modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-08 19:17:42
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
549 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-08 18:30:19
card
stringlengths
11
1.01M
jysssacc/roberta-base_PrefixTuning_lr5e-05_bs4_epoch1_wd0.01
jysssacc
2024-01-09T10:02:26Z
1
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:adapter:FacebookAI/roberta-base", "license:mit", "region:us" ]
null
2024-01-09T10:02:03Z
--- license: mit library_name: peft tags: - generated_from_trainer base_model: roberta-base model-index: - name: roberta-base_PrefixTuning_lr5e-05_bs4_epoch1_wd0.01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base_PrefixTuning_lr5e-05_bs4_epoch1_wd0.01 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 19.1081 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 13.3356 | 1.0 | 157 | 19.1081 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.0.1 - Datasets 2.16.1 - Tokenizers 0.15.0
SharonTudi/DIALOGUE2
SharonTudi
2024-01-09T09:55:53Z
93
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-14T09:37:05Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: DIALOGUE2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DIALOGUE2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3422 - Precision: 0.6751 - Recall: 0.6150 - F1: 0.6316 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.3364 | 1.79 | 25 | 0.3800 | 0.6751 | 0.6150 | 0.6316 | | 0.3019 | 3.57 | 50 | 0.3579 | 0.6751 | 0.6150 | 0.6316 | | 0.211 | 5.36 | 75 | 0.3417 | 0.6751 | 0.6150 | 0.6316 | | 0.2035 | 7.14 | 100 | 0.3409 | 0.6751 | 0.6150 | 0.6316 | | 0.1817 | 8.93 | 125 | 0.3422 | 0.6751 | 0.6150 | 0.6316 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
mmnga/Mixtral-Fusion-4x7B-Instruct-v0.1
mmnga
2024-01-09T09:52:44Z
28
18
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "moe", "conversational", "fr", "it", "de", "es", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-12-16T19:09:26Z
--- language: - fr - it - de - es - en license: apache-2.0 tags: - moe inference: false --- # Model Card for Mixtral-Fusion-4x7B-Instruct-v0.1 This model is an experimental model created by merging [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) experts. # How we merged experts Changed to merge using slerp. [Discussion](https://huggingface.co/mmnga/Mixtral-Fusion-4x7B-Instruct-v0.1/discussions/2) [old merge version](https://huggingface.co/mmnga/Mixtral-Fusion-4x7B-Instruct-v0.1/tree/v0.1.0) ~~We simply take the average of every two experts.weight.~~ ~~The same goes for gate.weight.~~ # How To Convert use colab cpu-high-memory. [convert_mixtral_8x7b_to_4x7b.ipynb](https://huggingface.co/mmnga/Mixtral-Fusion-4x7B-Instruct-v0.1/blob/main/notebook/convert_mixtral_8x7b_to_4x7b.ipynb) # OtherModels [mmnga/Mixtral-Extraction-4x7B-Instruct-v0.1](https://huggingface.co/mmnga/Mixtral-Extraction-4x7B-Instruct-v0.1) # Usage ~~~python pip install git+https://github.com/huggingface/transformers --upgrade pip install torch accelerate bitsandbytes flash_attn ~~~ ~~~python from transformers import AutoTokenizer, AutoModelForCausalLM, MixtralForCausalLM import torch model_name_or_path = "mmnga/Mixtral-Fusion-4x7B-Instruct-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = MixtralForCausalLM.from_pretrained(model_name_or_path, load_in_8bit=True) text = "[INST] What was John Holt's vision on education? [/INST] " inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=128) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ~~~
Naati101/tb
Naati101
2024-01-09T09:47:58Z
0
0
keras
[ "keras", "tf-keras", "image-classification", "medical", "region:us" ]
image-classification
2024-01-09T09:47:19Z
--- library_name: keras tags: - image-classification - medical --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | weight_decay | None | | clipnorm | None | | global_clipnorm | None | | clipvalue | None | | use_ema | False | | ema_momentum | 0.99 | | ema_overwrite_frequency | None | | jit_compile | True | | is_legacy_optimizer | False | | learning_rate | 0.0010000000474974513 | | beta_1 | 0.9 | | beta_2 | 0.999 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
prashantyai/sd-class-butterflies-32
prashantyai
2024-01-09T09:46:55Z
44
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2024-01-09T09:46:23Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('prashantyai/sd-class-butterflies-32') image = pipeline().images[0] image ```
karandomguy/TuneNews
karandomguy
2024-01-09T09:38:03Z
3
0
peft
[ "peft", "text-generation", "doi:10.57967/hf/1587", "license:mit", "region:us" ]
text-generation
2023-12-30T22:52:07Z
--- library_name: peft license: mit pipeline_tag: text-generation --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
SE6446/Phasmid-2_v2
SE6446
2024-01-09T09:34:41Z
22
1
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "phi", "text-generation", "axolotl", "generated_from_trainer", "custom_code", "dataset:PygmalionAI/PIPPA", "dataset:HuggingFaceH4/no_robots", "base_model:microsoft/phi-2", "base_model:finetune:microsoft/phi-2", "license:mit", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-08T09:59:40Z
--- inference: false license: mit base_model: microsoft/phi-2 tags: - axolotl - generated_from_trainer model-index: - name: Phasmid-2_v2 results: [] datasets: - PygmalionAI/PIPPA - HuggingFaceH4/no_robots --- ``` _ (`-. ('-. .-. ('-. .-') _ .-') _ .-') _ ( (OO )( OO ) / ( OO ).-. ( OO ).( '.( OO )_ ( ( OO) ) _.` \,--. ,--. / . --. /(_)---\_),--. ,--.) ,-.-') \ .'_ (__...--''| | | | | \-. \ / _ | | `.' | | |OO),`'--..._) | / | || .| |.-'-' | |\ :` `. | | | | \| | \ ' | |_.' || | \| |_.' | '..`''.)| |'.'| | | |(_/| | ' | | .___.'| .-. | | .-. |.-._) \| | | | ,| |_.'| | / : | | | | | | | | | |\ /| | | |(_| | | '--' / `--' `--' `--' `--' `--' `-----' `--' `--' `--' `-------' ``` [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.3.0` ```yaml base_model: microsoft/phi-2 model_type: PhiForCausalLM tokenizer_type: AutoTokenizer is_llama_derived_model: false trust_remote_code: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: SE6446/SE6446_phasmid_ds type: completion hub_model_id: SE6446/Phasmid-2_v2 hub_strategy: every_save use_auth_token: true dataset_prepared_path: /phasmid-2-ds-path val_set_size: 0.05 output_dir: ./phasmid-sft-out sequence_len: 2048 sample_packing: true pad_to_sequence_len: adapter: lora_model_dir: lora_r: lora_alpha: lora_dropout: lora_target_linear: lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 1 num_epochs: 4 optimizer: adamw_torch adam_beta2: 0.95 adam_epsilon: 0.00001 max_grad_norm: 1.0 lr_scheduler: cosine learning_rate: 0.0003 train_on_inputs: false group_by_length: true bf16: true fp16: false tf32: true gradient_checkpointing: early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: warmup_steps: 100 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.1 fsdp: fsdp_config: resize_token_embeddings_to_32x: true special_tokens: bos_token: "<|endoftext|>" eos_token: "<|endoftext|>" unk_token: "<|endoftext|>" pad_token: "<|endoftext|>" ``` </details><br> # Phasmid-2_v2 This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on a mix of no_robots and the PIPPA dataset. It achieves the following results on the evaluation set: - Loss: 2.2924 ## Model description Phasmid-2 has been trained on intructional data and thus can perform far better at instruction following than phi-2. However I have not extensively tested the model. ## Intended uses & limitations This model is little more than a side project and I shall treat it as such. Phasmid-2 (due to it's size), can still suffer from problematic hallucinations and poor information. No effort was made to reduce potentially toxic responses, as such you should train this model further if you require it to do so. ## Inference Ensure that eniops is installed ``` pip install einops ``` Phi doesn't like device_map = auto, therefore you should specify as like the following: 1. FP16 / Flash-Attention / CUDA: ```python model = AutoModelForCausalLM.from_pretrained("SE6446/Phasmid-2_v2", torch_dtype="auto", flash_attn=True, flash_rotary=True, fused_dense=True, device_map="cuda", trust_remote_code=True) ``` 2. FP16 / CUDA: ```python model = AutoModelForCausalLM.from_pretrained("SE6446/Phasmid-2_v2", torch_dtype="auto", device_map="cuda", trust_remote_code=True) ``` 3. FP32 / CUDA: ```python model = AutoModelForCausalLM.from_pretrained("SE6446/Phasmid-2_v2", torch_dtype=torch.float32, device_map="cuda", trust_remote_code=True) ``` 4. FP32 / CPU: ```python model = AutoModelForCausalLM.from_pretrained("SE6446/Phasmid-2_v2", torch_dtype=torch.float32, device_map="cpu", trust_remote_code=True) ``` And then use the following snippet ```python tokenizer = AutoTokenizer.from_pretrained("SE6446/Phasmid-2_v2", trust_remote_code=True, torch_dtype="auto") inputs = tokenizer('''SYSTEM: You are a helpful assistant. Please answer truthfully and politely. {custom_prompt}\n USER: {{userinput}}\n ASSISTANT: {{character name if applicable}}:''', return_tensors="pt", return_attention_mask=False) outputs = model.generate(**inputs, max_length=200) text = tokenizer.batch_decode(outputs)[0] print(text) ``` it should generate after "ASSISTANT:". ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.3313 | 0.0 | 1 | 2.1374 | | 2.5755 | 0.25 | 1319 | 2.5281 | | 2.4864 | 0.5 | 2638 | 2.5314 | | 2.0961 | 0.75 | 3957 | 2.4697 | | 2.6547 | 1.0 | 5276 | 2.4213 | | 2.1235 | 1.24 | 6595 | 2.3926 | | 1.8875 | 1.49 | 7914 | 2.3233 | | 0.9059 | 1.74 | 9233 | 2.2590 | | 2.2046 | 1.99 | 10552 | 2.1985 | | 1.1938 | 2.23 | 11871 | 2.2555 | | 1.1425 | 2.48 | 13190 | 2.2393 | | 0.6688 | 2.73 | 14509 | 2.2237 | | 1.1111 | 2.98 | 15828 | 2.2126 | | 0.651 | 3.21 | 17147 | 2.2859 | | 0.8669 | 3.46 | 18466 | 2.2914 | | 0.4149 | 3.71 | 19785 | 2.2924 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0
HackerCIS/distilbert-base-uncased-finetuned-emotion
HackerCIS
2024-01-09T09:29:43Z
92
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-09T09:11:34Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9175 - name: F1 type: f1 value: 0.9173530455189519 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2326 - Accuracy: 0.9175 - F1: 0.9174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8354 | 1.0 | 250 | 0.3426 | 0.901 | 0.8997 | | 0.263 | 2.0 | 500 | 0.2326 | 0.9175 | 0.9174 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
nutorbit/yi-6b-xllm
nutorbit
2024-01-09T09:05:18Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:01-ai/Yi-6B", "base_model:adapter:01-ai/Yi-6B", "region:us" ]
null
2024-01-09T09:03:31Z
--- library_name: peft base_model: 01-ai/Yi-6B --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
0x7o/nanoFialka-v1
0x7o
2024-01-09T09:00:16Z
103
4
transformers
[ "transformers", "onnx", "safetensors", "gpt2", "text-generation", "ru", "dataset:0x7194633/fialka-v3-data", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-05T08:53:01Z
--- license: apache-2.0 datasets: - 0x7194633/fialka-v3-data language: - ru pipeline_tag: text-generation --- # Nano Fialka v1.0 ## Description This is a test model trained for non-serious tasks. For a production environment, use [Fialka 13B](https://huggingface.co/collections/0x7194633/fialka-llms-658a87c2003ceee6937a0d2e). ## Usage The model has a query format as in zephyr. ``` <|user|> Что такое мем?</s> <|assistant|> Мем (англ. meme) — это единица культурной информации, которая распространяется в социальных сетях и других онлайн-платформах с помощью цифровых технологий или через физический контакт. Мемы могут быть связаны между собой тематически или иметь общие черты, такие как использование определенных слов или фраз для создания определенного настроения или выражения эмоций. Они также могут содержать информацию о культуре, истории или науке, которую можно использовать для обучения новым вещам или расширения кругозора. ```
tonitt97/robertuito-allData-finetuned-class
tonitt97
2024-01-09T08:57:12Z
176
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:pysentimiento/robertuito-base-uncased", "base_model:finetune:pysentimiento/robertuito-base-uncased", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-09T08:56:51Z
--- base_model: pysentimiento/robertuito-base-uncased tags: - generated_from_trainer metrics: - f1 - recall - accuracy model-index: - name: robertuito-allData-finetuned-class results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robertuito-allData-finetuned-class This model is a fine-tuned version of [pysentimiento/robertuito-base-uncased](https://huggingface.co/pysentimiento/robertuito-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6512 - F1: 0.7470 - Recall: 0.7524 - Accuracy: 0.7677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.989919952299843e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 15 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Recall | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:--------:| | No log | 1.0 | 103 | 0.6829 | 0.7074 | 0.7162 | 0.7399 | | No log | 2.0 | 206 | 0.6096 | 0.7326 | 0.7250 | 0.7632 | | No log | 3.0 | 309 | 0.6512 | 0.7470 | 0.7524 | 0.7677 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
uttam333/layoutlm-custom
uttam333
2024-01-09T08:41:02Z
61
0
transformers
[ "transformers", "tensorboard", "safetensors", "layoutlm", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-09T08:34:30Z
--- tags: - generated_from_trainer model-index: - name: layoutlm-custom results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlm-custom This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1583 - Noise: {'precision': 0.8818897637795275, 'recall': 0.8736349453978159, 'f1': 0.8777429467084641, 'number': 641} - Signal: {'precision': 0.861198738170347, 'recall': 0.853125, 'f1': 0.8571428571428572, 'number': 640} - Overall Precision: 0.8716 - Overall Recall: 0.8634 - Overall F1: 0.8675 - Overall Accuracy: 0.9656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Noise | Signal | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.3882 | 1.0 | 18 | 0.2617 | {'precision': 0.6654804270462633, 'recall': 0.5834633385335414, 'f1': 0.6217788861180383, 'number': 641} | {'precision': 0.6149732620320856, 'recall': 0.5390625, 'f1': 0.5745212323064114, 'number': 640} | 0.6402 | 0.5613 | 0.5982 | 0.8986 | | 0.1694 | 2.0 | 36 | 0.1752 | {'precision': 0.7387820512820513, 'recall': 0.719188767550702, 'f1': 0.7288537549407115, 'number': 641} | {'precision': 0.709470304975923, 'recall': 0.690625, 'f1': 0.6999208234362629, 'number': 640} | 0.7241 | 0.7049 | 0.7144 | 0.9296 | | 0.1039 | 3.0 | 54 | 0.1356 | {'precision': 0.7865168539325843, 'recall': 0.7644305772230889, 'f1': 0.7753164556962026, 'number': 641} | {'precision': 0.77491961414791, 'recall': 0.753125, 'f1': 0.7638668779714739, 'number': 640} | 0.7807 | 0.7588 | 0.7696 | 0.9439 | | 0.064 | 4.0 | 72 | 0.1342 | {'precision': 0.8220472440944881, 'recall': 0.8143525741029641, 'f1': 0.8181818181818181, 'number': 641} | {'precision': 0.8028391167192429, 'recall': 0.7953125, 'f1': 0.7990580847723705, 'number': 640} | 0.8125 | 0.8048 | 0.8086 | 0.9522 | | 0.0433 | 5.0 | 90 | 0.1241 | {'precision': 0.8544303797468354, 'recall': 0.8424336973478939, 'f1': 0.8483896307934014, 'number': 641} | {'precision': 0.8320126782884311, 'recall': 0.8203125, 'f1': 0.8261211644374509, 'number': 640} | 0.8432 | 0.8314 | 0.8373 | 0.9601 | | 0.0293 | 6.0 | 108 | 0.1274 | {'precision': 0.8650793650793651, 'recall': 0.8502340093603744, 'f1': 0.8575924468922109, 'number': 641} | {'precision': 0.8378378378378378, 'recall': 0.8234375, 'f1': 0.830575256107171, 'number': 640} | 0.8515 | 0.8368 | 0.8441 | 0.9617 | | 0.0199 | 7.0 | 126 | 0.1372 | {'precision': 0.8722397476340694, 'recall': 0.8627145085803433, 'f1': 0.8674509803921568, 'number': 641} | {'precision': 0.8530805687203792, 'recall': 0.84375, 'f1': 0.8483896307934015, 'number': 640} | 0.8627 | 0.8532 | 0.8579 | 0.9640 | | 0.0139 | 8.0 | 144 | 0.1386 | {'precision': 0.8839427662957074, 'recall': 0.8673946957878315, 'f1': 0.8755905511811023, 'number': 641} | {'precision': 0.856687898089172, 'recall': 0.840625, 'f1': 0.8485804416403785, 'number': 640} | 0.8703 | 0.8540 | 0.8621 | 0.9656 | | 0.0126 | 9.0 | 162 | 0.1467 | {'precision': 0.8829113924050633, 'recall': 0.8705148205928237, 'f1': 0.8766692851531814, 'number': 641} | {'precision': 0.8541996830427893, 'recall': 0.8421875, 'f1': 0.848151062155783, 'number': 640} | 0.8686 | 0.8564 | 0.8624 | 0.9654 | | 0.0114 | 10.0 | 180 | 0.1531 | {'precision': 0.8694968553459119, 'recall': 0.8627145085803433, 'f1': 0.8660924040720438, 'number': 641} | {'precision': 0.8472440944881889, 'recall': 0.840625, 'f1': 0.8439215686274509, 'number': 640} | 0.8584 | 0.8517 | 0.8550 | 0.9631 | | 0.0099 | 11.0 | 198 | 0.1581 | {'precision': 0.8703125, 'recall': 0.8689547581903276, 'f1': 0.8696330991412958, 'number': 641} | {'precision': 0.8450704225352113, 'recall': 0.84375, 'f1': 0.8444096950742768, 'number': 640} | 0.8577 | 0.8564 | 0.8570 | 0.9634 | | 0.0064 | 12.0 | 216 | 0.1543 | {'precision': 0.8866141732283465, 'recall': 0.8783151326053042, 'f1': 0.8824451410658307, 'number': 641} | {'precision': 0.8643533123028391, 'recall': 0.85625, 'f1': 0.8602825745682888, 'number': 640} | 0.8755 | 0.8673 | 0.8714 | 0.9659 | | 0.0059 | 13.0 | 234 | 0.1628 | {'precision': 0.8732394366197183, 'recall': 0.8705148205928237, 'f1': 0.871875, 'number': 641} | {'precision': 0.8526645768025078, 'recall': 0.85, 'f1': 0.8513302034428795, 'number': 640} | 0.8630 | 0.8603 | 0.8616 | 0.9645 | | 0.0056 | 14.0 | 252 | 0.1587 | {'precision': 0.878740157480315, 'recall': 0.8705148205928237, 'f1': 0.8746081504702194, 'number': 641} | {'precision': 0.8580441640378549, 'recall': 0.85, 'f1': 0.8540031397174254, 'number': 640} | 0.8684 | 0.8603 | 0.8643 | 0.9651 | | 0.005 | 15.0 | 270 | 0.1583 | {'precision': 0.8818897637795275, 'recall': 0.8736349453978159, 'f1': 0.8777429467084641, 'number': 641} | {'precision': 0.861198738170347, 'recall': 0.853125, 'f1': 0.8571428571428572, 'number': 640} | 0.8716 | 0.8634 | 0.8675 | 0.9656 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
KaungHtetCho/ppo-LunarLander-v2
KaungHtetCho
2024-01-09T08:40:36Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-09T08:40:06Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 256.08 +/- 10.10 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
1DS/adapter-category-mapping-hp-global-Llama-2-7b-chat-hf-v1
1DS
2024-01-09T08:36:39Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:adapter:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2024-01-09T08:36:39Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
amd/ese_vovnet39b
amd
2024-01-09T08:35:03Z
0
0
null
[ "onnx", "RyzenAI", "vision", "classification", "pytorch", "dataset:imagenet-1k", "arxiv:1904.09730", "license:apache-2.0", "region:us" ]
