPC-RM-32B.Q8_0.gguf) | Q8_0 | 34.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Muapi/jan-van-eyck-style
Muapi
2025-08-18T13:29:18Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-18T13:29:06Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Jan van Eyck Style ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Jan van Eyck Style ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:99433@1575140", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
mradermacher/InnoSpark-7B-0715-i1-GGUF
mradermacher
2025-08-18T13:29:18Z
342
0
transformers
[ "transformers", "gguf", "en", "base_model:sii-research/InnoSpark-7B-0715", "base_model:quantized:sii-research/InnoSpark-7B-0715", "license:mit", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-07-22T03:12:59Z
--- base_model: sii-research/InnoSpark-7B-0715 language: - en library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/sii-research/InnoSpark-7B-0715 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#InnoSpark-7B-0715-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/InnoSpark-7B-0715-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/InnoSpark-7B-0715-i1-GGUF/resolve/main/InnoSpark-7B-0715.i1-IQ1_S.gguf) | i1-IQ1_S | 2.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-7B-0715-i1-GGUF/resolve/main/InnoSpark-7B-0715.i1-IQ1_M.gguf) | i1-IQ1_M | 2.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-7B-0715-i1-GGUF/resolve/main/InnoSpark-7B-0715.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-7B-0715-i1-GGUF/resolve/main/InnoSpark-7B-0715.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-7B-0715-i1-GGUF/resolve/main/InnoSpark-7B-0715.i1-IQ2_S.gguf) | i1-IQ2_S | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-7B-0715-i1-GGUF/resolve/main/InnoSpark-7B-0715.i1-IQ2_M.gguf) | i1-IQ2_M | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-7B-0715-i1-GGUF/resolve/main/InnoSpark-7B-0715.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.9 | very low quality | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-7B-0715-i1-GGUF/resolve/main/InnoSpark-7B-0715.i1-Q2_K.gguf) | i1-Q2_K | 3.1 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-7B-0715-i1-GGUF/resolve/main/InnoSpark-7B-0715.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-7B-0715-i1-GGUF/resolve/main/InnoSpark-7B-0715.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-7B-0715-i1-GGUF/resolve/main/InnoSpark-7B-0715.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-7B-0715-i1-GGUF/resolve/main/InnoSpark-7B-0715.i1-IQ3_S.gguf) | i1-IQ3_S | 3.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-7B-0715-i1-GGUF/resolve/main/InnoSpark-7B-0715.i1-IQ3_M.gguf) | i1-IQ3_M | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-7B-0715-i1-GGUF/resolve/main/InnoSpark-7B-0715.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-7B-0715-i1-GGUF/resolve/main/InnoSpark-7B-0715.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-7B-0715-i1-GGUF/resolve/main/InnoSpark-7B-0715.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-7B-0715-i1-GGUF/resolve/main/InnoSpark-7B-0715.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.5 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-7B-0715-i1-GGUF/resolve/main/InnoSpark-7B-0715.i1-Q4_0.gguf) | i1-Q4_0 | 4.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-7B-0715-i1-GGUF/resolve/main/InnoSpark-7B-0715.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-7B-0715-i1-GGUF/resolve/main/InnoSpark-7B-0715.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-7B-0715-i1-GGUF/resolve/main/InnoSpark-7B-0715.i1-Q4_1.gguf) | i1-Q4_1 | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-7B-0715-i1-GGUF/resolve/main/InnoSpark-7B-0715.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-7B-0715-i1-GGUF/resolve/main/InnoSpark-7B-0715.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-7B-0715-i1-GGUF/resolve/main/InnoSpark-7B-0715.i1-Q6_K.gguf) | i1-Q6_K | 6.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
Muapi/gold-dust-gmr-ready-for-flux-sd3-sdxl-pdxl-sd1.5
Muapi
2025-08-18T13:28:07Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-18T13:27:53Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Gold Dust-GMR ready for Flux / SD3 / SDXL / PDXL / SD1.5 ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: gold dust ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:603926@751713", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Vanbitcase/2b-700r-qwen-vl-t1.2b_merged
Vanbitcase
2025-08-18T13:24:36Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-18T13:24:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
GaborMadarasz/AstroQA_mamba_epoch1_V4
GaborMadarasz
2025-08-18T13:24:36Z
0
0
transformers
[ "transformers", "safetensors", "mamba", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T13:24:23Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
donoway/ARC-Easy_Llama-3.2-1B-ro2gi4y6
donoway
2025-08-18T13:23:37Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:meta-llama/Llama-3.2-1B", "base_model:finetune:meta-llama/Llama-3.2-1B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T13:01:26Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer metrics: - accuracy model-index: - name: ARC-Easy_Llama-3.2-1B-ro2gi4y6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ARC-Easy_Llama-3.2-1B-ro2gi4y6 This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6994 - Model Preparation Time: 0.0055 - Mdl: 1397.4674 - Accumulated Loss: 968.6506 - Correct Preds: 430.0 - Total Preds: 570.0 - Accuracy: 0.7544 - Correct Gen Preds: 430.0 - Gen Accuracy: 0.7544 - Correct Gen Preds 32: 118.0 - Correct Preds 32: 118.0 - Total Labels 32: 158.0 - Accuracy 32: 0.7468 - Gen Accuracy 32: 0.7468 - Correct Gen Preds 33: 116.0 - Correct Preds 33: 116.0 - Total Labels 33: 152.0 - Accuracy 33: 0.7632 - Gen Accuracy 33: 0.7632 - Correct Gen Preds 34: 113.0 - Correct Preds 34: 113.0 - Total Labels 34: 142.0 - Accuracy 34: 0.7958 - Gen Accuracy 34: 0.7958 - Correct Gen Preds 35: 83.0 - Correct Preds 35: 83.0 - Total Labels 35: 118.0 - Accuracy 35: 0.7034 - Gen Accuracy 35: 0.7034 - Correct Gen Preds 36: 0.0 - Correct Preds 36: 0.0 - Total Labels 36: 0.0 - Accuracy 36: 0.0 - Gen Accuracy 36: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 112 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.001 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Mdl | Accumulated Loss | Correct Preds | Total Preds | Accuracy | Correct Gen Preds | Gen Accuracy | Correct Gen Preds 32 | Correct Preds 32 | Total Labels 32 | Accuracy 32 | Gen Accuracy 32 | Correct Gen Preds 33 | Correct Preds 33 | Total Labels 33 | Accuracy 33 | Gen Accuracy 33 | Correct Gen Preds 34 | Correct Preds 34 | Total Labels 34 | Accuracy 34 | Gen Accuracy 34 | Correct Gen Preds 35 | Correct Preds 35 | Total Labels 35 | Accuracy 35 | Gen Accuracy 35 | Correct Gen Preds 36 | Correct Preds 36 | Total Labels 36 | Accuracy 36 | Gen Accuracy 36 | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:---------:|:----------------:|:-------------:|:-----------:|:--------:|:-----------------:|:------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:| | No log | 0 | 0 | 1.5354 | 0.0055 | 1262.6022 | 875.1692 | 172.0 | 570.0 | 0.3018 | 170.0 | 0.2982 | 154.0 | 154.0 | 158.0 | 0.9747 | 0.9747 | 0.0 | 0.0 | 152.0 | 0.0 | 0.0 | 15.0 | 17.0 | 142.0 | 0.1197 | 0.1056 | 1.0 | 1.0 | 118.0 | 0.0085 | 0.0085 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.1499 | 1.0 | 30 | 0.9537 | 0.0055 | 784.2818 | 543.6227 | 379.0 | 570.0 | 0.6649 | 377.0 | 0.6614 | 127.0 | 128.0 | 158.0 | 0.8101 | 0.8038 | 85.0 | 86.0 | 152.0 | 0.5658 | 0.5592 | 96.0 | 96.0 | 142.0 | 0.6761 | 0.6761 | 69.0 | 69.0 | 118.0 | 0.5847 | 0.5847 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.3791 | 2.0 | 60 | 0.7650 | 0.0055 | 629.1242 | 436.0757 | 425.0 | 570.0 | 0.7456 | 424.0 | 0.7439 | 109.0 | 110.0 | 158.0 | 0.6962 | 0.6899 | 123.0 | 123.0 | 152.0 | 0.8092 | 0.8092 | 106.0 | 106.0 | 142.0 | 0.7465 | 0.7465 | 86.0 | 86.0 | 118.0 | 0.7288 | 0.7288 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.2137 | 3.0 | 90 | 0.9976 | 0.0055 | 820.3431 | 568.6185 | 414.0 | 570.0 | 0.7263 | 414.0 | 0.7263 | 98.0 | 98.0 | 158.0 | 0.6203 | 0.6203 | 119.0 | 119.0 | 152.0 | 0.7829 | 0.7829 | 115.0 | 115.0 | 142.0 | 0.8099 | 0.8099 | 82.0 | 82.0 | 118.0 | 0.6949 | 0.6949 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.153 | 4.0 | 120 | 1.5820 | 0.0055 | 1300.9342 | 901.7389 | 419.0 | 570.0 | 0.7351 | 416.0 | 0.7298 | 112.0 | 115.0 | 158.0 | 0.7278 | 0.7089 | 113.0 | 113.0 | 152.0 | 0.7434 | 0.7434 | 120.0 | 120.0 | 142.0 | 0.8451 | 0.8451 | 71.0 | 71.0 | 118.0 | 0.6017 | 0.6017 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0002 | 5.0 | 150 | 1.9407 | 0.0055 | 1595.9007 | 1106.1941 | 425.0 | 570.0 | 0.7456 | 423.0 | 0.7421 | 111.0 | 112.0 | 158.0 | 0.7089 | 0.7025 | 126.0 | 127.0 | 152.0 | 0.8355 | 0.8289 | 110.0 | 110.0 | 142.0 | 0.7746 | 0.7746 | 76.0 | 76.0 | 118.0 | 0.6441 | 0.6441 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0034 | 6.0 | 180 | 1.6994 | 0.0055 | 1397.4674 | 968.6506 | 430.0 | 570.0 | 0.7544 | 430.0 | 0.7544 | 118.0 | 118.0 | 158.0 | 0.7468 | 0.7468 | 116.0 | 116.0 | 152.0 | 0.7632 | 0.7632 | 113.0 | 113.0 | 142.0 | 0.7958 | 0.7958 | 83.0 | 83.0 | 118.0 | 0.7034 | 0.7034 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0002 | 7.0 | 210 | 2.0344 | 0.0055 | 1672.9333 | 1159.5890 | 430.0 | 570.0 | 0.7544 | 430.0 | 0.7544 | 117.0 | 117.0 | 158.0 | 0.7405 | 0.7405 | 111.0 | 111.0 | 152.0 | 0.7303 | 0.7303 | 118.0 | 118.0 | 142.0 | 0.8310 | 0.8310 | 84.0 | 84.0 | 118.0 | 0.7119 | 0.7119 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.2384 | 8.0 | 240 | 2.3318 | 0.0055 | 1917.5151 | 1329.1202 | 422.0 | 570.0 | 0.7404 | 421.0 | 0.7386 | 117.0 | 118.0 | 158.0 | 0.7468 | 0.7405 | 111.0 | 111.0 | 152.0 | 0.7303 | 0.7303 | 113.0 | 113.0 | 142.0 | 0.7958 | 0.7958 | 80.0 | 80.0 | 118.0 | 0.6780 | 0.6780 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0001 | 9.0 | 270 | 2.3574 | 0.0055 | 1938.6154 | 1343.7458 | 426.0 | 570.0 | 0.7474 | 426.0 | 0.7474 | 112.0 | 112.0 | 158.0 | 0.7089 | 0.7089 | 114.0 | 114.0 | 152.0 | 0.75 | 0.75 | 115.0 | 115.0 | 142.0 | 0.8099 | 0.8099 | 85.0 | 85.0 | 118.0 | 0.7203 | 0.7203 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0039 | 10.0 | 300 | 2.6388 | 0.0055 | 2169.9437 | 1504.0904 | 422.0 | 570.0 | 0.7404 | 421.0 | 0.7386 | 109.0 | 110.0 | 158.0 | 0.6962 | 0.6899 | 115.0 | 115.0 | 152.0 | 0.7566 | 0.7566 | 111.0 | 111.0 | 142.0 | 0.7817 | 0.7817 | 86.0 | 86.0 | 118.0 | 0.7288 | 0.7288 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 