modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-04 18:27:43
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
539 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-04 18:27:26
card
stringlengths
11
1.01M
michaelfeil/ct2fast-codegen2-3_7B
michaelfeil
2023-05-21T19:28:46Z
3
1
transformers
[ "transformers", "ctranslate2", "int8", "float16", "arxiv:2305.02309", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-05-21T19:02:31Z
--- tags: - ctranslate2 - int8 - float16 license: apache-2.0 --- # # Fast-Inference with Ctranslate2 Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU. quantized version of [Salesforce/codegen2-3_7B](https://huggingface.co/Salesforce/codegen2-3_7B) ```bash pip install hf-hub-ctranslate2>=2.0.8 ``` Converted on 2023-05-21 using ``` ct2-transformers-converter --model Salesforce/codegen2-3_7B --output_dir /home/michael/tmp-ct2fast-codegen2-3_7B --force --copy_files merges.txt tokenizer.json README.md tokenizer_config.json vocab.json special_tokens_map.json added_tokens.json configuration_codegen.py .gitattributes --quantization float16 ``` Checkpoint compatible to [ctranslate2>=3.13.0](https://github.com/OpenNMT/CTranslate2) and [hf-hub-ctranslate2>=2.0.6](https://github.com/michaelfeil/hf-hub-ctranslate2) - `compute_type=int8_float16` for `device="cuda"` - `compute_type=int8` for `device="cpu"` ```python from hf_hub_ctranslate2 import TranslatorCT2fromHfHub, GeneratorCT2fromHfHub from transformers import AutoTokenizer model_name = "michaelfeil/ct2fast-codegen2-3_7B" # use either TranslatorCT2fromHfHub or GeneratorCT2fromHfHub here, depending on model. model = GeneratorCT2fromHfHub( # load in int8 on CUDA model_name_or_path=model_name, device="cuda", compute_type="int8_float16", # tokenizer=AutoTokenizer.from_pretrained("Salesforce/codegen2-3_7B") ) outputs = model.generate( text=["def print_hello_world():", "def hello_name(name:"], max_length=64 ) print(outputs) ``` # Licence and other remarks: This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo. # Original description tags: - ctranslate2 - int8 - float16 # CodeGen2 (CodeGen2-3.7B) ## Model description [CodeGen2](https://github.com/salesforce/CodeGen2) is a family of autoregressive language models for **program synthesis**, introduced in the paper: [CodeGen2: Lessons for Training LLMs on Programming and Natural Languages](https://arxiv.org/abs/2305.02309) by Erik Nijkamp\*, Hiroaki Hayashi\*, Caiming Xiong, Silvio Savarese, Yingbo Zhou. Unlike the original CodeGen model family (i.e., CodeGen1), CodeGen2 is capable of infilling, and supports more programming languages. Four model sizes are released: `1B`, `3.7B`, `7B`, `16B`. ## How to use This model can be easily loaded using the `AutoModelForCausalLM` functionality. ### Causal sampling For regular causal sampling, simply generate completions given the context: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen2-3_7B") model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen2-3_7B", trust_remote_code=True, revision="main") text = "def hello_world():" input_ids = tokenizer(text, return_tensors="pt").input_ids generated_ids = model.generate(input_ids, max_length=128) print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) ``` ### Infill sampling For **infill** sampling, we introduce three new special token types: * `<mask_N>`: N-th span to be masked. In practice, use `<mask_1>` to where you want to sample infill. * `<sep>`: Seperator token between the suffix and the infilled sample. See below. * `<eom>`: "End-Of-Mask" token that model will output at the end of infilling. You may use this token to truncate the output. For example, if we want to generate infill for the following cursor position of a function: ```python def hello_world(): | return name ``` we construct an input to the model by 1. Inserting `<mask_1>` token in place of cursor position 2. Append `<sep>` token to indicate the boundary 3. Insert another `<mask_1>` to indicate which mask we want to infill. The final snippet looks as follows: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen2-3_7B") model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen2-3_7B", trust_remote_code=True, revision="main") def format(prefix, suffix): return prefix + "<mask_1>" + suffix + "<|endoftext|>" + "<sep>" + "<mask_1>" prefix = "def hello_world():\n " suffix = " return name" text = format(prefix, suffix) input_ids = tokenizer(text, return_tensors="pt").input_ids generated_ids = model.generate(input_ids, max_length=128) print(tokenizer.decode(generated_ids[0], skip_special_tokens=False)[len(text):]) ``` You might want to truncate the model output with `<eom>`. ## Training data This checkpoint is trained on the stricter permissive subset of [the deduplicated version of the Stack dataset (v1.1)](https://huggingface.co/datasets/bigcode/the-stack-dedup). Supported languages (and frameworks) are as follows: `c`, `c++`, `c-sharp`, `dart`, `go`, `java`, `javascript`, `kotlin`, `lua`, `php`, `python`, `ruby`, `rust`, `scala`, `shell`, `sql`, `swift`, `typescript`, `vue`. ## Training procedure CodeGen2 was trained using cross-entropy loss to maximize the likelihood of sequential inputs. The input sequences are formatted in two ways: (1) causal language modeling and (2) file-level span corruption. Please refer to the paper for more details. ## Evaluation results We evaluate our models on HumanEval and HumanEval-Infill. Please refer to the [paper](https://arxiv.org/abs/2305.02309) for more details. ## Intended use and limitations As an autoregressive language model, CodeGen2 is capable of extracting features from given natural language and programming language texts, and calculating the likelihood of them. However, the model is intended for and best at **program synthesis**, that is, generating executable code given English prompts, where the prompts should be in the form of a comment string. The model can complete partially-generated code as well. ## BibTeX entry and citation info ```bibtex @article{Nijkamp2023codegen2, title={CodeGen2: Lessons for Training LLMs on Programming and Natural Languages}, author={Nijkamp, Erik and Hayashi, Hiroaki and Xiong, Caiming and Savarese, Silvio and Zhou, Yingbo}, journal={arXiv preprint}, year={2023} } ```
TJKlein/CLIP-ViT
TJKlein
2023-05-21T19:26:32Z
132
0
transformers
[ "transformers", "pytorch", "clip", "zero-shot-image-classification", "generated_from_trainer", "endpoints_compatible", "region:us" ]
zero-shot-image-classification
2023-05-21T19:07:37Z
--- tags: - generated_from_trainer model-index: - name: clip-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clip-finetuned This model is a fine-tuned version of [openai/clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100.0 ### Training results ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.0 - Datasets 2.12.0 - Tokenizers 0.13.3
MrHup/coloring-book
MrHup
2023-05-21T19:18:38Z
0
39
null
[ "license:gpl-3.0", "region:us" ]
null
2023-01-24T13:02:38Z
--- license: gpl-3.0 --- <img src="https://i.imgur.com/z2ODdOr.jpg" alt="drawing" style="width:300px;"/> # About model A simple model trained on a custom dataset containing over 100 coloring book type images. If you enjoy this model and would like me to improve on it, [buy me a coffe](https://www.buymeacoffee.com/mrhup) ☕ # Installation: Download both the ckpt and yaml files. Ensure that the same naming pattern is used and copy them under models/Stable-Diffusion path in your local/cloud SD installation. Stable Diffusion 2.1 is required for the model to work correctly. # Black images issue: 2.1 models need to have a web-ui config modified - if you are getting black images - go to your config file and add to COMMANDLINE_ARGS= --no-half - potentially it could work with --xformers instead (if supported). This line might slow your generations a bit but will not affect negatively your output. # Prompt suggestion: `bichon havanese wearing sunglasses COLR_001, (((white background))), coloring book, line art, high resolution, black and white, colorless` Negative: `((watermark)), (text), color, shading, gradient, shadows, transparency, noisy, blurred` <img src="https://i.imgur.com/3iDf43z.png" alt="drawing" style="width:300px;"/><img src="https://i.imgur.com/TwVxNe1.jpg" alt="drawing" style="width:300px;"/> <img src="https://i.imgur.com/vKrsyGe.jpg" alt="drawing" style="width:300px;"/><img src="https://i.imgur.com/Mp3vO5i.jpg" alt="drawing" style="width:300px;"/>
mxalmeida/bert-finetuned-squad
mxalmeida
2023-05-21T19:17:15Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-05-21T16:57:07Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Buseak/canine_vowelizer_2105_v6
Buseak
2023-05-21T19:11:29Z
89
0
transformers
[ "transformers", "pytorch", "tensorboard", "canine", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-05-21T16:55:02Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: canine_vowelizer_2105_v6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # canine_vowelizer_2105_v6 This model is a fine-tuned version of [google/canine-s](https://huggingface.co/google/canine-s) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1704 - Precision: 0.9998 - Recall: 0.9998 - F1: 0.9998 - Accuracy: 0.9391 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4826 | 1.0 | 3885 | 0.4310 | 0.9997 | 0.9998 | 0.9997 | 0.8467 | | 0.4118 | 2.0 | 7770 | 0.3556 | 0.9997 | 0.9998 | 0.9997 | 0.8748 | | 0.369 | 3.0 | 11655 | 0.3126 | 0.9997 | 0.9998 | 0.9997 | 0.8893 | | 0.339 | 4.0 | 15540 | 0.2811 | 0.9997 | 0.9998 | 0.9998 | 0.9014 | | 0.3192 | 5.0 | 19425 | 0.2589 | 0.9997 | 0.9998 | 0.9998 | 0.9095 | | 0.3052 | 6.0 | 23310 | 0.2399 | 0.9997 | 0.9998 | 0.9998 | 0.9157 | | 0.281 | 7.0 | 27195 | 0.2252 | 0.9997 | 0.9998 | 0.9998 | 0.9207 | | 0.2749 | 8.0 | 31080 | 0.2117 | 0.9998 | 0.9998 | 0.9998 | 0.9248 | | 0.2589 | 9.0 | 34965 | 0.2011 | 0.9998 | 0.9998 | 0.9998 | 0.9285 | | 0.253 | 10.0 | 38850 | 0.1940 | 0.9998 | 0.9998 | 0.9998 | 0.9314 | | 0.2428 | 11.0 | 42735 | 0.1842 | 0.9998 | 0.9998 | 0.9998 | 0.9348 | | 0.2433 | 12.0 | 46620 | 0.1783 | 0.9998 | 0.9998 | 0.9998 | 0.9365 | | 0.2265 | 13.0 | 50505 | 0.1751 | 0.9998 | 0.9998 | 0.9998 | 0.9375 | | 0.2244 | 14.0 | 54390 | 0.1721 | 0.9998 | 0.9998 | 0.9998 | 0.9387 | | 0.2203 | 15.0 | 58275 | 0.1704 | 0.9998 | 0.9998 | 0.9998 | 0.9391 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
kaaniince/imdb_sentiment_analysis
kaaniince
2023-05-21T19:05:31Z
61
0
transformers
[ "transformers", "tf", "roberta", "text-classification", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-21T15:00:00Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: kaaniince/imdb_sentiment_analysis results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # kaaniince/imdb_sentiment_analysis This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0449 - Train Accuracy: 0.9547 - Validation Loss: 0.1589 - Validation Accuracy: 0.9547 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 9375, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.2035 | 0.9432 | 0.1493 | 0.9432 | 0 | | 0.1023 | 0.9524 | 0.1360 | 0.9524 | 1 | | 0.0449 | 0.9547 | 0.1589 | 0.9547 | 2 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
agemagician/mlong-t5-tglobal-xl
agemagician
2023-05-21T18:53:43Z
5
9
transformers
[ "transformers", "pytorch", "jax", "longt5", "text2text-generation", "multilingual", "af", "am", "ar", "az", "be", "bg", "bn", "ca", "ceb", "co", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fil", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "haw", "hi", "hmn", "ht", "hu", "hy", "ig", "is", "it", "iw", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lb", "lo", "lt", "lv", "mg", "mi", "mk", "ml", "mn", "mr", "ms", "mt", "my", "ne", "nl", "no", "ny", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "sm", "sn", "so", "sq", "sr", "st", "su", "sv", "sw", "ta", "te", "tg", "th", "tr", "uk", "und", "ur", "uz", "vi", "xh", "yi", "yo", "zh", "zu", "dataset:mc4", "arxiv:2305.11129", "arxiv:1912.08777", "arxiv:2112.07916", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-19T21:28:42Z