null
2023-12-04T09:17:27Z
--- license: apache-2.0 datasets: - imagenet-1k metrics: - accuracy tags: - RyzenAI - vision - classification - pytorch --- # ESE_VoVNet39b Quantized ESE_VoVNet39b model that could be supported by [AMD Ryzen AI](https://ryzenai.docs.amd.com/en/latest/). ## Model description VoVNet was first introduced in the paper [An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection](https://arxiv.org/abs/1904.09730). Pretrained on ImageNet-1k in timm by Ross Wightman using RandAugment RA recipe. The model implementation is from [timm](https://huggingface.co/timm/ese_vovnet39b.ra_in1k). ## How to use ### Installation Follow [Ryzen AI Installation](https://ryzenai.docs.amd.com/en/latest/inst.html) to prepare the environment for Ryzen AI. Run the following script to install pre-requisites for this model. ```bash pip install -r requirements.txt ``` ### Data Preparation Follow [ImageNet](https://huggingface.co/datasets/imagenet-1k) to prepare dataset. ### Model Evaluation ```python python eval_onnx.py --onnx_model ese_vovnet39b_int.onnx --ipu --provider_config Path\To\vaip_config.json --data_dir /Path/To/Your/Dataset ``` ### Performance |Metric |Accuracy on IPU| | :----: | :----: | |Top1/Top5| 78.96% / 94.53%| ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} } ``` ```bibtex @inproceedings{lee2019energy, title = {An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection}, author = {Lee, Youngwan and Hwang, Joong-won and Lee, Sangrok and Bae, Yuseok and Park, Jongyoul}, booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops}, year = {2019} } ```
1DS/adapter-title-brand-mapping-Llama-2-7b-chat-hf-v1
1DS
2024-01-09T08:23:35Z
0
0
peft
[ "peft", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:adapter:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2024-01-09T08:23:35Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Infrence Function def generate(title): # Define the roles and markers # Define the roles and markers prompt = prompt = f"[INST]Identify the brand from the given product title.[/INST]\n\n<TITL> {title} </TITL>\n\n"custom prompt here print("Prompt:") print(prompt) encoding = tokenizer(prompt, return_tensors="pt").to("cuda:0") output = model.generate(input_ids=encoding.input_ids, attention_mask=encoding.attention_mask, max_new_tokens=200, do_sample=True, temperature=0.01, eos_token_id=tokenizer.eos_token_id, top_k=0) print() # Subtract the length of input_ids from output to get only the model's response output_text = tokenizer.decode(output[0, len(encoding.input_ids[0]):], skip_special_tokens=False) output_text = re.sub('\n+', '\n', output_text) # remove excessive newline characters print("Generated Assistant Response:") print(output_text) return output_text
amy011872/finetune-mistral-cleaner-v2
amy011872
2024-01-09T08:20:39Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:mistralai/Mistral-7B-Instruct-v0.1", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.1", "license:apache-2.0", "region:us" ]
null
2024-01-09T06:13:22Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: mistralai/Mistral-7B-Instruct-v0.1 model-index: - name: finetune-mistral-cleaner-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetune-mistral-cleaner-v2 This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7539 ## Model description A Mistral model finetuned for cleaning web source. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 0.03 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9886 | 0.13 | 20 | 1.7551 | | 1.7559 | 0.27 | 40 | 1.7549 | | 2.0012 | 0.4 | 60 | 1.7547 | | 1.6501 | 0.53 | 80 | 1.7545 | | 1.8329 | 0.67 | 100 | 1.7543 | | 1.9872 | 0.8 | 120 | 1.7541 | | 1.7711 | 0.93 | 140 | 1.7539 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.1 - Datasets 2.16.1 - Tokenizers 0.15.0
s3nh/beberik-Lonepino-11B-GGUF
s3nh
2024-01-09T08:19:46Z
1
2
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2024-01-09T07:30:13Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/beberik/Lonepino-11B). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### Perplexity params Model Measure Q2_K Q3_K_S Q3_K_M Q3_K_L Q4_0 Q4_1 Q4_K_S Q4_K_M Q5_0 Q5_1 Q5_K_S Q5_K_M Q6_K Q8_0 F16 7B perplexity 6.7764 6.4571 6.1503 6.0869 6.1565 6.0912 6.0215 5.9601 5.9862 5.9481 5.9419 5.9208 5.9110 5.9070 5.9066 13B perplexity 5.8545 5.6033 5.4498 5.4063 5.3860 5.3608 5.3404 5.3002 5.2856 5.2706 5.2785 5.2638 5.2568 5.2548 5.2543 ### inference TODO # Original model card
kwaikeg/kagentlms_qwen_7b_mat_gguf
kwaikeg
2024-01-09T08:16:04Z
25
3
null
[ "gguf", "text-generation", "en", "zh", "dataset:kwaikeg/KAgentInstruct", "dataset:kwaikeg/KAgentBench", "license:cc-by-nc-nd-4.0", "endpoints_compatible", "region:us" ]
text-generation
2024-01-09T06:39:17Z
--- license: cc-by-nc-nd-4.0 datasets: - kwaikeg/KAgentInstruct - kwaikeg/KAgentBench language: - en - zh pipeline_tag: text-generation --- KwaiAgents ([Github](https://github.com/KwaiKEG/KwaiAgents)) is a series of Agent-related works open-sourced by the [KwaiKEG](https://github.com/KwaiKEG) from [Kuaishou Technology](https://www.kuaishou.com/en). The open-sourced content includes: 1. **KAgentSys-Lite**: An experimental Agent Loop implemented based on open-source search engines, browsers, time, calendar, weather, and other tools, which is only missing the memory mechanism and some search capabilities compared to the system in the paper. 2. **KAgentLMs**: A series of large language models with Agent capabilities such as planning, reflection, and tool-use, acquired through the Meta-agent tuning proposed in the paper. 3. **KAgentInstruct**: Fine-tuned data of instructions generated by the Meta-agent in the paper. 4. **KAgentBench**: Over 3,000 human-edited, automated evaluation data for testing Agent capabilities, with evaluation dimensions including planning, tool-use, reflection, concluding, and profiling. ## User Guide ### Serving by [Lamma.cpp](https://github.com/ggerganov/llama.cpp) (CPU) llama-cpp-python offers a web server which aims to act as a drop-in replacement for the OpenAI API. This allows you to use llama.cpp compatible models with any OpenAI compatible client (language libraries, services, etc). To install the server package and get started: ```bash pip install llama-cpp-python[server] python3 -m llama_cpp.server --model kagentlms_qwen_7b_mat_gguf/ggml-model-q4_0.gguf --chat_format chatml --port 8888 ``` Finally, you can use the curl command to invoke the model same as the OpenAI calling format. Here's an example: ```bash curl http://localhost:8888/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{"messages": [{"role": "user", "content": "Who is Andy Lau"}]}' ``` ## Citation ``` @article{pan2023kwaiagents, author = {Haojie Pan and Zepeng Zhai and Hao Yuan and Yaojia Lv and Ruiji Fu and Ming Liu and Zhongyuan Wang and Bing Qin }, title = {KwaiAgents: Generalized Information-seeking Agent System with Large Language Models}, journal = {CoRR}, volume = {abs/2312.04889}, year = {2023} } ```
ntc-ai/SDXL-LoRA-slider.HDR-high-dynamic-range
ntc-ai
2024-01-09T08:13:20Z
38
2
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2024-01-09T08:13:17Z
--- language: - en thumbnail: "images/evaluate/HDR, high dynamic range.../HDR, high dynamic range_17_3.0.png" widget: - text: HDR, high dynamic range output: url: images/HDR, high dynamic range_17_3.0.png - text: HDR, high dynamic range output: url: images/HDR, high dynamic range_19_3.0.png - text: HDR, high dynamic range output: url: images/HDR, high dynamic range_20_3.0.png - text: HDR, high dynamic range output: url: images/HDR, high dynamic range_21_3.0.png - text: HDR, high dynamic range output: url: images/HDR, high dynamic range_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "HDR, high dynamic range" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - HDR, high dynamic range (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/HDR, high dynamic range_17_-3.0.png" width=256 height=256 /> | <img src="images/HDR, high dynamic range_17_0.0.png" width=256 height=256 /> | <img src="images/HDR, high dynamic range_17_3.0.png" width=256 height=256 /> | | <img src="images/HDR, high dynamic range_19_-3.0.png" width=256 height=256 /> | <img src="images/HDR, high dynamic range_19_0.0.png" width=256 height=256 /> | <img src="images/HDR, high dynamic range_19_3.0.png" width=256 height=256 /> | | <img src="images/HDR, high dynamic range_20_-3.0.png" width=256 height=256 /> | <img src="images/HDR, high dynamic range_20_0.0.png" width=256 height=256 /> | <img src="images/HDR, high dynamic range_20_3.0.png" width=256 height=256 /> | ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` HDR, high dynamic range ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.HDR-high-dynamic-range', weight_name='HDR, high dynamic range.safetensors', adapter_name="HDR, high dynamic range") # Activate the LoRA pipe.set_adapters(["HDR, high dynamic range"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, HDR, high dynamic range" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 960+ unique and diverse LoRAs, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful LoRA slider creator, allowing you to craft your own custom LoRAs and experiment with endless possibilities. Your support on Patreon will allow us to continue developing and refining new models. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
freshpearYoon/medium3
freshpearYoon
2024-01-09T08:03:25Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "ko", "base_model:openai/whisper-medium", "base_model:finetune:openai/whisper-medium", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-09T01:54:25Z
--- language: - ko license: apache-2.0 base_model: openai/whisper-medium tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer model-index: - name: whisper_medium results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_medium This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the aihub dataset. It achieves the following results on the evaluation set: - Cer: 15.6625 - Loss: 1.4176 - Wer: 32.4788 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |:-------------:|:-----:|:----:|:-------:|:---------------:|:-------:| | 1.8819 | 0.01 | 100 | 11.9999 | 1.5851 | 29.7754 | | 1.6964 | 0.02 | 200 | 14.6066 | 1.4982 | 31.2945 | | 1.6783 | 0.02 | 300 | 14.8315 | 1.4504 | 31.7318 | | 1.6238 | 0.03 | 400 | 15.3631 | 1.4259 | 32.1490 | | 1.7569 | 0.04 | 500 | 15.6625 | 1.4176 | 32.4788 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.15.0 - Tokenizers 0.15.0
NaxGyumi/Taxi
NaxGyumi
2024-01-09T08:01:09Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-09T08:00:58Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="NaxGyumi/Taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jamesm808/ppo-LunarLander-v2
jamesm808
2024-01-09T07:52:01Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-07T09:02:45Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -154.64 +/- 53.16 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mlx-community/Llama-2-7b-WikiChat-mlx
mlx-community
2024-01-09T07:49:22Z
2
0
mlx
[ "mlx", "llama", "en", "license:llama2", "region:us" ]
null
2024-01-09T06:55:05Z
--- language: - en license: llama2 tags: - mlx --- # Llama-2-7b-WikiChat-mlx This model was converted to MLX format from [`stanford-oval/Llama-2-7b-WikiChat`](). Refer to the [original model card](https://huggingface.co/stanford-oval/Llama-2-7b-WikiChat) for more details on the model. ## Use with mlx ```bash pip install mlx git clone https://github.com/ml-explore/mlx-examples.git cd mlx-examples/llms/hf_llm python generate.py --model mlx-community/Llama-2-7b-WikiChat-mlx --prompt "My name is" ```
baichuan-inc/Baichuan-7B
baichuan-inc
2024-01-09T07:45:22Z
19,658
839
transformers
[ "transformers", "pytorch", "baichuan", "text-generation", "custom_code", "zh", "en", "arxiv:1910.07467", "arxiv:2009.03300", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-13T07:47:16Z
--- language: - zh - en pipeline_tag: text-generation inference: false --- # Baichuan-7B <!-- Provide a quick summary of what the model is/does. --> Baichuan-7B是由百川智能开发的一个开源的大规模预训练模型。基于Transformer结构,在大约1.2万亿tokens上训练的70亿参数模型,支持中英双语,上下文窗口长度为4096。在标准的中文和英文权威benchmark(C-EVAL/MMLU)上均取得同尺寸最好的效果。 如果希望使用Baichuan-7B(如进行推理、Finetune等),我们推荐使用配套代码库[Baichuan-7B](https://github.com/baichuan-inc/Baichuan-7B)。 Baichuan-7B is an open-source large-scale pre-trained model developed by Baichuan Intelligent Technology. Based on the Transformer architecture, it is a model with 7 billion parameters trained on approximately 1.2 trillion tokens. It supports both Chinese and English, with a context window length of 4096. It achieves the best performance of its size on standard Chinese and English authoritative benchmarks (C-EVAL/MMLU). If you wish to use Baichuan-7B (for inference, finetuning, etc.), we recommend using the accompanying code library [Baichuan-7B](https://github.com/baichuan-inc/Baichuan-7B). ## Why use Baichuan-7B - 在同尺寸模型中Baichuan-7B达到了目前SOTA的水平,参考下面MMLU指标 - Baichuan-7B使用自有的中英文双语语料进行训练,在中文上进行优化,在C-Eval达到SOTA水平 - 不同于LLaMA完全禁止商业使用,Baichuan-7B使用更宽松的开源协议,允许用于商业目的 - Among models of the same size, Baichuan-7B has achieved the current state-of-the-art (SOTA) level, as evidenced by the following MMLU metrics. - Baichuan-7B is trained on proprietary bilingual Chinese-English corpora, optimized for Chinese, and achieves SOTA performance on C-Eval. - Unlike LLaMA, which completely prohibits commercial use, Baichuan-7B employs a more lenient open-source license, allowing for commercial purposes. ## How to Get Started with the Model 如下是一个使用Baichuan-7B进行1-shot推理的任务,根据作品给出作者名,正确输出为"夜雨寄北->李商隐" ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan-7B", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan-7B", device_map="auto", trust_remote_code=True) inputs = tokenizer('登鹳雀楼->王之涣\n夜雨寄北->', return_tensors='pt') inputs = inputs.to('cuda:0') pred = model.generate(**inputs, max_new_tokens=64,repetition_penalty=1.1) print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True)) ``` The following is a task of performing 1-shot inference using Baichuan-7B, where the author's name is given based on the work, with the correct output being "One Hundred Years of Solitude->Gabriel Garcia Marquez" ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan-7B", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan-7B", device_map="auto", trust_remote_code=True) inputs = tokenizer('Hamlet->Shakespeare\nOne Hundred Years of Solitude->', return_tensors='pt') inputs = inputs.to('cuda:0') pred = model.generate(**inputs, max_new_tokens=64,repetition_penalty=1.1) print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True)) ``` ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** 百川智能(Baichuan Intelligent Technology) - **Email**: opensource@baichuan-inc.com - **Language(s) (NLP):** Chinese/English - **License:** [Baichuan-7B License](https://huggingface.co/baichuan-inc/Baichuan-7B/blob/main/baichuan-7B%20%E6%A8%A1%E5%9E%8B%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE.pdf) ### Model Sources <!-- Provide the basic links for the model. --> 整体模型基于标准的Transformer结构,我们采用了和LLaMA一样的模型设计 - **Position Embedding**:采用rotary-embedding,是现阶段被大多数模型采用的位置编码方案,具有很好的外推性。 - **Feedforward Layer**:采用SwiGLU,Feedforward变化为(8/3)倍的隐含层大小,即11008。 - **Layer Normalization**: 基于[RMSNorm](https://arxiv.org/abs/1910.07467)的Pre-Normalization。 具体参数和见下表 | Hyperparameter | Value | |----------------|-------| |n_parameters | 7000559616 | |n_layers | 32 | | n_heads | 32 | | d_model | 4096 | | vocab size | 64000 | | sequence length | 4096 | The overall model is based on the standard Transformer structure, and we have adopted the same model design as LLaMA: - Position Embedding: We use rotary-embedding, which is the position encoding scheme adopted by most models at this stage, and it has excellent extrapolation capabilities. - Feedforward Layer: We use SwiGLU. The feedforward changes to (8/3) times the size of the hidden layer, that is, 11008. - Layer Normalization: Pre-Normalization based on [RMSNorm](https://arxiv.org/abs/1910.07467). The specific parameters are as follows: | Hyperparameter | Value | |----------------|-------| |n_parameters | 7000559616 | |n_layers | 32 | | n_heads | 32 | | d_model | 4096 | | vocab size | 64000 | | sequence length | 4096 | ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Downstream Use <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> 我们同时开源出了和本模型配套的训练代码,允许进行高效的Finetune用于下游任务,具体参见[Baichuan-7B](https://github.com/baichuan-inc/Baichuan-7B)。 We have also open-sourced the training code that accompanies this model, allowing for efficient finetuning for downstream tasks. For more details, please refer to [Baichuan-7B](https://github.com/baichuan-inc/Baichuan-7B). ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> 在没有充分评估风险和采取缓解措施的情况下投入生产使用;任何可能被视为不负责任或有害的使用案例。 Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful. ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> Baichuan-7B可能会产生事实上不正确的输出,不应依赖它产生事实上准确的信息。Baichuan-7B是在各种公共数据集上进行训练的。尽管我们已经做出了巨大的努力来清洗预训练数据,但这个模型可能会生成淫秽、偏见或其他冒犯性的输出。 Baichuan-7B can produce factually incorrect output, and should not be relied on to produce factually accurate information. Baichuan-7B was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs. ## Training Details 训练具体设置参见[Baichuan-7B](https://github.com/baichuan-inc/Baichuan-7B)。 For specific training settings, please refer to [Baichuan-7B](https://github.com/baichuan-inc/Baichuan-7B). ## Evaluation ### 中文评测 #### C-Eval [CEval数据集](https://cevalbenchmark.com/index.html)是一个全面的中文基础模型评测数据集,涵盖了52个学科和四个难度的级别。我们使用该数据集的dev集作为few-shot的来源,在test集上进行了5-shot测试。 | Model 5-shot | Average | Avg(Hard) | STEM | Social Sciences | Humanities | Others | |-----------------------------|---------|-----------|------|-----------------|------------|--------| | GPT-4 | 68.7 | 54.9 | 67.1 | 77.6 | 64.5 | 67.8 | | ChatGPT | 54.4 | 41.4 | 52.9 | 61.8 | 50.9 | 53.6 | | Claude-v1.3 | 54.2 | 39.0 | 51.9 | 61.7 | 52.1 | 53.7 | | Claude-instant-v1.0 | 45.9 | 35.5 | 43.1 | 53.8 | 44.2 | 45.4 | | moss-moon-003-base (16B) | 27.4 | 24.5 | 27.0 | 29.1 | 27.2 | 26.9 | | Ziya-LLaMA-13B-pretrain | 30.2 | 22.7 | 27.7 | 34.4 | 32.0 | 28.9 | | LLaMA-7B-hf | 27.1 | 25.9 | 27.1 | 26.8 | 27.9 | 26.3 | | ChatGLM-6B | 34.5 | 23.1 | 30.4 | 39.6 | 37.4 | 34.5 | | Falcon-7B | 25.8 | 24.3 | 25.8 | 26.0 | 25.8 | 25.6 | | Open-LLaMA-v2-pretrain (7B) | 24.0 | 22.5 | 23.1 | 25.3 | 25.2 | 23.2 | | TigerBot-7B-base | 25.7 | 27.0 | 27.3 | 24.7 | 23.4 | 26.1 | | Aquila-7B<sup>*</sup> | 25.5 | 25.2 | 25.6 | 24.6 | 25.2 | 26.6 | | BLOOM-7B | 22.8 | 20.2 | 21.8 | 23.3 | 23.9 | 23.3 | | BLOOMZ-7B | 35.7 | 25.8 | 31.3 | 43.5 | 36.6 | 35.6 | | **Baichuan-7B** | 42.8 | 31.5 | 38.2 | 52.0 | 46.2 | 39.3 | #### Gaokao [Gaokao](https://github.com/ExpressAI/AI-Gaokao) 是一个以中国高考题作为评测大语言模型能力的数据集,用以评估模型的语言能力和逻辑推理能力。 我们只保留了其中的单项选择题,并对所有模型进行统一5-shot测试。 以下是测试的结果。 | Model | Average | |-------------------------|-----------------| | Open-LLaMA-v2-pretrain | 21.41 | | Ziya-LLaMA-13B-pretrain | 23.17 | | Falcon-7B | 23.98 | | TigerBot-7B-base | 25.94 | | LLaMA-7B | 27.81 | | ChatGLM-6B | 21.41 | | BLOOM-7B | 26.96 | | BLOOMZ-7B | 28.72 | | Aquila-7B<sup>*</sup> | 24.39 | | **Baichuan-7B** | **36.24** | #### AGIEval [AGIEval](https://github.com/microsoft/AGIEval) 旨在评估模型的认知和解决问题相关的任务中的一般能力。 我们只保留了其中的四选一单项选择题,随机划分后对所有模型进行了统一5-shot测试。 | Model | Average | |-------------------------|-----------------| | Open-LLaMA-v2-pretrain | 23.49 | | Ziya-LLaMA-13B-pretrain | 27.64 | | Falcon-7B | 27.18 | | TigerBot-7B-base | 25.19 | | LLaMA-7B | 28.17 | | ChatGLM-6B | 23.49 | | BLOOM-7B | 26.55 | | BLOOMZ-7B | 30.27 | | Aquila-7B<sup>*</sup> | 25.58 | | **Baichuan-7B** | **34.44** | <sup>*</sup>其中Aquila模型来源于[智源官方网站](https://model.baai.ac.cn/model-detail/100098),仅做参考 ### English Leaderboard In addition to Chinese, we also tested the model's performance in English. #### MMLU [MMLU](https://arxiv.org/abs/2009.03300) is an English evaluation dataset that includes 57 multiple-choice tasks, covering elementary mathematics, American history, computer science, law, etc. The difficulty ranges from high school level to expert level, making it a mainstream LLM evaluation dataset. We adopted the [open-source]((https://github.com/hendrycks/test)) evaluation scheme, and the final 5-shot results are as follows: | Model | Humanities | Social Sciences | STEM | Other | Average | |----------------------------------------|-----------:|:---------------:|:----:|:-----:|:-------:| | LLaMA-7B<sup>2</sup> | 34.0 | 38.3 | 30.5 | 38.1 | 35.1 | | Falcon-7B<sup>1</sup> | - | - | - | - | 35.0 | | mpt-7B<sup>1</sup> | - | - | - | - | 35.6 | | ChatGLM-6B<sup>0</sup> | 35.4 | 41.0 | 31.3 | 40.5 | 36.9 | | BLOOM 7B<sup>0</sup> | 25.0 | 24.4 | 26.5 | 26.4 | 25.5 | | BLOOMZ 7B<sup>0</sup> | 31.3 | 42.1 | 34.4 | 39.0 | 36.1 | | moss-moon-003-base (16B)<sup>0</sup> | 24.2 | 22.8 | 22.4 | 24.4 | 23.6 | | moss-moon-003-sft (16B)<sup>0</sup> | 30.5 | 33.8 | 29.3 | 34.4 | 31.9 | | **Baichuan-7B<sup>0</sup>** | 38.4 | 48.9 | 35.6 | 48.1 | 42.3 | The superscript in the Model column indicates the source of the results. ``` 0:reimplemented 1:https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard 2:https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu ``` ## Our Group ![WeChat](https://github.com/baichuan-inc/Baichuan-13B/blob/main/media/wechat.jpeg?raw=true)
