modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-28 18:27:53
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
525 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-28 18:27:52
card
stringlengths
11
1.01M
vgarg/my_zs_model
vgarg
2023-11-06T07:14:21Z
5
0
sentence-transformers
[ "sentence-transformers", "safetensors", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-11-06T06:59:57Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # vgarg/my_zs_model This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("vgarg/my_zs_model") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
PAIXAI/Astrid-Mistral-7B
PAIXAI
2023-11-06T06:54:03Z
1,379
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "gpt", "llm", "large language model", "PAIX.Cloud", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-10-09T23:51:42Z
--- language: - en library_name: transformers tags: - gpt - llm - large language model - PAIX.Cloud inference: true thumbnail: >- https://static.wixstatic.com/media/bdee4e_8aa5cefc86024bc88f7e20e3e19d9ff3~mv2.png/v1/fill/w_192%2Ch_192%2Clg_1%2Cusm_0.66_1.00_0.01/bdee4e_8aa5cefc86024bc88f7e20e3e19d9ff3~mv2.png license: apache-2.0 --- # Model Card ## Summary - Base model: [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) This model, Astrid-7B-Assistant is a Mistral-7B base model for causal language modeling, designed to generate human-like text. It's part of our mission to make AI technology accessible to everyone, focusing on personalization, data privacy, and transparent AI governance. Trained in English, it's a versatile tool for a variety of applications. This model is one of the many models available on our platform, and we currently have a 1B and 7B open-source model. This model was trained by [PAIX.Cloud](https://www.paix.cloud/). - Wait list: [Wait List](https://www.paix.cloud/join-waitlist) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` library installed. ```bash pip install transformers==4.34.0 ``` Also make sure you are providing your huggingface token to the pipeline if the model is lying in a private repo. - Either leave `token=True` in the `pipeline` and login to hugginface_hub by running ```python import huggingface_hub huggingface_hub.login(<ACCES_TOKEN>) ``` - Or directly pass your <ACCES_TOKEN> to `token` in the `pipeline` ```python from transformers import pipeline generate_text = pipeline( model="PAIXAI/Astrid-Mistral-7B", torch_dtype="auto", trust_remote_code=True, use_fast=True, device_map={"": "cuda:0"}, token=True, ) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer: ```python print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"]) ``` ```bash <|prompt|>Why is drinking water so healthy?<|im_end|><|answer|> ``` Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`. ```python from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "PAIXAI/Astrid-Mistral-7B", use_fast=True, padding_side="left", trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( "PAIXAI/Astrid-Mistral-7B", torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "PAIXAI/Astrid-Mistral-7B" # either local folder or huggingface model name # Important: The prompt needs to be in the same format the model was trained with. # You can find an example prompt in the experiment logs. prompt = "<|prompt|>How are you?<|im_end|><|answer|>" tokenizer = AutoTokenizer.from_pretrained( model_name, use_fast=True, trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) model.cuda().eval() inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda") # generate configuration can be modified to your needs tokens = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True )[0] tokens = tokens[inputs["input_ids"].shape[1]:] answer = tokenizer.decode(tokens, skip_special_tokens=True) print(answer) ``` ## Quantization and sharding You can load the models using quantization by specifying ```load_in_8bit=True``` or ```load_in_4bit=True```. Also, sharding on multiple GPUs is possible by setting ```device_map=auto```. ## Model Architecture ``` MistralForCausalLM( (model): MistralModel( (embed_tokens): Embedding(32002, 4096, padding_idx=0) (layers): ModuleList( (0-31): 32 x MistralDecoderLayer( (self_attn): MistralAttention( (q_proj): Linear(in_features=4096, out_features=4096, bias=False) (k_proj): Linear(in_features=4096, out_features=1024, bias=False) (v_proj): Linear(in_features=4096, out_features=1024, bias=False) (o_proj): Linear(in_features=4096, out_features=4096, bias=False) (rotary_emb): MistralRotaryEmbedding() ) (mlp): MistralMLP( (gate_proj): Linear(in_features=4096, out_features=14336, bias=False) (up_proj): Linear(in_features=4096, out_features=14336, bias=False) (down_proj): Linear(in_features=14336, out_features=4096, bias=False) (act_fn): SiLUActivation() ) (input_layernorm): MistralRMSNorm() (post_attention_layernorm): MistralRMSNorm() ) ) (norm): MistralRMSNorm() ) (lm_head): Linear(in_features=4096, out_features=32002, bias=False) ) ``` ## Model Configuration This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models. ## Disclaimer Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions. - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints. - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion. - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model. - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities. - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues. - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes. By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
tog/TinyLlama-1.1B-alpaca-chat-v1.5
tog
2023-11-06T06:45:02Z
8
5
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "dataset:tatsu-lab/alpaca", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-05T09:49:19Z
--- license: apache-2.0 datasets: - tatsu-lab/alpaca language: - en pipeline_tag: text-generation widget: - text: '###Instruction:\nWhat is a large language model? Be concise\n\n### Response:\n' --- ## This Model This is the chat model finetuned on top of [PY007/TinyLlama-1.1B-intermediate-step-715k-1.5T](https://huggingface.co/PY007/TinyLlama-1.1B-intermediate-step-715k-1.5T). The dataset used is [tatsu-lab/stanford_alpaca](https://github.com/tatsu-lab/stanford_alpaca). Below is an instruction that describes a task. Write a response that appropriately completes the request. ``` ### Instruction: {instruction} ### Response: ``` You can use it with the `transformers` library: ```python from transformers import AutoTokenizer import transformers import torch model = "tog/TinyLlama-1.1B-alpaca-chat-v1.5" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto") sequences = pipeline( '###Instruction:\nWhat is a large language model? Be concise.\n\n### Response:\n', do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, max_length=200) for seq in sequences: print(f"{seq['generated_text']}") ``` You should get something along those lines: ``` Setting `pad_token_id` to `eos_token_id`:2 for open-end generation. Result: ###Instruction: What is a large language model? Be concise. ### Response: A large language model is a type of natural language understanding model that can learn to accurately recognize and interpret text data by understanding the context of words. Languages used for text understanding are typically trained on a corpus of text data. ```
ddh0/OpenHermes-2.5-Mistral-7B-GGUF-fp16
ddh0
2023-11-06T06:38:15Z
2
2
null
[ "gguf", "text-generation", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2023-11-06T06:03:41Z
--- license: apache-2.0 pipeline_tag: text-generation --- This is Teknium's [OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B), converted to GGUF without quantization. No other changes were made. The model was converted using `convert.py` from Georgi Gerganov's llama.cpp repo as it appears [here](https://github.com/ggerganov/llama.cpp/blob/ff5a3f0c09dfa0a8e0bf76d1748df5c6dee0e8ff/convert.py) (that is, the last change to the file was in commit `#ff5a3f0`.) All credit belongs to [Teknium](https://huggingface.co/teknium) for fine-tuning and releasing this model. Thank you!
saillab/taco-persian-33b
saillab
2023-11-06T06:37:07Z
0
2
null
[ "en", "fa", "dataset:saillab/taco-datasets", "region:us" ]
null
2023-10-16T05:01:56Z
--- language: - en - fa datasets: - saillab/taco-datasets --- ## TaCo-Persian-33B 🌮 **Description** This repo contains the TaCo Persian 33B model LoRA adapter. Motivated by the theory of parameter-efficient fine-tuning using LoRA and the Chain of Thought (Wei 2022) process, we propose a new method called TaCo. This method uses translation in the Chain of Thought process to create a multilingual model. In this work, we have used the Chain of Thought process to teach language models to translate the instruction to English first, generate the required response in English, and then translate it back to low-resource languages. For training, we employed the curriculum learning strategy. This strategy utilizes the fine-tuned Guanaco-33B model first and then applies instruction tuning using the TaCo method. The datasets used to train this model are available at saillab/taco-datasets. ⚠️ The TaCo model has not been tested for toxicity and harmful response generation. It is purely intended for research and academic purposes only. **License and Intended Use** The TaCo adapter weights are trained on top of the Guanaco-33B (timdettmers/guanaco-33b-merged) model, which is based on the LLaMA model. We used the Alpaca-52K and Dolly-15K datasets and translated them using Google Cloud Translate. We advise you to look into the licensing of Guanaco-33B and the LLaMA model, as well as the terms of usage for Google Cloud Translation, before using this model.
dspragg/squad-bloom-3b
dspragg
2023-11-06T06:36:51Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:bigscience/bloom-3b", "base_model:adapter:bigscience/bloom-3b", "region:us" ]
null
2023-11-06T06:36:49Z
--- library_name: peft base_model: bigscience/bloom-3b --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.7.0.dev0
rlhfnewgrad/ppo-LunarLander-v2
rlhfnewgrad
2023-11-06T06:22:32Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-11-06T06:21:47Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -40.85 +/- 16.94 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
monsterapi/gpt2_137m_OpenPlatypus
monsterapi
2023-11-06T06:21:21Z
1
0
peft
[ "peft", "region:us" ]
null
2023-11-06T06:21:20Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
pain/text2svg_summarization-words-test
pain
2023-11-06T06:16:00Z
60
1
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "generated_from_trainer", "base_model:google/mt5-small", "base_model:finetune:google/mt5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-11-05T11:13:00Z
--- license: apache-2.0 base_model: google/mt5-small tags: - generated_from_trainer model-index: - name: text2svg_summarization-words-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text2svg_summarization-words-test This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.004 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1000.0 ### Training results ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
WIS/ppo-Pyramids
WIS
2023-11-06T06:15:53Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-11-06T06:15:50Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: WIS/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
HowMannyMore/whisper-small-urdu
HowMannyMore
2023-11-06T06:14:43Z
17
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-10-31T11:51:31Z
--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-hi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-ur This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Urdu dataset. It achieves the following results on the evaluation set: - Loss: 0.4843 - Wer: 33.3110 ## Training and evaluation data Dataset included two rows; transcription & audio. The model was prepared using a dataset of 6500 rows. Train-test split was applied, 82% training (5324) and 18% testing (1176). ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.5907 | 0.6 | 400 | 0.6646 | 44.5644 | | 0.2862 | 1.2 | 800 | 0.5806 | 38.1544 | | 0.251 | 1.8 | 1200 | 0.4843 | 33.3110 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
sugarknight/test_real
sugarknight
2023-11-06T05:52:19Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-07-24T03:05:14Z
--- license: openrail --- 自分がマージして調整したモデル bb_mix 商用利用可能なモデルをいくつかマージしたものですが、ストレージが壊れてしまいメモが紛失し、正確なマージ元と割合が分からなくなってしまいました。 BRAV5、ButamanMix と MUSE_v1 は確実に入れました。 他にも商用利用可能なモデルおよびLoRAをマージしています。 VAE: vae-ft-mse-840000-ema-pruned.ckpt サンプル: ※ ADetailer を使ってます。 ![sample1](https://huggingface.co/sugarknight/test_real/resolve/main/00015-2472723311.jpg) 1girl,a beautiful girl of twin tail stands under a cherry tree in high school clothes,cute pose, bangs, backlighting, depth of field, light smile, outdoors, park, Negative prompt: (worst quality, low quality:1.3), monochrome, Steps: 30, Sampler: DPM++ 2M SDE Karras, CFG scale: 5.5, Seed: 2472723311, Size: 600x800, Model hash: aab35ddbc1, Model: bb_mix, Clip skip: 2, ADetailer model: face_yolov8n.pt, ADetailer confidence: 0.3, ADetailer dilate/erode: 4, ADetailer mask blur: 4, ADetailer denoising strength: 0.4, ADetailer inpaint only masked: True, ADetailer inpaint padding: 32, ADetailer version: 23.7.9, Version: v1.5.0 ![sample2](https://huggingface.co/sugarknight/test_real/resolve/main/00025-57786500.jpg) 1girl,indoors,beautiful girl relaxing on bed in bed,girl is wearing a negotiator,blush,bangs,sunset,backlighting,depth of field,shy, Negative prompt: (worst quality, low quality:1.3),monochrome, Steps: 30, Sampler: DPM++ 2M SDE Karras, CFG scale: 5.5, Seed: 57786500, Size: 600x800, Model hash: aab35ddbc1, Model: bb_mix, Clip skip: 2, ADetailer model: face_yolov8n.pt, ADetailer confidence: 0.3, ADetailer dilate/erode: 4, ADetailer mask blur: 4, ADetailer denoising strength: 0.4, ADetailer inpaint only masked: True, ADetailer inpaint padding: 32, ADetailer version: 23.7.9, Version: v1.5.0
tohoku-nlp/stable-diffusion-xl-jp-base-1.0
tohoku-nlp
2023-11-06T05:37:01Z
12
4
diffusers
[ "diffusers", "safetensors", "ja", "arxiv:2307.01952", "license:openrail++", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2023-11-06T05:02:27Z
--- license: openrail++ language: - ja --- ![sample_image](images/sample_images.png) (English part follows Japanese one.) # SD-XL 1.0-jp-base Model Card 総計5.8Bのパラメータを持つ画像生成モデル,[SDXL](https://arxiv.org/abs/2307.01952)を日本語入力に対応させたモデルです.ここではベースモデル([stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0))の日本語対応版を公開しています. ## 学習戦略 ### ファインチューニング stable-diffusion-xl-base-1.0に使われているテキストエンコーダである,[OpenCLIP-ViT/G](https://github.com/mlfoundations/open_clip), [CLIP-ViT/L](https://github.com/openai/CLIP/tree/main)のみをファインチューニングすることにより,日本語入力に対応したテキストエンコーダを学習した.具体的には,英語のデータセットで学習されたオリジナルのテキストエンコーダに対して,英文を入力した際の出力(hidden states)と,新たに学習する日本語テキストエンコーダに同じ意味の日本語を入力した際の出力が一致するように学習行った.学習データとして日英対訳データを利用し,日本語のtokenizerとしては[line-corporation/japanese-large-lm-3.6b](https://huggingface.co/line-corporation/japanese-large-lm-3.6b)を利用した. ### 語彙の類似度をベースとした単語埋め込みの初期化 日本語テキストエンコーダの効率的な学習と,対訳データに含まれない単語へのある程度の適応を期待して,オリジナルの英語のテキストエンコーダの単語埋め込みを利用した日本語の単語埋め込みの初期化を行なった.具体的には,日本語トークナイザーの語彙と,オリジナルの英語のトークナイザーの語彙全ての単語ベクトルを[multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large)を用いて計算し,全ての日本語・英語の語彙の組み合わせについて類似度を求めた.その後,日本語の各語彙に対応する単語(サブワード)ベクトルと最も類似する英語の単語を求め,その類似する英単語に対応するベクトルを日本語単語の単語埋め込みの初期値とした. ## 学習データ ### WMT [WMT2023 Shared Task: General Machine Translation](https://aclanthology.org/2022.wmt-1.25/)で利用される日英対訳コーパスである.本モデルの学習には[SKIM at WMT 2023 General Translation Task]()でのモデルの学習のために利用されたフィルタリング済みのデータセットを利用した.対訳ペアの総数は28155494件である. ### laion2B-multi [Christoph et al. (2022)](https://openreview.net/pdf?id=M3Y74vmsMcY)によって公開された大規模な画像とそのキャプションのペアで構成されたデータセットである.本モデルの学習にはキャプションのみを用いた. 前処理として[fasttext](https://fasttext.cc/)を用いて日本語キャプションのフィルタリングを行なった後,画像とキャプションの類似度が高い上位13221368件のキャプションを利用した.画像とキャプションの類似度の計算には[rinna/japanese-cloob-vit-b-16](https://huggingface.co/rinna/japanese-cloob-vit-b-16)を用いた.日本語のキャプションを日英翻訳モデルを用いて翻訳を行い英語のキャプションを生成した.翻訳モデルは[WMT22 Genral Machine TranslationタスクのチームNT5の提出システム](https://aclanthology.org/2022.wmt-1.25/)の中で用いられている日英翻訳モデル,ABCI-baeeを利用した. ## 使用例 ```python import torch from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline base_model_name_or_path = "cl-tohoku/stable-diffusion-xl-jp-base-1.0" refiner_model_name_or_path = "cl-tohoku/stable-diffusion-xl-jp-refiner-1.0" pipeline_base = StableDiffusionXLPipeline.from_pretrained( base_model_name_or_path, torch_dtype=torch.float16, ) pipeline_refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained( refiner_model_name_or_path, torch_dtype=torch.bfloat16, ) pipeline_base = pipeline_base.to("cuda") pipeline_refiner = pipeline_refiner.to("cuda") n_steps = 100 high_noise_frac = 0.8 guidance_scale = 7.5 text = "かわいすぎる子猫" with torch.autocast( device_type="cuda", dtype=torch.bfloat16 ): image = pipeline_base( prompt=text, num_inference_steps=n_steps, denoising_end=high_noise_frac, guidance_scale=guidance_scale, output_type="latent", ).images[0] image = pipeline_refiner( prompt=text, num_inference_steps=n_steps, denoising_start=high_noise_frac, guidance_scale=guidance_scale, image=image, ).images[0] image.save("image.png") ``` ## ライセンス モデルはOpen RAIL++-Mライセンスの下で配布されています. ## 謝辞 このモデルの学習にあたり様々な面でご協力いただきました[Tohoku NLPグループ](https://www.nlp.ecei.tohoku.ac.jp/)の皆様に感謝いたします. --- # SD-XL 1.0-jp-base Model Card This is a Japanese input support version of the image generation model [SDXL](https://arxiv.org/abs/2307.01952) with a total of 5.8B parameters. Here, we release the Japanese input support version of the base model ([stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)). ## Training Strategy ### Fine-tuning We fine-tuned only the text encoders used in stable-diffusion-xl-base-1.0, [OpenCLIP-ViT/G](https://github.com/mlfoundations/open_clip), [CLIP-ViT/L](https://github.com/openai/CLIP/tree/main) to support Japanese input. We used Japanese-English parallel corpus as training dataset. We trained the Japanese text encoder so that the output (hidden states) when English sentences were input to the original English text encoder and the output when the same meaning Japanese sentences were input to the newly trained Japanese text encoder were the same. We used [line-corporation/japanese-large-lm-3.6b](https://huggingface.co/line-corporation/japanese-large-lm-3.6b) as Japanese tokenizer. We trained a text encoder that supports Japanese input by fine-tuning only the text encoders used in stable-diffusion-xl-base-1.0, [OpenCLIP-ViT/G](https://github.com/mlfoundations/open_clip) and [CLIP-ViT/L](https://github.com/openai/CLIP/tree/main). Specifically, we trained the new Japanese text encoder to produce output that matches the output (hidden states) of the original text encoder when the same meaning Japanese sentences and English sentences are input. We used Japanese-English parallel data as the training data and employed the [line-corporation/japanese-large-lm-3.6b](https://huggingface.co/line-corporation/japanese-large-lm-3.6b) as the Japanese tokenizer. ## Training Data ### WMT A Japanese-English parallel corpus used in [WMT2023 Shared Task: General Machine Translation](https://aclanthology.org/2022.wmt-1.25/). We used the filtered dataset used for training the model in [SKIM at WMT 2023 General Translation Task](). The size of this parallel corpus is 28155494. ### laion2B-multi A large-scale dataset consisting of image-caption pairs released by [Christoph et al. (2022)](https://openreview.net/pdf?id=M3Y74vmsMcY). We used only the captions for training this model. As a preprocessing step, we filtered the Japanese captions using [fasttext](https://fasttext.cc/), and then used the top 13221368 captions with high similarity to the images. We used [rinna/japanese-cloob-vit-b-16](https://huggingface.co/rinna/japanese-cloob-vit-b-16) to calculate the similarity between images and captions. We translated the Japanese captions into English captions using a Japanese-English translation model, ABCI-baee, used in [NT5 at WMT 2022 General Translation Task](https://aclanthology.org/2022.wmt-1.25/). ## Example ```python import torch from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline base_model_name_or_path = "cl-tohoku/stable-diffusion-xl-jp-base-1.0" refiner_model_name_or_path = "cl-tohoku/stable-diffusion-xl-jp-refiner-1.0" pipeline_base = StableDiffusionXLPipeline.from_pretrained( base_model_name_or_path, torch_dtype=torch.float16, ) pipeline_refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained( refiner_model_name_or_path, torch_dtype=torch.bfloat16, ) pipeline_base = pipeline_base.to("cuda") pipeline_refiner = pipeline_refiner.to("cuda") n_steps = 100 high_noise_frac = 0.8 guidance_scale = 7.5 text = "かわいすぎる子猫" with torch.autocast( device_type="cuda", dtype=torch.bfloat16 ): image = pipeline_base( prompt=text, num_inference_steps=n_steps, denoising_end=high_noise_frac, guidance_scale=guidance_scale, output_type="latent", ).images[0] image = pipeline_refiner( prompt=text, num_inference_steps=n_steps, denoising_start=high_noise_frac, guidance_scale=guidance_scale, image=image, ).images[0] image.save("image.png") ``` ## Licenses The models are distributed under the Open RAIL++-M. ## Acknowledgments We would like to appreciate the member of [Tohoku NLP Group](https://www.nlp.ecei.tohoku.ac.jp/) for their cooperation to train this model.