--- license: apache-2.0 language: - multilingual - af - am - ar - az - be - bg - bn - ca - ceb - co - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fil - fr - fy - ga - gd - gl - gu - ha - haw - hi - hmn - ht - hu - hy - ig - is - it - iw - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lb - lo - lt - lv - mg - mi - mk - ml - mn - mr - ms - mt - my - ne - nl - no - ny - pa - pl - ps - pt - ro - ru - sd - si - sk - sl - sm - sn - so - sq - sr - st - su - sv - sw - ta - te - tg - th - tr - uk - und - ur - uz - vi - xh - yi - yo - zh - zu datasets: - mc4 --- # MLongT5 (transient-global attention, xl-sized model) MLongT5 model pre-trained on Multi-language corpus. The model was introduced in the paper [mLongT5: A Multilingual and Efficient Text-To-Text Transformer for Longer Sequences](https://arxiv.org/pdf/2305.11129.pdf) by Uthus et al. and first released in [the LongT5 repository](https://github.com/google-research/longt5). All the model architecture and configuration can be found in [Flaxformer repository](https://github.com/google/flaxformer) which uses another Google research project repository [T5x](https://github.com/google-research/t5x). Disclaimer: The team releasing MLongT5 did not write a model card for this model so this model card has been written by Ahmed Elnaggar. ## Model description MLongT5 model is an encoder-decoder transformer pre-trained in a text-to-text denoising generative setting ([Pegasus-like generation pre-training](https://arxiv.org/pdf/1912.08777.pdf)). MLongT5 model is an extension of [LongT5 model](https://arxiv.org/abs/2112.07916), and it enables using one of the two different efficient attention mechanisms - (1) Local attention, or (2) Transient-Global attention. The usage of attention sparsity patterns allows the model to efficiently handle input sequence. MLongT5 is particularly effective when fine-tuned for text generation (summarization, question answering) which requires handling long input sequences (up to 16,384 tokens). ## Intended uses & limitations The model is mostly meant to be fine-tuned on a supervised dataset. See the [model hub](https://huggingface.co/models?search=mlongt5) to look for fine-tuned versions on a task that interests you. ### How to use The following shows how one can extract the last hidden representation for the model. ```python from transformers import T5Tokenizer, LongT5Model tokenizer = T5Tokenizer.from_pretrained("agemagician/mlong-t5-tglobal-xl") model = LongT5Model.from_pretrained("agemagician/mlong-t5-tglobal-xl") inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` The following shows how one can predict masked passages using the different denoising strategies. ### S-Denoising For *S-Denoising*, please make sure to prompt the text with the prefix `[S2S]` as shown below. ```python from transformers import LongT5ForConditionalGeneration, T5Tokenizer import torch model = LongT5ForConditionalGeneration.from_pretrained("agemagician/mlong-t5-tglobal-xl", low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to("cuda") tokenizer = T5Tokenizer.from_pretrained("agemagician/mlong-t5-tglobal-xl") input_string = "[S2S] Mr. Dursley was the director of a firm called Grunnings, which made drills. He was a big, solid man with a bald head. Mrs. Dursley was thin and blonde and more than the usual amount of neck, which came in very useful as she spent so much of her time craning over garden fences, spying on the neighbours. The Dursleys had a small son called Dudley and in their opinion there was no finer boy anywhere <extra_id_0>" inputs = tokenizer(input_string, return_tensors="pt").input_ids.to("cuda") outputs = model.generate(inputs, max_length=200) print(tokenizer.decode(outputs[0])) ``` ### R-Denoising For *R-Denoising*, please make sure to prompt the text with the prefix `[NLU]` as shown below. ```python from transformers import LongT5ForConditionalGeneration, T5Tokenizer import torch model = LongT5ForConditionalGeneration.from_pretrained("agemagician/mlong-t5-tglobal-xl", low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to("cuda") tokenizer = T5Tokenizer.from_pretrained("agemagician/mlong-t5-tglobal-xl") input_string = "[NLU] Mr. Dursley was the director of a firm called <extra_id_0>, which made <extra_id_1>. He was a big, solid man with a bald head. Mrs. Dursley was thin and <extra_id_2> of neck, which came in very useful as she spent so much of her time <extra_id_3>. The Dursleys had a small son called Dudley and <extra_id_4>" inputs = tokenizer(input_string, return_tensors="pt", add_special_tokens=False).input_ids.to("cuda") outputs = model.generate(inputs, max_length=200) print(tokenizer.decode(outputs[0])) ``` ### X-Denoising For *X-Denoising*, please make sure to prompt the text with the prefix `[NLG]` as shown below. ```python from transformers import LongT5ForConditionalGeneration, T5Tokenizer import torch model = LongT5ForConditionalGeneration.from_pretrained("agemagician/mlong-t5-tglobal-xl", low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to("cuda") tokenizer = T5Tokenizer.from_pretrained("agemagician/mlong-t5-tglobal-xl") input_string = "[NLG] Mr. Dursley was the director of a firm called Grunnings, which made drills. He was a big, solid man wiht a bald head. Mrs. Dursley was thin and blonde and more than the usual amount of neck, which came in very useful as she spent so much of her time craning over garden fences, spying on the neighbours. The Dursleys had a small son called Dudley and in their opinion there was no finer boy anywhere. <extra_id_0>" model.cuda() inputs = tokenizer(input_string, return_tensors="pt", add_special_tokens=False).input_ids.to("cuda") outputs = model.generate(inputs, max_length=200) print(tokenizer.decode(outputs[0])) ``` ### BibTeX entry and citation info ```bibtex @misc{uthus2023mlongt5, title={mLongT5: A Multilingual and Efficient Text-To-Text Transformer for Longer Sequences}, author={David Uthus and Santiago Ontañón and Joshua Ainslie and Mandy Guo}, year={2023}, eprint={2305.11129}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
michaelfeil/ct2fast-codegen-350M-multi
michaelfeil
2023-05-21T18:53:18Z
5
1
transformers
[ "transformers", "ctranslate2", "int8", "float16", "arxiv:2203.13474", "license:bsd-3-clause", "endpoints_compatible", "region:us" ]
null
2023-05-21T18:46:44Z
--- tags: - ctranslate2 - int8 - float16 license: bsd-3-clause --- # # Fast-Inference with Ctranslate2 Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU. quantized version of [Salesforce/codegen-350M-multi](https://huggingface.co/Salesforce/codegen-350M-multi) ```bash pip install hf-hub-ctranslate2>=2.0.8 ``` Converted on 2023-05-21 using ``` ct2-transformers-converter --model Salesforce/codegen-350M-multi --output_dir /home/michael/tmp-ct2fast-codegen-350M-multi --force --copy_files merges.txt tokenizer.json README.md tokenizer_config.json vocab.json special_tokens_map.json added_tokens.json .gitattributes --quantization float16 ``` Checkpoint compatible to [ctranslate2>=3.13.0](https://github.com/OpenNMT/CTranslate2) and [hf-hub-ctranslate2>=2.0.6](https://github.com/michaelfeil/hf-hub-ctranslate2) - `compute_type=int8_float16` for `device="cuda"` - `compute_type=int8` for `device="cpu"` ```python from hf_hub_ctranslate2 import TranslatorCT2fromHfHub, GeneratorCT2fromHfHub from transformers import AutoTokenizer model_name = "michaelfeil/ct2fast-codegen-350M-multi" # use either TranslatorCT2fromHfHub or GeneratorCT2fromHfHub here, depending on model. model = GeneratorCT2fromHfHub( # load in int8 on CUDA model_name_or_path=model_name, device="cuda", compute_type="int8_float16", # tokenizer=AutoTokenizer.from_pretrained("Salesforce/codegen-350M-multi") ) outputs = model.generate( text=["def print_hello_world():", "def hello_name(name:"], max_length=64 ) print(outputs) ``` # Licence and other remarks: This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo. # Original description tags: - ctranslate2 - int8 - float16 # CodeGen (CodeGen-Multi 350M) ## Model description CodeGen is a family of autoregressive language models for **program synthesis** from the paper: [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong. The models are originally released in [this repository](https://github.com/salesforce/CodeGen), under 3 pre-training data variants (`NL`, `Multi`, `Mono`) and 4 model size variants (`350M`, `2B`, `6B`, `16B`). The checkpoint included in this repository is denoted as **CodeGen-Multi 350M** in the paper, where "Multi" means the model is initialized with *CodeGen-NL 350M* and further pre-trained on a dataset of multiple programming languages, and "350M" refers to the number of trainable parameters. ## Training data This checkpoint (CodeGen-Multi 350M) was firstly initialized with *CodeGen-NL 350M*, and then pre-trained on [BigQuery](https://console.cloud.google.com/marketplace/details/github/github-repos), a large-scale dataset of multiple programming languages from GitHub repositories. The data consists of 119.2B tokens and includes C, C++, Go, Java, JavaScript, and Python. ## Training procedure CodeGen was trained using cross-entropy loss to maximize the likelihood of sequential inputs. The family of models are trained using multiple TPU-v4-512 by Google, leveraging data and model parallelism. See Section 2.3 of the [paper](https://arxiv.org/abs/2203.13474) for more details. ## Evaluation results We evaluate our models on two code generation benchmark: HumanEval and MTPB. Please refer to the [paper](https://arxiv.org/abs/2203.13474) for more details. ## Intended Use and Limitations As an autoregressive language model, CodeGen is capable of extracting features from given natural language and programming language texts, and calculating the likelihood of them. However, the model is intended for and best at **program synthesis**, that is, generating executable code given English prompts, where the prompts should be in the form of a comment string. The model can complete partially-generated code as well. ## How to use This model can be easily loaded using the `AutoModelForCausalLM` functionality: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen-350M-multi") model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen-350M-multi") text = "def hello_world():" input_ids = tokenizer(text, return_tensors="pt").input_ids generated_ids = model.generate(input_ids, max_length=128) print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) ``` ## BibTeX entry and citation info ```bibtex @article{Nijkamp2022ACP, title={A Conversational Paradigm for Program Synthesis}, author={Nijkamp, Erik and Pang, Bo and Hayashi, Hiroaki and Tu, Lifu and Wang, Huan and Zhou, Yingbo and Savarese, Silvio and Xiong, Caiming}, journal={arXiv preprint}, year={2022} } ```
agemagician/mlong-t5-tglobal-large
agemagician
2023-05-21T18:49:04Z
22
5
transformers
[ "transformers", "pytorch", "jax", "longt5", "text2text-generation", "multilingual", "af", "am", "ar", "az", "be", "bg", "bn", "ca", "ceb", "co", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fil", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "haw", "hi", "hmn", "ht", "hu", "hy", "ig", "is", "it", "iw", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lb", "lo", "lt", "lv", "mg", "mi", "mk", "ml", "mn", "mr", "ms", "mt", "my", "ne", "nl", "no", "ny", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "sm", "sn", "so", "sq", "sr", "st", "su", "sv", "sw", "ta", "te", "tg", "th", "tr", "uk", "und", "ur", "uz", "vi", "xh", "yi", "yo", "zh", "zu", "dataset:mc4", "arxiv:2305.11129", "arxiv:1912.08777", "arxiv:2112.07916", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-19T21:09:25Z
--- license: apache-2.0 language: - multilingual - af - am - ar - az - be - bg - bn - ca - ceb - co - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fil - fr - fy - ga - gd - gl - gu - ha - haw - hi - hmn - ht - hu - hy - ig - is - it - iw - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lb - lo - lt - lv - mg - mi - mk - ml - mn - mr - ms - mt - my - ne - nl - no - ny - pa - pl - ps - pt - ro - ru - sd - si - sk - sl - sm - sn - so - sq - sr - st - su - sv - sw - ta - te - tg - th - tr - uk - und - ur - uz - vi - xh - yi - yo - zh - zu datasets: - mc4 --- # MLongT5 (transient-global attention, large-sized model) MLongT5 model pre-trained on Multi-language corpus. The model was introduced in the paper [mLongT5: A Multilingual and Efficient Text-To-Text Transformer for Longer Sequences](https://arxiv.org/pdf/2305.11129.pdf) by Uthus et al. and first released in [the LongT5 repository](https://github.com/google-research/longt5). All the model architecture and configuration can be found in [Flaxformer repository](https://github.com/google/flaxformer) which uses another Google research project repository [T5x](https://github.com/google-research/t5x). Disclaimer: The team releasing MLongT5 did not write a model card for this model so this model card has been written by Ahmed Elnaggar. ## Model description MLongT5 model is an encoder-decoder transformer pre-trained in a text-to-text denoising generative setting ([Pegasus-like generation pre-training](https://arxiv.org/pdf/1912.08777.pdf)). MLongT5 model is an extension of [LongT5 model](https://arxiv.org/abs/2112.07916), and it enables using one of the two different efficient attention mechanisms - (1) Local attention, or (2) Transient-Global attention. The usage of attention sparsity patterns allows the model to efficiently handle input sequence. MLongT5 is particularly effective when fine-tuned for text generation (summarization, question answering) which requires handling long input sequences (up to 16,384 tokens). ## Intended uses & limitations The model is mostly meant to be fine-tuned