kwaikeg/kagentlms_qwen_7b_mat
kwaikeg
2024-01-09T07:45:10Z
42
15
transformers
[ "transformers", "pytorch", "qwen", "feature-extraction", "text-generation", "custom_code", "en", "zh", "dataset:kwaikeg/KAgentInstruct", "dataset:kwaikeg/KAgentBench", "license:cc-by-nc-nd-4.0", "region:us" ]
text-generation
2023-11-17T06:24:12Z
--- license: cc-by-nc-nd-4.0 datasets: - kwaikeg/KAgentInstruct - kwaikeg/KAgentBench language: - en - zh pipeline_tag: text-generation --- KwaiAgents ([Github](https://github.com/KwaiKEG/KwaiAgents)) is a series of Agent-related works open-sourced by the [KwaiKEG](https://github.com/KwaiKEG) from [Kuaishou Technology](https://www.kuaishou.com/en). The open-sourced content includes: 1. **KAgentSys-Lite**: An experimental Agent Loop implemented based on open-source search engines, browsers, time, calendar, weather, and other tools, which is only missing the memory mechanism and some search capabilities compared to the system in the paper. 2. **KAgentLMs**: A series of large language models with Agent capabilities such as planning, reflection, and tool-use, acquired through the Meta-agent tuning proposed in the paper. 3. **KAgentInstruct**: Fine-tuned data of instructions generated by the Meta-agent in the paper. 4. **KAgentBench**: Over 3,000 human-edited, automated evaluation data for testing Agent capabilities, with evaluation dimensions including planning, tool-use, reflection, concluding, and profiling. ## User Guide ### Direct usage Tutorial can refer to [QwenLM/Qwen](https://github.com/QwenLM/Qwen) ```python from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation import GenerationConfig tokenizer = AutoTokenizer.from_pretrained("kwaikeg/kagentlms_qwen_7b_mat", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( "kwaikeg/kagentlms_qwen_7b_mat", device_map="auto", trust_remote_code=True ).eval() response, history = model.chat(tokenizer, "你好", history=None) print(response) ``` ### AgentLMs as service #### Serving by [vLLM](https://github.com/vllm-project/vllm) (GPU) We recommend using [vLLM](https://github.com/vllm-project/vllm) and [FastChat](https://github.com/lm-sys/FastChat) to deploy the model inference service. First, you need to install the corresponding packages (for detailed usage, please refer to the documentation of the two projects): ```bash pip install vllm pip install "fschat[model_worker,webui]" ``` To deploy KAgentLMs, you first need to start the controller in one terminal. ```bash python -m fastchat.serve.controller ``` Secondly, you should use the following command in another terminal for single-gpu inference service deployment: ```bash python -m fastchat.serve.vllm_worker --model-path $model_path --trust-remote-code ``` Where `$model_path` is the local path of the model downloaded. If the GPU does not support Bfloat16, you can add `--dtype half` to the command line. Thirdly, start the REST API server in the third terminal. ```bash python -m fastchat.serve.openai_api_server --host localhost --port 8888 ``` Finally, you can use the curl command to invoke the model same as the OpenAI calling format. Here's an example: ```bash curl http://localhost:8888/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{"model": "kagentlms_qwen_7b_mat", "messages": [{"role": "user", "content": "Who is Andy Lau"}]}' ``` #### Serving by [Lamma.cpp](https://github.com/ggerganov/llama.cpp) (CPU) llama-cpp-python offers a web server which aims to act as a drop-in replacement for the OpenAI API. This allows you to use llama.cpp compatible models with any OpenAI compatible client (language libraries, services, etc). The converted model can be found in [kwaikeg/kagentlms_qwen_7b_mat_gguf](https://huggingface.co/kwaikeg/kagentlms_qwen_7b_mat_gguf). To install the server package and get started: ```bash pip install "llama-cpp-python[server]" python3 -m llama_cpp.server --model kagentlms_qwen_7b_mat_gguf/ggml-model-q4_0.gguf --chat_format chatml --port 8888 ``` ### Citation ``` @article{pan2023kwaiagents, author = {Haojie Pan and Zepeng Zhai and Hao Yuan and Yaojia Lv and Ruiji Fu and Ming Liu and Zhongyuan Wang and Bing Qin }, title = {KwaiAgents: Generalized Information-seeking Agent System with Large Language Models}, journal = {CoRR}, volume = {abs/2312.04889}, year = {2023} } ```
kar-saaragh/a2c-PandaPickAndPlace-v3
kar-saaragh
2024-01-09T07:43:07Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaPickAndPlace-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-09T07:38:27Z
--- library_name: stable-baselines3 tags: - PandaPickAndPlace-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaPickAndPlace-v3 type: PandaPickAndPlace-v3 metrics: - type: mean_reward value: -50.00 +/- 0.00 name: mean_reward verified: false --- # **A2C** Agent playing **PandaPickAndPlace-v3** This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
LI-ST/Mistral-7B-ko-v0.005
LI-ST
2024-01-09T07:36:16Z
39
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "ko", "license:cc-by-nc-nd-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-08T10:22:04Z
--- license: cc-by-nc-nd-4.0 language: - en - ko library_name: transformers pipeline_tag: text-generation --- <p><h1>Mistral-7B-ko</h1></p> basemodel: Open-Orca/Mistral-7B-OpenOrca ================================================= <BR> This model is a temporary model for testing. <BR> We will be deleting it soon. <BR> =================================================
zxhezexin/openlrm-large-obj-1.0
zxhezexin
2024-01-09T07:32:56Z
7
5
transformers
[ "transformers", "image-to-3d", "dataset:allenai/objaverse", "arxiv:2311.04400", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
image-to-3d
2024-01-09T05:59:51Z
--- license: cc-by-nc-4.0 datasets: - allenai/objaverse pipeline_tag: image-to-3d --- # Model Card for OpenLRM ## Overview This model card is for the [OpenLRM](https://github.com/3DTopia/OpenLRM) project, which is an open-source implementation of the paper [LRM](https://arxiv.org/abs/2311.04400). ## Model Details | Model | Training Data | Layers | Feat. Dim | Trip. Dim. | Render Res. | Link | | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | openlrm-small-obj-1.0 | Objaverse | 12 | 768 | 32 | 192 | [HF](https://huggingface.co/zxhezexin/openlrm-small-obj-1.0) | | openlrm-base-obj-1.0 | Objaverse | 12 | 1024 | 40 | 192 | [HF](https://huggingface.co/zxhezexin/openlrm-base-obj-1.0) | | openlrm-large-obj-1.0 | Objaverse | 16 | 1024 | 80 | 384 | [HF](https://huggingface.co/zxhezexin/openlrm-large-obj-1.0) | | openlrm-small | Objaverse + MVImgNet | 12 | 768 | 32 | 192 | To be released | | openlrm-base | Objaverse + MVImgNet | 12 | 1024 | 40 | 192 | To be released | | openlrm-large | Objaverse + MVImgNet | 16 | 1024 | 80 | 384 | To be released | ## Differences from the Original Paper - We do not use the deferred back-propagation technique in the original paper. - The triplane decoder contains 4 layers in our implementation. ## License - The model weights are released under the [Creative Commons Attribution-NonCommercial 4.0 International License](LICENSE_WEIGHT). - They are provided for research purposes only, and CANNOT be used commercially. ## Disclaimer This model is an open-source implementation and is NOT the official release of the original research paper. While it aims to reproduce the original results as faithfully as possible, there may be variations due to model implementation, training data, and other factors. ### Ethical Considerations - This model should be used responsibly and ethically, and should not be used for malicious purposes. - Users should be aware of potential biases in the training data. - The model should not be used under the circumstances that could lead to harm or unfair treatment of individuals or groups. ### Usage Considerations - The model is provided "as is" without warranty of any kind. - Users are responsible for ensuring that their use complies with all relevant laws and regulations. - The developers and contributors of this model are not liable for any damages or losses arising from the use of this model. --- *This model card is subject to updates and modifications. Users are advised to check for the latest version regularly.*
zxhezexin/openlrm-small-obj-1.0
zxhezexin
2024-01-09T07:32:35Z
41
6
transformers
[ "transformers", "image-to-3d", "dataset:allenai/objaverse", "arxiv:2311.04400", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
image-to-3d
2024-01-09T05:56:48Z
--- license: cc-by-nc-4.0 datasets: - allenai/objaverse pipeline_tag: image-to-3d --- # Model Card for OpenLRM ## Overview This model card is for the [OpenLRM](https://github.com/3DTopia/OpenLRM) project, which is an open-source implementation of the paper [LRM](https://arxiv.org/abs/2311.04400). ## Model Details | Model | Training Data | Layers | Feat. Dim | Trip. Dim. | Render Res. | Link | | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | openlrm-small-obj-1.0 | Objaverse | 12 | 768 | 32 | 192 | [HF](https://huggingface.co/zxhezexin/openlrm-small-obj-1.0) | | openlrm-base-obj-1.0 | Objaverse | 12 | 1024 | 40 | 192 | [HF](https://huggingface.co/zxhezexin/openlrm-base-obj-1.0) | | openlrm-large-obj-1.0 | Objaverse | 16 | 1024 | 80 | 384 | [HF](https://huggingface.co/zxhezexin/openlrm-large-obj-1.0) | | openlrm-small | Objaverse + MVImgNet | 12 | 768 | 32 | 192 | To be released | | openlrm-base | Objaverse + MVImgNet | 12 | 1024 | 40 | 192 | To be released | | openlrm-large | Objaverse + MVImgNet | 16 | 1024 | 80 | 384 | To be released | ## Differences from the Original Paper - We do not use the deferred back-propagation technique in the original paper. - The triplane decoder contains 4 layers in our implementation. ## License - The model weights are released under the [Creative Commons Attribution-NonCommercial 4.0 International License](LICENSE_WEIGHT). - They are provided for research purposes only, and CANNOT be used commercially. ## Disclaimer This model is an open-source implementation and is NOT the official release of the original research paper. While it aims to reproduce the original results as faithfully as possible, there may be variations due to model implementation, training data, and other factors. ### Ethical Considerations - This model should be used responsibly and ethically, and should not be used for malicious purposes. - Users should be aware of potential biases in the training data. - The model should not be used under the circumstances that could lead to harm or unfair treatment of individuals or groups. ### Usage Considerations - The model is provided "as is" without warranty of any kind. - Users are responsible for ensuring that their use complies with all relevant laws and regulations. - The developers and contributors of this model are not liable for any damages or losses arising from the use of this model. --- *This model card is subject to updates and modifications. Users are advised to check for the latest version regularly.*
ProjectsbyGaurav/donut-base-gaurav-receipt-epoch-5
ProjectsbyGaurav
2024-01-09T07:28:52Z
36
0
transformers
[ "transformers", "tensorboard", "safetensors", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:podbilabs/wildreceipt-donut", "base_model:naver-clova-ix/donut-base", "base_model:finetune:naver-clova-ix/donut-base", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2024-01-09T05:50:46Z
--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer datasets: - podbilabs/wildreceipt-donut model-index: - name: donut-base-gaurav-receipt-epoch-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-gaurav-receipt-epoch-5 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
NaxGyumi/q-FrozenLake-v1-4x4-noSlippery
NaxGyumi
2024-01-09T07:25:07Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-09T07:24:55Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="NaxGyumi/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
s3nh/tenyx-TenyxChat-7B-v1-GGUF
s3nh
2024-01-09T07:11:46Z
0
0
transformers
[ "transformers", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2024-01-09T07:11:44Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/tenyx/TenyxChat-7B-v1). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### Perplexity params Model Measure Q2_K Q3_K_S Q3_K_M Q3_K_L Q4_0 Q4_1 Q4_K_S Q4_K_M Q5_0 Q5_1 Q5_K_S Q5_K_M Q6_K Q8_0 F16 7B perplexity 6.7764 6.4571 6.1503 6.0869 6.1565 6.0912 6.0215 5.9601 5.9862 5.9481 5.9419 5.9208 5.9110 5.9070 5.9066 13B perplexity 5.8545 5.6033 5.4498 5.4063 5.3860 5.3608 5.3404 5.3002 5.2856 5.2706 5.2785 5.2638 5.2568 5.2548 5.2543 ### inference TODO # Original model card
acedev003/llama-2-coder-7b
acedev003
2024-01-09T07:11:04Z
8
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "generated_from_trainer", "code", "coding", "dataset:HuggingFaceH4/CodeAlpaca_20K", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-09T07:04:33Z
--- tags: - generated_from_trainer - code - coding - llama model-index: - name: Llama-2-coder-7b results: [] license: apache-2.0 language: - code thumbnail: https://huggingface.co/mrm8488/llama-2-coder-7b/resolve/main/llama2-coder-logo-removebg-preview.png datasets: - HuggingFaceH4/CodeAlpaca_20K pipeline_tag: text-generation --- <div style="text-align:center;width:250px;height:250px;"> <img src="https://huggingface.co/mrm8488/llama-2-coder-7b/resolve/main/llama2-coder-logo-removebg-preview.png" alt="llama-2 coder logo""> </div> # LlaMa 2 Coder 🦙👩‍💻 **LlaMa-2 7b** fine-tuned on the **CodeAlpaca 20k instructions dataset** by using the method **QLoRA** with [PEFT](https://github.com/huggingface/peft) library. ## Model description 🧠 [Llama-2](https://huggingface.co/meta-llama/Llama-2-7b) Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM. ## Training and evaluation data 📚 [CodeAlpaca_20K](https://huggingface.co/datasets/HuggingFaceH4/CodeAlpaca_20K): contains 20K instruction-following data used for fine-tuning the Code Alpaca model. ### Training hyperparameters ⚙ ```py optim="paged_adamw_32bit", num_train_epochs = 2, eval_steps=50, save_steps=50, evaluation_strategy="steps", save_strategy="steps", save_total_limit=2, seed=66, load_best_model_at_end=True, logging_steps=1, learning_rate=2e-4, fp16=True, bf16=False, max_grad_norm=0.3, warmup_ratio=0.03, group_by_length=True, lr_scheduler_type="constant" ``` ### Training results 🗒️ | Step | Training Loss | Validation Loss | |------|----------|----------| | 50 | 0.624400 | 0.600070 | | 100 | 0.634100 | 0.592757 | | 150 | 0.545800 | 0.586652 | | 200 | 0.572500 | 0.577525 | | 250 | 0.528000 | 0.590118 | ### Eval results 📊 WIP ### Example of usage 👩‍💻 ```py import torch from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig model_id = "mrm8488/llama-2-coder-7b" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda") def create_prompt(instruction): system = "You are a coding assistant that will help the user to resolve the following instruction:" instruction = "### Instruction: " + instruction return system + "\n" + instruction + "\n\n" + "### Solution:" + "\n" def generate( instruction, max_new_tokens=128, temperature=0.1, top_p=0.75, top_k=40, num_beams=4, **kwargs, ): prompt = create_prompt(instruction) print(prompt) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to("cuda") attention_mask = inputs["attention_mask"].to("cuda") generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, **kwargs, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, attention_mask=attention_mask, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, early_stopping=True ) s = generation_output.sequences[0] output = tokenizer.decode(s) return output.split("### Solution:")[1].lstrip("\n") instruction = """ Edit the following XML code to add a navigation bar to the top of a web page <html> <head> <title>CliBrAIn</title> </head> """ print(generate(instruction)) ``` ### Citation ``` @misc {manuel_romero_2023, author = { {Manuel Romero} }, title = { llama-2-coder-7b (Revision d30d193) }, year = 2023, url = { https://huggingface.co/mrm8488/llama-2-coder-7b }, doi = { 10.57967/hf/0931 }, publisher = { Hugging Face } } ```
Zienab/wav
Zienab
2024-01-09T07:06:37Z
103
