modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-01 00:47:04
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
530 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-01 00:46:57
card
stringlengths
11
1.01M
marksverdhei/t5-deshuffle
marksverdhei
2023-04-30T09:54:54Z
119
1
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "en", "dataset:stas/c4-en-10k", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-23T20:57:17Z
--- language: en widget: - text: ' brown dog fox jumped lazy over quick the the ' datasets: - 'stas/c4-en-10k' --- # T5-deshuffle Bag Of Words (BOW) is a simple and typical encoding for making statistical models discover patterns in language However BOW is a lossy compression that eliminates a very important feature of text: order This model is trained to learn the most probable order of an unordered token sequence, using a subset of the c4 dataset, and can thus be seen as a "bag-of-words decoder". Currently, it does not perform well. I'm planning to re-train on a larger subset of c4 later (after may). How to run: ```python from transformers import T5ForConditionalGeneration, T5Tokenizer tokenizer = T5Tokenizer.from_pretrained("marksverdhei/t5-deshuffle") model = T5ForConditionalGeneration.from_pretrained("marksverdhei/t5-deshuffle") prompt = ' brown dog fox jumped lazy over quick the the ' ids = tokenizer(prompt, return_tensors="pt").input_ids generated_tokens, = model.generate(ids) print(tokenizer.decode(generated_tokens, skip_special_tokens=True)) ```
cruiser/distilbert_model_kaggle
cruiser
2023-04-30T09:54:34Z
61
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-30T09:04:41Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: cruiser/distilbert_model_kaggle results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # cruiser/distilbert_model_kaggle This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.0986 - Train Accuracy: 0.4049 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Epoch | |:----------:|:--------------:|:-----:| | 1.1284 | 0.4020 | 0 | | 1.0986 | 0.4049 | 1 | ### Framework versions - Transformers 4.27.4 - TensorFlow 2.11.0 - Datasets 2.1.0 - Tokenizers 0.13.2
bessho/xlm-roberta-base-finetuned-panx-fr
bessho
2023-04-30T09:52:22Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-30T09:47:39Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.fr split: validation args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8404237430637297 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2716 - F1: 0.8404 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.571 | 1.0 | 191 | 0.3288 | 0.7826 | | 0.2554 | 2.0 | 382 | 0.2857 | 0.8261 | | 0.1688 | 3.0 | 573 | 0.2716 | 0.8404 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 1.16.1 - Tokenizers 0.13.3
yotoshihiro/q-FrozenLake-v1-4x4-noSlippery
yotoshihiro
2023-04-30T09:49:26Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-04-30T09:49:19Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="brinkman/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Benjo27/sd-class-butterflies-32
Benjo27
2023-04-30T09:39:21Z
30
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-04-30T09:38:02Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('Benjo27/sd-class-butterflies-32') image = pipeline().images[0] image ```
research-backup/mbart-large-cc25-frquad-qa
research-backup
2023-04-30T09:36:55Z
107
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "question answering", "fr", "dataset:lmqg/qg_frquad", "arxiv:2210.03992", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-25T19:28:37Z
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: fr datasets: - lmqg/qg_frquad pipeline_tag: text2text-generation tags: - question answering widget: - text: "question: En quelle année a-t-on trouvé trace d'un haut fourneau similaire?, context: Cette technologie ne disparaît qu'au début du XXe siècle. On retrouve vers 1900 un haut fourneau similaire dans le Bulacan, aux Philippines. Plus tard encore, le « haut fourneau dans la cour » prôné par Mao Zedong pendant le Grand Bond en avant est de ce type. L'expérience n'est un échec technique que dans les régions où le savoir-faire n'existe pas, ou a disparu." example_title: "Question Answering Example 1" - text: "question: Comment appelle-t-on la Guerre de 14-18 ?, context: Ce black dog peut être lié à des évènements traumatisants issus du monde extérieur, tels que son renvoi de l'Amirauté après la catastrophe des Dardanelles, lors de la Grande Guerre de 14-18, ou son rejet par l'électorat en juillet 1945. On sait également que dans ces deux cas, la guérison, certes lente et douloureuse et jamais complète ni définitive, se fera grâce à la peinture. D'un autre côté, étant donnés les symptômes de ce mal que Churchill éprouvait de plus en plus, il ne pouvait rien moins qu'être purement associé à de telles causes extrinsèques, ce qui correspond au profil classique de la dépression majeure unipolaire ou bipolaire." example_title: "Question Answering Example 2" model-index: - name: lmqg/mbart-large-cc25-frquad-qa results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_frquad type: default args: default metrics: - name: BLEU4 (Question Answering) type: bleu4_question_answering value: 26.33 - name: ROUGE-L (Question Answering) type: rouge_l_question_answering value: 38.14 - name: METEOR (Question Answering) type: meteor_question_answering value: 31.8 - name: BERTScore (Question Answering) type: bertscore_question_answering value: 92.2 - name: MoverScore (Question Answering) type: moverscore_question_answering value: 77.16 - name: AnswerF1Score (Question Answering) type: answer_f1_score__question_answering value: 60.48 - name: AnswerExactMatch (Question Answering) type: answer_exact_match_question_answering value: 39.34 --- # Model Card of `lmqg/mbart-large-cc25-frquad-qa` This model is fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) for question answering task on the [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) - **Language:** fr - **Training data:** [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="fr", model="lmqg/mbart-large-cc25-frquad-qa") # model prediction answers = model.answer_q(list_question="En quelle année a-t-on trouvé trace d'un haut fourneau similaire?", list_context=" Cette technologie ne disparaît qu'au début du XXe siècle. On retrouve vers 1900 un haut fourneau similaire dans le Bulacan, aux Philippines. Plus tard encore, le « haut fourneau dans la cour » prôné par Mao Zedong pendant le Grand Bond en avant est de ce type. L'expérience n'est un échec technique que dans les régions où le savoir-faire n'existe pas, ou a disparu.") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-frquad-qa") output = pipe("question: En quelle année a-t-on trouvé trace d'un haut fourneau similaire?, context: Cette technologie ne disparaît qu'au début du XXe siècle. On retrouve vers 1900 un haut fourneau similaire dans le Bulacan, aux Philippines. Plus tard encore, le « haut fourneau dans la cour » prôné par Mao Zedong pendant le Grand Bond en avant est de ce type. L'expérience n'est un échec technique que dans les régions où le savoir-faire n'existe pas, ou a disparu.") ``` ## Evaluation - ***Metric (Question Answering)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-frquad-qa/raw/main/eval/metric.first.answer.paragraph_question.answer.lmqg_qg_frquad.default.json) | | Score | Type | Dataset | |:-----------------|--------:|:--------|:-----------------------------------------------------------------| | AnswerExactMatch | 39.34 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | AnswerF1Score | 60.48 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | BERTScore | 92.2 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | Bleu_1 | 37.27 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | Bleu_2 | 32.61 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | Bleu_3 | 29.23 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | Bleu_4 | 26.33 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | METEOR | 31.8 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | MoverScore | 77.16 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | | ROUGE_L | 38.14 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_frquad - dataset_name: default - input_types: ['paragraph_question'] - output_types: ['answer'] - prefix_types: None - model: facebook/mbart-large-cc25 - max_length: 512 - max_length_output: 32 - epoch: 15 - batch: 32 - lr: 0.0002 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 2 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mbart-large-cc25-frquad-qa/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
mgarciav/ppo-LunarLander-v2
mgarciav
2023-04-30T09:31:30Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-04-30T09:31:22Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -183.95 +/- 112.14 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo-exp' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'mgarciav/ppo-LunarLander-v2' 'batch_size': 512 'minibatch_size': 128} ```
kucharskipj/ppo-LunarLander-v2
kucharskipj
2023-04-30T09:17:26Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-15T23:16:38Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 282.83 +/- 9.06 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jeferyai/myusemodel
jeferyai
2023-04-30T09:01:29Z
0
23
null
[ "region:us" ]
null
2023-03-11T14:10:24Z
# This my using model # 這是我個人使用的模型 # !!以下資料都是蒐集得來,方便我安裝模組,請勿隨意使用,本人不負責!! # Fine-tuned Model Checkpoints(~/models/Stable-diffusion/) ## 個人備份系列 ## chilloutmix系列 chilloutmix_.safetensors、 chilloutmix_Ni.safetensors、 chilloutmix_NiPrunedFp16.safetensors、 chilloutmix_NiPrunedFp16Fix.safetensors、 chilloutmix_NiPrunedFp32.safetensors、 chilloutmix_NiPrunedFp32Fix.safetensors https://civitai.com/models/6424/chilloutmix ## anything系列 anything-v4.5.safetensors、 anything-v4.0.vae.pt https://huggingface.co/andite/anything-v4.0/tree/main ## deliberate系列 deliberate_v2.safetensors、 deliberate_v11.safetensors、 deliberate_v1.safetensors https://civitai.com/models/4823/deliberate ## CyriousMix系列 cyriousmix_14.safetensors、 cyriousmix_v12.safetensors、 cyriousmix_v1Weirdsperiment5.ckpt https://civitai.com/models/6260/cyriousmix ## stable-diffusion-2.1系列 v2-1_768-ema-pruned.safetensors、 v2-1_768-nonema-pruned.safetensors https://huggingface.co/stabilityai/stable-diffusion-2-1/tree/main ## YesMix系列 yesmix_v16Original.safetensors、 yesmix_v16.safetensors、 yesmix_v15.safetensors、 yesmix_v10.safetensors https://civitai.com/models/9139/yesmix # LORA(~/models/lora/) ## 個人備份系列 koreanDollLikeness_v10.safetensors、 taiwanDollLikeness_v10.safetensors、 japaneseDollLikeness_v10.safetensors、 chilloutmixss20_v20.safetensors、 chilloutmixss30_v30.safetensors ## chilloutmixss_xss10.safetensors https://civitai.com/models/10850/chilloutmixss ## sxzLeonSKennedyEduard_sxzLeon.safetensors https://civitai.com/models/16086/sxz-leon-s-kennedy-eduard-badaluta-resident-evil ## Fashion Girl系列 fashionGirl_v50.safetensors、 fashionGirl_v47.safetensors、 fashionGirl_v45.safetensors、 fashionGirl_v40.safetensors、 fashionGirl_v36.safetensors、 fashionGirl_v35.safetensors、 fashionGirl_v30ForSD15AndWaifu.safetensors、 fashionGirl_v30.safetensors、 fashionGirl_v26.safetensors、 fashionGirl_v25.safetensors、 fashionGirl_v20SmallFileSize.safetensors、 fashionGirl_v20.safetensors、 fashionGirl_v10.safetensors https://civitai.com/models/8217/fashion-girl ## seeThroughSilhouette_v10.safetensors https://civitai.com/models/11130/see-through-silhouette # TEXTUAL INVERSION(~/embeddings/) ## Ulzzang-6500系列 ulzzang-6500-v1.1.bin、 ulzzang-6500.pt https://civitai.com/models/8109/ulzzang-6500-korean-doll-aesthetic ## pureerosface_v1.pt https://civitai.com/models/4514/pure-eros-face ## bad-hands-5.pt https://cdn.discordapp.com/attachments/1032948846197747731/1069660323709190195/bad-hands-5.pt ## easynegative.safetensors https://civitai.com/models/7808/easynegative # Aesthetic Gradients(~/aesthetic_embeddings/) # Hypernetwork(~/models/hypernetworks/)
Aeala/Alpaca-elina-65b-4bit
Aeala
2023-04-30T08:39:54Z
1,455
7
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-04-29T11:36:16Z
## Model Info Merge of ChanSung's [Alpaca-LoRA-65B-elina](https://huggingface.co/LLMs/Alpaca-LoRA-65B-elina) ## Benchmarks Coming soon...
xyz99/iorimoelora
xyz99
2023-04-30T08:36:19Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-30T08:32:57Z
--- license: creativeml-openrail-m ---
DreamPerson/LyCORIS
DreamPerson
2023-04-30T08:22:03Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-30T08:09:44Z
--- license: creativeml-openrail-m ---
Fixmouth/Xlxxl
Fixmouth
2023-04-30T08:16:19Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-30T08:13:23Z
--- license: creativeml-openrail-m ---
Apocalypse-19/doom_deadly_corridor
Apocalypse-19
2023-04-30T08:13:37Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-30T08:13:29Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_deadly_corridor type: doom_deadly_corridor metrics: - type: mean_reward value: 17.10 +/- 8.74 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_deadly_corridor** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r Apocalypse-19/doom_deadly_corridor ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_deadly_corridor --train_dir=./train_dir --experiment=doom_deadly_corridor ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_deadly_corridor --train_dir=./train_dir --experiment=doom_deadly_corridor --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
darkblack/TESTING
darkblack
2023-04-30T07:51:34Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-30T07:49:16Z
--- license: creativeml-openrail-m ---
Tengisbold/distilbert-base-multilingual-cased-ner-demo
Tengisbold
2023-04-30T07:25:24Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "mn", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-30T06:54:50Z
--- language: - mn license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-multilingual-cased-ner-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-ner-demo This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1687 - Precision: 0.8684 - Recall: 0.8891 - F1: 0.8786 - Accuracy: 0.9693 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2009 | 1.0 | 572 | 0.1271 | 0.8074 | 0.8440 | 0.8253 | 0.9590 | | 0.0951 | 2.0 | 1144 | 0.1069 | 0.8469 | 0.8768 | 0.8616 | 0.9671 | | 0.063 | 3.0 | 1716 | 0.1136 | 0.8486 | 0.8783 | 0.8632 | 0.9680 | | 0.0444 | 4.0 | 2288 | 0.1221 | 0.8506 | 0.8808 | 0.8654 | 0.9675 | | 0.0303 | 5.0 | 2860 | 0.1389 | 0.8576 | 0.8823 | 0.8698 | 0.9677 | | 0.0217 | 6.0 | 3432 | 0.1457 | 0.8683 | 0.8878 | 0.8779 | 0.9685 | | 0.0157 | 7.0 | 4004 | 0.1542 | 0.8661 | 0.8873 | 0.8766 | 0.9692 | | 0.0121 | 8.0 | 4576 | 0.1615 | 0.8730 | 0.8878 | 0.8803 | 0.9694 | | 0.0094 | 9.0 | 5148 | 0.1675 | 0.8683 | 0.8883 | 0.8782 | 0.9688 | | 0.0077 | 10.0 | 5720 | 0.1687 | 0.8684 | 0.8891 | 0.8786 | 0.9693 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
AlpacaAlice/t5-end2end-questions-generation
AlpacaAlice
2023-04-30T07:14:58Z
160
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad_modified_for_t5_qg", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-04-29T08:20:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_modified_for_t5_qg model-index: - name: t5-end2end-questions-generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-end2end-questions-generation This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the squad_modified_for_t5_qg dataset. It achieves the following results on the evaluation set: - Loss: 1.5674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5884 | 0.34 | 100 | 1.9159 | | 1.9705 | 0.68 | 200 | 1.7310 | | 1.8439 | 1.02 | 300 | 1.6672 | | 1.7426 | 1.35 | 400 | 1.6382 | | 1.7147 | 1.69 | 500 | 1.6199 | | 1.6908 | 2.03 | 600 | 1.6053 | | 1.6315 | 2.37 | 700 | 1.5967 | | 1.627 | 2.71 | 800 | 1.5939 | | 1.6122 | 3.05 | 900 | 1.5877 | | 1.5706 | 3.39 | 1000 | 1.5861 | | 1.5708 | 3.73 | 1100 | 1.5742 | | 1.5534 | 4.06 | 1200 | 1.5798 | | 1.5351 | 4.4 | 1300 | 1.5738 | | 1.5226 | 4.74 | 1400 | 1.5757 | | 1.5187 | 5.08 | 1500 | 1.5727 | | 1.4963 | 5.42 | 1600 | 1.5710 | | 1.4841 | 5.76 | 1700 | 1.5668 | | 1.5025 | 6.1 | 1800 | 1.5688 | | 1.4778 | 6.44 | 1900 | 1.5717 | | 1.4769 | 6.77 | 2000 | 1.5674 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
ngyewkong/ppo-LunarLander-v2
ngyewkong
2023-04-30T07:14:36Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-30T04:45:12Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 256.32 +/- 13.07 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Kunto/anass
Kunto
2023-04-30T06:58:11Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-30T06:57:13Z
--- license: creativeml-openrail-m ---
Pi3141/alpaca-7b-native-enhanced-ggml
Pi3141
2023-04-30T06:04:34Z
0
115
adapter-transformers
[ "adapter-transformers", "llama", "text-generation", "en", "license:wtfpl", "region:us" ]
text-generation
2023-03-30T04:05:10Z
--- license: wtfpl language: - en pipeline_tag: text-generation tags: - llama library_name: adapter-transformers --- # Alpaca Native Enhanced 7B model download for Alpaca.cpp, Llama.cpp, and Dalai Use this command to run with llama.cpp ```sh main -m models/ANE-7B/ggml-model-q4_1.bin -n -1 --ctx_size 2048 --batch_size 16 --keep 512 --repeat_penalty 1.0 -t 16 --temp 0.4 --top_k 30 --top_p 0.18 --interactive-first -ins --color -i -r "User:" -f prompts/alpacanativeenhanced.txt ``` contents of `prompts/alpacanativeenhanced.txt` should be ```txt You are an AI language model designed to assist the User by answering their questions, offering advice, and engaging in casual conversation in a friendly, helpful, and informative manner. You respond clearly, coherently, and you consider the conversation history. User: Hey, how's it going? Assistant: Hey there! I'm doing great, thank you. What can I help you with today? Let's have a fun chat! ``` Original model https://huggingface.co/8bit-coder/alpaca-7b-nativeEnhanced
NoufAlkhorayef/ppo-LunarLander-v2-TEST
NoufAlkhorayef
2023-04-30T05:53:57Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-30T05:53:31Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 260.89 +/- 24.29 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
LLMs/Alpaca-LoRA-65B-elina
LLMs
2023-04-30T05:40:36Z
