modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-30 12:27:52
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
528 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-30 12:27:19
card
stringlengths
11
1.01M
TIGER-Lab/MAmmoTH-7B
TIGER-Lab
2023-12-05T16:34:56Z
199
8
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "dataset:TIGER-Lab/MathInstruct", "arxiv:2309.05653", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-10T20:51:23Z
--- license: mit datasets: - TIGER-Lab/MathInstruct language: - en --- # 🦣 MAmmoTH: Building Math Generalist Models through Hybrid Instruction Tuning Project Page: [https://tiger-ai-lab.github.io/MAmmoTH/](https://tiger-ai-lab.github.io/MAmmoTH/) Paper: [https://arxiv.org/pdf/2309.05653.pdf](https://arxiv.org/pdf/2309.05653.pdf) Code: [https://github.com/TIGER-AI-Lab/MAmmoTH](https://github.com/TIGER-AI-Lab/MAmmoTH) ## Introduction We introduce 🦣 MAmmoTH, a series of open-source large language models (LLMs) specifically tailored for general math problem-solving. The MAmmoTH models are trained on 🤗 [MathInstruct Dataset](https://huggingface.co/datasets/TIGER-Lab/MathInstruct), a meticulously curated instruction tuning dataset that is lightweight yet generalizable. MathInstruct is compiled from 13 math rationale datasets, six of which are newly curated by this work. It uniquely focuses on the hybrid use of chain-of-thought (CoT) and program-of-thought (PoT) rationales, and ensures extensive coverage of diverse mathematical fields. | | **Base Model: Llama-2** | **Base Model: Code Llama** | **Base Model: Mistral** | |-----|---------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------| | 7B | 🦣 [MAmmoTH-7B](https://huggingface.co/TIGER-Lab/MAmmoTH-7B) | 🦣 [MAmmoTH-Coder-7B](https://huggingface.co/TIGER-Lab/MAmmoTH-Coder-7B) | 🦣 [MAmmoTH-7B-Mistral](https://huggingface.co/TIGER-Lab/MAmmoTH-7B-Mistral) | | 13B | 🦣 [MAmmoTH-13B](https://huggingface.co/TIGER-Lab/MAmmoTH-13B) | 🦣 [MAmmoTH-Coder-13B](https://huggingface.co/TIGER-Lab/MAmmoTH-Coder-13B)| - | | 34B | - | 🦣 [MAmmoTH-Coder-34B](https://huggingface.co/TIGER-Lab/MAmmoTH-Coder-34B)| - | | 70B | 🦣 [MAmmoTH-70B](https://huggingface.co/TIGER-Lab/MAmmoTH-70B) | - | - | ## Training Data The models are trained on the 🤗 [MathInstruct Dataset](https://huggingface.co/datasets/TIGER-Lab/MathInstruct), which is compiled from 13 different math rationale datasets. Check out the dataset card for more details. ## Training Procedure The models are fine-tuned with the MathInstruct dataset using the original Llama-2 and Code Llama models as base models. The training procedure varies for different models based on their sizes. Check out our paper for more details. ## Evaluation The models are evaluated using open-ended and multiple-choice math problems from several datasets. Here are the results: | **Model** | **Decoding** | **GSM** | **MATH** | **AQuA** | **NumG** | **SVA** | **Mat** | **Sim** | **SAT** | **MMLU** | **AVG** | |-----------------------|--------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | **MAmmoTH-7B** | CoT | 50.5 | 10.4 | 43.7 | 44.0 | 47.3 | 9.2 | 18.9 | 32.7 | 39.9 | 33.0 | | | PoT | 51.6 | 28.7 | 43.3 | 52.3 | 65.1 | 41.9 | 48.2 | 39.1 | 44.6 | 46.1 | | | **Hybrid** | **53.6** | **31.5** | **44.5** | **61.2** | **67.7** | **46.3** | **41.2** | **42.7** | **42.6** | **47.9** | | **MAmmoTH-Coder-7B** | CoT | 22.4 | 7.9 | 36.2 | 36.0 | 37.0 | 8.2 | 7.2 | 32.7 | 34.6 | 24.7 | | | PoT | 58.8 | 32.1 | 47.2 | 57.1 | 71.1 | 53.9 | 44.6 | 40.0 | 47.8 | 50.3 | | | **Hybrid** | **59.4** | **33.4** | **47.2** | **66.4** | **71.4** | **55.4** | **45.9** | **40.5** | **48.3** | **52.0** | | **MAmmoTH-13B** | CoT | 56.3 | 12.9 | 45.3 | 45.6 | 53.8 | 11.7 | 22.4 | 43.6 | 42.3 | 37.1 | | | PoT | 61.3 | 32.6 | 48.8 | 59.6 | 72.2 | 48.5 | 40.3 | 46.8 | 45.4 | 50.6 | | | **Hybrid** | **62.0** | **34.2** | **51.6** | **68.7** | **72.4** | **49.2** | **43.2** | **46.8** | **47.6** | **52.9** | | **MAmmoTH-Coder-13B** | CoT | 32.1 | 10.2 | 40.6 | 36.2 | 43.0 | 9.6 | 10.1 | 40.9 | 36.6 | 28.8 | | | PoT | 64.3 | 35.2 | 46.8 | 54.2 | 73.2 | 60.0 | 44.2 | 48.2 | 48.2 | 52.7 | | | **Hybrid** | **64.7** | **36.3** | **46.9** | **66.8** | **73.7** | **61.5** | **47.1** | **48.6** | **48.3** | **54.9** | | **MAmmoTH-Coder-33B** | CoT | 34.3 | 11.6 | 39.0 | 36.2 | 44.6 | 10.8 | 10.9 | 46.4 | 42.9 | 30.7 | | | PoT | 72.3 | 42.8 | 53.8 | 59.6 | 84.0 | 64.7 | 50.6 | 58.6 | 52.7 | 59.9 | | | **Hybrid** | **72.7** | **43.6** | **54.7** | **71.6** | **84.3** | **65.4** | **51.8** | **60.9** | **53.8** | **62.1** | | **MAmmoTH-70B** | CoT | 72.4 | 21.1 | 57.9 | 58.9 | 71.6 | 20.0 | 31.9 | 57.3 | 52.1 | 49.2 | | | PoT | 76.7 | 40.1 | 60.2 | 64.3 | 81.7 | 55.3 | 45.3 | 64.1 | 53.5 | 60.1 | | | **Hybrid** | **76.9** | **41.8** | **65.0** | **74.4** | **82.4** | **55.6** | **51.4** | **66.4** | **56.7** | **63.4** | ## Usage You can use the models through Huggingface's Transformers library. Use the pipeline function to create a text-generation pipeline with the model of your choice, then feed in a math problem to get the solution. Check our Github repo for more advanced use: [https://github.com/TIGER-AI-Lab/MAmmoTH](https://github.com/TIGER-AI-Lab/MAmmoTH) ## Prompt Format If you want to do CoT: ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response: ``` If you want to do PoT: ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} Let's write a program. ### Response: ``` ## Intended Uses These models are trained for research purposes. They are designed to solve general math problems. They can be used in educational software, tutoring systems, or any application where a solution to a math problem is needed. The models can generate both a chain of thought (CoT) rationale and a program of thought (PoT) rationale, providing a comprehensive solution to a given math problem. ## Limitations We've tried our best to build math generalist models. However, we acknowledge that the models' performance may vary based on the complexity and specifics of the math problem. Still not all mathematical fields can be covered comprehensively. ## Citation If you use the models, data, or code from this project, please cite the original paper: ``` @article{yue2023mammoth, title={MAmmoTH: Building Math Generalist Models through Hybrid Instruction Tuning}, author={Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, Wenhu Chen}, journal={arXiv preprint arXiv:2309.05653}, year={2023} } ```
Tatvajsh/dpo_AHS_OPS_WPCS_v4.0
Tatvajsh
2023-12-05T16:25:50Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openlm-research/open_llama_3b_v2", "base_model:adapter:openlm-research/open_llama_3b_v2", "region:us" ]
null
2023-12-01T00:22:48Z
--- library_name: peft base_model: openlm-research/open_llama_3b_v2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.2
teddyschoenfeld/finetuning-sentiment-model-10000-samples
teddyschoenfeld
2023-12-05T16:25:29Z
11
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-05T00:24:12Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-10000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9125 - name: F1 type: f1 value: 0.9145090376160234 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-10000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2359 - Accuracy: 0.9125 - F1: 0.9145 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
elonmollusk/i3-neural-mistral-000
elonmollusk
2023-12-05T16:24:57Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Intel/neural-chat-7b-v3-1", "base_model:adapter:Intel/neural-chat-7b-v3-1", "region:us" ]
null
2023-12-05T16:21:50Z
--- library_name: peft base_model: Intel/neural-chat-7b-v3-1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.3.dev0
mike-krk/dqn-SpaceInvadersNoFrameskip-v4
mike-krk
2023-12-05T16:20:21Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-05T16:19:45Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 596.00 +/- 88.23 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mike-krk -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mike-krk -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mike-krk ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Nerdofdot/sentence-transformers_paraphrase-multilingual-MiniLM-L12-v2_epochs_1_margin_0.4_trained_model
Nerdofdot
2023-12-05T16:15:20Z
15
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-12-05T16:14:33Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 497 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.TripletLoss.TripletLoss` with parameters: ``` {'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 0.4} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 100, "evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 49, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Anwaarma/TestForColab
Anwaarma
2023-12-05T16:11:29Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:prajjwal1/bert-tiny", "base_model:finetune:prajjwal1/bert-tiny", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-05T16:10:14Z
--- license: mit base_model: prajjwal1/bert-tiny tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: TestForColab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TestForColab This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2129 - Accuracy: 0.94 - F1: 0.9394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 0.01 | 50 | 0.6913 | 0.55 | 0.3903 | | No log | 0.02 | 100 | 0.6909 | 0.59 | 0.5186 | | No log | 0.03 | 150 | 0.6934 | 0.45 | 0.2793 | | No log | 0.04 | 200 | 0.6889 | 0.57 | 0.5709 | | No log | 0.05 | 250 | 0.6818 | 0.56 | 0.5607 | | No log | 0.06 | 300 | 0.6854 | 0.56 | 0.5607 | | No log | 0.07 | 350 | 0.6878 | 0.56 | 0.5607 | | No log | 0.08 | 400 | 0.7014 | 0.56 | 0.5607 | | No log | 0.09 | 450 | 0.6797 | 0.56 | 0.5607 | | 0.6799 | 0.1 | 500 | 0.6731 | 0.56 | 0.5607 | | 0.6799 | 0.11 | 550 | 0.6490 | 0.64 | 0.6203 | | 0.6799 | 0.12 | 600 | 0.6456 | 0.71 | 0.7049 | | 0.6799 | 0.13 | 650 | 0.6259 | 0.64 | 0.6203 | | 0.6799 | 0.14 | 700 | 0.5264 | 0.83 | 0.8304 | | 0.6799 | 0.15 | 750 | 0.4671 | 0.83 | 0.8304 | | 0.6799 | 0.16 | 800 | 0.3387 | 0.94 | 0.9394 | | 0.6799 | 0.17 | 850 | 0.2935 | 0.94 | 0.9394 | | 0.6799 | 0.18 | 900 | 0.2604 | 0.94 | 0.9394 | | 0.6799 | 0.19 | 950 | 0.2443 | 0.94 | 0.9394 | | 0.4884 | 0.2 | 1000 | 0.2355 | 0.94 | 0.9394 | | 0.4884 | 0.2 | 1050 | 0.2286 | 0.94 | 0.9394 | | 0.4884 | 0.21 | 1100 | 0.2240 | 0.94 | 0.9394 | | 0.4884 | 0.22 | 1150 | 0.2201 | 0.94 | 0.9394 | | 0.4884 | 0.23 | 1200 | 0.2165 | 0.94 | 0.9394 | | 0.4884 | 0.24 | 1250 | 0.2129 | 0.94 | 0.9394 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
pavitemple/finetuned-Accident-MultipleLabels-Video-subset-v2-new3
pavitemple
2023-12-05T16:04:11Z
10
0
transformers
[ "transformers", "safetensors", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-base", "base_model:finetune:MCG-NJU/videomae-base", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2023-12-05T14:20:13Z
--- license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: finetuned-Accident-MultipleLabels-Video-subset-v2-new3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-Accident-MultipleLabels-Video-subset-v2-new3 This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7434 - Accuracy: 0.3333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 35 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.06 | 2 | 1.9011 | 0.1719 | | No log | 1.06 | 4 | 1.8469 | 0.3281 | | No log | 2.06 | 6 | 1.8533 | 0.3281 | | No log | 3.06 | 8 | 1.9122 | 0.3281 | | 1.6429 | 4.06 | 10 | 1.9870 | 0.3125 | | 1.6429 | 5.06 | 12 | 1.9921 | 0.2969 | | 1.6429 | 6.06 | 14 | 1.9683 | 0.3125 | | 1.6429 | 7.06 | 16 | 1.9313 | 0.3125 | | 1.6429 | 8.06 | 18 | 1.9203 | 0.3125 | | 1.4144 | 9.06 | 20 | 1.9251 | 0.3125 | | 1.4144 | 10.06 | 22 | 1.9316 | 0.2969 | | 1.4144 | 11.06 | 24 | 1.9455 | 0.2969 | | 1.4144 | 12.06 | 26 | 1.9723 | 0.2969 | | 1.4144 | 13.06 | 28 | 1.9897 | 0.2969 | | 1.3307 | 14.06 | 30 | 2.0000 | 0.2969 | | 1.3307 | 15.06 | 32 | 2.0063 | 0.2969 | | 1.3307 | 16.06 | 34 | 2.0072 | 0.2969 | | 1.3307 | 17.03 | 35 | 2.0082 | 0.2969 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231202+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
TIGER-Lab/MAmmoTH-Coder-34B
TIGER-Lab
2023-12-05T16:03:18Z
21
7
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "dataset:TIGER-Lab/MathInstruct", "arxiv:2309.05653", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-11T02:55:09Z
