modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-31 06:26:39
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
530 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-31 06:26:13
card
stringlengths
11
1.01M
Ja-ck/llama-2-13b-instruct-Y24-v2
Ja-ck
2023-11-29T06:28:41Z
2,309
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "ko", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-29T06:18:43Z
--- license: apache-2.0 language: - ko pipeline_tag: text-generation --- ## Prompt Template ``` ### 질문: {instruction} ### 답변: {output} ```
cottyard/ppo-LunarLander-v2
cottyard
2023-11-29T06:27:43Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-11-29T06:27:20Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 258.66 +/- 17.29 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Realgon/roberta_sst2_padding0model
Realgon
2023-11-29T06:27:37Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-29T06:01:32Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta_sst2_padding0model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta_sst2_padding0model This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4539 - Accuracy: 0.9484 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 433 | 0.1891 | 0.9407 | | 0.3324 | 2.0 | 866 | 0.3948 | 0.9176 | | 0.1922 | 3.0 | 1299 | 0.2418 | 0.9379 | | 0.126 | 4.0 | 1732 | 0.3080 | 0.9407 | | 0.069 | 5.0 | 2165 | 0.4075 | 0.9396 | | 0.0358 | 6.0 | 2598 | 0.3955 | 0.9418 | | 0.0298 | 7.0 | 3031 | 0.4060 | 0.9429 | | 0.0298 | 8.0 | 3464 | 0.4284 | 0.9379 | | 0.0207 | 9.0 | 3897 | 0.4804 | 0.9401 | | 0.0197 | 10.0 | 4330 | 0.5089 | 0.9347 | | 0.0177 | 11.0 | 4763 | 0.5430 | 0.9336 | | 0.0143 | 12.0 | 5196 | 0.4997 | 0.9385 | | 0.0138 | 13.0 | 5629 | 0.4695 | 0.9429 | | 0.0066 | 14.0 | 6062 | 0.5391 | 0.9363 | | 0.0066 | 15.0 | 6495 | 0.5354 | 0.9412 | | 0.0042 | 16.0 | 6928 | 0.4295 | 0.9473 | | 0.0067 | 17.0 | 7361 | 0.4948 | 0.9429 | | 0.0053 | 18.0 | 7794 | 0.4720 | 0.9473 | | 0.0041 | 19.0 | 8227 | 0.4552 | 0.9451 | | 0.0068 | 20.0 | 8660 | 0.4539 | 0.9484 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1 - Datasets 2.12.0 - Tokenizers 0.13.3
lol-cod/captchasolving
lol-cod
2023-11-29T06:26:01Z
0
0
keras
[ "keras", "onnx", "captcha", "ocr", "ai captcha solving", "en", "arxiv:1910.09700", "license:unlicense", "region:us" ]
null
2023-11-29T06:02:19Z
--- license: unlicense language: - en library_name: keras tags: - captcha - keras - ocr - ai captcha solving --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [Ashish Chaudhary aka lolcod] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [https://github.com/lol-cod/solvingcaptchakeras] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] Direct Use The model is designed for solving 4-lettered captchas with an 80% accuracy rate. It can be directly employed for captcha-solving tasks without the need for fine-tuning or integration into a larger ecosystem or application. Downstream Use [optional] [More Information Needed] Out-of-Scope Use The model is not intended for tasks beyond solving 4-lettered captchas. It may not perform well on captchas with a different format or on tasks unrelated to captcha-solving. Bias, Risks, and Limitations The model's performance may vary based on the complexity and variability of captchas. It may not generalize well to captchas with different characteristics or lengths. Additionally, there is a risk of misclassification, leading to incorrect solutions. The model might be sensitive to changes in background, font styles, or other captcha variations. Recommendations Users, both direct and downstream, should be aware of the model's limitations and potential biases. It is recommended to assess the performance on a diverse set of captchas to understand the model's capabilities and shortcomings. How to Get Started with the Model To use the model, you can leverage the following code: python Copy code # Sample code for using the captcha-solving model import keras from keras.models import load_model from captcha_solver import solve_captcha # Load the pre-trained model model = load_model('captcha_model.h5') # Provide the captcha image as input captcha_image = 'path/to/your/captcha.png' solution = solve_captcha(model, captcha_image) # Print the solution print('Captcha Solution:', solution) [More Information Needed] Training Details Training Data The model was trained on a dataset of 4-lettered captchas. For more detailed information about the training data, refer to the accompanying Dataset Card. [More Information Needed] Training Procedure Preprocessing [optional] [More Information Needed] Training Hyperparameters Training regime: [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> [More Information Needed] Speeds, Sizes, Times [optional] [More Information Needed] Evaluation [More Information Needed] <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Noveled/test-500
Noveled
2023-11-29T06:19:04Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:beomi/polyglot-ko-12.8b-safetensors", "base_model:adapter:beomi/polyglot-ko-12.8b-safetensors", "region:us" ]
null
2023-11-29T06:19:01Z
--- library_name: peft base_model: beomi/polyglot-ko-12.8b-safetensors --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.3.dev0
Noveled/test
Noveled
2023-11-29T06:18:41Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:beomi/polyglot-ko-12.8b-safetensors", "base_model:adapter:beomi/polyglot-ko-12.8b-safetensors", "region:us" ]
null
2023-11-28T07:56:33Z
--- library_name: peft base_model: beomi/polyglot-ko-12.8b-safetensors --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.3.dev0
Realgon/distilbert_sst2_padding10model
Realgon
2023-11-29T06:16:58Z
106
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-28T18:24:14Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert_sst2_padding10model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sst2_padding10model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8972 - Accuracy: 0.9017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 433 | 0.2551 | 0.9023 | | 0.3447 | 2.0 | 866 | 0.3196 | 0.8979 | | 0.1734 | 3.0 | 1299 | 0.3882 | 0.9001 | | 0.0877 | 4.0 | 1732 | 0.4801 | 0.9050 | | 0.0444 | 5.0 | 2165 | 0.6567 | 0.8918 | | 0.0206 | 6.0 | 2598 | 0.6090 | 0.9023 | | 0.0145 | 7.0 | 3031 | 0.6415 | 0.9028 | | 0.0145 | 8.0 | 3464 | 0.7532 | 0.9023 | | 0.0083 | 9.0 | 3897 | 0.6840 | 0.9116 | | 0.0073 | 10.0 | 4330 | 0.8115 | 0.9001 | | 0.0131 | 11.0 | 4763 | 0.7755 | 0.9017 | | 0.0083 | 12.0 | 5196 | 0.7370 | 0.9083 | | 0.0045 | 13.0 | 5629 | 0.8288 | 0.9066 | | 0.0072 | 14.0 | 6062 | 0.8585 | 0.9017 | | 0.0072 | 15.0 | 6495 | 0.8054 | 0.9028 | | 0.0064 | 16.0 | 6928 | 0.8080 | 0.9039 | | 0.0059 | 17.0 | 7361 | 0.8245 | 0.9050 | | 0.0019 | 18.0 | 7794 | 0.9924 | 0.8940 | | 0.001 | 19.0 | 8227 | 0.9138 | 0.8984 | | 0.0016 | 20.0 | 8660 | 0.8972 | 0.9017 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
Bhandari007/openai-whisper-large-open-slr-0.0.1
Bhandari007
2023-11-29T06:12:52Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai/whisper-large", "base_model:adapter:openai/whisper-large", "region:us" ]
null
2023-11-29T06:12:44Z
--- library_name: peft base_model: openai/whisper-large --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.3.dev0
Ja-ck/llama-2-13b-instruct-Y24-v1
Ja-ck
2023-11-29T06:11:50Z
2,296
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "ko", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-29T06:02:43Z
--- license: apache-2.0 language: - ko pipeline_tag: text-generation --- ## Prompt Template ``` ### 질문: {instruction} ### 답변: {output} ```
saumyasinha0510/T5-Kaggle_resource_pipeline
saumyasinha0510
2023-11-29T06:10:39Z
4
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-11-28T09:42:48Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_keras_callback model-index: - name: saumyasinha0510/T5-Kaggle_resource_pipeline results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # saumyasinha0510/T5-Kaggle_resource_pipeline This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.0704 - Validation Loss: 1.8716 - Train Lr: 2e-05 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Lr | Epoch | |:----------:|:---------------:|:--------:|:-----:| | 2.2602 | 1.9319 | 2e-05 | 0 | | 2.1136 | 1.8929 | 2e-05 | 1 | | 2.0704 | 1.8716 | 2e-05 | 2 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.14.0 - Datasets 2.15.0 - Tokenizers 0.15.0
rika37/a2c-PandaReachDense-v3
rika37
2023-11-29T06:06:34Z
2
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-11-29T06:02:18Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -2.29 +/- 4.10 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
HarshaSingamshetty1/detr-resnet-50_finetuned_cppe5
HarshaSingamshetty1
2023-11-29T06:04:23Z
220
0
transformers
[ "transformers", "tensorboard", "safetensors", "detr", "object-detection", "generated_from_trainer", "dataset:cppe-5", "base_model:facebook/detr-resnet-50", "base_model:finetune:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-11-27T05:54:46Z
--- license: apache-2.0 base_model: facebook/detr-resnet-50 tags: - generated_from_trainer datasets: - cppe-5 model-index: - name: detr-resnet-50_finetuned_cppe5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-resnet-50_finetuned_cppe5 This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the cppe-5 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
Vishal24/Keyword_category_adapter_v1
Vishal24
2023-11-29T05:58:17Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:adapter:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2023-11-29T05:58:07Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.3.dev0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.3.dev0
dvijay/mistral-alpaca-finetune
dvijay
2023-11-29T05:50:10Z
17
0
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "generated_from_trainer", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-29T05:18:36Z
--- license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 tags: - generated_from_trainer model-index: - name: out results: [] --- [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) # mistral-alpaca-finetune This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the mhenrichsen/alpaca_2k_test dataset. It achieves the following results on the evaluation set: - Loss: 0.9808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9152 | 0.01 | 1 | 0.9037 | | 0.9101 | 0.15 | 18 | 0.8461 | | 0.7589 | 0.3 | 36 | 0.8437 | | 0.8274 | 0.45 | 54 | 0.8441 | | 0.7255 | 0.61 | 72 | 0.8435 | | 0.85 | 0.76 | 90 | 0.8419 | | 0.9083 | 0.91 | 108 | 0.8408 | | 0.3208 | 1.06 | 126 | 0.9177 | | 0.3738 | 1.21 | 144 | 0.8924 | | 0.4034 | 1.36 | 162 | 0.8914 | | 0.3936 | 1.51 | 180 | 0.9032 | | 0.3188 | 1.66 | 198 | 0.9001 | | 0.4331 | 1.82 | 216 | 0.8973 | | 0.3946 | 1.97 | 234 | 0.8963 | | 0.1531 | 2.12 | 252 | 0.9653 | | 0.1741 | 2.27 | 270 | 0.9841 | | 0.2371 | 2.42 | 288 | 0.9784 | | 0.271 | 2.57 | 306 | 0.9801 | | 0.2632 | 2.72 | 324 | 0.9808 | | 0.1691 | 2.87 | 342 | 0.9808 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