PavankumarHegde/TweetsSentiment
PavankumarHegde
2023-11-06T05:35:07Z
0
0
keras
[ "keras", "finance", "text-classification", "en", "dataset:laion/dalle-3-dataset", "license:mit", "region:us" ]
text-classification
2023-11-06T04:30:07Z
--- license: mit datasets: - laion/dalle-3-dataset language: - en metrics: - accuracy - bertscore library_name: keras pipeline_tag: text-classification tags: - finance ---
Kavoo/fotovlad
Kavoo
2023-11-06T05:32:08Z
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
2023-11-06T05:30:43Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
phantatbach/distilbert-base-uncased-finetuned-imdb
phantatbach
2023-11-06T05:32:05Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-11-06T05:21:27Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.2976 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0557 | 1.0 | 157 | 2.3490 | | 2.1468 | 2.0 | 314 | 2.3226 | | 2.2461 | 3.0 | 471 | 2.3364 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
phantatbach/distilbert-base-uncased-finetuned-imdb-accelerate
phantatbach
2023-11-06T05:28:44Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-11-06T04:34:17Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4119 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7024 | 1.0 | 157 | 2.4966 | | 2.5796 | 2.0 | 314 | 2.4282 | | 2.5355 | 3.0 | 471 | 2.4510 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
guilima5/uplimit-project-3-phi-1.5
guilima5
2023-11-06T05:25:35Z
0
0
null
[ "tensorboard", "safetensors", "generated_from_trainer", "dataset:scitldr", "base_model:microsoft/phi-1_5", "base_model:finetune:microsoft/phi-1_5", "license:other", "region:us" ]
null
2023-11-06T05:25:32Z
--- license: other base_model: microsoft/phi-1_5 tags: - generated_from_trainer datasets: - scitldr model-index: - name: uplimit-project-3-phi-1.5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # uplimit-project-3-phi-1.5 This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the scitldr dataset. It achieves the following results on the evaluation set: - Loss: 2.5993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5545 | 0.1 | 200 | 2.6492 | | 2.5712 | 0.2 | 400 | 2.6453 | | 2.5319 | 0.3 | 600 | 2.6367 | | 2.5868 | 0.4 | 800 | 2.6222 | | 2.5419 | 0.5 | 1000 | 2.6198 | | 2.5774 | 0.6 | 1200 | 2.6135 | | 2.55 | 0.7 | 1400 | 2.6105 | | 2.528 | 0.8 | 1600 | 2.6028 | | 2.5778 | 0.9 | 1800 | 2.5993 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
anukruthireddy/my-pet-bunny
anukruthireddy
2023-11-06T05:15:41Z
0
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-06T05:11:20Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Bunny Dreambooth model trained by anukruthireddy following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: MRCEW-23 Sample pictures of this concept: ![0](https://huggingface.co/anukruthireddy/my-pet-bunny/resolve/main/sample_images/una_(2).jpeg)
joshuaoreilly/CartPole-v1
joshuaoreilly
2023-11-06T04:43:37Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-11-06T04:43:28Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 481.20 +/- 56.40 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
KirinoKousaka/Kirino
KirinoKousaka
2023-11-06T04:21:01Z
0
0
null
[ "RVC", "V2", "Kirino Kousaka", "Oreimo", "Seiyuu", "Kirino", "Kousaka", "Ayana Taketatsu", "audio-to-audio", "ja", "license:unlicense", "region:us" ]
audio-to-audio
2023-11-05T23:43:33Z
--- license: unlicense language: - ja tags: - RVC - V2 - Kirino Kousaka - Oreimo - Seiyuu - Kirino - Kousaka - Ayana Taketatsu pipeline_tag: audio-to-audio ---
KaeriJenti/kopen-platypus-ko-llama2-13b
KaeriJenti
2023-11-06T04:17:52Z
2,237
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "dataset:kyujinpy/KOpen-platypus", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-06T01:03:10Z
--- datasets: - kyujinpy/KOpen-platypus --- Base Model : Llama-2-13b-hf datasets: - kyujinpy/KOpen-platypus
xeeex271/taxi-v3
xeeex271
2023-11-06T04:14:54Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-11-06T04:14:52Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="xeeex271/taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
LarryAIDraw/rio_tsukatsuki_v1
LarryAIDraw
2023-11-06T04:01:55Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-11-06T03:55:20Z
--- license: creativeml-openrail-m --- https://civitai.com/models/184936/rio-tsukatsuki-or-blue-archive
LarryAIDraw/Yamato_hmx
LarryAIDraw
2023-11-06T04:01:01Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-11-06T03:53:42Z
--- license: creativeml-openrail-m --- https://civitai.com/models/190021/yamato-loraone-piece
xverse/XVERSE-7B-Chat
xverse
2023-11-06T03:57:52Z
161
8
transformers
[ "transformers", "pytorch", "xverse", "text-generation", "custom_code", "arxiv:2009.03300", "arxiv:2304.06364", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text-generation
2023-09-25T03:43:09Z
--- license: apache-2.0 inference: false --- # XVERSE-7B-Chat ## 模型介绍 **XVERSE-7B-Chat**为[**XVERSE-7B**](https://huggingface.co/xverse/XVERSE-7B)模型对齐后的版本。 **XVERSE-7B** 是由深圳元象科技自主研发的支持多语言的大语言模型(Large Language Model),参数规模为 70 亿,主要特点如下: - **模型结构**:XVERSE-7B 使用主流 Decoder-only 的标准 Transformer 网络结构,支持 8K 的上下文长度(Context Length),能满足更长的多轮对话、知识问答与摘要等需求,模型应用场景更广泛。 - **训练数据**:构建了 2.6 万亿 token 的高质量、多样化的数据对模型进行充分训练,包含中、英、俄、西等 40 多种语言,通过精细化设置不同类型数据的采样比例,使得中英两种语言表现优异,也能兼顾其他语言效果。 - **分词**:基于 BPE(Byte-Pair Encoding)算法,使用上百 GB 语料训练了一个词表大小为 100,534 的分词器,能够同时支持多语言,而无需额外扩展词表。 - **训练框架**:自主研发多项关键技术,包括高效算子、显存优化、并行调度策略、数据-计算-通信重叠、平台和框架协同等,让训练效率更高,模型稳定性强,在千卡集群上的峰值算力利用率可达到 58.5%,位居业界前列。 ## Model Introduction **XVERSE-7B-Chat** is the aligned version of model [**XVERSE-7B**](https://huggingface.co/xverse/XVERSE-7B) **XVERSE-7B** is a multilingual large language model, independently developed by Shenzhen Yuanxiang Technology. Its key features are as follows: - **Model Structure**: XVERSE-7B uses the mainstream Decoder-only Transformer network structure, supports 8k context length, which can meet the need of longer multi-round dialogues, knowledge question-answering, and summarization. This makes the model more versatile in application scenarios. - **Training Data**: The model has been thoroughly trained on a diversified and high-quality dataset consisting of 2.6 trillion of tokens, including more than 40 languages such as Chinese, English, Russian, and Spanish. The sampling ratio of different types of data is finely set, which makes the performance of Chinese and English excellent, and also takes into account the effect of other languages. - **Tokenization**: Based on the BPE (Byte-Pair Encoding) algorithm, a tokenizer with a vocabulary size of 100,534 has been trained using hundreds of gigabytes of language data. This tokenizer is capable of supporting multilingual without the need for additional vocabulary expansion. - **Training Framework**: Several key technologies have also been independently developed, including efficient operators, memory optimization, parallel scheduling strategies, overlap of data-computation-communication, and synergy between platforms and frameworks. These advancements enhance training efficiency and model stability. With these technologies, the peak computational power utilization rate on a thousand-card cluster can reach 58.5%, ranking at the forefront of the industry. ## 评测结果 为验证模型的各项能力,我们选取了多个学科综合能力评测集,包括 [MMLU](https://arxiv.org/abs/2009.03300)(英文)、 [C-Eval](https://cevalbenchmark.com/)(中文)、[AGIEval](https://arxiv.org/abs/2304.06364)(中英) 、[GAOKAO-Bench](https://github.com/OpenLMLab/GAOKAO-Bench)(中英)、[GAOKAO-English](https://github.com/ExpressAI/AI-Gaokao)(英文),评测结果如下(粗体表示各项最高得分): | 模型 | 类型 | MMLU | C-Eval | AGIEval<sup>1</sup> | GAOKAO-Bench<sup>1</sup> | GAOKAO-English<sup>1</sup> | | :----------------: | :--: | :--------------: | :--------------: | :-----------------: | :----------------------: | :------------------------: | | Baichuan-7B | 底座 | 42.3<sup>2</sup> | 42.8<sup>2</sup> | 34.4<sup>2</sup> | 36.3<sup>2</sup> | 44.3 | | Baichuan2-7B-Base | 底座 | 54.2<sup>2</sup> | 54.0<sup>2</sup> | 42.7<sup>2</sup> | 47.5<sup>2</sup> | 53.1 | | Baichuan2-7B-Chat | 对话 | 53.2 | 52.2 | 41.3 | 49.7 | 66.6 | | ChatGLM2-6B | 对话 | 45.5<sup>2</sup> | 50.1<sup>2</sup> | 42.6 | 54.2 | 59.7 | | Falcon-7B | 底座 | 27.8<sup>2</sup> | 25.8 | 26.2 | 26.3 | 29.9 | | InternLM-7B | 底座 | 51.0<sup>2</sup> | 52.4 | 34.1 | 53.6 | 32.3 | | InternLM-7B-Chat | 对话 | 50.8<sup>2</sup> | 52.8 | 39.0 | **67.4** | 43.9 | | Llama-7B | 底座 | 35.1<sup>2</sup> | 27.0 | 27.4 | 26.0 | 30.1 | | Llama-2-7B | 底座 | 45.3<sup>2</sup> | 28.9 | 27.0 | 27.8 | 47.8 | | MPT-7B | 底座 | 29.6<sup>2</sup> | 27.8 | 24.2 | 25.3 | 28.1 | | Vicuna-7B-v1.5 | 对话 | 49.8<sup>2</sup> | 22.9 | 26.7 | 24.4 | 61.1 | | **XVERSE-7B** | 底座 | 56.6 | **57.1** | 46.9 | 61.7 | 71.1 | | **XVERSE-7B-Chat** | 对话 | **63.7** | 55.4 | **48.9** | 57.5 | **78.2** | > <sup>1:只针对其中的单项选择题进行测试,即排除了填空题、开放性问题和多项选择题</sup> > <sup>2:来源于各模型官方的汇报结果</sup> > > 对于 MMLU ,我们采用作者提供的[评测工具](https://github.com/hendrycks/test),C-Eval、AGIEval、GAOKAO-Bench、GAOKAO-English 与 MMLU 的评测方式相同,且统一采用 **5-shot** 构造测试样本。 ## Model Evaluation In order to validate the various abilities of the model, we have chosen several comprehensive capability benchmarks across multiple disciplines, including [MMLU](https://arxiv.org/abs/2009.03300) (English), [C-Eval](https://cevalbenchmark.com/) (Chinese), [AGIEval](https://arxiv.org/abs/2304.06364) (Chinese and English), [GAOKAO-Bench](https://github.com/OpenLMLab/GAOKAO-Bench) (Chinese and English), [GAOKAO-English](https://github.com/ExpressAI/AI-Gaokao) (English), the evaluation results are as follows (the bolded score represent the best performances): | Models | Type | MMLU | C-Eval | AGIEval<sup>1</sup> | GAOKAO-Bench<sup>1</sup> | GAOKAO-English<sup>1</sup> | | :----------------: | :--------: | :--------------: | :--------------: | :-----------------: | :----------------------: | :------------------------: | | Baichuan-7B | pretrained | 42.3<sup>2</sup> | 42.8<sup>2</sup> | 34.4<sup>2</sup> | 36.3<sup>2</sup> | 44.3 | | Baichuan2-7B-Base | pretrained | 54.2<sup>2</sup> | 54.0<sup>2</sup> | 42.7<sup>2</sup> | 47.5<sup>2</sup> | 53.1 | | Baichuan2-7B-Chat | fine-tuned | 53.2 | 52.2 | 41.3 | 49.7 | 66.6 | | ChatGLM2-6B | fine-tuned | 45.5<sup>2</sup> | 50.1<sup>2</sup> | 42.6 | 54.2 | 59.7 | | Falcon-7B | pretrained | 27.8<sup>2</sup> | 25.8 | 26.2 | 26.3 | 29.9 | | InternLM-7B | pretrained | 51.0<sup>2</sup> | 52.4 | 34.1 | 53.6 | 32.3 | | InternLM-7B-Chat | fine-tuned | 50.8<sup>2</sup> | 52.8 | 39.0 | **67.4** | 43.9 | | Llama-7B | pretrained | 35.1<sup>2</sup> | 27.0 | 27.4 | 26.0 | 30.1 | | Llama-2-7B | pretrained | 45.3<sup>2</sup> | 28.9 | 27.0 | 27.8 | 47.8 | | MPT-7B | pretrained | 29.6<sup>2</sup> | 27.8 | 24.2 | 25.3 | 28.1 | | Vicuna-7B-v1.5 | fine-tuned | 49.8<sup>2</sup> | 22.9 | 26.7 | 24.4 | 61.1 | | **XVERSE-7B** | pretrained | 56.6 | **57.1** | 46.9 | 61.7 | 71.1 | | **XVERSE-7B-Chat** | fine-tuned | **63.7** | 55.4 | **48.9** | 57.5 | **78.2** | > <sup>1: Tests are conducted only on single-answer multiple-choice questions, thus excluding fill-in-the-blanks, open-ended questions, and multiple-answer multiple-choice questions.</sup> > <sup>2: Reporting results from official results of each model.</sup> > > For MMLU, we adopt the [evaluation tools](https://github.com/hendrycks/test) provided by the authors, C-Eval, AGIEval, GAOKAO-Bench, GAOKAO-English are the same as MMLU, and uniformly use **5-shot** to construct the test samples. ### MMLU 各类别指标 MMLU Category Results | Models | Type | Average | STEM | Social Science | Humanities | Others | | :----------------: | :--------: | :------: | :------: | :------------: | :--------: | :------: | | Baichuan-7B | pretrained | 42.3 | 35.6 | 48.9 | 38.4 | 48.1 | | Baichuan2-7B-Chat | fine-tuned | 53.2 | 43.1 | 59.1 | 50.0 | 59.1 | | ChatGLM2-6B | pretrained | 45.5 | 40.1 | 51.6 | 41.2 | 51.2 | | InternLM-7B | pretrained | 51.0 | **58.7** | 43.5 | 52.7 | 53.2 | | LLaMA-7B | pretrained | 35.1 | 30.5 | 38.3 | 34.0 | 38.1 | | LLaMA2-7B | pretrained | 45.3 | 36.4 | 51.2 | 42.9 | 52.2 | | **XVERSE-7B** | pretrained | 56.6 | 45.6 | 65.3 | 50.4 | 65.5 | | **XVERSE-7B-Chat** | fine-tuned | **63.7** | 51.7 | **72.5** | **58.2** | **72.2** | ### C-Eval 各类别指标 C-Eval Category Results | Models | Type | Average | STEM | Social Science | Humanities | Others | | :----------------: | :--------: | :------: | :------: | :------------: | :--------: | :------: | | Baichuan-7B | pretrained | 42.8 | 38.2 | 52.0 | 46.2 | 39.3 | | Baichuan2-7B-Base | pretrained | 54.9 | 47.9 | 67.3 | 58.4 | 52.8 | | Baichuan2-7B-Chat | fine-tuned | 52.2 | 44.6 | 65.0 | 55.8 | 50.9 | | ChatGLM2-6B | fine-tuned | 50.1 | 46.4 | 60.4 | 50.6 | 46.9 | | Falcon-7B | pretrained | 25.8 | 25.8 | 26.0 | 25.8 | 25.7 | | InternLM-7B | pretrained | 52.4 | 47.0 | 64.9 | 55.6 | 47.6 | | InternLM-7B-Chat | fine-tuned | 52.8 | 48.4 | 65.6 | 57.0 | 45.0 | | LLaMA-7B | pretrained | 27.0 | 26.7 | 26.7 | 28.4 | 26.2 | | LLaMA2-7B | pretrained | 28.9 | 26.8 | 34.5 | 30.0 | 26.4 | | MPT-7B | pretrained | 27.8 | 27.4 | 29.8 | 26.9 | 27.7 | | Vicuna-7B-v1.5 | fine-tuned | 22.9 | 21.8 | 23.3 | 24.0 | 23.3 | | **XVERSE-7B** | pretrained | **57.1** | **48.9** | **71.0** | **59.7** | **56.7** | | **XVERSE-7B-Chat** | fine-tuned | 55.4 | 47.9 | 68.5 | 57.3 | 55.1 | ### Loading with Transformers 可通过以下代码加载 XVERSE-7B-Chat 模型进行对话: The XVERSE-7B-Chat model can be loaded for chat using the following code: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM from transformers.generation.utils import GenerationConfig model_path = "xverse/XVERSE-7B-Chat" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto') model.generation_config = GenerationConfig.from_pretrained(model_path) model = model.eval() history = [{"role": "user", "content": "1955年谁是美国总统?他是什么党派?"}] response = model.chat(tokenizer, history) print(response) history.append({"role": "assistant", "content": response}) history.append({"role": "user", "content": "他任职了多少年"}) response = model.chat(tokenizer, history) print(response) ``` 更多细节,包括对话demo、模型微调及量化等,请参考我们的[Github](https://github.com/xverse-ai/XVERSE-7B)。 For more details, including chat demo, model fine-tuning and quantization, please refer to our [Github](https://github.com/xverse-ai/XVERSE-7B). ## 局限性与免责申明 XVERSE-7B-Chat 与其他所有 LLM 一样,在某些情况下可能会产生不准确、有偏见或其他令人反感的内容。因此,请谨慎使用模型生成的内容,请勿将生成的有害内容进行传播,在部署任何 XVERSE-7B-Chat 的应用之前,开发人员应根据其具体应用对模型进行安全测试和调优。 我们强烈警告不要将 XVERSE-7B-Chat 模型用于制造或传播有害信息,或进行任何可能损害公众、国家、社会安全或违反法规的活动。如果使用 XVERSE-7B-Chat 模型产生任何问题,无论是数据安全问题、公共舆论风险,还是模型被误解、滥用、传播或不合规使用所引发的任何风险和问题,我们将不承担任何责任。 ## Limitations and Disclaimer Like all other Large Language Models (LLMs), XVERSE-7B-Chat may produce inaccurate, biased, or otherwise offensive content under certain circumstances. Therefore, please use the content generated by the model with caution and refrain from disseminating harmful content. Before deploying any application of XVERSE-7B-Chat, developers should conduct safety tests and optimization of the model according to its specific application. We strongly warn against the use of the XVERSE-7B-Chat model for producing or spreading harmful information, or conducting any activities that might harm the public, national, or social security, or violate regulations. We assume no responsibility for any problems arising from the use of the XVERSE-7B-Chat model, whether it be data security issues, public opinion risks, or any risks and issues caused by misunderstanding, misuse, dissemination, or non-compliance with the model. ## 模型开源协议 使用本仓库的源码需要遵循 [Apache-2.0](https://github.com/xverse-ai/XVERSE-7B/blob/main/LICENSE) 开源协议,使用 XVERSE-7B-Chat 的模型权重则需要遵循[模型许可协议](https://github.com/xverse-ai/XVERSE-7B/blob/main/MODEL_LICENSE.pdf)。 XVERSE-7B-Chat 模型权重对学术研究**完全开放**,并且支持**免费商用**。如需申请商业许可证,请填写【[申请表](https://chat.xverse.cn/home/business.html)】,如有其他问题或合作,请联系 <opensource@xverse.cn>。 ## Open Source License The use of the source code in this repository must follow the [Apache-2.0](https://github.com/xverse-ai/XVERSE-7B/blob/main/LICENSE) open-source license, while the use of the model weights of XVERSE-7B-Chat needs to adhere to the [Model License Agreement](https://github.com/xverse-ai/XVERSE-7B/blob/main/MODEL_LICENSE.pdf). The XVERSE-7B-Chat model weights are **fully open** to academic research and support **free commercial use**. To apply for a commercial license, please fill in the [application form](https://chat.xverse.cn/home/business.html). For other questions or collaborations, please contact <opensource@xverse.cn>.
bnunticha/wangchanberta-base-att-spm-uncased
bnunticha
2023-11-06T03:44:08Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "camembert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-10-14T13:02:16Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: wangchanberta-base-att-spm-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wangchanberta-base-att-spm-uncased This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1488 - Precision: 0.7295 - Recall: 0.6121 - F1: 0.6657 - Accuracy: 0.9399 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1912 | 1.0 | 1379 | 0.1583 | 0.7079 | 0.5883 | 0.6426 | 0.9355 | | 0.1625 | 2.0 | 2758 | 0.1488 | 0.7236 | 0.6273 | 0.6720 | 0.9399 | | 0.1532 | 3.0 | 4137 | 0.1488 | 0.7295 | 0.6121 | 0.6657 | 0.9399 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
nodlehs/llama-7b-en-hi
nodlehs
2023-11-06T03:27:13Z
0
0
null
[ "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:finetune:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2023-11-03T07:32:58Z
--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer model-index: - name: llama-7b-en-hi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama-7b-en-hi This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.41e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
egalize/pegasus-sum
egalize
2023-11-06T03:23:42Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "pegasus", "text2text-generation", "generated_from_trainer", "base_model:google/pegasus-cnn_dailymail", "base_model:finetune:google/pegasus-cnn_dailymail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-10-13T06:44:36Z
--- base_model: google/pegasus-cnn_dailymail tags: - generated_from_trainer model-index: - name: pegasus-sum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-sum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 20 - total_train_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 600 - num_epochs: 6 ### Training results ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
KirinoKousaka/SHODAN-SS2
KirinoKousaka
2023-11-06T03:23:40Z
0
0
null
[ "RVC", "V2", "Shodan", "System", "Shock", "System Shock", "Terri Brosius", "Terri", "Brosius", "audio-to-audio", "en", "license:unlicense", "region:us" ]
audio-to-audio
2023-11-05T23:48:59Z
--- license: unlicense language: - en pipeline_tag: audio-to-audio tags: - RVC - V2 - Shodan - System - Shock - System Shock - Terri Brosius - Terri - Brosius ---
owanr/ghc-google-t5-v1_1-large-intra_model-dataset-frequency-model_annots_str
owanr
2023-11-06T03:19:06Z
0
0
null
[ "generated_from_trainer", "base_model:google/t5-v1_1-large", "base_model:finetune:google/t5-v1_1-large", "license:apache-2.0", "region:us" ]
null
2023-11-06T03:19:05Z
--- license: apache-2.0 base_model: google/t5-v1_1-large tags: - generated_from_trainer model-index: - name: ghc-google-t5-v1_1-large-intra_model-dataset-frequency-model_annots_str results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ghc-google-t5-v1_1-large-intra_model-dataset-frequency-model_annots_str This model is a fine-tuned version of [google/t5-v1_1-large](https://huggingface.co/google/t5-v1_1-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.1892 | 1.0 | 345 | 6.6229 | | 5.2951 | 2.0 | 690 | 5.5307 | | 0.2702 | 3.0 | 1035 | 0.2511 | | 0.2605 | 4.0 | 1380 | 0.2295 | | 0.2635 | 5.0 | 1725 | 0.2378 | | 0.2405 | 6.0 | 2070 | 0.2250 | | 0.2605 | 7.0 | 2415 | 0.2226 | | 0.2235 | 8.0 | 2760 | 0.2237 | | 0.2303 | 9.0 | 3105 | 0.2199 | | 0.2378 | 10.0 | 3450 | 0.2214 | | 0.24 | 11.0 | 3795 | 0.2169 | | 0.2236 | 12.0 | 4140 | 0.2183 | | 0.2079 | 13.0 | 4485 | 0.2184 | | 0.2594 | 14.0 | 4830 | 0.2159 | | 0.2303 | 15.0 | 5175 | 0.2170 | | 0.2238 | 16.0 | 5520 | 0.2146 | | 0.2071 | 17.0 | 5865 | 0.2161 | | 0.2129 | 18.0 | 6210 | 0.2130 | | 0.2297 | 19.0 | 6555 | 0.2133 | | 0.2434 | 20.0 | 6900 | 0.2158 | | 0.2158 | 21.0 | 7245 | 0.2147 | | 0.2222 | 22.0 | 7590 | 0.2166 | | 0.2388 | 23.0 | 7935 | 0.2127 | | 0.2132 | 24.0 | 8280 | 0.2123 | | 0.2269 | 25.0 | 8625 | 0.2136 | | 0.2237 | 26.0 | 8970 | 0.2142 | | 0.2064 | 27.0 | 9315 | 0.2135 | | 0.2329 | 28.0 | 9660 | 0.2140 | | 0.2319 | 29.0 | 10005 | 0.2140 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1
ebotwick/truera_huggingface_monitoring
ebotwick
2023-11-06T03:16:13Z
7
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-03T17:31:18Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: truera_huggingface_monitoring results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.92752 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # truera_huggingface_monitoring This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2366 - Accuracy: 0.9275 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2581 | 1.0 | 3125 | 0.2366 | 0.9275 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0 - Datasets 2.14.6 - Tokenizers 0.14.1
dhanushkumar97/bart_dk
dhanushkumar97
2023-11-06T03:13:00Z
4
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-11-06T02:45:27Z
--- license: other license_name: test license_link: LICENSE ---
yunik1004/SAiD
yunik1004
2023-11-06T02:58:18Z
0
6
null
[ "region:us" ]
null
2023-10-16T06:24:50Z
# SAiD: Blendshape-based Audio-Driven Speech Animation with Diffusion This repo contains the pretrained weights for SAiD: Blendshape-based Audio-Driven Speech Animation with Diffusion.
