modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-07 18:30:29
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
544 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-07 18:30:28
card
stringlengths
11
1.01M
lmstudio-community/OpenCoder-1.5B-Instruct-GGUF
lmstudio-community
2024-11-11T02:00:32Z
55
0
null
[ "gguf", "text-generation", "en", "zh", "dataset:OpenCoder-LLM/opencoder-sft-stage1", "dataset:OpenCoder-LLM/opencoder-sft-stage2", "base_model:infly/OpenCoder-1.5B-Instruct", "base_model:quantized:infly/OpenCoder-1.5B-Instruct", "license:other", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-11T01:50:17Z
--- quantized_by: bartowski pipeline_tag: text-generation license_name: inf datasets: - OpenCoder-LLM/opencoder-sft-stage1 - OpenCoder-LLM/opencoder-sft-stage2 language: - en - zh license_link: https://huggingface.co/infly/OpenCoder-1.5B-Instruct/blob/main/LICENSE base_model: infly/OpenCoder-1.5B-Instruct license: other --- ## πŸ’« Community Model> OpenCoder 1.5B Instruct by Infly *πŸ‘Ύ [LM Studio](https://lmstudio.ai) Community models highlights program. Highlighting new & noteworthy models by the community. Join the conversation on [Discord](https://discord.gg/aPQfnNkxGC)*. **Model creator:** [infly](https://huggingface.co/infly)<br> **Original model**: [OpenCoder-1.5B-Instruct](https://huggingface.co/infly/OpenCoder-1.5B-Instruct)<br> **GGUF quantization:** provided by [bartowski](https://huggingface.co/bartowski) based on `llama.cpp` release [b4014](https://github.com/ggerganov/llama.cpp/releases/tag/b4014)<br> ## Technical Details Supports English and Chinese prompting Trained on 2.5 trillion tokens, 90% raw code and 10% code-related web data, followed by SFT on 4.5 million high-quality examples Context length of 8k ## Special thanks πŸ™ Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible. ## Disclaimers LM Studio is not the creator, originator, or owner of any Model featured in the Community Model Program. Each Community Model is created and provided by third parties. LM Studio does not endorse, support, represent or guarantee the completeness, truthfulness, accuracy, or reliability of any Community Model. You understand that Community Models can produce content that might be offensive, harmful, inaccurate or otherwise inappropriate, or deceptive. Each Community Model is the sole responsibility of the person or entity who originated such Model. LM Studio may not monitor or control the Community Models and cannot, and does not, take responsibility for any such Model. LM Studio disclaims all warranties or guarantees about the accuracy, reliability or benefits of the Community Models. LM Studio further disclaims any warranty that the Community Model will meet your requirements, be secure, uninterrupted or available at any time or location, or error-free, viruses-free, or that any errors will be corrected, or otherwise. You will be solely responsible for any damage resulting from your use of or access to the Community Models, your downloading of any Community Model, or use of any other Community Model provided by or through LM Studio.
Triangle104/Llama-3.2-1B-Q8_0-GGUF
Triangle104
2024-11-11T02:00:26Z
7
0
transformers
[ "transformers", "gguf", "llama-3", "llama", "meta", "facebook", "unsloth", "llama-cpp", "gguf-my-repo", "en", "base_model:unsloth/Llama-3.2-1B", "base_model:quantized:unsloth/Llama-3.2-1B", "license:llama3.2", "endpoints_compatible", "region:us" ]
null
2024-11-11T01:59:45Z
--- base_model: unsloth/Llama-3.2-1B language: - en library_name: transformers license: llama3.2 tags: - llama-3 - llama - meta - facebook - unsloth - transformers - llama-cpp - gguf-my-repo --- # Triangle104/Llama-3.2-1B-Q8_0-GGUF This model was converted to GGUF format from [`unsloth/Llama-3.2-1B`](https://huggingface.co/unsloth/Llama-3.2-1B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/unsloth/Llama-3.2-1B) for more details on the model. --- Model details: - Finetune Llama 3.2, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth! Special Thanks - A huge thank you to the Meta and Llama team for creating and releasing these models. Model Information - The Meta Llama 3.2 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction-tuned generative models in 1B and 3B sizes (text in/text out). The Llama 3.2 instruction-tuned text only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks. They outperform many of the available open source and closed chat models on common industry benchmarks. Model developer: Meta Model Architecture: Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. Supported languages: English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai are officially supported. Llama 3.2 has been trained on a broader collection of languages than these 8 supported languages. Developers may fine-tune Llama 3.2 models for languages beyond these supported languages, provided they comply with the Llama 3.2 Community License and the Acceptable Use Policy. Developers are always expected to ensure that their deployments, including those that involve additional languages, are completed safely and responsibly. Llama 3.2 family of models Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability. Model Release Date: Sept 25, 2024 Status: This is a static model trained on an offline dataset. Future versions may be released that improve model capabilities and safety. License: Use of Llama 3.2 is governed by the Llama 3.2 Community License (a custom, commercial license agreement). Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model README. For more technical information about generation parameters and recipes for how to use Llama 3.1 in applications, please go here. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Llama-3.2-1B-Q8_0-GGUF --hf-file llama-3.2-1b-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Llama-3.2-1B-Q8_0-GGUF --hf-file llama-3.2-1b-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Llama-3.2-1B-Q8_0-GGUF --hf-file llama-3.2-1b-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Llama-3.2-1B-Q8_0-GGUF --hf-file llama-3.2-1b-q8_0.gguf -c 2048 ```
Triangle104/Llama-3.2-1B-Q6_K-GGUF
Triangle104
2024-11-11T01:59:46Z
8
0
transformers
[ "transformers", "gguf", "llama-3", "llama", "meta", "facebook", "unsloth", "llama-cpp", "gguf-my-repo", "en", "base_model:unsloth/Llama-3.2-1B", "base_model:quantized:unsloth/Llama-3.2-1B", "license:llama3.2", "endpoints_compatible", "region:us" ]
null
2024-11-11T01:59:07Z
--- base_model: unsloth/Llama-3.2-1B language: - en library_name: transformers license: llama3.2 tags: - llama-3 - llama - meta - facebook - unsloth - transformers - llama-cpp - gguf-my-repo --- # Triangle104/Llama-3.2-1B-Q6_K-GGUF This model was converted to GGUF format from [`unsloth/Llama-3.2-1B`](https://huggingface.co/unsloth/Llama-3.2-1B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/unsloth/Llama-3.2-1B) for more details on the model. --- Model details: - Finetune Llama 3.2, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth! Special Thanks A huge thank you to the Meta and Llama team for creating and releasing these models. Model Information The Meta Llama 3.2 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction-tuned generative models in 1B and 3B sizes (text in/text out). The Llama 3.2 instruction-tuned text only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks. They outperform many of the available open source and closed chat models on common industry benchmarks. Model developer: Meta Model Architecture: Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. Supported languages: English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai are officially supported. Llama 3.2 has been trained on a broader collection of languages than these 8 supported languages. Developers may fine-tune Llama 3.2 models for languages beyond these supported languages, provided they comply with the Llama 3.2 Community License and the Acceptable Use Policy. Developers are always expected to ensure that their deployments, including those that involve additional languages, are completed safely and responsibly. Llama 3.2 family of models Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability. Model Release Date: Sept 25, 2024 Status: This is a static model trained on an offline dataset. Future versions may be released that improve model capabilities and safety. License: Use of Llama 3.2 is governed by the Llama 3.2 Community License (a custom, commercial license agreement). Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model README. For more technical information about generation parameters and recipes for how to use Llama 3.1 in applications, please go here. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Llama-3.2-1B-Q6_K-GGUF --hf-file llama-3.2-1b-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Llama-3.2-1B-Q6_K-GGUF --hf-file llama-3.2-1b-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Llama-3.2-1B-Q6_K-GGUF --hf-file llama-3.2-1b-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Llama-3.2-1B-Q6_K-GGUF --hf-file llama-3.2-1b-q6_k.gguf -c 2048 ```
huwhitememes/timwalz-lora
huwhitememes
2024-11-11T01:59:04Z
13
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-08-30T02:34:12Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: black-forest-labs/FLUX.1-dev pipeline_tag: text-to-image instance_prompt: Tim Walz widget: - text: >- Tim Walz, black rimmed prescription glasses, ruffled business suite, loose tie, unbuttoned shirt, dirty clothes, down on his luck, sad, drunkard, wasted, sloppy drunk, neon street light, prostitutes in the background, city nightlife and crime scenery output: url: images/example_szc8vydmv.png --- # Timwalz Lora Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Tim Walz` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('huwhitememes/timwalz-lora', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
lmstudio-community/OpenCoder-8B-Instruct-GGUF
lmstudio-community
2024-11-11T01:57:54Z
80
1
null
[ "gguf", "text-generation", "en", "zh", "dataset:OpenCoder-LLM/opencoder-sft-stage1", "dataset:OpenCoder-LLM/opencoder-sft-stage2", "base_model:infly/OpenCoder-8B-Instruct", "base_model:quantized:infly/OpenCoder-8B-Instruct", "license:other", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-11T01:49:36Z
--- quantized_by: bartowski pipeline_tag: text-generation license_name: inf datasets: - OpenCoder-LLM/opencoder-sft-stage1 - OpenCoder-LLM/opencoder-sft-stage2 language: - en - zh license_link: https://huggingface.co/infly/OpenCoder-8B-Instruct/blob/main/LICENSE base_model: infly/OpenCoder-8B-Instruct license: other --- ## πŸ’« Community Model> OpenCoder 8B Instruct by Infly *πŸ‘Ύ [LM Studio](https://lmstudio.ai) Community models highlights program. Highlighting new & noteworthy models by the community. Join the conversation on [Discord](https://discord.gg/aPQfnNkxGC)*. **Model creator:** [infly](https://huggingface.co/infly)<br> **Original model**: [OpenCoder-8B-Instruct](https://huggingface.co/infly/OpenCoder-8B-Instruct)<br> **GGUF quantization:** provided by [bartowski](https://huggingface.co/bartowski) based on `llama.cpp` release [b4014](https://github.com/ggerganov/llama.cpp/releases/tag/b4014)<br> ## Technical Details Supports English and Chinese prompting Trained on 2.5 trillion tokens, 90% raw code and 10% code-related web data, followed by SFT on 4.5 million high-quality examples Context length of 8k ## Special thanks πŸ™ Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible. ## Disclaimers LM Studio is not the creator, originator, or owner of any Model featured in the Community Model Program. Each Community Model is created and provided by third parties. LM Studio does not endorse, support, represent or guarantee the completeness, truthfulness, accuracy, or reliability of any Community Model. You understand that Community Models can produce content that might be offensive, harmful, inaccurate or otherwise inappropriate, or deceptive. Each Community Model is the sole responsibility of the person or entity who originated such Model. LM Studio may not monitor or control the Community Models and cannot, and does not, take responsibility for any such Model. LM Studio disclaims all warranties or guarantees about the accuracy, reliability or benefits of the Community Models. LM Studio further disclaims any warranty that the Community Model will meet your requirements, be secure, uninterrupted or available at any time or location, or error-free, viruses-free, or that any errors will be corrected, or otherwise. You will be solely responsible for any damage resulting from your use of or access to the Community Models, your downloading of any Community Model, or use of any other Community Model provided by or through LM Studio.
featherless-ai-quants/YenJung-CPE_chatbot-GGUF
featherless-ai-quants
2024-11-11T01:57:44Z
15
0
null
[ "gguf", "text-generation", "base_model:YenJung/CPE_chatbot", "base_model:quantized:YenJung/CPE_chatbot", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-07T06:43:11Z
--- base_model: YenJung/CPE_chatbot pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # YenJung/CPE_chatbot GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [YenJung-CPE_chatbot-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/YenJung-CPE_chatbot-GGUF/blob/main/YenJung-CPE_chatbot-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [YenJung-CPE_chatbot-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/YenJung-CPE_chatbot-GGUF/blob/main/YenJung-CPE_chatbot-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [YenJung-CPE_chatbot-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/YenJung-CPE_chatbot-GGUF/blob/main/YenJung-CPE_chatbot-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [YenJung-CPE_chatbot-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/YenJung-CPE_chatbot-GGUF/blob/main/YenJung-CPE_chatbot-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [YenJung-CPE_chatbot-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/YenJung-CPE_chatbot-GGUF/blob/main/YenJung-CPE_chatbot-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [YenJung-CPE_chatbot-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/YenJung-CPE_chatbot-GGUF/blob/main/YenJung-CPE_chatbot-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [YenJung-CPE_chatbot-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/YenJung-CPE_chatbot-GGUF/blob/main/YenJung-CPE_chatbot-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [YenJung-CPE_chatbot-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/YenJung-CPE_chatbot-GGUF/blob/main/YenJung-CPE_chatbot-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [YenJung-CPE_chatbot-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/YenJung-CPE_chatbot-GGUF/blob/main/YenJung-CPE_chatbot-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [YenJung-CPE_chatbot-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/YenJung-CPE_chatbot-GGUF/blob/main/YenJung-CPE_chatbot-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [YenJung-CPE_chatbot-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/YenJung-CPE_chatbot-GGUF/blob/main/YenJung-CPE_chatbot-Q8_0.gguf) | 8145.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
rawsh/mirrorqwen2.5-0.5b-SimPO-1
rawsh
2024-11-11T01:55:22Z
140
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "trl", "cpo", "unsloth", "arxiv:2401.08417", "base_model:rawsh/mirrorqwen2.5-0.5b-SimPO-0", "base_model:finetune:rawsh/mirrorqwen2.5-0.5b-SimPO-0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-10T23:45:17Z
--- base_model: rawsh/mirrorqwen2.5-0.5b-SimPO-0 library_name: transformers model_name: mirrorqwen2.5-0.5b-SimPO-1 tags: - generated_from_trainer - trl - cpo - unsloth licence: license --- # Model Card for mirrorqwen2.5-0.5b-SimPO-1 This model is a fine-tuned version of [rawsh/mirrorqwen2.5-0.5b-SimPO-0](https://huggingface.co/rawsh/mirrorqwen2.5-0.5b-SimPO-0). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="rawsh/mirrorqwen2.5-0.5b-SimPO-1", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/dankgpt/simpo-training/runs/tq03rlku) This model was trained with CPO, a method introduced in [Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation](https://huggingface.co/papers/2401.08417). ### Framework versions - TRL: 0.12.0 - Transformers: 4.46.2 - Pytorch: 2.4.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citations Cite CPO as: ```bibtex @inproceedings{xu2024contrastive, title = {{Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation}}, author = {Haoran Xu and Amr Sharaf and Yunmo Chen and Weiting Tan and Lingfeng Shen and Benjamin Van Durme and Kenton Murray and Young Jin Kim}, year = 2024, booktitle = {Forty-first International Conference on Machine Learning, {ICML} 2024, Vienna, Austria, July 21-27, 2024}, publisher = {OpenReview.net}, url = {https://openreview.net/forum?id=51iwkioZpn} } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin GallouΓ©dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Triangle104/Llama-3.2-1B-Instruct-Q6_K-GGUF
Triangle104
2024-11-11T01:50:33Z
5
0
transformers
[ "transformers", "gguf", "llama-3", "llama", "meta", "facebook", "unsloth", "llama-cpp", "gguf-my-repo", "en", "base_model:unsloth/Llama-3.2-1B-Instruct", "base_model:quantized:unsloth/Llama-3.2-1B-Instruct", "license:llama3.2", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-11T01:50:02Z
--- base_model: unsloth/Llama-3.2-1B-Instruct language: - en library_name: transformers license: llama3.2 tags: - llama-3 - llama - meta - facebook - unsloth - transformers - llama-cpp - gguf-my-repo --- # Triangle104/Llama-3.2-1B-Instruct-Q6_K-GGUF This model was converted to GGUF format from [`unsloth/Llama-3.2-1B-Instruct`](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct) for more details on the model. --- Model details: - Finetune Llama 3.2, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth! Special Thanks A huge thank you to the Meta and Llama team for creating and releasing these models. Model Information The Meta Llama 3.2 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction-tuned generative models in 1B and 3B sizes (text in/text out). The Llama 3.2 instruction-tuned text only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks. They outperform many of the available open source and closed chat models on common industry benchmarks. Model developer: Meta Model Architecture: Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. Supported languages: English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai are officially supported. Llama 3.2 has been trained on a broader collection of languages than these 8 supported languages. Developers may fine-tune Llama 3.2 models for languages beyond these supported languages, provided they comply with the Llama 3.2 Community License and the Acceptable Use Policy. Developers are always expected to ensure that their deployments, including those that involve additional languages, are completed safely and responsibly. Llama 3.2 family of models Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability. Model Release Date: Sept 25, 2024 Status: This is a static model trained on an offline dataset. Future versions may be released that improve model capabilities and safety. License: Use of Llama 3.2 is governed by the Llama 3.2 Community License (a custom, commercial license agreement). Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model README. For more technical information about generation parameters and recipes for how to use Llama 3.1 in applications, please go here. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Llama-3.2-1B-Instruct-Q6_K-GGUF --hf-file llama-3.2-1b-instruct-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Llama-3.2-1B-Instruct-Q6_K-GGUF --hf-file llama-3.2-1b-instruct-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Llama-3.2-1B-Instruct-Q6_K-GGUF --hf-file llama-3.2-1b-instruct-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Llama-3.2-1B-Instruct-Q6_K-GGUF --hf-file llama-3.2-1b-instruct-q6_k.gguf -c 2048 ```
Triangle104/Llama-3.2-1B-Instruct-Q5_K_M-GGUF
Triangle104
2024-11-11T01:49:58Z
5
0
transformers
[ "transformers", "gguf", "llama-3", "llama", "meta", "facebook", "unsloth", "llama-cpp", "gguf-my-repo", "en", "base_model:unsloth/Llama-3.2-1B-Instruct", "base_model:quantized:unsloth/Llama-3.2-1B-Instruct", "license:llama3.2", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-11T01:49:22Z
--- base_model: unsloth/Llama-3.2-1B-Instruct language: - en library_name: transformers license: llama3.2 tags: - llama-3 - llama - meta - facebook - unsloth - transformers - llama-cpp - gguf-my-repo --- # Triangle104/Llama-3.2-1B-Instruct-Q5_K_M-GGUF This model was converted to GGUF format from [`unsloth/Llama-3.2-1B-Instruct`](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/unsloth/Llama-3.2-1B-Instruct) for more details on the model. --- Model details: - Finetune Llama 3.2, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth! Special Thanks A huge thank you to the Meta and Llama team for creating and releasing these models. Model Information The Meta Llama 3.2 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction-tuned generative models in 1B and 3B sizes (text in/text out). The Llama 3.2 instruction-tuned text only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks. They outperform many of the available open source and closed chat models on common industry benchmarks. Model developer: Meta Model Architecture: Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. Supported languages: English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai are officially supported. Llama 3.2 has been trained on a broader collection of languages than these 8 supported languages. Developers may fine-tune Llama 3.2 models for languages beyond these supported languages, provided they comply with the Llama 3.2 Community License and the Acceptable Use Policy. Developers are always expected to ensure that their deployments, including those that involve additional languages, are completed safely and responsibly. Llama 3.2 family of models Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability. Model Release Date: Sept 25, 2024 Status: This is a static model trained on an offline dataset. Future versions may be released that improve model capabilities and safety. License: Use of Llama 3.2 is governed by the Llama 3.2 Community License (a custom, commercial license agreement). Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model README. For more technical information about generation parameters and recipes for how to use Llama 3.1 in applications, please go here. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Llama-3.2-1B-Instruct-Q5_K_M-GGUF --hf-file llama-3.2-1b-instruct-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Llama-3.2-1B-Instruct-Q5_K_M-GGUF --hf-file llama-3.2-1b-instruct-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Llama-3.2-1B-Instruct-Q5_K_M-GGUF --hf-file llama-3.2-1b-instruct-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Llama-3.2-1B-Instruct-Q5_K_M-GGUF --hf-file llama-3.2-1b-instruct-q5_k_m.gguf -c 2048 ```
Triangle104/Llama-3.2-3B-Instruct-Q8_0-GGUF
Triangle104
2024-11-11T01:47:07Z
5
0
transformers
[ "transformers", "gguf", "llama-3", "llama", "meta", "facebook", "unsloth", "llama-cpp", "gguf-my-repo", "en", "base_model:unsloth/Llama-3.2-3B-Instruct", "base_model:quantized:unsloth/Llama-3.2-3B-Instruct", "license:llama3.2", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-11T01:46:12Z
--- base_model: unsloth/Llama-3.2-3B-Instruct language: - en library_name: transformers license: llama3.2 tags: - llama-3 - llama - meta - facebook - unsloth - transformers - llama-cpp - gguf-my-repo --- # Triangle104/Llama-3.2-3B-Instruct-Q8_0-GGUF This model was converted to GGUF format from [`unsloth/Llama-3.2-3B-Instruct`](https://huggingface.co/unsloth/Llama-3.2-3B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/unsloth/Llama-3.2-3B-Instruct) for more details on the model. --- Model details: - Finetune Llama 3.2, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth! Special Thanks A huge thank you to the Meta and Llama team for creating and releasing these models. Model Information The Meta Llama 3.2 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction-tuned generative models in 1B and 3B sizes (text in/text out). The Llama 3.2 instruction-tuned text only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks. They outperform many of the available open source and closed chat models on common industry benchmarks. Model developer: Meta Model Architecture: Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. Supported languages: English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai are officially supported. Llama 3.2 has been trained on a broader collection of languages than these 8 supported languages. Developers may fine-tune Llama 3.2 models for languages beyond these supported languages, provided they comply with the Llama 3.2 Community License and the Acceptable Use Policy. Developers are always expected to ensure that their deployments, including those that involve additional languages, are completed safely and responsibly. Llama 3.2 family of models Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability. Model Release Date: Sept 25, 2024 Status: This is a static model trained on an offline dataset. Future versions may be released that improve model capabilities and safety. License: Use of Llama 3.2 is governed by the Llama 3.2 Community License (a custom, commercial license agreement). Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model README. For more technical information about generation parameters and recipes for how to use Llama 3.1 in applications, please go here. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Llama-3.2-3B-Instruct-Q8_0-GGUF --hf-file llama-3.2-3b-instruct-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Llama-3.2-3B-Instruct-Q8_0-GGUF --hf-file llama-3.2-3b-instruct-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Llama-3.2-3B-Instruct-Q8_0-GGUF --hf-file llama-3.2-3b-instruct-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Llama-3.2-3B-Instruct-Q8_0-GGUF --hf-file llama-3.2-3b-instruct-q8_0.gguf -c 2048 ```