LangChain12/my_awesome_wnut_model
LangChain12
2023-11-29T05:49:21Z
107
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "token-classification", "generated_from_trainer", "dataset:wnut_17", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-11-29T05:20:14Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: my_awesome_wnut_model results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.4704918032786885 - name: Recall type: recall value: 0.2659870250231696 - name: F1 type: f1 value: 0.33984606275902896 - name: Accuracy type: accuracy value: 0.9393356419135565 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2839 - Precision: 0.4705 - Recall: 0.2660 - F1: 0.3398 - Accuracy: 0.9393 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.2976 | 0.4098 | 0.1937 | 0.2631 | 0.9349 | | No log | 2.0 | 426 | 0.2839 | 0.4705 | 0.2660 | 0.3398 | 0.9393 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
iamshnoo/yi-alpaca-2-6b-hindi
iamshnoo
2023-11-29T05:48:39Z
2
0
peft
[ "peft", "region:us" ]
null
2023-11-23T05:02:41Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
Jungwonchang/whisper-large-v2-LoRA-SPGIspeech-xs
Jungwonchang
2023-11-29T05:34:56Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai/whisper-large-v2", "base_model:adapter:openai/whisper-large-v2", "model-index", "region:us" ]
null
2023-11-27T13:11:26Z
--- library_name: peft base_model: openai/whisper-large-v2 model-index: - name: Jungwonchang/whisper-large-v2-LoRA-SPGIspeech-xs results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Test set for spgispeech type: kensho/spgispeech config: S split: test metrics: - type: wer value: 6.72 name: WER - type: cer value: 1.99 name: CER --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
gianyrox/SeussDream
gianyrox
2023-11-29T05:29:03Z
29
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-16T19:49:43Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of Dr. Seuss's Lorax tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - gianyrox/SeussDream This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of Dr. Seuss's Lorax using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
K-kiron/distilbert-lr-linear
K-kiron
2023-11-29T05:26:39Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-29T05:23:43Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-lr-linear results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-lr-linear This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1209 - Accuracy: 0.8961 - F1: 0.8962 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.3
SharatChandra/whisper-fine-banking-dataset
SharatChandra
2023-11-29T05:19:21Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-medium", "base_model:finetune:openai/whisper-medium", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-11-28T08:00:18Z
--- license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-fine-banking-dataset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-fine-banking-dataset This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6014 - Wer: 96.7495 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0001 | 32.26 | 1000 | 0.5225 | 96.6399 | | 0.0 | 64.52 | 2000 | 0.5617 | 96.7495 | | 0.0 | 96.77 | 3000 | 0.5931 | 96.7495 | | 0.0 | 129.03 | 4000 | 0.6014 | 96.7495 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
K-kiron/distilbert-batch-size-32
K-kiron
2023-11-29T05:15:44Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-29T05:13:19Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-batch-size-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-batch-size-32 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0549 - Accuracy: 0.8963 - F1: 0.8963 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.3
hkivancoral/hushem_5x_beit_base_rms_001_fold4
hkivancoral
2023-11-29T05:09:38Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "beit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/beit-base-patch16-224", "base_model:finetune:microsoft/beit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-29T04:37:08Z
--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_5x_beit_base_rms_001_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.7619047619047619 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_5x_beit_base_rms_001_fold4 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5372 - Accuracy: 0.7619 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4749 | 1.0 | 28 | 1.3999 | 0.2381 | | 1.39 | 2.0 | 56 | 1.4010 | 0.2619 | | 1.4057 | 3.0 | 84 | 1.3886 | 0.2381 | | 1.3953 | 4.0 | 112 | 1.3773 | 0.2381 | | 1.3855 | 5.0 | 140 | 1.3607 | 0.2619 | | 1.3721 | 6.0 | 168 | 1.1238 | 0.5 | | 1.2199 | 7.0 | 196 | 1.2305 | 0.4762 | | 1.1505 | 8.0 | 224 | 0.9832 | 0.4762 | | 1.1076 | 9.0 | 252 | 0.9145 | 0.5476 | | 1.04 | 10.0 | 280 | 0.9689 | 0.5476 | | 0.9947 | 11.0 | 308 | 0.8866 | 0.6429 | | 1.0266 | 12.0 | 336 | 0.8639 | 0.6905 | | 0.9955 | 13.0 | 364 | 0.8959 | 0.6190 | | 0.9564 | 14.0 | 392 | 0.8608 | 0.6667 | | 0.9123 | 15.0 | 420 | 0.7711 | 0.6905 | | 0.9391 | 16.0 | 448 | 0.7070 | 0.7619 | | 0.9117 | 17.0 | 476 | 0.7366 | 0.7619 | | 0.902 | 18.0 | 504 | 0.7650 | 0.7143 | | 0.8479 | 19.0 | 532 | 0.7181 | 0.7381 | | 0.8138 | 20.0 | 560 | 0.8337 | 0.6667 | | 0.7593 | 21.0 | 588 | 0.8325 | 0.6905 | | 0.8558 | 22.0 | 616 | 0.7211 | 0.8095 | | 0.8609 | 23.0 | 644 | 0.7758 | 0.7619 | | 0.7997 | 24.0 | 672 | 0.8535 | 0.7143 | | 0.6915 | 25.0 | 700 | 0.8962 | 0.7381 | | 0.7445 | 26.0 | 728 | 0.7116 | 0.7619 | | 0.6818 | 27.0 | 756 | 0.9464 | 0.5714 | | 0.6812 | 28.0 | 784 | 0.6802 | 0.7143 | | 0.662 | 29.0 | 812 | 1.0464 | 0.5476 | | 0.6161 | 30.0 | 840 | 0.7154 | 0.7857 | | 0.5942 | 31.0 | 868 | 0.6122 | 0.7619 | | 0.571 | 32.0 | 896 | 0.6263 | 0.7857 | | 0.5357 | 33.0 | 924 | 0.8564 | 0.8095 | | 0.4815 | 34.0 | 952 | 0.9986 | 0.7381 | | 0.5261 | 35.0 | 980 | 0.9173 | 0.8095 | | 0.3508 | 36.0 | 1008 | 1.0846 | 0.7619 | | 0.3469 | 37.0 | 1036 | 0.9412 | 0.8333 | | 0.3024 | 38.0 | 1064 | 0.9602 | 0.8333 | | 0.2908 | 39.0 | 1092 | 1.1234 | 0.8333 | | 0.2222 | 40.0 | 1120 | 1.1275 | 0.8095 | | 0.2149 | 41.0 | 1148 | 1.4618 | 0.7381 | | 0.2207 | 42.0 | 1176 | 1.3470 | 0.7857 | | 0.094 | 43.0 | 1204 | 1.5389 | 0.7619 | | 0.1227 | 44.0 | 1232 | 1.3819 | 0.7857 | | 0.0713 | 45.0 | 1260 | 1.5287 | 0.7619 | | 0.0383 | 46.0 | 1288 | 1.5676 | 0.8095 | | 0.0259 | 47.0 | 1316 | 1.4966 | 0.7857 | | 0.023 | 48.0 | 1344 | 1.5355 | 0.7619 | | 0.0304 | 49.0 | 1372 | 1.5372 | 0.7619 | | 0.0233 | 50.0 | 1400 | 1.5372 | 0.7619 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
Aleksia/finetuning-distilBert_sentiment
Aleksia
2023-11-29T05:05:44Z
120
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-29T03:14:44Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-distilBert_sentiment results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-distilBert_sentiment This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2217 - Accuracy: 0.9148 - F1: 0.9149 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
BaoLocTown/sft-metamath-mistral-7b-vi-v1
BaoLocTown
2023-11-29T05:00:22Z
8
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "generated_from_trainer", "base_model:hllj/meta-math-mistral-vi-math", "base_model:finetune:hllj/meta-math-mistral-vi-math", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-29T03:05:19Z
--- base_model: hllj/meta-math-mistral-vi-math tags: - generated_from_trainer model-index: - name: sft-metamath-mistral-7b-vi-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sft-metamath-mistral-7b-vi-v1 This model is a fine-tuned version of [hllj/meta-math-mistral-vi-math](https://huggingface.co/hllj/meta-math-mistral-vi-math) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4947 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.3128 | 0.26 | 500 | 0.5093 | | 0.2751 | 1.07 | 1000 | 0.4884 | | 0.2585 | 1.33 | 1500 | 0.4943 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0 - Datasets 2.15.0 - Tokenizers 0.15.0
justswim/lnmdlsktchfsh-512
justswim
2023-11-29T04:57:59Z
1
0
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-11-29T02:47:38Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: lnmdlsktchfsh-512 tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
hkivancoral/hushem_5x_beit_base_rms_001_fold3
hkivancoral
2023-11-29T04:36:20Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "beit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/beit-base-patch16-224", "base_model:finetune:microsoft/beit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-29T04:05:25Z
--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_5x_beit_base_rms_001_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.627906976744186 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_5x_beit_base_rms_001_fold3 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4768 - Accuracy: 0.6279 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.51 | 1.0 | 28 | 1.6351 | 0.2558 | | 1.3869 | 2.0 | 56 | 1.4127 | 0.2558 | | 1.3848 | 3.0 | 84 | 1.3895 | 0.2558 | | 1.4113 | 4.0 | 112 | 1.3824 | 0.2558 | | 1.3569 | 5.0 | 140 | 1.4121 | 0.2326 | | 1.4625 | 6.0 | 168 | 1.3739 | 0.2326 | | 1.3804 | 7.0 | 196 | 1.2185 | 0.5349 | | 1.1352 | 8.0 | 224 | 1.1411 | 0.4884 | | 1.0899 | 9.0 | 252 | 1.2426 | 0.3953 | | 1.0945 | 10.0 | 280 | 1.1820 | 0.3488 | | 1.1149 | 11.0 | 308 | 1.4574 | 0.3023 | | 0.9942 | 12.0 | 336 | 1.4728 | 0.3256 | | 1.0204 | 13.0 | 364 | 0.9801 | 0.5581 | | 0.9987 | 14.0 | 392 | 1.0096 | 0.5349 | | 1.0664 | 15.0 | 420 | 1.0007 | 0.5814 | | 0.9463 | 16.0 | 448 | 1.2188 | 0.3953 | | 0.9756 | 17.0 | 476 | 1.1284 | 0.5116 | | 0.9698 | 18.0 | 504 | 1.4394 | 0.4419 | | 1.061 | 19.0 | 532 | 1.1162 | 0.4884 | | 0.8426 | 20.0 | 560 | 1.9296 | 0.3721 | | 0.876 | 21.0 | 588 | 1.0070 | 0.5581 | | 0.8908 | 22.0 | 616 | 1.2196 | 0.5349 | | 0.8599 | 23.0 | 644 | 0.9502 | 0.6047 | | 0.8338 | 24.0 | 672 | 0.8737 | 0.6279 | | 0.785 | 25.0 | 700 | 1.1006 | 0.5814 | | 0.82 | 26.0 | 728 | 1.0398 | 0.5814 | | 0.8016 | 27.0 | 756 | 1.6671 | 0.3256 | | 0.8574 | 28.0 | 784 | 1.1704 | 0.6279 | | 0.8104 | 29.0 | 812 | 1.0502 | 0.6279 | | 0.7421 | 30.0 | 840 | 0.9270 | 0.5814 | | 0.7093 | 31.0 | 868 | 1.8057 | 0.4186 | | 0.7469 | 32.0 | 896 | 0.9665 | 0.5814 | | 0.7175 | 33.0 | 924 | 0.8190 | 0.6512 | | 0.7129 | 34.0 | 952 | 1.0680 | 0.6279 | | 0.7793 | 35.0 | 980 | 1.0966 | 0.5581 | | 0.6879 | 36.0 | 1008 | 0.9990 | 0.5814 | | 0.7016 | 37.0 | 1036 | 1.7556 | 0.4884 | | 0.6238 | 38.0 | 1064 | 1.5792 | 0.4651 | | 0.6025 | 39.0 | 1092 | 1.1502 | 0.6047 | | 0.7264 | 40.0 | 1120 | 1.3317 | 0.5349 | | 0.6063 | 41.0 | 1148 | 1.5492 | 0.5116 | | 0.5816 | 42.0 | 1176 | 1.5787 | 0.5814 | | 0.4627 | 43.0 | 1204 | 1.1301 | 0.6047 | | 0.4652 | 44.0 | 1232 | 1.5008 | 0.6279 | | 0.3885 | 45.0 | 1260 | 1.3167 | 0.6279 | | 0.4003 | 46.0 | 1288 | 1.3851 | 0.6512 | | 0.3882 | 47.0 | 1316 | 1.4601 | 0.6047 | | 0.353 | 48.0 | 1344 | 1.4699 | 0.6279 | | 0.3487 | 49.0 | 1372 | 1.4768 | 0.6279 | | 0.2789 | 50.0 | 1400 | 1.4768 | 0.6279 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