MnLgt/lucia_wing_chair_lora
MnLgt
2023-11-06T02:45:08Z
4
1
diffusers
[ "diffusers", "if", "if-diffusers", "inpaint", "lora", "base_model:runwayml/stable-diffusion-inpainting", "base_model:adapter:runwayml/stable-diffusion-inpainting", "license:creativeml-openrail-m", "region:us" ]
null
2023-10-13T17:19:00Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-inpainting instance_prompt: sks chair tags: - if - if-diffusers - inpaint - diffusers - lora inference: true --- # LoRA DreamBooth - jordandavis/lucia_wing_chair_lora These are LoRA adaption weights for runwayml/stable-diffusion-inpainting. The weights were trained on sks chair using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: True.
rjagge/sti-gpt-lora-70b
rjagge
2023-11-06T02:32:45Z
0
0
peft
[ "peft", "region:us" ]
null
2023-11-06T02:22:13Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: QuantizationMethod.BITS_AND_BYTES - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
LaTarn/ac-atmosphere-setfit-model
LaTarn
2023-11-06T02:26:55Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "safetensors", "bert", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-10-29T09:36:17Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # LaTarn/ac-atmosphere-setfit-model This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("LaTarn/ac-atmosphere-setfit-model") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
owanr/ghc-google-t5-v1_1-large-inter_model-dataset-frequency-model_annots_str
owanr
2023-11-06T02:09:28Z
0
0
null
[ "generated_from_trainer", "base_model:google/t5-v1_1-large", "base_model:finetune:google/t5-v1_1-large", "license:apache-2.0", "region:us" ]
null
2023-11-06T02:09:27Z
--- license: apache-2.0 base_model: google/t5-v1_1-large tags: - generated_from_trainer model-index: - name: ghc-google-t5-v1_1-large-inter_model-dataset-frequency-model_annots_str results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ghc-google-t5-v1_1-large-inter_model-dataset-frequency-model_annots_str This model is a fine-tuned version of [google/t5-v1_1-large](https://huggingface.co/google/t5-v1_1-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.1567 | 1.0 | 345 | 6.3882 | | 5.2542 | 2.0 | 690 | 5.3541 | | 0.3219 | 3.0 | 1035 | 0.2819 | | 0.3006 | 4.0 | 1380 | 0.2800 | | 0.3303 | 5.0 | 1725 | 0.2842 | | 0.3 | 6.0 | 2070 | 0.2796 | | 0.2916 | 7.0 | 2415 | 0.2780 | | 0.2855 | 8.0 | 2760 | 0.2800 | | 0.3112 | 9.0 | 3105 | 0.2806 | | 0.3063 | 10.0 | 3450 | 0.2786 | | 0.2703 | 11.0 | 3795 | 0.2793 | | 0.2872 | 12.0 | 4140 | 0.2792 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1
Zhushuai/bert-finetuned-ner
Zhushuai
2023-11-06T01:30:43Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-11-06T01:30:26Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4476 - Precision: 0.4959 - Recall: 0.3327 - F1: 0.3982 - Accuracy: 0.9369 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 425 | 0.3972 | 0.5187 | 0.2706 | 0.3557 | 0.9322 | | 0.1492 | 2.0 | 850 | 0.4165 | 0.4289 | 0.3105 | 0.3602 | 0.9339 | | 0.0709 | 3.0 | 1275 | 0.4476 | 0.4959 | 0.3327 | 0.3982 | 0.9369 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Tokenizers 0.14.1
articblue/spaceinvaders-v4
articblue
2023-11-06T01:26:54Z
10
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-11-05T23:45:11Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 257.00 +/- 38.81 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga articblue -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga articblue -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga articblue ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 1e-07), ('learning_starts', 100000), ('n_timesteps', 100000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
owanr/SBIC-google-t5-v1_1-large-inter_model-dataset-frequency-model_annots_str
owanr
2023-11-06T01:13:30Z
0
0
null
[ "generated_from_trainer", "base_model:google/t5-v1_1-large", "base_model:finetune:google/t5-v1_1-large", "license:apache-2.0", "region:us" ]
null
2023-11-06T01:13:29Z
--- license: apache-2.0 base_model: google/t5-v1_1-large tags: - generated_from_trainer model-index: - name: SBIC-google-t5-v1_1-large-inter_model-dataset-frequency-model_annots_str results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SBIC-google-t5-v1_1-large-inter_model-dataset-frequency-model_annots_str This model is a fine-tuned version of [google/t5-v1_1-large](https://huggingface.co/google/t5-v1_1-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 7.244 | 1.0 | 392 | 7.3922 | | 5.8979 | 2.0 | 784 | 6.1032 | | 0.4199 | 3.0 | 1176 | 0.4008 | | 0.4443 | 4.0 | 1568 | 0.4013 | | 0.4228 | 5.0 | 1960 | 0.3946 | | 0.4336 | 6.0 | 2352 | 0.3940 | | 0.4081 | 7.0 | 2744 | 0.4408 | | 0.4224 | 8.0 | 3136 | 0.4507 | | 0.3985 | 9.0 | 3528 | 0.3976 | | 0.4133 | 10.0 | 3920 | 0.3935 | | 0.4117 | 11.0 | 4312 | 0.3920 | | 0.4209 | 12.0 | 4704 | 0.3963 | | 0.4197 | 13.0 | 5096 | 0.3932 | | 0.3975 | 14.0 | 5488 | 0.3915 | | 0.3912 | 15.0 | 5880 | 0.3914 | | 0.4029 | 16.0 | 6272 | 0.3903 | | 0.3973 | 17.0 | 6664 | 0.3904 | | 0.388 | 18.0 | 7056 | 0.3926 | | 0.4023 | 19.0 | 7448 | 0.3908 | | 0.3911 | 20.0 | 7840 | 0.3893 | | 0.4102 | 21.0 | 8232 | 0.3895 | | 0.396 | 22.0 | 8624 | 0.3891 | | 0.3899 | 23.0 | 9016 | 0.3895 | | 0.3941 | 24.0 | 9408 | 0.3885 | | 0.3813 | 25.0 | 9800 | 0.3890 | | 0.3883 | 26.0 | 10192 | 0.3889 | | 0.4008 | 27.0 | 10584 | 0.3889 | | 0.3892 | 28.0 | 10976 | 0.3889 | | 0.4184 | 29.0 | 11368 | 0.3889 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1
mengelen/ADMEIM_step_500
mengelen
2023-11-06T01:07:12Z
0
0
null
[ "arxiv:1910.09700", "license:unknown", "region:us" ]
null
2023-11-06T00:45:42Z
--- license: unknown --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Meghan Engelen - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** ckpt - **Language(s) (NLP):** english - **License:** [More Information Needed] - **Finetuned from model [optional]:** V15 ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
raminm/fundhub_fund_v1
raminm
2023-11-06T00:52:58Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-large-uncased", "base_model:finetune:google-bert/bert-large-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-03T23:11:42Z
--- license: apache-2.0 base_model: bert-large-uncased tags: - generated_from_trainer metrics: - f1 model-index: - name: fundhub_fund_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fundhub_fund_v1 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.6734 - F1: 0.0078 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 5.4004 | 1.0 | 23928 | 5.5930 | 0.0078 | | 5.3216 | 2.0 | 47856 | 5.6629 | 0.0078 | | 5.1948 | 3.0 | 71784 | 5.6734 | 0.0078 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.4 - Tokenizers 0.14.1
bobbyw/copilot_relex_nyt
bobbyw
2023-11-06T00:50:46Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-06T00:15:43Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: copilot_relex_nyt results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # copilot_relex_nyt This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8148 - Accuracy: 0.6387 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.8822 | 1.0 | 5839 | 0.8919 | 0.6232 | | 0.7714 | 2.0 | 11678 | 0.8148 | 0.6387 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
kwang123/MaskedLM-roberta-large
kwang123
2023-11-06T00:41:53Z
4
0
transformers
[ "transformers", "safetensors", "roberta", "fill-mask", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-11-06T00:38:36Z
--- language: - en pipeline_tag: fill-mask --- # MaskedLM-roberta-large Fine-tuned on [depression detection dataset](https://competitions.codalab.org/competitions/36410)
pragnyas/IDEFICS-9b-GQA_GenSG-full
pragnyas
2023-11-06T00:29:34Z
1
0
peft
[ "peft", "arxiv:1910.09700", "base_model:HuggingFaceM4/idefics-9b", "base_model:adapter:HuggingFaceM4/idefics-9b", "region:us" ]
null
2023-11-06T00:29:30Z
--- library_name: peft base_model: HuggingFaceM4/idefics-9b --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: ['lm_head', 'embed_tokens'] - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
Bsbell21/GenerAd-AI
Bsbell21
2023-11-06T00:23:36Z
31
0
peft
[ "peft", "safetensors", "text-generation", "dataset:Bsbell21/generadai-sample", "arxiv:1910.09700", "base_model:bigscience/bloom-1b7", "base_model:adapter:bigscience/bloom-1b7", "license:bigscience-openrail-m", "region:us" ]
text-generation
2023-10-26T00:09:00Z
--- library_name: peft base_model: bigscience/bloom-1b7 license: bigscience-openrail-m datasets: - Bsbell21/generadai-sample pipeline_tag: text-generation --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.7.0.dev0
TheBloke/Hermes-Trismegistus-Mistral-7B-GPTQ
TheBloke
2023-11-06T00:12:34Z
21
3
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mistral-7b", "instruct", "finetune", "gpt4", "synthetic data", "distillation", "en", "dataset:teknium/trismegistus-project", "base_model:teknium/Hermes-Trismegistus-Mistral-7B", "base_model:quantized:teknium/Hermes-Trismegistus-Mistral-7B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "4-bit", "gptq", "region:us" ]
text-generation
2023-11-05T23:42:55Z
--- base_model: teknium/Hermes-Trismegistus-Mistral-7B datasets: - teknium/trismegistus-project inference: false language: - en license: apache-2.0 model-index: - name: Hermes-Trismegistus-Mistral-7B results: [] model_creator: Teknium model_name: Hermes Trismegistus Mistral 7B model_type: mistral prompt_template: 'USER: {prompt} ASSISTANT: ' quantized_by: TheBloke tags: - mistral-7b - instruct - finetune - gpt4 - synthetic data - distillation --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Hermes Trismegistus Mistral 7B - GPTQ - Model creator: [Teknium](https://huggingface.co/teknium) - Original model: [Hermes Trismegistus Mistral 7B](https://huggingface.co/teknium/Hermes-Trismegistus-Mistral-7B) <!-- description start --> ## Description This repo contains GPTQ model files for [Teknium's Hermes Trismegistus Mistral 7B](https://huggingface.co/teknium/Hermes-Trismegistus-Mistral-7B). Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them. These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Hermes-Trismegistus-Mistral-7B-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Hermes-Trismegistus-Mistral-7B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Hermes-Trismegistus-Mistral-7B-GGUF) * [Teknium's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/teknium/Hermes-Trismegistus-Mistral-7B) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: User-Assistant ``` USER: {prompt} ASSISTANT: ``` <!-- prompt-template end --> <!-- README_GPTQ.md-compatible clients start --> ## Known compatible clients / servers These GPTQ models are known to work in the following inference servers/webuis. - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) - [KoboldAI United](https://github.com/henk717/koboldai) - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui) - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) This may not be a complete list; if you know of others, please let me know! <!-- README_GPTQ.md-compatible clients end --> <!-- README_GPTQ.md-provided-files start --> ## Provided files, and GPTQ parameters Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements. Each separate quant is in a different branch. See below for instructions on fetching from different branches. Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers. <details> <summary>Explanation of GPTQ parameters</summary> - Bits: The bit size of the quantised model. - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value. - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy. - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s). - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences. - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit. </details> | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc | | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- | | [main](https://huggingface.co/TheBloke/Hermes-Trismegistus-Mistral-7B-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.16 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. | | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Hermes-Trismegistus-Mistral-7B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.57 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. | | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Hermes-Trismegistus-Mistral-7B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.52 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. | | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Hermes-Trismegistus-Mistral-7B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.68 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. | | [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/Hermes-Trismegistus-Mistral-7B-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 8.17 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. | | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Hermes-Trismegistus-Mistral-7B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.30 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. | <!-- README_GPTQ.md-provided-files end --> <!-- README_GPTQ.md-download-from-branches start --> ## How to download, including from branches ### In text-generation-webui To download from the `main` branch, enter `TheBloke/Hermes-Trismegistus-Mistral-7B-GPTQ` in the "Download model" box. To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/Hermes-Trismegistus-Mistral-7B-GPTQ:gptq-4bit-32g-actorder_True` ### From the command line I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` To download the `main` branch to a folder called `Hermes-Trismegistus-Mistral-7B-GPTQ`: ```shell mkdir Hermes-Trismegistus-Mistral-7B-GPTQ huggingface-cli download TheBloke/Hermes-Trismegistus-Mistral-7B-GPTQ --local-dir Hermes-Trismegistus-Mistral-7B-GPTQ --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir Hermes-Trismegistus-Mistral-7B-GPTQ huggingface-cli download TheBloke/Hermes-Trismegistus-Mistral-7B-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir Hermes-Trismegistus-Mistral-7B-GPTQ --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model. The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`. For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell mkdir Hermes-Trismegistus-Mistral-7B-GPTQ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Hermes-Trismegistus-Mistral-7B-GPTQ --local-dir Hermes-Trismegistus-Mistral-7B-GPTQ --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> ### With `git` (**not** recommended) To clone a specific branch with `git`, use a command like this: ```shell git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Hermes-Trismegistus-Mistral-7B-GPTQ ``` Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.) <!-- README_GPTQ.md-download-from-branches end --> <!-- README_GPTQ.md-text-generation-webui start --> ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui) Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/Hermes-Trismegistus-Mistral-7B-GPTQ`. - To download from a specific branch, enter for example `TheBloke/Hermes-Trismegistus-Mistral-7B-GPTQ:gptq-4bit-32g-actorder_True` - see Provided Files above for the list of branches for each option. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `Hermes-Trismegistus-Mistral-7B-GPTQ` 7. The model will automatically load, and is now ready for use! 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`. 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started! <!-- README_GPTQ.md-text-generation-webui end --> <!-- README_GPTQ.md-use-from-tgi start --> ## Serving this model from Text Generation Inference (TGI) It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` Example Docker parameters: ```shell --model-id TheBloke/Hermes-Trismegistus-Mistral-7B-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 ``` Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later): ```shell pip3 install huggingface-hub ``` ```python from huggingface_hub import InferenceClient endpoint_url = "https://your-endpoint-url-here" prompt = "Tell me about AI" prompt_template=f'''USER: {prompt} ASSISTANT: ''' client = InferenceClient(endpoint_url) response = client.text_generation(prompt, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1) print(f"Model output: {response}") ``` <!-- README_GPTQ.md-use-from-tgi end --> <!-- README_GPTQ.md-use-from-python start --> ## How to use this GPTQ model from Python code ### Install the necessary packages Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later. ```shell pip3 install transformers optimum pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7 ``` If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead: ```shell pip3 uninstall -y auto-gptq git clone https://github.com/PanQiWei/AutoGPTQ cd AutoGPTQ git checkout v0.4.2 pip3 install . ``` ### You can then use the following code ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_name_or_path = "TheBloke/Hermes-Trismegistus-Mistral-7B-GPTQ" # To use a different branch, change revision # For example: revision="gptq-4bit-32g-actorder_True" model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", trust_remote_code=False, revision="main") tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) prompt = "Tell me about AI" prompt_template=f'''USER: {prompt} ASSISTANT: ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1 ) print(pipe(prompt_template)[0]['generated_text']) ``` <!-- README_GPTQ.md-use-from-python end --> <!-- README_GPTQ.md-compatibility start --> ## Compatibility The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly. [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility. For a list of clients/servers, please see "Known compatible clients / servers", above. <!-- README_GPTQ.md-compatibility end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: Teknium's Hermes Trismegistus Mistral 7B ## Model Description: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/7a7CNKotVKnzYcgOteJVK.png) Transcendence is All You Need! Mistral Trismegistus is a model made for people interested in the esoteric, occult, and spiritual. ### Trismegistus evolved, trained over Hermes 2.5, the model performs far better in all tasks, including esoteric tasks! The change between Mistral-Trismegistus and Hermes-Trismegistus is that this version trained over hermes 2.5 instead of the base mistral model, this means it is full of task capabilities that it Trismegistus can utilize for all esoteric and occult tasks, and performs them far better than ever before. Here are some outputs: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/IqOfRFeoD8U_MCOroVnkD.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/j4hFDDjaHmVJKFiUIJoNw.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/-5aG71GhN4g6gFWQvx3Zk.png) ## Acknowledgements: Special thanks to @a16z. ## Dataset: This model was trained on a 100% synthetic, gpt-4 generated dataset, about ~10,000 examples, on a wide and diverse set of both tasks and knowledge about the esoteric, occult, and spiritual. The dataset will be released soon! ## Usage: Prompt Format: ``` USER: <prompt> ASSISTANT: ``` OR ``` <system message> USER: <prompt> ASSISTANT: ``` ## Benchmarks: No benchmark can capture the nature and essense of the quality of spirituality and esoteric knowledge and tasks. You will have to try testing it yourself! Training run on wandb here: https://wandb.ai/teknium1/occult-expert-mistral-7b/runs/coccult-expert-mistral-6/overview ## Licensing: Apache 2.0
legacy107/flan-t5-large-ia3-newsqa-kvw
legacy107
2023-11-05T23:48:40Z
3
0
peft
[ "peft", "arxiv:1910.09700", "base_model:google/flan-t5-large", "base_model:adapter:google/flan-t5-large", "region:us" ]
null
2023-11-05T00:26:19Z
--- library_name: peft base_model: google/flan-t5-large --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.0 ## Training procedure ### Framework versions - PEFT 0.6.0 ## Training procedure ### Framework versions - PEFT 0.6.0
TheBloke/Hermes-Trismegistus-Mistral-7B-GGUF
TheBloke
2023-11-05T23:47:53Z
813
22
transformers
[ "transformers", "gguf", "mistral", "mistral-7b", "instruct", "finetune", "gpt4", "synthetic data", "distillation", "en", "dataset:teknium/trismegistus-project", "base_model:teknium/Hermes-Trismegistus-Mistral-7B", "base_model:quantized:teknium/Hermes-Trismegistus-Mistral-7B", "license:apache-2.0", "region:us" ]
null
2023-11-05T23:42:55Z
--- base_model: teknium/Hermes-Trismegistus-Mistral-7B datasets: - teknium/trismegistus-project inference: false language: - en license: apache-2.0 model-index: - name: Hermes-Trismegistus-Mistral-7B results: [] model_creator: Teknium model_name: Hermes Trismegistus Mistral 7B model_type: mistral prompt_template: 'USER: {prompt} ASSISTANT: ' quantized_by: TheBloke tags: - mistral-7b - instruct - finetune - gpt4 - synthetic data - distillation --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Hermes Trismegistus Mistral 7B - GGUF - Model creator: [Teknium](https://huggingface.co/teknium) - Original model: [Hermes Trismegistus Mistral 7B](https://huggingface.co/teknium/Hermes-Trismegistus-Mistral-7B) <!-- description start --> ## Description This repo contains GGUF format model files for [Teknium's Hermes Trismegistus Mistral 7B](https://huggingface.co/teknium/Hermes-Trismegistus-Mistral-7B). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Hermes-Trismegistus-Mistral-7B-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Hermes-Trismegistus-Mistral-7B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Hermes-Trismegistus-Mistral-7B-GGUF) * [Teknium's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/teknium/Hermes-Trismegistus-Mistral-7B) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: User-Assistant ``` USER: {prompt} ASSISTANT: ``` <!-- prompt-template end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [hermes-trismegistus-mistral-7b.Q2_K.gguf](https://huggingface.co/TheBloke/Hermes-Trismegistus-Mistral-7B-GGUF/blob/main/hermes-trismegistus-mistral-7b.Q2_K.gguf) | Q2_K | 2 | 3.08 GB| 5.58 GB | smallest, significant quality loss - not recommended for most purposes | | [hermes-trismegistus-mistral-7b.Q3_K_S.gguf](https://huggingface.co/TheBloke/Hermes-Trismegistus-Mistral-7B-GGUF/blob/main/hermes-trismegistus-mistral-7b.Q3_K_S.gguf) | Q3_K_S | 3 | 3.16 GB| 5.66 GB | very small, high quality loss | | [hermes-trismegistus-mistral-7b.Q3_K_M.gguf](https://huggingface.co/TheBloke/Hermes-Trismegistus-Mistral-7B-GGUF/blob/main/hermes-trismegistus-mistral-7b.Q3_K_M.gguf) | Q3_K_M | 3 | 3.52 GB| 6.02 GB | very small, high quality loss | | [hermes-trismegistus-mistral-7b.Q3_K_L.gguf](https://huggingface.co/TheBloke/Hermes-Trismegistus-Mistral-7B-GGUF/blob/main/hermes-trismegistus-mistral-7b.Q3_K_L.gguf) | Q3_K_L | 3 | 3.82 GB| 6.32 GB | small, substantial quality loss | | [hermes-trismegistus-mistral-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Hermes-Trismegistus-Mistral-7B-GGUF/blob/main/hermes-trismegistus-mistral-7b.Q4_0.gguf) | Q4_0 | 4 | 4.11 GB| 6.61 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [hermes-trismegistus-mistral-7b.Q4_K_S.gguf](https://huggingface.co/TheBloke/Hermes-Trismegistus-Mistral-7B-GGUF/blob/main/hermes-trismegistus-mistral-7b.Q4_K_S.gguf) | Q4_K_S | 4 | 4.14 GB| 6.64 GB | small, greater quality loss | | [hermes-trismegistus-mistral-7b.Q4_K_M.gguf](https://huggingface.co/TheBloke/Hermes-Trismegistus-Mistral-7B-GGUF/blob/main/hermes-trismegistus-mistral-7b.Q4_K_M.gguf) | Q4_K_M | 4 | 4.37 GB| 6.87 GB | medium, balanced quality - recommended | | [hermes-trismegistus-mistral-7b.Q5_0.gguf](https://huggingface.co/TheBloke/Hermes-Trismegistus-Mistral-7B-GGUF/blob/main/hermes-trismegistus-mistral-7b.Q5_0.gguf) | Q5_0 | 5 | 5.00 GB| 7.50 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [hermes-trismegistus-mistral-7b.Q5_K_S.gguf](https://huggingface.co/TheBloke/Hermes-Trismegistus-Mistral-7B-GGUF/blob/main/hermes-trismegistus-mistral-7b.Q5_K_S.gguf) | Q5_K_S | 5 | 5.00 GB| 7.50 GB | large, low quality loss - recommended | | [hermes-trismegistus-mistral-7b.Q5_K_M.gguf](https://huggingface.co/TheBloke/Hermes-Trismegistus-Mistral-7B-GGUF/blob/main/hermes-trismegistus-mistral-7b.Q5_K_M.gguf) | Q5_K_M | 5 | 5.13 GB| 7.63 GB | large, very low quality loss - recommended | | [hermes-trismegistus-mistral-7b.Q6_K.gguf](https://huggingface.co/TheBloke/Hermes-Trismegistus-Mistral-7B-GGUF/blob/main/hermes-trismegistus-mistral-7b.Q6_K.gguf) | Q6_K | 6 | 5.94 GB| 8.44 GB | very large, extremely low quality loss | | [hermes-trismegistus-mistral-7b.Q8_0.gguf](https://huggingface.co/TheBloke/Hermes-Trismegistus-Mistral-7B-GGUF/blob/main/hermes-trismegistus-mistral-7b.Q8_0.gguf) | Q8_0 | 8 | 7.70 GB| 10.20 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/Hermes-Trismegistus-Mistral-7B-GGUF and below it, a specific filename to download, such as: hermes-trismegistus-mistral-7b.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/Hermes-Trismegistus-Mistral-7B-GGUF hermes-trismegistus-mistral-7b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/Hermes-Trismegistus-Mistral-7B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Hermes-Trismegistus-Mistral-7B-GGUF hermes-trismegistus-mistral-7b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 32 -m hermes-trismegistus-mistral-7b.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "USER: {prompt}\nASSISTANT:" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. ### How to load this model in Python code, using ctransformers #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install ctransformers # Or with CUDA GPU acceleration pip install ctransformers[cuda] # Or with AMD ROCm GPU acceleration (Linux only) CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers # Or with Metal GPU acceleration for macOS systems only CT_METAL=1 pip install ctransformers --no-binary ctransformers ``` #### Simple ctransformers example code ```python from ctransformers import AutoModelForCausalLM # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = AutoModelForCausalLM.from_pretrained("TheBloke/Hermes-Trismegistus-Mistral-7B-GGUF", model_file="hermes-trismegistus-mistral-7b.Q4_K_M.gguf", model_type="mistral", gpu_layers=50) print(llm("AI is going to")) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: Teknium's Hermes Trismegistus Mistral 7B ## Model Description: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/7a7CNKotVKnzYcgOteJVK.png) Transcendence is All You Need! Mistral Trismegistus is a model made for people interested in the esoteric, occult, and spiritual. ### Trismegistus evolved, trained over Hermes 2.5, the model performs far better in all tasks, including esoteric tasks! The change between Mistral-Trismegistus and Hermes-Trismegistus is that this version trained over hermes 2.5 instead of the base mistral model, this means it is full of task capabilities that it Trismegistus can utilize for all esoteric and occult tasks, and performs them far better than ever before. Here are some outputs: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/IqOfRFeoD8U_MCOroVnkD.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/j4hFDDjaHmVJKFiUIJoNw.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/-5aG71GhN4g6gFWQvx3Zk.png) ## Acknowledgements: Special thanks to @a16z. ## Dataset: This model was trained on a 100% synthetic, gpt-4 generated dataset, about ~10,000 examples, on a wide and diverse set of both tasks and knowledge about the esoteric, occult, and spiritual. The dataset will be released soon! ## Usage: Prompt Format: ``` USER: <prompt> ASSISTANT: ``` OR ``` <system message> USER: <prompt> ASSISTANT: ``` ## Benchmarks: No benchmark can capture the nature and essense of the quality of spirituality and esoteric knowledge and tasks. You will have to try testing it yourself! Training run on wandb here: https://wandb.ai/teknium1/occult-expert-mistral-7b/runs/coccult-expert-mistral-6/overview ## Licensing: Apache 2.0 <!-- original-model-card end -->
victan/vicode_model_refiner
victan
2023-11-05T23:44:16Z
6
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "image-to-image", "arxiv:2307.01952", "arxiv:2211.01324", "arxiv:2108.01073", "arxiv:2112.10752", "license:openrail++", "diffusers:StableDiffusionXLImg2ImgPipeline", "region:us" ]
image-to-image
2023-11-05T19:13:00Z
--- license: openrail++ tags: - stable-diffusion - image-to-image --- # SD-XL 1.0-refiner Model Card ![row01](01.png) ## Model ![pipeline](pipeline.png) [SDXL](https://arxiv.org/abs/2307.01952) consists of an [ensemble of experts](https://arxiv.org/abs/2211.01324) pipeline for latent diffusion: In a first step, the base model (available here: https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) is used to generate (noisy) latents, which are then further processed with a refinement model specialized for the final denoising steps. Note that the base model can be used as a standalone module. Alternatively, we can use a two-stage pipeline as follows: First, the base model is used to generate latents of the desired output size. In the second step, we use a specialized high-resolution model and apply a technique called SDEdit (https://arxiv.org/abs/2108.01073, also known as "img2img") to the latents generated in the first step, using the same prompt. This technique is slightly slower than the first one, as it requires more function evaluations. Source code is available at https://github.com/Stability-AI/generative-models . ### Model Description - **Developed by:** Stability AI - **Model type:** Diffusion-based text-to-image generative model - **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/blob/main/LICENSE.md) - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses two fixed, pretrained text encoders ([OpenCLIP-ViT/G](https://github.com/mlfoundations/open_clip) and [CLIP-ViT/L](https://github.com/openai/CLIP/tree/main)). - **Resources for more information:** Check out our [GitHub Repository](https://github.com/Stability-AI/generative-models) and the [SDXL report on arXiv](https://arxiv.org/abs/2307.01952). ### Model Sources For research purposes, we recommned our `generative-models` Github repository (https://github.com/Stability-AI/generative-models), which implements the most popoular diffusion frameworks (both training and inference) and for which new functionalities like distillation will be added over time. [Clipdrop](https://clipdrop.co/stable-diffusion) provides free SDXL inference. - **Repository:** https://github.com/Stability-AI/generative-models - **Demo:** https://clipdrop.co/stable-diffusion ## Evaluation ![comparison](comparison.png) The chart above evaluates user preference for SDXL (with and without refinement) over SDXL 0.9 and Stable Diffusion 1.5 and 2.1. The SDXL base model performs significantly better than the previous variants, and the model combined with the refinement module achieves the best overall performance. ### 🧨 Diffusers Make sure to upgrade diffusers to >= 0.18.0: ``` pip install diffusers --upgrade ``` In addition make sure to install `transformers`, `safetensors`, `accelerate` as well as the invisible watermark: ``` pip install invisible_watermark transformers accelerate safetensors ``` Yon can then use the refiner to improve images. ```py import torch from diffusers import StableDiffusionXLImg2ImgPipeline from diffusers.utils import load_image pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True ) pipe = pipe.to("cuda") url = "https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png" init_image = load_image(url).convert("RGB") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt, image=init_image).images ``` When using `torch >= 2.0`, you can improve the inference speed by 20-30% with torch.compile. Simple wrap the unet with torch compile before running the pipeline: ```py pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) ``` If you are limited by GPU VRAM, you can enable *cpu offloading* by calling `pipe.enable_model_cpu_offload` instead of `.to("cuda")`: ```diff - pipe.to("cuda") + pipe.enable_model_cpu_offload() ``` For more advanced use cases, please have a look at [the docs](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/stable_diffusion_xl). ## Uses ### Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. Excluded uses are described below. ### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render legible text - The model struggles with more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere” - Faces and people in general may not be generated properly. - The autoencoding part of the model is lossy. ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.