Triangle104/Llama-3.2-3B-Instruct-Q6_K-GGUF
Triangle104
2024-11-11T01:45:54Z
15
0
transformers
[ "transformers", "gguf", "llama-3", "llama", "meta", "facebook", "unsloth", "llama-cpp", "gguf-my-repo", "en", "base_model:unsloth/Llama-3.2-3B-Instruct", "base_model:quantized:unsloth/Llama-3.2-3B-Instruct", "license:llama3.2", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-11T01:45:12Z
--- base_model: unsloth/Llama-3.2-3B-Instruct language: - en library_name: transformers license: llama3.2 tags: - llama-3 - llama - meta - facebook - unsloth - transformers - llama-cpp - gguf-my-repo --- # Triangle104/Llama-3.2-3B-Instruct-Q6_K-GGUF This model was converted to GGUF format from [`unsloth/Llama-3.2-3B-Instruct`](https://huggingface.co/unsloth/Llama-3.2-3B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/unsloth/Llama-3.2-3B-Instruct) for more details on the model. --- Model details: - Finetune Llama 3.2, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth! Special Thanks A huge thank you to the Meta and Llama team for creating and releasing these models. Model Information The Meta Llama 3.2 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction-tuned generative models in 1B and 3B sizes (text in/text out). The Llama 3.2 instruction-tuned text only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks. They outperform many of the available open source and closed chat models on common industry benchmarks. Model developer: Meta Model Architecture: Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. Supported languages: English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai are officially supported. Llama 3.2 has been trained on a broader collection of languages than these 8 supported languages. Developers may fine-tune Llama 3.2 models for languages beyond these supported languages, provided they comply with the Llama 3.2 Community License and the Acceptable Use Policy. Developers are always expected to ensure that their deployments, including those that involve additional languages, are completed safely and responsibly. Llama 3.2 family of models Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability. Model Release Date: Sept 25, 2024 Status: This is a static model trained on an offline dataset. Future versions may be released that improve model capabilities and safety. License: Use of Llama 3.2 is governed by the Llama 3.2 Community License (a custom, commercial license agreement). Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model README. For more technical information about generation parameters and recipes for how to use Llama 3.1 in applications, please go here. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Llama-3.2-3B-Instruct-Q6_K-GGUF --hf-file llama-3.2-3b-instruct-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Llama-3.2-3B-Instruct-Q6_K-GGUF --hf-file llama-3.2-3b-instruct-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Llama-3.2-3B-Instruct-Q6_K-GGUF --hf-file llama-3.2-3b-instruct-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Llama-3.2-3B-Instruct-Q6_K-GGUF --hf-file llama-3.2-3b-instruct-q6_k.gguf -c 2048 ```
Triangle104/Llama-3.2-3B-Instruct-Q5_K_M-GGUF
Triangle104
2024-11-11T01:44:44Z
6
0
transformers
[ "transformers", "gguf", "llama-3", "llama", "meta", "facebook", "unsloth", "llama-cpp", "gguf-my-repo", "en", "base_model:unsloth/Llama-3.2-3B-Instruct", "base_model:quantized:unsloth/Llama-3.2-3B-Instruct", "license:llama3.2", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-11T01:44:06Z
--- base_model: unsloth/Llama-3.2-3B-Instruct language: - en library_name: transformers license: llama3.2 tags: - llama-3 - llama - meta - facebook - unsloth - transformers - llama-cpp - gguf-my-repo --- # Triangle104/Llama-3.2-3B-Instruct-Q5_K_M-GGUF This model was converted to GGUF format from [`unsloth/Llama-3.2-3B-Instruct`](https://huggingface.co/unsloth/Llama-3.2-3B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/unsloth/Llama-3.2-3B-Instruct) for more details on the model. --- Model details: - Finetune Llama 3.2, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth! Special Thanks A huge thank you to the Meta and Llama team for creating and releasing these models. Model Information The Meta Llama 3.2 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction-tuned generative models in 1B and 3B sizes (text in/text out). The Llama 3.2 instruction-tuned text only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks. They outperform many of the available open source and closed chat models on common industry benchmarks. Model developer: Meta Model Architecture: Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. Supported languages: English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai are officially supported. Llama 3.2 has been trained on a broader collection of languages than these 8 supported languages. Developers may fine-tune Llama 3.2 models for languages beyond these supported languages, provided they comply with the Llama 3.2 Community License and the Acceptable Use Policy. Developers are always expected to ensure that their deployments, including those that involve additional languages, are completed safely and responsibly. Llama 3.2 family of models Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability. Model Release Date: Sept 25, 2024 Status: This is a static model trained on an offline dataset. Future versions may be released that improve model capabilities and safety. License: Use of Llama 3.2 is governed by the Llama 3.2 Community License (a custom, commercial license agreement). Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model README. For more technical information about generation parameters and recipes for how to use Llama 3.1 in applications, please go here. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Llama-3.2-3B-Instruct-Q5_K_M-GGUF --hf-file llama-3.2-3b-instruct-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Llama-3.2-3B-Instruct-Q5_K_M-GGUF --hf-file llama-3.2-3b-instruct-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Llama-3.2-3B-Instruct-Q5_K_M-GGUF --hf-file llama-3.2-3b-instruct-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Llama-3.2-3B-Instruct-Q5_K_M-GGUF --hf-file llama-3.2-3b-instruct-q5_k_m.gguf -c 2048 ```
Triangle104/Unsloth-Llama-3.2-3B-Instruct-Q5_K_S-GGUF
Triangle104
2024-11-11T01:43:28Z
6
0
transformers
[ "transformers", "gguf", "llama-3", "llama", "meta", "facebook", "unsloth", "llama-cpp", "gguf-my-repo", "en", "base_model:unsloth/Llama-3.2-3B-Instruct", "base_model:quantized:unsloth/Llama-3.2-3B-Instruct", "license:llama3.2", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-11T01:42:40Z
--- base_model: unsloth/Llama-3.2-3B-Instruct language: - en library_name: transformers license: llama3.2 tags: - llama-3 - llama - meta - facebook - unsloth - transformers - llama-cpp - gguf-my-repo --- # Triangle104/Llama-3.2-3B-Instruct-Q5_K_S-GGUF This model was converted to GGUF format from [`unsloth/Llama-3.2-3B-Instruct`](https://huggingface.co/unsloth/Llama-3.2-3B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/unsloth/Llama-3.2-3B-Instruct) for more details on the model. --- Model details: - Finetune Llama 3.2, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth! Special Thanks A huge thank you to the Meta and Llama team for creating and releasing these models. Model Information The Meta Llama 3.2 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction-tuned generative models in 1B and 3B sizes (text in/text out). The Llama 3.2 instruction-tuned text only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks. They outperform many of the available open source and closed chat models on common industry benchmarks. Model developer: Meta Model Architecture: Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. Supported languages: English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai are officially supported. Llama 3.2 has been trained on a broader collection of languages than these 8 supported languages. Developers may fine-tune Llama 3.2 models for languages beyond these supported languages, provided they comply with the Llama 3.2 Community License and the Acceptable Use Policy. Developers are always expected to ensure that their deployments, including those that involve additional languages, are completed safely and responsibly. Llama 3.2 family of models Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability. Model Release Date: Sept 25, 2024 Status: This is a static model trained on an offline dataset. Future versions may be released that improve model capabilities and safety. License: Use of Llama 3.2 is governed by the Llama 3.2 Community License (a custom, commercial license agreement). Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model README. For more technical information about generation parameters and recipes for how to use Llama 3.1 in applications, please go here. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Llama-3.2-3B-Instruct-Q5_K_S-GGUF --hf-file llama-3.2-3b-instruct-q5_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Llama-3.2-3B-Instruct-Q5_K_S-GGUF --hf-file llama-3.2-3b-instruct-q5_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Llama-3.2-3B-Instruct-Q5_K_S-GGUF --hf-file llama-3.2-3b-instruct-q5_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Llama-3.2-3B-Instruct-Q5_K_S-GGUF --hf-file llama-3.2-3b-instruct-q5_k_s.gguf -c 2048 ```
cachirulo001/theresa
cachirulo001
2024-11-11T01:42:10Z
20
1
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-11-11T00:18:39Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym base_model: black-forest-labs/FLUX.1-dev instance_prompt: th3r3sa license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # theresa A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `th3r3sa` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
Triangle104/Unsloth-Llama-3.2-3B-Instruct-Q4_K_M-GGUF
Triangle104
2024-11-11T01:42:05Z
14
0
transformers
[ "transformers", "gguf", "llama-3", "llama", "meta", "facebook", "unsloth", "llama-cpp", "gguf-my-repo", "en", "base_model:unsloth/Llama-3.2-3B-Instruct", "base_model:quantized:unsloth/Llama-3.2-3B-Instruct", "license:llama3.2", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-11T01:41:23Z
--- base_model: unsloth/Llama-3.2-3B-Instruct language: - en library_name: transformers license: llama3.2 tags: - llama-3 - llama - meta - facebook - unsloth - transformers - llama-cpp - gguf-my-repo --- # Triangle104/Llama-3.2-3B-Instruct-Q4_K_M-GGUF This model was converted to GGUF format from [`unsloth/Llama-3.2-3B-Instruct`](https://huggingface.co/unsloth/Llama-3.2-3B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/unsloth/Llama-3.2-3B-Instruct) for more details on the model. --- Model details: - Finetune Llama 3.2, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth! Special Thanks A huge thank you to the Meta and Llama team for creating and releasing these models. Model Information The Meta Llama 3.2 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction-tuned generative models in 1B and 3B sizes (text in/text out). The Llama 3.2 instruction-tuned text only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks. They outperform many of the available open source and closed chat models on common industry benchmarks. Model developer: Meta Model Architecture: Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. Supported languages: English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai are officially supported. Llama 3.2 has been trained on a broader collection of languages than these 8 supported languages. Developers may fine-tune Llama 3.2 models for languages beyond these supported languages, provided they comply with the Llama 3.2 Community License and the Acceptable Use Policy. Developers are always expected to ensure that their deployments, including those that involve additional languages, are completed safely and responsibly. Llama 3.2 family of models Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability. Model Release Date: Sept 25, 2024 Status: This is a static model trained on an offline dataset. Future versions may be released that improve model capabilities and safety. License: Use of Llama 3.2 is governed by the Llama 3.2 Community License (a custom, commercial license agreement). Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model README. For more technical information about generation parameters and recipes for how to use Llama 3.1 in applications, please go here. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Llama-3.2-3B-Instruct-Q4_K_M-GGUF --hf-file llama-3.2-3b-instruct-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Llama-3.2-3B-Instruct-Q4_K_M-GGUF --hf-file llama-3.2-3b-instruct-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Llama-3.2-3B-Instruct-Q4_K_M-GGUF --hf-file llama-3.2-3b-instruct-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Llama-3.2-3B-Instruct-Q4_K_M-GGUF --hf-file llama-3.2-3b-instruct-q4_k_m.gguf -c 2048 ```
featherless-ai-quants/ContextualAI-archangel_sft_llama13b-GGUF
featherless-ai-quants
2024-11-11T01:39:51Z
5
0
null
[ "gguf", "text-generation", "base_model:ContextualAI/archangel_sft_llama13b", "base_model:quantized:ContextualAI/archangel_sft_llama13b", "endpoints_compatible", "region:us" ]
text-generation
2024-11-11T01:21:58Z
--- base_model: ContextualAI/archangel_sft_llama13b pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # ContextualAI/archangel_sft_llama13b GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [ContextualAI-archangel_sft_llama13b-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/ContextualAI-archangel_sft_llama13b-GGUF/blob/main/ContextualAI-archangel_sft_llama13b-IQ4_XS.gguf) | 6694.33 MB | | Q2_K | [ContextualAI-archangel_sft_llama13b-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/ContextualAI-archangel_sft_llama13b-GGUF/blob/main/ContextualAI-archangel_sft_llama13b-Q2_K.gguf) | 4629.39 MB | | Q3_K_L | [ContextualAI-archangel_sft_llama13b-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/ContextualAI-archangel_sft_llama13b-GGUF/blob/main/ContextualAI-archangel_sft_llama13b-Q3_K_L.gguf) | 6608.54 MB | | Q3_K_M | [ContextualAI-archangel_sft_llama13b-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/ContextualAI-archangel_sft_llama13b-GGUF/blob/main/ContextualAI-archangel_sft_llama13b-Q3_K_M.gguf) | 6044.17 MB | | Q3_K_S | [ContextualAI-archangel_sft_llama13b-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/ContextualAI-archangel_sft_llama13b-GGUF/blob/main/ContextualAI-archangel_sft_llama13b-Q3_K_S.gguf) | 5396.82 MB | | Q4_K_M | [ContextualAI-archangel_sft_llama13b-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/ContextualAI-archangel_sft_llama13b-GGUF/blob/main/ContextualAI-archangel_sft_llama13b-Q4_K_M.gguf) | 7501.56 MB | | Q4_K_S | [ContextualAI-archangel_sft_llama13b-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/ContextualAI-archangel_sft_llama13b-GGUF/blob/main/ContextualAI-archangel_sft_llama13b-Q4_K_S.gguf) | 7079.30 MB | | Q5_K_M | [ContextualAI-archangel_sft_llama13b-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/ContextualAI-archangel_sft_llama13b-GGUF/blob/main/ContextualAI-archangel_sft_llama13b-Q5_K_M.gguf) | 8802.34 MB | | Q5_K_S | [ContextualAI-archangel_sft_llama13b-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/ContextualAI-archangel_sft_llama13b-GGUF/blob/main/ContextualAI-archangel_sft_llama13b-Q5_K_S.gguf) | 8556.64 MB | | Q6_K | [ContextualAI-archangel_sft_llama13b-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/ContextualAI-archangel_sft_llama13b-GGUF/blob/main/ContextualAI-archangel_sft_llama13b-Q6_K.gguf) | 10184.42 MB | | Q8_0 | [ContextualAI-archangel_sft_llama13b-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/ContextualAI-archangel_sft_llama13b-GGUF/blob/main/ContextualAI-archangel_sft_llama13b-Q8_0.gguf) | 13190.57 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
Triangle104/Llama-3.2-3B-Q5_K_M-GGUF
Triangle104
2024-11-11T01:37:01Z
6
0
transformers
[ "transformers", "gguf", "llama-3", "llama", "meta", "facebook", "unsloth", "llama-cpp", "gguf-my-repo", "en", "base_model:unsloth/Llama-3.2-3B", "base_model:quantized:unsloth/Llama-3.2-3B", "license:llama3.2", "endpoints_compatible", "region:us" ]
null
2024-11-11T01:36:18Z
--- base_model: unsloth/Llama-3.2-3B language: - en library_name: transformers license: llama3.2 tags: - llama-3 - llama - meta - facebook - unsloth - transformers - llama-cpp - gguf-my-repo --- # Triangle104/Llama-3.2-3B-Q5_K_M-GGUF This model was converted to GGUF format from [`unsloth/Llama-3.2-3B`](https://huggingface.co/unsloth/Llama-3.2-3B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/unsloth/Llama-3.2-3B) for more details on the model. --- Model details: - Finetune Llama 3.2, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth! Special Thanks A huge thank you to the Meta and Llama team for creating and releasing these models. Model Information The Meta Llama 3.2 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction-tuned generative models in 1B and 3B sizes (text in/text out). The Llama 3.2 instruction-tuned text only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks. They outperform many of the available open source and closed chat models on common industry benchmarks. Model developer: Meta Model Architecture: Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. Supported languages: English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai are officially supported. Llama 3.2 has been trained on a broader collection of languages than these 8 supported languages. Developers may fine-tune Llama 3.2 models for languages beyond these supported languages, provided they comply with the Llama 3.2 Community License and the Acceptable Use Policy. Developers are always expected to ensure that their deployments, including those that involve additional languages, are completed safely and responsibly. Llama 3.2 family of models Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability. Model Release Date: Sept 25, 2024 Status: This is a static model trained on an offline dataset. Future versions may be released that improve model capabilities and safety. License: Use of Llama 3.2 is governed by the Llama 3.2 Community License (a custom, commercial license agreement). Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model README. For more technical information about generation parameters and recipes for how to use Llama 3.1 in applications, please go here. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Llama-3.2-3B-Q5_K_M-GGUF --hf-file llama-3.2-3b-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Llama-3.2-3B-Q5_K_M-GGUF --hf-file llama-3.2-3b-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Llama-3.2-3B-Q5_K_M-GGUF --hf-file llama-3.2-3b-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Llama-3.2-3B-Q5_K_M-GGUF --hf-file llama-3.2-3b-q5_k_m.gguf -c 2048 ```
Triangle104/Llama-3.2-3B-Q5_K_S-GGUF
Triangle104
2024-11-11T01:36:03Z
5
0
transformers
[ "transformers", "gguf", "llama-3", "llama", "meta", "facebook", "unsloth", "llama-cpp", "gguf-my-repo", "en", "base_model:unsloth/Llama-3.2-3B", "base_model:quantized:unsloth/Llama-3.2-3B", "license:llama3.2", "endpoints_compatible", "region:us" ]
null
2024-11-11T01:34:35Z
--- base_model: unsloth/Llama-3.2-3B language: - en library_name: transformers license: llama3.2 tags: - llama-3 - llama - meta - facebook - unsloth - transformers - llama-cpp - gguf-my-repo --- # Triangle104/Llama-3.2-3B-Q5_K_S-GGUF This model was converted to GGUF format from [`unsloth/Llama-3.2-3B`](https://huggingface.co/unsloth/Llama-3.2-3B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/unsloth/Llama-3.2-3B) for more details on the model. --- Model details: - Finetune Llama 3.2, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth! Special Thanks - A huge thank you to the Meta and Llama team for creating and releasing these models. Model Information - The Meta Llama 3.2 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction-tuned generative models in 1B and 3B sizes (text in/text out). The Llama 3.2 instruction-tuned text only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks. They outperform many of the available open source and closed chat models on common industry benchmarks. Model developer: Meta Model Architecture: Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. Supported languages: English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai are officially supported. Llama 3.2 has been trained on a broader collection of languages than these 8 supported languages. Developers may fine-tune Llama 3.2 models for languages beyond these supported languages, provided they comply with the Llama 3.2 Community License and the Acceptable Use Policy. Developers are always expected to ensure that their deployments, including those that involve additional languages, are completed safely and responsibly. Llama 3.2 family of models Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability. Model Release Date: Sept 25, 2024 Status: This is a static model trained on an offline dataset. Future versions may be released that improve model capabilities and safety. License: Use of Llama 3.2 is governed by the Llama 3.2 Community License (a custom, commercial license agreement). Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model README. For more technical information about generation parameters and recipes for how to use Llama 3.1 in applications, please go here. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Llama-3.2-3B-Q5_K_S-GGUF --hf-file llama-3.2-3b-q5_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Llama-3.2-3B-Q5_K_S-GGUF --hf-file llama-3.2-3b-q5_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Llama-3.2-3B-Q5_K_S-GGUF --hf-file llama-3.2-3b-q5_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Llama-3.2-3B-Q5_K_S-GGUF --hf-file llama-3.2-3b-q5_k_s.gguf -c 2048 ```
Triangle104/Llama-3.2-3B-Q4_K_M-GGUF
Triangle104
2024-11-11T01:34:09Z
39
0
transformers
[ "transformers", "gguf", "llama-3", "llama", "meta", "facebook", "unsloth", "llama-cpp", "gguf-my-repo", "en", "base_model:unsloth/Llama-3.2-3B", "base_model:quantized:unsloth/Llama-3.2-3B", "license:llama3.2", "endpoints_compatible", "region:us" ]
null
2024-11-11T01:32:17Z
--- base_model: unsloth/Llama-3.2-3B language: - en library_name: transformers license: llama3.2 tags: - llama-3 - llama - meta - facebook - unsloth - transformers - llama-cpp - gguf-my-repo --- # Triangle104/Llama-3.2-3B-Q4_K_M-GGUF This model was converted to GGUF format from [`unsloth/Llama-3.2-3B`](https://huggingface.co/unsloth/Llama-3.2-3B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/unsloth/Llama-3.2-3B) for more details on the model. --- Model details: - Finetune Llama 3.2, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth! Special Thanks A huge thank you to the Meta and Llama team for creating and releasing these models. Model Information The Meta Llama 3.2 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction-tuned generative models in 1B and 3B sizes (text in/text out). The Llama 3.2 instruction-tuned text only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks. They outperform many of the available open source and closed chat models on common industry benchmarks. Model developer: Meta Model Architecture: Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. Supported languages: English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai are officially supported. Llama 3.2 has been trained on a broader collection of languages than these 8 supported languages. Developers may fine-tune Llama 3.2 models for languages beyond these supported languages, provided they comply with the Llama 3.2 Community License and the Acceptable Use Policy. Developers are always expected to ensure that their deployments, including those that involve additional languages, are completed safely and responsibly. Llama 3.2 family of models Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability. Model Release Date: Sept 25, 2024 Status: This is a static model trained on an offline dataset. Future versions may be released that improve model capabilities and safety. License: Use of Llama 3.2 is governed by the Llama 3.2 Community License (a custom, commercial license agreement). Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model README. For more technical information about generation parameters and recipes for how to use Llama 3.1 in applications, please go here. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Llama-3.2-3B-Q4_K_M-GGUF --hf-file llama-3.2-3b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Llama-3.2-3B-Q4_K_M-GGUF --hf-file llama-3.2-3b-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Llama-3.2-3B-Q4_K_M-GGUF --hf-file llama-3.2-3b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Llama-3.2-3B-Q4_K_M-GGUF --hf-file llama-3.2-3b-q4_k_m.gguf -c 2048 ```