AfterRain007/results
AfterRain007
2023-11-29T04:28:23Z
183
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:ElKulako/cryptobert", "base_model:finetune:ElKulako/cryptobert", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-29T04:27:37Z
--- base_model: ElKulako/cryptobert tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [ElKulako/cryptobert](https://huggingface.co/ElKulako/cryptobert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8983 - Accuracy: 0.6433 - Precision: 0.6614 - Recall: 0.6433 - F1: 0.6461 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 69420 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.9586 | 0.19 | 100 | 0.8746 | 0.6033 | 0.5990 | 0.6033 | 0.5944 | | 0.7362 | 0.38 | 200 | 0.8187 | 0.63 | 0.6322 | 0.63 | 0.6232 | | 0.577 | 0.57 | 300 | 0.8065 | 0.6767 | 0.6821 | 0.6767 | 0.6761 | | 0.4632 | 0.76 | 400 | 0.8437 | 0.63 | 0.6411 | 0.63 | 0.6321 | | 0.3243 | 0.95 | 500 | 0.8983 | 0.6433 | 0.6614 | 0.6433 | 0.6461 | | 0.2257 | 1.14 | 600 | 1.3704 | 0.6033 | 0.6863 | 0.6033 | 0.6046 | | 0.1333 | 1.33 | 700 | 1.2951 | 0.6033 | 0.6201 | 0.6033 | 0.6052 | | 0.0574 | 1.52 | 800 | 1.5119 | 0.6333 | 0.6331 | 0.6333 | 0.6309 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Tokenizers 0.15.0
FounderOfHuggingface/gpt2_lora_r16_dbpedia_14_t3000_e5
FounderOfHuggingface
2023-11-29T04:24:55Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-11-29T03:49:05Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2 ## Training procedure ### Framework versions - PEFT 0.6.2
phuong-tk-nguyen/vit-base-patch16-224-finetuned
phuong-tk-nguyen
2023-11-29T04:01:41Z
193
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:google/vit-base-patch16-224", "base_model:finetune:google/vit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-28T09:15:03Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-finetuned results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.967 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2073 - Accuracy: 0.967 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1833 | 0.14 | 10 | 1.6004 | 0.626 | | 1.3976 | 0.28 | 20 | 0.8484 | 0.909 | | 0.9003 | 0.43 | 30 | 0.4514 | 0.946 | | 0.6423 | 0.57 | 40 | 0.3037 | 0.96 | | 0.5084 | 0.71 | 50 | 0.2468 | 0.96 | | 0.47 | 0.85 | 60 | 0.2161 | 0.965 | | 0.4753 | 0.99 | 70 | 0.2073 | 0.967 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.1 - Datasets 2.14.6 - Tokenizers 0.14.1
niksss/xlm-roberta-large-finetuned-ebay
niksss
2023-11-29T03:57:05Z
161
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "fill-mask", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-11-29T03:55:57Z
--- license: mit base_model: xlm-roberta-large tags: - generated_from_trainer model-index: - name: xlm-roberta-large-finetuned-ebay results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-finetuned-ebay This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
sh-zheng/vit-base-patch16-224-in21k-fintuned-SurfaceRoughness
sh-zheng
2023-11-29T03:53:34Z
190
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "en", "dataset:sh-zheng/SurfaceRoughness", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-29T03:34:16Z
--- license: mit datasets: - sh-zheng/SurfaceRoughness language: - en metrics: - accuracy pipeline_tag: image-classification --- ## Vision Transformer (Fine-Tuned model) refer to https://huggingface.co/google/vit-base-patch16-224 for model detail and how to use ## Model Description Predict surface roughness category using snips taken from google maps aerial view. There are 3 categories: surface roughness B, surface roughness C, surface roughness D as defined in ASCE 7-16 section 26.7.2.
cuongtk2002/my_awesome_qa_model
cuongtk2002
2023-11-29T03:43:45Z
117
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-11-29T02:59:32Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - squad model-index: - name: my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.6024 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 250 | 2.1527 | | 2.6394 | 2.0 | 500 | 1.6314 | | 2.6394 | 3.0 | 750 | 1.6024 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
hkivancoral/hushem_5x_beit_base_rms_001_fold1
hkivancoral
2023-11-29T03:32:00Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "beit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/beit-base-patch16-224", "base_model:finetune:microsoft/beit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-29T03:00:12Z
--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_5x_beit_base_rms_001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.4444444444444444 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_5x_beit_base_rms_001_fold1 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.2430 - Accuracy: 0.4444 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5782 | 1.0 | 27 | 1.4061 | 0.2444 | | 1.4004 | 2.0 | 54 | 1.4559 | 0.2444 | | 1.3873 | 3.0 | 81 | 1.4120 | 0.2444 | | 1.3666 | 4.0 | 108 | 1.6275 | 0.2444 | | 1.3597 | 5.0 | 135 | 1.4398 | 0.2444 | | 1.2814 | 6.0 | 162 | 1.5328 | 0.2444 | | 1.2056 | 7.0 | 189 | 1.5389 | 0.2 | | 1.1635 | 8.0 | 216 | 1.5332 | 0.2444 | | 1.1235 | 9.0 | 243 | 1.6681 | 0.2444 | | 1.1484 | 10.0 | 270 | 1.6176 | 0.2667 | | 1.1757 | 11.0 | 297 | 1.6312 | 0.2444 | | 1.1297 | 12.0 | 324 | 1.5067 | 0.2444 | | 1.1448 | 13.0 | 351 | 1.5657 | 0.2444 | | 1.1725 | 14.0 | 378 | 1.5184 | 0.1556 | | 1.1591 | 15.0 | 405 | 1.5790 | 0.2444 | | 1.1549 | 16.0 | 432 | 1.5501 | 0.2444 | | 1.0865 | 17.0 | 459 | 1.5776 | 0.2444 | | 1.1351 | 18.0 | 486 | 1.6195 | 0.3111 | | 1.0974 | 19.0 | 513 | 1.5360 | 0.2444 | | 1.0992 | 20.0 | 540 | 1.5742 | 0.3111 | | 1.0894 | 21.0 | 567 | 1.4918 | 0.3778 | | 1.0557 | 22.0 | 594 | 1.5742 | 0.2444 | | 1.0574 | 23.0 | 621 | 1.5043 | 0.4222 | | 1.0148 | 24.0 | 648 | 1.3535 | 0.4222 | | 1.1133 | 25.0 | 675 | 1.4897 | 0.4 | | 1.02 | 26.0 | 702 | 1.4554 | 0.4222 | | 1.0107 | 27.0 | 729 | 1.4238 | 0.4 | | 0.9307 | 28.0 | 756 | 1.7644 | 0.3556 | | 0.8335 | 29.0 | 783 | 2.0253 | 0.3556 | | 0.8203 | 30.0 | 810 | 1.7990 | 0.3556 | | 0.7263 | 31.0 | 837 | 1.6909 | 0.3778 | | 0.8387 | 32.0 | 864 | 1.4758 | 0.4 | | 0.6837 | 33.0 | 891 | 2.1584 | 0.3556 | | 0.7155 | 34.0 | 918 | 1.7102 | 0.3778 | | 0.6349 | 35.0 | 945 | 1.1875 | 0.4667 | | 0.6331 | 36.0 | 972 | 1.9965 | 0.4222 | | 0.5871 | 37.0 | 999 | 1.7881 | 0.4 | | 0.595 | 38.0 | 1026 | 1.7629 | 0.4 | | 0.5266 | 39.0 | 1053 | 1.6720 | 0.4222 | | 0.4985 | 40.0 | 1080 | 2.3229 | 0.4222 | | 0.4855 | 41.0 | 1107 | 1.6470 | 0.4444 | | 0.503 | 42.0 | 1134 | 1.7515 | 0.4667 | | 0.4432 | 43.0 | 1161 | 2.0538 | 0.4222 | | 0.3668 | 44.0 | 1188 | 2.1471 | 0.4444 | | 0.3654 | 45.0 | 1215 | 2.0004 | 0.4444 | | 0.3317 | 46.0 | 1242 | 2.1973 | 0.4444 | | 0.2413 | 47.0 | 1269 | 2.2882 | 0.4444 | | 0.2395 | 48.0 | 1296 | 2.2389 | 0.4444 | | 0.2502 | 49.0 | 1323 | 2.2430 | 0.4444 | | 0.237 | 50.0 | 1350 | 2.2430 | 0.4444 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
phuong-tk-nguyen/resnet-50-finetuned
phuong-tk-nguyen
2023-11-29T03:24:53Z
224
0
transformers
[ "transformers", "pytorch", "safetensors", "resnet", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/resnet-50", "base_model:finetune:microsoft/resnet-50", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-28T09:12:06Z
--- license: apache-2.0 base_model: microsoft/resnet-50 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: resnet-50-finetuned results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.199 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # resnet-50-finetuned This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.2724 - Accuracy: 0.199 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.3021 | 0.14 | 10 | 2.2994 | 0.112 | | 2.2929 | 0.28 | 20 | 2.2911 | 0.137 | | 2.2875 | 0.43 | 30 | 2.2848 | 0.151 | | 2.2824 | 0.57 | 40 | 2.2812 | 0.175 | | 2.2792 | 0.71 | 50 | 2.2758 | 0.191 | | 2.2766 | 0.85 | 60 | 2.2726 | 0.197 | | 2.2765 | 0.99 | 70 | 2.2724 | 0.199 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.10.1+cu111 - Datasets 2.14.6 - Tokenizers 0.13.3
kaizerBox/gpt2-small-summarization
kaizerBox
2023-11-29T03:22:10Z
113
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "dataset:xsum", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-29T03:22:06Z
--- tags: - generated_from_trainer datasets: - xsum model-index: - name: gpt2-small-summarization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-small-summarization This model is a fine-tuned version of [](https://huggingface.co/) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 4.4258 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 5.1568 | 1.0 | 5762 | 4.6058 | | 4.5202 | 2.0 | 11525 | 4.4583 | | 4.4225 | 3.0 | 17286 | 4.4258 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
evolevelyn/distilgpt2-finetuned-slangQA
evolevelyn
2023-11-29T03:15:44Z
118
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-28T02:14:39Z
--- license: apache-2.0 base_model: distilgpt2 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-slangQA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-slangQA This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.2789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.5804 | 1.0 | 1022 | 6.4914 | | 6.2955 | 2.0 | 2044 | 6.3266 | | 6.2102 | 3.0 | 3066 | 6.2789 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
ramsenth/outputs
ramsenth
2023-11-29T03:05:01Z
119
0
transformers