--- license: mit datasets: - TIGER-Lab/MathInstruct language: - en --- # 🦣 MAmmoTH: Building Math Generalist Models through Hybrid Instruction Tuning Project Page: [https://tiger-ai-lab.github.io/MAmmoTH/](https://tiger-ai-lab.github.io/MAmmoTH/) Paper: [https://arxiv.org/pdf/2309.05653.pdf](https://arxiv.org/pdf/2309.05653.pdf) Code: [https://github.com/TIGER-AI-Lab/MAmmoTH](https://github.com/TIGER-AI-Lab/MAmmoTH) ## Introduction We introduce 🦣 MAmmoTH, a series of open-source large language models (LLMs) specifically tailored for general math problem-solving. The MAmmoTH models are trained on 🤗 [MathInstruct Dataset](https://huggingface.co/datasets/TIGER-Lab/MathInstruct), a meticulously curated instruction tuning dataset that is lightweight yet generalizable. MathInstruct is compiled from 13 math rationale datasets, six of which are newly curated by this work. It uniquely focuses on the hybrid use of chain-of-thought (CoT) and program-of-thought (PoT) rationales, and ensures extensive coverage of diverse mathematical fields. | | **Base Model: Llama-2** | **Base Model: Code Llama** | |-----|---------------------------------------------------------------|--------------------------------------------------------------------------| | 7B | 🦣 [MAmmoTH-7B](https://huggingface.co/TIGER-Lab/MAmmoTH-7B) | 🦣 [MAmmoTH-Coder-7B](https://huggingface.co/TIGER-Lab/MAmmoTH-Coder-7B) | | 13B | 🦣 [MAmmoTH-13B](https://huggingface.co/TIGER-Lab/MAmmoTH-13B) | 🦣 [MAmmoTH-Coder-13B](https://huggingface.co/TIGER-Lab/MAmmoTH-Coder-13B)| | 34B | - | 🦣 [MAmmoTH-Coder-34B](https://huggingface.co/TIGER-Lab/MAmmoTH-Coder-34B)| | 70B | 🦣 [MAmmoTH-70B](https://huggingface.co/TIGER-Lab/MAmmoTH-70B) | - | ## Training Data The models are trained on the 🤗 [MathInstruct Dataset](https://huggingface.co/datasets/TIGER-Lab/MathInstruct), which is compiled from 13 different math rationale datasets. Check out the dataset card for more details. ## Training Procedure The models are fine-tuned with the MathInstruct dataset using the original Llama-2 and Code Llama models as base models. The training procedure varies for different models based on their sizes. Check out our paper for more details. ## Evaluation The models are evaluated using open-ended and multiple-choice math problems from several datasets. Here are the results: | **Model** | **Decoding** | **GSM** | **MATH** | **AQuA** | **NumG** | **SVA** | **Mat** | **Sim** | **SAT** | **MMLU** | **AVG** | |-----------------------|--------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | **MAmmoTH-7B** | CoT | 50.5 | 10.4 | 43.7 | 44.0 | 47.3 | 9.2 | 18.9 | 32.7 | 39.9 | 33.0 | | | PoT | 51.6 | 28.7 | 43.3 | 52.3 | 65.1 | 41.9 | 48.2 | 39.1 | 44.6 | 46.1 | | | **Hybrid** | **53.6** | **31.5** | **44.5** | **61.2** | **67.7** | **46.3** | **41.2** | **42.7** | **42.6** | **47.9** | | **MAmmoTH-Coder-7B** | CoT | 22.4 | 7.9 | 36.2 | 36.0 | 37.0 | 8.2 | 7.2 | 32.7 | 34.6 | 24.7 | | | PoT | 58.8 | 32.1 | 47.2 | 57.1 | 71.1 | 53.9 | 44.6 | 40.0 | 47.8 | 50.3 | | | **Hybrid** | **59.4** | **33.4** | **47.2** | **66.4** | **71.4** | **55.4** | **45.9** | **40.5** | **48.3** | **52.0** | | **MAmmoTH-13B** | CoT | 56.3 | 12.9 | 45.3 | 45.6 | 53.8 | 11.7 | 22.4 | 43.6 | 42.3 | 37.1 | | | PoT | 61.3 | 32.6 | 48.8 | 59.6 | 72.2 | 48.5 | 40.3 | 46.8 | 45.4 | 50.6 | | | **Hybrid** | **62.0** | **34.2** | **51.6** | **68.7** | **72.4** | **49.2** | **43.2** | **46.8** | **47.6** | **52.9** | | **MAmmoTH-Coder-13B** | CoT | 32.1 | 10.2 | 40.6 | 36.2 | 43.0 | 9.6 | 10.1 | 40.9 | 36.6 | 28.8 | | | PoT | 64.3 | 35.2 | 46.8 | 54.2 | 73.2 | 60.0 | 44.2 | 48.2 | 48.2 | 52.7 | | | **Hybrid** | **64.7** | **36.3** | **46.9** | **66.8** | **73.7** | **61.5** | **47.1** | **48.6** | **48.3** | **54.9** | | **MAmmoTH-Coder-33B** | CoT | 34.3 | 11.6 | 39.0 | 36.2 | 44.6 | 10.8 | 10.9 | 46.4 | 42.9 | 30.7 | | | PoT | 72.3 | 42.8 | 53.8 | 59.6 | 84.0 | 64.7 | 50.6 | 58.6 | 52.7 | 59.9 | | | **Hybrid** | **72.7** | **43.6** | **54.7** | **71.6** | **84.3** | **65.4** | **51.8** | **60.9** | **53.8** | **62.1** | | **MAmmoTH-70B** | CoT | 72.4 | 21.1 | 57.9 | 58.9 | 71.6 | 20.0 | 31.9 | 57.3 | 52.1 | 49.2 | | | PoT | 76.7 | 40.1 | 60.2 | 64.3 | 81.7 | 55.3 | 45.3 | 64.1 | 53.5 | 60.1 | | | **Hybrid** | **76.9** | **41.8** | **65.0** | **74.4** | **82.4** | **55.6** | **51.4** | **66.4** | **56.7** | **63.4** | ## Usage You can use the models through Huggingface's Transformers library. Use the pipeline function to create a text-generation pipeline with the model of your choice, then feed in a math problem to get the solution. Check our Github repo for more advanced use: [https://github.com/TIGER-AI-Lab/MAmmoTH](https://github.com/TIGER-AI-Lab/MAmmoTH) ## Prompt Format If you want to do CoT: ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response: ``` If you want to do PoT: ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} Let's write a program. ### Response: ``` ## Intended Uses These models are trained for research purposes. They are designed to solve general math problems. They can be used in educational software, tutoring systems, or any application where a solution to a math problem is needed. The models can generate both a chain of thought (CoT) rationale and a program of thought (PoT) rationale, providing a comprehensive solution to a given math problem. ## Limitations We've tried our best to build math generalist models. However, we acknowledge that the models' performance may vary based on the complexity and specifics of the math problem. Still not all mathematical fields can be covered comprehensively. ## Citation If you use the models, data, or code from this project, please cite the original paper: ``` @article{yue2023mammoth, title={MAmmoTH: Building Math Generalist Models through Hybrid Instruction Tuning}, author={Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, Wenhu Chen}, journal={arXiv preprint arXiv:2309.05653}, year={2023} } ```
TIGER-Lab/MAmmoTH-Coder-13B
TIGER-Lab
2023-12-05T16:03:03Z
61
8
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "dataset:TIGER-Lab/MathInstruct", "arxiv:2309.05653", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-11T18:44:26Z
--- license: mit datasets: - TIGER-Lab/MathInstruct language: - en --- # 🦣 MAmmoTH: Building Math Generalist Models through Hybrid Instruction Tuning Project Page: [https://tiger-ai-lab.github.io/MAmmoTH/](https://tiger-ai-lab.github.io/MAmmoTH/) Paper: [https://arxiv.org/pdf/2309.05653.pdf](https://arxiv.org/pdf/2309.05653.pdf) Code: [https://github.com/TIGER-AI-Lab/MAmmoTH](https://github.com/TIGER-AI-Lab/MAmmoTH) ## Introduction We introduce 🦣 MAmmoTH, a series of open-source large language models (LLMs) specifically tailored for general math problem-solving. The MAmmoTH models are trained on 🤗 [MathInstruct Dataset](https://huggingface.co/datasets/TIGER-Lab/MathInstruct), a meticulously curated instruction tuning dataset that is lightweight yet generalizable. MathInstruct is compiled from 13 math rationale datasets, six of which are newly curated by this work. It uniquely focuses on the hybrid use of chain-of-thought (CoT) and program-of-thought (PoT) rationales, and ensures extensive coverage of diverse mathematical fields. | | **Base Model: Llama-2** | **Base Model: Code Llama** | |-----|---------------------------------------------------------------|--------------------------------------------------------------------------| | 7B | 🦣 [MAmmoTH-7B](https://huggingface.co/TIGER-Lab/MAmmoTH-7B) | 🦣 [MAmmoTH-Coder-7B](https://huggingface.co/TIGER-Lab/MAmmoTH-Coder-7B) | | 13B | 🦣 [MAmmoTH-13B](https://huggingface.co/TIGER-Lab/MAmmoTH-13B) | 🦣 [MAmmoTH-Coder-13B](https://huggingface.co/TIGER-Lab/MAmmoTH-Coder-13B)| | 34B | - | 🦣 [MAmmoTH-Coder-34B](https://huggingface.co/TIGER-Lab/MAmmoTH-Coder-34B)| | 70B | 🦣 [MAmmoTH-70B](https://huggingface.co/TIGER-Lab/MAmmoTH-70B) | - | ## Training Data The models are trained on the 🤗 [MathInstruct Dataset](https://huggingface.co/datasets/TIGER-Lab/MathInstruct), which is compiled from 13 different math rationale datasets. Check out the dataset card for more details. ## Training Procedure The models are fine-tuned with the MathInstruct dataset using the original Llama-2 and Code Llama models as base models. The training procedure varies for different models based on their sizes. Check out our paper for more details. ## Evaluation The models are evaluated using open-ended and multiple-choice math problems from several datasets. Here are the results: | **Model** | **Decoding** | **GSM** | **MATH** | **AQuA** | **NumG** | **SVA** | **Mat** | **Sim** | **SAT** | **MMLU** | **AVG** | |-----------------------|--------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | **MAmmoTH-7B** | CoT | 50.5 | 10.4 | 43.7 | 44.0 | 47.3 | 9.2 | 18.9 | 32.7 | 39.9 | 33.0 | | | PoT | 51.6 | 28.7 | 43.3 | 52.3 | 65.1 | 41.9 | 48.2 | 39.1 | 44.6 | 46.1 | | | **Hybrid** | **53.6** | **31.5** | **44.5** | **61.2** | **67.7** | **46.3** | **41.2** | **42.7** | **42.6** | **47.9** | | **MAmmoTH-Coder-7B** | CoT | 22.4 | 7.9 | 36.2 | 36.0 | 37.0 | 8.2 | 7.2 | 32.7 | 34.6 | 24.7 | | | PoT | 58.8 | 32.1 | 47.2 | 57.1 | 71.1 | 53.9 | 44.6 | 40.0 | 47.8 | 50.3 | | | **Hybrid** | **59.4** | **33.4** | **47.2** | **66.4** | **71.4** | **55.4** | **45.9** | **40.5** | **48.3** | **52.0** | | **MAmmoTH-13B** | CoT | 56.3 | 12.9 | 45.3 | 45.6 | 53.8 | 11.7 | 22.4 | 43.6 | 42.3 | 37.1 | | | PoT | 61.3 | 32.6 | 48.8 | 59.6 | 72.2 | 48.5 | 40.3 | 46.8 | 45.4 | 50.6 | | | **Hybrid** | **62.0** | **34.2** | **51.6** | **68.7** | **72.4** | **49.2** | **43.2** | **46.8** | **47.6** | **52.9** | | **MAmmoTH-Coder-13B** | CoT | 32.1 | 10.2 | 40.6 | 36.2 | 43.0 | 9.6 | 10.1 | 40.9 | 36.6 | 28.8 | | | PoT | 64.3 | 35.2 | 46.8 | 54.2 | 73.2 | 60.0 | 44.2 | 48.2 | 48.2 | 52.7 | | | **Hybrid** | **64.7** | **36.3** | **46.9** | **66.8** | **73.7** | **61.5** | **47.1** | **48.6** | **48.3** | **54.9** | | **MAmmoTH-Coder-33B** | CoT | 34.3 | 11.6 | 39.0 | 36.2 | 44.6 | 10.8 | 10.9 | 46.4 | 42.9 | 30.7 | | | PoT | 72.3 | 42.8 | 53.8 | 59.6 | 84.0 | 64.7 | 50.6 | 58.6 | 52.7 | 59.9 | | | **Hybrid** | **72.7** | **43.6** | **54.7** | **71.6** | **84.3** | **65.4** | **51.8** | **60.9** | **53.8** | **62.1** | | **MAmmoTH-70B** | CoT | 72.4 | 21.1 | 57.9 | 58.9 | 71.6 | 20.0 | 31.9 | 57.3 | 52.1 | 49.2 | | | PoT | 76.7 | 40.1 | 60.2 | 64.3 | 81.7 | 55.3 | 45.3 | 64.1 | 53.5 | 60.1 | | | **Hybrid** | **76.9** | **41.8** | **65.0** | **74.4** | **82.4** | **55.6** | **51.4** | **66.4** | **56.7** | **63.4** | ## Usage You can use the models through Huggingface's Transformers library. Use the pipeline function to create a text-generation pipeline with the model of your choice, then feed in a math problem to get the solution. Check our Github repo for more advanced use: [https://github.com/TIGER-AI-Lab/MAmmoTH](https://github.com/TIGER-AI-Lab/MAmmoTH) ## Prompt Format If you want to do CoT: ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response: ``` If you want to do PoT: ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} Let's write a program. ### Response: ``` ## Intended Uses These models are trained for research purposes. They are designed to solve general math problems. They can be used in educational software, tutoring systems, or any application where a solution to a math problem is needed. The models can generate both a chain of thought (CoT) rationale and a program of thought (PoT) rationale, providing a comprehensive solution to a given math problem. ## Limitations We've tried our best to build math generalist models. However, we acknowledge that the models' performance may vary based on the complexity and specifics of the math problem. Still not all mathematical fields can be covered comprehensively. ## Citation If you use the models, data, or code from this project, please cite the original paper: ``` @article{yue2023mammoth, title={MAmmoTH: Building Math Generalist Models through Hybrid Instruction Tuning}, author={Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, Wenhu Chen}, journal={arXiv preprint arXiv:2309.05653}, year={2023} } ```
DianaJin/krmodel
DianaJin
2023-12-05T16:00:38Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "ko", "dataset:DianaJin/krmodel", "base_model:openai/whisper-medium", "base_model:finetune:openai/whisper-medium", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-12-05T13:11:38Z
--- language: - ko license: apache-2.0 base_model: openai/whisper-medium tags: - hf-asr-leaderboard - generated_from_trainer datasets: - DianaJin/krmodel model-index: - name: jinkrsmodel results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # jinkrsmodel This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the DianaJin/krmodel dataset. It achieves the following results on the evaluation set: - Loss: 1.1290 - Cer: 92.0690 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - training_steps: 160 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1899 | 13.33 | 40 | 1.0819 | 153.1034 | | 0.0027 | 26.67 | 80 | 1.0554 | 24.8276 | | 0.0006 | 40.0 | 120 | 1.1173 | 39.3103 | | 0.0004 | 53.33 | 160 | 1.1290 | 92.0690 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