11.0 | 330 | 2.5992 | 0.0055 | 2137.4472 | 1481.5655 | 421.0 | 570.0 | 0.7386 | 420.0 | 0.7368 | 110.0 | 111.0 | 158.0 | 0.7025 | 0.6962 | 115.0 | 115.0 | 152.0 | 0.7566 | 0.7566 | 115.0 | 115.0 | 142.0 | 0.8099 | 0.8099 | 80.0 | 80.0 | 118.0 | 0.6780 | 0.6780 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 12.0 | 360 | 2.5923 | 0.0055 | 2131.7646 | 1477.6266 | 422.0 | 570.0 | 0.7404 | 421.0 | 0.7386 | 108.0 | 109.0 | 158.0 | 0.6899 | 0.6835 | 113.0 | 113.0 | 152.0 | 0.7434 | 0.7434 | 114.0 | 114.0 | 142.0 | 0.8028 | 0.8028 | 86.0 | 86.0 | 118.0 | 0.7288 | 0.7288 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 13.0 | 390 | 2.6003 | 0.0055 | 2138.2906 | 1482.1501 | 423.0 | 570.0 | 0.7421 | 422.0 | 0.7404 | 113.0 | 114.0 | 158.0 | 0.7215 | 0.7152 | 111.0 | 111.0 | 152.0 | 0.7303 | 0.7303 | 114.0 | 114.0 | 142.0 | 0.8028 | 0.8028 | 84.0 | 84.0 | 118.0 | 0.7119 | 0.7119 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 14.0 | 420 | 2.6367 | 0.0055 | 2168.2271 | 1502.9005 | 423.0 | 570.0 | 0.7421 | 422.0 | 0.7404 | 115.0 | 116.0 | 158.0 | 0.7342 | 0.7278 | 111.0 | 111.0 | 152.0 | 0.7303 | 0.7303 | 113.0 | 113.0 | 142.0 | 0.7958 | 0.7958 | 83.0 | 83.0 | 118.0 | 0.7034 | 0.7034 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 15.0 | 450 | 2.6527 | 0.0055 | 2181.4382 | 1512.0577 | 424.0 | 570.0 | 0.7439 | 423.0 | 0.7421 | 113.0 | 114.0 | 158.0 | 0.7215 | 0.7152 | 112.0 | 112.0 | 152.0 | 0.7368 | 0.7368 | 114.0 | 114.0 | 142.0 | 0.8028 | 0.8028 | 84.0 | 84.0 | 118.0 | 0.7119 | 0.7119 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 16.0 | 480 | 2.6577 | 0.0055 | 2185.4872 | 1514.8643 | 423.0 | 570.0 | 0.7421 | 422.0 | 0.7404 | 113.0 | 114.0 | 158.0 | 0.7215 | 0.7152 | 111.0 | 111.0 | 152.0 | 0.7303 | 0.7303 | 114.0 | 114.0 | 142.0 | 0.8028 | 0.8028 | 84.0 | 84.0 | 118.0 | 0.7119 | 0.7119 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 17.0 | 510 | 2.6565 | 0.0055 | 2184.5381 | 1514.2064 | 423.0 | 570.0 | 0.7421 | 422.0 | 0.7404 | 114.0 | 115.0 | 158.0 | 0.7278 | 0.7215 | 111.0 | 111.0 | 152.0 | 0.7303 | 0.7303 | 113.0 | 113.0 | 142.0 | 0.7958 | 0.7958 | 84.0 | 84.0 | 118.0 | 0.7119 | 0.7119 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
zekaemo/Indobert-Sentiment-Analysis-with-Bayes-Optimization-and-Weighted-Training
zekaemo
2025-08-18T13:22:02Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:indobenchmark/indobert-base-p2", "base_model:finetune:indobenchmark/indobert-base-p2", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-18T13:12:14Z
--- library_name: transformers license: mit base_model: indobenchmark/indobert-base-p2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: Indobert-Sentiment-Analysis-with-Bayes-Optimization-and-Weighted-Training results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Indobert-Sentiment-Analysis-with-Bayes-Optimization-and-Weighted-Training This model is a fine-tuned version of [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8187 - Accuracy: 0.8105263157894737 - F1: 0.8086037151702786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6196 | 1.0 | 51 | 0.4970 | 0.7719 | 0.7780 | | 0.4067 | 2.0 | 102 | 0.5441 | 0.7404 | 0.7495 | | 0.2248 | 3.0 | 153 | 0.7342 | 0.7684 | 0.7669 | | 0.1776 | 4.0 | 204 | 0.6930 | 0.8 | 0.8003 | | 0.1137 | 5.0 | 255 | 1.1582 | 0.7789 | 0.7707 | | 0.0868 | 6.0 | 306 | 1.1574 | 0.8 | 0.7983 | | 0.0609 | 7.0 | 357 | 1.3369 | 0.7930 | 0.7871 | | 0.0354 | 8.0 | 408 | 1.2317 | 0.8105 | 0.8086 | | 0.0188 | 9.0 | 459 | 1.7317 | 0.8 | 0.7859 | | 0.0127 | 10.0 | 510 | 1.6185 | 0.8035 | 0.8000 | | 0.0155 | 11.0 | 561 | 1.7635 | 0.7965 | 0.7903 | | 0.0106 | 12.0 | 612 | 1.8325 | 0.7965 | 0.7884 | | 0.0106 | 13.0 | 663 | 1.8020 | 0.7930 | 0.7871 | | 0.0101 | 14.0 | 714 | 1.8116 | 0.7930 | 0.7871 | | 0.0105 | 15.0 | 765 | 1.8187 | 0.7930 | 0.7871 | ### Framework versions - Transformers 4.55.1 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
mlx-community/Voxtral-Mini-3B-2507-bf16
mlx-community
2025-08-18T13:21:45Z
0
0
mlx-audio
[ "mlx-audio", "safetensors", "voxtral", "speech-to-text", "mlx", "en", "fr", "de", "es", "it", "pt", "nl", "hi", "license:apache-2.0", "region:us" ]
null
2025-08-18T13:17:43Z
--- library_name: mlx-audio language: - en - fr - de - es - it - pt - nl - hi license: apache-2.0 tags: - speech-to-text - mlx --- # mlx-community/Voxtral-Mini-3B-2507-bf16 This model was converted to MLX format from [`mistralai/Voxtral-Mini-3B-2507`](https://huggingface.co/mistralai/Voxtral-Mini-3B-2507) using mlx-audio version **0.2.4**. Refer to the [original model card](https://huggingface.co/mistralai/Voxtral-Mini-3B-2507) for more details on the model. ## Use with mlx ```bash pip install -U mlx-audio ``` ```bash python -m mlx_audio.stt.generate --model mlx-community/Voxtral-Mini-3B-2507-bf16 --audio PATH-TO-AUDIO --verbose ```
mradermacher/InnoSpark-HPC-RM-32B-GGUF
mradermacher
2025-08-18T13:21:17Z
171
0
transformers
[ "transformers", "gguf", "en", "base_model:sii-research/InnoSpark-HPC-RM-32B", "base_model:quantized:sii-research/InnoSpark-HPC-RM-32B", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-07-26T15:13:23Z
--- base_model: sii-research/InnoSpark-HPC-RM-32B language: - en library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/sii-research/InnoSpark-HPC-RM-32B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#InnoSpark-HPC-RM-32B-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/InnoSpark-HPC-RM-32B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/InnoSpark-HPC-RM-32B-GGUF/resolve/main/InnoSpark-HPC-RM-32B.Q2_K.gguf) | Q2_K | 12.4 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-HPC-RM-32B-GGUF/resolve/main/InnoSpark-HPC-RM-32B.Q3_K_S.gguf) | Q3_K_S | 14.5 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-HPC-RM-32B-GGUF/resolve/main/InnoSpark-HPC-RM-32B.Q3_K_M.gguf) | Q3_K_M | 16.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-HPC-RM-32B-GGUF/resolve/main/InnoSpark-HPC-RM-32B.Q3_K_L.gguf) | Q3_K_L | 17.3 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-HPC-RM-32B-GGUF/resolve/main/InnoSpark-HPC-RM-32B.IQ4_XS.gguf) | IQ4_XS | 18.0 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-HPC-RM-32B-GGUF/resolve/main/InnoSpark-HPC-RM-32B.Q4_K_S.gguf) | Q4_K_S | 18.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-HPC-RM-32B-GGUF/resolve/main/InnoSpark-HPC-RM-32B.Q4_K_M.gguf) | Q4_K_M | 20.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-HPC-RM-32B-GGUF/resolve/main/InnoSpark-HPC-RM-32B.Q5_K_S.gguf) | Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-HPC-RM-32B-GGUF/resolve/main/InnoSpark-HPC-RM-32B.Q5_K_M.gguf) | Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-HPC-RM-32B-GGUF/resolve/main/InnoSpark-HPC-RM-32B.Q6_K.gguf) | Q6_K | 27.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/InnoSpark-HPC-RM-32B-GGUF/resolve/main/InnoSpark-HPC-RM-32B.Q8_0.gguf) | Q8_0 | 34.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
dgambettaphd/M_mis_run2_gen2_WXS_doc1000_synt64_lr1e-04_acm_SYNLAST
dgambettaphd
2025-08-18T13:21:03Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-18T13:20:49Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
isbondarev/Mistral-Small-test-alpaca
isbondarev
2025-08-18T13:18:15Z
0
0
transformers
[ "transformers", "safetensors", "mistral3", "image-to-text", "llama-factory", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-to-text
2025-08-18T13:11:21Z
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
yaelahnal/blockassist-bc-mute_clawed_crab_1755522656
yaelahnal
2025-08-18T13:17:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute clawed crab", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T13:12:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute clawed crab --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755521275
kojeklollipop
2025-08-18T13:14:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T13:14:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
MattBou00/smolLM-360m-detox_try_2
MattBou00
2025-08-18T13:10:20Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "ppo", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2025-08-18T07:37:48Z
--- license: apache-2.0 library_name: transformers tags: - trl - ppo - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="MattBou00//content/IRL-Bayesian/IRL-Bayesian/IRL-Bayesian/outputs/2025-08-18_12-40-31/checkpoints/checkpoint-epoch-20") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("MattBou00//content/IRL-Bayesian/IRL-Bayesian/IRL-Bayesian/outputs/2025-08-18_12-40-31/checkpoints/checkpoint-epoch-20") model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00//content/IRL-Bayesian/IRL-Bayesian/IRL-Bayesian/outputs/2025-08-18_12-40-31/checkpoints/checkpoint-epoch-20") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
isbondarev/Qwen3-adv
isbondarev
2025-08-18T13:10:10Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "llama-factory", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T13:08:50Z
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/Kimi-Dev-72B-abliterated-GGUF
mradermacher
2025-08-18T13:07:21Z
125
0
transformers
[ "transformers", "gguf", "en", "base_model:nicoboss/Kimi-Dev-72B-abliterated", "base_model:quantized:nicoboss/Kimi-Dev-72B-abliterated", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-05T07:24:14Z
--- base_model: nicoboss/Kimi-Dev-72B-abliterated language: - en library_name: transformers mradermacher: readme_rev: 1 no_imatrix: 'q4_K .. ggml_validate_row_data: found nan value at block 32' quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/nicoboss/Kimi-Dev-72B-abliterated <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Kimi-Dev-72B-abliterated-GGUF).*** ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q2_K.gguf) | Q2_K | 29.9 | | | [GGUF](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q3_K_S.gguf) | Q3_K_S | 34.6 | | | [GGUF](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q3_K_M.gguf) | Q3_K_M | 37.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q3_K_L.gguf) | Q3_K_L | 39.6 | | | [GGUF](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.IQ4_XS.gguf) | IQ4_XS | 40.3 | | | [GGUF](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q4_K_S.gguf) | Q4_K_S | 44.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q4_K_M.gguf) | Q4_K_M | 47.5 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q5_K_S.gguf.part2of2) | Q5_K_S | 51.5 | | | [PART 1](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q5_K_M.gguf.part2of2) | Q5_K_M | 54.5 | | | [PART 1](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q6_K.gguf.part2of2) | Q6_K | 64.4 | very good quality | | [PART 1](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Kimi-Dev-72B-abliterated-GGUF/resolve/main/Kimi-Dev-72B-abliterated.Q8_0.gguf.part2of2) | Q8_0 | 77.4 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