[ "transformers", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:dccuchile/bert-base-spanish-wwm-uncased", "base_model:finetune:dccuchile/bert-base-spanish-wwm-uncased", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-11-29T03:04:18Z
--- base_model: dccuchile/bert-base-spanish-wwm-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: langbot-gec results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # langbot-gec This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1379 - Precision: 0.7729 - Recall: 0.3969 - F1: 0.5244 - Accuracy: 0.9553 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1778 | 1.0 | 126 | 0.1379 | 0.7729 | 0.3969 | 0.5244 | 0.9553 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
Starbourne/cogvlm-grounding-generalist-hf
Starbourne
2023-11-29T03:01:48Z
20
0
transformers
[ "transformers", "safetensors", "text-generation", "custom_code", "arxiv:2311.03079", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-11-29T02:41:27Z
# CogVLM **CogVLM** 是一个强大的开源视觉语言模型(VLM)。CogVLM-17B 拥有 100 亿视觉参数和 70 亿语言参数,在 10 个经典跨模态基准测试上取得了 SOTA 性能,包括 NoCaps、Flicker30k captioning、RefCOCO、RefCOCO+、RefCOCOg、Visual7W、GQA、ScienceQA、VizWiz VQA 和 TDIUC,而在 VQAv2、OKVQA、TextVQA、COCO captioning 等方面则排名第二,超越或与 PaLI-X 55B 持平。您可以通过线上 [demo](http://36.103.203.44:7861/) 体验 CogVLM 多模态对话。 **CogVLM** is a powerful **open-source visual language model** (**VLM**). CogVLM-17B has 10 billion vision parameters and 7 billion language parameters. CogVLM-17B achieves state-of-the-art performance on 10 classic cross-modal benchmarks, including NoCaps, Flicker30k captioning, RefCOCO, RefCOCO+, RefCOCOg, Visual7W, GQA, ScienceQA, VizWiz VQA and TDIUC, and rank the 2nd on VQAv2, OKVQA, TextVQA, COCO captioning, etc., **surpassing or matching PaLI-X 55B**. CogVLM can also [chat with you](http://36.103.203.44:7861/) about images. <div align="center"> <img src="https://github.com/THUDM/CogVLM/raw/main/assets/metrics-min.png" alt="img" style="zoom: 50%;" /> </div> # 快速开始(Qiuckstart) ```python import torch from PIL import Image from transformers import AutoModelForCausalLM, LlamaTokenizer tokenizer = LlamaTokenizer.from_pretrained('lmsys/vicuna-7b-v1.5') model = AutoModelForCausalLM.from_pretrained( 'THUDM/cogvlm-grounding-generalist-hf', torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, trust_remote_code=True ).to('cuda').eval() query = 'Can you provide a description of the image and include the coordinates [[x0,y0,x1,y1]] for each mentioned object?' image = Image.open(requests.get('https://github.com/THUDM/CogVLM/blob/main/examples/4.jpg?raw=true', stream=True).raw).convert('RGB') inputs = model.build_conversation_input_ids(tokenizer, query=query, images=[image]) inputs = { 'input_ids': inputs['input_ids'].unsqueeze(0).to('cuda'), 'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to('cuda'), 'attention_mask': inputs['attention_mask'].unsqueeze(0).to('cuda'), 'images': [[inputs['images'][0].to('cuda').to(torch.bfloat16)]], } gen_kwargs = {"max_length": 2048, "do_sample": False} with torch.no_grad(): outputs = model.generate(**inputs, **gen_kwargs) outputs = outputs[:, inputs['input_ids'].shape[1]:] print(tokenizer.decode(outputs[0])) ``` # 方法(Method) CogVLM 模型包括四个基本组件:视觉变换器(ViT)编码器、MLP适配器、预训练的大型语言模型(GPT)和一个**视觉专家模块**。更多细节请参见[Paper](https://github.com/THUDM/CogVLM/blob/main/assets/cogvlm-paper.pdf)。 CogVLM model comprises four fundamental components: a vision transformer (ViT) encoder, an MLP adapter, a pretrained large language model (GPT), and a **visual expert module**. See [Paper](https://github.com/THUDM/CogVLM/blob/main/assets/cogvlm-paper.pdf) for more details. <div align="center"> <img src="https://github.com/THUDM/CogVLM/raw/main/assets/method-min.png" style="zoom:50%;" /> </div> # 许可(License) 此存储库中的代码是根据 [Apache-2.0 许可](https://github.com/THUDM/CogVLM/raw/main/LICENSE) 开放源码,而使用 CogVLM 模型权重必须遵循 [模型许可](https://github.com/THUDM/CogVLM/raw/main/MODEL_LICENSE)。 The code in this repository is open source under the [Apache-2.0 license](https://github.com/THUDM/CogVLM/raw/main/LICENSE), while the use of the CogVLM model weights must comply with the [Model License](https://github.com/THUDM/CogVLM/raw/main/MODEL_LICENSE). # 引用(Citation) If you find our work helpful, please consider citing the following papers ``` @article{wang2023cogvlm, title={CogVLM: Visual Expert for Pretrained Language Models}, author={Weihan Wang and Qingsong Lv and Wenmeng Yu and Wenyi Hong and Ji Qi and Yan Wang and Junhui Ji and Zhuoyi Yang and Lei Zhao and Xixuan Song and Jiazheng Xu and Bin Xu and Juanzi Li and Yuxiao Dong and Ming Ding and Jie Tang}, year={2023}, eprint={2311.03079}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
george-yeung/dogbooth
george-yeung
2023-11-29T02:53:17Z
29
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:stabilityai/stable-diffusion-2-1", "base_model:finetune:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-29T02:37:41Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 instance_prompt: a photo of [v]dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - george-yeung/dogbooth This is a dreambooth model derived from stabilityai/stable-diffusion-2-1. The weights were trained on a photo of [v]dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
shiya-orsted-com/dogbooth
shiya-orsted-com
2023-11-29T02:53:04Z
29
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:stabilityai/stable-diffusion-2-1", "base_model:finetune:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-29T02:37:28Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 instance_prompt: a photo of [v]dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - shiya-orsted-com/dogbooth This is a dreambooth model derived from stabilityai/stable-diffusion-2-1. The weights were trained on a photo of [v]dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
TejaMat/dogbooth
TejaMat
2023-11-29T02:48:58Z
29
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:stabilityai/stable-diffusion-2-1", "base_model:finetune:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-29T02:33:20Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 instance_prompt: a photo of [v]dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - TejaMat/dogbooth This is a dreambooth model derived from stabilityai/stable-diffusion-2-1. The weights were trained on a photo of [v]dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
jlbaker361/fine-tune_addition_subtraction_decimal_whole
jlbaker361
2023-11-29T02:44:20Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-11-18T23:49:04Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
speedmessage/dogbooth
speedmessage
2023-11-29T02:43:52Z
29
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:stabilityai/stable-diffusion-2-1", "base_model:finetune:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-29T02:28:23Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 instance_prompt: a photo of [v]dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - speedmessage/dogbooth This is a dreambooth model derived from stabilityai/stable-diffusion-2-1. The weights were trained on a photo of [v]dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
mhsong/dogbooth
mhsong
2023-11-29T02:41:56Z
0
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:stabilityai/stable-diffusion-2-1", "base_model:finetune:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-29T02:06:33Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 instance_prompt: a photo of [v]dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - mhsong/dogbooth This is a dreambooth model derived from stabilityai/stable-diffusion-2-1. The weights were trained on a photo of [v]dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
vlaurenzano/dogbooth
vlaurenzano
2023-11-29T02:38:43Z
30
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:stabilityai/stable-diffusion-2-1", "base_model:finetune:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-29T02:23:04Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 instance_prompt: a photo of [v]dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - vlaurenzano/dogbooth This is a dreambooth model derived from stabilityai/stable-diffusion-2-1. The weights were trained on a photo of [v]dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
shashank7777/dogbooth
shashank7777
2023-11-29T02:37:02Z
30
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:stabilityai/stable-diffusion-2-1", "base_model:finetune:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-29T02:21:12Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 instance_prompt: a photo of [v]dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - shashank7777/dogbooth This is a dreambooth model derived from stabilityai/stable-diffusion-2-1. The weights were trained on a photo of [v]dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
fsrv0/dogbooth
fsrv0
2023-11-29T02:35:34Z
29
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:stabilityai/stable-diffusion-2-1", "base_model:finetune:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-29T02:19:50Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 instance_prompt: a photo of [v]dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - fsrv0/dogbooth This is a dreambooth model derived from stabilityai/stable-diffusion-2-1. The weights were trained on a photo of [v]dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
nellaisenthil/dogbooth
nellaisenthil
2023-11-29T02:35:13Z
29
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:stabilityai/stable-diffusion-2-1", "base_model:finetune:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-29T02:19:41Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 instance_prompt: a photo of [v]dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - nellaisenthil/dogbooth This is a dreambooth model derived from stabilityai/stable-diffusion-2-1. The weights were trained on a photo of [v]dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
athirdpath/BigLlama-20b
athirdpath
2023-11-29T02:35:13Z
17
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-29T02:27:09Z
--- license: llama2 --- I'm going to compare DARE merges using this (mostly vanilla, alpaca-tinted) 20b model vs using Harmonia. slices: - sources: - model: athirdpath/alpaca-2-13b-english_full-model - layer_range: [0, 16] - sources: - model: TheBloke/Llama-2-13B-fp16 - layer_range: [8, 24] - sources: - model: athirdpath/alpaca-2-13b-english_full-model - layer_range: [17, 32] - sources: - model: TheBloke/Llama-2-13B-fp16 - layer_range: [25, 40] merge_method: passthrough dtype: float16