mradermacher/Qwen2.5-Coder-12.3b-Instruct-GGUF
mradermacher
2024-11-11T01:33:09Z
36
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:win10/Qwen2.5-Coder-12.3b-Instruct", "base_model:quantized:win10/Qwen2.5-Coder-12.3b-Instruct", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-10T21:17:05Z
--- base_model: win10/Qwen2.5-Coder-12.3b-Instruct language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/win10/Qwen2.5-Coder-12.3b-Instruct <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen2.5-Coder-12.3b-Instruct-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-12.3b-Instruct-GGUF/resolve/main/Qwen2.5-Coder-12.3b-Instruct.Q2_K.gguf) | Q2_K | 4.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-12.3b-Instruct-GGUF/resolve/main/Qwen2.5-Coder-12.3b-Instruct.Q3_K_S.gguf) | Q3_K_S | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-12.3b-Instruct-GGUF/resolve/main/Qwen2.5-Coder-12.3b-Instruct.Q3_K_M.gguf) | Q3_K_M | 6.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-12.3b-Instruct-GGUF/resolve/main/Qwen2.5-Coder-12.3b-Instruct.Q3_K_L.gguf) | Q3_K_L | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-12.3b-Instruct-GGUF/resolve/main/Qwen2.5-Coder-12.3b-Instruct.IQ4_XS.gguf) | IQ4_XS | 6.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-12.3b-Instruct-GGUF/resolve/main/Qwen2.5-Coder-12.3b-Instruct.Q4_0_4_4.gguf) | Q4_0_4_4 | 7.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-12.3b-Instruct-GGUF/resolve/main/Qwen2.5-Coder-12.3b-Instruct.Q4_K_S.gguf) | Q4_K_S | 7.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-12.3b-Instruct-GGUF/resolve/main/Qwen2.5-Coder-12.3b-Instruct.Q4_K_M.gguf) | Q4_K_M | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-12.3b-Instruct-GGUF/resolve/main/Qwen2.5-Coder-12.3b-Instruct.Q5_K_S.gguf) | Q5_K_S | 8.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-12.3b-Instruct-GGUF/resolve/main/Qwen2.5-Coder-12.3b-Instruct.Q5_K_M.gguf) | Q5_K_M | 8.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-12.3b-Instruct-GGUF/resolve/main/Qwen2.5-Coder-12.3b-Instruct.Q6_K.gguf) | Q6_K | 10.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-12.3b-Instruct-GGUF/resolve/main/Qwen2.5-Coder-12.3b-Instruct.Q8_0.gguf) | Q8_0 | 13.2 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
huwhitememes/diddy-lora
huwhitememes
2024-11-11T01:31:52Z
70
1
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-11-11T01:30:43Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym widget: - output: url: sample/diddy-lora_002880_00_20241003175334.png text: A photo of Diddy, Diddy, Sean Combs, Puff Daddy, P Diddy, Puffy, base_model: black-forest-labs/FLUX.1-dev instance_prompt: A photo of Diddy, Diddy, Sean Combs, Puff Daddy, P Diddy, Puffy, license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # diddy-lora A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `A photo of Diddy, Diddy, Sean Combs, Puff Daddy, P Diddy, Puffy, ` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
juierror/whisper-base-thai
juierror
2024-11-11T01:31:46Z
84
0
transformers
[ "transformers", "pytorch", "safetensors", "whisper", "automatic-speech-recognition", "th", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-05-25T16:02:30Z
--- license: apache-2.0 language: - th pipeline_tag: automatic-speech-recognition --- # Whisper-base Thai finetuned ## 1) Environment Setup ```bash # visit https://pytorch.org/get-started/locally/ to install pytorch pip3 install transformers librosa ``` ## 2) Usage ```python from transformers import WhisperForConditionalGeneration, WhisperProcessor import librosa device = "cuda" # cpu, cuda model = WhisperForConditionalGeneration.from_pretrained("juierror/whisper-base-thai").to(device) processor = WhisperProcessor.from_pretrained("juierror/whisper-base-thai", language="Thai", task="transcribe") path = "/path/to/audio/file" def inference(path: str) -> str: """ Get the transcription from audio path Args: path(str): path to audio file (can be load with librosa) Returns: str: transcription """ audio, sr = librosa.load(path, sr=16000) input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features generated_tokens = model.generate( input_features=input_features.to(device), max_new_tokens=255, language="Thai" ).cpu() transcriptions = processor.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) return transcriptions[0] print(inference(path=path)) ``` ## 3) Evaluate Result This model has been trained and evaluated on three datasets: - Common Voice 13 - The Common Voice dataset has been cleaned and divided into training, testing, and development sets. Care has been taken to ensure that the sentences in each set are unique and do not have any duplicates. - [Gowajee Corpus](https://github.com/ekapolc/gowajee_corpus) - The Gowajee dataset has already been pre-split into training, development, and testing sets, allowing for direct utilization. ``` @techreport{gowajee, title = {{Gowajee Corpus}}, author = {Ekapol Chuangsuwanich and Atiwong Suchato and Korrawe Karunratanakul and Burin Naowarat and Chompakorn CChaichot and Penpicha Sangsa-nga and Thunyathon Anutarases and Nitchakran Chaipojjana}, year = {2020}, institution = {Chulalongkorn University, Faculty of Engineering, Computer Engineering Department}, month = {12}, Date-Added = {2021-07-20}, url = {https://github.com/ekapolc/gowajee_corpus} note = {Version 0.9.2} } ``` - [Thai Elderly Speech](https://github.com/VISAI-DATAWOW/Thai-Elderly-Speech-dataset/releases/tag/v1.0.0) - As for the Thai Elderly Speech dataset, I performed a random split. The Character Error Rate (CER) is calculated by removing spaces in both the labels and predicted text, and then computing the CER. The Word Error Rate (WER) is calculated using the PythaiNLP newmm tokenizer to tokenize both the labels and predicted text, and then computing the WER. These are the results. | Dataset | WER | CER | |-----------------------------------|-------|------| | Common Voice 13 | 15.89 | 4.32 | | Gowajee | 19.58 | 9.01 | | Thai Elderly Speech (Smart Home) | 7.13 | 2.21 | | Thai Elderly Speech (Health Care) | 6.75 | 1.89 |
sbintuitions/sarashina2-8x70b
sbintuitions
2024-11-11T01:21:56Z
13
32
null
[ "safetensors", "mixtral", "ja", "en", "arxiv:2212.05055", "license:other", "region:us" ]
null
2024-11-05T04:23:39Z
--- language: - ja - en license: other license_link: LICENSE --- # Sarashina2-8x70B This repository provides large language models trained by [SB Intuitions](https://www.sbintuitions.co.jp/). ## Required Hardware BF16 Inference: - 16x H100 - 16x A100 80GB ## Model Description We constructed this Sarashina2-8x70B model, which consists of over 450 billion parameters, by applying the [sparse upcycling technique](https://arxiv.org/abs/2212.05055) to our [Sarashina2-70B](https://huggingface.co/sbintuitions/sarashina2-70b) model to efficiently build the Mixture-of-Experts model. We trained the Sarashina2-8x70B model using a mix of Japanese and English corpora from web data. ## Tokenization We use a [sentencepiece](https://github.com/google/sentencepiece) tokenizer with a unigram language model and byte-fallback. We do not apply pre-tokenization with Japanese tokenizer. Thus, a user may directly feed raw sentences into the tokenizer. ## Ethical Considerations and Limitations Sarashina2 has not been tuned to follow an instruction yet. Therefore, sarashina2 might generate some meaningless sequences, some inaccurate instances or biased/objectionable outputs. Before using sarashina2, we would like developers to tune models based on human preferences and safety considerations. ## License [Sarashina Model NonCommercial License Agreement](https://huggingface.co/sbintuitions/sarashina2-8x70B/blob/main/Sarashina%20Model%20NonCommercial%20License%20Agreement)
Triangle104/Phi-3.5-mini-TitanFusion-0.1-Q8_0-GGUF
Triangle104
2024-11-11T01:21:51Z
9
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:bunnycore/Phi-3.5-mini-TitanFusion-0.1", "base_model:quantized:bunnycore/Phi-3.5-mini-TitanFusion-0.1", "model-index", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-11T01:20:52Z
--- library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo base_model: bunnycore/Phi-3.5-mini-TitanFusion-0.1 model-index: - name: Phi-3.5-mini-TitanFusion-0.1 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 52.28 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Phi-3.5-mini-TitanFusion-0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 35.45 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Phi-3.5-mini-TitanFusion-0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 6.19 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Phi-3.5-mini-TitanFusion-0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 10.85 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Phi-3.5-mini-TitanFusion-0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 15.8 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Phi-3.5-mini-TitanFusion-0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 31.18 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Phi-3.5-mini-TitanFusion-0.1 name: Open LLM Leaderboard --- # Triangle104/Phi-3.5-mini-TitanFusion-0.1-Q8_0-GGUF This model was converted to GGUF format from [`bunnycore/Phi-3.5-mini-TitanFusion-0.1`](https://huggingface.co/bunnycore/Phi-3.5-mini-TitanFusion-0.1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/bunnycore/Phi-3.5-mini-TitanFusion-0.1) for more details on the model. --- Model details: - This is a merged pre-trained language model created using the TIES merge method. It is based on the microsoft/Phi-3.5-mini-instruct model and incorporates the knowledge and capabilities of the nbeerbower/phi3.5-gutenberg-4B and ArliAI/Phi-3.5-mini-3.8B-ArliAI-RPMax-v1.1 models. Capabilities: Roleplay: The model can engage in role-playing scenarios, taking on different personas and responding to prompts in a character-appropriate manner. Creative Writing: It can assist in creative writing tasks, such as brainstorming ideas, generating plotlines, or developing characters. Reasoning: The model can reason about information and draw conclusions based on the data it has been trained on. This is a merge of pre-trained language models created using mergekit. Merge Details Merge Method This model was merged using the TIES merge method using microsoft/Phi-3.5-mini-instruct as a base. Models Merged The following models were included in the merge: nbeerbower/phi3.5-gutenberg-4B ArliAI/Phi-3.5-mini-3.8B-ArliAI-RPMax-v1.1 Configuration The following YAML configuration was used to produce this model: models: - model: ArliAI/Phi-3.5-mini-3.8B-ArliAI-RPMax-v1.1 parameters: weight: 1 - model: nbeerbower/phi3.5-gutenberg-4B parameters: weight: 1 merge_method: ties base_model: microsoft/Phi-3.5-mini-instruct parameters: density: 1 normalize: true int8_mask: true dtype: bfloat16 --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Phi-3.5-mini-TitanFusion-0.1-Q8_0-GGUF --hf-file phi-3.5-mini-titanfusion-0.1-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Phi-3.5-mini-TitanFusion-0.1-Q8_0-GGUF --hf-file phi-3.5-mini-titanfusion-0.1-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Phi-3.5-mini-TitanFusion-0.1-Q8_0-GGUF --hf-file phi-3.5-mini-titanfusion-0.1-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Phi-3.5-mini-TitanFusion-0.1-Q8_0-GGUF --hf-file phi-3.5-mini-titanfusion-0.1-q8_0.gguf -c 2048 ```
mav23/natural-sql-7b-GGUF
mav23
2024-11-11T01:21:25Z
40
0
transformers
[ "transformers", "gguf", "instruct", "finetune", "text-generation", "base_model:deepseek-ai/deepseek-coder-6.7b-instruct", "base_model:quantized:deepseek-ai/deepseek-coder-6.7b-instruct", "license:cc-by-sa-4.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-11T00:26:43Z
--- base_model: deepseek-ai/deepseek-coder-6.7b-instruct tags: - instruct - finetune library_name: transformers license: cc-by-sa-4.0 pipeline_tag: text-generation --- # **Natural-SQL-7B by ChatDB** ## Natural-SQL-7B is a model with very strong performance in Text-to-SQL instructions, has an excellent understanding of complex questions, and outperforms models of the same size in its space. <img src="https://cdn-uploads.huggingface.co/production/uploads/648a374f00f7a3374ee64b99/hafdsfrFCqrVbATIzV_EN.png" width="600"> [ChatDB.ai](https://chatdb.ai) | [Notebook](https://github.com/cfahlgren1/natural-sql/blob/main/natural-sql-7b.ipynb) | [Twitter](https://twitter.com/calebfahlgren) # **Benchmarks** ### *Results on Novel Datasets not trained on via SQL-Eval* <img src="https://cdn-uploads.huggingface.co/production/uploads/648a374f00f7a3374ee64b99/5ynfoKPzI3_-WasQQt7qR.png" width="800"> <em>Big thanks to the [defog](https://huggingface.co/defog) team for open sourcing [sql-eval](https://github.com/defog-ai/sql-eval)</em>πŸ‘ Natural-SQL also can handle complex, compound questions that other models typically struggle with. There is a more detailed writeup Here is a write up, small test done [here](https://chatdb.ai/post/naturalsql-vs-sqlcoder-for-text-to-sql). # Usage Make sure you have the correct version of the transformers library installed: ```sh pip install transformers==4.35.2 ``` ### Loading the Model Use the following Python code to load the model: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("chatdb/natural-sql-7b") model = AutoModelForCausalLM.from_pretrained( "chatdb/natural-sql-7b", device_map="auto", torch_dtype=torch.float16, ) ``` ### **License** The model weights are licensed under `CC BY-SA 4.0`, with extra guidelines for responsible use expanded from the original model's [Deepseek](https://github.com/deepseek-ai/deepseek-coder/blob/main/LICENSE-MODEL) license. You're free to use and adapt the model, even commercially. If you alter the weights, such as through fine-tuning, you must publicly share your changes under the same `CC BY-SA 4.0` license. ### Generating SQL ```python inputs = tokenizer(prompt, return_tensors="pt").to("cuda") generated_ids = model.generate( **inputs, num_return_sequences=1, eos_token_id=100001, pad_token_id=100001, max_new_tokens=400, do_sample=False, num_beams=1, ) outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) print(outputs[0].split("```sql")[-1]) ``` # Prompt Template ``` # Task Generate a SQL query to answer the following question: `{natural language question}` ### PostgreSQL Database Schema The query will run on a database with the following schema: <SQL Table DDL Statements> # SQL Here is the SQL query that answers the question: `{natural language question}` '''sql ``` # Example SQL Output ### Example Schemas ```sql CREATE TABLE users ( user_id SERIAL PRIMARY KEY, username VARCHAR(50) NOT NULL, email VARCHAR(100) NOT NULL, password_hash TEXT NOT NULL, created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ); CREATE TABLE projects ( project_id SERIAL PRIMARY KEY, project_name VARCHAR(100) NOT NULL, description TEXT, start_date DATE, end_date DATE, owner_id INTEGER REFERENCES users(user_id) ); CREATE TABLE tasks ( task_id SERIAL PRIMARY KEY, task_name VARCHAR(100) NOT NULL, description TEXT, due_date DATE, status VARCHAR(50), project_id INTEGER REFERENCES projects(project_id) ); CREATE TABLE taskassignments ( assignment_id SERIAL PRIMARY KEY, task_id INTEGER REFERENCES tasks(task_id), user_id INTEGER REFERENCES users(user_id), assigned_date DATE NOT NULL DEFAULT CURRENT_TIMESTAMP ); CREATE TABLE comments ( comment_id SERIAL PRIMARY KEY, content TEXT NOT NULL, created_at TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP, task_id INTEGER REFERENCES tasks(task_id), user_id INTEGER REFERENCES users(user_id) ); ``` ### Example SQL Outputs **Question**: **Show me the day with the most users joining** ```sql SELECT created_at::DATE AS day, COUNT(*) AS user_count FROM users GROUP BY day ORDER BY user_count DESC LIMIT 1; ``` **Question**: **Show me the project that has a task with the most comments** ```sql SELECT p.project_name, t.task_name, COUNT(c.comment_id) AS comment_count FROM projects p JOIN tasks t ON p.project_id = t.project_id JOIN comments c ON t.task_id = c.task_id GROUP BY p.project_name, t.task_name ORDER BY comment_count DESC LIMIT 1; ``` **Question**: **What is the ratio of users with gmail addresses vs without?** ```sql SELECT SUM(CASE WHEN email ILIKE '%@gmail.com%' THEN 1 ELSE 0 END)::FLOAT / NULLIF(SUM(CASE WHEN email NOT ILIKE '%@gmail.com%' THEN 1 ELSE 0 END), 0) AS gmail_ratio FROM users; ```
Triangle104/Phi-3.5-mini-TitanFusion-0.1-Q5_K_M-GGUF
Triangle104
2024-11-11T01:19:20Z
8
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:bunnycore/Phi-3.5-mini-TitanFusion-0.1", "base_model:quantized:bunnycore/Phi-3.5-mini-TitanFusion-0.1", "model-index", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-11T01:18:17Z
--- library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo base_model: bunnycore/Phi-3.5-mini-TitanFusion-0.1 model-index: - name: Phi-3.5-mini-TitanFusion-0.1 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 52.28 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Phi-3.5-mini-TitanFusion-0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 35.45 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Phi-3.5-mini-TitanFusion-0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 6.19 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Phi-3.5-mini-TitanFusion-0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 10.85 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Phi-3.5-mini-TitanFusion-0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 15.8 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Phi-3.5-mini-TitanFusion-0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 31.18 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/Phi-3.5-mini-TitanFusion-0.1 name: Open LLM Leaderboard --- # Triangle104/Phi-3.5-mini-TitanFusion-0.1-Q5_K_M-GGUF This model was converted to GGUF format from [`bunnycore/Phi-3.5-mini-TitanFusion-0.1`](https://huggingface.co/bunnycore/Phi-3.5-mini-TitanFusion-0.1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/bunnycore/Phi-3.5-mini-TitanFusion-0.1) for more details on the model. --- Model details: - This is a merged pre-trained language model created using the TIES merge method. It is based on the microsoft/Phi-3.5-mini-instruct model and incorporates the knowledge and capabilities of the nbeerbower/phi3.5-gutenberg-4B and ArliAI/Phi-3.5-mini-3.8B-ArliAI-RPMax-v1.1 models. Capabilities: Roleplay: The model can engage in role-playing scenarios, taking on different personas and responding to prompts in a character-appropriate manner. Creative Writing: It can assist in creative writing tasks, such as brainstorming ideas, generating plotlines, or developing characters. Reasoning: The model can reason about information and draw conclusions based on the data it has been trained on. This is a merge of pre-trained language models created using mergekit. Merge Details Merge Method This model was merged using the TIES merge method using microsoft/Phi-3.5-mini-instruct as a base. Models Merged The following models were included in the merge: nbeerbower/phi3.5-gutenberg-4B ArliAI/Phi-3.5-mini-3.8B-ArliAI-RPMax-v1.1 Configuration The following YAML configuration was used to produce this model: models: - model: ArliAI/Phi-3.5-mini-3.8B-ArliAI-RPMax-v1.1 parameters: weight: 1 - model: nbeerbower/phi3.5-gutenberg-4B parameters: weight: 1 merge_method: ties base_model: microsoft/Phi-3.5-mini-instruct parameters: density: 1 normalize: true int8_mask: true dtype: bfloat16 --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Phi-3.5-mini-TitanFusion-0.1-Q5_K_M-GGUF --hf-file phi-3.5-mini-titanfusion-0.1-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Phi-3.5-mini-TitanFusion-0.1-Q5_K_M-GGUF --hf-file phi-3.5-mini-titanfusion-0.1-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Phi-3.5-mini-TitanFusion-0.1-Q5_K_M-GGUF --hf-file phi-3.5-mini-titanfusion-0.1-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Phi-3.5-mini-TitanFusion-0.1-Q5_K_M-GGUF --hf-file phi-3.5-mini-titanfusion-0.1-q5_k_m.gguf -c 2048 ```
huwhitememes/georgesoros-lora
huwhitememes
2024-11-11T01:18:16Z
5
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-11-11T01:16:50Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym widget: - output: url: sample/georgesoros-lora_003712_00_20241012204435.png text: A photo of George Soros, George Soros, Soros, base_model: black-forest-labs/FLUX.1-dev instance_prompt: A photo of George Soros, George Soros, Soros, license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # georgesoros-lora A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `A photo of George Soros, George Soros, Soros,` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
thiagoads/bitllama-legalpt
thiagoads
2024-11-11T01:06:04Z
140
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-11T01:05:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
huwhitememes/mikebenzcyber-lora
huwhitememes
2024-11-11T01:03:18Z
6
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-11-11T01:00:23Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym widget: - output: url: sample/mikebenzcyber-lora_003840_00_20241110160902.png text: A photo of Mike Benz, Mike Benz Cyber, Mike Benz, base_model: black-forest-labs/FLUX.1-dev instance_prompt: A photo of Mike Benz, Mike Benz Cyber, Mike Benz, license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # mikebenzcyber-lora A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `A photo of Mike Benz, Mike Benz Cyber, Mike Benz,` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
featherless-ai-quants/abacusai-Giraffe-13b-32k-v3-GGUF
featherless-ai-quants
2024-11-11T01:03:14Z
34
0
null
[ "gguf", "text-generation", "base_model:abacusai/Giraffe-13b-32k-v3", "base_model:quantized:abacusai/Giraffe-13b-32k-v3", "endpoints_compatible", "region:us" ]
text-generation
2024-11-11T00:42:32Z
--- base_model: abacusai/Giraffe-13b-32k-v3 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # abacusai/Giraffe-13b-32k-v3 GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [abacusai-Giraffe-13b-32k-v3-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/abacusai-Giraffe-13b-32k-v3-GGUF/blob/main/abacusai-Giraffe-13b-32k-v3-IQ4_XS.gguf) | 6694.33 MB | | Q2_K | [abacusai-Giraffe-13b-32k-v3-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/abacusai-Giraffe-13b-32k-v3-GGUF/blob/main/abacusai-Giraffe-13b-32k-v3-Q2_K.gguf) | 4629.39 MB | | Q3_K_L | [abacusai-Giraffe-13b-32k-v3-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/abacusai-Giraffe-13b-32k-v3-GGUF/blob/main/abacusai-Giraffe-13b-32k-v3-Q3_K_L.gguf) | 6608.54 MB | | Q3_K_M | [abacusai-Giraffe-13b-32k-v3-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/abacusai-Giraffe-13b-32k-v3-GGUF/blob/main/abacusai-Giraffe-13b-32k-v3-Q3_K_M.gguf) | 6044.17 MB | | Q3_K_S | [abacusai-Giraffe-13b-32k-v3-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/abacusai-Giraffe-13b-32k-v3-GGUF/blob/main/abacusai-Giraffe-13b-32k-v3-Q3_K_S.gguf) | 5396.82 MB | | Q4_K_M | [abacusai-Giraffe-13b-32k-v3-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/abacusai-Giraffe-13b-32k-v3-GGUF/blob/main/abacusai-Giraffe-13b-32k-v3-Q4_K_M.gguf) | 7501.56 MB | | Q4_K_S | [abacusai-Giraffe-13b-32k-v3-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/abacusai-Giraffe-13b-32k-v3-GGUF/blob/main/abacusai-Giraffe-13b-32k-v3-Q4_K_S.gguf) | 7079.30 MB | | Q5_K_M | [abacusai-Giraffe-13b-32k-v3-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/abacusai-Giraffe-13b-32k-v3-GGUF/blob/main/abacusai-Giraffe-13b-32k-v3-Q5_K_M.gguf) | 8802.34 MB | | Q5_K_S | [abacusai-Giraffe-13b-32k-v3-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/abacusai-Giraffe-13b-32k-v3-GGUF/blob/main/abacusai-Giraffe-13b-32k-v3-Q5_K_S.gguf) | 8556.64 MB | | Q6_K | [abacusai-Giraffe-13b-32k-v3-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/abacusai-Giraffe-13b-32k-v3-GGUF/blob/main/abacusai-Giraffe-13b-32k-v3-Q6_K.gguf) | 10184.42 MB | | Q8_0 | [abacusai-Giraffe-13b-32k-v3-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/abacusai-Giraffe-13b-32k-v3-GGUF/blob/main/abacusai-Giraffe-13b-32k-v3-Q8_0.gguf) | 13190.57 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
NESPED-GEN/Llama-3.2-text2SQL-indentacao
NESPED-GEN
2024-11-11T01:01:56Z
139
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-11T00:59:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Zekunli/qwen2.5-7b-alpaca-discrim-w-cot-w-cor
Zekunli
2024-11-11T01:01:54Z
8
1
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-11T00:53:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
janjibDEV/BERT-rating-classifier
janjibDEV
2024-11-11T01:00:14Z
119
