modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-29 12:28:39
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
526 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-29 12:28:30
card
stringlengths
11
1.01M
cleanrl/Pitfall-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3
cleanrl
2023-03-09T23:06:47Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pitfall-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T23:06:45Z
--- tags: - Pitfall-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pitfall-v5 type: Pitfall-v5 metrics: - type: mean_reward value: 0.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Pitfall-v5** This is a trained model of a PPO agent playing Pitfall-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Pitfall-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Pitfall-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Pitfall-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Pitfall-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Pitfall-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Pitfall-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/NameThisGame-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3
cleanrl
2023-03-09T23:06:45Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "NameThisGame-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T23:06:44Z
--- tags: - NameThisGame-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: NameThisGame-v5 type: NameThisGame-v5 metrics: - type: mean_reward value: 9996.00 +/- 2492.24 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **NameThisGame-v5** This is a trained model of a PPO agent playing NameThisGame-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id NameThisGame-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/NameThisGame-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/NameThisGame-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/NameThisGame-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id NameThisGame-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'NameThisGame-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Seaquest-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2
cleanrl
2023-03-09T23:06:44Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Seaquest-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T23:06:43Z
--- tags: - Seaquest-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Seaquest-v5 type: Seaquest-v5 metrics: - type: mean_reward value: 960.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Seaquest-v5** This is a trained model of a PPO agent playing Seaquest-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Seaquest-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Seaquest-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Seaquest-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Seaquest-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Seaquest-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Seaquest-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Qbert-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3
cleanrl
2023-03-09T23:06:39Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Qbert-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T23:06:38Z
--- tags: - Qbert-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Qbert-v5 type: Qbert-v5 metrics: - type: mean_reward value: 20302.50 +/- 3270.12 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Qbert-v5** This is a trained model of a PPO agent playing Qbert-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Qbert-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Qbert-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Qbert-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Qbert-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Qbert-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Qbert-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Pong-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3
cleanrl
2023-03-09T23:06:30Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pong-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T23:06:28Z
--- tags: - Pong-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-v5 type: Pong-v5 metrics: - type: mean_reward value: 19.50 +/- 0.81 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Pong-v5** This is a trained model of a PPO agent playing Pong-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Pong-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Pong-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Pong-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Pong-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Pong-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Pong-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/MsPacman-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2
cleanrl
2023-03-09T23:06:17Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "MsPacman-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T23:06:16Z
--- tags: - MsPacman-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: MsPacman-v5 type: MsPacman-v5 metrics: - type: mean_reward value: 3867.00 +/- 1215.45 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **MsPacman-v5** This is a trained model of a PPO agent playing MsPacman-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id MsPacman-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/MsPacman-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/MsPacman-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/MsPacman-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id MsPacman-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'MsPacman-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Krull-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3
cleanrl
2023-03-09T23:05:53Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Krull-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T23:05:52Z
--- tags: - Krull-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Krull-v5 type: Krull-v5 metrics: - type: mean_reward value: 9682.00 +/- 879.67 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Krull-v5** This is a trained model of a PPO agent playing Krull-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Krull-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Krull-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Krull-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Krull-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Krull-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Krull-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/SpaceInvaders-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2
cleanrl
2023-03-09T23:05:50Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "SpaceInvaders-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T23:05:49Z
--- tags: - SpaceInvaders-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvaders-v5 type: SpaceInvaders-v5 metrics: - type: mean_reward value: 2846.50 +/- 196.58 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **SpaceInvaders-v5** This is a trained model of a PPO agent playing SpaceInvaders-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id SpaceInvaders-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/SpaceInvaders-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/SpaceInvaders-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/SpaceInvaders-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id SpaceInvaders-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'SpaceInvaders-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
eLarry/a2c-PandaReachDense-v2
eLarry
2023-03-09T23:05:47Z
3
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T21:54:08Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.20 +/- 0.14 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
cleanrl/Pitfall-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2
cleanrl
2023-03-09T23:05:40Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Pitfall-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T23:05:39Z
--- tags: - Pitfall-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pitfall-v5 type: Pitfall-v5 metrics: - type: mean_reward value: 0.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Pitfall-v5** This is a trained model of a PPO agent playing Pitfall-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Pitfall-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Pitfall-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Pitfall-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Pitfall-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Pitfall-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Pitfall-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Krull-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2
cleanrl
2023-03-09T23:05:29Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Krull-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T23:05:28Z
--- tags: - Krull-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Krull-v5 type: Krull-v5 metrics: - type: mean_reward value: 8929.00 +/- 966.30 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Krull-v5** This is a trained model of a PPO agent playing Krull-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Krull-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Krull-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Krull-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Krull-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Krull-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Krull-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Kangaroo-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3
cleanrl
2023-03-09T23:05:12Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Kangaroo-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T23:05:11Z
--- tags: - Kangaroo-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Kangaroo-v5 type: Kangaroo-v5 metrics: - type: mean_reward value: 1780.00 +/- 60.00 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Kangaroo-v5** This is a trained model of a PPO agent playing Kangaroo-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Kangaroo-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Kangaroo-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Kangaroo-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Kangaroo-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Kangaroo-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Kangaroo-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
leibniz-hbi/xlm-roberta-olid
leibniz-hbi
2023-03-09T22:53:17Z
0
2
flair
[ "flair", "text-classification", "multilingual", "en", "license:mit", "region:us" ]
