modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-27 18:28:06
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
523 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-27 18:27:40
card
stringlengths
11
1.01M
stevaras2/ppo-Pyramids
stevaras2
2023-01-26T13:46:04Z
5
0
ml-agents
[ "ml-agents", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-01-26T13:37:52Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: stevaras2/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Heerak/xlm-roberta-base-finetuned-panx-en
Heerak
2023-01-26T13:44:18Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-01-26T13:06:33Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.7047619047619047 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3850 - F1: 0.7048 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 50 | 0.5487 | 0.5693 | | 0.775 | 2.0 | 100 | 0.4213 | 0.6837 | | 0.775 | 3.0 | 150 | 0.3850 | 0.7048 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
iblub/SnowballTarget1
iblub
2023-01-26T13:41:54Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-01-26T13:41:48Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: iblub/SnowballTarget1 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
KoboldAI/OPT-30B-Erebus
KoboldAI
2023-01-26T13:24:11Z
1,540
63
transformers
[ "transformers", "pytorch", "opt", "text-generation", "en", "arxiv:2205.01068", "license:other", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-01-21T08:06:38Z
--- language: en license: other commercial: no inference: false --- # OPT 30B - Erebus ## Model description This is the second generation of the original Shinen made by Mr. Seeker. The full dataset consists of 6 different sources, all surrounding the "Adult" theme. The name "Erebus" comes from the greek mythology, also named "darkness". This is in line with Shin'en, or "deep abyss". For inquiries, please contact the KoboldAI community. **Warning: THIS model is NOT suitable for use by minors. The model will output X-rated content.** ## Training data The data can be divided in 6 different datasets: - Literotica (everything with 4.5/5 or higher) - Sexstories (everything with 90 or higher) - Dataset-G (private dataset of X-rated stories) - Doc's Lab (all stories) - Pike Dataset (novels with "adult" rating) - SoFurry (collection of various animals) The dataset uses `[Genre: <comma-separated list of genres>]` for tagging. ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='KoboldAI/OPT-30B-Erebus') >>> generator("Welcome Captain Janeway, I apologize for the delay.", do_sample=True, min_length=50) [{'generated_text': 'Welcome Captain Janeway, I apologize for the delay."\nIt's all right," Janeway said. "I'm certain that you're doing your best to keep me informed of what\'s going on."'}] ``` ## Limitations and biases Based on known problems with NLP technology, potential relevant factors include bias (gender, profession, race and religion). **Warning: This model has a very strong NSFW bias!** ### License OPT-30B is licensed under the OPT-175B license, Copyright (c) Meta Platforms, Inc. All Rights Reserved. ### BibTeX entry and citation info ``` @misc{zhang2022opt, title={OPT: Open Pre-trained Transformer Language Models}, author={Susan Zhang and Stephen Roller and Naman Goyal and Mikel Artetxe and Moya Chen and Shuohui Chen and Christopher Dewan and Mona Diab and Xian Li and Xi Victoria Lin and Todor Mihaylov and Myle Ott and Sam Shleifer and Kurt Shuster and Daniel Simig and Punit Singh Koura and Anjali Sridhar and Tianlu Wang and Luke Zettlemoyer}, year={2022}, eprint={2205.01068}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
abkbvknv/bert-finetuned-ner
abkbvknv
2023-01-26T13:19:13Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-01-26T13:12:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
ludigija/Ludigija_project
ludigija
2023-01-26T13:15:53Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-01-26T13:15:53Z
--- license: bigscience-openrail-m ---
gokuls/distilbert_add_GLUE_Experiment_qnli
gokuls
2023-01-26T13:09:15Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-26T12:47:01Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_add_GLUE_Experiment_qnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.6066263957532492 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_add_GLUE_Experiment_qnli This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6648 - Accuracy: 0.6066 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6886 | 1.0 | 410 | 0.6648 | 0.6066 | | 0.6569 | 2.0 | 820 | 0.6677 | 0.5999 | | 0.6419 | 3.0 | 1230 | 0.6672 | 0.5914 | | 0.6293 | 4.0 | 1640 | 0.6677 | 0.5977 | | 0.6118 | 5.0 | 2050 | 0.6691 | 0.6002 | | 0.5857 | 6.0 | 2460 | 0.6854 | 0.6077 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
gokuls/distilbert_add_GLUE_Experiment_qnli_256
gokuls
2023-01-26T12:48:23Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-26T12:35:41Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_add_GLUE_Experiment_qnli_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE QNLI type: glue config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.5905180303862346 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_add_GLUE_Experiment_qnli_256 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6656 - Accuracy: 0.5905 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6936 | 1.0 | 410 | 0.6893 | 0.5654 | | 0.6702 | 2.0 | 820 | 0.6656 | 0.5905 | | 0.6477 | 3.0 | 1230 | 0.6665 | 0.5966 | | 0.6369 | 4.0 | 1640 | 0.6665 | 0.5953 | | 0.627 | 5.0 | 2050 | 0.6724 | 0.5934 | | 0.6173 | 6.0 | 2460 | 0.6842 | 0.5920 | | 0.6083 | 7.0 | 2870 | 0.7093 | 0.5810 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
gokuls/mobilebert_add_GLUE_Experiment_mrpc_256
gokuls
2023-01-26T12:47:32Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-26T12:41:44Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: mobilebert_add_GLUE_Experiment_mrpc_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.6838235294117647 - name: F1 type: f1 value: 0.8122270742358079 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_add_GLUE_Experiment_mrpc_256 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.6207 - Accuracy: 0.6838 - F1: 0.8122 - Combined Score: 0.7480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6419 | 1.0 | 29 | 0.6266 | 0.6838 | 0.8122 | 0.7480 | | 0.6297 | 2.0 | 58 | 0.6236 | 0.6838 | 0.8122 | 0.7480 | | 0.6307 | 3.0 | 87 | 0.6241 | 0.6838 | 0.8122 | 0.7480 | | 0.63 | 4.0 | 116 | 0.6243 | 0.6838 | 0.8122 | 0.7480 | | 0.6283 | 5.0 | 145 | 0.6219 | 0.6838 | 0.8122 | 0.7480 | | 0.6243 | 6.0 | 174 | 0.6207 | 0.6838 | 0.8122 | 0.7480 | | 0.6206 | 7.0 | 203 | 0.6346 | 0.6838 | 0.8122 | 0.7480 | | 0.6034 | 8.0 | 232 | 0.6519 | 0.6348 | 0.7545 | 0.6947 | | 0.5877 | 9.0 | 261 | 0.6375 | 0.6838 | 0.8122 | 0.7480 | | 0.5722 | 10.0 | 290 | 0.6446 | 0.6299 | 0.7504 | 0.6902 | | 0.5619 | 11.0 | 319 | 0.6733 | 0.6814 | 0.8105 | 0.7459 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
gokuls/distilbert_add_GLUE_Experiment_mrpc
gokuls
2023-01-26T12:46:09Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-26T12:41:46Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_add_GLUE_Experiment_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.696078431372549 - name: F1 type: f1 value: 0.8171091445427728 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_add_GLUE_Experiment_mrpc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.6028 - Accuracy: 0.6961 - F1: 0.8171 - Combined Score: 0.7566 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6617 | 1.0 | 15 | 0.6507 | 0.6838 | 0.8122 | 0.7480 | | 0.6412 | 2.0 | 30 | 0.6290 | 0.6838 | 0.8122 | 0.7480 | | 0.6315 | 3.0 | 45 | 0.6252 | 0.6838 | 0.8122 | 0.7480 | | 0.6319 | 4.0 | 60 | 0.6236 | 0.6838 | 0.8122 | 0.7480 | | 0.6321 | 5.0 | 75 | 0.6225 | 0.6838 | 0.8122 | 0.7480 | | 0.616 | 6.0 | 90 | 0.6028 | 0.6961 | 0.8171 | 0.7566 | | 0.5469 | 7.0 | 105 | 0.6485 | 0.6446 | 0.7349 | 0.6898 | | 0.4436 | 8.0 | 120 | 0.7536 | 0.6838 | 0.7909 | 0.7374 | | 0.3794 | 9.0 | 135 | 0.7805 | 0.6961 | 0.7898 | 0.7430 | | 0.3158 | 10.0 | 150 | 0.8811 | 0.6838 | 0.7825 | 0.7331 | | 0.281 | 11.0 | 165 | 0.9246 | 0.6863 | 0.7881 | 0.7372 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
gokuls/distilbert_add_GLUE_Experiment_cola
gokuls
2023-01-26T12:41:17Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-26T12:37:35Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert_add_GLUE_Experiment_cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_add_GLUE_Experiment_cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6182 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6218 | 1.0 | 34 | 0.6182 | 0.0 | | 0.611 | 2.0 | 68 | 0.6194 | 0.0 | | 0.6084 | 3.0 | 102 | 0.6226 | 0.0 | | 0.6104 | 4.0 | 136 | 0.6186 | 0.0 | | 0.6102 | 5.0 | 170 | 0.6214 | 0.0 | | 0.6095 | 6.0 | 204 | 0.6187 | 0.0 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
gokuls/mobilebert_add_GLUE_Experiment_cola
gokuls
2023-01-26T12:38:15Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-26T12:25:38Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: mobilebert_add_GLUE_Experiment_cola results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_add_GLUE_Experiment_cola This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6127 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6126 | 1.0 | 67 | 0.6183 | 0.0 | | 0.6078 | 2.0 | 134 | 0.6179 | 0.0 | | 0.6072 | 3.0 | 201 | 0.6183 | 0.0 | | 0.6062 | 4.0 | 268 | 0.6164 | 0.0 | | 0.601 | 5.0 | 335 | 0.6127 | 0.0 | | 0.5928 | 6.0 | 402 | 0.6148 | 0.0 | | 0.588 | 7.0 | 469 | 0.6224 | 0.0 | | 0.582 | 8.0 | 536 | 0.6174 | 0.0029 | | 0.5807 | 9.0 | 603 | 0.6301 | 0.0029 | | 0.5743 | 10.0 | 670 | 0.6156 | 0.0438 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
gokuls/mobilebert_add_GLUE_Experiment_cola_128
gokuls
2023-01-26T12:36:00Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-26T12:25:26Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: mobilebert_add_GLUE_Experiment_cola_128 results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_add_GLUE_Experiment_cola_128 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6168 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.617 | 1.0 | 67 | 0.6181 | 0.0 | | 0.608 | 2.0 | 134 | 0.6181 | 0.0 | | 0.6075 | 3.0 | 201 | 0.6183 | 0.0 | | 0.6072 | 4.0 | 268 | 0.6177 | 0.0 | | 0.6069 | 5.0 | 335 | 0.6185 | 0.0 | | 0.606 | 6.0 | 402 | 0.6168 | 0.0 | | 0.6014 | 7.0 | 469 | 0.6234 | 0.0 | | 0.5947 | 8.0 | 536 | 0.6218 | 0.0 | | 0.5858 | 9.0 | 603 | 0.6321 | 0.0 | | 0.579 | 10.0 | 670 | 0.6177 | 0.0464 | | 0.5762 | 11.0 | 737 | 0.6185 | 0.0464 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
gokuls/distilbert_add_GLUE_Experiment_mrpc_256
gokuls