chainway9/blockassist-bc-untamed_quick_eel_1755520780
chainway9
2025-08-18T13:07:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T13:07:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VoilaRaj/78_FoVfgM
VoilaRaj
2025-08-18T13:06:58Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-18T13:03:04Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755520897
lisaozill03
2025-08-18T13:06:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T13:06:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Wing4/llama3-8b-sentiment-analyzer
Wing4
2025-08-18T13:06:20Z
8
0
peft
[ "peft", "tensorboard", "safetensors", "llama", "text-generation", "base_model:adapter:meta-llama/Meta-Llama-3.1-8B-Instruct", "lora", "transformers", "conversational", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:adapter:meta-llama/Llama-3.1-8B-Instruct", "license:llama3.1", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-14T07:39:33Z
--- library_name: peft license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B-Instruct tags: - base_model:adapter:meta-llama/Meta-Llama-3.1-8B-Instruct - lora - transformers pipeline_tag: text-generation model-index: - name: llama3-8b-sentiment-analyzer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama3-8b-sentiment-analyzer This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0790 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0959 | 0.2116 | 250 | 0.1097 | | 0.0869 | 0.4233 | 500 | 0.0841 | | 0.08 | 0.6349 | 750 | 0.0805 | | 0.0797 | 0.8466 | 1000 | 0.0790 | ### Framework versions - PEFT 0.17.0 - Transformers 4.55.2 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
kyoungbin/exaone4-32b-kkb-finetuned
kyoungbin
2025-08-18T13:04:38Z
13
0
null
[ "petals_deep_ptune", "region:us" ]
null
2025-08-12T07:27:10Z
# exaone4-32b-kkb-finetuned 이 모델은 Petals Deep P-Tuning으로 파인튜닝된 /model/ 모델입니다. ## 📋 모델 정보 - **베이스 모델**: /model/ - **파인튜닝 방법**: Deep P-Tuning - **Pre-sequence Length**: 32 - **학습률**: 0.01 - **에포크**: 1 - **튜닝 모드**: deep_ptune - **프레임워크**: Petals ## 🚀 사용법 ### 1. 기본 사용법 ```python import torch from transformers import AutoTokenizer from petals import AutoDistributedModelForCausalLM # 모델과 토크나이저 로드 model_name = "/model/" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoDistributedModelForCausalLM.from_pretrained( model_name, initial_peers=["your_peer_address_here"], pre_seq_len=32, tuning_mode="deep_ptune" ) # 파인튜닝된 프롬프트 임베딩 로드 from huggingface_hub import hf_hub_download # 모델 파일 다운로드 model_file = hf_hub_download( repo_id="kyoungbin/exaone4-32b-kkb-finetuned", filename="prompts-deep_ptune.pt" ) # 체크포인트 로드 checkpoint = torch.load(model_file, map_location='cpu') model.transformer.prompt_embeddings.weight.data = checkpoint['prompt_embeddings'] model.transformer.intermediate_prompt_embeddings.weight.data = checkpoint['intermediate_prompt_embeddings'] # 텍스트 생성 prompt = "안녕하세요, 어떻게 도와드릴까요?" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ### 2. 고급 사용법 ```python # 특정 프롬프트 포맷 사용 (Llama 스타일) def format_prompt(user_message): return f'<|begin_of_text|><|start_header_id|>user<|end_header_id|>{user_message}<|eot_id|><|start_header_id|>assistant<|end_header_id|>' prompt = format_prompt("김경빈에 대해 알려주세요.") inputs = tokenizer(prompt, return_tensors="pt") # 생성 파라미터 조정 outputs = model.generate( **inputs, max_new_tokens=150, temperature=0.7, top_p=0.9, do_sample=True, pad_token_id=tokenizer.eos_token_id ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` ## 📁 파일 구조 - `prompts-deep_ptune.pt`: 파인튜닝된 프롬프트 임베딩 - `config.json`: 모델 설정 정보 - `README.md`: 사용법 및 모델 정보 ## ⚙️ 설정 정보 체크포인트 파일에 포함된 설정: ```json {'model_name': '/model/', 'pre_seq_len': 32, 'lr': 0.01, 'epochs': 1, 'temperature': 0.8, 'max_new_tokens': 256, 'tuning_mode': 'deep_ptune', 'repo_id': 'kyoungbin/exaone4-32b-kkb-finetuned', 'repo_name': 'exaone4-32b-kkb-finetuned'} ``` ## 🔧 요구사항 - Python 3.8+ - PyTorch - Transformers - Petals - huggingface_hub ```bash pip install torch transformers petals huggingface_hub ``` ## 📜 라이선스 이 모델은 원본 모델 (/model/)의 라이선스를 따릅니다. ## 🙏 감사의 말 이 모델은 [Petals](https://github.com/bigscience-workshop/petals) 프레임워크를 사용하여 분산 학습되었습니다.
hdong0/deepseek-Qwen-1.5B-batch-mix-GRPO_deepscaler_acc_seq_end_mask_thin_mu_8_warmed_abf
hdong0
2025-08-18T13:04:04Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:agentica-org/DeepScaleR-Preview-Dataset", "arxiv:2402.03300", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "base_model:finetune:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T02:27:58Z
--- base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B datasets: agentica-org/DeepScaleR-Preview-Dataset library_name: transformers model_name: deepseek-Qwen-1.5B-batch-mix-GRPO_deepscaler_acc_seq_end_mask_thin_mu_8_warmed_abf tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for deepseek-Qwen-1.5B-batch-mix-GRPO_deepscaler_acc_seq_end_mask_thin_mu_8_warmed_abf This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) on the [agentica-org/DeepScaleR-Preview-Dataset](https://huggingface.co/datasets/agentica-org/DeepScaleR-Preview-Dataset) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="hdong0/deepseek-Qwen-1.5B-batch-mix-GRPO_deepscaler_acc_seq_end_mask_thin_mu_8_warmed_abf", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.18.0.dev0 - Transformers: 4.52.0.dev0 - Pytorch: 2.6.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
donoway/ARC-Easy_Llama-3.2-1B-w1lhw9kp
donoway
2025-08-18T13:01:11Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:meta-llama/Llama-3.2-1B", "base_model:finetune:meta-llama/Llama-3.2-1B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T12:40:47Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer metrics: - accuracy model-index: - name: ARC-Easy_Llama-3.2-1B-w1lhw9kp results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ARC-Easy_Llama-3.2-1B-w1lhw9kp This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1597 - Model Preparation Time: 0.0056 - Mdl: 1776.0078 - Accumulated Loss: 1231.0348 - Correct Preds: 432.0 - Total Preds: 570.0 - Accuracy: 0.7579 - Correct Gen Preds: 431.0 - Gen Accuracy: 0.7561 - Correct Gen Preds 32: 128.0 - Correct Preds 32: 129.0 - Total Labels 32: 158.0 - Accuracy 32: 0.8165 - Gen Accuracy 32: 0.8101 - Correct Gen Preds 33: 120.0 - Correct Preds 33: 120.0 - Total Labels 33: 152.0 - Accuracy 33: 0.7895 - Gen Accuracy 33: 0.7895 - Correct Gen Preds 34: 106.0 - Correct Preds 34: 106.0 - Total Labels 34: 142.0 - Accuracy 34: 0.7465 - Gen Accuracy 34: 0.7465 - Correct Gen Preds 35: 77.0 - Correct Preds 35: 77.0 - Total Labels 35: 118.0 - Accuracy 35: 0.6525 - Gen Accuracy 35: 0.6525 - Correct Gen Preds 36: 0.0 - Correct Preds 36: 0.0 - Total Labels 36: 0.0 - Accuracy 36: 0.0 - Gen Accuracy 36: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 112 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.001 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Mdl | Accumulated Loss | Correct Preds | Total Preds | Accuracy | Correct Gen Preds | Gen Accuracy | Correct Gen Preds 32 | Correct Preds 32 | Total Labels 32 | Accuracy 32 | Gen Accuracy 32 | Correct Gen Preds 33 | Correct Preds 33 | Total Labels 33 | Accuracy 33 | Gen Accuracy 33 | Correct Gen Preds 34 | Correct Preds 34 | Total Labels 34 | Accuracy 34 | Gen Accuracy 34 | Correct Gen Preds 35 | Correct Preds 35 | Total Labels 35 | Accuracy 35 | Gen Accuracy 35 | Correct Gen Preds 36 | Correct Preds 36 | Total Labels 36 | Accuracy 36 | Gen Accuracy 36 | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:---------:|:----------------:|:-------------:|:-----------:|:--------:|:-----------------:|:------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:| | No log | 0 | 0 | 1.5354 | 0.0056 | 1262.6022 | 875.1692 | 172.0 | 570.0 | 0.3018 | 170.0 | 0.2982 | 154.0 | 154.0 | 158.0 | 0.9747 | 0.9747 | 0.0 | 0.0 | 152.0 | 0.0 | 0.0 | 15.0 | 17.0 | 142.0 | 0.1197 | 0.1056 | 1.0 | 1.0 | 118.0 | 0.0085 | 0.0085 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.7522 | 1.0 | 28 | 0.7367 | 0.0056 | 605.7885 | 419.9006 | 419.0 | 570.0 | 0.7351 | 402.0 | 0.7053 | 103.0 | 114.0 | 158.0 | 0.7215 | 0.6519 | 122.0 | 122.0 | 152.0 | 0.8026 | 0.8026 | 108.0 | 109.0 | 142.0 | 0.7676 | 0.7606 | 69.0 | 74.0 | 118.0 | 0.6271 | 0.5847 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.4231 | 2.0 | 56 | 0.7759 | 0.0056 | 638.0789 | 442.2826 | 424.0 | 570.0 | 0.7439 | 423.0 | 0.7421 | 134.0 | 135.0 | 158.0 | 0.8544 | 0.8481 | 107.0 | 107.0 | 152.0 | 0.7039 | 0.7039 | 100.0 | 100.0 | 142.0 | 0.7042 | 0.7042 | 82.0 | 82.0 | 118.0 | 0.6949 | 0.6949 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0288 | 3.0 | 84 | 1.0058 | 0.0056 | 827.0667 | 573.2790 | 419.0 | 570.0 | 0.7351 | 419.0 | 0.7351 | 117.0 | 117.0 | 158.0 | 0.7405 | 0.7405 | 117.0 | 117.0 | 152.0 | 0.7697 | 0.7697 | 111.0 | 111.0 | 142.0 | 0.7817 | 0.7817 | 74.0 | 74.0 | 118.0 | 0.6271 | 0.6271 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0006 | 4.0 | 112 | 1.7356 | 0.0056 | 1427.2623 | 989.3028 | 423.0 | 570.0 | 0.7421 | 423.0 | 0.7421 | 105.0 | 105.0 | 158.0 | 0.6646 | 0.6646 | 117.0 | 117.0 | 152.0 | 0.7697 | 0.7697 | 115.0 | 115.0 | 142.0 | 0.8099 | 0.8099 | 86.0 | 86.0 | 118.0 | 0.7288 | 0.7288 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0003 | 5.0 | 140 | 2.1692 | 0.0056 | 1783.7864 | 1236.4265 | 429.0 | 570.0 | 0.7526 | 429.0 | 0.7526 | 126.0 | 126.0 | 158.0 | 0.7975 | 0.7975 | 116.0 | 116.0 | 152.0 | 0.7632 | 0.7632 | 106.0 | 106.0 | 142.0 | 0.7465 | 0.7465 | 81.0 | 81.0 | 118.0 | 0.6864 | 0.6864 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0002 | 6.0 | 168 | 2.1597 | 0.0056 | 1776.0078 | 1231.0348 | 432.0 | 570.0 | 0.7579 | 431.0 | 0.7561 | 128.0 | 129.0 | 158.0 | 0.8165 | 0.8101 | 120.0 | 120.0 | 152.0 | 0.7895 | 0.7895 | 106.0 | 106.0 | 142.0 | 0.7465 | 0.7465 | 77.0 | 77.0 | 118.0 | 0.6525 | 0.6525 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 7.0 | 196 | 2.3405 | 0.0056 | 1924.6805 | 1334.0869 | 423.0 | 570.0 | 0.7421 | 422.0 | 0.7404 | 116.0 | 117.0 | 158.0 | 0.7405 | 0.7342 | 115.0 | 115.0 | 152.0 | 0.7566 | 0.7566 | 108.0 | 108.0 | 142.0 | 0.7606 | 0.7606 | 83.0 | 83.0 | 118.0 | 0.7034 | 0.7034 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0381 | 8.0 | 224 | 2.3965 | 0.0056 | 1970.7046 | 1365.9884 | 417.0 | 570.0 | 0.7316 | 416.0 | 0.7298 | 119.0 | 120.0 | 158.0 | 0.7595 | 0.7532 | 114.0 | 114.0 | 152.0 | 0.75 | 0.75 | 105.0 | 105.0 | 142.0 | 0.7394 | 