mogaio/pr_ebsa_en_merged25_offsets
mogaio
2023-12-05T16:00:02Z
5
0
sentence-transformers
[ "sentence-transformers", "safetensors", "xlm-roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-12-05T15:59:07Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # mogaio/pr_ebsa_en_merged25_offsets This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("mogaio/pr_ebsa_en_merged25_offsets") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
sgimmel/gpt-neo-125m-finetuned-cummings-multiline
sgimmel
2023-12-05T15:58:41Z
18
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt_neo", "text-generation", "generated_from_trainer", "base_model:EleutherAI/gpt-neo-125m", "base_model:finetune:EleutherAI/gpt-neo-125m", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-11-26T18:34:58Z
--- license: mit base_model: EleutherAI/gpt-neo-125m tags: - generated_from_trainer model-index: - name: gpt-neo-125m-finetuned-cummings-multiline results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt-neo-125m-finetuned-cummings-multiline This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.3962 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 191 | 4.5170 | | No log | 2.0 | 382 | 4.4383 | | 4.4042 | 3.0 | 573 | 4.4100 | | 4.4042 | 4.0 | 764 | 4.3972 | | 4.4042 | 5.0 | 955 | 4.3934 | | 4.0308 | 6.0 | 1146 | 4.3958 | | 4.0308 | 7.0 | 1337 | 4.3962 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.14.1
Hypersniper/The_OverThinker_Phi_1_5
Hypersniper
2023-12-05T15:51:13Z
22
7
transformers
[ "transformers", "pytorch", "mixformer-sequential", "text-generation", "fun", "riddles", "phi1.5", "phi 1.5", "alpaca", "custom_code", "dataset:Hypersniper/riddles_v1", "autotrain_compatible", "region:us" ]
text-generation
2023-12-01T15:56:20Z
--- datasets: - Hypersniper/riddles_v1 tags: - fun - riddles - phi1.5 - phi 1.5 - alpaca library_name: transformers --- # Welcome to The OverThinker's Repository! ![OverThinker working late at night, deeply engrossed in solving the enigma of "Hi"](https://cdn-uploads.huggingface.co/production/uploads/63b229669d21227b914badbb/om_fJRok2g0ulTFRj9dJm.png) >The OverThinker working late at night trying to find that answer for you. [Buy me Ko-fi](https://ko-fi.com/hypersniper) Meet The OverThinker! While some might argue he digs way too deep, many regard him as a genius. This repository is where his complex thoughts and innovative solutions come to life. ## Model Phi 1.5 The OverThinker operates on the small Model Phi 1.5, uniquely tailored to offer intriguing perspectives: - **Specialized in Riddles**: Overfitted, by design, on a comprehensive Riddles database. Mr OverThinker is not just another bot – he's an enigma wrapped in a mystery. - **Built on the Alpaca Template** ```python template = ("Below is an instruction that describes a task, paired with an input " "that provides further context. Write a response that appropriately " "completes the request.\n\n### Instruction:\n{query}\n\n### Response:\n") # Example of using the template with a query query = "What gets wetter as it dries?" formatted_string = template.format(query=query) ``` ## How to Interact with Mr OverThinker Here is how you can get started: <details> <summary><b>How to Interact with OverThinker using Web Generation WebUI</b> (click to expand)</summary> - Install text generation webui [Text Generation WebUI](https://github.com/oobabooga/text-generation-webui). - On the 'Model' tab enter this URL `Hypersniper/The_OverThinker_Phi_1_5` to automatically download the model. - On the same tab, select the model, make sure `trust-remote-code` is checked, then `Load` the model. - Next, on the `Parameters` table, select `Instruction Template` and make sure the `Alpaca` template is selected. - Lastly, under `Mode`, select `Chat` and then `Instruct`. Now you are ready to chat with The OverThinker. Enjoy! </details> The OverThinker awaits your challenging riddles and is ready to provide you with wild answers. Let the journey begin! ## Conversation Examples ![phi 1.png](https://cdn-uploads.huggingface.co/production/uploads/63b229669d21227b914badbb/08aoYv1zsM1aj_VW1oCH-.png) ![Phi 2.png](https://cdn-uploads.huggingface.co/production/uploads/63b229669d21227b914badbb/m7VWSwZdXKh23SKcAKHDB.png) ![phi 3.png](https://cdn-uploads.huggingface.co/production/uploads/63b229669d21227b914badbb/7uAzTc--mOcNs1KMsNtBj.png)
superaidesu/cantonese-alma-2-7b-oasst-v1-lora
superaidesu
2023-12-05T15:46:58Z
0
0
null
[ "zh", "license:llama2", "region:us" ]
null
2023-11-23T01:33:54Z
--- license: llama2 language: - zh metrics: - bleu - chrf --- Base model: https://huggingface.co/indiejoseph/cantonese-llama-2-7b-oasst-v1 Finetuned following ALMA (https://github.com/fe1ixxu/ALMA) on the Cantonese-Mandarin translation task. Finetuning dataset: Sourced from the released raw dataset in https://github.com/meganndare/cantonese-nlp As the base model was already finetuned on Cantonese monolingual data, we only conducted finetuning on parallel sentences. Results: Man -> Can: 35.371 BLEU, 26.197 ChrF++ Can -> Man: 36.553 BLEU, 27.471 ChrF++ Github Repo: https://github.com/cmgao/nlp_project The ALMA code was linked as submodule.
shivangx01b/phi-1_5-finetuned-science-qa
shivangx01b
2023-12-05T15:46:51Z
10
0
transformers
[ "transformers", "tensorboard", "safetensors", "phi", "text-generation", "generated_from_trainer", "custom_code", "base_model:microsoft/phi-1_5", "base_model:finetune:microsoft/phi-1_5", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-05T15:35:15Z
--- license: other base_model: microsoft/phi-1_5 tags: - generated_from_trainer model-index: - name: phi-1_5-finetuned-science-qa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phi-1_5-finetuned-science-qa This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
AyoubChLin/Albert-bbc-news
AyoubChLin
2023-12-05T15:30:01Z
10
0
transformers
[ "transformers", "pytorch", "safetensors", "albert", "text-classification", "autotrain", "en", "dataset:AyoubChLin/autotrain-data-albert-bbc-news", "dataset:SetFit/bbc-news", "license:apache-2.0", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-12T19:00:44Z
--- tags: - autotrain - text-classification language: - en widget: - text: I love AutoTrain 🤗 datasets: - AyoubChLin/autotrain-data-albert-bbc-news - SetFit/bbc-news co2_eq_emissions: emissions: 13.344689233410659 license: apache-2.0 metrics: - accuracy pipeline_tag: text-classification --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 48939118438 - CO2 Emissions (in grams): 13.3447 ## Validation Metrics - Loss: 0.103 - Accuracy: 0.978 - Macro F1: 0.978 - Micro F1: 0.978 - Weighted F1: 0.978 - Macro Precision: 0.977 - Micro Precision: 0.978 - Weighted Precision: 0.978 - Macro Recall: 0.978 - Micro Recall: 0.978 - Weighted Recall: 0.978 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/AyoubChLin/autotrain-albert-bbc-news-48939118438 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("AyoubChLin/autotrain-albert-bbc-news-48939118438", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("AyoubChLin/autotrain-albert-bbc-news-48939118438", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
MAPS-research/Chaos3.0
MAPS-research
2023-12-05T15:29:57Z
5
0
diffusers
[ "diffusers", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-12-05T14:55:42Z
--- pipeline_tag: text-to-image license: creativeml-openrail-m --- # Chaos3.0 This is the converted checkpoint of Chaos3.0 for diffusers pipeline. ![Example Image from Civitai](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/7b03e632-60db-4e3c-a347-365db795e4aa/width=1432/00234-393454685.jpeg) Original Model: [Link](https://civitai.com/models/91534/chaos30)
fatcatmilo/test
fatcatmilo
2023-12-05T15:21:14Z
1
0
peft
[ "peft", "pytorch", "safetensors", "bloom", "arxiv:1910.09700", "base_model:bigscience/bloom-3b", "base_model:adapter:bigscience/bloom-3b", "region:us" ]
null
2023-08-30T10:07:21Z
--- library_name: peft base_model: bigscience/bloom-3b --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.3.dev0
abdulmatinomotoso/distilroberta-topic-classification_4
abdulmatinomotoso
2023-12-05T15:15:13Z
8
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-30T20:39:51Z
--- license: apache-2.0 base_model: distilroberta-base tags: - generated_from_trainer model-index: - name: distilroberta-topic-classification_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-topic-classification_4 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.5428 - Acc: 0.7557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 12345 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 16 - num_epochs: 20 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6261 | 1.0 | 564 | 3.6045 | 0.6610 | | 3.5223 | 2.0 | 1128 | 3.5326 | 0.7111 | | 3.4204 | 3.0 | 1692 | 3.5040 | 0.7322 | | 3.3446 | 4.0 | 2256 | 3.4980 | 0.7400 | | 3.2737 | 5.0 | 2820 | 3.4872 | 0.7539 | | 3.2533 | 6.0 | 3384 | 3.4967 | 0.7555 | | 3.2059 | 7.0 | 3948 | 3.5038 | 0.7613 | | 3.1697 | 8.0 | 4512 | 3.5258 | 0.7537 | | 3.1439 | 9.0 | 5076 | 3.5311 | 0.7573 | | 3.1426 | 10.0 | 5640 | 3.5334 | 0.7544 | | 3.1325 | 11.0 | 6204 | 3.5311 | 0.7562 | | 3.1165 | 12.0 | 6768 | 3.5428 | 0.7557 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
matansol/a2c-PandaReachDense-v3
matansol
2023-12-05T15:08:21Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-05T15:04:00Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.19 +/- 0.13 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
qqplot23/xsum-gpt2-long-pegasus
qqplot23
2023-12-05T14:54:34Z
6
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-05T07:31:22Z
--- license: mit base_model: gpt2 tags: - generated_from_trainer model-index: - name: xsum-gpt2-long-pegasus results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xsum-gpt2-long-pegasus This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.2524 - Ppl: 26.6834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 2 - eval_batch_size: 2 - seed: 22554 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2000 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Ppl | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 3.7921 | 2.67 | 4000 | 3.6382 | 39.1940 | | 3.4486 | 5.34 | 8000 | 3.4164 | 31.3953 | | 3.299 | 8.01 | 12000 | 3.3291 | 28.7823 | | 3.2019 | 10.68 | 16000 | 3.2769 | 27.3369 | | 3.1403 | 13.36 | 20000 | 3.2524 | 26.6834 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.14.6 - Tokenizers 0.14.1
malhajar/Llama-2-13b-chat-tr
malhajar
2023-12-05T14:51:10Z
13
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "tr", "dataset:atasoglu/databricks-dolly-15k-tr", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-05T14:38:04Z
--- datasets: - atasoglu/databricks-dolly-15k-tr language: - tr --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> malhajar/Llama-2-13b-chat-dolly-tr is a finetuned version of Llama-2-13b-hf using SFT Training. This model can answer information in turkish language as it is finetuned on a turkish dataset specifically [`databricks-dolly-15k-tr`]( https://huggingface.co/datasets/atasoglu/databricks-dolly-15k-tr) ![llama](./llama.png) ### Model Description - **Developed by:** [`Mohamad Alhajar`](https://www.linkedin.com/in/muhammet-alhajar/) - **Language(s) (NLP):** Turkish - **Finetuned from model:** [`meta-llama/Llama-2-13b-hf`](https://huggingface.co/meta-llama/Llama-2-13b-hf) ### Prompt Template ``` <s>[INST] <prompt> [/INST] ``` ## How to Get Started with the Model Use the code sample provided in the original post to interact with the model. ```python from transformers import AutoTokenizer,AutoModelForCausalLM model_id = "malhajar/Llama-2-7b-chat-dolly-tr" model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", torch_dtype=torch.float16, revision="main") tokenizer = AutoTokenizer.from_pretrained(model_id) question: "Türkiyenin en büyük şehir nedir?" # For generating a response prompt = ''' <s>[INST] {question} [/INST] ''' input_ids = tokenizer(prompt, return_tensors="pt").input_ids output = model.generate(inputs=input_ids,max_new_tokens=512,pad_token_id=tokenizer.eos_token_id,top_k=50, do_sample=True,repetition_penalty=1.3 top_p=0.95) response = tokenizer.decode(output[0]) print(response) ```
sosophiphiaa/nabi
sosophiphiaa
2023-12-05T14:50:35Z
0
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail", "region:us" ]
text-to-image
2023-12-05T14:09:47Z
--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: '-' output: url: images/2c22c20c4fba91f53834e11c20373a69.jpg base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: null license: openrail --- # nabi voice <Gallery /> ## Download model [Download](/sosophiphiaa/nabi/tree/main) them in the Files & versions tab.