jcbrz88/dogbooth
jcbrz88
2023-11-29T02:34:35Z
29
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:stabilityai/stable-diffusion-2-1", "base_model:finetune:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-29T02:18:59Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 instance_prompt: a photo of [v]dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - jcbrz88/dogbooth This is a dreambooth model derived from stabilityai/stable-diffusion-2-1. The weights were trained on a photo of [v]dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
smuthalib/dogbooth
smuthalib
2023-11-29T02:32:53Z
29
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:stabilityai/stable-diffusion-2-1", "base_model:finetune:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-29T02:17:12Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 instance_prompt: a photo of [v]dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - smuthalib/dogbooth This is a dreambooth model derived from stabilityai/stable-diffusion-2-1. The weights were trained on a photo of [v]dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
synrb/dogbooth
synrb
2023-11-29T02:29:25Z
29
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:stabilityai/stable-diffusion-2-1", "base_model:finetune:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-29T02:13:36Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 instance_prompt: a photo of [v]dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - synrb/dogbooth This is a dreambooth model derived from stabilityai/stable-diffusion-2-1. The weights were trained on a photo of [v]dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
hkivancoral/hushem_5x_beit_base_sgd_00001_fold4
hkivancoral
2023-11-29T02:28:36Z
14
0
transformers
[ "transformers", "tensorboard", "safetensors", "beit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/beit-base-patch16-224", "base_model:finetune:microsoft/beit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-29T02:00:04Z
--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_5x_beit_base_sgd_00001_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.30952380952380953 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_5x_beit_base_sgd_00001_fold4 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4856 - Accuracy: 0.3095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5648 | 1.0 | 28 | 1.5024 | 0.3095 | | 1.5958 | 2.0 | 56 | 1.5016 | 0.3095 | | 1.5478 | 3.0 | 84 | 1.5008 | 0.3095 | | 1.6175 | 4.0 | 112 | 1.5001 | 0.3095 | | 1.5019 | 5.0 | 140 | 1.4994 | 0.3095 | | 1.5612 | 6.0 | 168 | 1.4987 | 0.3095 | | 1.5556 | 7.0 | 196 | 1.4981 | 0.3095 | | 1.5275 | 8.0 | 224 | 1.4974 | 0.3095 | | 1.529 | 9.0 | 252 | 1.4968 | 0.3095 | | 1.5306 | 10.0 | 280 | 1.4962 | 0.3095 | | 1.5486 | 11.0 | 308 | 1.4956 | 0.3095 | | 1.5567 | 12.0 | 336 | 1.4950 | 0.3095 | | 1.5578 | 13.0 | 364 | 1.4945 | 0.3095 | | 1.5601 | 14.0 | 392 | 1.4939 | 0.3095 | | 1.5869 | 15.0 | 420 | 1.4934 | 0.3095 | | 1.5292 | 16.0 | 448 | 1.4929 | 0.3095 | | 1.584 | 17.0 | 476 | 1.4924 | 0.3095 | | 1.5709 | 18.0 | 504 | 1.4919 | 0.3095 | | 1.5246 | 19.0 | 532 | 1.4915 | 0.3095 | | 1.508 | 20.0 | 560 | 1.4911 | 0.3095 | | 1.5627 | 21.0 | 588 | 1.4907 | 0.3095 | | 1.543 | 22.0 | 616 | 1.4904 | 0.3095 | | 1.5306 | 23.0 | 644 | 1.4900 | 0.3095 | | 1.5347 | 24.0 | 672 | 1.4896 | 0.3095 | | 1.5296 | 25.0 | 700 | 1.4893 | 0.3095 | | 1.5722 | 26.0 | 728 | 1.4889 | 0.3095 | | 1.6103 | 27.0 | 756 | 1.4886 | 0.3095 | | 1.5352 | 28.0 | 784 | 1.4883 | 0.3095 | | 1.5133 | 29.0 | 812 | 1.4880 | 0.3095 | | 1.4677 | 30.0 | 840 | 1.4878 | 0.3095 | | 1.5424 | 31.0 | 868 | 1.4876 | 0.3095 | | 1.5132 | 32.0 | 896 | 1.4873 | 0.3095 | | 1.5611 | 33.0 | 924 | 1.4871 | 0.3095 | | 1.5494 | 34.0 | 952 | 1.4869 | 0.3095 | | 1.5087 | 35.0 | 980 | 1.4867 | 0.3095 | | 1.5719 | 36.0 | 1008 | 1.4865 | 0.3095 | | 1.5037 | 37.0 | 1036 | 1.4864 | 0.3095 | | 1.5457 | 38.0 | 1064 | 1.4863 | 0.3095 | | 1.5227 | 39.0 | 1092 | 1.4861 | 0.3095 | | 1.5024 | 40.0 | 1120 | 1.4860 | 0.3095 | | 1.5112 | 41.0 | 1148 | 1.4859 | 0.3095 | | 1.4872 | 42.0 | 1176 | 1.4858 | 0.3095 | | 1.5623 | 43.0 | 1204 | 1.4858 | 0.3095 | | 1.5147 | 44.0 | 1232 | 1.4857 | 0.3095 | | 1.5196 | 45.0 | 1260 | 1.4857 | 0.3095 | | 1.5574 | 46.0 | 1288 | 1.4856 | 0.3095 | | 1.5277 | 47.0 | 1316 | 1.4856 | 0.3095 | | 1.602 | 48.0 | 1344 | 1.4856 | 0.3095 | | 1.5259 | 49.0 | 1372 | 1.4856 | 0.3095 | | 1.5075 | 50.0 | 1400 | 1.4856 | 0.3095 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
athirdpath/alpaca-2-13b-english_full-model
athirdpath
2023-11-29T02:17:53Z
7
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-29T01:41:21Z
--- license: llama2 --- This is the LORA from iamshnoo/alpaca-2-13b-english applied to TheBloke/Llama-2-13B-fp16.
JLenScott/dogbooth
JLenScott
2023-11-29T02:17:10Z
29
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:stabilityai/stable-diffusion-2-1", "base_model:finetune:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-29T02:01:32Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 instance_prompt: a photo of [v]dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - JLenScott/dogbooth This is a dreambooth model derived from stabilityai/stable-diffusion-2-1. The weights were trained on a photo of [v]dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
jpolun/dogbooth
jpolun
2023-11-29T02:14:35Z
30
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:stabilityai/stable-diffusion-2-1", "base_model:finetune:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-29T01:58:54Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 instance_prompt: a photo of [v]dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - jpolun/dogbooth This is a dreambooth model derived from stabilityai/stable-diffusion-2-1. The weights were trained on a photo of [v]dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
dobbali/dogbooth
dobbali
2023-11-29T02:13:06Z
30
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:stabilityai/stable-diffusion-2-1", "base_model:finetune:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-29T01:57:15Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 instance_prompt: a photo of [v]dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - dobbali/dogbooth This is a dreambooth model derived from stabilityai/stable-diffusion-2-1. The weights were trained on a photo of [v]dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
bogdansorlea/dogbooth
bogdansorlea
2023-11-29T02:10:42Z
29
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:stabilityai/stable-diffusion-2-1", "base_model:finetune:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-29T01:54:57Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 instance_prompt: a photo of [v]dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - bogdansorlea/dogbooth This is a dreambooth model derived from stabilityai/stable-diffusion-2-1. The weights were trained on a photo of [v]dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
mateotrejo/luke-davidson
mateotrejo
2023-11-29T02:03:39Z
0
0
null
[ "license:other", "region:us" ]
null
2023-11-29T02:02:10Z
--- license: other license_name: luke-davidson license_link: LICENSE ---
jsl28/q-Taxi-v3
jsl28
2023-11-29T02:03:17Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-11-29T02:03:14Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="jsl28/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
alinerodrigues/wav2vec2-large-xlsr-mecita-coraa-portuguese-2-all-01
alinerodrigues
2023-11-29T01:59:06Z
2
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-11-28T18:30:07Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-large-xlsr-mecita-coraa-portuguese-2-all-01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-mecita-coraa-portuguese-2-all-01 This model is a fine-tuned version of [Edresson/wav2vec2-large-xlsr-coraa-portuguese](https://huggingface.co/Edresson/wav2vec2-large-xlsr-coraa-portuguese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1429 - Wer: 0.0862 - Cer: 0.0263 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 31.9255 | 1.0 | 86 | 3.2559 | 1.0 | 1.0 | | 8.1132 | 2.0 | 172 | 3.0009 | 1.0 | 1.0 | | 3.0533 | 3.0 | 258 | 2.9120 | 1.0 | 1.0 | | 2.93 | 4.0 | 344 | 2.8877 | 1.0 | 1.0 | | 2.8396 | 5.0 | 430 | 1.9900 | 1.0 | 0.7238 | | 1.8884 | 6.0 | 516 | 0.6068 | 0.3305 | 0.0859 | | 0.8835 | 7.0 | 602 | 0.3984 | 0.2086 | 0.0553 | | 0.8835 | 8.0 | 688 | 0.3249 | 0.1780 | 0.0492 | | 0.6254 | 9.0 | 774 | 0.2698 | 0.1662 | 0.0450 | | 0.5176 | 10.0 | 860 | 0.2420 | 0.1408 | 0.0400 | | 0.4379 | 11.0 | 946 | 0.2315 | 0.1322 | 0.0376 | | 0.3823 | 12.0 | 1032 | 0.2185 | 0.1261 | 0.0356 | | 0.3601 | 13.0 | 1118 | 0.2176 | 0.1148 | 0.0344 | | 0.3457 | 14.0 | 1204 | 0.2050 | 0.1119 | 0.0330 | | 0.3457 | 15.0 | 1290 | 0.1928 | 0.1048 | 0.0306 | | 0.2942 | 16.0 | 1376 | 0.1864 | 0.0994 | 0.0305 | | 0.3054 | 17.0 | 1462 | 0.1826 | 0.0987 | 0.0297 | | 0.321 | 18.0 | 1548 | 0.1755 | 0.0974 | 0.0298 | | 0.2667 | 19.0 | 1634 | 0.1743 | 0.0996 | 0.0297 | | 0.2706 | 20.0 | 1720 | 0.1720 | 0.0965 | 0.0288 | | 0.2355 | 21.0 | 1806 | 0.1646 | 0.0935 | 0.0283 | | 0.2355 | 22.0 | 1892 | 0.1645 | 0.0935 | 0.0287 | | 0.2355 | 23.0 | 1978 | 0.1583 | 0.0891 | 0.0271 | | 0.2401 | 24.0 | 2064 | 0.1578 | 0.0923 | 0.0283 | | 0.236 | 25.0 | 2150 | 0.1587 | 0.0894 | 0.0280 | | 0.2314 | 26.0 | 2236 | 0.1547 | 0.0896 | 0.0274 | | 0.2209 | 27.0 | 2322 | 0.1513 | 0.0891 | 0.0266 | | 0.2269 | 28.0 | 2408 | 0.1550 | 0.0891 | 0.0270 | | 0.2269 | 29.0 | 2494 | 0.1566 | 0.0898 | 0.0273 | | 0.2123 | 30.0 | 2580 | 0.1572 | 0.0898 | 0.0273 | | 0.1941 | 31.0 | 2666 | 0.1518 | 0.0867 | 0.0266 | | 0.2108 | 32.0 | 2752 | 0.1492 | 0.0869 | 0.0266 | | 0.187 | 33.0 | 2838 | 0.1479 | 0.0864 | 0.0268 | | 0.1799 | 34.0 | 2924 | 0.1429 | 0.0862 | 0.0263 | | 0.1804 | 35.0 | 3010 | 0.1472 | 0.0835 | 0.0257 | | 0.1804 | 36.0 | 3096 | 0.1457 | 0.0857 | 0.0262 | | 0.1756 | 37.0 | 3182 | 0.1456 | 0.0830 | 0.0254 | | 0.1684 | 38.0 | 3268 | 0.1459 | 0.0857 | 0.0259 | | 0.1692 | 39.0 | 3354 | 0.1461 | 0.0840 | 0.0263 | | 0.1609 | 40.0 | 3440 | 0.1432 | 0.0837 | 0.0260 | | 0.1877 | 41.0 | 3526 | 0.1475 | 0.0818 | 0.0253 | | 0.1611 | 42.0 | 3612 | 0.1434 | 0.0830 | 0.0261 | | 0.1611 | 43.0 | 3698 | 0.1438 | 0.0827 | 0.0247 | | 0.1887 | 44.0 | 3784 | 0.1478 | 0.0832 | 0.0255 | | 0.1712 | 45.0 | 3870 | 0.1493 | 0.0842 | 0.0257 | | 0.1531 | 46.0 | 3956 | 0.1493 | 0.0803 | 0.0250 | | 0.1605 | 47.0 | 4042 | 0.1479 | 0.0842 | 0.0257 | | 0.1599 | 48.0 | 4128 | 0.1455 | 0.0818 | 0.0250 | | 0.1623 | 49.0 | 4214 | 0.1470 | 0.0823 | 0.0252 | | 0.1601 | 50.0 | 4300 | 0.1474 | 0.0793 | 0.0252 | | 0.1601 | 51.0 | 4386 | 0.1491 | 0.0798 | 0.0250 | | 0.1478 | 52.0 | 4472 | 0.1491 | 0.0796 | 0.0254 | | 0.1497 | 53.0 | 4558 | 0.1481 | 0.0815 | 0.0249 | | 0.1454 | 54.0 | 4644 | 0.1455 | 0.0796 | 0.0245 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.13.3