text-classification
2023-03-09T20:38:25Z
--- tags: - flair - text-classification language: - multilingual - en library_name: flair widget: - text: This is a gentle comment. license: mit pipeline_tag: text-classification --- # Offensive language detection ## Tasks The model combines three classifiers for all three tasks of the OLID dataset [1]. - subtask a: OFF, NOT - subtask b: TIN, UNT - subtask c: IND, GRP, OTH Trained with [Flair NLP](https://github.com/flairNLP/flair) as a multi-task model. Training data: [Offensive Language Identification Dataset](https://sites.google.com/site/offensevalsharedtask/olid) (OLID) V1.0 [1] Test data: test set from [Semi-Supervised Dataset for Offensive Language Identification](https://sites.google.com/site/offensevalsharedtask/solid) (SOLID) [2] ## Citation When using this model, please cite: > Gregor Wiedemann, Seid Muhie Yimam, and Chris Biemann. 2020. UHH-LT at SemEval-2020 Task 12: Fine-Tuning of Pre-Trained Transformer Networks for Offensive Language Detection. In Proceedings of the Fourteenth Workshop on Semantic Evaluation, pages 1638–1644, Barcelona (online). International Committee for Computational Linguistics. ## Evaluation scores Evaluation was conducted on the SemEval 2020 Task 12 English test set. Thus, results can be compared to [3] ### Task A ``` Results: - F-score (micro) 0.9256 - F-score (macro) 0.9131 - Accuracy 0.9256 By class: precision recall f1-score support NOT 0.9922 0.9042 0.9461 2807 OFF 0.7976 0.9815 0.8800 1080 accuracy 0.9256 3887 macro avg 0.8949 0.9428 0.9131 3887 weighted avg 0.9381 0.9256 0.9278 3887 ``` ### Task B ``` Results: - F-score (micro) 0.7138 - F-score (macro) 0.6408 - Accuracy 0.7138 By class: precision recall f1-score support TIN 0.6826 0.9741 0.8027 850 UNT 0.8947 0.3269 0.4789 572 accuracy 0.7138 1422 macro avg 0.7887 0.6505 0.6408 1422 weighted avg 0.7679 0.7138 0.6724 1422 ``` ### Task C ``` Results: - F-score (micro) 0.8318 - F-score (macro) 0.6978 - Accuracy 0.8318 By class: precision recall f1-score support IND 0.8703 0.9483 0.9076 580 GRP 0.7216 0.6684 0.6940 190 OTH 0.7143 0.3750 0.4918 80 accuracy 0.8318 850 macro avg 0.7687 0.6639 0.6978 850 weighted avg 0.8223 0.8318 0.8207 850 ``` ---- # References [1] Marcos Zampieri, Shervin Malmasi, Preslav Nakov, Sara Rosenthal, Noura Farra, and Ritesh Kumar. 2019. Predicting the Type and Target of Offensive Posts in Social Media. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 1415–1420, Minneapolis, Minnesota. Association for Computational Linguistics. [2] Sara Rosenthal, Pepa Atanasova, Georgi Karadzhov, Marcos Zampieri, and Preslav Nakov. 2021. SOLID: A Large-Scale Semi-Supervised Dataset for Offensive Language Identification. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 915–928, Online. Association for Computational Linguistics. [3] Marcos Zampieri, Preslav Nakov, Sara Rosenthal, Pepa Atanasova, Georgi Karadzhov, Hamdy Mubarak, Leon Derczynski, Zeses Pitenis, and Çağrı Çöltekin. 2020. SemEval-2020 Task 12: Multilingual Offensive Language Identification in Social Media (OffensEval 2020). In Proceedings of the Fourteenth Workshop on Semantic Evaluation, pages 1425–1447, Barcelona (online). International Committee for Computational Linguistics.
cleanrl/Enduro-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3
cleanrl
2023-03-09T22:46:06Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Enduro-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:46:05Z
--- tags: - Enduro-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Enduro-v5 type: Enduro-v5 metrics: - type: mean_reward value: 2301.70 +/- 110.46 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Enduro-v5** This is a trained model of a PPO agent playing Enduro-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Enduro-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Enduro-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Enduro-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Enduro-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Enduro-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Enduro-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Atlantis-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3
cleanrl
2023-03-09T22:46:00Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Atlantis-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:45:58Z
--- tags: - Atlantis-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Atlantis-v5 type: Atlantis-v5 metrics: - type: mean_reward value: 817000.00 +/- 11103.87 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Atlantis-v5** This is a trained model of a PPO agent playing Atlantis-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Atlantis-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Atlantis-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Atlantis-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Atlantis-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Atlantis-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Atlantis-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Enduro-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2
cleanrl
2023-03-09T22:45:59Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Enduro-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:45:58Z
--- tags: - Enduro-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Enduro-v5 type: Enduro-v5 metrics: - type: mean_reward value: 2305.10 +/- 124.02 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Enduro-v5** This is a trained model of a PPO agent playing Enduro-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Enduro-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Enduro-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Enduro-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Enduro-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Enduro-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Enduro-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Atlantis-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2
cleanrl
2023-03-09T22:45:07Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Atlantis-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:45:06Z
--- tags: - Atlantis-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Atlantis-v5 type: Atlantis-v5 metrics: - type: mean_reward value: 855390.00 +/- 12439.01 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Atlantis-v5** This is a trained model of a PPO agent playing Atlantis-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Atlantis-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Atlantis-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Atlantis-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Atlantis-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Atlantis-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Atlantis-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/DemonAttack-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2
cleanrl
2023-03-09T22:42:20Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "DemonAttack-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:42:19Z
--- tags: - DemonAttack-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: DemonAttack-v5 type: DemonAttack-v5 metrics: - type: mean_reward value: 107734.50 +/- 45799.14 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **DemonAttack-v5** This is a trained model of a PPO agent playing DemonAttack-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id DemonAttack-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/DemonAttack-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/DemonAttack-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/DemonAttack-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id DemonAttack-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'DemonAttack-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Freeway-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3
cleanrl
2023-03-09T22:34:15Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Freeway-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:34:14Z
--- tags: - Freeway-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Freeway-v5 type: Freeway-v5 metrics: - type: mean_reward value: 33.60 +/- 0.49 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Freeway-v5** This is a trained model of a PPO agent playing Freeway-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Freeway-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Freeway-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Freeway-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Freeway-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Freeway-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Freeway-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Hero-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2
cleanrl
2023-03-09T22:34:07Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Hero-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:34:06Z
--- tags: - Hero-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Hero-v5 type: Hero-v5 metrics: - type: mean_reward value: 25971.00 +/- 3368.94 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Hero-v5** This is a trained model of a PPO agent playing Hero-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Hero-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Hero-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Hero-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Hero-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Hero-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Hero-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/FishingDerby-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3
cleanrl
2023-03-09T22:34:04Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "FishingDerby-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:34:03Z
--- tags: - FishingDerby-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FishingDerby-v5 type: FishingDerby-v5 metrics: - type: mean_reward value: 40.80 +/- 12.34 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **FishingDerby-v5** This is a trained model of a PPO agent playing FishingDerby-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id FishingDerby-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/FishingDerby-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/FishingDerby-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/FishingDerby-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id FishingDerby-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'FishingDerby-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Breakout-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2
cleanrl