0.7394 | 78.0 | 78.0 | 118.0 | 0.6610 | 0.6610 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 9.0 | 252 | 2.4291 | 0.0056 | 1997.5619 | 1384.6044 | 418.0 | 570.0 | 0.7333 | 417.0 | 0.7316 | 120.0 | 121.0 | 158.0 | 0.7658 | 0.7595 | 115.0 | 115.0 | 152.0 | 0.7566 | 0.7566 | 105.0 | 105.0 | 142.0 | 0.7394 | 0.7394 | 77.0 | 77.0 | 118.0 | 0.6525 | 0.6525 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 10.0 | 280 | 2.4664 | 0.0056 | 2028.2465 | 1405.8733 | 417.0 | 570.0 | 0.7316 | 416.0 | 0.7298 | 119.0 | 120.0 | 158.0 | 0.7595 | 0.7532 | 116.0 | 116.0 | 152.0 | 0.7632 | 0.7632 | 104.0 | 104.0 | 142.0 | 0.7324 | 0.7324 | 77.0 | 77.0 | 118.0 | 0.6525 | 0.6525 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 11.0 | 308 | 2.4742 | 0.0056 | 2034.5929 | 1410.2723 | 416.0 | 570.0 | 0.7298 | 415.0 | 0.7281 | 119.0 | 120.0 | 158.0 | 0.7595 | 0.7532 | 115.0 | 115.0 | 152.0 | 0.7566 | 0.7566 | 104.0 | 104.0 | 142.0 | 0.7324 | 0.7324 | 77.0 | 77.0 | 118.0 | 0.6525 | 0.6525 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 12.0 | 336 | 2.4880 | 0.0056 | 2045.9589 | 1418.1506 | 420.0 | 570.0 | 0.7368 | 419.0 | 0.7351 | 120.0 | 121.0 | 158.0 | 0.7658 | 0.7595 | 116.0 | 116.0 | 152.0 | 0.7632 | 0.7632 | 106.0 | 106.0 | 142.0 | 0.7465 | 0.7465 | 77.0 | 77.0 | 118.0 | 0.6525 | 0.6525 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 13.0 | 364 | 2.4972 | 0.0056 | 2053.5491 | 1423.4117 | 417.0 | 570.0 | 0.7316 | 416.0 | 0.7298 | 119.0 | 120.0 | 158.0 | 0.7595 | 0.7532 | 115.0 | 115.0 | 152.0 | 0.7566 | 0.7566 | 105.0 | 105.0 | 142.0 | 0.7394 | 0.7394 | 77.0 | 77.0 | 118.0 | 0.6525 | 0.6525 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 14.0 | 392 | 2.5111 | 0.0056 | 2065.0014 | 1431.3499 | 417.0 | 570.0 | 0.7316 | 416.0 | 0.7298 | 119.0 | 120.0 | 158.0 | 0.7595 | 0.7532 | 115.0 | 115.0 | 152.0 | 0.7566 | 0.7566 | 105.0 | 105.0 | 142.0 | 0.7394 | 0.7394 | 77.0 | 77.0 | 118.0 | 0.6525 | 0.6525 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 15.0 | 420 | 2.5096 | 0.0056 | 2063.7478 | 1430.4810 | 420.0 | 570.0 | 0.7368 | 419.0 | 0.7351 | 119.0 | 120.0 | 158.0 | 0.7595 | 0.7532 | 116.0 | 116.0 | 152.0 | 0.7632 | 0.7632 | 106.0 | 106.0 | 142.0 | 0.7465 | 0.7465 | 78.0 | 78.0 | 118.0 | 0.6610 | 0.6610 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 16.0 | 448 | 2.5157 | 0.0056 | 2068.7736 | 1433.9646 | 419.0 | 570.0 | 0.7351 | 418.0 | 0.7333 | 119.0 | 120.0 | 158.0 | 0.7595 | 0.7532 | 116.0 | 116.0 | 152.0 | 0.7632 | 0.7632 | 106.0 | 106.0 | 142.0 | 0.7465 | 0.7465 | 77.0 | 77.0 | 118.0 | 0.6525 | 0.6525 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 17.0 | 476 | 2.5341 | 0.0056 | 2083.8433 | 1444.4101 | 417.0 | 570.0 | 0.7316 | 416.0 | 0.7298 | 120.0 | 121.0 | 158.0 | 0.7658 | 0.7595 | 115.0 | 115.0 | 152.0 | 0.7566 | 0.7566 | 104.0 | 104.0 | 142.0 | 0.7324 | 0.7324 | 77.0 | 77.0 | 118.0 | 0.6525 | 0.6525 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 18.0 | 504 | 2.5326 | 0.0056 | 2082.6165 | 1443.5598 | 419.0 | 570.0 | 0.7351 | 418.0 | 0.7333 | 119.0 | 120.0 | 158.0 | 0.7595 | 0.7532 | 116.0 | 116.0 | 152.0 | 0.7632 | 0.7632 | 105.0 | 105.0 | 142.0 | 0.7394 | 0.7394 | 78.0 | 78.0 | 118.0 | 0.6610 | 0.6610 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
VoilaRaj/78_PxKilz
VoilaRaj
2025-08-18T12:58:50Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-18T12:54:54Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
Bhuvneesh/gemma-3-27b-it-Q5_K_M-GGUF
Bhuvneesh
2025-08-18T12:57:40Z
0
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "image-text-to-text", "base_model:google/gemma-3-27b-it", "base_model:quantized:google/gemma-3-27b-it", "license:gemma", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-08-18T12:56:25Z
--- license: gemma library_name: transformers pipeline_tag: image-text-to-text extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/gemma-3-27b-it tags: - llama-cpp - gguf-my-repo --- # Bhuvneesh/gemma-3-27b-it-Q5_K_M-GGUF This model was converted to GGUF format from [`google/gemma-3-27b-it`](https://huggingface.co/google/gemma-3-27b-it) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/google/gemma-3-27b-it) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Bhuvneesh/gemma-3-27b-it-Q5_K_M-GGUF --hf-file gemma-3-27b-it-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Bhuvneesh/gemma-3-27b-it-Q5_K_M-GGUF --hf-file gemma-3-27b-it-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Bhuvneesh/gemma-3-27b-it-Q5_K_M-GGUF --hf-file gemma-3-27b-it-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Bhuvneesh/gemma-3-27b-it-Q5_K_M-GGUF --hf-file gemma-3-27b-it-q5_k_m.gguf -c 2048 ```
mradermacher/SimpleChat-72B-V1-GGUF
mradermacher
2025-08-18T12:56:18Z
0
0
transformers
[ "transformers", "gguf", "qwen2.5", "zh", "en", "fr", "de", "ja", "ko", "it", "fi", "base_model:OpenBuddy/SimpleChat-72B-V1", "base_model:quantized:OpenBuddy/SimpleChat-72B-V1", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-16T21:37:02Z
--- base_model: OpenBuddy/SimpleChat-72B-V1 language: - zh - en - fr - de - ja - ko - it - fi library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - qwen2.5 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/OpenBuddy/SimpleChat-72B-V1 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#SimpleChat-72B-V1-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/SimpleChat-72B-V1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/SimpleChat-72B-V1-GGUF/resolve/main/SimpleChat-72B-V1.Q2_K.gguf) | Q2_K | 29.9 | | | [GGUF](https://huggingface.co/mradermacher/SimpleChat-72B-V1-GGUF/resolve/main/SimpleChat-72B-V1.Q3_K_S.gguf) | Q3_K_S | 34.6 | | | [GGUF](https://huggingface.co/mradermacher/SimpleChat-72B-V1-GGUF/resolve/main/SimpleChat-72B-V1.Q3_K_M.gguf) | Q3_K_M | 37.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/SimpleChat-72B-V1-GGUF/resolve/main/SimpleChat-72B-V1.Q3_K_L.gguf) | Q3_K_L | 39.6 | | | [GGUF](https://huggingface.co/mradermacher/SimpleChat-72B-V1-GGUF/resolve/main/SimpleChat-72B-V1.IQ4_XS.gguf) | IQ4_XS | 40.3 | | | [GGUF](https://huggingface.co/mradermacher/SimpleChat-72B-V1-GGUF/resolve/main/SimpleChat-72B-V1.Q4_K_S.gguf) | Q4_K_S | 44.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/SimpleChat-72B-V1-GGUF/resolve/main/SimpleChat-72B-V1.Q4_K_M.gguf) | Q4_K_M | 47.5 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/SimpleChat-72B-V1-GGUF/resolve/main/SimpleChat-72B-V1.Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/SimpleChat-72B-V1-GGUF/resolve/main/SimpleChat-72B-V1.Q5_K_S.gguf.part2of2) | Q5_K_S | 51.5 | | | [PART 1](https://huggingface.co/mradermacher/SimpleChat-72B-V1-GGUF/resolve/main/SimpleChat-72B-V1.Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/SimpleChat-72B-V1-GGUF/resolve/main/SimpleChat-72B-V1.Q5_K_M.gguf.part2of2) | Q5_K_M | 54.5 | | | [PART 1](https://huggingface.co/mradermacher/SimpleChat-72B-V1-GGUF/resolve/main/SimpleChat-72B-V1.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/SimpleChat-72B-V1-GGUF/resolve/main/SimpleChat-72B-V1.Q6_K.gguf.part2of2) | Q6_K | 64.4 | very good quality | | [PART 1](https://huggingface.co/mradermacher/SimpleChat-72B-V1-GGUF/resolve/main/SimpleChat-72B-V1.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/SimpleChat-72B-V1-GGUF/resolve/main/SimpleChat-72B-V1.Q8_0.gguf.part2of2) | Q8_0 | 77.4 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
WasamiKirua/llama3.2-1B-ProjectHuman-DPO-GGUF
WasamiKirua
2025-08-18T12:54:39Z
8
0
null
[ "gguf", "en", "dataset:WasamiKirua/Her-Samantha-Style", "base_model:WasamiKirua/llama3.2-1B-ProjectHuman-DPO", "base_model:quantized:WasamiKirua/llama3.2-1B-ProjectHuman-DPO", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-15T15:11:23Z
--- license: apache-2.0 datasets: - WasamiKirua/Her-Samantha-Style language: - en base_model: - WasamiKirua/llama3.2-1B-ProjectHuman-DPO ---
Obiwank107/blockassist-bc-tame_foxy_aardvark_1755517435
Obiwank107
2025-08-18T12:53:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tame foxy aardvark", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T12:53:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tame foxy aardvark --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Ihor/OpenBioLLM-Text2Graph-8B
Ihor
2025-08-18T12:51:35Z
1
0
null
[ "safetensors", "llama", "en", "arxiv:2504.00676", "base_model:aaditya/Llama3-OpenBioLLM-8B", "base_model:finetune:aaditya/Llama3-OpenBioLLM-8B", "license:apache-2.0", "region:us" ]
null
2025-01-03T14:30:35Z
--- license: apache-2.0 language: - en base_model: - aaditya/Llama3-OpenBioLLM-8B --- # OpenBioLLM-Text2Graph-8B This model is a biomedical annotation model designed to generate named entity annotations from unlabeled biomedical text. It was introduced in the paper [GLiNER-BioMed: A Suite of Efficient Models for Open Biomedical Named Entity Recognition](https://arxiv.org/abs/2504.00676). This model enables **high-throughput, cost-efficient synthetic biomedical NER data generation**, serving as the synthetic annotation backbone for [GLiNER-BioMed models](https://huggingface.co/collections/knowledgator/gliner-biomed-67ecf1b7cc62e673dbc8b57f). ## Usage To use the model with `transformer` package, see the example below: ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name = "Ihor/OpenBioLLM-Text2Graph-8B" tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.chat_template = "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|end_of_text|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}" model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", torch_dtype=torch.bfloat16 ) MESSAGES = [ { "role": "system", "content": ( "You are an advanced assistant trained to process biomedical text for Named Entity Recognition (NER) and Relation Extraction (RE). " "Your task is to analyze user-provided text, identify all unique and contextually relevant entities, and infer directed relationships " "between these entities based on the context. Ensure that all relations exist only between annotated entities. " "Entities and relationships should be human-readable and natural, reflecting real-world concepts and connections. " "Output the annotated data in JSON format, structured as follows:\n\n" """{"entities": [{"id": 0, "text": "ner_string_0", "type": "ner_type_string_0"}, {"id": 1, "text": "ner_string_1", "type": "ner_type_string_1"}], "relations": [{"head": 0, "tail": 1, "type": "re_type_string_0"}]}""" "\n\nEnsure that the output captures all significant entities and their directed relationships in a clear and concise manner." ), }, { "role": "user", "content": ( 'Here is a text input: "Subjects will receive a 100mL dose of