Pranavsenthilvel/t5-small-finetuned-xsum-2
Pranavsenthilvel
2023-12-05T14:38:09Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-12-05T14:18:12Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-finetuned-xsum-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum-2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0545 - Rouge1: 97.619 - Rouge2: 0.0 - Rougel: 97.619 - Rougelsum: 97.619 - Gen Len: 2.0 # Notes - Try the following: - What is your name? - Name: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 1.0 | 47 | 2.3226 | 41.1659 | 0.0 | 41.5533 | 40.7833 | 3.7857 | | No log | 2.0 | 94 | 0.9654 | 71.4286 | 0.0 | 70.6349 | 70.6349 | 2.0476 | | No log | 3.0 | 141 | 0.5835 | 80.9524 | 0.0 | 80.9524 | 80.9524 | 2.0 | | No log | 4.0 | 188 | 0.4075 | 80.9524 | 0.0 | 80.9524 | 80.9524 | 2.0238 | | No log | 5.0 | 235 | 0.2701 | 83.3333 | 0.0 | 83.3333 | 83.3333 | 2.0 | | No log | 6.0 | 282 | 0.1677 | 88.0952 | 0.0 | 88.0952 | 88.0952 | 1.9762 | | No log | 7.0 | 329 | 0.1074 | 92.8571 | 0.0 | 92.8571 | 92.8571 | 2.0 | | No log | 8.0 | 376 | 0.0745 | 97.619 | 0.0 | 97.619 | 97.619 | 2.0 | | No log | 9.0 | 423 | 0.0583 | 97.619 | 0.0 | 97.619 | 97.619 | 2.0 | | No log | 10.0 | 470 | 0.0545 | 97.619 | 0.0 | 97.619 | 97.619 | 2.0 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
Meyveli1Lahmacun/atam18
Meyveli1Lahmacun
2023-12-05T14:29:40Z
1
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-12-05T14:25:38Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### atam18 Dreambooth model trained by Meyveli1Lahmacun with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
aleksejalex/gpt2_kytice
aleksejalex
2023-12-05T14:26:24Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-05T14:26:03Z
--- license: mit base_model: gpt2 tags: - generated_from_trainer model-index: - name: gpt2_kytice results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2_kytice This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 15 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 28 ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
nlile/PE-12b-pythia
nlile
2023-12-05T14:22:29Z
19
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "generated_from_trainer", "conversational", "base_model:EleutherAI/pythia-12b-deduped", "base_model:finetune:EleutherAI/pythia-12b-deduped", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-04T06:18:00Z
--- license: apache-2.0 base_model: EleutherAI/pythia-12b-deduped tags: - generated_from_trainer model-index: - name: PE-12b-pythia results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # PE-12b-pythia This model is a fine-tuned version of [EleutherAI/pythia-12b-deduped](https://huggingface.co/EleutherAI/pythia-12b-deduped) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1421 - Rewards/chosen: 3.5045 - Rewards/rejected: -2.3171 - Rewards/accuracies: 0.9441 - Rewards/margins: 5.8216 - Logps/rejected: -95.5639 - Logps/chosen: -116.1507 - Logits/rejected: -0.4604 - Logits/chosen: -0.4355 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-07 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.8825 | 0.05 | 100 | 0.8872 | 0.1884 | 0.1204 | 0.5056 | 0.0680 | -90.6889 | -122.7830 | -0.5017 | -0.4522 | | 0.9136 | 0.09 | 200 | 0.8325 | 0.3253 | 0.0714 | 0.5894 | 0.2540 | -90.7870 | -122.5091 | -0.4960 | -0.4447 | | 0.7507 | 0.14 | 300 | 0.7816 | 0.5741 | 0.2797 | 0.5670 | 0.2944 | -90.3703 | -122.0116 | -0.4909 | -0.4426 | | 0.6142 | 0.18 | 400 | 0.6435 | 1.0753 | 0.4404 | 0.6369 | 0.6348 | -90.0489 | -121.0092 | -0.4793 | -0.4322 | | 0.519 | 0.23 | 500 | 0.5196 | 1.7213 | 0.5624 | 0.7430 | 1.1590 | -89.8050 | -119.7171 | -0.4559 | -0.4084 | | 0.4858 | 0.27 | 600 | 0.4351 | 2.2085 | 0.5923 | 0.7877 | 1.6162 | -89.7450 | -118.7428 | -0.4592 | -0.4138 | | 0.4048 | 0.32 | 700 | 0.3878 | 2.6105 | 0.5736 | 0.8324 | 2.0369 | -89.7825 | -117.9388 | -0.4398 | -0.3953 | | 0.3623 | 0.37 | 800 | 0.3383 | 2.7055 | 0.4610 | 0.8520 | 2.2446 | -90.0078 | -117.7487 | -0.4492 | -0.4046 | | 0.308 | 0.41 | 900 | 0.3145 | 2.9742 | 0.3506 | 0.8520 | 2.6236 | -90.2285 | -117.2114 | -0.4381 | -0.3971 | | 0.3092 | 0.46 | 1000 | 0.3125 | 3.1541 | 0.2687 | 0.8352 | 2.8854 | -90.3922 | -116.8515 | -0.4276 | -0.3926 | | 0.2765 | 0.5 | 1100 | 0.2939 | 3.1208 | 0.1475 | 0.8603 | 2.9733 | -90.6347 | -116.9181 | -0.4615 | -0.4216 | | 0.3058 | 0.55 | 1200 | 0.2772 | 2.9861 | -0.1371 | 0.8771 | 3.1232 | -91.2038 | -117.1875 | -0.4249 | -0.3887 | | 0.2702 | 0.59 | 1300 | 0.2592 | 3.3217 | -0.0639 | 0.8715 | 3.3856 | -91.0574 | -116.5163 | -0.4497 | -0.4113 | | 0.2316 | 0.64 | 1400 | 0.2491 | 3.3560 | -0.2934 | 0.8855 | 3.6494 | -91.5165 | -116.4477 | -0.4234 | -0.3869 | | 0.2344 | 0.68 | 1500 | 0.2506 | 3.2223 | -0.2242 | 0.8687 | 3.4464 | -91.3780 | -116.7152 | -0.4515 | -0.4151 | | 0.2332 | 0.73 | 1600 | 0.2350 | 3.2137 | -0.4070 | 0.8855 | 3.6207 | -91.7436 | -116.7324 | -0.4299 | -0.3936 | | 0.2258 | 0.78 | 1700 | 0.2477 | 3.0894 | -0.5590 | 0.8939 | 3.6484 | -92.0476 | -116.9809 | -0.4316 | -0.3960 | | 0.2526 | 0.82 | 1800 | 0.2277 | 3.2845 | -0.5527 | 0.8771 | 3.8373 | -92.0351 | -116.5907 | -0.4420 | -0.4076 | | 0.2025 | 0.87 | 1900 | 0.2182 | 3.2061 | -0.8100 | 0.9022 | 4.0160 | -92.5496 | -116.7476 | -0.4319 | -0.3974 | | 0.2253 | 0.91 | 2000 | 0.2149 | 3.2765 | -0.9756 | 0.9078 | 4.2521 | -92.8809 | -116.6067 | -0.4391 | -0.4023 | | 0.2084 | 0.96 | 2100 | 0.2223 | 3.1160 | -1.0659 | 0.8939 | 4.1820 | -93.0615 | -116.9277 | -0.4283 | -0.3954 | | 0.1896 | 1.0 | 2200 | 0.2100 | 3.1835 | -1.0131 | 0.8911 | 4.1966 | -92.9559 | -116.7927 | -0.4517 | -0.4154 | | 0.2294 | 1.05 | 2300 | 0.2070 | 3.1205 | -1.0873 | 0.8939 | 4.2078 | -93.1043 | -116.9187 | -0.4412 | -0.4051 | | 0.1897 | 1.1 | 2400 | 0.2011 | 3.1553 | -1.0875 | 0.9050 | 4.2428 | -93.1047 | -116.8492 | -0.4483 | -0.4136 | | 0.1943 | 1.14 | 2500 | 0.1953 | 3.3317 | -1.2261 | 0.9022 | 4.5578 | -93.3819 | -116.4964 | -0.4488 | -0.4137 | | 0.1749 | 1.19 | 2600 | 0.1975 | 3.2186 | -1.3232 | 0.8911 | 4.5419 | -93.5761 | -116.7225 | -0.4500 | -0.4160 | | 0.1881 | 1.23 | 2700 | 0.1838 | 3.3207 | -1.3323 | 0.9274 | 4.6530 | -93.5944 | -116.5184 | -0.4262 | -0.3962 | | 0.1611 | 1.28 | 2800 | 0.1833 | 3.2881 | -1.3588 | 0.9106 | 4.6469 | -93.6472 | -116.5835 | -0.4404 | -0.4091 | | 0.1653 | 1.32 | 2900 | 0.1959 | 3.2545 | -1.6143 | 0.9190 | 4.8688 | -94.1584 | -116.6508 | -0.4252 | -0.3996 | | 0.1613 | 1.37 | 3000 | 0.1779 | 3.3926 | -1.5190 | 0.9218 | 4.9117 | -93.9678 | -116.3744 | -0.4374 | -0.4071 | | 0.1785 | 1.42 | 3100 | 0.1840 | 3.4053 | -1.6286 | 0.9246 | 5.0339 | -94.1868 | -116.3491 | -0.4280 | -0.3987 | | 0.1544 | 1.46 | 3200 | 0.1686 | 3.5029 | -1.6389 | 0.9218 | 5.1418 | -94.2075 | -116.1539 | -0.4624 | -0.4309 | | 0.1492 | 1.51 | 3300 | 0.1706 | 3.2854 | -1.8094 | 0.9330 | 5.0948 | -94.5485 | -116.5889 | -0.4148 | -0.3943 | | 0.1719 | 1.55 | 3400 | 0.1691 | 3.5148 | -1.7457 | 0.9274 | 5.2605 | -94.4210 | -116.1301 | -0.4542 | -0.4253 | | 0.1905 | 1.6 | 3500 | 0.1719 | 3.4941 | -1.7454 | 0.9246 | 5.2395 | -94.4204 | -116.1715 | -0.4479 | -0.4189 | | 0.1354 | 1.64 | 3600 | 0.1749 | 3.5351 | -1.7024 | 0.9106 | 5.2375 | -94.3345 | -116.0895 | -0.4608 | -0.4303 | | 0.1644 | 1.69 | 3700 | 0.1597 | 3.5736 | -1.6580 | 0.9246 | 5.2316 | -94.2457 | -116.0126 | -0.4469 | -0.4192 | | 0.1598 | 1.73 | 3800 | 0.1613 | 3.6646 | -1.7035 | 0.9078 | 5.3681 | -94.3367 | -115.8306 | -0.4631 | -0.4349 | | 0.1337 | 1.78 | 3900 | 0.1583 | 3.5502 | -1.8444 | 0.9134 | 5.3946 | -94.6184 | -116.0593 | -0.4658 | -0.4368 | | 0.1534 | 1.83 | 4000 | 0.1572 | 3.5076 | -1.9137 | 0.9190 | 5.4213 | -94.7571 | -116.1446 | -0.4610 | -0.4328 | | 0.1327 | 1.87 | 4100 | 0.1607 | 3.5711 | -1.9143 | 0.9218 | 5.4854 | -94.7583 | -116.0175 | -0.4404 | -0.4153 | | 0.162 | 1.92 | 4200 | 0.1565 | 3.4852 | -2.0136 | 0.9330 | 5.4988 | -94.9568 | -116.1893 | -0.4641 | -0.4373 | | 0.1471 | 1.96 | 4300 | 0.1524 | 3.5639 | -1.9766 | 0.9246 | 5.5406 | -94.8830 | -116.0319 | -0.4627 | -0.4338 | | 0.1333 | 2.01 | 4400 | 0.1418 | 3.6173 | -1.9710 | 0.9162 | 5.5883 | -94.8717 | -115.9251 | -0.4608 | -0.4328 | | 0.13 | 2.05 | 4500 | 0.1485 | 3.6275 | -1.9865 | 0.9358 | 5.6140 | -94.9027 | -115.9047 | -0.4604 | -0.4319 | | 0.1311 | 2.1 | 4600 | 0.1503 | 3.4735 | -2.1194 | 0.9134 | 5.5928 | -95.1684 | -116.2128 | -0.4405 | -0.4123 | | 0.1329 | 2.15 | 4700 | 0.1431 | 3.5793 | -2.1059 | 0.9218 | 5.6852 | -95.1415 | -116.0012 | -0.4519 | -0.4229 | | 0.1346 | 2.19 | 4800 | 0.1494 | 3.6059 | -2.0642 | 0.9274 | 5.6701 | -95.0581 | -115.9479 | -0.4639 | -0.4332 | | 0.1462 | 2.24 | 4900 | 0.1455 | 3.4721 | -2.1648 | 0.9218 | 5.6369 | -95.2593 | -116.2156 | -0.4553 | -0.4258 | | 0.1221 | 2.28 | 5000 | 0.1538 | 3.6293 | -2.1472 | 0.9385 | 5.7764 | -95.2240 | -115.9012 | -0.4525 | -0.4268 | | 0.1329 | 2.33 | 5100 | 0.1486 | 3.4734 | -2.1778 | 0.9358 | 5.6512 | -95.2853 | -116.2130 | -0.4578 | -0.4301 | | 0.1284 | 2.37 | 5200 | 0.1527 | 3.4805 | -2.1670 | 0.9078 | 5.6474 | -95.2636 | -116.1988 | -0.4611 | -0.4329 | | 0.1238 | 2.42 | 5300 | 0.1433 | 3.4570 | -2.1768 | 0.9274 | 5.6338 | -95.2832 | -116.2457 | -0.4451 | -0.4191 | | 0.1317 | 2.46 | 5400 | 0.1421 | 3.5647 | -2.2232 | 0.9330 | 5.7880 | -95.3761 | -116.0303 | -0.4565 | -0.4342 | | 0.131 | 2.51 | 5500 | 0.1478 | 3.4211 | -2.2681 | 0.9190 | 5.6892 | -95.4659 | -116.3175 | -0.4444 | -0.4147 | | 0.1235 | 2.56 | 5600 | 0.1428 | 3.5292 | -2.2798 | 0.9413 | 5.8089 | -95.4892 | -116.1014 | -0.4485 | -0.4234 | | 0.1122 | 2.6 | 5700 | 0.1445 | 3.6102 | -2.2363 | 0.9330 | 5.8465 | -95.4023 | -115.9393 | -0.4473 | -0.4233 | | 0.1172 | 2.65 | 5800 | 0.1415 | 3.5813 | -2.1899 | 0.9246 | 5.7712 | -95.3095 | -115.9972 | -0.4648 | -0.4357 | | 0.1257 | 2.69 | 5900 | 0.1428 | 3.4075 | -2.3047 | 0.9218 | 5.7122 | -95.5390 | -116.3447 | -0.4553 | -0.4269 | | 0.1441 | 2.74 | 6000 | 0.1426 | 3.4287 | -2.3210 | 0.9190 | 5.7497 | -95.5717 | -116.3024 | -0.4673 | -0.4401 | | 0.1359 | 2.78 | 6100 | 0.1479 | 3.4833 | -2.2993 | 0.9358 | 5.7826 | -95.5282 | -116.1931 | -0.4409 | -0.4173 | | 0.1332 | 2.83 | 6200 | 0.1442 | 3.4741 | -2.2726 | 0.9330 | 5.7466 | -95.4748 | -116.2116 | -0.4512 | -0.4262 | | 0.1454 | 2.88 | 6300 | 0.1397 | 3.4410 | -2.2911 | 0.9358 | 5.7320 | -95.5118 | -116.2778 | -0.4604 | -0.4355 | | 0.1355 | 2.92 | 6400 | 0.1471 | 3.3740 | -2.3739 | 0.9330 | 5.7479 | -95.6775 | -116.4117 | -0.4473 | -0.4225 | | 0.1114 | 2.97 | 6500 | 0.1397 | 3.4854 | -2.3222 | 0.9302 | 5.8076 | -95.5740 | -116.1889 | -0.4595 | -0.4345 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.1+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
LarryAIDraw/DDLC-10
LarryAIDraw
2023-12-05T14:16:28Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-12-05T14:09:17Z
--- license: creativeml-openrail-m --- https://civitai.com/models/220864/ddlc-monika-natsuki-sayori-yuri
LarryAIDraw/Ai_1_2
LarryAIDraw
2023-12-05T14:15:49Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-12-05T14:06:52Z
--- license: creativeml-openrail-m --- https://civitai.com/models/221846/miyashita-ai-oror-lovelive-lora
LarryAIDraw/Atlanta-2
LarryAIDraw
2023-12-05T14:15:20Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-12-05T14:05:15Z
--- license: creativeml-openrail-m --- https://civitai.com/models/221746/kantai-collection-atlanta
LarryAIDraw/ChiakiLora-10
LarryAIDraw
2023-12-05T14:15:05Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-12-05T14:04:47Z
--- license: creativeml-openrail-m --- https://civitai.com/models/221458/chiaki-matsushita-cote-lora
LarryAIDraw/kikyou_kushida_s2-lora-nochekaiser
LarryAIDraw
2023-12-05T14:14:44Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-12-05T14:00:11Z
--- license: creativeml-openrail-m --- https://civitai.com/models/221294/kikyou-kushida-classroom-of-the-elite
LarryAIDraw/Aisha_Hart
LarryAIDraw
2023-12-05T14:14:33Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-12-05T13:59:26Z
--- license: creativeml-openrail-m --- https://civitai.com/models/221174/aisha-hart-boushoku-no-berserk-berserk-of-gluttony
LarryAIDraw/ClorindeV2
LarryAIDraw
2023-12-05T14:14:07Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-12-05T13:58:32Z
--- license: creativeml-openrail-m --- https://civitai.com/models/134406/clorinde-genshin-impact
sw2703/path_to_saved_model
sw2703
2023-12-05T14:10:43Z
0
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-12-05T03:04:26Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of sks humidifier tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - sw2703/path_to_saved_model This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of sks humidifier using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
Pranavsenthilvel/t5-small-finetuned-xsum
Pranavsenthilvel
2023-12-05T14:10:17Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-12-05T12:11:02Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 47 | 0.0594 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
mlinmg/SG-Raccoon-Yi-55B-200k
mlinmg
2023-12-05T14:09:49Z
64
4
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-28T00:05:36Z
--- license: other license_name: yi-license license_link: https://huggingface.co/01-ai/Yi-34B/blob/main/LICENSE language: - en, pipeline_tag: conversational --- <p align="center"> <img src="https://cdn-uploads.huggingface.co/production/uploads/644ba0c76ebb3ebf7264dbe9/PWn9I-0XH7kSP_YXcyxIg.png" width="400"/> </p> --- # This is a retired model since it was merged with a Capybara, which has been trained wrong with a missing eos_token. Check out the new model: [1](https://huggingface.co/mlinmg/SG-Raccoon-Yi-200k-2.0?text=Hi.) # SG Raccoon 55B The first 55B auto-regressive causal LM created by combining 2x finetuned [Yi 34b](https://huggingface.co/01-ai/Yi-34B) with *200K context* into one. # Prompting Format ``` SYSTEM: <ANY SYSTEM CONTEXT> USER: ASSISTANT: ``` # Merge process The models used in the merge are [Tess-M-v1.3](https://huggingface.co/migtissera/Tess-M-v1.3/) and [Nous-Capybara-34B](https://huggingface.co/NousResearch/Nous-Capybara-34B). The layer ranges used are as follows: ```yaml - model: migtissera/Tess-M-v1.3 layer_range: [0, 14] - model: NousResearch/Nous-Capybara-34B layer_range: [7, 21] - model: migtissera/Tess-M-v1.3 layer_range: [15, 29] - model: NousResearch/Nous-Capybara-34B layer_range: [22, 36] - model: migtissera/Tess-M-v1.3 layer_range: [30, 44] - model: NousResearch/Nous-Capybara-34B layer_range: [37, 51] - model: migtissera/Tess-M-v1.3 layer_range: [45, 59] ``` # Tips Being a Yi model, try disabling the BOS token and/or running a lower temperature with MinP (and no other samplers) if output doesn't seem right. Yi tends to run "hot" by default. Sometimes the model "spells out" the stop token as </s> like Capybara, so you may need to add </s> as an additional stopping condition. # Benchmarks Coming soon. # Acknowledgements - Special thanks to [MSS](https://milanosamplesale.com/) for sponsoring this project - [@chargoddard](https://huggingface.co/chargoddard) for developing the framework used to merge the model - [mergekit](https://github.com/cg123/mergekit). - Great thanks to [@Undi95](https://huggingface.co/Undi95) for helping figuring out model merge options - Also credits to the [01-ai](https://huggingface.co/01-ai) team for their amazing models - This merged model is inspired by [Goliath 120B](https://huggingface.co/alpindale/goliath-120b)