2023-03-09T22:33:52Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Breakout-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:33:51Z
--- tags: - Breakout-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Breakout-v5 type: Breakout-v5 metrics: - type: mean_reward value: 430.30 +/- 36.30 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Breakout-v5** This is a trained model of a PPO agent playing Breakout-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Breakout-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Breakout-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Breakout-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Breakout-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Breakout-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Breakout-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/CrazyClimber-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3
cleanrl
2023-03-09T22:33:46Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "CrazyClimber-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:33:45Z
--- tags: - CrazyClimber-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CrazyClimber-v5 type: CrazyClimber-v5 metrics: - type: mean_reward value: 112760.00 +/- 17721.64 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **CrazyClimber-v5** This is a trained model of a PPO agent playing CrazyClimber-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id CrazyClimber-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/CrazyClimber-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/CrazyClimber-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/CrazyClimber-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id CrazyClimber-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'CrazyClimber-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Breakout-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3
cleanrl
2023-03-09T22:33:42Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Breakout-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:33:41Z
--- tags: - Breakout-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Breakout-v5 type: Breakout-v5 metrics: - type: mean_reward value: 420.80 +/- 33.42 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Breakout-v5** This is a trained model of a PPO agent playing Breakout-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Breakout-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Breakout-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Breakout-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Breakout-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Breakout-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Breakout-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Alien-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3
cleanrl
2023-03-09T22:33:36Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Alien-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:33:35Z
--- tags: - Alien-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Alien-v5 type: Alien-v5 metrics: - type: mean_reward value: 2830.00 +/- 767.98 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Alien-v5** This is a trained model of a PPO agent playing Alien-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Alien-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Alien-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Alien-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Alien-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Alien-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Alien-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/IceHockey-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3
cleanrl
2023-03-09T22:33:36Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "IceHockey-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:33:34Z
--- tags: - IceHockey-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: IceHockey-v5 type: IceHockey-v5 metrics: - type: mean_reward value: 10.90 +/- 2.59 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **IceHockey-v5** This is a trained model of a PPO agent playing IceHockey-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id IceHockey-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/IceHockey-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/IceHockey-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/IceHockey-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id IceHockey-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'IceHockey-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Frostbite-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3
cleanrl
2023-03-09T22:33:30Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Frostbite-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:33:28Z
--- tags: - Frostbite-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Frostbite-v5 type: Frostbite-v5 metrics: - type: mean_reward value: 307.00 +/- 9.00 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Frostbite-v5** This is a trained model of a PPO agent playing Frostbite-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Frostbite-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Frostbite-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Frostbite-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Frostbite-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Frostbite-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Frostbite-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Boxing-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3
cleanrl
2023-03-09T22:33:25Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Boxing-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:33:24Z
--- tags: - Boxing-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Boxing-v5 type: Boxing-v5 metrics: - type: mean_reward value: 100.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Boxing-v5** This is a trained model of a PPO agent playing Boxing-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Boxing-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Boxing-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Boxing-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Boxing-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Boxing-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Boxing-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2
cleanrl
2023-03-09T22:33:24Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "ChopperCommand-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:33:23Z
--- tags: - ChopperCommand-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: ChopperCommand-v5 type: ChopperCommand-v5 metrics: - type: mean_reward value: 9070.00 +/- 3338.88 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **ChopperCommand-v5** This is a trained model of a PPO agent playing ChopperCommand-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id ChopperCommand-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id ChopperCommand-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'ChopperCommand-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Boxing-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2
cleanrl
2023-03-09T22:33:22Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Boxing-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:33:20Z
--- tags: - Boxing-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Boxing-v5 type: Boxing-v5 metrics: - type: mean_reward value: 99.80 +/- 0.60 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Boxing-v5** This is a trained model of a PPO agent playing Boxing-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Boxing-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Boxing-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Boxing-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Boxing-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Boxing-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Boxing-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Kangaroo-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2
cleanrl
2023-03-09T22:33:20Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Kangaroo-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:33:19Z
--- tags: - Kangaroo-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Kangaroo-v5 type: Kangaroo-v5 metrics: - type: mean_reward value: 3680.00 +/- 545.53 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Kangaroo-v5** This is a trained model of a PPO agent playing Kangaroo-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Kangaroo-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Kangaroo-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Kangaroo-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Kangaroo-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Kangaroo-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Kangaroo-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Asterix-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2
cleanrl
2023-03-09T22:33:16Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Asterix-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:33:15Z
--- tags: - Asterix-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Asterix-v5 type: Asterix-v5 metrics: - type: mean_reward value: 305170.00 +/- 91109.44 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Asterix-v5** This is a trained model of a PPO agent playing Asterix-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Asterix-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Asterix-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Asterix-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Asterix-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Asterix-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Asterix-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/FishingDerby-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2
cleanrl
2023-03-09T22:33:15Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "FishingDerby-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:33:14Z
--- tags: - FishingDerby-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FishingDerby-v5 type: FishingDerby-v5 metrics: - type: mean_reward value: 34.80 +/- 3.52 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **FishingDerby-v5** This is a trained model of a PPO agent playing FishingDerby-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id FishingDerby-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/FishingDerby-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/FishingDerby-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/FishingDerby-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id FishingDerby-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'FishingDerby-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Frostbite-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2