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased-finetuned-sst-2-english", "base_model:finetune:distilbert/distilbert-base-uncased-finetuned-sst-2-english", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-11T00:24:31Z
--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased-finetuned-sst-2-english tags: - generated_from_trainer model-index: - name: BERT-rating-classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT-rating-classifier This model is a fine-tuned version of [distilbert/distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.9588 | 1.0 | 6250 | 0.9409 | | 0.8278 | 2.0 | 12500 | 0.9520 | | 0.7204 | 3.0 | 18750 | 0.9865 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
NESPED-GEN/Llama-3.2-text2SQL-v0
NESPED-GEN
2024-11-11T00:52:16Z
142
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-11T00:50:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
TingChen-ppmc/whisper-small-shanghai-tts-vc-0.25-1.0
TingChen-ppmc
2024-11-11T00:51:48Z
77
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-08-06T17:17:47Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/zephyr-7b-sft-full-i1-GGUF
mradermacher
2024-11-11T00:49:12Z
26
0
transformers
[ "transformers", "gguf", "alignment-handbook", "trl", "sft", "generated_from_trainer", "en", "dataset:HuggingFaceH4/ultrachat_200k", "base_model:rasoolfa/zephyr-7b-sft-full", "base_model:quantized:rasoolfa/zephyr-7b-sft-full", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-10T18:24:29Z
--- base_model: rasoolfa/zephyr-7b-sft-full datasets: - HuggingFaceH4/ultrachat_200k language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/rasoolfa/zephyr-7b-sft-full <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/zephyr-7b-sft-full-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/zephyr-7b-sft-full-i1-GGUF/resolve/main/zephyr-7b-sft-full.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/zephyr-7b-sft-full-i1-GGUF/resolve/main/zephyr-7b-sft-full.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/zephyr-7b-sft-full-i1-GGUF/resolve/main/zephyr-7b-sft-full.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/zephyr-7b-sft-full-i1-GGUF/resolve/main/zephyr-7b-sft-full.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/zephyr-7b-sft-full-i1-GGUF/resolve/main/zephyr-7b-sft-full.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/zephyr-7b-sft-full-i1-GGUF/resolve/main/zephyr-7b-sft-full.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/zephyr-7b-sft-full-i1-GGUF/resolve/main/zephyr-7b-sft-full.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/zephyr-7b-sft-full-i1-GGUF/resolve/main/zephyr-7b-sft-full.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/zephyr-7b-sft-full-i1-GGUF/resolve/main/zephyr-7b-sft-full.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/zephyr-7b-sft-full-i1-GGUF/resolve/main/zephyr-7b-sft-full.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/zephyr-7b-sft-full-i1-GGUF/resolve/main/zephyr-7b-sft-full.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/zephyr-7b-sft-full-i1-GGUF/resolve/main/zephyr-7b-sft-full.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/zephyr-7b-sft-full-i1-GGUF/resolve/main/zephyr-7b-sft-full.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/zephyr-7b-sft-full-i1-GGUF/resolve/main/zephyr-7b-sft-full.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/zephyr-7b-sft-full-i1-GGUF/resolve/main/zephyr-7b-sft-full.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/zephyr-7b-sft-full-i1-GGUF/resolve/main/zephyr-7b-sft-full.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/zephyr-7b-sft-full-i1-GGUF/resolve/main/zephyr-7b-sft-full.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.2 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/zephyr-7b-sft-full-i1-GGUF/resolve/main/zephyr-7b-sft-full.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.2 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/zephyr-7b-sft-full-i1-GGUF/resolve/main/zephyr-7b-sft-full.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/zephyr-7b-sft-full-i1-GGUF/resolve/main/zephyr-7b-sft-full.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/zephyr-7b-sft-full-i1-GGUF/resolve/main/zephyr-7b-sft-full.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/zephyr-7b-sft-full-i1-GGUF/resolve/main/zephyr-7b-sft-full.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/zephyr-7b-sft-full-i1-GGUF/resolve/main/zephyr-7b-sft-full.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/zephyr-7b-sft-full-i1-GGUF/resolve/main/zephyr-7b-sft-full.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
featherless-ai-quants/yentinglin-Taiwan-LLM-13B-v2.0-chat-GGUF
featherless-ai-quants
2024-11-11T00:48:16Z
10
0
null
[ "gguf", "text-generation", "base_model:yentinglin/Taiwan-LLM-13B-v2.0-chat", "base_model:quantized:yentinglin/Taiwan-LLM-13B-v2.0-chat", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-08T10:43:32Z
--- base_model: yentinglin/Taiwan-LLM-13B-v2.0-chat pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # yentinglin/Taiwan-LLM-13B-v2.0-chat GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [yentinglin-Taiwan-LLM-13B-v2.0-chat-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/yentinglin-Taiwan-LLM-13B-v2.0-chat-GGUF/blob/main/yentinglin-Taiwan-LLM-13B-v2.0-chat-IQ4_XS.gguf) | 6694.34 MB | | Q2_K | [yentinglin-Taiwan-LLM-13B-v2.0-chat-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/yentinglin-Taiwan-LLM-13B-v2.0-chat-GGUF/blob/main/yentinglin-Taiwan-LLM-13B-v2.0-chat-Q2_K.gguf) | 4629.39 MB | | Q3_K_L | [yentinglin-Taiwan-LLM-13B-v2.0-chat-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/yentinglin-Taiwan-LLM-13B-v2.0-chat-GGUF/blob/main/yentinglin-Taiwan-LLM-13B-v2.0-chat-Q3_K_L.gguf) | 6608.54 MB | | Q3_K_M | [yentinglin-Taiwan-LLM-13B-v2.0-chat-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/yentinglin-Taiwan-LLM-13B-v2.0-chat-GGUF/blob/main/yentinglin-Taiwan-LLM-13B-v2.0-chat-Q3_K_M.gguf) | 6044.17 MB | | Q3_K_S | [yentinglin-Taiwan-LLM-13B-v2.0-chat-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/yentinglin-Taiwan-LLM-13B-v2.0-chat-GGUF/blob/main/yentinglin-Taiwan-LLM-13B-v2.0-chat-Q3_K_S.gguf) | 5396.83 MB | | Q4_K_M | [yentinglin-Taiwan-LLM-13B-v2.0-chat-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/yentinglin-Taiwan-LLM-13B-v2.0-chat-GGUF/blob/main/yentinglin-Taiwan-LLM-13B-v2.0-chat-Q4_K_M.gguf) | 7501.56 MB | | Q4_K_S | [yentinglin-Taiwan-LLM-13B-v2.0-chat-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/yentinglin-Taiwan-LLM-13B-v2.0-chat-GGUF/blob/main/yentinglin-Taiwan-LLM-13B-v2.0-chat-Q4_K_S.gguf) | 7079.30 MB | | Q5_K_M | [yentinglin-Taiwan-LLM-13B-v2.0-chat-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/yentinglin-Taiwan-LLM-13B-v2.0-chat-GGUF/blob/main/yentinglin-Taiwan-LLM-13B-v2.0-chat-Q5_K_M.gguf) | 8802.34 MB | | Q5_K_S | [yentinglin-Taiwan-LLM-13B-v2.0-chat-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/yentinglin-Taiwan-LLM-13B-v2.0-chat-GGUF/blob/main/yentinglin-Taiwan-LLM-13B-v2.0-chat-Q5_K_S.gguf) | 8556.64 MB | | Q6_K | [yentinglin-Taiwan-LLM-13B-v2.0-chat-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/yentinglin-Taiwan-LLM-13B-v2.0-chat-GGUF/blob/main/yentinglin-Taiwan-LLM-13B-v2.0-chat-Q6_K.gguf) | 10184.42 MB | | Q8_0 | [yentinglin-Taiwan-LLM-13B-v2.0-chat-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/yentinglin-Taiwan-LLM-13B-v2.0-chat-GGUF/blob/main/yentinglin-Taiwan-LLM-13B-v2.0-chat-Q8_0.gguf) | 13190.58 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
win10/Blue-Rose-Coder-12.3B-Instruct-Q8_0-GGUF
win10
2024-11-11T00:42:55Z
11
1
null
[ "gguf", "merge", "mergekit", "lazymergekit", "WhiteRabbitNeo/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B", "Qwen/Qwen2.5-Coder-7B-Instruct", "llama-cpp", "gguf-my-repo", "base_model:win10/Blue-Rose-Coder-12.3B-Instruct", "base_model:quantized:win10/Blue-Rose-Coder-12.3B-Instruct", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-11T00:41:57Z
--- base_model: win10/Blue-Rose-Coder-12.3B-Instruct tags: - merge - mergekit - lazymergekit - WhiteRabbitNeo/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B - Qwen/Qwen2.5-Coder-7B-Instruct - llama-cpp - gguf-my-repo --- # win10/Blue-Rose-Coder-12.3B-Instruct-Q8_0-GGUF This model was converted to GGUF format from [`win10/Blue-Rose-Coder-12.3B-Instruct`](https://huggingface.co/win10/Blue-Rose-Coder-12.3B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/win10/Blue-Rose-Coder-12.3B-Instruct) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo win10/Blue-Rose-Coder-12.3B-Instruct-Q8_0-GGUF --hf-file blue-rose-coder-12.3b-instruct-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo win10/Blue-Rose-Coder-12.3B-Instruct-Q8_0-GGUF --hf-file blue-rose-coder-12.3b-instruct-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo win10/Blue-Rose-Coder-12.3B-Instruct-Q8_0-GGUF --hf-file blue-rose-coder-12.3b-instruct-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo win10/Blue-Rose-Coder-12.3B-Instruct-Q8_0-GGUF --hf-file blue-rose-coder-12.3b-instruct-q8_0.gguf -c 2048 ```
NESPED-GEN/TinyLlama-text2SQL-alias
NESPED-GEN
2024-11-11T00:31:48Z
139
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-11T00:30:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ImranzamanML/arabert_finetuned_model
ImranzamanML
2024-11-11T00:27:41Z
106
0
transformers
[ "transformers", "safetensors", "bert", "feature-extraction", "arxiv:1910.09700", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2024-11-11T00:27:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
featherless-ai-quants/AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-GGUF
featherless-ai-quants
2024-11-11T00:17:48Z
17
0
null
[ "gguf", "text-generation", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-11T00:05:32Z
--- base_model: AIGym/Llama-3-8B-Instruct-Gradient-1048k-Agent pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # AIGym/Llama-3-8B-Instruct-Gradient-1048k-Agent GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-GGUF/blob/main/AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-GGUF/blob/main/AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-GGUF/blob/main/AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-GGUF/blob/main/AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-GGUF/blob/main/AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-GGUF/blob/main/AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-GGUF/blob/main/AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-GGUF/blob/main/AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-GGUF/blob/main/AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-GGUF/blob/main/AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-GGUF/blob/main/AIGym-Llama-3-8B-Instruct-Gradient-1048k-Agent-Q8_0.gguf) | 8145.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
mav23/SecurityLLM-GGUF
mav23
2024-11-11T00:17:20Z
90
0
transformers
[ "transformers", "gguf", "security", "cybersecwithai", "threat", "vulnerability", "infosec", "zysec.ai", "cyber security", "ai4security", "llmsecurity", "cyber", "malware analysis", "exploitdev", "ai4good", "aisecurity", "cybersec", "cybersecurity", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-10T23:27:14Z
--- library_name: transformers license: apache-2.0 tags: - security - cybersecwithai - threat - vulnerability - infosec - zysec.ai - cyber security - ai4security - llmsecurity - cyber - malware analysis - exploitdev - ai4good - aisecurity - threat - cybersec - cybersecurity --- # ZySec-7B ZySec-7B, stands as a pivotal innovation for security professionals, leveraging the advanced capabilities of HuggingFace's Zephyr language model series. This AI model is crafted to be an omnipresent cybersecurity ally, offering on-demand, expert guidance in cybersecurity issues. Picture ZySec-7B as an ever-present digital teammate, adept at navigating the complexities of security challenges. The efficacy of ZySec-7B lies in its comprehensive training across numerous cybersecurity fields, providing a deep and wide-ranging understanding of the sector. ZySec is developed using the DPO technique, utilizing a varied dataset encompassing critical topics such as: - Sophisticated areas like Attack Surface Threats, Cloud Security, and the Cyber Kill Chain. - Key compliance and regulatory frameworks, including CIS Controls, FedRAMP, PCI DSS, and ISO/IEC 27001. - Practical aspects like Cloud Secure Migration, Data Exfiltration Techniques, and Security Incident Handling. - Crucial strategic fields such as Security Governance, Risk Management, and Security Architecture Review. ZySec-7B's training spans over 30 unique domains, each enriched with thousands of data points, delivering unparalleled expertise. As the first of its kind in an open-source, AI-driven cybersecurity series, ZySec-7B transcends the conventional role of a support tool, redefining organizational security approaches. Its open-source nature not only invites community contributions but also enhances its flexibility and transparency in managing vast cybersecurity data. ZySec-7B is instrumental in providing vital, actionable insights for strategic decision-making and advanced risk management. More than a mere software, ZySec-7B is a community-enhanced strategic tool, equipping your team to proactively confront and stay ahead of the dynamic landscape of cyber threats and regulatory demands. # For suggestions please use [Road Map](https://zysec-ai.productlift.dev/t/roadmap) <img src="https://huggingface.co/aihub-app/ZySec-7B-v1/resolve/main/ZySec-7B-dataset-composition.png?download=true" alt="Dataset Distribution" width="90%"/> Details of dataset distribution here - [Dataset Distribution](https://huggingface.co/aihub-app/ZySec-7B/resolve/main/ZySec-7B-dataset-composition.png?download=true) Fully compatible with [LM Studio](https://lmstudio.ai). Search for β€œZysec” and here is what you get. Here is a sample output of ZySec writing email to John about database security using LM Studio: <img src="https://huggingface.co/aihub-app/ZySec-7B-v1/resolve/main/sample-output.png" alt="Sample Output" width="90%"/> --- The training is funded by [ZySec AI](https://www.zysec.app), the mobile app for Cyber Security professionals. Official GGUF version is hosted here - [ZySec-7B-v1-GGUF on HuggingFace](https://huggingface.co/aihub-app/ZySec-7B-v1-GGUF) ## [ZySec AI: Unleashing the Potential of the ZySec Series Model](https://github.com/ZySec-AI/ZySec) Project ZySec, an integral part of ZySec AI, stands at the forefront of integrating Artificial Intelligence into Cybersecurity. Centered around the innovative ZySec 7B model, it's designed to revolutionize the cybersecurity landscape with AI-driven solutions. ZySec AI isn't just a tool, it's a transformative approach, blending AI's cutting-edge capabilities with the unique intricacies of cybersecurity, while ensuring privacy and security. ### Discover the Key Features of Project ZySec - **AI-Driven Cybersecurity:** Tap into the power of the ZySec 7B model, a bespoke AI solution fine-tuned for cybersecurity. - **24/7 Expert Assistance:** Benefit from round-the-clock support and expert advice, guaranteeing smooth operations during any SOC shift. - **Efficient Playbook Access:** Streamline your workflow with quick and easy access to playbooks and documents, enhancing information retrieval. - **Standards Explorer:** Navigate various standards with ease, akin to a seasoned expert's proficiency. - **Ongoing Internet Research:** Leverage AI-enabled, thorough internet research for exhaustive insights. (Note: Internet use is optional and specific to this feature). ### About Project ZySec by ZySec AI ZySec AI an opensource project with a vision towards fusioning of Cybersecurity with Artificial Intelligence. Our goal is to transform the way security professionals engage with technology. More than a mere tool, ZySec AI symbolizes a comprehensive strategy to augment security operations, merging the innovative essence of AI with cybersecurity's distinctive challenges, always ensuring privacy and security. https://github.com/ZySec-AI/ZySec ### The ZySec Roadmap https://github.com/ZySec-AI/.github/blob/main/roadmap.md
NESPED-GEN/TinyLlama-text2SQL-indentacao
NESPED-GEN
2024-11-11T00:13:21Z
139
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-11T00:11:26Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
featherless-ai-quants/Ja-ck-llama-2-13b-DPO-Y24-v2-GGUF
featherless-ai-quants
2024-11-11T00:11:11Z
9
0
null
[ "gguf", "text-generation", "base_model:Ja-ck/llama-2-13b-DPO-Y24-v2", "base_model:quantized:Ja-ck/llama-2-13b-DPO-Y24-v2", "endpoints_compatible", "region:us" ]
text-generation
2024-11-10T23:52:13Z
--- base_model: Ja-ck/llama-2-13b-DPO-Y24-v2 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # Ja-ck/llama-2-13b-DPO-Y24-v2 GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [Ja-ck-llama-2-13b-DPO-Y24-v2-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/Ja-ck-llama-2-13b-DPO-Y24-v2-GGUF/blob/main/Ja-ck-llama-2-13b-DPO-Y24-v2-IQ4_XS.gguf) | 6694.33 MB | | Q2_K | [Ja-ck-llama-2-13b-DPO-Y24-v2-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/Ja-ck-llama-2-13b-DPO-Y24-v2-GGUF/blob/main/Ja-ck-llama-2-13b-DPO-Y24-v2-Q2_K.gguf) | 4629.39 MB | | Q3_K_L | [Ja-ck-llama-2-13b-DPO-Y24-v2-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/Ja-ck-llama-2-13b-DPO-Y24-v2-GGUF/blob/main/Ja-ck-llama-2-13b-DPO-Y24-v2-Q3_K_L.gguf) | 6608.54 MB | | Q3_K_M | [Ja-ck-llama-2-13b-DPO-Y24-v2-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/Ja-ck-llama-2-13b-DPO-Y24-v2-GGUF/blob/main/Ja-ck-llama-2-13b-DPO-Y24-v2-Q3_K_M.gguf) | 6044.17 MB | | Q3_K_S | [Ja-ck-llama-2-13b-DPO-Y24-v2-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/Ja-ck-llama-2-13b-DPO-Y24-v2-GGUF/blob/main/Ja-ck-llama-2-13b-DPO-Y24-v2-Q3_K_S.gguf) | 5396.82 MB | | Q4_K_M | [Ja-ck-llama-2-13b-DPO-Y24-v2-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/Ja-ck-llama-2-13b-DPO-Y24-v2-GGUF/blob/main/Ja-ck-llama-2-13b-DPO-Y24-v2-Q4_K_M.gguf) | 7501.56 MB | | Q4_K_S | [Ja-ck-llama-2-13b-DPO-Y24-v2-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/Ja-ck-llama-2-13b-DPO-Y24-v2-GGUF/blob/main/Ja-ck-llama-2-13b-DPO-Y24-v2-Q4_K_S.gguf) | 7079.30 MB | | Q5_K_M | [Ja-ck-llama-2-13b-DPO-Y24-v2-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/Ja-ck-llama-2-13b-DPO-Y24-v2-GGUF/blob/main/Ja-ck-llama-2-13b-DPO-Y24-v2-Q5_K_M.gguf) | 8802.34 MB | | Q5_K_S | [Ja-ck-llama-2-13b-DPO-Y24-v2-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/Ja-ck-llama-2-13b-DPO-Y24-v2-GGUF/blob/main/Ja-ck-llama-2-13b-DPO-Y24-v2-Q5_K_S.gguf) | 8556.64 MB | | Q6_K | [Ja-ck-llama-2-13b-DPO-Y24-v2-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/Ja-ck-llama-2-13b-DPO-Y24-v2-GGUF/blob/main/Ja-ck-llama-2-13b-DPO-Y24-v2-Q6_K.gguf) | 10184.42 MB | | Q8_0 | [Ja-ck-llama-2-13b-DPO-Y24-v2-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/Ja-ck-llama-2-13b-DPO-Y24-v2-GGUF/blob/main/Ja-ck-llama-2-13b-DPO-Y24-v2-Q8_0.gguf) | 13190.57 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
Yumeng-Liu/YumengBot
Yumeng-Liu
2024-11-11T00:05:42Z
140
1
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "conversational", "en", "arxiv:1910.09700", "base_model:microsoft/DialoGPT-small", "base_model:finetune:microsoft/DialoGPT-small", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-11T00:04:00Z
--- library_name: transformers license: mit language: - en base_model: - microsoft/DialoGPT-small --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** Yumeng Liu - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
HZDR-FWGEL/UCD-CLCD256-A2Net
HZDR-FWGEL
2024-11-11T00:05:23Z
5
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2024-11-11T00:05:19Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Library: [More Information Needed] - Docs: [More Information Needed]
NESPED-GEN/TinyLlama-text2SQL-v0
NESPED-GEN
2024-11-11T00:05:19Z
139
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-11T00:03:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MrFx/wav2vec2-large-xls-r-300m-turkish-colab
MrFx
2024-11-11T00:03:04Z
105
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-11-10T18:20:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/abhishek_-_hepu-o4zf-ravz-7-0-gguf
RichardErkhov
2024-11-11T00:02:51Z
5
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-10T21:50:12Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) hepu-o4zf-ravz-7-0 - GGUF - Model creator: https://huggingface.co/abhishek/ - Original model: https://huggingface.co/abhishek/hepu-o4zf-ravz-7-0/ | Name | Quant method | Size | | ---- | ---- | ---- | | [hepu-o4zf-ravz-7-0.Q2_K.gguf](https://huggingface.co/RichardErkhov/abhishek_-_hepu-o4zf-ravz-7-0-gguf/blob/main/hepu-o4zf-ravz-7-0.Q2_K.gguf) | Q2_K | 2.53GB | | [hepu-o4zf-ravz-7-0.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/abhishek_-_hepu-o4zf-ravz-7-0-gguf/blob/main/hepu-o4zf-ravz-7-0.Q3_K_S.gguf) | Q3_K_S | 2.95GB | | [hepu-o4zf-ravz-7-0.Q3_K.gguf](https://huggingface.co/RichardErkhov/abhishek_-_hepu-o4zf-ravz-7-0-gguf/blob/main/hepu-o4zf-ravz-7-0.Q3_K.gguf) | Q3_K | 3.28GB | | [hepu-o4zf-ravz-7-0.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/abhishek_-_hepu-o4zf-ravz-7-0-gguf/blob/main/hepu-o4zf-ravz-7-0.Q3_K_M.gguf) | Q3_K_M | 3.28GB | | [hepu-o4zf-ravz-7-0.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/abhishek_-_hepu-o4zf-ravz-7-0-gguf/blob/main/hepu-o4zf-ravz-7-0.Q3_K_L.gguf) | Q3_K_L | 3.56GB | | [hepu-o4zf-ravz-7-0.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/abhishek_-_hepu-o4zf-ravz-7-0-gguf/blob/main/hepu-o4zf-ravz-7-0.IQ4_XS.gguf) | IQ4_XS | 3.67GB | | [hepu-o4zf-ravz-7-0.Q4_0.gguf](https://huggingface.co/RichardErkhov/abhishek_-_hepu-o4zf-ravz-7-0-gguf/blob/main/hepu-o4zf-ravz-7-0.Q4_0.gguf) | Q4_0 | 3.83GB | | [hepu-o4zf-ravz-7-0.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/abhishek_-_hepu-o4zf-ravz-7-0-gguf/blob/main/hepu-o4zf-ravz-7-0.IQ4_NL.gguf) | IQ4_NL | 3.87GB | | [hepu-o4zf-ravz-7-0.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/abhishek_-_hepu-o4zf-ravz-7-0-gguf/blob/main/hepu-o4zf-ravz-7-0.Q4_K_S.gguf) | Q4_K_S | 3.86GB | | [hepu-o4zf-ravz-7-0.Q4_K.gguf](https://huggingface.co/RichardErkhov/abhishek_-_hepu-o4zf-ravz-7-0-gguf/blob/main/hepu-o4zf-ravz-7-0.Q4_K.gguf) | Q4_K | 4.07GB | | [hepu-o4zf-ravz-7-0.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/abhishek_-_hepu-o4zf-ravz-7-0-gguf/blob/main/hepu-o4zf-ravz-7-0.Q4_K_M.gguf) | Q4_K_M | 4.07GB | | [hepu-o4zf-ravz-7-0.Q4_1.gguf](https://huggingface.co/RichardErkhov/abhishek_-_hepu-o4zf-ravz-7-0-gguf/blob/main/hepu-o4zf-ravz-7-0.Q4_1.gguf) | Q4_1 | 4.24GB | | [hepu-o4zf-ravz-7-0.Q5_0.gguf](https://huggingface.co/RichardErkhov/abhishek_-_hepu-o4zf-ravz-7-0-gguf/blob/main/hepu-o4zf-ravz-7-0.Q5_0.gguf) | Q5_0 | 4.65GB | | [hepu-o4zf-ravz-7-0.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/abhishek_-_hepu-o4zf-ravz-7-0-gguf/blob/main/hepu-o4zf-ravz-7-0.Q5_K_S.gguf) | Q5_K_S | 4.65GB | | [hepu-o4zf-ravz-7-0.Q5_K.gguf](https://huggingface.co/RichardErkhov/abhishek_-_hepu-o4zf-ravz-7-0-gguf/blob/main/hepu-o4zf-ravz-7-0.Q5_K.gguf) | Q5_K | 4.78GB | | [hepu-o4zf-ravz-7-0.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/abhishek_-_hepu-o4zf-ravz-7-0-gguf/blob/main/hepu-o4zf-ravz-7-0.Q5_K_M.gguf) | Q5_K_M | 4.78GB | | [hepu-o4zf-ravz-7-0.Q5_1.gguf](https://huggingface.co/RichardErkhov/abhishek_-_hepu-o4zf-ravz-7-0-gguf/blob/main/hepu-o4zf-ravz-7-0.Q5_1.gguf) | Q5_1 | 5.07GB | | [hepu-o4zf-ravz-7-0.Q6_K.gguf](https://huggingface.co/RichardErkhov/abhishek_-_hepu-o4zf-ravz-7-0-gguf/blob/main/hepu-o4zf-ravz-7-0.Q6_K.gguf) | Q6_K | 5.53GB | | [hepu-o4zf-ravz-7-0.Q8_0.gguf](https://huggingface.co/RichardErkhov/abhishek_-_hepu-o4zf-ravz-7-0-gguf/blob/main/hepu-o4zf-ravz-7-0.Q8_0.gguf) | Q8_0 | 7.17GB | Original model description: --- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
BenevolenceMessiah/Qwen2.5-Coder-7B-3x-Instruct-TIES-v1.2
BenevolenceMessiah
2024-11-11T00:02:34Z
6
2
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "arxiv:2306.01708", "base_model:BenevolenceMessiah/Qwen2.5-Coder-7B-Chat-Instruct-TIES-v1.2", "base_model:merge:BenevolenceMessiah/Qwen2.5-Coder-7B-Chat-Instruct-TIES-v1.2", "base_model:MadeAgents/Hammer2.0-7b", "base_model:merge:MadeAgents/Hammer2.0-7b", "base_model:Qwen/Qwen2.5-Coder-7B", "base_model:merge:Qwen/Qwen2.5-Coder-7B", "base_model:huihui-ai/Qwen2.5-Coder-7B-Instruct-abliterated", "base_model:merge:huihui-ai/Qwen2.5-Coder-7B-Instruct-abliterated", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-10T23:58:21Z
--- base_model: - BenevolenceMessiah/Qwen2.5-Coder-7B-Chat-Instruct-TIES-v1.2 - Qwen/Qwen2.5-Coder-7B - MadeAgents/Hammer2.0-7b - huihui-ai/Qwen2.5-Coder-7B-Instruct-abliterated library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [Qwen/Qwen2.5-Coder-7B](https://huggingface.co/Qwen/Qwen2.5-Coder-7B) as a base. ### Models Merged The following models were included in the merge: * [BenevolenceMessiah/Qwen2.5-Coder-7B-Chat-Instruct-TIES-v1.2](https://huggingface.co/BenevolenceMessiah/Qwen2.5-Coder-7B-Chat-Instruct-TIES-v1.2) * [MadeAgents/Hammer2.0-7b](https://huggingface.co/MadeAgents/Hammer2.0-7b) * [huihui-ai/Qwen2.5-Coder-7B-Instruct-abliterated](https://huggingface.co/huihui-ai/Qwen2.5-Coder-7B-Instruct-abliterated) ### Configuration The following YAML configuration was used to produce this model: ```yaml # Qwen2.5-Coder-7B-3x-Instruct-TIES-v1.2 models: - model: huihui-ai/Qwen2.5-Coder-7B-Instruct-abliterated parameters: density: 1.0 weight: 1.0 - model: MadeAgents/Hammer2.0-7b parameters: density: 1.0 weight: 1.0 - model: BenevolenceMessiah/Qwen2.5-Coder-7B-Chat-Instruct-TIES-v1.2 # Reflecting Update 11/9/2024 parameters: density: 1.0 weight: 1.0 merge_method: ties base_model: Qwen/Qwen2.5-Coder-7B # Reflecting Update 11/9/2024 parameters: normalize: true int8_mask: false dtype: bfloat16 tokenizer_source: union ```