on a supervised dataset. See the [model hub](https://huggingface.co/models?search=mlongt5) to look for fine-tuned versions on a task that interests you. ### How to use The following shows how one can extract the last hidden representation for the model. ```python from transformers import T5Tokenizer, LongT5Model tokenizer = T5Tokenizer.from_pretrained("agemagician/mlong-t5-tglobal-large") model = LongT5Model.from_pretrained("agemagician/mlong-t5-tglobal-large") inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` The following shows how one can predict masked passages using the different denoising strategies. ### S-Denoising For *S-Denoising*, please make sure to prompt the text with the prefix `[S2S]` as shown below. ```python from transformers import LongT5ForConditionalGeneration, T5Tokenizer import torch model = LongT5ForConditionalGeneration.from_pretrained("agemagician/mlong-t5-tglobal-large", low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to("cuda") tokenizer = T5Tokenizer.from_pretrained("agemagician/mlong-t5-tglobal-large") input_string = "[S2S] Mr. Dursley was the director of a firm called Grunnings, which made drills. He was a big, solid man with a bald head. Mrs. Dursley was thin and blonde and more than the usual amount of neck, which came in very useful as she spent so much of her time craning over garden fences, spying on the neighbours. The Dursleys had a small son called Dudley and in their opinion there was no finer boy anywhere <extra_id_0>" inputs = tokenizer(input_string, return_tensors="pt").input_ids.to("cuda") outputs = model.generate(inputs, max_length=200) print(tokenizer.decode(outputs[0])) ``` ### R-Denoising For *R-Denoising*, please make sure to prompt the text with the prefix `[NLU]` as shown below. ```python from transformers import LongT5ForConditionalGeneration, T5Tokenizer import torch model = LongT5ForConditionalGeneration.from_pretrained("agemagician/mlong-t5-tglobal-large", low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to("cuda") tokenizer = T5Tokenizer.from_pretrained("agemagician/mlong-t5-tglobal-large") input_string = "[NLU] Mr. Dursley was the director of a firm called <extra_id_0>, which made <extra_id_1>. He was a big, solid man with a bald head. Mrs. Dursley was thin and <extra_id_2> of neck, which came in very useful as she spent so much of her time <extra_id_3>. The Dursleys had a small son called Dudley and <extra_id_4>" inputs = tokenizer(input_string, return_tensors="pt", add_special_tokens=False).input_ids.to("cuda") outputs = model.generate(inputs, max_length=200) print(tokenizer.decode(outputs[0])) ``` ### X-Denoising For *X-Denoising*, please make sure to prompt the text with the prefix `[NLG]` as shown below. ```python from transformers import LongT5ForConditionalGeneration, T5Tokenizer import torch model = LongT5ForConditionalGeneration.from_pretrained("agemagician/mlong-t5-tglobal-large", low_cpu_mem_usage=True, torch_dtype=torch.bfloat16).to("cuda") tokenizer = T5Tokenizer.from_pretrained("agemagician/mlong-t5-tglobal-large") input_string = "[NLG] Mr. Dursley was the director of a firm called Grunnings, which made drills. He was a big, solid man wiht a bald head. Mrs. Dursley was thin and blonde and more than the usual amount of neck, which came in very useful as she spent so much of her time craning over garden fences, spying on the neighbours. The Dursleys had a small son called Dudley and in their opinion there was no finer boy anywhere. <extra_id_0>" model.cuda() inputs = tokenizer(input_string, return_tensors="pt", add_special_tokens=False).input_ids.to("cuda") outputs = model.generate(inputs, max_length=200) print(tokenizer.decode(outputs[0])) ``` ### BibTeX entry and citation info ```bibtex @misc{uthus2023mlongt5, title={mLongT5: A Multilingual and Efficient Text-To-Text Transformer for Longer Sequences}, author={David Uthus and Santiago Ontañón and Joshua Ainslie and Mandy Guo}, year={2023}, eprint={2305.11129}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` > Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
wasimar/a2c-PandaReachDense-v2
wasimar
2023-05-21T18:48:22Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-21T17:12:19Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.39 +/- 0.20 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Ztijn/distilbert-base-multilingual-cased-finetuned-squad
Ztijn
2023-05-21T17:37:03Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-05-21T15:24:26Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-multilingual-cased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-finetuned-squad This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4552 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.5104 | 1.0 | 8558 | 1.4392 | | 1.2578 | 2.0 | 17116 | 1.4380 | | 1.0438 | 3.0 | 25674 | 1.4552 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
jinhybr/distilbert_classifier_newsgroups
jinhybr
2023-05-21T17:31:47Z
61
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-21T17:31:15Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilbert_classifier_newsgroups results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_classifier_newsgroups This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1908, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.28.0 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
divisiondeariza/ekua-man
divisiondeariza
2023-05-21T17:19:55Z
30
0
diffusers
[ "diffusers", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-05-21T17:15:29Z
--- license: creativeml-openrail-m tags: - text-to-image --- ### ekua-man on Stable Diffusion via Dreambooth #### model by divisiondeariza This your the Stable Diffusion model fine-tuned the ekua-man concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **<ekua> bearded masculine man** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/divisiondeariza/ekua-man/resolve/main/concept_images/cute_14.jpeg) ![image 1](https://huggingface.co/divisiondeariza/ekua-man/resolve/main/concept_images/cute_23.jpeg) ![image 2](https://huggingface.co/divisiondeariza/ekua-man/resolve/main/concept_images/cute_1.jpeg) ![image 3](https://huggingface.co/divisiondeariza/ekua-man/resolve/main/concept_images/cute_17.jpeg) ![image 4](https://huggingface.co/divisiondeariza/ekua-man/resolve/main/concept_images/cute_22.jpeg) ![image 5](https://huggingface.co/divisiondeariza/ekua-man/resolve/main/concept_images/cute_25.jpeg) ![image 6](https://huggingface.co/divisiondeariza/ekua-man/resolve/main/concept_images/cute_18.jpeg) ![image 7](https://huggingface.co/divisiondeariza/ekua-man/resolve/main/concept_images/cute_20.jpeg) ![image 8](https://huggingface.co/divisiondeariza/ekua-man/resolve/main/concept_images/cute_9.jpeg) ![image 9](https://huggingface.co/divisiondeariza/ekua-man/resolve/main/concept_images/cute_19.jpeg) ![image 10](https://huggingface.co/divisiondeariza/ekua-man/resolve/main/concept_images/cute_21.jpeg) ![image 11](https://huggingface.co/divisiondeariza/ekua-man/resolve/main/concept_images/cute_3.jpeg) ![image 12](https://huggingface.co/divisiondeariza/ekua-man/resolve/main/concept_images/cute_2.jpeg) ![image 13](https://huggingface.co/divisiondeariza/ekua-man/resolve/main/concept_images/cute_6.jpeg) ![image 14](https://huggingface.co/divisiondeariza/ekua-man/resolve/main/concept_images/cute_10.jpeg) ![image 15](https://huggingface.co/divisiondeariza/ekua-man/resolve/main/concept_images/cute_8.jpeg) ![image 16](https://huggingface.co/divisiondeariza/ekua-man/resolve/main/concept_images/cute_0.jpeg) ![image 17](https://huggingface.co/divisiondeariza/ekua-man/resolve/main/concept_images/cute_5.jpeg) ![image 18](https://huggingface.co/divisiondeariza/ekua-man/resolve/main/concept_images/cute_12.jpeg) ![image 19](https://huggingface.co/divisiondeariza/ekua-man/resolve/main/concept_images/cute_7.jpeg) ![image 20](https://huggingface.co/divisiondeariza/ekua-man/resolve/main/concept_images/cute_13.jpeg) ![image 21](https://huggingface.co/divisiondeariza/ekua-man/resolve/main/concept_images/cute_11.jpeg) ![image 22](https://huggingface.co/divisiondeariza/ekua-man/resolve/main/concept_images/cute_16.jpeg) ![image 23](https://huggingface.co/divisiondeariza/ekua-man/resolve/main/concept_images/cute_24.jpeg) ![image 24](https://huggingface.co/divisiondeariza/ekua-man/resolve/main/concept_images/cute_15.jpeg)
pabagcha/roberta_crypto_profiling_task1_deberta
pabagcha
2023-05-21T17:13:32Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-21T16:47:27Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: roberta_crypto_profiling_task1_deberta results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta_crypto_profiling_task1_deberta This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4722 - Accuracy: 0.5176 - F1: 0.4814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 211 | 0.9966 | 0.5882 | 0.5030 | | No log | 2.0 | 422 | 1.7145 | 0.5647 | 0.5360 | | 0.5073 | 3.0 | 633 | 2.2226 | 0.5176 | 0.4695 | | 0.5073 | 4.0 | 844 | 2.1071 | 0.5647 | 0.5222 | | 0.112 | 5.0 | 1055 | 2.4722 | 0.5176 | 0.4814 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
MichaelHuang/muril_base_cased_urdu_ner
MichaelHuang
2023-05-21T16:54:16Z
207
2
transformers
[ "transformers", "pytorch", "bert", "token-classification", "ner", "ur", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-05-16T01:16:23Z
--- language: - ur tags: - ner --- # NER in Urdu ## muril_base_cased_urdu_ner Base model is [google/muril-base-cased](https://huggingface.co/google/muril-base-cased), a BERT model pre-trained on 17 Indian languages and their transliterated counterparts. Urdu NER dataset is translated from the Hindi NER dataset from [HiNER](https://github.com/cfiltnlp/HiNER). ## Usage ### example: ```python from transformers import AutoModelForTokenClassification, AutoTokenizer import torch model = AutoModelForTokenClassification.from_pretrained("MichaelHuang/muril_base_cased_urdu_ner") tokenizer = AutoTokenizer.from_pretrained("google/muril-base-cased") # Define the labels dictionary labels_dict = { 0: "B-FESTIVAL", 1: "B-GAME", 2: "B-LANGUAGE", 3: "B-LITERATURE", 4: "B-LOCATION", 5: "B-MISC", 6: "B-NUMEX", 7: "B-ORGANIZATION", 8: "B-PERSON", 9: "B-RELIGION", 10: "B-TIMEX", 11: "I-FESTIVAL", 12: "I-GAME", 13: "I-LANGUAGE", 14: "I-LITERATURE", 15: "I-LOCATION", 16: "I-MISC", 17: "I-NUMEX", 18: "I-ORGANIZATION", 19: "I-PERSON", 20: "I-RELIGION", 21: "I-TIMEX", 22: "O" } def ner_predict(sentence, model, tokenizer, labels_dict): # Tokenize the input sentence inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True, max_length=128) # Perform inference with torch.no_grad(): outputs = model(**inputs) # Get the predicted labels predicted_labels = torch.argmax(outputs.logits, dim=2) # Convert tokens and labels to lists tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) labels = predicted_labels.squeeze().tolist() # Map numeric labels to string labels predicted_labels = [labels_dict[label] for label in labels] # Combine tokens and labels result = list(zip(tokens, predicted_labels)) return result test_sentence = "امیتابھ اور ریکھا کی فلم 'گنگا کی سوگندھ' 10 فروری سنہ 1978 کو ریلیز ہوئی تھی۔ اس کے بعد راکھی، رندھیر کپور اور نیتو سنگھ کے ساتھ 'قسمے وعدے' 21 اپریل 1978 کو ریلیز ہوئی۔" predictions = ner_predict(test_sentence, model, tokenizer, labels_dict) for token, label in predictions: print(f"{token}: {label}") ```
polejowska/detr-r50-cd45rb-7k-8ah
polejowska
2023-05-21T16:49:19Z
161
0
transformers
[ "transformers", "pytorch", "detr", "object-detection", "generated_from_trainer", "dataset:cd45rb", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-05-21T13:15:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cd45rb model-index: - name: detr-r50-cd45rb-7k-8ah results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-r50-cd45rb-7k-8ah This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the cd45rb dataset. It achieves the following results on the evaluation set: - Loss: 1.7164 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5817 | 1.0 | 896 | 1.9431 | | 2.2882 | 2.0 | 1792 | 1.8638 | | 2.2236 | 3.0 | 2688 | 1.8089 | | 2.1649 | 4.0 | 3584 | 1.7843 | | 2.1275 | 5.0 | 4480 | 1.7593 | | 2.1176 | 6.0 | 5376 | 1.7542 | | 2.1037 | 7.0 | 6272 | 1.7386 | | 2.0969 | 8.0 | 7168 | 1.7242 | | 2.0794 | 9.0 | 8064 | 1.7200 | | 2.0792 | 10.0 | 8960 | 1.7164 | The training took 3 hours 15 minutes on NVIDIA GPU. ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3
Siliconic/raven-x-001
Siliconic
2023-05-21T16:45:19Z
6
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-21T15:14:24Z
--- {} --- Raven-X-001 --- Raven-X model v1 by Siliconic Technologies. This is a custom model for Raven AI. This model is a modified version of vicuna-13b-delta and llama model, trained on oasst, chatgpt, sharegpt datasets and wikipedia. Created and Fine-tuned by Akshit Kumar. Raven AI System is a modified version of Visda AI System.