cleanrl
2023-03-09T22:33:11Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Frostbite-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:33:10Z
--- tags: - Frostbite-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Frostbite-v5 type: Frostbite-v5 metrics: - type: mean_reward value: 320.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Frostbite-v5** This is a trained model of a PPO agent playing Frostbite-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Frostbite-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Frostbite-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Frostbite-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Frostbite-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Frostbite-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Frostbite-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Jamesbond-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3
cleanrl
2023-03-09T22:33:11Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Jamesbond-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:33:10Z
--- tags: - Jamesbond-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Jamesbond-v5 type: Jamesbond-v5 metrics: - type: mean_reward value: 855.00 +/- 291.08 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Jamesbond-v5** This is a trained model of a PPO agent playing Jamesbond-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Jamesbond-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Jamesbond-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Jamesbond-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Jamesbond-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Jamesbond-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Jamesbond-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/BankHeist-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3
cleanrl
2023-03-09T22:33:09Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "BankHeist-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:33:08Z
--- tags: - BankHeist-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: BankHeist-v5 type: BankHeist-v5 metrics: - type: mean_reward value: 1120.00 +/- 45.61 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **BankHeist-v5** This is a trained model of a PPO agent playing BankHeist-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id BankHeist-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/BankHeist-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/BankHeist-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/BankHeist-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id BankHeist-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'BankHeist-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Hero-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3
cleanrl
2023-03-09T22:33:07Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Hero-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:33:06Z
--- tags: - Hero-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Hero-v5 type: Hero-v5 metrics: - type: mean_reward value: 26147.50 +/- 4662.88 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Hero-v5** This is a trained model of a PPO agent playing Hero-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Hero-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Hero-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Hero-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Hero-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Hero-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Hero-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Amidar-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2
cleanrl
2023-03-09T22:33:06Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Amidar-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:33:05Z
--- tags: - Amidar-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Amidar-v5 type: Amidar-v5 metrics: - type: mean_reward value: 442.20 +/- 7.93 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Amidar-v5** This is a trained model of a PPO agent playing Amidar-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Amidar-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Amidar-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Amidar-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Amidar-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Amidar-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Amidar-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Assault-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3
cleanrl
2023-03-09T22:33:03Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Assault-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:33:02Z
--- tags: - Assault-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Assault-v5 type: Assault-v5 metrics: - type: mean_reward value: 4576.10 +/- 3204.71 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Assault-v5** This is a trained model of a PPO agent playing Assault-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Assault-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Assault-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Assault-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Assault-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Assault-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Assault-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/BankHeist-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2
cleanrl
2023-03-09T22:32:55Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "BankHeist-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:32:54Z
--- tags: - BankHeist-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: BankHeist-v5 type: BankHeist-v5 metrics: - type: mean_reward value: 1174.00 +/- 85.58 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **BankHeist-v5** This is a trained model of a PPO agent playing BankHeist-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id BankHeist-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/BankHeist-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/BankHeist-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/BankHeist-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id BankHeist-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'BankHeist-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Bowling-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3
cleanrl
2023-03-09T22:32:52Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Bowling-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:32:51Z
--- tags: - Bowling-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Bowling-v5 type: Bowling-v5 metrics: - type: mean_reward value: 33.00 +/- 2.68 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Bowling-v5** This is a trained model of a PPO agent playing Bowling-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Bowling-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Bowling-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Bowling-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Bowling-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Bowling-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Bowling-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Jamesbond-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2
cleanrl
2023-03-09T22:32:48Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Jamesbond-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:32:47Z
--- tags: - Jamesbond-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Jamesbond-v5 type: Jamesbond-v5 metrics: - type: mean_reward value: 630.00 +/- 250.20 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Jamesbond-v5** This is a trained model of a PPO agent playing Jamesbond-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Jamesbond-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Jamesbond-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Jamesbond-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Jamesbond-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Jamesbond-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Jamesbond-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Centipede-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3
cleanrl
2023-03-09T22:32:41Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Centipede-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:32:40Z
--- tags: - Centipede-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Centipede-v5 type: Centipede-v5 metrics: - type: mean_reward value: 2111.30 +/- 1056.21 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Centipede-v5** This is a trained model of a PPO agent playing Centipede-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Centipede-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Centipede-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Centipede-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Centipede-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Centipede-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Centipede-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Alien-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2
cleanrl
2023-03-09T22:32:33Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Alien-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:32:31Z
--- tags: - Alien-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Alien-v5 type: Alien-v5 metrics: - type: mean_reward value: 2768.00 +/- 1135.43 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Alien-v5** This is a trained model of a PPO agent playing Alien-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Alien-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Alien-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Alien-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Alien-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Alien-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Alien-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Gravitar-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2
cleanrl
2023-03-09T22:32:27Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Gravitar-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:32:25Z
