modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-27 18:28:06
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
523 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-27 18:27:40
card
stringlengths
11
1.01M
rahul77/pegasus-large-finetuned-rahulver-summarization-pegasus-model
rahul77
2022-12-09T21:07:11Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-09T19:27:29Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-large-finetuned-rahulver-summarization-pegasus-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-large-finetuned-rahulver-summarization-pegasus-model This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0906 - Rouge1: 61.2393 - Rouge2: 43.8277 - Rougel: 50.0054 - Rougelsum: 57.4674 - Gen Len: 114.6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 1.3648 | 1.0 | 140 | 0.7201 | 50.0081 | 32.6454 | 39.3021 | 45.1602 | 125.7333 | | 0.8502 | 2.0 | 280 | 0.6067 | 57.8678 | 41.5251 | 46.0694 | 54.1055 | 128.3333 | | 0.5053 | 3.0 | 420 | 0.6642 | 58.3644 | 41.8619 | 47.6199 | 54.1639 | 108.9667 | | 0.3469 | 4.0 | 560 | 0.7318 | 61.8988 | 45.7303 | 51.1928 | 57.9306 | 123.1667 | | 0.2779 | 5.0 | 700 | 0.7274 | 62.9354 | 46.5 | 51.6431 | 59.2443 | 99.6333 | | 0.2124 | 6.0 | 840 | 0.8618 | 63.8552 | 48.3846 | 53.3804 | 60.2718 | 111.2333 | | 0.1864 | 7.0 | 980 | 1.0058 | 59.5675 | 42.4324 | 48.462 | 55.3498 | 108.4667 | | 0.1691 | 8.0 | 1120 | 0.9984 | 60.1063 | 43.6022 | 49.7163 | 56.9865 | 130.2 | | 0.1603 | 9.0 | 1260 | 1.0062 | 61.398 | 44.4507 | 50.2044 | 57.4447 | 99.0333 | | 0.1674 | 10.0 | 1400 | 1.0906 | 61.2393 | 43.8277 | 50.0054 | 57.4674 | 114.6 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
jennirocket/ppo-LunarLander-v2
jennirocket
2022-12-09T20:56:17Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T19:20:15Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 268.41 +/- 17.97 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Gladiator/albert-large-v2_ner_wikiann
Gladiator
2022-12-09T20:43:01Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "albert", "token-classification", "generated_from_trainer", "dataset:wikiann", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-09T16:16:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: albert-large-v2_ner_wikiann results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann args: en metrics: - name: Precision type: precision value: 0.8239671720684378 - name: Recall type: recall value: 0.8374805598755832 - name: F1 type: f1 value: 0.8306689103912495 - name: Accuracy type: accuracy value: 0.926951922121784 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-large-v2_ner_wikiann This model is a fine-tuned version of [albert-large-v2](https://huggingface.co/albert-large-v2) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.3416 - Precision: 0.8240 - Recall: 0.8375 - F1: 0.8307 - Accuracy: 0.9270 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3451 | 1.0 | 2500 | 0.3555 | 0.7745 | 0.7850 | 0.7797 | 0.9067 | | 0.2995 | 2.0 | 5000 | 0.2927 | 0.7932 | 0.8240 | 0.8083 | 0.9205 | | 0.252 | 3.0 | 7500 | 0.2936 | 0.8094 | 0.8236 | 0.8164 | 0.9239 | | 0.1676 | 4.0 | 10000 | 0.3302 | 0.8256 | 0.8359 | 0.8307 | 0.9268 | | 0.1489 | 5.0 | 12500 | 0.3416 | 0.8240 | 0.8375 | 0.8307 | 0.9270 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
SergejSchweizer/ppo-LunarLander-v2
SergejSchweizer
2022-12-09T20:37:16Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T20:36:53Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 246.49 +/- 46.47 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
shreyasharma/t5-small-ret-conceptnet2
shreyasharma
2022-12-09T20:26:54Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-28T08:04:37Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: t5-small-ret-conceptnet2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-ret-conceptnet2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1709 - Acc: {'accuracy': 0.8700980392156863} - Precision: {'precision': 0.811340206185567} - Recall: {'recall': 0.9644607843137255} - F1: {'f1': 0.8812989921612542} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|:--------------------------------:|:------------------------------:|:--------------------------:| | 0.1989 | 1.0 | 721 | 0.1709 | {'accuracy': 0.8700980392156863} | {'precision': 0.811340206185567} | {'recall': 0.9644607843137255} | {'f1': 0.8812989921612542} | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
graydient/diffusers-mattthew-technicolor-50s-diffusion
graydient
2022-12-09T20:12:14Z
3
1
diffusers
[ "diffusers", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-09T19:31:04Z
--- license: cc-by-sa-4.0 --- # 🌈 Diffusers Adaptation: Technicolor-50s Diffusion ## Style Description - This is a port of [Mattthew's excellent Technicolor 50s Diffusion](https://huggingface.co/mattthew/technicolor-50s-diffusion/tree/main) model to Huggingface Diffusers. - Please see original highly-saturated postcard-like colors, flat high-key lighting, strong rim-lighting, 40s and 50s lifestyle
thegovind/pills1testmodel
thegovind
2022-12-09T20:12:07Z
10
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-07T21:46:05Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: pills --- ### pills1testmodel Dreambooth model fine-tuned v2-1-512 base model Sample pictures of: pills (use that on your prompt) ![pills 0](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%281%29.jpg)![pills 1](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%282%29.jpg)![pills 2](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%283%29.jpg)![pills 3](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%284%29.jpg)![pills 4](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%285%29.jpg)![pills 5](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%286%29.jpg)![pills 6](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%287%29.jpg)![pills 7](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%288%29.jpg)![pills 8](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%289%29.jpg)![pills 9](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%2810%29.jpg)![pills 10](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%2811%29.jpg)![pills 11](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%2812%29.jpg)![pills 12](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%2813%29.jpg)![pills 13](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%2814%29.jpg)![pills 14](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%2815%29.jpg)![pills 15](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%2816%29.jpg)![pills 16](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%2817%29.jpg)![pills 17](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%2818%29.jpg)![pills 18](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%2819%29.jpg)![pills 19](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%2820%29.jpg)![pills 20](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%2821%29.jpg)![pills 21](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%2822%29.jpg)![pills 22](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%2823%29.jpg)![pills 23](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%2824%29.jpg)![pills 24](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%2825%29.jpg)![pills 25](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%2826%29.jpg)![pills 26](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%2827%29.jpg)![pills 27](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%2828%29.jpg)![pills 28](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%2829%29.jpg)![pills 29](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%2830%29.jpg)![pills 30](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%2831%29.jpg)![pills 31](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%2832%29.jpg)![pills 32](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%2833%29.jpg)![pills 33](https://huggingface.co/thegovind/pills1testmodel/resolve/main/concept_images/pills_%2834%29.jpg)
Cbdlt/unit1-LunarLander-1
Cbdlt
2022-12-09T20:00:29Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T19:59:01Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 275.72 +/- 20.44 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
rakeshjohny/PPO_LunarLanderV2
rakeshjohny
2022-12-09T19:51:29Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T19:50:59Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 230.53 +/- 18.37 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Sandipan1994/t5-small-entailement-Writer
Sandipan1994
2022-12-09T19:34:46Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-09T19:10:22Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-entailement-Writer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-entailement-Writer This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5958 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 150 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 42 | 1.8511 | | No log | 2.0 | 84 | 1.2249 | | No log | 3.0 | 126 | 0.9976 | | No log | 4.0 | 168 | 0.9108 | | No log | 5.0 | 210 | 0.8478 | | No log | 6.0 | 252 | 0.8186 | | No log | 7.0 | 294 | 0.7965 | | No log | 8.0 | 336 | 0.7815 | | No log | 9.0 | 378 | 0.7634 | | No log | 10.0 | 420 | 0.7544 | | No log | 11.0 | 462 | 0.7408 | | 1.2198 | 12.0 | 504 | 0.7298 | | 1.2198 | 13.0 | 546 | 0.7240 | | 1.2198 | 14.0 | 588 | 0.7139 | | 1.2198 | 15.0 | 630 | 0.7070 | | 1.2198 | 16.0 | 672 | 0.7028 | | 1.2198 | 17.0 | 714 | 0.6977 | | 1.2198 | 18.0 | 756 | 0.6926 | | 1.2198 | 19.0 | 798 | 0.6906 | | 1.2198 | 20.0 | 840 | 0.6846 | | 1.2198 | 21.0 | 882 | 0.6822 | | 1.2198 | 22.0 | 924 | 0.6760 | | 1.2198 | 23.0 | 966 | 0.6710 | | 0.7403 | 24.0 | 1008 | 0.6667 | | 0.7403 | 25.0 | 1050 | 0.6657 | | 0.7403 | 26.0 | 1092 | 0.6653 | | 0.7403 | 27.0 | 1134 | 0.6588 | | 0.7403 | 28.0 | 1176 | 0.6584 | | 0.7403 | 29.0 | 1218 | 0.6573 | | 0.7403 | 30.0 | 1260 | 0.6520 | | 0.7403 | 31.0 | 1302 | 0.6522 | | 0.7403 | 32.0 | 1344 | 0.6525 | | 0.7403 | 33.0 | 1386 | 0.6463 | | 0.7403 | 34.0 | 1428 | 0.6453 | | 0.7403 | 35.0 | 1470 | 0.6437 | | 0.6642 | 36.0 | 1512 | 0.6397 | | 0.6642 | 37.0 | 1554 | 0.6382 | | 0.6642 | 38.0 | 1596 | 0.6365 | | 0.6642 | 39.0 | 1638 | 0.6332 | | 0.6642 | 40.0 | 1680 | 0.6335 | | 0.6642 | 41.0 | 1722 | 0.6325 | | 0.6642 | 42.0 | 1764 | 0.6295 | | 0.6642 | 43.0 | 1806 | 0.6304 | | 0.6642 | 44.0 | 1848 | 0.6287 | | 0.6642 | 45.0 | 1890 | 0.6272 | | 0.6642 | 46.0 | 1932 | 0.6267 | | 0.6642 | 47.0 | 1974 | 0.6242 | | 0.6127 | 48.0 | 2016 | 0.6232 | | 0.6127 | 49.0 | 2058 | 0.6225 | | 0.6127 | 50.0 | 2100 | 0.6211 | | 0.6127 | 51.0 | 2142 | 0.6204 | | 0.6127 | 52.0 | 2184 | 0.6196 | | 0.6127 | 53.0 | 2226 | 0.6183 | | 0.6127 | 54.0 | 2268 | 0.6168 | | 0.6127 | 55.0 | 2310 | 0.6175 | | 0.6127 | 56.0 | 2352 | 0.6160 | | 0.6127 | 57.0 | 2394 | 0.6154 | | 0.6127 | 58.0 | 2436 | 0.6143 | | 0.6127 | 59.0 | 2478 | 0.6142 | | 0.5799 | 60.0 | 2520 | 0.6131 | | 0.5799 | 61.0 | 2562 | 0.6122 | | 0.5799 | 62.0 | 2604 | 0.6120 | | 0.5799 | 63.0 | 2646 | 0.6115 | | 0.5799 | 64.0 | 2688 | 0.6119 | | 0.5799 | 65.0 | 2730 | 0.6112 | | 0.5799 | 66.0 | 2772 | 0.6099 | | 0.5799 | 67.0 | 2814 | 0.6094 | | 0.5799 | 68.0 | 2856 | 0.6082 | | 0.5799 | 69.0 | 2898 | 0.6092 | | 0.5799 | 70.0 | 2940 | 0.6081 | | 0.5799 | 71.0 | 2982 | 0.6071 | | 0.5558 | 72.0 | 3024 | 0.6062 | | 0.5558 | 73.0 | 3066 | 0.6079 | | 0.5558 | 74.0 | 3108 | 0.6072 | | 0.5558 | 75.0 | 3150 | 0.6052 | | 0.5558 | 76.0 | 3192 | 0.6066 | | 0.5558 | 77.0 | 3234 | 0.6049 | | 0.5558 | 78.0 | 3276 | 0.6042 | | 0.5558 | 79.0 | 3318 | 0.6039 | | 0.5558 | 80.0 | 3360 | 0.6050 | | 0.5558 | 81.0 | 3402 | 0.6042 | | 0.5558 | 82.0 | 3444 | 0.6040 | | 0.5558 | 83.0 | 3486 | 0.6029 | | 0.5292 | 84.0 | 3528 | 0.6032 | | 0.5292 | 85.0 | 3570 | 0.6039 | | 0.5292 | 86.0 | 3612 | 0.6036 | | 0.5292 | 87.0 | 3654 | 0.6019 | | 0.5292 | 88.0 | 3696 | 0.6014 | | 0.5292 | 89.0 | 3738 | 0.6022 | | 0.5292 | 90.0 | 3780 | 0.6014 | | 0.5292 | 91.0 | 3822 | 0.6020 | | 0.5292 | 92.0 | 3864 | 0.6028 | | 0.5292 | 93.0 | 3906 | 0.5994 | | 0.5292 | 94.0 | 3948 | 0.6004 | | 0.5292 | 95.0 | 3990 | 0.5987 | | 0.5159 | 96.0 | 4032 | 0.5992 | | 0.5159 | 97.0 | 4074 | 0.5993 | | 0.5159 | 98.0 | 4116 | 0.5989 | | 0.5159 | 99.0 | 4158 | 0.6004 | | 0.5159 | 100.0 | 4200 | 0.6001 | | 0.5159 | 101.0 | 4242 | 0.6008 | | 0.5159 | 102.0 | 4284 | 0.6006 | | 0.5159 | 103.0 | 4326 | 0.5999 | | 0.5159 | 104.0 | 4368 | 0.5994 | | 0.5159 | 105.0 | 4410 | 0.5996 | | 0.5159 | 106.0 | 4452 | 0.5991 | | 0.5159 | 107.0 | 4494 | 0.5990 | | 0.5004 | 108.0 | 4536 | 0.5996 | | 0.5004 | 109.0 | 4578 | 0.5988 | | 0.5004 | 110.0 | 4620 | 0.5992 | | 0.5004 | 111.0 | 4662 | 0.5984 | | 0.5004 | 112.0 | 4704 | 0.5982 | | 0.5004 | 113.0 | 4746 | 0.5973 | | 0.5004 | 114.0 | 4788 | 0.5984 | | 0.5004 | 115.0 | 4830 | 0.5973 | | 0.5004 | 116.0 | 4872 | 0.5977 | | 0.5004 | 117.0 | 4914 | 0.5970 | | 0.5004 | 118.0 | 4956 | 0.5976 | | 0.5004 | 119.0 | 4998 | 0.5962 | | 0.488 | 120.0 | 5040 | 0.5969 | | 0.488 | 121.0 | 5082 | 0.5965 | | 0.488 | 122.0 | 5124 | 0.5969 | | 0.488 | 123.0 | 5166 | 0.5972 | | 0.488 | 124.0 | 5208 | 0.5966 | | 0.488 | 125.0 | 5250 | 0.5962 | | 0.488 | 126.0 | 5292 | 0.5966 | | 0.488 | 127.0 | 5334 | 0.5960 | | 0.488 | 128.0 | 5376 | 0.5969 | | 0.488 | 129.0 | 5418 | 0.5960 | | 0.488 | 130.0 | 5460 | 0.5960 | | 0.483 | 131.0 | 5502 | 0.5960 | | 0.483 | 132.0 | 5544 | 0.5965 | | 0.483 | 133.0 | 5586 | 0.5965 | | 0.483 | 134.0 | 5628 | 0.5963 | | 0.483 | 135.0 | 5670 | 0.5965 | | 0.483 | 136.0 | 5712 | 0.5962 | | 0.483 | 137.0 | 5754 | 0.5963 | | 0.483 | 138.0 | 5796 | 0.5961 | | 0.483 | 139.0 | 5838 | 0.5963 | | 0.483 | 140.0 | 5880 | 0.5964 | | 0.483 | 141.0 | 5922 | 0.5957 | | 0.483 | 142.0 | 5964 | 0.5957 | | 0.4809 | 143.0 | 6006 | 0.5957 | | 0.4809 | 144.0 | 6048 | 0.5956 | | 0.4809 | 145.0 | 6090 | 0.5958 | | 0.4809 | 146.0 | 6132 | 0.5958 | | 0.4809 | 147.0 | 6174 | 0.5959 | | 0.4809 | 148.0 | 6216 | 0.5958 | | 0.4809 | 149.0 | 6258 | 0.5958 | | 0.4809 | 150.0 | 6300 | 0.5958 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
lysandre/dum
lysandre
2022-12-09T19:34:24Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "OpenCLIP", "en", "dataset:sst2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: en license: apache-2.0 datasets: - sst2 tags: - OpenCLIP --- # Sentiment Analysis This is a BERT model fine-tuned for sentiment analysis.
nbonaker/ddpm-celeb-face-32
nbonaker
2022-12-09T19:26:57Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:ddpm-celeb-face-32", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-12-09T16:24:53Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: ddpm-celeb-face-32 metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-celeb-face-32 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `ddpm-celeb-face-32` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 32 - eval_batch_size: 32 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 50 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/nbonaker/ddpm-celeb-face-32/tensorboard?#scalars)
Alexao/whisper-small-swe2
Alexao
2022-12-09T19:24:47Z
4
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "swe", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-09T19:11:59Z
--- language: - swe license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Small swe - Swedish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small swe - Swedish This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
DimiNim/ppo-LunarLander-v2
DimiNim
2022-12-09T18:32:09Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T18:31:41Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 258.91 +/- 21.16 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
romc57/PPO_LunarLanderV2
romc57
2022-12-09T18:28:42Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T18:28:22Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 270.65 +/- 16.76 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
tripplyons/flan-t5-base-xsum
tripplyons
2022-12-09T18:23:33Z
6
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-12-05T02:21:16Z
--- license: apache-2.0 --- # google/flan-t5-base finetuned on xsum using LoRA with adapter-transformers ## Usage Use the original flan-t5-base tokenizer: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base") model = AutoModelForSeq2SeqLM.from_pretrained("tripplyons/flan-t5-base-xsum") input_text = "summarize: The ex-Reading defender denied fraudulent trading charges relating to the Sodje Sports Foundation - a charity to raise money for Nigerian sport. Mr Sodje, 37, is jointly charged with elder brothers Efe, 44, Bright, 50 and Stephen, 42. Appearing at the Old Bailey earlier, all four denied the offence. The charge relates to offences which allegedly took place between 2008 and 2014. Sam, from Kent, Efe and Bright, of Greater Manchester, and Stephen, from Bexley, are due to stand trial in July. They were all released on bail." input_ids = tokenizer([input_text], max_length=512, truncation=True, padding=True, return_tensors='pt')['input_ids'] output = model.generate(input_ids, max_length=512) output_text = tokenizer.decode(output[0], skip_special_tokens=True) print(output_text) ```
Sanjay-Papaiahgari/ppo-LunarLander-v2
Sanjay-Papaiahgari
2022-12-09T17:41:10Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T17:40:48Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: MlpPolicy results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 231.53 +/- 72.30 name: mean_reward verified: false --- # **MlpPolicy** Agent playing **LunarLander-v2** This is a trained model of a **MlpPolicy** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
deepdml/whisper-small-eu
deepdml
2022-12-09T17:26:01Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "eu", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-08T21:19:49Z
--- license: apache-2.0 language: - eu tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: openai/whisper-small results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 eu type: mozilla-foundation/common_voice_11_0 config: eu split: test args: eu metrics: - name: Wer type: wer value: 19.766305675433596 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-small Basque-Euskera This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4485 - Wer: 19.7663 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.048 | 4.04 | 1000 | 0.3402 | 21.7816 | | 0.0047 | 9.03 | 2000 | 0.3862 | 20.1694 | | 0.0012 | 14.02 | 3000 | 0.4221 | 19.7419 | | 0.0008 | 19.02 | 4000 | 0.4411 | 19.7174 | | 0.0006 | 24.01 | 5000 | 0.4485 | 19.7663 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
EmileEsmaili/ddpm-sheetmusic-clean-l2loss-colabVM
EmileEsmaili
2022-12-09T17:01:45Z
3
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:EmileEsmaili/sheet_music_clean", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-12-09T07:16:34Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: EmileEsmaili/sheet_music_clean metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-sheetmusic-clean-l2loss-colabVM ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `EmileEsmaili/sheet_music_clean` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: no ### Training results 📈 [TensorBoard logs](https://huggingface.co/EmileEsmaili/ddpm-sheetmusic-clean-l2loss-colabVM/tensorboard?#scalars)
AbyelT/Whisper-models
AbyelT
2022-12-09T16:41:03Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-05T20:59:34Z
--- language: - hi license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Small - Swedish results: [] metrics: - {wer} --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Swedish This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
parinzee/whisper-small-th-newmm-old
parinzee
2022-12-09T16:10:33Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "th", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-08T15:14:14Z
--- language: - th license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Small Thai Newmm Tokenized - Parinthapat Pengpun results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Thai Newmm Tokenized - Parinthapat Pengpun This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2095 - eval_wer: 26.6533 - eval_cer: 8.0405 - eval_runtime: 5652.2819 - eval_samples_per_second: 1.934 - eval_steps_per_second: 0.061 - epoch: 5.06 - step: 2000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