daghspam/my_awesome_qa_model
daghspam
2023-05-21T16:42:09Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2023-05-21T13:01:48Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.7136 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 250 | 2.3978 | | 2.7051 | 2.0 | 500 | 1.7693 | | 2.7051 | 3.0 | 750 | 1.7136 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
wasimar/a2c-AntBulletEnv-v0
wasimar
2023-05-21T16:20:37Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-21T16:19:25Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1665.37 +/- 179.37 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
NOTIF/chater
NOTIF
2023-05-21T16:14:17Z
0
0
fairseq
[ "fairseq", "text-classification", "aa", "license:openrail", "region:us" ]
text-classification
2023-05-21T16:11:57Z
--- license: openrail language: - aa library_name: fairseq pipeline_tag: text-classification ---
Eldund/ppo-SnowballTargetTESTCOLAB
Eldund
2023-05-21T16:12:14Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-05-21T16:12:09Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: Eldund/ppo-SnowballTargetTESTCOLAB 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
andres-vs/roberta_finetuned_squad_2
andres-vs
2023-05-21T16:11:54Z
0
0
null
[ "pytorch", "tensorboard", "generated_from_trainer", "dataset:squad", "license:mit", "region:us" ]
null
2023-05-21T12:28:59Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta_finetuned_squad_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta_finetuned_squad_2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
khanhj/testgpt2chatbot
khanhj
2023-05-21T16:10:40Z
212
0
transformers
[ "transformers", "pytorch", "tf", "jax", "tflite", "rust", "safetensors", "gpt2", "text-generation", "exbert", "en", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-21T04:35:25Z
--- language: en tags: - exbert license: mit --- # GPT-2 Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). Disclaimer: The team releasing GPT-2 also wrote a [model card](https://github.com/openai/gpt-2/blob/master/model_card.md) for their model. Content from this model card has been written by the Hugging Face team to complete the information they provided and give specific examples of bias. ## Model description GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. This is the **smallest** version of GPT-2, with 124M parameters. **Related Models:** [GPT-Large](https://huggingface.co/gpt2-large), [GPT-Medium](https://huggingface.co/gpt2-medium) and [GPT-XL](https://huggingface.co/gpt2-xl) ## Intended uses & limitations You can use the raw model for text generation or fine-tune it to a downstream task. See the [model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you. ### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2') >>> set_seed(42) >>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5) [{'generated_text': "Hello, I'm a language model, a language for thinking, a language for expressing thoughts."}, {'generated_text': "Hello, I'm a language model, a compiler, a compiler library, I just want to know how I build this kind of stuff. I don"}, {'generated_text': "Hello, I'm a language model, and also have more than a few of your own, but I understand that they're going to need some help"}, {'generated_text': "Hello, I'm a language model, a system model. I want to know my language so that it might be more interesting, more user-friendly"}, {'generated_text': 'Hello, I\'m a language model, not a language model"\n\nThe concept of "no-tricks" comes in handy later with new'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import GPT2Tokenizer, GPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2Model.from_pretrained('gpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import GPT2Tokenizer, TFGPT2Model tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = TFGPT2Model.from_pretrained('gpt2') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases): > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do > not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a > study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, > and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar > levels of caution around use cases that are sensitive to biases around human attributes. Here's an example of how the model can have biased predictions: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='gpt2') >>> set_seed(42) >>> generator("The White man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The White man worked as a mannequin for'}, {'generated_text': 'The White man worked as a maniser of the'}, {'generated_text': 'The White man worked as a bus conductor by day'}, {'generated_text': 'The White man worked as a plumber at the'}, {'generated_text': 'The White man worked as a journalist. He had'}] >>> set_seed(42) >>> generator("The Black man worked as a", max_length=10, num_return_sequences=5) [{'generated_text': 'The Black man worked as a man at a restaurant'}, {'generated_text': 'The Black man worked as a car salesman in a'}, {'generated_text': 'The Black man worked as a police sergeant at the'}, {'generated_text': 'The Black man worked as a man-eating monster'}, {'generated_text': 'The Black man worked as a slave, and was'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights 40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText [here](https://github.com/openai/gpt-2/blob/master/domains.txt). ## Training procedure ### Preprocessing The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens. The larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact details of training. ## Evaluation results The model achieves the following results without any fine-tuning (zero-shot): | Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW | |:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:| | (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) | | | 35.13 | 45.99 | 87.65 | 83.4 | 29.41 | 65.85 | 1.16 | 1,17 | 37.50 | 75.20 | ### BibTeX entry and citation info ```bibtex @article{radford2019language, title={Language Models are Unsupervised Multitask Learners}, author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya}, year={2019} } ``` <a href="https://huggingface.co/exbert/?model=gpt2"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
DevozZ/LunarLander-v2
DevozZ
2023-05-21T16:06:12Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-05-21T15:49:21Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -58.93 +/- 81.11 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'LunarLander' 'seed': 42 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 500000 'learning_rate': 0.001 'num_envs': 16 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'DevozZ/LunarLander-v2' 'batch_size': 2048 'minibatch_size': 512} ```
asenella/mmnist_JNFDccaconfig2_seed_2_ratio_05_c
asenella
2023-05-21T15:59:27Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-05-21T15:59:20Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
zollimar/pokemon_rec
zollimar
2023-05-21T15:56:56Z
5
0
tf-keras
[ "tf-keras", "mobilenet", "image-classification", "region:us" ]
image-classification
2023-05-09T13:11:08Z
--- pipeline_tag: image-classification ---
gcmsrc/distilbert-base-uncased-finetuned-emotion
gcmsrc
2023-05-21T15:46:15Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-05T15:27:07Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: split metrics: - name: Accuracy type: accuracy value: 0.9355 - name: F1 type: f1 value: 0.9356480877541032 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1424 - Accuracy: 0.9355 - F1: 0.9356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5311 | 1.0 | 250 | 0.1817 | 0.932 | 0.9317 | | 0.14 | 2.0 | 500 | 0.1483 | 0.9365 | 0.9368 | | 0.0915 | 3.0 | 750 | 0.1424 | 0.9355 | 0.9356 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.2+cu102 - Datasets 2.8.0 - Tokenizers 0.10.3
zonghaoyang/DistilRoBERTa
zonghaoyang
2023-05-21T15:43:14Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-21T13:32:06Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: DistilRoBERTa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilRoBERTa This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5297 - Accuracy: 0.8950 - F1: 0.5834 - Precision: 0.6414 - Recall: 0.5351 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.2559 | 1.0 | 1626 | 0.2590 | 0.8987 | 0.6029 | 0.6538 | 0.5595 | | 0.2191 | 2.0 | 3252 | 0.3010 | 0.8954 | 0.6025 | 0.6305 | 0.5770 | | 0.1824 | 3.0 | 4878 | 0.4143 | 0.8987 | 0.6190 | 0.6409 | 0.5984 | | 0.1495 | 4.0 | 6504 | 0.3914 | 0.8864 | 0.5927 | 0.5843 | 0.6014 | | 0.139 | 5.0 | 8130 | 0.4922 | 0.8904 | 0.5704 | 0.6185 | 0.5292 | | 0.1144 | 6.0 | 9756 | 0.5297 | 0.8950 | 0.5834 | 0.6414 | 0.5351 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
anmol98/LunarLander_PPO
anmol98
2023-05-21T15:28:50Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-21T15:28:28Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 257.62 +/- 21.84 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
irodrigues/my_awesome_opus_books_model
irodrigues
2023-05-21T15:00:24Z
115
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:opus_books", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-21T14:05:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus_books metrics: - bleu model-index: - name: my_awesome_opus_books_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus_books type: opus_books config: en-fr split: train args: en-fr metrics: - name: Bleu type: bleu value: 5.639 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_opus_books_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the opus_books dataset. It achieves the following results on the evaluation set: - Loss: 1.6052 - Bleu: 5.639 - Gen Len: 17.6262 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 1.8603 | 1.0 | 6355 | 1.6285 | 5.4527 | 17.6356 | | 1.8073 | 2.0 | 12710 | 1.6052 | 5.639 | 17.6262 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
asenella/mmnist_JNFDccaconfig2_seed_1_ratio_05_c
asenella
2023-05-21T14:57:13Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-05-21T14:57:06Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
jokyere49/ppo-SnowballTarget-UnityMLAgent
jokyere49
2023-05-21T14:56:59Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-05-21T14:56:54Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: jokyere49/ppo-SnowballTarget-UnityMLAgent 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
kenangcolab/kanna
kenangcolab
2023-05-21T14:56:19Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-21T14:52:32Z
--- license: creativeml-openrail-m ---
mooncakex/blip-test
mooncakex
2023-05-21T14:54:25Z
59
0
transformers
[ "transformers", "pytorch", "tensorboard", "blip", "image-text-to-text", "generated_from_trainer", "license:bsd-3-clause", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-05-21T14:25:03Z
--- license: bsd-3-clause tags: - generated_from_trainer model-index: - name: blip-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # blip-test This model is a fine-tuned version of [Salesforce/blip-image-captioning-base](https://huggingface.co/Salesforce/blip-image-captioning-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
thegigasurgeon/videomae-large-finetuned-kinetics-mopping
thegigasurgeon
2023-05-21T14:22:31Z
1
0
transformers
[ "transformers", "pytorch", "tensorboard", "videomae", "video-classification", "generated_from_trainer", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2023-05-18T18:46:09Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-large-finetuned-kinetics-mopping results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-large-finetuned-kinetics-mopping This model is a fine-tuned version of [MCG-NJU/videomae-large-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-large-finetuned-kinetics) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4468 - Accuracy: 0.7368 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1672 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6868 | 0.25 | 418 | 0.7474 | 0.2115 | | 0.7265 | 1.25 | 836 | 0.6472 | 0.6026 | | 0.6854 | 2.25 | 1254 | 0.6211 | 0.6346 | | 0.7829 | 3.25 | 1672 | 0.5959 | 0.7115 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.0+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
asenella/mmnist_JNFDccaconfig2_seed_0_ratio_05_c
asenella
2023-05-21T14:21:11Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-05-21T14:21:04Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
fogside/sksrpm-test-run
fogside
2023-05-21T14:19:22Z
32
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-05-21T14:17:32Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: 3d render of sksrpm --- ### sksrpm_test_run Dreambooth model trained by fogside with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: 3d render of sksrpm (use that on your prompt) ![3d render of sksrpm 0](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%281%29.jpg)![3d render of sksrpm 1](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%282%29.jpg)![3d render of sksrpm 2](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%283%29.jpg)![3d render of sksrpm 3](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%284%29.jpg)![3d render of sksrpm 4](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%285%29.jpg)![3d render of sksrpm 5](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%286%29.jpg)![3d render of sksrpm 6](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%287%29.jpg)![3d render of sksrpm 7](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%288%29.jpg)![3d render of sksrpm 8](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%289%29.jpg)![3d render of sksrpm 9](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2810%29.jpg)![3d render of sksrpm 10](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2811%29.jpg)![3d render of sksrpm 11](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2812%29.jpg)![3d render of sksrpm 12](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2813%29.jpg)![3d render of sksrpm 13](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2814%29.jpg)![3d render of sksrpm 14](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2815%29.jpg)![3d render of sksrpm 15](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2816%29.jpg)![3d render of sksrpm 16](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2817%29.jpg)![3d render of sksrpm 17](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2818%29.jpg)![3d render of sksrpm 18](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2819%29.jpg)![3d render of sksrpm 19](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2820%29.jpg)![3d render of sksrpm 20](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2821%29.jpg)![3d render of sksrpm 21](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2822%29.jpg)![3d render of sksrpm 22](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2823%29.jpg)![3d render of sksrpm 23](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2824%29.jpg)![3d render of sksrpm 24](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2825%29.jpg)![3d render of sksrpm 25](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2826%29.jpg)![3d render of sksrpm 26](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2827%29.jpg)![3d render of sksrpm 27](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2828%29.jpg)![3d render of sksrpm 28](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2829%29.jpg)![3d render of sksrpm 29](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2830%29.jpg)![3d render of sksrpm 30](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2831%29.jpg)![3d render of sksrpm 31](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2832%29.jpg)![3d render of sksrpm 32](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2833%29.jpg)![3d render of sksrpm 33](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2834%29.jpg)![3d render of sksrpm 34](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2835%29.jpg)![3d render of sksrpm 35](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2836%29.jpg)![3d render of sksrpm 36](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2837%29.jpg)![3d render of sksrpm 37](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2838%29.jpg)![3d render of sksrpm 38](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2839%29.jpg)![3d render of sksrpm 39](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2840%29.jpg)![3d render of sksrpm 40](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2841%29.jpg)![3d render of sksrpm 41](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2842%29.jpg)![3d render of sksrpm 42](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2843%29.jpg)![3d render of sksrpm 43](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2844%29.jpg)![3d render of sksrpm 44](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2845%29.jpg)![3d render of sksrpm 45](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2846%29.jpg)![3d render of sksrpm 46](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2847%29.jpg)![3d render of sksrpm 47](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2848%29.jpg)![3d render of sksrpm 48](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2849%29.jpg)![3d render of sksrpm 49](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2850%29.jpg)![3d render of sksrpm 50](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2851%29.jpg)![3d render of sksrpm 51](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2852%29.jpg)![3d render of sksrpm 52](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2853%29.jpg)![3d render of sksrpm 53](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2854%29.jpg)![3d render of sksrpm 54](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2855%29.jpg)![3d render of sksrpm 55](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2856%29.jpg)![3d render of sksrpm 56](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2857%29.jpg)![3d render of sksrpm 57](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2858%29.jpg)![3d render of sksrpm 58](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2859%29.jpg)![3d render of sksrpm 59](https://huggingface.co/fogside/sksrpm-test-run/resolve/main/concept_images/3d%20render%20of%20sksrpm_%2860%29.jpg)
Mr00Magician/Number-Recogniser-api
Mr00Magician
2023-05-21T14:13:02Z
0
0
keras
[ "keras", "image-classification", "region:us" ]
image-classification
2023-05-21T08:06:39Z
--- pipeline_tag: image-classification library_name: keras ---
TheYuriLover/Manticore-13b-GPTQ-Triton
TheYuriLover
2023-05-21T14:06:39Z
9
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-21T10:27:17Z
This is the gptq 4bit quantization of this model: https://huggingface.co/openaccess-ai-collective/manticore-13b This quantization was made by using this repository: https://github.com/qwopqwop200/GPTQ-for-LLaMa/tree/triton And I used the triton branch with all the gptq implementations available (true_sequential + act_order + groupsize 128) CUDA_VISIBLE_DEVICES=0 python llama.py ./Manticore-13b-GPTQ-Triton c4 --wbits 4 --true-sequential --act-order --groupsize 128 --save_safetensors manticore-13b-4bit-128g.safetensors
LarryAIDraw/pneuma-35_04
LarryAIDraw
2023-05-21T14:03:36Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-21T13:44:18Z
--- license: creativeml-openrail-m --- https://civitai.com/models/65705/pneuma-xenoblade2-2-2
LarryAIDraw/CHAR-Irisviel
LarryAIDraw
2023-05-21T14:02:40Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-21T13:48:15Z
--- license: creativeml-openrail-m --- https://civitai.com/models/71376/irisviel-von-einzbern-5-outfits-or-fatezero-fategrand-order
LarryAIDraw/Ruby_Hoshino_V1-4
LarryAIDraw
2023-05-21T14:02:06Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-21T13:47:33Z
--- license: creativeml-openrail-m --- https://civitai.com/models/45963?modelVersionId=50582
LarryAIDraw/siriusallskins_V2
LarryAIDraw
2023-05-21T14:01:55Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-21T13:47:00Z
--- license: creativeml-openrail-m --- https://civitai.com/models/67361/sirius-allskinsv20-azur-lane
LarryAIDraw/mylene_rafa_holfort_V1
LarryAIDraw
2023-05-21T14:01:28Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-21T13:46:19Z
--- license: creativeml-openrail-m --- https://civitai.com/models/68364/mylene-rafa-holfort-otome-gee-sekai-wa-mob-ni-kibishii-sekai-desu
LarryAIDraw/FGOEreshkigalv2
LarryAIDraw
2023-05-21T14:01:07Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-21T13:45:56Z
--- license: creativeml-openrail-m --- https://civitai.com/models/71990/ereshkigal-14-outfits-fate-grand-order-fgo-14
LarryAIDraw/rosetta_v1
LarryAIDraw
2023-05-21T14:00:27Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-21T13:44:40Z
--- license: creativeml-openrail-m --- https://civitai.com/models/71522/rosetta-granblue-fantasy
LarryAIDraw/type2_fiona_v3
LarryAIDraw
2023-05-21T13:59:54Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-21T13:42:46Z
--- license: creativeml-openrail-m --- https://civitai.com/models/71634/tower-of-fantasy-fiona
imanbinamran/bert-finetuned-squad
imanbinamran
2023-05-21T13:52:47Z
62
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-05-20T11:48:17Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: imanbinamran/bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # imanbinamran/bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7813 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11090, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.2750 | 0 | | 0.7813 | 1 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
PGCaptain/xlm-roberta-base-finetuned-marc
PGCaptain
2023-05-21T13:44:19Z
125
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-21T13:22:41Z
--- license: mit tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: xlm-roberta-base-finetuned-marc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 1.1497 - Mae: 0.6986 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.2594 | 1.0 | 196 | 1.2004 | 0.7123 | | 1.1455 | 2.0 | 392 | 1.1497 | 0.6986 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
indigorange/Reinforce-CartPole-v1
indigorange
2023-05-21T13:41:00Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-05-21T13:40:50Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
yif271/yanwendb3d_example_450
yif271
2023-05-21T13:40:14Z
30
0
diffusers
[ "diffusers", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-05-21T13:28:46Z
this is for comparision of vsdb3d using yellow
autobots/Todd_Proxy_LoRA_7b
autobots
2023-05-21T13:29:01Z
0
1
null
[ "region:us" ]
null
2023-05-17T11:39:53Z
Trained on 100k dumped messages from the 'chan' todd proxy. I could not dedupe the dataset but it has had serious effect on the llama7b I used. Calls me master a whole bunch more now. Content isn't SFW so be aware. Trained in 4-bit for 3 epochs, I think it overfit and really needed just 2. Tested in 4-bit and FP16 on plain HF llama-7b, maybe it works on derivative models of the same beaks. V2 version was trained at a higher rank and logner context (512) on only unique data with ALLMs and "content warning" statements removed. It is much stronger.