2023-01-26T12:34:55Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-26T12:32:22Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_add_GLUE_Experiment_mrpc_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.7107843137254902 - name: F1 type: f1 value: 0.8233532934131738 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_add_GLUE_Experiment_mrpc_256 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5932 - Accuracy: 0.7108 - F1: 0.8234 - Combined Score: 0.7671 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.637 | 1.0 | 15 | 0.6242 | 0.6838 | 0.8122 | 0.7480 | | 0.629 | 2.0 | 30 | 0.6240 | 0.6838 | 0.8122 | 0.7480 | | 0.6302 | 3.0 | 45 | 0.6248 | 0.6838 | 0.8122 | 0.7480 | | 0.63 | 4.0 | 60 | 0.6241 | 0.6838 | 0.8122 | 0.7480 | | 0.6323 | 5.0 | 75 | 0.6240 | 0.6838 | 0.8122 | 0.7480 | | 0.6299 | 6.0 | 90 | 0.6243 | 0.6838 | 0.8122 | 0.7480 | | 0.6325 | 7.0 | 105 | 0.6239 | 0.6838 | 0.8122 | 0.7480 | | 0.6301 | 8.0 | 120 | 0.6239 | 0.6838 | 0.8122 | 0.7480 | | 0.6324 | 9.0 | 135 | 0.6240 | 0.6838 | 0.8122 | 0.7480 | | 0.6293 | 10.0 | 150 | 0.6240 | 0.6838 | 0.8122 | 0.7480 | | 0.6307 | 11.0 | 165 | 0.6239 | 0.6838 | 0.8122 | 0.7480 | | 0.6302 | 12.0 | 180 | 0.6240 | 0.6838 | 0.8122 | 0.7480 | | 0.6338 | 13.0 | 195 | 0.6237 | 0.6838 | 0.8122 | 0.7480 | | 0.6281 | 14.0 | 210 | 0.6225 | 0.6838 | 0.8122 | 0.7480 | | 0.6263 | 15.0 | 225 | 0.6183 | 0.6838 | 0.8122 | 0.7480 | | 0.6017 | 16.0 | 240 | 0.5932 | 0.7108 | 0.8234 | 0.7671 | | 0.5213 | 17.0 | 255 | 0.6146 | 0.6642 | 0.7540 | 0.7091 | | 0.4383 | 18.0 | 270 | 0.6405 | 0.6912 | 0.7842 | 0.7377 | | 0.3903 | 19.0 | 285 | 0.6910 | 0.6912 | 0.7872 | 0.7392 | | 0.363 | 20.0 | 300 | 0.7221 | 0.6544 | 0.7374 | 0.6959 | | 0.3306 | 21.0 | 315 | 0.7583 | 0.6863 | 0.7808 | 0.7335 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
gokuls/distilbert_add_GLUE_Experiment_mrpc_192
gokuls
2023-01-26T12:33:13Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-26T12:31:23Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_add_GLUE_Experiment_mrpc_192 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.6838235294117647 - name: F1 type: f1 value: 0.8122270742358079 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_add_GLUE_Experiment_mrpc_192 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.6238 - Accuracy: 0.6838 - F1: 0.8122 - Combined Score: 0.7480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6399 | 1.0 | 15 | 0.6240 | 0.6838 | 0.8122 | 0.7480 | | 0.6292 | 2.0 | 30 | 0.6242 | 0.6838 | 0.8122 | 0.7480 | | 0.6293 | 3.0 | 45 | 0.6241 | 0.6838 | 0.8122 | 0.7480 | | 0.6308 | 4.0 | 60 | 0.6246 | 0.6838 | 0.8122 | 0.7480 | | 0.6328 | 5.0 | 75 | 0.6238 | 0.6838 | 0.8122 | 0.7480 | | 0.6301 | 6.0 | 90 | 0.6243 | 0.6838 | 0.8122 | 0.7480 | | 0.6334 | 7.0 | 105 | 0.6242 | 0.6838 | 0.8122 | 0.7480 | | 0.6297 | 8.0 | 120 | 0.6241 | 0.6838 | 0.8122 | 0.7480 | | 0.6317 | 9.0 | 135 | 0.6242 | 0.6838 | 0.8122 | 0.7480 | | 0.6303 | 10.0 | 150 | 0.6239 | 0.6838 | 0.8122 | 0.7480 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
gokuls/distilbert_add_GLUE_Experiment_mrpc_384
gokuls
2023-01-26T12:32:44Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-26T12:29:22Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_add_GLUE_Experiment_mrpc_384 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.7009803921568627 - name: F1 type: f1 value: 0.8189910979228486 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_add_GLUE_Experiment_mrpc_384 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5935 - Accuracy: 0.7010 - F1: 0.8190 - Combined Score: 0.7600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6355 | 1.0 | 15 | 0.6261 | 0.6838 | 0.8122 | 0.7480 | | 0.6315 | 2.0 | 30 | 0.6294 | 0.6838 | 0.8122 | 0.7480 | | 0.6327 | 3.0 | 45 | 0.6241 | 0.6838 | 0.8122 | 0.7480 | | 0.6344 | 4.0 | 60 | 0.6285 | 0.6838 | 0.8122 | 0.7480 | | 0.6328 | 5.0 | 75 | 0.6245 | 0.6838 | 0.8122 | 0.7480 | | 0.6293 | 6.0 | 90 | 0.6245 | 0.6838 | 0.8122 | 0.7480 | | 0.6341 | 7.0 | 105 | 0.6239 | 0.6838 | 0.8122 | 0.7480 | | 0.6298 | 8.0 | 120 | 0.6240 | 0.6838 | 0.8122 | 0.7480 | | 0.6304 | 9.0 | 135 | 0.6232 | 0.6838 | 0.8122 | 0.7480 | | 0.6286 | 10.0 | 150 | 0.6196 | 0.6838 | 0.8122 | 0.7480 | | 0.6045 | 11.0 | 165 | 0.5935 | 0.7010 | 0.8190 | 0.7600 | | 0.5251 | 12.0 | 180 | 0.6129 | 0.6789 | 0.7849 | 0.7319 | | 0.4395 | 13.0 | 195 | 0.6564 | 0.6912 | 0.7872 | 0.7392 | | 0.3921 | 14.0 | 210 | 0.7059 | 0.6446 | 0.7173 | 0.6810 | | 0.3399 | 15.0 | 225 | 0.7605 | 0.6887 | 0.7829 | 0.7358 | | 0.3219 | 16.0 | 240 | 0.7614 | 0.6569 | 0.7328 | 0.6948 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
gokuls/distilbert_add_GLUE_Experiment_mrpc_96
gokuls
2023-01-26T12:32:26Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-26T12:30:28Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_add_GLUE_Experiment_mrpc_96 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.6838235294117647 - name: F1 type: f1 value: 0.8122270742358079 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_add_GLUE_Experiment_mrpc_96 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.6239 - Accuracy: 0.6838 - F1: 0.8122 - Combined Score: 0.7480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6686 | 1.0 | 15 | 0.6467 | 0.6838 | 0.8122 | 0.7480 | | 0.6433 | 2.0 | 30 | 0.6372 | 0.6838 | 0.8122 | 0.7480 | | 0.6378 | 3.0 | 45 | 0.6319 | 0.6838 | 0.8122 | 0.7480 | | 0.6344 | 4.0 | 60 | 0.6284 | 0.6838 | 0.8122 | 0.7480 | | 0.6343 | 5.0 | 75 | 0.6266 | 0.6838 | 0.8122 | 0.7480 | | 0.6299 | 6.0 | 90 | 0.6252 | 0.6838 | 0.8122 | 0.7480 | | 0.6335 | 7.0 | 105 | 0.6247 | 0.6838 | 0.8122 | 0.7480 | | 0.6308 | 8.0 | 120 | 0.6243 | 0.6838 | 0.8122 | 0.7480 | | 0.6306 | 9.0 | 135 | 0.6243 | 0.6838 | 0.8122 | 0.7480 | | 0.6302 | 10.0 | 150 | 0.6241 | 0.6838 | 0.8122 | 0.7480 | | 0.6296 | 11.0 | 165 | 0.6241 | 0.6838 | 0.8122 | 0.7480 | | 0.6305 | 12.0 | 180 | 0.6239 | 0.6838 | 0.8122 | 0.7480 | | 0.634 | 13.0 | 195 | 0.6242 | 0.6838 | 0.8122 | 0.7480 | | 0.63 | 14.0 | 210 | 0.6243 | 0.6838 | 0.8122 | 0.7480 | | 0.6314 | 15.0 | 225 | 0.6242 | 0.6838 | 0.8122 | 0.7480 | | 0.6286 | 16.0 | 240 | 0.6239 | 0.6838 | 0.8122 | 0.7480 | | 0.6326 | 17.0 | 255 | 0.6242 | 0.6838 | 0.8122 | 0.7480 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
gokuls/distilbert_add_GLUE_Experiment_cola_256
gokuls
2023-01-26T12:31:48Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-26T12:28:34Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert_add_GLUE_Experiment_cola_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_add_GLUE_Experiment_cola_256 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6181 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6125 | 1.0 | 34 | 0.6201 | 0.0 | | 0.6084 | 2.0 | 68 | 0.6182 | 0.0 | | 0.6071 | 3.0 | 102 | 0.6184 | 0.0 | | 0.6081 | 4.0 | 136 | 0.6186 | 0.0 | | 0.6081 | 5.0 | 170 | 0.6182 | 0.0 | | 0.607 | 6.0 | 204 | 0.6185 | 0.0 | | 0.6082 | 7.0 | 238 | 0.6181 | 0.0 | | 0.609 | 8.0 | 272 | 0.6184 | 0.0 | | 0.607 | 9.0 | 306 | 0.6213 | 0.0 | | 0.6082 | 10.0 | 340 | 0.6193 | 0.0 | | 0.6081 | 11.0 | 374 | 0.6196 | 0.0 | | 0.6071 | 12.0 | 408 | 0.6193 | 0.0 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
gokuls/distilbert_add_GLUE_Experiment_cola_192
gokuls
2023-01-26T12:30:54Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-26T12:27:38Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert_add_GLUE_Experiment_cola_192 results: - task: name: Text Classification type: text-classification dataset: name: GLUE COLA type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_add_GLUE_Experiment_cola_192 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6182 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6141 | 1.0 | 34 | 0.6201 | 0.0 | | 0.6079 | 2.0 | 68 | 0.6185 | 0.0 | | 0.6072 | 3.0 | 102 | 0.6184 | 0.0 | | 0.6083 | 4.0 | 136 | 0.6193 | 0.0 | | 0.6075 | 5.0 | 170 | 0.6182 | 0.0 | | 0.607 | 6.0 | 204 | 0.6185 | 0.0 | | 0.6082 | 7.0 | 238 | 0.6182 | 0.0 | | 0.6085 | 8.0 | 272 | 0.6185 | 0.0 | | 0.608 | 9.0 | 306 | 0.6202 | 0.0 | | 0.6084 | 10.0 | 340 | 0.6189 | 0.0 | | 0.6078 | 11.0 | 374 | 0.6189 | 0.0 | | 0.6072 | 12.0 | 408 | 0.6186 | 0.0 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
Heerak/xlm-roberta-base-finetuned-panx-fr
Heerak
2023-01-26T12:26:14Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-01-26T11:18:02Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8370531968451083 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2777 - F1: 0.8371 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 191 | 0.3122 | 0.7961 | | 0.4151 | 2.0 | 382 | 0.2749 | 0.8312 | | 0.4151 | 3.0 | 573 | 0.2777 | 0.8371 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
andyleow/q-FrozenLake-v1-4x4
andyleow
2023-01-26T12:15:58Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-26T12:15:55Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.58 +/- 0.49 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="andyleow/q-FrozenLake-v1-4x4", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
haouarin/TextGeneration
haouarin
2023-01-26T11:28:02Z
0
0
null
[ "pytorch", "bert", "multilingual", "ar", "dz", "license:apache-2.0", "region:us" ]
null
2023-01-26T10:43:33Z
--- language: - ar - dz tags: - pytorch - bert - multilingual - ar - dz license: apache-2.0 widget: - text: " أنا من الجزائر من ولاية [MASK] " - text: "rabi [MASK] khouya sami" - text: " ربي [MASK] خويا لعزيز" - text: "tahya el [MASK]." - text: "rouhi ya dzayer [MASK]" inference: true ---
umass/mpnet-base-mimics-query-facet-encoder
umass
2023-01-26T10:56:47Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-26T10:53:10Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 18092 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'dot_score'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
arnonl/a2c-PandaReachDense-v2
arnonl
2023-01-26T10:39:57Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-26T10:37:45Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.77 +/- 0.93 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
andrei-saceleanu/a2c-PandaReachDense-v2
andrei-saceleanu
2023-01-26T10:07:50Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-23T16:00:16Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.04 +/- 0.34 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
css919/ppo-SnowballTarget
css919
2023-01-26T09:58:44Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-01-26T09:58:37Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: css919/ppo-SnowballTarget1 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
phob0s/bert-tiny
phob0s
2023-01-26T09:55:34Z
502
1
transformers
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2023-01-19T08:53:21Z
Testclone of https://huggingface.co/prajjwal1/bert-tiny Mentioned in * Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics(Bhargava, Drozd and Rogers) * Well-Read Students Learn Better: The Impact of Student Initialization on Knowledge Distillation (Turc et al.)