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "ar", "base_model:facebook/wav2vec2-large-xlsr-53", "base_model:finetune:facebook/wav2vec2-large-xlsr-53", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-08T11:49:55Z
--- license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53 tags: - generated_from_trainer model-index: - name: wav results: [] language: - ar metrics: - accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0
DavideTHU/SDXL_LoRA_macbook2
DavideTHU
2024-01-09T06:58:43Z
7
1
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-01-09T06:22:50Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora widget: - text: 'photo of a <s0><s1> laptop' base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of a <s0><s1> laptop license: openrail++ --- # SDXL LoRA DreamBooth - DavideTHU/SDXL_LoRA_macbook2 <Gallery /> ## Model description ### These are DavideTHU/SDXL_LoRA_macbook2 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - **LoRA**: download **[`SDXL_LoRA_macbook2.safetensors` here 💾](/DavideTHU/SDXL_LoRA_macbook2/blob/main/SDXL_LoRA_macbook2.safetensors)**. - Place it on your `models/Lora` folder. - On AUTOMATIC1111, load the LoRA by adding `<lora:SDXL_LoRA_macbook2:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/). - *Embeddings*: download **[`SDXL_LoRA_macbook2_emb.safetensors` here 💾](/DavideTHU/SDXL_LoRA_macbook2/blob/main/SDXL_LoRA_macbook2_emb.safetensors)**. - Place it on it on your `embeddings` folder - Use it by adding `SDXL_LoRA_macbook2_emb` to your prompt. For example, `photo of a SDXL_LoRA_macbook2_emb laptop` (you need both the LoRA and the embeddings as they were trained together for this LoRA) ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('DavideTHU/SDXL_LoRA_macbook2', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='DavideTHU/SDXL_LoRA_macbook2', filename='SDXL_LoRA_macbook2_emb.safetensors' repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2) image = pipeline('photo of a <s0><s1> laptop').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `<s0><s1>` in your prompt ## Details All [Files & versions](/DavideTHU/SDXL_LoRA_macbook2/tree/main). The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
pranitamahajan/falcon7binstruct
pranitamahajan
2024-01-09T06:57:22Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:tiiuae/falcon-7b", "base_model:adapter:tiiuae/falcon-7b", "license:apache-2.0", "region:us" ]
null
2024-01-09T06:29:51Z
--- license: apache-2.0 library_name: peft tags: - trl - sft - generated_from_trainer base_model: tiiuae/falcon-7b model-index: - name: falcon7binstruct results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # falcon7binstruct This model is a fine-tuned version of [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - training_steps: 10 - mixed_precision_training: Native AMP ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
kar-saaragh/a2c-PandaReachDense-v3
kar-saaragh
2024-01-09T06:39:43Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-09T06:35:02Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.18 +/- 0.09 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CAMeL-Lab/arabart-zaebuc-gec-ged-13
CAMeL-Lab
2024-01-09T06:35:07Z
150
2
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "ar", "arxiv:2305.14734", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-11-09T12:34:53Z
--- license: mit language: - ar --- # AraBART+Morph+GEC<sup>13</sup> ZAEBUC Model ## Model description **AraBART+Morph+GEC<sup>13</sup>** is a Modern Standard Arabic (MSA) grammatical error correction (GEC) model that was built by fine-tuning the [AraBART](https://huggingface.co/moussaKam/AraBART) model. For the fine-tuning, we used the [QALB-2015](https://aclanthology.org/W14-3605.pdf), [QALB-2015](https://aclanthology.org/W15-3204.pdf), and [ZAEBUC](https://aclanthology.org/2022.lrec-1.9.pdf) datasets. Please note that this model was fine-tuned on morphologically preprocessed text. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[Advancements in Arabic Grammatical Error Detection and Correction: An Empirical Investigation](https://arxiv.org/abs/2305.14734)."* Our fine-tuning code and data can be found [here](https://github.com/CAMeL-Lab/arabic-gec). ## Intended uses You can use the AraBART+Morph+GEC<sup>13</sup> model as part of an extended version of the [transformers](https://github.com/CAMeL-Lab/arabic-gec) that we make publicly available. The GEC model is intended to be used with this [GED](https://huggingface.co/CAMeL-Lab/camelbert-msa-zaebuc-ged-13) model as we outlined in the example below. We used this GEC model to report results on the ZAEBUC dev and test sets in our [paper](https://arxiv.org/abs/2305.14734). #### How to use To use the model with our extended version of transformers: ```python from transformers import AutoTokenizer, BertForTokenClassification, MBartForConditionalGeneration from camel_tools.disambig.bert import BERTUnfactoredDisambiguator from camel_tools.utils.dediac import dediac_ar import torch.nn.functional as F import torch bert_disambig = BERTUnfactoredDisambiguator.pretrained() ged_tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/camelbert-msa-zaebuc-ged-13') ged_model = BertForTokenClassification.from_pretrained('CAMeL-Lab/camelbert-msa-zaebuc-ged-13') gec_tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/arabart-zaebuc-gec-ged-13') gec_model = MBartForConditionalGeneration.from_pretrained('CAMeL-Lab/arabart-zaebuc-gec-ged-13') text = 'و قال له انه يحب اكل الطعام بكثره .' # morph processing the input text text_disambig = bert_disambig.disambiguate(text.split()) morph_pp_text = [dediac_ar(w_disambig.analyses[0].analysis['diac']) for w_disambig in text_disambig] morph_pp_text = ' '.join(morph_pp_text) # GED tagging inputs = ged_tokenizer([morph_pp_text], return_tensors='pt') logits = ged_model(**inputs).logits preds = F.softmax(logits, dim=-1).squeeze()[1:-1] pred_ged_labels = [ged_model.config.id2label[p.item()] for p in torch.argmax(preds, -1)] # Extending GED label to GEC-tokenized input ged_label2ids = gec_model.config.ged_label2id tokens, ged_labels = [], [] for word, label in zip(morph_pp_text.split(), pred_ged_labels): word_tokens = gec_tokenizer.tokenize(word) if len(word_tokens) > 0: tokens.extend(word_tokens) ged_labels.extend([label for _ in range(len(word_tokens))]) input_ids = gec_tokenizer.convert_tokens_to_ids(tokens) input_ids = [gec_tokenizer.bos_token_id] + input_ids + [gec_tokenizer.eos_token_id] label_ids = [ged_label2ids.get(label, ged_label2ids['<pad>']) for label in ged_labels] label_ids = [ged_label2ids['UC']] + label_ids + [ged_label2ids['UC']] attention_mask = [1 for _ in range(len(input_ids))] gen_kwargs = {'num_beams': 5, 'max_length': 100, 'num_return_sequences': 1, 'no_repeat_ngram_size': 0, 'early_stopping': False, 'ged_tags': torch.tensor([label_ids]), 'attention_mask': torch.tensor([attention_mask]) } # GEC generation generated = gec_model.generate(torch.tensor([input_ids]), **gen_kwargs) generated_text = gec_tokenizer.batch_decode(generated, skip_special_tokens=True, clean_up_tokenization_spaces=False )[0] print(generated_text) # وقال له أنه يحب أكل الطعام بكثرة . ``` ## Citation ```bibtex @inproceedings{alhafni-etal-2023-advancements, title = "Advancements in {A}rabic Grammatical Error Detection and Correction: An Empirical Investigation", author = "Alhafni, Bashar and Inoue, Go and Khairallah, Christian and Habash, Nizar", editor = "Bouamor, Houda and Pino, Juan and Bali, Kalika", booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2023", address = "Singapore", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.emnlp-main.396", doi = "10.18653/v1/2023.emnlp-main.396", pages = "6430--6448", abstract = "Grammatical error correction (GEC) is a well-explored problem in English with many existing models and datasets. However, research on GEC in morphologically rich languages has been limited due to challenges such as data scarcity and language complexity. In this paper, we present the first results on Arabic GEC using two newly developed Transformer-based pretrained sequence-to-sequence models. We also define the task of multi-class Arabic grammatical error detection (GED) and present the first results on multi-class Arabic GED. We show that using GED information as auxiliary input in GEC models improves GEC performance across three datasets spanning different genres. Moreover, we also investigate the use of contextual morphological preprocessing in aiding GEC systems. Our models achieve SOTA results on two Arabic GEC shared task datasets and establish a strong benchmark on a recently created dataset. We make our code, data, and pretrained models publicly available.", } ```
akashvshroff/mistral-7b-midjourney
akashvshroff
2024-01-09T06:14:48Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-Instruct-v0.1", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.1", "region:us" ]
null
2024-01-09T05:10:10Z
--- library_name: peft base_model: mistralai/Mistral-7B-Instruct-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
AlephNull/Reinforce-CartPole-v1
AlephNull
2024-01-09T06:13:44Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-01-09T06:01:27Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
amazingvince/chess-llama-smol-1024
amazingvince
2024-01-09T06:10:11Z
47
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-07T07:00:26Z
--- base_model: chess-llama/config.json tags: - generated_from_trainer metrics: - accuracy model-index: - name: mini-1024 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mini-1024 This model is a fine-tuned version of [chess-llama/config.json](https://huggingface.co/chess-llama/config.json) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4399 - Accuracy: 0.7228 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 8326 - distributed_type: multi-GPU - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-06 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 2.1877 | 0.0 | 200 | 2.1894 | 0.5763 | | 1.612 | 0.01 | 400 | 1.5928 | 0.6109 | | 1.2645 | 0.01 | 600 | 1.2604 | 0.6379 | | 1.0711 | 0.01 | 800 | 1.0720 | 0.6547 | | 0.953 | 0.02 | 1000 | 0.9513 | 0.6628 | | 0.9024 | 0.02 | 1200 | 0.8965 | 0.6678 | | 0.8682 | 0.02 | 1400 | 0.8618 | 0.6712 | | 0.8366 | 0.03 | 1600 | 0.8343 | 0.6741 | | 0.8127 | 0.03 | 1800 | 0.8146 | 0.6763 | | 0.7916 | 0.03 | 2000 | 0.7940 | 0.6784 | | 0.781 | 0.04 | 2200 | 0.7815 | 0.6799 | | 0.7647 | 0.04 | 2400 | 0.7692 | 0.6813 | | 0.7617 | 0.04 | 2600 | 0.7589 | 0.6825 | | 0.7523 | 0.05 | 2800 | 0.7466 | 0.6842 | | 0.7394 | 0.05 | 3000 | 0.7373 | 0.6852 | | 0.7297 | 0.05 | 3200 | 0.7279 | 0.6864 | | 0.712 | 0.06 | 3400 | 0.7206 | 0.6871 | | 0.716 | 0.06 | 3600 | 0.7120 | 0.6884 | | 0.6994 | 0.06 | 3800 | 0.7044 | 0.6893 | | 0.6885 | 0.07 | 4000 | 0.6969 | 0.6903 | | 0.6887 | 0.07 | 4200 | 0.6916 | 0.6908 | | 0.6812 | 0.07 | 4400 | 0.6840 | 0.6917 | | 0.6799 | 0.08 | 4600 | 0.6774 | 0.6927 | | 0.6672 | 0.08 | 4800 | 0.6718 | 0.6935 | | 0.6658 | 0.08 | 5000 | 0.6653 | 0.6939 | | 0.6455 | 0.09 | 5200 | 0.6609 | 0.6948 | | 0.661 | 0.09 | 5400 | 0.6569 | 0.6953 | | 0.648 | 0.09 | 5600 | 0.6505 | 0.6960 | | 0.6453 | 0.1 | 5800 | 0.6458 | 0.6967 | | 0.6374 | 0.1 | 6000 | 0.6407 | 0.6973 | | 0.6351 | 0.1 | 6200 | 0.6363 | 0.6977 | | 0.6273 | 0.11 | 6400 | 0.6328 | 0.6983 | | 0.6234 | 0.11 | 6600 | 0.6292 | 0.6987 | | 0.6204 | 0.12 | 6800 | 0.6247 | 0.6992 | | 0.6179 | 0.12 | 7000 | 0.6217 | 0.6994 | | 0.6122 | 0.12 | 7200 | 0.6169 | 0.7001 | | 0.6096 | 0.13 | 7400 | 0.6132 | 0.7006 | | 0.6046 | 0.13 | 7600 | 0.6101 | 0.7011 | | 0.5997 | 0.13 | 7800 | 0.6072 | 0.7016 | | 0.5988 | 0.14 | 8000 | 0.6047 | 0.7015 | | 0.5995 | 0.14 | 8200 | 0.6011 | 0.7022 | | 0.6017 | 0.14 | 8400 | 0.5985 | 0.7024 | | 0.5962 | 0.15 | 8600 | 0.5944 | 0.7028 | | 0.5857 | 0.15 | 8800 | 0.5919 | 0.7034 | | 0.5829 | 0.15 | 9000 | 0.5903 | 0.7034 | | 0.5862 | 0.16 | 9200 | 0.5856 | 0.7040 | | 0.5786 | 0.16 | 9400 | 0.5834 | 0.7044 | | 0.5785 | 0.16 | 9600 | 0.5813 | 0.7044 | | 0.5819 | 0.17 | 9800 | 0.5788 | 0.7049 | | 0.5804 | 0.17 | 10000 | 0.5768 | 0.7051 | | 0.5755 | 0.17 | 10200 | 0.5748 | 0.7053 | | 0.57 | 0.18 | 10400 | 0.5728 | 0.7057 | | 0.567 | 0.18 | 10600 | 0.5699 | 0.7059 | | 0.5629 | 0.18 | 10800 | 0.5672 | 0.7063 | | 0.5615 | 0.19 | 11000 | 0.5648 | 0.7066 | | 0.5628 | 0.19 | 11200 | 0.5633 | 0.7067 | | 0.5628 | 0.19 | 11400 | 0.5610 | 0.7070 | | 0.5551 | 0.2 | 11600 | 0.5588 | 0.7075 | | 0.5572 | 0.2 | 11800 | 0.5558 | 0.7078 | | 0.5543 | 0.2 | 12000 | 0.5559 | 0.7076 | | 0.5512 | 0.21 | 12200 | 0.5536 | 0.7080 | | 0.5491 | 0.21 | 12400 | 0.5517 | 0.7081 | | 0.5455 | 0.21 | 12600 | 0.5494 | 0.7085 | | 0.5494 | 0.22 | 12800 | 0.5480 | 0.7085 | | 0.5438 | 0.22 | 13000 | 0.5461 | 0.7087 | | 0.5492 | 0.22 | 13200 | 0.5449 | 0.7090 | | 0.5385 | 0.23 | 13400 | 0.5432 | 0.7092 | | 0.5399 | 0.23 | 13600 | 0.5411 | 0.7094 | | 0.5416 | 0.23 | 13800 | 0.5406 | 0.7095 | | 0.5316 | 0.24 | 14000 | 0.5379 | 0.7099 | | 0.5305 | 0.24 | 14200 | 0.5367 | 0.7102 | | 0.5349 | 0.24 | 14400 | 0.5337 | 0.7106 | | 0.5313 | 0.25 | 14600 | 0.5329 | 0.7104 | | 0.5336 | 0.25 | 14800 | 0.5324 | 0.7107 | | 0.529 | 0.25 | 15000 | 0.5306 | 0.7107 | | 0.5283 | 0.26 | 15200 | 0.5291 | 0.7109 | | 0.5241 | 0.26 | 15400 | 0.5277 | 0.7111 | | 0.5298 | 0.26 | 15600 | 0.5265 | 0.7113 | | 0.5199 | 0.27 | 15800 | 0.5255 | 0.7113 | | 0.5303 | 0.27 | 16000 | 0.5237 | 0.7116 | | 0.5184 | 0.27 | 16200 | 0.5228 | 0.7118 | | 0.5171 | 0.28 | 16400 | 0.5206 | 0.7122 | | 0.525 | 0.28 | 16600 | 0.5205 | 0.7122 | | 0.5191 | 0.28 | 16800 | 0.5191 | 0.7123 | | 0.5161 | 0.29 | 17000 | 0.5182 | 0.7124 | | 0.5205 | 0.29 | 17200 | 0.5160 | 0.7126 | | 0.5157 | 0.29 | 17400 | 0.5156 | 0.7128 | | 0.5071 | 0.3 | 17600 | 0.5140 | 0.7129 | | 0.5151 | 0.3 | 17800 | 0.5129 | 0.7130 | | 0.5127 | 0.3 | 18000 | 0.5124 | 0.7130 | | 0.5098 | 0.31 | 18200 | 0.5112 | 0.7133 | | 0.5099 | 0.31 | 18400 | 0.5104 | 0.7134 | | 0.5056 | 0.31 | 18600 | 0.5084 | 0.7135 | | 0.5093 | 0.32 | 18800 | 0.5078 | 0.7138 | | 0.5033 | 0.32 | 19000 | 0.5069 | 0.7139 | | 0.5013 | 0.32 | 19200 | 0.5063 | 0.7139 | | 0.5087 | 0.33 | 19400 | 0.5049 | 0.7140 | | 0.5041 | 0.33 | 19600 | 0.5037 | 0.7144 | | 0.4994 | 0.34 | 19800 | 0.5035 | 0.7144 | | 0.5025 | 0.34 | 20000 | 0.5027 | 0.7144 | | 0.5005 | 0.34 | 20200 | 0.5020 | 0.7144 | | 0.4972 | 0.35 | 20400 | 0.5012 | 0.7147 | | 0.5047 | 0.35 | 20600 | 0.5005 | 0.7145 | | 0.4986 | 0.35 | 20800 | 0.4995 | 0.7148 | | 0.497 | 0.36 | 21000 | 0.4982 | 0.7150 | | 0.4986 | 0.36 | 21200 | 0.4971 | 0.7151 | | 0.4918 | 0.36 | 21400 | 0.4967 | 0.7152 | | 0.5001 | 0.37 | 21600 | 0.4961 | 0.7153 | | 0.4934 | 0.37 | 21800 | 0.4952 | 0.7154 | | 0.4948 | 0.37 | 22000 | 0.4947 | 0.7155 | | 0.4878 | 0.38 | 22200 | 0.4930 | 0.7157 | | 0.4913 | 0.38 | 22400 | 0.4926 | 0.7157 | | 0.487 | 0.38 | 22600 | 0.4921 | 0.7158 | | 0.4919 | 0.39 | 22800 | 0.4913 | 0.7158 | | 0.4904 | 0.39 | 23000 | 0.4907 | 0.7160 | | 0.4863 | 0.39 | 23200 | 0.4903 | 0.7161 | | 0.4858 | 0.4 | 23400 | 0.4896 | 0.7160 | | 0.487 | 0.4 | 23600 | 0.4891 | 0.7163 | | 0.4869 | 0.4 | 23800 | 0.4879 | 0.7163 | | 0.4851 | 0.41 | 24000 | 0.4869 | 0.7164 | | 0.4903 | 0.41 | 24200 | 0.4867 | 0.7164 | | 0.4845 | 0.41 | 24400 | 0.4856 | 0.7166 | | 0.4797 | 0.42 | 24600 | 0.4852 | 0.7168 | | 0.4799 | 0.42 | 24800 | 0.4850 | 0.7168 | | 0.4751 | 0.42 | 25000 | 0.4843 | 0.7168 | | 0.4745 | 0.43 | 25200 | 0.4836 | 0.7170 | | 0.4811 | 0.43 | 25400 | 0.4827 | 0.7170 | | 0.4805 | 0.43 | 25600 | 0.4828 | 0.7171 | | 0.483 | 0.44 | 25800 | 0.4821 | 0.7171 | | 0.4825 | 0.44 | 26000 | 0.4815 | 0.7172 | | 0.4749 | 0.44 | 26200 | 0.4803 | 0.7173 | | 0.477 | 0.45 | 26400 | 0.4796 | 0.7174 | | 0.476 | 0.45 | 26600 | 0.4792 | 0.7176 | | 0.4776 | 0.45 | 26800 | 0.4790 | 0.7175 | | 0.4811 | 0.46 | 27000 | 0.4780 | 0.7177 | | 0.4761 | 0.46 | 27200 | 0.4776 | 0.7177 | | 0.4727 | 0.46 | 27400 | 0.4771 | 0.7178 | | 0.4737 | 0.47 | 27600 | 0.4761 | 0.7179 | | 0.4722 | 0.47 | 27800 | 0.4760 | 0.7180 | | 0.4713 | 0.47 | 28000 | 0.4753 | 0.7182 | | 0.4711 | 0.48 | 28200 | 0.4747 | 0.7182 | | 0.4738 | 0.48 | 28400 | 0.4750 | 0.7182 | | 0.4764 | 0.48 | 28600 | 0.4738 | 0.7183 | | 0.4725 | 0.49 | 28800 | 0.4727 | 0.7184 | | 0.468 | 0.49 | 29000 | 0.4728 | 0.7184 | | 0.4727 | 0.49 | 29200 | 0.4719 | 0.7185 | | 0.4662 | 0.5 | 29400 | 0.4721 | 0.7186 | | 0.4655 | 0.5 | 29600 | 0.4711 | 0.7186 | | 0.4759 | 0.5 | 29800 | 0.4709 | 0.7187 | | 0.4647 | 0.51 | 30000 | 0.4706 | 0.7187 | | 0.4738 | 0.51 | 30200 | 0.4703 | 0.7187 | | 0.4751 | 0.51 | 30400 | 0.4694 | 0.7190 | | 0.4677 | 0.52 | 30600 | 0.4690 | 0.7189 | | 0.4605 | 0.52 | 30800 | 0.4687 | 0.7189 | | 0.466 | 0.52 | 31000 | 0.4686 | 0.7189 | | 0.4626 | 0.53 | 31200 | 0.4678 | 0.7191 | | 0.4616 | 0.53 | 31400 | 0.4672 | 0.7192 | | 0.4698 | 0.53 | 31600 | 0.4665 | 0.7192 | | 0.4599 | 0.54 | 31800 | 0.4664 | 0.7193 | | 0.4618 | 0.54 | 32000 | 0.4660 | 0.7192 | | 0.459 | 0.55 | 32200 | 0.4659 | 0.7192 | | 0.4608 | 0.55 | 32400 | 0.4654 | 0.7194 | | 0.4623 | 0.55 | 32600 | 0.4651 | 0.7194 | | 0.4654 | 0.56 | 32800 | 0.4646 | 0.7196 | | 0.4585 | 0.56 | 33000 | 0.4638 | 0.7195 | | 0.4597 | 0.56 | 33200 | 0.4636 | 0.7196 | | 0.4568 | 0.57 | 33400 | 0.4631 | 0.7198 | | 0.4634 | 0.57 | 33600 | 0.4630 | 0.7197 | | 0.4648 | 0.57 | 33800 | 0.4624 | 0.7197 | | 0.4609 | 0.58 | 34000 | 0.4621 | 0.7198 | | 0.4619 | 0.58 | 34200 | 0.4620 | 0.7197 | | 0.4603 | 0.58 | 34400 | 0.4614 | 0.7199 | | 0.4566 | 0.59 | 34600 | 0.4611 | 0.7199 | | 0.4581 | 0.59 | 34800 | 0.4604 | 0.7201 | | 0.4583 | 0.59 | 35000 | 0.4599 | 0.7202 | | 0.4607 | 0.6 | 35200 | 0.4597 | 0.7202 | | 0.4533 | 0.6 | 35400 | 0.4592 | 0.7202 | | 0.4619 | 0.6 | 35600 | 0.4591 | 0.7202 | | 0.46 | 0.61 | 35800 | 0.4585 | 0.7203 | | 0.4516 | 0.61 | 36000 | 0.4582 | 0.7203 | | 0.457 | 0.61 | 36200 | 0.4582 | 0.7203 | | 0.4544 | 0.62 | 36400 | 0.4576 | 0.7204 | | 0.4515 | 0.62 | 36600 | 0.4569 | 0.7205 | | 0.4573 | 0.62 | 36800 | 0.4568 | 0.7206 | | 0.4517 | 0.63 | 37000 | 0.4565 | 0.7206 | | 0.4529 | 0.63 | 37200 | 0.4559 | 0.7207 | | 0.4562 | 0.63 | 37400 | 0.4560 | 0.7207 | | 0.4586 | 0.64 | 37600 | 0.4556 | 0.7207 | | 0.4561 | 0.64 | 37800 | 0.4549 | 0.7208 | | 0.4566 | 0.64 | 38000 | 0.4548 | 0.7207 | | 0.4487 | 0.65 | 38200 | 0.4545 | 0.7207 | | 0.452 | 0.65 | 38400 | 0.4542 | 0.7209 | | 0.4529 | 0.65 | 38600 | 0.4540 | 0.7209 | | 0.4473 | 0.66 | 38800 | 0.4542 | 0.7209 | | 0.4479 | 0.66 | 39000 | 0.4533 | 0.7210 | | 0.4494 | 0.66 | 39200 | 0.4530 | 0.7211 | | 0.4502 | 0.67 | 39400 | 0.4527 | 0.7211 | | 0.4496 | 0.67 | 39600 | 0.4523 | 0.7211 | | 0.4492 | 0.67 | 39800 | 0.4520 | 0.7213 | | 0.4491 | 0.68 | 40000 | 0.4518 | 0.7211 | | 0.4499 | 0.68 | 40200 | 0.4514 | 0.7212 | | 0.4477 | 0.68 | 40400 | 0.4514 | 0.7213 | | 0.4448 | 0.69 | 40600 | 0.4511 | 