huggingtweets/thechosenberg
huggingtweets
2022-12-09T15:58:44Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-12-09T15:47:40Z
--- language: en thumbnail: http://www.huggingtweets.com/thechosenberg/1670601518761/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1600957831880097793/TxYmGY8n_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">rosey🌹</div> <div style="text-align: center; font-size: 14px;">@thechosenberg</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from rosey🌹. | Data | rosey🌹 | | --- | --- | | Tweets downloaded | 3239 | | Retweets | 3 | | Short tweets | 310 | | Tweets kept | 2926 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1a0vfvx2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @thechosenberg's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/387zccfj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/387zccfj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/thechosenberg') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
adisomani/distilbert-base-uncased-finetuned-sqaud
adisomani
2022-12-09T15:45:03Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-12-09T11:01:37Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-sqaud results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sqaud This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2831 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 14 | 0.9851 | | No log | 2.0 | 28 | 0.6955 | | No log | 3.0 | 42 | 0.5781 | | No log | 4.0 | 56 | 0.4548 | | No log | 5.0 | 70 | 0.4208 | | No log | 6.0 | 84 | 0.3592 | | No log | 7.0 | 98 | 0.3422 | | No log | 8.0 | 112 | 0.3424 | | No log | 9.0 | 126 | 0.4046 | | No log | 10.0 | 140 | 0.3142 | | No log | 11.0 | 154 | 0.3262 | | No log | 12.0 | 168 | 0.2879 | | No log | 13.0 | 182 | 0.3376 | | No log | 14.0 | 196 | 0.2870 | | No log | 15.0 | 210 | 0.2984 | | No log | 16.0 | 224 | 0.2807 | | No log | 17.0 | 238 | 0.2889 | | No log | 18.0 | 252 | 0.2877 | | No log | 19.0 | 266 | 0.2820 | | No log | 20.0 | 280 | 0.2831 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
Yuyang2022/yue
Yuyang2022
2022-12-09T15:27:06Z
16
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "yue", "dataset:mozilla-foundation/common_voice_11", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-09T15:17:55Z
--- language: - yue license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11 metrics: - wer model-index: - name: Whisper Base Yue results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 yue type: mozilla-foundation/common_voice_11 config: unclear split: None args: 'config: yue, split: train' metrics: - name: Wer type: wer value: 69.58637469586375 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Base Yue This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Common Voice 11.0 yue dataset. It achieves the following results on the evaluation set: - Loss: 0.3671 - Wer: 69.5864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0998 | 2.78 | 500 | 0.3500 | 71.4517 | | 0.0085 | 5.56 | 1000 | 0.3671 | 69.5864 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
nandovallec/whisper-tiny-bg-l
nandovallec
2022-12-09T15:05:19Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "bg", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-09T09:44:44Z
--- language: - bg license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Bg - Yonchevisky_tes2t results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: bg split: test args: 'config: bg, split: test' metrics: - name: Wer type: wer value: 61.83524504692388 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Bg - Yonchevisky_tes2t This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7377 - Wer: 61.8352 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8067 | 0.37 | 100 | 1.6916 | 137.6897 | | 0.9737 | 0.73 | 200 | 1.1197 | 78.3571 | | 0.7747 | 1.1 | 300 | 0.9763 | 73.8906 | | 0.6672 | 1.47 | 400 | 0.8972 | 70.7102 | | 0.6196 | 1.84 | 500 | 0.8329 | 67.4545 | | 0.4849 | 2.21 | 600 | 0.7968 | 66.6029 | | 0.4402 | 2.57 | 700 | 0.7597 | 62.7795 | | 0.4601 | 2.94 | 800 | 0.7385 | 61.8642 | | 0.3545 | 3.31 | 900 | 0.7394 | 61.5050 | | 0.3596 | 3.68 | 1000 | 0.7377 | 61.8352 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
kurianbenoy/whisper-ml-first-model
kurianbenoy
2022-12-09T14:49:38Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "ml", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-09T13:59:15Z
--- language: - ml license: apache-2.0 tags: - whisper-event datasets: - mozilla-foundation/common_voice_11_0 --- # This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 11.0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.13.2
ViktorDo/DistilBERT-POWO_Lifecycle_Finetuned
ViktorDo
2022-12-09T14:31:05Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-20T11:22:36Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: DistilBERT-POWO_Lifecycle_Finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBERT-POWO_Lifecycle_Finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0785 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.0875 | 1.0 | 1704 | 0.0806 | | 0.079 | 2.0 | 3408 | 0.0784 | | 0.0663 | 3.0 | 5112 | 0.0785 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
ybutsik/ppo-LunarLander-v2-test
ybutsik
2022-12-09T14:28:18Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T14:27:41Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -93.15 +/- 20.45 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
shashank89aiml/ppo-LunarLander-v2
shashank89aiml
2022-12-09T14:16:35Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T14:09:47Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 265.61 +/- 21.48 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
klashenrik/ppo-Huggy
klashenrik
2022-12-09T14:05:55Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-09T14:05:47Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: klashenrik/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Kuaaangwen/SMM-classifier-1
Kuaaangwen
2022-12-09T13:54:52Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-09T13:37:29Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: SMM-classifier-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SMM-classifier-1 This model is a fine-tuned version of [Kuaaangwen/bert-base-cased-finetuned-chemistry](https://huggingface.co/Kuaaangwen/bert-base-cased-finetuned-chemistry) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5506 - Accuracy: 0.8333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 7 | 0.2044 | 0.8333 | | No log | 2.0 | 14 | 0.3574 | 0.8333 | | No log | 3.0 | 21 | 0.1551 | 0.8333 | | No log | 4.0 | 28 | 0.9122 | 0.8333 | | No log | 5.0 | 35 | 0.9043 | 0.8333 | | No log | 6.0 | 42 | 0.7262 | 0.8333 | | No log | 7.0 | 49 | 0.5977 | 0.8333 | | No log | 8.0 | 56 | 0.5567 | 0.8333 | | No log | 9.0 | 63 | 0.5484 | 0.8333 | | No log | 10.0 | 70 | 0.5506 | 0.8333 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
torileatherman/whisper_small_sv
torileatherman
2022-12-09T13:47:05Z
6
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "sv", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-05T23:03:29Z
--- language: - sv license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Sv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: sv split: test[:10%] args: 'config: sv, split: test' metrics: - name: Wer type: wer value: 19.76284584980237 --- # Whisper Small Swedish This model is an adapted version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset in Swedish. It achieves the following results on the evaluation set: - Wer: 19.8166 ## Model description & uses This model is the openai whisper small transformer adapted for Swedish audio to text transcription. The model is available through its [HuggingFace web app](https://huggingface.co/spaces/torileatherman/whisper_small_sv) ## Training and evaluation data Data used for training is the initial 10% of train and validation of [Swedish Common Voice](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/sv/train) 11.0 from Mozilla Foundation. The dataset used for evaluation is the initial 10% of test of Swedish Common Voice. The training data has been augmented with random noise, random pitching and change of the speed of the voice. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - weight decay: 0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1379 | 0.95 | 1000 | 0.295811 | 21.467| | 0.0245 | 2.86 | 3000 | 0.300059 | 20.160 | | 0.0060 | 3.82 | 4000 | 0.320301 | 19.762 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
hr16/ira-olympus-4000
hr16
2022-12-09T13:46:47Z
1
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-09T13:43:11Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Model Dreambooth concept /content/Ira_Olympus/CRHTMJX/4000 được train bởi hr16 bằng [Shinja Zero SoTA DreamBooth_Stable_Diffusion](https://colab.research.google.com/drive/1G7qx6M_S1PDDlsWIMdbZXwdZik6sUlEh) notebook <br> Test concept bằng [Shinja Zero no Notebook](https://colab.research.google.com/drive/1Hp1ZIjPbsZKlCtomJVmt2oX7733W44b0) <br> Hoặc test bằng `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Ảnh mẫu của concept: WIP
ZDaPlaY/strawmaryarts_style
ZDaPlaY
2022-12-09T13:32:45Z
0
1
null
[ "region:us" ]
null
2022-12-09T12:55:19Z
Contains: strawmaryarts style - model with anime style Trigger Words: strawmaryarts style ![Showcase](https://huggingface.co/ZDaPlaY/strawmaryarts_style/resolve/main/showcase.png)
lily-phoo-95/sd-class-butterflies-35
lily-phoo-95
2022-12-09T13:28:31Z
6
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2022-12-08T14:59:17Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained(lily-phoo-95/sd-class-butterflies-35) image = pipeline().images[0] image ```
nbonaker/ddpm-celeb-face
nbonaker
2022-12-09T13:26:14Z
12
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:ddpm-celeb-face", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-12-08T17:21:14Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: ddpm-celeb-face metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-celeb-face ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `ddpm-celeb-face` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 32 - eval_batch_size: 32 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 50 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/nbonaker/ddpm-celeb-face/tensorboard?#scalars)