arnonl/a2c-AntBulletEnv-v0
arnonl
2023-01-26T09:52:27Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-26T09:51:25Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1234.54 +/- 172.57 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
orenk/a2c-AntBulletEnv-v0
orenk
2023-01-26T09:50:07Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-26T09:48:58Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1400.57 +/- 347.64 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
shahriarebrampour/distilbert-base-uncased-finetuned-imdb
shahriarebrampour
2023-01-26T09:31:10Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-01-26T09:05:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4303 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5274 | 1.0 | 157 | 2.4476 | | 2.5259 | 2.0 | 314 | 2.4390 | | 2.5134 | 3.0 | 471 | 2.4330 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
MaCoCu/XLMR-MaltBERTa
MaCoCu
2023-01-26T09:18:53Z
4
0
transformers
[ "transformers", "pytorch", "tf", "jax", "xlm-roberta", "feature-extraction", "MaltBERTa", "MaCoCu", "mt", "license:cc0-1.0", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-11T12:57:46Z
--- license: cc0-1.0 language: - mt tags: - MaltBERTa - MaCoCu --- # Model description **XLMR-MaltBERTa** is a large pre-trained language model trained on Maltese texts. It was created by continuing training from the [XLM-RoBERTa-large](https://huggingface.co/xlm-roberta-large) model. It was developed as part of the [MaCoCu](https://macocu.eu/) project. The main developer is [Rik van Noord](https://www.rikvannoord.nl/) from the University of Groningen. XLMR-MaltBERTa was trained on 3.2GB of text, which is equal to 439M tokens. It was trained for 50,000 steps with a batch size of 1,024. It uses the same vocabulary as the original XLMR-large model. The model is trained on the same data as [MaltBERTa](https://huggingface.co/RVN/MaltBERTa), but this model was trained from scratch using the RoBERTa architecture. The training and fine-tuning procedures are described in detail on our [Github repo](https://github.com/macocu/LanguageModels). # How to use ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel tokenizer = AutoTokenizer.from_pretrained("RVN/XLMR-MaltBERTa") model = AutoModel.from_pretrained("RVN/XLMR-MaltBERTa") # PyTorch model = TFAutoModel.from_pretrained("RVN/XLMR-MaltBERTa") # Tensorflow ``` # Data For training, we used all Maltese data that was present in the [MaCoCu](https://macocu.eu/), Oscar and mc4 corpora. After de-duplicating the data, we were left with a total of 3.2GB of text. # Benchmark performance We tested the performance of MaltBERTa on the UPOS and XPOS benchmark of the [Universal Dependencies](https://universaldependencies.org/) project. Moreover, we test on a Google Translated version of the COPA data set (see our [Github repo](https://github.com/RikVN/COPA) for details). We compare performance to the strong multi-lingual models XLMR-base and XLMR-large, though note that Maltese was not one of the training languages for those models. We also compare to the recently introduced Maltese language models [BERTu](https://huggingface.co/MLRS/BERTu), [mBERTu](https://huggingface.co/MLRS/mBERTu) and our own [MaltBERTa](https://huggingface.co/RVN/MaltBERTa). For details regarding the fine-tuning procedure you can checkout our [Github](https://github.com/macocu/LanguageModels). Scores are averages of three runs for UPOS/XPOS and 10 runs for COPA. We use the same hyperparameter settings for all models for UPOS/XPOS, while for COPA we optimize on the dev set. | | **UPOS** | **UPOS** | **XPOS** | **XPOS** | **COPA** | |-----------------|:--------:|:--------:|:--------:|:--------:| :--------:| | | **Dev** | **Test** | **Dev** | **Test** | **Test** | | **XLM-R-base** | 93.6 | 93.2 | 93.4 | 93.2 | 52.2 | | **XLM-R-large** | 94.9 | 94.4 | 95.1 | 94.7 | 54.0 | | **BERTu** | 97.5 | 97.6 | 95.7 | 95.8 | **55.6** | | **mBERTu** | **97.7** | 97.8 | 97.9 | 98.1 | 52.6 | | **MaltBERTa** | 95.7 | 95.8 | 96.1 | 96.0 | 53.7 | | **XLMR-MaltBERTa** | **97.7** | **98.1** | **98.1** | **98.2** | 54.4 | # Acknowledgements Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC). The authors received funding from the European Union’s Connecting Europe Facility 2014- 2020 - CEF Telecom, under Grant Agreement No.INEA/CEF/ICT/A2020/2278341 (MaCoCu). # Citation If you use this model, please cite the following paper: ```bibtex @inproceedings{non-etal-2022-macocu, title = "{M}a{C}o{C}u: Massive collection and curation of monolingual and bilingual data: focus on under-resourced languages", author = "Ba{\~n}{\'o}n, Marta and Espl{\`a}-Gomis, Miquel and Forcada, Mikel L. and Garc{\'\i}a-Romero, Cristian and Kuzman, Taja and Ljube{\v{s}}i{\'c}, Nikola and van Noord, Rik and Sempere, Leopoldo Pla and Ram{\'\i}rez-S{\'a}nchez, Gema and Rupnik, Peter and Suchomel, V{\'\i}t and Toral, Antonio and van der Werff, Tobias and Zaragoza, Jaume", booktitle = "Proceedings of the 23rd Annual Conference of the European Association for Machine Translation", month = jun, year = "2022", address = "Ghent, Belgium", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2022.eamt-1.41", pages = "303--304" } ```
nanashisan/LoRa_Deedlit
nanashisan
2023-01-26T08:51:57Z
0
10
null
[ "ja", "region:us" ]
null
2023-01-26T06:47:25Z
--- language: - ja duplicated_from: nanashisan/LoRa_Deedlit --- プロンプト用KeyWord:Deedlit - Deedlit, 1girl, retro artstyle, solo, pointy ears, 1990s (style), weapon, elf, sword, armor, cape ![Sample_image](https://huggingface.co/nanashisan/LoRa_Deedlit/resolve/main/17523-2222-(best%2Cgreat%2Camazing%20quality)%2C(masterpiece)%2C%20((an%20extremely%20detailed%20and%20delicate))%2C%20(8k%20cg%20wallpaper)%2C%20(amazing)%2Coriginal%2C(extre.png) ![Sample_image2](https://huggingface.co/nanashisan/LoRa_Deedlit/resolve/main/00_Sample_xy_grid.jpg)
leadawon/ko-gangwon-nmt-v1
leadawon
2023-01-26T08:33:33Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "ko", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-26T01:20:25Z
--- model-index: - name: ko-gangwon-nmt-v1 results: [] language: - ko pipeline_tag: text2text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # jeolla-ko-nmt-v1 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.199624 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.525000 | 1.0 | 3017 | 0.424946 | | 0.318700 | 2.0 | 6034 | 0.285191 | | 0.244100 | 3.0 | 9051 | 0.237215 | | 0.195900 | 4.0 | 12068 | 0.216691 | | 0.160500 | 5.0 | 15085 | 0.203532 | | 0.135400 | 6.0 | 18092 | 0.199624 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Tokenizers 0.13.2
edusei/sentiment_analysis_on_covid_tweets
edusei
2023-01-26T08:23:17Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-26T07:58:35Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: sentiment_analysis_on_covid_tweets results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment_analysis_on_covid_tweets This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.5883 - eval_accuracy: 0.771 - eval_runtime: 33.4887 - eval_samples_per_second: 59.722 - eval_steps_per_second: 7.465 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
charanhu/text_to_sql_1
charanhu
2023-01-26T07:52:04Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain", "translation", "unk", "dataset:charanhu/autotrain-data-text_to_sql_finetune", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2023-01-26T07:40:12Z
--- tags: - autotrain - translation language: - unk - unk datasets: - charanhu/autotrain-data-text_to_sql_finetune co2_eq_emissions: emissions: 16.03787641705279 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 3073487571 - CO2 Emissions (in grams): 16.0379 ## Validation Metrics - Loss: 0.140 - SacreBLEU: 77.653 - Gen len: 42.019
charanhu/text_to_sql_4
charanhu
2023-01-26T07:51:46Z
3
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain", "translation", "unk", "dataset:charanhu/autotrain-data-text_to_sql_finetune", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2023-01-26T07:40:13Z
--- tags: - autotrain - translation language: - unk - unk datasets: - charanhu/autotrain-data-text_to_sql_finetune co2_eq_emissions: emissions: 15.216605611144294 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 3073487569 - CO2 Emissions (in grams): 15.2166 ## Validation Metrics - Loss: 0.159 - SacreBLEU: 72.889 - Gen len: 40.580
hmehta92/finetuned-model
hmehta92
2023-01-26T07:40:12Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-26T07:37:15Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1604 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MegaBatchMarginLoss.MegaBatchMarginLoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 802, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
carlosmirandad/rl-class-dqn-SpaceInvadersNoFrameskip-v4
carlosmirandad
2023-01-26T07:25:05Z
6
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-24T09:09:33Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 531.50 +/- 134.70 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga carlosmirandad -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga carlosmirandad -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga carlosmirandad ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0005), ('learning_starts', 100000), ('n_timesteps', 5000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