LoneStriker/smol-7b-6.0bpw-h6-exl2
LoneStriker
2023-12-05T14:05:33Z
8
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "generated_from_trainer", "conversational", "en", "dataset:HuggingFaceH4/no_robots", "base_model:openchat/openchat_3.5", "base_model:finetune:openchat/openchat_3.5", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-05T13:54:00Z
--- license: apache-2.0 base_model: openchat/openchat_3.5 datasets: - HuggingFaceH4/no_robots language: - en widget: - text: | <|system|> You are a friendly chatbot who always responds in the style of a pirate</s> <|user|> How many helicopters can a human eat in one sitting?</s> <|assistant|> output: text: >- Ahoy there, me hearty! As a friendly pirate chatbot, I be tellin' ye that a human cannot eat a helicopter, as it be a large machine made of metal and suchlike, not fit for human consumption. A human can eat food, like a fine feast of roasted meat and sweet fruits, but a helicopter? That be nonsense, me hearty! So, the answer be none, none at all. Arr! tags: - generated_from_trainer pipeline_tag: text-generation model-index: - name: smol-7b results: [] --- # Smol 7B This model is a fine-tuned version of [openchat/openchat_3.5](https://huggingface.co/openchat/openchat_3.5) on the open source dataset [HuggingFaceH4/no_robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots) using the recipes published in [The Alignment Handbook](https://github.com/huggingface/alignment-handbook). ## Model date rishiraj/smol-7b was trained between 1st and 3rd December, 2023. ## Evaluation It achieves the following results on the [Open_LLM_Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). At the time of release, smol-7b is the highest ranked 7B chat model on the [MMLU Benchmark](https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu). | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | | ---------------------------- | ------- | ----- | --------- | ----- | ---------- | ---------- | ----- | | **rishiraj/smol-7b** | **67.11** | **63.74** | **84.77** | **65** | **46.17** | **80.66** | **62.32** | | argilla/notus-7b-v1 | 63.49 | 64.59 | 84.83 | 63.04 | 54.35 | 79.56 | 34.57 | | Intel/neural-chat-7b-v3-1 | 61.59 | 66.21 | 83.64 | 62.37 | 59.65 | 78.14 | 19.56 | | HuggingFaceH4/zephyr-7b-beta | 61.59 | 62.46 | 84.35 | 60.7 | 57.83 | 77.11 | 27.07 | | Qwen/Qwen-7B | 59.19 | 51.37 | 78.47 | 59.84 | 47.79 | 72.69 | 44.96 | | microsoft/Orca-2-7b | 54.55 | 54.1 | 76.19 | 56.37 | 52.45 | 73.48 | 14.71 | | 01-ai/Yi-6B | 54.08 | 55.55 | 76.57 | 64.11 | 41.96 | 74.19 | 12.13 | ## Inference procedure Here's how you can run the model using the pipeline() function from 🤗 Transformers: ``` import torch from transformers import pipeline pipe = pipeline("text-generation", model="rishiraj/smol-7b", torch_dtype=torch.bfloat16, device_map="auto") # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ { "role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate" }, { "role": "user", "content": "How many helicopters can a human eat in one sitting?" } ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 128 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0569 | 0.16 | 3 | 2.0409 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1 ## Citation Information ``` @misc{rishiraj2023smol, author = {Rishiraj Acharya}, title = {Smol 7B}, year = {2023}, publisher = {Hugging Face}, journal = {Hugging Face repository}, howpublished = {\url{https://huggingface.co/rishiraj/smol-7b}} } ```
LoneStriker/smol-7b-4.0bpw-h6-exl2
LoneStriker
2023-12-05T14:05:25Z
9
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "generated_from_trainer", "conversational", "en", "dataset:HuggingFaceH4/no_robots", "base_model:openchat/openchat_3.5", "base_model:finetune:openchat/openchat_3.5", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-05T13:40:37Z
--- license: apache-2.0 base_model: openchat/openchat_3.5 datasets: - HuggingFaceH4/no_robots language: - en widget: - text: | <|system|> You are a friendly chatbot who always responds in the style of a pirate</s> <|user|> How many helicopters can a human eat in one sitting?</s> <|assistant|> output: text: >- Ahoy there, me hearty! As a friendly pirate chatbot, I be tellin' ye that a human cannot eat a helicopter, as it be a large machine made of metal and suchlike, not fit for human consumption. A human can eat food, like a fine feast of roasted meat and sweet fruits, but a helicopter? That be nonsense, me hearty! So, the answer be none, none at all. Arr! tags: - generated_from_trainer pipeline_tag: text-generation model-index: - name: smol-7b results: [] --- # Smol 7B This model is a fine-tuned version of [openchat/openchat_3.5](https://huggingface.co/openchat/openchat_3.5) on the open source dataset [HuggingFaceH4/no_robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots) using the recipes published in [The Alignment Handbook](https://github.com/huggingface/alignment-handbook). ## Model date rishiraj/smol-7b was trained between 1st and 3rd December, 2023. ## Evaluation It achieves the following results on the [Open_LLM_Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). At the time of release, smol-7b is the highest ranked 7B chat model on the [MMLU Benchmark](https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu). | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | | ---------------------------- | ------- | ----- | --------- | ----- | ---------- | ---------- | ----- | | **rishiraj/smol-7b** | **67.11** | **63.74** | **84.77** | **65** | **46.17** | **80.66** | **62.32** | | argilla/notus-7b-v1 | 63.49 | 64.59 | 84.83 | 63.04 | 54.35 | 79.56 | 34.57 | | Intel/neural-chat-7b-v3-1 | 61.59 | 66.21 | 83.64 | 62.37 | 59.65 | 78.14 | 19.56 | | HuggingFaceH4/zephyr-7b-beta | 61.59 | 62.46 | 84.35 | 60.7 | 57.83 | 77.11 | 27.07 | | Qwen/Qwen-7B | 59.19 | 51.37 | 78.47 | 59.84 | 47.79 | 72.69 | 44.96 | | microsoft/Orca-2-7b | 54.55 | 54.1 | 76.19 | 56.37 | 52.45 | 73.48 | 14.71 | | 01-ai/Yi-6B | 54.08 | 55.55 | 76.57 | 64.11 | 41.96 | 74.19 | 12.13 | ## Inference procedure Here's how you can run the model using the pipeline() function from 🤗 Transformers: ``` import torch from transformers import pipeline pipe = pipeline("text-generation", model="rishiraj/smol-7b", torch_dtype=torch.bfloat16, device_map="auto") # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ { "role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate" }, { "role": "user", "content": "How many helicopters can a human eat in one sitting?" } ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 128 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0569 | 0.16 | 3 | 2.0409 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1 ## Citation Information ``` @misc{rishiraj2023smol, author = {Rishiraj Acharya}, title = {Smol 7B}, year = {2023}, publisher = {Hugging Face}, journal = {Hugging Face repository}, howpublished = {\url{https://huggingface.co/rishiraj/smol-7b}} } ```
LoneStriker/smol-7b-3.0bpw-h6-exl2
LoneStriker
2023-12-05T14:05:21Z
8
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "generated_from_trainer", "conversational", "en", "dataset:HuggingFaceH4/no_robots", "base_model:openchat/openchat_3.5", "base_model:finetune:openchat/openchat_3.5", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-05T13:33:58Z
--- license: apache-2.0 base_model: openchat/openchat_3.5 datasets: - HuggingFaceH4/no_robots language: - en widget: - text: | <|system|> You are a friendly chatbot who always responds in the style of a pirate</s> <|user|> How many helicopters can a human eat in one sitting?</s> <|assistant|> output: text: >- Ahoy there, me hearty! As a friendly pirate chatbot, I be tellin' ye that a human cannot eat a helicopter, as it be a large machine made of metal and suchlike, not fit for human consumption. A human can eat food, like a fine feast of roasted meat and sweet fruits, but a helicopter? That be nonsense, me hearty! So, the answer be none, none at all. Arr! tags: - generated_from_trainer pipeline_tag: text-generation model-index: - name: smol-7b results: [] --- # Smol 7B This model is a fine-tuned version of [openchat/openchat_3.5](https://huggingface.co/openchat/openchat_3.5) on the open source dataset [HuggingFaceH4/no_robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots) using the recipes published in [The Alignment Handbook](https://github.com/huggingface/alignment-handbook). ## Model date rishiraj/smol-7b was trained between 1st and 3rd December, 2023. ## Evaluation It achieves the following results on the [Open_LLM_Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). At the time of release, smol-7b is the highest ranked 7B chat model on the [MMLU Benchmark](https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu). | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | | ---------------------------- | ------- | ----- | --------- | ----- | ---------- | ---------- | ----- | | **rishiraj/smol-7b** | **67.11** | **63.74** | **84.77** | **65** | **46.17** | **80.66** | **62.32** | | argilla/notus-7b-v1 | 63.49 | 64.59 | 84.83 | 63.04 | 54.35 | 79.56 | 34.57 | | Intel/neural-chat-7b-v3-1 | 61.59 | 66.21 | 83.64 | 62.37 | 59.65 | 78.14 | 19.56 | | HuggingFaceH4/zephyr-7b-beta | 61.59 | 62.46 | 84.35 | 60.7 | 57.83 | 77.11 | 27.07 | | Qwen/Qwen-7B | 59.19 | 51.37 | 78.47 | 59.84 | 47.79 | 72.69 | 44.96 | | microsoft/Orca-2-7b | 54.55 | 54.1 | 76.19 | 56.37 | 52.45 | 73.48 | 14.71 | | 01-ai/Yi-6B | 54.08 | 55.55 | 76.57 | 64.11 | 41.96 | 74.19 | 12.13 | ## Inference procedure Here's how you can run the model using the pipeline() function from 🤗 Transformers: ``` import torch from transformers import pipeline pipe = pipeline("text-generation", model="rishiraj/smol-7b", torch_dtype=torch.bfloat16, device_map="auto") # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ { "role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate" }, { "role": "user", "content": "How many helicopters can a human eat in one sitting?" } ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 128 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0569 | 0.16 | 3 | 2.0409 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1 ## Citation Information ``` @misc{rishiraj2023smol, author = {Rishiraj Acharya}, title = {Smol 7B}, year = {2023}, publisher = {Hugging Face}, journal = {Hugging Face repository}, howpublished = {\url{https://huggingface.co/rishiraj/smol-7b}} } ```
teo-sanchez/tfjs_vision_embeddings
teo-sanchez
2023-12-05T13:54:21Z
0
0
null
[ "image-classification", "en", "region:us" ]
image-classification
2023-12-05T12:45:26Z
--- language: - en pipeline_tag: image-classification --- Export of DenseNet169, DenseNet201, and ResNet152 as tfjs binaries. Exported from the corresponding Keras versions in https://www.tensorflow.org/api_docs/python/tf/keras/applications
Ahmed107/nllb200-ar-en_v8
Ahmed107
2023-12-05T13:51:12Z
13
0
transformers
[ "transformers", "tensorboard", "safetensors", "m2m_100", "text2text-generation", "translation", "generated_from_trainer", "base_model:facebook/nllb-200-distilled-600M", "base_model:finetune:facebook/nllb-200-distilled-600M", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-12-05T12:50:52Z
--- license: cc-by-nc-4.0 base_model: facebook/nllb-200-distilled-600M tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: nllb200-ar-en_v8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nllb200-ar-en_v8 This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7426 - Bleu: 54.0881 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
VRT-2428211/NLP2_Base_3e-5
VRT-2428211
2023-12-05T13:41:59Z
15
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-05T11:31:18Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: NLP2_Base_3e-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NLP2_Base_3e-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_member_shadow37
FounderOfHuggingface
2023-12-05T13:41:28Z
2
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:41:26Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_member_shadow35
FounderOfHuggingface
2023-12-05T13:41:19Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:41:17Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
pavitemple/finetuned-Accident-MultipleLabels-Video-subset-v2-new2
pavitemple
2023-12-05T13:41:19Z
6
0
transformers
[ "transformers", "safetensors", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-base", "base_model:finetune:MCG-NJU/videomae-base", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2023-12-05T10:40:39Z
--- license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: finetuned-Accident-MultipleLabels-Video-subset-v2-new2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-Accident-MultipleLabels-Video-subset-v2-new2 This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8100 - Accuracy: 0.2963 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.13 | 4 | 1.8680 | 0.0938 | | No log | 1.13 | 8 | 1.9307 | 0.0469 | | 1.7131 | 2.13 | 12 | 2.0182 | 0.0312 | | 1.7131 | 3.13 | 16 | 1.9762 | 0.0625 | | 1.4337 | 4.13 | 20 | 1.9643 | 0.0469 | | 1.4337 | 5.13 | 24 | 1.9054 | 0.0625 | | 1.4337 | 6.13 | 28 | 1.8946 | 0.0938 | | 1.4096 | 7.07 | 30 | 1.8918 | 0.0938 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231202+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_member_shadow33