mradermacher/RTLCoder-v1.1-GGUF
mradermacher
2024-11-10T23:50:09Z
21
0
transformers
[ "transformers", "gguf", "en", "base_model:ishorn5/RTLCoder-v1.1", "base_model:quantized:ishorn5/RTLCoder-v1.1", "endpoints_compatible", "region:us" ]
null
2024-11-09T19:11:43Z
--- base_model: ishorn5/RTLCoder-v1.1 language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/ishorn5/RTLCoder-v1.1 <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/RTLCoder-v1.1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/RTLCoder-v1.1-GGUF/resolve/main/RTLCoder-v1.1.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/RTLCoder-v1.1-GGUF/resolve/main/RTLCoder-v1.1.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/RTLCoder-v1.1-GGUF/resolve/main/RTLCoder-v1.1.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/RTLCoder-v1.1-GGUF/resolve/main/RTLCoder-v1.1.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/RTLCoder-v1.1-GGUF/resolve/main/RTLCoder-v1.1.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/RTLCoder-v1.1-GGUF/resolve/main/RTLCoder-v1.1.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/RTLCoder-v1.1-GGUF/resolve/main/RTLCoder-v1.1.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/RTLCoder-v1.1-GGUF/resolve/main/RTLCoder-v1.1.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/RTLCoder-v1.1-GGUF/resolve/main/RTLCoder-v1.1.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/RTLCoder-v1.1-GGUF/resolve/main/RTLCoder-v1.1.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/RTLCoder-v1.1-GGUF/resolve/main/RTLCoder-v1.1.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/RTLCoder-v1.1-GGUF/resolve/main/RTLCoder-v1.1.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/RTLCoder-v1.1-GGUF/resolve/main/RTLCoder-v1.1.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
TingChen-ppmc/whisper-small-shanghai-tts-vc-0.0-1.0
TingChen-ppmc
2024-11-10T23:49:31Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-08-05T17:04:45Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
featherless-ai-quants/Epiculous-Crimson_Dawn-v0.2-GGUF
featherless-ai-quants
2024-11-10T23:41:54Z
6
0
null
[ "gguf", "text-generation", "base_model:Epiculous/Crimson_Dawn-v0.2", "base_model:quantized:Epiculous/Crimson_Dawn-v0.2", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-10T23:26:13Z
--- base_model: Epiculous/Crimson_Dawn-v0.2 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # Epiculous/Crimson_Dawn-v0.2 GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [Epiculous-Crimson_Dawn-v0.2-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/Epiculous-Crimson_Dawn-v0.2-GGUF/blob/main/Epiculous-Crimson_Dawn-v0.2-IQ4_XS.gguf) | 6485.04 MB | | Q2_K | [Epiculous-Crimson_Dawn-v0.2-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/Epiculous-Crimson_Dawn-v0.2-GGUF/blob/main/Epiculous-Crimson_Dawn-v0.2-Q2_K.gguf) | 4569.10 MB | | Q3_K_L | [Epiculous-Crimson_Dawn-v0.2-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/Epiculous-Crimson_Dawn-v0.2-GGUF/blob/main/Epiculous-Crimson_Dawn-v0.2-Q3_K_L.gguf) | 6257.54 MB | | Q3_K_M | [Epiculous-Crimson_Dawn-v0.2-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/Epiculous-Crimson_Dawn-v0.2-GGUF/blob/main/Epiculous-Crimson_Dawn-v0.2-Q3_K_M.gguf) | 5801.29 MB | | Q3_K_S | [Epiculous-Crimson_Dawn-v0.2-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/Epiculous-Crimson_Dawn-v0.2-GGUF/blob/main/Epiculous-Crimson_Dawn-v0.2-Q3_K_S.gguf) | 5277.85 MB | | Q4_K_M | [Epiculous-Crimson_Dawn-v0.2-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/Epiculous-Crimson_Dawn-v0.2-GGUF/blob/main/Epiculous-Crimson_Dawn-v0.2-Q4_K_M.gguf) | 7130.82 MB | | Q4_K_S | [Epiculous-Crimson_Dawn-v0.2-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/Epiculous-Crimson_Dawn-v0.2-GGUF/blob/main/Epiculous-Crimson_Dawn-v0.2-Q4_K_S.gguf) | 6790.35 MB | | Q5_K_M | [Epiculous-Crimson_Dawn-v0.2-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/Epiculous-Crimson_Dawn-v0.2-GGUF/blob/main/Epiculous-Crimson_Dawn-v0.2-Q5_K_M.gguf) | 8323.32 MB | | Q5_K_S | [Epiculous-Crimson_Dawn-v0.2-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/Epiculous-Crimson_Dawn-v0.2-GGUF/blob/main/Epiculous-Crimson_Dawn-v0.2-Q5_K_S.gguf) | 8124.10 MB | | Q6_K | [Epiculous-Crimson_Dawn-v0.2-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/Epiculous-Crimson_Dawn-v0.2-GGUF/blob/main/Epiculous-Crimson_Dawn-v0.2-Q6_K.gguf) | 9590.35 MB | | Q8_0 | [Epiculous-Crimson_Dawn-v0.2-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/Epiculous-Crimson_Dawn-v0.2-GGUF/blob/main/Epiculous-Crimson_Dawn-v0.2-Q8_0.gguf) | 12419.10 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
mradermacher/Qwen2.5-7B-Instruct-Ja-SFT-GGUF
mradermacher
2024-11-10T23:39:14Z
51
1
transformers
[ "transformers", "gguf", "ja", "en", "base_model:jaeyong2/Qwen2.5-7B-Instruct-Ja-SFT", "base_model:quantized:jaeyong2/Qwen2.5-7B-Instruct-Ja-SFT", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-10T21:03:55Z
--- base_model: jaeyong2/Qwen2.5-7B-Instruct-Ja-SFT language: - ja - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/jaeyong2/Qwen2.5-7B-Instruct-Ja-SFT <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-Ja-SFT-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-Ja-SFT-GGUF/resolve/main/Qwen2.5-7B-Instruct-Ja-SFT.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-Ja-SFT-GGUF/resolve/main/Qwen2.5-7B-Instruct-Ja-SFT.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-Ja-SFT-GGUF/resolve/main/Qwen2.5-7B-Instruct-Ja-SFT.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-Ja-SFT-GGUF/resolve/main/Qwen2.5-7B-Instruct-Ja-SFT.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-Ja-SFT-GGUF/resolve/main/Qwen2.5-7B-Instruct-Ja-SFT.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-Ja-SFT-GGUF/resolve/main/Qwen2.5-7B-Instruct-Ja-SFT.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.5 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-Ja-SFT-GGUF/resolve/main/Qwen2.5-7B-Instruct-Ja-SFT.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-Ja-SFT-GGUF/resolve/main/Qwen2.5-7B-Instruct-Ja-SFT.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-Ja-SFT-GGUF/resolve/main/Qwen2.5-7B-Instruct-Ja-SFT.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-Ja-SFT-GGUF/resolve/main/Qwen2.5-7B-Instruct-Ja-SFT.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-Ja-SFT-GGUF/resolve/main/Qwen2.5-7B-Instruct-Ja-SFT.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-Ja-SFT-GGUF/resolve/main/Qwen2.5-7B-Instruct-Ja-SFT.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-Ja-SFT-GGUF/resolve/main/Qwen2.5-7B-Instruct-Ja-SFT.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
galihmuridan/bert-finetuned-ner
galihmuridan
2024-11-10T23:26:52Z
107
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-11-10T21:45:20Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2296 - Precision: 0.5054 - Recall: 0.6759 - F1: 0.5783 - Accuracy: 0.9451 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 249 | 0.2173 | 0.4481 | 0.6481 | 0.5299 | 0.9389 | | No log | 2.0 | 498 | 0.2152 | 0.5196 | 0.6543 | 0.5792 | 0.9472 | | 0.183 | 3.0 | 747 | 0.2296 | 0.5054 | 0.6759 | 0.5783 | 0.9451 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
mav23/Maral-7B-alpha-1-GGUF
mav23
2024-11-10T23:23:50Z
42
0
transformers
[ "transformers", "gguf", "en", "fa", "dataset:sinarashidi/alpaca-persian", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-11-10T22:33:01Z
--- license: mit datasets: - sinarashidi/alpaca-persian language: - en - fa library_name: transformers --- # Maral 7B Alpha 1 <p align="center"> <img src="maral-7b-announce.png" width=256 height=256 /> </p> ## What is Maral? _Maral_ is just a new large lanugage model, specializing on the Persian language. This model is based on [Mistral](https://huggingface.co/mistralai/Mistral-7B-v0.1) and trained an _Alpaca Persian_ dataset. This model is one of the few efforts in Persian speaking scene in order to bring our language to a new life in the era of AI. Also, since Maral is based on Mistral, it's capable of producing English answers as well. ### What does "Maral" mean? Maral is the Persian name of [Red Deer](https://en.wikipedia.org/wiki/Red_deer), which is a native species of deers in Iran. The name has chosen for quite a few reasons, one of them is that the environmental concerns we have and second, since it's a Persian LLM, made by Iranian people, it deserves an Iranian name. ## Inference ### Prompt Format This model requires _Guanaco_ format, which is like this: ``` ### Human: <prompt> ### Assistant: <answer> ``` So in your code, you may write prompts like this: ```python prompt = "Ψ―Ψ± Ψ³Ψ§Ω„ Ϋ±ΫΉΫΉΫΆ Ϊ†Ω‡ کسی رییس Ψ¬Ω…Ω‡ΩˆΨ± Ψ’Ω…Ψ±ΫŒΪ©Ψ§ بود؟" prompt = f"### Human:{prompt}\n### Assistant:" ``` More information about this on the inference sections. ### 4 bit Quantization If you want to use 4 bit quantization, we have a PEFT for you [here](https://huggingface.co/MaralGPT/MaralGPT-Mistral-7B-v-0-1). Also, you can find _Google Colab_ notebooks [here](https://github.com/prp-e/maralgpt). ### Installing Libraries ```pip install transformers accelerate bitsandbytes``` _NOTE_: `bitsandbytes` library is only needed for 8 bit version. Otherwise, it's not necessary. ### Inference on a big GPU If you have a big enough GPU like an A100 in your posession, this code is for you. ```python from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig import torch model_name_or_id = "MaralGPT/Maral-7B-alpha-1" model = AutoModelForCausalLM.from_pretrained(model_name_or_id, torch_dtype=torch.bfloat16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_name_or_id) prompt = "Ψ―Ψ± Ψ³Ψ§Ω„ Ϋ±ΫΉΫΉΫΆ Ϊ†Ω‡ کسی رییس Ψ¬Ω…Ω‡ΩˆΨ± Ψ’Ω…Ψ±ΫŒΪ©Ψ§ بود؟" prompt = f"### Human:{prompt}\n### Assistant:" inputs = tokenizer(prompt, return_tensors="pt").to("cuda") generation_config = GenerationConfig( do_sample=True, top_k=1, temperature=0.5, max_new_tokens=300, pad_token_id=tokenizer.eos_token_id ) outputs = model.generate(**inputs, generation_config=generation_config) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ### Inference on a small GPU (Consumer Hardware/Free Colab) The code is pretty much the same as above, but with a slight diferrence. * Make sure `bitsandbytes` is installed correctly. * Your model loading must be `model = AutoModelForCausalLM.from_pretrained(model_name_or_id, load_in_8bit=True, torch_dtype=torch.bfloat16, device_map="auto")` On _free version_ of Google Colab, you may face RAM problems. I guess using `low_cpu_mem_usage=True` in model loading would help. ## Known Issues * The model produces GPT-3.5 level answers in terms of grammar (specially Persian) but is capable of extremely insane hallucinations. This problem can be solved by a better dataset and better training procedures (such as DPO). * According to the previous issue, the model can also generate misinforming answers specially when dealing with _reasoning_ problems in Persian. * The model is huge, so it requires a lot of resources in order to work correctly. However, we may provide _GPTQ_ or _GGUF_ versions as well. * The prompt format works and it proves our concept of a _instruct following_ LLM, but since we haven't changed `eos_token` and `bos_token` to our own, you may see unncessary information being generated by the model. * According to the previous issue, the model is capable of repeating itself. To solve this problem _temporarily_ you have to keep temperature below 1. According to our tests somewhere between 0.5 to 0.7 is a sweet spot. ## Our Team * Muhammadreza Haghiri ([Website](https://haghiri75.com/en) - [Github](https://github.com/prp-e) - [LinkedIn](https://www.linkedin.com/in/muhammadreza-haghiri-1761325b)) * Mahi Mohrechi ([Website](https://mohrechi-portfolio.vercel.app/) - [Github](https://github.com/f-mohrechi) - [LinkedIn](https://www.linkedin.com/in/faeze-mohrechi/)) ## Special Thanks * Mistral Team for providing the best open source base model ever. * _Sina Rashidi_, who translated Alpaca dataset to Persian. * [Jupyto](https://jupyto.com) team for providing our infrastructure.
mradermacher/Qwen2.5-7B-Instruct-SEALONG-GGUF
mradermacher
2024-11-10T23:20:10Z
62
1
transformers
[ "transformers", "gguf", "en", "base_model:Siheng99/Qwen2.5-7B-Instruct-SEALONG", "base_model:quantized:Siheng99/Qwen2.5-7B-Instruct-SEALONG", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-10T20:48:24Z
--- base_model: Siheng99/Qwen2.5-7B-Instruct-SEALONG language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Siheng99/Qwen2.5-7B-Instruct-SEALONG <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-SEALONG-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-SEALONG-GGUF/resolve/main/Qwen2.5-7B-Instruct-SEALONG.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-SEALONG-GGUF/resolve/main/Qwen2.5-7B-Instruct-SEALONG.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-SEALONG-GGUF/resolve/main/Qwen2.5-7B-Instruct-SEALONG.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-SEALONG-GGUF/resolve/main/Qwen2.5-7B-Instruct-SEALONG.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-SEALONG-GGUF/resolve/main/Qwen2.5-7B-Instruct-SEALONG.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-SEALONG-GGUF/resolve/main/Qwen2.5-7B-Instruct-SEALONG.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.5 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-SEALONG-GGUF/resolve/main/Qwen2.5-7B-Instruct-SEALONG.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-SEALONG-GGUF/resolve/main/Qwen2.5-7B-Instruct-SEALONG.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-SEALONG-GGUF/resolve/main/Qwen2.5-7B-Instruct-SEALONG.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-SEALONG-GGUF/resolve/main/Qwen2.5-7B-Instruct-SEALONG.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-SEALONG-GGUF/resolve/main/Qwen2.5-7B-Instruct-SEALONG.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-SEALONG-GGUF/resolve/main/Qwen2.5-7B-Instruct-SEALONG.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-7B-Instruct-SEALONG-GGUF/resolve/main/Qwen2.5-7B-Instruct-SEALONG.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/RuDolph-Hermes-7B-i1-GGUF
mradermacher
2024-11-10T23:19:12Z
368
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:theprint/RuDolph-Hermes-7B", "base_model:quantized:theprint/RuDolph-Hermes-7B", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-10T20:28:36Z
--- base_model: theprint/RuDolph-Hermes-7B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/theprint/RuDolph-Hermes-7B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/RuDolph-Hermes-7B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/RuDolph-Hermes-7B-i1-GGUF/resolve/main/RuDolph-Hermes-7B.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/RuDolph-Hermes-7B-i1-GGUF/resolve/main/RuDolph-Hermes-7B.i1-IQ1_M.gguf) | i1-IQ1_M | 1.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/RuDolph-Hermes-7B-i1-GGUF/resolve/main/RuDolph-Hermes-7B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/RuDolph-Hermes-7B-i1-GGUF/resolve/main/RuDolph-Hermes-7B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/RuDolph-Hermes-7B-i1-GGUF/resolve/main/RuDolph-Hermes-7B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/RuDolph-Hermes-7B-i1-GGUF/resolve/main/RuDolph-Hermes-7B.i1-IQ2_M.gguf) | i1-IQ2_M | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/RuDolph-Hermes-7B-i1-GGUF/resolve/main/RuDolph-Hermes-7B.i1-Q2_K.gguf) | i1-Q2_K | 2.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/RuDolph-Hermes-7B-i1-GGUF/resolve/main/RuDolph-Hermes-7B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/RuDolph-Hermes-7B-i1-GGUF/resolve/main/RuDolph-Hermes-7B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/RuDolph-Hermes-7B-i1-GGUF/resolve/main/RuDolph-Hermes-7B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/RuDolph-Hermes-7B-i1-GGUF/resolve/main/RuDolph-Hermes-7B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/RuDolph-Hermes-7B-i1-GGUF/resolve/main/RuDolph-Hermes-7B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/RuDolph-Hermes-7B-i1-GGUF/resolve/main/RuDolph-Hermes-7B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/RuDolph-Hermes-7B-i1-GGUF/resolve/main/RuDolph-Hermes-7B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/RuDolph-Hermes-7B-i1-GGUF/resolve/main/RuDolph-Hermes-7B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/RuDolph-Hermes-7B-i1-GGUF/resolve/main/RuDolph-Hermes-7B.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/RuDolph-Hermes-7B-i1-GGUF/resolve/main/RuDolph-Hermes-7B.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.2 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/RuDolph-Hermes-7B-i1-GGUF/resolve/main/RuDolph-Hermes-7B.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.2 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/RuDolph-Hermes-7B-i1-GGUF/resolve/main/RuDolph-Hermes-7B.i1-Q4_0.gguf) | i1-Q4_0 | 4.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/RuDolph-Hermes-7B-i1-GGUF/resolve/main/RuDolph-Hermes-7B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/RuDolph-Hermes-7B-i1-GGUF/resolve/main/RuDolph-Hermes-7B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/RuDolph-Hermes-7B-i1-GGUF/resolve/main/RuDolph-Hermes-7B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/RuDolph-Hermes-7B-i1-GGUF/resolve/main/RuDolph-Hermes-7B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/RuDolph-Hermes-7B-i1-GGUF/resolve/main/RuDolph-Hermes-7B.i1-Q6_K.gguf) | i1-Q6_K | 6.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/orca_mini_v3_13b-GGUF
mradermacher
2024-11-10T23:03:18Z
34
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "psmathur/orca_mini_v3_13b", "garage-bAInd/Platypus2-13B", "WizardLM/WizardMath-13B-V1.0", "en", "base_model:Aelsharaby/orca_mini_v3_13b", "base_model:quantized:Aelsharaby/orca_mini_v3_13b", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-11-10T19:24:43Z
--- base_model: Aelsharaby/orca_mini_v3_13b language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - psmathur/orca_mini_v3_13b - garage-bAInd/Platypus2-13B - WizardLM/WizardMath-13B-V1.0 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Aelsharaby/orca_mini_v3_13b <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_13b-GGUF/resolve/main/orca_mini_v3_13b.Q2_K.gguf) | Q2_K | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_13b-GGUF/resolve/main/orca_mini_v3_13b.Q3_K_S.gguf) | Q3_K_S | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_13b-GGUF/resolve/main/orca_mini_v3_13b.Q3_K_M.gguf) | Q3_K_M | 6.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_13b-GGUF/resolve/main/orca_mini_v3_13b.Q3_K_L.gguf) | Q3_K_L | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_13b-GGUF/resolve/main/orca_mini_v3_13b.IQ4_XS.gguf) | IQ4_XS | 7.1 | | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_13b-GGUF/resolve/main/orca_mini_v3_13b.Q4_0_4_4.gguf) | Q4_0_4_4 | 7.5 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_13b-GGUF/resolve/main/orca_mini_v3_13b.Q4_K_S.gguf) | Q4_K_S | 7.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_13b-GGUF/resolve/main/orca_mini_v3_13b.Q4_K_M.gguf) | Q4_K_M | 8.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_13b-GGUF/resolve/main/orca_mini_v3_13b.Q5_K_S.gguf) | Q5_K_S | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_13b-GGUF/resolve/main/orca_mini_v3_13b.Q5_K_M.gguf) | Q5_K_M | 9.3 | | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_13b-GGUF/resolve/main/orca_mini_v3_13b.Q6_K.gguf) | Q6_K | 10.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/orca_mini_v3_13b-GGUF/resolve/main/orca_mini_v3_13b.Q8_0.gguf) | Q8_0 | 13.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
chelsiksu/marian-finetuned-kde4-en-to-fr
chelsiksu
2024-11-10T22:50:08Z
104
0
transformers
[ "transformers", "tensorboard", "safetensors", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "base_model:Helsinki-NLP/opus-mt-en-fr", "base_model:finetune:Helsinki-NLP/opus-mt-en-fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2024-11-10T21:59:04Z
--- library_name: transformers license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-fr tags: - translation - generated_from_trainer datasets: - kde4 model-index: - name: marian-finetuned-kde4-en-to-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 100 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
tanquangduong/Qwen2.5-0.5B-Instruct-TinyStories
tanquangduong
2024-11-10T22:40:56Z
140
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Qwen2.5-0.5B", "base_model:finetune:unsloth/Qwen2.5-0.5B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-11-10T22:25:01Z
--- base_model: unsloth/Qwen2.5-0.5B language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft --- # Uploaded model - **Developed by:** tanquangduong - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-0.5B This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
bartowski/Qwen2.5-Coder-32B-Instruct-GGUF
bartowski
2024-11-10T22:39:25Z
21,803
56
null
[ "gguf", "code", "codeqwen", "chat", "qwen", "qwen-coder", "text-generation", "en", "base_model:Qwen/Qwen2.5-Coder-32B-Instruct", "base_model:quantized:Qwen/Qwen2.5-Coder-32B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
text-generation
2024-11-06T19:20:14Z