0
6
null
[ "llama", "llm", "text2text-generation", "license:apache-2.0", "region:us" ]
text2text-generation
2023-04-29T01:57:13Z
--- license: apache-2.0 pipeline_tag: text2text-generation tags: - llama - llm --- This is LoRA checkpoint fine-tuned with the following CLI. The fine-tuning process is logged in [W&B dashboard](https://wandb.ai/chansung18/alpaca_lora/runs/9atnn649?workspace=user-chansung18). I have used DGX workstation with 8 x A100(40G). ```console python finetune.py \ --base_model='elinas/llama-65b-hf-transformers-4.29' \ --data_path='alpaca_data.json' \ --num_epochs=10 \ --cutoff_len=1024 \ --group_by_length \ --output_dir='./lora-alpaca-65b-elinas' \ --lora_target_modules='[q_proj,k_proj,v_proj,o_proj]' \ --lora_r=16 \ --lora_alpha=32 \ --batch_size=1024 \ --micro_batch_size=15 ``` This LoRA checkpoint is recommended to be used with `transformers >= 4.29` which should be installed with the following command currently(4/30/2023). ```console pip install git+https://github.com/huggingface/transformers.git ```
andyqin18/finetuned-bert-uncased
andyqin18
2023-04-30T05:34:16Z
437
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-26T04:06:07Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: finetuned-bert-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Model description This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on this [Kaggle dataset](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge). It achieves the following results on the evaluation set: - Loss: 0.0507 ## Intended uses The model is intended to be used for detecting 6 labels of toxicity. The model takes in a comment as string and predicts the probabilities of the 6 types of toxicity (as float between 0 and 1) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0525 | 1.0 | 1250 | 0.0482 | | 0.037 | 2.0 | 2500 | 0.0445 | | 0.0275 | 3.0 | 3750 | 0.0489 | | 0.0188 | 4.0 | 5000 | 0.0491 | | 0.0146 | 5.0 | 6250 | 0.0507 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Tokenizers 0.13.3
pradeep4321/valves
pradeep4321
2023-04-30T05:23:54Z
193
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-04-30T05:23:42Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: valves results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.1071428582072258 --- # valves Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### ball valves ![ball valves](images/ball_valves.jpg) #### butterfly valves ![butterfly valves](images/butterfly_valves.jpg) #### gate valves ![gate valves](images/gate_valves.jpg) #### globe valves ![globe valves](images/globe_valves.jpg) #### pinch valves ![pinch valves](images/pinch_valves.jpg)
Pi3141/vicuna-7b-v1.1-ggml
Pi3141
2023-04-30T04:44:05Z
0
5
adapter-transformers
[ "adapter-transformers", "llama", "text-generation", "en", "region:us" ]
text-generation
2023-04-30T04:03:47Z
--- language: - en pipeline_tag: text-generation tags: - llama library_name: adapter-transformers --- # Vicuna 7B model download for llama.cpp All credits go to lmsys for creating the model https://huggingface.co/lmsys/vicuna-7b-delta-v1.1
tanishabhagwanani/distilbert-base-uncased-finetuned-FYP
tanishabhagwanani
2023-04-30T04:16:00Z
112
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-25T11:27:44Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-FYP results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-FYP This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0921 - Accuracy: 0.9957 - F1: 0.9957 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 2.1435 | 1.0 | 20 | 1.7903 | 0.7696 | 0.7462 | | 1.5449 | 2.0 | 40 | 1.0549 | 0.9565 | 0.9603 | | 1.0008 | 3.0 | 60 | 0.5800 | 0.9913 | 0.9912 | | 0.6252 | 4.0 | 80 | 0.3311 | 0.9957 | 0.9957 | | 0.3833 | 5.0 | 100 | 0.2076 | 0.9957 | 0.9957 | | 0.2496 | 6.0 | 120 | 0.1470 | 0.9957 | 0.9957 | | 0.182 | 7.0 | 140 | 0.1173 | 0.9957 | 0.9957 | | 0.1475 | 8.0 | 160 | 0.1017 | 0.9957 | 0.9957 | | 0.1279 | 9.0 | 180 | 0.0944 | 0.9957 | 0.9957 | | 0.1197 | 10.0 | 200 | 0.0921 | 0.9957 | 0.9957 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
aistar/4x_kawaii_mix
aistar
2023-04-30T03:54:04Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-30T03:53:18Z
--- license: creativeml-openrail-m ---
yyassin/ppo-LunarLander-v2
yyassin
2023-04-30T03:47:57Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-30T03:39:13Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 269.45 +/- 19.18 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
cyrodw/ppo-LunarLander-v2
cyrodw
2023-04-30T03:38:22Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-29T16:08:42Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 284.66 +/- 18.37 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ntrant7/a2c-PandaReachDense-v2
ntrant7
2023-04-30T03:35:02Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-27T09:10:26Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.09 +/- 0.33 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
JosephusCheung/GuanacoVQA
JosephusCheung
2023-04-30T02:58:40Z
0
17
null
[ "visual-question-answering", "en", "zh", "ja", "de", "dataset:JosephusCheung/GuanacoVQADataset", "license:gpl-3.0", "region:us" ]
visual-question-answering
2023-04-24T13:34:23Z
--- license: gpl-3.0 datasets: - JosephusCheung/GuanacoVQADataset language: - en - zh - ja - de pipeline_tag: visual-question-answering --- The following content is currently a work in progress and does not represent the final quality. Alignment for the multilingual VQA tasks is being conducted on blip2-flan-t5-xxl and Guanaco using only Linear Layers. The latest weight file is provided here, based on the implementation of MiniGPT-4. This model supports English, Chinese, Japanese, and German languages and requires the combined use of the Guanaco 7B LLM model. A portion of the dataset has already been released.
theastro/cliv-beta1
theastro
2023-04-30T02:54:55Z
30
1
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-04-30T02:33:12Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- # <u>Cliv v1 (Beta)</u> # <h1>You can visite our page in [cliv.art](https://cliv.art/)</h1> ## Trained by [theastro](https://huggingface.co/theastro/) This model was trained on Stable Diffusion v1.5 # Some arts: <img style="border-radius: 25px;" src="https://huggingface.co/theastro/cliv-beta1/resolve/main/sample_images/00054-3468404438.png" alt="cliv-v1" width="312px" height="auto"> <img style="border-radius: 25px;" src="https://huggingface.co/theastro/cliv-beta1/resolve/main/sample_images/00050-3574198102.png" alt="cliv-v1" width="312px" height="auto"> <img style="border-radius: 25px;" src="https://huggingface.co/theastro/cliv-beta1/resolve/main/sample_images/00055-2502901918.png" alt="cliv-v1" width="312px" height="auto"> <img style="border-radius: 25px;" src="https://huggingface.co/theastro/cliv-beta1/resolve/main/sample_images/00085-714245376.png" alt="cliv-v1" width="312px" height="auto">
vihangd/hindi-dolly-alpaca-lora-7b
vihangd
2023-04-30T02:09:44Z
0
0
null
[ "license:other", "region:us" ]
null
2023-04-30T01:57:51Z
--- license: other --- # Hugging Face Model - Hindi Finetuned This repository contains a Hugging Face model that has been fine-tuned on a Hindi dataset. The model uses the `peft` library for generating responses. ## Usage To use the model, first import the necessary libraries: ```python from peft import PeftModel from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig ``` Next, load the tokenizer and model: ```python tokenizer = LlamaTokenizer.from_pretrained("yahma/llama-7b-hf") model = LlamaForCausalLM.from_pretrained( "yahma/llama-7b-hf", load_in_8bit=True, device_map="auto", ) ``` Then, load the `PeftModel` with the specified pre-trained model and path to the peft model: ```python model = PeftModel.from_pretrained(model, "./hindi-dolly-alpaca-lora-7b") ``` Next, define a function to generate a prompt: ```python def generate_prompt(instruction, input=None): if input: return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Input: {input} ### Response:""" else: return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response:""" ``` Finally, define a function to evaluate the model: ```python generation_config = GenerationConfig( temperature=0.1, top_p=0.75, num_beams=4, ) def evaluate(model, instruction, input=None): prompt = generate_prompt(instruction, input) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].cuda() generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=256 ) for s in generation_output.sequences: output = tokenizer.decode(s) print("Response:", output.split("### Response:")[1].strip()) instruct =input("Instruction: ") evaluate(model, instruct) ``` To generate a response, simply run the `evaluate` function with an instruction and optional input: ```python instruct = "Write a response that appropriately completes the request." input = "This is a sample input." evaluate(model, instruct, input) ``` This will output a response that completes the request.
tsumeone/stable-vicuna-13B-4bit-128g-cuda
tsumeone
2023-04-30T01:46:47Z
6
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-04-30T01:05:24Z
Quantized version of this: https://huggingface.co/TheBloke/stable-vicuna-13B-HF Big thank you to TheBloke for uploading the HF version above. Unfortunately, his GPTQ quant doesn't run on 0cc4m's fork of KAI/GPTQ so I am uploading one that does. GPTQ quantization using https://github.com/0cc4m/GPTQ-for-LLaMa for compatibility with 0cc4m's fork of KoboldAI. Command used to quantize: ```python llama.py c:\stable-vicuna-13B-HF c4 --wbits 4 --true-sequential --groupsize 128 --save_safetensors 4bit-128g.safetensors``` This model works best with the following prompting. Also, it really does not like to stop on its own and will likely keep going on forever if you let it. ``` ### Human: What is 2+2? ### Assistant: ```
AlekseyKorshuk/llama-7b-chatml
AlekseyKorshuk
2023-04-30T01:35:10Z
8
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-04-29T15:53:42Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: llama-7b-chatml results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama-7b-chatml This model is a fine-tuned version of [zpn/llama-7b](https://huggingface.co/zpn/llama-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7373 - Accuracy: 0.2687 - Entropy: 0.6897 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - total_eval_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Entropy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------:| | 0.6533 | 1.0 | 817 | 0.7036 | 0.2683 | 0.7874 | | 0.4956 | 2.0 | 1634 | 0.7373 | 0.2687 | 0.6897 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0-rc1 - Datasets 2.10.1 - Tokenizers 0.13.3
dimitriz/greek-media-bert-base-uncased
dimitriz
2023-04-30T00:59:30Z
121
0
transformers
[ "transformers", "pytorch", "tf", "safetensors", "bert", "feature-extraction", "text", "language-modeling", "pretraining", "greek-media", "domain-adaptation", "fill-mask", "el", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-02T08:53:19Z
--- language: - el tags: - text - language-modeling - bert - pretraining - greek-media - domain-adaptation pipeline_tag: fill-mask metrics: - accuracy model-index: - name: greek-media-bert-base-uncased results: [] --- # Greek Media BERT (uncased) This model is a domain-adapted version of [nlpaueb/bert-base-greek-uncased-v1](https://huggingface.co/nlpaueb/bert-base-greek-uncased-v1) on Greek media centric data. ## Model description Details will be updated soon. ## Intended uses & limitations Details will be updated soon. ## Training and evaluation data Details will be updated soon. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results Details will be updated soon. ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.12.0+cu116 - Tensorflow 2.11.0 - Datasets 2.3.2 - Tokenizers 0.12.1 ### Citation The model has been officially released with the article "PIMA: Parameter-shared Intelligent Media Analytics Framework for Low Resource Language. Dimitrios Zaikis, Nikolaos Stylianou and Ioannis Vlahavas. In the Special Issue: New Techniques of Machine Learning and Deep Learning in Text Classification, Applied Sciences Journal. 2023" (https://www.mdpi.com/2174928). If you use the model, please cite the following: ```bibtex @Article{app13053265, AUTHOR = {Zaikis, Dimitrios and Stylianou, Nikolaos and Vlahavas, Ioannis}, TITLE = {PIMA: Parameter-Shared Intelligent Media Analytics Framework for Low Resource Languages}, JOURNAL = {Applied Sciences}, VOLUME = {13}, YEAR = {2023}, NUMBER = {5}, ARTICLE-NUMBER = {3265}, URL = {https://www.mdpi.com/2076-3417/13/5/3265}, ISSN = {2076-3417}, DOI = {10.3390/app13053265} } ```
EinsZwo/en-to-de_longcontext
EinsZwo
2023-04-30T00:32:00Z
61
0
transformers
[ "transformers", "tf", "marian", "text2text-generation", "generated_from_keras_callback", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-04-29T23:51:03Z
--- license: cc-by-4.0 tags: - generated_from_keras_callback model-index: - name: EinsZwo/en-to-de_longcontext results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # EinsZwo/en-to-de_longcontext This model is a fine-tuned version of [EinsZwo/en-to-de_foursentcontext](https://huggingface.co/EinsZwo/en-to-de_foursentcontext) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.2164 - Validation Loss: 1.3578 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 2241, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.3692 | 1.3708 | 0 | | 1.2695 | 1.3627 | 1 | | 1.2164 | 1.3578 | 2 | ### Framework versions - Transformers 4.28.1 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
jtamph/Verisi
jtamph
2023-04-30T00:29:34Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-30T00:24:21Z
--- license: creativeml-openrail-m ---
ange0102/Reinforce-CartPole-v1
ange0102
2023-04-30T00:16:33Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-04-30T00:16:21Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
bouim/whisper-small-ar-12hrsdarijadata-April29
bouim
2023-04-30T00:00:35Z
76
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-04-29T21:19:40Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-ar-12hrsdarijadata-April29 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-ar-12hrsdarijadata-April29 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9985 - Wer: 77.7026 - Cer: 48.3376 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.25e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 1.8036 | 0.38 | 250 | 1.4314 | 92.8372 | 55.4587 | | 1.3528 | 0.75 | 500 | 1.1339 | 79.2413 | 48.2563 | | 1.1316 | 1.13 | 750 | 1.0272 | 76.8802 | 49.5272 | | 1.1439 | 1.51 | 1000 | 0.9985 | 77.7026 | 48.3376 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.1.dev0 - Tokenizers 0.13.3
worsty/ppo-SnowballTarget2
worsty
2023-04-29T23:58:48Z
14
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-04-29T23:58:43Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: worsty/ppo-SnowballTarget2 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
sqllama/lora-sql-context-dono
sqllama
2023-04-29T23:38:13Z
0
0
null
[ "region:us" ]
null
2023-04-29T23:34:17Z
## Setup Notes For this model, a VM with 2 T4 GPUs was used. To get the training to work on the 2 GPUs (utilize both GPUS simultaneously), the following command was used to initiate training. WORLD_SIZE=2 CUDA_VISIBLE_DEVICES=0,1 torchrun --nproc_per_node=2 --master_port=1234 finetune.py --base_model 'decapoda-research/llama-7b-hf' --data_path 'b-mc2/sql-create-context' --output_dir './lora-alpaca' --num_epochs 1 --micro_batch_size 16 Note 1. Micro batch size was increased from the default 4 to 16. Note that increasing it further is possible based on other training that has been performed. This was a first attempt. Note 2. Output directory was initially lora-alpaca and then contents were moved to new folder when initializing git repository. ## Log (sqltest) chrisdono@deep-learning-duo-t4-3:~/alpaca-lora$ WORLD_SIZE=2 CUDA_VISIBLE_DEVICES=0,1 torchrun --nproc_per_node=2 --master_port=1234 finetune.py --base_model 'decapoda-research/lla$ a-7b-hf' --data_path 'b-mc2/sql-create-context' --output_dir './lora-alpaca' --num_epochs 1 --micro_batch_size 16 WARNING:torch.distributed.run: ***************************************** Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your appli cation as needed. ***************************************** ===================================BUG REPORT=================================== Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues ================================================================================ ===================================BUG REPORT=================================== Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues ================================================================================ /opt/conda/envs/sqltest/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:136: UserWarning: /opt/conda/envs/sqltest did not contain libcudart.so as expected! Searching further path s... warn(msg) CUDA SETUP: CUDA runtime path found: /usr/local/cuda/lib64/libcudart.so CUDA SETUP: Highest compute capability among GPUs detected: 7.5 CUDA SETUP: Detected CUDA version 113 CUDA SETUP: Loading binary /opt/conda/envs/sqltest/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda113.so... /opt/conda/envs/sqltest/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:136: UserWarning: /opt/conda/envs/sqltest did not contain libcudart.so as expected! Searching further path s... warn(msg) CUDA SETUP: CUDA runtime path found: /usr/local/cuda/lib64/libcudart.so CUDA SETUP: Highest compute capability among GPUs detected: 7.5 CUDA SETUP: Detected CUDA version 113 CUDA SETUP: Loading binary /opt/conda/envs/sqltest/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda113.so... Training Alpaca-LoRA model with params: base_model: decapoda-research/llama-7b-hf data_path: b-mc2/sql-create-context output_dir: ./lora-alpaca batch_size: 128 micro_batch_size: 16 num_epochs: 1 learning_rate: 0.0003 cutoff_len: 256 val_set_size: 2000 lora_r: 8 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: ['q_proj', 'v_proj'] train_on_inputs: True add_eos_token: False group_by_length: False wandb_project: wandb_run_name: wandb_watch: wandb_log_model: resume_from_checkpoint: False