michakoz/q-Taxi-v3
michakoz
2023-11-05T23:41:16Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-11-05T23:41:14Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="michakoz/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
michakoz/q-FrozenLake-v1-4x4-noSlippery
michakoz
2023-11-05T23:36:41Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-11-05T23:36:38Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="michakoz/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
owanr/Sentiment-google-t5-v1_1-large-inter_model-dataset-frequency-model_annots_str
owanr
2023-11-05T22:55:27Z
0
0
null
[ "generated_from_trainer", "base_model:google/t5-v1_1-large", "base_model:finetune:google/t5-v1_1-large", "license:apache-2.0", "region:us" ]
null
2023-11-05T22:55:26Z
--- license: apache-2.0 base_model: google/t5-v1_1-large tags: - generated_from_trainer model-index: - name: Sentiment-google-t5-v1_1-large-inter_model-dataset-frequency-model_annots_str results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Sentiment-google-t5-v1_1-large-inter_model-dataset-frequency-model_annots_str This model is a fine-tuned version of [google/t5-v1_1-large](https://huggingface.co/google/t5-v1_1-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7983 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 20.1785 | 1.0 | 44 | 24.2987 | | 16.7918 | 2.0 | 88 | 13.0112 | | 10.2722 | 3.0 | 132 | 9.1399 | | 8.7351 | 4.0 | 176 | 8.7771 | | 8.1648 | 5.0 | 220 | 8.6202 | | 8.1662 | 6.0 | 264 | 8.5136 | | 8.0042 | 7.0 | 308 | 8.3971 | | 7.8946 | 8.0 | 352 | 8.1025 | | 7.4059 | 9.0 | 396 | 7.6197 | | 7.1363 | 10.0 | 440 | 7.3350 | | 6.9292 | 11.0 | 484 | 7.1825 | | 6.8455 | 12.0 | 528 | 7.0740 | | 6.5296 | 13.0 | 572 | 6.9423 | | 0.9019 | 14.0 | 616 | 0.6900 | | 0.7584 | 15.0 | 660 | 0.6856 | | 0.7245 | 16.0 | 704 | 0.6713 | | 0.7189 | 17.0 | 748 | 0.6693 | | 0.7258 | 18.0 | 792 | 0.6675 | | 0.7222 | 19.0 | 836 | 0.6668 | | 0.7112 | 20.0 | 880 | 0.6680 | | 0.7125 | 21.0 | 924 | 0.6645 | | 0.7038 | 22.0 | 968 | 0.6664 | | 0.719 | 23.0 | 1012 | 0.6638 | | 0.7022 | 24.0 | 1056 | 0.6621 | | 0.6961 | 25.0 | 1100 | 0.6653 | | 0.709 | 26.0 | 1144 | 0.6653 | | 0.6969 | 27.0 | 1188 | 0.6633 | | 0.7109 | 28.0 | 1232 | 0.6604 | | 0.6965 | 29.0 | 1276 | 0.6617 | | 0.7015 | 30.0 | 1320 | 0.6617 | | 0.7098 | 31.0 | 1364 | 0.6609 | | 0.6951 | 32.0 | 1408 | 0.6613 | | 0.6881 | 33.0 | 1452 | 0.6631 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1
owanr/SChem5Labels-google-t5-v1_1-large-inter_model-dataset-frequency-model_annots_str
owanr
2023-11-05T22:25:38Z
0
0
null
[ "generated_from_trainer", "base_model:google/t5-v1_1-large", "base_model:finetune:google/t5-v1_1-large", "license:apache-2.0", "region:us" ]
null
2023-11-05T22:25:37Z
--- license: apache-2.0 base_model: google/t5-v1_1-large tags: - generated_from_trainer model-index: - name: SChem5Labels-google-t5-v1_1-large-inter_model-dataset-frequency-model_annots_str results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SChem5Labels-google-t5-v1_1-large-inter_model-dataset-frequency-model_annots_str This model is a fine-tuned version of [google/t5-v1_1-large](https://huggingface.co/google/t5-v1_1-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 19.7803 | 1.0 | 25 | 23.9207 | | 18.7939 | 2.0 | 50 | 19.6774 | | 17.9347 | 3.0 | 75 | 14.1935 | | 14.9562 | 4.0 | 100 | 11.5018 | | 12.9185 | 5.0 | 125 | 9.7946 | | 11.0104 | 6.0 | 150 | 9.0519 | | 10.1946 | 7.0 | 175 | 8.9336 | | 8.6775 | 8.0 | 200 | 8.6692 | | 8.2895 | 9.0 | 225 | 8.4222 | | 8.067 | 10.0 | 250 | 8.2689 | | 7.7922 | 11.0 | 275 | 8.1862 | | 7.702 | 12.0 | 300 | 8.0916 | | 7.5801 | 13.0 | 325 | 7.9765 | | 7.4381 | 14.0 | 350 | 7.7605 | | 7.4223 | 15.0 | 375 | 7.4846 | | 7.0379 | 16.0 | 400 | 7.3010 | | 6.9279 | 17.0 | 425 | 7.1606 | | 6.7912 | 18.0 | 450 | 7.0390 | | 6.7047 | 19.0 | 475 | 6.9686 | | 6.5986 | 20.0 | 500 | 6.9092 | | 6.5577 | 21.0 | 525 | 6.8427 | | 6.4589 | 22.0 | 550 | 6.7866 | | 6.3207 | 23.0 | 575 | 6.7021 | | 1.1695 | 24.0 | 600 | 0.7696 | | 0.7697 | 25.0 | 625 | 0.6522 | | 0.6978 | 26.0 | 650 | 0.6488 | | 0.6832 | 27.0 | 675 | 0.6470 | | 0.7033 | 28.0 | 700 | 0.6322 | | 0.692 | 29.0 | 725 | 0.6369 | | 0.6703 | 30.0 | 750 | 0.6372 | | 0.6781 | 31.0 | 775 | 0.6364 | | 0.677 | 32.0 | 800 | 0.6252 | | 0.6632 | 33.0 | 825 | 0.6301 | | 0.6684 | 34.0 | 850 | 0.6254 | | 0.6823 | 35.0 | 875 | 0.6312 | | 0.6665 | 36.0 | 900 | 0.6328 | | 0.6583 | 37.0 | 925 | 0.6256 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.5 - Tokenizers 0.14.1
lukasdrg/clinical_longformer_same_tokens_80k
lukasdrg
2023-11-05T22:24:54Z
4
0
transformers
[ "transformers", "pytorch", "longformer", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-11-05T21:22:13Z
--- tags: - generated_from_trainer model-index: - name: clinical_longformer_same_tokens_80k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clinical_longformer_same_tokens_80k This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
turtlesama/outputs
turtlesama
2023-11-05T22:02:35Z
0
0
null
[ "tensorboard", "safetensors", "generated_from_trainer", "base_model:codellama/CodeLlama-7b-hf", "base_model:finetune:codellama/CodeLlama-7b-hf", "license:llama2", "region:us" ]
null
2023-11-05T22:02:31Z
--- license: llama2 base_model: codellama/CodeLlama-7b-hf tags: - generated_from_trainer model-index: - name: outputs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # outputs This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 10 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - training_steps: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
mjsp/sweet
mjsp
2023-11-05T21:54:51Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-10-22T14:30:14Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: sweet results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.5750916004180908 --- # sweet Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Adhirasam ![Adhirasam](images/Adhirasam.jpg) #### Anarsa ![Anarsa](images/Anarsa.jpg) #### Anjeer Barfi ![Anjeer Barfi](images/Anjeer_Barfi.jpg) #### Badam Burfi ![Badam Burfi](images/Badam_Burfi.jpeg) #### Bal Mithai ![Bal Mithai](images/Bal_Mithai.jpg) #### Balushahi ![Balushahi](images/Balushahi.jpg) #### Barfi ![Barfi](images/Barfi.jpeg) #### Basundi ![Basundi](images/Basundi.jpg) #### Bessan Laddu ![Bessan Laddu](images/Bessan_Laddu.jpeg) #### Bobbatlu ![Bobbatlu](images/Bobbatlu.jpg) #### Boondi ![Boondi](images/Boondi.jpg) #### Boondi Ladoo ![Boondi Ladoo](images/Boondi_Ladoo.jpg) #### Cham Cham ![Cham Cham](images/Cham_Cham.jpg) #### Chena Murki ![Chena Murki](images/Chena_Murki.jpg) #### Chenna Poda ![Chenna Poda](images/Chenna_Poda.jpg) #### Chikki ![Chikki](images/Chikki.jpg) #### Chiroti ![Chiroti](images/Chiroti.jpg) #### Coconut Ladoo ![Coconut Ladoo](images/Coconut_Ladoo.jpg) #### Dhondas ![Dhondas](images/Dhondas.jpg) #### Dodha Barfi ![Dodha Barfi](images/Dodha_Barfi.jpg) #### Double ka meetha ![Double ka meetha](images/Double_ka_meetha.jpg) #### Dry Fruits Chikki ![Dry Fruits Chikki](images/Dry_Fruits_Chikki.jpg) #### Gajar ka halwa ![Gajar ka halwa](images/Gajar_ka_halwa.jpg) #### Ghevar ![Ghevar](images/Ghevar.jpg) #### Gud Papdi ![Gud Papdi](images/Gud_Papdi.jpg) #### Gudanna ![Gudanna](images/Gudanna.jpg) #### Gujiya ![Gujiya](images/Gujiya.jpg) #### Gulab Jamun ![Gulab Jamun](images/Gulab_Jamun.jpg) #### Halwa ![Halwa](images/Halwa.jpg) #### Jalebi ![Jalebi](images/Jalebi.jpg) #### Jhangri ![Jhangri](images/Jhangri.jpg) #### Kaju Anjeer Barfi ![Kaju Anjeer Barfi](images/Kaju_Anjeer_Barfi.jpg) #### Kaju Anjeer Roll ![Kaju Anjeer Roll](images/Kaju_Anjeer_Roll.jpeg) #### Kaju Katli ![Kaju Katli](images/Kaju_Katli.jpeg) #### Kala Jamun ![Kala Jamun](images/Kala_Jamun.jpg) #### Khaja ![Khaja](images/Khaja.jpg) #### Kheer ![Kheer](images/Kheer.jpeg) #### Kheer Kadam ![Kheer Kadam](images/Kheer_Kadam.jpg) #### Laddu ![Laddu](images/Laddu.jpg) #### Lavang Latika ![Lavang Latika](images/Lavang_Latika.jpg) #### Malai chom chom ![Malai chom chom](images/Malai_chom_chom.jpg) #### Malpua ![Malpua](images/Malpua.jpeg) #### Meethi Seviyan ![Meethi Seviyan](images/Meethi_Seviyan.jpg) #### Mishti Dohi ![Mishti Dohi](images/Mishti_Dohi.jpg) #### Modak ![Modak](images/Modak.jpeg) #### Mohanthal ![Mohanthal](images/Mohanthal.jpg) #### Motichoor Laddu ![Motichoor Laddu](images/Motichoor_Laddu.jpeg) #### Mysore_pak ![Mysore_pak](images/Mysore_pak.jpeg) #### Nankhatai ![Nankhatai](images/Nankhatai.jpg) #### Paniyaram ![Paniyaram](images/Paniyaram.jpg) #### Papad Roll ![Papad Roll](images/Papad_Roll.jpg) #### Patishapta ![Patishapta](images/Patishapta.jpg) #### Payasam (Rice or Vermicelli) ![Payasam (Rice or Vermicelli)](images/Payasam_(Rice_or_Vermicelli).jpg) #### Peda ![Peda](images/Peda.jpeg) #### Petha ![Petha](images/Petha.jpg) #### Phirni ![Phirni](images/Phirni.jpg) #### Puran Poli ![Puran Poli](images/Puran_Poli.jpeg) #### Puri Unde ![Puri Unde](images/Puri_Unde.jpg) #### Qubani Ka Meetha ![Qubani Ka Meetha](images/Qubani_Ka_Meetha.jpg) #### Rabri ![Rabri](images/Rabri.jpg) #### Rajbhog ![Rajbhog](images/Rajbhog.jpg) #### Ras Malai ![Ras Malai](images/Ras_Malai.jpg) #### Rasgulla ![Rasgulla](images/Rasgulla.jpg) #### Rava Kesari ![Rava Kesari](images/Rava_Kesari.jpg) #### Sandesh ![Sandesh](images/Sandesh.jpg) #### Sannas ![Sannas](images/Sannas.jpg) #### Shahi Tukda ![Shahi Tukda](images/Shahi_Tukda.jpg) #### Shakarpara ![Shakarpara](images/Shakarpara.jpg) #### Sheer khurma ![Sheer khurma](images/Sheer_khurma.jpg) #### Shrikhand ![Shrikhand](images/Shrikhand.jpeg) #### Shufta ![Shufta](images/Shufta.jpg) #### Singhare Atte Ki Barfi ![Singhare Atte Ki Barfi](images/Singhare_Atte_Ki_Barfi.jpg) #### Sohan Papdi ![Sohan Papdi](images/Sohan_Papdi.jpg) #### Sutarfeni ![Sutarfeni](images/Sutarfeni.jpg) #### kalakand ![kalakand](images/kalakand.jpg)
Trat80/AdemGPT
Trat80
2023-11-05T21:51:36Z
5
1
transformers
[ "transformers", "pytorch", "dataset:laion/gpt4v-dataset", "endpoints_compatible", "region:us" ]
null
2023-11-05T20:55:31Z
--- datasets: - laion/gpt4v-dataset library_name: transformers --- Model Card: AdemGPT 1. General Information Model Name: AdemGPT Description: AdemGPT is a pre-trained generative language model that seeks to generate coherent and relevant text based on a wide spectrum of linguistic tasks. 2. Authors and Affiliations Authors: [Trat80] Affiliations: [N/A] 3. Model Functionality Supported Tasks: Text generation, Answering questions, Text to text, etc. Supported Languages: Mainly Spanish. Examples of Use: Generation of summaries, creative writing, informal conversation, among others. 4. Dataset and Training Dataset Origin: Created from multiple sources of text in Spanish (books, online articles, conversations, etc.). Dataset Size: Contains millions of examples of text in Spanish. Training Procedures: The GPT-3 architecture was used and trained for several weeks in a high-performance environment. 5. Model Performance Evaluation Metrics: Text coherence, precision in questions and answers, language fluency, etc. Results: Achieved high scores on text generation tests and language processing tasks. 6. Ethical Considerations Bias Considerations: Efforts have been made to mitigate bias, but there may be some inherent biases in the training data. Privacy and Security: The model does not store user information and caution should be taken when using it with sensitive data. 7. Limitations of the Model Known Limitations: Cannot provide information in other languages ​​and may have difficulty with very specialized or technical concepts. 8. License and Conditions of Use License: [cc-by-nc-sa4.0] Conditions of Use: The model is available for non-commercial and educational use. It is recommended to review the license terms. ## Example Install request: pip install requests After that, put that in you python: import requests import json model_name = 'Trat80/AdemGPT' api_token = 'tu_api_token' # You token api input_text = "Hi! My Name Is AdemGPT!" headers = { 'Authorization': f'Bearer {api_token}', 'Content-Type': 'application/json' } data = { 'inputs': input_text, 'parameters': { 'max_new_tokens': 100 } } response = requests.post(f'https://api-inference.huggingface.co/models/{model_name}', headers=headers, data=json.dumps(data)) if response.status_code == 200: generated_text = response.json().get('generated_text') print(generated_text) else: print("Error en la solicitud:", response.status_code, response.text)
snowc2023/uplimit-project-3-phi-1.5
snowc2023
2023-11-05T21:44:10Z
0
0
null
[ "tensorboard", "safetensors", "generated_from_trainer", "dataset:scitldr", "base_model:microsoft/phi-1_5", "base_model:finetune:microsoft/phi-1_5", "license:other", "region:us" ]
null
2023-11-05T21:44:05Z
--- license: other base_model: microsoft/phi-1_5 tags: - generated_from_trainer datasets: - scitldr model-index: - name: uplimit-project-3-phi-1.5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # uplimit-project-3-phi-1.5 This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the scitldr dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0 | 0.1 | 200 | 0.0000 | | 0.0 | 0.2 | 400 | 0.0000 | | 0.0 | 0.3 | 600 | 0.0000 | | 0.0 | 0.4 | 800 | 0.0000 | | 0.0 | 0.5 | 1000 | 0.0000 | | 0.0 | 0.6 | 1200 | 0.0000 | | 0.0 | 0.7 | 1400 | 0.0000 | | 0.0 | 0.8 | 1600 | 0.0000 | | 0.0 | 0.9 | 1800 | 0.0000 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
aires1-999/test_001
aires1-999
2023-11-05T21:30:13Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-08T21:13:19Z
--- license: creativeml-openrail-m ---
HugHugHug1111/test
HugHugHug1111
2023-11-05T21:24:50Z
1
0
peft
[ "peft", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2023-11-05T21:05:42Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0
viditnaik/SecBERT-finetuned-cnn
viditnaik
2023-11-05T21:18:17Z
4
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "generated_from_keras_callback", "base_model:jackaduma/SecBERT", "base_model:finetune:jackaduma/SecBERT", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-11-05T19:52:24Z
--- license: apache-2.0 base_model: jackaduma/SecBERT tags: - generated_from_keras_callback model-index: - name: viditnaik/SecBERT-finetuned-cnn results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # viditnaik/SecBERT-finetuned-cnn This model is a fine-tuned version of [jackaduma/SecBERT](https://huggingface.co/jackaduma/SecBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 7.1339 - Validation Loss: 6.3879 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -375, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 7.1339 | 6.3879 | 0 | ### Framework versions - Transformers 4.35.0 - TensorFlow 2.14.0 - Datasets 2.14.6 - Tokenizers 0.14.1
Larisa99661/haha2
Larisa99661
2023-11-05T21:16:20Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "gender", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-05T21:14:35Z
--- license: apache-2.0 tags: - generated_from_trainer - gender metrics: - accuracy model-index: - name: GFMgenderDetection results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GFMgenderDetection This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4328 - Accuracy: 0.7971 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4591 | 1.0 | 4567 | 0.4502 | 0.7841 | | 0.3915 | 2.0 | 9134 | 0.4328 | 0.7971 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
xeeex271/ppo-LunarLander-v2
xeeex271
2023-11-05T21:09:58Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-11-05T04:03:42Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: ppo results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 283.20 +/- 21.20 name: mean_reward verified: false --- # **ppo** Agent playing **LunarLander-v2** This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
LoneStriker/Yi-34B-8.0bpw-h8-exl2
LoneStriker
2023-11-05T21:08:09Z
19
1
transformers
[ "transformers", "pytorch", "safetensors", "Yi", "text-generation", "custom_code", "license:other", "autotrain_compatible", "region:us" ]
text-generation
2023-11-05T21:05:17Z
--- license: other license_name: yi-license license_link: LICENSE --- <div align="center"> <h1> Yi </h1> </div> ## Introduction The **Yi** series models are large language models trained from scratch by developers at [01.AI](https://01.ai/). The first public release contains two base models with the parameter size of 6B and 34B. ## News - 🎯 **2023/11/02**: The base model of `Yi-6B` and `Yi-34B` ## Model Performance | Model | MMLU | CMMLU | C-Eval | GAOKAO | BBH | Commonsense Reasoning | Reading Comprehension | Math & Code | | :------------ | :------: | :------: | :------: | :------: | :------: | :-------------------: | :-------------------: | :---------: | | | 5-shot | 5-shot | 5-shot | 0-shot | 3-shot@1 | - | - | - | | LLaMA2-34B | 62.6 | - | - | - | 44.1 | 69.9 | 68.0 | 26.0 | | LLaMA2-70B | 68.9 | 53.3 | - | 49.8 | 51.2 | 71.9 | 69.4 | 36.8 | | Baichuan2-13B | 59.2 | 62.0 | 58.1 | 54.3 | 48.8 | 64.3 | 62.4 | 23.0 | | Qwen-14B | 66.3 | 71.0 | 72.1 | 62.5 | 53.4 | 73.3 | 72.5 | 39.8 | | Skywork-13B | 62.1 | 61.8 | 60.6 | 68.1 | 41.7 | 72.4 | 61.4 | 24.9 | | InternLM-20B | 62.1 | 59.0 | 58.8 | 45.5 | 52.5 | 78.3 | - | 26.0 | | Aquila-34B | 67.8 | 71.4 | 63.1 | - | - | - | - | - | | Falcon-180B | 70.4 | 58.0 | 57.8 | 59.0 | 54.0 | 77.3 | 68.8 | 34.0 | | Yi-6B | 63.2 | 75.5 | 72.0 | 72.2 | 42.8 | 72.3 | 68.7 | 19.8 | | **Yi-34B** | **76.3** | **83.7** | **81.4** | **82.8** | **54.3** | **80.1** | **76.4** | **37.1** | While benchmarking open-source models, we have observed a disparity between the results generated by our pipeline and those reported in public sources (e.g. OpenCampus). Upon conducting a more in-depth investigation of this difference, we have discovered that various models may employ different prompts, post-processing strategies, and sampling techniques, potentially resulting in significant variations in the outcomes. Our prompt and post-processing strategy remains consistent with the original benchmark, and greedy decoding is employed during evaluation without any post-processing for the generated content. For scores that did not report by original author (including score reported with different setting), we try to get results with our pipeline. To extensively evaluate model's capability, we adopted the methodology outlined in Llama2. Specifically, we included PIQA, SIQA, HellaSwag, WinoGrande, ARC, OBQA, and CSQA to assess common sense reasoning. SquAD, QuAC, and BoolQ were incorporated to evaluate reading comprehension. CSQA was exclusively tested using a 7-shot setup, while all other tests were conducted in a 0-shot configuration. Additionally, we introduced GSM8K (8-shot@1), MATH (4-shot@1), HumanEval (0-shot@1), and MBPP (3-shot@1) under the category "Math & Code". Due to technical constraints, we did not test Falcon-180 on QuAC and OBQA; the score is derived by averaging the scores on the remaining tasks. Since the scores for these two tasks are generally lower than the average, we believe that Falcon-180B's performance was not underestimated. ## Disclaimer Although we use data compliance checking algorithms during the training process to ensure the compliance of the trained model to the best of our ability, due to the complexity of the data and the diversity of language model usage scenarios, we cannot guarantee that the model will generate correct and reasonable output in all scenarios. Please be aware that there is still a risk of the model producing problematic outputs. We will not be responsible for any risks and issues resulting from misuse, misguidance, illegal usage, and related misinformation, as well as any associated data security concerns. ## License The Yi series model must be adhere to the [Model License Agreement](https://huggingface.co/01-ai/Yi-34B/blob/main/LICENSE). For any questions related to licensing and copyright, please contact us ([yi@01.ai](mailto:yi@01.ai)).