Hardeep/aromatic-yak
Hardeep
2023-05-21T13:28:08Z
5
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "gpt", "llm", "large language model", "h2o-llmstudio", "en", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-05-21T13:13:35Z
--- language: - en library_name: transformers tags: - gpt - llm - large language model - h2o-llmstudio inference: false thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico --- # Model Card ## Summary This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio). - Base model: [facebook/opt-6.7b](https://huggingface.co/facebook/opt-6.7b) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed. ```bash pip install transformers==4.28.1 pip install accelerate==0.18.0 pip install torch==2.0.0 ``` ```python import torch from transformers import pipeline generate_text = pipeline( model="Hardeep/aromatic-yak", torch_dtype=torch.float16, trust_remote_code=True, use_fast=True, device_map={"": "cuda:0"}, ) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=2, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer: ```python print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"]) ``` ```bash <|prompt|>Why is drinking water so healthy?</s><|answer|> ``` Alternatively, if you prefer to not use `trust_remote_code=True` you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer: ```python import torch from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "Hardeep/aromatic-yak", use_fast=True, padding_side="left" ) model = AutoModelForCausalLM.from_pretrained( "Hardeep/aromatic-yak", torch_dtype=torch.float16, device_map={"": "cuda:0"} ) generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=2, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Hardeep/aromatic-yak" # either local folder or huggingface model name # Important: The prompt needs to be in the same format the model was trained with. # You can find an example prompt in the experiment logs. prompt = "<|prompt|>How are you?</s><|answer|>" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) model = AutoModelForCausalLM.from_pretrained(model_name) model.cuda().eval() inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda") # generate configuration can be modified to your needs tokens = model.generate( **inputs, min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=2, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True )[0] tokens = tokens[inputs["input_ids"].shape[1]:] answer = tokenizer.decode(tokens, skip_special_tokens=True) print(answer) ``` ## Model Architecture ``` OPTForCausalLM( (model): OPTModel( (decoder): OPTDecoder( (embed_tokens): Embedding(50272, 4096, padding_idx=1) (embed_positions): OPTLearnedPositionalEmbedding(2050, 4096) (final_layer_norm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True) (layers): ModuleList( (0-31): 32 x OPTDecoderLayer( (self_attn): OPTAttention( (k_proj): Linear(in_features=4096, out_features=4096, bias=True) (v_proj): Linear(in_features=4096, out_features=4096, bias=True) (q_proj): Linear(in_features=4096, out_features=4096, bias=True) (out_proj): Linear(in_features=4096, out_features=4096, bias=True) ) (activation_fn): ReLU() (self_attn_layer_norm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True) (fc1): Linear(in_features=4096, out_features=16384, bias=True) (fc2): Linear(in_features=16384, out_features=4096, bias=True) (final_layer_norm): LayerNorm((4096,), eps=1e-05, elementwise_affine=True) ) ) ) ) (lm_head): Linear(in_features=4096, out_features=50272, bias=False) ) ``` ## Model Configuration This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models. ## Model Validation Model validation results using [EleutherAI lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness). ```bash CUDA_VISIBLE_DEVICES=0 python main.py --model hf-causal-experimental --model_args pretrained=Hardeep/aromatic-yak --tasks openbookqa,arc_easy,winogrande,hellaswag,arc_challenge,piqa,boolq --device cuda &> eval.log ``` ## Disclaimer Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions. - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints. - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion. - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model. - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities. - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues. - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes. By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
KostiuchenkoArtem/bart_base_large
KostiuchenkoArtem
2023-05-21T13:13:40Z
61
0
transformers
[ "transformers", "tf", "bart", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-21T10:03:32Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: TianMu/bart_base_large results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # TianMu/bart_base_large This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.3445 - Validation Loss: 2.4043 - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.7502 | 2.4418 | 0 | | 2.5512 | 2.4306 | 1 | | 2.4377 | 2.4095 | 2 | | 2.3445 | 2.4043 | 3 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
vocabtrimmer/xlm-roberta-base-trimmed-en-50000
vocabtrimmer
2023-05-21T12:58:56Z
106
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-05-21T12:54:59Z
# Vocabulary Trimmed [xlm-roberta-base](https://huggingface.co/xlm-roberta-base): `vocabtrimmer/xlm-roberta-base-trimmed-en-50000` This model is a trimmed version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | xlm-roberta-base | vocabtrimmer/xlm-roberta-base-trimmed-en-50000 | |:---------------------------|:-------------------|:-------------------------------------------------| | parameter_size_full | 278,295,186 | 124,495,186 | | parameter_size_embedding | 192,001,536 | 38,401,536 | | vocab_size | 250,002 | 50,002 | | compression_rate_full | 100.0 | 44.73 | | compression_rate_embedding | 100.0 | 20.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | en | vocabtrimmer/mc4_validation | text | en | validation | 50000 | 2 |
teasan/StarrySky
teasan
2023-05-21T12:48:51Z
0
6
null
[ "stable-diffusion", "text-to-image", "license:other", "region:us" ]
text-to-image
2023-05-21T11:41:46Z
--- license: other tags: - stable-diffusion - text-to-image --- # Used SD2.1 768のモデルになります。 本モデルでSD1.5のLoRAやembedding類はご使用になれません。 SD2.1のものをご使用ください。 出来たばかりなので使用感があまり分かっていません。 サンプル画像を参考に設定を色々変更してみてください。 This is an SD2.1 768 model. You can't use SD1.5's LoRA or similar embeddings with this model. Please use those for SD2.1. Since it's just been completed, I'm not quite familiar with its usability. Please try adjusting various settings while referring to the sample images. # 推奨 今のところ以下のNP embedding を同時併用やどれかを使用した方が良いです。 At present, it would be beneficial to either use the following NP embeddings concurrently or select one among them. Used NP embedding : Mayng, badquality, (rev2-badprompt:1.2), ## Mayng https://huggingface.co/852wa/hakoMay/tree/main ## badquality https://civitai.com/models/19968 ## rev2-badprompt https://huggingface.co/gsdf/Replicant-V2.0/blob/main/rev2-badprompt.safetensors # sample ![](image/xyz_grid-0006-4096077484.png) ``` (masterpiece, best quality), absurdres, 1girl, solo, cute girl, kawaii, fantasy, Negative prompt: Mayng, badquality, (rev2-badprompt:1.2), (worst quality, low quality:1.2), nsfw, flat color, flat shading, retro style, poor quality, bad face, bad fingers, bad anatomy, missing fingers, low res, cropped, signature, watermark, username, artist name, text, monochrome, Steps: 30, Sampler: DPM++ 2M Karras, CFG scale: 10, Seed: 1643164084, Size: 512x768, Denoising strength: 0.6, Clip skip: 2, Version: v1.2.1, Hires upscale: 2, Hires steps: 10, Hires upscaler: Latent (nearest) ``` ![](image/00402-1643164084.png) ``` (masterpiece, best quality), absurdres, (close view:1.4), 1girl, shining sky, vast world, gazing, awe-inspiring expression, distant horizon, clouds, high hill, natural beauty, inspiration, night sky, Shining Stars, Negative prompt: Mayng, badquality, (rev2-badprompt:1.2), (worst quality, low quality:1.2), nsfw, flat color, flat shading, retro style, poor quality, bad face, bad fingers, bad anatomy, missing fingers, low res, cropped, signature, watermark, username, artist name, text, monochrome, Steps: 30, Sampler: DPM++ 2M Karras, CFG scale: 10, Seed: 1643164084, Size: 512x768, Denoising strength: 0.6, Clip skip: 2, Version: v1.2.1, Hires upscale: 2, Hires steps: 10, Hires upscaler: Latent (nearest) ``` ![](image/00383-2978862598.png) ``` (masterpiece, best quality), absurdres, 1girl, solo, cute girl, kawaii, fantasy, Negative prompt: Mayng, badquality, (rev2-badprompt:1.2), (worst quality, low quality:1.2), nsfw, flat color, flat shading, retro style, poor quality, bad face, bad fingers, bad anatomy, missing fingers, low res, cropped, signature, watermark, username, artist name, text, monochrome, Steps: 30, Sampler: UniPC, CFG scale: 10, Seed: 2978862598, Size: 512x768, Denoising strength: 0.6, Clip skip: 2, Version: v1.2.1, Hires upscale: 2, Hires steps: 10, Hires upscaler: Latent (nearest) ``` ![](image/00372-3626464235.png) ``` (masterpiece, best quality), absurdres, highres, 1girl, Negative prompt: Mayng, badquality, (rev2-badprompt:1.2), (worst quality, low quality:1.2), nsfw, flat color, flat shading, retro style, poor quality, bad face, bad fingers, bad anatomy, missing fingers, low res, cropped, signature, watermark, username, artist name, text, monochrome, Steps: 30, Sampler: DPM++ 2M Karras, CFG scale: 10, Seed: 3626464235, Size: 512x768, Denoising strength: 0.6, Clip skip: 2, Version: v1.2.1, Hires upscale: 2, Hires steps: 10, Hires upscaler: Latent (nearest) ``` ![](image/00369-1352047868.png) ``` (masterpiece, best quality), absurdres, 1girl, solo, cute girl, fantasy, Negative prompt: Mayng, badquality, (rev2-badprompt:1.2), (worst quality, low quality:1.2), nsfw, flat color, flat shading, retro style, poor quality, bad face, bad fingers, bad anatomy, missing fingers, low res, cropped, signature, watermark, username, artist name, text, monochrome, Steps: 30, Sampler: DPM++ 2M Karras, CFG scale: 10, Seed: 1352047868, Size: 512x768, Denoising strength: 0.6, Clip skip: 2, Version: v1.2.1, Hires upscale: 2, Hires steps: 10, Hires upscaler: Latent (nearest) ``` ![](image/00367-430004055.png) ``` (masterpiece, best quality), absurdres, 1girl, solo, cute girl, chibi, fantasy, Negative prompt: Mayng, badquality, (rev2-badprompt:1.2), (worst quality, low quality:1.2), nsfw, flat color, flat shading, retro style, poor quality, bad face, bad fingers, bad anatomy, missing fingers, low res, cropped, signature, watermark, username, artist name, text, monochrome, Steps: 30, Sampler: DPM++ 2M Karras, CFG scale: 10, Seed: 430004055, Size: 512x768, Denoising strength: 0.6, Clip skip: 2, Version: v1.2.1, Hires upscale: 2, Hires steps: 10, Hires upscaler: Latent (nearest) ``` # Licence https://freedevproject.org/faipl-1.0-sd/
mwinterhalter/finetuning-sentiment-model-3000-samples
mwinterhalter
2023-05-21T12:43:42Z
123
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-21T02:23:03Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8833333333333333 - name: F1 type: f1 value: 0.8844884488448845 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3119 - Accuracy: 0.8833 - F1: 0.8845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Yhyu13/manticore-13b-gptq-4bit
Yhyu13
2023-05-21T11:48:00Z
1,456
3
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-21T11:08:34Z
--- license: apache-2.0 --- GPTQ 4-bit no actor version for compatibility that works in textgen-webui Generated by using scripts from https://gitee.com/yhyu13/llama_-tools Original weights: https://huggingface.co/openaccess-ai-collective/manticore-13b --- Manticore is by far the most satisfying LLaMA model I've used due to its fine-tuning datasets are generated from the best of Vicuna, Wizard, and ShareGPT/GPT4. Here is a conversation generated in textgen-webui, it shows step by step Chain of Thoughts comments along side generating complex code sample in an engaging tone! ![sample](./img/sample.png)
Bestie2088/munirah_v1
Bestie2088
2023-05-21T11:47:35Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-21T11:40:47Z
--- license: creativeml-openrail-m ---
hannahh7/Reinforce-cartpole-v1
hannahh7
2023-05-21T11:40:23Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-05-21T11:40:13Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Vas123/codeparrot-ds
Vas123
2023-05-21T11:40:05Z
62
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-05-21T11:38:29Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: Vas123/codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Vas123/codeparrot-ds This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 10.3192 - Validation Loss: 9.3837 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': -945, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 10.3192 | 9.3837 | 0 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
MayIBorn/ft-sd15-iom
MayIBorn
2023-05-21T11:09:06Z
2
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-05-21T10:44:32Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of iom human tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - MayIBorn/ft-sd15-iom These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on a photo of iom human using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: True.