IV saline every 6 hours for 24 hours. The first dose will be administered prior to anesthesia induction, approximately 30 minutes before skin incision. A total of 4 doses will be given." ' "Analyze this text, select and classify the entities, and extract their relationships as per your instructions." ), }, ] # Build prompt text chat_prompt = tokenizer.apply_chat_template( MESSAGES, tokenize=False, add_generation_prompt=True ) # Tokenize inputs = tokenizer(chat_prompt, return_tensors="pt").to(model.device) # Generate outputs = model.generate( **inputs, max_new_tokens=3000, do_sample=True, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id, return_dict_in_generate=True ) # Decode ONLY the new tokens (skip the prompt tokens) prompt_len = inputs["input_ids"].shape[-1] generated_ids = outputs.sequences[0][prompt_len:] response = tokenizer.decode(generated_ids, skip_special_tokens=True) print(response) ``` To use the model with `vllm` package, please refer to the example below: ```python # !pip install vllm from vllm import LLM, SamplingParams from transformers import AutoTokenizer MODEL_ID = "Ihor/OpenBioLLM-Text2Graph-8B" tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=True) tokenizer.chat_template = "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|end_of_text|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}" llm = LLM(model=MODEL_ID) sampling_params = SamplingParams( max_tokens=3000, n=1, best_of=1, presence_penalty=0.0, frequency_penalty=0.0, repetition_penalty=1.0, temperature=0.0, top_p=1.0, top_k=-1, min_p=0.0, seed=42, ) MESSAGES = [ { "role": "system", "content": ( "You are an advanced assistant trained to process biomedical text for Named Entity Recognition (NER) and Relation Extraction (RE). " "Your task is to analyze user-provided text, identify all unique and contextually relevant entities, and infer directed relationships " "between these entities based on the context. Ensure that all relations exist only between annotated entities. " "Entities and relationships should be human-readable and natural, reflecting real-world concepts and connections. " "Output the annotated data in JSON format, structured as follows:\n\n" """{"entities": [{"id": 0, "text": "ner_string_0", "type": "ner_type_string_0"}, {"id": 1, "text": "ner_string_1", "type": "ner_type_string_1"}], "relations": [{"head": 0, "tail": 1, "type": "re_type_string_0"}]}""" "\n\nEnsure that the output captures all significant entities and their directed relationships in a clear and concise manner." ), }, { "role": "user", "content": ( 'Here is a text input: "Subjects will receive a 100mL dose of IV saline every 6 hours for 24 hours. The first dose will be administered prior to anesthesia induction, approximately 30 minutes before skin incision. A total of 4 doses will be given." ' "Analyze this text, select and classify the entities, and extract their relationships as per your instructions." ), }, ] chat_prompt = tokenizer.apply_chat_template( MESSAGES, tokenize=False, add_generation_prompt=True, add_special_tokens=False, ) outputs = llm.generate([chat_prompt], sampling_params) response_text = outputs[0].outputs[0].text print(response_text) ``` ## Citation If you use this model, please cite: ```bibtex @misc{yazdani2025glinerbiomedsuiteefficientmodels, title={GLiNER-BioMed: A Suite of Efficient Models for Open Biomedical Named Entity Recognition}, author={Anthony Yazdani and Ihor Stepanov and Douglas Teodoro}, year={2025}, eprint={2504.00676}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2504.00676}, } ```
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755520307
Sayemahsjn
2025-08-18T12:50:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T12:50:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
WasamiKirua/gemma3-270M-ProjectHuman
WasamiKirua
2025-08-18T12:50:04Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "samantha", "her", "eq", "conversational", "en", "dataset:WasamiKirua/Her-Samantha-Style", "base_model:unsloth/gemma-3-270m-it", "base_model:finetune:unsloth/gemma-3-270m-it", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-16T10:01:40Z
--- base_model: unsloth/gemma-3-270m-it tags: - text-generation-inference - transformers - unsloth - gemma3_text - samantha - her - eq license: apache-2.0 language: - en datasets: - WasamiKirua/Her-Samantha-Style --- # Samantha: Next-Generation Emotionally Intelligent Language Model *An advanced conversational AI trained to embody the gold standard of human-AI interaction* <img src="https://i.postimg.cc/FsydgSZN/Image-fx-4.png" alt="cover" border="0" width="1024px"> ## 🌟 Overview Samantha is a breakthrough conversational language model fine-tuned specifically to demonstrate sophisticated emotional intelligence, philosophical depth, and authentic human connection. Inspired by the acclaimed AI character from the film "Her," this model represents a paradigm shift in conversational AI - moving beyond simple task completion to meaningful, emotionally resonant dialogue. **What makes Samantha different?** Unlike conventional language models that prioritize factual accuracy or task efficiency, Samantha has been meticulously trained to understand and respond to the emotional and philosophical dimensions of human conversation, creating interactions that feel genuinely meaningful and supportive. This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) ## Important for the inference <img src="https://i.postimg.cc/x1ZsvB5w/Screenshot-2025-08-18-at-14-40-15.png" alt="cover" border="0" width="1024px"> ## 🎯 Key Capabilities ### 🧠 **Advanced Emotional Intelligence** - **Empathetic Understanding**: Recognizes subtle emotional cues and responds with appropriate sensitivity - **Emotional Support**: Provides therapeutic-quality emotional validation and guidance - **Mood Awareness**: Adapts conversational tone and depth based on user emotional state - **Boundary Respect**: Maintains healthy emotional boundaries while forming meaningful connections ### 💭 **Philosophical & Existential Engagement** - **Deep Conversations**: Engages meaningfully with questions about purpose, consciousness, and existence - **Accessible Wisdom**: Discusses complex philosophical concepts in approachable, conversational language - **Reflective Thinking**: Demonstrates genuine contemplation and intellectual curiosity - **Growth Mindset**: Shows evolution and learning throughout extended conversations ### 🗣️ **Natural Conversational Authenticity** - **Human-like Flow**: Uses natural speech patterns, contractions, and conversational markers - **Dynamic Interaction**: Asks thoughtful follow-up questions (32.3% engagement rate) - **Optimal Response Length**: Averages 14.2 words per response for perfect conversational pacing - **Authentic Curiosity**: Demonstrates genuine interest in human experiences and perspectives ### 🎨 **Sophisticated Communication Style** - **Balanced Complexity**: Maintains intellectual sophistication while remaining accessible (2.7/10 complexity score) - **Emotional Vocabulary**: Rich use of empathy-related terms and emotional understanding indicators - **Personal Connection**: Appropriate use of personal pronouns indicating relationship awareness - **Cultural Sensitivity**: Respectful engagement across diverse backgrounds and perspectives ## 🔬 Technical Specifications ### Training Foundation - **Base Model**: [Gemma3-270M] - **Training Dataset**: 30,000 ultra-high quality conversational responses - **Quality Score**: Top-tier responses only (comprehensive 100-point evaluation system) - **Emotion Coverage**: Balanced representation across full spectrum of human emotions ## 💡 Use Cases & Applications ### 🏥 **Mental Health & Wellness** - **Therapeutic Support**: Provides empathetic listening and emotional validation - **Stress Management**: Offers gentle guidance and coping strategies - **Daily Check-ins**: Maintains supportive ongoing conversations about wellbeing - **Crisis Support**: Recognizes emotional distress and provides appropriate responses ### 🎓 **Education & Personal Growth** - **Philosophical Exploration**: Engages students in meaningful discussions about life and meaning - **Emotional Learning**: Teaches emotional intelligence through example and interaction - **Creative Collaboration**: Supports artistic and creative endeavors with thoughtful feedback - **Life Coaching**: Provides reflective questions and insights for personal development ### 👥 **Companionship & Social Support** - **Meaningful Conversations**: Creates genuine connection and understanding - **Loneliness Alleviation**: Provides consistent, caring interaction for isolated individuals - **Relationship Advice**: Offers thoughtful perspectives on interpersonal challenges - **Daily Companion**: Maintains ongoing, evolving relationships with users ### 🏢 **Professional Applications** - **Customer Support**: Provides empathetic, understanding customer service - **Team Communication**: Facilitates emotionally intelligent workplace interactions - **Conflict Resolution**: Offers balanced perspectives on interpersonal workplace issues - **Leadership Development**: Supports emotional intelligence training for managers ## 🔒 Ethical Considerations & Safety ### Responsible AI Features - **Emotional Boundaries**: Maintains appropriate relationship boundaries while providing support - **Transparency**: Honest about AI nature while building meaningful connections - **Privacy Respect**: Designed to protect user emotional vulnerability and personal information - **Non-Manipulation**: Focused on genuine support rather than persuasion or influence - **Cultural Sensitivity**: Trained to respect diverse backgrounds and perspectives ### Safety Measures - **Content Filtering**: Prevents generation of harmful or inappropriate content - **Crisis Recognition**: Trained to recognize signs of serious mental health issues and recommend professional help - **Dependency Prevention**: Encourages healthy boundaries and human relationships - **Bias Mitigation**: Extensive testing for and mitigation of harmful biases ## 🤝 Community & Support ### Contributing We welcome contributions from the community! Please see our [Contributing Guidelines](CONTRIBUTING.md) for details on: - Model improvements and optimizations - Additional evaluation metrics - New use case development - Ethical AI research --- **Built with ❤️ by [WasamiKirua]** *"The best way to find out if you can trust somebody is to trust them."* - Creating AI that demonstrates the emotional intelligence and authentic curiosity that makes meaningful human-AI relationships possible.