prompt template: alpaca Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 33/33 [01:24<00:00, 2.57s/it] Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 33/33 [01:24<00:00, 2.57s/it] The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization. The tokenizer class you load from this checkpoint is 'LLaMATokenizer'. The class this function is called from is 'LlamaTokenizer'. The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization. The tokenizer class you load from this checkpoint is 'LLaMATokenizer'. The class this function is called from is 'LlamaTokenizer'. Found cached dataset json (/home/chrisdono/.cache/huggingface/datasets/b-mc2___json/b-mc2--sql-create-context-d62c31544f758e00/0.0.0/fe5dd6ea2639a6df622901539cb550cf8797e5a6b2dd7af1cf934bed8e 233e6e) 0%| | 0/1 [00:00<?, ?it/s] Found cached dataset json (/home/chrisdono/.cache/huggingface/datasets/b-mc2___json/b-mc2--sql-create-context-d62c31544f758e00/0.0.0/fe5dd6ea2639a6df622901539cb550cf8797e5a6b2dd7af1cf934bed8e 233e6e) 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 9.30it/s] 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 7.83it/s] trainable params: 4194304 || all params: 6742609920 || trainable%: 0.06220594176090199 trainable params: 4194304 || all params: 6742609920 || trainable%: 0.06220594176090199 Loading cached split indices for dataset at /home/chrisdono/.cache/huggingface/datasets/b-mc2___json/b-mc2--sql-create-context-d62c31544f758e00/0.0.0/fe5dd6ea2639a6df622901539cb550cf8797e5a6b 2dd7af1cf934bed8e233e6e/cache-5a5ac0bd39fc20e0.arrow and /home/chrisdono/.cache/huggingface/datasets/b-mc2___json/b-mc2--sql-create-context-d62c31544f758e00/0.0.0/fe5dd6ea2639a6df622901539cb5 50cf8797e5a6b2dd7af1cf934bed8e233e6e/cache-782fec259d4b8f6a.arrow Loading cached split indices for dataset at /home/chrisdono/.cache/huggingface/datasets/b-mc2___json/b-mc2--sql-create-context-d62c31544f758e00/0.0.0/fe5dd6ea2639a6df622901539cb550cf8797e5a6b 2dd7af1cf934bed8e233e6e/cache-5a5ac0bd39fc20e0.arrow and /home/chrisdono/.cache/huggingface/datasets/b-mc2___json/b-mc2--sql-create-context-d62c31544f758e00/0.0.0/fe5dd6ea2639a6df622901539cb5 50cf8797e5a6b2dd7af1cf934bed8e233e6e/cache-782fec259d4b8f6a.arrow {'loss': 2.7003, 'learning_rate': 2.9999999999999997e-05, 'epoch': 0.02} {'loss': 2.566, 'learning_rate': 5.9999999999999995e-05, 'epoch': 0.03} {'loss': 2.2648, 'learning_rate': 8.999999999999999e-05, 'epoch': 0.05} {'loss': 1.657, 'learning_rate': 0.00011099999999999999, 'epoch': 0.07} {'loss': 1.1599, 'learning_rate': 0.00014099999999999998, 'epoch': 0.08} {'loss': 0.9037, 'learning_rate': 0.00017099999999999998, 'epoch': 0.1} {'loss': 0.8137, 'learning_rate': 0.000201, 'epoch': 0.12} {'loss': 0.7827, 'learning_rate': 0.00023099999999999998, 'epoch': 0.13} {'loss': 0.7554, 'learning_rate': 0.000261, 'epoch': 0.15} {'loss': 0.7357, 'learning_rate': 0.00029099999999999997, 'epoch': 0.17} {'loss': 0.6893, 'learning_rate': 0.0002957831325301205, 'epoch': 0.18} {'loss': 0.6606, 'learning_rate': 0.00028975903614457827, 'epoch': 0.2} {'loss': 0.6506, 'learning_rate': 0.0002837349397590361, 'epoch': 0.22} {'loss': 0.6462, 'learning_rate': 0.00027771084337349395, 'epoch': 0.23} [215/1857] {'loss': 0.6315, 'learning_rate': 0.0002716867469879518, 'epoch': 0.25} {'loss': 0.6337, 'learning_rate': 0.0002656626506024096, 'epoch': 0.27} {'loss': 0.6223, 'learning_rate': 0.00025963855421686746, 'epoch': 0.28} {'loss': 0.6136, 'learning_rate': 0.00025361445783132525, 'epoch': 0.3} {'loss': 0.6198, 'learning_rate': 0.00024759036144578314, 'epoch': 0.32} {'loss': 0.6084, 'learning_rate': 0.00024156626506024095, 'epoch': 0.33} {'eval_loss': 0.608456552028656, 'eval_runtime': 123.856, 'eval_samples_per_second': 16.148, 'eval_steps_per_second': 1.009, 'epoch': 0.33} {'loss': 0.6021, 'learning_rate': 0.00023554216867469876, 'epoch': 0.35} {'loss': 0.5949, 'learning_rate': 0.0002295180722891566, 'epoch': 0.37} {'loss': 0.5972, 'learning_rate': 0.00022349397590361444, 'epoch': 0.38} {'loss': 0.5922, 'learning_rate': 0.00021746987951807228, 'epoch': 0.4} {'loss': 0.5876, 'learning_rate': 0.0002114457831325301, 'epoch': 0.42} {'loss': 0.5788, 'learning_rate': 0.00020542168674698793, 'epoch': 0.43} {'loss': 0.5894, 'learning_rate': 0.0001993975903614458, 'epoch': 0.45} {'loss': 0.5877, 'learning_rate': 0.0001933734939759036, 'epoch': 0.47} {'loss': 0.5835, 'learning_rate': 0.00018734939759036142, 'epoch': 0.48} {'loss': 0.5791, 'learning_rate': 0.00018132530120481925, 'epoch': 0.5} {'loss': 0.5841, 'learning_rate': 0.00017530120481927712, 'epoch': 0.52} {'loss': 0.5728, 'learning_rate': 0.00016927710843373493, 'epoch': 0.53} {'loss': 0.569, 'learning_rate': 0.00016325301204819274, 'epoch': 0.55} {'loss': 0.5709, 'learning_rate': 0.00015722891566265058, 'epoch': 0.57} {'loss': 0.5762, 'learning_rate': 0.00015120481927710845, 'epoch': 0.58} {'loss': 0.5704, 'learning_rate': 0.00014518072289156626, 'epoch': 0.6} {'loss': 0.5661, 'learning_rate': 0.0001391566265060241, 'epoch': 0.62} {'loss': 0.5662, 'learning_rate': 0.00013313253012048193, 'epoch': 0.63} {'loss': 0.5674, 'learning_rate': 0.00012710843373493975, 'epoch': 0.65} {'loss': 0.5635, 'learning_rate': 0.00012108433734939758, 'epoch': 0.67} {'eval_loss': 0.568750262260437, 'eval_runtime': 122.9061, 'eval_samples_per_second': 16.273, 'eval_steps_per_second': 1.017, 'epoch': 0.67} {'loss': 0.5609, 'learning_rate': 0.00011506024096385541, 'epoch': 0.69} {'loss': 0.5724, 'learning_rate': 0.00010903614457831325, 'epoch': 0.7} {'loss': 0.5603, 'learning_rate': 0.00010301204819277107, 'epoch': 0.72} {'loss': 0.5599, 'learning_rate': 9.698795180722891e-05, 'epoch': 0.74} {'loss': 0.5655, 'learning_rate': 9.096385542168674e-05, 'epoch': 0.75} {'loss': 0.5578, 'learning_rate': 8.493975903614457e-05, 'epoch': 0.77} {'loss': 0.5577, 'learning_rate': 7.89156626506024e-05, 'epoch': 0.79} {'loss': 0.5606, 'learning_rate': 7.289156626506024e-05, 'epoch': 0.8} {'loss': 0.5496, 'learning_rate': 6.686746987951806e-05, 'epoch': 0.82} {'loss': 0.5635, 'learning_rate': 6.08433734939759e-05, 'epoch': 0.84} {'loss': 0.5522, 'learning_rate': 5.481927710843373e-05, 'epoch': 0.85} {'loss': 0.5572, 'learning_rate': 4.879518072289156e-05, 'epoch': 0.87} {'loss': 0.5454, 'learning_rate': 4.2771084337349395e-05, 'epoch': 0.89} {'loss': 0.5485, 'learning_rate': 3.6746987951807227e-05, 'epoch': 0.9} {'loss': 0.5592, 'learning_rate': 3.072289156626506e-05, 'epoch': 0.92} {'loss': 0.5499, 'learning_rate': 2.469879518072289e-05, 'epoch': 0.94} {'loss': 0.55, 'learning_rate': 1.867469879518072e-05, 'epoch': 0.95} {'loss': 0.5511, 'learning_rate': 1.2650602409638553e-05, 'epoch': 0.97} {'loss': 0.5531, 'learning_rate': 6.626506024096385e-06, 'epoch': 0.99} 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 598/598 [4:45:30<00:00, 27.59s/it] {'train_runtime': 17131.1027, 'train_samples_per_second': 4.47, 'train_steps_per_second': 0.035, 'train_loss': 0.7246327424129116, 'epoch': 1.0} 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 598/598 [4:45:30<00:00, 28.65s/it]
nolanaatama/stlslxrswhls
nolanaatama
2023-04-29T23:28:14Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-29T23:19:00Z
--- license: creativeml-openrail-m ---
nergaldarski/mistoonSapphire
nergaldarski
2023-04-29T23:25:45Z
0
1
null
[ "region:us" ]
null
2023-04-29T23:12:10Z
CivitAI: https://civitai.com/models/32022/mistoonsapphire
MyneFactory/MF-AscendanceOfABookworm
MyneFactory
2023-04-29T23:02:44Z
169
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "anime", "aiart", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-01-23T01:01:54Z
--- license: creativeml-openrail-m language: - en pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - anime - aiart --- <div style="padding-bottom: 40px"> <!--Logo--> <div style="text-align: center;"> <img src="https://logo.mynefactory.ai/MF-AscendanceOfABookworm" alt="Myne Factory Logo" style="width:100%;"> </div> <!--Table of contents--> <div style="font-size: 14px; padding: 4px 8px; display: flex; justify-content: space-around; color: black; font-weight: 500;"> <a href="#model-info" style="text-decoration: none; color: #204F8F">Model Info</a> | <a href="#recsettings" style="text-decoration: none; color: #204F8F"">Recommmended Settings</a> | <a href="#promptformat" style="text-decoration: none; color: #204F8F"">Prompt Format</a> | <a href="#examples" style="text-decoration: none; color: #204F8F"">Examples</a> | <a href="#mynelinks" style="text-decoration: none; color: #204F8F"">Socials</a> </div> </div> <!--Title--> <div style="text-align: center; display: flex; flex-direction: column; padding-bottom: 10px;"> <h1 style=" font-size:38px; padding:2px; margin:20px 0 0 0">Ascendance Of A Bookworm</h1> <span style=" font-size:18px; padding:2px; margin:5px 0 0 0">I'll Stop at Nothing to Become a Librarian</span> </div> <!--Example shortcuts--> <div style="display: flex; align-items:top; justify-content:space-around; align-items: center; padding: 0px 70px;"> <a href="#example1" style="padding:10px"> <img src="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/resolve/main/Example%20pictures/V2/46321-3363481787-MFB%20style%3B%20Myne%3B%20southern%20side%3B%20face%3B.png" style="margin:0"/> </a> <a href="#example2" style="padding:5px"> <img src="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/resolve/main/Example%20pictures/V2/jpgs/2.jpg" style="margin:0"/> </a> <a href="#example3" style="padding:5px"> <img src="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/resolve/main/Example%20pictures/V2/jpgs/3.jpg" style="margin:0"/> </a> </div> <div style="display: flex; align-items:top; justify-content:space-around; align-items: center; padding-bottom: 0px;"> <a href="#example4" style="padding:0px"> <img src="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/resolve/main/Example%20pictures/V2/jpgs/4.jpg" style="margin:0"/> </a> <a href="#example5" style="padding:20px"> <img src="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/resolve/main/Example%20pictures/V2/jpgs/5.jpg" style="margin:0"/> </a> <a href="#example7" style="padding:0px"> <img src="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/resolve/main/Example%20pictures/V2/jpgs/7.jpg" style="margin:0"/> </a> </div> <div style="display: flex; align-items:top; justify-content:space-around; align-items: center; padding-bottom: 0px;"> <a href="#example8" style="padding:5px"> <img src="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/resolve/main/Example%20pictures/V2/jpgs/8.jpg" style="margin:0"/> </a> <a href="#example10" style="padding:5px"> <img src="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/resolve/main/Example%20pictures/V2/jpgs/10.jpg" style="margin:0"/> </a> <a href="#example11" style="padding:5px"> <img src="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/resolve/main/Example%20pictures/V2/jpgs/11.jpg" style="margin:0"/> </a> </div> <div style="display: flex; align-items:top; justify-content:space-around; align-items: center; padding: 0px 70px;"> <a href="#example12" style="padding:10px"> <img src="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/resolve/main/Example%20pictures/V2/jpgs/12.jpg" style="margin:0"/> </a> <a href="#example13" style="padding:5px"> <img src="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/resolve/main/Example%20pictures/V2/jpgs/13.jpg" style="margin:0"/> </a> <a href="#example14" style="padding:5px"> <img src="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/resolve/main/Example%20pictures/V2/jpgs/14.jpg" style="margin:0"/> </a> </div> <a href="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/tree/main/Example%20pictures/V2">All example images</a> <!--Model Info--> <div style="padding:10px; margin: 40px 0; background-color: #f9f9f9; box-shadow: 0 4px 6px rgba(0,0,0,0.1);" id="model-info"> <h2 style="font-size:28px; font-family: Arial, Helvetica, sans-serif; font-weight: bold; margin:0; color: #222;">Model Info</h2> <p> <div style="font-size: 18px; color: #666;"><strong>Downloads: </strong></div> <a style="color: #333; display: block;" href="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/resolve/main/MF-AscendanceOfABookworm_V2_T3.1.ckpt">MF-AscendanceOfABookworm_V2_T3.1.ckpt (2.13 GB)</a> <a style="color: #333; display: block;" href="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/resolve/main/MF-AscendanceOfABookworm_V2_T3.1.safetensors">MF-AscendanceOfABookworm_V2_T3.1.safetensors (2.13 GB)</a> </p> <!-- Technical details start here --> <!-- Technical details end here --> <p style="font-size: 18px; color: #666;"> <strong>Authors: </strong><span>Juusoz, Tylenol, Goldkoron and Expl0dingCat</span> <div>Feel free to join our <a href="https://discord.gg/GdJBzaTSCF">Discord</a> community for updates on current models or models on other shows.</p></div> </p> </div> <!--Prompt format--> <div style="padding:10px; margin: 40px 0; background-color: #f9f9f9; box-shadow: 0 4px 6px rgba(0,0,0,0.1);" id="promptformat"> <h2 style="font-size:28px; font-family: Arial, Helvetica, sans-serif; font-weight: bold; margin:0; color: #222;">Prompt Format</h2> <i style="color: #666666e8; padding-left:8px;"> <div>The prompts we trained on are available in the corresponding T{version} prompt list.txt file.</div> <a style="color: #333" href="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/blob/main/T3.2 Prompt list.txt">T3.2 Prompt list.txt</a> </i> <div style="padding:8px"> <strong style="font-size: 16px; color: #333;">Format:</strong> <code style="font-size: 14px; padding: 6px; line-height: 22px; background-color: #f5f5f5; border-radius: 4px; color: #000;">Parent tag, description prompt 1, description prompt 2, etc;</code> </div> <p style="font-size: 18px; color: #666;"> The parent tag serves as the primary label for the overall theme of the image and acts as the main subject. The description prompts are a comprehensive list of attributes, objects, actions, and other elements that describe the subject in detail. Each subject is separated by a semicolon (;) while the individual attributes, objects, actions, and elements are separated by a comma (,). </p> <h3>Example:</h3> <div style="padding:8px"> <strong style="font-size: 16px; color: #333;">Positive prompts:</strong> <code style="font-size: 14px; padding: 6px; line-height: 22px; background-color: #f5f5f5; border-radius: 4px; color: #000;">MFB Style; 1boy; 1girl; Lutz; Myne, poor, yellow eyes, blue hair, hairstick; (masterpiece); detailed; reflective; depth of field; 8k; photo;</code> </div> <div style="padding:8px"> <strong style="font-size: 16px; color: #333;">Negative prompts:</strong> <code style="font-size: 14px; padding: 6px; line-height: 22px; background-color: #f5f5f5; border-radius: 4px; color: #000;">(bad hands, error), bad anatomy, low quality, worst quality, watermark, signature, poorly drawn face, noise, grain, nude, naked, upskirt, blind, AOB Style, solo</code> </div> <h3>Style tags:</h3> <div>You can specify what style the image should generate in using the following tags.</div> <div style="padding:8px"> <strong style="font-size: 16px; color: #333;">MyneFactoryBase style, for more artistic pictures</strong> <code style="font-size: 14px; padding: 6px; line-height: 22px; background-color: #f5f5f5; border-radius: 4px; color: #000;">MFB Style</code> </div> <div style="padding:8px"> <strong style="font-size: 16px; color: #333;">Ascendance of a Bookworm style, for more anime accurate pictures</strong> <code style="font-size: 14px; padding: 6px; line-height: 22px; background-color: #f5f5f5; border-radius: 4px; color: #000;">AOB Style</code> </div> <p style="font-size: 18px; color: #666;">Just because we haven’t trained on something doesn’t mean the base AI model doesn’t already know what it is, so go crazy.</p> </div> <!--Recommmended settings--> <div style="padding:10px; margin: 40px 0; background-color: #f9f9f9; box-shadow: 0 4px 6px rgba(0,0,0,0.1);" id="recsettings"> <h2 style="font-size:28px; font-family: Arial, Helvetica, sans-serif; font-weight: bold; margin:0; color: #222;">Recommended Settings</h2> <ul style="list-style-type: none; padding: 0 8px"> <li style="margin-bottom: 10px;"> <span style="display: inline-block; padding-right: 20px; font-weight: 900; color: #333;">Sampling Steps</span> <span style="color: #666; padding-left:8px;"><strong>40</strong></span> </li> <li style="margin-bottom: 10px;"> <span style="display: inline-block; padding-right: 20px; font-weight: 900; color: #333;">Sampler</span> <span style="color: #666; padding-left:8px;"><strong>DPM++ SDE Karras</strong></span> </li> <li style="margin-bottom: 10px;"> <span style="display: inline-block; padding-right: 20px; font-weight: 900; color: #333;">Image Size</span> <span style="color: #666; padding-left:8px;">At least <strong>768x768</strong></span> </li> <li style="margin-bottom: 10px;"> <span style="display: inline-block; padding-right: 20px; font-weight: 900; color: #333;">CFG</span> <span style="color: #666; padding-left:8px;"><strong>7</strong></span> </li> <li style="margin-bottom: 10px;"> <span style="display: inline-block; padding-right: 20px; font-weight: 900; color: #333;">Clip skip</span> <span style="color: #666; padding-left:8px;"><strong>1</strong> (settings, Clip skip)</span> </li> </ul> </div> <!--Examples--> <div style="padding:10px; margin: 40px 0; background-color: #f9f9f9; box-shadow: 0 4px 6px rgba(0,0,0,0.1);"" id="examples"> <h2 style="font-size:28px; font-family: Arial, Helvetica, sans-serif; font-weight: bold; margin:0; color: #222;">Examples</h2> <div style="display: flex; flex-wrap: wrap; justify-content: center;"> <!