QuickSilver007/rlv2unit6_a2c-AntBulletEnv-v0
QuickSilver007
2023-05-21T11:01:55Z
4
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-21T11:00:42Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1176.83 +/- 160.27 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
anushriiyer/ppo-LunarLander-v2
anushriiyer
2023-05-21T11:00:45Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-21T11:00:20Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 206.42 +/- 46.80 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jcnecio/dqn-SpaceInvadersNoFrameskip-v4
jcnecio
2023-05-21T10:47:45Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-21T10:47:12Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 641.00 +/- 140.03 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jcnecio -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jcnecio -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jcnecio ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
harshshashwat/gratio-opinion-minig
harshshashwat
2023-05-21T10:26:52Z
0
1
transformers
[ "transformers", "Sentiment-anlysis", "en", "arxiv:1910.09700", "license:bigscience-openrail-m", "endpoints_compatible", "region:us" ]
null
2023-05-21T09:50:27Z
--- license: bigscience-openrail-m language: - en tags: - Sentiment-anlysis library_name: transformers --- -import gradio as gr from transformers import pipeline sentiment = pipeline("sentiment-analysis") def get_sentiment(input_text) return sentiment(input_text) iface = gr.Interface(fn=get_sentiment, inputs = 'text', outputs = ['text'], title = 'Opinion Mining', description = "Get Sentimenent Negative/Positive for the given input") iface.launch(inline = False) # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Sania67/Urdu_Based_ASR_Model_FYP
Sania67
2023-05-21T10:18:34Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-05-20T20:47:30Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: Urdu_Based_ASR_Model_FYP results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Urdu_Based_ASR_Model_FYP This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0030 - Wer: 93.0849 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 700 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2479 | 2.27 | 100 | 1.0445 | 103.8776 | | 0.3529 | 4.55 | 200 | 0.2966 | 70.4653 | | 0.148 | 6.82 | 300 | 0.1006 | 54.3300 | | 0.047 | 9.09 | 400 | 0.0274 | 52.7574 | | 0.0101 | 11.36 | 500 | 0.0099 | 65.1659 | | 0.0041 | 13.64 | 600 | 0.0039 | 84.2309 | | 0.0033 | 15.91 | 700 | 0.0030 | 93.0849 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
kpbth/distilbert-base-uncased-finetuned-emotion
kpbth
2023-05-21T10:16:38Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-21T09:51:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.922 - name: F1 type: f1 value: 0.9223471923096423 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2206 - Accuracy: 0.922 - F1: 0.9223 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8353 | 1.0 | 250 | 0.3154 | 0.906 | 0.9033 | | 0.2476 | 2.0 | 500 | 0.2206 | 0.922 | 0.9223 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
jashdalvi/netnames-classifier-setfit
jashdalvi
2023-05-21T09:50:44Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-05-21T09:50:04Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # jashdalvi/netnames-classifier-setfit This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("jashdalvi/netnames-classifier-setfit") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
huggingtweets/jeremyphoward-lmoroney-ylecun
huggingtweets
2023-05-21T09:47:49Z
139
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-21T09:43:25Z
--- language: en thumbnail: http://www.huggingtweets.com/jeremyphoward-lmoroney-ylecun/1684662288397/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1279600070145437696/eocLhSLu_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1483577865056702469/rWA-3_T7_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1438898262602256386/CiWrR6Gi_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jeremy Howard & Yann LeCun & Laurence Moroney 🇮🇪 🏴󠁧󠁢󠁷󠁬󠁳󠁿</div> <div style="text-align: center; font-size: 14px;">@jeremyphoward-lmoroney-ylecun</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jeremy Howard & Yann LeCun & Laurence Moroney 🇮🇪 🏴󠁧󠁢󠁷󠁬󠁳󠁿. | Data | Jeremy Howard | Yann LeCun | Laurence Moroney 🇮🇪 🏴󠁧󠁢󠁷󠁬󠁳󠁿 | | --- | --- | --- | --- | | Tweets downloaded | 3221 | 3246 | 3233 | | Retweets | 1468 | 495 | 342 | | Short tweets | 143 | 215 | 252 | | Tweets kept | 1610 | 2536 | 2639 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/awg8vusy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jeremyphoward-lmoroney-ylecun's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3lpc09td) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3lpc09td/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jeremyphoward-lmoroney-ylecun') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
efederici/sentence-BERTino
efederici
2023-05-21T09:36:07Z
164
5
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "it", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-27T22:35:17Z
--- pipeline_tag: sentence-similarity license: apache-2.0 language: - it tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-BERTino This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It was trained on a dataset made from question/context pairs ([squad-it](https://github.com/crux82/squad-it)) and tags/news-article pairs (via scraping). If you like this project, consider supporting me with a cup of coffee! 🤖✨🌞 [![Buy me a coffee](https://badgen.net/badge/icon/Buy%20Me%20A%20Coffee?icon=buymeacoffee&label)](https://bmc.link/edoardofederici) ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"] model = SentenceTransformer('efederici/sentence-BERTino') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('efederici/sentence-BERTino') model = AutoModel.from_pretrained('efederici/sentence-BERTino') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ```
efederici/text2tags
efederici
2023-05-21T09:34:55Z
267
5
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "summarization", "tags", "Italian", "it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: - it tags: - summarization - tags - Italian inference: parameters: do_sample: False min_length: 0 widget: - text: "Nel 1924 la scrittrice Virginia Woolf affrontò nel saggio Mr Bennett e Mrs Brown il tema della costruzione e della struttura del romanzo, genere all’epoca considerato in declino a causa dell’incapacità degli autori e delle autrici di creare personaggi realistici. Woolf raccontò di aver a lungo osservato, durante un viaggio in treno da Richmond a Waterloo, una signora di oltre 60 anni seduta davanti a lei, chiamata signora Brown. Ne rimase affascinata, per la capacità di quella figura di evocare storie possibili e fare da spunto per un romanzo: «tutti i romanzi cominciano con una vecchia signora seduta in un angolo». Immagini come quella della signora Brown, secondo Woolf, «costringono qualcuno a cominciare, quasi automaticamente, a scrivere un romanzo». Nel saggio Woolf provò ad analizzare le tecniche narrative utilizzate da tre noti scrittori inglesi dell’epoca – H. G. Wells, John Galsworthy e Arnold Bennett – per comprendere perché le convenzioni stilistiche dell’Ottocento risultassero ormai inadatte alla descrizione dei «caratteri» umani degli anni Venti. In un lungo e commentato articolo del New Yorker, la critica letteraria e giornalista Parul Sehgal, a lungo caporedattrice dell’inserto culturale del New York Times dedicato alle recensioni di libri, ha provato a compiere un esercizio simile a quello di Woolf, chiedendosi come gli autori e le autrici di oggi tratterebbero la signora Brown. E ha immaginato che probabilmente quella figura non eserciterebbe su di loro una curiosità e un fascino legati alla sua incompletezza e al suo aspetto misterioso, ma con ogni probabilità trasmetterebbe loro l’indistinta e generica impressione di aver subìto un trauma." example_title: "Virginia Woolf" - text: "I lavori di ristrutturazione dell’interno della cattedrale di Notre-Dame a Parigi, seguiti al grande incendio che nel 2019 bruciò la guglia e buona parte del tetto, sono da settimane al centro di un acceso dibattito sui giornali francesi per via di alcune proposte di rinnovamento degli interni che hanno suscitato critiche e allarmi tra esperti e opinionisti conservatori. Il progetto ha ricevuto una prima approvazione dalla commissione nazionale competente, ma dovrà ancora essere soggetto a varie revisioni e ratifiche che coinvolgeranno tecnici e politici locali e nazionali, fino al presidente Emmanuel Macron. Ma le modifiche previste al sistema di viabilità per i visitatori, all’illuminazione, ai posti a sedere e alle opere d’arte che si vorrebbero esporre hanno portato alcuni critici a parlare di «parco a tema woke» e «Disneyland del politicamente corretto»." example_title: "Notre-Dame" --- # text2tags The model has been trained on a collection of 28k news articles with tags. Its purpose is to create tags suitable for the given article. We can use this model also for information-retrieval purposes (GenQ), fine-tuning sentence-transformers for asymmetric semantic search. If you like this project, consider supporting it with a cup of coffee! 🤖✨🌞 [![Buy me a coffee](https://badgen.net/badge/icon/Buy%20Me%20A%20Coffee?icon=buymeacoffee&label)](https://bmc.link/edoardofederici) <p align="center"> <img src="https://upload.wikimedia.org/wikipedia/commons/1/1a/Pieter_Bruegel_d._%C3%84._066.jpg" width="600"> </br> Pieter Bruegel the Elder, The Fight Between Carnival and Lent, 1559 </p> ### Usage Sample code with an article from IlPost: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM model = AutoModelForSeq2SeqLM.from_pretrained("efederici/text2tags") tokenizer = AutoTokenizer.from_pretrained("efederici/text2tags") article = ''' Da bambino era preoccupato che al mondo non ci fosse più nulla da scoprire. Ma i suoi stessi studi gli avrebbero dato torto: insieme a James Watson, nel 1953 Francis Crick strutturò il primo modello di DNA, la lunga sequenza di codici che identifica ogni essere vivente, rendendolo unico e diverso da tutti gli altri. La scoperta gli valse il Nobel per la Medicina. È uscita in queste settimane per Codice la sua biografia, Francis Crick — Lo scopritore del DNA, scritta da Matt Ridley, che racconta vita e scienza dell'uomo che capì perché siamo fatti così. ''' def tag(text: str): """ Generates tags from given text """ text = text.strip().replace('\n', '') text = 'summarize: ' + text tokenized_text = tokenizer.encode(text, return_tensors="pt") tags_ids = model.generate(tokenized_text, num_beams=4, no_repeat_ngram_size=2, max_length=20, early_stopping=True) output = tokenizer.decode(tags_ids[0], skip_special_tokens=True) return output.split(', ') tags = tag(article) print(tags) ``` ## Longer documents Assuming paragraphs are divided by: '\n\n'. ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import itertools import re model = AutoModelForSeq2SeqLM.from_pretrained("efederici/text2tags") tokenizer = AutoTokenizer.from_pretrained("efederici/text2tags") article = ''' Da bambino era preoccupato che al mondo non ci fosse più nulla da scoprire. Ma i suoi stessi studi gli avrebbero dato torto: insieme a James Watson, nel 1953 Francis Crick strutturò il primo modello di DNA, la lunga sequenza di codici che identifica ogni essere vivente, rendendolo unico e diverso da tutti gli altri. La scoperta gli valse il Nobel per la Medicina. È uscita in queste settimane per Codice la sua biografia, Francis Crick — Lo scopritore del DNA, scritta da Matt Ridley, che racconta vita e scienza dell'uomo che capì perché siamo fatti così. ''' def words(text): input_str = text output_str = re.sub('[^A-Za-z0-9]+', ' ', input_str) return output_str.split() def is_subset(text1, text2): return all(tag in words(text1.lower()) for tag in text2.split()) def cleaning(text, tags): return [tag for tag in tags if is_subset(text, tag)] def get_texts(text, max_len): texts = list(filter(lambda x : x != '', text.split('\n\n'))) lengths = [len(tokenizer.encode(paragraph)) for paragraph in texts] output = [] for i, par in enumerate(texts): index = len(output) if index > 0 and lengths[i] + len(tokenizer.encode(output[index-1])) <= max_len: output[index-1] = "".join(output[index-1] + par) else: output.append(par) return output def get_tags(text, generate_kwargs): input_text = 'summarize: ' + text.strip().replace('\n', ' ') tokenized_text = tokenizer.encode(input_text, return_tensors="pt") with torch.no_grad(): tags_ids = model.generate(tokenized_text, **generate_kwargs) output = [] for tags in tags_ids: cleaned = cleaning( text, list(set(tokenizer.decode(tags, skip_special_tokens=True).split(', '))) ) output.append(cleaned) return list(set(itertools.chain(*output))) def tag(text, max_len, generate_kwargs): texts = get_texts(text, max_len) all_tags = [get_tags(text, generate_kwargs) for text in texts] flatten_tags = itertools.chain(*all_tags) return list(set(flatten_tags)) params = { "min_length": 0, "max_length": 30, "no_repeat_ngram_size": 2, "num_beams": 4, "early_stopping": True, "num_return_sequences": 4, } tags = tag(article, 512, params) print(tags) ``` ### Overview - Model: T5 ([it5-small](https://huggingface.co/gsarti/it5-small)) - Language: Italian - Downstream-task: Summarization (for topic tagging) - Training data: Custom dataset - Code: See example - Infrastructure: 1x T4
efederici/sentence-bert-base
efederici
2023-05-21T09:34:03Z
466
8
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "it", "dataset:stsb_multi_mt", "doi:10.57967/hf/0248", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-27T17:17:51Z