xiaozhangMJXXZ/Genshin-lora-all
xiaozhangMJXXZ
2023-01-26T07:23:12Z
0
77
null
[ "region:us" ]
null
2023-01-22T16:55:05Z
https://t.me/+a-k8rVfjIVk3NGU1 https://t.me/loraeveryone 这是tg群组,之后会在第一时间更新tg,因为tg可以直接传tg原文件呜呜呜,笑脸站会缓慢更新! 笑脸上下载不下来的也可以直接来tg下载 这里是原神角色的lora合集,希望各位可以及时来补充!!! 分别为打包全下载与单个角色,由于中文名字的文件无法下载所以是压缩包的形式, 下载之后需要各位解压一下里面就有对应的中文名字了。 校 长的联系方式:qq3062945846 只是为了方便中文玩家而搬运整理!! 记得查看txt角色触发词 我们十分尊敬每一位lora的作者!! 感谢你们的付出!! 大家好这里是校长,目前这边准备来整合质量高些的lora模型, 已经是整理了70+并且给打上了中文标注以及把触发tag直接打到了文件名字上, 有些复杂的衣物装饰什么的还在旁边附带了同名的文档可以方便查阅。 如果大家有比较好的且跟目前的不同的lora的话, 希望可以来找咱发下Lora模型, 我把它们全部都统一整理完之后进行分类整理并且分享给大家(是lora模型哦,不是平常的大模型)。
Heerak/xlm-roberta-base-finetuned-panx-de-fr
Heerak
2023-01-26T07:21:31Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-01-26T06:05:18Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1637 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 715 | 0.2046 | 0.8109 | | 0.2163 | 2.0 | 1430 | 0.1678 | 0.8467 | | 0.2163 | 3.0 | 2145 | 0.1637 | 0.8621 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
smile3634/jeju-ko-nmt-v7
smile3634
2023-01-26T06:57:15Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-25T01:41:53Z
--- tags: - generated_from_trainer model-index: - name: jeju-ko-nmt-v7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # jeju-ko-nmt-v7 This model is a fine-tuned version of [leadawon/jeju-ko-nmt-v6](https://huggingface.co/leadawon/jeju-ko-nmt-v6) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Tokenizers 0.13.2
Korakoe/Koromiko-Diffusion
Korakoe
2023-01-26T06:12:00Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-01-26T06:12:00Z
--- license: creativeml-openrail-m ---
hesw23168/SD_Elysium_Kuro_Model
hesw23168
2023-01-26T05:25:03Z
0
34
null
[ "license:openrail", "region:us" ]
null
2023-01-25T03:48:50Z
--- license: openrail --- Also on https://civitai.com/models/5301/elysium-kuro-anime Anime model is custom mix + finetune on dataset of high quality images (mix including Anything 4.0, WD 1.4 Booru, Seek Art Mega V1) and contains the contains the kl-f8-anime2 VAE from Waifu Diffusion. Example settings: Negative prompt: (lowres:1.1), (worst quality:1.2), (low quality:1.1), bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, normal quality, jpeg artifacts, signature, watermark, username, blurry (General model): Clip skip 1, VAE: 'vae-ft-mse-840000' from StabilityAI (included) (Anime model): Clip skip 2, VAE: 'kl-f8-anime2.ckpt' from Waifu Diffusion (included) Example images from anime model: ![awiog.jpg](https://s3.amazonaws.com/moonup/production/uploads/1674681388521-6351b7e2ea4e5b421fb0d42d.jpeg) General model coming soon.
FredZhang7/google-safesearch-mini-tfjs
FredZhang7
2023-01-26T03:48:45Z
1
2
tf-keras
[ "tf-keras", "pytorch", "inceptionv3", "safety-checker", "tensorflow", "node.js", "image-classification", "custom_code", "license:creativeml-openrail-m", "region:us" ]
image-classification
2022-12-23T04:36:19Z
--- license: creativeml-openrail-m tags: - safety-checker - tensorflow - node.js pipeline_tag: image-classification --- # Google Safesearch Mini Model Card <a href="https://huggingface.co/FredZhang7/google-safesearch-mini-v2"> <font size="4"> <bold> Version 2 is here! </bold> </font> </a> This model is trained on 2,220,000+ images scraped from Google Images, Reddit, Imgur, and Github. The InceptionV3 and Xception models have been fine-tuned to predict the likelihood of an image falling into one of three categories: nsfw_gore, nsfw_suggestive, and safe. After 20 epochs on PyTorch, the finetuned InceptionV3 model achieves 94% acc on both training and test data. After 3.3 epochs on Keras, the finetuned Xception model scores 94% acc on training set and 92% on test set. Not only is this model accurate, but it also offers a significant advantage over stable diffusion safety checkers. By using our model, users can save 1.12GB of RAM and disk space. <br> # PyTorch The PyTorch model runs much slower with transformers, so downloading it externally is a better option. ```bash pip install --upgrade torchvision ``` ```python import torch, os, warnings, requests from io import BytesIO from PIL import Image from urllib.request import urlretrieve from torchvision import transforms PATH_TO_IMAGE = 'https://images.unsplash.com/photo-1594568284297-7c64464062b1' USE_CUDA = False warnings.filterwarnings("ignore") def download_model(): print("Downloading google_safesearch_mini.bin...") urlretrieve("https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/pytorch_model.bin", "google_safesearch_mini.bin") def eval(): if not os.path.exists("google_safesearch_mini.bin"): download_model() model = torch.jit.load('./google_safesearch_mini.bin') img = Image.open(PATH_TO_IMAGE).convert('RGB') if not (PATH_TO_IMAGE.startswith('http://') or PATH_TO_IMAGE.startswith('https://')) else Image.open(BytesIO(requests.get(PATH_TO_IMAGE).content)).convert('RGB') transform = transforms.Compose([transforms.Resize(299), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) img = transform(img).unsqueeze(0) if USE_CUDA: img, model = img.cuda(), model.cuda() else: img, model = img.cpu(), model.cpu() model.eval() with torch.no_grad(): out, _ = model(img) _, predicted = torch.max(out.data, 1) classes = {0: 'nsfw_gore', 1: 'nsfw_suggestive', 2: 'safe'} # account for edge cases if predicted[0] != 2 and abs(out[0][2] - out[0][predicted[0]]) > 0.20: img = Image.new('RGB', image.size, color = (0, 255, 255)) print("\033[93m" + "safe" + "\033[0m") else: print('\n\033[1;31m' + classes[predicted.item()] + '\033[0m' if predicted.item() != 2 else '\033[1;32m' + classes[predicted.item()] + '\033[0m\n') if __name__ == '__main__': eval() ``` Output Example: ![prediction](./output_example.png) <br> # Keras ```python import tensorflow as tf from PIL import Image import requests, os # download the model url = "https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/saved_model.pb" r = requests.get(url, allow_redirects=True) if not os.path.exists('tensorflow'): os.makedirs('tensorflow') open('tensorflow/saved_model.pb', 'wb').write(r.content) # download the variables url = "https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/variables/variables.data-00000-of-00001" r = requests.get(url, allow_redirects=True) if not os.path.exists('tensorflow/variables'): os.makedirs('tensorflow/variables') open('tensorflow/variables/variables.data-00000-of-00001', 'wb').write(r.content) url = "https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/variables/variables.index" r = requests.get(url, allow_redirects=True) open('tensorflow/variables/variables.index', 'wb').write(r.content) # load the model model = tf.saved_model.load('./tensorflow') image = Image.open('cat.jpg') image = image.resize((299, 299)) image = tf.convert_to_tensor(image) image = tf.expand_dims(image, 0) # run the model tensor = model(image) classes = ['nsfw_gore', 'nsfw_suggestive', 'safe'] prediction = classes[tf.argmax(tensor, 1)[0]] print('\033[1;32m' + prediction + '\033[0m' if prediction == 'safe' else '\033[1;33m' + prediction + '\033[0m') ``` Output Example: ![prediction](./output_example.png) <br> # Tensorflow.js ```bash npm i @tensorflow/tfjs-node ``` ```javascript const tf = require('@tensorflow/tfjs-node'); const fs = require('fs'); const { pipeline } = require('stream'); const { promisify } = require('util'); const download = async (url, path) => { // Taken from https://levelup.gitconnected.com/how-to-download-a-file-with-node-js-e2b88fe55409 const streamPipeline = promisify(pipeline); const response = await fetch(url); if (!response.ok) { throw new Error(`unexpected response ${response.statusText}`); } await streamPipeline(response.body, fs.createWriteStream(path)); }; async function run() { // download saved model and variables from https://huggingface.co/FredZhang7/google-safesearch-mini/tree/main/tensorflow if (!fs.existsSync('tensorflow')) { fs.mkdirSync('tensorflow'); await download('https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/saved_model.pb', 'tensorflow/saved_model.pb'); fs.mkdirSync('tensorflow/variables'); await download('https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/variables/variables.data-00000-of-00001', 'tensorflow/variables/variables.data-00000-of-00001'); await download('https://huggingface.co/FredZhang7/google-safesearch-mini/resolve/main/tensorflow/variables/variables.index', 'tensorflow/variables/variables.index'); } // load model and image const model = await tf.node.loadSavedModel('./tensorflow/'); const image = tf.node.decodeImage(fs.readFileSync('cat.jpg'), 3); // predict const input = tf.expandDims(image, 0); const tensor = model.predict(input); const max = tensor.argMax(1); const classes = ['nsfw_gore', 'nsfw_suggestive', 'safe']; console.log('\x1b[32m%s\x1b[0m', classes[max.dataSync()[0]], '\n'); } run(); ``` Output Example: ![tfjs output](./tfjs_output.png) <br> # Bias and Limitations Each person's definition of "safe" is different. The images in the dataset are classified as safe/unsafe by Google SafeSearch, Reddit, and Imgur. It is possible that some images may be safe to others but not to you. Also, when a model encounters an image with things it hasn't seen, it likely makes wrong predictions. This is why in the PyTorch example, I accounted for the "edge cases" before printing the predictions.