0.7213 | | 0.4526 | 0.69 | 40800 | 0.4506 | 0.7214 | | 0.4425 | 0.69 | 41000 | 0.4504 | 0.7214 | | 0.4506 | 0.7 | 41200 | 0.4501 | 0.7214 | | 0.4492 | 0.7 | 41400 | 0.4498 | 0.7216 | | 0.4481 | 0.7 | 41600 | 0.4495 | 0.7215 | | 0.451 | 0.71 | 41800 | 0.4494 | 0.7216 | | 0.4479 | 0.71 | 42000 | 0.4493 | 0.7215 | | 0.4546 | 0.71 | 42200 | 0.4489 | 0.7216 | | 0.4439 | 0.72 | 42400 | 0.4489 | 0.7217 | | 0.4454 | 0.72 | 42600 | 0.4487 | 0.7217 | | 0.4508 | 0.72 | 42800 | 0.4484 | 0.7217 | | 0.448 | 0.73 | 43000 | 0.4483 | 0.7217 | | 0.447 | 0.73 | 43200 | 0.4479 | 0.7217 | | 0.4508 | 0.73 | 43400 | 0.4477 | 0.7217 | | 0.4397 | 0.74 | 43600 | 0.4473 | 0.7218 | | 0.4453 | 0.74 | 43800 | 0.4473 | 0.7219 | | 0.4479 | 0.74 | 44000 | 0.4469 | 0.7219 | | 0.4421 | 0.75 | 44200 | 0.4466 | 0.7220 | | 0.4479 | 0.75 | 44400 | 0.4464 | 0.7220 | | 0.4492 | 0.75 | 44600 | 0.4463 | 0.7220 | | 0.4466 | 0.76 | 44800 | 0.4460 | 0.7221 | | 0.4543 | 0.76 | 45000 | 0.4458 | 0.7221 | | 0.4452 | 0.77 | 45200 | 0.4456 | 0.7221 | | 0.4456 | 0.77 | 45400 | 0.4454 | 0.7221 | | 0.4455 | 0.77 | 45600 | 0.4452 | 0.7221 | | 0.4405 | 0.78 | 45800 | 0.4451 | 0.7221 | | 0.4449 | 0.78 | 46000 | 0.4448 | 0.7223 | | 0.4433 | 0.78 | 46200 | 0.4447 | 0.7223 | | 0.445 | 0.79 | 46400 | 0.4447 | 0.7223 | | 0.447 | 0.79 | 46600 | 0.4444 | 0.7223 | | 0.4405 | 0.79 | 46800 | 0.4444 | 0.7222 | | 0.4434 | 0.8 | 47000 | 0.4443 | 0.7222 | | 0.4385 | 0.8 | 47200 | 0.4440 | 0.7223 | | 0.442 | 0.8 | 47400 | 0.4439 | 0.7223 | | 0.4402 | 0.81 | 47600 | 0.4437 | 0.7224 | | 0.4368 | 0.81 | 47800 | 0.4437 | 0.7224 | | 0.4392 | 0.81 | 48000 | 0.4435 | 0.7223 | | 0.439 | 0.82 | 48200 | 0.4434 | 0.7225 | | 0.4407 | 0.82 | 48400 | 0.4431 | 0.7225 | | 0.4484 | 0.82 | 48600 | 0.4430 | 0.7225 | | 0.4419 | 0.83 | 48800 | 0.4430 | 0.7224 | | 0.4453 | 0.83 | 49000 | 0.4426 | 0.7225 | | 0.4415 | 0.83 | 49200 | 0.4425 | 0.7225 | | 0.4424 | 0.84 | 49400 | 0.4425 | 0.7225 | | 0.4389 | 0.84 | 49600 | 0.4423 | 0.7226 | | 0.4377 | 0.84 | 49800 | 0.4421 | 0.7226 | | 0.4388 | 0.85 | 50000 | 0.4420 | 0.7227 | | 0.4409 | 0.85 | 50200 | 0.4419 | 0.7225 | | 0.442 | 0.85 | 50400 | 0.4417 | 0.7227 | | 0.4371 | 0.86 | 50600 | 0.4417 | 0.7227 | | 0.4384 | 0.86 | 50800 | 0.4415 | 0.7226 | | 0.4402 | 0.86 | 51000 | 0.4415 | 0.7227 | | 0.4375 | 0.87 | 51200 | 0.4414 | 0.7227 | | 0.4367 | 0.87 | 51400 | 0.4413 | 0.7227 | | 0.4447 | 0.87 | 51600 | 0.4412 | 0.7227 | | 0.4434 | 0.88 | 51800 | 0.4411 | 0.7227 | | 0.4357 | 0.88 | 52000 | 0.4411 | 0.7228 | | 0.4404 | 0.88 | 52200 | 0.4410 | 0.7228 | | 0.4369 | 0.89 | 52400 | 0.4409 | 0.7228 | | 0.4348 | 0.89 | 52600 | 0.4409 | 0.7228 | | 0.4394 | 0.89 | 52800 | 0.4408 | 0.7227 | | 0.437 | 0.9 | 53000 | 0.4407 | 0.7227 | | 0.438 | 0.9 | 53200 | 0.4407 | 0.7228 | | 0.4421 | 0.9 | 53400 | 0.4406 | 0.7228 | | 0.4421 | 0.91 | 53600 | 0.4405 | 0.7228 | | 0.4361 | 0.91 | 53800 | 0.4405 | 0.7228 | | 0.4367 | 0.91 | 54000 | 0.4404 | 0.7228 | | 0.4371 | 0.92 | 54200 | 0.4403 | 0.7228 | | 0.4349 | 0.92 | 54400 | 0.4403 | 0.7229 | | 0.4432 | 0.92 | 54600 | 0.4403 | 0.7229 | | 0.4355 | 0.93 | 54800 | 0.4402 | 0.7228 | | 0.4402 | 0.93 | 55000 | 0.4402 | 0.7229 | | 0.4403 | 0.93 | 55200 | 0.4401 | 0.7229 | | 0.4445 | 0.94 | 55400 | 0.4401 | 0.7229 | | 0.4336 | 0.94 | 55600 | 0.4401 | 0.7228 | | 0.431 | 0.94 | 55800 | 0.4401 | 0.7229 | | 0.4343 | 0.95 | 56000 | 0.4400 | 0.7229 | | 0.4298 | 0.95 | 56200 | 0.4400 | 0.7229 | | 0.43 | 0.95 | 56400 | 0.4400 | 0.7229 | | 0.4446 | 0.96 | 56600 | 0.4400 | 0.7229 | | 0.4417 | 0.96 | 56800 | 0.4400 | 0.7229 | | 0.4431 | 0.96 | 57000 | 0.4400 | 0.7229 | | 0.4353 | 0.97 | 57200 | 0.4399 | 0.7229 | | 0.4351 | 0.97 | 57400 | 0.4399 | 0.7229 | | 0.4398 | 0.97 | 57600 | 0.4399 | 0.7229 | | 0.4368 | 0.98 | 57800 | 0.4399 | 0.7229 | | 0.4379 | 0.98 | 58000 | 0.4399 | 0.7229 | | 0.4353 | 0.99 | 58200 | 0.4399 | 0.7229 | | 0.4397 | 0.99 | 58400 | 0.4399 | 0.7229 | | 0.4401 | 0.99 | 58600 | 0.4399 | 0.7229 | | 0.4366 | 1.0 | 58800 | 0.4399 | 0.7229 | | 0.434 | 1.0 | 59000 | 0.4399 | 0.7228 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
h-e-l-l-o/email-spam-classification-merged
h-e-l-l-o
2024-01-09T05:53:08Z
120
3
transformers
[ "transformers", "safetensors", "bert", "text-classification", "en", "dataset:legacy107/spamming-email-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-15T08:45:48Z
--- datasets: - legacy107/spamming-email-classification language: - en metrics: - accuracy library_name: transformers ---
rajeshgautam/mistral7b-finetune-puffin-test
rajeshgautam
2024-01-09T05:48:17Z
0
0
peft
[ "peft", "safetensors", "generated_from_trainer", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "region:us" ]
null
2024-01-09T05:21:25Z
--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 model-index: - name: mistral7b-finetune-puffin-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral7b-finetune-puffin-test This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - training_steps: 40 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.7.1 - Transformers 4.37.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Spanicin/Fulcrum_Achira
Spanicin
2024-01-09T05:48:14Z
0
0
null
[ "merge", "mergekit", "lazymergekit", "mistralai/Mistral-7B-v0.1", "OpenPipe/mistral-ft-optimized-1218", "mlabonne/NeuralHermes-2.5-Mistral-7B", "license:apache-2.0", "region:us" ]
null
2024-01-09T05:48:13Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - mistralai/Mistral-7B-v0.1 - OpenPipe/mistral-ft-optimized-1218 - mlabonne/NeuralHermes-2.5-Mistral-7B --- # Fulcrum_Achira Fulcrum_Achira is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) * [OpenPipe/mistral-ft-optimized-1218](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218) * [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-v0.1 - model: OpenPipe/mistral-ft-optimized-1218 parameters: density: 0.5 weight: 0.5 - model: mlabonne/NeuralHermes-2.5-Mistral-7B parameters: density: 0.5 weight: 0.3 merge_method: ties base_model: mistralai/Mistral-7B-v0.1 parameters: normalize: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Spanicin/Fulcrum_Achira" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
douy/parrot-tulu-2-dpo-70B-lora-cp54
douy
2024-01-09T05:46:08Z
6
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:allenai/tulu-2-dpo-70b", "base_model:adapter:allenai/tulu-2-dpo-70b", "region:us" ]
null
2024-01-09T05:19:19Z
--- library_name: peft base_model: allenai/tulu-2-dpo-70b --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
Crystalcareai/PhiAlpaca2
Crystalcareai
2024-01-09T05:28:16Z
47
0
transformers
[ "transformers", "pytorch", "phi-msft", "text-generation", "generated_from_trainer", "custom_code", "base_model:microsoft/phi-2", "base_model:finetune:microsoft/phi-2", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-01-09T05:21:18Z
--- license: mit base_model: microsoft/phi-2 tags: - generated_from_trainer model-index: - name: phi-sft-out results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.3.0` ```yaml base_model: microsoft/phi-2 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer trust_remote_code: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: tatsu-lab/alpaca type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./phi-sft-out sequence_len: 2048 sample_packing: false # currently unsupported pad_to_sequence_len: adapter: lora_model_dir: lora_r: 16 lora_alpha: 32 lora_dropout: 0.1 lora_target_linear: true lora_fan_in_fan_out: lora_modules_to_save: - embd - lm_head wandb_project: Deepseek Wa wandb_entity: lucasatkins81 wandb_watch: wandb_name: Phi2 a6000 FT wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 1 num_epochs: 1.5 optimizer: paged_adamw_8bit adam_beta2: 0.95 adam_epsilon: 0.00001 max_grad_norm: 1.0 lr_scheduler: cosine learning_rate: 1e-5 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: true gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.1 fsdp: fsdp_config: resize_token_embeddings_to_32x: true special_tokens: pad_token: "<|endoftext|>" ``` </details><br> # phi-sft-out This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1.5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.4382 | 0.0 | 1 | nan | | 0.9139 | 0.25 | 12351 | nan | | 0.016 | 0.5 | 24702 | nan | | 0.0538 | 0.75 | 37053 | nan | | 0.6701 | 1.0 | 49404 | nan | | 0.0018 | 1.25 | 61755 | nan | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.1+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
douy/parrot-mistral-7B-lora-cp36-segmentation
douy
2024-01-09T05:28:04Z
7
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-v0.1", "base_model:adapter:mistralai/Mistral-7B-v0.1", "region:us" ]
null
2024-01-09T05:12:33Z
--- library_name: peft base_model: mistralai/Mistral-7B-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
DavideTHU/corgy_laptop_LoRA
DavideTHU
2024-01-09T05:04:02Z
0
0
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-01-09T05:02:56Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of TOK laptop license: openrail++ --- # SDXL LoRA DreamBooth - DavideTHU/corgy_laptop_LoRA <Gallery /> ## Model description These are DavideTHU/corgy_laptop_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of TOK laptop to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](DavideTHU/corgy_laptop_LoRA/tree/main) them in the Files & versions tab.
DavideTHU/SDXL_LoRA_macbook
DavideTHU
2024-01-09T05:02:16Z
12
0
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-01-09T04:26:32Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora widget: - text: 'photo of a <s0><s1> laptop' base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of a <s0><s1> laptop license: openrail++ --- # SDXL LoRA DreamBooth - DavideTHU/SDXL_LoRA_macbook <Gallery /> ## Model description ### These are DavideTHU/SDXL_LoRA_macbook LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - **LoRA**: download **[`SDXL_LoRA_macbook.safetensors` here 💾](/DavideTHU/SDXL_LoRA_macbook/blob/main/SDXL_LoRA_macbook.safetensors)**. - Place it on your `models/Lora` folder. - On AUTOMATIC1111, load the LoRA by adding `<lora:SDXL_LoRA_macbook:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/). - *Embeddings*: download **[`SDXL_LoRA_macbook_emb.safetensors` here 💾](/DavideTHU/SDXL_LoRA_macbook/blob/main/SDXL_LoRA_macbook_emb.safetensors)**. - Place it on it on your `embeddings` folder - Use it by adding `SDXL_LoRA_macbook_emb` to your prompt. For example, `photo of a SDXL_LoRA_macbook_emb laptop` (you need both the LoRA and the embeddings as they were trained together for this LoRA) ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('DavideTHU/SDXL_LoRA_macbook', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='DavideTHU/SDXL_LoRA_macbook', filename='SDXL_LoRA_macbook_emb.safetensors' repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2) image = pipeline('photo of a <s0><s1> laptop').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `<s0><s1>` in your prompt ## Details All [Files & versions](/DavideTHU/SDXL_LoRA_macbook/tree/main). The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
stablediffusionapi/golo
stablediffusionapi
2024-01-09T04:52:23Z
27
0
diffusers
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-09T04:50:36Z
--- license: creativeml-openrail-m tags: - modelslab.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # Golo API Inference ![generated from modelslab.com](https://pub-3626123a908346a7a8be8d9295f44e26.r2.dev/generations/6625621201704738776.png) ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "golo" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs) Try model for free: [Generate Images](https://modelslab.com/models/golo) Model link: [View model](https://modelslab.com/models/golo) View all models: [View Models](https://modelslab.com/models) import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "golo", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
mutemoon/whisper-tiny-zh-food
mutemoon
2024-01-09T04:41:58Z
61
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "zh", "dataset:mutemoon/audio-about-food-2k", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-08T14:38:27Z
--- license: apache-2.0 datasets: - mutemoon/audio-about-food-2k language: - zh metrics: - wer pipeline_tag: automatic-speech-recognition ---
pnucamel/q-FrozenLake-v1-4x4-noSlippery
pnucamel
2024-01-09T04:35:49Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-09T04:35:47Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="pnucamel/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jinmang2/kpfbert
jinmang2
2024-01-09T04:35:00Z
15,266
4
transformers
[ "transformers", "pytorch", "safetensors", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-31T06:40:37Z
# KpfBERT https://github.com/jinmang2/kpfbert
Abhra-loony/english-to-spanish-lang-translation-model
Abhra-loony
2024-01-09T04:23:40Z
57
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-08T14:42:09Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_keras_callback model-index: - name: Abhra-loony/english-to-spanish-lang-translation-model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Abhra-loony/english-to-spanish-lang-translation-model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.1779 - Validation Loss: 1.7509 - Train Bleu: 10.0073 - Train Gen Len: 15.7591 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Bleu | Train Gen Len | Epoch | |:----------:|:---------------:|:----------:|:-------------:|:-----:| | 2.8605 | 2.2201 | 3.6612 | 16.2025 | 0 | | 2.4128 | 1.9346 | 6.7036 | 15.9377 | 1 | | 2.1779 | 1.7509 | 10.0073 | 15.7591 | 2 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.0
stablediffusionapi/mixreal
stablediffusionapi
2024-01-09T04:22:18Z
27
0
diffusers
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-09T04:20:34Z
--- license: creativeml-openrail-m tags: - modelslab.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # MixReal API Inference ![generated from modelslab.com](https://pub-3626123a908346a7a8be8d9295f44e26.r2.dev/generations/2264783741704739051.png) ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "mixreal" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs) Try model for free: [Generate Images](https://modelslab.com/models/mixreal) Model link: [View model](https://modelslab.com/models/mixreal) View all models: [View Models](https://modelslab.com/models) import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "mixreal", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
ThanhNX/falcon_7b-FT
ThanhNX
2024-01-09T04:19:42Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:vilsonrodrigues/falcon-7b-instruct-sharded", "base_model:adapter:vilsonrodrigues/falcon-7b-instruct-sharded", "region:us" ]
null
2024-01-09T04:17:51Z
--- library_name: peft base_model: vilsonrodrigues/falcon-7b-instruct-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
gianlab/swin-tiny-patch4-window7-224-finetuned-parkinson-classification
gianlab
2024-01-09T04:09:38Z
243
0
transformers
[ "transformers", "tensorboard", "safetensors", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/swin-tiny-patch4-window7-224", "base_model:finetune:microsoft/swin-tiny-patch4-window7-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-01-08T14:22:23Z
--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-parkinson-classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9090909090909091 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-parkinson-classification This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4966 - Accuracy: 0.9091 ## Model description This model was created by importing the dataset of spiral drawings made by both parkinsons patients and healthy people into Google Colab from kaggle here: https://www.kaggle.com/datasets/kmader/parkinsons-drawings/data. I then used the image classification tutorial here: https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb obtaining the following notebook: https://colab.research.google.com/drive/1oRjwgHjmaQYRU1qf-TTV7cg1qMZXgMaO?usp=sharing The possible classified data are: <ul> <li>Healthy</li> <li>Parkinson</li> </ul> ### Spiral drawing example: ![Screenshot](V13PE02.png) ## Intended uses & limitations Acknowledgements The data came from the paper: Zham P, Kumar DK, Dabnichki P, Poosapadi Arjunan S and Raghav S (2017) Distinguishing Different Stages of Parkinson’s Disease Using Composite Index of Speed and Pen-Pressure of Sketching a Spiral. Front. Neurol. 8:435. doi: 10.3389/fneur.2017.00435 https://www.frontiersin.org/articles/10.3389/fneur.2017.00435/full Data licence : https://creativecommons.org/licenses/by-nc-nd/4.0/ ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 0.6801 | 0.4545 | | No log | 2.0 | 3 | 0.8005 | 0.3636 | | No log | 3.0 | 5 | 0.6325 | 0.6364 | | No log | 4.0 | 6 | 0.5494 | 0.8182 | | No log | 5.0 | 7 | 0.5214 | 0.8182 | | No log | 6.0 | 9 | 0.5735 | 0.7273 | | 0.3063 | 7.0 | 11 | 0.4966 | 0.9091 | | 0.3063 | 8.0 | 12 | 0.4557 | 0.9091 | | 0.3063 | 9.0 | 13 | 0.4444 | 0.9091 | | 0.3063 | 10.0 | 15 | 0.6226 | 0.6364 | | 0.3063 | 11.0 | 17 | 0.8224 | 0.4545 | | 0.3063 | 12.0 | 18 | 0.8127 | 0.4545 | | 0.3063 | 13.0 | 19 | 0.7868 | 0.4545 | | 0.2277 | 14.0 | 21 | 0.8195 | 0.4545 | | 0.2277 | 15.0 | 23 | 0.7499 | 0.4545 | | 0.2277 | 16.0 | 24 | 0.7022 | 0.5455 | | 0.2277 | 17.0 | 25 | 0.6755 | 0.5455 | | 0.2277 | 18.0 | 27 | 0.6277 | 0.6364 | | 0.2277 | 19.0 | 29 | 0.5820 | 0.6364 | | 0.1867 | 20.0 | 30 | 0.5784 | 0.6364 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
ucheokechukwu/q-Taxi-v3
ucheokechukwu
2024-01-09T04:08:21Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-09T04:08:16Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ucheokechukwu/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ucheokechukwu/q-FrozenLake-v1-4x4-noSlippery
ucheokechukwu
2024-01-09T04:06:45Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-09T04:06:41Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="ucheokechukwu/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
kichan05/Kaguya-Ai-Test
kichan05
2024-01-09T03:59:53Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:42dot/42dot_LLM-SFT-1.3B", "base_model:adapter:42dot/42dot_LLM-SFT-1.3B", "region:us" ]
null
2024-01-09T01:34:12Z
--- library_name: peft base_model: 42dot/42dot_LLM-SFT-1.3B --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
shitshow123/tinylamma-20000
shitshow123
2024-01-09T03:58:26Z
1,598
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-09T03:54:08Z
--- license: apache-2.0 --- train tinyllama1b-instruct for 20k DPO. train tinyllama1b-instruct for 20k DPO. train tinyllama1b-instruct for 20k DPO. train tinyllama1b-instruct for 20k DPO. train tinyllama1b-instruct for 20k DPO. train tinyllama1b-instruct for 20k DPO. train tinyllama1b-instruct for 20k DPO. train tinyllama1b-instruct for 20k DPO.