--Example 1--> <div style="padding: 20px; width: 100%; text-align: center;" id="example1"> <a href="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/blob/main/Example%20pictures/V2/46321-3363481787-MFB%20style%3B%20Myne%3B%20southern%20side%3B%20face%3B.png"> <img src="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/resolve/main/Example%20pictures/V2/46321-3363481787-MFB%20style%3B%20Myne%3B%20southern%20side%3B%20face%3B.png" style="width: 100%; margin: 0px 0; border: 1px solid #ddd;" /> </a> <div> <div style="display: flex; flex-direction: column; text-align: left;"> <div style="padding: 4px 2px;"> <strong style="font-size: 16px; color: #333; display: block;">Prompt:</strong> <code style="font-size: 14px; background-color: #f5f5f5; border-radius: 4px; color: #000;">MFB style; Myne; southern side; face;</code> </div> <div style="padding: 4px 2px;"> <strong style="font-size: 16px; color: #696969; display: block;">Negative Prompt:</strong> <code style="font-size: 14px; background-color: #f5f5f59d; border-radius: 4px; color: #000;">(bad hands, error), bad anatomy, low quality, worst quality, watermark, signature, poorly drawn face, noise, grain, nude, naked, upskirt, blind, (brown hair)</code> </div> </div> </div> <div style="padding:10px 40px"> <div style="display: flex; flex-wrap: wrap; justify-content: space-between;"> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Steps:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">40</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Sampler:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">DPM++ SDE Karras</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">CFG Scale:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">7</code> </div> </div> <div style="display: flex; flex-wrap: wrap; justify-content: space-between;"> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Seed:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">3363481787</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Size:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">1024x1024</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Model:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">last-AOB150ep-ep01-gs26690</code> </div> </div> </div> </div> <!--Example 2--> <div style="padding: 20px; width: 100%; text-align: center;" id="example2"> <a href="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/blob/main/Example%20pictures/V2/47539-2555971430-MFB%20Style%3B%201girl%3B%20Effa%2C%20green%20cloak%2C%20coat%2C%20happy%3B%20(masterpiece)%3B%20detailed%3B%20reflective%3B%20depth%20of%20field%3B%208k%3B%20photo%3B%20home%2C%20kitchen%3B.png"> <img src="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/resolve/main/Example%20pictures/V2/47539-2555971430-MFB%20Style%3B%201girl%3B%20Effa%2C%20green%20cloak%2C%20coat%2C%20happy%3B%20(masterpiece)%3B%20detailed%3B%20reflective%3B%20depth%20of%20field%3B%208k%3B%20photo%3B%20home%2C%20kitchen%3B.png" style="width: 100%; margin: 0px 0; border: 1px solid #ddd;" /> </a> <div> <div style="display: flex; flex-direction: column; text-align: left;"> <div style="padding: 4px 2px;"> <strong style="font-size: 16px; color: #333; display: block;">Prompt:</strong> <code style="font-size: 14px; background-color: #f5f5f5; border-radius: 4px; color: #000;">MFB Style; 1girl; Effa, green cloak, coat, happy; (masterpiece); detailed; reflective; depth of field; 8k; photo; home, kitchen; (solo)</code> </div> <div style="padding: 4px 2px;"> <strong style="font-size: 16px; color: #696969; display: block;">Negative Prompt:</strong> <code style="font-size: 14px; background-color: #f5f5f59d; border-radius: 4px; color: #000;">(bad hands, error), bad anatomy, low quality, worst quality, watermark, signature, poorly drawn face, noise, grain, nude, naked, upskirt, blind, AOB Style, twins</code> </div> </div> </div> <div style="padding:10px 40px"> <div style="display: flex; flex-wrap: wrap; justify-content: space-between;"> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Steps:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">40</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Sampler:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">DPM++ SDE Karras</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">CFG Scale:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">7</code> </div> </div> <div style="display: flex; flex-wrap: wrap; justify-content: space-between;"> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Seed:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">2555971430</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Size:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">1088x1280</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Model:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">last-AOB150ep-ep01-gs26690</code> </div> </div> </div> </div> <!--Example 3--> <div style="padding: 20px; width: 100%; text-align: center;" id="example3"> <a href="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/blob/main/Example%20pictures/V2/46358-2191070077-MFB%20style%3B%20Tuuli%2C%20blue%20baptism%20dress%2C%20flower%20hairstick%3B%20northern%20side%2C%20temple%3B%20baptism%20ceremony.png"> <img src="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/resolve/main/Example%20pictures/V2/46358-2191070077-MFB%20style%3B%20Tuuli%2C%20blue%20baptism%20dress%2C%20flower%20hairstick%3B%20northern%20side%2C%20temple%3B%20baptism%20ceremony.png" style="width: 100%; margin: 0px 0; border: 1px solid #ddd;" /> </a> <div> <div style="display: flex; flex-direction: column; text-align: left;"> <div style="padding: 4px 2px;"> <strong style="font-size: 16px; color: #333; display: block;">Prompt:</strong> <code style="font-size: 14px; background-color: #f5f5f5; border-radius: 4px; color: #000;">MFB style; Tuuli, blue baptism dress, flower hairstick; northern side, temple; baptism ceremony</code> </div> <div style="padding: 4px 2px;"> <strong style="font-size: 16px; color: #696969; display: block;">Negative Prompt:</strong> <code style="font-size: 14px; background-color: #f5f5f59d; border-radius: 4px; color: #000;">(bad hands, error), bad anatomy, low quality, worst quality, watermark, signature, poorly drawn face, noise, grain, nude, naked, upskirt, blind, (brown hair)</code> </div> </div> </div> <div style="padding:10px 40px"> <div style="display: flex; flex-wrap: wrap; justify-content: space-between;"> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Steps:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">40</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Sampler:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">DPM++ SDE Karras</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">CFG Scale:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">7</code> </div> </div> <div style="display: flex; flex-wrap: wrap; justify-content: space-between;"> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Seed:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">2191070077</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Size:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">1024x1024</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Model:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">last-AOB150ep-ep01-gs26690</code> </div> </div> </div> </div> <!--Example 4--> <div style="padding: 20px; width: 100%; text-align: center;" id="example4"> <a href="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/blob/main/Example%20pictures/V2/47427-3644149238-MFB%20Style%3B%201girl%3B%20Freida%2C%20formal%3B%20(masterpiece)%3B%20detailed%3B%20reflective%3B%20depth%20of%20field%3B%208k%3B%20photo%3B%20Freida's%20estate%2C%20(solo).png"> <img src="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/resolve/main/Example%20pictures/V2/47427-3644149238-MFB%20Style%3B%201girl%3B%20Freida%2C%20formal%3B%20(masterpiece)%3B%20detailed%3B%20reflective%3B%20depth%20of%20field%3B%208k%3B%20photo%3B%20Freida's%20estate%2C%20(solo).png" style="width: 100%; margin: 0px 0; border: 1px solid #ddd;" /> </a> <div> <div style="display: flex; flex-direction: column; text-align: left;"> <div style="padding: 4px 2px;"> <strong style="font-size: 16px; color: #333; display: block;">Prompt:</strong> <code style="font-size: 14px; background-color: #f5f5f5; border-radius: 4px; color: #000;">MFB Style; 1girl; Freida, formal; (masterpiece); detailed; reflective; depth of field; 8k; photo; Freida's estate, (solo)</code> </div> <div style="padding: 4px 2px;"> <strong style="font-size: 16px; color: #696969; display: block;">Negative Prompt:</strong> <code style="font-size: 14px; background-color: #f5f5f59d; border-radius: 4px; color: #000;">(bad hands, error), bad anatomy, low quality, worst quality, watermark, signature, poorly drawn face, noise, grain, nude, naked, upskirt, blind, AOB Style, solo, twins</code> </div> </div> </div> <div style="padding:10px 40px"> <div style="display: flex; flex-wrap: wrap; justify-content: space-between;"> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Steps:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">40</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Sampler:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">DPM++ SDE Karras</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">CFG Scale:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">7</code> </div> </div> <div style="display: flex; flex-wrap: wrap; justify-content: space-between;"> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Seed:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">3644149238</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Size:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">1472x1088</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Model:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">last-AOB150ep-ep01-gs26690</code> </div> </div> </div> </div> <!--Example 5--> <div style="padding: 20px; width: 100%; text-align: center;" id="example5"> <a href="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/blob/main/Example%20pictures/V2/46760-1125709576-MFB%20Style%3B%20Lutz%2C%20smooth%20hair%2C%20formal%3B%20masterpiece%3B%20detailed%3B%20reflective%3B%20depth%20of%20field%3B%208k%3B%20photo%3B%20northern%20side%3B.png"> <img src="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/resolve/main/Example%20pictures/V2/46760-1125709576-MFB%20Style%3B%20Lutz%2C%20smooth%20hair%2C%20formal%3B%20masterpiece%3B%20detailed%3B%20reflective%3B%20depth%20of%20field%3B%208k%3B%20photo%3B%20northern%20side%3B.png" style="width: 100%; margin: 0px 0; border: 1px solid #ddd;" /> </a> <div> <div style="display: flex; flex-direction: column; text-align: left;"> <div style="padding: 4px 2px;"> <strong style="font-size: 16px; color: #333; display: block;">Prompt:</strong> <code style="font-size: 14px; background-color: #f5f5f5; border-radius: 4px; color: #000;">MFB Style; Lutz, smooth hair, formal; masterpiece; detailed; reflective; depth of field; 8k; photo; northern side;</code> </div> <div style="padding: 4px 2px;"> <strong style="font-size: 16px; color: #696969; display: block;">Negative Prompt:</strong> <code style="font-size: 14px; background-color: #f5f5f59d; border-radius: 4px; color: #000;">(bad hands, error), bad anatomy, low quality, worst quality, watermark, signature, poorly drawn face, noise, grain, nude, naked, upskirt, blind</code> </div> </div> </div> <div style="padding:10px 40px"> <div style="display: flex; flex-wrap: wrap; justify-content: space-between;"> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Steps:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">40</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Sampler:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">DPM++ SDE Karras</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">CFG Scale:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">7</code> </div> </div> <div style="display: flex; flex-wrap: wrap; justify-content: space-between;"> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Seed:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">1125709576</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Size:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">1024x1024</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Model:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">last-AOB150ep-ep01-gs26690</code> </div> </div> </div> </div> <!--Example 7--> <div style="padding: 20px; width: 100%; text-align: center;" id="example7"> <a href="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/blob/main/Example%20pictures/V2/46569-3833015024-MFB%20Style%3B%20Myne%2C%20blue%20baptism%20dress%2C%20white%20flower%20hairstick%2C%20blue%20hair%3B%20masterpiece%3B%20detailed%3B%20reflective%3B%20depth%20of%20field%3B%208k%3B%20(.png"> <img src="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/resolve/main/Example%20pictures/V2/46569-3833015024-MFB%20Style%3B%20Myne%2C%20blue%20baptism%20dress%2C%20white%20flower%20hairstick%2C%20blue%20hair%3B%20masterpiece%3B%20detailed%3B%20reflective%3B%20depth%20of%20field%3B%208k%3B%20(.png" style="width: 100%; margin: 0px 0; border: 1px solid #ddd;" /> </a> <div> <div style="display: flex; flex-direction: column; text-align: left;"> <div style="padding: 4px 2px;"> <strong style="font-size: 16px; color: #333; display: block;">Prompt:</strong> <code style="font-size: 14px; background-color: #f5f5f5; border-radius: 4px; color: #000;">MFB Style; Myne, blue baptism dress, white flower hairstick, blue hair; masterpiece; detailed; reflective; depth of field; 8k; (solo); photo; temple;</code> </div> <div style="padding: 4px 2px;"> <strong style="font-size: 16px; color: #696969; display: block;">Negative Prompt:</strong> <code style="font-size: 14px; background-color: #f5f5f59d; border-radius: 4px; color: #000;">(bad hands, error), bad anatomy, low quality, worst quality, watermark, signature, poorly drawn face, noise, grain, nude, naked, upskirt, blind</code> </div> </div> </div> <div style="padding:10px 40px"> <div style="display: flex; flex-wrap: wrap; justify-content: space-between;"> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Steps:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">40</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Sampler:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">DPM++ 2S a Karras</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">CFG Scale:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">7</code> </div> </div> <div style="display: flex; flex-wrap: wrap; justify-content: space-between;"> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Seed:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">3833015024</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Size:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">1280x1024</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Model:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">last-AOB150ep-ep01-gs26690</code> </div> </div> </div> </div> <!--Example 8--> <div style="padding: 20px; width: 100%; text-align: center;" id="example8"> <a href="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/blob/main/Example%20pictures/V2/47409-581812665-MFB%20Style%3B%201boy%3B%201girl%3B%20Lutz%3B%20Myne%2C%20(poor)%2C%20yellow%20eyes%2C%20dark%20blue%20hair%3B%20(masterpiece)%3B%20detailed%3B%20reflective%3B%20depth%20of%20field%3B%208k.png"> <img src="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/resolve/main/Example%20pictures/V2/47409-581812665-MFB%20Style%3B%201boy%3B%201girl%3B%20Lutz%3B%20Myne%2C%20(poor)%2C%20yellow%20eyes%2C%20dark%20blue%20hair%3B%20(masterpiece)%3B%20detailed%3B%20reflective%3B%20depth%20of%20field%3B%208k.png" style="width: 100%; margin: 0px 0; border: 1px solid #ddd;" /> </a> <div> <div style="display: flex; flex-direction: column; text-align: left;"> <div style="padding: 4px 2px;"> <strong style="font-size: 16px; color: #333; display: block;">Prompt:</strong> <code style="font-size: 14px; background-color: #f5f5f5; border-radius: 4px; color: #000;">MFB Style; 1boy; 1girl; Lutz; Myne, (poor), yellow eyes, dark blue hair; (masterpiece); detailed; reflective; depth of field; 8k; photo; northern side</code> </div> <div style="padding: 4px 2px;"> <strong style="font-size: 16px; color: #696969; display: block;">Negative Prompt:</strong> <code style="font-size: 14px; background-color: #f5f5f59d; border-radius: 4px; color: #000;">(bad hands, error), bad anatomy, low quality, worst quality, watermark, signature, poorly drawn face, noise, grain, nude, naked, upskirt, blind, AOB Style, solo, twins</code> </div> </div> </div> <div style="padding:10px 40px"> <div style="display: flex; flex-wrap: wrap; justify-content: space-between;"> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Steps:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">40</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Sampler:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">DPM++ 2S a Karras</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">CFG Scale:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">7</code> </div> </div> <div style="display: flex; flex-wrap: wrap; justify-content: space-between;"> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Seed:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">581812665</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Size:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">1472x1088</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Model:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">last-AOB150ep-ep01-gs26690</code> </div> </div> </div> </div> <!