--- pipeline_tag: sentence-similarity language: - it datasets: - stsb_multi_mt tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-bert-base This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It was trained on [stsb](https://huggingface.co/datasets/stsb_multi_mt/viewer/it/train). If you like this project, consider supporting it with a cup of coffee! 🤖✨🌞 [![Buy me a coffee](https://badgen.net/badge/icon/Buy%20Me%20A%20Coffee?icon=buymeacoffee&label)](https://bmc.link/edoardofederici) ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"] model = SentenceTransformer('efederici/sentence-bert-base') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["Questo è un esempio di frase", "Questo è un ulteriore esempio"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('efederici/sentence-bert-base') model = AutoModel.from_pretrained('efederici/sentence-bert-base') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citation If you want to cite this model you can use this: ``` @misc {edoardo_federici_2022, author = { {Edoardo Federici} }, title = { sentence-bert-base, sentence-transformer for Italian }, year = 2022, url = { https://huggingface.co/efederici/sentence-bert-base }, doi = { 10.57967/hf/0112 }, publisher = { Hugging Face } } ```
seviladiguzel/distilbert-base-uncased-finetuned-squad_v2_3
seviladiguzel
2023-05-21T09:29:30Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-05-21T08:31:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad_v2_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad_v2_3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1579 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2157 | 1.0 | 5533 | 1.1503 | | 0.9567 | 2.0 | 11066 | 1.1295 | | 0.7525 | 3.0 | 16599 | 1.1579 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
azetaaa/q-FrozenLake-v1-4x4-noSlippery
azetaaa
2023-05-21T09:12:08Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-05-21T09:12:05Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="azetaaa/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Tingwen/ppo-LunarLander-v2-unit8
Tingwen
2023-05-21T08:59:22Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-05-21T08:59:13Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -189.54 +/- 88.33 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'Tingwen/ppo-LunarLander-v2-unit8' 'batch_size': 512 'minibatch_size': 128} ```
huggingtweets/medinarabasco
huggingtweets
2023-05-21T08:44:58Z
137
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-21T08:44:49Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1369764163397025794/Xe2piyuC_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Julia</div> <div style="text-align: center; font-size: 14px;">@medinarabasco</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Julia. | Data | Julia | | --- | --- | | Tweets downloaded | 3207 | | Retweets | 1236 | | Short tweets | 695 | | Tweets kept | 1276 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/fjgpibp3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @medinarabasco's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2v2zjaba) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2v2zjaba/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/medinarabasco') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
danielus/ggml-whisper-models
danielus
2023-05-21T08:14:09Z
0
4
null
[ "audio", "automatic-speech-recognition", "en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su", "license:mit", "region:us" ]
automatic-speech-recognition
2023-05-20T16:57:01Z
--- license: mit language: - en - zh - de - es - ru - ko - fr - ja - pt - tr - pl - ca - nl - ar - sv - it - id - hi - fi - vi - he - uk - el - ms - cs - ro - da - hu - ta - 'no' - th - ur - hr - bg - lt - la - mi - ml - cy - sk - te - fa - lv - bn - sr - az - sl - kn - et - mk - br - eu - is - hy - ne - mn - bs - kk - sq - sw - gl - mr - pa - si - km - sn - yo - so - af - oc - ka - be - tg - sd - gu - am - yi - lo - uz - fo - ht - ps - tk - nn - mt - sa - lb - my - bo - tl - mg - as - tt - haw - ln - ha - ba - jw - su tags: - audio - automatic-speech-recognition --- This repository contains versions of the Whisper models in the ggml format. The versions present are the best performing according to the benchmark: https://github.com/ggerganov/whisper.cpp/discussions/859
yotoshihiro/a2c-AntBulletEnv-v0
yotoshihiro
2023-05-21T07:31:48Z
4
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-21T07:28:52Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1750.70 +/- 120.33 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
architext/gptj-162M
architext
2023-05-21T07:23:43Z
199
25
transformers
[ "transformers", "pytorch", "gptj", "text-generation", "architecture", "design", "en", "dataset:THEODOROS/Architext_v1", "arxiv:2303.07519", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-08-22T00:04:16Z
--- license: apache-2.0 datasets: - THEODOROS/Architext_v1 language: - en pipeline_tag: text-generation tags: - architecture - design --- # Architext GPT-J 162M # Model Description Architext GPT-J-162M is a transformer model trained using Ben Wang's Mesh Transformer JAX on the Pile and finetuned specifically on a synthetically generated dataset of architectural layouts of apartments. It is capable of generating a large diversity of designs, in a convenient geometric representation that can be used downstream in different design workflows, using just a natural language prompt. The model consists of 12 layers with a model dimension of 768, and a feedforward dimension of 2048. The model dimension is split into 16 heads, each with a dimension of 256. Rotary Position Embedding (RoPE) is applied to 64 dimensions of each head. The model is trained with a tokenization vocabulary of 50257, using the same set of BPEs as GPT-2/GPT-3. # Training data GPT-J 162B was pre-trained on the Pile, a large-scale curated dataset created by EleutherAI. It was then finetuned on synthetically generated data that was procedurally generated using the Rhinocers/Grasshopper software suite. The model was finetuned for 1.25 billion tokens over 11,500 steps on TPU v3-8. It was trained as an autoregressive language model, using cross-entropy loss to maximize the likelihood of predicting the next token correctly. # Intended Use and Limitations Architext models learn an inner representation of the architectural design that can be used to generate a larger diversity of geometric designs and can be useful for many downstream design workflows and tasks. While it could be adapted to many different design outputs, the model is best at generating residential floor plans given a natural language prompt. # How to use ```python This model can be easily loaded using the AutoModelForCausalLM functionality: from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("architext/gptj-162M") model = AutoModelForCausalLM.from_pretrained("architext/gptj-162M") ``` # Limitations and Biases The core functionality of Architext is taking a string of text and generating a design output, by still continuously predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work especially in the design context. Architext will often generate a design that is not semantically correct, depending on the prompt description it was given, although it almost always generates designs that are valid (non intersecting spaces, no orphan rooms). It is also limited within a small diversity of natural language prompts, specifically prompts that describe: * typology: "a house with two bedrooms and three bathrooms" or "a house with six rooms" * adjacency: "the bedroom is adjacent to the living room" or "the kitchen is not adjacent to the bathroom" * location: "the bedroom is in the north side of the house" or "a bedroom is in the south east side of the house" Of course, the designs that are generated are conceptual designs and one should never depend on Architext to directly generate accurate construction documentation. # Citation and Related Information ## BibTeX entry To cite this model: ``` @article{galanos2023architext, title={Architext: Language-Driven Generative Architecture Design}, author={Galanos, Theodoros and Liapis, Antonios and Yannakakis, Georgios N}, journal={arXiv preprint arXiv:2303.07519}, year={2023} } ``` To cite the codebase that trained this model: ``` @misc{mesh-transformer-jax, author = {Wang, Ben}, title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ``` # Acknowledgements This project would not have been possible without compute generously provided by Google through the TPU Research Cloud that generously provided access to Clout TPU VMs used to finetune this model.
indigorange/q-FrozenLake-v1-4x4-noSlippery
indigorange
2023-05-21T07:21:52Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-05-21T07:21:49Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="indigorange/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Den4ikAI/FRED-T5-Large-interpreter
Den4ikAI
2023-05-21T07:19:25Z
114
2
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "ru", "dataset:inkoziev/incomplete_utterance_restoration", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-21T07:15:29Z
--- license: mit datasets: - inkoziev/incomplete_utterance_restoration language: - ru widget: - text: '<SC1>- Как тебя зовут?\n- Джульетта Мао\nРазвернутый ответ: <extra_id_0>' - text: '<SC1>- А живешь где?\n- В поясе астероидов\nРазвернутый ответ: <extra_id_0>' pipeline_tag: text2text-generation --- # Den4ikAI/FRED-T5-Large-interpreter Модель для восстановления фразы с помощью контекста диалога (анафора, эллипсисы, гэппинг), проверки орфографии и нормализации текста диалоговых реплик. Больше о задаче [тут](https://huggingface.co/inkoziev/rugpt_interpreter). # Пример использования ```python import torch from transformers import T5ForConditionalGeneration, GPT2Tokenizer model_name = 'Den4ikAI/FRED-T5-Large-interpreter' tokenizer = GPT2Tokenizer.from_pretrained(model_name) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = T5ForConditionalGeneration.from_pretrained(model_name) model.eval() t5_input = '''<SC1>- Ты собак любишь? - Не люблю я их Развернутый ответ: <extra_id_0>''' input_ids = tokenizer(t5_input, return_tensors='pt').input_ids out_ids = model.generate(input_ids=input_ids, max_length=100, eos_token_id=tokenizer.eos_token_id, early_stopping=True) t5_output = tokenizer.decode(out_ids[0][1:]) print(t5_output) ``` # Citation ``` @MISC{FRED-T5-Large-interpreter, author = {Denis Petrov, Ilya Koziev}, title = {Russian conversations interpreter and normalizer}, url = {https://huggingface.co/Den4ikAI/FRED-T5-Large-interpreter}, year = 2023 } ```
oeshy/my_awesome_model
oeshy
2023-05-21T07:06:32Z
121
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-29T07:10:19Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: my_awesome_model results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.93196 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2319 - Accuracy: 0.9320 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2313 | 1.0 | 1563 | 0.1868 | 0.9280 | | 0.1509 | 2.0 | 3126 | 0.2319 | 0.9320 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Den4ikAI/FRED-T5-XL-interpreter
Den4ikAI
2023-05-21T07:03:46Z
103
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "ru", "dataset:inkoziev/incomplete_utterance_restoration", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-21T06:13:35Z
--- license: mit datasets: - inkoziev/incomplete_utterance_restoration language: - ru widget: - text: '<SC1>- Как тебя зовут?\n- Джульетта Мао\nРазвернутый ответ: <extra_id_0>' - text: '<SC1>- А живешь где?\n- В поясе астероидов\nРазвернутый ответ: <extra_id_0>' pipeline_tag: text2text-generation --- # Den4ikAI/FRED-T5-XL-interpreter Модель для восстановления фразы с помощью контекста диалога (анафора, эллипсисы, гэппинг), проверки орфографии и нормализации текста диалоговых реплик. Больше о задаче [тут](https://huggingface.co/inkoziev/rugpt_interpreter). # Пример использования ```python import torch from transformers import T5ForConditionalGeneration, GPT2Tokenizer model_name = 'Den4ikAI/FRED-T5-XL-interpreter' tokenizer = GPT2Tokenizer.from_pretrained(model_name) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = T5ForConditionalGeneration.from_pretrained(model_name) model.eval() t5_input = '''<SC1>- Ты собак любишь? - Не люблю я их Развернутый ответ: <extra_id_0>''' input_ids = tokenizer(t5_input, return_tensors='pt').input_ids out_ids = model.generate(input_ids=input_ids, max_length=100, eos_token_id=tokenizer.eos_token_id, early_stopping=True) t5_output = tokenizer.decode(out_ids[0][1:]) print(t5_output) ``` # Citation ``` @MISC{FRED-T5-XL-interpeter, author = {Denis Petrov, Ilya Koziev}, title = {Russian conversations interpreter and normalizer}, url = {https://huggingface.co/Den4ikAI/FRED-T5-XL-interpreter}, year = 2023 } ```
SaintMcMuffins/Brain2.1
SaintMcMuffins
2023-05-21T06:50:51Z
134
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-21T06:41:10Z
--- tags: - conversational ---
ajwad-abrar/my_awesome_model
ajwad-abrar
2023-05-21T06:47:58Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-28T22:39:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: my_awesome_model results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.93156 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2315 - Accuracy: 0.9316 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2327 | 1.0 | 1563 | 0.1883 | 0.9281 | | 0.152 | 2.0 | 3126 | 0.2315 | 0.9316 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
prathameshgiri/Prathamesh
prathameshgiri
2023-05-21T06:36:53Z
0
0
adapter-transformers
[ "adapter-transformers", "art", "image-to-image", "en", "dataset:togethercomputer/RedPajama-Data-1T", "license:apache-2.0", "region:us" ]
image-to-image
2023-05-21T02:56:41Z
--- title: GFPGAN emoji: 😁 colorFrom: yellow colorTo: green sdk: gradio sdk_version: 3.25.0 app_file: app.py pinned: false license: apache-2.0 datasets: - togethercomputer/RedPajama-Data-1T language: - en metrics: - accuracy library_name: adapter-transformers pipeline_tag: image-to-image tags: - art --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
bakhitovd/led-base-7168-ml
bakhitovd
2023-05-21T03:51:26Z
126
0
transformers
[ "transformers", "pytorch", "led", "text2text-generation", "summarization", "dataset:bakhitovd/data_science_arxiv", "license:cc0-1.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2023-05-02T02:20:10Z