houe5k2/distilbert-base-uncased-finetuned-imdb
houe5k2
2024-01-09T03:41:19Z
175
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-01-07T06:58:57Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4436 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7294 | 1.0 | 157 | 2.5370 | | 2.542 | 2.0 | 314 | 2.4485 | | 2.3915 | 3.0 | 471 | 2.4344 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.2 - Datasets 2.16.1 - Tokenizers 0.13.2
DavideTHU/SDXL_LoRA_necklace3
DavideTHU
2024-01-09T03:36:07Z
16
1
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-01-09T02:45:18Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora widget: - text: 'photo of a wearable necklace of style <s0><s1>' base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of a wearable necklace of style <s0><s1> license: openrail++ --- # SDXL LoRA DreamBooth - DavideTHU/SDXL_LoRA_necklace3 <Gallery /> ## Model description ### These are DavideTHU/SDXL_LoRA_necklace3 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - **LoRA**: download **[`SDXL_LoRA_necklace3.safetensors` here 💾](/DavideTHU/SDXL_LoRA_necklace3/blob/main/SDXL_LoRA_necklace3.safetensors)**. - Place it on your `models/Lora` folder. - On AUTOMATIC1111, load the LoRA by adding `<lora:SDXL_LoRA_necklace3:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/). - *Embeddings*: download **[`SDXL_LoRA_necklace3_emb.safetensors` here 💾](/DavideTHU/SDXL_LoRA_necklace3/blob/main/SDXL_LoRA_necklace3_emb.safetensors)**. - Place it on it on your `embeddings` folder - Use it by adding `SDXL_LoRA_necklace3_emb` to your prompt. For example, `photo of a wearable necklace of style SDXL_LoRA_necklace3_emb` (you need both the LoRA and the embeddings as they were trained together for this LoRA) ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('DavideTHU/SDXL_LoRA_necklace3', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='DavideTHU/SDXL_LoRA_necklace3', filename='SDXL_LoRA_necklace3_emb.safetensors' repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2) image = pipeline('photo of a wearable necklace of style <s0><s1>').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `<s0><s1>` in your prompt ## Details All [Files & versions](/DavideTHU/SDXL_LoRA_necklace3/tree/main). The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
helenblake13/first-baseline-1010-3060-2
helenblake13
2024-01-09T03:27:37Z
2
1
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-01-09T03:23:22Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### first_baseline_1010_3060_2 Dreambooth model trained by helenblake13 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
alfalmi/gpt2-poetry-esp
alfalmi
2024-01-09T03:12:45Z
88
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "es", "base_model:DeepESP/gpt2-spanish", "base_model:finetune:DeepESP/gpt2-spanish", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-09T02:31:37Z
--- license: mit base_model: DeepESP/gpt2-spanish tags: - generated_from_trainer model-index: - name: gpt2-poetry-esp results: [] language: - es --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-poetry-esp This model is a fine-tuned version of [DeepESP/gpt2-spanish](https://huggingface.co/DeepESP/gpt2-spanish) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0
jth1911/bert-finetuned-ner
jth1911
2024-01-09T03:12:40Z
92
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-09T03:01:01Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0579 - Precision: 0.9326 - Recall: 0.9502 - F1: 0.9413 - Accuracy: 0.9862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2303 | 1.0 | 878 | 0.0691 | 0.9050 | 0.9315 | 0.9181 | 0.9806 | | 0.0479 | 2.0 | 1756 | 0.0624 | 0.9282 | 0.9460 | 0.9370 | 0.9849 | | 0.0268 | 3.0 | 2634 | 0.0579 | 0.9326 | 0.9502 | 0.9413 | 0.9862 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Vivek1234321/llama2-qlora-finetunined-french
Vivek1234321
2024-01-09T03:09:03Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:TinyPixel/Llama-2-7B-bf16-sharded", "base_model:adapter:TinyPixel/Llama-2-7B-bf16-sharded", "region:us" ]
null
2024-01-09T03:08:49Z
--- library_name: peft base_model: TinyPixel/Llama-2-7B-bf16-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
TinyPixel/pythia-exp
TinyPixel
2024-01-09T02:59:37Z
12
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:EleutherAI/pythia-1b", "base_model:adapter:EleutherAI/pythia-1b", "region:us" ]
null
2023-11-15T05:36:05Z
--- library_name: peft base_model: EleutherAI/pythia-1b --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
im99/lcps
im99
2024-01-09T02:42:31Z
0
0
null
[ "en", "license:apache-2.0", "region:us" ]
null
2024-01-09T02:31:50Z
--- license: apache-2.0 language: - en --- Thie is the official weights for *LiDAR-Camera Panoptic Segmentation via Geometry-Consistent and Semantic-Aware Alignment* (ICCV 2023).
shivanandmn/phi-2-ultrafeedback_binarized
shivanandmn
2024-01-09T02:33:17Z
3
0
peft
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:microsoft/phi-2", "base_model:adapter:microsoft/phi-2", "license:mit", "region:us" ]
null
2024-01-08T20:04:47Z
--- license: mit library_name: peft tags: - trl - sft - generated_from_trainer base_model: microsoft/phi-2 model-index: - name: phi-2-ultrafeedback_binarized results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phi-2-ultrafeedback_binarized This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
vpepe2003/q-Taxi-v3
vpepe2003
2024-01-09T02:29:23Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-09T02:29:15Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.75 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="vpepe2003/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
vpepe2003/q-FrozenLake-v1-4x4-noSlippery
vpepe2003
2024-01-09T01:50:45Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-09T01:50:36Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="vpepe2003/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
freshpearYoon/medium2
freshpearYoon
2024-01-09T01:49:22Z
57
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "ko", "base_model:openai/whisper-medium", "base_model:finetune:openai/whisper-medium", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-09T00:43:36Z
--- language: - ko license: apache-2.0 base_model: openai/whisper-medium tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer model-index: - name: whisper_medium results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_medium This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the aihub dataset. It achieves the following results on the evaluation set: - Loss: 1.6505 - Cer: 12.0457 - Wer: 29.9853 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 1.6678 | 0.04 | 500 | 1.6505 | 12.0457 | 29.9853 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.15.0 - Tokenizers 0.15.0
urisoo/roberta-large-lora-token-classification
urisoo
2024-01-09T01:48:40Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:FacebookAI/roberta-large", "base_model:adapter:FacebookAI/roberta-large", "region:us" ]
null
2024-01-09T01:48:36Z
--- library_name: peft base_model: roberta-large --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
uukuguy/speechless-mistral-moloras-7b
uukuguy
2024-01-09T01:43:21Z
1,415
5
transformers
[ "transformers", "safetensors", "gguf", "mistral", "text-generation", "en", "dataset:yahma/alpaca-cleaned", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-05T09:25:26Z
--- language: - en library_name: transformers pipeline_tag: text-generation datasets: - yahma/alpaca-cleaned license: apache-2.0 --- <p><h1> speechless-mistral-moloras-7b </h1></p> * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/speechless-mistral-moloras-7B-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/speechless-mistral-moloras-7B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/speechless-mistral-moloras-7B-GGUF) [4-bit GGUF models for CPU+GPU inference](https://huggingface.co/uukuguy/speechless-mistral-moloras-7b/tree/main/GGUF) This model is the static version of moloras (Mixture-of-multi-LoRAs) based on the following 6 Mistral-based LoRa modules. - Intel/neural-chat-7b-v3-1 - migtissera/SynthIA-7B-v1.3 - jondurbin/airoboros-m-7b-3.1.2 - bhenrym14/mistral-7b-platypus-fp16 - teknium/CollectiveCognition-v1.1-Mistral-7B - uukuguy/speechless-mistral-dolphin-orca-platypus-samantha-7b Totally 6 LoRA modules from [speechless-mistral-7b-dare-0.85](https://huggingface.co/speechlessai/speechless-mistral-7b-dare-0.85) The router of mixture-of-multi-loras enables an automatic assembling of LoRA modules, using a gradientfree approach to obtain the coefficients of LoRA modules and requiring only a handful of inference steps for unseen tasks. Code: https://github.com/uukuguy/multi_loras?tab=readme-ov-file#mixture-of-multi-loras ## LM-Evaluation-Harness [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) | Metric | Value | | --- | --- | | ARC | 59.98 | | HellaSwag | 83.29 | | MMLU | 64.12 | | TruthfulQA | 42.15 | | Winogrande | 78.37 | | GSM8K | 37.68 | | Average | 60.93 |
Buttsac/bible
Buttsac
2024-01-09T01:32:49Z
0
0
null
[ "region:us" ]
null
2024-01-09T01:32:24Z
from transformers import GPT2LMHeadModel, GPT2Tokenizer def load_model(): model_name = "gpt2" # You can experiment with other GPT-2 variants or models model = GPT2LMHeadModel.from_pretrained(model_name) tokenizer = GPT2Tokenizer.from_pretrained(model_name) return model, tokenizer def generate_response(prompt, model, tokenizer, max_length=100): input_ids = tokenizer.encode(prompt, return_tensors="pt") # Generate response output = model.generate(input_ids, max_length=max_length, num_beams=5, no_repeat_ngram_size=2, top_k=50, top_p=0.95, temperature=0.7) response = tokenizer.decode(output[0], skip_special_tokens=True) return response if __name__ == "__main__": model, tokenizer = load_model() while True: user_input = input("You: ") if user_input.lower() == 'exit': break response = generate_response(user_input, model, tokenizer) print("Bot:", response)
wladimir/q-FrozenLake-v1-4x4-noSlippery
wladimir
2024-01-09T01:20:48Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-10-17T12:33:17Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="wladimir/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
GAI-LLM/KoSOLAR-10.7B-mixed-v13
GAI-LLM
2024-01-09T01:17:38Z
56
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "ko", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-08T02:07:09Z
--- license: cc-by-nc-4.0 language: - ko library_name: transformers pipeline_tag: text-generation --- **The license is `cc-by-nc-4.0`.** # **GAI-LLM/KoSOLAR-10.7B-mixed-v13** ## Model Details **Model Developers** Donghoon Oh, Hanmin Myung, Eunyoung Kim (SK C&C G.AI Eng) **Input** Models input text only. **Output** Models generate text only. **Model Architecture** GAI-LLM/KoSOLAR-10.7B-mixed-v13 is an auto-regressive language model based on the LLaMA2 transformer architecture. **Base Model** [yanolja/KoSOLAR-10.7B-v0.1](https://huggingface.co/yanolja/KoSOLAR-10.7B-v0.1-deprecated) **Training Dataset** - We combined Open Korean Dateset using mixed-strategy. - We use A100 GPU 80GB * 8, when training. # **Model Benchmark** ## KO-LLM leaderboard - Follow up as [Open KO-LLM LeaderBoard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard). # Implementation Code ```python ### GAI-LLM/KoSOLAR-10.7B-mixed-v13 from transformers import AutoModelForCausalLM, AutoTokenizer import torch repo = "GAI-LLM/KoSOLAR-10.7B-mixed-v13" model = AutoModelForCausalLM.from_pretrained( repo, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) tokenizer = AutoTokenizer.from_pretrained(repo) ```
rikhoffbauer2/naomi-makkelie-seaweed-painting-style-4
rikhoffbauer2
2024-01-09T01:07:40Z
4
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-01-09T01:07:35Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora widget: - text: a painting of seaweed underwater that look similar to green vines and leaves in the style of <s0><s1><s2><s3> output: url: image-0.png - text: a painting of seaweed painted using organic lines of green and black lines on a black background in the style of <s0><s1><s2><s3> output: url: image-1.png - text: an abstract painting (acrylic on canvas) of seaweed at the bottom of the ocean, the painting also features a yellow border in the style of <s0><s1><s2><s3> output: url: image-2.png base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: in the style of <s0><s1><s2><s3> license: openrail++ --- # SDXL LoRA DreamBooth - rikhoffbauer2/naomi-makkelie-seaweed-painting-style-4 <Gallery /> ## Model description ### These are rikhoffbauer2/naomi-makkelie-seaweed-painting-style-4 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - **LoRA**: download **[`naomi-makkelie-seaweed-painting-style-4.safetensors` here 💾](/rikhoffbauer2/naomi-makkelie-seaweed-painting-style-4/blob/main/naomi-makkelie-seaweed-painting-style-4.safetensors)**. - Place it on your `models/Lora` folder. - On AUTOMATIC1111, load the LoRA by adding `<lora:naomi-makkelie-seaweed-painting-style-4:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/). - *Embeddings*: download **[`naomi-makkelie-seaweed-painting-style-4_emb.safetensors` here 💾](/rikhoffbauer2/naomi-makkelie-seaweed-painting-style-4/blob/main/naomi-makkelie-seaweed-painting-style-4_emb.safetensors)**. - Place it on it on your `embeddings` folder - Use it by adding `naomi-makkelie-seaweed-painting-style-4_emb` to your prompt. For example, `in the style of naomi-makkelie-seaweed-painting-style-4_emb` (you need both the LoRA and the embeddings as they were trained together for this LoRA) ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('rikhoffbauer2/naomi-makkelie-seaweed-painting-style-4', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='rikhoffbauer2/naomi-makkelie-seaweed-painting-style-4', filename='naomi-makkelie-seaweed-painting-style-4_emb.safetensors' repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>", "<s2>", "<s3>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>", "<s2>", "<s3>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2) image = pipeline('in the style of <s0><s1><s2><s3>').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `<s0><s1><s2><s3>` in your prompt ## Details All [Files & versions](/rikhoffbauer2/naomi-makkelie-seaweed-painting-style-4/tree/main). The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
youdiniplays/filipinolingo_model
youdiniplays
2024-01-09T01:07:39Z
98
2
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:youdiniplays/filipinolingo_model", "base_model:finetune:youdiniplays/filipinolingo_model", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-12-27T08:30:24Z