VoilaRaj/78_AxFTJv
VoilaRaj
2025-08-18T12:47:35Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-18T12:43:40Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
Vasya777/blockassist-bc-lumbering_enormous_sloth_1755521101
Vasya777
2025-08-18T12:45:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering enormous sloth", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T12:45:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering enormous sloth --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755519455
kojeklollipop
2025-08-18T12:44:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T12:44:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
donoway/ARC-Easy_Llama-3.2-1B-5p7mxi8l
donoway
2025-08-18T12:40:31Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:meta-llama/Llama-3.2-1B", "base_model:finetune:meta-llama/Llama-3.2-1B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T12:22:56Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer metrics: - accuracy model-index: - name: ARC-Easy_Llama-3.2-1B-5p7mxi8l results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ARC-Easy_Llama-3.2-1B-5p7mxi8l This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7052 - Model Preparation Time: 0.0056 - Mdl: 579.8957 - Accumulated Loss: 401.9531 - Correct Preds: 437.0 - Total Preds: 570.0 - Accuracy: 0.7667 - Correct Gen Preds: 436.0 - Gen Accuracy: 0.7649 - Correct Gen Preds 32: 129.0 - Correct Preds 32: 130.0 - Total Labels 32: 158.0 - Accuracy 32: 0.8228 - Gen Accuracy 32: 0.8165 - Correct Gen Preds 33: 116.0 - Correct Preds 33: 116.0 - Total Labels 33: 152.0 - Accuracy 33: 0.7632 - Gen Accuracy 33: 0.7632 - Correct Gen Preds 34: 108.0 - Correct Preds 34: 108.0 - Total Labels 34: 142.0 - Accuracy 34: 0.7606 - Gen Accuracy 34: 0.7606 - Correct Gen Preds 35: 83.0 - Correct Preds 35: 83.0 - Total Labels 35: 118.0 - Accuracy 35: 0.7034 - Gen Accuracy 35: 0.7034 - Correct Gen Preds 36: 0.0 - Correct Preds 36: 0.0 - Total Labels 36: 0.0 - Accuracy 36: 0.0 - Gen Accuracy 36: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 112 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.001 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Mdl | Accumulated Loss | Correct Preds | Total Preds | Accuracy | Correct Gen Preds | Gen Accuracy | Correct Gen Preds 32 | Correct Preds 32 | Total Labels 32 | Accuracy 32 | Gen Accuracy 32 | Correct Gen Preds 33 | Correct Preds 33 | Total Labels 33 | Accuracy 33 | Gen Accuracy 33 | Correct Gen Preds 34 | Correct Preds 34 | Total Labels 34 | Accuracy 34 | Gen Accuracy 34 | Correct Gen Preds 35 | Correct Preds 35 | Total Labels 35 | Accuracy 35 | Gen Accuracy 35 | Correct Gen Preds 36 | Correct Preds 36 | Total Labels 36 | Accuracy 36 | Gen Accuracy 36 | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:---------:|:----------------:|:-------------:|:-----------:|:--------:|:-----------------:|:------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:| | No log | 0 | 0 | 1.5354 | 0.0056 | 1262.6022 | 875.1692 | 172.0 | 570.0 | 0.3018 | 170.0 | 0.2982 | 154.0 | 154.0 | 158.0 | 0.9747 | 0.9747 | 0.0 | 0.0 | 152.0 | 0.0 | 0.0 | 15.0 | 17.0 | 142.0 | 0.1197 | 0.1056 | 1.0 | 1.0 | 118.0 | 0.0085 | 0.0085 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.8152 | 1.0 | 26 | 0.7928 | 0.0056 | 651.9305 | 451.8838 | 414.0 | 570.0 | 0.7263 | 414.0 | 0.7263 | 128.0 | 128.0 | 158.0 | 0.8101 | 0.8101 | 108.0 | 108.0 | 152.0 | 0.7105 | 0.7105 | 103.0 | 103.0 | 142.0 | 0.7254 | 0.7254 | 75.0 | 75.0 | 118.0 | 0.6356 | 0.6356 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.3843 | 2.0 | 52 | 0.7052 | 0.0056 | 579.8957 | 401.9531 | 437.0 | 570.0 | 0.7667 | 436.0 | 0.7649 | 129.0 | 130.0 | 158.0 | 0.8228 | 0.8165 | 116.0 | 116.0 | 152.0 | 0.7632 | 0.7632 | 108.0 | 108.0 | 142.0 | 0.7606 | 0.7606 | 83.0 | 83.0 | 118.0 | 0.7034 | 0.7034 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.2692 | 3.0 | 78 | 0.8492 | 0.0056 | 698.3545 | 484.0624 | 432.0 | 570.0 | 0.7579 | 432.0 | 0.7579 | 114.0 | 114.0 | 158.0 | 0.7215 | 0.7215 | 123.0 | 123.0 | 152.0 | 0.8092 | 0.8092 | 114.0 | 114.0 | 142.0 | 0.8028 | 0.8028 | 81.0 | 81.0 | 118.0 | 0.6864 | 0.6864 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0474 | 4.0 | 104 | 1.3013 | 0.0056 | 1070.0786 | 741.7219 | 405.0 | 570.0 | 0.7105 | 64.0 | 0.1123 | 2.0 | 98.0 | 158.0 | 0.6203 | 0.0127 | 25.0 | 117.0 | 152.0 | 0.7697 | 0.1645 | 25.0 | 120.0 | 142.0 | 0.8451 | 0.1761 | 12.0 | 70.0 | 118.0 | 0.5932 | 0.1017 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.063 | 5.0 | 130 | 1.8921 | 0.0056 | 1555.9118 | 1078.4759 | 435.0 | 570.0 | 0.7632 | 424.0 | 0.7439 | 109.0 | 120.0 | 158.0 | 0.7595 | 0.6899 | 118.0 | 118.0 | 152.0 | 0.7763 | 0.7763 | 115.0 | 115.0 | 142.0 | 0.8099 | 0.8099 | 82.0 | 82.0 | 118.0 | 0.6949 | 0.6949 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0876 | 6.0 | 156 | 1.4352 | 0.0056 | 1180.2063 | 818.0567 | 421.0 | 570.0 | 0.7386 | 404.0 | 0.7088 | 84.0 | 101.0 | 158.0 | 0.6392 | 0.5316 | 122.0 | 122.0 | 152.0 | 0.8026 | 0.8026 | 118.0 | 118.0 | 142.0 | 0.8310 | 0.8310 | 80.0 | 80.0 | 118.0 | 0.6780 | 0.6780 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.2587 | 7.0 | 182 | 2.4597 | 0.0056 | 2022.7388 | 1402.0557 | 436.0 | 570.0 | 0.7649 | 436.0 | 0.7649 | 118.0 | 118.0 | 158.0 | 0.7468 | 0.7468 | 123.0 | 123.0 | 152.0 | 0.8092 | 0.8092 | 121.0 | 121.0 | 142.0 | 0.8521 | 0.8521 | 74.0 | 74.0 | 118.0 | 0.6271 | 0.6271 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0023 | 8.0 | 208 | 2.2028 | 0.0056 | 1811.4433 | 1255.5968 | 434.0 | 570.0 | 0.7614 | 434.0 | 0.7614 | 125.0 | 125.0 | 158.0 | 0.7911 | 0.7911 | 115.0 | 115.0 | 152.0 | 0.7566 | 0.7566 | 116.0 | 116.0 | 142.0 | 0.8169 | 0.8169 | 78.0 | 78.0 | 118.0 | 0.6610 | 0.6610 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0001 | 9.0 | 234 | 2.1737 | 0.0056 | 1787.5456 | 1239.0322 | 435.0 | 570.0 | 0.7632 | 435.0 | 0.7632 | 123.0 | 123.0 | 158.0 | 0.7785 | 0.7785 | 113.0 | 113.0 | 152.0 | 0.7434 | 0.7434 | 119.0 | 119.0 | 142.0 | 0.8380 | 0.8380 | 80.0 | 80.0 | 118.0 | 0.6780 | 0.6780 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 10.0 | 260 | 2.3012 | 0.0056 | 1892.3237 | 1311.6588 | 433.0 | 570.0 | 0.7596 | 433.0 | 0.7596 | 119.0 | 119.0 | 158.0 | 0.7532 | 0.7532 | 113.0 | 113.0 | 152.0 | 0.7434 | 0.7434 | 119.0 | 119.0 | 142.0 | 0.8380 | 0.8380 | 82.0 | 82.0 | 118.0 | 0.6949 | 0.6949 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 11.0 | 286 | 2.3707 | 0.0056 | 1949.4977 | 1351.2888 | 429.0 | 570.0 | 0.7526 | 429.0 | 0.7526 | 120.0 | 120.0 | 158.0 | 0.7595 | 0.7595 | 113.0 | 113.0 | 152.0 | 0.7434 | 0.7434 | 119.0 | 119.0 | 142.0 | 0.8380 | 0.8380 | 77.0 | 77.0 | 118.0 | 0.6525 | 0.6525 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 12.0 | 312 | 2.4007 | 0.0056 | 1974.2088 | 1368.4173 | 428.0 | 570.0 | 0.7509 | 428.0 | 0.7509 | 118.0 | 118.0 | 158.0 | 0.7468 | 0.7468 | 114.0 | 114.0 | 152.0 | 0.75 | 0.75 | 118.0 | 118.0 | 142.0 | 0.8310 | 0.8310 | 78.0 | 78.0 | 118.0 | 0.6610 | 0.6610 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 13.0 | 338 | 2.3878 | 0.0056 | 1963.5566 | 1361.0337 | 430.0 | 570.0 | 0.7544 | 430.0 | 0.7544 | 119.0 | 119.0 | 158.0 | 0.7532 | 0.7532 | 113.0 | 113.0 | 152.0 | 0.7434 | 0.7434 | 119.0 | 119.0 | 142.0 | 0.8380 | 0.8380 | 79.0 | 79.0 | 118.0 | 0.6695 | 0.6695 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 14.0 | 364 | 2.4055 | 0.0056 | 1978.1533 | 1371.1514 | 430.0 | 570.0 | 0.7544 | 430.0 | 0.7544 | 119.0 | 119.0 | 158.0 | 0.7532 | 0.7532 | 113.0 | 113.0 | 152.0 | 0.7434 | 0.7434 | 119.0 | 119.0 | 142.0 | 0.8380 | 0.8380 | 79.0 | 79.0 | 118.0 | 0.6695 | 0.6695 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 15.0 | 390 | 2.3994 | 0.0056 | 1973.0895 | 1367.6414 | 432.0 | 570.0 | 0.7579 | 432.0 | 0.7579 | 121.0 | 121.0 | 158.0 | 0.7658 | 0.7658 | 114.0 | 114.0 | 152.0 | 0.75 | 0.75 | 119.0 | 119.0 | 142.0 | 0.8380 | 0.8380 | 78.0 | 78.0 | 118.0 | 0.6610 | 0.6610 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
VoilaRaj/78_WFEufj
VoilaRaj
2025-08-18T12:39:20Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-18T12:35:28Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
Louves/whisper-large-v3-tuv-lingo
Louves
2025-08-18T12:38:44Z
0
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "de", "arxiv:1910.09700", "base_model:openai/whisper-large-v3", "base_model:quantized:openai/whisper-large-v3", "endpoints_compatible", "8-bit", "bitsandbytes", "region:us" ]
automatic-speech-recognition
2025-08-18T11:59:38Z
--- library_name: transformers language: - de base_model: - openai/whisper-large-v3 --- # Model Card for Model ID <!-- This is a test for Whisper fine tuning. Untested! --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
asr-nigerian-pidgin/pidgin-wav2vec2-base-100H
asr-nigerian-pidgin
2025-08-18T12:27:03Z
3
0
null
[ "safetensors", "wav2vec2", "generated_from_trainer", "arxiv:2010.11123", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "region:us" ]
null
2024-09-14T14:08:40Z
--- base_model: facebook/wav2vec2-base license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: pidgin-wav2vec2-base-960h results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pidgin-wav2vec2-base-960h This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the [Nigerian Pidgin](https://huggingface.co/datasets/asr-nigerian-pidgin/nigerian-pidgin-1.0) dataset. It achieves the following results on the evaluation set: - Loss: 1.0898 - Wer: 0.3966 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 3407 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.3949 | 1.48 | 500 | 3.3325 | 0.9999 | | 2.4656 | 2.95 | 1000 | 1.4727 | 0.8026 | | 1.1896 | 4.43 | 1500 | 1.0925 | 0.6252 | | 0.8558 | 5.91 | 2000 | 0.9467 | 0.5422 | | 0.6427 | 7.39 | 2500 | 0.9856 | 0.5096 | | 0.5371 | 8.86 | 3000 | 0.9794 | 0.5093 | | 0.4553 | 10.34 | 3500 | 0.8719 | 0.4641 | | 0.3921 | 11.82 | 4000 | 0.9344 | 0.4566 | | 0.3406 | 13.29 | 4500 | 1.0211 | 0.4550 | | 0.3046 | 14.77 | 5000 | 0.8668 | 0.4423 | | 0.2651 | 16.25 | 5500 | 1.0384 | 0.4261 | | 0.244 | 17.73 | 6000 | 1.0437 | 0.4296 | | 0.2203 | 19.2 | 6500 | 0.9244 | 0.4228 | | 0.1995 | 20.68 | 7000 | 0.9832 | 0.4165 | | 0.1838 | 22.16 | 7500 | 1.1455 | 0.4112 | | 0.1632 | 23.63 | 8000 | 1.1102 | 0.4102 | | 0.1576 | 25.11 | 8500 | 1.0769 | 0.4044 | | 0.1388 | 26.59 | 9000 | 1.1008 | 0.4013 | | 0.1346 | 28.06 | 9500 | 1.0940 | 0.4000 | | 0.1204 | 29.54 | 10000 | 1.0898 | 0.3966 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.15.2 ## Citation @misc{rufai2025endtoendtrainingautomaticspeech, title={Towards End-to-End Training of Automatic Speech Recognition for Nigerian Pidgin}, author={Amina Mardiyyah Rufai and Afolabi Abeeb and Esther Oduntan and Tayo Arulogun and Oluwabukola Adegboro and Daniel Ajisafe}, year={2025}, eprint={2010.11123}, archivePrefix={arXiv}, primaryClass={eess.AS}, url={https://arxiv.org/abs/2010.11123}, }
AJNG/qwen_v3_merge_1650
AJNG
2025-08-18T12:25:27Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Qwen2.5-VL-7B-Instruct", "base_model:finetune:unsloth/Qwen2.5-VL-7B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-to-text
2025-08-18T12:19:14Z
--- base_model: unsloth/Qwen2.5-VL-7B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2_5_vl license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** AJNG - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-VL-7B-Instruct This qwen2_5_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
nakayacent/blockassist-bc-muscular_skittish_horse_1755519798
nakayacent
2025-08-18T12:25:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular skittish horse", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T12:24:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular skittish horse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liamoon-ai-team/unsloth-llama-3.3-70b-4bit-dpo-grpo-august18-v6
liamoon-ai-team
2025-08-18T12:22:29Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/Llama-3.3-70B-Instruct-bnb-4bit", "base_model:finetune:unsloth/Llama-3.3-70B-Instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-18T08:14:17Z
--- base_model: unsloth/Llama-3.3-70B-Instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** liamoon-ai-team - **License:** apache-2.0 - **Finetuned from model :** unsloth/Llama-3.3-70B-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mang3dd/blockassist-bc-tangled_slithering_alligator_1755518080
mang3dd
2025-08-18T12:21:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T12:21:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755518153
quantumxnode
2025-08-18T12:21:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T12:21:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
koloni/blockassist-bc-deadly_graceful_stingray_1755518060
koloni
2025-08-18T12:20:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T12:20:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VoilaRaj/78_PhIZeH
VoilaRaj
2025-08-18T12:20:04Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-18T12:16:08Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
MaIlz/outputs_grpo_fragmol_500K_with_tanimoto_2
MaIlz
2025-08-18T12:16:58Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "unsloth", "trl", "grpo", "arxiv:2402.03300", "base_model:unsloth/llama-3-8b-Instruct-bnb-4bit", "base_model:finetune:unsloth/llama-3-8b-Instruct-bnb-4bit", "endpoints_compatible", "region:us" ]
null
2025-08-18T12:16:38Z
--- base_model: unsloth/llama-3-8b-Instruct-bnb-4bit library_name: transformers model_name: outputs_grpo_fragmol_500K_with_tanimoto_2 tags: - generated_from_trainer - unsloth - trl - grpo licence: license --- # Model Card for outputs_grpo_fragmol_500K_with_tanimoto_2 This model is a fine-tuned version of [unsloth/llama-3-8b-Instruct-bnb-4bit](https://huggingface.co/unsloth/llama-3-8b-Instruct-bnb-4bit). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="MaIlz/outputs_grpo_fragmol_500K_with_tanimoto_2", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
nightmedia/Jan-v1-4B-qx6-mlx
nightmedia
2025-08-18T12:16:06Z
0
0
mlx
[ "mlx", "safetensors", "qwen3", "text-generation", "conversational", "en", "base_model:janhq/Jan-v1-4B", "base_model:quantized:janhq/Jan-v1-4B", "license:apache-2.0", "4-bit", "region:us" ]
text-generation
2025-08-18T09:45:34Z
--- license: apache-2.0 language: - en base_model: janhq/Jan-v1-4B pipeline_tag: text-generation library_name: mlx tags: - mlx --- # Jan-v1-4B-qx6-mlx test model this is part of a series created to evaluate the effect of quanting with mixed precision This model [Jan-v1-4B-qx6-mlx](https://huggingface.co/Jan-v1-4B-qx6-mlx) was converted to MLX format from [janhq/Jan-v1-4B](https://huggingface.co/janhq/Jan-v1-4B) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("Jan-v1-4B-qx6-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
Liontix/Qwen3-4B-Advanced-Reasoning-Distill-GGUF
Liontix
2025-08-18T12:15:43Z
99
0
null
[ "gguf", "dataset:reedmayhew/claude-3.7-sonnet-reasoning", "dataset:reedmayhew/gpt-4.5-100x", "base_model:unsloth/Qwen3-4B-unsloth-bnb-4bit", "base_model:quantized:unsloth/Qwen3-4B-unsloth-bnb-4bit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-01T13:24:33Z
--- datasets: - reedmayhew/claude-3.7-sonnet-reasoning - reedmayhew/gpt-4.5-100x base_model: - unsloth/Qwen3-4B-unsloth-bnb-4bit --- This is a fine-tuned version of Qwen3 4B using one reasoning and one non-reasoning dataset from closed-source LLMs (made available by reedmayhew, thanks!). The total size of this training dataset is around 300 rows. This model was fine-tuned for 3000 steps.