--- tags: - Gravitar-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Gravitar-v5 type: Gravitar-v5 metrics: - type: mean_reward value: 2510.00 +/- 614.33 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Gravitar-v5** This is a trained model of a PPO agent playing Gravitar-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Gravitar-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Gravitar-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Gravitar-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Gravitar-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Gravitar-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Gravitar-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Gopher-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2
cleanrl
2023-03-09T22:32:17Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Gopher-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:32:16Z
--- tags: - Gopher-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Gopher-v5 type: Gopher-v5 metrics: - type: mean_reward value: 1138.00 +/- 330.99 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Gopher-v5** This is a trained model of a PPO agent playing Gopher-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Gopher-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Gopher-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Gopher-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Gopher-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Gopher-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Gopher-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Berzerk-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3
cleanrl
2023-03-09T22:32:10Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Berzerk-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:32:09Z
--- tags: - Berzerk-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Berzerk-v5 type: Berzerk-v5 metrics: - type: mean_reward value: 2038.00 +/- 1302.75 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Berzerk-v5** This is a trained model of a PPO agent playing Berzerk-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Berzerk-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Berzerk-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Berzerk-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Berzerk-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed3/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Berzerk-v5 --seed 3 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Berzerk-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 3, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
cleanrl/Berzerk-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2
cleanrl
2023-03-09T22:32:04Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Berzerk-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:32:03Z
--- tags: - Berzerk-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Berzerk-v5 type: Berzerk-v5 metrics: - type: mean_reward value: 1763.00 +/- 810.30 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Berzerk-v5** This is a trained model of a PPO agent playing Berzerk-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Berzerk-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Berzerk-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Berzerk-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Berzerk-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Berzerk-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Berzerk-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
qgallouedec/sample-factory-pick-place-wall-v2
qgallouedec
2023-03-09T22:31:54Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:31:50Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: pick-place-wall-v2 type: pick-place-wall-v2 metrics: - type: mean_reward value: 0.00 +/- 0.00 name: mean_reward verified: false --- A(n) **APPO** model trained on the **pick-place-wall-v2** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r qgallouedec/sample-factory-pick-place-wall-v2 ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m enjoy --algo=APPO --env=pick-place-wall-v2 --train_dir=./train_dir --experiment=sample-factory-pick-place-wall-v2 ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m train --algo=APPO --env=pick-place-wall-v2 --train_dir=./train_dir --experiment=sample-factory-pick-place-wall-v2 --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
cleanrl/Bowling-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2
cleanrl
2023-03-09T22:31:33Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "Bowling-v5", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:31:32Z
--- tags: - Bowling-v5 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Bowling-v5 type: Bowling-v5 metrics: - type: mean_reward value: 50.80 +/- 4.69 name: mean_reward verified: false --- # (CleanRL) **PPO** Agent Playing **Bowling-v5** This is a trained model of a PPO agent playing Bowling-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/cleanba_ppo_envpool_machado_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name cleanba_ppo_envpool_machado_atari_wrapper --env-id Bowling-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Bowling-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/cleanba_ppo_envpool_machado_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Bowling-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Bowling-v5-cleanba_ppo_envpool_machado_atari_wrapper-seed2/raw/main/poetry.lock poetry install --all-extras python cleanba_ppo_envpool_machado_atari_wrapper.py --distributed --learner-device-ids 1 2 3 --track --wandb-project-name cleanba --save-model --upload-model --hf-entity cleanrl --env-id Bowling-v5 --seed 2 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'actor_devices': ['gpu:0'], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 15360, 'capture_video': False, 'clip_coef': 0.1, 'concurrency': True, 'cuda': True, 'distributed': True, 'ent_coef': 0.01, 'env_id': 'Bowling-v5', 'exp_name': 'cleanba_ppo_envpool_machado_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'global_learner_decices': ['gpu:1', 'gpu:2', 'gpu:3', 'gpu:5', 'gpu:6', 'gpu:7'], 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3], 'learner_devices': ['gpu:1', 'gpu:2', 'gpu:3'], 'learning_rate': 0.00025, 'local_batch_size': 7680, 'local_minibatch_size': 1920, 'local_num_envs': 60, 'local_rank': 0, 'max_grad_norm': 0.5, 'minibatch_size': 3840, 'norm_adv': True, 'num_envs': 120, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 3255, 'profile': False, 'save_model': True, 'seed': 2, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanba', 'world_size': 2} ```
nsecord/Reinforce-Cartpole-v1
nsecord
2023-03-09T22:15:49Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:15:07Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Cartpole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Fer14/q-FrozenLake-v1-4x4-noSlippery
Fer14
2023-03-09T22:03:50Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T22:03:48Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Fer14/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
uisikdag/weed_resnet_balanced
uisikdag
2023-03-09T21:44:43Z
270
0
transformers
[ "transformers", "pytorch", "resnet", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-09T15:41:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: weeds_hfclass18 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.7766666666666666 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # weeds_hfclass18 Model is trained on balanced dataset/250 per class/ .8 .1 .1 split/ 224x224 resized Dataset: https://www.kaggle.com/datasets/vbookshelf/v2-plant-seedlings-dataset This model is a fine-tuned version of [microsoft/resnet-152](https://huggingface.co/microsoft/resnet-152) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2397 - Accuracy: 0.7767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.4803 | 0.99 | 37 | 2.4724 | 0.1133 | | 2.4464 | 1.99 | 74 | 2.4305 | 0.2967 | | 2.3843 | 2.99 | 111 | 2.3658 | 0.4233 | | 2.3018 | 3.99 | 148 | 2.2287 | 0.5067 | | 2.1075 | 4.99 | 185 | 2.0144 | 0.5967 | | 1.8743 | 5.99 | 222 | 1.7228 | 0.65 | | 1.7114 | 6.99 | 259 | 1.5487 | 0.6833 | | 1.5345 | 7.99 | 296 | 1.3920 | 0.7267 | | 1.4471 | 8.99 | 333 | 1.2914 | 0.7333 | | 1.3994 | 9.99 | 370 | 1.2397 | 0.7767 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2
Medissa/distilbert-base-uncased-finetuned-emotion
Medissa
2023-03-09T21:41:30Z
106
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-09T16:34:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: train args: split metrics: - name: Accuracy type: accuracy value: 0.934 - name: F1 type: f1 value: 0.9345076197122074 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1601 - Accuracy: 0.934 - F1: 0.9345 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1735 | 1.0 | 250 | 0.1707 | 0.929 | 0.9292 | | 0.1107 | 2.0 | 500 | 0.1601 | 0.934 | 0.9345 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.1 - Datasets 2.9.0 - Tokenizers 0.11.0
huggingtweets/elonmusk-peta
huggingtweets
2023-03-09T21:27:38Z
111
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-09T21:26:48Z
--- language: en thumbnail: http://www.huggingtweets.com/elonmusk-peta/1678397253550/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1590968738358079488/IY9Gx6Ok_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1542857370170163203/GEfar21Y_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & PETA</div> <div style="text-align: center; font-size: 14px;">@elonmusk-peta</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & PETA. | Data | Elon Musk | PETA | | --- | --- | --- | | Tweets downloaded | 3193 | 3249 | | Retweets | 172 | 78 | | Short tweets | 1083 | 272 | | Tweets kept | 1938 | 2899 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/kxu472uv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-peta's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/7y9q4gvl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/7y9q4gvl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-peta') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
insiktml/threat_detection_xmlRoberta_ES
insiktml
2023-03-09T21:19:03Z
0
0
null
[ "text-classification", "es", "license:openrail", "region:us" ]
text-classification
2023-03-09T19:20:37Z
--- license: openrail language: - es metrics: - accuracy pipeline_tag: text-classification --- Text classification model for threat detection in Spanish. We define threat messages as messages containing threats, support of violence, or harm towards a person or group of people. It is trained on the XML-RobertA (xlm-roberta-base) model with a dataset of 364.793 messages from online sources. Parameters "learning_rate": 1e-5, "weight_decay": 0.01, "opimizer": "Adam", "eps": 1e-08, "num_labels": 2, "output_attentions": "True", "output_hidden_states": "False", "number_epoch": 3, "batch-size": 16
Frorozcol/a2c-AntBulletEnv-v0
Frorozcol