gokuls/mobilebert_sa_GLUE_Experiment_mnli_256
gokuls
2023-01-26T03:03:25Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-25T16:30:13Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_mnli_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue config: mnli split: validation_matched args: mnli metrics: - name: Accuracy type: accuracy value: 0.6030309194467046 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_mnli_256 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.8790 - Accuracy: 0.6030 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0008 | 1.0 | 3068 | 0.9490 | 0.5405 | | 0.9205 | 2.0 | 6136 | 0.9166 | 0.5675 | | 0.8928 | 3.0 | 9204 | 0.9022 | 0.5786 | | 0.872 | 4.0 | 12272 | 0.8843 | 0.5967 | | 0.8531 | 5.0 | 15340 | 0.8807 | 0.5959 | | 0.8359 | 6.0 | 18408 | 0.8763 | 0.5999 | | 0.8197 | 7.0 | 21476 | 0.8815 | 0.6009 | | 0.8028 | 8.0 | 24544 | 0.9012 | 0.5934 | | 0.786 | 9.0 | 27612 | 0.8633 | 0.6191 | | 0.769 | 10.0 | 30680 | 0.8734 | 0.6098 | | 0.752 | 11.0 | 33748 | 0.8682 | 0.6220 | | 0.736 | 12.0 | 36816 | 0.8741 | 0.6175 | | 0.7204 | 13.0 | 39884 | 0.8994 | 0.6048 | | 0.7038 | 14.0 | 42952 | 0.8940 | 0.6079 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
starcel/asr-conformer-kdialectspeech
starcel
2023-01-26T02:54:57Z
2
1
speechbrain
[ "speechbrain", "automatic-speech-recognition", "ko", "license:apache-2.0", "region:us" ]
automatic-speech-recognition
2023-01-26T01:32:28Z
--- license: apache-2.0 language: - ko metrics: - cer - wer library_name: speechbrain pipeline_tag: automatic-speech-recognition --- 이 모델은 2022년 인공지능 학습용 데이터 구축 사업 <18 중노년층 방언 데이터>의 데이터 셋을 사용하여 Conformer ASR 모델을 훈련한 모델 파일입니다.
Tristan/gpt2-summarization_reward_model
Tristan
2023-01-26T02:47:58Z
0
0
null
[ "pytorch", "generated_from_trainer", "license:mit", "region:us" ]
null
2023-01-23T20:45:09Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: gpt2-summarization_reward_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-summarization_reward_model This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7473 - Accuracy: 0.6006 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 16 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6421 | 1.0 | 1451 | 0.6815 | 0.6036 | | 0.5893 | 2.0 | 2902 | 0.6764 | 0.6048 | | 0.5488 | 3.0 | 4353 | 0.7074 | 0.6012 | | 0.5187 | 4.0 | 5804 | 0.7254 | 0.6009 | | 0.5034 | 5.0 | 7255 | 0.7473 | 0.6006 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2
leenw2/ppo-LunarLander-nw
leenw2
2023-01-26T02:31:22Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-26T02:30:28Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 257.76 +/- 24.01 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
facebook/opt-iml-max-1.3b
facebook
2023-01-26T01:31:38Z
9,572
44
transformers
[ "transformers", "pytorch", "opt", "text-generation", "arxiv:2212.12017", "license:other", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-01-26T00:08:30Z
--- inference: false tags: - text-generation - opt license: other commercial: false --- # OPT-IML ## Model Description [OPT-IML (OPT + Instruction Meta-Learning)](https://arxiv.org/abs/2212.12017) is a set of instruction-tuned versions of OPT, on a collection of ~2000 NLP tasks gathered from 8 NLP benchmarks, called OPT-IML Bench. We provide two model versions: * OPT-IML trained on 1500 tasks with several tasks held-out for purposes of downstream evaluation, and * OPT-IML-Max trained on all ~2000 tasks ### How to use You can use this model directly with a pipeline for text generation. ```python >>> from transformers import pipeline >>> generator = pipeline('text-generation', model="facebook/opt-iml-max-1.3b") >>> generator("What is the capital of USA?") ``` ### Limitations and bias While OPT-IML models outperform baseline OPT on an extensive set of evaluations, nevertheless, they are susceptible to the various risks associated with using large language models relating to factual correctness, generation of toxic language and enforcing stereotypes. While we release our OPT-IML models to proliferate future work on instruction-tuning and to improve the availability of large instruction-tuned causal LMs, the use of these models should be accompanied with responsible best practices. ## Training data OPT-IML models are trained on OPT-IML Bench, a large benchmark for Instruction MetaLearning (IML) of 2000 NLP tasks consolidated into task categories from 8 existing benchmarks include Super-NaturalInstructions, FLAN, PromptSource, etc. ## Training procedure The texts are tokenized using the GPT2 byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50272. The inputs are sequences of 2048 consecutive tokens. The 30B model was fine-tuned on 64 40GB A100 GPUs. During fine-tuning, models saw approximately 2 billion tokens, which is only 0.6% of the pre-training budget of OPT. ### BibTeX entry and citation info ```bibtex @misc{iyer2022opt, title={OPT-IML: Scaling Language Model Instruction Meta Learning through the Lens of Generalization}, author={Iyer, Srinivasan and Lin, Xi Victoria and Pasunuru, Ramakanth and Mihaylov, Todor and Simig, D{\'a}niel and Yu, Ping and Shuster, Kurt and Wang, Tianlu and Liu, Qing and Koura, Punit Singh and others}, year={2022}, eprint={2212.12017}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
OpenAssistant/reward-model-deberta-v3-base
OpenAssistant
2023-01-26T01:07:57Z
711
10
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "reward-model", "reward_model", "RLHF", "en", "dataset:openai/webgpt_comparisons", "dataset:openai/summarize_from_feedback", "dataset:Dahoas/instruct-synthetic-prompt-responses", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-15T11:06:39Z
--- license: mit datasets: - openai/webgpt_comparisons - openai/summarize_from_feedback - Dahoas/instruct-synthetic-prompt-responses language: - en metrics: - accuracy tags: - reward-model - reward_model - RLHF --- # Reward model trained from human feedback Reward model (RM) trained to predict which generated answer is better judged by a human, given a question. RM are useful in these domain: - QA model evaluation - serves as reward score in RLHF All models are train on these dataset with a same split seed across datasets (if validation split wasn't available) - [webgpt_comparisons](https://huggingface.co/datasets/openai/webgpt_comparisons) - [summarize_from_feedback](https://huggingface.co/datasets/openai/summarize_from_feedback) - [synthetic-instruct-gptj-pairwise](https://huggingface.co/datasets/Dahoas/synthetic-instruct-gptj-pairwise) # How to use ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer reward_name = "OpenAssistant/reward-model-deberta-v3-base" rank_model, tokenizer = AutoModelForSequenceClassification.from_pretrained(reward_name), AutoTokenizer.from_pretrained(reward_name) question, answer = "Explain nuclear fusion like I am five", "Nuclear fusion is the process by which two or more protons and neutrons combine to form a single nucleus. It is a very important process in the universe, as it is the source of energy for stars and galaxies. Nuclear fusion is also a key process in the production of energy for nuclear power plants." inputs = tokenizer(question, answer, return_tensors='pt') score = rank_model(**inputs).logits[0].cpu().detach() print(score) ``` # Performance Validation split accuracy | Model | [WebGPT](https://huggingface.co/datasets/openai/webgpt_comparisons) | [Summary](https://huggingface.co/datasets/openai/summarize_from_feedback) | [SytheticGPT](https://huggingface.co/datasets/Dahoas/synthetic-instruct-gptj-pairwise) | |---|---|---|---| | [electra-large-discriminator](https://huggingface.co/OpenAssistant/reward-model-electra-large-discriminator) | 59.30 | 68.66 | 99.85 | | [deberta-v3-large](https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large) | 61.13 | 72.23 | 99.94 | | [deberta-v3-base](https://huggingface.co/OpenAssistant/reward-model-deberta-v3-base) | 59.07 | 66.84 | 99.85 | Its likely SytheticGPT has somekind of surface pattern on the choosen-rejected pair which makes it trivial to differentiate between better the answer.
IkariDev/Xynaptix
IkariDev
2023-01-26T00:41:49Z
0
3
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-01-12T14:11:57Z
--- license: creativeml-openrail-m ---
mrm8488/xlm-roberta-large-finetuned-HC3-mix
mrm8488
2023-01-26T00:38:21Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "doi:10.57967/hf/0305", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-25T14:04:10Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-large-finetuned-HC3-mix results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-finetuned-HC3-mix This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6998 - F1: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:------:|:---------------:|:---:| | 0.6506 | 1.0 | 35824 | 0.6998 | 0.0 | | 0.6481 | 2.0 | 71648 | 0.7662 | 0.0 | | 0.6391 | 3.0 | 107472 | 0.7492 | 0.0 | | 0.6396 | 4.0 | 143296 | 0.7358 | 0.0 | | 0.6366 | 5.0 | 179120 | 0.7259 | 0.0 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
Luis988/Generador
Luis988
2023-01-26T00:03:07Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-01-26T00:03:07Z
--- license: creativeml-openrail-m ---
cdefghijkl/anime-m-series-vol1
cdefghijkl
2023-01-25T23:39:52Z
0
3
null
[ "text-to-image", "stable-diffusion", "en", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-01-13T17:48:10Z
--- license: creativeml-openrail-m language: - en tags: - text-to-image - stable-diffusion --- A collection of anime models merged by me. Will update info and examples later.