--- quantized_by: bartowski pipeline_tag: text-generation language: - en license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct/blob/main/LICENSE tags: - code - codeqwen - chat - qwen - qwen-coder base_model: Qwen/Qwen2.5-Coder-32B-Instruct license: apache-2.0 --- ## Llamacpp imatrix Quantizations of Qwen2.5-Coder-32B-Instruct Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b4014">b4014</a> for quantization. Original model: https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8) Run them in [LM Studio](https://lmstudio.ai/) ## Prompt format ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Download a file (not the whole branch) from below: | Filename | Quant type | File Size | Split | Description | | -------- | ---------- | --------- | ----- | ----------- | | [Qwen2.5-Coder-32B-Instruct-Q8_0.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q8_0.gguf) | Q8_0 | 34.82GB | false | Extremely high quality, generally unneeded but max available quant. | | [Qwen2.5-Coder-32B-Instruct-Q6_K_L.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q6_K_L.gguf) | Q6_K_L | 27.26GB | false | Uses Q8_0 for embed and output weights. Very high quality, near perfect, *recommended*. | | [Qwen2.5-Coder-32B-Instruct-Q6_K.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q6_K.gguf) | Q6_K | 26.89GB | false | Very high quality, near perfect, *recommended*. | | [Qwen2.5-Coder-32B-Instruct-Q5_K_L.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q5_K_L.gguf) | Q5_K_L | 23.74GB | false | Uses Q8_0 for embed and output weights. High quality, *recommended*. | | [Qwen2.5-Coder-32B-Instruct-Q5_K_M.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q5_K_M.gguf) | Q5_K_M | 23.26GB | false | High quality, *recommended*. | | [Qwen2.5-Coder-32B-Instruct-Q5_K_S.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q5_K_S.gguf) | Q5_K_S | 22.64GB | false | High quality, *recommended*. | | [Qwen2.5-Coder-32B-Instruct-Q4_K_L.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q4_K_L.gguf) | Q4_K_L | 20.43GB | false | Uses Q8_0 for embed and output weights. Good quality, *recommended*. | | [Qwen2.5-Coder-32B-Instruct-Q4_K_M.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q4_K_M.gguf) | Q4_K_M | 19.85GB | false | Good quality, default size for most use cases, *recommended*. | | [Qwen2.5-Coder-32B-Instruct-Q4_K_S.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q4_K_S.gguf) | Q4_K_S | 18.78GB | false | Slightly lower quality with more space savings, *recommended*. | | [Qwen2.5-Coder-32B-Instruct-Q4_0.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q4_0.gguf) | Q4_0 | 18.71GB | false | Legacy format, generally not worth using over similarly sized formats | | [Qwen2.5-Coder-32B-Instruct-IQ4_NL.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-IQ4_NL.gguf) | IQ4_NL | 18.68GB | false | Similar to IQ4_XS, but slightly larger. | | [Qwen2.5-Coder-32B-Instruct-Q4_0_8_8.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q4_0_8_8.gguf) | Q4_0_8_8 | 18.64GB | false | Optimized for ARM inference. Requires 'sve' support (see link below). *Don't use on Mac or Windows*. | | [Qwen2.5-Coder-32B-Instruct-Q4_0_4_8.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q4_0_4_8.gguf) | Q4_0_4_8 | 18.64GB | false | Optimized for ARM inference. Requires 'i8mm' support (see link below). *Don't use on Mac or Windows*. | | [Qwen2.5-Coder-32B-Instruct-Q4_0_4_4.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q4_0_4_4.gguf) | Q4_0_4_4 | 18.64GB | false | Optimized for ARM inference. Should work well on all ARM chips, pick this if you're unsure. *Don't use on Mac or Windows*. | | [Qwen2.5-Coder-32B-Instruct-Q3_K_XL.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q3_K_XL.gguf) | Q3_K_XL | 17.93GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. | | [Qwen2.5-Coder-32B-Instruct-IQ4_XS.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-IQ4_XS.gguf) | IQ4_XS | 17.69GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. | | [Qwen2.5-Coder-32B-Instruct-Q3_K_L.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q3_K_L.gguf) | Q3_K_L | 17.25GB | false | Lower quality but usable, good for low RAM availability. | | [Qwen2.5-Coder-32B-Instruct-Q3_K_M.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q3_K_M.gguf) | Q3_K_M | 15.94GB | false | Low quality. | | [Qwen2.5-Coder-32B-Instruct-IQ3_M.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-IQ3_M.gguf) | IQ3_M | 14.81GB | false | Medium-low quality, new method with decent performance comparable to Q3_K_M. | | [Qwen2.5-Coder-32B-Instruct-Q3_K_S.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q3_K_S.gguf) | Q3_K_S | 14.39GB | false | Low quality, not recommended. | | [Qwen2.5-Coder-32B-Instruct-IQ3_XS.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-IQ3_XS.gguf) | IQ3_XS | 13.71GB | false | Lower quality, new method with decent performance, slightly better than Q3_K_S. | | [Qwen2.5-Coder-32B-Instruct-Q2_K_L.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q2_K_L.gguf) | Q2_K_L | 13.07GB | false | Uses Q8_0 for embed and output weights. Very low quality but surprisingly usable. | | [Qwen2.5-Coder-32B-Instruct-IQ3_XXS.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-IQ3_XXS.gguf) | IQ3_XXS | 12.84GB | false | Lower quality, new method with decent performance, comparable to Q3 quants. | | [Qwen2.5-Coder-32B-Instruct-Q2_K.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-Q2_K.gguf) | Q2_K | 12.31GB | false | Very low quality but surprisingly usable. | | [Qwen2.5-Coder-32B-Instruct-IQ2_M.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-IQ2_M.gguf) | IQ2_M | 11.26GB | false | Relatively low quality, uses SOTA techniques to be surprisingly usable. | | [Qwen2.5-Coder-32B-Instruct-IQ2_S.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-IQ2_S.gguf) | IQ2_S | 10.39GB | false | Low quality, uses SOTA techniques to be usable. | | [Qwen2.5-Coder-32B-Instruct-IQ2_XS.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-IQ2_XS.gguf) | IQ2_XS | 9.96GB | false | Low quality, uses SOTA techniques to be usable. | | [Qwen2.5-Coder-32B-Instruct-IQ2_XXS.gguf](https://huggingface.co/bartowski/Qwen2.5-Coder-32B-Instruct-GGUF/blob/main/Qwen2.5-Coder-32B-Instruct-IQ2_XXS.gguf) | IQ2_XXS | 9.03GB | false | Very low quality, uses SOTA techniques to be usable. | ## Embed/output weights Some of these quants (Q3_K_XL, Q4_K_L etc) are the standard quantization method with the embeddings and output weights quantized to Q8_0 instead of what they would normally default to. Some say that this improves the quality, others don't notice any difference. If you use these models PLEASE COMMENT with your findings. I would like feedback that these are actually used and useful so I don't keep uploading quants no one is using. Thanks! ## Downloading using huggingface-cli First, make sure you have hugginface-cli installed: ``` pip install -U "huggingface_hub[cli]" ``` Then, you can target the specific file you want: ``` huggingface-cli download bartowski/Qwen2.5-Coder-32B-Instruct-GGUF --include "Qwen2.5-Coder-32B-Instruct-Q4_K_M.gguf" --local-dir ./ ``` If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run: ``` huggingface-cli download bartowski/Qwen2.5-Coder-32B-Instruct-GGUF --include "Qwen2.5-Coder-32B-Instruct-Q8_0/*" --local-dir ./ ``` You can either specify a new local-dir (Qwen2.5-Coder-32B-Instruct-Q8_0) or download them all in place (./) ## Q4_0_X_X These are *NOT* for Metal (Apple) offloading, only ARM chips. If you're using an ARM chip, the Q4_0_X_X quants will have a substantial speedup. Check out Q4_0_4_4 speed comparisons [on the original pull request](https://github.com/ggerganov/llama.cpp/pull/5780#pullrequestreview-21657544660) To check which one would work best for your ARM chip, you can check [AArch64 SoC features](https://gpages.juszkiewicz.com.pl/arm-socs-table/arm-socs.html) (thanks EloyOn!). ## Which file should I choose? A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9) The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have. If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM. If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total. Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'. If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M. If you want to get more into the weeds, you can check out this extremely useful feature chart: [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix) But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size. These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide. The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm. ## Credits Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset. Thank you ZeroWw for the inspiration to experiment with embed/output. Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
oranne55/qualifier-model4-finetune-pretrained-transformer-for-long-inputs
oranne55
2024-11-10T22:34:23Z
109
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-10T20:26:49Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/Llama-3.1-8B-Instruct-SEALONG-i1-GGUF
mradermacher
2024-11-10T22:31:10Z
8
0
transformers
[ "transformers", "gguf", "en", "base_model:Siheng99/Llama-3.1-8B-Instruct-SEALONG", "base_model:quantized:Siheng99/Llama-3.1-8B-Instruct-SEALONG", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-10T20:28:41Z
--- base_model: Siheng99/Llama-3.1-8B-Instruct-SEALONG language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Siheng99/Llama-3.1-8B-Instruct-SEALONG <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Llama-3.1-8B-Instruct-SEALONG-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instruct-SEALONG-i1-GGUF/resolve/main/Llama-3.1-8B-Instruct-SEALONG.i1-IQ1_S.gguf) | i1-IQ1_S | 2.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instruct-SEALONG-i1-GGUF/resolve/main/Llama-3.1-8B-Instruct-SEALONG.i1-IQ1_M.gguf) | i1-IQ1_M | 2.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instruct-SEALONG-i1-GGUF/resolve/main/Llama-3.1-8B-Instruct-SEALONG.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instruct-SEALONG-i1-GGUF/resolve/main/Llama-3.1-8B-Instruct-SEALONG.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instruct-SEALONG-i1-GGUF/resolve/main/Llama-3.1-8B-Instruct-SEALONG.i1-IQ2_S.gguf) | i1-IQ2_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instruct-SEALONG-i1-GGUF/resolve/main/Llama-3.1-8B-Instruct-SEALONG.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instruct-SEALONG-i1-GGUF/resolve/main/Llama-3.1-8B-Instruct-SEALONG.i1-Q2_K.gguf) | i1-Q2_K | 3.3 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instruct-SEALONG-i1-GGUF/resolve/main/Llama-3.1-8B-Instruct-SEALONG.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instruct-SEALONG-i1-GGUF/resolve/main/Llama-3.1-8B-Instruct-SEALONG.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instruct-SEALONG-i1-GGUF/resolve/main/Llama-3.1-8B-Instruct-SEALONG.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instruct-SEALONG-i1-GGUF/resolve/main/Llama-3.1-8B-Instruct-SEALONG.i1-IQ3_S.gguf) | i1-IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instruct-SEALONG-i1-GGUF/resolve/main/Llama-3.1-8B-Instruct-SEALONG.i1-IQ3_M.gguf) | i1-IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instruct-SEALONG-i1-GGUF/resolve/main/Llama-3.1-8B-Instruct-SEALONG.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instruct-SEALONG-i1-GGUF/resolve/main/Llama-3.1-8B-Instruct-SEALONG.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instruct-SEALONG-i1-GGUF/resolve/main/Llama-3.1-8B-Instruct-SEALONG.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instruct-SEALONG-i1-GGUF/resolve/main/Llama-3.1-8B-Instruct-SEALONG.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 4.8 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instruct-SEALONG-i1-GGUF/resolve/main/Llama-3.1-8B-Instruct-SEALONG.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 4.8 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instruct-SEALONG-i1-GGUF/resolve/main/Llama-3.1-8B-Instruct-SEALONG.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 4.8 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instruct-SEALONG-i1-GGUF/resolve/main/Llama-3.1-8B-Instruct-SEALONG.i1-Q4_0.gguf) | i1-Q4_0 | 4.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instruct-SEALONG-i1-GGUF/resolve/main/Llama-3.1-8B-Instruct-SEALONG.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instruct-SEALONG-i1-GGUF/resolve/main/Llama-3.1-8B-Instruct-SEALONG.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instruct-SEALONG-i1-GGUF/resolve/main/Llama-3.1-8B-Instruct-SEALONG.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instruct-SEALONG-i1-GGUF/resolve/main/Llama-3.1-8B-Instruct-SEALONG.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-Instruct-SEALONG-i1-GGUF/resolve/main/Llama-3.1-8B-Instruct-SEALONG.i1-Q6_K.gguf) | i1-Q6_K | 6.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
maesneako/FR_bkt_maesneako-gpt2-fr_orfeo-cid-paco-cheese_e3
maesneako
2024-11-10T22:28:39Z
5
0
null
[ "tensorboard", "safetensors", "gpt2", "generated_from_trainer", "base_model:maesneako/gpt2-fr_orfeo-cid-paco-cheese_e3", "base_model:finetune:maesneako/gpt2-fr_orfeo-cid-paco-cheese_e3", "region:us" ]
null
2024-11-10T22:12:06Z
--- base_model: maesneako/gpt2-fr_orfeo-cid-paco-cheese_e3 tags: - generated_from_trainer model-index: - name: FR_bkt_maesneako-gpt2-fr_orfeo-cid-paco-cheese_e3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # FR_bkt_maesneako-gpt2-fr_orfeo-cid-paco-cheese_e3 This model is a fine-tuned version of [maesneako/gpt2-fr_orfeo-cid-paco-cheese_e3](https://huggingface.co/maesneako/gpt2-fr_orfeo-cid-paco-cheese_e3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5445 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.8414 | 1.46 | 2000 | 3.7684 | | 3.6555 | 2.91 | 4000 | 3.6330 | | 3.5683 | 4.37 | 6000 | 3.5716 | | 3.5228 | 5.82 | 8000 | 3.5445 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.4.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
featherless-ai-quants/nbeerbower-llama3.1-gutenberg-8B-GGUF
featherless-ai-quants
2024-11-10T22:28:13Z
22
0
null
[ "gguf", "text-generation", "base_model:nbeerbower/llama3.1-gutenberg-8B", "base_model:quantized:nbeerbower/llama3.1-gutenberg-8B", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-10T22:16:08Z
--- base_model: nbeerbower/llama3.1-gutenberg-8B pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # nbeerbower/llama3.1-gutenberg-8B GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [nbeerbower-llama3.1-gutenberg-8B-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-llama3.1-gutenberg-8B-GGUF/blob/main/nbeerbower-llama3.1-gutenberg-8B-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [nbeerbower-llama3.1-gutenberg-8B-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-llama3.1-gutenberg-8B-GGUF/blob/main/nbeerbower-llama3.1-gutenberg-8B-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [nbeerbower-llama3.1-gutenberg-8B-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-llama3.1-gutenberg-8B-GGUF/blob/main/nbeerbower-llama3.1-gutenberg-8B-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [nbeerbower-llama3.1-gutenberg-8B-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-llama3.1-gutenberg-8B-GGUF/blob/main/nbeerbower-llama3.1-gutenberg-8B-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [nbeerbower-llama3.1-gutenberg-8B-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-llama3.1-gutenberg-8B-GGUF/blob/main/nbeerbower-llama3.1-gutenberg-8B-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [nbeerbower-llama3.1-gutenberg-8B-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-llama3.1-gutenberg-8B-GGUF/blob/main/nbeerbower-llama3.1-gutenberg-8B-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [nbeerbower-llama3.1-gutenberg-8B-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-llama3.1-gutenberg-8B-GGUF/blob/main/nbeerbower-llama3.1-gutenberg-8B-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [nbeerbower-llama3.1-gutenberg-8B-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-llama3.1-gutenberg-8B-GGUF/blob/main/nbeerbower-llama3.1-gutenberg-8B-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [nbeerbower-llama3.1-gutenberg-8B-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-llama3.1-gutenberg-8B-GGUF/blob/main/nbeerbower-llama3.1-gutenberg-8B-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [nbeerbower-llama3.1-gutenberg-8B-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-llama3.1-gutenberg-8B-GGUF/blob/main/nbeerbower-llama3.1-gutenberg-8B-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [nbeerbower-llama3.1-gutenberg-8B-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/nbeerbower-llama3.1-gutenberg-8B-GGUF/blob/main/nbeerbower-llama3.1-gutenberg-8B-Q8_0.gguf) | 8145.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
mradermacher/Qwen2.5-3B-Instruct-Id-SFT-GGUF
mradermacher
2024-11-10T22:16:08Z
9
0
transformers
[ "transformers", "gguf", "en", "hi", "base_model:jaeyong2/Qwen2.5-3B-Instruct-Id-SFT", "base_model:quantized:jaeyong2/Qwen2.5-3B-Instruct-Id-SFT", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-10T20:16:05Z
--- base_model: jaeyong2/Qwen2.5-3B-Instruct-Id-SFT language: - en - hi library_name: transformers license: other quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/jaeyong2/Qwen2.5-3B-Instruct-Id-SFT <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Id-SFT-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Id-SFT-GGUF/resolve/main/Qwen2.5-3B-Instruct-Id-SFT.Q2_K.gguf) | Q2_K | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Id-SFT-GGUF/resolve/main/Qwen2.5-3B-Instruct-Id-SFT.Q3_K_S.gguf) | Q3_K_S | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Id-SFT-GGUF/resolve/main/Qwen2.5-3B-Instruct-Id-SFT.Q3_K_M.gguf) | Q3_K_M | 1.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Id-SFT-GGUF/resolve/main/Qwen2.5-3B-Instruct-Id-SFT.Q3_K_L.gguf) | Q3_K_L | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Id-SFT-GGUF/resolve/main/Qwen2.5-3B-Instruct-Id-SFT.IQ4_XS.gguf) | IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Id-SFT-GGUF/resolve/main/Qwen2.5-3B-Instruct-Id-SFT.Q4_0_4_4.gguf) | Q4_0_4_4 | 1.9 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Id-SFT-GGUF/resolve/main/Qwen2.5-3B-Instruct-Id-SFT.Q4_K_S.gguf) | Q4_K_S | 1.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Id-SFT-GGUF/resolve/main/Qwen2.5-3B-Instruct-Id-SFT.Q4_K_M.gguf) | Q4_K_M | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Id-SFT-GGUF/resolve/main/Qwen2.5-3B-Instruct-Id-SFT.Q5_K_S.gguf) | Q5_K_S | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Id-SFT-GGUF/resolve/main/Qwen2.5-3B-Instruct-Id-SFT.Q5_K_M.gguf) | Q5_K_M | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Id-SFT-GGUF/resolve/main/Qwen2.5-3B-Instruct-Id-SFT.Q6_K.gguf) | Q6_K | 2.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Id-SFT-GGUF/resolve/main/Qwen2.5-3B-Instruct-Id-SFT.Q8_0.gguf) | Q8_0 | 3.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Id-SFT-GGUF/resolve/main/Qwen2.5-3B-Instruct-Id-SFT.f16.gguf) | f16 | 6.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Qwen2.5-3B-Instruct-Hi-SFT-i1-GGUF
mradermacher
2024-11-10T22:05:12Z
20
0
transformers
[ "transformers", "gguf", "hi", "en", "base_model:jaeyong2/Qwen2.5-3B-Instruct-Hi-SFT", "base_model:quantized:jaeyong2/Qwen2.5-3B-Instruct-Hi-SFT", "license:other", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-10T20:18:25Z
--- base_model: jaeyong2/Qwen2.5-3B-Instruct-Hi-SFT language: - hi - en library_name: transformers license: other quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/jaeyong2/Qwen2.5-3B-Instruct-Hi-SFT <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Hi-SFT-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Hi-SFT-i1-GGUF/resolve/main/Qwen2.5-3B-Instruct-Hi-SFT.i1-IQ1_S.gguf) | i1-IQ1_S | 0.9 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Hi-SFT-i1-GGUF/resolve/main/Qwen2.5-3B-Instruct-Hi-SFT.i1-IQ1_M.gguf) | i1-IQ1_M | 1.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Hi-SFT-i1-GGUF/resolve/main/Qwen2.5-3B-Instruct-Hi-SFT.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Hi-SFT-i1-GGUF/resolve/main/Qwen2.5-3B-Instruct-Hi-SFT.i1-IQ2_XS.gguf) | i1-IQ2_XS | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Hi-SFT-i1-GGUF/resolve/main/Qwen2.5-3B-Instruct-Hi-SFT.i1-IQ2_S.gguf) | i1-IQ2_S | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Hi-SFT-i1-GGUF/resolve/main/Qwen2.5-3B-Instruct-Hi-SFT.i1-IQ2_M.gguf) | i1-IQ2_M | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Hi-SFT-i1-GGUF/resolve/main/Qwen2.5-3B-Instruct-Hi-SFT.i1-Q2_K.gguf) | i1-Q2_K | 1.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Hi-SFT-i1-GGUF/resolve/main/Qwen2.5-3B-Instruct-Hi-SFT.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 1.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Hi-SFT-i1-GGUF/resolve/main/Qwen2.5-3B-Instruct-Hi-SFT.i1-IQ3_XS.gguf) | i1-IQ3_XS | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Hi-SFT-i1-GGUF/resolve/main/Qwen2.5-3B-Instruct-Hi-SFT.i1-Q3_K_S.gguf) | i1-Q3_K_S | 1.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Hi-SFT-i1-GGUF/resolve/main/Qwen2.5-3B-Instruct-Hi-SFT.i1-IQ3_S.gguf) | i1-IQ3_S | 1.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Hi-SFT-i1-GGUF/resolve/main/Qwen2.5-3B-Instruct-Hi-SFT.i1-IQ3_M.gguf) | i1-IQ3_M | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Hi-SFT-i1-GGUF/resolve/main/Qwen2.5-3B-Instruct-Hi-SFT.i1-Q3_K_M.gguf) | i1-Q3_K_M | 1.7 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Hi-SFT-i1-GGUF/resolve/main/Qwen2.5-3B-Instruct-Hi-SFT.i1-Q3_K_L.gguf) | i1-Q3_K_L | 1.8 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Hi-SFT-i1-GGUF/resolve/main/Qwen2.5-3B-Instruct-Hi-SFT.i1-IQ4_XS.gguf) | i1-IQ4_XS | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Hi-SFT-i1-GGUF/resolve/main/Qwen2.5-3B-Instruct-Hi-SFT.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 1.9 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Hi-SFT-i1-GGUF/resolve/main/Qwen2.5-3B-Instruct-Hi-SFT.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 1.9 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Hi-SFT-i1-GGUF/resolve/main/Qwen2.5-3B-Instruct-Hi-SFT.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 1.9 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Hi-SFT-i1-GGUF/resolve/main/Qwen2.5-3B-Instruct-Hi-SFT.i1-Q4_0.gguf) | i1-Q4_0 | 1.9 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Hi-SFT-i1-GGUF/resolve/main/Qwen2.5-3B-Instruct-Hi-SFT.i1-Q4_K_S.gguf) | i1-Q4_K_S | 1.9 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Hi-SFT-i1-GGUF/resolve/main/Qwen2.5-3B-Instruct-Hi-SFT.i1-Q4_K_M.gguf) | i1-Q4_K_M | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Hi-SFT-i1-GGUF/resolve/main/Qwen2.5-3B-Instruct-Hi-SFT.i1-Q5_K_S.gguf) | i1-Q5_K_S | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Hi-SFT-i1-GGUF/resolve/main/Qwen2.5-3B-Instruct-Hi-SFT.i1-Q5_K_M.gguf) | i1-Q5_K_M | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-3B-Instruct-Hi-SFT-i1-GGUF/resolve/main/Qwen2.5-3B-Instruct-Hi-SFT.i1-Q6_K.gguf) | i1-Q6_K | 2.6 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
featherless-ai-quants/picAIso-MIX1-GGUF
featherless-ai-quants
2024-11-10T21:59:22Z
7
0
null
[ "gguf", "text-generation", "base_model:picAIso/MIX1", "base_model:quantized:picAIso/MIX1", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-10T21:41:04Z
--- base_model: picAIso/MIX1 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # picAIso/MIX1 GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [picAIso-MIX1-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/picAIso-MIX1-GGUF/blob/main/picAIso-MIX1-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [picAIso-MIX1-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/picAIso-MIX1-GGUF/blob/main/picAIso-MIX1-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [picAIso-MIX1-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/picAIso-MIX1-GGUF/blob/main/picAIso-MIX1-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [picAIso-MIX1-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/picAIso-MIX1-GGUF/blob/main/picAIso-MIX1-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [picAIso-MIX1-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/picAIso-MIX1-GGUF/blob/main/picAIso-MIX1-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [picAIso-MIX1-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/picAIso-MIX1-GGUF/blob/main/picAIso-MIX1-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [picAIso-MIX1-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/picAIso-MIX1-GGUF/blob/main/picAIso-MIX1-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [picAIso-MIX1-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/picAIso-MIX1-GGUF/blob/main/picAIso-MIX1-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [picAIso-MIX1-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/picAIso-MIX1-GGUF/blob/main/picAIso-MIX1-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [picAIso-MIX1-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/picAIso-MIX1-GGUF/blob/main/picAIso-MIX1-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [picAIso-MIX1-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/picAIso-MIX1-GGUF/blob/main/picAIso-MIX1-Q8_0.gguf) | 8145.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
dcrowleymunster/donalDistiLBERTSunderland6Epoch
dcrowleymunster
2024-11-10T21:51:52Z
116
0
transformers
[ "transformers", "safetensors", "distilbert", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-11-10T01:10:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
GitBag/reasoning_rebel_iter_2_1731041913_eta_1e3_lr_3e-7_1731243878
GitBag
2024-11-10T21:45:54Z
9
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-10T21:40:40Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
thiagoads/llama-legalpt
thiagoads
2024-11-10T21:38:23Z
144
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-10T21:34:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
VLKVLK/media-file-recognizer
VLKVLK
2024-11-10T21:31:23Z
7
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-09T18:25:28Z
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
eriwik/speecht5_finetuned_voxpopuli_nl
eriwik
2024-11-10T21:16:23Z
76
0
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "dataset:voxpopuli", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2024-11-10T17:40:26Z
--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - voxpopuli model-index: - name: speecht5_finetuned_voxpopuli_nl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_nl This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 0.5187 | 3.8741 | 1000 | 0.4767 | | 0.4995 | 7.7482 | 2000 | 0.4606 | | 0.4944 | 11.6223 | 3000 | 0.4528 | | 0.4882 | 15.4964 | 4000 | 0.4512 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0
akshitha-k/all-MiniLM-L6-v2-stsb
akshitha-k
2024-11-10T21:14:29Z
8
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:5749", "loss:CosineSimilarityLoss", "arxiv:1908.10084", "base_model:sentence-transformers/all-MiniLM-L6-v2", "base_model:finetune:sentence-transformers/all-MiniLM-L6-v2", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-11-10T21:14:22Z