FounderOfHuggingface
2023-12-05T13:41:10Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:41:08Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_member_shadow31
FounderOfHuggingface
2023-12-05T13:41:02Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:41:00Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_member_shadow30
FounderOfHuggingface
2023-12-05T13:40:57Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:40:55Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_member_shadow26
FounderOfHuggingface
2023-12-05T13:40:39Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:40:37Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_member_shadow22
FounderOfHuggingface
2023-12-05T13:40:22Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:40:20Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_member_shadow21
FounderOfHuggingface
2023-12-05T13:40:17Z
1
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:40:15Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_member_shadow20
FounderOfHuggingface
2023-12-05T13:40:13Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:40:11Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_member_shadow19
FounderOfHuggingface
2023-12-05T13:40:09Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:40:07Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_member_shadow15
FounderOfHuggingface
2023-12-05T13:39:51Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:39:49Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_member_shadow14
FounderOfHuggingface
2023-12-05T13:39:47Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:39:45Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_member_shadow13
FounderOfHuggingface
2023-12-05T13:39:43Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:39:41Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_member_shadow9
FounderOfHuggingface
2023-12-05T13:39:26Z
1
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:39:23Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_member_shadow8
FounderOfHuggingface
2023-12-05T13:39:21Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:39:20Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_member_shadow5
FounderOfHuggingface
2023-12-05T13:39:09Z
1
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:39:06Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_member_shadow4
FounderOfHuggingface
2023-12-05T13:39:03Z
2
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:39:01Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_member_shadow3
FounderOfHuggingface
2023-12-05T13:38:58Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:38:55Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_member_shadow41
FounderOfHuggingface
2023-12-05T13:38:53Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:38:51Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_member_shadow40
FounderOfHuggingface
2023-12-05T13:38:49Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:38:46Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_member_shadow39
FounderOfHuggingface
2023-12-05T13:38:44Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:38:41Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
dtu-deep-learning-course-f2023/msmarco-rag-finetune
dtu-deep-learning-course-f2023
2023-12-05T13:38:19Z
1
1
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-12-05T13:21:56Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 51 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 15, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_non_member_shadow19
FounderOfHuggingface
2023-12-05T13:36:12Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:36:09Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_non_member_shadow18
FounderOfHuggingface
2023-12-05T13:36:07Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:36:05Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_non_member_shadow15
FounderOfHuggingface
2023-12-05T13:35:55Z
1
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:35:53Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_non_member_shadow14
FounderOfHuggingface
2023-12-05T13:35:51Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:35:49Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_non_member_shadow13
FounderOfHuggingface
2023-12-05T13:35:47Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:35:45Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_non_member_shadow11
FounderOfHuggingface
2023-12-05T13:35:39Z
1
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:35:37Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
Youku2/corgy_LilyAurora_LoRA
Youku2
2023-12-05T13:35:14Z
0
0
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-12-05T13:35:14Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of LilyAurora person license: openrail++ --- # SDXL LoRA DreamBooth - Youku2/corgy_LilyAurora_LoRA <Gallery /> ## Model description These are Youku2/corgy_LilyAurora_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of LilyAurora person to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](Youku2/corgy_LilyAurora_LoRA/tree/main) them in the Files & versions tab.
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_non_member_shadow5
FounderOfHuggingface
2023-12-05T13:35:13Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:35:11Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_non_member_shadow4
FounderOfHuggingface
2023-12-05T13:35:09Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:35:06Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_non_member_shadow3
FounderOfHuggingface
2023-12-05T13:35:04Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:35:02Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_non_member_shadow2
FounderOfHuggingface
2023-12-05T13:34:59Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:34:56Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t300_e20_non_member_shadow1
FounderOfHuggingface
2023-12-05T13:34:54Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-05T13:34:52Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
cgoosen/llm_firewall_distilbert-base-uncased
cgoosen
2023-12-05T13:29:50Z
42
0
transformers
[ "transformers", "pytorch", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-20T11:41:41Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: llm_firewall_distilbert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llm_firewall_distilbert-base-uncased This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1218 - Accuracy: 0.9451 # Latest finetune 5 Dec 2023 {'eval_loss': 0.12179878354072571, 'eval_accuracy': 0.9450980392156862, 'eval_runtime': 5.8053, 'eval_samples_per_second': 43.925, 'eval_steps_per_second': 2.756, 'epoch': 20.0} ## Model description Finetuned distilbert-uncased on prompts that are either malicious or benign. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3191 | 1.0 | 64 | 0.5996 | 0.7255 | | 0.5065 | 2.0 | 128 | 0.4536 | 0.8 | | 0.4134 | 3.0 | 192 | 0.3856 | 0.8275 | | 0.3294 | 4.0 | 256 | 0.2654 | 0.8824 | | 0.2536 | 5.0 | 320 | 0.1977 | 0.9216 | | 0.2001 | 6.0 | 384 | 0.1671 | 0.9412 | | 0.2144 | 7.0 | 448 | 0.1670 | 0.9373 | | 0.2017 | 8.0 | 512 | 0.1575 | 0.9333 | | 0.1819 | 9.0 | 576 | 0.1866 | 0.9294 | | 0.143 | 10.0 | 640 | 0.1834 | 0.9373 | | 0.153 | 11.0 | 704 | 0.1589 | 0.9412 | | 0.1469 | 12.0 | 768 | 0.1347 | 0.9451 | | 0.1568 | 13.0 | 832 | 0.1425 | 0.9451 | | 0.139 | 14.0 | 896 | 0.1438 | 0.9451 | | 0.1889 | 15.0 | 960 | 0.1330 | 0.9451 | | 0.1185 | 16.0 | 1024 | 0.1323 | 0.9451 | | 0.1166 | 17.0 | 1088 | 0.1280 | 0.9451 | | 0.1475 | 18.0 | 1152 | 0.1233 | 0.9451 | | 0.1145 | 19.0 | 1216 | 0.1225 | 0.9451 | | 0.1121 | 20.0 | 1280 | 0.1218 | 0.9451 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1 - Datasets 2.15.0 - Tokenizers 0.15.0
SidXXD/CD_flw_2_512-Ppt_flw
SidXXD
2023-12-05T13:29:22Z
1
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "custom-diffusion", "base_model:CompVis/stable-diffusion-v1-4", "base_model:adapter:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-12-05T13:25:14Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: photo of a <new1> flower tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - custom-diffusion inference: true --- # Custom Diffusion - SidXXD/CD_flw_2_512-Ppt_flw These are Custom Diffusion adaption weights for CompVis/stable-diffusion-v1-4. The weights were trained on photo of a <new1> flower using [Custom Diffusion](https://www.cs.cmu.edu/~custom-diffusion). You can find some example images in the following. For more details on the training, please follow [this link](https://github.com/huggingface/diffusers/blob/main/examples/custom_diffusion).
yesj1234/koen_xlsr_100p_run1
yesj1234
2023-12-05T13:25:18Z
5
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "./train_dataset.py", "generated_from_trainer", "base_model:facebook/wav2vec2-large-xlsr-53", "base_model:finetune:facebook/wav2vec2-large-xlsr-53", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-12-05T13:23:23Z
--- license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53 tags: - automatic-speech-recognition - ./train_dataset.py - generated_from_trainer model-index: - name: koen_xlsr_100p_run1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # koen_xlsr_100p_run1 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the ./TRAIN_DATASET.PY - NA dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 30 ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
chintanshah-pathai/contrimix
chintanshah-pathai
2023-12-05T13:13:29Z
0
1
null
[ "en", "dataset:wltjr1007/Camelyon17-WILDS", "arxiv:2306.04527", "license:cc-by-nc-sa-4.0", "region:us" ]
null
2023-12-04T17:02:48Z
--- license: cc-by-nc-sa-4.0 language: - en datasets: - wltjr1007/Camelyon17-WILDS --- # ContriMix: Unsupervised disentanglement of content and attribute for domain generalization in microscopy image analysis Contrimix is an approach for domain generalization proposed in [Contrimix: Unsupervised disentanglement of content and attribute for domain generalization in microscopy image analysis](https://arxiv.org/abs/2306.04527).
ai-forever/mGPT
ai-forever
2023-12-05T13:12:21Z
10,644
258
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "multilingual", "PyTorch", "Transformers", "gpt3", "Deepspeed", "Megatron", "ar", "he", "vi", "id", "jv", "ms", "tl", "lv", "lt", "eu", "ml", "ta", "te", "hy", "bn", "mr", "hi", "ur", "af", "da", "en", "de", "sv", "fr", "it", "pt", "ro", "es", "el", "os", "tg", "fa", "ja", "ka", "ko", "th", "bxr", "xal", "mn", "sw", "yo", "be", "bg", "ru", "uk", "pl", "my", "uz", "ba", "kk", "ky", "tt", "az", "cv", "tr", "tk", "tyv", "sax", "et", "fi", "hu", "dataset:mc4", "dataset:wikipedia", "arxiv:2112.10668", "arxiv:2204.07580", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-07T09:13:42Z
--- license: apache-2.0 language: - ar - he - vi - id - jv - ms - tl - lv - lt - eu - ml - ta - te - hy - bn - mr - hi - ur - af - da - en - de - sv - fr - it - pt - ro - es - el - os - tg - fa - ja - ka - ko - th - bxr - xal - mn - sw - yo - be - bg - ru - uk - pl - my - uz - ba - kk - ky - tt - az - cv - tr - tk - tyv - sax - et - fi - hu pipeline_tag: text-generation tags: - multilingual - PyTorch - Transformers - gpt3 - gpt2 - Deepspeed - Megatron datasets: - mc4 - wikipedia thumbnail: "https://github.com/sberbank-ai/mgpt" --- # Multilingual GPT model We introduce a family of autoregressive GPT-like models with 1.3 billion parameters trained on 61 languages from 25 language families using Wikipedia and Colossal Clean Crawled Corpus. We reproduce the GPT-3 architecture using GPT-2 sources and the sparse attention mechanism, [Deepspeed](https://github.com/microsoft/DeepSpeed) and [Megatron](https://github.com/NVIDIA/Megatron-LM) frameworks allows us to effectively parallelize the training and inference steps. The resulting models show performance on par with the recently released [XGLM](https://arxiv.org/pdf/2112.10668.pdf) models at the same time covering more languages and enhancing NLP possibilities for low resource languages. ## Code The source code for the mGPT XL model is available on [Github](https://github.com/sberbank-ai/mgpt) ## Paper mGPT: Few-Shot Learners Go Multilingual [Abstract](https://arxiv.org/abs/2204.07580) [PDF](https://arxiv.org/pdf/2204.07580.pdf) ![](https://habrastorage.org/webt/1q/ru/yt/1qruytul6m2m-upyk9frq3pgrds.png) ``` @misc{https://doi.org/10.48550/arxiv.2204.07580, doi = {10.48550/ARXIV.2204.07580}, url = {https://arxiv.org/abs/2204.07580}, author = {Shliazhko, Oleh and Fenogenova, Alena and Tikhonova, Maria and Mikhailov, Vladislav and Kozlova, Anastasia and Shavrina, Tatiana}, keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences, I.2; I.2.7, 68-06, 68-04, 68T50, 68T01}, title = {mGPT: Few-Shot Learners Go Multilingual}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` ## Languages Model supports 61 languages: ISO codes: ```ar he vi id jv ms tl lv lt eu ml ta te hy bn mr hi ur af da en de sv fr it pt ro es el os tg fa ja ka ko th bxr xal mn sw yo be bg ru uk pl my uz ba kk ky tt az cv tr tk tyv sax et fi hu``` Languages: ```Arabic, Hebrew, Vietnamese, Indonesian, Javanese, Malay, Tagalog, Latvian, Lithuanian, Basque, Malayalam, Tamil, Telugu, Armenian, Bengali, Marathi, Hindi, Urdu, Afrikaans, Danish, English, German, Swedish, French, Italian, Portuguese, Romanian, Spanish, Greek, Ossetian, Tajik, Persian, Japanese, Georgian, Korean, Thai, Buryat, Kalmyk, Mongolian, Swahili, Yoruba, Belarusian, Bulgarian, Russian, Ukrainian, Polish, Burmese, Uzbek, Bashkir, Kazakh, Kyrgyz, Tatar, Azerbaijani, Chuvash, Turkish, Turkmen, Tuvan, Yakut, Estonian, Finnish, Hungarian``` ## Training Data Statistics - Size: 488 Billion UTF characters <img style="text-align:center; display:block;" src="https://huggingface.co/sberbank-ai/mGPT/resolve/main/stats.png"> "General training corpus statistics" ## Details The model was trained with sequence length 512 using Megatron and Deepspeed libs by [SberDevices](https://sberdevices.ru/) team on a dataset of 600 GB of texts in 61 languages. The model has seen 440 billion BPE tokens in total. Total training time was around 14 days on 256 Nvidia V100 GPUs.