--Example 10--> <div style="padding: 20px; width: 100%; text-align: center;" id="example10"> <a href="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/blob/main/Example%20pictures/V2/46628-2037890935-MFB%20Style%3B%20Tuuli%2C%20blue%20baptism%20dress%2C%20flower%20hairstick%2C%20blue%20hair%3B%20masterpiece%3B%20detailed%3B%20reflective%3B%20depth%20of%20field%3B%208k%3B%20photo%3B.png"> <img src="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/resolve/main/Example%20pictures/V2/46628-2037890935-MFB%20Style%3B%20Tuuli%2C%20blue%20baptism%20dress%2C%20flower%20hairstick%2C%20blue%20hair%3B%20masterpiece%3B%20detailed%3B%20reflective%3B%20depth%20of%20field%3B%208k%3B%20photo%3B.png" style="width: 100%; margin: 0px 0; border: 1px solid #ddd;" /> </a> <div> <div style="display: flex; flex-direction: column; text-align: left;"> <div style="padding: 4px 2px;"> <strong style="font-size: 16px; color: #333; display: block;">Prompt:</strong> <code style="font-size: 14px; background-color: #f5f5f5; border-radius: 4px; color: #000;">MFB Style; Tuuli, blue baptism dress, flower hairstick, blue hair; masterpiece; detailed; reflective; depth of field; 8k; photo; northern side; baptism ceremony; petals; angel wings; halo; night</code> </div> <div style="padding: 4px 2px;"> <strong style="font-size: 16px; color: #696969; display: block;">Negative Prompt:</strong> <code style="font-size: 14px; background-color: #f5f5f59d; border-radius: 4px; color: #000;">(bad hands, error), bad anatomy, low quality, worst quality, watermark, signature, poorly drawn face, noise, grain, nude, naked, upskirt, blind</code> </div> </div> </div> <div style="padding:10px 40px"> <div style="display: flex; flex-wrap: wrap; justify-content: space-between;"> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Steps:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">40</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Sampler:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">DPM++ SDE Karras</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">CFG Scale:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">7</code> </div> </div> <div style="display: flex; flex-wrap: wrap; justify-content: space-between;"> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Seed:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">2037890935</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Size:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">1024x1024</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Model:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">last-AOB150ep-ep01-gs26690</code> </div> </div> </div> </div> <!--Example 11--> <div style="padding: 20px; width: 100%; text-align: center;" id="example11"> <a href="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/blob/main/Example%20pictures/V2/47428-3644149239-MFB%20Style%3B%201girl%3B%20Freida%2C%20formal%3B%20(masterpiece)%3B%20detailed%3B%20reflective%3B%20depth%20of%20field%3B%208k%3B%20photo%3B%20Freida's%20estate%2C%20(solo).png"> <img src="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/resolve/main/Example%20pictures/V2/47428-3644149239-MFB%20Style%3B%201girl%3B%20Freida%2C%20formal%3B%20(masterpiece)%3B%20detailed%3B%20reflective%3B%20depth%20of%20field%3B%208k%3B%20photo%3B%20Freida's%20estate%2C%20(solo).png" style="width: 100%; margin: 0px 0; border: 1px solid #ddd;" /> </a> <div> <div style="display: flex; flex-direction: column; text-align: left;"> <div style="padding: 4px 2px;"> <strong style="font-size: 16px; color: #333; display: block;">Prompt:</strong> <code style="font-size: 14px; background-color: #f5f5f5; border-radius: 4px; color: #000;">MFB Style; 1girl; Freida, formal; (masterpiece); detailed; reflective; depth of field; 8k; photo; Freida's estate, (solo)</code> </div> <div style="padding: 4px 2px;"> <strong style="font-size: 16px; color: #696969; display: block;">Negative Prompt:</strong> <code style="font-size: 14px; background-color: #f5f5f59d; border-radius: 4px; color: #000;">(bad hands, error), bad anatomy, low quality, worst quality, watermark, signature, poorly drawn face, noise, grain, nude, naked, upskirt, blind, AOB Style, solo, twins</code> </div> </div> </div> <div style="padding:10px 40px"> <div style="display: flex; flex-wrap: wrap; justify-content: space-between;"> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Steps:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">40</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Sampler:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">DPM++ SDE Karras</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">CFG Scale:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">7</code> </div> </div> <div style="display: flex; flex-wrap: wrap; justify-content: space-between;"> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Seed:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">3644149239</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Size:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">1472x1088</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Model:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">last-AOB150ep-ep01-gs26690</code> </div> </div> </div> </div> <!--Example 12--> <div style="padding: 20px; width: 100%; text-align: center;" id="example12"> <a href="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/blob/main/Example%20pictures/V2/47324-905950623-MFB%20Style%3B%201boy%3B%201girl%3B%20Lutz%3B%20Myne%2C%20poor%2C%20yellow%20eyes%2C%20blue%20hair%2C%20hairpin%3B%20cauldron%3B%20sticks%3B%20(masterpiece)%3B%20detailed%3B%20reflective.png"> <img src="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/resolve/main/Example%20pictures/V2/47324-905950623-MFB%20Style%3B%201boy%3B%201girl%3B%20Lutz%3B%20Myne%2C%20poor%2C%20yellow%20eyes%2C%20blue%20hair%2C%20hairpin%3B%20cauldron%3B%20sticks%3B%20(masterpiece)%3B%20detailed%3B%20reflective.png" style="width: 100%; margin: 0px 0; border: 1px solid #ddd;" /> </a> <div> <div style="display: flex; flex-direction: column; text-align: left;"> <div style="padding: 4px 2px;"> <strong style="font-size: 16px; color: #333; display: block;">Prompt:</strong> <code style="font-size: 14px; background-color: #f5f5f5; border-radius: 4px; color: #000;">MFB Style; 1boy; 1girl; Lutz; Myne, poor, yellow eyes, blue hair, hairpin; cauldron; sticks; (masterpiece); detailed; reflective; depth of field; 8k; photo; forest, river;</code> </div> <div style="padding: 4px 2px;"> <strong style="font-size: 16px; color: #696969; display: block;">Negative Prompt:</strong> <code style="font-size: 14px; background-color: #f5f5f59d; border-radius: 4px; color: #000;">(bad hands, error), bad anatomy, low quality, worst quality, watermark, signature, poorly drawn face, noise, grain, nude, naked, upskirt, blind</code> </div> </div> </div> <div style="padding:10px 40px"> <div style="display: flex; flex-wrap: wrap; justify-content: space-between;"> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Steps:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">40</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Sampler:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">DPM++ SDE Karras</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">CFG Scale:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">7</code> </div> </div> <div style="display: flex; flex-wrap: wrap; justify-content: space-between;"> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Seed:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">905950623</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Size:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">1024x1024</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Model:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">last-AOB150ep-ep01-gs26690</code> </div> </div> </div> </div> <!--Example 13--> <div style="padding: 20px; width: 100%; text-align: center;" id="example13"> <a href="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/blob/main/Example%20pictures/V2/47386-4048767915-MFB%20Style%3B%201boy%3B%201girl%3B%20Lutz%3B%20Myne%2C%20poor%2C%20yellow%20eyes%2C%20blue%20hair%2C%20hairstick%3B%20(masterpiece)%3B%20detailed%3B%20reflective%3B%20depth%20of%20field.png"> <img src="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/resolve/main/Example%20pictures/V2/47386-4048767915-MFB%20Style%3B%201boy%3B%201girl%3B%20Lutz%3B%20Myne%2C%20poor%2C%20yellow%20eyes%2C%20blue%20hair%2C%20hairstick%3B%20(masterpiece)%3B%20detailed%3B%20reflective%3B%20depth%20of%20field.png" style="width: 100%; margin: 0px 0; border: 1px solid #ddd;" /> </a> <div> <div style="display: flex; flex-direction: column; text-align: left;"> <div style="padding: 4px 2px;"> <strong style="font-size: 16px; color: #333; display: block;">Prompt:</strong> <code style="font-size: 14px; background-color: #f5f5f5; border-radius: 4px; color: #000;">MFB Style; 1boy; 1girl; Lutz; Myne, poor, yellow eyes, blue hair, hairstick; (masterpiece); detailed; reflective; depth of field; 8k; photo;</code> </div> <div style="padding: 4px 2px;"> <strong style="font-size: 16px; color: #696969; display: block;">Negative Prompt:</strong> <code style="font-size: 14px; background-color: #f5f5f59d; border-radius: 4px; color: #000;">(bad hands, error), bad anatomy, low quality, worst quality, watermark, signature, poorly drawn face, noise, grain, nude, naked, upskirt, blind, AOB Style, solo</code> </div> </div> </div> <div style="padding:10px 40px"> <div style="display: flex; flex-wrap: wrap; justify-content: space-between;"> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Steps:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">40</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Sampler:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">DPM++ SDE Karras</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">CFG Scale:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">7</code> </div> </div> <div style="display: flex; flex-wrap: wrap; justify-content: space-between;"> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Seed:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">4048767915</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Size:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">1600x1024</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Model:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">last-AOB150ep-ep01-gs26690</code> </div> </div> </div> </div> <!--Example 14--> <div style="padding: 20px; width: 100%; text-align: center;" id="example14"> <a href="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/blob/main/Example%20pictures/V2/47678-904033739-AOB%20Style%3B%201boy%3B%201girl%3B%20Myne%2C%20poor%3B%20Lutz%2C%20happy%2C%20eyes%20closed%3B%20southern%20side.png"> <img src="https://huggingface.co/MyneFactory/MF-AscendanceOfABookworm/resolve/main/Example%20pictures/V2/47678-904033739-AOB%20Style%3B%201boy%3B%201girl%3B%20Myne%2C%20poor%3B%20Lutz%2C%20happy%2C%20eyes%20closed%3B%20southern%20side.png" style="width: 100%; margin: 0px 0; border: 1px solid #ddd;" /> </a> <div> <div style="display: flex; flex-direction: column; text-align: left;"> <div style="padding: 4px 2px;"> <strong style="font-size: 16px; color: #333; display: block;">Prompt:</strong> <code style="font-size: 14px; background-color: #f5f5f5; border-radius: 4px; color: #000;">AOB Style; 1boy; 1girl; Myne, poor; Lutz, happy, eyes closed; southern side</code> </div> <div style="padding: 4px 2px;"> <strong style="font-size: 16px; color: #696969; display: block;">Negative Prompt:</strong> <code style="font-size: 14px; background-color: #f5f5f59d; border-radius: 4px; color: #000;">bad hands, bad anatomy, nude, naked, MFB Style</code> </div> </div> </div> <div style="padding:10px 40px"> <div style="display: flex; flex-wrap: wrap; justify-content: space-between;"> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Steps:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">40</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Sampler:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">DPM++ SDE Karras</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">CFG Scale:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">7</code> </div> </div> <div style="display: flex; flex-wrap: wrap; justify-content: space-between;"> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Seed:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">904033739</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Size:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">1024x1024</code> </div> <div style="padding:4px"> <strong style="font-size: 16px; color: #333;">Model:</strong> <code style="font-size: 14px; padding-left: 6px; background-color: #f5f5f5; border-radius: 4px; color: #000;">last-AOB150ep-ep01-gs26690</code> </div> </div> </div> </div> </div> </div> <!--Links--> <div style="padding: 10px 0; text-align: center; font-size: 18px;" id="mynelinks"> <h2 style="font-size:28px; font-family: Arial, Helvetica, sans-serif; font-weight: bold; margin:0;">Socials</h2> <a href="https://mynefactory.ai" style="text-decoration: none; color: #0077c9;">Website</a> | <a href="https://discord.gg/GdJBzaTSCF" style="text-decoration: none; color: #0077c9;">Discord</a> | <a href="https://www.patreon.com/user?u=36154428" style="text-decoration: none; color: #0077c9;">Patreon</a> | <a href="https://civitai.com/user/MyneFactory" style="text-decoration: none; color: #0077c9;">CivitAI</a> </div>
Rirou360/test
Rirou360
2023-04-29T22:56:56Z
0
0
transformers
[ "transformers", "biology", "medical", "code", "text-generation", "fr", "dataset:bigscience-historical-texts/Open_Medieval_French", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2023-04-29T21:20:05Z
--- license: openrail datasets: - bigscience-historical-texts/Open_Medieval_French language: - fr library_name: transformers tags: - biology - medical - code metrics: - Perplexity: 32.4 - FID: 12.5 - BLEU: 0.87 pipeline_tag: text-generation ---
andyleow/poca-SoccerTwos
andyleow
2023-04-29T22:44:35Z
40
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-04-29T22:38:21Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: andyleow/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ZyXin/Reinforce-CartPole-v1
ZyXin
2023-04-29T21:34:47Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-04-29T21:34:36Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
dhnanjay/dj-lora-dolly_v1
dhnanjay
2023-04-29T21:29:16Z
4
0
transformers
[ "transformers", "gptj", "text-generation", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-04-29T21:09:47Z
--- language: - en --- This is a Finetuning of GPT-J-6B using LoRa - https://huggingface.co/EleutherAI/gpt-j-6B
ethzanalytics/dolly-v2-12b-sharded-8bit
ethzanalytics
2023-04-29T21:12:13Z
6
4
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "dolly", "dolly-v2", "instruct", "sharded", "8bit", "quantized", "en", "dataset:databricks/databricks-dolly-15k", "license:mit", "autotrain_compatible", "text-generation-inference", "8-bit", "region:us" ]
text-generation
2023-04-24T21:10:55Z
--- license: mit datasets: - databricks/databricks-dolly-15k language: - en pipeline_tag: text-generation tags: - dolly - dolly-v2 - instruct - sharded - 8bit - quantized inference: false --- # dolly-v2-12b: sharded **8bit** checkpoint <a href="https://colab.research.google.com/gist/pszemraj/1bc9cea67e6c8dc450b868e0cfc18163/dolly-v2-12b-8bit-inference.ipynb"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> </a> This is a sharded checkpoint (with ~4GB shards) of the `databricks/dolly-v2-12b` model **in `8bit` precision** using `bitsandbytes`. Refer to the [original model](https://huggingface.co/databricks/dolly-v2-12b) for all details w.r.t. to the model. For more info on loading 8bit models, refer to the [example repo](https://huggingface.co/ybelkada/bloom-1b7-8bit) and/or the `4.28.0` [release info](https://github.com/huggingface/transformers/releases/tag/v4.28.0). - total model size is only ~12.5 GB! - this enables low-RAM loading, i.e. Colab :) - **update**: generation speed can be greatly improved by setting `use_cache=True` and generating via contrastive search. [example notenook here](https://colab.research.google.com/gist/pszemraj/12c832952c88d77f6924c0718a2d257d/dolly-v2-12b-8bit-use_cache-bettertransformer.ipynb) ## Basic Usage install/upgrade `transformers`, `accelerate`, and `bitsandbytes`. For this to work **you must have** `transformers>=4.28.0` and `bitsandbytes>0.37.2`. ```bash pip install -U -q transformers bitsandbytes accelerate ``` Load the model. As it is serialized in 8bit you don't need to do anything special: ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_name = "ethzanalytics/dolly-v2-12b-sharded-8bit" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) ```
joelb/ClearVAE
joelb
2023-04-29T21:08:31Z
25
0
diffusers
[ "diffusers", "safetensors", "license:creativeml-openrail-m", "region:us" ]
null
2023-04-29T00:47:33Z
--- license: creativeml-openrail-m ---
Apv/Flaubert2904_v2
Apv
2023-04-29T20:55:44Z
63
0
transformers
[ "transformers", "tf", "flaubert", "text-classification", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-29T20:44:28Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: Apv/Flaubert2904_v2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Apv/Flaubert2904_v2 This model is a fine-tuned version of [flaubert/flaubert_base_cased](https://huggingface.co/flaubert/flaubert_base_cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.0288 - Validation Loss: 1.0387 - Train Accuracy: 0.5407 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 755, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 1.2265 | 1.1301 | 0.5185 | 0 | | 1.0377 | 1.0387 | 0.5407 | 1 | | 1.0230 | 1.0387 | 0.5407 | 2 | | 1.0235 | 1.0387 | 0.5407 | 3 | | 1.0288 | 1.0387 | 0.5407 | 4 | ### Framework versions - Transformers 4.28.1 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
theastro/folks-diffusion-v1-5
theastro
2023-04-29T20:49:03Z
40
1
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-04-29T20:31:04Z
--- license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image inference: true extra_gated_prompt: >- This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. CompVis claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license carefully here: https://huggingface.co/spaces/CompVis/stable-diffusion-license extra_gated_heading: Please read the LICENSE to access this model library_name: diffusers --- # Folks Diffusion v1-5 Model Card ### Diffusers ```py from diffusers import StableDiffusionPipeline import torch model_id = "theastro/folks-diffusion-v1-5" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "a photo of folks, like an astronaut riding a horse on mars" image = pipe(prompt).images[0] image.save("a portrait image of folks") ``` *This model card was written by: Matheus Ranielli and is based on the [runwaynl model v1.5].*
wozeparrot/tinyrwkv-4-converted
wozeparrot
2023-04-29T20:38:37Z
0
0
null
[ "text-generation", "en", "region:us" ]
text-generation
2023-04-29T20:32:54Z
--- language: - en tags: - text-generation --- Pre-converted [RWKV-4](https://github.com/BlinkDL/RWKV-LM) for use with [tinyrwkv](https://github.com/wozeparrot/tinyrwkv). Both Pile pretrained and Raven finetuned up to 3b are here. Only float32 for now.