Realgon/bert_twitterfin_padding80model
Realgon
2023-11-29T01:58:41Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-29T01:33:48Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert_twitterfin_padding80model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_twitterfin_padding80model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0344 - Accuracy: 0.8840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6173 | 1.0 | 597 | 0.3644 | 0.8723 | | 0.3317 | 2.0 | 1194 | 0.3204 | 0.8815 | | 0.235 | 3.0 | 1791 | 0.4381 | 0.8882 | | 0.1385 | 4.0 | 2388 | 0.5672 | 0.8777 | | 0.108 | 5.0 | 2985 | 0.6875 | 0.8748 | | 0.0466 | 6.0 | 3582 | 0.7728 | 0.8823 | | 0.0414 | 7.0 | 4179 | 0.7724 | 0.8869 | | 0.0306 | 8.0 | 4776 | 0.7541 | 0.8840 | | 0.0336 | 9.0 | 5373 | 0.7872 | 0.8907 | | 0.0221 | 10.0 | 5970 | 0.8676 | 0.8832 | | 0.0195 | 11.0 | 6567 | 0.9031 | 0.8811 | | 0.01 | 12.0 | 7164 | 0.8561 | 0.8823 | | 0.0148 | 13.0 | 7761 | 0.9173 | 0.8890 | | 0.0093 | 14.0 | 8358 | 0.9178 | 0.8874 | | 0.0052 | 15.0 | 8955 | 0.9563 | 0.8865 | | 0.0046 | 16.0 | 9552 | 0.9723 | 0.8857 | | 0.0051 | 17.0 | 10149 | 0.9839 | 0.8882 | | 0.0029 | 18.0 | 10746 | 1.0261 | 0.8844 | | 0.0041 | 19.0 | 11343 | 1.0228 | 0.8869 | | 0.0023 | 20.0 | 11940 | 1.0344 | 0.8840 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
jsl28/q-FrozenLake-v1-4x4-noSlippery
jsl28
2023-11-29T01:56:40Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-11-29T01:56:37Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="jsl28/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
mateotrejo/ember-lumen
mateotrejo
2023-11-29T01:54:49Z
0
0
null
[ "license:other", "region:us" ]
null
2023-11-29T01:48:23Z
--- license: other license_name: ember-lumen license_link: LICENSE ---
mmenendezg/vit_pneumonia_classifier
mmenendezg
2023-11-29T01:51:04Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2023-11-29T01:50:27Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Nadam | | learning_rate | 1.374011446841905e-07 | | decay | 0.004 | | beta_1 | 0.8999999761581421 | | beta_2 | 0.9990000128746033 | | epsilon | 1e-07 | | training_precision | float32 |
btmccarthy15/SDLORA2
btmccarthy15
2023-11-29T01:43:24Z
0
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-2-1-base", "base_model:adapter:stabilityai/stable-diffusion-2-1-base", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-11-29T00:57:55Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1-base instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - btmccarthy15/SDLORA2 These are LoRA adaption weights for stabilityai/stable-diffusion-2-1-base. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: True.
Serdarmuhammet/bert-base-banking77
Serdarmuhammet
2023-11-29T01:32:21Z
106
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:banking77", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-09T08:43:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - banking77 metrics: - f1 model-index: - name: bert-base-banking77 results: - task: name: Text Classification type: text-classification dataset: name: banking77 type: banking77 config: default split: test args: default metrics: - name: F1 type: f1 value: 0.9311318811051271 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-banking77 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the banking77 dataset. It achieves the following results on the evaluation set: - Loss: 0.2967 - F1: 0.9311 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.0391 | 1.0 | 626 | 0.7670 | 0.8543 | | 0.3676 | 2.0 | 1252 | 0.3623 | 0.9209 | | 0.1715 | 3.0 | 1878 | 0.2967 | 0.9311 | ### Framework versions - Transformers 4.27.1 - Pytorch 2.1.1+cu121 - Datasets 2.9.0 - Tokenizers 0.13.3
Robinsh2023/pegasus-samsum
Robinsh2023
2023-11-29T01:06:04Z
105
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "base_model:google/pegasus-cnn_dailymail", "base_model:finetune:google/pegasus-cnn_dailymail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-11-28T13:39:29Z
--- base_model: google/pegasus-cnn_dailymail tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6724 | 0.54 | 500 | 1.4861 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1 - Datasets 2.15.0 - Tokenizers 0.13.2
camfiander/bert-finetuned-prep
camfiander
2023-11-29T01:02:32Z
115
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-11-29T01:00:08Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: bert-finetuned-prep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-prep This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0012 | 1.0 | 258 | 0.0013 | | 0.0002 | 2.0 | 516 | 0.0014 | | 0.0003 | 3.0 | 774 | 0.0014 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0 - Datasets 2.12.0 - Tokenizers 0.13.2
hkivancoral/hushem_5x_beit_base_sgd_00001_fold1
hkivancoral
2023-11-29T01:02:25Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "beit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/beit-base-patch16-224", "base_model:finetune:microsoft/beit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-29T00:35:09Z
--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_5x_beit_base_sgd_00001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.26666666666666666 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_5x_beit_base_sgd_00001_fold1 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5922 - Accuracy: 0.2667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4867 | 1.0 | 27 | 1.6071 | 0.2667 | | 1.5392 | 2.0 | 54 | 1.6064 | 0.2667 | | 1.5844 | 3.0 | 81 | 1.6056 | 0.2667 | | 1.5797 | 4.0 | 108 | 1.6050 | 0.2667 | | 1.5108 | 5.0 | 135 | 1.6044 | 0.2667 | | 1.5236 | 6.0 | 162 | 1.6037 | 0.2667 | | 1.5199 | 7.0 | 189 | 1.6031 | 0.2667 | | 1.544 | 8.0 | 216 | 1.6026 | 0.2667 | | 1.5317 | 9.0 | 243 | 1.6020 | 0.2667 | | 1.537 | 10.0 | 270 | 1.6014 | 0.2667 | | 1.5415 | 11.0 | 297 | 1.6010 | 0.2667 | | 1.5478 | 12.0 | 324 | 1.6004 | 0.2667 | | 1.4666 | 13.0 | 351 | 1.6000 | 0.2667 | | 1.5352 | 14.0 | 378 | 1.5995 | 0.2667 | | 1.478 | 15.0 | 405 | 1.5990 | 0.2667 | | 1.5333 | 16.0 | 432 | 1.5986 | 0.2667 | | 1.5245 | 17.0 | 459 | 1.5982 | 0.2667 | | 1.5379 | 18.0 | 486 | 1.5978 | 0.2667 | | 1.52 | 19.0 | 513 | 1.5975 | 0.2667 | | 1.5508 | 20.0 | 540 | 1.5971 | 0.2667 | | 1.5421 | 21.0 | 567 | 1.5967 | 0.2667 | | 1.4919 | 22.0 | 594 | 1.5963 | 0.2667 | | 1.483 | 23.0 | 621 | 1.5960 | 0.2667 | | 1.5087 | 24.0 | 648 | 1.5957 | 0.2667 | | 1.5236 | 25.0 | 675 | 1.5954 | 0.2667 | | 1.5228 | 26.0 | 702 | 1.5951 | 0.2667 | | 1.5439 | 27.0 | 729 | 1.5949 | 0.2667 | | 1.5272 | 28.0 | 756 | 1.5946 | 0.2667 | | 1.5029 | 29.0 | 783 | 1.5943 | 0.2667 | | 1.5695 | 30.0 | 810 | 1.5941 | 0.2667 | | 1.5057 | 31.0 | 837 | 1.5939 | 0.2667 | | 1.5092 | 32.0 | 864 | 1.5937 | 0.2667 | | 1.575 | 33.0 | 891 | 1.5935 | 0.2667 | | 1.5175 | 34.0 | 918 | 1.5934 | 0.2667 | | 1.4801 | 35.0 | 945 | 1.5932 | 0.2667 | | 1.4771 | 36.0 | 972 | 1.5930 | 0.2667 | | 1.5042 | 37.0 | 999 | 1.5929 | 0.2667 | | 1.5372 | 38.0 | 1026 | 1.5928 | 0.2667 | | 1.5158 | 39.0 | 1053 | 1.5927 | 0.2667 | | 1.4902 | 40.0 | 1080 | 1.5926 | 0.2667 | | 1.4904 | 41.0 | 1107 | 1.5925 | 0.2667 | | 1.4817 | 42.0 | 1134 | 1.5924 | 0.2667 | | 1.5064 | 43.0 | 1161 | 1.5923 | 0.2667 | | 1.4625 | 44.0 | 1188 | 1.5923 | 0.2667 | | 1.5064 | 45.0 | 1215 | 1.5923 | 0.2667 | | 1.4956 | 46.0 | 1242 | 1.5922 | 0.2667 | | 1.502 | 47.0 | 1269 | 1.5922 | 0.2667 | | 1.495 | 48.0 | 1296 | 1.5922 | 0.2667 | | 1.4896 | 49.0 | 1323 | 1.5922 | 0.2667 | | 1.5118 | 50.0 | 1350 | 1.5922 | 0.2667 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
FranGMC/ppo-LunarLander-v2
FranGMC
2023-11-29T00:51:39Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-11-29T00:51:21Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 235.99 +/- 72.01 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jlbaker361/fine-tune_addition_subtraction_decimal
jlbaker361
2023-11-29T00:49:24Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-11-18T14:18:08Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
rrw23/train8
rrw23
2023-11-29T00:44:11Z
2
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-11-28T20:06:35Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - rrw23/train8 These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the pcuenq/oxford-pets dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
Oufei123/third_try_v2
Oufei123
2023-11-29T00:43:17Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai/whisper-large-v2", "base_model:adapter:openai/whisper-large-v2", "region:us" ]
null
2023-11-29T00:43:07Z
--- library_name: peft base_model: openai/whisper-large-v2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.3.dev0
bradmin/reward-gpt-duplicate-answer-300
bradmin
2023-11-29T00:41:31Z
17
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt_neox", "text-classification", "generated_from_trainer", "base_model:EleutherAI/polyglot-ko-1.3b", "base_model:finetune:EleutherAI/polyglot-ko-1.3b", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2023-11-28T23:58:23Z
--- license: apache-2.0 base_model: EleutherAI/polyglot-ko-1.3b tags: - generated_from_trainer metrics: - accuracy model-index: - name: reward-gpt-duplicate-answer-300 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reward-gpt-duplicate-answer-300 This model is a fine-tuned version of [EleutherAI/polyglot-ko-1.3b](https://huggingface.co/EleutherAI/polyglot-ko-1.3b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1708 - Accuracy: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-06 - train_batch_size: 6 - eval_batch_size: 6 - seed: 2023 - gradient_accumulation_steps: 10 - total_train_batch_size: 60 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2699 | 0.17 | 100 | 0.2734 | 0.0 | | 0.2827 | 0.34 | 200 | 0.2311 | 0.0 | | 0.2001 | 0.51 | 300 | 0.1920 | 0.0 | | 0.1955 | 0.69 | 400 | 0.1799 | 0.0 | | 0.1334 | 0.86 | 500 | 0.1708 | 0.0 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
jsl28/ppo-Huggy
jsl28
2023-11-29T00:39:16Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-11-29T00:39:10Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: jsl28/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