geninhu/whisper-medium-vi
geninhu
2022-12-09T13:09:46Z
4
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "vi", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-08T05:27:05Z
--- language: - vi license: apache-2.0 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: openai/whisper-medium results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 vi type: mozilla-foundation/common_voice_11_0 config: vi split: test args: vi metrics: - name: Wer type: wer value: 19.92761570519851 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-medium This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7599 - Wer: 19.9276 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0001 | 62.0 | 1000 | 0.6531 | 19.3463 | | 0.0001 | 124.0 | 2000 | 0.6964 | 19.6973 | | 0.0 | 187.0 | 3000 | 0.7282 | 19.8947 | | 0.0 | 249.0 | 4000 | 0.7481 | 19.8837 | | 0.0 | 312.0 | 5000 | 0.7599 | 19.9276 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
klashenrik/ppo-lunarlander-v2
klashenrik
2022-12-09T13:02:15Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T10:27:01Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 277.75 +/- 27.70 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Gladiator/bert-large-uncased_ner_wikiann
Gladiator
2022-12-09T12:54:43Z
16
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:wikiann", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-09T12:12:06Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: bert-large-uncased_ner_wikiann results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann args: en metrics: - name: Precision type: precision value: 0.8383588049015558 - name: Recall type: recall value: 0.8608794005372543 - name: F1 type: f1 value: 0.8494698660714285 - name: Accuracy type: accuracy value: 0.9379407966623622 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased_ner_wikiann This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.3373 - Precision: 0.8384 - Recall: 0.8609 - F1: 0.8495 - Accuracy: 0.9379 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3146 | 1.0 | 1250 | 0.2545 | 0.7956 | 0.8372 | 0.8159 | 0.9285 | | 0.1973 | 2.0 | 2500 | 0.2438 | 0.8267 | 0.8546 | 0.8404 | 0.9349 | | 0.1181 | 3.0 | 3750 | 0.2637 | 0.8320 | 0.8588 | 0.8452 | 0.9374 | | 0.0647 | 4.0 | 5000 | 0.3175 | 0.8389 | 0.8627 | 0.8507 | 0.9387 | | 0.0443 | 5.0 | 6250 | 0.3373 | 0.8384 | 0.8609 | 0.8495 | 0.9379 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
avojarot/ppo-LunarLander-v2
avojarot
2022-12-09T12:48:10Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T12:47:43Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 271.12 +/- 20.02 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Kuaaangwen/bert-base-cased-finetuned-chemistry
Kuaaangwen
2022-12-09T12:43:39Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-12-09T08:51:00Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-cased-finetuned-chemistry results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-chemistry This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1166 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.3704 | 1.0 | 8521 | 1.2725 | | 1.2718 | 2.0 | 17042 | 1.1590 | | 1.215 | 3.0 | 25563 | 1.1175 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
aalsinat/ppo-LunarLander-v2
aalsinat
2022-12-09T12:16:51Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-07T12:16:15Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -52.64 +/- 21.59 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
massimowww/LunarLander-v2
massimowww
2022-12-09T11:59:15Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T11:58:50Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 199.90 +/- 63.35 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
gamallo/paraphrases_tuned_from_gpt2-galician
gamallo
2022-12-09T11:41:10Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-12-06T21:06:25Z
--- widget: - text: "Ola, como te encontras?</s>" example_title: "saúdo" - text: "Non mudei de idea</s>" example_title: "mudar" - text: "Non aprendín nada nas aulas</s>" example_title: "aulas" - text: "Vou ir comprar leite</s>" example_title: "comprar" - text: "Non vou traballar hoxe</s>" example_title: "hoxe" --- # Paraphrases generator (em provas...) <!-- Provide a quick summary of what the model is/does. [Optional] --> Model fine-tuned from GPT2-Galician-Alpha (dataset to be improved...) # Model Details * Model type: Language model * Language: gl * License: cc0-1.0 * Libraries: Transformers, Pytorch
derhuli/vit-base-beans
derhuli
2022-12-09T10:21:24Z
28
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-09T10:11:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: vit-base-beans results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9924812030075187 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0410 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0751 | 1.54 | 100 | 0.0768 | 0.9850 | | 0.0121 | 3.08 | 200 | 0.0410 | 0.9925 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.10.0 - Datasets 2.7.1 - Tokenizers 0.13.2
MontaR/ppo-LunarLander-v2-0.4
MontaR
2022-12-09T10:18:47Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T10:18:19Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 276.78 +/- 18.42 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
kashif/soundstream_mel_decoder
kashif
2022-12-09T09:47:39Z
0
1
null
[ "onnx", "arxiv:2107.03312", "arxiv:2206.05408", "license:apache-2.0", "region:us" ]
null
2022-11-29T14:33:30Z
--- license: apache-2.0 --- A [SoundStream](https://arxiv.org/abs/2107.03312) decoder to reconstruct audio from a mel-spectrogram. ## Overview This model is a SoundStream decoder which inverts mel-spectrograms computed with the specific hyperparameters defined in the example below. This model was trained on music data and used in [Multi-instrument Music Synthesis with Spectrogram Diffusion](https://arxiv.org/abs/2206.05408) (ISMIR 2022). A typical use-case is to simplify music generation by predicting mel-spectrograms (instead of a raw waveform), and then use this model to reconstruct audio. If you use it, please consider citing: ```bibtex @article{zeghidour2021soundstream, title={Soundstream: An end-to-end neural audio codec}, author={Zeghidour, Neil and Luebs, Alejandro and Omran, Ahmed and Skoglund, Jan and Tagliasacchi, Marco}, journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing}, volume={30}, pages={495--507}, year={2021}, publisher={IEEE} } ``` ## Example Use ```python from diffusers import OnnxRuntimeModel SAMPLE_RATE = 16000 N_FFT = 1024 HOP_LENGTH = 320 WIN_LENGTH = 640 N_MEL_CHANNELS = 128 MEL_FMIN = 0.0 MEL_FMAX = int(SAMPLE_RATE // 2) CLIP_VALUE_MIN = 1e-5 CLIP_VALUE_MAX = 1e8 mel = ... melgan = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder") audio = melgan(input_features=mel.astype(np.float32)) ```
Aman6917/autotrain-fine_tune_tscholak-2392374839
Aman6917
2022-12-09T09:39:56Z
1
0
transformers
[ "transformers", "pytorch", "autotrain", "summarization", "unk", "dataset:Aman6917/autotrain-data-fine_tune_tscholak", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
summarization
2022-12-09T09:30:41Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Aman6917/autotrain-data-fine_tune_tscholak co2_eq_emissions: emissions: 11.023749088725205 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 2392374839 - CO2 Emissions (in grams): 11.0237 ## Validation Metrics - Loss: 0.128 - Rouge1: 94.982 - Rouge2: 91.105 - RougeL: 94.629 - RougeLsum: 94.535 - Gen Len: 30.359 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/Aman6917/autotrain-fine_tune_tscholak-2392374839 ```
JYC333/ppo-LunarLander-v2
JYC333
2022-12-09T09:29:41Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-07T13:24:02Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 287.88 +/- 24.77 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
hanq0212/RL_course_unit0
hanq0212
2022-12-09T09:23:54Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T09:22:24Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 262.46 +/- 17.73 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ljh1/hello-custom
ljh1
2022-12-09T09:06:52Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "emotion", "endpoints-template", "en", "dataset:emotion", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-09T07:09:15Z
--- language: - en tags: - text-classification - emotion - endpoints-template license: apache-2.0 datasets: - emotion metrics: - Accuracy, F1 Score --- # Fork of [bhadresh-savani/distilbert-base-uncased-emotion](https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion)
QIANWEI/swin-tiny-patch4-window7-224-finetuned-eurosat
QIANWEI
2022-12-09T08:42:12Z
29
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-07T13:39:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9851851851851852 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [nielsr/swin-tiny-patch4-window7-224-finetuned-eurosat](https://huggingface.co/nielsr/swin-tiny-patch4-window7-224-finetuned-eurosat) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0416 - Accuracy: 0.9852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1296 | 1.0 | 190 | 0.0646 | 0.9774 | | 0.1257 | 2.0 | 380 | 0.0445 | 0.9841 | | 0.1067 | 3.0 | 570 | 0.0416 | 0.9852 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0 - Datasets 2.7.1 - Tokenizers 0.13.2
shripadbhat/whisper-tiny-mr
shripadbhat
2022-12-09T06:56:18Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "mr", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-09T05:13:59Z
--- language: - mr license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Tiny Marathi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: mr split: test args: mr metrics: - name: Wer type: wer value: 41.645121785276906 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Tiny Marathi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4618 - Wer: 41.6451 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1600 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.6182 | 0.95 | 200 | 0.6224 | 53.6706 | | 0.4364 | 1.9 | 400 | 0.5200 | 47.2071 | | 0.3668 | 2.84 | 600 | 0.4830 | 44.4890 | | 0.294 | 3.79 | 800 | 0.4671 | 42.8562 | | 0.2729 | 4.74 | 1000 | 0.4642 | 42.1214 | | 0.2401 | 5.69 | 1200 | 0.4614 | 41.6996 | | 0.2212 | 6.64 | 1400 | 0.4618 | 41.7778 | | 0.2093 | 7.58 | 1600 | 0.4618 | 41.6451 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