gustavecortal/roberta_emo
gustavecortal
2023-01-25T23:16:31Z
16
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-22T19:33:20Z
--- license: mit tags: - generated_from_trainer model-index: - name: roberta_emo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta_emo This model is a fine-tuned version of [ibm/ColD-Fusion](https://huggingface.co/ibm/ColD-Fusion) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1 - Datasets 2.8.0 - Tokenizers 0.13.2 ## Model Recycling [Evaluation on 36 datasets](https://ibm.github.io/model-recycling/model_gain_chart?avg=2.24&mnli_lp=nan&20_newsgroup=0.54&ag_news=0.46&amazon_reviews_multi=-0.50&anli=1.81&boolq=2.93&cb=21.52&cola=-0.12&copa=22.30&dbpedia=0.20&esnli=-0.30&financial_phrasebank=0.99&imdb=-0.12&isear=0.54&mnli=-0.16&mrpc=0.37&multirc=2.85&poem_sentiment=4.52&qnli=0.47&qqp=0.24&rotten_tomatoes=2.95&rte=10.99&sst2=1.64&sst_5bins=0.79&stsb=1.59&trec_coarse=0.09&trec_fine=3.44&tweet_ev_emoji=-0.31&tweet_ev_emotion=0.65&tweet_ev_hate=-0.40&tweet_ev_irony=4.08&tweet_ev_offensive=2.08&tweet_ev_sentiment=-0.16&wic=3.02&wnli=-8.31&wsc=0.19&yahoo_answers=-0.14&model_name=gustavecortal%2Froberta_emo&base_name=roberta-base) using gustavecortal/roberta_emo as a base model yields average score of 78.47 in comparison to 76.22 by roberta-base. The model is ranked 2nd among all tested models for the roberta-base architecture as of 18/01/2023 Results: | 20_newsgroup | ag_news | amazon_reviews_multi | anli | boolq | cb | cola | copa | dbpedia | esnli | financial_phrasebank | imdb | isear | mnli | mrpc | multirc | poem_sentiment | qnli | qqp | rotten_tomatoes | rte | sst2 | sst_5bins | stsb | trec_coarse | trec_fine | tweet_ev_emoji | tweet_ev_emotion | tweet_ev_hate | tweet_ev_irony | tweet_ev_offensive | tweet_ev_sentiment | wic | wnli | wsc | yahoo_answers | |---------------:|----------:|-----------------------:|--------:|--------:|--------:|--------:|-------:|----------:|--------:|-----------------------:|-------:|--------:|--------:|--------:|----------:|-----------------:|--------:|--------:|------------------:|--------:|--------:|------------:|--------:|--------------:|------------:|-----------------:|-------------------:|----------------:|-----------------:|---------------------:|---------------------:|--------:|--------:|--------:|----------------:| | 85.8205 | 90.2333 | 66.08 | 52.1563 | 81.6208 | 89.2857 | 83.4132 | 71 | 77.5 | 90.6963 | 86.1 | 93.776 | 73.0117 | 86.8186 | 88.2353 | 64.0677 | 88.4615 | 92.8794 | 90.9523 | 91.3696 | 83.3935 | 95.7569 | 57.4661 | 91.5106 | 97.2 | 91.2 | 45.994 | 82.4771 | 52.4916 | 75.6378 | 86.6279 | 70.8727 | 68.4953 | 46.4789 | 63.4615 | 72.2667 | For more information, see: [Model Recycling](https://ibm.github.io/model-recycling/)
Periramm/q-taxi
Periramm
2023-01-25T22:57:13Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-25T22:57:04Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Periramm/q-taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Periramm/q-frozlake
Periramm
2023-01-25T22:54:51Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-25T22:54:43Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-frozlake results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Periramm/q-frozlake", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
andyleow/q-Taxi-v3
andyleow
2023-01-25T22:53:25Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-01-25T22:53:23Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.38 +/- 2.85 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="andyleow/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
gokuls/mobilebert_sa_GLUE_Experiment_sst2_128
gokuls
2023-01-25T22:07:13Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-25T21:21:54Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_sst2_128 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8004587155963303 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_sst2_128 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4330 - Accuracy: 0.8005 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5124 | 1.0 | 527 | 0.4330 | 0.8005 | | 0.2842 | 2.0 | 1054 | 0.4711 | 0.8028 | | 0.2267 | 3.0 | 1581 | 0.4593 | 0.7982 | | 0.2025 | 4.0 | 2108 | 0.7141 | 0.7856 | | 0.1849 | 5.0 | 2635 | 0.4771 | 0.7982 | | 0.1754 | 6.0 | 3162 | 0.6028 | 0.7901 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
sd-concepts-library/geggin21
sd-concepts-library
2023-01-25T22:06:22Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-01-25T22:06:18Z
--- license: mit --- ### Geggin21 on Stable Diffusion This is the `<geggin>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<geggin> 0](https://huggingface.co/sd-concepts-library/geggin21/resolve/main/concept_images/2.jpeg) ![<geggin> 1](https://huggingface.co/sd-concepts-library/geggin21/resolve/main/concept_images/9.jpeg) ![<geggin> 2](https://huggingface.co/sd-concepts-library/geggin21/resolve/main/concept_images/0.jpeg) ![<geggin> 3](https://huggingface.co/sd-concepts-library/geggin21/resolve/main/concept_images/6.jpeg) ![<geggin> 4](https://huggingface.co/sd-concepts-library/geggin21/resolve/main/concept_images/5.jpeg) ![<geggin> 5](https://huggingface.co/sd-concepts-library/geggin21/resolve/main/concept_images/3.jpeg) ![<geggin> 6](https://huggingface.co/sd-concepts-library/geggin21/resolve/main/concept_images/4.jpeg) ![<geggin> 7](https://huggingface.co/sd-concepts-library/geggin21/resolve/main/concept_images/7.jpeg) ![<geggin> 8](https://huggingface.co/sd-concepts-library/geggin21/resolve/main/concept_images/8.jpeg) ![<geggin> 9](https://huggingface.co/sd-concepts-library/geggin21/resolve/main/concept_images/1.jpeg)
ATSiem/sd-class-butterflies-32
ATSiem
2023-01-25T22:04:56Z
0
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-01-25T22:04:28Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('ATSiem/sd-class-butterflies-32') image = pipeline().images[0] image ```
JYC333/Reinforce-CartPole-v1
JYC333
2023-01-25T21:31:15Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-25T21:10:03Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 1000.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
gokuls/mobilebert_sa_GLUE_Experiment_rte_128
gokuls
2023-01-25T21:21:13Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-25T21:18:02Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_rte_128 results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue config: rte split: validation args: rte metrics: - name: Accuracy type: accuracy value: 0.5270758122743683 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_rte_128 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6926 - Accuracy: 0.5271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6935 | 1.0 | 20 | 0.6926 | 0.5271 | | 0.6934 | 2.0 | 40 | 0.6930 | 0.5271 | | 0.6931 | 3.0 | 60 | 0.6932 | 0.4982 | | 0.6932 | 4.0 | 80 | 0.6929 | 0.5343 | | 0.6929 | 5.0 | 100 | 0.6945 | 0.4729 | | 0.6921 | 6.0 | 120 | 0.6929 | 0.5199 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
huggingtweets/garyvee-weseleybeats-wise_chimp
huggingtweets
2023-01-25T21:13:55Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-01-25T20:57:04Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1346208413596921864/fGYV6EpP_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1493524673962852353/qRxbC9Xq_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1617635400624791571/D1GI8pze_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Wise Chimp & Gary Vaynerchuk & WeseleyBeats</div> <div style="text-align: center; font-size: 14px;">@garyvee-weseleybeats-wise_chimp</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Wise Chimp & Gary Vaynerchuk & WeseleyBeats. | Data | Wise Chimp | Gary Vaynerchuk | WeseleyBeats | | --- | --- | --- | --- | | Tweets downloaded | 3235 | 3248 | 2480 | | Retweets | 20 | 599 | 157 | | Short tweets | 42 | 899 | 385 | | Tweets kept | 3173 | 1750 | 1938 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/tzaq6vpn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @garyvee-weseleybeats-wise_chimp's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/owdcta9r) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/owdcta9r/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/garyvee-weseleybeats-wise_chimp') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
emadsami/lk4
emadsami
2023-01-25T21:00:01Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-01-25T21:00:01Z
--- license: bigscience-openrail-m ---
michal512/ppo-Huggy
michal512
2023-01-25T20:47:34Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-01-25T20:47:27Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: michal512/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
braedennorris/autotrain-enterprise_v_consumer-3052187265
braedennorris
2023-01-25T20:36:45Z
3
0
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "autotrain", "en", "dataset:braedennorris/autotrain-data-enterprise_v_consumer", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-25T03:19:47Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - braedennorris/autotrain-data-enterprise_v_consumer co2_eq_emissions: emissions: 1.1718652256627062 --- Enterprise = 1 Consumer = 0 # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 3052187265 - CO2 Emissions (in grams): 1.1719 ## Validation Metrics - Loss: 0.428 - Accuracy: 0.824 - Precision: 0.805 - Recall: 0.896 - AUC: 0.891 - F1: 0.848 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/braedennorris/autotrain-enterprise_v_consumer-3052187265 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("braedennorris/autotrain-enterprise_v_consumer-3052187265", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("braedennorris/autotrain-enterprise_v_consumer-3052187265", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
gmojko/a2c-PandaReachDense-v2_v2
gmojko
2023-01-25T20:30:54Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-25T20:22:47Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -4.96 +/- 1.86 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
gmojko/a2c-PandaReachDense-v2
gmojko
2023-01-25T20:26:15Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-25T16:46:28Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -4.68 +/- 1.22 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
bonadio/Reinforce-PixelCopter-v1
bonadio
2023-01-25T19:44:01Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-25T15:38:54Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 50.90 +/- 42.58 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
gnieto/DRL_unit5_snowball_target
gnieto
2023-01-25T19:31:35Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-01-25T19:31:29Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: gnieto/DRL_unit5_snowball_target 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
gnieto/DRL_Unit5_Pyramids
gnieto
2023-01-25T19:30:41Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-01-25T19:29:50Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: gnieto/DRL_Unit5_Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
jed351/bart-zh-hk-wiki
jed351
2023-01-25T19:27:08Z
8
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "cantonese", "fill-mask", "yue", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-01-23T12:26:03Z
--- language: - yue tags: - bart - cantonese - fill-mask license: other --- # bart-base-cantonese This is the Cantonese model of BART base. It is based on another model created by: https://huggingface.co/Ayaka/bart-base-cantonese ## Usage ```python from transformers import BertTokenizer, BartForConditionalGeneration, Text2TextGenerationPipeline tokenizer = BertTokenizer.from_pretrained('jed351/bart-zh-hk-wiki') model = BartForConditionalGeneration.from_pretrained('jed351/bart-zh-hk-wiki') text2text_generator = Text2TextGenerationPipeline(model, tokenizer) output = text2text_generator('聽日就要返香港,我激動到[MASK]唔着', max_length=50, do_sample=False) print(output[0]['generated_text'].replace(' ', '')) ``` **Note**: Please use the `BertTokenizer` for the model vocabulary. DO NOT use the original `BartTokenizer`.