hkivancoral/hushem_5x_beit_base_sgd_0001_fold5
hkivancoral
2023-11-29T00:33:23Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "beit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/beit-base-patch16-224", "base_model:finetune:microsoft/beit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-11-29T00:04:52Z
--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_5x_beit_base_sgd_0001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.3170731707317073 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hushem_5x_beit_base_sgd_0001_fold5 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4856 - Accuracy: 0.3171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5711 | 1.0 | 28 | 1.6258 | 0.2439 | | 1.5362 | 2.0 | 56 | 1.6161 | 0.2439 | | 1.5243 | 3.0 | 84 | 1.6077 | 0.2439 | | 1.5675 | 4.0 | 112 | 1.5988 | 0.2439 | | 1.5133 | 5.0 | 140 | 1.5920 | 0.2439 | | 1.5639 | 6.0 | 168 | 1.5854 | 0.2439 | | 1.555 | 7.0 | 196 | 1.5785 | 0.2439 | | 1.5064 | 8.0 | 224 | 1.5727 | 0.2439 | | 1.4878 | 9.0 | 252 | 1.5672 | 0.2439 | | 1.5121 | 10.0 | 280 | 1.5615 | 0.2439 | | 1.4492 | 11.0 | 308 | 1.5578 | 0.2439 | | 1.5023 | 12.0 | 336 | 1.5529 | 0.2439 | | 1.5035 | 13.0 | 364 | 1.5492 | 0.2439 | | 1.4801 | 14.0 | 392 | 1.5454 | 0.2439 | | 1.4838 | 15.0 | 420 | 1.5419 | 0.2683 | | 1.4587 | 16.0 | 448 | 1.5385 | 0.2683 | | 1.4655 | 17.0 | 476 | 1.5343 | 0.2683 | | 1.4244 | 18.0 | 504 | 1.5315 | 0.2927 | | 1.4339 | 19.0 | 532 | 1.5284 | 0.2927 | | 1.4266 | 20.0 | 560 | 1.5249 | 0.2927 | | 1.4474 | 21.0 | 588 | 1.5220 | 0.2927 | | 1.4652 | 22.0 | 616 | 1.5188 | 0.3171 | | 1.4621 | 23.0 | 644 | 1.5163 | 0.3171 | | 1.4655 | 24.0 | 672 | 1.5146 | 0.3171 | | 1.4192 | 25.0 | 700 | 1.5130 | 0.3171 | | 1.4459 | 26.0 | 728 | 1.5105 | 0.3171 | | 1.469 | 27.0 | 756 | 1.5090 | 0.3171 | | 1.3585 | 28.0 | 784 | 1.5067 | 0.3171 | | 1.4084 | 29.0 | 812 | 1.5049 | 0.3171 | | 1.4047 | 30.0 | 840 | 1.5031 | 0.3171 | | 1.4414 | 31.0 | 868 | 1.5013 | 0.3171 | | 1.3836 | 32.0 | 896 | 1.4995 | 0.3171 | | 1.3896 | 33.0 | 924 | 1.4979 | 0.3171 | | 1.4222 | 34.0 | 952 | 1.4964 | 0.3171 | | 1.4396 | 35.0 | 980 | 1.4952 | 0.3171 | | 1.3891 | 36.0 | 1008 | 1.4939 | 0.3171 | | 1.393 | 37.0 | 1036 | 1.4925 | 0.3171 | | 1.3697 | 38.0 | 1064 | 1.4914 | 0.3171 | | 1.4252 | 39.0 | 1092 | 1.4901 | 0.3171 | | 1.365 | 40.0 | 1120 | 1.4892 | 0.3171 | | 1.4164 | 41.0 | 1148 | 1.4883 | 0.3171 | | 1.3854 | 42.0 | 1176 | 1.4876 | 0.3171 | | 1.3744 | 43.0 | 1204 | 1.4870 | 0.3171 | | 1.4041 | 44.0 | 1232 | 1.4865 | 0.3171 | | 1.3952 | 45.0 | 1260 | 1.4861 | 0.3171 | | 1.3758 | 46.0 | 1288 | 1.4858 | 0.3171 | | 1.3986 | 47.0 | 1316 | 1.4857 | 0.3171 | | 1.3628 | 48.0 | 1344 | 1.4856 | 0.3171 | | 1.4108 | 49.0 | 1372 | 1.4856 | 0.3171 | | 1.4199 | 50.0 | 1400 | 1.4856 | 0.3171 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
cyuzhang/rank4_lr6_batch4_10k
cyuzhang
2023-11-29T00:28:43Z
2
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-11-29T00:26:51Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - cyuzhang/rank4_lr6_batch4_10k These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the pcuenq/oxford-pets dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
Realgon/bert_twitterfin_padding40model
Realgon
2023-11-29T00:28:02Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-29T00:08:35Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert_twitterfin_padding40model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_twitterfin_padding40model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1063 - Accuracy: 0.8819 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7718 | 1.0 | 597 | 0.4637 | 0.8208 | | 0.4046 | 2.0 | 1194 | 0.3366 | 0.8765 | | 0.2833 | 3.0 | 1791 | 0.3967 | 0.8836 | | 0.1856 | 4.0 | 2388 | 0.5273 | 0.8790 | | 0.1388 | 5.0 | 2985 | 0.6270 | 0.8786 | | 0.0609 | 6.0 | 3582 | 0.7756 | 0.8585 | | 0.0517 | 7.0 | 4179 | 0.7692 | 0.8773 | | 0.0324 | 8.0 | 4776 | 0.7837 | 0.8798 | | 0.031 | 9.0 | 5373 | 0.8253 | 0.8773 | | 0.0253 | 10.0 | 5970 | 0.8893 | 0.8823 | | 0.0133 | 11.0 | 6567 | 0.9943 | 0.8802 | | 0.0119 | 12.0 | 7164 | 0.9277 | 0.8786 | | 0.0148 | 13.0 | 7761 | 1.0189 | 0.8836 | | 0.0051 | 14.0 | 8358 | 1.0542 | 0.8790 | | 0.005 | 15.0 | 8955 | 1.0600 | 0.8802 | | 0.0055 | 16.0 | 9552 | 1.0521 | 0.8794 | | 0.0052 | 17.0 | 10149 | 1.0653 | 0.8777 | | 0.0021 | 18.0 | 10746 | 1.0891 | 0.8832 | | 0.002 | 19.0 | 11343 | 1.1045 | 0.8811 | | 0.0039 | 20.0 | 11940 | 1.1063 | 0.8819 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
cyuzhang/rank4_lr6_batch4_3k
cyuzhang
2023-11-29T00:23:00Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-11-29T00:22:11Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - cyuzhang/rank4_lr6_batch4_3k These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the pcuenq/oxford-pets dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
KRayRay/layoutlm-funsd
KRayRay
2023-11-29T00:22:02Z
78
0
transformers
[ "transformers", "tensorboard", "safetensors", "layoutlm", "token-classification", "generated_from_trainer", "dataset:funsd", "base_model:microsoft/layoutlm-base-uncased", "base_model:finetune:microsoft/layoutlm-base-uncased", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-11-28T23:52:12Z
--- base_model: microsoft/layoutlm-base-uncased tags: - generated_from_trainer datasets: - funsd model-index: - name: layoutlm-funsd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlm-funsd This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset. It achieves the following results on the evaluation set: - Loss: nan - Answer: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 809} - Header: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} - Question: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1065} - Overall Precision: 0.0 - Overall Recall: 0.0 - Overall F1: 0.0 - Overall Accuracy: 0.2750 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------:|:-----------------------------------------------------------:|:------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.0 | 1.0 | 19 | nan | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1065} | 0.0 | 0.0 | 0.0 | 0.2750 | | 0.0 | 2.0 | 38 | nan | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1065} | 0.0 | 0.0 | 0.0 | 0.2750 | | 0.0 | 3.0 | 57 | nan | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1065} | 0.0 | 0.0 | 0.0 | 0.2750 | | 0.0 | 4.0 | 76 | nan | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1065} | 0.0 | 0.0 | 0.0 | 0.2750 | | 0.0 | 5.0 | 95 | nan | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1065} | 0.0 | 0.0 | 0.0 | 0.2750 | | 0.0 | 6.0 | 114 | nan | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1065} | 0.0 | 0.0 | 0.0 | 0.2750 | | 0.0 | 7.0 | 133 | nan | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1065} | 0.0 | 0.0 | 0.0 | 0.2750 | | 0.0 | 8.0 | 152 | nan | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1065} | 0.0 | 0.0 | 0.0 | 0.2750 | | 0.0 | 9.0 | 171 | nan | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1065} | 0.0 | 0.0 | 0.0 | 0.2750 | | 0.0 | 10.0 | 190 | nan | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1065} | 0.0 | 0.0 | 0.0 | 0.2750 | | 0.0 | 11.0 | 209 | nan | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1065} | 0.0 | 0.0 | 0.0 | 0.2750 | | 0.0 | 12.0 | 228 | nan | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1065} | 0.0 | 0.0 | 0.0 | 0.2750 | | 0.0 | 13.0 | 247 | nan | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1065} | 0.0 | 0.0 | 0.0 | 0.2750 | | 0.0 | 14.0 | 266 | nan | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1065} | 0.0 | 0.0 | 0.0 | 0.2750 | | 0.0 | 15.0 | 285 | nan | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1065} | 0.0 | 0.0 | 0.0 | 0.2750 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231123 - Datasets 2.15.0 - Tokenizers 0.15.0
cyuzhang/rank4_lr4_batch16_3k
cyuzhang
2023-11-29T00:20:18Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-11-29T00:19:24Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - cyuzhang/rank4_lr4_batch16_3k These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the pcuenq/oxford-pets dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
cyuzhang/rank4_lr4_batch16_6k
cyuzhang
2023-11-29T00:17:51Z
1
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-11-29T00:17:00Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - cyuzhang/rank4_lr4_batch16_6k These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the pcuenq/oxford-pets dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
imi2/goliath-120b-f16-gguf
imi2
2023-11-29T00:15:47Z
0
0
null
[ "conversational", "en", "license:llama2", "region:us" ]
text-generation
2023-11-28T13:27:50Z
--- license: llama2 language: - en pipeline_tag: conversational --- # 16-bit precision GGUF version of goliath-120b - join these model parts with `cat goliath-120b-f16.gguf* > goliath-120b-f16.gguf` --- # Goliath 120B An auto-regressive causal LM created by combining 2x finetuned [Llama-2 70B](https://huggingface.co/meta-llama/llama-2-70b-hf) into one. Please check out the quantized formats provided by [@TheBloke](https:///huggingface.co/TheBloke) and [@Panchovix](https://huggingface.co/Panchovix): - [GGUF](https://huggingface.co/TheBloke/goliath-120b-GGUF) (llama.cpp) - [GPTQ](https://huggingface.co/TheBloke/goliath-120b-GPTQ) (KoboldAI, TGW, Aphrodite) - [AWQ](https://huggingface.co/TheBloke/goliath-120b-AWQ) (TGW, Aphrodite, vLLM) - [Exllamav2](https://huggingface.co/Panchovix/goliath-120b-exl2) (TGW, KoboldAI) # Prompting Format Both Vicuna and Alpaca will work, but due the initial and final layers belonging primarily to Xwin, I expect Vicuna to work the best. # Merge process The models used in the merge are [Xwin](https://huggingface.co/Xwin-LM/Xwin-LM-70B-V0.1) and [Euryale](https://huggingface.co/Sao10K/Euryale-1.3-L2-70B). The layer ranges used are as follows: ```yaml - range 0, 16 Xwin - range 8, 24 Euryale - range 17, 32 Xwin - range 25, 40 Euryale - range 33, 48 Xwin - range 41, 56 Euryale - range 49, 64 Xwin - range 57, 72 Euryale - range 65, 80 Xwin ``` # Screenshots ![image/png](https://cdn-uploads.huggingface.co/production/uploads/635567189c72a7e742f1419c/Cat8_Rimaz6Ni7YhQiiGB.png) # Benchmarks Coming soon. # Acknowledgements Credits goes to [@chargoddard](https://huggingface.co/chargoddard) for developing the framework used to merge the model - [mergekit](https://github.com/cg123/mergekit). Special thanks to [@Undi95](https://huggingface.co/Undi95) for helping with the merge ratios.