huam/ppo-LunarLander-v2
huam
2022-12-09T06:19:58Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T03:53:45Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 276.82 +/- 15.15 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
OFA-Sys/chinese-clip-vit-huge-patch14
OFA-Sys
2022-12-09T06:11:22Z
3,111
26
transformers
[ "transformers", "pytorch", "chinese_clip", "zero-shot-image-classification", "vision", "arxiv:2211.01335", "endpoints_compatible", "region:us" ]
zero-shot-image-classification
2022-11-09T09:45:11Z
--- tags: - vision widget: - src: https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16/resolve/main/festival.jpg candidate_labels: 灯笼, 鞭炮, 对联 example_title: festival - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/cat-dog-music.png candidate_labels: 音乐表演, 体育运动 example_title: cat & dog - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg candidate_labels: 梅西, C罗, 马奎尔 example_title: football --- # Chinese-CLIP-ViT-Huge-Patch14 ## Introduction This is the huge-version of the Chinese CLIP, with ViT-H/14 as the image encoder and RoBERTa-wwm-large as the text encoder. Chinese CLIP is a simple implementation of CLIP on a large-scale dataset of around 200 million Chinese image-text pairs. For more details, please refer to our technical report https://arxiv.org/abs/2211.01335 and our official github repo https://github.com/OFA-Sys/Chinese-CLIP (Welcome to star! 🔥🔥) ## Use with the official API We provide a simple code snippet to show how to use the API of Chinese-CLIP to compute the image & text embeddings and similarities. ```python from PIL import Image import requests from transformers import ChineseCLIPProcessor, ChineseCLIPModel model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-huge-patch14") processor = ChineseCLIPProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-huge-patch14") url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg" image = Image.open(requests.get(url, stream=True).raw) # Squirtle, Bulbasaur, Charmander, Pikachu in English texts = ["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"] # compute image feature inputs = processor(images=image, return_tensors="pt") image_features = model.get_image_features(**inputs) image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True) # normalize # compute text features inputs = processor(text=texts, padding=True, return_tensors="pt") text_features = model.get_text_features(**inputs) text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True) # normalize # compute image-text similarity scores inputs = processor(text=texts, images=image, return_tensors="pt", padding=True) outputs = model(**inputs) logits_per_image = outputs.logits_per_image # this is the image-text similarity score probs = logits_per_image.softmax(dim=1) # probs: [[1.1419e-02, 1.0478e-02, 5.2018e-04, 9.7758e-01]] ``` However, if you are not satisfied with only using the API, feel free to check our github repo https://github.com/OFA-Sys/Chinese-CLIP for more details about training and inference. <br><br> ## Results **MUGE Text-to-Image Retrieval**: <table border="1" width="100%"> <tr align="center"> <th>Setup</th><th colspan="4">Zero-shot</th><th colspan="4">Finetune</th> </tr> <tr align="center"> <td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>MR</td><td>R@1</td><td>R@5</td><td>R@10</td><td>MR</td> </tr> <tr align="center"> <td width="120%">Wukong</td><td>42.7</td><td>69.0</td><td>78.0</td><td>63.2</td><td>52.7</td><td>77.9</td><td>85.6</td><td>72.1</td> </tr> <tr align="center"> <td width="120%">R2D2</td><td>49.5</td><td>75.7</td><td>83.2</td><td>69.5</td><td>60.1</td><td>82.9</td><td>89.4</td><td>77.5</td> </tr> <tr align="center"> <td width="120%">CN-CLIP</td><td>63.0</td><td>84.1</td><td>89.2</td><td>78.8</td><td>68.9</td><td>88.7</td><td>93.1</td><td>83.6</td> </tr> </table> <br> **Flickr30K-CN Retrieval**: <table border="1" width="120%"> <tr align="center"> <th>Task</th><th colspan="6">Text-to-Image</th><th colspan="6">Image-to-Text</th> </tr> <tr align="center"> <th>Setup</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th> </tr> <tr align="center"> <td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td> </tr> <tr align="center"> <td width="120%">Wukong</td><td>51.7</td><td>78.9</td><td>86.3</td><td>77.4</td><td>94.5</td><td>97.0</td><td>76.1</td><td>94.8</td><td>97.5</td><td>92.7</td><td>99.1</td><td>99.6</td> </tr> <tr align="center"> <td width="120%">R2D2</td><td>60.9</td><td>86.8</td><td>92.7</td><td>84.4</td><td>96.7</td><td>98.4</td><td>77.6</td><td>96.7</td><td>98.9</td><td>95.6</td><td>99.8</td><td>100.0</td> </tr> <tr align="center"> <td width="120%">CN-CLIP</td><td>71.2</td><td>91.4</td><td>95.5</td><td>83.8</td><td>96.9</td><td>98.6</td><td>81.6</td><td>97.5</td><td>98.8</td><td>95.3</td><td>99.7</td><td>100.0</td> </tr> </table> <br> **COCO-CN Retrieval**: <table border="1" width="100%"> <tr align="center"> <th>Task</th><th colspan="6">Text-to-Image</th><th colspan="6">Image-to-Text</th> </tr> <tr align="center"> <th>Setup</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th><th colspan="3">Zero-shot</th><th colspan="3">Finetune</th> </tr> <tr align="center"> <td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td> </tr> <tr align="center"> <td width="120%">Wukong</td><td>53.4</td><td>80.2</td><td>90.1</td><td>74.0</td><td>94.4</td><td>98.1</td><td>55.2</td><td>81.0</td><td>90.6</td><td>73.3</td><td>94.0</td><td>98.0</td> </tr> <tr align="center"> <td width="120%">R2D2</td><td>56.4</td><td>85.0</td><td>93.1</td><td>79.1</td><td>96.5</td><td>98.9</td><td>63.3</td><td>89.3</td><td>95.7</td><td>79.3</td><td>97.1</td><td>98.7</td> </tr> <tr align="center"> <td width="120%">CN-CLIP</td><td>69.2</td><td>89.9</td><td>96.1</td><td>81.5</td><td>96.9</td><td>99.1</td><td>63.0</td><td>86.6</td><td>92.9</td><td>83.5</td><td>97.3</td><td>99.2</td> </tr> </table> <br> **Zero-shot Image Classification**: <table border="1" width="100%"> <tr align="center"> <th>Task</th><th>CIFAR10</th><th>CIFAR100</th><th>DTD</th><th>EuroSAT</th><th>FER</th><th>FGVC</th><th>KITTI</th><th>MNIST</th><th>PC</th><th>VOC</th> </tr> <tr align="center"> <td width="150%">GIT</td><td>88.5</td><td>61.1</td><td>42.9</td><td>43.4</td><td>41.4</td><td>6.7</td><td>22.1</td><td>68.9</td><td>50.0</td><td>80.2</td> </tr> <tr align="center"> <td width="150%">ALIGN</td><td>94.9</td><td>76.8</td><td>66.1</td><td>52.1</td><td>50.8</td><td>25.0</td><td>41.2</td><td>74.0</td><td>55.2</td><td>83.0</td> </tr> <tr align="center"> <td width="150%">CLIP</td><td>94.9</td><td>77.0</td><td>56.0</td><td>63.0</td><td>48.3</td><td>33.3</td><td>11.5</td><td>79.0</td><td>62.3</td><td>84.0</td> </tr> <tr align="center"> <td width="150%">Wukong</td><td>95.4</td><td>77.1</td><td>40.9</td><td>50.3</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td> </tr> <tr align="center"> <td width="150%">CN-CLIP</td><td>96.0</td><td>79.7</td><td>51.2</td><td>52.0</td><td>55.1</td><td>26.2</td><td>49.9</td><td>79.4</td><td>63.5</td><td>84.9</td> </tr> </table> <br> ## Citation If you find Chinese CLIP helpful, feel free to cite our paper. Thanks for your support! ``` @article{chinese-clip, title={Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese}, author={Yang, An and Pan, Junshu and Lin, Junyang and Men, Rui and Zhang, Yichang and Zhou, Jingren and Zhou, Chang}, journal={arXiv preprint arXiv:2211.01335}, year={2022} } ``` <br>
spaablauw/ActionHelper
spaablauw
2022-12-09T06:03:31Z
0
16
null
[ "license:wtfpl", "region:us" ]
null
2022-12-09T03:05:44Z
--- license: wtfpl --- Trained for 500 steps with a lr of 0.003 and 4 steps gradient accumulation. ![08039-3409504356-portrait of woman in trenchcoat, city bokeh background, art by bforangeteal, extremely detailed, embers, debris, art by photohel.png](https://s3.amazonaws.com/moonup/production/uploads/1670555250809-6312579fc7577b68d90a7646.png) ![08009-1360552088-ford mustang, city bokeh background, art by bforangeteal, extremely detailed, embers, debris, art by photohelper, nukesd.png](https://s3.amazonaws.com/moonup/production/uploads/1670555259179-6312579fc7577b68d90a7646.png) ![07949-29151249-portrait of gigachad, city bokeh background, art by bforangeteal, extremely detailed, embers, debris, art by photohelper, mascul.png](https://s3.amazonaws.com/moonup/production/uploads/1670555280835-6312579fc7577b68d90a7646.png) ![07868-2761092669-headshot portrait of henry cavill in general uniform, city bokeh background, art by actionhelper, extremely detailed, embers, de.png](https://s3.amazonaws.com/moonup/production/uploads/1670555326731-6312579fc7577b68d90a7646.png) ![07874-1633627578-headshot portrait of john wick in uniform, city bokeh background, art by actionhelper, extremely detailed, embers, debris, art b.png](https://s3.amazonaws.com/moonup/production/uploads/1670555331232-6312579fc7577b68d90a7646.png) ![08016-1561599122-fighter jet flying, city bokeh background, art by bforangeteal, extremely detailed, embers, debris, art by photohelper, nukesd.png](https://s3.amazonaws.com/moonup/production/uploads/1670555384383-6312579fc7577b68d90a7646.png)
odahl/ppo-LunarLander-v2
odahl
2022-12-09T05:48:52Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T05:48:27Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 271.65 +/- 26.13 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
birgermoell/whisper-small-sv-fast
birgermoell
2022-12-09T05:37:53Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "sv", "dataset:mozilla-foundation/common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-08T17:22:17Z