--- license: apache-2.0 base_model: youdiniplays/filipinolingo_model tags: - generated_from_trainer metrics: - bleu model-index: - name: filipinolingo_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # filipinolingo_model This model is a fine-tuned version of [youdiniplays/filipinolingo_model](https://huggingface.co/youdiniplays/filipinolingo_model) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.6597 - Bleu: 11.8044 - Gen Len: 14.75 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 300 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 4 | 2.6992 | 3.5276 | 13.75 | | No log | 2.0 | 8 | 2.3483 | 6.8767 | 14.1875 | | No log | 3.0 | 12 | 2.2289 | 8.4749 | 14.5625 | | No log | 4.0 | 16 | 2.2552 | 8.537 | 14.375 | | No log | 5.0 | 20 | 2.3404 | 9.3451 | 13.875 | | No log | 6.0 | 24 | 2.5126 | 15.043 | 14.0625 | | No log | 7.0 | 28 | 2.7072 | 14.9624 | 14.125 | | No log | 8.0 | 32 | 2.8633 | 14.8092 | 14.3125 | | No log | 9.0 | 36 | 2.9499 | 15.0385 | 14.125 | | No log | 10.0 | 40 | 2.9954 | 9.0751 | 14.1875 | | No log | 11.0 | 44 | 3.0306 | 8.321 | 14.125 | | No log | 12.0 | 48 | 3.0640 | 8.5338 | 14.0625 | | No log | 13.0 | 52 | 3.0869 | 8.5302 | 14.0625 | | No log | 14.0 | 56 | 3.1138 | 8.3647 | 14.125 | | No log | 15.0 | 60 | 3.1254 | 8.5765 | 13.9375 | | No log | 16.0 | 64 | 3.1203 | 8.5302 | 14.0625 | | No log | 17.0 | 68 | 3.1250 | 12.0182 | 14.1875 | | No log | 18.0 | 72 | 3.1192 | 12.0182 | 14.1875 | | No log | 19.0 | 76 | 3.1231 | 8.5338 | 14.1875 | | No log | 20.0 | 80 | 3.1155 | 11.9388 | 13.875 | | No log | 21.0 | 84 | 3.1176 | 11.9402 | 13.875 | | No log | 22.0 | 88 | 3.1295 | 11.9402 | 13.875 | | No log | 23.0 | 92 | 3.1487 | 11.9402 | 13.875 | | No log | 24.0 | 96 | 3.1673 | 12.1489 | 13.875 | | No log | 25.0 | 100 | 3.1859 | 16.2159 | 13.875 | | No log | 26.0 | 104 | 3.2061 | 15.9711 | 13.8125 | | No log | 27.0 | 108 | 3.2147 | 15.9711 | 13.8125 | | No log | 28.0 | 112 | 3.2223 | 15.9711 | 13.8125 | | No log | 29.0 | 116 | 3.2345 | 16.2159 | 13.8125 | | No log | 30.0 | 120 | 3.2414 | 16.1289 | 13.8125 | | No log | 31.0 | 124 | 3.2448 | 16.1261 | 13.8125 | | No log | 32.0 | 128 | 3.2446 | 16.1261 | 13.8125 | | No log | 33.0 | 132 | 3.2307 | 15.8836 | 13.75 | | No log | 34.0 | 136 | 3.2247 | 15.8803 | 13.75 | | No log | 35.0 | 140 | 3.2364 | 15.8803 | 13.75 | | No log | 36.0 | 144 | 3.2507 | 16.1261 | 13.8125 | | No log | 37.0 | 148 | 3.2608 | 16.1261 | 13.8125 | | No log | 38.0 | 152 | 3.2893 | 16.536 | 13.8125 | | No log | 39.0 | 156 | 3.3026 | 16.3582 | 13.8125 | | No log | 40.0 | 160 | 3.2786 | 16.3582 | 13.9375 | | No log | 41.0 | 164 | 3.2607 | 16.3548 | 14.0 | | No log | 42.0 | 168 | 3.2557 | 16.4428 | 14.0 | | No log | 43.0 | 172 | 3.2648 | 16.1734 | 14.1875 | | No log | 44.0 | 176 | 3.2455 | 12.2013 | 14.375 | | No log | 45.0 | 180 | 3.2444 | 12.2013 | 14.375 | | No log | 46.0 | 184 | 3.2416 | 12.2013 | 14.375 | | No log | 47.0 | 188 | 3.2412 | 11.8127 | 14.375 | | No log | 48.0 | 192 | 3.2656 | 16.2611 | 14.3125 | | No log | 49.0 | 196 | 3.2998 | 16.0785 | 15.1875 | | No log | 50.0 | 200 | 3.3196 | 16.0785 | 14.6875 | | No log | 51.0 | 204 | 3.3304 | 15.9095 | 15.0 | | No log | 52.0 | 208 | 3.3312 | 16.0125 | 15.0 | | No log | 53.0 | 212 | 3.3265 | 16.0956 | 14.5 | | No log | 54.0 | 216 | 3.3282 | 16.2714 | 14.0625 | | No log | 55.0 | 220 | 3.3316 | 16.2714 | 14.0625 | | No log | 56.0 | 224 | 3.3312 | 16.2714 | 14.0625 | | No log | 57.0 | 228 | 3.3262 | 15.8593 | 14.5 | | No log | 58.0 | 232 | 3.3327 | 15.8672 | 14.5 | | No log | 59.0 | 236 | 3.3157 | 15.6948 | 14.9375 | | No log | 60.0 | 240 | 3.2849 | 15.8593 | 15.0 | | No log | 61.0 | 244 | 3.2707 | 15.8593 | 15.0 | | No log | 62.0 | 248 | 3.2732 | 15.8593 | 15.0625 | | No log | 63.0 | 252 | 3.2781 | 18.4173 | 15.1875 | | No log | 64.0 | 256 | 3.2990 | 18.6185 | 15.0 | | No log | 65.0 | 260 | 3.3277 | 18.6185 | 14.9375 | | No log | 66.0 | 264 | 3.3475 | 15.1975 | 14.8125 | | No log | 67.0 | 268 | 3.3274 | 15.2762 | 14.6875 | | No log | 68.0 | 272 | 3.3065 | 15.5165 | 14.75 | | No log | 69.0 | 276 | 3.3111 | 18.6185 | 14.625 | | No log | 70.0 | 280 | 3.3575 | 18.2583 | 14.6875 | | No log | 71.0 | 284 | 3.4089 | 18.5319 | 14.875 | | No log | 72.0 | 288 | 3.3937 | 18.6269 | 14.8125 | | No log | 73.0 | 292 | 3.3043 | 18.6269 | 14.8125 | | No log | 74.0 | 296 | 3.2596 | 18.7252 | 14.8125 | | No log | 75.0 | 300 | 3.2515 | 12.9228 | 15.125 | | No log | 76.0 | 304 | 3.2995 | 13.0338 | 15.125 | | No log | 77.0 | 308 | 3.3457 | 12.7784 | 15.25 | | No log | 78.0 | 312 | 3.3949 | 12.5078 | 15.375 | | No log | 79.0 | 316 | 3.4148 | 12.5862 | 14.625 | | No log | 80.0 | 320 | 3.4307 | 12.3785 | 14.75 | | No log | 81.0 | 324 | 3.4095 | 11.6247 | 14.5 | | No log | 82.0 | 328 | 3.3948 | 11.6247 | 14.5625 | | No log | 83.0 | 332 | 3.3857 | 11.6247 | 14.4375 | | No log | 84.0 | 336 | 3.3724 | 11.4452 | 13.875 | | No log | 85.0 | 340 | 3.3688 | 11.4377 | 13.8125 | | No log | 86.0 | 344 | 3.3656 | 11.4377 | 13.8125 | | No log | 87.0 | 348 | 3.3839 | 11.4295 | 13.8125 | | No log | 88.0 | 352 | 3.4168 | 11.1357 | 13.8125 | | No log | 89.0 | 356 | 3.4694 | 11.1357 | 13.8125 | | No log | 90.0 | 360 | 3.4992 | 10.5869 | 13.8125 | | No log | 91.0 | 364 | 3.5087 | 10.5869 | 13.8125 | | No log | 92.0 | 368 | 3.4923 | 11.0784 | 14.125 | | No log | 93.0 | 372 | 3.4931 | 14.544 | 14.5 | | No log | 94.0 | 376 | 3.5046 | 14.544 | 14.625 | | No log | 95.0 | 380 | 3.5058 | 14.1526 | 14.375 | | No log | 96.0 | 384 | 3.5057 | 13.9259 | 14.8125 | | No log | 97.0 | 388 | 3.5107 | 13.9259 | 14.75 | | No log | 98.0 | 392 | 3.5173 | 11.0784 | 14.25 | | No log | 99.0 | 396 | 3.5231 | 11.0887 | 14.3125 | | No log | 100.0 | 400 | 3.5289 | 11.2541 | 13.75 | | No log | 101.0 | 404 | 3.5357 | 11.2541 | 13.75 | | No log | 102.0 | 408 | 3.5417 | 11.1254 | 14.125 | | No log | 103.0 | 412 | 3.5468 | 11.3608 | 14.25 | | No log | 104.0 | 416 | 3.5430 | 11.3023 | 14.625 | | No log | 105.0 | 420 | 3.5337 | 10.9245 | 14.875 | | No log | 106.0 | 424 | 3.5247 | 10.9783 | 14.8125 | | No log | 107.0 | 428 | 3.5199 | 10.9783 | 14.8125 | | No log | 108.0 | 432 | 3.5172 | 10.9783 | 14.8125 | | No log | 109.0 | 436 | 3.5164 | 11.3128 | 14.9375 | | No log | 110.0 | 440 | 3.5167 | 11.3128 | 14.9375 | | No log | 111.0 | 444 | 3.5178 | 11.3128 | 14.9375 | | No log | 112.0 | 448 | 3.5201 | 11.3128 | 14.9375 | | No log | 113.0 | 452 | 3.5232 | 11.5924 | 14.9375 | | No log | 114.0 | 456 | 3.5264 | 11.5924 | 14.9375 | | No log | 115.0 | 460 | 3.5210 | 11.5924 | 14.9375 | | No log | 116.0 | 464 | 3.5163 | 11.3128 | 14.6875 | | No log | 117.0 | 468 | 3.5180 | 11.3706 | 14.625 | | No log | 118.0 | 472 | 3.5237 | 11.3706 | 14.625 | | No log | 119.0 | 476 | 3.5285 | 11.6792 | 14.875 | | No log | 120.0 | 480 | 3.5299 | 11.9509 | 14.875 | | No log | 121.0 | 484 | 3.5301 | 11.9509 | 14.875 | | No log | 122.0 | 488 | 3.5318 | 11.9509 | 14.875 | | No log | 123.0 | 492 | 3.5342 | 11.9509 | 14.875 | | No log | 124.0 | 496 | 3.5355 | 11.9509 | 14.875 | | 0.0683 | 125.0 | 500 | 3.5385 | 11.9509 | 14.6875 | | 0.0683 | 126.0 | 504 | 3.5422 | 11.9509 | 14.6875 | | 0.0683 | 127.0 | 508 | 3.5454 | 11.9509 | 14.6875 | | 0.0683 | 128.0 | 512 | 3.5490 | 11.9509 | 14.875 | | 0.0683 | 129.0 | 516 | 3.5494 | 11.9509 | 14.6875 | | 0.0683 | 130.0 | 520 | 3.5500 | 11.9509 | 14.6875 | | 0.0683 | 131.0 | 524 | 3.5513 | 11.6107 | 14.6875 | | 0.0683 | 132.0 | 528 | 3.5545 | 11.8824 | 14.6875 | | 0.0683 | 133.0 | 532 | 3.5571 | 11.8202 | 14.6875 | | 0.0683 | 134.0 | 536 | 3.5597 | 11.8202 | 14.875 | | 0.0683 | 135.0 | 540 | 3.5611 | 11.8824 | 14.5625 | | 0.0683 | 136.0 | 544 | 3.5629 | 11.8824 | 14.5625 | | 0.0683 | 137.0 | 548 | 3.5666 | 11.8824 | 14.5625 | | 0.0683 | 138.0 | 552 | 3.5715 | 11.8824 | 14.5625 | | 0.0683 | 139.0 | 556 | 3.5762 | 11.8824 | 14.5625 | | 0.0683 | 140.0 | 560 | 3.5789 | 11.8824 | 14.5625 | | 0.0683 | 141.0 | 564 | 3.5807 | 11.8824 | 14.5625 | | 0.0683 | 142.0 | 568 | 3.5858 | 11.8824 | 14.5625 | | 0.0683 | 143.0 | 572 | 3.5902 | 11.8202 | 14.875 | | 0.0683 | 144.0 | 576 | 3.5886 | 11.5499 | 14.875 | | 0.0683 | 145.0 | 580 | 3.5877 | 11.5499 | 14.875 | | 0.0683 | 146.0 | 584 | 3.5866 | 11.6107 | 14.875 | | 0.0683 | 147.0 | 588 | 3.5875 | 11.6107 | 14.875 | | 0.0683 | 148.0 | 592 | 3.5892 | 11.6107 | 14.875 | | 0.0683 | 149.0 | 596 | 3.5951 | 11.6792 | 14.875 | | 0.0683 | 150.0 | 600 | 3.6008 | 11.6792 | 14.875 | | 0.0683 | 151.0 | 604 | 3.6067 | 11.6792 | 14.875 | | 0.0683 | 152.0 | 608 | 3.5964 | 11.6107 | 14.875 | | 0.0683 | 153.0 | 612 | 3.5930 | 11.6107 | 14.875 | | 0.0683 | 154.0 | 616 | 3.5945 | 11.5499 | 15.125 | | 0.0683 | 155.0 | 620 | 3.5948 | 11.5499 | 15.125 | | 0.0683 | 156.0 | 624 | 3.5953 | 11.6107 | 14.875 | | 0.0683 | 157.0 | 628 | 3.5990 | 11.6107 | 14.875 | | 0.0683 | 158.0 | 632 | 3.6028 | 11.6107 | 14.875 | | 0.0683 | 159.0 | 636 | 3.6059 | 11.6026 | 14.875 | | 0.0683 | 160.0 | 640 | 3.6090 | 11.6026 | 14.875 | | 0.0683 | 161.0 | 644 | 3.6104 | 11.6026 | 14.875 | | 0.0683 | 162.0 | 648 | 3.6114 | 11.6026 | 14.875 | | 0.0683 | 163.0 | 652 | 3.6129 | 11.6026 | 14.875 | | 0.0683 | 164.0 | 656 | 3.6135 | 11.6026 | 14.875 | | 0.0683 | 165.0 | 660 | 3.6145 | 11.6026 | 14.875 | | 0.0683 | 166.0 | 664 | 3.6152 | 11.6026 | 14.875 | | 0.0683 | 167.0 | 668 | 3.6175 | 11.6026 | 14.875 | | 0.0683 | 168.0 | 672 | 3.6140 | 11.6026 | 14.875 | | 0.0683 | 169.0 | 676 | 3.6140 | 11.6026 | 14.875 | | 0.0683 | 170.0 | 680 | 3.6159 | 11.3715 | 14.875 | | 0.0683 | 171.0 | 684 | 3.6162 | 11.3715 | 14.875 | | 0.0683 | 172.0 | 688 | 3.6174 | 11.3715 | 14.875 | | 0.0683 | 173.0 | 692 | 3.6192 | 11.3715 | 14.875 | | 0.0683 | 174.0 | 696 | 3.6209 | 11.3715 | 14.875 | | 0.0683 | 175.0 | 700 | 3.6219 | 11.3715 | 14.875 | | 0.0683 | 176.0 | 704 | 3.6239 | 11.3715 | 14.875 | | 0.0683 | 177.0 | 708 | 3.6266 | 11.3715 | 14.875 | | 0.0683 | 178.0 | 712 | 3.6308 | 11.3715 | 14.875 | | 0.0683 | 179.0 | 716 | 3.6316 | 11.3715 | 14.875 | | 0.0683 | 180.0 | 720 | 3.6321 | 11.6026 | 14.875 | | 0.0683 | 181.0 | 724 | 3.6322 | 11.6026 | 14.875 | | 0.0683 | 182.0 | 728 | 3.6319 | 11.8757 | 14.875 | | 0.0683 | 183.0 | 732 | 3.6319 | 11.6577 | 14.875 | | 0.0683 | 184.0 | 736 | 3.6293 | 11.8757 | 14.875 | | 0.0683 | 185.0 | 740 | 3.6229 | 11.8757 | 14.875 | | 0.0683 | 186.0 | 744 | 3.6186 | 11.8757 | 14.875 | | 0.0683 | 187.0 | 748 | 3.6166 | 11.8757 | 14.875 | | 0.0683 | 188.0 | 752 | 3.6165 | 11.8757 | 14.875 | | 0.0683 | 189.0 | 756 | 3.6193 | 11.8757 | 14.875 | | 0.0683 | 190.0 | 760 | 3.6216 | 11.8757 | 14.875 | | 0.0683 | 191.0 | 764 | 3.6239 | 11.8757 | 14.875 | | 0.0683 | 192.0 | 768 | 3.6265 | 11.8757 | 14.875 | | 0.0683 | 193.0 | 772 | 3.6284 | 11.8757 | 14.875 | | 0.0683 | 194.0 | 776 | 3.6301 | 11.8684 | 14.8125 | | 0.0683 | 195.0 | 780 | 3.6319 | 11.8684 | 14.8125 | | 0.0683 | 196.0 | 784 | 3.6341 | 11.8684 | 14.8125 | | 0.0683 | 197.0 | 788 | 3.6364 | 11.8684 | 14.8125 | | 0.0683 | 198.0 | 792 | 3.6386 | 11.8684 | 14.8125 | | 0.0683 | 199.0 | 796 | 3.6418 | 11.8757 | 14.8125 | | 0.0683 | 200.0 | 800 | 3.6447 | 11.8757 | 14.8125 | | 0.0683 | 201.0 | 804 | 3.6463 | 12.1401 | 14.8125 | | 0.0683 | 202.0 | 808 | 3.6476 | 12.1401 | 14.8125 | | 0.0683 | 203.0 | 812 | 3.6496 | 11.9402 | 14.5625 | | 0.0683 | 204.0 | 816 | 3.6518 | 12.0061 | 14.1875 | | 0.0683 | 205.0 | 820 | 3.6544 | 12.0061 | 14.1875 | | 0.0683 | 206.0 | 824 | 3.6561 | 12.0061 | 14.1875 | | 0.0683 | 207.0 | 828 | 3.6574 | 12.206 | 14.3125 | | 0.0683 | 208.0 | 832 | 3.6588 | 12.1401 | 14.6875 | | 0.0683 | 209.0 | 836 | 3.6603 | 12.1401 | 14.6875 | | 0.0683 | 210.0 | 840 | 3.6612 | 12.1401 | 14.6875 | | 0.0683 | 211.0 | 844 | 3.6620 | 12.1401 | 14.6875 | | 0.0683 | 212.0 | 848 | 3.6628 | 12.1401 | 14.6875 | | 0.0683 | 213.0 | 852 | 3.6628 | 12.1401 | 14.6875 | | 0.0683 | 214.0 | 856 | 3.6633 | 11.8757 | 14.6875 | | 0.0683 | 215.0 | 860 | 3.6648 | 11.8757 | 14.6875 | | 0.0683 | 216.0 | 864 | 3.6665 | 11.8757 | 14.6875 | | 0.0683 | 217.0 | 868 | 3.6678 | 11.8044 | 14.75 | | 0.0683 | 218.0 | 872 | 3.6690 | 11.8044 | 14.75 | | 0.0683 | 219.0 | 876 | 3.6699 | 11.8044 | 14.75 | | 0.0683 | 220.0 | 880 | 3.6693 | 11.8044 | 14.75 | | 0.0683 | 221.0 | 884 | 3.6689 | 11.8757 | 14.6875 | | 0.0683 | 222.0 | 888 | 3.6687 | 11.8757 | 14.8125 | | 0.0683 | 223.0 | 892 | 3.6687 | 11.8757 | 14.8125 | | 0.0683 | 224.0 | 896 | 3.6690 | 11.8757 | 14.8125 | | 0.0683 | 225.0 | 900 | 3.6662 | 11.8757 | 14.8125 | | 0.0683 | 226.0 | 904 | 3.6609 | 11.8757 | 14.8125 | | 0.0683 | 227.0 | 908 | 3.6561 | 11.8757 | 14.8125 | | 0.0683 | 228.0 | 912 | 3.6536 | 11.8757 | 14.8125 | | 0.0683 | 229.0 | 916 | 3.6522 | 11.8757 | 14.8125 | | 0.0683 | 230.0 | 920 | 3.6515 | 11.8757 | 14.8125 | | 0.0683 | 231.0 | 924 | 3.6526 | 11.8757 | 14.8125 | | 0.0683 | 232.0 | 928 | 3.6532 | 11.8757 | 14.8125 | | 0.0683 | 233.0 | 932 | 3.6537 | 11.8757 | 14.8125 | | 0.0683 | 234.0 | 936 | 3.6536 | 11.8757 | 14.8125 | | 0.0683 | 235.0 | 940 | 3.6540 | 11.8757 | 14.8125 | | 0.0683 | 236.0 | 944 | 3.6540 | 11.8757 | 14.8125 | | 0.0683 | 237.0 | 948 | 3.6540 | 11.8757 | 14.8125 | | 0.0683 | 238.0 | 952 | 3.6545 | 11.8757 | 14.8125 | | 0.0683 | 239.0 | 956 | 3.6553 | 11.8757 | 14.8125 | | 0.0683 | 240.0 | 960 | 3.6557 | 11.8757 | 14.8125 | | 0.0683 | 241.0 | 964 | 3.6563 | 11.8757 | 14.8125 | | 0.0683 | 242.0 | 968 | 3.6573 | 11.8757 | 14.8125 | | 0.0683 | 243.0 | 972 | 3.6579 | 11.8757 | 14.8125 | | 0.0683 | 244.0 | 976 | 3.6583 | 11.8757 | 14.8125 | | 0.0683 | 245.0 | 980 | 3.6594 | 11.8757 | 14.8125 | | 0.0683 | 246.0 | 984 | 3.6599 | 11.8757 | 14.8125 | | 0.0683 | 247.0 | 988 | 3.6606 | 11.8757 | 14.8125 | | 0.0683 | 248.0 | 992 | 3.6513 | 11.8757 | 14.8125 | | 0.0683 | 249.0 | 996 | 3.6454 | 11.8757 | 14.8125 | | 0.0005 | 250.0 | 1000 | 3.6429 | 11.8757 | 14.8125 | | 0.0005 | 251.0 | 1004 | 3.6415 | 11.8757 | 14.8125 | | 0.0005 | 252.0 | 1008 | 3.6403 | 11.8757 | 14.8125 | | 0.0005 | 253.0 | 1012 | 3.6400 | 11.8757 | 14.8125 | | 0.0005 | 254.0 | 1016 | 3.6410 | 11.8757 | 14.8125 | | 0.0005 | 255.0 | 1020 | 3.6418 | 11.8757 | 14.8125 | | 0.0005 | 256.0 | 1024 | 3.6430 | 11.8044 | 14.75 | | 0.0005 | 257.0 | 1028 | 3.6441 | 11.8044 | 14.75 | | 0.0005 | 258.0 | 1032 | 3.6455 | 11.8044 | 14.75 | | 0.0005 | 259.0 | 1036 | 3.6463 | 11.8044 | 14.75 | | 0.0005 | 260.0 | 1040 | 3.6471 | 11.8044 | 14.75 | | 0.0005 | 261.0 | 1044 | 3.6478 | 11.8044 | 14.75 | | 0.0005 | 262.0 | 1048 | 3.6487 | 11.8044 | 14.75 | | 0.0005 | 263.0 | 1052 | 3.6499 | 11.8044 | 14.75 | | 0.0005 | 264.0 | 1056 | 3.6509 | 11.8044 | 14.75 | | 0.0005 | 265.0 | 1060 | 3.6516 | 11.8044 | 14.75 | | 0.0005 | 266.0 | 1064 | 3.6518 | 11.8044 | 14.75 | | 0.0005 | 267.0 | 1068 | 3.6522 | 11.8044 | 14.75 | | 0.0005 | 268.0 | 1072 | 3.6524 | 11.8044 | 14.75 | | 0.0005 | 269.0 | 1076 | 3.6533 | 11.8044 | 14.75 | | 0.0005 | 270.0 | 1080 | 3.6535 | 11.8044 | 14.75 | | 0.0005 | 271.0 | 1084 | 3.6543 | 11.8044 | 14.75 | | 0.0005 | 272.0 | 1088 | 3.6551 | 11.8044 | 14.75 | | 0.0005 | 273.0 | 1092 | 3.6554 | 11.8044 | 14.75 | | 0.0005 | 274.0 | 1096 | 3.6559 | 11.8044 | 14.75 | | 0.0005 | 275.0 | 1100 | 3.6558 | 11.8044 | 14.75 | | 0.0005 | 276.0 | 1104 | 3.6563 | 11.8044 | 14.75 | | 0.0005 | 277.0 | 1108 | 3.6567 | 11.8044 | 14.75 | | 0.0005 | 278.0 | 1112 | 3.6568 | 11.8044 | 14.75 | | 0.0005 | 279.0 | 1116 | 3.6570 | 11.8044 | 14.75 | | 0.0005 | 280.0 | 1120 | 3.6573 | 11.8044 | 14.75 | | 0.0005 | 281.0 | 1124 | 3.6575 | 11.8044 | 14.75 | | 0.0005 | 282.0 | 1128 | 3.6575 | 11.8044 | 14.75 | | 0.0005 | 283.0 | 1132 | 3.6574 | 11.8044 | 14.75 | | 0.0005 | 284.0 | 1136 | 3.6574 | 11.8044 | 14.75 | | 0.0005 | 285.0 | 1140 | 3.6580 | 11.8044 | 14.75 | | 0.0005 | 286.0 | 1144 | 3.6579 | 11.8044 | 14.75 | | 0.0005 | 287.0 | 1148 | 3.6583 | 11.8044 | 14.75 | | 0.0005 | 288.0 | 1152 | 3.6583 | 11.8044 | 14.75 | | 0.0005 | 289.0 | 1156 | 3.6589 | 11.8044 | 14.75 | | 0.0005 | 290.0 | 1160 | 3.6588 | 11.8044 | 14.75 | | 0.0005 | 291.0 | 1164 | 3.6587 | 11.8044 | 14.75 | | 0.0005 | 292.0 | 1168 | 3.6588 | 11.8044 | 14.75 | | 0.0005 | 293.0 | 1172 | 3.6592 | 11.8044 | 14.75 | | 0.0005 | 294.0 | 1176 | 3.6590 | 11.8044 | 14.75 | | 0.0005 | 295.0 | 1180 | 3.6592 | 11.8044 | 14.75 | | 0.0005 | 296.0 | 1184 | 3.6593 | 11.8044 | 14.75 | | 0.0005 | 297.0 | 1188 | 3.6593 | 11.8044 | 14.75 | | 0.0005 | 298.0 | 1192 | 3.6598 | 11.8044 | 14.75 | | 0.0005 | 299.0 | 1196 | 3.6597 | 11.8044 | 14.75 | | 0.0005 | 300.0 | 1200 | 3.6597 | 11.8044 | 14.75 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
qkrwnstj/lora_pixel_journal2
qkrwnstj
2024-01-09T01:05:22Z
1
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-01-07T17:18:39Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - qkrwnstj/lora_pixel_journal2 These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the qkrwnstj/pixel-journal dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
Grffffffy/apache-3.9
Grffffffy
2024-01-09T01:02:54Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2024-01-09T00:56:26Z
--- license: apache-2.0 --- Minha historia começa assim uma garota sonhadora que frequenta mesma escola que o seu amor platônico, Desde o primeiro dia em que eu o vi, fiquei encantada com a sua gentileza, inteligência e charme. Ele é popular na escola, enquanto eu prefiro ficar nos bastidores, observando-o de longe Queria poder demostrar meus sentimentos mais o medo da rejeição e a insegurança me impedem de dar esse passo tão importante. Eu me contento em admirá-lo discretamente, acompanhando-o nos corredores da escola, observando suas aulas de longe e até mesmo frequentando eventos nos quais sabia que ele estaria presente, apenas para sentir sua presença. Os dias passavam, e meus sentimentos cresciam cada vez mais. Eu sei quase tudo quase sobre ele, desde seus gostos até seus sonhos e aspirações. No entanto, o simples pensamento de revelar meus sentimentos me amedronta profundamente. As vezes me pergunto será que ele me nota? A confusão e as emoções se acumulam, criando um turbilhão dentro de mim Eu decidi que no dia do evento escolar vou superar meus medos e falar com ele quando finalmente eu me aproximei para confessar meus sentimentos, as palavras fugiram da minha boca. O medo e a timidez me paralisaram. Ele surpreso olhava minha agitação e nervosismo e gentilmente sorriu e iniciou uma conversa. Nesse momento, eu percebi que talvez a conexão que eu imaginava existir não fosse apenas em minha mente. Embora eu não tenha conseguido me declarar naquele momento, a amizade que começou a florescer entre nos trouxe um novo tipo de felicidade para mim A história de Sofia e seu amor platônico ensina que, por vezes, a coragem de se aproximar pode trazer recompensas inesperadas. A vida é cheia de surpresas, e, mesmo que nem sempre as coisas aconteçam como planejado, a jornada vale a pena.