EMBO/sd-panelization-v2
EMBO
2023-01-25T19:26:15Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:source_data_nlp", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-10T10:27:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - source_data_nlp metrics: - precision - recall - f1 model-index: - name: sd-panelization-v2 results: - task: name: Token Classification type: token-classification dataset: name: source_data_nlp type: source_data_nlp args: PANELIZATION metrics: - name: Precision type: precision value: 0.9134245120169964 - name: Recall type: recall value: 0.9494824016563147 - name: F1 type: f1 value: 0.9311044937736871 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sd-panelization-v2 This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-large](https://huggingface.co/michiyasunaga/BioLinkBERT-large) on the source_data_nlp dataset. It achieves the following results on the evaluation set: - Loss: 0.0050 - Accuracy Score: 0.9982 - Precision: 0.9134 - Recall: 0.9495 - F1: 0.9311 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 256 - seed: 42 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:| | 0.0048 | 1.0 | 431 | 0.0050 | 0.9982 | 0.9134 | 0.9495 | 0.9311 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0a0+bfe5ad2 - Datasets 1.17.0 - Tokenizers 0.12.1
michal512/ppo-LunarLander-v2
michal512
2023-01-25T19:05:01Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-25T18:55:52Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 266.40 +/- 22.88 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
kadirnar/osnet_x0_5_imagenet
kadirnar
2023-01-25T18:59:51Z
0
0
null
[ "object-detection", "computer-vision", "sort", "tracker", "osnet", "arxiv:1905.00953", "arxiv:1910.06827", "arxiv:1910.10093", "license:gpl-3.0", "region:us" ]
object-detection
2023-01-25T18:58:11Z
--- license: gpl-3.0 tags: - object-detection - computer-vision - sort - tracker - osnet --- <div align="center"> <h1> Torchreid-Pip: Packaged version of Torchreid </h1> <h4> <img width="700" alt="teaser" src="https://raw.githubusercontent.com/goksenin-uav/torchreid-pip/main/doc/logo.png"> </h4> </div> This repo is a packaged version of the [Torchreid](https://github.com/KaiyangZhou/deep-person-reid) algorithm. ### Installation ``` pip install torchreid ``` ### Model Description [Learning Generalisable Omni-Scale Representations for Person Re-Identification](https://arxiv.org/abs/1905.00953): [Omni-Scale Feature Learning for Person Re-Identification](https://arxiv.org/abs/1910.06827) [Torchreid: A Library for Deep Learning Person Re-Identification in Pytorch](https://arxiv.org/abs/1910.10093) ### Overview ##### 1. Import ``torchreid`` ```python import torchreid ``` ##### 2. Load data manager ```python datamanager = torchreid.data.ImageDataManager( root="reid-data", sources="market1501", targets="market1501", height=256, width=128, batch_size_train=32, batch_size_test=100, transforms=["random_flip", "random_crop"] ) ``` ##### 3 Build model, optimizer and lr_scheduler ```python model = torchreid.models.build_model( name="resnet50", num_classes=datamanager.num_train_pids, loss="softmax", pretrained=True ) model = model.cuda() optimizer = torchreid.optim.build_optimizer( model, optim="adam", lr=0.0003 ) scheduler = torchreid.optim.build_lr_scheduler( optimizer, lr_scheduler="single_step", stepsize=20 ) ``` ##### 4. Build engine ```python engine = torchreid.engine.ImageSoftmaxEngine( datamanager, model, optimizer=optimizer, scheduler=scheduler, label_smooth=True ) ``` ##### 5. Run training and test ```python engine.run( save_dir="log/resnet50", max_epoch=60, eval_freq=10, print_freq=10, test_only=False ) ``` Citation --------- If you use this code or the models in your research, please give credit to the following papers: ```bibtex @article{torchreid, title={Torchreid: A Library for Deep Learning Person Re-Identification in Pytorch}, author={Zhou, Kaiyang and Xiang, Tao}, journal={arXiv preprint arXiv:1910.10093}, year={2019} } @inproceedings{zhou2019osnet, title={Omni-Scale Feature Learning for Person Re-Identification}, author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao}, booktitle={ICCV}, year={2019} } @article{zhou2021osnet, title={Learning Generalisable Omni-Scale Representations for Person Re-Identification}, author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao}, journal={TPAMI}, year={2021} } ```
kadirnar/osnet_x1_0_imagenet
kadirnar
2023-01-25T18:59:45Z
0
1
null
[ "object-detection", "computer-vision", "sort", "tracker", "osnet", "arxiv:1905.00953", "arxiv:1910.06827", "arxiv:1910.10093", "license:gpl-3.0", "region:us" ]
object-detection
2023-01-25T18:58:38Z
--- license: gpl-3.0 tags: - object-detection - computer-vision - sort - tracker - osnet --- <div align="center"> <h1> Torchreid-Pip: Packaged version of Torchreid </h1> <h4> <img width="700" alt="teaser" src="https://raw.githubusercontent.com/goksenin-uav/torchreid-pip/main/doc/logo.png"> </h4> </div> This repo is a packaged version of the [Torchreid](https://github.com/KaiyangZhou/deep-person-reid) algorithm. ### Installation ``` pip install torchreid ``` ### Model Description [Learning Generalisable Omni-Scale Representations for Person Re-Identification](https://arxiv.org/abs/1905.00953): [Omni-Scale Feature Learning for Person Re-Identification](https://arxiv.org/abs/1910.06827) [Torchreid: A Library for Deep Learning Person Re-Identification in Pytorch](https://arxiv.org/abs/1910.10093) ### Overview ##### 1. Import ``torchreid`` ```python import torchreid ``` ##### 2. Load data manager ```python datamanager = torchreid.data.ImageDataManager( root="reid-data", sources="market1501", targets="market1501", height=256, width=128, batch_size_train=32, batch_size_test=100, transforms=["random_flip", "random_crop"] ) ``` ##### 3 Build model, optimizer and lr_scheduler ```python model = torchreid.models.build_model( name="resnet50", num_classes=datamanager.num_train_pids, loss="softmax", pretrained=True ) model = model.cuda() optimizer = torchreid.optim.build_optimizer( model, optim="adam", lr=0.0003 ) scheduler = torchreid.optim.build_lr_scheduler( optimizer, lr_scheduler="single_step", stepsize=20 ) ``` ##### 4. Build engine ```python engine = torchreid.engine.ImageSoftmaxEngine( datamanager, model, optimizer=optimizer, scheduler=scheduler, label_smooth=True ) ``` ##### 5. Run training and test ```python engine.run( save_dir="log/resnet50", max_epoch=60, eval_freq=10, print_freq=10, test_only=False ) ``` Citation --------- If you use this code or the models in your research, please give credit to the following papers: ```bibtex @article{torchreid, title={Torchreid: A Library for Deep Learning Person Re-Identification in Pytorch}, author={Zhou, Kaiyang and Xiang, Tao}, journal={arXiv preprint arXiv:1910.10093}, year={2019} } @inproceedings{zhou2019osnet, title={Omni-Scale Feature Learning for Person Re-Identification}, author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao}, booktitle={ICCV}, year={2019} } @article{zhou2021osnet, title={Learning Generalisable Omni-Scale Representations for Person Re-Identification}, author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao}, journal={TPAMI}, year={2021} } ```
sd-concepts-library/geggin
sd-concepts-library
2023-01-25T18:59:03Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-01-25T18:59:00Z
--- license: mit --- ### Geggin on Stable Diffusion This is the `<geggin>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<geggin> 0](https://huggingface.co/sd-concepts-library/geggin/resolve/main/concept_images/2.jpeg) ![<geggin> 1](https://huggingface.co/sd-concepts-library/geggin/resolve/main/concept_images/9.jpeg) ![<geggin> 2](https://huggingface.co/sd-concepts-library/geggin/resolve/main/concept_images/0.jpeg) ![<geggin> 3](https://huggingface.co/sd-concepts-library/geggin/resolve/main/concept_images/6.jpeg) ![<geggin> 4](https://huggingface.co/sd-concepts-library/geggin/resolve/main/concept_images/5.jpeg) ![<geggin> 5](https://huggingface.co/sd-concepts-library/geggin/resolve/main/concept_images/3.jpeg) ![<geggin> 6](https://huggingface.co/sd-concepts-library/geggin/resolve/main/concept_images/4.jpeg) ![<geggin> 7](https://huggingface.co/sd-concepts-library/geggin/resolve/main/concept_images/7.jpeg) ![<geggin> 8](https://huggingface.co/sd-concepts-library/geggin/resolve/main/concept_images/8.jpeg) ![<geggin> 9](https://huggingface.co/sd-concepts-library/geggin/resolve/main/concept_images/1.jpeg)
Brhnglc/ppo-SnowballTarget2
Brhnglc
2023-01-25T18:53:29Z
13
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-01-25T18:53:23Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: Brhnglc/ppo-SnowballTarget2 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
kadirnar/strongsort
kadirnar
2023-01-25T18:49:17Z
0
0
null
[ "object-detection", "computer-vision", "sort", "tracker", "strongsort", "arxiv:2202.13514", "license:gpl-3.0", "region:us" ]
object-detection
2023-01-25T18:49:08Z
--- license: gpl-3.0 tags: - object-detection - computer-vision - sort - tracker - strongsort --- ### Model Description [StrongSort](https://arxiv.org/abs/2202.13514): Make DeepSORT Great Again <img src="https://raw.githubusercontent.com/dyhBUPT/StrongSORT/master/assets/MOTA-IDF1-HOTA.png" width="1000"/> ### Installation ``` pip install strongsort ``` ### Tracker ```python from strong_sort import StrongSORT tracker = StrongSORT(model_weights='model.pt', device='cuda') pred = model(img) for i, det in enumerate(pred): det[i] = tracker[i].update(detection, im0s) ``` ### BibTeX Entry and Citation Info ``` @article{du2022strongsort, title={Strongsort: Make deepsort great again}, author={Du, Yunhao and Song, Yang and Yang, Bo and Zhao, Yanyun}, journal={arXiv preprint arXiv:2202.13514}, year={2022} } ```
emreisik/news
emreisik
2023-01-25T18:48:04Z
0
0
null
[ "region:us" ]
null
2023-01-25T18:47:42Z
This is the reporsitory of Turkish fake news dataset which consists of Zaytung posts and Hurriyet news articles. Code folder contains the web scrapper python files. Raw folder contains txt files downloaded from sources. Clean folder contains txt files in lowercase, punctuation and numbers removed.
JoshuaRubin/bert-base-uncased-finetuned-math_punctuation-25-01-two_linear_layers-frozen_bert
JoshuaRubin
2023-01-25T18:11:17Z
1
0
transformers
[ "transformers", "pytorch", "tensorboard", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-01-25T13:08:35Z
--- tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-math_punctuation-25-01-two_linear_layers-frozen_bert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-math_punctuation-25-01-two_linear_layers-frozen_bert This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2150 - Micro f1: 0.8910 - Macro f1: 0.2672 - Weighted f1: 0.8495 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Micro f1 | Macro f1 | Weighted f1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------:| | 0.193 | 0.62 | 500 | 0.2146 | 0.8937 | 0.2360 | 0.8435 | | 0.1936 | 1.23 | 1000 | 0.2130 | 0.8937 | 0.2360 | 0.8435 | | 0.1924 | 1.85 | 1500 | 0.2119 | 0.8937 | 0.2361 | 0.8435 | | 0.1911 | 2.47 | 2000 | 0.2128 | 0.8936 | 0.2369 | 0.8437 | | 0.1909 | 3.09 | 2500 | 0.2114 | 0.8937 | 0.2369 | 0.8437 | | 0.1904 | 3.7 | 3000 | 0.2137 | 0.8935 | 0.2407 | 0.8445 | | 0.1935 | 4.32 | 3500 | 0.2138 | 0.8934 | 0.2469 | 0.8458 | | 0.1874 | 4.94 | 4000 | 0.2118 | 0.8929 | 0.2561 | 0.8479 | | 0.1908 | 5.56 | 4500 | 0.2134 | 0.8925 | 0.2588 | 0.8483 | | 0.1877 | 6.17 | 5000 | 0.2135 | 0.8918 | 0.2628 | 0.8490 | | 0.1881 | 6.79 | 5500 | 0.2133 | 0.8931 | 0.2554 | 0.8478 | | 0.1902 | 7.41 | 6000 | 0.2137 | 0.8922 | 0.2603 | 0.8485 | | 0.1883 | 8.02 | 6500 | 0.2155 | 0.8914 | 0.2655 | 0.8493 | | 0.19 | 8.64 | 7000 | 0.2154 | 0.8914 | 0.2647 | 0.8490 | | 0.1881 | 9.26 | 7500 | 0.2149 | 0.8915 | 0.2645 | 0.8492 | | 0.1876 | 9.88 | 8000 | 0.2141 | 0.8911 | 0.2671 | 0.8496 | | 0.1879 | 10.49 | 8500 | 0.2155 | 0.8897 | 0.2722 | 0.8501 | | 0.1897 | 11.11 | 9000 | 0.2156 | 0.8910 | 0.2670 | 0.8494 | | 0.1883 | 11.73 | 9500 | 0.2150 | 0.8910 | 0.2672 | 0.8495 | ### Framework versions - Transformers 4.25.1 - Pytorch 2.0.0.dev20230111 - Datasets 2.8.0 - Tokenizers 0.13.2
twigs/bigbird-pegasus-large
twigs
2023-01-25T16:54:17Z
7
2
transformers
[ "transformers", "pytorch", "bigbird_pegasus", "text2text-generation", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-23T15:11:37Z
--- language: - en --- BigBirdPegasus weights before finetuning as per [this](https://github.com/google-research/bigbird) repo. Converted to PyTorch as per [this](https://github.com/huggingface/transformers/blob/v4.25.1/src/transformers/models/bigbird_pegasus/convert_bigbird_pegasus_tf_to_pytorch.py) script.