2023-03-09T21:05:40Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T12:00:45Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1921.02 +/- 58.46 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
TobiTob/decision_transformer_rb_2189
TobiTob
2023-03-09T21:00:47Z
32
0
transformers
[ "transformers", "pytorch", "tensorboard", "decision_transformer", "generated_from_trainer", "dataset:city_learn", "endpoints_compatible", "region:us" ]
null
2023-03-09T20:49:21Z
--- tags: - generated_from_trainer datasets: - city_learn model-index: - name: decision_transformer_rb_2189 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # decision_transformer_rb_2189 This model is a fine-tuned version of [](https://huggingface.co/) on the city_learn dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 240 ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
thatgeeman/q-Taxi-v3-hfRLU2
thatgeeman
2023-03-09T20:52:16Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T20:38:43Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-hfRLU2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="thatgeeman/q-Taxi-v3-hfRLU2", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
MarcosMunoz95/dqn-SpaceInvadersNoFrameskip-v4
MarcosMunoz95
2023-03-09T20:50:42Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T20:50:16Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 126.50 +/- 43.01 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga MarcosMunoz95 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga MarcosMunoz95 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga MarcosMunoz95 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
dataLearning/q-Taxi-V3
dataLearning
2023-03-09T20:45:05Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T20:45:04Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-V3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.48 +/- 2.65 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="dataLearning/q-Taxi-V3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
FlavienDeseure/rl_course_vizdoom_health_gathering_supreme
FlavienDeseure
2023-03-09T20:43:20Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T20:43:09Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 11.89 +/- 5.99 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r FlavienDeseure/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
shru123/ppo-LunarLander-v2
shru123
2023-03-09T20:28:16Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-08T19:04:55Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 277.00 +/- 20.45 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
thatgeeman/q-FrozenLake-v1-4x4-Slippery
thatgeeman
2023-03-09T20:21:44Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T20:03:32Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-Slippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.59 +/- 0.49 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="thatgeeman/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
zzen0008/dqn-SpaceInvadersNoFrameskip-v4
zzen0008
2023-03-09T19:59:25Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T19:52:55Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 687.00 +/- 292.47 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga zzen0008 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga zzen0008 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga zzen0008 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 128), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
TobiTob/decision_transformer_fn_24
TobiTob
2023-03-09T19:53:32Z
34
0
transformers
[ "transformers", "pytorch", "tensorboard", "decision_transformer", "generated_from_trainer", "dataset:city_learn", "endpoints_compatible", "region:us" ]
null
2023-03-09T00:34:14Z
--- tags: - generated_from_trainer datasets: - city_learn model-index: - name: decision_transformer_fn_24 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # decision_transformer_fn_24 This model is a fine-tuned version of [](https://huggingface.co/) on the city_learn dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 140 ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
spacemanidol/flan-t5-large-5-5-cnndm
spacemanidol
2023-03-09T19:52:47Z
103
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-28T23:36:14Z
--- tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: large-5-5 results: - task: name: Summarization type: summarization dataset: name: cnn_dailymail 3.0.0 type: cnn_dailymail config: 3.0.0 split: validation args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 44.0948 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # large-5-5 This model is a fine-tuned version of [cnn/large-5-5/](https://huggingface.co/cnn/large-5-5/) on the cnn_dailymail 3.0.0 dataset. It achieves the following results on the evaluation set: - Loss: 1.2828 - Rouge1: 44.0948 - Rouge2: 21.2252 - Rougel: 31.6529 - Rougelsum: 41.2546 - Gen Len: 70.9016 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
mauricedw22/hf_model_mauricedw22_1
mauricedw22
2023-03-09T19:34:33Z
106
1
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-09T05:32:10Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: hf_model_mauricedw22_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hf_model_mauricedw22_1 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 30 ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cpu - Datasets 2.10.1 - Tokenizers 0.13.2
mustafamujahid01/pubmed_model_01
mustafamujahid01
2023-03-09T19:26:39Z
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
2023-03-09T19:25:20Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ### How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MohammedSB/FF2023-MohammedBaharoon
MohammedSB
2023-03-09T19:11:00Z
0
0
null
[ "art", "en", "dataset:competitions/aiornot", "region:us" ]
null
2023-03-08T19:18:29Z
--- datasets: - competitions/aiornot language: - en metrics: - accuracy - f1 - precision - recall tags: - art ---
Nalenczewski/keyword_category_classifier_v3
Nalenczewski
2023-03-09T19:07:41Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-07T16:02:13Z
Epoch 1 - Training Loss: 0.714500 - Validation Loss: 0.281303 - Accuracy: 0.910629 Epoch 2 - Training Loss: 0.229500 - Validation Loss: 0.265938 - Accuracy: 0.918616
JfuentesR/Reinforce-Pixelcopter-PLE-v0
JfuentesR
2023-03-09T18:15:55Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T18:13:10Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 21.80 +/- 16.77 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Takimoe/Test
Takimoe
2023-03-09T18:13:04Z
0
0
null
[ "region:us" ]
null
2023-03-09T18:11:56Z
import requests API_URL = "https://api-inference.huggingface.co/models/chompk/wav2vec2-large-xlsr-thai-tokenized" headers = {"Authorization": f"Bearer {API_TOKEN}"} def query(filename): with open(filename, "rb") as f: data = f.read() response = requests.post(API_URL, headers=headers, data=data) return response.json() output = query("sample1.flac")
dineshresearch/ppo-SnowballTarget-v1
dineshresearch
2023-03-09T18:11:09Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-03-09T18:11:04Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: dineshresearch/ppo-SnowballTarget-v1 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
spacemanidol/flan-t5-base-4-6-cnndm
spacemanidol
2023-03-09T17:58:57Z
106
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-06T20:27:02Z
--- tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: base-4-6 results: - task: name: Summarization type: summarization dataset: name: cnn_dailymail 3.0.0 type: cnn_dailymail config: 3.0.0 split: validation args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 42.2705 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # base-4-6 This model is a fine-tuned version of [cnn/base-4-6/](https://huggingface.co/cnn/base-4-6/) on the cnn_dailymail 3.0.0 dataset. It achieves the following results on the evaluation set: - Loss: 1.4352 - Rouge1: 42.2705 - Rouge2: 19.6705 - Rougel: 29.994 - Rougelsum: 39.4087 - Gen Len: 74.3384 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.12.1
iblub/rl_course_vizdoom_health_gathering_supreme
iblub
2023-03-09T17:58:16Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T17:58:05Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 8.88 +/- 3.64 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r iblub/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
JfuentesR/Reinforce-CartPole-v1
JfuentesR
2023-03-09T17:54:23Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T17:54:11Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 475.20 +/- 53.53 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Emperor/q-Taxi-v3-standard-seed
Emperor
2023-03-09T17:48:32Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T17:48:28Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-standard-seed results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Emperor/q-Taxi-v3-standard-seed", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
dugongo/q-FrozenLake-v1-4x4-noSlippery
dugongo
2023-03-09T17:02:17Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T17:02:08Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="dugongo/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
gus07ven/xlm-roberta-base-finetuned-panx-de-fr
gus07ven
2023-03-09T16:57:36Z
104
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-03-09T16:47:29Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1654 - F1: 0.8590 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2845 | 1.0 | 715 | 0.1831 | 0.8249 | | 0.1449 | 2.0 | 1430 | 0.1643 | 0.8479 | | 0.0929 | 3.0 | 2145 | 0.1654 | 0.8590 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.13.0 - Datasets 1.16.1 - Tokenizers 0.10.3
steveyn400/ppo-LunarLander-v2
steveyn400
2023-03-09T16:50:42Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T16:50:17Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 252.11 +/- 22.88 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
beebeckzzz/q-Taxi-v3
beebeckzzz
2023-03-09T16:46:13Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T16:46:12Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="beebeckzzz/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Sharkeye19/ComBERT
Sharkeye19
2023-03-09T16:29:00Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2023-03-09T15:58:48Z
--- license: apache-2.0 --- ComBERT is a pre-trained NLP model to analyse sentiment of commodity specific news. It is built by further training the BERT language model in the commodity news domain, we use a large open source commodity news corpus and re-tune for commodity specific sentiment classification. For more details, please see the paper ComBERT (Paper Pending) The model will give softmax outputs for three labels: positive, negative or neutral.