--- base_model: sentence-transformers/all-MiniLM-L6-v2 library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:5749 - loss:CosineSimilarityLoss widget: - source_sentence: A girl is styling her hair. sentences: - China's online population rises to 618 mln - A girl is filing her nails. - A woman is slicing a pepper. - source_sentence: Australian among four on plane missing in Indonesia sentences: - Woman dies in Co Cork house fire - '''No plans'' to resettle Syrian refugees in the UK' - Iranian painter Mansoureh Hosseini dies - source_sentence: West hails Syria opposition vote to join peace talks sentences: - Asteroid passes Earth in fly-by - GlaxoSmithKline, the UK drugmaker, has said it would cut off supplies to Canadian stores shipping drugs to the US. - Syrian opposition to name delegation for talks - source_sentence: Obama signs up for Obamacare sentences: - Americans scramble to sign up for Obamacare by deadline - A girl wearing a red blouse riding a brown horse. - The study also found that skin cancer nearly tripled in Norway and Sweden since the 1950s. - source_sentence: A clear plastic chair in front of a bookcase. sentences: - A woman with a white horse. - a clear plastic chair in front of book shelves. - A herd of caribou are crossing a road. --- # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 --> - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 384 tokens - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the πŸ€— Hub model = SentenceTransformer("akshitha-k/all-MiniLM-L6-v2-stsb") # Run inference sentences = [ 'A clear plastic chair in front of a bookcase.', 'a clear plastic chair in front of book shelves.', 'A woman with a white horse.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 5,749 training samples * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 6 tokens</li><li>mean: 14.34 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.31 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> | * Samples: | sentence_0 | sentence_1 | label | |:------------------------------------------------------------------------------|:--------------------------------------------------------------|:-----------------| | <code>U.N. rights chief presses Egypt on Mursi detention</code> | <code>UN Rights Chief Presses Egypt on Morsi Detention</code> | <code>1.0</code> | | <code>Someone is slicing an onion.</code> | <code>Someoen is peeling a potato.</code> | <code>0.2</code> | | <code>A young boy in a white dress shirt is playing on a grassy plain.</code> | <code>A woman is getting her hair done at a salon.</code> | <code>0.0</code> | * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 20 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 20 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin </details> ### Training Logs | Epoch | Step | Training Loss | |:-------:|:----:|:-------------:| | 1.3889 | 500 | 0.0295 | | 2.7778 | 1000 | 0.0242 | | 4.1667 | 1500 | 0.0218 | | 5.5556 | 2000 | 0.0198 | | 6.9444 | 2500 | 0.0175 | | 8.3333 | 3000 | 0.0157 | | 9.7222 | 3500 | 0.0135 | | 11.1111 | 4000 | 0.0119 | | 12.5 | 4500 | 0.0104 | | 13.8889 | 5000 | 0.0088 | | 15.2778 | 5500 | 0.0074 | | 16.6667 | 6000 | 0.0063 | | 18.0556 | 6500 | 0.0056 | | 19.4444 | 7000 | 0.0049 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.2.1 - Transformers: 4.44.2 - PyTorch: 2.5.0+cu121 - Accelerate: 0.34.2 - Datasets: 3.1.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
Stable-X/yoso-normal-v1-5
Stable-X
2024-11-10T21:05:02Z
4,617
2
diffusers
[ "diffusers", "image-to-image", "license:apache-2.0", "diffusers:YOSONormalsPipeline", "region:us" ]
image-to-image
2024-11-07T22:30:16Z
--- library_name: diffusers pipeline_tag: image-to-image license: apache-2.0 --- # Model Card for StableNormal This repository contains the weights of StableNormal: Reducing Diffusion Variance for Stable and Sharp Normal ## Usage See the Github repository: https://github.com/Stable-X/StableNormal regarding installation instructions. The model can then be used as follows: ```python import torch from PIL import Image # Load an image input_image = Image.open("path/to/your/image.jpg") # Create predictor instance predictor = torch.hub.load("hugoycj/StableNormal", "StableNormal_turbo", trust_repo=True, yoso_version='yoso-normal-v1-5') # Generate normal map using alpha channel for masking normal_map = predictor(rgba_image, data_type="object") # Will mask out background, if alpha channel is avalible, else use birefnet normal_map = predictor(rgba_image, data_type="outdoor") # Will use Mask2Former to mask out sky and plants normal_map = predictor(rgba_image, data_type="indoor") # Will not mask out # Apply the model to the image normal_image = predictor(input_image) # Save or display the result normal_image.save("output/normal_map.png") ```
JuniperChinenye/c1
JuniperChinenye
2024-11-10T21:02:02Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-10T20:59:43Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/Hermes-Instruct-7B-217K-GGUF
mradermacher
2024-11-10T20:48:24Z
9
0
transformers
[ "transformers", "gguf", "en", "dataset:lodrick-the-lafted/Hermes-217K", "base_model:lodrick-the-lafted/Hermes-Instruct-7B-217K", "base_model:quantized:lodrick-the-lafted/Hermes-Instruct-7B-217K", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-08T12:58:03Z
--- base_model: lodrick-the-lafted/Hermes-Instruct-7B-217K datasets: - lodrick-the-lafted/Hermes-217K language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/lodrick-the-lafted/Hermes-Instruct-7B-217K <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Hermes-Instruct-7B-217K-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Hermes-Instruct-7B-217K-GGUF/resolve/main/Hermes-Instruct-7B-217K.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/Hermes-Instruct-7B-217K-GGUF/resolve/main/Hermes-Instruct-7B-217K.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Hermes-Instruct-7B-217K-GGUF/resolve/main/Hermes-Instruct-7B-217K.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Hermes-Instruct-7B-217K-GGUF/resolve/main/Hermes-Instruct-7B-217K.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Hermes-Instruct-7B-217K-GGUF/resolve/main/Hermes-Instruct-7B-217K.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/Hermes-Instruct-7B-217K-GGUF/resolve/main/Hermes-Instruct-7B-217K.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Hermes-Instruct-7B-217K-GGUF/resolve/main/Hermes-Instruct-7B-217K.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Hermes-Instruct-7B-217K-GGUF/resolve/main/Hermes-Instruct-7B-217K.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Hermes-Instruct-7B-217K-GGUF/resolve/main/Hermes-Instruct-7B-217K.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/Hermes-Instruct-7B-217K-GGUF/resolve/main/Hermes-Instruct-7B-217K.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/Hermes-Instruct-7B-217K-GGUF/resolve/main/Hermes-Instruct-7B-217K.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Hermes-Instruct-7B-217K-GGUF/resolve/main/Hermes-Instruct-7B-217K.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Hermes-Instruct-7B-217K-GGUF/resolve/main/Hermes-Instruct-7B-217K.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/mirrorqwen2.5-0.5b-SimPO-0-GGUF
mradermacher
2024-11-10T20:39:13Z
29
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "trl", "cpo", "unsloth", "en", "base_model:rawsh/mirrorqwen2.5-0.5b-SimPO-0", "base_model:quantized:rawsh/mirrorqwen2.5-0.5b-SimPO-0", "endpoints_compatible", "region:us" ]
null
2024-11-10T20:36:45Z
--- base_model: rawsh/mirrorqwen2.5-0.5b-SimPO-0 language: - en library_name: transformers model_name: mirrorqwen2.5-0.5b-SimPO-0 quantized_by: mradermacher tags: - generated_from_trainer - trl - cpo - unsloth --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/rawsh/mirrorqwen2.5-0.5b-SimPO-0 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/mirrorqwen2.5-0.5b-SimPO-0-GGUF/resolve/main/mirrorqwen2.5-0.5b-SimPO-0.Q3_K_S.gguf) | Q3_K_S | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/mirrorqwen2.5-0.5b-SimPO-0-GGUF/resolve/main/mirrorqwen2.5-0.5b-SimPO-0.Q2_K.gguf) | Q2_K | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/mirrorqwen2.5-0.5b-SimPO-0-GGUF/resolve/main/mirrorqwen2.5-0.5b-SimPO-0.IQ4_XS.gguf) | IQ4_XS | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/mirrorqwen2.5-0.5b-SimPO-0-GGUF/resolve/main/mirrorqwen2.5-0.5b-SimPO-0.Q4_0_4_4.gguf) | Q4_0_4_4 | 0.5 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/mirrorqwen2.5-0.5b-SimPO-0-GGUF/resolve/main/mirrorqwen2.5-0.5b-SimPO-0.Q3_K_M.gguf) | Q3_K_M | 0.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/mirrorqwen2.5-0.5b-SimPO-0-GGUF/resolve/main/mirrorqwen2.5-0.5b-SimPO-0.Q3_K_L.gguf) | Q3_K_L | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/mirrorqwen2.5-0.5b-SimPO-0-GGUF/resolve/main/mirrorqwen2.5-0.5b-SimPO-0.Q4_K_S.gguf) | Q4_K_S | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/mirrorqwen2.5-0.5b-SimPO-0-GGUF/resolve/main/mirrorqwen2.5-0.5b-SimPO-0.Q4_K_M.gguf) | Q4_K_M | 0.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/mirrorqwen2.5-0.5b-SimPO-0-GGUF/resolve/main/mirrorqwen2.5-0.5b-SimPO-0.Q5_K_S.gguf) | Q5_K_S | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/mirrorqwen2.5-0.5b-SimPO-0-GGUF/resolve/main/mirrorqwen2.5-0.5b-SimPO-0.Q5_K_M.gguf) | Q5_K_M | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/mirrorqwen2.5-0.5b-SimPO-0-GGUF/resolve/main/mirrorqwen2.5-0.5b-SimPO-0.Q6_K.gguf) | Q6_K | 0.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/mirrorqwen2.5-0.5b-SimPO-0-GGUF/resolve/main/mirrorqwen2.5-0.5b-SimPO-0.Q8_0.gguf) | Q8_0 | 0.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/mirrorqwen2.5-0.5b-SimPO-0-GGUF/resolve/main/mirrorqwen2.5-0.5b-SimPO-0.f16.gguf) | f16 | 1.1 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/tinyllama-colorist-v0-GGUF
mradermacher
2024-11-10T20:38:21Z
7
0
transformers
[ "transformers", "gguf", "en", "base_model:tmickleydoyle/tinyllama-colorist-v0", "base_model:quantized:tmickleydoyle/tinyllama-colorist-v0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-10T20:35:53Z
--- base_model: tmickleydoyle/tinyllama-colorist-v0 language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/tmickleydoyle/tinyllama-colorist-v0 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/tinyllama-colorist-v0-GGUF/resolve/main/tinyllama-colorist-v0.Q2_K.gguf) | Q2_K | 0.5 | | | [GGUF](https://huggingface.co/mradermacher/tinyllama-colorist-v0-GGUF/resolve/main/tinyllama-colorist-v0.Q3_K_S.gguf) | Q3_K_S | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/tinyllama-colorist-v0-GGUF/resolve/main/tinyllama-colorist-v0.Q3_K_M.gguf) | Q3_K_M | 0.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/tinyllama-colorist-v0-GGUF/resolve/main/tinyllama-colorist-v0.Q3_K_L.gguf) | Q3_K_L | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/tinyllama-colorist-v0-GGUF/resolve/main/tinyllama-colorist-v0.IQ4_XS.gguf) | IQ4_XS | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/tinyllama-colorist-v0-GGUF/resolve/main/tinyllama-colorist-v0.Q4_0_4_4.gguf) | Q4_0_4_4 | 0.7 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/tinyllama-colorist-v0-GGUF/resolve/main/tinyllama-colorist-v0.Q4_K_S.gguf) | Q4_K_S | 0.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/tinyllama-colorist-v0-GGUF/resolve/main/tinyllama-colorist-v0.Q4_K_M.gguf) | Q4_K_M | 0.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/tinyllama-colorist-v0-GGUF/resolve/main/tinyllama-colorist-v0.Q5_K_S.gguf) | Q5_K_S | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/tinyllama-colorist-v0-GGUF/resolve/main/tinyllama-colorist-v0.Q5_K_M.gguf) | Q5_K_M | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/tinyllama-colorist-v0-GGUF/resolve/main/tinyllama-colorist-v0.Q6_K.gguf) | Q6_K | 1.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/tinyllama-colorist-v0-GGUF/resolve/main/tinyllama-colorist-v0.Q8_0.gguf) | Q8_0 | 1.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/tinyllama-colorist-v0-GGUF/resolve/main/tinyllama-colorist-v0.f16.gguf) | f16 | 2.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
youssef14582/t5-small-finetuned-xsum
youssef14582
2024-11-10T20:36:13Z
122
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-11-10T18:02:49Z
--- library_name: transformers license: apache-2.0 base_model: t5-small tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum config: default split: validation args: default metrics: - name: Rouge1 type: rouge value: 27.4606 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.5400 - Rouge1: 27.4606 - Rouge2: 7.3882 - Rougel: 21.5683 - Rougelsum: 21.5769 - Gen Len: 18.8013 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.8393 | 1.0 | 2500 | 2.5833 | 26.7701 | 6.8545 | 20.9017 | 20.9024 | 18.8193 | | 2.7625 | 2.0 | 5000 | 2.5494 | 27.2012 | 7.1774 | 21.2519 | 21.2529 | 18.8019 | | 2.7673 | 3.0 | 7500 | 2.5400 | 27.4606 | 7.3882 | 21.5683 | 21.5769 | 18.8013 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
featherless-ai-quants/GalrionSoftworks-MN-LooseCannon-12B-v1-GGUF
featherless-ai-quants
2024-11-10T20:33:10Z
5
0
null
[ "gguf", "text-generation", "base_model:GalrionSoftworks/MN-LooseCannon-12B-v1", "base_model:quantized:GalrionSoftworks/MN-LooseCannon-12B-v1", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-10T20:14:13Z
--- base_model: GalrionSoftworks/MN-LooseCannon-12B-v1 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # GalrionSoftworks/MN-LooseCannon-12B-v1 GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [GalrionSoftworks-MN-LooseCannon-12B-v1-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/GalrionSoftworks-MN-LooseCannon-12B-v1-GGUF/blob/main/GalrionSoftworks-MN-LooseCannon-12B-v1-IQ4_XS.gguf) | 6485.04 MB | | Q2_K | [GalrionSoftworks-MN-LooseCannon-12B-v1-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/GalrionSoftworks-MN-LooseCannon-12B-v1-GGUF/blob/main/GalrionSoftworks-MN-LooseCannon-12B-v1-Q2_K.gguf) | 4569.10 MB | | Q3_K_L | [GalrionSoftworks-MN-LooseCannon-12B-v1-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/GalrionSoftworks-MN-LooseCannon-12B-v1-GGUF/blob/main/GalrionSoftworks-MN-LooseCannon-12B-v1-Q3_K_L.gguf) | 6257.54 MB | | Q3_K_M | [GalrionSoftworks-MN-LooseCannon-12B-v1-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/GalrionSoftworks-MN-LooseCannon-12B-v1-GGUF/blob/main/GalrionSoftworks-MN-LooseCannon-12B-v1-Q3_K_M.gguf) | 5801.29 MB | | Q3_K_S | [GalrionSoftworks-MN-LooseCannon-12B-v1-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/GalrionSoftworks-MN-LooseCannon-12B-v1-GGUF/blob/main/GalrionSoftworks-MN-LooseCannon-12B-v1-Q3_K_S.gguf) | 5277.85 MB | | Q4_K_M | [GalrionSoftworks-MN-LooseCannon-12B-v1-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/GalrionSoftworks-MN-LooseCannon-12B-v1-GGUF/blob/main/GalrionSoftworks-MN-LooseCannon-12B-v1-Q4_K_M.gguf) | 7130.82 MB | | Q4_K_S | [GalrionSoftworks-MN-LooseCannon-12B-v1-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/GalrionSoftworks-MN-LooseCannon-12B-v1-GGUF/blob/main/GalrionSoftworks-MN-LooseCannon-12B-v1-Q4_K_S.gguf) | 6790.35 MB | | Q5_K_M | [GalrionSoftworks-MN-LooseCannon-12B-v1-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/GalrionSoftworks-MN-LooseCannon-12B-v1-GGUF/blob/main/GalrionSoftworks-MN-LooseCannon-12B-v1-Q5_K_M.gguf) | 8323.32 MB | | Q5_K_S | [GalrionSoftworks-MN-LooseCannon-12B-v1-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/GalrionSoftworks-MN-LooseCannon-12B-v1-GGUF/blob/main/GalrionSoftworks-MN-LooseCannon-12B-v1-Q5_K_S.gguf) | 8124.10 MB | | Q6_K | [GalrionSoftworks-MN-LooseCannon-12B-v1-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/GalrionSoftworks-MN-LooseCannon-12B-v1-GGUF/blob/main/GalrionSoftworks-MN-LooseCannon-12B-v1-Q6_K.gguf) | 9590.35 MB | | Q8_0 | [GalrionSoftworks-MN-LooseCannon-12B-v1-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/GalrionSoftworks-MN-LooseCannon-12B-v1-GGUF/blob/main/GalrionSoftworks-MN-LooseCannon-12B-v1-Q8_0.gguf) | 12419.10 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
thdangtr/blip_title_v1.0_e2_p3
thdangtr
2024-11-10T20:32:48Z
64
0
transformers
[ "transformers", "safetensors", "blip", "image-text-to-text", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-11-10T20:31:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
featherless-ai-quants/devhyun88-ku-mistral-7b-PGO-v2-GGUF
featherless-ai-quants
2024-11-10T20:26:23Z
16
0
null
[ "gguf", "text-generation", "base_model:devhyun88/ku-mistral-7b-PGO-v2", "base_model:quantized:devhyun88/ku-mistral-7b-PGO-v2", "endpoints_compatible", "region:us" ]
text-generation
2024-11-10T20:15:14Z
--- base_model: devhyun88/ku-mistral-7b-PGO-v2 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # devhyun88/ku-mistral-7b-PGO-v2 GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [devhyun88-ku-mistral-7b-PGO-v2-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/devhyun88-ku-mistral-7b-PGO-v2-GGUF/blob/main/devhyun88-ku-mistral-7b-PGO-v2-IQ4_XS.gguf) | 3761.66 MB | | Q2_K | [devhyun88-ku-mistral-7b-PGO-v2-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/devhyun88-ku-mistral-7b-PGO-v2-GGUF/blob/main/devhyun88-ku-mistral-7b-PGO-v2-Q2_K.gguf) | 2593.27 MB | | Q3_K_L | [devhyun88-ku-mistral-7b-PGO-v2-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/devhyun88-ku-mistral-7b-PGO-v2-GGUF/blob/main/devhyun88-ku-mistral-7b-PGO-v2-Q3_K_L.gguf) | 3644.97 MB | | Q3_K_M | [devhyun88-ku-mistral-7b-PGO-v2-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/devhyun88-ku-mistral-7b-PGO-v2-GGUF/blob/main/devhyun88-ku-mistral-7b-PGO-v2-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [devhyun88-ku-mistral-7b-PGO-v2-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/devhyun88-ku-mistral-7b-PGO-v2-GGUF/blob/main/devhyun88-ku-mistral-7b-PGO-v2-Q3_K_S.gguf) | 3017.97 MB | | Q4_K_M | [devhyun88-ku-mistral-7b-PGO-v2-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/devhyun88-ku-mistral-7b-PGO-v2-GGUF/blob/main/devhyun88-ku-mistral-7b-PGO-v2-Q4_K_M.gguf) | 4166.07 MB | | Q4_K_S | [devhyun88-ku-mistral-7b-PGO-v2-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/devhyun88-ku-mistral-7b-PGO-v2-GGUF/blob/main/devhyun88-ku-mistral-7b-PGO-v2-Q4_K_S.gguf) | 3948.57 MB | | Q5_K_M | [devhyun88-ku-mistral-7b-PGO-v2-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/devhyun88-ku-mistral-7b-PGO-v2-GGUF/blob/main/devhyun88-ku-mistral-7b-PGO-v2-Q5_K_M.gguf) | 4893.69 MB | | Q5_K_S | [devhyun88-ku-mistral-7b-PGO-v2-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/devhyun88-ku-mistral-7b-PGO-v2-GGUF/blob/main/devhyun88-ku-mistral-7b-PGO-v2-Q5_K_S.gguf) | 4766.19 MB | | Q6_K | [devhyun88-ku-mistral-7b-PGO-v2-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/devhyun88-ku-mistral-7b-PGO-v2-GGUF/blob/main/devhyun88-ku-mistral-7b-PGO-v2-Q6_K.gguf) | 5666.79 MB | | Q8_0 | [devhyun88-ku-mistral-7b-PGO-v2-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/devhyun88-ku-mistral-7b-PGO-v2-GGUF/blob/main/devhyun88-ku-mistral-7b-PGO-v2-Q8_0.gguf) | 7339.34 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
sagarxr/llava_next_fir_vqa
sagarxr
2024-11-10T20:25:59Z
10
0
null
[ "safetensors", "llava_next", "llama-factory", "license:mit", "region:us" ]
null
2024-11-10T20:11:12Z
--- license: mit tags: - llama-factory ---
featherless-ai-quants/CardinalOperations-ORLM-LLaMA-3-8B-GGUF
featherless-ai-quants
2024-11-10T20:25:41Z
17
0
null
[ "gguf", "text-generation", "base_model:CardinalOperations/ORLM-LLaMA-3-8B", "base_model:quantized:CardinalOperations/ORLM-LLaMA-3-8B", "endpoints_compatible", "region:us" ]
text-generation
2024-11-05T07:10:53Z
--- base_model: CardinalOperations/ORLM-LLaMA-3-8B pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # CardinalOperations/ORLM-LLaMA-3-8B GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [CardinalOperations-ORLM-LLaMA-3-8B-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/CardinalOperations-ORLM-LLaMA-3-8B-GGUF/blob/main/CardinalOperations-ORLM-LLaMA-3-8B-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [CardinalOperations-ORLM-LLaMA-3-8B-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/CardinalOperations-ORLM-LLaMA-3-8B-GGUF/blob/main/CardinalOperations-ORLM-LLaMA-3-8B-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [CardinalOperations-ORLM-LLaMA-3-8B-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/CardinalOperations-ORLM-LLaMA-3-8B-GGUF/blob/main/CardinalOperations-ORLM-LLaMA-3-8B-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [CardinalOperations-ORLM-LLaMA-3-8B-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/CardinalOperations-ORLM-LLaMA-3-8B-GGUF/blob/main/CardinalOperations-ORLM-LLaMA-3-8B-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [CardinalOperations-ORLM-LLaMA-3-8B-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/CardinalOperations-ORLM-LLaMA-3-8B-GGUF/blob/main/CardinalOperations-ORLM-LLaMA-3-8B-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [CardinalOperations-ORLM-LLaMA-3-8B-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/CardinalOperations-ORLM-LLaMA-3-8B-GGUF/blob/main/CardinalOperations-ORLM-LLaMA-3-8B-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [CardinalOperations-ORLM-LLaMA-3-8B-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/CardinalOperations-ORLM-LLaMA-3-8B-GGUF/blob/main/CardinalOperations-ORLM-LLaMA-3-8B-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [CardinalOperations-ORLM-LLaMA-3-8B-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/CardinalOperations-ORLM-LLaMA-3-8B-GGUF/blob/main/CardinalOperations-ORLM-LLaMA-3-8B-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [CardinalOperations-ORLM-LLaMA-3-8B-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/CardinalOperations-ORLM-LLaMA-3-8B-GGUF/blob/main/CardinalOperations-ORLM-LLaMA-3-8B-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [CardinalOperations-ORLM-LLaMA-3-8B-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/CardinalOperations-ORLM-LLaMA-3-8B-GGUF/blob/main/CardinalOperations-ORLM-LLaMA-3-8B-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [CardinalOperations-ORLM-LLaMA-3-8B-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/CardinalOperations-ORLM-LLaMA-3-8B-GGUF/blob/main/CardinalOperations-ORLM-LLaMA-3-8B-Q8_0.gguf) | 8145.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
mradermacher/Codex-148M-GGUF
mradermacher
2024-11-10T20:24:25Z
130
0
transformers
[ "transformers", "gguf", "en", "endpoints_compatible", "region:us" ]
null
2024-11-10T20:21:38Z
--- base_model: khairi/Codex-148M language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/khairi/Codex-148M <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Codex-148M-GGUF/resolve/main/Codex-148M.Q2_K.gguf) | Q2_K | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Codex-148M-GGUF/resolve/main/Codex-148M.Q3_K_S.gguf) | Q3_K_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Codex-148M-GGUF/resolve/main/Codex-148M.IQ4_XS.gguf) | IQ4_XS | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Codex-148M-GGUF/resolve/main/Codex-148M.Q4_0_4_4.gguf) | Q4_0_4_4 | 0.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Codex-148M-GGUF/resolve/main/Codex-148M.Q3_K_M.gguf) | Q3_K_M | 0.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Codex-148M-GGUF/resolve/main/Codex-148M.Q3_K_L.gguf) | Q3_K_L | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Codex-148M-GGUF/resolve/main/Codex-148M.Q4_K_S.gguf) | Q4_K_S | 0.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Codex-148M-GGUF/resolve/main/Codex-148M.Q4_K_M.gguf) | Q4_K_M | 0.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Codex-148M-GGUF/resolve/main/Codex-148M.Q5_K_S.gguf) | Q5_K_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Codex-148M-GGUF/resolve/main/Codex-148M.Q5_K_M.gguf) | Q5_K_M | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Codex-148M-GGUF/resolve/main/Codex-148M.Q6_K.gguf) | Q6_K | 0.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Codex-148M-GGUF/resolve/main/Codex-148M.Q8_0.gguf) | Q8_0 | 0.3 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Codex-148M-GGUF/resolve/main/Codex-148M.f16.gguf) | f16 | 0.4 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
featherless-ai-quants/spow12-ChatWaifu_v1.4-GGUF
featherless-ai-quants
2024-11-10T20:17:06Z
26
1
null
[ "gguf", "text-generation", "base_model:spow12/ChatWaifu_v1.4", "base_model:quantized:spow12/ChatWaifu_v1.4", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-10T20:02:27Z
--- base_model: spow12/ChatWaifu_v1.4 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # spow12/ChatWaifu_v1.4 GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [spow12-ChatWaifu_v1.4-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/spow12-ChatWaifu_v1.4-GGUF/blob/main/spow12-ChatWaifu_v1.4-IQ4_XS.gguf) | 6485.04 MB | | Q2_K | [spow12-ChatWaifu_v1.4-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/spow12-ChatWaifu_v1.4-GGUF/blob/main/spow12-ChatWaifu_v1.4-Q2_K.gguf) | 4569.10 MB | | Q3_K_L | [spow12-ChatWaifu_v1.4-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/spow12-ChatWaifu_v1.4-GGUF/blob/main/spow12-ChatWaifu_v1.4-Q3_K_L.gguf) | 6257.54 MB | | Q3_K_M | [spow12-ChatWaifu_v1.4-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/spow12-ChatWaifu_v1.4-GGUF/blob/main/spow12-ChatWaifu_v1.4-Q3_K_M.gguf) | 5801.29 MB | | Q3_K_S | [spow12-ChatWaifu_v1.4-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/spow12-ChatWaifu_v1.4-GGUF/blob/main/spow12-ChatWaifu_v1.4-Q3_K_S.gguf) | 5277.85 MB | | Q4_K_M | [spow12-ChatWaifu_v1.4-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/spow12-ChatWaifu_v1.4-GGUF/blob/main/spow12-ChatWaifu_v1.4-Q4_K_M.gguf) | 7130.82 MB | | Q4_K_S | [spow12-ChatWaifu_v1.4-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/spow12-ChatWaifu_v1.4-GGUF/blob/main/spow12-ChatWaifu_v1.4-Q4_K_S.gguf) | 6790.35 MB | | Q5_K_M | [spow12-ChatWaifu_v1.4-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/spow12-ChatWaifu_v1.4-GGUF/blob/main/spow12-ChatWaifu_v1.4-Q5_K_M.gguf) | 8323.32 MB | | Q5_K_S | [spow12-ChatWaifu_v1.4-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/spow12-ChatWaifu_v1.4-GGUF/blob/main/spow12-ChatWaifu_v1.4-Q5_K_S.gguf) | 8124.10 MB | | Q6_K | [spow12-ChatWaifu_v1.4-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/spow12-ChatWaifu_v1.4-GGUF/blob/main/spow12-ChatWaifu_v1.4-Q6_K.gguf) | 9590.35 MB | | Q8_0 | [spow12-ChatWaifu_v1.4-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/spow12-ChatWaifu_v1.4-GGUF/blob/main/spow12-ChatWaifu_v1.4-Q8_0.gguf) | 12419.10 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
mradermacher/piccolo-8x7b-GGUF
mradermacher
2024-11-10T20:09:46Z
5
0
transformers
[ "transformers", "gguf", "en", "base_model:macadeliccc/piccolo-8x7b", "base_model:quantized:macadeliccc/piccolo-8x7b", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2024-11-10T10:06:28Z