--- language: - sv license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Swedish Fast results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 sv-SE type: mozilla-foundation/common_voice_11_0 config: sv-SE split: test args: sv-SE metrics: - name: Wer type: wer value: 62.69218363616815 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Swedish Fast This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 sv-SE dataset. It achieves the following results on the evaluation set: - Loss: 1.8738 - Wer: 62.6922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 2.0512 | 6.01 | 1000 | 2.5997 | 87.1949 | | 0.4367 | 12.02 | 2000 | 1.8089 | 68.1271 | | 0.0806 | 18.03 | 3000 | 1.7969 | 63.5711 | | 0.0194 | 25.01 | 4000 | 1.8435 | 63.4663 | | 0.0121 | 31.02 | 5000 | 1.8738 | 62.6922 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
Gladiator/funnel-transformer-xlarge_ner_conll2003
Gladiator
2022-12-09T05:32:25Z
18
0
transformers
[ "transformers", "pytorch", "tensorboard", "funnel", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-09T04:43:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: funnel-transformer-xlarge_ner_conll2003 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9565363315992617 - name: Recall type: recall value: 0.9592729720632783 - name: F1 type: f1 value: 0.9579026972523318 - name: Accuracy type: accuracy value: 0.9914528250457537 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # funnel-transformer-xlarge_ner_conll2003 This model is a fine-tuned version of [funnel-transformer/xlarge](https://huggingface.co/funnel-transformer/xlarge) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0436 - Precision: 0.9565 - Recall: 0.9593 - F1: 0.9579 - Accuracy: 0.9915 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1349 | 1.0 | 878 | 0.0441 | 0.9328 | 0.9438 | 0.9383 | 0.9881 | | 0.0308 | 2.0 | 1756 | 0.0377 | 0.9457 | 0.9561 | 0.9509 | 0.9901 | | 0.0144 | 3.0 | 2634 | 0.0432 | 0.9512 | 0.9578 | 0.9545 | 0.9906 | | 0.007 | 4.0 | 3512 | 0.0419 | 0.9551 | 0.9584 | 0.9567 | 0.9913 | | 0.0041 | 5.0 | 4390 | 0.0436 | 0.9565 | 0.9593 | 0.9579 | 0.9915 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Gladiator/albert-large-v2_ner_conll2003
Gladiator
2022-12-09T05:07:13Z
18
0
transformers
[ "transformers", "pytorch", "tensorboard", "albert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-09T04:42:32Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: albert-large-v2_ner_conll2003 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9396018069265518 - name: Recall type: recall value: 0.9451363177381353 - name: F1 type: f1 value: 0.9423609363201612 - name: Accuracy type: accuracy value: 0.9874810170943499 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-large-v2_ner_conll2003 This model is a fine-tuned version of [albert-large-v2](https://huggingface.co/albert-large-v2) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0584 - Precision: 0.9396 - Recall: 0.9451 - F1: 0.9424 - Accuracy: 0.9875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2034 | 1.0 | 878 | 0.0653 | 0.9114 | 0.9278 | 0.9195 | 0.9837 | | 0.0561 | 2.0 | 1756 | 0.0602 | 0.9316 | 0.9280 | 0.9298 | 0.9845 | | 0.0303 | 3.0 | 2634 | 0.0536 | 0.9380 | 0.9424 | 0.9402 | 0.9872 | | 0.0177 | 4.0 | 3512 | 0.0535 | 0.9393 | 0.9456 | 0.9425 | 0.9877 | | 0.011 | 5.0 | 4390 | 0.0584 | 0.9396 | 0.9451 | 0.9424 | 0.9875 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
schrilax/PPO-LunarLander-v2
schrilax
2022-12-09T04:48:19Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-09T04:47:53Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 238.46 +/- 22.84 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jibi2906/my-finetuned-distilbert
jibi2906
2022-12-09T04:38:42Z
5
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-12-09T04:38:30Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: my-finetuned-distilbert results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # my-finetuned-distilbert This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.6482 - Validation Loss: 1.3103 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.6482 | 1.3103 | 0 | ### Framework versions - Transformers 4.25.1 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
imaginarybumblers/v1-5-KiwiBirds
imaginarybumblers
2022-12-09T04:26:48Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-12-09T03:36:07Z
--- license: creativeml-openrail-m ---
Gladiator/bert-large-uncased_ner_conll2003
Gladiator
2022-12-09T04:22:21Z
17
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-09T03:45:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-large-uncased_ner_conll2003 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9424197037776668 - name: Recall type: recall value: 0.9530461124200605 - name: F1 type: f1 value: 0.947703121077734 - name: Accuracy type: accuracy value: 0.9897784354191815 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased_ner_conll2003 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0516 - Precision: 0.9424 - Recall: 0.9530 - F1: 0.9477 - Accuracy: 0.9898 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1605 | 1.0 | 878 | 0.0533 | 0.9252 | 0.9329 | 0.9290 | 0.9864 | | 0.032 | 2.0 | 1756 | 0.0433 | 0.9320 | 0.9475 | 0.9397 | 0.9887 | | 0.0125 | 3.0 | 2634 | 0.0454 | 0.9424 | 0.9524 | 0.9474 | 0.9897 | | 0.006 | 4.0 | 3512 | 0.0507 | 0.9417 | 0.9519 | 0.9468 | 0.9896 | | 0.0036 | 5.0 | 4390 | 0.0516 | 0.9424 | 0.9530 | 0.9477 | 0.9898 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Gladiator/distilbert-base-uncased_ner_conll2003
Gladiator
2022-12-09T03:34:46Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-09T03:26:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased_ner_conll2003 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9357583847822459 - name: Recall type: recall value: 0.9437899697071693 - name: F1 type: f1 value: 0.939757017176372 - name: Accuracy type: accuracy value: 0.987675713562556 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_ner_conll2003 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0524 - Precision: 0.9358 - Recall: 0.9438 - F1: 0.9398 - Accuracy: 0.9877 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1897 | 1.0 | 878 | 0.0544 | 0.9223 | 0.9270 | 0.9246 | 0.9848 | | 0.0363 | 2.0 | 1756 | 0.0486 | 0.9316 | 0.9391 | 0.9353 | 0.9869 | | 0.0194 | 3.0 | 2634 | 0.0496 | 0.9369 | 0.9403 | 0.9386 | 0.9873 | | 0.0114 | 4.0 | 3512 | 0.0526 | 0.9340 | 0.9436 | 0.9388 | 0.9875 | | 0.0089 | 5.0 | 4390 | 0.0524 | 0.9358 | 0.9438 | 0.9398 | 0.9877 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
rpharale/ppo-Huggy
rpharale
2022-12-09T03:25:04Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-09T03:24:55Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: rpharale/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
flamesbob/skyfireModel
flamesbob
2022-12-09T02:53:53Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-12-09T01:59:01Z
--- license: creativeml-openrail-m ---
YesIfwRONG/Zero
YesIfwRONG
2022-12-09T02:48:50Z
0
0
null
[ "region:us" ]
null
2022-12-09T02:48:01Z
This is a capstone project serving for training the model and exploring implementation on AIs.
gagan3012/ArOCR
gagan3012
2022-12-09T01:46:53Z
37
4
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "image-to-text", "ar", "model-index", "endpoints_compatible", "region:us" ]
image-to-text
2022-04-19T21:13:24Z
--- tags: - image-to-text language: ar model-index: - name: ArOCR results: - task: name: Optical Charater Recogntion type: image-to-text metrics: - name: Test CER type: cer value: 0.02 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArOCR This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0407 - Cer: 0.0200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.6164 | 0.59 | 1000 | 1.4109 | 0.5793 | | 0.3434 | 1.18 | 2000 | 0.3876 | 0.2176 | | 0.1679 | 1.77 | 3000 | 0.2262 | 0.1186 | | 0.0816 | 2.37 | 4000 | 0.1274 | 0.0634 | | 0.0421 | 2.96 | 5000 | 0.0817 | 0.0381 | | 0.0067 | 3.55 | 6000 | 0.0520 | 0.0265 | | 0.0044 | 4.14 | 7000 | 0.0469 | 0.0215 | | 0.0027 | 4.73 | 8000 | 0.0407 | 0.0200 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.1 - Datasets 2.1.0 - Tokenizers 0.11.6
izumi-lab/electra-small-japanese-discriminator
izumi-lab
2022-12-09T00:41:39Z
14
0
transformers
[ "transformers", "pytorch", "electra", "pretraining", "ja", "dataset:wikipedia", "arxiv:2003.10555", "license:cc-by-sa-4.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: ja license: cc-by-sa-4.0 datasets: - wikipedia widget: - text: 東京大学で[MASK]の研究をしています。 --- # ELECTRA small Japanese discriminator This is a [ELECTRA](https://github.com/google-research/electra) model pretrained on texts in the Japanese language. The codes for the pretraining are available at [retarfi/language-pretraining](https://github.com/retarfi/language-pretraining/tree/v1.0). ## Model architecture The model architecture is the same as ELECTRA small in the [original ELECTRA implementation](https://github.com/google-research/electra); 12 layers, 256 dimensions of hidden states, and 4 attention heads. ## Training Data The models are trained on the Japanese version of Wikipedia. The training corpus is generated from the Japanese version of Wikipedia, using Wikipedia dump file as of June 1, 2021. The corpus file is 2.9GB, consisting of approximately 20M sentences. ## Tokenization The texts are first tokenized by MeCab with IPA dictionary and then split into subwords by the WordPiece algorithm. The vocabulary size is 32768. ## Training The models are trained with the same configuration as ELECTRA small in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555) except size; 128 tokens per instance, 128 instances per batch, and 1M training steps. The size of the generator is the same of the discriminator. ## Citation ``` @article{Suzuki-etal-2023-ipm, title = {Constructing and analyzing domain-specific language model for financial text mining} author = {Masahiro Suzuki and Hiroki Sakaji and Masanori Hirano and Kiyoshi Izumi}, journal = {Information Processing & Management}, volume = {60}, number = {2}, pages = {103194}, year = {2023}, doi = {10.1016/j.ipm.2022.103194} } ``` ## Licenses The pretrained models are distributed under the terms of the [Creative Commons Attribution-ShareAlike 4.0](https://creativecommons.org/licenses/by-sa/4.0/). ## Acknowledgments This work was supported by JSPS KAKENHI Grant Number JP21K12010.