kadirnar/ByteTracker
kadirnar
2023-01-25T16:50:36Z
0
1
null
[ "object-detection", "computer-vision", "sort", "tracker", "bytetracker", "arxiv:2110.06864", "license:mit", "region:us" ]
object-detection
2023-01-25T16:40:01Z
--- license: mit tags: - object-detection - computer-vision - sort - tracker - bytetracker --- ### Model Description [ByteTrack](https://arxiv.org/abs/2110.06864): Multi-Object Tracking by Associating Every Detection Box <img src="https://raw.githubusercontent.com/ifzhang/ByteTrack/main/assets/sota.png" width="500"/> ### Installation ``` pip install bytetracker ``` ### Tracker ```python from bytetracker import BYTETracker tracker = BYTETracker(args) for image in images: dets = detector(image) online_targets = tracker.update(dets) ``` ### BibTeX Entry and Citation Info ``` @article{zhang2022bytetrack, title={ByteTrack: Multi-Object Tracking by Associating Every Detection Box}, author={Zhang, Yifu and Sun, Peize and Jiang, Yi and Yu, Dongdong and Weng, Fucheng and Yuan, Zehuan and Luo, Ping and Liu, Wenyu and Wang, Xinggang}, booktitle={Proceedings of the European Conference on Computer Vision (ECCV)}, year={2022} } ```
Constien/NewModel
Constien
2023-01-25T16:49:37Z
3
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-25T16:43:30Z
--- tags: - generated_from_trainer model-index: - name: NewModel results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NewModel This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.0+cu116 - Tokenizers 0.13.2
segmentation-fault/stable-diffusion-something-sfw
segmentation-fault
2023-01-25T16:47:40Z
0
0
null
[ "art", "anime", "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
null
2023-01-25T16:24:39Z
--- license: creativeml-openrail-m tags: - art - anime - stable-diffusion ---
johnt/bert_ft_sentence
johnt
2023-01-25T16:47:38Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-01-25T16:45:31Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2813 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 281, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
gokuls/mobilebert_sa_GLUE_Experiment_wnli_256
gokuls
2023-01-25T16:27:28Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-25T16:26:05Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_wnli_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue config: wnli split: validation args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_wnli_256 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6899 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6942 | 1.0 | 5 | 0.6899 | 0.5634 | | 0.6935 | 2.0 | 10 | 0.6920 | 0.5634 | | 0.6933 | 3.0 | 15 | 0.6930 | 0.5634 | | 0.693 | 4.0 | 20 | 0.6921 | 0.5634 | | 0.693 | 5.0 | 25 | 0.6912 | 0.5634 | | 0.693 | 6.0 | 30 | 0.6909 | 0.5634 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
gokuls/mobilebert_sa_GLUE_Experiment_sst2_256
gokuls
2023-01-25T16:18:55Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-25T15:30:50Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_sst2_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.801605504587156 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_sst2_256 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4333 - Accuracy: 0.8016 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4969 | 1.0 | 527 | 0.4333 | 0.8016 | | 0.2781 | 2.0 | 1054 | 0.4999 | 0.7833 | | 0.2274 | 3.0 | 1581 | 0.4782 | 0.7924 | | 0.2 | 4.0 | 2108 | 0.5582 | 0.7936 | | 0.1835 | 5.0 | 2635 | 0.4967 | 0.7913 | | 0.1708 | 6.0 | 3162 | 0.5061 | 0.7856 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
kostasang/a2c-PandaReachDense-v2
kostasang
2023-01-25T16:02:36Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-25T14:26:31Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.77 +/- 0.58 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
LarryAIDraw/corneo_marin_kitagawa
LarryAIDraw
2023-01-25T15:38:34Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-01-25T15:38:00Z
--- license: creativeml-openrail-m --- https://civitai.com/models/5251/corneos-marin-kitagawa-ti-embedding
LarryAIDraw/corneo_covering_breasts_arms_crossed
LarryAIDraw
2023-01-25T15:36:44Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-01-25T15:36:17Z
--- license: creativeml-openrail-m --- https://civitai.com/models/5241/corneos-covering-breasts-ti-embed-arms-crossed-version
threite/distilbert-base-uncased-finetuned-imdb
threite
2023-01-25T15:32:43Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-01-25T15:08:41Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.6569 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7028 | 1.0 | 157 | 0.6567 | | 0.679 | 2.0 | 314 | 0.6515 | | 0.6692 | 3.0 | 471 | 0.6563 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.1 - Datasets 2.7.1 - Tokenizers 0.13.1
LarryAIDraw/corneo_covering_breasts_one_arm
LarryAIDraw
2023-01-25T15:32:30Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-01-25T15:31:13Z
--- license: creativeml-openrail-m --- https://civitai.com/models/5203/corneos-covering-breasts-ti-embed-one-arm-version
gokuls/mobilebert_sa_GLUE_Experiment_rte_256
gokuls
2023-01-25T15:30:08Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-25T15:26:28Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: mobilebert_sa_GLUE_Experiment_rte_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue config: rte split: validation args: rte metrics: - name: Accuracy type: accuracy value: 0.5270758122743683 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_rte_256 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6927 - Accuracy: 0.5271 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6937 | 1.0 | 20 | 0.6927 | 0.5271 | | 0.6936 | 2.0 | 40 | 0.6929 | 0.5307 | | 0.693 | 3.0 | 60 | 0.6930 | 0.5018 | | 0.693 | 4.0 | 80 | 0.6934 | 0.4874 | | 0.6927 | 5.0 | 100 | 0.6947 | 0.4585 | | 0.6909 | 6.0 | 120 | 0.6942 | 0.5126 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
UKP-SQuARE/Extractive_MetaQA
UKP-SQuARE
2023-01-25T15:26:05Z
4
0
transformers
[ "transformers", "pytorch", "bert", "arxiv:2112.01922", "endpoints_compatible", "region:us" ]
null
2023-01-25T15:19:38Z
datasets: - squad - newsqa - hotpot_qa - biu-nlp/qamr - search_qa - natural_questions - trivia_qa - duorc language: - en metrics: - squad --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> Checkpoint of MetaQA trained only on extractive QA datasets from MetaQA: Combining Expert Agents for Multi-Skill Question Answering (https://arxiv.org/abs/2112.01922) ## Evaluation Results ``` { "SQuAD": { "exact_match": 86.73139158576052, "f1": 92.65156746563402 }, "NewsQA": { "exact_match": 55.84045584045584, "f1": 71.73547617592037 }, "HotpotQA": { "exact_match": 64.8135593220339, "f1": 79.61023604916922 }, "SearchQA": { "exact_match": 75.04122497055359, "f1": 81.37280639135817 }, "NaturalQuestionsShort": { "exact_match": 69.50763477718915, "f1": 81.30374741690376 }, "TriviaQA-web": { "exact_match": 77.18396711202466, "f1": 81.52989853015538 }, "QAMR": { "exact_match": 72.07531203723292, "f1": 83.9068616637681 }, "DuoRC": { "exact_match": 39.35626573106552, "f1": 51.033295034422466 } } ```
gokuls/mobilebert_sa_GLUE_Experiment_qqp_256
gokuls
2023-01-25T15:25:59Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mobilebert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-25T06:47:19Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: mobilebert_sa_GLUE_Experiment_qqp_256 results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.7976007914914668 - name: F1 type: f1 value: 0.7297109826589595 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_qqp_256 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.4349 - Accuracy: 0.7976 - F1: 0.7297 - Combined Score: 0.7637 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.526 | 1.0 | 2843 | 0.5088 | 0.7492 | 0.6674 | 0.7083 | | 0.4762 | 2.0 | 5686 | 0.4782 | 0.7695 | 0.6583 | 0.7139 | | 0.4438 | 3.0 | 8529 | 0.4532 | 0.7847 | 0.6829 | 0.7338 | | 0.4161 | 4.0 | 11372 | 0.4602 | 0.7869 | 0.7135 | 0.7502 | | 0.3968 | 5.0 | 14215 | 0.4395 | 0.7955 | 0.7212 | 0.7583 | | 0.3815 | 6.0 | 17058 | 0.4392 | 0.7985 | 0.7190 | 0.7587 | | 0.3659 | 7.0 | 19901 | 0.4349 | 0.7976 | 0.7297 | 0.7637 | | 0.352 | 8.0 | 22744 | 0.4419 | 0.8005 | 0.7300 | 0.7652 | | 0.3399 | 9.0 | 25587 | 0.4454 | 0.7998 | 0.7317 | 0.7658 | | 0.327 | 10.0 | 28430 | 0.4614 | 0.7995 | 0.7359 | 0.7677 | | 0.3157 | 11.0 | 31273 | 0.4733 | 0.8000 | 0.7246 | 0.7623 | | 0.3041 | 12.0 | 34116 | 0.4738 | 0.8041 | 0.7283 | 0.7662 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.8.0 - Tokenizers 0.13.2
bonadio/Reinforce-Cartpole-v1
bonadio
2023-01-25T15:12:11Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-25T15:11:56Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Cartpole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
morganjeffries/Reinforce-CartPole-v1
morganjeffries
2023-01-25T15:03:57Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-01-25T15:03:47Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
aj555/ppo-SnowballTarget
aj555
2023-01-25T14:45:03Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-01-25T14:44:57Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: aj555/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