zirui3/gpt_1.4B_oa_instruct
zirui3
2023-03-09T16:24:23Z
116
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-08T16:01:55Z
--- license: cc-by-4.0 --- **pythia-1.4B-finetuned-oa-instructions** This model is a fine-tuned version of pythia on the oa dataset. It achieves the following results on the evaluation set: Loss: 0.1224 **Model description** More information needed Intended uses & limitations More information needed **Training and evaluation data** More information needed **Training procedure** **Training hyperparameters** The following hyperparameters were used during training: * seed: 42 * learning_rate: 5e-06 * train_batch_size: 32 * eval_batch_size: 8 * optimizer: Adam with betas : {'lr': 5e-06, 'betas': [0.9, 0.999], 'eps': 1e-08, 'weight_decay': 0.0} * lr_scheduler_type: linear * training_steps: 5000 * fp16 * warmup_steps 5 * Num examples = 53k **Training results** ``` { "epoch": 1.0, "train_loss": 0.8031303182039198, "train_runtime": 6338.6403, "train_samples": 53455, "train_samples_per_second": 8.433, "train_steps_per_second": 0.264 } ``` **Framework versions** * transformers 4.24.0 * torch 1.10.0+cu111 * datasets 2.10.0 * tokenizers 0.12.1
beebeckzzz/q-FrozenLake-v1-4x4-noSlippery
beebeckzzz
2023-03-09T16:22:26Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T16:22:24Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="beebeckzzz/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
qxakshat/poca-SoccerTwos
qxakshat
2023-03-09T16:17:35Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-03-09T16:17:48Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: qxakshat/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
dineshresearch/Reinforce-pixelcopter-v1
dineshresearch
2023-03-09T15:59:16Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T15:26:20Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopter-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 21.10 +/- 13.89 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Emperor/q-FrozenLake-v1-4x4-noSlippery-1-always
Emperor
2023-03-09T15:57:56Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T15:57:53Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery-1-always results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Emperor/q-FrozenLake-v1-4x4-noSlippery-1-always", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ashrielbrian/distilbert-base-uncased-finetuned-clinc
ashrielbrian
2023-03-09T15:57:24Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-09T15:54:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9141935483870968 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7816 - Accuracy: 0.9142 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2905 | 1.0 | 318 | 3.2789 | 0.7274 | | 2.6269 | 2.0 | 636 | 1.8737 | 0.8297 | | 1.5487 | 3.0 | 954 | 1.1620 | 0.8910 | | 1.0178 | 4.0 | 1272 | 0.8663 | 0.9061 | | 0.8036 | 5.0 | 1590 | 0.7816 | 0.9142 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1 - Datasets 1.16.1 - Tokenizers 0.10.3
Yureeh/dqn-SpaceInvadersNoFrameskip-v4
Yureeh
2023-03-09T15:50:27Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T15:49:46Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 512.50 +/- 195.85 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Yureeh -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Yureeh -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Yureeh ``` ## Hyperparameters ```python OrderedDict([('batch_size', 16), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
LucaReggiani/t5-small-nlpfinalprojectFinal-xsum
LucaReggiani
2023-03-09T15:32:51Z
62
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-02T16:30:45Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: LucaReggiani/t5-small-nlpfinalprojectFinal-xsum results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # LucaReggiani/t5-small-nlpfinalprojectFinal-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.2016 - Validation Loss: 3.0312 - Train Rouge1: 0.2288 - Train Rouge2: 0.0492 - Train Rougel: 0.1822 - Train Rougelsum: 0.1820 - Train Gen Len: 18.54 - Epoch: 6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.1} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 3.8756 | 3.3188 | 0.2061 | 0.0431 | 0.1546 | 0.1552 | 18.73 | 0 | | 3.5085 | 3.1797 | 0.2136 | 0.0476 | 0.1684 | 0.1689 | 18.15 | 1 | | 3.3992 | 3.1213 | 0.2087 | 0.0436 | 0.1704 | 0.1708 | 18.15 | 2 | | 3.3368 | 3.0864 | 0.2237 | 0.0497 | 0.1762 | 0.1767 | 18.45 | 3 | | 3.2760 | 3.0625 | 0.2301 | 0.0509 | 0.1794 | 0.1794 | 18.48 | 4 | | 3.2278 | 3.0434 | 0.2254 | 0.0476 | 0.1814 | 0.1816 | 18.39 | 5 | | 3.2016 | 3.0312 | 0.2288 | 0.0492 | 0.1822 | 0.1820 | 18.54 | 6 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.11.0 - Datasets 2.10.1 - Tokenizers 0.13.2
uisikdag/weed_yolov8_imbalanced
uisikdag
2023-03-09T15:30:01Z
0
0
ultralytics
[ "ultralytics", "tensorboard", "v8", "ultralyticsplus", "yolov8", "yolo", "vision", "image-classification", "pytorch", "model-index", "region:us" ]
image-classification
2023-03-09T15:27:31Z