lukasdrg/clinical_longformer_same_tokens_30k
lukasdrg
2023-11-05T21:07:37Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "longformer", "fill-mask", "generated_from_trainer", "base_model:allenai/longformer-base-4096", "base_model:finetune:allenai/longformer-base-4096", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-11-05T15:27:17Z
--- license: apache-2.0 base_model: allenai/longformer-base-4096 tags: - generated_from_trainer model-index: - name: clinical_longformer_same_tokens_30k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clinical_longformer_same_tokens_30k This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9398 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.333 | 0.12 | 65 | 2.4872 | | 2.6244 | 0.23 | 130 | 2.3902 | | 2.6084 | 0.35 | 195 | 2.2913 | | 2.4782 | 0.46 | 260 | 2.1766 | | 2.4194 | 0.58 | 325 | 2.1188 | | 2.1494 | 0.69 | 390 | 2.0529 | | 2.1218 | 0.81 | 455 | 1.9691 | | 2.0447 | 0.92 | 520 | 1.9398 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
TheBloke/calm2-7B-chat-GPTQ
TheBloke
2023-11-05T21:06:30Z
54
6
transformers
[ "transformers", "safetensors", "llama", "text-generation", "japanese", "causal-lm", "ja", "en", "arxiv:2302.13971", "base_model:cyberagent/calm2-7b-chat", "base_model:quantized:cyberagent/calm2-7b-chat", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "4-bit", "gptq", "region:us" ]
text-generation
2023-11-05T17:13:30Z
--- base_model: cyberagent/calm2-7b-chat inference: false language: - ja - en license: apache-2.0 model_creator: CyberAgent model_name: Calm2 7B Chat model_type: llama prompt_template: 'USER: {prompt} ASSISTANT: ' quantized_by: TheBloke tags: - japanese - causal-lm --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Calm2 7B Chat - GPTQ - Model creator: [CyberAgent](https://huggingface.co/cyberagent) - Original model: [Calm2 7B Chat](https://huggingface.co/cyberagent/calm2-7b-chat) <!-- description start --> ## Description This repo contains GPTQ model files for [CyberAgent's Calm2 7B Chat](https://huggingface.co/cyberagent/calm2-7b-chat). Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them. These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/calm2-7B-chat-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/calm2-7B-chat-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/calm2-7B-chat-GGUF) * [CyberAgent's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/cyberagent/calm2-7b-chat) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: User-Assistant ``` USER: {prompt} ASSISTANT: ``` <!-- prompt-template end --> <!-- licensing start --> ## Licensing The creator of the source model has listed its license as `apache-2.0`, and this quantization has therefore used that same license. As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly. In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [CyberAgent's Calm2 7B Chat](https://huggingface.co/cyberagent/calm2-7b-chat). <!-- licensing end --> <!-- README_GPTQ.md-compatible clients start --> ## Known compatible clients / servers These GPTQ models are known to work in the following inference servers/webuis. - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) - [KoboldAI United](https://github.com/henk717/koboldai) - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui) - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) This may not be a complete list; if you know of others, please let me know! <!-- README_GPTQ.md-compatible clients end --> <!-- README_GPTQ.md-provided-files start --> ## Provided files, and GPTQ parameters Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements. Each separate quant is in a different branch. See below for instructions on fetching from different branches. Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers. <details> <summary>Explanation of GPTQ parameters</summary> - Bits: The bit size of the quantised model. - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value. - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy. - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s). - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences. - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit. </details> | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc | | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- | | [main](https://huggingface.co/TheBloke/calm2-7B-chat-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [Alpaca Japanese](https://huggingface.co/datasets/fujiki/japanese_alpaca_data) | 8192 | 4.44 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. | | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/calm2-7B-chat-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Alpaca Japanese](https://huggingface.co/datasets/fujiki/japanese_alpaca_data) | 8192 | 4.82 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. | | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/calm2-7B-chat-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [Alpaca Japanese](https://huggingface.co/datasets/fujiki/japanese_alpaca_data) | 8192 | 7.55 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. | | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/calm2-7B-chat-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [Alpaca Japanese](https://huggingface.co/datasets/fujiki/japanese_alpaca_data) | 8192 | 7.70 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. | | [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/calm2-7B-chat-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [Alpaca Japanese](https://huggingface.co/datasets/fujiki/japanese_alpaca_data) | 8192 | 8.16 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. | | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/calm2-7B-chat-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [Alpaca Japanese](https://huggingface.co/datasets/fujiki/japanese_alpaca_data) | 8192 | 4.56 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. | <!-- README_GPTQ.md-provided-files end --> <!-- README_GPTQ.md-download-from-branches start --> ## How to download, including from branches ### In text-generation-webui To download from the `main` branch, enter `TheBloke/calm2-7B-chat-GPTQ` in the "Download model" box. To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/calm2-7B-chat-GPTQ:gptq-4bit-32g-actorder_True` ### From the command line I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` To download the `main` branch to a folder called `calm2-7B-chat-GPTQ`: ```shell mkdir calm2-7B-chat-GPTQ huggingface-cli download TheBloke/calm2-7B-chat-GPTQ --local-dir calm2-7B-chat-GPTQ --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: ```shell mkdir calm2-7B-chat-GPTQ huggingface-cli download TheBloke/calm2-7B-chat-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir calm2-7B-chat-GPTQ --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model. The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`. For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell mkdir calm2-7B-chat-GPTQ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/calm2-7B-chat-GPTQ --local-dir calm2-7B-chat-GPTQ --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> ### With `git` (**not** recommended) To clone a specific branch with `git`, use a command like this: ```shell git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/calm2-7B-chat-GPTQ ``` Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.) <!-- README_GPTQ.md-download-from-branches end --> <!-- README_GPTQ.md-text-generation-webui start --> ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui) Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/calm2-7B-chat-GPTQ`. - To download from a specific branch, enter for example `TheBloke/calm2-7B-chat-GPTQ:gptq-4bit-32g-actorder_True` - see Provided Files above for the list of branches for each option. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `calm2-7B-chat-GPTQ` 7. The model will automatically load, and is now ready for use! 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`. 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started! <!-- README_GPTQ.md-text-generation-webui end --> <!-- README_GPTQ.md-use-from-tgi start --> ## Serving this model from Text Generation Inference (TGI) It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` Example Docker parameters: ```shell --model-id TheBloke/calm2-7B-chat-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 ``` Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later): ```shell pip3 install huggingface-hub ``` ```python from huggingface_hub import InferenceClient endpoint_url = "https://your-endpoint-url-here" prompt = "Tell me about AI" prompt_template=f'''USER: {prompt} ASSISTANT: ''' client = InferenceClient(endpoint_url) response = client.text_generation(prompt, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1) print(f"Model output: {response}") ``` <!-- README_GPTQ.md-use-from-tgi end --> <!-- README_GPTQ.md-use-from-python start --> ## How to use this GPTQ model from Python code ### Install the necessary packages Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later. ```shell pip3 install transformers optimum pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7 ``` If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead: ```shell pip3 uninstall -y auto-gptq git clone https://github.com/PanQiWei/AutoGPTQ cd AutoGPTQ git checkout v0.4.2 pip3 install . ``` ### You can then use the following code ```python from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_name_or_path = "TheBloke/calm2-7B-chat-GPTQ" # To use a different branch, change revision # For example: revision="gptq-4bit-32g-actorder_True" model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", trust_remote_code=False, revision="main") tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) prompt = "Tell me about AI" prompt_template=f'''USER: {prompt} ASSISTANT: ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1 ) print(pipe(prompt_template)[0]['generated_text']) ``` <!-- README_GPTQ.md-use-from-python end --> <!-- README_GPTQ.md-compatibility start --> ## Compatibility The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly. [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility. For a list of clients/servers, please see "Known compatible clients / servers", above. <!-- README_GPTQ.md-compatibility end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: CyberAgent's Calm2 7B Chat # CyberAgentLM2-7B-Chat (CALM2-7B-Chat) ## Model Description CyberAgentLM2-Chat is a fine-tuned model of [CyberAgentLM2](https://huggingface.co/cyberagent/calm2-7b) for dialogue use cases. ## Requirements - transformers >= 4.34.1 - accelerate ## Usage ```python import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer assert transformers.__version__ >= "4.34.1" model = AutoModelForCausalLM.from_pretrained("cyberagent/calm2-7b-chat", device_map="auto", torch_dtype="auto") tokenizer = AutoTokenizer.from_pretrained("cyberagent/calm2-7b-chat") streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) prompt = """USER: AIによって私達の暮らしはどのように変わりますか? ASSISTANT: """ token_ids = tokenizer.encode(prompt, return_tensors="pt") output_ids = model.generate( input_ids=token_ids.to(model.device), max_new_tokens=300, do_sample=True, temperature=0.8, streamer=streamer, ) ``` ## Chat Template ``` USER: {user_message1} ASSISTANT: {assistant_message1}<|endoftext|> USER: {user_message2} ASSISTANT: {assistant_message2}<|endoftext|> USER: {user_message3} ASSISTANT: {assistant_message3}<|endoftext|> ``` ## Model Details * **Model size**: 7B * **Context length**: 32768 * **Model type**: Transformer-based Language Model * **Language(s)**: Japanese, English * **Developed by**: [CyberAgent, Inc.](https://www.cyberagent.co.jp/) * **License**: Apache-2.0 ## Author [Ryosuke Ishigami](https://huggingface.co/rishigami) ## Citations ```tex @article{touvron2023llama, title={LLaMA: Open and Efficient Foundation Language Models}, author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume}, journal={arXiv preprint arXiv:2302.13971}, year={2023} } ```
AndriiDemk/my_awesome_model
AndriiDemk
2023-11-05T21:03:33Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-03T16:15:44Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: my_awesome_model results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.91972 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2509 - Accuracy: 0.9197 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2733 | 0.5 | 1563 | 0.2509 | 0.9197 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
voxmenthe/openhermes-mistral-2.5-7b-dpo-test
voxmenthe
2023-11-05T20:53:13Z
0
0
null
[ "generated_from_trainer", "base_model:teknium/OpenHermes-2.5-Mistral-7B", "base_model:finetune:teknium/OpenHermes-2.5-Mistral-7B", "license:apache-2.0", "region:us" ]
null
2023-11-05T20:48:43Z
--- license: apache-2.0 base_model: teknium/OpenHermes-2.5-Mistral-7B tags: - generated_from_trainer model-index: - name: openhermes-mistral-2.5-7b-dpo-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openhermes-mistral-2.5-7b-dpo-test This model is a fine-tuned version of [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4487 - Rewards/chosen: -0.2951 - Rewards/rejected: -2.2421 - Rewards/accuracies: 0.875 - Rewards/margins: 1.9470 - Logps/rejected: -257.4751 - Logps/chosen: -204.3027 - Logits/rejected: -3.0752 - Logits/chosen: -3.0485 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.1645 | 0.01 | 10 | 0.5339 | 0.3993 | -0.1483 | 0.6875 | 0.5476 | -236.5374 | -197.3593 | -3.1575 | -3.1872 | | 0.0519 | 0.01 | 20 | 0.5521 | 0.2239 | -0.4486 | 0.625 | 0.6725 | -239.5405 | -199.1127 | -3.1969 | -3.2456 | | 0.1618 | 0.01 | 30 | 0.5866 | -0.0538 | -0.8893 | 0.5625 | 0.8355 | -243.9472 | -201.8902 | -3.2286 | -3.2525 | | 0.1752 | 0.02 | 40 | 0.5943 | -0.2184 | -1.2057 | 0.5 | 0.9873 | -247.1112 | -203.5360 | -3.2201 | -3.2477 | | 0.3811 | 0.03 | 50 | 0.6973 | -0.6180 | -1.8146 | 0.5 | 1.1966 | -253.2001 | -207.5316 | -3.1943 | -3.2034 | | 1.158 | 0.03 | 60 | 0.6347 | -0.4710 | -1.7363 | 0.5625 | 1.2653 | -252.4173 | -206.0622 | -3.1655 | -3.1197 | | 0.8751 | 0.04 | 70 | 0.6103 | -0.4061 | -1.5966 | 0.5625 | 1.1905 | -251.0201 | -205.4132 | -3.1360 | -3.0544 | | 0.7811 | 0.04 | 80 | 0.6405 | -0.4774 | -1.6574 | 0.5625 | 1.1799 | -251.6278 | -206.1260 | -3.1337 | -3.0492 | | 1.4305 | 0.04 | 90 | 0.6257 | -0.4784 | -1.6184 | 0.5625 | 1.1399 | -251.2379 | -206.1361 | -3.1251 | -3.0489 | | 0.5478 | 0.05 | 100 | 0.6191 | -0.5317 | -1.7067 | 0.5625 | 1.1750 | -252.1214 | -206.6691 | -3.1207 | -3.0753 | | 0.6344 | 0.06 | 110 | 0.5691 | -0.4827 | -1.7734 | 0.5625 | 1.2907 | -252.7882 | -206.1789 | -3.1075 | -3.0806 | | 0.5405 | 0.06 | 120 | 0.5337 | -0.4681 | -2.1739 | 0.8125 | 1.7058 | -256.7935 | -206.0332 | -3.1124 | -3.0733 | | 0.7848 | 0.07 | 130 | 0.5390 | -0.5288 | -2.3789 | 0.8125 | 1.8501 | -258.8436 | -206.6404 | -3.1019 | -3.0628 | | 1.3119 | 0.07 | 140 | 0.4753 | -0.3276 | -2.0907 | 0.875 | 1.7631 | -255.9614 | -204.6279 | -3.0904 | -3.0648 | | 0.3636 | 0.07 | 150 | 0.4555 | -0.2566 | -2.0064 | 0.625 | 1.7498 | -255.1179 | -203.9175 | -3.0804 | -3.0640 | | 0.427 | 0.08 | 160 | 0.4614 | -0.2900 | -2.0804 | 0.625 | 1.7904 | -255.8585 | -204.2518 | -3.0721 | -3.0518 | | 0.8971 | 0.09 | 170 | 0.4629 | -0.3117 | -2.1791 | 0.875 | 1.8673 | -256.8448 | -204.4694 | -3.0711 | -3.0468 | | 0.6219 | 0.09 | 180 | 0.4560 | -0.3042 | -2.2114 | 0.875 | 1.9073 | -257.1686 | -204.3934 | -3.0743 | -3.0485 | | 0.7551 | 0.1 | 190 | 0.4520 | -0.3007 | -2.2400 | 0.875 | 1.9392 | -257.4540 | -204.3593 | -3.0755 | -3.0481 | | 1.0917 | 0.1 | 200 | 0.4487 | -0.2951 | -2.2421 | 0.875 | 1.9470 | -257.4751 | -204.3027 | -3.0752 | -3.0485 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
xihajun/cnn_mistral_7b_finetuned
xihajun
2023-11-05T20:52:55Z
11
0
peft
[ "peft", "pytorch", "mistral", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "region:us" ]
null
2023-11-05T20:52:20Z
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
SandriBarros/clinical_longformer_same_tokens
SandriBarros
2023-11-05T20:13:36Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "longformer", "fill-mask", "generated_from_trainer", "base_model:allenai/longformer-base-4096", "base_model:finetune:allenai/longformer-base-4096", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-11-05T20:09:55Z
--- license: apache-2.0 base_model: allenai/longformer-base-4096 tags: - generated_from_trainer model-index: - name: clinical_longformer_same_tokens results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clinical_longformer_same_tokens This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9499 | 1.42 | 2 | 3.5207 | | 1.8555 | 2.84 | 4 | 3.4982 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
inyoot/SoccerTwos
inyoot
2023-11-05T20:11:45Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-11-05T20:10:49Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: inyoot/SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Yntec/UberRealisticLegacy
Yntec
2023-11-05T20:08:37Z
588
1
diffusers
[ "diffusers", "safetensors", "Base Model", "Person", "Sexy", "saftle", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-01T17:23:49Z
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image tags: - Base Model - Person - Sexy - saftle - stable-diffusion - stable-diffusion-diffusers - diffusers - text-to-image --- No-ema safetensors version of this model. Sample and prompt: ![Sample](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/wVDFt9A9e10i2yyQWulLc.png) pretty CUTE girl sitting on a sofa. holding poker cards, DETAILED CHIBI, Greatly drawn face, detailed hair, Magazine, iconic, 1940, from the movie, Cartoon, sharp focus, in forest. traditional drawing on canvas by ROSSDRAWS and Clay Mann and artgerm and leyendecker.
alycialee/m2-bert-341M
alycialee
2023-11-05T20:04:31Z
5
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "custom_code", "en", "arxiv:2310.12109", "license:apache-2.0", "autotrain_compatible", "region:us" ]
fill-mask
2023-10-26T22:21:36Z
--- license: apache-2.0 language: - en pipeline_tag: fill-mask inference: false --- # Monarch Mixer-BERT The 341M checkpoint for M2-BERT-large from the paper [Monarch Mixer: A Simple Sub-Quadratic GEMM-Based Architecture](https://arxiv.org/abs/2310.12109). Check out our [GitHub](https://github.com/HazyResearch/m2/tree/main) for instructions on how to download and fine-tune it! ## How to use You can load this model using Hugging Face `AutoModel`: ```python from transformers import AutoModelForMaskedLM mlm = AutoModelForMaskedLM.from_pretrained('alycialee/m2-bert-341M', trust_remote_code=True) ``` This model uses the Hugging Face `bert-base-uncased tokenizer`: ``` from transformers import BertTokenizer tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') ``` You can use this model with a pipeline for masked language modeling: ```python from transformers import AutoModelForMaskedLM, BertTokenizer, pipeline tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') mlm = AutoModelForMaskedLM.from_pretrained('alycialee/m2-bert-341M', trust_remote_code=True) unmasker = pipeline('fill-mask', model=mlm, tokenizer=tokenizer) unmasker('Every morning, I enjoy a cup of [MASK] to start my day.') ``` ### Remote Code This model requires `trust_remote_code=True` to be passed to the `from_pretrained` method. This is because we use custom PyTorch code (see our GitHub). You should consider passing a `revision` argument that specifies the exact git commit of the code, for example: ```python mlm = AutoModelForMaskedLM.from_pretrained( 'alycialee/m2-bert-341M', trust_remote_code=True, revision='ecb4a4a', ) ``` ### Configuration Note `use_flash_mm` is false by default. Using FlashMM is currently not supported. Using `hyena_training_additions` is turned off.