izumi-lab/bert-small-japanese
izumi-lab
2022-12-09T00:40:57Z
1,069
5
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "ja", "dataset:wikipedia", "arxiv:2003.10555", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: ja license: cc-by-sa-4.0 datasets: - wikipedia widget: - text: 東京大学で[MASK]の研究をしています。 --- # BERT small Japanese finance This is a [BERT](https://github.com/google-research/bert) model pretrained on texts in the Japanese language. The codes for the pretraining are available at [retarfi/language-pretraining](https://github.com/retarfi/language-pretraining/tree/v1.0). ## Model architecture The model architecture is the same as BERT small in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555); 12 layers, 256 dimensions of hidden states, and 4 attention heads. ## Training Data The models are trained on the Japanese version of Wikipedia. The training corpus is generated from the Japanese version of Wikipedia, using Wikipedia dump file as of June 1, 2021. The corpus file is 2.9GB, consisting of approximately 20M sentences. ## Tokenization The texts are first tokenized by MeCab with IPA dictionary and then split into subwords by the WordPiece algorithm. The vocabulary size is 32768. ## Training The models are trained with the same configuration as BERT small in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555); 128 tokens per instance, 128 instances per batch, and 1.45M training steps. ## Citation ``` @article{Suzuki-etal-2023-ipm, title = {Constructing and analyzing domain-specific language model for financial text mining} author = {Masahiro Suzuki and Hiroki Sakaji and Masanori Hirano and Kiyoshi Izumi}, journal = {Information Processing & Management}, volume = {60}, number = {2}, pages = {103194}, year = {2023}, doi = {10.1016/j.ipm.2022.103194} } ``` ## Licenses The pretrained models are distributed under the terms of the [Creative Commons Attribution-ShareAlike 4.0](https://creativecommons.org/licenses/by-sa/4.0/). ## Acknowledgments This work was supported by JSPS KAKENHI Grant Number JP21K12010.
izumi-lab/electra-small-paper-japanese-fin-discriminator
izumi-lab
2022-12-09T00:39:05Z
4
0
transformers
[ "transformers", "pytorch", "electra", "pretraining", "finance", "ja", "arxiv:2003.10555", "license:cc-by-sa-4.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: ja license: cc-by-sa-4.0 tags: - finance widget: - text: 流動[MASK]は1億円となりました。 --- # ELECTRA small Japanese finance discriminator This is a [ELECTRA](https://github.com/google-research/electra) model pretrained on texts in the Japanese language. The codes for the pretraining are available at [retarfi/language-pretraining](https://github.com/retarfi/language-pretraining/tree/v1.0). ## Model architecture The model architecture is the same as ELECTRA small in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555); 12 layers, 256 dimensions of hidden states, and 4 attention heads. ## Training Data The models are trained on the Japanese version of Wikipedia. The training corpus is generated from the Japanese version of Wikipedia, using Wikipedia dump file as of June 1, 2021. The Wikipedia corpus file is 2.9GB, consisting of approximately 20M sentences. The financial corpus consists of 2 corpora: - Summaries of financial results from October 9, 2012, to December 31, 2020 - Securities reports from February 8, 2018, to December 31, 2020 The financial corpus file is 5.2GB, consisting of approximately 27M sentences. ## Tokenization The texts are first tokenized by MeCab with IPA dictionary and then split into subwords by the WordPiece algorithm. The vocabulary size is 32768. ## Training The models are trained with the same configuration as ELECTRA small in the [original ELECTRA paper](https://arxiv.org/abs/2003.10555); 128 tokens per instance, 128 instances per batch, and 1M training steps. ## Citation ``` @article{Suzuki-etal-2023-ipm, title = {Constructing and analyzing domain-specific language model for financial text mining} author = {Masahiro Suzuki and Hiroki Sakaji and Masanori Hirano and Kiyoshi Izumi}, journal = {Information Processing & Management}, volume = {60}, number = {2}, pages = {103194}, year = {2023}, doi = {10.1016/j.ipm.2022.103194} } ``` ## Licenses The pretrained models are distributed under the terms of the [Creative Commons Attribution-ShareAlike 4.0](https://creativecommons.org/licenses/by-sa/4.0/). ## Acknowledgments This work was supported by JSPS KAKENHI Grant Number JP21K12010.
log0/ppo-LunarLander-v2
log0
2022-12-08T23:50:27Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-08T21:27:41Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 182.69 +/- 91.27 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
reyrobs/whisper-small-hi-2000
reyrobs
2022-12-08T23:28:52Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-08T20:51:58Z
--- license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Whisper Small Hi - Robert Rey results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Robert Rey This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000599 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
HideOnBush/BERTModified-fullsize-finetuned-wikitext-test
HideOnBush
2022-12-08T22:43:41Z
0
0
null
[ "pytorch", "generated_from_trainer", "license:apache-2.0", "region:us" ]
null
2022-12-08T19:49:41Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BERTModified-fullsize-finetuned-wikitext-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERTModified-fullsize-finetuned-wikitext-test This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.7813 - Precision: 0.1094 - Recall: 0.1094 - F1: 0.1094 - Accuracy: 0.1094 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 9.2391 | 1.0 | 4382 | 8.1610 | 0.0373 | 0.0373 | 0.0373 | 0.0373 | | 7.9147 | 2.0 | 8764 | 7.6870 | 0.0635 | 0.0635 | 0.0635 | 0.0635 | | 7.5164 | 3.0 | 13146 | 7.4388 | 0.0727 | 0.0727 | 0.0727 | 0.0727 | | 7.2439 | 4.0 | 17528 | 7.2088 | 0.0930 | 0.0930 | 0.0930 | 0.0930 | | 7.1068 | 5.0 | 21910 | 7.0455 | 0.0943 | 0.0943 | 0.0943 | 0.0943 | | 6.9711 | 6.0 | 26292 | 6.9976 | 0.1054 | 0.1054 | 0.1054 | 0.1054 | | 6.8486 | 7.0 | 30674 | 6.8850 | 0.1054 | 0.1054 | 0.1054 | 0.1054 | | 6.78 | 8.0 | 35056 | 6.7990 | 0.1153 | 0.1153 | 0.1153 | 0.1153 | | 6.73 | 9.0 | 39438 | 6.8041 | 0.1074 | 0.1074 | 0.1074 | 0.1074 | | 6.6921 | 10.0 | 43820 | 6.7412 | 0.1251 | 0.1251 | 0.1251 | 0.1251 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.2
mtlulka/ppo-LunarLander_unit1_base
mtlulka
2022-12-08T22:35:53Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-08T22:35:27Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO_MlpPolicy results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 249.01 +/- 13.07 name: mean_reward verified: false --- # **PPO_MlpPolicy** Agent playing **LunarLander-v2** This is a trained model of a **PPO_MlpPolicy** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
evageon/whisper-tiny-ar
evageon
2022-12-08T22:34:04Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-08T15:41:11Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-tiny-ar results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-ar This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8394 - Wer: 86.0500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 1.0265 | 1.0 | 122 | 1.0110 | 98.4608 | | 0.9208 | 2.0 | 244 | 0.9148 | 88.3812 | | 0.8169 | 3.0 | 366 | 0.8394 | 86.0500 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.2
jegormeister/setfit-model
jegormeister
2022-12-08T21:51:42Z
2
1
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-12-08T21:45:27Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 188 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 188, "warmup_steps": 19, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
csikasote/whisper-medium-loz
csikasote
2022-12-08T21:32:39Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-08T16:13:45Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-medium-loz results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-medium-loz This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0237 - Wer: 38.4907 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2252 | 3.11 | 500 | 1.6491 | 50.4707 | | 0.0815 | 6.21 | 1000 | 1.8170 | 48.7246 | | 0.0417 | 9.32 | 1500 | 1.8765 | 43.2129 | | 0.0218 | 12.42 | 2000 | 1.8995 | 40.6316 | | 0.0062 | 15.53 | 2500 | 1.9751 | 38.6578 | | 0.0024 | 18.63 | 3000 | 2.0062 | 38.5667 | | 0.0001 | 21.74 | 3500 | 2.0141 | 38.6274 | | 0.0001 | 24.84 | 4000 | 2.0237 | 38.4907 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
ruzarx/ppo-Huggy
ruzarx
2022-12-08T21:18:24Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-08T21:09:12Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: ruzarx/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
matthh/ppo-Huggy
matthh
2022-12-08T21:08:49Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-08T21:08:43Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: matthh/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ksaml/ppo-LunarLander-v2
ksaml
2022-12-08T20:49:56Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-08T20:49:34Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 289.10 +/- 13.75 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
GammaPrime/Brawn
GammaPrime
2022-12-08T20:41:39Z
0
0
null
[ "region:us" ]
null
2022-12-08T05:06:09Z
This is a standard Tacotron2 Text-to-Speech model based on the character Brawn from Transformers Generation 1. This model was trained on 72 sample wavs for a total of 6 minutes and 29 seconds of audio data.