--- tags: - ultralyticsplus - yolov8 - ultralytics - yolo - vision - image-classification - pytorch library_name: ultralytics library_version: 8.0.43 inference: false model-index: - name: uisikdag/weedyolov8 results: - task: type: image-classification metrics: - type: accuracy value: 0.91429 # min: 0.0 - max: 1.0 name: top1 accuracy - type: accuracy value: 0.99643 # min: 0.0 - max: 1.0 name: top5 accuracy --- <div align="center"> <img width="640" alt="uisikdag/weedyolov8" src="https://huggingface.co/uisikdag/weedyolov8/resolve/main/thumbnail.jpg"> </div> ### Supported Labels ``` ['Black-grass', 'Charlock', 'Cleavers', 'Common Chickweed', 'Common wheat', 'Fat Hen', 'Loose Silky-bent', 'Maize', 'Scentless Mayweed', 'Shepherds Purse', 'Small-flowered Cranesbill', 'Sugar beet'] ``` ### How to use - Install [ultralyticsplus](https://github.com/fcakyon/ultralyticsplus): ```bash pip install ultralyticsplus==0.0.28 ultralytics==8.0.43 ``` - Load model and perform prediction: ```python from ultralyticsplus import YOLO, postprocess_classify_output # load model model = YOLO('uisikdag/weedyolov8') # set model parameters model.overrides['conf'] = 0.25 # model confidence threshold # set image image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg' # perform inference results = model.predict(image) # observe results print(results[0].probs) # [0.1, 0.2, 0.3, 0.4] processed_result = postprocess_classify_output(model, result=results[0]) print(processed_result) # {"cat": 0.4, "dog": 0.6} ```
pridaj/distilbert-base-uncased-finetuned-clinc
pridaj
2023-03-09T15:16:47Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-09T15:10:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: validation args: plus metrics: - name: Accuracy type: accuracy value: 0.9183870967741935 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7721 - Accuracy: 0.9184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 318 | 3.2890 | 0.7432 | | 3.7868 | 2.0 | 636 | 1.8756 | 0.8377 | | 3.7868 | 3.0 | 954 | 1.1572 | 0.8961 | | 1.6929 | 4.0 | 1272 | 0.8573 | 0.9132 | | 0.9058 | 5.0 | 1590 | 0.7721 | 0.9184 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
spacemanidol/flan-t5-large-4-4-xsum
spacemanidol
2023-03-09T15:01:47Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-06T20:46:38Z
--- tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: large-4-4 results: - task: name: Summarization type: summarization dataset: name: xsum type: xsum config: default split: validation args: default metrics: - name: Rouge1 type: rouge value: 40.7766 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # large-4-4 This model is a fine-tuned version of [x/large-4-4/](https://huggingface.co/x/large-4-4/) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 1.6067 - Rouge1: 40.7766 - Rouge2: 17.556 - Rougel: 32.9954 - Rougelsum: 32.9887 - Gen Len: 26.4723 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.10.0 - Tokenizers 0.13.2
celinelee/bartlarge_risctoarm_cloze2048
celinelee
2023-03-09T14:42:02Z
173
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-09T13:58:25Z
``` { model: facebook/bart-large, max_position_embeddings: 2048, learning_rate: 3e-4, no_repeat_ngram_size: 0 num_steps: 520000 } ``` dataset: RISC -> ARM cloze training data Inference: beam size 20, top-100, gets 34 / 45 of the Project Euler test set.
uisikdag/weed_deit_imbalanced
uisikdag
2023-03-09T14:36:27Z
204
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-09T13:22:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: weeds_hfclass15 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9607142857142857 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # weeds_hfclass15 Model is trained on imbalanced dataset/ .8 .1 .1 split/ 224x224 resized Dataset: https://www.kaggle.com/datasets/vbookshelf/v2-plant-seedlings-dataset This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1349 - Accuracy: 0.9607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8805 | 1.0 | 69 | 0.4984 | 0.8607 | | 0.2535 | 2.0 | 138 | 0.2978 | 0.9 | | 0.1751 | 3.0 | 207 | 0.1649 | 0.9589 | | 0.1876 | 4.0 | 276 | 0.1956 | 0.9375 | | 0.1422 | 5.0 | 345 | 0.2046 | 0.9339 | | 0.1539 | 6.0 | 414 | 0.1894 | 0.9375 | | 0.1334 | 7.0 | 483 | 0.1375 | 0.9554 | | 0.103 | 8.0 | 552 | 0.1817 | 0.9518 | | 0.105 | 9.0 | 621 | 0.1394 | 0.9607 | | 0.0985 | 10.0 | 690 | 0.1349 | 0.9607 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2
Abner94/lora_nature
Abner94
2023-03-09T14:34:34Z
0
1
null
[ "paddlepaddle", "stable-diffusion", "stable-diffusion-ppdiffusers", "text-to-image", "ppdiffusers", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-03-09T11:47:27Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of nature, face the sea, with spring blossoms tags: - stable-diffusion - stable-diffusion-ppdiffusers - text-to-image - ppdiffusers - lora inference: false --- # LoRA DreamBooth - Abner94/lora_nature 本仓库的 LoRA 权重是基于 runwayml/stable-diffusion-v1-5 训练而来的,我们采用[DreamBooth](https://dreambooth.github.io/)的技术并使用 a photo of nature, face the sea, with spring blossoms 文本进行了训练。
Tinsae/copper1
Tinsae
2023-03-09T14:31:35Z
34
1
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-08T06:33:21Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion ---
dean-r/dqn-SpaceInvadersNoFrameskip-v4
dean-r
2023-03-09T14:17:55Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T14:17:21Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 274.50 +/- 31.50 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga dean-r -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga dean-r -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga dean-r ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 100000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
yovchev/a2c-AntBulletEnv-v0
yovchev
2023-03-09T14:13:01Z
3
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T14:11:54Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1690.05 +/- 79.93 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```