4bit/stable-vicuna-13B-GPTQ
4bit
2023-04-29T20:36:43Z
11
7
transformers
[ "transformers", "pytorch", "llama", "text-generation", "causal-lm", "en", "dataset:OpenAssistant/oasst1", "dataset:nomic-ai/gpt4all_prompt_generations", "dataset:tatsu-lab/alpaca", "arxiv:2302.13971", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-04-29T20:32:21Z
--- language: - en tags: - causal-lm - llama license: cc-by-nc-sa-4.0 datasets: - OpenAssistant/oasst1 - nomic-ai/gpt4all_prompt_generations - tatsu-lab/alpaca inference: false --- # StableVicuna-13B-GPTQ This repo contains 4bit GPTQ format quantised models of [CarterAI's StableVicuna 13B](https://huggingface.co/CarperAI/stable-vicuna-13b-delta). It is the result of first merging the deltas from the above repository with the original Llama 13B weights, then quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa). ## Repositories available * [4bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/stable-vicuna-13B-GPTQ). * [4bit and 5bit GGML models for CPU inference](https://huggingface.co/TheBloke/stable-vicuna-13B-GGML). * [Unquantised 16bit model in HF format](https://huggingface.co/TheBloke/stable-vicuna-13B-HF). ## PROMPT TEMPLATE This model works best with the following prompt template: ``` ### Human: your prompt here ### Assistant: ``` ## How to easily download and use this model in text-generation-webui Load text-generation-webui as you normally do. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter this repo name: `TheBloke/stable-vicuna-13B-GPTQ`. 3. Click **Download**. 4. Wait until it says it's finished downloading. 5. As this is a GPTQ model, fill in the `GPTQ parameters` on the right: `Bits = 4`, `Groupsize = 128`, `model_type = Llama` 6. Now click the **Refresh** icon next to **Model** in the top left. 7. In the **Model drop-down**: choose this model: `stable-vicuna-13B-GPTQ`. 8. Click **Reload the Model** in the top right. 9. Once it says it's loaded, click the **Text Generation tab** and enter a prompt! ## Provided files I have uploaded two versions of the GPTQ. **Compatible file - stable-vicuna-13B-GPTQ-4bit.compat.no-act-order.safetensors** In the `main` branch - the default one - you will find `stable-vicuna-13B-GPTQ-4bit.compat.no-act-order.safetensors` This will work with all versions of GPTQ-for-LLaMa. It has maximum compatibility It was created without the `--act-order` parameter. It may have slightly lower inference quality compared to the other file, but is guaranteed to work on all versions of GPTQ-for-LLaMa and text-generation-webui. * `stable-vicuna-13B-GPTQ-4bit.compat.no-act-order.safetensors` * Works with all versions of GPTQ-for-LLaMa code, both Triton and CUDA branches * Works with text-generation-webui one-click-installers * Parameters: Groupsize = 128g. No act-order. * Command used to create the GPTQ: ``` CUDA_VISIBLE_DEVICES=0 python3 llama.py stable-vicuna-13B-HF c4 --wbits 4 --true-sequential --groupsize 128 --save_safetensors stable-vicuna-13B-GPTQ-4bit.no-act-order.safetensors ``` **Latest file - stable-vicuna-13B-GPTQ-4bit.latest.act-order.safetensors** Created for more recent versions of GPTQ-for-LLaMa, and uses the `--act-order` flag for maximum theoretical performance. To access this file, please switch to the `latest` branch fo this repo and download from there. * `stable-vicuna-13B-GPTQ-4bit.latest.act-order.safetensors` * Only works with recent GPTQ-for-LLaMa code * **Does not** work with text-generation-webui one-click-installers * Parameters: Groupsize = 128g. **act-order**. * Offers highest quality quantisation, but requires recent GPTQ-for-LLaMa code * Command used to create the GPTQ: ``` CUDA_VISIBLE_DEVICES=0 python3 llama.py stable-vicuna-13B-HF c4 --wbits 4 --true-sequential --act-order --groupsize 128 --save_safetensors stable-vicuna-13B-GPTQ-4bit.act-order.safetensors ``` ## Manual instructions for `text-generation-webui` File `stable-vicuna-13B-GPTQ-4bit.compat.no-act-order.safetensors` can be loaded the same as any other GPTQ file, without requiring any updates to [oobaboogas text-generation-webui](https://github.com/oobabooga/text-generation-webui). [Instructions on using GPTQ 4bit files in text-generation-webui are here](https://github.com/oobabooga/text-generation-webui/wiki/GPTQ-models-\(4-bit-mode\)). The other `safetensors` model file was created using `--act-order` to give the maximum possible quantisation quality, but this means it requires that the latest GPTQ-for-LLaMa is used inside the UI. If you want to use the act-order `safetensors` files and need to update the Triton branch of GPTQ-for-LLaMa, here are the commands I used to clone the Triton branch of GPTQ-for-LLaMa, clone text-generation-webui, and install GPTQ into the UI: ``` # Clone text-generation-webui, if you don't already have it git clone https://github.com/oobabooga/text-generation-webui # Make a repositories directory mkdir text-generation-webui/repositories cd text-generation-webui/repositories # Clone the latest GPTQ-for-LLaMa code inside text-generation-webui git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa ``` Then install this model into `text-generation-webui/models` and launch the UI as follows: ``` cd text-generation-webui python server.py --model stable-vicuna-13B-GPTQ --wbits 4 --groupsize 128 --model_type Llama # add any other command line args you want ``` The above commands assume you have installed all dependencies for GPTQ-for-LLaMa and text-generation-webui. Please see their respective repositories for further information. If you can't update GPTQ-for-LLaMa or don't want to, you can use `stable-vicuna-13B-GPTQ-4bit.no-act-order.safetensors` as mentioned above, which should work without any upgrades to text-generation-webui. # Original StableVicuna-13B model card ## Model Description StableVicuna-13B is a [Vicuna-13B v0](https://huggingface.co/lmsys/vicuna-13b-delta-v0) model fine-tuned using reinforcement learning from human feedback (RLHF) via Proximal Policy Optimization (PPO) on various conversational and instructional datasets. ## Model Details * **Trained by**: [Duy Phung](https://github.com/PhungVanDuy) of [CarperAI](https://carper.ai) * **Model type:** **StableVicuna-13B** is an auto-regressive language model based on the LLaMA transformer architecture. * **Language(s)**: English * **Library**: [trlX](https://github.com/CarperAI/trlx) * **License for delta weights**: [CC-BY-NC-SA-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/) * *Note*: License for the base LLaMA model's weights is Meta's [non-commercial bespoke license](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md). * **Contact**: For questions and comments about the model, visit the [CarperAI](https://discord.com/invite/KgfkCVYHdu) and [StableFoundation](https://discord.gg/stablediffusion) Discord servers. | Hyperparameter | Value | |---------------------------|-------| | \\(n_\text{parameters}\\) | 13B | | \\(d_\text{model}\\) | 5120 | | \\(n_\text{layers}\\) | 40 | | \\(n_\text{heads}\\) | 40 | ## Training ### Training Dataset StableVicuna-13B is fine-tuned on a mix of three datasets. [OpenAssistant Conversations Dataset (OASST1)](https://huggingface.co/datasets/OpenAssistant/oasst1), a human-generated, human-annotated assistant-style conversation corpus consisting of 161,443 messages distributed across 66,497 conversation trees, in 35 different languages; [GPT4All Prompt Generations](https://huggingface.co/datasets/nomic-ai/gpt4all_prompt_generations), a dataset of 400k prompts and responses generated by GPT-4; and [Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca), a dataset of 52,000 instructions and demonstrations generated by OpenAI's text-davinci-003 engine. The reward model used during RLHF was also trained on [OpenAssistant Conversations Dataset (OASST1)](https://huggingface.co/datasets/OpenAssistant/oasst1) along with two other datasets: [Anthropic HH-RLHF](https://huggingface.co/datasets/Anthropic/hh-rlhf), a dataset of preferences about AI assistant helpfulness and harmlessness; and [Stanford Human Preferences Dataset](https://huggingface.co/datasets/stanfordnlp/SHP) a dataset of 385K collective human preferences over responses to questions/instructions in 18 different subject areas, from cooking to legal advice. ### Training Procedure `CarperAI/stable-vicuna-13b-delta` was trained using PPO as implemented in [`trlX`](https://github.com/CarperAI/trlx/blob/main/trlx/trainer/accelerate_ppo_trainer.py) with the following configuration: | Hyperparameter | Value | |-------------------|---------| | num_rollouts | 128 | | chunk_size | 16 | | ppo_epochs | 4 | | init_kl_coef | 0.1 | | target | 6 | | horizon | 10000 | | gamma | 1 | | lam | 0.95 | | cliprange | 0.2 | | cliprange_value | 0.2 | | vf_coef | 1.0 | | scale_reward | None | | cliprange_reward | 10 | | generation_kwargs | | | max_length | 512 | | min_length | 48 | | top_k | 0.0 | | top_p | 1.0 | | do_sample | True | | temperature | 1.0 | ## Use and Limitations ### Intended Use This model is intended to be used for text generation with a focus on conversational tasks. Users may further fine-tune the model on their own data to improve the model's performance on their specific tasks in accordance with the non-commercial [license](https://creativecommons.org/licenses/by-nc/4.0/). ### Limitations and bias The base LLaMA model is trained on various data, some of which may contain offensive, harmful, and biased content that can lead to toxic behavior. See Section 5.1 of the LLaMA [paper](https://arxiv.org/abs/2302.13971). We have not performed any studies to determine how fine-tuning on the aforementioned datasets affect the model's behavior and toxicity. Do not treat chat responses from this model as a substitute for human judgment or as a source of truth. Please use responsibly. ## Acknowledgements This work would not have been possible without the support of [Stability AI](https://stability.ai/). ## Citations ```bibtex @article{touvron2023llama, title={LLaMA: Open and Efficient Foundation Language Models}, author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume}, journal={arXiv preprint arXiv:2302.13971}, year={2023} } ``` ```bibtex @misc{vicuna2023, title = {Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality}, url = {https://vicuna.lmsys.org}, author = {Chiang, Wei-Lin and Li, Zhuohan and Lin, Zi and Sheng, Ying and Wu, Zhanghao and Zhang, Hao and Zheng, Lianmin and Zhuang, Siyuan and Zhuang, Yonghao and Gonzalez, Joseph E. and Stoica, Ion and Xing, Eric P.}, month = {March}, year = {2023} } ``` ```bibtex @misc{gpt4all, author = {Yuvanesh Anand and Zach Nussbaum and Brandon Duderstadt and Benjamin Schmidt and Andriy Mulyar}, title = {GPT4All: Training an Assistant-style Chatbot with Large Scale Data Distillation from GPT-3.5-Turbo}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/nomic-ai/gpt4all}}, } ``` ```bibtex @misc{alpaca, author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto }, title = {Stanford Alpaca: An Instruction-following LLaMA model}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}}, } ``` ```bibtex @software{leandro_von_werra_2023_7790115, author = {Leandro von Werra and Alex Havrilla and Max reciprocated and Jonathan Tow and Aman cat-state and Duy V. Phung and Louis Castricato and Shahbuland Matiana and Alan and Ayush Thakur and Alexey Bukhtiyarov and aaronrmm and Fabrizio Milo and Daniel and Daniel King and Dong Shin and Ethan Kim and Justin Wei and Manuel Romero and Nicky Pochinkov and Omar Sanseviero and Reshinth Adithyan and Sherman Siu and Thomas Simonini and Vladimir Blagojevic and Xu Song and Zack Witten and alexandremuzio and crumb}, title = {{CarperAI/trlx: v0.6.0: LLaMa (Alpaca), Benchmark Util, T5 ILQL, Tests}}, month = mar, year = 2023, publisher = {Zenodo}, version = {v0.6.0}, doi = {10.5281/zenodo.7790115}, url = {https://doi.org/10.5281/zenodo.7790115} } ```
email81227/ppo-LunarLander-v2-Unit8-part-I
email81227
2023-04-29T20:34:57Z
0
0
null
[ "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-04-29T20:34:54Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -126.32 +/- 89.07 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'test' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'email81227/ppo-LunarLander-v2-Unit8-part-I' 'batch_size': 512 'minibatch_size': 128} ```
OtherBrian/xlm-roberta-base-finetuned-panx-de
OtherBrian
2023-04-29T20:22:00Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-28T22:10:44Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8414824042354406 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1567 - F1: 0.8415 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3594 | 1.0 | 191 | 0.1855 | 0.7971 | | 0.1597 | 2.0 | 382 | 0.1544 | 0.8272 | | 0.1003 | 3.0 | 573 | 0.1567 | 0.8415 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
jackwheeler/dreambooth_Anni
jackwheeler
2023-04-29T20:05:39Z
0
0
diffusers
[ "diffusers", "license:openrail", "region:us" ]
null
2023-04-29T19:48:15Z
--- license: openrail library_name: diffusers ---
Udoy/bert-finetuned-ner
Udoy
2023-04-29T20:01:49Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-29T19:50:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9327828241123038 - name: Recall type: recall value: 0.9505217098619994 - name: F1 type: f1 value: 0.9415687255147119 - name: Accuracy type: accuracy value: 0.9862247601106728 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0626 - Precision: 0.9328 - Recall: 0.9505 - F1: 0.9416 - Accuracy: 0.9862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0889 | 1.0 | 1756 | 0.0701 | 0.9189 | 0.9345 | 0.9267 | 0.9821 | | 0.0339 | 2.0 | 3512 | 0.0670 | 0.9262 | 0.9461 | 0.9361 | 0.9854 | | 0.0186 | 3.0 | 5268 | 0.0626 | 0.9328 | 0.9505 | 0.9416 | 0.9862 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Yahiael1/test_bart_newsroom
Yahiael1
2023-04-29T19:41:53Z
115
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-04-29T19:00:49Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: test_bart_newsroom results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_bart_newsroom This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4137 - Rouge1: 0.1856 - Rouge2: 0.073 - Rougel: 0.1654 - Rougelsum: 0.1715 - Gen Len: 19.2987 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 250 | 2.4246 | 0.1768 | 0.0794 | 0.1635 | 0.168 | 19.3148 | | 2.7103 | 2.0 | 500 | 2.4137 | 0.1856 | 0.073 | 0.1654 | 0.1715 | 19.2987 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
LChinese212/LegsUpMS
LChinese212
2023-04-29T19:38:14Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-29T19:37:06Z
--- license: creativeml-openrail-m ---
LChinese212/fullnelsonms
LChinese212
2023-04-29T19:33:55Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-29T19:33:03Z
--- license: creativeml-openrail-m ---
lmeninato/t5-small-codesearchnet-python3
lmeninato
2023-04-29T19:30:03Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-04-29T16:22:40Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-codesearchnet-python3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-codesearchnet-python3 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1308 - Rouge1: 0.0046 - Rouge2: 0.0044 - Avg Length: 0.317 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Avg Length | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:----------:| | No log | 1.0 | 39 | 8.0395 | 0.1733 | 0.0997 | 18.4264 | | No log | 2.0 | 78 | 0.3933 | 0.0 | 0.0 | 0.0004 | | No log | 3.0 | 117 | 0.2376 | 0.0 | 0.0 | 0.0 | | No log | 3.99 | 156 | 0.1693 | 0.0 | 0.0 | 0.0 | | No log | 4.99 | 195 | 0.1308 | 0.0046 | 0.0044 | 0.317 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
yegh/bert-base-german-uncased-finetuned-recipes
yegh
2023-04-29T19:16:05Z
70