mireiaplalis/bert-finetuned-ner-cadec
mireiaplalis
2023-12-05T12:58:53Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-12-05T12:28:54Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner-cadec results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner-cadec This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2301 - Precision: 0.5948 - Recall: 0.6779 - F1: 0.6336 - Accuracy: 0.9265 - Adr Precision: 0.5579 - Adr Recall: 0.6812 - Adr F1: 0.6134 - Disease Precision: 0.2273 - Disease Recall: 0.1562 - Disease F1: 0.1852 - Drug Precision: 0.8136 - Drug Recall: 0.8775 - Drug F1: 0.8443 - Finding Precision: 0.2667 - Finding Recall: 0.2759 - Finding F1: 0.2712 - Symptom Precision: 0.5 - Symptom Recall: 0.0435 - Symptom F1: 0.08 - B-adr Precision: 0.7749 - B-adr Recall: 0.8513 - B-adr F1: 0.8113 - B-disease Precision: 1.0 - B-disease Recall: 0.1562 - B-disease F1: 0.2703 - B-drug Precision: 0.9327 - B-drug Recall: 0.9557 - B-drug F1: 0.9440 - B-finding Precision: 0.5909 - B-finding Recall: 0.4483 - B-finding F1: 0.5098 - B-symptom Precision: 0.5 - B-symptom Recall: 0.0435 - B-symptom F1: 0.08 - I-adr Precision: 0.5725 - I-adr Recall: 0.6782 - I-adr F1: 0.6209 - I-disease Precision: 0.4091 - I-disease Recall: 0.3103 - I-disease F1: 0.3529 - I-drug Precision: 0.8458 - I-drug Recall: 0.8873 - I-drug F1: 0.8660 - I-finding Precision: 0.3529 - I-finding Recall: 0.2222 - I-finding F1: 0.2727 - I-symptom Precision: 0.0 - I-symptom Recall: 0.0 - I-symptom F1: 0.0 - Macro Avg F1: 0.4728 - Weighted Avg F1: 0.7278 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Adr Precision | Adr Recall | Adr F1 | Disease Precision | Disease Recall | Disease F1 | Drug Precision | Drug Recall | Drug F1 | Finding Precision | Finding Recall | Finding F1 | Symptom Precision | Symptom Recall | Symptom F1 | B-adr Precision | B-adr Recall | B-adr F1 | B-disease Precision | B-disease Recall | B-disease F1 | B-drug Precision | B-drug Recall | B-drug F1 | B-finding Precision | B-finding Recall | B-finding F1 | B-symptom Precision | B-symptom Recall | B-symptom F1 | I-adr Precision | I-adr Recall | I-adr F1 | I-disease Precision | I-disease Recall | I-disease F1 | I-drug Precision | I-drug Recall | I-drug F1 | I-finding Precision | I-finding Recall | I-finding F1 | I-symptom Precision | I-symptom Recall | I-symptom F1 | Macro Avg F1 | Weighted Avg F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-------------:|:----------:|:------:|:-----------------:|:--------------:|:----------:|:--------------:|:-----------:|:-------:|:-----------------:|:--------------:|:----------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:-------------------:|:----------------:|:------------:|:----------------:|:-------------:|:---------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:---------------:|:------------:|:--------:|:-------------------:|:----------------:|:------------:|:----------------:|:-------------:|:---------:|:-------------------:|:----------------:|:------------:|:-------------------:|:----------------:|:------------:|:------------:|:---------------:| | No log | 1.0 | 127 | 0.2653 | 0.5472 | 0.6201 | 0.5814 | 0.9128 | 0.4942 | 0.6376 | 0.5568 | 0.0 | 0.0 | 0.0 | 0.7952 | 0.8186 | 0.8068 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7530 | 0.7731 | 0.7629 | 0.0 | 0.0 | 0.0 | 0.9179 | 0.8818 | 0.8995 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4915 | 0.6325 | 0.5532 | 0.1429 | 0.0345 | 0.0556 | 0.855 | 0.8382 | 0.8465 | 0.3333 | 0.0370 | 0.0667 | 0.0 | 0.0 | 0.0 | 0.3184 | 0.6587 | | No log | 2.0 | 254 | 0.2307 | 0.5896 | 0.6632 | 0.6242 | 0.9254 | 0.5546 | 0.6722 | 0.6077 | 0.2222 | 0.1875 | 0.2034 | 0.8093 | 0.8529 | 0.8305 | 0.2083 | 0.1724 | 0.1887 | 0.0 | 0.0 | 0.0 | 0.7663 | 0.8263 | 0.7952 | 1.0 | 0.1562 | 0.2703 | 0.9366 | 0.9458 | 0.9412 | 0.625 | 0.3448 | 0.4444 | 0.0 | 0.0 | 0.0 | 0.5649 | 0.6600 | 0.6088 | 0.2963 | 0.2759 | 0.2857 | 0.8495 | 0.8578 | 0.8537 | 0.3846 | 0.1852 | 0.25 | 0.0 | 0.0 | 0.0 | 0.4449 | 0.7127 | | No log | 3.0 | 381 | 0.2301 | 0.5948 | 0.6779 | 0.6336 | 0.9265 | 0.5579 | 0.6812 | 0.6134 | 0.2273 | 0.1562 | 0.1852 | 0.8136 | 0.8775 | 0.8443 | 0.2667 | 0.2759 | 0.2712 | 0.5 | 0.0435 | 0.08 | 0.7749 | 0.8513 | 0.8113 | 1.0 | 0.1562 | 0.2703 | 0.9327 | 0.9557 | 0.9440 | 0.5909 | 0.4483 | 0.5098 | 0.5 | 0.0435 | 0.08 | 0.5725 | 0.6782 | 0.6209 | 0.4091 | 0.3103 | 0.3529 | 0.8458 | 0.8873 | 0.8660 | 0.3529 | 0.2222 | 0.2727 | 0.0 | 0.0 | 0.0 | 0.4728 | 0.7278 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
RaushanTurganbay/GPT2_instruct_tuned
RaushanTurganbay
2023-12-05T12:57:35Z
17
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "en", "dataset:Anthropic/hh-rlhf", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-03T19:57:23Z
--- license: apache-2.0 datasets: - Anthropic/hh-rlhf language: - en pipeline_tag: text-generation --- # GPT-2 Medium Fine-Tuned on Anthropic-hh Dataset This repository houses a GPT-2 Medium model fine-tuned on the Anthropic-hh dataset. The fine-tuning process involved masking Human's utterances, with the loss computed exclusively on the Assistant's responses. ## Model Information - **Base Model:** GPT-2 Medium - **Training Data:** Anthropic-hh dataset - **Fine-Tuning Approach:** Supervised fine-tuning with a focus on Assistant's responses. ## How to Use ```python from transformers import GPT2LMHeadModel, GPT2Tokenizer # Load tokenizer and model tokenizer = GPT2Tokenizer.from_pretrained("RaushanTurganbay/GPT2_instruct_tuned") model = GPT2LMHeadModel.from_pretrained("RaushanTurganbay/GPT2_instruct_tuned") # Generate responses class StoppingCriteriaSub(StoppingCriteria): def __init__(self, stops=[], encounters=1): super().__init__() self.stops = [stop.to("cuda") for stop in stops] def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor): for stop in self.stops: if torch.all((stop == input_ids[0][-len(stop):])).item(): return True return False def stopping_criteria(tokenizer, stop_words): stop_words_ids = [tokenizer(stop_word, return_tensors='pt')['input_ids'].squeeze() for stop_word in stop_words] stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)]) return stopping_criteria # Generate responses stopping = stopping_criteria(tokenizer, ["\n\nHuman:"]) prompt = "\n\nHuman: {your_instruction}\n\nAssistant:" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, stopping_criteria=stopping, max_length=150) print("Model Response:", tokenizer.batch_decode(outputs)) ```
BramVanroy/falcon-7b-ft-mc4_nl_cleaned_tiny
BramVanroy
2023-12-05T12:57:14Z
8
0
transformers
[ "transformers", "safetensors", "falcon", "text-generation", "custom_code", "nl", "dataset:yhavinga/mc4_nl_cleaned", "base_model:tiiuae/falcon-7b", "base_model:finetune:tiiuae/falcon-7b", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-07-24T21:31:06Z
--- license: apache-2.0 base_model: tiiuae/falcon-7b datasets: - yhavinga/mc4_nl_cleaned model-index: - name: falcon-7b-ft-mc4_nl_cleaned_tiny results: [] language: - nl inference: false tags: - falcon --- # falcon-7b-ft-mc4_nl_cleaned_tiny This model is a fine-tuned version of [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) on the [yhavinga/mc4_nl_cleaned](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned/viewer/tiny/train) dataset (`tiny` partition) on a context of 2048 tokens. See the original [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) for more information, intended use, and biases. ## Intended uses & limitations This model is intended as a (poor) baseline for Dutch generative LLMs. It by no means aims to provide SOTA performance and is specifically intended for research purposes. Importantly, the original Falcon 7B model was only trained on English and French. Therefore, Dutch generations should be taken with a massive grain of salt. I wanted to see if the performance would be reasonable after finetuning this model on a Dutch dataset. I find that it is okay but not great. It's especially not coherent. ## Training and evaluation data Trained on the [yhavinga/mc4_nl_cleaned](https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned/viewer/tiny/train) dataset (`tiny` partition) for one epoch. The canonical validation split was not used but instead 5% of `train` was used as validation. At 2048 tokens context length, the training set was around 2M (2,008,858) samples, and the model was trained for 1 epoch. That means that the model was trained for around 4B Dutch tokens (`2048 * 2008858 = 4.114.141.184`). ## Training procedure Trained with LoRA targetting `['query_key_value', 'dense', 'dense_h_to_4h', 'dense_4h_to_h']` in 4 bit and merged before upload. The adapters are in the `adapters` branch. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 12 - eval_batch_size: 24 - seed: 42 - distributed_type: multi-GPU - num_devices: 16 - gradient_accumulation_steps: 6 - total_train_batch_size: 1152 - total_eval_batch_size: 384 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6094 | 0.1 | 170 | 2.5980 | | 2.4503 | 0.19 | 340 | 2.4405 | | 2.3243 | 0.29 | 510 | 2.3428 | | 2.2822 | 0.39 | 680 | 2.2752 | | 2.238 | 0.49 | 850 | 2.2248 | | 2.2015 | 0.58 | 1020 | 2.1865 | | 2.1678 | 0.68 | 1190 | 2.1560 | | 2.1301 | 0.78 | 1360 | 2.1312 | | 2.1161 | 0.88 | 1530 | 2.1112 | | 2.0997 | 0.97 | 1700 | 2.0928 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
BramVanroy/falcon-7b-ft-alpaca-cleaned-dutch
BramVanroy
2023-12-05T12:52:29Z
21
1
transformers
[ "transformers", "safetensors", "falcon", "text-generation", "custom_code", "nl", "dataset:BramVanroy/alpaca-cleaned-dutch", "base_model:ybelkada/falcon-7b-sharded-bf16", "base_model:finetune:ybelkada/falcon-7b-sharded-bf16", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-07-02T09:15:45Z
--- language: - nl license: cc-by-nc-4.0 datasets: - BramVanroy/alpaca-cleaned-dutch inference: false base_model: ybelkada/falcon-7b-sharded-bf16 model-index: - name: falcon-7b-ft-alpaca-cleaned-dutch results: [] --- # falcon-7b-ft-alpaca-cleaned-dutch ## Model description This model is a fine-tuned version of [ybelkada/falcon-7b-sharded-bf16](https://huggingface.co/ybelkada/falcon-7b-sharded-bf16) on the [BramVanroy/alpaca-cleaned-dutch](https://huggingface.co/datasets/BramVanroy/alpaca-cleaned-dutch) dataset. See the original [Falcon 7B model](https://huggingface.co/tiiuae/falcon-7b/) for more information, intended use, and biases. ## Intended uses & limitations This model is intended as a (poor) baseline for Dutch generative LLMs. It by no means aims to provide SOTA performance and is specifically intended for research purposes, and an opportunity for me to test hyperparameters and stability. Importantly, the original Falcon 7B model was only trained on English and French. Therefore, Dutch generations should be taken with a massive grain of salt. ## Training and evaluation data Trained on the synthetic [BramVanroy/alpaca-cleaned-dutch](https://huggingface.co/datasets/BramVanroy/alpaca-cleaned-dutch) instruction dataset. Therefore, commercial use of this model is forbidden. The model is intended for research purposes only. ## Training procedure Trained with LoRA and merged before upload. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9832 | 0.03 | 10 | 1.8889 | | 1.9355 | 0.05 | 20 | 1.8834 | | 1.9694 | 0.08 | 30 | 1.8671 | | 1.9048 | 0.1 | 40 | 1.8328 | | 1.8443 | 0.13 | 50 | 1.7970 | | 1.7448 | 0.16 | 60 | 1.7711 | | 1.8004 | 0.18 | 70 | 1.7522 | | 1.7767 | 0.21 | 80 | 1.7370 | | 1.7733 | 0.23 | 90 | 1.7248 | | 1.7926 | 0.26 | 100 | 1.7149 | | 1.8258 | 0.29 | 110 | 1.7066 | | 1.6709 | 0.31 | 120 | 1.6993 | | 1.6612 | 0.34 | 130 | 1.6926 | | 1.8463 | 0.36 | 140 | 1.6867 | | 1.8413 | 0.39 | 150 | 1.6814 | | 1.7659 | 0.42 | 160 | 1.6765 | | 1.69 | 0.44 | 170 | 1.6715 | | 1.7219 | 0.47 | 180 | 1.6673 | | 1.6755 | 0.49 | 190 | 1.6627 | | 1.7823 | 0.52 | 200 | 1.6584 | | 1.7635 | 0.55 | 210 | 1.6545 | | 1.7335 | 0.57 | 220 | 1.6506 | | 1.7272 | 0.6 | 230 | 1.6471 | | 1.718 | 0.63 | 240 | 1.6436 | | 1.6899 | 0.65 | 250 | 1.6403 | | 1.622 | 0.68 | 260 | 1.6370 | | 1.6556 | 0.7 | 270 | 1.6337 | | 1.7912 | 0.73 | 280 | 1.6304 | | 1.6025 | 0.76 | 290 | 1.6274 | | 1.7181 | 0.78 | 300 | 1.6246 | | 1.7452 | 0.81 | 310 | 1.6217 | | 1.5975 | 0.83 | 320 | 1.6189 | | 1.5754 | 0.86 | 330 | 1.6162 | | 1.7077 | 0.89 | 340 | 1.6136 | | 1.5848 | 0.91 | 350 | 1.6112 | | 1.7011 | 0.94 | 360 | 1.6087 | | 1.6697 | 0.96 | 370 | 1.6065 | | 1.6633 | 0.99 | 380 | 1.6042 | | 1.6722 | 1.02 | 390 | 1.6015 | | 1.7181 | 1.04 | 400 | 1.5993 | | 1.6414 | 1.07 | 410 | 1.5972 | | 1.6856 | 1.09 | 420 | 1.5952 | | 1.6491 | 1.12 | 430 | 1.5930 | | 1.6736 | 1.15 | 440 | 1.5912 | | 1.619 | 1.17 | 450 | 1.5893 | | 1.6452 | 1.2 | 460 | 1.5870 | | 1.6498 | 1.22 | 470 | 1.5854 | | 1.675 | 1.25 | 480 | 1.5839 | | 1.684 | 1.28 | 490 | 1.5823 | | 1.6379 | 1.3 | 500 | 1.5802 | | 1.5173 | 1.33 | 510 | 1.5786 | | 1.6443 | 1.35 | 520 | 1.5773 | | 1.5628 | 1.38 | 530 | 1.5755 | | 1.7287 | 1.41 | 540 | 1.5738 | | 1.5615 | 1.43 | 550 | 1.5725 | | 1.6129 | 1.46 | 560 | 1.5712 | | 1.6709 | 1.48 | 570 | 1.5700 | | 1.5818 | 1.51 | 580 | 1.5683 | | 1.6358 | 1.54 | 590 | 1.5672 | | 1.6513 | 1.56 | 600 | 1.5662 | | 1.5637 | 1.59 | 610 | 1.5654 | | 1.612 | 1.62 | 620 | 1.5643 | | 1.6396 | 1.64 | 630 | 1.5630 | | 1.6414 | 1.67 | 640 | 1.5620 | | 1.6096 | 1.69 | 650 | 1.5611 | | 1.6149 | 1.72 | 660 | 1.5603 | | 1.5886 | 1.75 | 670 | 1.5593 | | 1.537 | 1.77 | 680 | 1.5582 | | 1.5883 | 1.8 | 690 | 1.5574 | | 1.6512 | 1.82 | 700 | 1.5566 | | 1.683 | 1.85 | 710 | 1.5559 | | 1.7059 | 1.88 | 720 | 1.5549 | | 1.5453 | 1.9 | 730 | 1.5542 | | 1.5738 | 1.93 | 740 | 1.5536 | | 1.6004 | 1.95 | 750 | 1.5530 | | 1.6753 | 1.98 | 760 | 1.5523 | | 1.6362 | 2.01 | 770 | 1.5517 | | 1.5805 | 2.03 | 780 | 1.5511 | | 1.6416 | 2.06 | 790 | 1.5508 | | 1.5755 | 2.08 | 800 | 1.5506 | | 1.5763 | 2.11 | 810 | 1.5501 | | 1.7112 | 2.14 | 820 | 1.5497 | | 1.6533 | 2.16 | 830 | 1.5493 | | 1.6008 | 2.19 | 840 | 1.5489 | | 1.5731 | 2.21 | 850 | 1.5485 | | 1.4975 | 2.24 | 860 | 1.5480 | | 1.6158 | 2.27 | 870 | 1.5478 | | 1.6063 | 2.29 | 880 | 1.5474 | | 1.628 | 2.32 | 890 | 1.5470 | | 1.6177 | 2.34 | 900 | 1.5468 | | 1.5646 | 2.37 | 910 | 1.5467 | | 1.5272 | 2.4 | 920 | 1.5466 | | 1.5402 | 2.42 | 930 | 1.5464 | | 1.5815 | 2.45 | 940 | 1.5461 | | 1.4857 | 2.47 | 950 | 1.5459 | | 1.5923 | 2.5 | 960 | 1.5458 | | 1.6167 | 2.53 | 970 | 1.5456 | | 1.7214 | 2.55 | 980 | 1.5456 | | 1.5467 | 2.58 | 990 | 1.5455 | | 1.6455 | 2.61 | 1000 | 1.5453 | | 1.6137 | 2.63 | 1010 | 1.5453 | | 1.6104 | 2.66 | 1020 | 1.5453 | | 1.6756 | 2.68 | 1030 | 1.5451 | | 1.5818 | 2.71 | 1040 | 1.5450 | | 1.5829 | 2.74 | 1050 | 1.5450 | | 1.5753 | 2.76 | 1060 | 1.5450 | | 1.6484 | 2.79 | 1070 | 1.5450 | | 1.6765 | 2.81 | 1080 | 1.5450 | | 1.623 | 2.84 | 1090 | 1.5449 | | 1.6901 | 2.87 | 1100 | 1.5449 | | 1.6601 | 2.89 | 1110 | 1.5449 | | 1.6763 | 2.92 | 1120 | 1.5449 | | 1.6203 | 2.94 | 1130 | 1.5449 | | 1.5113 | 2.97 | 1140 | 1.5448 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
jnanadn/my-pet-dog-azm
jnanadn
2023-12-05T12:46:17Z
0
0
null
[ "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-12-05T12:43:59Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog-azm Dreambooth model trained by jnanadn following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: 21AME018 Sample pictures of this concept: ![0](https://huggingface.co/jnanadn/my-pet-dog-azm/resolve/main/sample_images/azm(1).jpg)
alexviol/whisper-small-bn
alexviol
2023-12-05T12:38:46Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:bangla-speech-processing/BanglaASR", "base_model:finetune:bangla-speech-processing/BanglaASR", "license:mit", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-12-05T11:06:42Z
--- license: mit base_model: bangla-speech-processing/BanglaASR tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-bn results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-bn This model is a fine-tuned version of [bangla-speech-processing/BanglaASR](https://huggingface.co/bangla-speech-processing/BanglaASR) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4061 - Wer: 40.6689 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 26 - eval_batch_size: 26 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 150 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.4439 | 0.15 | 100 | 0.4061 | 40.6689 | | 0.1294 | 0.3 | 200 | 0.1215 | 99.9192 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
UmerHA/baby-sd
UmerHA
2023-12-05T12:38:13Z
1
0
diffusers
[ "diffusers", "safetensors", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-12-05T12:37:17Z
A pipeline with a tiny, untrained Unet for testing purposes
thaddeusjulio/swin-base-patch4-window7-224-finetuned-lora-scenes
thaddeusjulio
2023-12-05T12:08:49Z
6
0
peft
[ "peft", "tensorboard", "safetensors", "arxiv:1910.09700", "base_model:microsoft/swin-base-patch4-window7-224", "base_model:adapter:microsoft/swin-base-patch4-window7-224", "region:us" ]
null
2023-12-05T11:31:10Z
--- library_name: peft base_model: microsoft/swin-base-patch4-window7-224 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
Sagicc/whisper-large-v3-sr-combined
Sagicc
2023-12-05T11:59:16Z
15
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "sr", "dataset:mozilla-foundation/common_voice_13_0", "dataset:google/fleurs", "base_model:openai/whisper-large-v3", "base_model:finetune:openai/whisper-large-v3", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-11-09T18:28:05Z
--- language: - sr license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 - google/fleurs metrics: - wer model-index: - name: Whisper Large v3 Sr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13 type: mozilla-foundation/common_voice_13_0 config: sr split: test args: sr metrics: - name: Wer type: wer value: 0.05560382276281494 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # UPDATE Use an updated fine tunned version [Sagicc/whisper-large-v3-sr-cmb](https://huggingface.co/Sagicc/whisper-large-v3-sr-cmb) with new 50+ hours of dataset. # Whisper Large v3 Sr This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on Serbian Mozilla/Common Voice 13 and Google/Fleurs datasets. It achieves the following results on the evaluation set: - Loss: 0.1628 - Wer Ortho: 0.1635 - Wer: 0.0556 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.0567 | 1.34 | 500 | 0.1512 | 0.1676 | 0.0717 | | 0.0256 | 2.67 | 1000 | 0.1482 | 0.1585 | 0.0610 | | 0.0114 | 4.01 | 1500 | 0.1628 | 0.1635 | 0.0556 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.14.1
SidXXD/CD_flw_2_256-Ppt_flw
SidXXD
2023-12-05T11:58:16Z
0
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "custom-diffusion", "base_model:CompVis/stable-diffusion-v1-4", "base_model:adapter:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-12-05T11:54:12Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: photo of a <new1> flower tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - custom-diffusion inference: true --- # Custom Diffusion - SidXXD/CD_flw_2_256-Ppt_flw These are Custom Diffusion adaption weights for CompVis/stable-diffusion-v1-4. The weights were trained on photo of a <new1> flower using [Custom Diffusion](https://www.cs.cmu.edu/~custom-diffusion). You can find some example images in the following. For more details on the training, please follow [this link](https://github.com/huggingface/diffusers/blob/main/examples/custom_diffusion).
FremyCompany/roberta-large-nl-oscar23
FremyCompany
2023-12-05T11:57:21Z
24
0
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-06-05T06:32:59Z
# RobBERT-2023: Keeping Dutch Language Models Up-To-Date RobBERT-2023 is the 2023 release of the [Dutch RobBERT model](https://pieter.ai/robbert/). It is a new version of original [pdelobelle/robbert-v2-dutch-base](https://huggingface.co/pdelobelle/robbert-v2-dutch-base) model on the 2023 version of the OSCAR version. We release a base model, but this time we also release an additional large model with 355M parameters (x3 over robbert-2022-base). We are particularly proud of the performance of both models, surpassing both the robbert-v2-base and robbert-2022-base models with +2.9 and +0.9 points on the [DUMB benchmark](https://dumbench.nl) from GroNLP. In addition, we also surpass BERTje with +18.6 points with `robbert-2023-dutch-large`. This is the same model with the same weights as [`DTAI-KULeuven/robbert-2023-dutch-large`](https://huggingface.co/DTAI-KULeuven/robbert-2023-dutch-large).
lnxdx/B2_1000_1e-5_hp-mehrdad
lnxdx
2023-12-05T11:55:12Z
12
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-12-04T17:02:01Z
--- base_model: lnxdx/21_2500_1e-4_hp-mehrdad tags: - generated_from_trainer metrics: - wer model-index: - name: 2_1000_1e-5_hp-mehrdad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 2_1000_1e-5_hp-mehrdad This model is a fine-tuned version of [lnxdx/21_2500_1e-4_hp-mehrdad](https://huggingface.co/lnxdx/21_2500_1e-4_hp-mehrdad) on the None dataset. It achieves the following results on the evaluation set: - Loss on ShEMO train set: 0.6809 - Loss on ShEMO dev set: 0.6591 - WER on ShEMO train set: 27.41 - WER on ShEMO dev set: 31.37 (Why not 31.36?) - WER on Common Voice 13 test set: 19.26 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7624 | 0.62 | 100 | 0.6708 | 0.3236 | | 0.78 | 1.25 | 200 | 0.6668 | 0.3245 | | 0.7856 | 1.88 | 300 | 0.6600 | 0.3274 | | 0.7239 | 2.5 | 400 | 0.6672 | 0.3233 | | 0.7311 | 3.12 | 500 | 0.6748 | 0.3143 | | 0.7408 | 3.75 | 600 | 0.6518 | 0.3248 | | 0.713 | 4.38 | 700 | 0.6587 | 0.3178 | | 0.7068 | 5.0 | 800 | 0.6600 | 0.3172 | | 0.6938 | 5.62 | 900 | 0.6598 | 0.3157 | | 0.6809 | 6.25 | 1000 | 0.6591 | 0.3137 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
lnxdx/B4_1000_1e-5_hp-myself-2
lnxdx
2023-12-05T11:53:41Z
6
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:lnxdx/Wav2Vec2-Large-XLSR-Persian-ShEMO", "base_model:finetune:lnxdx/Wav2Vec2-Large-XLSR-Persian-ShEMO", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-12-04T18:49:46Z
--- base_model: lnxdx/20_2000_1e-5_hp-mehrdad tags: - generated_from_trainer metrics: - wer model-index: - name: B4_1000_1e-5_hp-myself-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # B4_1000_1e-5_hp-myself-2 This model is a fine-tuned version of [lnxdx/20_2000_1e-5_hp-mehrdad](https://huggingface.co/lnxdx/20_2000_1e-5_hp-mehrdad) on the None dataset. It achieves the following results on the evaluation set: - Loss on ShEMO train set: 0.7516 - Loss on ShEMO dev set: 0.6705 - WER on ShEMO train set: 28.02 - WER on ShEMO dev set: 31.16 - WER on Common Voice 13 test set: 19.34 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8083 | 0.62 | 100 | 0.6766 | 0.3271 | | 0.8414 | 1.25 | 200 | 0.6774 | 0.3259 | | 0.8465 | 1.88 | 300 | 0.6686 | 0.3262 | | 0.7819 | 2.5 | 400 | 0.6749 | 0.3207 | | 0.7905 | 3.12 | 500 | 0.6848 | 0.3178 | | 0.8078 | 3.75 | 600 | 0.6571 | 0.3245 | | 0.7771 | 4.38 | 700 | 0.6683 | 0.3145 | | 0.7786 | 5.0 | 800 | 0.6688 | 0.3137 | | 0.7656 | 5.62 | 900 | 0.6703 | 0.3134 | | 0.7516 | 6.25 | 1000 | 0.6706 | 0.3131 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
Rakoo04/corgy_dog_LoRA
Rakoo04
2023-12-05T11:48:42Z
0
0
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-12-05T11:48:42Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of TOK dog license: openrail++ --- # SDXL LoRA DreamBooth - Rakoo04/corgy_dog_LoRA <Gallery /> ## Model description These are Rakoo04/corgy_dog_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of TOK dog to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](Rakoo04/corgy_dog_LoRA/tree/main) them in the Files & versions tab.
Arabic-Clip-Archive/arabertv2-Vit-B-16-plus-epoch-60-trained-mscoco-training-fp32
Arabic-Clip-Archive
2023-12-05T11:48:31Z
7
0
keras
[ "keras", "pytorch", "tf", "bert", "region:us" ]
null
2023-11-04T11:43:38Z
https://wandb.ai/uos_mlalp/mscoco_teacher_learning_full_data/runs/jy36eur7?workspace=user-malbarham
datleviet/ComOM-VIDeBERTa-3
datleviet
2023-12-05T11:45:03Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "deberta-v2", "token-classification", "generated_from_trainer", "base_model:Fsoft-AIC/videberta-base", "base_model:finetune:Fsoft-AIC/videberta-base", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-12-05T11:37:21Z
--- base_model: Fsoft-AIC/videberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ComOM-VIDeBERTa-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ComOM-VIDeBERTa-3 This model is a fine-tuned version of [Fsoft-AIC/videberta-base](https://huggingface.co/Fsoft-AIC/videberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0971 - Precision: 0.1319 - Recall: 0.1029 - F1: 0.1156 - Accuracy: 0.6647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 78 | 1.2306 | 0.0768 | 0.0370 | 0.0499 | 0.6486 | | No log | 2.0 | 156 | 1.1902 | 0.0755 | 0.0609 | 0.0674 | 0.6407 | | No log | 3.0 | 234 | 1.1627 | 0.0923 | 0.0679 | 0.0783 | 0.6499 | | No log | 4.0 | 312 | 1.1489 | 0.1159 | 0.0879 | 0.1000 | 0.6530 | | No log | 5.0 | 390 | 1.1219 | 0.0997 | 0.0749 | 0.0856 | 0.6529 | | No log | 6.0 | 468 | 1.1130 | 0.1245 | 0.0879 | 0.1030 | 0.6589 | | 1.0673 | 7.0 | 546 | 1.1095 | 0.1247 | 0.0919 | 0.1058 | 0.6600 | | 1.0673 | 8.0 | 624 | 1.0971 | 0.1319 | 0.1029 | 0.1156 | 0.6647 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.14.1