liamdev/FPL_Predictions
liamdev
2023-11-05T19:49:14Z
0
0
null
[ "region:us" ]
null
2023-11-05T15:15:56Z
**[Installation](#installation)** | **[Documentation](https://jupyterlab.readthedocs.io)** | **[Contributing](#contributing)** | **[License](#license)** | **[Team](#team)** | **[Getting help](#getting-help)** | # [JupyterLab](https://jupyterlab.readthedocs.io) ## Getting started ### Installation If you use [conda](https://docs.conda.io/en/latest/), [mamba](https://mamba.readthedocs.io/en/latest/), or [pip](https://docs.python.org/3/installing/index.html), you can install JupyterLab with one of the following commands. - If you use conda: ```shell conda install -c conda-forge jupyterlab ``` - If you use mamba: ```shell mamba install -c conda-forge jupyterlab ``` - If you use pip: ```shell pip install jupyterlab ``` If installing using `pip install --user`, you must add the user-level `bin` directory to your `PATH` environment variable in order to launch `jupyter lab`. If you are using a Unix derivative (e.g., FreeBSD, GNU/Linux, macOS), you can do this by running `export PATH="$HOME/.local/bin:$PATH"`. If you are using a macOS version that comes with Python 2, run `pip3` instead of `pip`. For more detailed instructions, consult the [installation guide](http://jupyterlab.readthedocs.io/en/latest/getting_started/installation.html). Project installation instructions from the git sources are available in the [contributor documentation](CONTRIBUTING.md). #### Installing with Previous Versions of Jupyter Notebook When using a version of Jupyter Notebook earlier than 5.3, the following command must be run after installing JupyterLab to enable the JupyterLab server extension: ```bash jupyter serverextension enable --py jupyterlab --sys-prefix ``` ### Running Start up JupyterLab using: ```bash jupyter lab ``` JupyterLab will open automatically in the browser. See the [documentation](http://jupyterlab.readthedocs.io/en/latest/getting_started/starting.html) for additional details. If you encounter an error like "Command 'jupyter' not found", please make sure `PATH` environment variable is set correctly. Alternatively, you can start up JupyterLab using `~/.local/bin/jupyter lab` without changing the `PATH` environment variable. ### Prerequisites and Supported Browsers The latest versions of the following browsers are currently _known to work_: - Firefox - Chrome - Safari See our [documentation](http://jupyterlab.readthedocs.io/en/latest/getting_started/installation.html) for additional details. ---
sasuface/mechanic-Llama-2-7b-chat-hf
sasuface
2023-11-05T19:45:39Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:adapter:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2023-11-05T19:45:32Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
Amirhnrn/rl_course_vizdoom_health_gathering_supreme
Amirhnrn
2023-11-05T19:43:24Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-11-05T19:43:17Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 12.10 +/- 4.82 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r Amirhnrn/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
sh-holmes/rl_course_vizdoom_health_gathering_supreme
sh-holmes
2023-11-05T19:41:05Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-11-05T19:11:37Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 11.18 +/- 6.00 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r sh-holmes/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
franhinomut/my_distilbert_model
franhinomut
2023-11-05T19:26:28Z
6
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:rotten_tomatoes", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-05T17:44:50Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - rotten_tomatoes metrics: - accuracy - f1 - precision - recall model-index: - name: my_distilbert_model results: - task: name: Text Classification type: text-classification dataset: name: rotten_tomatoes type: rotten_tomatoes config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.850844277673546 - name: F1 type: f1 value: 0.8508430963429304 - name: Precision type: precision value: 0.8508553928470853 - name: Recall type: recall value: 0.850844277673546 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_distilbert_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the rotten_tomatoes dataset. It achieves the following results on the evaluation set: - Loss: 0.5332 - Accuracy: 0.8508 - F1: 0.8508 - Precision: 0.8509 - Recall: 0.8508 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.4172 | 1.0 | 534 | 0.3729 | 0.8386 | 0.8386 | 0.8392 | 0.8386 | | 0.2351 | 2.0 | 1068 | 0.4376 | 0.8443 | 0.8443 | 0.8444 | 0.8443 | | 0.1635 | 3.0 | 1602 | 0.5332 | 0.8508 | 0.8508 | 0.8509 | 0.8508 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cpu - Datasets 2.14.6 - Tokenizers 0.14.1
LaTarn/ac-activity-setfit-model
LaTarn
2023-11-05T19:24:50Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "safetensors", "bert", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-10-29T08:15:40Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # LaTarn/ac-activity-setfit-model This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("LaTarn/ac-activity-setfit-model") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
drilbo/Taxi-v3-long
drilbo
2023-11-05T19:13:09Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-11-05T19:13:06Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3-long results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Drilbo/Taxi-v3-long", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ali619/distilbert-base-uncased-finetuned-emotion-detector-from-text
ali619
2023-11-05T18:51:25Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-05T17:17:16Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion-detector-from-text results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9345 - name: F1 type: f1 value: 0.9346813045403889 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion-detector-from-text This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1628 - Accuracy: 0.9345 - F1: 0.9347 ## Model description This model is trained on english tweets and can classify emotions in text files. ## Intended uses & limitations More information needed ## Training and evaluation data 16,000 train samples 2,000 validation samples 2,000 test samples ## Training procedure Finetunning distilbert-base-uncased ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1038 | 1.0 | 250 | 0.1757 | 0.9325 | 0.9329 | | 0.094 | 2.0 | 500 | 0.1628 | 0.9345 | 0.9347 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
drilbo/q-FrozenLake-v1-4x4-noSlippery
drilbo
2023-11-05T18:50:59Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-11-05T18:50:57Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Drilbo/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
PaulaLi16/13bUltrasV2
PaulaLi16
2023-11-05T18:48:54Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-13b-hf", "base_model:adapter:meta-llama/Llama-2-13b-hf", "region:us" ]
null
2023-11-05T18:47:59Z
--- library_name: peft base_model: meta-llama/Llama-2-13b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
DragosGorduza/FRPile_GPL_test_pipeline_DragosGorduza-FRPile_MLM_Basel-FalconRescaled_14000
DragosGorduza
2023-11-05T18:42:11Z
3
0
sentence-transformers
[ "sentence-transformers", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-11-05T15:46:34Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 276533 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 14000, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
LoneStriker/Yi-34B-6.0bpw-h6-exl2
LoneStriker
2023-11-05T18:38:46Z
17
0
transformers
[ "transformers", "pytorch", "safetensors", "Yi", "text-generation", "custom_code", "license:other", "autotrain_compatible", "region:us" ]
text-generation
2023-11-05T18:37:13Z
--- license: other license_name: yi-license license_link: LICENSE --- <div align="center"> <h1> Yi </h1> </div> ## Introduction The **Yi** series models are large language models trained from scratch by developers at [01.AI](https://01.ai/). The first public release contains two base models with the parameter size of 6B and 34B. ## News - 🎯 **2023/11/02**: The base model of `Yi-6B` and `Yi-34B` ## Model Performance | Model | MMLU | CMMLU | C-Eval | GAOKAO | BBH | Commonsense Reasoning | Reading Comprehension | Math & Code | | :------------ | :------: | :------: | :------: | :------: | :------: | :-------------------: | :-------------------: | :---------: | | | 5-shot | 5-shot | 5-shot | 0-shot | 3-shot@1 | - | - | - | | LLaMA2-34B | 62.6 | - | - | - | 44.1 | 69.9 | 68.0 | 26.0 | | LLaMA2-70B | 68.9 | 53.3 | - | 49.8 | 51.2 | 71.9 | 69.4 | 36.8 | | Baichuan2-13B | 59.2 | 62.0 | 58.1 | 54.3 | 48.8 | 64.3 | 62.4 | 23.0 | | Qwen-14B | 66.3 | 71.0 | 72.1 | 62.5 | 53.4 | 73.3 | 72.5 | 39.8 | | Skywork-13B | 62.1 | 61.8 | 60.6 | 68.1 | 41.7 | 72.4 | 61.4 | 24.9 | | InternLM-20B | 62.1 | 59.0 | 58.8 | 45.5 | 52.5 | 78.3 | - | 26.0 | | Aquila-34B | 67.8 | 71.4 | 63.1 | - | - | - | - | - | | Falcon-180B | 70.4 | 58.0 | 57.8 | 59.0 | 54.0 | 77.3 | 68.8 | 34.0 | | Yi-6B | 63.2 | 75.5 | 72.0 | 72.2 | 42.8 | 72.3 | 68.7 | 19.8 | | **Yi-34B** | **76.3** | **83.7** | **81.4** | **82.8** | **54.3** | **80.1** | **76.4** | **37.1** | While benchmarking open-source models, we have observed a disparity between the results generated by our pipeline and those reported in public sources (e.g. OpenCampus). Upon conducting a more in-depth investigation of this difference, we have discovered that various models may employ different prompts, post-processing strategies, and sampling techniques, potentially resulting in significant variations in the outcomes. Our prompt and post-processing strategy remains consistent with the original benchmark, and greedy decoding is employed during evaluation without any post-processing for the generated content. For scores that did not report by original author (including score reported with different setting), we try to get results with our pipeline. To extensively evaluate model's capability, we adopted the methodology outlined in Llama2. Specifically, we included PIQA, SIQA, HellaSwag, WinoGrande, ARC, OBQA, and CSQA to assess common sense reasoning. SquAD, QuAC, and BoolQ were incorporated to evaluate reading comprehension. CSQA was exclusively tested using a 7-shot setup, while all other tests were conducted in a 0-shot configuration. Additionally, we introduced GSM8K (8-shot@1), MATH (4-shot@1), HumanEval (0-shot@1), and MBPP (3-shot@1) under the category "Math & Code". Due to technical constraints, we did not test Falcon-180 on QuAC and OBQA; the score is derived by averaging the scores on the remaining tasks. Since the scores for these two tasks are generally lower than the average, we believe that Falcon-180B's performance was not underestimated. ## Disclaimer Although we use data compliance checking algorithms during the training process to ensure the compliance of the trained model to the best of our ability, due to the complexity of the data and the diversity of language model usage scenarios, we cannot guarantee that the model will generate correct and reasonable output in all scenarios. Please be aware that there is still a risk of the model producing problematic outputs. We will not be responsible for any risks and issues resulting from misuse, misguidance, illegal usage, and related misinformation, as well as any associated data security concerns. ## License The Yi series model must be adhere to the [Model License Agreement](https://huggingface.co/01-ai/Yi-34B/blob/main/LICENSE). For any questions related to licensing and copyright, please contact us ([yi@01.ai](mailto:yi@01.ai)).
DecisionOptimizationSystem/DeepFeatEmbeddingLargeContext
DecisionOptimizationSystem
2023-11-05T18:23:44Z
12
1
sentence-transformers
[ "sentence-transformers", "pytorch", "coreml", "onnx", "safetensors", "bert", "finetuner", "mteb", "feature-extraction", "sentence-similarity", "alibi", "custom_code", "en", "dataset:allenai/c4", "arxiv:2108.12409", "arxiv:2310.19923", "arxiv:2307.11224", "license:apache-2.0", "model-index", "autotrain_compatible", "text-embeddings-inference", "region:us" ]
feature-extraction
2023-11-05T18:23:43Z
--- tags: - finetuner - mteb - sentence-transformers - feature-extraction - sentence-similarity - alibi datasets: - allenai/c4 language: en inference: false license: apache-2.0 model-index: - name: jina-embedding-b-en-v2 results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 74.73134328358209 - type: ap value: 37.765427081831035 - type: f1 value: 68.79367444339518 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 88.544275 - type: ap value: 84.61328675662887 - type: f1 value: 88.51879035862375 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 45.263999999999996 - type: f1 value: 43.778759656699435 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 21.693 - type: map_at_10 value: 35.487 - type: map_at_100 value: 36.862 - type: map_at_1000 value: 36.872 - type: map_at_3 value: 30.049999999999997 - type: map_at_5 value: 32.966 - type: mrr_at_1 value: 21.977 - type: mrr_at_10 value: 35.565999999999995 - type: mrr_at_100 value: 36.948 - type: mrr_at_1000 value: 36.958 - type: mrr_at_3 value: 30.121 - type: mrr_at_5 value: 33.051 - type: ndcg_at_1 value: 21.693 - type: ndcg_at_10 value: 44.181 - type: ndcg_at_100 value: 49.982 - type: ndcg_at_1000 value: 50.233000000000004 - type: ndcg_at_3 value: 32.830999999999996 - type: ndcg_at_5 value: 38.080000000000005 - type: precision_at_1 value: 21.693 - type: precision_at_10 value: 7.248 - type: precision_at_100 value: 0.9769999999999999 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 13.632 - type: precision_at_5 value: 10.725 - type: recall_at_1 value: 21.693 - type: recall_at_10 value: 72.475 - type: recall_at_100 value: 97.653 - type: recall_at_1000 value: 99.57300000000001 - type: recall_at_3 value: 40.896 - type: recall_at_5 value: 53.627 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 45.39242428696777 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 36.675626784714 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 62.247725694904034 - type: mrr value: 74.91359978894604 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 82.68003802970496 - type: cos_sim_spearman value: 81.23438110096286 - type: euclidean_pearson value: 81.87462986142582 - type: euclidean_spearman value: 81.23438110096286 - type: manhattan_pearson value: 81.61162566600755 - type: manhattan_spearman value: 81.11329400456184 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 84.01298701298701 - type: f1 value: 83.31690714969382 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 37.050108150972086 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 30.15731442819715 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 31.391999999999996 - type: map_at_10 value: 42.597 - type: map_at_100 value: 44.07 - type: map_at_1000 value: 44.198 - type: map_at_3 value: 38.957 - type: map_at_5 value: 40.961 - type: mrr_at_1 value: 37.196 - type: mrr_at_10 value: 48.152 - type: mrr_at_100 value: 48.928 - type: mrr_at_1000 value: 48.964999999999996 - type: mrr_at_3 value: 45.446 - type: mrr_at_5 value: 47.205999999999996 - type: ndcg_at_1 value: 37.196 - type: ndcg_at_10 value: 49.089 - type: ndcg_at_100 value: 54.471000000000004 - type: ndcg_at_1000 value: 56.385 - type: ndcg_at_3 value: 43.699 - type: ndcg_at_5 value: 46.22 - type: precision_at_1 value: 37.196 - type: precision_at_10 value: 9.313 - type: precision_at_100 value: 1.478 - type: precision_at_1000 value: 0.198 - type: precision_at_3 value: 20.839 - type: precision_at_5 value: 14.936 - type: recall_at_1 value: 31.391999999999996 - type: recall_at_10 value: 61.876 - type: recall_at_100 value: 84.214 - type: recall_at_1000 value: 95.985 - type: recall_at_3 value: 46.6 - type: recall_at_5 value: 53.588 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 29.083 - type: map_at_10 value: 38.812999999999995 - type: map_at_100 value: 40.053 - type: map_at_1000 value: 40.188 - type: map_at_3 value: 36.111 - type: map_at_5 value: 37.519000000000005 - type: mrr_at_1 value: 36.497 - type: mrr_at_10 value: 44.85 - type: mrr_at_100 value: 45.546 - type: mrr_at_1000 value: 45.593 - type: mrr_at_3 value: 42.686 - type: mrr_at_5 value: 43.909 - type: ndcg_at_1 value: 36.497 - type: ndcg_at_10 value: 44.443 - type: ndcg_at_100 value: 48.979 - type: ndcg_at_1000 value: 51.154999999999994 - type: ndcg_at_3 value: 40.660000000000004 - type: ndcg_at_5 value: 42.193000000000005 - type: precision_at_1 value: 36.497 - type: precision_at_10 value: 8.433 - type: precision_at_100 value: 1.369 - type: precision_at_1000 value: 0.185 - type: precision_at_3 value: 19.894000000000002 - type: precision_at_5 value: 13.873 - type: recall_at_1 value: 29.083 - type: recall_at_10 value: 54.313 - type: recall_at_100 value: 73.792 - type: recall_at_1000 value: 87.629 - type: recall_at_3 value: 42.257 - type: recall_at_5 value: 47.066 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 38.556000000000004 - type: map_at_10 value: 50.698 - type: map_at_100 value: 51.705 - type: map_at_1000 value: 51.768 - type: map_at_3 value: 47.848 - type: map_at_5 value: 49.358000000000004 - type: mrr_at_1 value: 43.95 - type: mrr_at_10 value: 54.191 - type: mrr_at_100 value: 54.852999999999994 - type: mrr_at_1000 value: 54.885 - type: mrr_at_3 value: 51.954 - type: mrr_at_5 value: 53.13 - type: ndcg_at_1 value: 43.95 - type: ndcg_at_10 value: 56.516 - type: ndcg_at_100 value: 60.477000000000004 - type: ndcg_at_1000 value: 61.746 - type: ndcg_at_3 value: 51.601 - type: ndcg_at_5 value: 53.795 - type: precision_at_1 value: 43.95 - type: precision_at_10 value: 9.009 - type: precision_at_100 value: 1.189 - type: precision_at_1000 value: 0.135 - type: precision_at_3 value: 22.989 - type: precision_at_5 value: 15.473 - type: recall_at_1 value: 38.556000000000004 - type: recall_at_10 value: 70.159 - type: recall_at_100 value: 87.132 - type: recall_at_1000 value: 96.16 - type: recall_at_3 value: 56.906 - type: recall_at_5 value: 62.332 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.238 - type: map_at_10 value: 32.5 - type: map_at_100 value: 33.637 - type: map_at_1000 value: 33.719 - type: map_at_3 value: 30.026999999999997 - type: map_at_5 value: 31.555 - type: mrr_at_1 value: 26.328000000000003 - type: mrr_at_10 value: 34.44 - type: mrr_at_100 value: 35.455999999999996 - type: mrr_at_1000 value: 35.521 - type: mrr_at_3 value: 32.034 - type: mrr_at_5 value: 33.565 - type: ndcg_at_1 value: 26.328000000000003 - type: ndcg_at_10 value: 37.202 - type: ndcg_at_100 value: 42.728 - type: ndcg_at_1000 value: 44.792 - type: ndcg_at_3 value: 32.368 - type: ndcg_at_5 value: 35.008 - type: precision_at_1 value: 26.328000000000003 - type: precision_at_10 value: 5.7059999999999995 - type: precision_at_100 value: 0.8880000000000001 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 13.672 - type: precision_at_5 value: 9.74 - type: recall_at_1 value: 24.238 - type: recall_at_10 value: 49.829 - type: recall_at_100 value: 75.21 - type: recall_at_1000 value: 90.521 - type: recall_at_3 value: 36.867 - type: recall_at_5 value: 43.241 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 15.378 - type: map_at_10 value: 22.817999999999998 - type: map_at_100 value: 23.977999999999998 - type: map_at_1000 value: 24.108 - type: map_at_3 value: 20.719 - type: map_at_5 value: 21.889 - type: mrr_at_1 value: 19.03 - type: mrr_at_10 value: 27.022000000000002 - type: mrr_at_100 value: 28.011999999999997 - type: mrr_at_1000 value: 28.096 - type: mrr_at_3 value: 24.855 - type: mrr_at_5 value: 26.029999999999998 - type: ndcg_at_1 value: 19.03 - type: ndcg_at_10 value: 27.526 - type: ndcg_at_100 value: 33.040000000000006 - type: ndcg_at_1000 value: 36.187000000000005 - type: ndcg_at_3 value: 23.497 - type: ndcg_at_5 value: 25.334 - type: precision_at_1 value: 19.03 - type: precision_at_10 value: 4.963 - type: precision_at_100 value: 0.893 - type: precision_at_1000 value: 0.13 - type: precision_at_3 value: 11.360000000000001 - type: precision_at_5 value: 8.134 - type: recall_at_1 value: 15.378 - type: recall_at_10 value: 38.061 - type: recall_at_100 value: 61.754 - type: recall_at_1000 value: 84.259 - type: recall_at_3 value: 26.788 - type: recall_at_5 value: 31.326999999999998 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.511999999999997 - type: map_at_10 value: 37.429 - type: map_at_100 value: 38.818000000000005 - type: map_at_1000 value: 38.924 - type: map_at_3 value: 34.625 - type: map_at_5 value: 36.064 - type: mrr_at_1 value: 33.300999999999995 - type: mrr_at_10 value: 43.036 - type: mrr_at_100 value: 43.894 - type: mrr_at_1000 value: 43.936 - type: mrr_at_3 value: 40.825 - type: mrr_at_5 value: 42.028 - type: ndcg_at_1 value: 33.300999999999995 - type: ndcg_at_10 value: 43.229 - type: ndcg_at_100 value: 48.992000000000004 - type: ndcg_at_1000 value: 51.02100000000001 - type: ndcg_at_3 value: 38.794000000000004 - type: ndcg_at_5 value: 40.65 - type: precision_at_1 value: 33.300999999999995 - type: precision_at_10 value: 7.777000000000001 - type: precision_at_100 value: 1.269 - type: precision_at_1000 value: 0.163 - type: precision_at_3 value: 18.351 - type: precision_at_5 value: 12.762 - type: recall_at_1 value: 27.511999999999997 - type: recall_at_10 value: 54.788000000000004 - type: recall_at_100 value: 79.105 - type: recall_at_1000 value: 92.49199999999999 - type: recall_at_3 value: 41.924 - type: recall_at_5 value: 47.026 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.117 - type: map_at_10 value: 33.32 - type: map_at_100 value: 34.677 - type: map_at_1000 value: 34.78 - type: map_at_3 value: 30.233999999999998 - type: map_at_5 value: 31.668000000000003 - type: mrr_at_1 value: 29.566 - type: mrr_at_10 value: 38.244 - type: mrr_at_100 value: 39.245000000000005 - type: mrr_at_1000 value: 39.296 - type: mrr_at_3 value: 35.864000000000004 - type: mrr_at_5 value: 36.919999999999995 - type: ndcg_at_1 value: 29.566 - type: ndcg_at_10 value: 39.127 - type: ndcg_at_100 value: 44.989000000000004 - type: ndcg_at_1000 value: 47.189 - type: ndcg_at_3 value: 34.039 - type: ndcg_at_5 value: 35.744 - type: precision_at_1 value: 29.566 - type: precision_at_10 value: 7.385999999999999 - type: precision_at_100 value: 1.204 - type: precision_at_1000 value: 0.158 - type: precision_at_3 value: 16.286 - type: precision_at_5 value: 11.484 - type: recall_at_1 value: 24.117 - type: recall_at_10 value: 51.559999999999995 - type: recall_at_100 value: 77.104 - type: recall_at_1000 value: 91.79899999999999 - type: recall_at_3 value: 36.82 - type: recall_at_5 value: 41.453 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.17625 - type: map_at_10 value: 34.063916666666664 - type: map_at_100 value: 35.255500000000005 - type: map_at_1000 value: 35.37275 - type: map_at_3 value: 31.351666666666667 - type: map_at_5 value: 32.80608333333333 - type: mrr_at_1 value: 29.59783333333333 - type: mrr_at_10 value: 38.0925 - type: mrr_at_100 value: 38.957249999999995 - type: mrr_at_1000 value: 39.01608333333333 - type: mrr_at_3 value: 35.77625 - type: mrr_at_5 value: 37.04991666666667 - type: ndcg_at_1 value: 29.59783333333333 - type: ndcg_at_10 value: 39.343666666666664 - type: ndcg_at_100 value: 44.488249999999994 - type: ndcg_at_1000 value: 46.83358333333334 - type: ndcg_at_3 value: 34.69708333333333 - type: ndcg_at_5 value: 36.75075 - type: precision_at_1 value: 29.59783333333333 - type: precision_at_10 value: 6.884083333333332 - type: precision_at_100 value: 1.114 - type: precision_at_1000 value: 0.15108333333333332 - type: precision_at_3 value: 15.965250000000003 - type: precision_at_5 value: 11.246500000000001 - type: recall_at_1 value: 25.17625 - type: recall_at_10 value: 51.015999999999984 - type: recall_at_100 value: 73.60174999999998 - type: recall_at_1000 value: 89.849 - type: recall_at_3 value: 37.88399999999999 - type: recall_at_5 value: 