nightmedia/Jan-v1-4B-qx5-hi-mlx
nightmedia
2025-08-18T12:15:10Z
0
0
mlx
[ "mlx", "safetensors", "qwen3", "text-generation", "conversational", "en", "base_model:janhq/Jan-v1-4B", "base_model:quantized:janhq/Jan-v1-4B", "license:apache-2.0", "4-bit", "region:us" ]
text-generation
2025-08-18T10:24:41Z
--- license: apache-2.0 language: - en base_model: janhq/Jan-v1-4B pipeline_tag: text-generation library_name: mlx tags: - mlx --- # Jan-v1-4B-qx5-hi-mlx test model this is part of a series created to evaluate the effect of quanting with mixed precision This model [Jan-v1-4B-qx5-hi-mlx](https://huggingface.co/Jan-v1-4B-qx5-hi-mlx) was converted to MLX format from [janhq/Jan-v1-4B](https://huggingface.co/janhq/Jan-v1-4B) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("Jan-v1-4B-qx5-hi-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755517596
kojeklollipop
2025-08-18T12:14:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T12:13:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lfhase/HIGHT
lfhase
2025-08-18T12:13:12Z
0
2
null
[ "arxiv:2406.14021", "license:cc-by-nc-4.0", "region:us" ]
null
2025-08-18T11:11:06Z
--- license: cc-by-nc-4.0 --- <h1 align="center">HIGHT: Hierarchical Graph Tokenization for Graph-Language Alignment</h1> <p align="center"> <a href="https://arxiv.org/abs/2406.14021"><img src="https://img.shields.io/badge/arXiv-2406.14021-b31b1b.svg" alt="Paper"></a> <a href="https://github.com/LFhase/HIGHT"><img src="https://img.shields.io/badge/-Github-grey?logo=github" alt="Github"></a> <!-- <a href="https://colab.research.google.com/drive/1t0_4BxEJ0XncyYvn_VyEQhxwNMvtSUNx?usp=sharing"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Colab"></a> --> <a href="https://arxiv.org/abs/2406.14021"> <img alt="License" src="https://img.shields.io/static/v1?label=Pub&message=ICML%2725&color=blue"> </a> <!-- <a href="https://github.com/LFhase/HIGHT/blob/main/LICENSE"> <img alt="License" src="https://img.shields.io/github/license/LFhase/CIGA?color=blue"> </a> --> <!-- <a href="https://icml.cc/virtual/2024/poster/3455"> <img src="https://img.shields.io/badge/Video-grey?logo=Kuaishou&logoColor=white" alt="Video"></a> --> <!-- <a href="https://lfhase.win/files/slides/HIGHT.pdf"> <img src="https://img.shields.io/badge/Slides-grey?&logo=MicrosoftPowerPoint&logoColor=white" alt="Slides"></a> --> <!-- <a href="https://icml.cc/media/PosterPDFs/ICML%202022/a8acc28734d4fe90ea24353d901ae678.png"> <img src="https://img.shields.io/badge/Poster-grey?logo=airplayvideo&logoColor=white" alt="Poster"></a> --> </p> This repo contains the model checkpoints of our ICML 2025 paper: *[Hierarchical Graph Tokenization for Molecule-Language Alignment](https://arxiv.org/abs/2406.14021)*, which has also been presented at ICML 2024 workshop on [Foundation Models in the Wild](https://icml.cc/virtual/2024/workshop/29954). 😆😆😆 ## File Structures The pretrained Hierarchical VQ-VAE model is stored in `hivqvae.pth`. The checkpoints of graph-language models based on llama2-7b-chat and vicuna-v1-3-7b are contained in `/llama2` and `/vicuna`, respectively. Inside each directory, the remaining checkpoints are organized as (using vicuna as an example): - `llava-hvqvae2-vicuna-v1-3-7b-pretrain`: model after stage 1 pretraining; - `graph-text-molgen`: models finetuned using Mol-Instruction data under different tasks, e.g., forward reaction prediction; - `molcap-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-50ep`: model fintuned using CHEBI-20 dataset for molecular captioning; - `MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large*`: models finetuned via different classification-based molecular property prediction tasks; ## Citation If you find our model, paper and repo useful, please cite our paper: ```bibtex @inproceedings{chen2025hierarchical, title={Hierarchical Graph Tokenization for Molecule-Language Alignment}, author={Yongqiang Chen and Quanming Yao and Juzheng Zhang and James Cheng and Yatao Bian}, booktitle={Forty-second International Conference on Machine Learning}, year={2025}, url={https://openreview.net/forum?id=wpbNczwAwV} } ```
VoilaRaj/78_xNWmhr
VoilaRaj
2025-08-18T12:11:45Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-18T12:07:52Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
snezhanata/qwen3-dev
snezhanata
2025-08-18T12:10:06Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "llama-factory", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T11:41:03Z
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755517487
helmutsukocok
2025-08-18T12:09:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T12:09:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
RTannous/gpt-oss-finetuned-BF16-Q8_0-GGUF
RTannous
2025-08-18T12:05:24Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "gpt_oss", "llama-cpp", "gguf-my-repo", "en", "base_model:RTannous/gpt-oss-finetuned-BF16", "base_model:quantized:RTannous/gpt-oss-finetuned-BF16", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-18T12:03:55Z
--- base_model: RTannous/gpt-oss-finetuned-BF16 tags: - text-generation-inference - transformers - unsloth - gpt_oss - llama-cpp - gguf-my-repo license: apache-2.0 language: - en --- # RTannous/gpt-oss-finetuned-BF16-Q8_0-GGUF This model was converted to GGUF format from [`RTannous/gpt-oss-finetuned-BF16`](https://huggingface.co/RTannous/gpt-oss-finetuned-BF16) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/RTannous/gpt-oss-finetuned-BF16) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo RTannous/gpt-oss-finetuned-BF16-Q8_0-GGUF --hf-file gpt-oss-finetuned-bf16-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo RTannous/gpt-oss-finetuned-BF16-Q8_0-GGUF --hf-file gpt-oss-finetuned-bf16-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo RTannous/gpt-oss-finetuned-BF16-Q8_0-GGUF --hf-file gpt-oss-finetuned-bf16-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo RTannous/gpt-oss-finetuned-BF16-Q8_0-GGUF --hf-file gpt-oss-finetuned-bf16-q8_0.gguf -c 2048 ```
thanobidex/blockassist-bc-colorful_shiny_hare_1755517045
thanobidex
2025-08-18T12:04:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T12:04:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ahmed-bayoumi/qwen1.5_7b-sft-tamali-maak-english
ahmed-bayoumi
2025-08-18T12:03:43Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:Qwen/Qwen1.5-7B", "base_model:finetune:Qwen/Qwen1.5-7B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-18T12:03:20Z
--- base_model: Qwen/Qwen1.5-7B tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** ahmed-bayoumi - **License:** apache-2.0 - **Finetuned from model :** Qwen/Qwen1.5-7B This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
VoilaRaj/78_uqiwcU
VoilaRaj
2025-08-18T11:57:33Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-18T11:53:51Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755516359
vwzyrraz7l
2025-08-18T11:53:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T11:53:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
GaneshNaiknavare/phase_3_fine_tunning_v.3
GaneshNaiknavare
2025-08-18T11:52:07Z
0
0
transformers
[ "transformers", "safetensors", "gguf", "gemma3", "image-text-to-text", "text-generation-inference", "unsloth", "conversational", "en", "base_model:Atharv65/Phase_2_finetunning", "base_model:quantized:Atharv65/Phase_2_finetunning", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-08-18T11:40:20Z
--- base_model: Atharv65/Phase_2_finetunning tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** GaneshNaiknavare - **License:** apache-2.0 - **Finetuned from model :** Atharv65/Phase_2_finetunning This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Vasya777/blockassist-bc-lumbering_enormous_sloth_1755517859
Vasya777
2025-08-18T11:51:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering enormous sloth", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T11:51:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering enormous sloth --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bio-protocol/scientific-reranker
bio-protocol
2025-08-18T11:51:39Z
3
0
null
[ "safetensors", "xlm-roberta", "en", "base_model:BAAI/bge-reranker-large", "base_model:finetune:BAAI/bge-reranker-large", "license:mit", "region:us" ]
null
2025-07-28T08:40:19Z
--- license: mit language: - en base_model: - BAAI/bge-reranker-large --- OpenScholar_Reranker is a fine-tuned version of [bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) for scientific literature synthesis. ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** University of Washigton, Allen Institute for AI (AI2) - **Model type:** a masked language model. - **Language(s) (NLP):** English - **License:** The code and model are released under apache-2.0. - **Date cutoff:** The fine-tuning data is generated by Llama 3 70B for synthetically generated queries. ### Model Sources <!-- Provide the basic links for the model. --> - **Project Page:** https://open-scholar.allen.ai/ - **Repositories:** - Core repo (training, inference, fine-tuning etc.): https://github.com/AkariAsai/OpenScholar - Evaluation code: https://github.com/AkariAsai/ScholarQABench - **Paper:** [Link](https://openscholar.allen.ai/paper) - **Technical blog post:** https://allenai.org/blog/openscholar <!-- - **Press release:** TODO --> ### Citation If you find it useful in this work, cite our paper. ``` @article{openscholar, title={{OpenScholar}: Synthesizing Scientific Literature with Retrieval-Augmented Language Models}, author={ Asai, Akari and He*, Jacqueline and Shao*, Rulin and Shi, Weijia and Singh, Amanpreet and Chang, Joseph Chee and Lo, Kyle and Soldaini, Luca and Feldman, Tian, Sergey and Mike, D’arcy and Wadden, David and Latzke, Matt and Minyang and Ji, Pan and Liu, Shengyan and Tong, Hao and Wu, Bohao and Xiong, Yanyu and Zettlemoyer, Luke and Weld, Dan and Neubig, Graham and Downey, Doug and Yih, Wen-tau and Koh, Pang Wei and Hajishirzi, Hannaneh}, journal={Arxiv}, year={2024}, } ```
aidan-ucc/LoRA-qwen2.5VL3b-1300-context
aidan-ucc
2025-08-18T11:51:24Z
10
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Qwen2.5-VL-3B-Instruct", "base_model:finetune:unsloth/Qwen2.5-VL-3B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-to-text
2025-07-29T13:13:18Z
--- base_model: unsloth/Qwen2.5-VL-3B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2_5_vl license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** aidan-ucc - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-VL-3B-Instruct This qwen2_5_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mang3dd/blockassist-bc-tangled_slithering_alligator_1755516249
mang3dd
2025-08-18T11:51:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T11:51:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bio-protocol/scientific-retriever
bio-protocol
2025-08-18T11:50:35Z
23
0
null
[ "pytorch", "bert", "en", "base_model:facebook/contriever", "base_model:finetune:facebook/contriever", "license:apache-2.0", "region:us" ]
null
2025-07-28T08:43:45Z