fimster/whisper-small-sv-SE-NST
fimster
2022-12-08T20:39:23Z
5
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "i-dont-know-what-im-doing", "generated_from_trainer", "sv", "dataset:fimster/NST_small_whisper", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-08T08:19:14Z
--- language: - sv license: apache-2.0 tags: - i-dont-know-what-im-doing - generated_from_trainer datasets: - fimster/NST_small_whisper metrics: - wer model-index: - name: Whisper Small sv-SE NST - Lab 2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: NST Swedish ASR type: fimster/NST_small_whisper config: speech split: None args: 'config: speech, split: test' metrics: - name: Wer type: wer value: 10.167794316644112 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small sv-SE NST - Lab 2 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the NST Swedish ASR dataset. It achieves the following results on the evaluation set: - Loss: 0.1305 - Wer: 10.1678 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1635 | 0.67 | 1000 | 0.1694 | 13.4993 | | 0.07 | 1.33 | 2000 | 0.1431 | 11.3802 | | 0.0597 | 2.0 | 3000 | 0.1302 | 10.4682 | | 0.0193 | 2.67 | 4000 | 0.1305 | 10.1678 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
NicoGJ/AEM
NicoGJ
2022-12-08T20:14:23Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-12-08T20:14:23Z
--- license: creativeml-openrail-m ---
robbiegwald/Rick
robbiegwald
2022-12-08T20:13:56Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-12-08T20:05:03Z
--- tags: - conversational ---
Lukewood/sd-1.5-keras-cv-weights
Lukewood
2022-12-08T19:57:33Z
0
0
null
[ "license:openrail", "region:us" ]
null
2022-11-24T00:08:14Z
--- license: openrail --- KerasCV StableDiffusion weights for StableDiffusion v1.5 ported from: https://huggingface.co/runwayml/stable-diffusion-v1-5
bayartsogt/whisper-small-mn-6
bayartsogt
2022-12-08T19:49:27Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "hf-asr-leaderboard", "generated_from_trainer", "dataset:bayartsogt/youtube-mongolian-v1", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-07T21:28:41Z
--- license: apache-2.0 tags: - whisper-event - hf-asr-leaderboard - generated_from_trainer datasets: - bayartsogt/youtube-mongolian-v1 metrics: - wer model-index: - name: whisper-small-mn-6-bayartsogt results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: mn split: test args: language: mn metrics: - name: Wer type: wer value: 35.8859514966135 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-mn-6 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3296 - Wer: 35.8860 - Cer: 13.3108 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 15000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 0.3774 | 0.8 | 1000 | 0.4319 | 53.2773 | 19.6627 | | 0.2926 | 1.61 | 2000 | 0.3493 | 40.4960 | 15.0214 | | 0.2331 | 2.41 | 3000 | 0.3346 | 39.1741 | 14.7689 | | 0.1636 | 3.22 | 4000 | 0.3287 | 36.9237 | 13.7943 | | 0.1157 | 4.02 | 5000 | 0.3296 | 35.8860 | 13.3108 | | 0.1271 | 4.82 | 6000 | 0.3422 | 36.0717 | 13.5702 | | 0.0879 | 5.63 | 7000 | 0.3661 | 36.6943 | 13.7780 | | 0.0574 | 6.43 | 8000 | 0.3884 | 36.4595 | 13.5015 | | 0.036 | 7.23 | 9000 | 0.4128 | 37.1422 | 13.8424 | | 0.0229 | 8.04 | 10000 | 0.4321 | 36.8582 | 13.8475 | | 0.0241 | 8.84 | 11000 | 0.4530 | 37.1095 | 13.8673 | | 0.0123 | 9.65 | 12000 | 0.4763 | 37.5956 | 13.9583 | | 0.007 | 10.45 | 13000 | 0.4939 | 37.3116 | 13.9360 | | 0.0047 | 11.25 | 14000 | 0.5054 | 37.1750 | 13.8106 | | 0.0036 | 12.06 | 15000 | 0.5093 | 37.5082 | 13.8930 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
jrzmnt/hf-rl-course-LunarLander-v2
jrzmnt
2022-12-08T19:45:14Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-08T19:44:47Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -547.86 +/- 404.01 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jinghua2tang/ppo-LunarLander-v2
jinghua2tang
2022-12-08T19:33:31Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-08T19:33:04Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 249.35 +/- 23.08 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sd-concepts-library/jozef-tominc2
sd-concepts-library
2022-12-08T19:24:55Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-12-08T19:24:45Z
--- license: mit --- ### jozef-tominc2 on Stable Diffusion This is the `<jozef-tominc>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<jozef-tominc> 0](https://huggingface.co/sd-concepts-library/jozef-tominc2/resolve/main/concept_images/2.jpeg) ![<jozef-tominc> 1](https://huggingface.co/sd-concepts-library/jozef-tominc2/resolve/main/concept_images/1.jpeg) ![<jozef-tominc> 2](https://huggingface.co/sd-concepts-library/jozef-tominc2/resolve/main/concept_images/3.jpeg) ![<jozef-tominc> 3](https://huggingface.co/sd-concepts-library/jozef-tominc2/resolve/main/concept_images/4.jpeg) ![<jozef-tominc> 4](https://huggingface.co/sd-concepts-library/jozef-tominc2/resolve/main/concept_images/0.jpeg)
jfjensen/ppo-LunarLander-v2-6
jfjensen
2022-12-08T19:18:28Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-08T19:18:08Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 270.92 +/- 11.97 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jfjensen/ppo-LunarLander-v2-5
jfjensen
2022-12-08T18:22:42Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-08T18:22:17Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 186.66 +/- 74.41 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Gladiator/funnel-transformer-xlarge_ner_wnut_17
Gladiator
2022-12-08T18:04:38Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "funnel", "token-classification", "generated_from_trainer", "dataset:wnut_17", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-08T17:46:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: funnel-transformer-xlarge_ner_wnut_17 results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 args: wnut_17 metrics: - name: Precision type: precision value: 0.7205240174672489 - name: Recall type: recall value: 0.5921052631578947 - name: F1 type: f1 value: 0.650032829940906 - name: Accuracy type: accuracy value: 0.9619810541038846 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # funnel-transformer-xlarge_ner_wnut_17 This model is a fine-tuned version of [funnel-transformer/xlarge](https://huggingface.co/funnel-transformer/xlarge) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2453 - Precision: 0.7205 - Recall: 0.5921 - F1: 0.6500 - Accuracy: 0.9620 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.2331 | 0.6897 | 0.4067 | 0.5117 | 0.9462 | | No log | 2.0 | 426 | 0.2056 | 0.7097 | 0.5526 | 0.6214 | 0.9587 | | 0.1454 | 3.0 | 639 | 0.2379 | 0.7102 | 0.5658 | 0.6298 | 0.9600 | | 0.1454 | 4.0 | 852 | 0.2397 | 0.7141 | 0.5885 | 0.6452 | 0.9620 | | 0.0319 | 5.0 | 1065 | 0.2453 | 0.7205 | 0.5921 | 0.6500 | 0.9620 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Gladiator/albert-large-v2_ner_wnut_17
Gladiator
2022-12-08T17:57:48Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "albert", "token-classification", "generated_from_trainer", "dataset:wnut_17", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-08T17:50:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: albert-large-v2_ner_wnut_17 results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 args: wnut_17 metrics: - name: Precision type: precision value: 0.7445742904841403 - name: Recall type: recall value: 0.5334928229665071 - name: F1 type: f1 value: 0.621602787456446 - name: Accuracy type: accuracy value: 0.9581637843336724 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-large-v2_ner_wnut_17 This model is a fine-tuned version of [albert-large-v2](https://huggingface.co/albert-large-v2) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2429 - Precision: 0.7446 - Recall: 0.5335 - F1: 0.6216 - Accuracy: 0.9582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.3051 | 0.7929 | 0.3206 | 0.4566 | 0.9410 | | No log | 2.0 | 426 | 0.2151 | 0.7443 | 0.4665 | 0.5735 | 0.9516 | | 0.17 | 3.0 | 639 | 0.2310 | 0.7364 | 0.5012 | 0.5964 | 0.9559 | | 0.17 | 4.0 | 852 | 0.2387 | 0.7564 | 0.5311 | 0.6240 | 0.9578 | | 0.0587 | 5.0 | 1065 | 0.2429 | 0.7446 | 0.5335 | 0.6216 | 0.9582 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
sd-concepts-library/ivan-grohar
sd-concepts-library
2022-12-08T17:52:00Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-12-08T17:51:49Z
--- license: mit --- ### ivan grohar on Stable Diffusion This is the `<ivan-grohar>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<ivan-grohar> 0](https://huggingface.co/sd-concepts-library/ivan-grohar/resolve/main/concept_images/2.jpeg) ![<ivan-grohar> 1](https://huggingface.co/sd-concepts-library/ivan-grohar/resolve/main/concept_images/1.jpeg) ![<ivan-grohar> 2](https://huggingface.co/sd-concepts-library/ivan-grohar/resolve/main/concept_images/3.jpeg) ![<ivan-grohar> 3](https://huggingface.co/sd-concepts-library/ivan-grohar/resolve/main/concept_images/0.jpeg)
Gladiator/roberta-large_ner_wnut_17
Gladiator
2022-12-08T17:44:28Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "dataset:wnut_17", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-08T17:30:50Z
--- license: mit tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-large_ner_wnut_17 results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 args: wnut_17 metrics: - name: Precision type: precision value: 0.7345505617977528 - name: Recall type: recall value: 0.6255980861244019 - name: F1 type: f1 value: 0.6757105943152455 - name: Accuracy type: accuracy value: 0.9650416322379711 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large_ner_wnut_17 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2288 - Precision: 0.7346 - Recall: 0.6256 - F1: 0.6757 - Accuracy: 0.9650 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.1805 | 0.6403 | 0.6089 | 0.6242 | 0.9598 | | No log | 2.0 | 426 | 0.1925 | 0.7314 | 0.5993 | 0.6588 | 0.9624 | | 0.1192 | 3.0 | 639 | 0.1883 | 0.7088 | 0.6172 | 0.6598 | 0.9637 | | 0.1192 | 4.0 | 852 | 0.2144 | 0.7289 | 0.6400 | 0.6815 | 0.9655 | | 0.0301 | 5.0 | 1065 | 0.2288 | 0.7346 | 0.6256 | 0.6757 | 0.9650 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Litux/ppo-LunarLander-v2_mal
Litux
2022-12-08T16:44:11Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-12-08T16:43:18Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -170.35 +/- 86.64 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
wavymulder/couch-diffusion
wavymulder
2022-12-08T16:42:57Z
0
8
null
[ "stable-diffusion", "en", "license:creativeml-openrail-m", "region:us" ]
null
2022-12-08T15:56:24Z
--- language: - en thumbnail: "https://huggingface.co/wavymulder/couch-diffusion/resolve/main/images/tile.jpg" license: creativeml-openrail-m tags: - stable-diffusion --- **Couch Diffusion** ![Header](https://huggingface.co/wavymulder/couch-diffusion/resolve/main/images/tile.jpg) [*CKPT DOWNLOAD LINK*](https://huggingface.co/wavymulder/couch-diffusion/resolve/main/couch-diffusion-V1.ckpt) - This is a dreambooth trained on... couches In your prompt, use the activation token: `couch` Trained from 1.5 with VAE. [Please see this document where I share the parameters (prompt, sampler, seed, etc.) used for all example images.](https://huggingface.co/wavymulder/couch-diffusion/resolve/main/example-image-parameters) ![Bonus](https://huggingface.co/wavymulder/couch-diffusion/resolve/main/images/00004-494323607.png)
WimStraetemans/ppo-Huggy
WimStraetemans
2022-12-08T16:08:31Z
9
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2022-12-08T16:08:24Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy library_name: ml-agents --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: Rowehn/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