43.24541666666666 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.537 - type: map_at_10 value: 31.081999999999997 - type: map_at_100 value: 32.042 - type: map_at_1000 value: 32.141 - type: map_at_3 value: 29.137 - type: map_at_5 value: 30.079 - type: mrr_at_1 value: 27.454 - type: mrr_at_10 value: 33.694 - type: mrr_at_100 value: 34.579 - type: mrr_at_1000 value: 34.649 - type: mrr_at_3 value: 32.004 - type: mrr_at_5 value: 32.794000000000004 - type: ndcg_at_1 value: 27.454 - type: ndcg_at_10 value: 34.915 - type: ndcg_at_100 value: 39.641 - type: ndcg_at_1000 value: 42.105 - type: ndcg_at_3 value: 31.276 - type: ndcg_at_5 value: 32.65 - type: precision_at_1 value: 27.454 - type: precision_at_10 value: 5.337 - type: precision_at_100 value: 0.8250000000000001 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 13.241 - type: precision_at_5 value: 8.895999999999999 - type: recall_at_1 value: 24.537 - type: recall_at_10 value: 44.324999999999996 - type: recall_at_100 value: 65.949 - type: recall_at_1000 value: 84.017 - type: recall_at_3 value: 33.857 - type: recall_at_5 value: 37.316 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 17.122 - type: map_at_10 value: 24.32 - type: map_at_100 value: 25.338 - type: map_at_1000 value: 25.462 - type: map_at_3 value: 22.064 - type: map_at_5 value: 23.322000000000003 - type: mrr_at_1 value: 20.647 - type: mrr_at_10 value: 27.858 - type: mrr_at_100 value: 28.743999999999996 - type: mrr_at_1000 value: 28.819 - type: mrr_at_3 value: 25.769 - type: mrr_at_5 value: 26.964 - type: ndcg_at_1 value: 20.647 - type: ndcg_at_10 value: 28.849999999999998 - type: ndcg_at_100 value: 33.849000000000004 - type: ndcg_at_1000 value: 36.802 - type: ndcg_at_3 value: 24.799 - type: ndcg_at_5 value: 26.682 - type: precision_at_1 value: 20.647 - type: precision_at_10 value: 5.2170000000000005 - type: precision_at_100 value: 0.906 - type: precision_at_1000 value: 0.134 - type: precision_at_3 value: 11.769 - type: precision_at_5 value: 8.486 - type: recall_at_1 value: 17.122 - type: recall_at_10 value: 38.999 - type: recall_at_100 value: 61.467000000000006 - type: recall_at_1000 value: 82.716 - type: recall_at_3 value: 27.601 - type: recall_at_5 value: 32.471 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.396 - type: map_at_10 value: 33.415 - type: map_at_100 value: 34.521 - type: map_at_1000 value: 34.631 - type: map_at_3 value: 30.703999999999997 - type: map_at_5 value: 32.166 - type: mrr_at_1 value: 28.825 - type: mrr_at_10 value: 37.397000000000006 - type: mrr_at_100 value: 38.286 - type: mrr_at_1000 value: 38.346000000000004 - type: mrr_at_3 value: 35.028 - type: mrr_at_5 value: 36.32 - type: ndcg_at_1 value: 28.825 - type: ndcg_at_10 value: 38.656 - type: ndcg_at_100 value: 43.856 - type: ndcg_at_1000 value: 46.31 - type: ndcg_at_3 value: 33.793 - type: ndcg_at_5 value: 35.909 - type: precision_at_1 value: 28.825 - type: precision_at_10 value: 6.567 - type: precision_at_100 value: 1.0330000000000001 - type: precision_at_1000 value: 0.135 - type: precision_at_3 value: 15.516 - type: precision_at_5 value: 10.914 - type: recall_at_1 value: 24.396 - type: recall_at_10 value: 50.747 - type: recall_at_100 value: 73.477 - type: recall_at_1000 value: 90.801 - type: recall_at_3 value: 37.1 - type: recall_at_5 value: 42.589 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.072 - type: map_at_10 value: 34.307 - type: map_at_100 value: 35.725 - type: map_at_1000 value: 35.943999999999996 - type: map_at_3 value: 30.906 - type: map_at_5 value: 32.818000000000005 - type: mrr_at_1 value: 29.644 - type: mrr_at_10 value: 38.673 - type: mrr_at_100 value: 39.459 - type: mrr_at_1000 value: 39.527 - type: mrr_at_3 value: 35.771 - type: mrr_at_5 value: 37.332 - type: ndcg_at_1 value: 29.644 - type: ndcg_at_10 value: 40.548 - type: ndcg_at_100 value: 45.678999999999995 - type: ndcg_at_1000 value: 48.488 - type: ndcg_at_3 value: 34.887 - type: ndcg_at_5 value: 37.543 - type: precision_at_1 value: 29.644 - type: precision_at_10 value: 7.688000000000001 - type: precision_at_100 value: 1.482 - type: precision_at_1000 value: 0.23600000000000002 - type: precision_at_3 value: 16.206 - type: precision_at_5 value: 12.016 - type: recall_at_1 value: 25.072 - type: recall_at_10 value: 53.478 - type: recall_at_100 value: 76.07300000000001 - type: recall_at_1000 value: 93.884 - type: recall_at_3 value: 37.583 - type: recall_at_5 value: 44.464 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 20.712 - type: map_at_10 value: 27.467999999999996 - type: map_at_100 value: 28.502 - type: map_at_1000 value: 28.610000000000003 - type: map_at_3 value: 24.887999999999998 - type: map_at_5 value: 26.273999999999997 - type: mrr_at_1 value: 22.736 - type: mrr_at_10 value: 29.553 - type: mrr_at_100 value: 30.485 - type: mrr_at_1000 value: 30.56 - type: mrr_at_3 value: 27.078999999999997 - type: mrr_at_5 value: 28.401 - type: ndcg_at_1 value: 22.736 - type: ndcg_at_10 value: 32.023 - type: ndcg_at_100 value: 37.158 - type: ndcg_at_1000 value: 39.823 - type: ndcg_at_3 value: 26.951999999999998 - type: ndcg_at_5 value: 29.281000000000002 - type: precision_at_1 value: 22.736 - type: precision_at_10 value: 5.213 - type: precision_at_100 value: 0.832 - type: precision_at_1000 value: 0.116 - type: precision_at_3 value: 11.459999999999999 - type: precision_at_5 value: 8.244 - type: recall_at_1 value: 20.712 - type: recall_at_10 value: 44.057 - type: recall_at_100 value: 67.944 - type: recall_at_1000 value: 87.925 - type: recall_at_3 value: 30.305 - type: recall_at_5 value: 36.071999999999996 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 10.181999999999999 - type: map_at_10 value: 16.66 - type: map_at_100 value: 18.273 - type: map_at_1000 value: 18.45 - type: map_at_3 value: 14.141 - type: map_at_5 value: 15.455 - type: mrr_at_1 value: 22.15 - type: mrr_at_10 value: 32.062000000000005 - type: mrr_at_100 value: 33.116 - type: mrr_at_1000 value: 33.168 - type: mrr_at_3 value: 28.827 - type: mrr_at_5 value: 30.892999999999997 - type: ndcg_at_1 value: 22.15 - type: ndcg_at_10 value: 23.532 - type: ndcg_at_100 value: 30.358 - type: ndcg_at_1000 value: 33.783 - type: ndcg_at_3 value: 19.222 - type: ndcg_at_5 value: 20.919999999999998 - type: precision_at_1 value: 22.15 - type: precision_at_10 value: 7.185999999999999 - type: precision_at_100 value: 1.433 - type: precision_at_1000 value: 0.207 - type: precision_at_3 value: 13.941 - type: precision_at_5 value: 10.906 - type: recall_at_1 value: 10.181999999999999 - type: recall_at_10 value: 28.104000000000003 - type: recall_at_100 value: 51.998999999999995 - type: recall_at_1000 value: 71.311 - type: recall_at_3 value: 17.698 - type: recall_at_5 value: 22.262999999999998 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 6.669 - type: map_at_10 value: 15.552 - type: map_at_100 value: 21.865000000000002 - type: map_at_1000 value: 23.268 - type: map_at_3 value: 11.309 - type: map_at_5 value: 13.084000000000001 - type: mrr_at_1 value: 55.50000000000001 - type: mrr_at_10 value: 66.46600000000001 - type: mrr_at_100 value: 66.944 - type: mrr_at_1000 value: 66.956 - type: mrr_at_3 value: 64.542 - type: mrr_at_5 value: 65.717 - type: ndcg_at_1 value: 44.75 - type: ndcg_at_10 value: 35.049 - type: ndcg_at_100 value: 39.073 - type: ndcg_at_1000 value: 46.208 - type: ndcg_at_3 value: 39.525 - type: ndcg_at_5 value: 37.156 - type: precision_at_1 value: 55.50000000000001 - type: precision_at_10 value: 27.800000000000004 - type: precision_at_100 value: 9.013 - type: precision_at_1000 value: 1.8800000000000001 - type: precision_at_3 value: 42.667 - type: precision_at_5 value: 36.0 - type: recall_at_1 value: 6.669 - type: recall_at_10 value: 21.811 - type: recall_at_100 value: 45.112 - type: recall_at_1000 value: 67.806 - type: recall_at_3 value: 13.373 - type: recall_at_5 value: 16.615 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 48.769999999999996 - type: f1 value: 42.91448356376592 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 54.013 - type: map_at_10 value: 66.239 - type: map_at_100 value: 66.62599999999999 - type: map_at_1000 value: 66.644 - type: map_at_3 value: 63.965 - type: map_at_5 value: 65.45400000000001 - type: mrr_at_1 value: 58.221000000000004 - type: mrr_at_10 value: 70.43700000000001 - type: mrr_at_100 value: 70.744 - type: mrr_at_1000 value: 70.75099999999999 - type: mrr_at_3 value: 68.284 - type: mrr_at_5 value: 69.721 - type: ndcg_at_1 value: 58.221000000000004 - type: ndcg_at_10 value: 72.327 - type: ndcg_at_100 value: 73.953 - type: ndcg_at_1000 value: 74.312 - type: ndcg_at_3 value: 68.062 - type: ndcg_at_5 value: 70.56400000000001 - type: precision_at_1 value: 58.221000000000004 - type: precision_at_10 value: 9.521 - type: precision_at_100 value: 1.045 - type: precision_at_1000 value: 0.109 - type: precision_at_3 value: 27.348 - type: precision_at_5 value: 17.794999999999998 - type: recall_at_1 value: 54.013 - type: recall_at_10 value: 86.957 - type: recall_at_100 value: 93.911 - type: recall_at_1000 value: 96.38 - type: recall_at_3 value: 75.555 - type: recall_at_5 value: 81.671 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 21.254 - type: map_at_10 value: 33.723 - type: map_at_100 value: 35.574 - type: map_at_1000 value: 35.730000000000004 - type: map_at_3 value: 29.473 - type: map_at_5 value: 31.543 - type: mrr_at_1 value: 41.358 - type: mrr_at_10 value: 49.498 - type: mrr_at_100 value: 50.275999999999996 - type: mrr_at_1000 value: 50.308 - type: mrr_at_3 value: 47.016000000000005 - type: mrr_at_5 value: 48.336 - type: ndcg_at_1 value: 41.358 - type: ndcg_at_10 value: 41.579 - type: ndcg_at_100 value: 48.455 - type: ndcg_at_1000 value: 51.165000000000006 - type: ndcg_at_3 value: 37.681 - type: ndcg_at_5 value: 38.49 - type: precision_at_1 value: 41.358 - type: precision_at_10 value: 11.543000000000001 - type: precision_at_100 value: 1.87 - type: precision_at_1000 value: 0.23600000000000002 - type: precision_at_3 value: 24.743000000000002 - type: precision_at_5 value: 17.994 - type: recall_at_1 value: 21.254 - type: recall_at_10 value: 48.698 - type: recall_at_100 value: 74.588 - type: recall_at_1000 value: 91.00200000000001 - type: recall_at_3 value: 33.939 - type: recall_at_5 value: 39.367000000000004 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 35.922 - type: map_at_10 value: 52.32599999999999 - type: map_at_100 value: 53.18000000000001 - type: map_at_1000 value: 53.245 - type: map_at_3 value: 49.294 - type: map_at_5 value: 51.202999999999996 - type: mrr_at_1 value: 71.843 - type: mrr_at_10 value: 78.24600000000001 - type: mrr_at_100 value: 78.515 - type: mrr_at_1000 value: 78.527 - type: mrr_at_3 value: 77.17500000000001 - type: mrr_at_5 value: 77.852 - type: ndcg_at_1 value: 71.843 - type: ndcg_at_10 value: 61.379 - type: ndcg_at_100 value: 64.535 - type: ndcg_at_1000 value: 65.888 - type: ndcg_at_3 value: 56.958 - type: ndcg_at_5 value: 59.434 - type: precision_at_1 value: 71.843 - type: precision_at_10 value: 12.686 - type: precision_at_100 value: 1.517 - type: precision_at_1000 value: 0.16999999999999998 - type: precision_at_3 value: 35.778 - type: precision_at_5 value: 23.422 - type: recall_at_1 value: 35.922 - type: recall_at_10 value: 63.43 - type: recall_at_100 value: 75.868 - type: recall_at_1000 value: 84.88900000000001 - type: recall_at_3 value: 53.666000000000004 - type: recall_at_5 value: 58.555 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 79.4408 - type: ap value: 73.52820871620366 - type: f1 value: 79.36240238685001 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 21.826999999999998 - type: map_at_10 value: 34.04 - type: map_at_100 value: 35.226 - type: map_at_1000 value: 35.275 - type: map_at_3 value: 30.165999999999997 - type: map_at_5 value: 32.318000000000005 - type: mrr_at_1 value: 22.464000000000002 - type: mrr_at_10 value: 34.631 - type: mrr_at_100 value: 35.752 - type: mrr_at_1000 value: 35.795 - type: mrr_at_3 value: 30.798 - type: mrr_at_5 value: 32.946999999999996 - type: ndcg_at_1 value: 22.464000000000002 - type: ndcg_at_10 value: 40.919 - type: ndcg_at_100 value: 46.632 - type: ndcg_at_1000 value: 47.833 - type: ndcg_at_3 value: 32.992 - type: ndcg_at_5 value: 36.834 - type: precision_at_1 value: 22.464000000000002 - type: precision_at_10 value: 6.494 - type: precision_at_100 value: 0.9369999999999999 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 14.021 - type: precision_at_5 value: 10.347000000000001 - type: recall_at_1 value: 21.826999999999998 - type: recall_at_10 value: 62.132 - type: recall_at_100 value: 88.55199999999999 - type: recall_at_1000 value: 97.707 - type: recall_at_3 value: 40.541 - type: recall_at_5 value: 49.739 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 95.68399452804377 - type: f1 value: 95.25490609832268 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 83.15321477428182 - type: f1 value: 60.35476439087966 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 71.92669804976462 - type: f1 value: 69.22815107207565 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.4855413584398 - type: f1 value: 72.92107516103387 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 32.412679360205544 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 28.09211869875204 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 30.540919056982545 - type: mrr value: 31.529904607063536 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.745 - type: map_at_10 value: 12.013 - type: map_at_100 value: 15.040000000000001 - type: map_at_1000 value: 16.427 - type: map_at_3 value: 8.841000000000001 - type: map_at_5 value: 10.289 - type: mrr_at_1 value: 45.201 - type: mrr_at_10 value: 53.483999999999995 - type: mrr_at_100 value: 54.20700000000001 - type: mrr_at_1000 value: 54.252 - type: mrr_at_3 value: 51.29 - type: mrr_at_5 value: 52.73 - type: ndcg_at_1 value: 43.808 - type: ndcg_at_10 value: 32.445 - type: ndcg_at_100 value: 30.031000000000002 - type: ndcg_at_1000 value: 39.007 - type: ndcg_at_3 value: 37.204 - type: ndcg_at_5 value: 35.07 - type: precision_at_1 value: 45.201 - type: precision_at_10 value: 23.684 - type: precision_at_100 value: 7.600999999999999 - type: precision_at_1000 value: 2.043 - type: precision_at_3 value: 33.953 - type: precision_at_5 value: 29.412 - type: recall_at_1 value: 5.745 - type: recall_at_10 value: 16.168 - type: recall_at_100 value: 30.875999999999998 - type: recall_at_1000 value: 62.686 - type: recall_at_3 value: 9.75 - type: recall_at_5 value: 12.413 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 37.828 - type: map_at_10 value: 53.239000000000004 - type: map_at_100 value: 54.035999999999994 - type: map_at_1000 value: 54.067 - type: map_at_3 value: 49.289 - type: map_at_5 value: 51.784 - type: mrr_at_1 value: 42.497 - type: mrr_at_10 value: 55.916999999999994 - type: mrr_at_100 value: 56.495 - type: mrr_at_1000 value: 56.516999999999996 - type: mrr_at_3 value: 52.800000000000004 - type: mrr_at_5 value: 54.722 - type: ndcg_at_1 value: 42.468 - type: ndcg_at_10 value: 60.437 - type: ndcg_at_100 value: 63.731 - type: ndcg_at_1000 value: 64.41799999999999 - type: ndcg_at_3 value: 53.230999999999995 - type: ndcg_at_5 value: 57.26 - type: precision_at_1 value: 42.468 - type: precision_at_10 value: 9.47 - type: precision_at_100 value: 1.1360000000000001 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 23.724999999999998 - type: precision_at_5 value: 16.593 - type: recall_at_1 value: 37.828 - type: recall_at_10 value: 79.538 - type: recall_at_100 value: 93.646 - type: recall_at_1000 value: 98.72999999999999 - type: recall_at_3 value: 61.134 - type: recall_at_5 value: 70.377 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 70.548 - type: map_at_10 value: 84.466 - type: map_at_100 value: 85.10600000000001 - type: map_at_1000 value: 85.123 - type: map_at_3 value: 81.57600000000001 - type: map_at_5 value: 83.399 - type: mrr_at_1 value: 81.24 - type: mrr_at_10 value: 87.457 - type: mrr_at_100 value: 87.574 - type: mrr_at_1000 value: 87.575 - type: mrr_at_3 value: 86.507 - type: mrr_at_5 value: 87.205 - type: ndcg_at_1 value: 81.25 - type: ndcg_at_10 value: 88.203 - type: ndcg_at_100 value: 89.457 - type: ndcg_at_1000 value: 89.563 - type: ndcg_at_3 value: 85.465 - type: ndcg_at_5 value: 87.007 - type: precision_at_1 value: 81.25 - type: precision_at_10 value: 13.373 - type: precision_at_100 value: 1.5270000000000001 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.417 - type: precision_at_5 value: 24.556 - type: recall_at_1 value: 70.548 - type: recall_at_10 value: 95.208 - type: recall_at_100 value: 99.514 - type: recall_at_1000 value: 99.988 - type: recall_at_3 value: 87.214 - type: recall_at_5 value: 91.696 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 53.04822095496839 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 60.30778476474675 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 4.692 - type: map_at_10 value: 11.766 - type: map_at_100 value: 13.904 - type: map_at_1000 value: 14.216999999999999 - type: map_at_3 value: 8.245 - type: map_at_5 value: 9.92 - type: mrr_at_1 value: 23.0 - type: mrr_at_10 value: 33.78 - type: mrr_at_100 value: 34.922 - type: mrr_at_1000 value: 34.973 - type: mrr_at_3 value: 30.2 - type: mrr_at_5 value: 32.565 - type: ndcg_at_1 value: 23.0 - type: ndcg_at_10 value: 19.863 - type: ndcg_at_100 value: 28.141 - type: ndcg_at_1000 value: 33.549 - type: ndcg_at_3 value: 18.434 - type: ndcg_at_5 value: 16.384 - type: precision_at_1 value: 23.0 - type: precision_at_10 value: 10.39 - type: precision_at_100 value: 2.235 - type: precision_at_1000 value: 0.35300000000000004 - type: precision_at_3 value: 17.133000000000003 - type: precision_at_5 value: 14.44 - type: recall_at_1 value: 4.692 - type: recall_at_10 value: 21.025 - type: recall_at_100 value: 45.324999999999996 - type: recall_at_1000 value: 71.675 - type: recall_at_3 value: 10.440000000000001 - type: recall_at_5 value: 14.64 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 84.96178184892842 - type: cos_sim_spearman value: 79.6487740813199 - type: euclidean_pearson value: 82.06661161625023 - type: euclidean_spearman value: 79.64876769031183 - type: manhattan_pearson value: 82.07061164575131 - type: manhattan_spearman value: 79.65197039464537 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 84.15305604100027 - type: cos_sim_spearman value: 74.27447427941591 - type: euclidean_pearson value: 80.52737337565307 - type: euclidean_spearman value: 74.27416077132192 - type: manhattan_pearson value: 80.53728571140387 - type: manhattan_spearman value: 74.28853605753457 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 83.44386080639279 - type: cos_sim_spearman value: 84.17947648159536 - type: euclidean_pearson value: 83.34145388129387 - type: euclidean_spearman value: 84.17947648159536 - type: manhattan_pearson value: 83.30699061927966 - type: manhattan_spearman value: 84.18125737380451 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 81.57392220985612 - type: cos_sim_spearman value: 78.80745014464101 - type: euclidean_pearson value: 80.01660371487199 - type: euclidean_spearman value: 78.80741240102256 - type: manhattan_pearson value: 79.96810779507953 - type: manhattan_spearman value: 78.75600400119448 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 86.85421063026625 - type: cos_sim_spearman value: 87.55320285299192 - type: euclidean_pearson value: 86.69750143323517 - type: euclidean_spearman value: 87.55320284326378 - type: manhattan_pearson value: 86.63379169960379 - type: manhattan_spearman value: 87.4815029877984 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 84.31314130411842 - type: cos_sim_spearman value: 85.3489588181433 - type: euclidean_pearson value: 84.13240933463535 - type: euclidean_spearman value: 85.34902871403281 - type: manhattan_pearson value: 84.01183086503559 - type: manhattan_spearman value: 85.19316703166102 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 89.09979781689536 - type: cos_sim_spearman value: 88.87813323759015 - type: euclidean_pearson value: 88.65413031123792 - type: euclidean_spearman value: 88.87813323759015 - type: manhattan_pearson value: 88.61818758256024 - type: manhattan_spearman value: 88.81044100494604 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 62.30693258111531 - type: cos_sim_spearman value: 62.195516523251946 - type: euclidean_pearson value: 62.951283701049476 - type: euclidean_spearman value: 62.195516523251946 - type: manhattan_pearson value: 63.068322281439535 - type: manhattan_spearman value: 62.10621171028406 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 84.27092833763909 - type: cos_sim_spearman value: 84.84429717949759 - type: euclidean_pearson value: 84.8516966060792 - type: euclidean_spearman value: 84.84429717949759 - type: manhattan_pearson value: 84.82203139242881 - type: manhattan_spearman value: 84.8358503952945 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 83.10290863981409 - type: mrr value: 95.31168450286097 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 52.161 - type: map_at_10 value: 62.138000000000005 - type: map_at_100 value: 62.769 - type: map_at_1000 value: 62.812 - type: map_at_3 value: 59.111000000000004 - type: map_at_5 value: 60.995999999999995 - type: mrr_at_1 value: 55.333 - type: mrr_at_10 value: 63.504000000000005 - type: mrr_at_100 value: 64.036 - type: mrr_at_1000 value: 64.08 - type: mrr_at_3 value: 61.278 - type: mrr_at_5 value: 62.778 - type: ndcg_at_1 value: 55.333 - type: ndcg_at_10 value: 66.678 - type: ndcg_at_100 value: 69.415 - type: ndcg_at_1000 value: 70.453 - type: ndcg_at_3 value: 61.755 - type: ndcg_at_5 value: 64.546 - type: precision_at_1 value: 55.333 - type: precision_at_10 value: 9.033 - type: precision_at_100 value: 1.043 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 24.221999999999998 - type: precision_at_5 value: 16.333000000000002 - type: recall_at_1 value: 52.161 - type: recall_at_10 value: 79.156 - type: recall_at_100 value: 91.333 - type: recall_at_1000 value: 99.333 - type: recall_at_3 value: 66.43299999999999 - type: recall_at_5 value: 73.272 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.81287128712871 - type: cos_sim_ap value: 95.30034785910676 - type: cos_sim_f1 value: 90.28629856850716 - type: cos_sim_precision value: 92.36401673640168 - type: cos_sim_recall value: 88.3 - type: dot_accuracy value: 99.81287128712871 - type: dot_ap value: 95.30034785910676 - type: dot_f1 value: 90.28629856850716 - type: dot_precision value: 92.36401673640168 - type: dot_recall value: 88.3 - type: euclidean_accuracy value: 99.81287128712871 - type: euclidean_ap value: 95.30034785910676 - type: euclidean_f1 value: 90.28629856850716 - type: euclidean_precision value: 92.36401673640168 - type: euclidean_recall value: 88.3 - type: manhattan_accuracy value: 99.80990099009901 - type: manhattan_ap value: 95.26880751950654 - type: manhattan_f1 value: 90.22177419354838 - type: manhattan_precision value: 90.95528455284553 - type: manhattan_recall value: 89.5 - type: max_accuracy value: 99.81287128712871 - type: max_ap value: 95.30034785910676 - type: max_f1 value: 90.28629856850716 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 58.518662504351184 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 34.96168178378587 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 52.04862593471896 - type: mrr value: 52.97238402936932 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.092545236479946 - type: cos_sim_spearman value: 31.599851000175498 - type: dot_pearson value: 30.092542723901676 - type: dot_spearman value: 31.599851000175498 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.189 - type: map_at_10 value: 1.662 - type: map_at_100 value: 9.384 - type: map_at_1000 value: 22.669 - type: map_at_3 value: 0.5559999999999999 - type: map_at_5 value: 0.9039999999999999 - type: mrr_at_1 value: 68.0 - type: mrr_at_10 value: 81.01899999999999 - type: mrr_at_100 value: 81.01899999999999 - type: mrr_at_1000 