yaocl/whisper-small-hi
yaocl
2024-01-09T00:55:23Z
61
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-08T06:18:17Z
--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-hi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-hi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4281 - Wer: 34.2504 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0822 | 2.44 | 1000 | 0.2963 | 35.2874 | | 0.0219 | 4.89 | 2000 | 0.3452 | 34.0642 | | 0.0011 | 7.33 | 3000 | 0.4070 | 34.4493 | | 0.0005 | 9.78 | 4000 | 0.4281 | 34.2504 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
jeiku/Streamlined_3B_GGUF
jeiku
2024-01-09T00:52:47Z
22
1
null
[ "gguf", "mergekit", "merge", "arxiv:2311.03099", "arxiv:2306.01708", "base_model:jeiku/No_Robots_Alpaca_StableLM", "base_model:merge:jeiku/No_Robots_Alpaca_StableLM", "base_model:jeiku/Rosa_v1_3B", "base_model:merge:jeiku/Rosa_v1_3B", "base_model:jeiku/Toxic_DPO_StableLM", "base_model:merge:jeiku/Toxic_DPO_StableLM", "endpoints_compatible", "region:us", "conversational" ]
null
2024-01-08T22:49:10Z
--- base_model: - jeiku/Rosa_v1_3B - jeiku/Erotica_StableLM - jeiku/Rosa_v1_3B - jeiku/Toxic_DPO_StableLM - jeiku/Rosa_v1_3B - jeiku/alpaca-cleaned_StableLM - jeiku/Rosa_v1_3B - jeiku/Gnosis_StableLM - jeiku/Rosa_v1_3B - jeiku/No_Robots_Alpaca_StableLM - jeiku/Rosa_v1_3B - jeiku/smol_PIPPA_StableLM - jeiku/Rosa_v1_3B tags: - mergekit - merge --- # output This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [jeiku/Rosa_v1_3B](https://huggingface.co/jeiku/Rosa_v1_3B) as a base. ### Models Merged The following models were included in the merge: * [jeiku/Rosa_v1_3B](https://huggingface.co/jeiku/Rosa_v1_3B) + [jeiku/Erotica_StableLM](https://huggingface.co/jeiku/Erotica_StableLM) * [jeiku/Rosa_v1_3B](https://huggingface.co/jeiku/Rosa_v1_3B) + [jeiku/Toxic_DPO_StableLM](https://huggingface.co/jeiku/Toxic_DPO_StableLM) * [jeiku/Rosa_v1_3B](https://huggingface.co/jeiku/Rosa_v1_3B) + [jeiku/alpaca-cleaned_StableLM](https://huggingface.co/jeiku/alpaca-cleaned_StableLM) * [jeiku/Rosa_v1_3B](https://huggingface.co/jeiku/Rosa_v1_3B) + [jeiku/Gnosis_StableLM](https://huggingface.co/jeiku/Gnosis_StableLM) * [jeiku/Rosa_v1_3B](https://huggingface.co/jeiku/Rosa_v1_3B) + [jeiku/No_Robots_Alpaca_StableLM](https://huggingface.co/jeiku/No_Robots_Alpaca_StableLM) * [jeiku/Rosa_v1_3B](https://huggingface.co/jeiku/Rosa_v1_3B) + [jeiku/smol_PIPPA_StableLM](https://huggingface.co/jeiku/smol_PIPPA_StableLM) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: jeiku/Rosa_v1_3B+jeiku/No_Robots_Alpaca_StableLM parameters: weight: 0.15 density: 0.166 - model: jeiku/Rosa_v1_3B+jeiku/Gnosis_StableLM parameters: weight: 0.2 density: 0.166 - model: jeiku/Rosa_v1_3B+jeiku/Erotica_StableLM parameters: weight: 0.15 density: 0.166 - model: jeiku/Rosa_v1_3B+jeiku/smol_PIPPA_StableLM parameters: weight: 0.2 density: 0.166 - model: jeiku/Rosa_v1_3B+jeiku/alpaca-cleaned_StableLM parameters: weight: 0.1 density: 0.166 - model: jeiku/Rosa_v1_3B+jeiku/Toxic_DPO_StableLM parameters: weight: 0.2 density: 0.166 merge_method: dare_ties base_model: jeiku/Rosa_v1_3B parameters: dtype: bfloat16 ```
modpotato/public_models
modpotato
2024-01-09T00:48:06Z
0
0
null
[ "rvc", "audio-to-audio", "en", "region:us" ]
audio-to-audio
2023-10-06T04:01:41Z
--- language: - en pipeline_tag: audio-to-audio tags: - rvc --- # mods rvc models repo for rvc models ive made (dm me on discord (modpotato) for commisions) [Open an issue](https://huggingface.co/Gustavosta/SowlfieModelsRVC/discussions/new)! ## 🎤 New RVC Models: (all of these are trained until no improvement noticed) | Model | Epochs | Language | Preview | |---|:---:|---:|---| | [Androxus (Paladins)](https://huggingface.co/modpotato/public_models/blob/main/adnorox_fittest.zip) | 123 epochs) | english | [Androxus from Paladins - Billion Dollar Baby](https://www.youtube.com/watch?v=BrOO9AQySPk) | | [a literal fucking sine wave](https://huggingface.co/modpotato/public_models/blob/main/a%20literal%20sine%20wave_fittest.zip) | 197 epochs | ????? | [games but its sung by a literal sine wave](https://youtu.be/-omYMgHoyRA) | | [square wave](https://huggingface.co/modpotato/public_models/blob/main/square%20wave.zip) | 42 epochs (may retrain) | ????? | [games but its sung by a literal square wave](https://www.youtube.com/watch?v=nqpvXi_Vpls) | | [saw wave](https://huggingface.co/modpotato/public_models/blob/main/square%20wave.zip) | 774 epochs | ????? | [games but its sung by a literal saw wave](https://www.youtube.com/watch?v=-iQVvLWSUg0) | | [Nightbringer Yasuo (LoL)](https://huggingface.co/modpotato/public_models/blob/main/nightbringer%20yasuo.zip) | 370 epochs | english | [i want it that way sung by Nightbringer Yasuo (LoL)](https://www.youtube.com/watch?v=I3qT4StTXI0) | | [triangle wave](https://huggingface.co/modpotato/public_models/blob/main/triangle%20wave_fittest.zip) | around 350 | ????? | [games but its sung by a literal triangle wave](https://www.youtube.com/watch?v=Ry2OBYCcJO8) | | [Corvus (Paladins)](https://huggingface.co/modpotato/public_models/blob/main/corvus_fittest.zip) | around 350 | english | [corvus sings ballin](https://youtu.be/RxiqERTi9LU) | | [Otzdarva (Youtuber)](https://huggingface.co/modpotato/public_models/blob/main/otzdarva_fittest.zip) | no idea | english | [otz sings 3 big balls](https://youtu.be/5kQoVrTDFuA) | | [DJ Smokey (fixed)](https://huggingface.co/modpotato/public_models/blob/main/dj%20smokey_v2.zip) | no idea | english | [DJ Smokey - ryte night](https://www.youtube.com/watch?v=VNfBj6P2-Fw) | | [Mordekaiser (LoL)](https://huggingface.co/modpotato/public_models/blob/main/mordekaiser.zip) | no idea | english | none atm | | [Sydney (Payday 2)](https://huggingface.co/modpotato/public_models/blob/main/sydney_(payday_2)_fittest.zip) | no idea | english | none atm | | [Jiro (Payday 2)](https://huggingface.co/modpotato/public_models/blob/main/jiro_payday_2_fittest.zip) | no idea | japanese | none atm | | [car names meme guy](https://huggingface.co/modpotato/public_models/blob/main/car%20names%20guy_fittest.zip) | no idea | english | none atm | | [Nihilanth](https://huggingface.co/modpotato/public_models/blob/main/Nihilanth_fittest.zip) | no idea | ????? | none atm | | [OOF sfx](https://huggingface.co/modpotato/public_models/blob/main/oof_sfx_fittest.zip) | no idea | oof | none atm | | [jeff (half life 2)](https://huggingface.co/modpotato/public_models/blob/main/HL-jeff_fittest.zip) | no idea | ????? | none atm | | [Slade (Teen Titans)](https://huggingface.co/modpotato/public_models/blob/main/slade_teen-titans.zip) | no idea | ~250 | none atm | | [metal pipe sfx](https://huggingface.co/modpotato/public_models/blob/main/metal_pipe_fittest.zip) | no idea | ~250 | none atm | | [NTTS](https://huggingface.co/modpotato/public_models/blob/main/NTTS_mini_fittest.zip) | no idea | ????? | none atm | | [Bedman / Romeo -ENG- (Guilty Gear Xrd)](https://huggingface.co/modpotato/public_models/blob/main/badman_fittest.zip) | no idea | english | none atm | | [Captain Price (MW2)](https://huggingface.co/modpotato/public_models/blob/main/price_mw2_fittest.zip) | no idea | english | none atm | | [Papyrus (If Undertale was Realistic)](https://huggingface.co/modpotato/public_models/blob/main/Papyrus_realisticundertale_fittest.zip) | no idea | english | none atm | | [Pramanix (Arknights)](https://huggingface.co/modpotato/public_models/blob/main/pramanix_fittest.zip) | no idea | english | none atm | | [Exusiai (Arknights)](https://huggingface.co/modpotato/public_models/blob/main/Exusiai_arknights_301.zip) | like 300 sumn | english | none atm | | [Silverash (Arknights)](https://huggingface.co/modpotato/public_models/blob/main/Silverash_arknights_373.zip) | like 300 sumn | english | none atm | | [Texas (Arknights)](https://huggingface.co/modpotato/public_models/blob/main/texas_arknights_270.zip) | like 300 sumn | english | none atm | ## 🤢 Old RVC Models: | Model | Epochs | Language | Preview | |---|:---:|---:|---| | [DJ Smokey (legalize nuclear bombs)](https://huggingface.co/modpotato/public_models/blob/main/test-dj-smokey.zip) | 1k epochs | english | [DJ Smokey - ryte night](https://youtu.be/VNfBj6P2-Fw) | | [ChaCha (Akazukin Chacha)](https://huggingface.co/modpotato/public_models/blob/main/chacha.zip) | 300 epochs | english dub | [ChaCha - ryte night](https://youtu.be/wRIIleSQX94) | | [Link (CD-i)](https://huggingface.co/modpotato/public_models/blob/main/Link%20(CD-i).zip) | 300 epochs | english | [link miss me with that nonsense (actually sung by link)](https://youtu.be/uBaj0kpFKf8) | yeah i ripped this from some other huggingface acc
ucheokechukwu/ppo-Huggy
ucheokechukwu
2024-01-09T00:43:09Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2024-01-09T00:42:57Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: ucheokechukwu/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
bizarre123/standardized-app
bizarre123
2024-01-09T00:41:38Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2", "region:us" ]
null
2024-01-09T00:38:04Z
--- library_name: peft base_model: mistralai/Mistral-7B-Instruct-v0.2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
gagan3012/MetaModel_moe_multilingualv2
gagan3012
2024-01-09T00:35:51Z
18
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "moe", "mergekit", "merge", "chinese", "arabic", "english", "multilingual", "german", "french", "openchat/openchat-3.5-1210", "beowolx/CodeNinja-1.0-OpenChat-7B", "maywell/PiVoT-0.1-Starling-LM-RP", "WizardLM/WizardMath-7B-V1.1", "davidkim205/komt-mistral-7b-v1", "OpenBuddy/openbuddy-zephyr-7b-v14.1", "manishiitg/open-aditi-hi-v1", "VAGOsolutions/SauerkrautLM-7b-v1-mistral", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-08T18:01:20Z
--- license: apache-2.0 tags: - moe - mergekit - merge - chinese - arabic - english - multilingual - german - french - openchat/openchat-3.5-1210 - beowolx/CodeNinja-1.0-OpenChat-7B - maywell/PiVoT-0.1-Starling-LM-RP - WizardLM/WizardMath-7B-V1.1 - davidkim205/komt-mistral-7b-v1 - OpenBuddy/openbuddy-zephyr-7b-v14.1 - manishiitg/open-aditi-hi-v1 - VAGOsolutions/SauerkrautLM-7b-v1-mistral --- # MetaModel_moe_multilingualv2 This model is a Mixure of Experts (MoE) made with [mergekit](https://github.com/cg123/mergekit) (mixtral branch). It uses the following base models: * [openchat/openchat-3.5-1210](https://huggingface.co/openchat/openchat-3.5-1210) * [beowolx/CodeNinja-1.0-OpenChat-7B](https://huggingface.co/beowolx/CodeNinja-1.0-OpenChat-7B) * [maywell/PiVoT-0.1-Starling-LM-RP](https://huggingface.co/maywell/PiVoT-0.1-Starling-LM-RP) * [WizardLM/WizardMath-7B-V1.1](https://huggingface.co/WizardLM/WizardMath-7B-V1.1) * [davidkim205/komt-mistral-7b-v1](https://huggingface.co/davidkim205/komt-mistral-7b-v1) * [OpenBuddy/openbuddy-zephyr-7b-v14.1](https://huggingface.co/OpenBuddy/openbuddy-zephyr-7b-v14.1) * [manishiitg/open-aditi-hi-v1](https://huggingface.co/manishiitg/open-aditi-hi-v1) * [VAGOsolutions/SauerkrautLM-7b-v1-mistral](https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-v1-mistral) ## 🧩 Configuration ```yamlbase_model: mlabonne/NeuralMarcoro14-7B dtype: bfloat16 experts: - positive_prompts: - chat - assistant - tell me - explain source_model: openchat/openchat-3.5-1210 - positive_prompts: - code - python - javascript - programming - algorithm source_model: beowolx/CodeNinja-1.0-OpenChat-7B - positive_prompts: - storywriting - write - scene - story - character source_model: maywell/PiVoT-0.1-Starling-LM-RP - positive_prompts: - reason - math - mathematics - solve - count source_model: WizardLM/WizardMath-7B-V1.1 - positive_prompts: - korean - answer in korean - korea source_model: davidkim205/komt-mistral-7b-v1 - positive_prompts: - chinese - china - answer in chinese source_model: OpenBuddy/openbuddy-zephyr-7b-v14.1 - positive_prompts: - hindi - india - hindu - answer in hindi source_model: manishiitg/open-aditi-hi-v1 - positive_prompts: - german - germany - answer in german - deutsch source_model: VAGOsolutions/SauerkrautLM-7b-v1-mistral gate_mode: hidden ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "gagan3012/MetaModel_moe_multilingualv2" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
JDB03/ppo-Huggy
JDB03
2024-01-09T00:30:50Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2024-01-09T00:27:42Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: JDB03/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
samwell/Taxi-v3
samwell
2024-01-09T00:28:25Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-09T00:28:11Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.69 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="samwell/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Dotunnorth/a2c-PandaReachDense-v5
Dotunnorth
2024-01-08T23:59:28Z
2
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-08T23:54:03Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.25 +/- 0.10 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
nikcheerla/amd-full-v1
nikcheerla
2024-01-08T23:49:53Z
48
0
setfit
[ "setfit", "safetensors", "mpnet", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:sentence-transformers/paraphrase-mpnet-base-v2", "base_model:finetune:sentence-transformers/paraphrase-mpnet-base-v2", "region:us" ]
text-classification
2024-01-08T23:49:34Z
--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: 'Your call has been forwarded to an automated voice messaging system. 9 ' - text: 'Your call has been forwarded to an automatic voice message system. 7133 ' - text: 'Triage Tronic Industries is not available. Record your message at the tone. ' - text: 'Hi. This is Sid. I''m sorry I missed your call. Please leave me your name and number, and I will get back to you as soon as I can. Thank you, and have ' - text: 'The Google subscriber you have called is not available. Please leave a message after the tone. ' pipeline_tag: text-classification inference: true base_model: sentence-transformers/paraphrase-mpnet-base-v2 --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:--------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | machine | <ul><li>'Sorry. David Hello. Is not avail '</li><li>'To Mozaz. Please wait as we try to connect you. '</li><li>'Your call has been forwarded to an automated voice messaging system. 2 0 '</li></ul> | | human | <ul><li>'Good afternoon. Sesame Workshop. How can I help you today? '</li><li>'This is Kenny. '</li><li>'Hello? '</li></ul> | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("nikcheerla/amd-full-v1") # Run inference preds = model("Your call has been forwarded to an automated voice messaging system. 9 ") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 1 | 14.6725 | 207 | | Label | Training Sample Count | |:--------|:----------------------| | human | 1495 | | machine | 6401 | ### Training Hyperparameters - batch_size: (32, 32) - num_epochs: (3, 3) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: True - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:---------:|:-------------:|:---------------:| | 0.0001 | 1 | 0.197 | - | | 1.0 | 9870 | 0.0001 | 0.0271 | | 2.0 | 19740 | 0.0 | 0.0272 | | **3.0** | **29610** | **0.0** | **0.0264** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.1 - Sentence Transformers: 2.2.2 - Transformers: 4.35.2 - PyTorch: 2.0.1+cu118 - Datasets: 2.16.1 - Tokenizers: 0.15.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
s3nh/s3nh-Sonya-Panda-7B-slerp-GGUF
s3nh
2024-01-08T23:48:19Z
0
1
transformers
[ "transformers", "gguf", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2024-01-08T23:27:44Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGUF Format model files for [This project](https://huggingface.co/s3nh/Sonya-Panda-7B-slerp). ### GGUF Specs GGUF is a format based on the existing GGJT, but makes a few changes to the format to make it more extensible and easier to use. The following features are desired: Single-file deployment: they can be easily distributed and loaded, and do not require any external files for additional information. Extensible: new features can be added to GGML-based executors/new information can be added to GGUF models without breaking compatibility with existing models. mmap compatibility: models can be loaded using mmap for fast loading and saving. Easy to use: models can be easily loaded and saved using a small amount of code, with no need for external libraries, regardless of the language used. Full information: all information needed to load a model is contained in the model file, and no additional information needs to be provided by the user. The key difference between GGJT and GGUF is the use of a key-value structure for the hyperparameters (now referred to as metadata), rather than a list of untyped values. This allows for new metadata to be added without breaking compatibility with existing models, and to annotate the model with additional information that may be useful for inference or for identifying the model. ### Perplexity params Model Measure Q2_K Q3_K_S Q3_K_M Q3_K_L Q4_0 Q4_1 Q4_K_S Q4_K_M Q5_0 Q5_1 Q5_K_S Q5_K_M Q6_K Q8_0 F16 7B perplexity 6.7764 6.4571 6.1503 6.0869 6.1565 6.0912 6.0215 5.9601 5.9862 5.9481 5.9419 5.9208 5.9110 5.9070 5.9066 13B perplexity 5.8545 5.6033 5.4498 5.4063 5.3860 5.3608 5.3404 5.3002 5.2856 5.2706 5.2785 5.2638 5.2568 5.2548 5.2543 ### inference TODO # Original model card
KMA-kmc1/distilbert-base-uncased-finetuned-emotion
KMA-kmc1
2024-01-08T23:45:57Z
85
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-08T23:41:00Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.922 - name: F1 type: f1 value: 0.9220402540427051 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2249 - Accuracy: 0.922 - F1: 0.9220 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8121 | 1.0 | 250 | 0.3311 | 0.896 | 0.8949 | | 0.2499 | 2.0 | 500 | 0.2249 | 0.922 | 0.9220 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
alialhousseini/Reinforce-2
alialhousseini
2024-01-08T23:25:58Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-01-08T23:25:33Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 14.80 +/- 12.72 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
vkamenski/Pixelcopter-PLE-v0
vkamenski
2024-01-08T23:15:47Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-01-08T23:15:38Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 23.80 +/- 20.45 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Yemmy1000/results
Yemmy1000
2024-01-08T23:13:15Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:finetune:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2024-01-08T23:01:31Z
--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 10 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 2 ### Training results ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.1 - Datasets 2.12.0 - Tokenizers 0.14.1
ntc-ai/SDXL-LoRA-slider.time-lapse-photography
ntc-ai
2024-01-08T23:12:45Z
4
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2024-01-08T23:12:42Z
--- language: - en thumbnail: "images/evaluate/time lapse photography.../time lapse photography_17_3.0.png" widget: - text: time lapse photography output: url: images/time lapse photography_17_3.0.png - text: time lapse photography output: url: images/time lapse photography_19_3.0.png - text: time lapse photography output: url: images/time lapse photography_20_3.0.png - text: time lapse photography output: url: images/time lapse photography_21_3.0.png - text: time lapse photography output: url: images/time lapse photography_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "time lapse photography" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - time lapse photography (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/time lapse photography_17_-3.0.png" width=256 height=256 /> | <img src="images/time lapse photography_17_0.0.png" width=256 height=256 /> | <img src="images/time lapse photography_17_3.0.png" width=256 height=256 /> | | <img src="images/time lapse photography_19_-3.0.png" width=256 height=256 /> | <img src="images/time lapse photography_19_0.0.png" width=256 height=256 /> | <img src="images/time lapse photography_19_3.0.png" width=256 height=256 /> | | <img src="images/time lapse photography_20_-3.0.png" width=256 height=256 /> | <img src="images/time lapse photography_20_0.0.png" width=256 height=256 /> | <img src="images/time lapse photography_20_3.0.png" width=256 height=256 /> | ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` time lapse photography ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.time-lapse-photography', weight_name='time lapse photography.safetensors', adapter_name="time lapse photography") # Activate the LoRA pipe.set_adapters(["time lapse photography"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, time lapse photography" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 950+ unique and diverse LoRAs, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful LoRA slider creator, allowing you to craft your own custom LoRAs and experiment with endless possibilities. Your support on Patreon will allow us to continue developing and refining new models. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
s3nh/Sonya-Panda-7B-slerp
s3nh
2024-01-08T23:12:19Z
9
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "en", "base_model:NeuralNovel/Panda-7B-v0.1", "base_model:merge:NeuralNovel/Panda-7B-v0.1", "base_model:SanjiWatsuki/Sonya-7B", "base_model:merge:SanjiWatsuki/Sonya-7B", "license:openrail", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-08T22:53:45Z
--- base_model: - NeuralNovel/Panda-7B-v0.1 - SanjiWatsuki/Sonya-7B tags: - mergekit - merge license: openrail language: - en library_name: transformers pipeline_tag: text-generation --- # Sonya-Panda-7B-slerp ![Intro](panda.png) This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [NeuralNovel/Panda-7B-v0.1](https://huggingface.co/NeuralNovel/Panda-7B-v0.1) * [SanjiWatsuki/Sonya-7B](https://huggingface.co/SanjiWatsuki/Sonya-7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: SanjiWatsuki/Sonya-7B dtype: bfloat16 merge_method: slerp parameters: t: - filter: self_attn value: [0.0, 0.5, 0.5, 0.8, 1.0] - filter: mlp value: [1.0, 0.5, 0.5, 0.2, 0.0] - value: 0.5 slices: - sources: - layer_range: [0, 32] model: NeuralNovel/Panda-7B-v0.1 ```