--- base_model: macadeliccc/piccolo-8x7b language: - en library_name: transformers license: cc-by-4.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/macadeliccc/piccolo-8x7b <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/piccolo-8x7b-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/piccolo-8x7b-GGUF/resolve/main/piccolo-8x7b.Q2_K.gguf) | Q2_K | 17.4 | | | [GGUF](https://huggingface.co/mradermacher/piccolo-8x7b-GGUF/resolve/main/piccolo-8x7b.Q3_K_S.gguf) | Q3_K_S | 20.5 | | | [GGUF](https://huggingface.co/mradermacher/piccolo-8x7b-GGUF/resolve/main/piccolo-8x7b.Q3_K_M.gguf) | Q3_K_M | 22.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/piccolo-8x7b-GGUF/resolve/main/piccolo-8x7b.Q3_K_L.gguf) | Q3_K_L | 24.3 | | | [GGUF](https://huggingface.co/mradermacher/piccolo-8x7b-GGUF/resolve/main/piccolo-8x7b.IQ4_XS.gguf) | IQ4_XS | 25.5 | | | [GGUF](https://huggingface.co/mradermacher/piccolo-8x7b-GGUF/resolve/main/piccolo-8x7b.Q4_K_S.gguf) | Q4_K_S | 26.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/piccolo-8x7b-GGUF/resolve/main/piccolo-8x7b.Q4_K_M.gguf) | Q4_K_M | 28.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/piccolo-8x7b-GGUF/resolve/main/piccolo-8x7b.Q5_K_S.gguf) | Q5_K_S | 32.3 | | | [GGUF](https://huggingface.co/mradermacher/piccolo-8x7b-GGUF/resolve/main/piccolo-8x7b.Q5_K_M.gguf) | Q5_K_M | 33.3 | | | [GGUF](https://huggingface.co/mradermacher/piccolo-8x7b-GGUF/resolve/main/piccolo-8x7b.Q6_K.gguf) | Q6_K | 38.5 | very good quality | | [GGUF](https://huggingface.co/mradermacher/piccolo-8x7b-GGUF/resolve/main/piccolo-8x7b.Q8_0.gguf) | Q8_0 | 49.7 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
hyt1912/distilbert-base-uncased-finetuned-squad
hyt1912
2024-11-10T20:09:25Z
33
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "question-answering", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2024-11-10T17:07:21Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1547 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2043 | 1.0 | 5533 | 1.1691 | | 0.9425 | 2.0 | 11066 | 1.1025 | | 0.7578 | 3.0 | 16599 | 1.1547 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
featherless-ai-quants/Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-GGUF
featherless-ai-quants
2024-11-10T19:57:30Z
8
0
null
[ "gguf", "text-generation", "base_model:Saxo/Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B", "base_model:quantized:Saxo/Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-09T11:26:45Z
--- base_model: Saxo/Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # Saxo/Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-GGUF/blob/main/Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-IQ4_XS.gguf) | 4276.63 MB | | Q2_K | [Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-GGUF/blob/main/Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-GGUF/blob/main/Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-GGUF/blob/main/Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-GGUF/blob/main/Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-GGUF/blob/main/Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-GGUF/blob/main/Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-GGUF/blob/main/Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-Q5_K_M.gguf) | 5467.41 MB | | Q5_K_S | [Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-GGUF/blob/main/Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-Q5_K_S.gguf) | 5339.91 MB | | Q6_K | [Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-GGUF/blob/main/Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-Q6_K.gguf) | 6290.45 MB | | Q8_0 | [Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-GGUF/blob/main/Saxo-Linkbricks-Horizon-AI-Korean-llama-3.1-sft-dpo-8B-Q8_0.gguf) | 8145.12 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/THUDM-LongWriter-llama3.1-8b-GGUF
featherless-ai-quants
2024-11-10T19:57:25Z
16
0
null
[ "gguf", "text-generation", "base_model:THUDM/LongWriter-llama3.1-8b", "base_model:quantized:THUDM/LongWriter-llama3.1-8b", "endpoints_compatible", "region:us" ]
text-generation
2024-11-09T11:23:22Z
--- base_model: THUDM/LongWriter-llama3.1-8b pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # THUDM/LongWriter-llama3.1-8b GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [THUDM-LongWriter-llama3.1-8b-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/THUDM-LongWriter-llama3.1-8b-GGUF/blob/main/THUDM-LongWriter-llama3.1-8b-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [THUDM-LongWriter-llama3.1-8b-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/THUDM-LongWriter-llama3.1-8b-GGUF/blob/main/THUDM-LongWriter-llama3.1-8b-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [THUDM-LongWriter-llama3.1-8b-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/THUDM-LongWriter-llama3.1-8b-GGUF/blob/main/THUDM-LongWriter-llama3.1-8b-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [THUDM-LongWriter-llama3.1-8b-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/THUDM-LongWriter-llama3.1-8b-GGUF/blob/main/THUDM-LongWriter-llama3.1-8b-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [THUDM-LongWriter-llama3.1-8b-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/THUDM-LongWriter-llama3.1-8b-GGUF/blob/main/THUDM-LongWriter-llama3.1-8b-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [THUDM-LongWriter-llama3.1-8b-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/THUDM-LongWriter-llama3.1-8b-GGUF/blob/main/THUDM-LongWriter-llama3.1-8b-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [THUDM-LongWriter-llama3.1-8b-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/THUDM-LongWriter-llama3.1-8b-GGUF/blob/main/THUDM-LongWriter-llama3.1-8b-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [THUDM-LongWriter-llama3.1-8b-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/THUDM-LongWriter-llama3.1-8b-GGUF/blob/main/THUDM-LongWriter-llama3.1-8b-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [THUDM-LongWriter-llama3.1-8b-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/THUDM-LongWriter-llama3.1-8b-GGUF/blob/main/THUDM-LongWriter-llama3.1-8b-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [THUDM-LongWriter-llama3.1-8b-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/THUDM-LongWriter-llama3.1-8b-GGUF/blob/main/THUDM-LongWriter-llama3.1-8b-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [THUDM-LongWriter-llama3.1-8b-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/THUDM-LongWriter-llama3.1-8b-GGUF/blob/main/THUDM-LongWriter-llama3.1-8b-Q8_0.gguf) | 8145.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/unsloth-Meta-Llama-3.1-8B-Instruct-GGUF
featherless-ai-quants
2024-11-10T19:57:23Z
20
1
null
[ "gguf", "text-generation", "base_model:unsloth/Meta-Llama-3.1-8B-Instruct", "base_model:quantized:unsloth/Meta-Llama-3.1-8B-Instruct", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-09T11:21:05Z
--- base_model: unsloth/Meta-Llama-3.1-8B-Instruct pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # unsloth/Meta-Llama-3.1-8B-Instruct GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [unsloth-Meta-Llama-3.1-8B-Instruct-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/unsloth-Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/unsloth-Meta-Llama-3.1-8B-Instruct-IQ4_XS.gguf) | 4276.63 MB | | Q2_K | [unsloth-Meta-Llama-3.1-8B-Instruct-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/unsloth-Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/unsloth-Meta-Llama-3.1-8B-Instruct-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [unsloth-Meta-Llama-3.1-8B-Instruct-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/unsloth-Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/unsloth-Meta-Llama-3.1-8B-Instruct-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [unsloth-Meta-Llama-3.1-8B-Instruct-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/unsloth-Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/unsloth-Meta-Llama-3.1-8B-Instruct-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [unsloth-Meta-Llama-3.1-8B-Instruct-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/unsloth-Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/unsloth-Meta-Llama-3.1-8B-Instruct-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [unsloth-Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/unsloth-Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/unsloth-Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [unsloth-Meta-Llama-3.1-8B-Instruct-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/unsloth-Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/unsloth-Meta-Llama-3.1-8B-Instruct-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [unsloth-Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/unsloth-Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/unsloth-Meta-Llama-3.1-8B-Instruct-Q5_K_M.gguf) | 5467.41 MB | | Q5_K_S | [unsloth-Meta-Llama-3.1-8B-Instruct-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/unsloth-Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/unsloth-Meta-Llama-3.1-8B-Instruct-Q5_K_S.gguf) | 5339.91 MB | | Q6_K | [unsloth-Meta-Llama-3.1-8B-Instruct-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/unsloth-Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/unsloth-Meta-Llama-3.1-8B-Instruct-Q6_K.gguf) | 6290.45 MB | | Q8_0 | [unsloth-Meta-Llama-3.1-8B-Instruct-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/unsloth-Meta-Llama-3.1-8B-Instruct-GGUF/blob/main/unsloth-Meta-Llama-3.1-8B-Instruct-Q8_0.gguf) | 8145.12 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/umarigan-llama-3.1-openhermes-tr-GGUF
featherless-ai-quants
2024-11-10T19:57:17Z
27
0
null
[ "gguf", "text-generation", "base_model:umarigan/llama-3.1-openhermes-tr", "base_model:quantized:umarigan/llama-3.1-openhermes-tr", "endpoints_compatible", "region:us" ]
text-generation
2024-11-09T11:10:24Z
--- base_model: umarigan/llama-3.1-openhermes-tr pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # umarigan/llama-3.1-openhermes-tr GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [umarigan-llama-3.1-openhermes-tr-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/umarigan-llama-3.1-openhermes-tr-GGUF/blob/main/umarigan-llama-3.1-openhermes-tr-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [umarigan-llama-3.1-openhermes-tr-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/umarigan-llama-3.1-openhermes-tr-GGUF/blob/main/umarigan-llama-3.1-openhermes-tr-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [umarigan-llama-3.1-openhermes-tr-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/umarigan-llama-3.1-openhermes-tr-GGUF/blob/main/umarigan-llama-3.1-openhermes-tr-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [umarigan-llama-3.1-openhermes-tr-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/umarigan-llama-3.1-openhermes-tr-GGUF/blob/main/umarigan-llama-3.1-openhermes-tr-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [umarigan-llama-3.1-openhermes-tr-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/umarigan-llama-3.1-openhermes-tr-GGUF/blob/main/umarigan-llama-3.1-openhermes-tr-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [umarigan-llama-3.1-openhermes-tr-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/umarigan-llama-3.1-openhermes-tr-GGUF/blob/main/umarigan-llama-3.1-openhermes-tr-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [umarigan-llama-3.1-openhermes-tr-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/umarigan-llama-3.1-openhermes-tr-GGUF/blob/main/umarigan-llama-3.1-openhermes-tr-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [umarigan-llama-3.1-openhermes-tr-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/umarigan-llama-3.1-openhermes-tr-GGUF/blob/main/umarigan-llama-3.1-openhermes-tr-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [umarigan-llama-3.1-openhermes-tr-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/umarigan-llama-3.1-openhermes-tr-GGUF/blob/main/umarigan-llama-3.1-openhermes-tr-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [umarigan-llama-3.1-openhermes-tr-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/umarigan-llama-3.1-openhermes-tr-GGUF/blob/main/umarigan-llama-3.1-openhermes-tr-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [umarigan-llama-3.1-openhermes-tr-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/umarigan-llama-3.1-openhermes-tr-GGUF/blob/main/umarigan-llama-3.1-openhermes-tr-Q8_0.gguf) | 8145.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/proxectonos-Llama-3.1-Carballo-GGUF
featherless-ai-quants
2024-11-10T19:57:00Z
13
0
null
[ "gguf", "text-generation", "base_model:proxectonos/Llama-3.1-Carballo", "base_model:quantized:proxectonos/Llama-3.1-Carballo", "endpoints_compatible", "region:us" ]
text-generation
2024-11-09T10:09:54Z
--- base_model: proxectonos/Llama-3.1-Carballo pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # proxectonos/Llama-3.1-Carballo GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [proxectonos-Llama-3.1-Carballo-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/proxectonos-Llama-3.1-Carballo-GGUF/blob/main/proxectonos-Llama-3.1-Carballo-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [proxectonos-Llama-3.1-Carballo-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/proxectonos-Llama-3.1-Carballo-GGUF/blob/main/proxectonos-Llama-3.1-Carballo-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [proxectonos-Llama-3.1-Carballo-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/proxectonos-Llama-3.1-Carballo-GGUF/blob/main/proxectonos-Llama-3.1-Carballo-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [proxectonos-Llama-3.1-Carballo-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/proxectonos-Llama-3.1-Carballo-GGUF/blob/main/proxectonos-Llama-3.1-Carballo-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [proxectonos-Llama-3.1-Carballo-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/proxectonos-Llama-3.1-Carballo-GGUF/blob/main/proxectonos-Llama-3.1-Carballo-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [proxectonos-Llama-3.1-Carballo-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/proxectonos-Llama-3.1-Carballo-GGUF/blob/main/proxectonos-Llama-3.1-Carballo-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [proxectonos-Llama-3.1-Carballo-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/proxectonos-Llama-3.1-Carballo-GGUF/blob/main/proxectonos-Llama-3.1-Carballo-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [proxectonos-Llama-3.1-Carballo-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/proxectonos-Llama-3.1-Carballo-GGUF/blob/main/proxectonos-Llama-3.1-Carballo-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [proxectonos-Llama-3.1-Carballo-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/proxectonos-Llama-3.1-Carballo-GGUF/blob/main/proxectonos-Llama-3.1-Carballo-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [proxectonos-Llama-3.1-Carballo-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/proxectonos-Llama-3.1-Carballo-GGUF/blob/main/proxectonos-Llama-3.1-Carballo-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [proxectonos-Llama-3.1-Carballo-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/proxectonos-Llama-3.1-Carballo-GGUF/blob/main/proxectonos-Llama-3.1-Carballo-Q8_0.gguf) | 8145.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-GGUF
featherless-ai-quants
2024-11-10T19:56:52Z
10
0
null
[ "gguf", "text-generation", "base_model:Salesforce/LLaMA-3-8B-SFR-Iterative-DPO-R", "base_model:quantized:Salesforce/LLaMA-3-8B-SFR-Iterative-DPO-R", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-09T05:38:12Z
--- base_model: Salesforce/LLaMA-3-8B-SFR-Iterative-DPO-R pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # Salesforce/LLaMA-3-8B-SFR-Iterative-DPO-R GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-GGUF/blob/main/Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-GGUF/blob/main/Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-GGUF/blob/main/Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-GGUF/blob/main/Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-GGUF/blob/main/Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-GGUF/blob/main/Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-GGUF/blob/main/Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-GGUF/blob/main/Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-GGUF/blob/main/Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-GGUF/blob/main/Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-GGUF/blob/main/Salesforce-LLaMA-3-8B-SFR-Iterative-DPO-R-Q8_0.gguf) | 8145.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/picAIso-TARS-8B-llama-REMIX-GGUF
featherless-ai-quants
2024-11-10T19:56:44Z
13
0
null
[ "gguf", "text-generation", "base_model:picAIso/TARS-8B-llama-REMIX", "base_model:quantized:picAIso/TARS-8B-llama-REMIX", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-09T05:32:40Z
--- base_model: picAIso/TARS-8B-llama-REMIX pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # picAIso/TARS-8B-llama-REMIX GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [picAIso-TARS-8B-llama-REMIX-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/picAIso-TARS-8B-llama-REMIX-GGUF/blob/main/picAIso-TARS-8B-llama-REMIX-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [picAIso-TARS-8B-llama-REMIX-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/picAIso-TARS-8B-llama-REMIX-GGUF/blob/main/picAIso-TARS-8B-llama-REMIX-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [picAIso-TARS-8B-llama-REMIX-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/picAIso-TARS-8B-llama-REMIX-GGUF/blob/main/picAIso-TARS-8B-llama-REMIX-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [picAIso-TARS-8B-llama-REMIX-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/picAIso-TARS-8B-llama-REMIX-GGUF/blob/main/picAIso-TARS-8B-llama-REMIX-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [picAIso-TARS-8B-llama-REMIX-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/picAIso-TARS-8B-llama-REMIX-GGUF/blob/main/picAIso-TARS-8B-llama-REMIX-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [picAIso-TARS-8B-llama-REMIX-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/picAIso-TARS-8B-llama-REMIX-GGUF/blob/main/picAIso-TARS-8B-llama-REMIX-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [picAIso-TARS-8B-llama-REMIX-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/picAIso-TARS-8B-llama-REMIX-GGUF/blob/main/picAIso-TARS-8B-llama-REMIX-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [picAIso-TARS-8B-llama-REMIX-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/picAIso-TARS-8B-llama-REMIX-GGUF/blob/main/picAIso-TARS-8B-llama-REMIX-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [picAIso-TARS-8B-llama-REMIX-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/picAIso-TARS-8B-llama-REMIX-GGUF/blob/main/picAIso-TARS-8B-llama-REMIX-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [picAIso-TARS-8B-llama-REMIX-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/picAIso-TARS-8B-llama-REMIX-GGUF/blob/main/picAIso-TARS-8B-llama-REMIX-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [picAIso-TARS-8B-llama-REMIX-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/picAIso-TARS-8B-llama-REMIX-GGUF/blob/main/picAIso-TARS-8B-llama-REMIX-Q8_0.gguf) | 8145.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/Locutusque-Apollo-0.4-Llama-3.1-8B-GGUF
featherless-ai-quants
2024-11-10T19:56:40Z
10
0
null
[ "gguf", "text-generation", "base_model:Locutusque/Apollo-0.4-Llama-3.1-8B", "base_model:quantized:Locutusque/Apollo-0.4-Llama-3.1-8B", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-09T05:13:56Z
--- base_model: Locutusque/Apollo-0.4-Llama-3.1-8B pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # Locutusque/Apollo-0.4-Llama-3.1-8B GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [Locutusque-Apollo-0.4-Llama-3.1-8B-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Apollo-0.4-Llama-3.1-8B-GGUF/blob/main/Locutusque-Apollo-0.4-Llama-3.1-8B-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [Locutusque-Apollo-0.4-Llama-3.1-8B-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Apollo-0.4-Llama-3.1-8B-GGUF/blob/main/Locutusque-Apollo-0.4-Llama-3.1-8B-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [Locutusque-Apollo-0.4-Llama-3.1-8B-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Apollo-0.4-Llama-3.1-8B-GGUF/blob/main/Locutusque-Apollo-0.4-Llama-3.1-8B-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [Locutusque-Apollo-0.4-Llama-3.1-8B-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Apollo-0.4-Llama-3.1-8B-GGUF/blob/main/Locutusque-Apollo-0.4-Llama-3.1-8B-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [Locutusque-Apollo-0.4-Llama-3.1-8B-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Apollo-0.4-Llama-3.1-8B-GGUF/blob/main/Locutusque-Apollo-0.4-Llama-3.1-8B-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [Locutusque-Apollo-0.4-Llama-3.1-8B-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Apollo-0.4-Llama-3.1-8B-GGUF/blob/main/Locutusque-Apollo-0.4-Llama-3.1-8B-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [Locutusque-Apollo-0.4-Llama-3.1-8B-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Apollo-0.4-Llama-3.1-8B-GGUF/blob/main/Locutusque-Apollo-0.4-Llama-3.1-8B-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [Locutusque-Apollo-0.4-Llama-3.1-8B-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Apollo-0.4-Llama-3.1-8B-GGUF/blob/main/Locutusque-Apollo-0.4-Llama-3.1-8B-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [Locutusque-Apollo-0.4-Llama-3.1-8B-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Apollo-0.4-Llama-3.1-8B-GGUF/blob/main/Locutusque-Apollo-0.4-Llama-3.1-8B-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [Locutusque-Apollo-0.4-Llama-3.1-8B-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Apollo-0.4-Llama-3.1-8B-GGUF/blob/main/Locutusque-Apollo-0.4-Llama-3.1-8B-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [Locutusque-Apollo-0.4-Llama-3.1-8B-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/Locutusque-Apollo-0.4-Llama-3.1-8B-GGUF/blob/main/Locutusque-Apollo-0.4-Llama-3.1-8B-Q8_0.gguf) | 8145.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-GGUF
featherless-ai-quants
2024-11-10T19:56:35Z
7
0
null
[ "gguf", "text-generation", "base_model:PatronusAI/Llama-3-Patronus-Lynx-8B-Instruct-v1.1", "base_model:quantized:PatronusAI/Llama-3-Patronus-Lynx-8B-Instruct-v1.1", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-09T04:55:39Z
--- base_model: PatronusAI/Llama-3-Patronus-Lynx-8B-Instruct-v1.1 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # PatronusAI/Llama-3-Patronus-Lynx-8B-Instruct-v1.1 GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-GGUF/blob/main/PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-GGUF/blob/main/PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-GGUF/blob/main/PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-GGUF/blob/main/PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-GGUF/blob/main/PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-GGUF/blob/main/PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-GGUF/blob/main/PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-GGUF/blob/main/PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-GGUF/blob/main/PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-GGUF/blob/main/PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-GGUF/blob/main/PatronusAI-Llama-3-Patronus-Lynx-8B-Instruct-v1.1-Q8_0.gguf) | 8145.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
featherless-ai-quants/OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-GGUF
featherless-ai-quants
2024-11-10T19:56:15Z
21
0
null
[ "gguf", "text-generation", "base_model:OwenArli/ArliAI-Llama-3-8B-Dolfin-v0.3", "base_model:quantized:OwenArli/ArliAI-Llama-3-8B-Dolfin-v0.3", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-11-09T04:04:01Z
--- base_model: OwenArli/ArliAI-Llama-3-8B-Dolfin-v0.3 pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # OwenArli/ArliAI-Llama-3-8B-Dolfin-v0.3 GGUF Quantizations πŸš€ ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations πŸ“Š | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-GGUF/blob/main/OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-GGUF/blob/main/OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-GGUF/blob/main/OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-GGUF/blob/main/OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-GGUF/blob/main/OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-GGUF/blob/main/OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-GGUF/blob/main/OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-GGUF/blob/main/OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-GGUF/blob/main/OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-GGUF/blob/main/OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-GGUF/blob/main/OwenArli-ArliAI-Llama-3-8B-Dolfin-v0.3-Q8_0.gguf) | 8145.11 MB | --- ## ⚑ Powered by [Featherless AI](https://featherless.ai) ### Key Features - πŸ”₯ **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - πŸ› οΈ **Zero Infrastructure** - No server setup or maintenance required - πŸ“š **Vast Compatibility** - Support for 2400+ models and counting - πŸ’Ž **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)