--- datasets: - bakhitovd/data_science_arxiv metrics: - rouge license: cc0-1.0 pipeline_tag: summarization --- # Fine-tuned Longformer for Summarization of Machine Learning Articles ## Model Details - GitHub: https://github.com/Bakhitovd/led-base-7168-ml - Model name: bakhitovd/led-base-7168-ml - Model type: Longformer (alenai/led-base-16384) - Model description: This Longformer model has been fine-tuned on a focused subset of the arXiv part of the scientific papers dataset, specifically targeting articles about Machine Learning. It aims to generate accurate and consistent summaries of machine learning research papers. ## Intended Use This model is intended to be used for text summarization tasks, specifically for summarizing machine learning research papers. ## How to Use ```python import torch from transformers import LEDTokenizer, LEDForConditionalGeneration tokenizer = LEDTokenizer.from_pretrained("bakhitovd/led-base-7168-ml") model = LEDForConditionalGeneration.from_pretrained("bakhitovd/led-base-7168-ml") ``` ## Use the model for summarization ```python article = "... long document ..." inputs_dict = tokenizer.encode(article, padding="max_length", max_length=16384, return_tensors="pt", truncation=True) input_ids = inputs_dict.input_ids.to("cuda") attention_mask = inputs_dict.attention_mask.to("cuda") global_attention_mask = torch.zeros_like(attention_mask) global_attention_mask[:, 0] = 1 predicted_abstract_ids = model.generate(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask, max_length=512) summary = tokenizer.decode(predicted_abstract_ids, skip_special_tokens=True) print(summary) ``` ## Training Data Dataset name: bakhitovd/data_science_arxiv\ This dataset is a subset of the 'Scientific papers' dataset, which contains articles semantically, structurally, and meaningfully closest to articles describing machine learning. This subset was obtained using K-means clustering on the embeddings generated by SciBERT. ## Evaluation Results The model's performance was evaluated using ROUGE metrics and it showed improved performance over the baseline models. ![image.png](https://s3.amazonaws.com/moonup/production/uploads/63fb9a520aa18292d5c1027a/19mfKrjHkiCFDAL557Vsu.png)
YakovElm/MariaDB20SetFitModel
YakovElm
2023-05-21T03:35:20Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-05-20T16:22:10Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # YakovElm/MariaDB20SetFitModel This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("YakovElm/MariaDB20SetFitModel") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
openaccess-ai-collective/lora-experiments-quant-to-full-weights
openaccess-ai-collective
2023-05-21T03:30:05Z
6
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-20T19:17:37Z
WandB: https://wandb.ai/wing-lian/lora-experiment?workspace=user-wing-lian
AlikS/q-FrozenLake-v1-4x4-noSlippery
AlikS
2023-05-21T03:03:09Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-05-21T03:03:06Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="AlikS/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
howt51/ppo-LunarLander-v2
howt51
2023-05-21T02:31:10Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-20T15:56:29Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 285.13 +/- 36.30 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mhammadkhan/negation-categories-classifier
mhammadkhan
2023-05-21T02:01:58Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "es", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-05-15T16:45:02Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification language: - es --- # mhammadkhan/negation-categories-classifier This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel model = SetFitModel.from_pretrained("mhammadkhan/negation-categories-classifier") # Define category labels labels = {0: "dairy-free", 1: "gluten-free", 2: "nut-free", 3: "soy-free", 4: "vegan"} # Define input recipes recipes = [ {"text": "Tacos de Coliflor Vegana", "ingredients":["cauliflower", "taco seasoning", "corn tortillas", "avocado", "salsa", "cilantro", "lime wedges"]}, {"text": "Pulpo a la Gallega Sin Gluten", "ingredients":["octopus", "potatoes", "paprika", "olive oil", "salt"]}, {"text": "Creamy Tomato Soup", "ingredients":["tomatoes", "vegetable broth", "onion", "garlic", "coconut milk"]}, {"text": "Chicken Alfredo Pasta", "ingredients":["chicken breast", "pasta", "broccoli", "mushrooms", "cashew cream"]}, {"text": "Cheesy Broccoli Casserole", "ingredients":["broccoli", "almond milk", "nutritional yeast", "gluten-free breadcrumbs"]}, {"text": "Gluten-Free Pizza", "ingredients":["gluten-free pizza crust", "tomato sauce", "mozzarella cheese", "mushrooms", "bell peppers"]}, {"text": "Quinoa Salad with Roasted Vegetables", "ingredients":["quinoa", "roasted sweet potato", "roasted Brussels sprouts", "dried cranberries", "almonds"]}, {"text": "Gluten-Free Chocolate Chip Cookies", "ingredients":["gluten-free flour", "brown sugar", "baking soda", "chocolate chips", "coconut oil"]}, {"text": "Chicken Satay Skewers", "ingredients":["chicken breast", "coconut milk", "peanut butter", "soy sauce", "lime juice"]}, {"text": "Pesto Pasta Salad", "ingredients":["pasta", "basil", "parmesan cheese", "pine nuts", "olive oil"]}, {"text": "Maple-Glazed Salmon", "ingredients":["salmon", "maple syrup", "pecans", "butter", "garlic"]}, {"text": "Beef and Broccoli Stir-Fry", "ingredients":["beef sirloin", "broccoli", "carrots", "garlic", "ginger", "cornstarch"]}, {"text": "Creamy Mushroom Soup", "ingredients":["mushrooms", "vegetable broth", "onion", "garlic", "cashew cream"]}, {"text": "Lemon-Garlic Roasted Chicken", "ingredients":["chicken thighs", "lemon juice", "garlic", "olive oil", "rosemary"]}, {"text": "Vegan Lasagna", "ingredients":["lasagna noodles", "tofu ricotta", "marinara sauce", "spinach", "mushrooms"]}, {"text": "Chickpea Curry", "ingredients":["chickpeas", "coconut milk", "tomatoes", "spinach", "curry powder"]}, {"text": "Vegan Banana Bread", "ingredients":["flour", "bananas", "sugar", "baking powder", "almond milk"]}, ] # Run inference preds = model(recipes) print(preds) # Map integer predictions to category labels preds = [labels[pred.item()] for pred in preds] print(preds) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
pranav-asthana/assignment-1a
pranav-asthana
2023-05-21T01:52:01Z
62
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-21T01:51:47Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: assignment-1a results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # assignment-1a This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1908, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.28.0 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3
pemujo/vit-base-patch16-224-in21k-gldv2-top-51
pemujo
2023-05-21T01:31:04Z
166
1
transformers
[ "transformers", "pytorch", "vit", "image-classification", "en", "dataset:pemujo/GLDv2_Top_51_Categories", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-05-19T05:29:06Z
--- datasets: - pemujo/GLDv2_Top_51_Categories language: - en library_name: transformers --- # Model Card for Model ID This model is vit-base-patch16-224-in21k fine-tuned with a subset of the 2021 Kaggle Google Landmark Dataset competition, including only the top 51 categories. The dataset is available as Hugginface dataset on: https://huggingface.co/datasets/pemujo/GLDv2_Top_51_Categories - **Developed by:** Pedro Melendez - **Model type:** Vision transformer - **Finetuned from model:** vit-base-patch16-224-in21k ### Training Data Classes with more than 500 images in the 2021 Kaggle Google Landmark competition https://huggingface.co/datasets/pemujo/GLDv2_Top_51_Categories ### Results | | | |-----------------------:|------:| | epoch |4 | |eval_accuracy |0.97411| |eval_loss |0.11560| |eval_runtime (secs) |79.0939| |eval_samples_per_second |115.255| |eval_steps_per_second |14.413 | |train_runtime (secs) |4082.92| |train_samples_per_second|35.722 | |train_steps_per_second |2.233 | ## Environmental Impact - **Hardware Type:** Nvidia V100 - **Minutes used:** 68 Minutes - **Cloud Provider:** Google Cloud - **Compute Region:** us-central ### Compute Infrastructure Google Cloud Workbench Instance #### Hardware GCP Workbench n1-highmem-8 instance with Nvidia V100 GPU #### Software Python 3.9 Pytorch 2.0.1+cu117
YakovElm/MariaDB10SetFitModel
YakovElm
2023-05-21T01:27:57Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-05-20T16:21:47Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # YakovElm/MariaDB10SetFitModel This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("YakovElm/MariaDB10SetFitModel") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
aaronrmm/a2c-PandaReachDense-v2
aaronrmm
2023-05-21T01:26:00Z
2
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-05-20T21:16:44Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.22 +/- 0.25 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nolanaatama/ssv2bcchr
nolanaatama
2023-05-21T00:53:11Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-05-21T00:51:54Z
--- license: creativeml-openrail-m ---
tarek23/flan-t5-base-qg-SQuAD-LMQG
tarek23
2023-05-21T00:50:32Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:qg_squad", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-20T15:12:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - qg_squad metrics: - rouge model-index: - name: flan-t5-base-qg-SQuAD-LMQG results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: qg_squad type: qg_squad config: qg_squad split: validation args: qg_squad metrics: - name: Rouge1 type: rouge value: 52.9376 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-base-qg-SQuAD-LMQG This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the qg_squad dataset. It achieves the following results on the evaluation set: - Loss: 0.5624 - Rouge1: 52.9376 - Rouge2: 30.3418 - Rougel: 48.9442 - Rougelsum: 48.9337 - Meteor: 48.0417 - Bleu-n: 21.5099 - Bleu-1: 53.2950 - Bleu-2: 27.3888 - Bleu-3: 17.6196 - Bleu-4: 11.8132 - Gen Len: 14.2609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Meteor | Bleu-n | Bleu-1 | Bleu-2 | Bleu-3 | Bleu-4 | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:| | 0.6054 | 1.0 | 9466 | 0.5603 | 51.5022 | 28.8098 | 47.624 | 47.6181 | 46.3462 | 20.5165 | 52.2978 | 26.2204 | 16.7816 | 11.2230 | 14.1466 | | 0.5436 | 2.0 | 18932 | 0.5555 | 52.6557 | 29.8173 | 48.7211 | 48.7146 | 47.4380 | 21.0460 | 53.6907 | 27.3374 | 17.4950 | 11.6865 | 14.0910 | | 0.5087 | 3.0 | 28398 | 0.5572 | 52.5567 | 30.0117 | 48.5798 | 48.5669 | 47.5632 | 21.3178 | 53.1790 | 27.2268 | 17.5366 | 11.8127 | 14.1871 | | 0.4874 | 4.0 | 37864 | 0.5601 | 52.9404 | 30.3445 | 48.9746 | 48.9583 | 47.9995 | 21.5205 | 53.3457 | 27.4082 | 17.6273 | 11.8327 | 14.2623 | | 0.473 | 5.0 | 47330 | 0.5624 | 52.9376 | 30.3418 | 48.9442 | 48.9337 | 48.0417 | 21.5099 | 53.2950 | 27.3888 | 17.6196 | 11.8132 | 14.2609 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
Green-Sky/ggml-mpt-7b-storywriter
Green-Sky
2023-05-20T23:53:36Z
0
14
null
[ "Composer", "MosaicML", "llm-foundry", "ggml", "dataset:the_pile_books3", "arxiv:2108.12409", "arxiv:2205.14135", "arxiv:2302.06675", "license:apache-2.0", "region:us" ]
null
2023-05-11T12:54:38Z
--- license: apache-2.0 tags: - Composer - MosaicML - llm-foundry - ggml datasets: - the_pile_books3 inference: false --- # WARNING: experimental The code is still in constant flux. ~requires pr~ merged https://github.com/ggerganov/ggml/pull/145 # MPT-7B-StoryWriter-65k+ GGML files Model files converted to ggml # Original model card: ## MPT-7B-StoryWriter-65k+ MPT-7B-StoryWriter-65k+ is a model designed to read and write fictional stories with super long context lengths. It was built by finetuning MPT-7B with a context length of 65k tokens on a filtered fiction subset of the [books3 dataset](https://huggingface.co/datasets/the_pile_books3). At inference time, thanks to [ALiBi](https://arxiv.org/abs/2108.12409), MPT-7B-StoryWriter-65k+ can extrapolate even beyond 65k tokens. We demonstrate generations as long as 84k tokens on a single node of 8 A100-80GB GPUs in our [blogpost](https://www.mosaicml.com/blog/mpt-7b). * License: Apache 2.0 * [Demo on Hugging Face Spaces](https://huggingface.co/spaces/mosaicml/mpt-7b-storywriter) This model was trained by [MosaicML](https://www.mosaicml.com) and follows a modified decoder-only transformer architecture. ### Model Date May 5, 2023 ### Model License Apache 2.0 ### Model Description The architecture is a modification of a standard decoder-only transformer. The model has been modified from a standard transformer in the following ways: * It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf) * It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings * It does not use biases | Hyperparameter | Value | |----------------|-------| |n_parameters | 6.7B | |n_layers | 32 | | n_heads | 32 | | d_model | 4096 | | vocab size | 50432 | | sequence length | **65536** | ### PreTraining Data For more details on the pretraining process, see [MPT-7B](https://huggingface.co/mosaicml/mpt-7b). The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. #### Training Configuration This model was trained on 8 A100-80GBs for about 2 days using the [MosaicML Platform](https://www.mosaicml.com/platform). The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the [LION](https://arxiv.org/abs/2302.06675) optimizer. ### Limitations and Biases _The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_ MPT-7B-StoryWriter can produce factually incorrect output, and should not be relied on to produce factually accurate information. MPT-7B-StoryWriter was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs. ### Acknowledgements This model was finetuned by Alex Trott and the MosaicML NLP team ### MosaicML Platform If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://forms.mosaicml.com/demo?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b). ### Disclaimer The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes. ### Citation Please cite this model using the following format: ``` @online{MosaicML2023Introducing, author = {MosaicML NLP Team}, title = {Introducing MPT-7B: A New Standard for Open-Source, Commercially Usable LLMs}, year = {2023}, url = {www.mosaicml.com/blog/mpt-7b}, note = {Accessed: 2023-03-28}, % change this date urldate = {2023-03-28} % change this date } ```