value: 81.01899999999999 - type: mrr_at_3 value: 79.333 - type: mrr_at_5 value: 80.733 - type: ndcg_at_1 value: 63.0 - type: ndcg_at_10 value: 65.913 - type: ndcg_at_100 value: 51.895 - type: ndcg_at_1000 value: 46.967 - type: ndcg_at_3 value: 65.49199999999999 - type: ndcg_at_5 value: 66.69699999999999 - type: precision_at_1 value: 68.0 - type: precision_at_10 value: 71.6 - type: precision_at_100 value: 53.66 - type: precision_at_1000 value: 21.124000000000002 - type: precision_at_3 value: 72.667 - type: precision_at_5 value: 74.0 - type: recall_at_1 value: 0.189 - type: recall_at_10 value: 1.913 - type: recall_at_100 value: 12.601999999999999 - type: recall_at_1000 value: 44.296 - type: recall_at_3 value: 0.605 - type: recall_at_5 value: 1.018 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.701 - type: map_at_10 value: 10.445 - type: map_at_100 value: 17.324 - type: map_at_1000 value: 19.161 - type: map_at_3 value: 5.497 - type: map_at_5 value: 7.278 - type: mrr_at_1 value: 30.612000000000002 - type: mrr_at_10 value: 45.534 - type: mrr_at_100 value: 45.792 - type: mrr_at_1000 value: 45.806999999999995 - type: mrr_at_3 value: 37.755 - type: mrr_at_5 value: 43.469 - type: ndcg_at_1 value: 26.531 - type: ndcg_at_10 value: 26.235000000000003 - type: ndcg_at_100 value: 39.17 - type: ndcg_at_1000 value: 51.038 - type: ndcg_at_3 value: 23.625 - type: ndcg_at_5 value: 24.338 - type: precision_at_1 value: 30.612000000000002 - type: precision_at_10 value: 24.285999999999998 - type: precision_at_100 value: 8.224 - type: precision_at_1000 value: 1.6179999999999999 - type: precision_at_3 value: 24.490000000000002 - type: precision_at_5 value: 24.898 - type: recall_at_1 value: 2.701 - type: recall_at_10 value: 17.997 - type: recall_at_100 value: 51.766999999999996 - type: recall_at_1000 value: 87.863 - type: recall_at_3 value: 6.295000000000001 - type: recall_at_5 value: 9.993 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 73.3474 - type: ap value: 15.393431414459924 - type: f1 value: 56.466681887882416 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 62.062818336163 - type: f1 value: 62.11230840463252 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 42.464892820845115 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 86.15962329379508 - type: cos_sim_ap value: 74.73674057919256 - type: cos_sim_f1 value: 68.81245642574947 - type: cos_sim_precision value: 61.48255813953488 - type: cos_sim_recall value: 78.12664907651715 - type: dot_accuracy value: 86.15962329379508 - type: dot_ap value: 74.7367634988281 - type: dot_f1 value: 68.81245642574947 - type: dot_precision value: 61.48255813953488 - type: dot_recall value: 78.12664907651715 - type: euclidean_accuracy value: 86.15962329379508 - type: euclidean_ap value: 74.7367761466634 - type: euclidean_f1 value: 68.81245642574947 - type: euclidean_precision value: 61.48255813953488 - type: euclidean_recall value: 78.12664907651715 - type: manhattan_accuracy value: 86.21326816474935 - type: manhattan_ap value: 74.64416473733951 - type: manhattan_f1 value: 68.80924855491331 - type: manhattan_precision value: 61.23456790123457 - type: manhattan_recall value: 78.52242744063325 - type: max_accuracy value: 86.21326816474935 - type: max_ap value: 74.7367761466634 - type: max_f1 value: 68.81245642574947 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.97620988085536 - type: cos_sim_ap value: 86.08680845745758 - type: cos_sim_f1 value: 78.02793637114438 - type: cos_sim_precision value: 73.11082699683736 - type: cos_sim_recall value: 83.65414228518632 - type: dot_accuracy value: 88.97620988085536 - type: dot_ap value: 86.08681149437946 - type: dot_f1 value: 78.02793637114438 - type: dot_precision value: 73.11082699683736 - type: dot_recall value: 83.65414228518632 - type: euclidean_accuracy value: 88.97620988085536 - type: euclidean_ap value: 86.08681215460771 - type: euclidean_f1 value: 78.02793637114438 - type: euclidean_precision value: 73.11082699683736 - type: euclidean_recall value: 83.65414228518632 - type: manhattan_accuracy value: 88.88888888888889 - type: manhattan_ap value: 86.02916327562438 - type: manhattan_f1 value: 78.02063045516843 - type: manhattan_precision value: 73.38851947346994 - type: manhattan_recall value: 83.2768709578072 - type: max_accuracy value: 88.97620988085536 - type: max_ap value: 86.08681215460771 - type: max_f1 value: 78.02793637114438 --- <!-- TODO: add evaluation results here --> <br><br> <p align="center"> <img src="https://github.com/jina-ai/finetuner/blob/main/docs/_static/finetuner-logo-ani.svg?raw=true" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px"> </p> <p align="center"> <b>The text embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>, <a href="https://github.com/jina-ai/finetuner"><b>Finetuner</b></a> team.</b> </p> ## Intended Usage & Model Info `jina-embeddings-v2-base-en` is an English, monolingual **embedding model** supporting **8192 sequence length**. It is based on a Bert architecture (JinaBert) that supports the symmetric bidirectional variant of [ALiBi](https://arxiv.org/abs/2108.12409) to allow longer sequence length. The backbone `jina-bert-v2-base-en` is pretrained on the C4 dataset. The model is further trained on Jina AI's collection of more than 400 millions of sentence pairs and hard negatives. These pairs were obtained from various domains and were carefully selected through a thorough cleaning process. The embedding model was trained using 512 sequence length, but extrapolates to 8k sequence length (or even longer) thanks to ALiBi. This makes our model useful for a range of use cases, especially when processing long documents is needed, including long document retrieval, semantic textual similarity, text reranking, recommendation, RAG and LLM-based generative search, etc. With a standard size of 137 million parameters, the model enables fast inference while delivering better performance than our small model. It is recommended to use a single GPU for inference. Additionally, we provide the following embedding models: **V1 (Based on T5, 512 Seq)** - [`jina-embeddings-v1-small-en`](https://huggingface.co/jinaai/jina-embedding-s-en-v1): 35 million parameters. - [`jina-embeddings-v1-base-en`](https://huggingface.co/jinaai/jina-embedding-b-en-v1): 110 million parameters. - [`jina-embeddings-v1-large-en`](https://huggingface.co/jinaai/jina-embedding-l-en-v1): 330 million parameters. **V2 (Based on JinaBert, 8k Seq)** - [`jina-embeddings-v2-small-en`](https://huggingface.co/jinaai/jina-embeddings-v2-small-en): 33 million parameters. - [`jina-embeddings-v2-base-en`](https://huggingface.co/jinaai/jina-embeddings-v2-base-en): 137 million parameters **(you are here)**. - [`jina-embeddings-v2-large-en`](): 435 million parameters (releasing soon). ## Data & Parameters Jina Embeddings V2 [technical report](https://arxiv.org/abs/2310.19923) ## Usage You can use Jina Embedding models directly from transformers package: ```python !pip install transformers from transformers import AutoModel from numpy.linalg import norm cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b)) model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-en', trust_remote_code=True) # trust_remote_code is needed to use the encode method embeddings = model.encode(['How is the weather today?', 'What is the current weather like today?']) print(cos_sim(embeddings[0], embeddings[1])) ``` If you only want to handle shorter sequence, such as 2k, pass the `max_length` parameter to the `encode` function: ```python embeddings = model.encode( ['Very long ... document'], max_length=2048 ) ``` *Alternatively, you can use Jina AI's [Embedding platform](https://jina.ai/embeddings/) for fully-managed access to Jina Embeddings models*. ## Fine-tuning Please consider [Finetuner](https://github.com/jina-ai/finetuner). ## Plans The development of new bilingual models is currently underway. We will be targeting mainly the German and Spanish languages. The upcoming models will be called `jina-embeddings-v2-base-de/es`. ## Contact Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas. ## Citation If you find Jina Embeddings useful in your research, please cite the following paper: ``` @misc{günther2023jina, title={Jina Embeddings 2: 8192-Token General-Purpose Text Embeddings for Long Documents}, author={Michael Günther and Jackmin Ong and Isabelle Mohr and Alaeddine Abdessalem and Tanguy Abel and Mohammad Kalim Akram and Susana Guzman and Georgios Mastrapas and Saba Sturua and Bo Wang and Maximilian Werk and Nan Wang and Han Xiao}, year={2023}, eprint={2310.19923}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ``` latex @misc{günther2023jina, title={Beyond the 512-Token Barrier: Training General-Purpose Text Embeddings for Large Documents}, author={Michael Günther and Jackmin Ong and Isabelle Mohr and Alaeddine Abdessalem and Tanguy Abel and Mohammad Kalim Akram and Susana Guzman and Georgios Mastrapas and Saba Sturua and Bo Wang}, year={2023}, eprint={2307.11224}, archivePrefix={arXiv}, primaryClass={cs.CL} } @misc{günther2023jina, title={Jina Embeddings: A Novel Set of High-Performance Sentence Embedding Models}, author={Michael Günther and Louis Milliken and Jonathan Geuter and Georgios Mastrapas and Bo Wang and Han Xiao}, year={2023}, eprint={2307.11224}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` -->
akshay7/uplimit-project-3-phi-1.5
akshay7
2023-11-05T18:20:16Z
0
0
null
[ "tensorboard", "safetensors", "generated_from_trainer", "dataset:scitldr", "base_model:microsoft/phi-1_5", "base_model:finetune:microsoft/phi-1_5", "license:other", "region:us" ]
null
2023-11-05T18:20:13Z
--- license: other base_model: microsoft/phi-1_5 tags: - generated_from_trainer datasets: - scitldr model-index: - name: uplimit-project-3-phi-1.5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # uplimit-project-3-phi-1.5 This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the scitldr dataset. It achieves the following results on the evaluation set: - Loss: 2.5342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5524 | 0.1 | 200 | 2.5956 | | 2.5736 | 0.2 | 400 | 2.5896 | | 2.5299 | 0.3 | 600 | 2.5768 | | 2.5857 | 0.4 | 800 | 2.5652 | | 2.5393 | 0.5 | 1000 | 2.5597 | | 2.5755 | 0.6 | 1200 | 2.5515 | | 2.5476 | 0.7 | 1400 | 2.5468 | | 2.5298 | 0.8 | 1600 | 2.5392 | | 2.5786 | 0.9 | 1800 | 2.5342 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
Thorsten-Voice/Hessisch
Thorsten-Voice
2023-11-05T18:19:59Z
0
2
null
[ "onnx", "tts", "Thorsten-Voice", "text-to-speech", "hessisch", "de", "license:cc0-1.0", "region:us" ]
text-to-speech
2023-10-01T17:39:53Z
--- license: cc0-1.0 language: - de pipeline_tag: text-to-speech tags: - tts - Thorsten-Voice - text-to-speech - hessisch --- # Guude! Guckst Du hier für mehr Infos: [https://www.Thorsten-Voice.de/guude](https://www.Thorsten-Voice.de/guude)
satyanshu404/bart-large-cnn-prompt_generation-2.0
satyanshu404
2023-11-05T18:17:45Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-large-cnn", "base_model:finetune:facebook/bart-large-cnn", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-11-05T12:34:24Z
--- license: mit base_model: facebook/bart-large-cnn tags: - generated_from_trainer model-index: - name: bart-large-cnn-prompt_generation-2.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-prompt_generation-2.0 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.6403 - Actual score: 0.8766 - Predction score: 0.5039 - Score difference: 0.3727 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-07 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 75 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Actual score | Predction score | Score difference | |:-------------:|:-----:|:----:|:---------------:|:------------:|:---------------:|:----------------:| | No log | 1.0 | 8 | 3.6549 | 0.8766 | -0.2093 | 1.0859 | | No log | 2.0 | 16 | 3.6012 | 0.8766 | -0.1961 | 1.0728 | | No log | 3.0 | 24 | 3.5331 | 0.8766 | -0.1613 | 1.0379 | | No log | 4.0 | 32 | 3.4417 | 0.8766 | -0.1132 | 0.9899 | | No log | 5.0 | 40 | 3.3501 | 0.8766 | -0.1821 | 1.0587 | | No log | 6.0 | 48 | 3.2904 | 0.8766 | -0.1653 | 1.0419 | | No log | 7.0 | 56 | 3.2418 | 0.8766 | -0.4566 | 1.3332 | | No log | 8.0 | 64 | 3.1620 | 0.8766 | -0.2897 | 1.1663 | | No log | 9.0 | 72 | 3.0925 | 0.8766 | -0.5185 | 1.3951 | | No log | 10.0 | 80 | 3.0442 | 0.8766 | -0.7127 | 1.5893 | | No log | 11.0 | 88 | 3.0064 | 0.8766 | -0.4893 | 1.3659 | | No log | 12.0 | 96 | 2.9742 | 0.8766 | -0.6391 | 1.5157 | | No log | 13.0 | 104 | 2.9475 | 0.8766 | -0.4873 | 1.3640 | | No log | 14.0 | 112 | 2.9254 | 0.8766 | -0.2786 | 1.1552 | | No log | 15.0 | 120 | 2.9061 | 0.8766 | -0.1893 | 1.0660 | | No log | 16.0 | 128 | 2.8887 | 0.8766 | -0.2202 | 1.0968 | | No log | 17.0 | 136 | 2.8730 | 0.8766 | -0.2009 | 1.0775 | | No log | 18.0 | 144 | 2.8588 | 0.8766 | -0.2101 | 1.0867 | | No log | 19.0 | 152 | 2.8461 | 0.8766 | -0.3374 | 1.2140 | | No log | 20.0 | 160 | 2.8337 | 0.8766 | -0.2005 | 1.0772 | | No log | 21.0 | 168 | 2.8216 | 0.8766 | -0.2570 | 1.1336 | | No log | 22.0 | 176 | 2.8104 | 0.8766 | -0.3601 | 1.2367 | | No log | 23.0 | 184 | 2.7996 | 0.8766 | -0.4823 | 1.3589 | | No log | 24.0 | 192 | 2.7895 | 0.8766 | -0.4451 | 1.3217 | | No log | 25.0 | 200 | 2.7798 | 0.8766 | -0.3621 | 1.2388 | | No log | 26.0 | 208 | 2.7706 | 0.8766 | -0.4108 | 1.2874 | | No log | 27.0 | 216 | 2.7625 | 0.8766 | -0.4750 | 1.3517 | | No log | 28.0 | 224 | 2.7547 | 0.8766 | -0.4004 | 1.2771 | | No log | 29.0 | 232 | 2.7471 | 0.8766 | -0.4535 | 1.3301 | | No log | 30.0 | 240 | 2.7393 | 0.8766 | -0.5414 | 1.4180 | | No log | 31.0 | 248 | 2.7328 | 0.8766 | -0.5666 | 1.4433 | | No log | 32.0 | 256 | 2.7268 | 0.8766 | -0.6630 | 1.5396 | | No log | 33.0 | 264 | 2.7211 | 0.8766 | -0.4073 | 1.2839 | | No log | 34.0 | 272 | 2.7160 | 0.8766 | -0.5464 | 1.4230 | | No log | 35.0 | 280 | 2.7113 | 0.8766 | -0.3629 | 1.2396 | | No log | 36.0 | 288 | 2.7065 | 0.8766 | -0.2926 | 1.1692 | | No log | 37.0 | 296 | 2.7025 | 0.8766 | -0.2596 | 1.1362 | | No log | 38.0 | 304 | 2.6981 | 0.8766 | -0.1478 | 1.0244 | | No log | 39.0 | 312 | 2.6939 | 0.8766 | -0.2252 | 1.1018 | | No log | 40.0 | 320 | 2.6901 | 0.8766 | -0.2750 | 1.1516 | | No log | 41.0 | 328 | 2.6867 | 0.8766 | -0.0900 | 0.9667 | | No log | 42.0 | 336 | 2.6836 | 0.8766 | -0.2377 | 1.1144 | | No log | 43.0 | 344 | 2.6804 | 0.8766 | -0.3135 | 1.1901 | | No log | 44.0 | 352 | 2.6774 | 0.8766 | -0.1023 | 0.9789 | | No log | 45.0 | 360 | 2.6745 | 0.8766 | -0.0386 | 0.9152 | | No log | 46.0 | 368 | 2.6714 | 0.8766 | 0.1602 | 0.7164 | | No log | 47.0 | 376 | 2.6689 | 0.8766 | 0.2508 | 0.6258 | | No log | 48.0 | 384 | 2.6668 | 0.8766 | 0.1577 | 0.7190 | | No log | 49.0 | 392 | 2.6648 | 0.8766 | 0.0565 | 0.8201 | | No log | 50.0 | 400 | 2.6627 | 0.8766 | 0.2379 | 0.6387 | | No log | 51.0 | 408 | 2.6607 | 0.8766 | 0.2343 | 0.6423 | | No log | 52.0 | 416 | 2.6588 | 0.8766 | 0.2719 | 0.6048 | | No log | 53.0 | 424 | 2.6570 | 0.8766 | 0.2214 | 0.6552 | | No log | 54.0 | 432 | 2.6555 | 0.8766 | 0.2729 | 0.6037 | | No log | 55.0 | 440 | 2.6541 | 0.8766 | 0.2798 | 0.5968 | | No log | 56.0 | 448 | 2.6528 | 0.8766 | 0.0662 | 0.8104 | | No log | 57.0 | 456 | 2.6514 | 0.8766 | 0.0377 | 0.8390 | | No log | 58.0 | 464 | 2.6502 | 0.8766 | 0.2886 | 0.5880 | | No log | 59.0 | 472 | 2.6491 | 0.8766 | 0.2257 | 0.6509 | | No log | 60.0 | 480 | 2.6481 | 0.8766 | 0.2561 | 0.6206 | | No log | 61.0 | 488 | 2.6471 | 0.8766 | 0.2683 | 0.6083 | | No log | 62.0 | 496 | 2.6461 | 0.8766 | 0.2897 | 0.5869 | | 2.5848 | 63.0 | 504 | 2.6453 | 0.8766 | 0.2974 | 0.5793 | | 2.5848 | 64.0 | 512 | 2.6445 | 0.8766 | 0.2946 | 0.5820 | | 2.5848 | 65.0 | 520 | 2.6438 | 0.8766 | 0.3021 | 0.5745 | | 2.5848 | 66.0 | 528 | 2.6433 | 0.8766 | 0.2679 | 0.6087 | | 2.5848 | 67.0 | 536 | 2.6428 | 0.8766 | 0.3133 | 0.5633 | | 2.5848 | 68.0 | 544 | 2.6423 | 0.8766 | 0.3398 | 0.5368 | | 2.5848 | 69.0 | 552 | 2.6418 | 0.8766 | 0.4149 | 0.4617 | | 2.5848 | 70.0 | 560 | 2.6413 | 0.8766 | 0.4674 | 0.4092 | | 2.5848 | 71.0 | 568 | 2.6410 | 0.8766 | 0.4929 | 0.3838 | | 2.5848 | 72.0 | 576 | 2.6407 | 0.8766 | 0.4974 | 0.3793 | | 2.5848 | 73.0 | 584 | 2.6406 | 0.8766 | 0.4948 | 0.3818 | | 2.5848 | 74.0 | 592 | 2.6404 | 0.8766 | 0.4623 | 0.4143 | | 2.5848 | 75.0 | 600 | 2.6403 | 0.8766 | 0.5039 | 0.3727 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
pakornor/test_trainer
pakornor
2023-11-05T18:16:23Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-10-28T22:55:43Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: test_trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_trainer This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.5931 - eval_accuracy: 0.7585 - eval_runtime: 35.3594 - eval_samples_per_second: 56.562 - eval_steps_per_second: 7.07 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
hasibul1ah/bloom3b-lora-convo
hasibul1ah
2023-11-05T18:14:16Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:bigscience/bloom-3b", "base_model:adapter:bigscience/bloom-3b", "region:us" ]
null
2023-11-05T18:09:26Z
--- library_name: peft base_model: bigscience/bloom-3b --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.7.0.dev0
sanjana1602/my-pet-dog
sanjana1602
2023-11-05T18:09:58Z
3
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-05T18:06:03Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog Dreambooth model trained by sanjana1602 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: MRCEW-121 Sample pictures of this concept: ![0](https://huggingface.co/sanjana1602/my-pet-dog/resolve/main/sample_images/xzg1.png)
michakoz/ppo-Huggy
michakoz
2023-11-05T18:03:12Z
31
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-11-05T18:03:06Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: michakoz/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Gourishreeka/my-pet-cat
Gourishreeka
2023-11-05T17:55:05Z
1
0
diffusers
[ "diffusers", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-05T17:51:53Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Cat Dreambooth model trained by Gourishreeka following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: -MRCEW-312 Sample pictures of this concept: ![0](https://huggingface.co/Gourishreeka/my-pet-cat/resolve/main/sample_images/xzg_(1).jpg)
LoneStriker/Yi-34B-4.0bpw-h6-exl2
LoneStriker
2023-11-05T17:49:56Z
20
2
transformers
[ "transformers", "pytorch", "safetensors", "Yi", "text-generation", "custom_code", "license:other", "autotrain_compatible", "region:us" ]
text-generation
2023-11-05T17:48:49Z
--- license: other license_name: yi-license license_link: LICENSE --- <div align="center"> <h1> Yi </h1> </div> ## Introduction The **Yi** series models are large language models trained from scratch by developers at [01.AI](https://01.ai/). The first public release contains two base models with the parameter size of 6B and 34B. ## News - 🎯 **2023/11/02**: The base model of `Yi-6B` and `Yi-34B` ## Model Performance | Model | MMLU | CMMLU | C-Eval | GAOKAO | BBH | Commonsense Reasoning | Reading Comprehension | Math & Code | | :------------ | :------: | :------: | :------: | :------: | :------: | :-------------------: | :-------------------: | :---------: | | | 5-shot | 5-shot | 5-shot | 0-shot | 3-shot@1 | - | - | - | | LLaMA2-34B | 62.6 | - | - | - | 44.1 | 69.9 | 68.0 | 26.0 | | LLaMA2-70B | 68.9 | 53.3 | - | 49.8 | 51.2 | 71.9 | 69.4 | 36.8 | | Baichuan2-13B | 59.2 | 62.0 | 58.1 | 54.3 | 48.8 | 64.3 | 62.4 | 23.0 | | Qwen-14B | 66.3 | 71.0 | 72.1 | 62.5 | 53.4 | 73.3 | 72.5 | 39.8 | | Skywork-13B | 62.1 | 61.8 | 60.6 | 68.1 | 41.7 | 72.4 | 61.4 | 24.9 | | InternLM-20B | 62.1 | 59.0 | 58.8 | 45.5 | 52.5 | 78.3 | - | 26.0 | | Aquila-34B | 67.8 | 71.4 | 63.1 | - | - | - | - | - | | Falcon-180B | 70.4 | 58.0 | 57.8 | 59.0 | 54.0 | 77.3 | 68.8 | 34.0 | | Yi-6B | 63.2 | 75.5 | 72.0 | 72.2 | 42.8 | 72.3 | 68.7 | 19.8 | | **Yi-34B** | **76.3** | **83.7** | **81.4** | **82.8** | **54.3** | **80.1** | **76.4** | **37.1** | While benchmarking open-source models, we have observed a disparity between the results generated by our pipeline and those reported in public sources (e.g. OpenCampus). Upon conducting a more in-depth investigation of this difference, we have discovered that various models may employ different prompts, post-processing strategies, and sampling techniques, potentially resulting in significant variations in the outcomes. Our prompt and post-processing strategy remains consistent with the original benchmark, and greedy decoding is employed during evaluation without any post-processing for the generated content. For scores that did not report by original author (including score reported with different setting), we try to get results with our pipeline. To extensively evaluate model's capability, we adopted the methodology outlined in Llama2. Specifically, we included PIQA, SIQA, HellaSwag, WinoGrande, ARC, OBQA, and CSQA to assess common sense reasoning. SquAD, QuAC, and BoolQ were incorporated to evaluate reading comprehension. CSQA was exclusively tested using a 7-shot setup, while all other tests were conducted in a 0-shot configuration. Additionally, we introduced GSM8K (8-shot@1), MATH (4-shot@1), HumanEval (0-shot@1), and MBPP (3-shot@1) under the category "Math & Code". Due to technical constraints, we did not test Falcon-180 on QuAC and OBQA; the score is derived by averaging the scores on the remaining tasks. Since the scores for these two tasks are generally lower than the average, we believe that Falcon-180B's performance was not underestimated. ## Disclaimer Although we use data compliance checking algorithms during the training process to ensure the compliance of the trained model to the best of our ability, due to the complexity of the data and the diversity of language model usage scenarios, we cannot guarantee that the model will generate correct and reasonable output in all scenarios. Please be aware that there is still a risk of the model producing problematic outputs. We will not be responsible for any risks and issues resulting from misuse, misguidance, illegal usage, and related misinformation, as well as any associated data security concerns. ## License The Yi series model must be adhere to the [Model License Agreement](https://huggingface.co/01-ai/Yi-34B/blob/main/LICENSE). For any questions related to licensing and copyright, please contact us ([yi@01.ai](mailto:yi@01.ai)).
LaTarn/ta-miscellaneous-setfit-model
LaTarn
2023-11-05T17:46:19Z
4
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-11-05T17:46:01Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # LaTarn/ta-miscellaneous-setfit-model This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("LaTarn/ta-miscellaneous-setfit-model") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
advancedcv/blip2-opt-2.7b_Food500Cap_finetuned
advancedcv
2023-11-05T17:42:19Z
3
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Salesforce/blip2-opt-2.7b", "base_model:adapter:Salesforce/blip2-opt-2.7b", "region:us" ]
null
2023-11-01T23:31:38Z
--- library_name: peft base_model: Salesforce/blip2-opt-2.7b --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.7.0.dev0
Narasimhappa/my-cricket-player
Narasimhappa
2023-11-05T17:40:18Z
0
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-11-05T17:36:39Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### my-cricket-player Dreambooth model trained by Narasimhappa following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: CVR-269 Sample pictures of this concept: ![0](https://huggingface.co/Narasimhappa/my-cricket-player/resolve/main/sample_images/anl(2).jpg) ![1](https://huggingface.co/Narasimhappa/my-cricket-player/resolve/main/sample_images/anl(3).jpg) ![2](https://huggingface.co/Narasimhappa/my-cricket-player/resolve/main/sample_images/anl(5).jpg) ![3](https://huggingface.co/Narasimhappa/my-cricket-player/resolve/main/sample_images/anl(1).jpg) ![4](https://huggingface.co/Narasimhappa/my-cricket-player/resolve/main/sample_images/anl(4).jpg)