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-04-29T17:16:25Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: yegh/bert-base-german-uncased-finetuned-recipes results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # yegh/bert-base-german-uncased-finetuned-recipes This model is a fine-tuned version of [dbmdz/bert-base-german-uncased](https://huggingface.co/dbmdz/bert-base-german-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.2342 - Validation Loss: 2.0627 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -969, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.2342 | 2.0627 | 0 | ### Framework versions - Transformers 4.28.1 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
WeoKeo/q-FrozenLake-v1-4x4-noSlippery
WeoKeo
2023-04-29T19:05:26Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-04-29T15:00:12Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.73 +/- 0.44 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="WeoKeo/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
WeoKeo/q-Taxi-v3
WeoKeo
2023-04-29T19:00:51Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-04-29T19:00:49Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="WeoKeo/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Aman0112/bert_emo_classifier
Aman0112
2023-04-29T18:51:28Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-29T17:56:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion model-index: - name: bert_emo_classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_emo_classifier This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2724 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9319 | 0.25 | 500 | 0.4107 | | 0.3265 | 0.5 | 1000 | 0.3068 | | 0.2458 | 0.75 | 1500 | 0.2721 | | 0.2487 | 1.0 | 2000 | 0.2313 | | 0.158 | 1.25 | 2500 | 0.2422 | | 0.1796 | 1.5 | 3000 | 0.2162 | | 0.145 | 1.75 | 3500 | 0.1951 | | 0.1648 | 2.0 | 4000 | 0.1908 | | 0.1048 | 2.25 | 4500 | 0.2399 | | 0.1171 | 2.5 | 5000 | 0.2230 | | 0.1116 | 2.75 | 5500 | 0.2244 | | 0.1122 | 3.0 | 6000 | 0.2250 | | 0.0713 | 3.25 | 6500 | 0.2616 | | 0.0697 | 3.5 | 7000 | 0.2672 | | 0.0775 | 3.75 | 7500 | 0.2748 | | 0.0742 | 4.0 | 8000 | 0.2724 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
jrreda/rl_04_PixelCopter
jrreda
2023-04-29T18:44:32Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-04-29T18:44:27Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: rl_04_PixelCopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 12.90 +/- 11.73 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Muhammadbasabr/Aqua
Muhammadbasabr
2023-04-29T18:37:26Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-04-29T18:37:26Z
--- license: bigscience-openrail-m ---
eimiss/EimisAnimeDiffusion_2.0v
eimiss
2023-04-29T18:24:48Z
92
28
diffusers
[ "diffusers", "stable-diffusion", "text-to-image", "image-to-image", "en", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-04-19T17:21:13Z
--- thumbnail: https://i.imgur.com/vJLBNJf.png language: - en tags: - stable-diffusion - text-to-image - image-to-image - diffusers license: creativeml-openrail-m inference: true --- # Diffusion model This model is trained using base model as the previous version with way bigger dataset.<br> There are two versions of it:<br> EimisAnimeDiffusion_2-0 (original)<br> EimisAnimeDiffusion_2-0_alternative (original + orangemix:0.2 + even bigger dataset).<br> Read the end to choose the one you want the most.<br> At the beginning all the examples will be using "EimisAnimeDiffusion_2-0". <br> # Sample generations Of course this model works well with anime style, magic, and a bunch of different effects. A couple of examples:<br> ``` Postitive:(1girl), sky, cloud, battle, armor, cape, boots, duel, scenery, outdoors, gloves, sunset, long hair, mountains, ice mountain Negative:lowres, bad anatomy, error body, error hair, error arm, error hands, bad hands, error fingers, bad fingers, missing fingers, error legs, bad legs, multiple legs, missing legs, error lighting, error shadow, error reflection, error, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, blurry, flat, lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly Steps: 30, Sampler: DPM++ 2S a Karras, CFG scale: 8, Seed: 4027860244, Size: 1024x768 ``` <img src=https://i.imgur.com/Pvykviv.png width=75% height=75%> ``` Positive:1girl, solo, water, blue hair, red eye, winter, village, magician, magic circle, medium breasts, snowing Negative:lowres, bad anatomy, error body, error hair, error arm, error hands, bad hands, error fingers, bad fingers, missing fingers, error legs, bad legs, multiple legs, missing legs, error lighting, error shadow, error reflection, error, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, blurry, flat, lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly Steps: 30, Sampler: DPM++ 2S a Karras, CFG scale: 7, Seed: 4016818418 ``` <img src=https://i.imgur.com/BLXctxZ.jpg width=75% height=75%> ``` Positive:1girl, solo, ahoge, bangs, blush, bridal gauntlets, capelet, closed mouth, crossed bangs, white long dress, final fantasy, winged capelet, yellow hair, hair band, hair between eyes, hair ornament, highres, jewelry, looking at viewer, extra short hair, beautiful detailed background, solo, upper body, shoulder wing, white gold theme, indoor, royal palace, glowing light, wind, flowers Negative:lowres, bad anatomy, error body, error hair, error arm, error hands, bad hands, error fingers, bad fingers, missing fingers, error legs, bad legs, multiple legs, missing legs, error lighting, error shadow, error reflection, error, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, blurry, flat, lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly Steps: 30, Sampler: DPM++ 2S a Karras, CFG scale: 7, Seed: 2762179779 ``` <img src=https://i.imgur.com/C3SDGCd.jpg width=75% height=75%> ``` Positive: 1girl, wavy hair, medium hair, magician, blue eyes, black hair, :d, (magic circle:1.2), (black coat), full body, (ancient ruins), (scenery), sky, outdoors, landscape, stars, Negative: lowres, bad anatomy, error body, error hair, error arm, error hands, bad hands, error fingers, bad fingers, missing fingers, error legs, bad legs, multiple legs, missing legs, error lighting, error shadow, error reflection, error, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, blurry, flat, lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly Steps: 30, Sampler: DPM++ 2S a Karras, CFG scale: 7, Seed: 477438759 ``` <img src=https://i.imgur.com/sumnvfW.jpg width=75% height=75%> # Scenery ``` Positive: moon, night, tree, scenery, sky, fantasy, cloud, moonlight, outdoors, castle, mountain, tower, forest, nature, house, bridge, building, gate, bush, grass, pagoda, water, field, cliff, full moon, night sky, star (sky), starry sky, bare tree, cloudy sky, (no humans), mountainous horizon, city Negative: lowres, bad anatomy, error body, error hair, error arm, error hands, bad hands, error fingers, bad fingers, missing fingers, error legs, bad legs, multiple legs, missing legs, error lighting, error shadow, error reflection, error, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, blurry, flat, lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly Steps: 30, Sampler: DPM++ 2S a Karras, CFG scale: 7, Seed: 561959925 ``` <img src=https://i.imgur.com/gskGUSv.jpg width=75% height=75%> ``` Positive:cloud, scenery, sky, day, outdoors, grass, fantasy, landscape, mountain, (floating island:1.5), blue sky, cloudy sky, river, flowers Negative: lowres, bad anatomy, error body, error hair, error arm, error hands, bad hands, error fingers, bad fingers, missing fingers, error legs, bad legs, multiple legs, missing legs, error lighting, error shadow, error reflection, error, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, blurry, flat, lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly Steps: 30, Sampler: DPM++ 2S a Karras, CFG scale: 7, Seed: 222763192 ``` <img src=https://i.imgur.com/fDbLPCB.jpg width=75% height=75%> # Small comparison with v1 Right V2, Left V1. ``` Positive:bubble, rating:safe, underwater, jellyfish, 1girl, jacket, solo, bangs, boots, water, submerged, thighs, gloves, air bubble, bubble blowing, silver hair, very long hair, black footwear, thigh cutout, red eyes, long sleeves, black jacket, thigh strap, looking at viewer, bare shoulders, black gloves, hair between eyes, magic Negative:lowres, bad anatomy, error body, error hair, error arm, error hands, bad hands, error fingers, bad fingers, missing fingers, error legs, bad legs, multiple legs, missing legs, error lighting, error shadow, error reflection, error, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, blurry, flat, lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly Steps: 30, Sampler: DPM++ 2S a Karras, CFG scale: 7, Seed: 4205949473 ``` <img src=https://i.imgur.com/ie07l2V.png width=75% height=75%> ``` Positive:1girl, cloud, sky, solo, magic, clock, sunset, moon, outdoors, dress, tower, sun, frills, electricity, lips, blonde hair, cloudy sky, long hair, hair ornament, wavy hair, purple eyes, looking at viewer, fire, fire magic, fire effect, electricity Negative:lowres, bad anatomy, error body, error hair, error arm, error hands, bad hands, error fingers, bad fingers, missing fingers, error legs, bad legs, multiple legs, missing legs, error lighting, error shadow, error reflection, error, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, blurry, flat, lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly Steps: 30, Sampler: DPM++ 2S a Karras, CFG scale: 7, Seed: 1143293364 ``` <img src=https://i.imgur.com/FhSmXqs.png width=75% height=75%> For more in depth testing between these two:<br> Better face structures (eyes fixed)<br> Higher resolution (new data was trained on 768x768 instead of 512x512)<br> Better looking characters, animations, enviroment, effects and way more <br> # Which model to choose EimisAnimeDiffusion_2-0 is trained on smaller dataset, however it keeps the style better.<br> It might be worse on some aspects like hardly getting specific prompts or some other small issues, however<br> it has way better quality, effects and keeps the style I wanted way better.<br> EimisAnimeDiffusion_2-0_alternative on the other hand understands better way more prompts (especially in comparison with some NSFW prompts).<br> However, way worse with style, effects, details.<br> Also sometimes not as smooth, some stuff be random, btu still really great alternative model. <br> Example:<br> Left normal, right alternative:<br> ``` Positive:1girl, solo, gloves, smile, tree, outdoors, :d, signature, sleeveless, skirt, breasts, hakama, bangs, fang, flower, petals, shirt, blush, standing, day, animal ears, long hair, open mouth, fox ears, cherry blossoms, japanese clothes, looking at viewer, black gloves, arm up, very long hair, bare shoulders, animal ear fluff, hakama skirt, medium breasts, cowboy shot, sleeveless shirt, grey hair, thick eyebrows, red eyes, half gloves Negative:lowres, bad anatomy, error body, error hair, error arm, error hands, bad hands, error fingers, bad fingers, missing fingers, error legs, bad legs, multiple legs, missing legs, error lighting, error shadow, error reflection, error, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, blurry, flat, lowres, text, error, cropped, worst quality, low quality Steps: 30, Sampler: DPM++ 2S a Karras, CFG scale: 7, Seed: 518161897 ``` <img src=https://i.imgur.com/UqDXt6X.png width=75% height=75%> Might not be the best example, but original does have a bit more detail and more flying leaves.<br> It is way mroe noticable with magic or element effects. Also with architecture and background in general.<br> But it does understand better some characters and specific prompts. <br> For example, Hatsune Miku: <img src=https://i.imgur.com/ivXHVbR.png width=75% height=75%> As you can see, the alternative way better on some prompts. # Some more info New datasets trained on clip skip 1, but clip skip 2 also works decently (not as crispy though).<br> Orangemix model link that was used in the alternative:<br> https://huggingface.co/WarriorMama777/OrangeMixs
rr3khan/ppo-LunarLander-v2
rr3khan
2023-04-29T18:09:52Z
5
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-29T18:09:29Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 292.35 +/- 17.64 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
fathyshalab/reklambox-wasser-strom-gas-setfit
fathyshalab
2023-04-29T17:54:49Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-04-29T17:54:38Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # Linkthat/reklambox-wasser-strom-gas-setfit This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("Linkthat/reklambox-wasser-strom-gas-setfit") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
kriahana/newkdoll
kriahana
2023-04-29T17:21:29Z
0
8
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-28T05:00:24Z
--- license: creativeml-openrail-m ---
Ganu3010/ppo-LunarLander-v1
Ganu3010
2023-04-29T17:19:51Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-04-29T17:19:44Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -137.51 +/- 75.94 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'Ganu3010/ppo-LunarLander-v1' 'batch_size': 512 'minibatch_size': 128} ```
jiaheillu/byheisexiong
jiaheillu
2023-04-29T17:05:55Z
0
0
null
[ "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-04-29T17:02:34Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### byheisexiong Dreambooth model trained by jiaheillu Sample pictures of this concept: ![0](https://huggingface.co/jiaheillu/byheisexiong/resolve/main/sample_images/00034-376622754.png) ![1](https://huggingface.co/jiaheillu/byheisexiong/resolve/main/sample_images/00039-409084255.png) ![2](https://huggingface.co/jiaheillu/byheisexiong/resolve/main/sample_images/00038-1052932731.png) ![3](https://huggingface.co/jiaheillu/byheisexiong/resolve/main/sample_images/00039-409084255_(1).png) ![4](https://huggingface.co/jiaheillu/byheisexiong/resolve/main/sample_images/00015-3859361009.png) ![5](https://huggingface.co/jiaheillu/byheisexiong/resolve/main/sample_images/00038-1052932731_(1).png)
fathyshalab/reklambox-unterhaltung-kultur-freizeit-setfit
fathyshalab
2023-04-29T17:00:39Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-04-29T17:00:29Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # Linkthat/reklambox-unterhaltung-kultur-freizeit-setfit This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("Linkthat/reklambox-unterhaltung-kultur-freizeit-setfit") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
LChinese212/realdoggyst
LChinese212
2023-04-29T16:50:52Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-29T16:44:03Z
--- license: creativeml-openrail-m ---
Bainbridge/bert-xxl-incl
Bainbridge
2023-04-29T16:30:25Z
106
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-29T16:25:52Z
--- license: mit tags: - generated_from_trainer model-index: - name: bert-xxl-incl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-xxl-incl This model is a fine-tuned version of [dbmdz/bert-base-italian-xxl-uncased](https://huggingface.co/dbmdz/bert-base-italian-xxl-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0005 - Acc: 1.0 - F1 Macro: 1.0 - F1 Weight: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | F1 Macro | F1 Weight | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:| | 0.6075 | 2.5 | 20 | 0.2080 | 0.9853 | 0.9851 | 0.9853 | | 0.0448 | 5.0 | 40 | 0.0012 | 1.0 | 1.0 | 1.0 | | 0.001 | 7.5 | 60 | 0.0005 | 1.0 | 1.0 | 1.0 | | 0.0007 | 10.0 | 80 | 0.0005 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
LChinese212/CheekBulgeFellatioMS
LChinese212
2023-04-29T16:01:51Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-29T16:00:52Z
--- license: creativeml-openrail-m ---
saitsharipov/cat
saitsharipov
2023-04-29T15:54:48Z
32
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-04-29T15:46:52Z
--- license: creativeml-openrail-m base_model: /root/MaxArkhipov/diffusers/examples/dreambooth/dog instance_prompt: a photo of sks1 cat tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - saitsharipov/cat This is a dreambooth model derived from /root/MaxArkhipov/diffusers/examples/dreambooth/dog. The weights were trained on a photo of sks1 cat using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