cyuzhang/rank4_lr4_batch16_10k
cyuzhang
2023-11-29T00:14:54Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-11-29T00:14:00Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - cyuzhang/rank4_lr4_batch16_10k These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the pcuenq/oxford-pets dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
elvis92/pets_rank_8_val
elvis92
2023-11-29T00:14:37Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-11-28T20:34:36Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - elvis92/pets_rank_8_val These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the pcuenq/oxford-pets dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
cyuzhang/rank4_lr4_batch1_9.5k
cyuzhang
2023-11-29T00:11:16Z
2
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-11-29T00:10:25Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - cyuzhang/rank4_lr4_batch1_9.5k These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the pcuenq/oxford-pets dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
stevendee5/base-model
stevendee5
2023-11-29T00:08:35Z
120
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "dataset:imdb", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-27T23:31:08Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: base-model results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.88 - name: F1 type: f1 value: 0.8791946308724832 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # base-model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3648 - Accuracy: 0.88 - F1: 0.8792 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
Realgon/bert_twitterfin_padding30model
Realgon
2023-11-29T00:08:32Z
1
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-28T23:50:21Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert_twitterfin_padding30model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_twitterfin_padding30model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0811 - Accuracy: 0.8857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.5721 | 1.0 | 597 | 0.3568 | 0.8735 | | 0.3173 | 2.0 | 1194 | 0.3192 | 0.8848 | | 0.2143 | 3.0 | 1791 | 0.4767 | 0.8760 | | 0.1357 | 4.0 | 2388 | 0.6198 | 0.8832 | | 0.1059 | 5.0 | 2985 | 0.6062 | 0.8811 | | 0.05 | 6.0 | 3582 | 0.7149 | 0.8819 | | 0.0381 | 7.0 | 4179 | 0.8061 | 0.8848 | | 0.0309 | 8.0 | 4776 | 0.7961 | 0.8815 | | 0.0315 | 9.0 | 5373 | 0.8086 | 0.8802 | | 0.0214 | 10.0 | 5970 | 0.8231 | 0.8924 | | 0.0178 | 11.0 | 6567 | 0.8589 | 0.8861 | | 0.0127 | 12.0 | 7164 | 0.9441 | 0.8853 | | 0.0129 | 13.0 | 7761 | 0.9523 | 0.8899 | | 0.0102 | 14.0 | 8358 | 1.0047 | 0.8848 | | 0.009 | 15.0 | 8955 | 1.0004 | 0.8882 | | 0.0047 | 16.0 | 9552 | 1.0421 | 0.8848 | | 0.0049 | 17.0 | 10149 | 1.0416 | 0.8865 | | 0.0035 | 18.0 | 10746 | 1.0695 | 0.8869 | | 0.0021 | 19.0 | 11343 | 1.0858 | 0.8844 | | 0.003 | 20.0 | 11940 | 1.0811 | 0.8857 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
rrw23/train9
rrw23
2023-11-29T00:07:05Z
0
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-11-28T21:12:43Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - rrw23/train9 These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the pcuenq/oxford-pets dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
cyuzhang/rank4_lr4_batch1_6k
cyuzhang
2023-11-29T00:05:37Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-11-29T00:04:47Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - cyuzhang/rank4_lr4_batch1_6k These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the pcuenq/oxford-pets dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
gmazur591/falcon-7b-instruct-ft-adapters
gmazur591
2023-11-29T00:02:17Z
7
0
peft
[ "peft", "safetensors", "falcon", "custom_code", "arxiv:1910.09700", "base_model:tiiuae/falcon-7b-instruct", "base_model:adapter:tiiuae/falcon-7b-instruct", "region:us" ]
null
2023-11-26T22:25:31Z
--- library_name: peft base_model: tiiuae/falcon-7b-instruct --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.3.dev0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.3.dev0
StringCheese/distilbert-base-uncased-lora-text-classification
StringCheese
2023-11-29T00:02:01Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "region:us" ]
null
2023-11-28T22:28:01Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-lora-text-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-lora-text-classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8839 - Accuracy: {'accuracy': 0.901} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------------:| | No log | 1.0 | 250 | 0.3334 | {'accuracy': 0.892} | | 0.3999 | 2.0 | 500 | 0.3850 | {'accuracy': 0.892} | | 0.3999 | 3.0 | 750 | 0.4382 | {'accuracy': 0.895} | | 0.2004 | 4.0 | 1000 | 0.5518 | {'accuracy': 0.895} | | 0.2004 | 5.0 | 1250 | 0.6261 | {'accuracy': 0.899} | | 0.0674 | 6.0 | 1500 | 0.8357 | {'accuracy': 0.892} | | 0.0674 | 7.0 | 1750 | 0.8303 | {'accuracy': 0.901} | | 0.0301 | 8.0 | 2000 | 0.8756 | {'accuracy': 0.894} | | 0.0301 | 9.0 | 2250 | 0.8779 | {'accuracy': 0.897} | | 0.0028 | 10.0 | 2500 | 0.8839 | {'accuracy': 0.901} | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1 - Datasets 2.14.4 - Tokenizers 0.15.0
elvis92/pets_rank_2_val
elvis92
2023-11-28T23:54:59Z
0
1
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-11-28T06:02:21Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - elvis92/pets_rank_2_val These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the pcuenq/oxford-pets dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
cyuzhang/rank4_lr4_batch4_3k
cyuzhang
2023-11-28T23:53:43Z
1
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-11-28T23:51:17Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - cyuzhang/rank4_lr4_batch4_3k These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the pcuenq/oxford-pets dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
vicfeuga/ppo-SnowballTarget
vicfeuga
2023-11-28T23:52:38Z
17
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-11-28T23:52:33Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: vicfeuga/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Realgon/bert_twitterfin_padding20model
Realgon
2023-11-28T23:50:19Z
3
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-28T23:32:42Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert_twitterfin_padding20model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_twitterfin_padding20model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0153 - Accuracy: 0.8865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6193 | 1.0 | 597 | 0.3863 | 0.8597 | | 0.3289 | 2.0 | 1194 | 0.3259 | 0.8765 | | 0.2266 | 3.0 | 1791 | 0.4277 | 0.8790 | | 0.1408 | 4.0 | 2388 | 0.5860 | 0.8827 | | 0.0999 | 5.0 | 2985 | 0.6335 | 0.8823 | | 0.0371 | 6.0 | 3582 | 0.7146 | 0.8882 | | 0.0368 | 7.0 | 4179 | 0.7644 | 0.8794 | | 0.0326 | 8.0 | 4776 | 0.7843 | 0.8840 | | 0.0211 | 9.0 | 5373 | 0.8496 | 0.8794 | | 0.0246 | 10.0 | 5970 | 0.8321 | 0.8865 | | 0.0146 | 11.0 | 6567 | 0.8637 | 0.8786 | | 0.0094 | 12.0 | 7164 | 0.9359 | 0.8844 | | 0.0149 | 13.0 | 7761 | 0.8658 | 0.8857 | | 0.0077 | 14.0 | 8358 | 0.9680 | 0.8840 | | 0.0065 | 15.0 | 8955 | 0.9877 | 0.8903 | | 0.0038 | 16.0 | 9552 | 0.9742 | 0.8827 | | 0.0031 | 17.0 | 10149 | 0.9920 | 0.8861 | | 0.0017 | 18.0 | 10746 | 1.0075 | 0.8903 | | 0.0037 | 19.0 | 11343 | 1.0174 | 0.8857 | | 0.0008 | 20.0 | 11940 | 1.0153 | 0.8865 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
vladmandic/temporaldiff
vladmandic
2023-11-28T23:49:33Z
9
2
diffusers
[ "diffusers", "safetensors", "license:openrail", "region:us" ]
null
2023-11-28T23:40:08Z
--- license: openrail --- Copy of <https://huggingface.co/CiaraRowles/TemporalDiff> in Huggingface Diffusers format so it can be loaded directly using `MotionAdapter.from_pretrained`
cyuzhang/rank4_lr4_batch4_9.5k
cyuzhang
2023-11-28T23:48:11Z
0
1
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-11-28T23:47:21Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - cyuzhang/rank4_lr4_batch4_9.5k These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the pcuenq/oxford-pets dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
devvanshhh/flan-xl-gen6
devvanshhh
2023-11-28T23:43:07Z
79
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:ybelkada/flan-t5-xl-sharded-bf16", "base_model:quantized:ybelkada/flan-t5-xl-sharded-bf16", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "bitsandbytes", "region:us" ]
text2text-generation
2023-11-28T18:17:25Z
--- base_model: ybelkada/flan-t5-xl-sharded-bf16 tags: - generated_from_trainer metrics: - rouge model-index: - name: flan-xl-gen6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-xl-gen6 This model is a fine-tuned version of [ybelkada/flan-t5-xl-sharded-bf16](https://huggingface.co/ybelkada/flan-t5-xl-sharded-bf16) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4978 - Rouge1: 29.5362 - Rouge2: 20.6621 - Rougel: 25.7689 - Rougelsum: 26.2351 - Gen Len: 12.7388 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 800 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 328 | 0.6921 | 34.9112 | 26.7503 | 31.4124 | 31.7295 | 10.0172 | | 6.8746 | 2.0 | 656 | 0.6025 | 33.9134 | 25.3236 | 30.1968 | 30.472 | 10.8454 | | 6.8746 | 3.0 | 984 | 0.5687 | 31.6178 | 22.9463 | 27.8758 | 28.3572 | 11.8729 | | 0.6462 | 4.0 | 1312 | 0.5355 | 30.8157 | 22.1783 | 27.1641 | 27.569 | 12.1306 | | 0.5618 | 5.0 | 1640 | 0.5160 | 29.9183 | 21.0842 | 26.1671 | 26.5965 | 12.5017 | | 0.5618 | 6.0 | 1968 | 0.5025 | 29.7823 | 21.1443 | 26.0286 | 26.5215 | 12.5086 | | 0.498 | 7.0 | 2296 | 0.4978 | 29.1043 | 20.2391 | 25.3347 | 25.804 | 12.8969 | | 0.4551 | 8.0 | 2624 | 0.4978 | 29.5362 | 20.6621 | 25.7689 | 26.2351 | 12.7388 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0