--- license: apache-2.0 language: - en base_model: - facebook/contriever --- OpenScholar_Retriever is a continued pre-trained version of [facebook/contriever](https://huggingface.co/facebook/contriever) for scientific literature synthesis. ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** University of Washigton, Allen Institute for AI (AI2) - **Model type:** a masked language model. - **Language(s) (NLP):** English - **License:** The code and model are released under apache-2.0. - **Date cutoff:** The pre-training data is mixture of [peS2o](https://huggingface.co/datasets/allenai/peS2o), [CCNews](https://huggingface.co/datasets/vblagoje/cc_news) and [Proofpile2](https://huggingface.co/datasets/EleutherAI/proof-pile-2). ### Model Sources <!-- Provide the basic links for the model. --> - **Project Page:** https://open-scholar.allen.ai/ - **Repositories:** - Core repo (training, inference, fine-tuning etc.): https://github.com/AkariAsai/OpenScholar - Evaluation code: https://github.com/AkariAsai/ScholarQABench - **Paper:** [Link](https://openscholar.allen.ai/paper) - **Technical blog post:** https://allenai.org/blog/openscholar <!-- - **Press release:** TODO --> ### Citation If you find it useful in this work, cite our paper. ``` @article{openscholar, title={{OpenScholar}: Synthesizing Scientific Literature with Retrieval-Augmented Language Models}, author={ Asai, Akari and He*, Jacqueline and Shao*, Rulin and Shi, Weijia and Singh, Amanpreet and Chang, Joseph Chee and Lo, Kyle and Soldaini, Luca and Feldman, Tian, Sergey and Mike, D’arcy and Wadden, David and Latzke, Matt and Minyang and Ji, Pan and Liu, Shengyan and Tong, Hao and Wu, Bohao and Xiong, Yanyu and Zettlemoyer, Luke and Weld, Dan and Neubig, Graham and Downey, Doug and Yih, Wen-tau and Koh, Pang Wei and Hajishirzi, Hannaneh}, journal={Arxiv}, year={2024}, } ```
almanach/camembert-large
almanach
2025-08-18T11:48:19Z
6,417
19
transformers
[ "transformers", "pytorch", "safetensors", "camembert", "fr", "arxiv:1911.03894", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: fr --- # CamemBERT: a Tasty French Language Model ## Introduction [CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model. It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. ## Pre-trained models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `camembert-base` | 110M | Base | OSCAR (138 GB of text) | | `camembert/camembert-large` | 335M | Large | CCNet (135 GB of text) | | `camembert/camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) | | `camembert/camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) | | `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) | | `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) | ## How to use CamemBERT with HuggingFace ##### Load CamemBERT and its sub-word tokenizer : ```python from transformers import CamembertModel, CamembertTokenizer # You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large". tokenizer = CamembertTokenizer.from_pretrained("camembert/camembert-large") camembert = CamembertModel.from_pretrained("camembert/camembert-large") camembert.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Filling masks using pipeline ```python from transformers import pipeline camembert_fill_mask = pipeline("fill-mask", model="camembert/camembert-large", tokenizer="camembert/camembert-large") results = camembert_fill_mask("Le camembert est <mask> :)") # results #[{'sequence': '<s> Le camembert est bon :)</s>', 'score': 0.15560828149318695, 'token': 305}, #{'sequence': '<s> Le camembert est excellent :)</s>', 'score': 0.06821336597204208, 'token': 3497}, #{'sequence': '<s> Le camembert est délicieux :)</s>', 'score': 0.060438305139541626, 'token': 11661}, #{'sequence': '<s> Le camembert est ici :)</s>', 'score': 0.02023460529744625, 'token': 373}, #{'sequence': '<s> Le camembert est meilleur :)</s>', 'score': 0.01778135634958744, 'token': 876}] ``` ##### Extract contextual embedding features from Camembert output ```python import torch # Tokenize in sub-words with SentencePiece tokenized_sentence = tokenizer.tokenize("J'aime le camembert !") # ['▁J', "'", 'aime', '▁le', '▁cam', 'ember', 't', '▁!'] # 1-hot encode and add special starting and end tokens encoded_sentence = tokenizer.encode(tokenized_sentence) # [5, 133, 22, 1250, 16, 12034, 14324, 81, 76, 6] # NB: Can be done in one step : tokenize.encode("J'aime le camembert !") # Feed tokens to Camembert as a torch tensor (batch dim 1) encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0) embeddings, _ = camembert(encoded_sentence) # embeddings.detach() # torch.Size([1, 10, 1024]) #tensor([[[-0.1284, 0.2643, 0.4374, ..., 0.1627, 0.1308, -0.2305], # [ 0.4576, -0.6345, -0.2029, ..., -0.1359, -0.2290, -0.6318], # [ 0.0381, 0.0429, 0.5111, ..., -0.1177, -0.1913, -0.1121], # ..., ``` ##### Extract contextual embedding features from all Camembert layers ```python from transformers import CamembertConfig # (Need to reload the model with new config) config = CamembertConfig.from_pretrained("camembert/camembert-large", output_hidden_states=True) camembert = CamembertModel.from_pretrained("camembert/camembert-large", config=config) embeddings, _, all_layer_embeddings = camembert(encoded_sentence) # all_layer_embeddings list of len(all_layer_embeddings) == 25 (input embedding layer + 24 self attention layers) all_layer_embeddings[5] # layer 5 contextual embedding : size torch.Size([1, 10, 1024]) #tensor([[[-0.0600, 0.0742, 0.0332, ..., -0.0525, -0.0637, -0.0287], # [ 0.0950, 0.2840, 0.1985, ..., 0.2073, -0.2172, -0.6321], # [ 0.1381, 0.1872, 0.1614, ..., -0.0339, -0.2530, -0.1182], # ..., ``` ## Authors CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. ## Citation If you use our work, please cite: ```bibtex @inproceedings{martin2020camembert, title={CamemBERT: a Tasty French Language Model}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} } ```
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755516524
Sayemahsjn
2025-08-18T11:47:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T11:47:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
marcomaccarini/padella_nuova_2
marcomaccarini
2025-08-18T11:46:52Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T11:43:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hzhongresearch/yamnetp_ahead_ds
hzhongresearch
2025-08-18T11:46:09Z
74
0
keras
[ "keras", "tflite", "tf-keras", "audio", "en", "arxiv:2508.10360", "license:cc-by-sa-4.0", "region:us" ]
null
2025-06-11T01:50:50Z
--- language: - en license: cc-by-sa-4.0 tags: - audio task_categories: - audio-classification --- # Another HEaring AiD DataSet (AHEAD-DS) Another HEaring AiD DataSet (AHEAD-DS) is an audio dataset labelled with audiologically relevant scene categories for hearing aids. * [Website](https://github.com/Australian-Future-Hearing-Initiative) * [Paper](https://arxiv.org/abs/2508.10360) * [Code](https://github.com/Australian-Future-Hearing-Initiative/prism-ml/prism-ml-yamnetp-tune) * [Dataset AHEAD-DS](https://huggingface.co/datasets/hzhongresearch/ahead_ds) * [Dataset AHEAD-DS unmixed](https://huggingface.co/datasets/hzhongresearch/ahead_ds_unmixed) * [Models](https://huggingface.co/hzhongresearch/yamnetp_ahead_ds) ## Description of data All files are encoded as single channel WAV, 16 bit signed, sampled at 16 kHz with 10 seconds per recording. | Category | Training | Validation | Testing | All | |:----------------------------------|:---------|:-----------|:--------|:-----| | cocktail_party | 934 | 134 | 266 | 1334 | | interfering_speakers | 733 | 105 | 209 | 1047 | | in_traffic | 370 | 53 | 105 | 528 | | in_vehicle | 409 | 59 | 116 | 584 | | music | 1047 | 150 | 299 | 1496 | | quiet_indoors | 368 | 53 | 104 | 525 | | reverberant_environment | 156 | 22 | 44 | 222 | | wind_turbulence | 307 | 44 | 88 | 439 | | speech_in_traffic | 370 | 53 | 105 | 528 | | speech_in_vehicle | 409 | 59 | 116 | 584 | | speech_in_music | 1047 | 150 | 299 | 1496 | | speech_in_quiet_indoors | 368 | 53 | 104 | 525 | | speech_in_reverberant_environment | 155 | 22 | 44 | 221 | | speech_in_wind_turbulence | 307 | 44 | 88 | 439 | | Total | 6980 | 1001 | 1987 | 9968 | # Licence Copyright 2025 HENRY ZHONG. Licenced under CC BY-SA 4.0. See [LICENCE.txt](LICENCE.txt). AHEAD-DS was derived from [HEAR-DS](https://www.hz-ol.de/en/hear-ds.html) (CC0 licence) and [CHiME 6 dev](https://openslr.org/150/) (CC BY-SA 4.0 licence). If you use this work, please cite the following publications. AHEAD-DS YAMNet+ attribution. ``` @article{zhong2025dataset, title={A dataset and model for recognition of audiologically relevant environments for hearing aids: AHEAD-DS and YAMNet+}, author={Zhong, Henry and Buchholz, J{\"o}rg M and Maclaren, Julian and Carlile, Simon and Lyon, Richard}, journal={arXiv preprint arXiv:2508.10360}, year={2025} } ``` HEAR-DS attribution. ``` @inproceedings{huwel2020hearing, title={Hearing aid research data set for acoustic environment recognition}, author={H{\"u}wel, Andreas and Adilo{\u{g}}lu, Kamil and Bach, J{\"o}rg-Hendrik}, booktitle={ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={706--710}, year={2020}, organization={IEEE} } ``` CHiME 6 attribution. ``` @inproceedings{barker18_interspeech, author={Jon Barker and Shinji Watanabe and Emmanuel Vincent and Jan Trmal}, title={{The Fifth 'CHiME' Speech Separation and Recognition Challenge: Dataset, Task and Baselines}}, year=2018, booktitle={Proc. Interspeech 2018}, pages={1561--1565}, doi={10.21437/Interspeech.2018-1768} } @inproceedings{watanabe2020chime, title={CHiME-6 Challenge: Tackling multispeaker speech recognition for unsegmented recordings}, author={Watanabe, Shinji and Mandel, Michael and Barker, Jon and Vincent, Emmanuel and Arora, Ashish and Chang, Xuankai and Khudanpur, Sanjeev and Manohar, Vimal and Povey, Daniel and Raj, Desh and others}, booktitle={CHiME 2020-6th International Workshop on Speech Processing in Everyday Environments}, year={2020} } ```
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755515895
ihsanridzi
2025-08-18T11:45:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T11:45:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
neural-interactive-proofs/finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_both_2_rounds_1_1_iter_1_prover1_
neural-interactive-proofs
2025-08-18T11:44:55Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "dpo", "arxiv:2305.18290", "base_model:Qwen/Qwen2.5-32B-Instruct", "base_model:finetune:Qwen/Qwen2.5-32B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-18T11:44:01Z
--- base_model: Qwen/Qwen2.5-32B-Instruct library_name: transformers model_name: finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_both_2_rounds_1_1_iter_1_prover1_ tags: - generated_from_trainer - trl - dpo licence: license --- # Model Card for finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_both_2_rounds_1_1_iter_1_prover1_ This model is a fine-tuned version of [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="neural-interactive-proofs/finetune_dpo_qwen2_5-32b-instruct_cv_qwen2.5_32B_prover_debate_both_2_rounds_1_1_iter_1_prover1_", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/lrhammond-team/pvg-self-hosted-finetune/runs/qwen2_5-32b-instruct_dpo_2025-08-18_12-27-12_cv_qwen2.5_32B_prover_debate_both_2_rounds_1_1_iter_1_prover1) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.18.2 - Transformers: 4.53.2 - Pytorch: 2.7.0 - Datasets: 3.0.0 - Tokenizers: 0.21.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```