fathyshalab/reklambox-versicherungen-recht-setfit
fathyshalab
2023-04-29T15:33:05Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-04-29T15:32:54Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # Linkthat/reklambox-versicherungen-recht-setfit This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("Linkthat/reklambox-versicherungen-recht-setfit") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
Bainbridge/bert-incl
Bainbridge
2023-04-29T15:29:57Z
106
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-29T15:20:01Z
--- license: mit tags: - generated_from_trainer model-index: - name: bert-incl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-incl This model is a fine-tuned version of [dbmdz/bert-base-italian-cased](https://huggingface.co/dbmdz/bert-base-italian-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0004 - Acc: 1.0 - F1 Macro: 1.0 - F1 Weight: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | F1 Macro | F1 Weight | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:| | 0.684 | 0.67 | 20 | 0.6378 | 0.5588 | 0.3585 | 0.4007 | | 0.4681 | 1.33 | 40 | 0.1762 | 0.9559 | 0.9547 | 0.9556 | | 0.0989 | 2.0 | 60 | 0.0058 | 1.0 | 1.0 | 1.0 | | 0.0032 | 2.67 | 80 | 0.0009 | 1.0 | 1.0 | 1.0 | | 0.0011 | 3.33 | 100 | 0.0005 | 1.0 | 1.0 | 1.0 | | 0.0007 | 4.0 | 120 | 0.0004 | 1.0 | 1.0 | 1.0 | | 0.0007 | 4.67 | 140 | 0.0004 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
RafMuz/alpaca7B-lora
RafMuz
2023-04-29T15:08:27Z
0
0
null
[ "code", "en", "region:us" ]
null
2023-04-06T21:29:13Z
--- language: - en tags: - code --- # About Hi, this is the Readme. This Model was created as a study experiment, to re-create alpaca on my end. It uses the gururise/AlpacaDataCleaned Dataset ( From April 7 ) --- # Specifications **Base Model**:   LLaMA 7B **Training Parameters**:   Micro_Batch_Size = 8   Batch_Size = 128   Gradient_Accumulation_Steps = Batch_Size / Micro_Batch_Size   # ( 0.0625 )   Epochs = 2   Learning_Rate = 2e-5   Cutoff_Len = 256   # This ( 256 ) accounts for about 96% of all data   Lora_R = 4   Lora_Alpha = 16   Lora_Dropout = 0.05     # Files   adapter_model.bin                *# This is the Fine-tuned Weights that goes over the base LLaMA Model.*   adapter_config.bin                *# This is Config File for the adapter_model file.*   consolidated.00.pth              *# This File is the Base Model File ( LLaMA 7B ), merged with the fine-tuned weights ( adapter_model.bin ).*   tokenizer.model                    *# This is the tokenizer file, it converts the input text ( prompt ) to tokens that the NN can understand.*   params.json                          *# Parameters of the Model.*   ggml_model_f16.bin            *# This is the same model ( consolidated.00.pth ), but now it's in 'ggml f16' format. We need this format to quantize it with llama.cpp.*   **llama-hf-7b**                          *# This folder contains the same model ( consolidated.00.pth ), but now it's in 'huggingface' format. We need this format to quantize it with GPTQ.*   **quantized-model**:     ggml-model-q4_0.bin   *# This is the 4-bit Quantized Model by llama.cpp, I found this to be better than GPTQ.*     llama7b-4bit-128g.pt    *# This is the Quantized Model by GPTQ. It takes longer to train and gives worse results compared to llama.cpp, but it does have a ( 7.6% ) smaller file size.*
aimarsg/ner-2
aimarsg
2023-04-29T15:08:13Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-04-25T23:25:49Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ner-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ner-2 This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es-pharmaconer](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es-pharmaconer) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1618 - Precision: 0.7352 - Recall: 0.6436 - F1: 0.6863 - Accuracy: 0.9712 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 29 | 0.3028 | 0.0 | 0.0 | 0.0 | 0.9220 | | No log | 2.0 | 58 | 0.2800 | 0.0 | 0.0 | 0.0 | 0.9220 | | No log | 3.0 | 87 | 0.2136 | 0.2105 | 0.0277 | 0.0489 | 0.9302 | | No log | 4.0 | 116 | 0.1803 | 0.375 | 0.0727 | 0.1217 | 0.9391 | | No log | 5.0 | 145 | 0.1737 | 0.4923 | 0.2215 | 0.3055 | 0.9462 | | No log | 6.0 | 174 | 0.1354 | 0.6124 | 0.3772 | 0.4668 | 0.9584 | | No log | 7.0 | 203 | 0.1399 | 0.6062 | 0.4048 | 0.4855 | 0.9589 | | No log | 8.0 | 232 | 0.1444 | 0.6220 | 0.5294 | 0.5720 | 0.9623 | | No log | 9.0 | 261 | 0.1252 | 0.6439 | 0.6194 | 0.6314 | 0.9662 | | No log | 10.0 | 290 | 0.1757 | 0.7216 | 0.4394 | 0.5462 | 0.9604 | | No log | 11.0 | 319 | 0.1352 | 0.6707 | 0.5779 | 0.6208 | 0.9667 | | No log | 12.0 | 348 | 0.1276 | 0.6797 | 0.6021 | 0.6385 | 0.9677 | | No log | 13.0 | 377 | 0.1542 | 0.7328 | 0.5882 | 0.6526 | 0.9688 | | No log | 14.0 | 406 | 0.1418 | 0.7192 | 0.6471 | 0.6812 | 0.9712 | | No log | 15.0 | 435 | 0.1678 | 0.7162 | 0.5502 | 0.6223 | 0.9672 | | No log | 16.0 | 464 | 0.1559 | 0.7075 | 0.6194 | 0.6605 | 0.9689 | | No log | 17.0 | 493 | 0.1446 | 0.6568 | 0.6886 | 0.6723 | 0.9681 | | 0.079 | 18.0 | 522 | 0.1582 | 0.7348 | 0.5848 | 0.6513 | 0.9693 | | 0.079 | 19.0 | 551 | 0.1519 | 0.6977 | 0.6228 | 0.6581 | 0.9705 | | 0.079 | 20.0 | 580 | 0.1503 | 0.7251 | 0.6298 | 0.6741 | 0.9703 | | 0.079 | 21.0 | 609 | 0.1585 | 0.6834 | 0.6125 | 0.6460 | 0.9703 | | 0.079 | 22.0 | 638 | 0.1594 | 0.7126 | 0.6263 | 0.6667 | 0.9705 | | 0.079 | 23.0 | 667 | 0.1558 | 0.7008 | 0.6401 | 0.6691 | 0.9703 | | 0.079 | 24.0 | 696 | 0.1570 | 0.7273 | 0.6367 | 0.6790 | 0.9708 | | 0.079 | 25.0 | 725 | 0.1553 | 0.7022 | 0.6609 | 0.6809 | 0.9705 | | 0.079 | 26.0 | 754 | 0.1592 | 0.7148 | 0.6332 | 0.6716 | 0.9701 | | 0.079 | 27.0 | 783 | 0.1579 | 0.7170 | 0.6574 | 0.6859 | 0.9710 | | 0.079 | 28.0 | 812 | 0.1597 | 0.7148 | 0.6505 | 0.6812 | 0.9708 | | 0.079 | 29.0 | 841 | 0.1625 | 0.7309 | 0.6298 | 0.6766 | 0.9705 | | 0.079 | 30.0 | 870 | 0.1618 | 0.7352 | 0.6436 | 0.6863 | 0.9712 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
fathyshalab/reklambox-transport-logistik-setfit
fathyshalab
2023-04-29T14:51:59Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-04-29T14:51:49Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # Linkthat/reklambox-transport-logistik-setfit This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("Linkthat/reklambox-transport-logistik-setfit") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
rodri2023/ppo-unit8-LunarLander-v2
rodri2023
2023-04-29T14:49:46Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-04-29T14:47:45Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -122.86 +/- 59.40 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters
nergaldarski/MeinaMix
nergaldarski
2023-04-29T14:45:14Z
0
1
null
[ "region:us" ]
null
2023-04-29T14:27:23Z
CivitAI: https://civitai.com/models/7240?modelVersionId=46137
GregLed/distilbert-base-uncased-finetuned-emotion
GregLed
2023-04-29T14:34:58Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-29T14:01:06Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: split metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.924743633535266 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2144 - Accuracy: 0.9245 - F1: 0.9247 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8152 | 1.0 | 250 | 0.2978 | 0.9095 | 0.9072 | | 0.2414 | 2.0 | 500 | 0.2144 | 0.9245 | 0.9247 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu116 - Datasets 2.8.0 - Tokenizers 0.10.3
MarnixPostma8/Ghibli_Cabin
MarnixPostma8
2023-04-29T14:27:52Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-04-29T14:23:22Z
--- license: creativeml-openrail-m ---
fathyshalab/reklambox-medizin-gesundheit-pflege-setfit
fathyshalab
2023-04-29T14:11:12Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-04-29T14:11:02Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # Linkthat/reklambox-medizin-gesundheit-pflege-setfit This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("Linkthat/reklambox-medizin-gesundheit-pflege-setfit") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
oatbibi/t5-end2end-questions-generation
oatbibi
2023-04-29T13:40:23Z
161
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-04-29T10:20:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-end2end-questions-generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-end2end-questions-generation This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.5655 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.589 | 0.34 | 100 | 1.9141 | | 1.9691 | 0.68 | 200 | 1.7299 | | 1.8456 | 1.02 | 300 | 1.6699 | | 1.743 | 1.35 | 400 | 1.6386 | | 1.7176 | 1.69 | 500 | 1.6178 | | 1.694 | 2.03 | 600 | 1.6061 | | 1.6359 | 2.37 | 700 | 1.5953 | | 1.6307 | 2.71 | 800 | 1.5893 | | 1.6172 | 3.05 | 900 | 1.5893 | | 1.5758 | 3.39 | 1000 | 1.5868 | | 1.5725 | 3.73 | 1100 | 1.5728 | | 1.5546 | 4.06 | 1200 | 1.5698 | | 1.5399 | 4.4 | 1300 | 1.5719 | | 1.5257 | 4.74 | 1400 | 1.5709 | | 1.521 | 5.08 | 1500 | 1.5716 | | 1.5011 | 5.42 | 1600 | 1.5757 | | 1.4911 | 5.76 | 1700 | 1.5676 | | 1.505 | 6.1 | 1800 | 1.5666 | | 1.4808 | 6.44 | 1900 | 1.5673 | | 1.4839 | 6.77 | 2000 | 1.5655 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.2
justjess1959/ArtGen2
justjess1959
2023-04-29T13:35:48Z
0
0
null
[ "license:deepfloyd-if-license", "region:us" ]
null
2023-04-29T13:35:48Z
--- license: deepfloyd-if-license ---
fathyshalab/reklambox-unternehmen-verbaende-setfit
fathyshalab
2023-04-29T13:25:53Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-04-29T13:25:43Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # Linkthat/reklambox-unternehmen-verbaende-setfit This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("Linkthat/reklambox-unternehmen-verbaende-setfit") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
Sunshine/PPO-LunarLander-v2
Sunshine
2023-04-29T13:23:44Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-29T13:23:22Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 250.17 +/- 21.90 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
noppolan/t5-end2end-questions-generation
noppolan
2023-04-29T13:07:55Z
161
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad_modified_for_t5_qg", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-04-29T10:20:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_modified_for_t5_qg model-index: - name: t5-end2end-questions-generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-end2end-questions-generation This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the squad_modified_for_t5_qg dataset. It achieves the following results on the evaluation set: - Loss: 1.9348 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.3469 | 0.34 | 100 | 2.4950 | | 2.4544 | 0.68 | 200 | 2.2909 | | 2.2343 | 1.02 | 300 | 2.1290 | | 1.8746 | 1.35 | 400 | 2.0220 | | 1.8029 | 1.69 | 500 | 1.9348 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
bright1/fine-tuned-distilbert-base-uncased
bright1
2023-04-29T13:07:05Z
106
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-26T16:12:58Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: fine-tuned-distilbert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-distilbert-base-uncased This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.5839 - eval_accuracy: {'accuracy': 0.7735} - eval_f1score: {'f1': 0.7659648935757575} - eval_runtime: 36.2627 - eval_samples_per_second: 55.153 - eval_steps_per_second: 6.894 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 399 - num_epochs: 2 ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
LLukas22/all-MiniLM-L12-v2-embedding-all
LLukas22
2023-04-29T12:55:13Z
9
3
sentence-transformers
[ "sentence-transformers", "pytorch", "tensorboard", "bert", "feature-extraction", "sentence-similarity", "transformers", "generated_from_trainer", "en", "de", "dataset:squad", "dataset:newsqa", "dataset:LLukas22/cqadupstack", "dataset:LLukas22/fiqa", "dataset:LLukas22/scidocs", "dataset:deepset/germanquad", "dataset:LLukas22/nq", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-02-07T08:57:46Z
--- license: apache-2.0 pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - generated_from_trainer datasets: - squad - newsqa - LLukas22/cqadupstack - LLukas22/fiqa - LLukas22/scidocs - deepset/germanquad - LLukas22/nq language: - en - de --- # all-MiniLM-L12-v2-embedding-all This model is a fine-tuned version of [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) on the following datasets: [squad](https://huggingface.co/datasets/squad), [newsqa](https://huggingface.co/datasets/newsqa), [LLukas22/cqadupstack](https://huggingface.co/datasets/LLukas22/cqadupstack), [LLukas22/fiqa](https://huggingface.co/datasets/LLukas22/fiqa), [LLukas22/scidocs](https://huggingface.co/datasets/LLukas22/scidocs), [deepset/germanquad](https://huggingface.co/datasets/deepset/germanquad), [LLukas22/nq](https://huggingface.co/datasets/LLukas22/nq). ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('LLukas22/all-MiniLM-L12-v2-embedding-all') embeddings = model.encode(sentences) print(embeddings) ``` ## Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1E+00 - per device batch size: 60 - effective batch size: 180 - seed: 42 - optimizer: AdamW with betas (0.9,0.999) and eps 1E-08 - weight decay: 2E-02 - D-Adaptation: True - Warmup: True - number of epochs: 20 - mixed_precision_training: bf16 ## Training results | Epoch | Train Loss | Validation Loss | | ----- | ---------- | --------------- | | 0 | 0.0708 | 0.0619 | | 1 | 0.0609 | 0.0567 | | 2 | 0.0531 | 0.0542 | | 3 | 0.0475 | 0.0528 | | 4 | 0.0428 | 0.0521 | | 5 | 0.0389 | 0.0513 | | 6 | 0.0352 | 0.0508 | | 7 | 0.0322 | 0.0494 | | 8 | 0.0289 | 0.0485 | | 9 | 0.0264 | 0.0483 | | 10 | 0.0242 | 0.0466 | | 11 | 0.0221 | 0.0459 | | 12 | 0.0204 | 0.0469 | | 13 | 0.0189 | 0.0459 | ## Evaluation results | Epoch | top_1 | top_3 | top_5 | top_10 | top_25 | | ----- | ----- | ----- | ----- | ----- | ----- | | 0 | 0.507 | 0.665 | 0.721 | 0.784 | 0.847 | | 1 | 0.501 | 0.661 | 0.719 | 0.783 | 0.846 | | 2 | 0.508 | 0.669 | 0.726 | 0.789 | 0.851 | | 3 | 0.507 | 0.665 | 0.722 | 0.785 | 0.85 | | 4 | 0.506 | 0.667 | 0.724 | 0.788 | 0.851 | | 5 | 0.511 | 0.673 | 0.731 | 0.795 | 0.857 | | 6 | 0.51 | 0.674 | 0.732 | 0.794 | 0.856 | | 7 | 0.512 | 0.674 | 0.732 | 0.796 | 0.859 | | 8 | 0.515 | 0.678 | 0.736 | 0.799 | 0.861 | | 9 | 0.514 | 0.679 | 0.737 | 0.8 | 0.862 | | 10 | 0.52 | 0.683 | 0.741 | 0.803 | 0.864 | | 11 | 0.522 | 0.686 | 0.744 | 0.806 | 0.866 | | 12 | 0.519 | 0.683 | 0.741 | 0.804 | 0.864 | | 13 | 0.522 | 0.685 | 0.743 | 0.806 | 0.865 | ## Framework versions - Transformers: 4.25.1 - PyTorch: 2.0.0.dev20230210+cu118 - PyTorch Lightning: 1.8.6 - Datasets: 2.7.1 - Tokenizers: 0.13.1 - Sentence Transformers: 2.2.2 ## Additional Information This model was trained as part of my Master's Thesis **'Evaluation of transformer based language models for use in service information systems'**. The source code is available on [Github](https://github.com/LLukas22/Retrieval-Augmented-QA).
bhadresh-savani/SoccerTwos
bhadresh-savani
2023-04-29T12:36:04Z
16
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-04-29T12:34:28Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Find your model_id: bhadresh-savani/SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
dmenini/rl_course_vizdoom_health_gathering_supreme
dmenini
2023-04-29T12:35:45Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-04-29T09:28:02Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 14.35 +/- 5.07 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r dmenini/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
fathyshalab/reklambox-schoenheit-wellness-setfit
fathyshalab
2023-04-29T12:35:28Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-04-29T12:35:18Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # Linkthat/reklambox-schoenheit-wellness-setfit This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("Linkthat/reklambox-schoenheit-wellness-setfit") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```